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ABSTRACT 

This work presents the cell-free transcription-translation (TX-TL) system as a research and 

development platform for renewable synthesis and molecular discovery. TX-TL is easy to 

use and provides a biomolecular breadboard for the rapid prototyping and engineering of 

biosynthetic pathways. This work has validated the capabilities of the cell-free TX-TL 

system for simultaneous protein expression and chemical synthesis. Specifically, this work 

shows that TX-TL supports the conversion of intermediates from carbohydrate metabolism 

and amino acids into valuable compounds. Metabolic flux through cofactor dependent 

pathways confirms that active cofactor metabolism is occurring in TX-TL. This work has 

also demonstrated the industrial relevance of TX-TL through exploring design space of a 

biosynthetic pathway for improved product yield and expanding substrate scope of another 

biosynthetic pathway.  

Current methods for assembling biosynthetic pathways in microorganisms require a 

process of repeated trial and error and have long design-build-test cycles. We describe the 

use of a cell-free transcription-translation (TX-TL) system as a biomolecular breadboard 

for the rapid engineering of the 1,4-butanediol (BDO) pathway. In this work, we have 

verified enzyme expression and enzyme activity and identified the conversion of 4-

hydroxybutyrate to downstream metabolites as the pathway bottleneck. We demonstrate 

the reliability of using linear DNA in TX-TL as a tool for engineering biological systems 

by undertaking a careful characterization of its transcription and translation capabilities and 

provide a detailed analysis of its metabolic output. Pathway constructs of varying pathway 
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enzyme expression levels are tested in TX-TL and in vivo to identify correlations between 

the two systems, and we find that the production of BDO is correlated to the expression of 

enzyme ald in both systems. The use of TX-TL to survey the design space of the BDO 

pathway enables rapid tuning of pathway enzyme expression levels for improved product 

yield. Different pathway combinations are also tested in TX-TL for its application in 

pathway ranking. Leveraging TX-TL to screen enzyme variants for improved catalytic 

activity accelerates design iterations that can be directly applied to in vivo strain 

development. 

TX-TL simulates a customizable cellular environment that can be controlled by manipulating 

pH, changing cellular components, or adding exogenous substrates. By adding linear DNA 

encoding individual enzymes of the violacein pathway and tryptophan analogs in TX-TL 

reactions, we have discovered new violacein analogs. TX-TL enables rapid production of 

natural product analogs with diverse substitution, which allows small-scale biosynthesis of 

potential drug candidates and offers a new platform for drug discovery. This work also 

presents TX-TL as a platform for protein engineering. Residues targeted for site-saturated 

mutagenesis were identified with protein-ligand docking. Linear DNAs of individual enzyme 

mutants were added into TX-TL reactions to screen for improved enzyme variant. Screening 

result indicates vioE mutant Y17H reduces byproduct formation and redirects metabolic flux 

towards target metabolites. Protein engineering for improved enzyme activity can further 

expand the substrate scope of a natural product pathway and result with more natural product 

analogs that can be applied for medical applications. 
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This work demonstrates that the cell-free TX-TL system can become a valuable tool that 

complements the process of engineering biosynthesis in the whole cell in vivo system or the 

purified protein in vitro system. Future engineering and development of the TX-TL system 

can further expand the chemical space for biosynthesis.  
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C h a p t e r  1  

INTRODUCTION 

METABOLIC ENGINEERING  

Advancements in the engineering of biological systems for valuable compounds have formed 

the cornerstone of the biotechnology industry. Bio-based processes utilizes renewable 

resources to produce sustainable chemicals, which have become a very attractive alternative 

to traditional organic synthesis.1-2 The bio-based production of C2 to C6 platform chemicals3 

provides evidence that the field of bioengineering can develop tools for building the future 

of green chemistry. The research and development efforts towards producing economically 

competitive chemicals in biological systems have resulted in a wide range of techniques to 

maximize target metabolite production. Two main approaches for the engineering of 

biosynthesis are: to increase fluxes through target pathway reactions and to improve target 

pathway enzymes’ performance.4 Some representative techniques for the first approach 

include flux balance analysis (FBA),5 and 13C isotope tracing for flux determination.6 The 

flux-emphasized approach optimizes target compound production by identifying the most or 

the least important reactions of a particular biosynthetic pathway. The most critical reactions 

can be up-regulated by overexpressing related enzymes, while the least desirable reactions 

can be eliminated by gene knockout. For example, the engineering of E. coli for the 

production of 1,3-propanediol from glucose was achieved by removing nonproductive genes 

and the energetically inefficient glucose transport mechanism.7  
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Instead of rerouting the metabolic network, the second approach aims to increase target 

metabolite production by protein engineering. Protein engineering can be achieved by two 

main strategies: rational design and directed evolution.8 By introducing genetic mutation to 

a targeted enzyme, enzyme variants can facilitate novel chemistry. For example, a 

cytochrome engineered with unique serine-heme ligation catalyzes olefin cyclopropanation 

in E. coli.9 Other techniques for the engineering of biosynthesis includes enzyme co-

localization10-12 and the implementation of metabolite sensors and regulators.13-15 Many have 

also started to expand the chemical space by looking at biosynthesis with new lenses. Some 

of the ongoing efforts include studies on human gut biota,16 pathway mining,17 and the 

construction of de novo pathway.18 Collectively, the field of metabolic engineering has the 

great potential to transform bio-based production to compete with the conventional chemical 

processes. In this work, techniques such as flux analysis, expanding substrate scope, and 

protein engineering are applied to explore the capabilities of cell-free systems as a platform 

for the engineering of biosynthesis.  

PROTOTYPING IN A CELL-FREE BIOMOLECULAR BREADBOARD  

Cell-free systems offer a reliable testing environment for engineering biosynthetic pathways. 

Cell membranes are essential for protecting cells from the surrounding environment and 

regulating material exchange, but cell membranes sometimes impose constraints for 

engineering biological systems.19 Removing cell membranes from organisms and retaining 

cytoplasmic contents creates cell-free systems. The process of making cell extract breaks 

down cell membrane, gets rid of endogenous DNA, and retains cellular components 



 

 3 

necessary for transcription and translation. Building blocks for transcription and translation 

(nucleoside triphosphate and amino acids) and energy currency (cofactors such as coA and 

NAD) are added into the extract to facilitate biochemical reactions. The homogeneity of the 

cell extracts enables better control of the reaction environment and easy access to cellular 

components.20 Cell-free biology opens up opportunities to gain biological insights and 

potentially create technological innovations. Cell-free transcription and translation systems 

were developed in the early 1980s.21-23 Since then, researchers have been utilizing the 

systems for various applications. Cell-free protein expression coupled with large-scale 

bioprocessing can introduce new ways for pharmaceutical productions. For example, Sutro 

BioPharma is currently in the process of scaling up cell-free production of pharmaceutical 

proteins.24 The applications of cell-free systems for biological engineering has renewed 

interests.25 Cell-free transcription-translation system (TX-TL) has been applied as a 

biomolecular breadboard for efficient biological circuit prototyping.26-29 There are also cell-

free systems engineered specifically for the continuous synthesis of renewable energy and 

materials.30-32  

Cell-free systems simulate a controlled cellular environment and are suitable for prototyping 

biological parts and modules. Cell-free systems decouple growth from the active 

transcription-translation machinery, which eliminates cell transformation, cell culture seed 

train, and the application of antibiotics. Other advantages of using cell-free systems as a 

biomolecular breadboard include open access to the cellar biochemical network, protein 

expressions from linear pieces of DNAs, and simultaneous protein expressions of multiple 

pieces of DNAs. Open access to the cellular network allows the addition of exogenous 
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materials and subtraction of undesired cellular components, which creates opportunities to 

explore non-natural enzyme activity that may be otherwise impossible in vivo. Protein 

expressions from multiple linear pieces enable high-throughput screening of different 

pathway combinations, pathway compartments, and cofactor specificities. This feature 

significantly reduces cloning efforts necessary for prototyping. Collectively, cell-free 

systems accelerate the design-build-test cycle for engineering biosynthesis pathways. The 

cycle time for a biological part assembly can be significantly reduced from 1 week (Figure 

1.1) in vivo to 1 day using linear DNAs in the cell-free TX-TL system.33 Further, the 

dynamics of a biosynthetic pathway can be analyzed in less than eight hours, which is a 

fraction of the time it takes for total biosynthesis in vivo (shown in Figure 1.2). In this work, 

Chapter 2 shows the benefits of the cell-free TX-TL system and presents a systematic 

comparison between TX-TL and in vivo system. Appendix A also showcases a piece of 

earlier work on prototyping biosynthetic pathways in TX-TL. 

 

Figure 1.1: Design-build-test cycle for biosynthesis. The testing duration from plasmid to 
metabolite in vivo takes up to one week.  
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Figure 1.2: New design-build-test cycle for biosynthesis. The testing duration from plasmid 
or even linear DNA to metabolite takes one day.  

RESOURCE LIMITATIONS and DESIGN SPACE EXPLORATION  

Cellular resource limitation poses challenges to the engineering of biosynthesis.34 Previous 

research has studied the central metabolism and rerouted metabolic pathways for improved 

pathway yields.35-36 Nevertheless, protein synthesis is an energy-intensive cellular process.  

The allocation of resources between metabolite synthesis and protein synthesis remains an 

optimization problem for biosynthesis.37 Further, protein expression levels and activity affect 

target product yield. Tuning protein expression levels requires engineering on multiple 

levels, including transcription from DNA to RNA, translation from RNA to protein, and 

protein activity. A biosynthetic pathway facilitates a series of reactions from raw materials 

to target products with the help of multiple proteins, and balancing multiple protein 

expressions in parallel remains a challenge. Conventionally, enzymes are overexpressed 

when they are identified to be important for improving target metabolite production. 
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However, protein overexpression can affect cell growth38-39 and possibly reduce metabolite 

production. It will be advantageous to predict and test for pathway enzymes’ protein 

expression levels that result with optimal metabolite production. 

Metabolic pathways consisting of multiple parts and factors should be combined in precise 

combinations to achieve desired functions. Simultaneous protein expression of multiple 

pieces of DNA in cell-free system facilitates design space exploration of metabolic pathways. 

In the cell-free TX-TL system, the ratio of pathway enzyme expressions can be adjusted by 

varying the concentration of plasmid encoding individual pathway enzymes. Subsequently, 

the ratios of pathway enzyme expressions can be adjusted for balancing metabolic flux. In 

this work, Chapter 2 investigates the resource limitation of TX-TL and its impact on a 

metabolic pathway. Strategies to address resource limitation and balance gene expression for 

the biosynthesis of 1,4-butanediol in the cell-free TX-TL system is presented, as well as a 

systematic comparison of TX-TL to small-scale in vivo systems.  

PROTEIN ENGINEERING AS A TOOL FOR DRUG DISCOVERY  

Driven by chemistry, drug discovery contributed to the progress of medicine significantly in 

the past century.40 Chemical diversity for drug screening41 can be achieved by biosynthesis, 

and synthetic biology is reorienting the field of drug discovery with the development of new 

tools.42 These recent technological advances have renewed interests in natural products.43 

Natural products are a set of diverse compounds with great potential for medical 

applications.44 From 1940s to 2010, natural products and their analogs make up 48.6% of 

anti-cancer small molecules.45 Recent advancements in the biosynthesis of natural products 
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include the synthesis of anti-malaria drug artemisinin.46 The compound was first isolated 

from traditional Chinese herb medicine for malaria treatments.47 Some natural products can 

be directly used for effective medical applications, others require modifications to their 

chemical structures. The addition of functional groups such as methyl, fluoro, and nitrile to 

natural products can improve compound rigidity,48 modulate cation-π interaction,49 and 

polarize adjacent electron density,50 respectively. Such modifications can enhance the 

potency, lipophilicity, bioavailability, and metabolic stability of a drug candidate.51-52  

The development of protein engineering using directed evolution has led to significant 

breakthrough in the biosynthesis of drug candidates.53 Although organic synthesis for natural 

products and their analogs remains a challenge,54 naturally-occurring enzymes can be 

engineered to outcompete organometallic catalysts. For example, P450 was engineered for 

enantioselective formal synthesis of levomilnacipran.55 Further, the engineering of an 

enzyme for non-natural activities can usually open up possibilities for the synthesis of a new 

array of compounds. For example, the engineering of TrpB leads to the production of an 

array of non-natural tryptophan with the additional functional groups.56 In this work, Chapter 

3 presents the cell-free TX-TL system as a platform for protein engineering and substrate 

scope expansion for drug discovery.   
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ABSTRACT  

Current methods for assembling biosynthetic pathways in microorganisms require a 

process of repeated trial and error and have long design-build-test cycles. We describe the 

use of a cell-free transcription-translation (TX-TL) system as a biomolecular breadboard 

for the rapid engineering of the 1,4-butanediol (BDO) pathway. In this work, we have 

verified enzyme expression and enzyme activity and identified the conversion of 4-

hydroxybutyrate to downstream metabolites as the pathway bottleneck. We demonstrate 

the reliability of using linear DNA in TX-TL as a tool for engineering biological systems 

by undertaking a careful characterization of its transcription and translation capabilities and 

provide a detailed analysis of its metabolic output. Pathway constructs of varying pathway 

enzyme expression levels are tested in TX-TL and in vivo to identify correlations between 

the two systems, and we find that the production of BDO is correlated to the expression of 

enzyme ald in both systems. The use of TX-TL to survey the design space of the BDO 

pathway enables rapid tuning of pathway enzyme expression levels for improved product 

yield. Different pathway combinations are also tested in TX-TL for its application in 

pathway ranking. Leveraging TX-TL to screen enzyme variants for improved catalytic 

activity accelerates design iterations that can be directly applied to in vivo strain 

development. 
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INTRODUCTION 

Utilizing fast-growing microorganisms to produce molecules of industrial relevance has the 

potential to advance the progress of green chemistry rapidly. Processes of traditional 

chemical synthesis require heavy metal catalysts, toxic solvents, and fossil fuels as 

feedstocks. The biosynthetic approach, which uses naturally occurring enzymes, less energy, 

and renewable feedstocks, is becoming an attractive alternative.1, 3 However, biosynthetic 

approaches are challenged by long design-build-test cycles. Microbial pathway engineering 

often has about one-week cycle time.57 The performance of the pathway is frequently far 

from design, requiring many iterations.58 For example, it took DuPont and Genencor more 

than 100 person-years of work to develop the commercialization of bio-based 1,3-

propanediol.59 Recent advances in cell-free systems offer an alternative to this costly 

approach. Cell-free systems have been used to reduce the cycle time of pathway construction. 

The design-build-test cycle in a cell-free system using linear DNA takes less than one day.60  

Cell-free systems simulate a controlled cellular environment that delivers repeatable results. 

Recent research has explored the application of cell-free systems for biological circuits, 

renewable energy, and medicine. The cell-free transcription-translation (TX-TL) system was 

first developed as a biomolecular breadboard to test genetic circuits, and many have been 

demonstrated since.26-29 The synthesis of hydrogen and the development of enzymatic fuel 

cells in cell-free systems has charted new paths for renewable energy.30-31 The high yield of 

therapeutic proteins in E. coli-based cell-free synthesis system also offered new methods for 

medicinal synthesis.24, 61-62 Using cell-free systems for prototyping metabolic pathways is an 
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attractive alternative platform for the engineering of biosynthesis in microbial hosts. Lysate 

of engineered E. coli has been used to support high-level conversion of valuable chemicals,63 

and a cell-free protein synthesis system has been used to screen enzyme variants.64 

Systematic studies of cell-free systems have monitored the change of pH, measured the 

change of metabolites over time, and evaluated protein synthesis.20, 65-66 Studies have shown 

that the depletion of ATP is limiting near the beginning of a cell-free reaction, and the 

consumption of glutamate is critical in regenerating cofactors.67-69 A correlation between 

cell-free and in vivo systems has not been demonstrated. As such, a systematic side-by-side 

analysis between in vivo and cell-free systems is required for cell-free systems to be 

considered widely as a prototyping platform for metabolic engineering.  

Metabolic pathways consist of multiple parts and factors that are combined in precise 

combinations to achieve desired functions. Enzyme expression levels and activity affect 

target product yield. Tuning enzyme expression requires engineering the level of 

transcription, translation, and enzyme activity. Furthermore, balancing expression of 

multiple genes in parallel remains a challenge. Often, enzymes are overexpressed when they 

are identified to be essential for improving target metabolite production. Protein 

overexpression can affect cell growth39 and possibly reduce metabolite production.70 Studies 

have previously demonstrated the feasibility of tuning protein expression levels in vivo for 

improving metabolite productions.71-73 Cell-free TX-TL system also provides a platform for 

investigating the correlation between protein expression levels and metabolite production. 

Cell-free TX-TL system allows simultaneous protein expression from multiple pieces of 

DNA, including linear DNA. Such properties can be used to verify pathway enzyme 
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expression and activity. Sun et al.’s work has connected protein expression level in TX-TL 

to in vivo systems by comparing the expression strength of different promoters.60 This work 

takes a further step to compare the dynamics of a metabolic pathway in TX-TL to in vivo 

systems by correlating protein expression levels to metabolite production in both systems. 

This work aims to demonstrate the reduction of traditional metabolic engineering design-

build-test cycles using the 1,4-butanediol (1,4-BDO) pathway as a TX-TL prototype. 1,4-

BDO and its derivatives are widely used for producing automotive plastics, electronic 

chemicals, and elastic fibers. 1,4-BDO has a projected global market of $8.96 billion by 

2019.74 Historically, 1,4-BDO has been produced from petrochemical feedstocks, but 

recently a bio-based process was commercialized.75 The 1,4-BDO pathway used for this 

bioprocess is shown in Figure 2.1. The pathway converts a tricarboxylic acid (TCA) cycle 

intermediate succinyl-coA to 1,4-BDO. From top to bottom of the pathway schematic, 

pathway intermediates include succinyl semialdehyde, 4-hydroxybutyrate (4HB), 4-

hydroxybutyryl-coA (4HB-coA), and 4-hydroxybutryaldehyde (4HB-aldehyde). CoA-

dependent succinate semialdehyde dehydrogenase (sucD) catalyzes the conversion of 

succinyl-coA to succinyl semialdehyde. 4- hydroxybutyrate dehydrogenase (4-hbd) 

catalyzes succinyl-coA to 4HB. 4-hydroxybutyryl-coA transferase (cat2) catalyzes 4HB to 

4HB-coA. 4-hydroxybutyryl-coA reductase (ald) catalyzes 4HB-coA to 4HB-aldehyde. 

Alcohol dehydrogenase (adh) catalyzes 4HB-aldehyde to 1,4-BDO. 

The main goal of this work is to demonstrate TX-TL as a research tool for metabolic 

engineering and to establish the feasibility of design space exploration (shown in Figure 2.1). 
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Using the 1,4-BDO pathway previously developed by Genomatica Inc.,76 we add linear DNA 

encoding pathway enzymes to TX-TL. We measure the resulting transcriptional and 

translational outputs and pathway related metabolites. We also use TX-TL to rapidly tune 

pathway enzyme expression levels for design space exploration of the 1,4-BDO pathway. 

Ribosome-binding site (RBS) elements of varying strengths are chosen from the bicistronic 

design (BCD) library to adequately explore the design space of the 1,4-BDO pathway in TX-

TL. The two Shine-Dalgarno motifs from BCD allows the first one to make a leader peptide 

to open the second one, which delivers precise and reliable translation initiation. The 

translational coupling architecture BCD ensures protein expression at expected levels 

independent of downstream sequence.77 Through exploring the design space of the 1,4-BDO 

pathway in TX-TL and in vivo, we systematically compare the metabolic output and enzyme 

expression levels. To show the industrial relevance of TX-TL, we demonstrate that the use 

of linear DNA in TX-TL has the capabilities to serve as a biomolecular breadboard to speed 

up design iterations, and results from TX-TL can be applied to in vivo strain development.  
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RESULTS AND DISCUSSION  

Pathway Verification in TX-TL 

Pathway enzymes are expressed in TX-TL reactions by adding linear DNA. Linear pieces of 

DNA are generated by amplifying regions encoding a promoter, a 5’-untranslated region 

(UTR), a coding sequence of an individual pathway enzyme, and a terminator. End products 

of TX-TL reactions are directly used for polyacrylamide gel electrophoresis with sodium 

dodecyl sulfate (SDS-PAGE) preparation, and all enzymes of the 1,4-BDO pathway show 

up on the gel at expected sizes (as shown in Figure S2.1). By adding linear DNA encoding 

enzymes from the 1,4-BDO pathway sucD (035), 4hbd (036), cat2 (034), ald (025B), and 

adh (012), we identify that the conversion from 4HB-coA to downstream metabolites is 

limiting the production of 1,4-BDO. After 16-hour reactions, more than 10 mM of 4HB is 

detected, and only 0.5 (± 0.1) mM of 1,4-BDO is detected. 3.1 (± 0.1) mM of gamma-

butyrolactone (GBL) is also detected. GBL is the lactonized form of 4HB, and it is 

hypothesized to be produced spontaneously from 4HB-coA via cat2. The production of 4HB 

and GBL suggests that sucD (035), 4hbd (036), and cat2 (034) are not rate-limiting enzymes 

for the pathway, and ald (025B) and adh (012) can be rate-limiting. Previous results from 

Yim et al.78 and Barton et al.79 also agree with our observation of such pathway dynamics. 

We, therefore, hypothesize ald and adh as the bottleneck enzymes for the production of 1,4-

BDO in TX-TL. To better understand TX-TL as a platform for metabolic engineering, we 

pick a more advanced cat2, ald, and adh combination, cat2 (C), ald (C), and adh (C), for 

studying a wider range of system dynamics. During an initial experiment with the advanced 
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enzymes, 3.4 (± 0.9) mM of 1,4-BDO is detected, and about 3.2 (± 0.5) mM of GBL is 

detected.  

The conversion from 4HB to 1,4-BDO requires the TX-TL system to supplement for electron 

transfer via cofactors. We subsequently test cofactor concentrations for directing metabolic 

flux into the production of 1,4-BDO. We focus on cofactors directly related to the last three 

steps of the 1,4-BDO pathway: NADP, NADPH, acetyl-coA, and coA. The absence of 

acetyl-coA or coA added into the TX-TL system results in less 1,4-BDO, less GBL, but more 

4HB. Also, the addition of acetyl-coA instead of coA helps produce more GBL, which 

translates to more 4HB-coA synthesized. We hypothesize that the TX-TL system needs more 

acetyl-coA for the 1,4-BDO pathway. 1 mM of acetyl-coA is added for the rest of the work. 

The absence of NADP or NADPH does not drastically affect target metabolite production, 

but the addition of NADPH improves the production of 1,4-BDO. 4 mM of NADPH is added 

for the rest of the work, and details can be found in Figure S2.2. These results suggest that 

the availability of NADPH in TX-TL is limiting the synthesis of downstream products, which 

indicates that more strain engineering around the TCA cycle or the pentose phosphate 

pathway (PPP) may help resolve cofactor imbalance in TX-TL.   

System-Level Studies in TX-TL 

Results from system-level studies of TX-TL system are shown in Figure 2.2. For the analysis 

of transcription and translation, we focus on the bottleneck enzyme ald (C). The 

characterization of the transcription and translation of ald (C) are carried out by adding linear 
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DNA encoding individual pathway enzymes. We also perform metabolomics on TX-TL 

reactions to grasp an understanding of the metabolic network.  

Transcription 

We predict and observe resource limitations of TX-TL by studying the change in mRNA 

expression dynamics based on how much DNA is added to the TX-TL reaction. Figure 2.2a 

shows the mRNA expression of ald (C) from TX-TL reaction added with just linear DNA 

encoding ald (C) in blue circles. The orange squares show expression of ald (C) from TX-

TL reaction added with linear DNA encoding individual pathway enzymes. The blue and 

orange line are the respective predicted mRNA dynamics generated by the TX-TL modeling 

toolbox.80 The linear DNA encoding other pathway enzymes competes with linear DNA 

encoding ald (C) for transcription. The mRNA expression difference of the peak mRNA 

value is greater than 80%. Note that 30 nM of linear DNA encoding ald (C) is added, and a 

total of 60 nM of linear DNA encoding other pathway enzymes is added. The transcription 

of ald (C) is analyzed using RT-PCR. The background signal from DNA is subtracted. The 

mRNA level peaks within the first hour and then drops to zero by the end of the first five 

hours. The rapid degradation of mRNA in TX-TL reflects resource limitations of the system. 

The dynamics of mRNA in TX-TL is similar to previously reported.81 

Translation 

The expression of ald (C) and adh (C) in TX-TL is analyzed using Western blots and can be 

normalized by total protein intensities measured from SDS-PAGE.82 Complete SDS-PAGE 

and Western blots for the time-course ald (C) expression is shown in Figure S2.4. Protein 
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degradation is observed, which is most likely due to the presence of protease in the extract. 

Extract used in this work is prepared with S138 (MG 1655 △adhE △ldhA △pflB + lpdA*), 

an engineered E. coli strain previously reported.78 Most cell-free systems are either 

developed with purified reagents or with cell lysates from strains with protease deletion. 

Protein degradation is rarely captured. However, protein degradation is expected here 

because of the lack of protease gene knockout. The total and soluble protein expression of 

ald (C) and adh (C) in TX-TL are shown in Figure 2.2b. Their respective sizes are 60 kDa 

and 40 kDa. Most of the enzymes remain in the soluble fraction of the TX-TL reactions. The 

amount of each protein band on the ladder is approximately 200 ng,83 and the concentration 

of ald (C) should be on the order of 10 ng/ul.  

Metabolomics 

To understand the metabolism in TX-TL, we carry out experiments to collect time-course 

data of metabolites. The production of pathway intermediate 4HB and target metabolite 1,4-

BDO is shown in Figure 2.2c. The production of 4HB peaks around 4 hours into the reaction. 

The level of 4HB drops as the compound is converted to downstream metabolites. The 

concentration of 1,4-BDO increases as the concentration of 4HB decreases. The 

concentration of 4HB-coA peaks between 6 and 8 hours, when 1,4-BDO concentration starts 

to plateau, and byproducts GBL starts to accumulate (shown in Figure S2.3d). We 

hypothesize that the consumption of glutamate links to cofactor regeneration. The production 

of 1,4-BDO depends on two steps of NADPH-dependent electron transfer. The concentration 

of NADPH drops to the detection limit by the end of the fourth hour into the TX-TL reaction. 

Since NADPH is a critical cofactor for the synthesis of 1,4-BDO, the rate of NADPH being 
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reduced should be the same magnitude as the rate of NADPH being oxidized. The ratio of 

NADPH/NADP is shown in Figure S2.3b. Carbon flux through the TCA cycle is very weak, 

but the consumption of glutamate is very prominent. In Figure 2.2d, the conversion of 

glutamate reaches 80% by the end of TX-TL reactions. A preliminary 13C analysis also 

confirms that glutamate consumption is the primary energy source (data not shown). 

Furthermore, the conversion from glutamate to α-ketoglutarate reduces NADP to NADPH. 

The amount of glutamate consumed is roughly equal to the sum of 4HB produced, GBL 

produced, and the 1,4-BDO produced. The consumption of glutamate is the primary 

metabolic flux in the TX-TL system.  

We learn from the system-level studies that the first few hours are valuable for comparison 

between pathways or enzyme variants. TX-TL is a resource-limited system: mRNA 

degradation starts after the first hour, and protein degradation and cofactor imbalance 

happens. Metabolic flux in TX-TL mainly comes from glutamate, which is also the energy 

source for regenerating cofactors.  
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Figure 2.2: System-level studies of TX-TL. a. Transcription: Relative mRNA for ald (C) 
measured using RT-PCR in the first five hours of TX-TL reactions. Blue circles represent 
data points for mRNA expression of ald (C) from TX-TL reaction added with just linear 
DNA encoding ald (C), and orange squares represent data points for mRNA expression of 
ald (C) from TX-TL reaction added with linear DNA encoding individual pathway enzymes. 
The blue and orange line represents the respective predictive dynamics. b. Translation: 
Protein expression analyzed using Western blotting over a 24-hour time range. The top half 
shows results from analysis of TX-TL reactions, and the bottom half shows results from 
analysis of supernatant of TX-TL reactions. Both were generated from the same blot. c. 
Metabolite Production: Measured concentrations of 1,4-BDO (blue circle) and 4HB (red 
diamond) over time in TX-TL. d. Glutamate Consumption: Glutamate consumption over 
time in TX-TL (blue circle) and conversion (orange square). Error bars show one standard 
deviation for n ≥ 3 independent experiments.  
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Design Space Exploration  

The expression levels of ald (C) and adh (C) are modulated to explore the design space of 

the 1,4-BDO pathway. The expression levels of sucD (035), 4hbd (036), and cat2 (034) are 

held at fixed levels. The expression levels of all pathway enzymes are adjusted by tuning the 

UTR. Constructing the 1,4-BDO pathway using parts from the BCD library helps modulate 

pathway enzyme expression levels in TX-TL and in vivo. Details of construct design can be 

found in Figure S2.5. We generate constructs with varying enzyme expression levels, and 

the level of soluble ald (C) expression in TX-TL and in vivo are shown in Figure 2.3a and 

Figure 2.3d, respectively. The SDS-PAGE and Western blot images are shown in Figure 

S2.6. BCD 2, BCD 20, and BCD 22 are used to modify protein expression level to high, 

medium, and low. We have constructed plasmids with ald (C) and adh (C) using a convergent 

orientation to minimize genetic context effects.84 The nine different constructs (shown in 

Table S2.1) show a range of protein expression levels in TX-TL and in vivo. The ald (C) 

expression levels are similar in TX-TL and in vivo. However, the expression of ald (C) with 

constructs containing BCD 22 show higher relative expression in vivo versus in TX-TL.  

We examine the effect of the expression level of ald (C) on metabolite production in both 

systems. Although the metabolic output in TX-TL is not exactly the same as the one in vivo, 

we observe that the production of 1,4-BDO is closely related to the expression level of the 

bottleneck enzyme ald (C) in TX-TL and in vivo, which matches with previous studies.70 

The 1,4-BDO production level from the constructs in the two systems is different. Figure 

2.3b and Figure 2.3e show the production levels of 1,4-BDO from the designed constructs. 
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The 1,4-BDO production from constructs with strong adh (C) expression are lower in vivo 

than in TX-TL. As shown in Figure 2.3b and Figure 2.3c, 1,4-BDO production level is 

linearly correlated to ald (C) expression from constructs containing the same BCD in front 

of the adh (C) coding region. Overall, the concentration of 1,4-BDO produced is linearly 

correlated to the relative expression levels of ald (C) in TX-TL regardless of the expression 

level of adh (C). As shown in Figure 2.3e and Figure 2.3f, the concentration of 1,4-BDO 

produced is linearly correlated to the relative expression levels of ald (C) in vivo for some 

constructs. The expression of adh (C) is overexpressed for constructs containing BCD 2 in 

front of the coding region of adh (C). Protein overexpression seems to cause a metabolic 

burden so strong with high adh (C) expression that the production of 1,4-BDO is limited to 

about 1 mM regardless of the expression level of ald (C). Data collected from both systems 

indicates that ald (C) is the bottleneck enzyme of the 1,4-BDO pathway. 

Resource limitation is a more prominent problem in vivo versus TX-TL. The in vivo system 

carries a larger metabolic burden with more complicating factors such as cell growth and the 

development of antibiotic resistance. While developing and maintaining the transcription and 

translation machinery, the in vivo system also fights against the antibiotics in the culture 

broth. Although we have used promoter pA85 as part of the constructs, leaky enzyme 

expression is still a problem. Transformation of constructs containing BCD 2 (for strong 

expression) is problematic. At 37 °C, the production of 1,4-BDO in vivo is much lower due 

to metabolic burden (data not shown). At 30 °C, the production of 1,4-BDO in vivo is 

comparable to the production of 1,4-BDO in TX-TL. The production level difference can be 

the supplement of NADPH and acetyl-coA in the TX-TL system.    
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The mapping of design space of metabolic pathway from TX-TL to in vivo can be further 

tuned by repeating the design-build-test cycle shown in Figure 2.1. There are two ways to 

map the two systems more closely. The first way is to redesign plasmid constructs. Re-

constructing the pathway with a different set of BCDs, perhaps using BCD 9 or BCD 12 

instead of BCD 2, can alleviate the metabolic burden in vivo. Using weaker BCDs can 

potentially avoid overexpression enzymes in vivo, which can more effectively show the 

linear correlation between ald (C) expression level and 1,4-BDO production. The second 

way is to tune protein expression in TX-TL. Plasmid concentration within cells are hard to 

control, but the expression level of proteins in TX-TL can be tuned by adjusting the 

concentration of added DNA.60 In other words, the concentration of the added DNA can be 

adjusted to map protein expression levels in TX-TL to in vivo. In this work, we have chosen 

a relatively low DNA concentration to show a linear range of dynamics between ald (C) 

expression and 1,4-BDO production. More design iterations will lead to better mapping 

results.   

This work has only used batch mode reaction to compare the two systems strictly. However, 

both systems can benefit from pH control by feeding base. Cell growth is limited by pH 

(shown in Figure S2.9), and the pH can be tuned by adjusting buffer.  
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Figure 2.3: Design space exploration in TX-TL and in vivo. a. Heat map of ald (C) expression 
in TX-TL: Green—ald (C) expression as the RBS strength of the ald (C) varies. b. Heat map 
of the corresponding 1,4-BDO production in TX-TL: Orange—1,4-BDO production (mM) 
as the RBS strength of the ald (C) varies. c. 1,4-BDO production versus protein expression 
in TX-TL: blue—strong BCD for adh (C), orange—medium BCD for adh (C), green—weak 
BCD for adh (C), circle: weak BCD for ald (C), triangle: medium BCD for ald (C), square: 
strong BCD for ald (C). d. Heat map of ald (C) expression in vivo: Green—ald (C) expression 
as the RBS strength of the ald (C) varies. e. Heat map of the corresponding 1,4-BDO 
production in vivo: Orange--1,4-BDO production (mM) as the RBS strength of the ald (C) 
varies. f. 1,4-BDO production versus protein expression in vivo: blue—strong BCD for adh 
(C), orange—medium BCD for adh (C), green—weak BCD for adh (C), circle: weak BCD 
for ald (C), triangle: medium BCD for ald (C), square: strong BCD for ald (C). Error bars 
show one standard deviation for n ≥ 3 independent experiments. 
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Applications of TX-TL 

We apply the TX-TL system to compare three different enzyme combinations of the 1,4-

BDO pathway. The reaction conditions for testing the enzyme combinations are the same. 

The same sucD (035) and 4hbd (036) are added into TX-TL. The three different enzyme 

combinations are A: cat2 (034), ald (025B), and adh (012) previously published,78 B: cat2 

(B), ald (B), and adh (B) previously published,79 C: evolved version of combination B, cat2 

(C), ald (C), adh (C). As shown in Figure 2.4, we study the production of 1,4-BDO, 4HB, 

and GBL in TX-TL. Combination C results with the greatest 1,4-BDO production rate, and 

the production of byproduct GBL is the lowest respectively. The production of 4-HB is very 

similar for all three combinations, but this could be that the conversion to 4-HB is reaching 

equilibrium by the end of the TX-TL reaction. Since the conversion from glutamate to 4-HB 

is redox neutral, the accumulated 4-HB is almost the same for all three combinations. 

Enzyme expression comparison between Combination B and Combination C is shown in 

Figure 2.4b. Notably, the expression of ald and adh in combination B is much weaker than 

the expression of ald and adh in combination C. The engineered enzymes from Combination 

C is evolved for stability and enzyme specificity for NADPH.  
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Figure 2.4: Application of TX-TL—pathway ranking. a. 1,4-BDO production in the first 8 
hours of the TX-TL reaction is shown. b. Soluble protein in the first 8 hours of the TX-TL 
reaction is shown. c. 4HB production in the first 8 hours of the TX-TL reaction is shown. d. 
GBL production in the first 8 hours of the TX-TL reaction is shown. Blue circle—enzyme 
combination A, orange circle—enzyme combination B, green square—enzyme combination 
C. Error bars show one standard deviation for n ≥ 3 independent experiments. 

CONCLUSIONS 

This work shows that TX-TL can be a reliable engineering platform for metabolic 

engineering. Through studying transcription, translation, and metabolism in TX-TL, we find 

that the limitation of the TX-TL system lies within rapid degradation of mRNA and cofactor 

imbalance. The main energy source of TX-TL is glutamate, which is different from the in 

0
1
2
3
4
5
6
7
8

0 2 4 6 8

Co
nc
en

tr
at
io
n	
(m

M
)

Time	(hours)

0

2

4

6

8

10

0 2 4 6 8

Co
nc
en

tr
at
io
n	
(m

M
)

Time	(hours)

0

1

2

3

4

5

6

0 2 4 6 8

Co
nc
en

tr
at
io
n	
(m

M
)

Time	(hours)

a. b.

c. d.

BDO	production Translation

4HB	production GBL	production

Soluble	fraction:	

ald

adh

Negative 1	hour 3	hours 5	hours 8	hours 1	hour 3	hours 5	hours 8	hours

60

50

40

C B



 

 27 

vivo system but this does not impact its ability to produce target metabolites similar to small-

scale in vivo synthesis. The ease of adding DNA of interests and tuning protein expression 

by DNA concentrations opens up unique opportunities for rapidly exploring pathway design 

space. Studying the 1,4-BDO pathway in both TX-TL and in vivo helps confirm that TX-TL 

is a reliable tool for capturing pathway dynamics. Successfully demonstrating the viability 

of transcription and translation machinery in S138 extract and the production of 1,4-BDO 

provides confidence for future prototyping and engineering in extracts made with advanced 

E. coli strain or potentially other organisms.   

MATERIALS AND METHODS  

Cultivation 

48-well plates are used for cell culture and metabolite production. M9 minimal salts medium 

(6.78 g l−1 Na2HPO4, 3.0 g l−1 KH2PO4, 0.5 g l−1 NaCl, 1.0 g l−1 NH4Cl, 1 mM MgSO4, 

0.1 mM CaCl2) is used, and it is supplemented with 10 mM NaHCO3, 20 g l−1 D-glucose 

and 100 mM MOPS to improve the buffering capacity, 10 µg ml−1 thiamine and the 

appropriate antibiotics. 0.5 mM of IPTG is added to induce enzyme expression. Cell culture 

starts with overnight growth in LB followed by another overnight growth in minimal media 

and final culture. The final culture is placed on a shaker at 650 rpm at 30°C or 37°C for 

cultivation. The culture is centrifuged to collect pellets for protein analysis and supernatant 

for metabolite analysis.  
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Cell-Free Expression Preparation and Execution 

Fermentations are performed with 1 L initial culture volume in 2-l Biostat B+ bioreactors 

(Sartorius Stedim Biotech). The temperature is held at 37 °C, and the pH is held at 7.0. 

Cells are grown aerobically to an optical density (O.D.) of approximately 10, at which 

point the culture goes through spin-down, re-suspense, and wash cycle series, according 

to protocol previously described by colleagues.33  Collected cell pellets are homogenized 

using M-110F Microfluidizer Processor and extracted according to the method described 

by Kwon et al.86 with the post-homogenization incubation period extended to 80 min 

instead of 60 min. Extract activity is verified initially and tested for optimal salt 

concentration using GFP. The concentration of potassium glutamate is capped at 30 mM to 

capture metabolic dynamics of the system. Buffer preparation is done according to protocol 

developed from previous studies33 with a supplement of 30 mM maltodextrin. The 

preparation results in extract with conditions: 8.9−9.9 mg/mL protein, 4.5−10.5 mM Mg-

glutamate, 20-40 mM K-glutamate, 0.33−3.33 mM DTT, 1.5 mM each amino acid except 

leucine, 1.25 mM leucine, 50 mM HEPES, 1.5 mM ATP and GTP, 0.9 mM CTP and UTP, 

0.2 mg/mL tRNA, 0.26 mM CoA, 0.33 mM NAD+, 0.75 mM cAMP, 0.068 mM folinic 

acid, 1 mM spermidine, 30 mM 3-PGA, 4 mM NADPH, 1 mM acetyl-coA, and 1 mM 

NADH. When needed, inducers such as IPTG, linear DNA, or plasmid DNA are added to a 

mix of extract and buffer. TX-TL reactions are conducted in PCR tubes and kept at 29°C 

with incubation in PCR machine. BioTeK Synergy H1 microplate reader is used to collect 

kinetic data for fluorescent protein and MG-Aptamer. Protein gamS is added into TX-TL 

reactions to prevent linear DNA degradation.60   
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Plasmid DNA, PCR Product Preparation, and Cloning 

PCR products are amplified using KOD (Novagen, EMD). Plasmids are miniprepped using 

a QIAprep spin columns (Qiagen) and further concentrated with Millipore’s Amicon Ultra-

0.5 Centrifugal Filter Unit with Ultracel-30 membrane. All plasmids are processed at the 

stationery phase. Before use in the cell-free reaction, PCR products undergo an additional 

PCR purification step using QIAquick PCR Purification Kit (Qiagen), which removes excess 

salt detrimental to TX-TL and are eluted and stored in water at −20°C for long-term storage. 

Gibson Assembly Ultra and Gibson Assembly HiFi Master Mix from SGI-DNA are used for 

plasmid assembly.  

Analytical Methods  

LCMS/MS is used to analyze TX-TL samples and supernatant of cell culture. TX-TL 

samples were first diluted with 1:3 volume ratio with methanol to remove proteins and other 

big molecules, and then diluted 1: 12.5 with diluent containing labelled internal standards 

before LCMS analysis. Cell culture samples were diluted 1:50 with same diluent before 

LCMS analysis. API3200 triple quadrupole system (AB Sciex, Life Technologies, Carlsbad, 

CA), interfaced with Agilent 1260 HPLC, utilizing electrospray ionization and MRM based 

acquisition methods is used. 1,4-BDO and GBL are detected using positive ionization mode, 

while 4HB and related acidic compounds are detected using negative ionization mode. 

Zorbax Eclipse XDB C18 4.6x30mm (particle size 1.8um) was used. Column temperature is 

maintained at 40°C, flow rate of 0.7 mL/min. Injection volume is 5 ul. Eluents include water 
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with 0.1% formic acid (A) and methanol with 0.1% formic acid (B). A fast 1.5 min 5-95% 

methanol gradient is used, resulting in 1.5 min long LCMS method. 

Protein Gel and Western blotting 

Culture pellets are re-suspended with Novagen BugBuster Protein Extraction solution 

mixed with rLysozyme and benzonase. The amount of BugBuster added is normalized 

based on the OD value of 1mL culture. Samples are incubated at room temperature for 20 

minutes. An equal volume of 2X Laemlii buffer containing 5% of ß-mercaptoethanol is 

mixed with each sample. The mixture is subsequently boiled in a thermocycler at 99°C 

for 5 min. 10ul of a mixture containing cell pellets is loaded into each lane, or 5 ul of a 

mixture containing TX-TL sample is loaded. Invitrogen MagicMarker XP Western 

Protein Standard and Bio-Rad Kaleidoscope is added as protein ladders. Bio-Rad 4-15% 

Criterion TGX (Tris-Glycine eXtended) Stain-Free precast gels are used. Gel imaging is 

done using Bio-Rad Gel Doc EZ Imager for measuring total protein intensity. Invitrogen 

iblot system is used for gel transfer. Western blot imaging is done using the Chemi Hi 

Resolution setting on a BioRad ChemiDoc MP imager. The intensity from Western blot 

is normalized by the total protein from each lane, and stain-free total protein is the 

loading control for Western Blots.82 Protein band intensity is determined by using Image 

Lab 5.2.1.  
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SUPPLEMENTARY INFORMATION 

Pathway Verification in TX-TL 

Linear DNA encoding individual enzymes are added into TX-TL reactions to verify enzyme 

expression. End products of TX-TL reactions are directly used for polyacrylamide gel 

electrophoresis with sodium dodecyl sulfate (SDS-PAGE) preparation, and all enzymes of 

the 1,4-BDO pathway show up on the gel at expected sizes. Below Figure S2.1 shows an 

SDS-PAGE gel with the expression of relevant pathway enzymes. 0.5 ul of TX-TL reactions 

are used for analyzing enzyme expression. Background proteins are proteins extracted during 

cell lysis.  

 

 
 

 
Figure S2.1: Verifying enzyme expression using SDS-PAGE gel: From left to right are 
negative control (NEG), succinyl-CoA synthetase (sucCD, two subunits α and β at 29.6 kDa 
and 41.4 kDa87), CoA-dependent succinate semialdehyde dehydrogenase (sucD-035, 50.2 
kDa), 4-hydroxybutyryl-CoA transferase (cat2-034, 48.0 kDa), 4-hydroxybutyryl-CoA 
reductase (ald-025B, 52.1 kDa), 4-hydroxybutyrate dehydrogenase (4hbd-036, 41.3 kDa) 
alcohol dehydrogenase (adh-012, 43.1 kDa), 2-oxoglutarate decarboxylase (sucA, 100kDa), 
4-hydroxybutyryl-CoA reductase (ald(002c), 95.3kDa), and protein ladder.  
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A range of cofactor concentration were tested for improved 1,4-BDO production. Results are 

shown in Figure S2.2. In a typical TX-TL reaction, 0.26 mM of coA has been added as part 

of the buffer, 1 mM of NADPH, 1 mM of acetyl-coA, and 1 mM of NADH are added. Here, 

we vary the concentration of coA, acetyl-coA, NADP, and NADPH one at a time to 

understand the effect of these cofactors have on the metabolite production. The metric here 

is to compare downstream metabolite production versus upstream metabolite production. 

Mainly, we are comparing the total production of 1,4-BDO and GBL to the total production 

of GABA and 4HB. Figure S2.2 shows that the lack of coA or acetyl-coA leads to the 

accumulation of upstream metabolites. When more NADPH is added to the system, more 

downstream metabolites are produced.    

System-level Studies of TX-TL 

The production of acetate is very prominent in the TX-TL system. The production of acetate 

through the 1,4-BDO pathway enzymes does not account for the acetate measured in the 

system. The conversion from 3-PGA or glutamate to acetate regenerates cofactor such as 

NADH, NADPH, ATP, and acetyl-coA, which explains the significant production of 

acetate.88 Figure S2.3b and Figure S2.3c below shows the ratio of NADPH/NADP and 

NADH/NAD. The energy charge is also calculated to capture resource limitation of the 

system (shown in Figure S2.3a). The production of HB-coA in Figure S2.3d shows the peak 

at 6 hours, which is when 1,4-BDO production starts to plateau.  
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Figure S2.2: Testing cofactor concentration for improved 1,4-BDO production: a. coA b. 
acetyl-coA c. NADP d. NADPH, blue bar—sum of the concentration of 1,4-BDO and GBL, 
orange bar—sum of the concentration of 4HB and γ-aminobutyric acid (GABA). Error bars 
show one standard deviation for n ≥ 3 independent experiments.  
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Figure S2.3: Metabolomics in TX-TL: a. Energy charge over time b. Ratio of 
NADPH/NADP c. Ratio of NADH/NAD d. HB-coA concentration over time. 

 
Genomatica has previously developed antibodies specifically for enzyme ald and adh. 

Without inserting additional protein tags, we analyze enzyme expression profile without 

interfering pathway dynamics. Below in Figure S2.4 shows the SDS-PAGE (top) and 

Western blot (bottom) that analyzed the protein dynamics over time. The protein bands in 

the Western blot show unspecific binding at 30 kDa and 80 kDa. However, the separation 

between target protein band and the unspecific band is large enough for protein expression 

analysis. As shown, the ald (C) is about 60 kDa, where the adh (C) is about 40 kDa. We 
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analyzed the same sample in two different ways: 1) add TX-TL reaction directly for protein 

gel analysis and 2) centrifuge samples and add soluble fraction for protein gel analysis. The 

protein analysis shows that TX-TL is a good expression system where a good amount of 

protein remains in the soluble fraction. Here we can also visually identify that protein 

expression peaks at 8 hours.  

 
 

Figure S2.4: ald (C) and adh (C) expression over time in TX-TL. Top: SDS-PAGE gel. 
Bottom: Western blot. Both images are separated by total sample (left) and soluble protein 
fraction (right). ald (C) and adh (C) are 60kDa and 40 kDa respectively.    
 
  

250

150

100
75

50

37

25
20

220

120
100
80

60
50

40

30

20

Time	0 2	hours 4	hours 16	hours6	hours 8	hours 24	hours

60
50

40

30

20

ald

adh

sample	 soluble	fraction	

sample	 soluble	fraction	
Time	0 2	hours 4	hours 16	hours6	hours 8	hours 24	hours

Time	0 2	hours 4	hours 16	hours6	hours 8	hours 24	hours Time	0 2	hours 4	hours 16	hours6	hours 8	hours 24	hours



 

 37 

Design Space Exploration  

We have picked elements from Chen et al.’s terminator library:89 ECK120033736 (164.6x), 

ECK120015440 (119.21x), and ECK120010799 (101.05x). These terminators have been 

previously tested for similar expression levels. We use plasmids pZ33s and pZS*23s 

previously published.78 Detailed constructs are shown in Figure S2.5. We use BCD22 for 

enzymes on the pZA33s plasmid. BCD 22 is the UTR that gives weak protein expression, 

and pZA33s has p15A as a replication of origin. pZS*23S has SC101 as a replication of 

origin. The pZA33s plasmid has a slightly higher copy number than the pZS*23S. For 

experiments done during design space exploration, 5 nM of the pZA33s is added, and 3 nM 

of pZS*23s is added. The ratio used in TX-TL is an attempt to reflect the copy number ratio 

in vivo. PZA33s contains kanamycin resistance, and pZS*23s contains chloramphenicol 

resistance. While kanamycin kills bacteria by binding to 30S ribosomal subunit and causes 

misreading of t-RNA, chloramphenicol kills bacteria by binding to 50S ribosomal subunit 

and prevents peptide bond formation.90 To better map TX-TL to in vivo, it may also be a 

good idea to switch to a different set of antibiotics.  

 
Figure S2.5: Construct assembly for design space exploration. Left: non-bottleneck enzymes 
sucD, cat2, and 4hbd on pZA33s. Right: bottleneck enzymes ald and adh on pZS*23s. 
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Constructs are designed to mimic the ratio of linear DNA encoding pathway enzymes. The 

metabolic profile of TX-TL reaction added with plasmid DNA is similar to the metabolic 

profile of TX-TL reaction added with linear DNA. Table S2.1 shows the constructs with 

varying ald (C) and adh (C) strength. The numbers in the table are the order of which the 

samples are loaded onto the protein gel for expression comparison between TX-TL and in 

vivo.  

Sample Order  adh Expression Level 
Strong Medium Weak 

al
d 

Ex
pr

es
sio

n 
Le

ve
l 

Strong 1 2 3 

Medium 4 5 6 

Weak 7 8 9 
 
 
Table S2.1: Constructs with varying ald (C) and adh (C) expression levels: The numbers in 
the table are the order in which samples are loaded onto protein gels for expression 
comparison shown in Figure S2.7.  

 
Samples for metabolite analysis and protein expression analysis are collected after 16 hours 

of TX-TL reaction. The raw SDS-PAGE and Western blots are shown in Figure S2.6. Protein 

ladder followed by the negative control are added as the two samples. Constructs with 

varying adh(C) and ald (C) expression levels shown in Table S2.1 then added by its 

numerical order. Values presented in Figure 2.3 are intensities of soluble protein from the 

Western blot, which are measured and normalized by the total protein intensities shown in 

the SDS-PAGE gel. Overall, Figure S2.6b and Figure S2.6d show a range of protein 

expression levels for adh (C) and ald (C). Note that there are more unspecific bands in the 
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Western blot for in vivo samples. We have observed insoluble proteins in the in vivo samples, 

which explains the smear on the right side of the Western blot shown in Figure S2.6d. Table 

S2.2 lists the parameters from linear regression for data shown in Figure 2.3c and Figure 

2.3f. The slope differences in TX-TL indicates that resource limitation might have played a 

role in metabolite production. The strong expression of adh (C) may have impacted 

metabolite production, where too weak of an expression is not enough for metabolite 

production.  The slope of the linear regression for in vivo data is very similar, which confirms 

that ald (C) is the bottleneck enzyme for the production of 1,4-BDO.   

 
Linear Regression Parameters in Figure 2.3c 

adh Expression  slope intercept 
Strong 5.32 2.09 

Medium  9.52 1.90 
Weak  5.52 1.50 

 
Linear Regression Parameters in Figure 2.3f 

adh Expression slope intercept 
Strong 0.24 0.94 

Medium 4.49 -0.17 
Weak 6.26 -1.18 

 
 

Table S2.2: Slope and intercept for linear regression in Figure 2.3. 
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Applications of TX-TL 

Enzyme expressions from two of the three enzyme combinations are analyzed. Details are 

shown in Figure S2.7.  Time-course protein expression (1 hour, 3hours, 5 hours, and 8 hours) 

of Combination B and Combination C are analyzed. From left to right of the Western blot, a 

negative control was added first, and time-course samples from Combination B and 

Combination C were added. To the left of the Western blot is the relative ald expression over 

time. Note that enzymes from Combination C have a strong expression than enzymes from 

Combination B. Both ald and adh from Combination C are enzymes engineered for stability 

in vitro, while the ones from Combination B are wild-type enzymes.  

 
 

Figure S2.7: ald and adh expression for ranking pathways in TX-TL. To the left of the ladder 
are samples from total TX-TL reactions, and to the right of the ladder is soluble protein in 
the supernatant fraction of TX-TL reactions.  
 
Characteristics of S138 in vivo 

Metabolomics of S138 in vivo is also performed. Below in Figure S2.8 shows the production 
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and NADH/NAD ratio (Figure S2.8d) are very similar to the ones observed in TX-TL. The 

pH in vivo drops rapidly (Figure S2.9b), and it is about 4 by the end of 28 hours, where the 

pH in TX-TL stays above 6 during 8-hour reactions. Improvement on the buffer of the in 

vivo system can help improve metabolite production. 

   
 

Figure S2.8: Characteristics of S138 in vivo: a. 1,4-BDO production over time b. pH over 
time c. Energy charge over time, d. NADPH/NADP and e. NADH/NAD. For c, d, and e: 
blue—negative control, orange—S138 with the 1,4-BDO pathway (Data are collected with 
Construct 4 shown in Table S1). 
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Figure S2.9: pH comparison between TX-TL and in vivo: a. pH measured over time of TX-
TL samples b. pH measured over time of in vivo samples. 
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ABSTRACT 

The cell-free transcription-translation (TX-TL) system provides a reliable platform for 

characterizing and engineering a biosynthetic pathway. TX-TL simulates a customizable 

cellular environment that can be controlled by manipulating pH, changing cellular 

components, or adding exogenous substrates. By adding linear DNA encoding individual 

enzymes of the violacein pathway and tryptophan analogs in TX-TL reactions, we have 

discovered new violacein analogs. TX-TL enables rapid production of natural product 

analogs with diverse substitution, which allows small-scale biosynthesis of potential drug 

candidates and offers a new platform for drug discovery. This work also presents TX-TL as 

a platform for protein engineering. Residues targeted for site-saturated mutagenesis were 

identified with protein-ligand docking. Linear DNAs of individual enzyme mutants were 

added into TX-TL reactions to screen for improved enzyme variant. Screening result 

indicates vioE mutant Y17H reduces byproduct formation and redirects metabolic flux 

towards target metabolites. Protein engineering for improved enzyme activity can further 

expand the substrate scope of a natural product pathway and result with more natural 

product analogs that can be applied for medical applications.  
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INTRODUCTION 

Engineering proteins for novel chemistry has been one of the main pillars of biosynthesis. 

Recent studies have shown the directed evolution of a cytochrome c for carbon-silicon bond 

formation,91 the engineering of P450 for the biosynthesis of an intermediate for the 

production of ticagrelor,92 and the engineering of TrpB for tryptophan analogs.56 The 

application of protein engineering for diversity-oriented biosynthesis can significantly 

impact drug discovery. Natural products have the potential to become antibiotics and 

therapeutics.43 Further, natural product analogs have previously shown to have increased 

antibacterial activity when compared to the natural products.93 The addition of functional 

groups such as methyl, fluoro, and nitrile to natural products can improve compound 

rigidity,48 modulate cation-π interaction,49 and polarize adjacent electron density.50 Such 

modifications can enhance the potency, lipophilicity, bioavailability, and metabolic stability 

of a drug candidate.51-52 Engineering pathway enzymes for the production of natural product 

analogs will expand the chemical space for biosynthesis and drug discovery.  

This work aims to apply protein engineering for expanding the substrate scope of the 

violacein pathway in the cell-free transcription-translation (TX-TL) system (shown in Figure 

3.1). This work demonstrates the viability of using linear DNA in the cell-free TX-TL 

system60 to accelerate the engineering of biosynthesis for natural product analogs. The TX-

TL system offers direct access to cellular biochemistry and provides a robust environment 

for exogenous protein synthesis and metabolite production. Using the TX-TL system as a 

screen for protein engineering reduces the difficulty of optimizing buffer conditions and 
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tackling growth-coupled challenges, such as metabolic burden and protein toxicity. The use 

of TX-TL for protein engineering also allows the substrate scope of complex pathways to be 

surveyed rapidly, simplifies efforts for pathway construction and enzyme expression tuning. 

This work showcases the engineering of the pathway to produce violacein, a natural product 

found in Chromobacterium violaceum.94 Studies have shown that violacein and 

deoxyviolacein have anti-cancer,95-96 antiparasitic,97 and other valuable properties.98-100 The 

violacein pathway (Figure 3.2) was previously characterized in vitro by Balibar et al.,101 and 

the biosynthesis of violacein in cell-free systems has been reported.62, 102-103 Initially, enzyme 

vioA converts tryptophan (1a) to indole-3-pyruvate (IPA, 2a), which is then converted by 

vioB to intermediate (3a). This intermediate is unstable, and can spontaneously form 

chromopyrrolic acid (CPA, 4a) through a single-electron pathway initiated by radicals 

generated from oxygen and reduced flavin. Alternatively, enzyme vioE can intercept 3a and 

convert it to prodeoxyviolacein (5a). Finally, mono-oxygenase vioD converts 5a to 

proviolacein (6a), which is then converted to violacein (8a) by oxidase vioC. Intermediate 

5a is also a competent substrate for vioC, in which case deoxyviolacein (7a) is the final 

product. 
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Figure 3.3: Tryptophan analogs for substrate scope studies. 
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Figure 3.4: Detectable products from the violacein pathway. 
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violacein analogs (8 or violacein_RR), and heterodimers of violacein analogs (12 and 13 or 

violacein_R).  

Substrate Scope Studies 

Tryptophan analogs 1b to 1p were added into TX-TL reactions to study substrate scope of 

the violacein pathway, and results are consistent with the mechanism previously proposed.101 

Preliminary screening used TX-TL to test for the production of deoxyviolacein (7,10, or 11) 

by adding linear DNA encoding vioA, vioB, vioE, and vioC (Figure 3.5). Wild-type enzymes 

from the violacein pathway tolerated moderate decoration of the indole ring. Tryptophan 

analogs with the indole moiety modified side chains at the 1-, 4-, 5-, 6-, and 7- positions led 

to the production of deoxyviolacein analogs (7, 10 or 11). Reactions added with 5-fluoro-

tryptophan (1j) and 7-fluoro-tryptophan (1o) resulted in the highest production of 

deoxyviolacein analogs (7), albeit less than a fifth that of native deoxyviolacein (7a).  

The a-H of L-tryptophan is crucial for the violacein pathway. Consequently, analogs with a 

methyl substituent at the a-carbon (1b and 1c) resulted in no detectable downstream 

metabolites. This is consistent with the first step of the proposed pathway, during which IPA 

2 production requires a double bond formation at the a-carbon. Thus, inserting methyl group 

at this position blocks the formation of IPA 2.  

Tryptophan analogs 1q to 1z with substitutions at the 5- or 7- position of l-tryptophan were 

used to probe the substrate scope of the violacein pathway (Figure 3.6). Most 7-substituted 

tryptophans resulted in CPA byproduct formation (4 and 9). The production of CPA 
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heterodimer (4v) from reaction added with 7-chlorotryptophan (1v) is at least three times 

more than the amount of CPA(4a) produced from reaction added with tryptophan, in 

concordance with previous findings.104 Deoxyviolacein analogs (7, 10, or 11) were detected 

in reactions added with 7-methyl-tryptophan (1h), 7-fluoro-tryptophan (1o), and 7-chloro-

tryptophan (1v). TX-TL reactions added with tryptophan analogs 1q to 1z resulted in no 

production of homodimeric violacein analogs (8), although heterodimeric violacein analogs 

were detected from reactions added with 7-methyl-tryptophan (1h), 7-fluoro-tryptophan 

(1o), and 7-chloro-tryptophan (1v).  

Most 5-substituted tryptophan analogs resulted in measurable downstream metabolites 

(shown in Figure 3.7). Although 5-substitution precludes the formation of homodimeric 

violacein analogs (8), the substrates 5-fluoro-tryptophan (1j), 5-chloro-tryptophan (1q), 5-

bromo-tryptophan (1r), 5-methyl-trytophan (1d), and 5-cyano-tryptophan (1t) did result in 

heterodimeric violacein analogs 13. Since the byproducts (CPA and deoxyviolacein) 

produced from reactions added with 5-substituted tryptophan analogs (1d, 1j, and 1q to 1u) 

were predominantly heterodimeric as well, we hypothesize that this is due to the substrate 

preference of vioB to couple tryptophan analogs with native tryptophan, rather than another 

equivalent of tryptophan analog. The spontaneous oxidation of 5-hydroxy-l-tryptophan (1g) 

and 5-amino-l-tryptophan (1n) led to no measurable downstream metabolites. The reaction 

with 5-formyl-tryptophan (1s) is particularly interesting because the formyl group on 

deoxyviolacein can serve as a handle for further reactions, such as with organometallic 

reagents.   
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The production of various violacein analogs in the cell-free TX-TL system by simply adding 

tryptophan analogs and linear DNA offers a new method to discover new drug candidates. 

Simultaneously expressing multiple pathway enzymes and producing compounds of interest 

provides a biochemical platform not only to investigate reaction mechanism, but also to 

expand the diversity of pathway metabolites. The violacein analogs produced in TX-TL can 

be extracted, purified, and tested for their potency against natural violacein products. A 

continuous-exchange system65 will enable the scale-up production of that target compound, 

and the use of concentrated extract can also increase yield.63  
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Figure 3.5: Analogs of the violacein pathway metabolites detected from TX-TL reactions. a. 
The signal of byproduct measured using LC-MS. b. The signal of deoxyviolacein analogs 
measured using LC-MS. CPA_R represents 9, CPA_RR represent 4, deoxyviolacein_R 
represent the combination of 10 and 11, and deoxyviolacein_RR represent 7.  
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Protein Engineering 

Even for substrates that led to violacein analogs, the CPA byproducts (4 and 9) were formed 

in significant quantities. Thus, engineering vioE to redirect metabolic flux towards target 

metabolites and away from byproduct formation will help further expand the utility of the 

TX-TL system. In some cases, reactions that produce only byproducts may be able to 

produce downstream metabolites with the help of an engineered vioE. In particular, 

engineering vioE for improved activity using a 7-fluoro-tryptophan (1o) can lead to the 

production of other 7-substituted violacein analogs.  

Protein-Ligand Docking 

Site saturated mutagenesis was used to generate a library of vioE variants, which were 

screened for improved activity with 7-fluoro-tryptophan (1o). In this work, the engineering 

of vioE was guided by protein-ligand docking using AutoDock Vina (Figure 3.8).105 Of the 

five active-site residues,106 Y17 was chosen for site-saturated mutagenesis because it resides 

close to intermediate 3, but is not implicated in the proton transfer events involved in the 1,2-

indole shift.  

Results from protein-ligand docking also provide evidence to support the 1,2-indole shift 

mechanism. The positions of 3a and 3o both indicate that the nitrogen on one of the indoles 

is close to the catalytic residues and the nitrogen on the respective a-carbon is close to a 

water molecule. This suggests the catalytic residues facilitate the deprotonation step, while 

the water molecule facilitates the protonation step. The differences between a and b from 
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Figure 3.8 are the position of the carboxyl and the amine on the a-carbon of the other indole. 

The overlap of 3a and 3o in the vioE binding pocket is shown in Figure S3.7. The distances 

between the substrates and the residues of interests are shown in shown in Table S3.1. Since 

the crystal structure is previously obtained using PEG, the distance calculated may deviate 

from the actual values. However, these values shed light on the catalysis happening at the 

binding pocket of vioE and can guide the engineering of vioE.  

 
 
 
Figure 3.8: Results from protein-ligand docking--Interaction of intermediate 3a with vioE 
(a) and intermediate 3o with vioE (b) predicted using AutoDock Vina. Yellow—active sites, 
green—water molecule, blue—nitrogen, red—oxygen, turquoise—fluorine, and grey—vioE 
backbone.  

 
Platform Validation 

The cell-free TX-TL system delivers reproducible results and can become a reliable platform 

for protein engineering. TX-TL was evaluated as a screening method for engineering vioE 

for improved production of deoxyviolacein analogs. This work follows the procedures for 

screening platform validation detailed in previous studies.107 Figure 3.9 shows the production 

of deoxyviolacein analog (7o) versus 34 wild-type vioE clones. Table 1 shows the rate of 
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false positives expected to find for screening libraries with different target thresholds and 

variability in the measurements (CV values). The false positive rates are calculated using a 

Gaussian distribution, and the fraction of false positives is calculated as the probability of 

finding a value of χ ≥ χ0 (see Supplementary Information for more details).  

 
 

 
Figure 3.9: Evaluating TX-TL as a screening platform with wild-type samples. Enzyme 
activity is plotted versus reaction tubes and in descending order (dots). The CV for this screen 
is 15%.  
 
 

Table 3.1: Rate of expected false positives for variants exhibiting higher than 1.5 and 2.0 
times the mean µ. 

 
 

Fitness target 1.5 µ 2.0 µ 
CV 15% 15% 

Fraction of false 
positives 4.3 x 10

-4 1.3 x 10
-11 
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Figure 3.10: Analysis of a mutant library: Relationship between the metabolic flux split 
between CPA analog and deoxyviolacein analog and the production of deoxyviolacein 
analog. Deoxyviolacein_FF represents 7o, and CPA_FF represent CPA 4o. 

Results from site-directed mutagenesis of Y17 are shown in Figure 3.10. The metabolic 

flux split between byproduct CPA analog and deoxyviolacein analog is characterized using 

the ratio of deoxyviolacein analog 7o over CPA analog 4o. The top two mutants that have 

the highest ratio of 7o over 4o are both Y17H. They direct the metabolic flux from the 

byproduct CPA analog towards the production of deoxyviolacein analog. The ratio of 

deoxyviolacein 7o over CPA 4o is twice the wild-type value. Although the production of 

deoxyviolacein analog shows no significant improvement, we hypothesize that the 

metabolic flux has been directed to another downstream byproduct deoxychromoviridans. 

Based on the previously proposed mechanism (shown in Figure S3.11), we hypothesize 

that the lack of oxygen control in the cell-free TX-TL system inhibits the improvement in 

the production of deoxyviolacein analog. On the other hand, the bottom two mutants are 

Y17L. Y17 was previously identified to be deleterious during alanine scanning,106 and 
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leucine shares a similar structure with alanine. Nevertheless, the ability to create a library 

of protein mutants for improved catalytic activity demonstrates that TX-TL is a viable 

platform for protein engineering. 

CONCLUSIONS AND FUTURE DIRECTIONS 

In this work, we have studied the substrate scope of the violacein pathway and found pathway 

enzymes capable of catalyzing fortuitous reactions. We find the violacein pathway enzymes 

accept substrates that are structurally similar to l-tryptophan with decorated indole side 

chains. Our experimental results are consistent with the pathway reaction mechanism that 

was previously proposed based on in vitro experiments using purified enzymes. Our results 

from molecular docking is also consistent with the pathway reaction mechanism. More 

tryptophan analogs are needed to validate the pathway reaction mechanism further, but this 

work has shown that TX-TL can serve as a biochemical platform for characterizing and 

engineering biosynthetic pathways. We have evaluated and verified TX-TL as a screening 

method for enzyme activity, which suggests TX-TL as a reliable alternative platform for 

protein engineering. We have observed a diverse portfolio of products in the cell-free TX-

TL system, which can be applied to further medicinal research. We have yet to mix and 

match more than two different tryptophan analogs in TX-TL reactions, which may further 

expand the substrate scope of the violacein pathway.  
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MATERIALS AND METHODS 

TX-TL Reactions Extract Making 

Collected cell pellets are homogenized using Microfluidizer Processor and extracted 

according to the method described by Kwon et al.86 with the post-homogenization incubation 

period extended to 80 min instead of 60 min. Buffer preparation is done according to protocol 

developed in previous studies33 with a supplement of 15 mM maltose. The preparation results 

in extract with conditions: 8.9−9.9 mg/mL protein, 4.5−10.5 mM Mg-glutamate, 100—140 

mM K-glutamate, 0.33−3.33 mM DTT, 1.5 mM each amino acid except leucine, 1.25 mM 

leucine, 50 mM HEPES, 1.5 mM ATP and GTP, 0.9 mM CTP and UTP, 0.2 mg/mL tRNA, 

0.26 mM CoA, 0.33 mM NAD+, 0.75 mM cAMP, 0.068 mM folinic acid, 1 mM spermidine, 

30 mM 3-PGA, 0.15 mM NADPH, and 1 mM acetyl-coA. For experiments requiring no 

additional tryptophan, water is added instead of tryptophan in the amino acid mix. When 

needed, linear DNA or plasmid DNA is added to a mix of extract and buffer. TX-TL reactions 

are conducted in Microcentrifuge tubes and kept at 29°C. BioTeK Synergy H1 microplate 

reader is used to collect kinetic data for a fluorescent protein, if necessary.  

Protein Docking 

We apply the crystal structure of vioE (PDB ID: 3BMZ)106 to Autodock Vina105 to investigate 

the potential interactions between substrates and vioE. The substrate used for crystallography 

is removed from the crystal structure, and a “.pdbqt” file is generated for further processing 

with Autodock Vina. Substrates used for protein docking are 3a, 3d, and 3h, and their 
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structures were created using PRODRG.108 We follow docking procedures detailed in 

previous protocol,109 with the docking area of interests is set to cover the entire protein. The 

final images are generated using PyMOL by opening the generated files in the same session.  

Library Creation and Screening 

Site-saturated mutagenesis is carried out using the 22-c trick.110 For a given site targeted for 

mutagenesis, three primers are designed containing codons NDT, VHG, and TGG 

respectively. The three primers are mixed in a ratio of 12:9:1. The QuikChange II Site-

Directed Mutagenesis Kit is used for library creation. PCR is carried out using PfuUltra HF 

DNA polymerase. A plasmid that contained the parent gene in the pBEST vector as a 

template.102 The sample is digested with DpnI and transformed in JM109. At least 66 

colonies are picked from each site saturation library to proceed for colony PCR. The PCR 

products are directly added into TX-TL reactions for simultaneous enzyme expression and 

metabolite production. Linear DNA encoding other pathway enzymes are added for 

screening the production of deoxyviolacein analogs in TX-TL. Protein gamS is added into 

TX-TL reactions to prevent linear DNA degradation.60  

Linear DNA  

PCR products are amplified using Q5® High-Fidelity 2X Master Mix (New England 

BioLabs). PCR products undergo an additional PCR purification step using DNA Clean & 

Concentrator™-5-Capped Columns (Zymo Research), which removes excess salt 

detrimental to TX-TL and are eluted and stored in water at −20°C for long-term storage.  
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LC-MS 

UPLC-MS is used to analyze TX-TL samples. TX-TL samples were first diluted with 1:19 

volume ratio with methanol to remove proteins and other big molecules before analysis. 

Xevo G2-S QTof Quadrupole Time-of-Flight Mass Spectrometry, interfaced with UPLC, 

utilizing electrospray ionization (ESI) and MRM based acquisition methods are used. 

Compounds are detected using negative ionization mode. Waters XBridge BEH C18 

2.1x100mm (particle size 2.5 um) Column XP was used. The column temperature is 

maintained at 45°C with a flow rate of 0.4 mL/min. Injection volume is 2.5 ul. Eluents 

include water with 0.1% formic acid (A) and acetonitrile (B). A fast 5 min 20-80% 

acetonitrile gradient is used, resulting in a 7-minute long LC-MS method. 
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SUPPLEMENTARY INFORMATION 

 
Tryptophan Notation 

Tryptophan analogs with various substitutions on L-tryptophan are used in this study. Figure 

S3.1 shows the numbering of positions on the indole moiety used for communication of this 

work. The numbering starts with the nitrogen position and goes counterclockwise around the 

indole ring.  

 
 

Figure S3.1: Number of the positions on the indole moiety of tryptophan.  

 
Enzyme Expression in TX-TL 

Pathway enzyme expression in TX-TL is verified using Western blotting (shown in Figure 

S3.2). From left to right is a protein ladder, negative control, vioA, vioB, vioC, vioD, and 

vioE. The negative control is a TX-TL reaction where water is added instead of DNA. The 

following samples are TX-TL reactions added with linear DNA encoding corresponding 

enzymes. The Western blot protocol used is previously optimized for proteins around 50 

kDa, which explains why enzymes of lower or higher size range do not show well on the 

Western blot. The constructs used in this work come from previous work.102  
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Figure S3.2: Enzyme expression of the violacein pathway. 

Docking Results of vioE 

The docking results of vioE with substrates 3a and 3h are shown in Figure S3.3 and Figure 

S3.4. AutoDock Vina predicts two different positions for each substrate. The first position 

from each prediction is the one at which the predicted binding energy is minimized. The first 

position predicted for intermediate 3a overlaps with the first position predicted for 

intermediate 3h very closely (shown in Figure S3.5a). The second position predicted for 

intermediate 3a deviates from the second position predicted for intermediate 3h, which may 

suggest that the first position predicts the catalytic interactions between substrates and vioE. 

The two positions might be very different, but they both capture the position at which the 

active sites interact with half of the intermediate, where the 1, 2-indole shift occurs. The 
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distances of substrates 3a and 3h to nearby active sites are measured in PyMOL (shown in 

Table S3.1). For the following discussion, the hydrogen attached to the nitrogen that 

undergoes protonation is considered H1, and the hydrogen that undergoes deportation is 

considered H2. The distance between H1 and the water molecule is the same for the first 

predicted positions. For the four different positions predicted, the distance of H2 to active 

sites are very similar. For all four positions, the distance between H2 and Y17 is the shortest, 

and the distance calculated between H1 and the water molecule is the second shortest.  

 

 
 
Figure S3.3: The interaction of intermediate 3a and vioE predicted with AutoDock Vina. 
Yellow—active sites, green—water molecule, blue—nitrogen, red—oxygen, and grey—
vioE backbone.  

 
Figure S3.4: The interaction of intermediate 3h and vioE predicted with AutoDock Vina. 
Yellow—active sites, green—water molecule, blue—nitrogen, red—oxygen, and grey—
vioE backbone.  
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Figure S3.5: The interaction of intermediate 3a and vioE overlapped with the interaction of 
intermediate 3h and vioE predicted with AutoDock Vina. Yellow—active sites, green—
water molecule, blue—nitrogen, red—oxygen, and grey—vioE backbone.   

 
Docking results for all three intermediates capture the position at which the active sites 

interact with half of the intermediate, where the 1,2-indole shift occurs. The mechanism 

previously proposed101 is redrawn and shown in Figure S3.11.   

The overlapping docking results of vioE with substrates 3a and 3o are shown in Figure S3.7. 

The interaction of 3o with vioE are shown in Figure S3.6. Again, the distance between H1 

and the water molecule is the same for the first predicted positions (shown in Table S3.1). 

For the four different positions predicted, the distance of H2 to active sites are also very 

similar. The predicted positions of 3o and 3h are different. Based on the similarity to the 

position of 3a, 3h may have a more similar interaction with vioE than 3o may have. However, 

the low production level of deoxyviolacein analogs 7h has been detected. In contrast, the 

production level of deoxyviolacein analog 7o is about ten times higher than the production 

level of deoxyviolacein analog 7h.  
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Figure S3.6: The interaction of intermediate 3o and vioE predicted with AutoDock Vina. 
Yellow—active sites, Green—water molecule, blue—nitrogen, red—oxygen, turquoise—
fluorine, and grey—vioE backbone.   

 
 
Figure S3.7: The interaction of intermediate 3a and vioE overlapped with the interaction of 
intermediate 3o and vioE predicted with AutoDock Vina. Yellow—active sites, Green—
water molecule, blue—nitrogen, red—oxygen, turquoise—fluorine, and grey—vioE 
backbone.   
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Table S3.1: Distance between substrates and molecules of interests. 
 
		 Distance from Nitrogen to Nearby Molecules of Interests (Å) 

Substrate Water Arginine Tyrosine Asparagine Serine 

3a 2.8 2.8 2.4 7.4 4.0 
2.2 2.9 2.2 7.1 3.7 

3h 2.8 3.1 2.2 7.0 3.8 
2.8 2.9 2.5 7.6 4.8 

3o 2.8 2.8 2.5 7.6 4.3 
5.2 3.2 2.2 6.8 3.7 

 

TX-TL as a Platform for Protein Engineering 

Figure S3.8 shows the relationship between the production of deoxyviolacein analog 7o and 

DNA purity. DNA purity, defined by the ratio of absorbance at 260 over the absorbance at 

230, need to be greater than 1.6 to minimize the possibility of screening a false positive. 

Previous experiments show that DNA purity lower than 1.6 results with no production of 

deoxyviolacein analog.  

TX-TL reactions with the omission of additional tryptophan significantly eliminate the 

competition with the native substrate and reduce the amount of heterodimer formation 

(shown in Figure S3.10, R = 7-fluoro). The extract used for this work has not been treated 

with dialysis, and a significant amount of tryptophan (4 mM) is present. The additional 

tryptophan from the buffer supplements for enzyme expression and the omission of 

tryptophan may impact enzyme expression. However, result from control experiment with 

GFP shows no reduction in protein expression (shown in Figure S3.9). Nevertheless, the 

metabolite production level of TX-TL reaction with no additional tryptophan is lower than 
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the metabolite production level of TX-TL reaction with additional tryptophan. We 

hypothesize that fluorotryptohans are incorporated in protein synthesis. Adding tryptophan 

analogs after the first two hour of TX-TL reactions may eliminate the incorporation of non-

canonical amino acids into protein synthesis, which may help maintaining similar metabolite 

production level in TX-TL reactions with and without additional tryptophan.  

 
Figure S3.8: The production of deoxyviolacein analog 7o against DNA purity. 

 
Figure S3.9: GFP production in TX-TL reactions with and without additional tryptophan. 
Blue bars: reactions added with water. Orange bars: reactions added with tryptophan 
analogs dissolved in 5mM of KOH. 
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Figure S3.10: Deoxyviolacein analog production in TX-TL added with and without 
additional tryptophans. a. The possible deoxyviolacein analogs. b. The relative amount of the 
homodimer of deoxyviolacein analog produced with and without additional tryptophan. c. 
The ratio of various deoxyviolacein analog produced with and without additional tryptophan.  

Validating TX-TL as Screening Platform 

TX-TL is evaluated as a screening platform in this work. The false positive rates are 

calculated using a Gaussian distribution, and the fraction of false positives is calculated as 

the probability of finding a value of χ ≥ χ0. The probability function of a Gaussian 

distribution is:  
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where µ represents the mean of the distribution, σ represents the standard deviation, and F(x) 

represents the probability of a random variable with values less than or equal to x. The rate 

of false positives is calculated using 

𝑟𝑎𝑡𝑒 = 1 − 𝐹 78(+
.

   (S3.E.2) 
 
where 𝐹(78(+

.
) is calculated using S3.E.1. Values in Table 3.1 are calculated using Microsoft 

Excel function NORM.DIST.   

Compound Detection 

The [M-H]- formula of a given compound is shown in Table S3.2. The required m/z under 

ESI for the compounds are shown in Table S3.4. The observed m/z for detected 

compounds are shown in Table S3.5, and the element composition is validated by high-

resolution mass spectrometry (HRMS) and single mass analysis. Figure S3.12 and Figure 

S3.13 show the analysis of deoxyviolacein analog 7o produced in reactions added with 7-

fluoro-tryptophan 1o and deoxyviolacein analog produced in reactions added with 5-

formyl-tryptophan 1o (b). Table S3.3 shows the retention time of each compound. It is 

difficult to separate the two different possible heterodimers of deoxyviolacein analogs, but 

we have observed different retention times for the two possible heterodimers in reactions 

added with 7-chloro-tryptophan (1v). Compound IPA (2) and intermediate (3) are too 

unstable to be detected. Intermediate prodeoxyviolacein (5) is omitted for the tables below.  

“n/a” represents either the compound is not possible based on known reaction mechanism 

or not observed during this study.   
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Table S3.2 Formula of compounds validated by HRMS (continued).  

 
 
 
 
  

Numbering 9 10 11 12 13

# Alphabet position CPA _hetero Deoxyviolacein 
_hetero_L

Deoxyviolacein 
_hetero_R

Violacein 
_hetero_L

Violacein 
_hetero_R

0 a 0 n/a n/a n/a n/a n/a

1 b 3 n/a n/a n/a n/a n/a

2 c 3 n/a n/a n/a n/a n/a

3 d 5 C23H16N3O4 C21H14N3O2 C21H14N3O2 n/a C21H14N3O3

4 e Naphthalene C24H15N2O4 n/a n/a n/a n/a

5 f 1 C23H16N3O4 C21H14N3O2 C21H14N3O2 n/a n/a

6 g 5 n/a n/a n/a n/a n/a

7 h 7 C23H16N3O4 C21H14N3O2 C21H14N3O2 C21H14N3O3 C21H14N3O3

8 i 6 C22H13FN3O4 C20H11FN3O2 C20H11FN3O2 n/a n/a

9 j 5 C22H13FN3O4 C20H11FN3O2 C20H11FN3O2 n/a C20H11FN3O3

10 k 4 C23H16N3O4 C21H14N3O2 C21H14N3O2 n/a n/a

11 l 4 C22H13FN3O4 C20H11FN3O2 C20H11FN3O2 n/a n/a

12 m 1 C22H13N2O4S n/a n/a n/a n/a
13 n 5 n/a n/a n/a n/a n/a
14 o 7 C22H13FN3O4 C20H11FN3O2 C20H11FN3O2 C20H11FN3O3 C20H11FN3O3

15 p 3 n/a n/a n/a n/a n/a
16 q 5 C22H13ClN3O4 C20H11ClN3O2 C20H11ClN3O2 n/a C20H11ClN3O3

17 r 5 C22H13BrN3O4 C20H11BrN3O2 C20H11BrN3O2 n/a C20H11BrN3O3

18 s 5 C23H14N3O5 C21H12N3O3 C21H12N3O3 n/a n/a

19 t 5 C23H13N4O4 C21H11N4O2 C21H11N4O2 n/a C21H11N4O3

20 u 5 C22H13N4O6 C20H11N4O4 C20H11N4O4 n/a n/a

21 v 7 C22H13ClN3O4 C20H11ClN3O2 C20H11ClN3O2 C20H11ClN3O2 C20H11ClN3O3

22 w 7 C22H13BrN3O4 C20H11BrN3O2 C20H11BrN3O2 n/a n/a

23 x 7 C22H13IN3O4 C20H11IN3O2 C20H11IN3O2 n/a n/a

24 y 7 C23H13N4O4 n/a n/a n/a n/a

25 z 7 C22H13N4O6 n/a n/a n/a n/a
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Table S3.3: Retention time of detected compounds (in minutes). 

 
 

 
  

Numbering 1 4 6 7 8

# alphabet position tryptophan CPA Proviolacein Deoxyviolacein Violacein

0 a 0 0.80 2.28 1.70 2.89 2.31
1 b 3 0.84 n/a n/a n/a n/a
2 c 3 0.84 n/a n/a n/a n/a
3 d 5 0.98 2.81 2.55 3.05 n/a
4 e Naphthalene 1.17 n/a n/a n/a n/a
5 f 1 1.01 3.08 2.65 3.04 n/a
6 g 5 0.74 n/a n/a n/a n/a
7 h 7 0.97 2.81 2.55 3.05 n/a
8 i 6 0.88 2.56 n/a 3.34 n/a
9 j 5 0.87 2.42 n/a 3.22 n/a
10 k 4 0.97 n/a 2.46 3.04 n/a
11 l 4 0.86 n/a n/a n/a n/a
12 m 1 1.05 n/a n/a n/a n/a
13 n 5 n/a n/a n/a n/a n/a
14 o 7 0.87 2.42 n/a 3.23 n/a
15 p 3 n/a n/a n/a n/a n/a
16 q 5 1.10 2.89 n/a 3.87 n/a
17 r 5 1.17 3.04 n/a n/a n/a
18 s 5 0.76 n/a n/a n/a n/a
19 t 5 0.80 n/a n/a n/a n/a
20 u 5 0.87 2.17 n/a n/a n/a
21 v 7 1.06 3.05 n/a n/a n/a
22 w 7 1.13 3.21 n/a n/a n/a
23 x 7 1.25 3.45 n/a n/a n/a
24 y 7 0.84 n/a n/a n/a n/a
25 z 7 0.88 n/a n/a n/a n/a
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Table S3.3: Retention time of detected compounds (in minutes, continued). 

 
  

Numbering 9 10 11 12 13

# alpha position CPA _hetero Deoxyviolacein 
_hetero_L

Deoxyviolacein 
_hetero_R

Violacein 
_hetero_L

Violacein 
_hetero_R

0 a 0 n/a n/a n/a n/a n/a
1 b 3 n/a n/a n/a n/a n/a
2 c 3 n/a n/a n/a n/a n/a
3 d 5 2.55 3.19 3.19 n/a 2.60
4 e Naphthalene 2.99 n/a n/a n/a n/a
5 f 1 2.65 3.35 3.35 n/a n/a
6 g 5 n/a n/a n/a n/a n/a
7 h 7 2.55 3.24 3.24 2.65 2.65
8 i 6 2.42 3.08 3.08 n/a n/a
9 j 5 2.36 3.08 3.08 n/a 2.50
10 k 4 2.46 3.35 3.35 n/a n/a
11 l 4 2.26 3.10 3.10 n/a n/a
12 m 1 2.81 n/a n/a n/a n/a
13 n 5 n/a n/a n/a n/a n/a
14 o 7 2.36 3.09 3.09 2.50 2.50
15 p 3 n/a n/a n/a n/a n/a
16 q 5 2.62 3.42 3.42 n/a 2.86
17 r 5 2.69 3.53 3.53 n/a 2.96
18 s 5 1.83 2.65 2.65 n/a n/a
19 t 5 2.04 2.89 2.89 n/a 2.29
20 u 5 2.23 3.13 3.13 n/a n/a
21 v 7 2.67 3.35 3.58 2.90 2.90
22 w 7 2.74 3.72 3.72 n/a n/a
23 x 7 2.87 3.92 3.92 n/a n/a
24 y 7 2.30 n/a n/a n/a n/a
25 z 7 2.48 n/a n/a n/a n/a
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Table S3.4: Molecular ion mass calculated for detectable compounds. 
 
 
 
 
 
  

Numbering 1 4 6 7 8
Line 

Number
alphabet position tryptophan CPA Proviolacein Deoxyviolacein Violacein

0 a 0 203.0820 384.0984 326.0930 326.0930 342.0879
1 b 3 217.0977 n/a n/a n/a n/a
2 c 3 217.0977 n/a n/a n/a n/a
3 d 5 217.0977 412.1297 354.1242 354.1242 n/a
4 e Naphthalene 214.0868 n/a n/a n/a n/a
5 f 1 217.0977 412.1297 354.1242 354.1242 n/a
6 g 5 219.0770 n/a n/a n/a n/a
7 h 7 217.0977 412.1297 354.1242 354.1242 n/a
8 i 6 221.0726 420.0796 n/a 362.0741 n/a
9 j 5 221.0726 420.0796 n/a 362.0741 n/a

10 k 4 217.0977 n/a 354.1242 354.1242 n/a
11 l 4 221.0726 n/a n/a n/a n/a
12 m 1 220.0432 n/a n/a n/a n/a
13 n 5 n/a n/a n/a n/a n/a
14 o 7 221.0726 420.0796 n/a 362.0741 n/a
15 p 3 n/a n/a n/a n/a n/a
16 q 5 237.0431 452.0205 n/a 394.0150 n/a
17 r 5 280.9926 539.9195 n/a n/a n/a
18 s 5 231.0770 n/a n/a n/a n/a
19 t 5 228.0773 n/a n/a n/a n/a
20 u 5 248.0671 474.0686 n/a n/a n/a
21 v 7 237.0431 452.0205 n/a n/a n/a
22 w 7 280.9926 539.9195 n/a n/a n/a
23 x 7 328.9787 635.8917 n/a n/a n/a
24 y 7 228.0773 n/a n/a n/a n/a
25 z 7 248.0671 n/a n/a n/a n/a
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Table S3.4: Molecular ion mass calculated for detectable compounds (continued). 

8 Numbering 9 10 11 12 13

Violacein
Line 

Number
alphabet position CPA_hetero

Deoxyviolacein 
_hetero_1

Deoxyviolacein 
_hetero_2

Violacein 
_hetero_1

Violacein 
_hetero_2

342.0879 0 a 0 n/a n/a n/a n/a n/a
n/a 1 b 3 n/a n/a n/a n/a n/a
n/a 2 c 3 n/a n/a n/a n/a n/a
n/a 3 d 5 398.1141 340.1086 340.1086 n/a 356.1035
n/a 4 e Naphthalene 395.1032 n/a n/a n/a n/a
n/a 5 f 1 398.1141 340.1086 340.1086 n/a n/a
n/a 6 g 5 n/a n/a n/a n/a n/a
n/a 7 h 7 398.1141 340.1086 340.1086 356.1035 356.1035
n/a 8 i 6 402.0890 344.0835 344.0835 n/a n/a
n/a 9 j 5 402.0890 344.0835 344.0835 n/a 360.0784
n/a 10 k 4 398.1141 340.1086 340.1086 n/a n/a
n/a 11 l 4 402.0890 344.0835 344.0835 n/a n/a
n/a 12 m 1 401.0596 n/a n/a n/a n/a
n/a 13 n 5 n/a n/a n/a n/a n/a
n/a 14 o 7 402.0890 344.0835 344.0835 360.0784 360.0784
n/a 15 p 3 n/a n/a n/a n/a n/a
n/a 16 q 5 418.0595 360.0540 360.0540 n/a 376.0489
n/a 17 r 5 462.0089 404.0035 404.0035 n/a 419.9984
n/a 18 s 5 412.0934 354.0879 354.0879 n/a n/a
n/a 19 t 5 409.0937 351.0882 351.0882 n/a 367.0831
n/a 20 u 5 429.0835 371.0780 371.0780 n/a n/a
n/a 21 v 7 418.0595 360.0540 360.0540 376.0489 376.0489
n/a 22 w 7 462.0089 404.0035 404.0035 n/a n/a
n/a 23 x 7 509.9951 451.9896 451.9896 n/a n/a
n/a 24 y 7 409.0937 n/a n/a n/a n/a
n/a 25 z 7 429.0835 n/a n/a n/a n/a
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Table S3.5: Molecular ion mass observed for detectable compounds. 

 

Numbering 1 4 6 7 8
Line 

Number
alphabet position tryptophan CPA Proviolacein Deoxyviolacein Violacein

0 a 0 203.0835 384.0977 326.0930 326.0936 342.0884
1 b 3 217.0963 n/a n/a n/a n/a
2 c 3 217.0965 n/a n/a n/a n/a
3 d 5 217.0971 412.1295 354.1237 354.1246 n/a
4 e Naphthalene 214.0865 n/a n/a n/a n/a
5 f 1 217.0977 412.1296 354.1239 354.1239 n/a
6 g 5 219.0768 n/a n/a n/a n/a
7 h 7 217.0986 412.1298 354.1242 354.1237 n/a
8 i 6 221.0721 420.0792 n/a 362.0741 n/a
9 j 5 221.0721 420.0792 n/a 362.0739 n/a
10 k 4 217.0978 n/a 354.1242 354.1248 n/a
11 l 4 221.0722 n/a n/a n/a n/a
12 m 1 220.0435 n/a n/a n/a n/a
13 n 5 n/a n/a n/a n/a n/a
14 o 7 221.0726 420.0786 n/a 362.0739 n/a
15 p 3 n/a n/a n/a n/a n/a
16 q 5 237.0442 452.0204 n/a 394.0161 n/a
17 r 5 280.9925 539.9194 n/a n/a n/a
18 s 5 231.0774 n/a n/a n/a n/a
19 t 5 228.0773 n/a n/a n/a n/a
20 u 5 248.0666 474.0695 n/a n/a n/a
21 v 7 237.0438 452.0207 n/a n/a n/a
22 w 7 280.9933 539.9197 n/a n/a n/a
23 x 7 328.9799 635.8907 n/a n/a n/a
24 y 7 228.0777 n/a n/a n/a n/a
25 z 7 248.0671 n/a n/a n/a n/a
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Table S3.5: Molecular ion mass observed for detectable compounds (continued). 

 

8 Numbering 9 10 11 12 13

Violacein
Line 

Number
alphabet position CPA_hetero

Deoxyviolacein 
_hetero_1

Deoxyviolacein 
_hetero_2

Violacein 
_hetero_1

Violacein 
_hetero_2

342.0884 0 a 0 n/a n/a n/a n/a n/a
n/a 1 b 3 n/a n/a n/a n/a n/a
n/a 2 c 3 n/a n/a n/a n/a n/a
n/a 3 d 5 398.1141 340.1085 340.1085 n/a 356.1034
n/a 4 e Naphthalene 395.1033 n/a n/a n/a n/a
n/a 5 f 1 398.1140 340.1083 340.1083 n/a n/a
n/a 6 g 5 n/a n/a n/a n/a n/a
n/a 7 h 7 398.1140 340.1081 340.1089 356.1035 356.1035
n/a 8 i 6 402.0891 344.0835 344.0835 n/a n/a
n/a 9 j 5 402.0887 344.0835 344.0835 n/a 360.0784
n/a 10 k 4 398.1140 340.1089 340.1089 n/a n/a
n/a 11 l 4 402.0887 344.0835 344.0835 n/a n/a
n/a 12 m 1 401.0584 n/a n/a n/a n/a
n/a 13 n 5 n/a n/a n/a n/a n/a
n/a 14 o 7 402.0890 344.0833 344.0833 360.0786 360.0786
n/a 15 p 3 n/a n/a n/a n/a n/a
n/a 16 q 5 418.0595 360.0542 360.0542 n/a 376.049
n/a 17 r 5 462.0092 404.0031 404.0031 n/a 419.0084
n/a 18 s 5 412.0930 354.0882 354.0882 n/a n/a
n/a 19 t 5 409.0937 351.0888 351.0888 n/a n/a
n/a 20 u 5 429.0833 371.0784 371.0784 n/a n/a
n/a 21 v 7 418.0596 360.0542 360.0543 376.0490 376.0490
n/a 22 w 7 462.0088 404.0030 404.0030 n/a n/a
n/a 23 x 7 509.9951 451.9893 451.9893 n/a n/a
n/a 24 y 7 409.0938 n/a n/a n/a n/a
n/a 25 z 7 429.0833 n/a n/a n/a n/a
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Figure S3.12: Element composition analysis of compound 7o. Highlighted formula matches 

with required element composition.  
 

Elemental Composition Report

Single Mass Analysis
Tolerance = 10.0 mDa   /   DBE: min = -1.5, max = 50.0
Element prediction: Off 
Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron Ions
1331 formula(e) evaluated with 37 results within limits (up to 50 closest results for each mass)
Elements Used:
C: 0-40    H: 0-80    N: 0-5    O: 0-20    F: 0-3    

Minimum:                             -1.5
Maximum:               10 10 50
Mass       Calc. Mass  mDa    PPM    DBE    i-FIT   Norm   Conf(%) Formula

362.0739 362.0737 0.2 0.6 11.5 250.4 5.944 0.26 C14 H12 N5 O7 
           362.0741 -0.2 -0.6 16.5 252.5 7.979 0.03 C20 H10 N3 O2 F2 
           362.0735 0.4 1.1 2.5 255.6 11.078 0 C10 H17 N O12 F 
           362.0746 -0.7 -1.9 -1.5 256.6 12.127 0 C7 H18 N O13 F2 
           362.0748 -0.9 -2.5 7.5 253.2 8.677 0.02 C11 H13 N5 O8 F 
           362.073 0.9 2.5 20.5 254.5 9.966 0 C23 H9 N3 O F 
           362.0753 -1.4 -3.9 12.5 244.6 0.123 88.41 C17 H11 N3 O3 F3 
           362.0723 1.6 4.4 6.5 254 9.532 0.01 C13 H16 N O11 
           362.0718 2.1 5.8 24.5 255.7 11.245 0 C26 H8 N3 
           362.076 -2.1 -5.8 3.5 254.8 10.301 0 C8 H14 N5 O9 F2 
           362.0712 2.7 7.5 8.5 252.9 8.383 0.02 C12 H11 N5 O5 F3 
           362.0771 -3.2 -8.8 -0.5 256.6 12.061 0 C5 H15 N5 O10 F3 
           362.0777 -3.8 -10.5 15.5 252 7.515 0.05 C19 H12 N3 O5 
           362.0701 3.8 10.5 12.5 249.3 4.788 0.83 C15 H10 N5 O4 F2 
           362.0699 4 11 3.5 255.6 11.092 0 C11 H15 N O9 F3 
           362.0781 -4.2 -11.6 20.5 256 11.546 0 C25 H10 N F2 
           362.0695 4.4 12.2 -1.5 256.6 12.112 0 C5 H17 N3 O14 F 
           362.0788 -4.9 -13.5 11.5 248.6 4.137 1.6 C16 H13 N3 O6 F 
           362.0689 5 13.8 16.5 251.3 6.786 0.11 C18 H9 N5 O3 F 
           362.0687 5.2 14.4 7.5 253.8 9.339 0.01 C14 H14 N O8 F2 
           362.0793 -5.4 -14.9 16.5 254.8 10.31 0 C22 H11 N O F3 
           362.0795 -5.6 -15.5 2.5 256.3 11.755 0 C7 H16 N5 O12 
           362.0683 5.6 15.5 2.5 256.2 11.735 0 C8 H16 N3 O13 
           362.0678 6.1 16.8 20.5 254.5 10.004 0 C21 H8 N5 O2 
           362.08 -6.1 -16.8 7.5 254.1 9.554 0.01 C13 H14 N3 O7 F2 
           362.0676 6.3 17.4 11.5 247 2.523 8.02 C17 H13 N O7 F 
           362.0807 -6.8 -18.8 -1.5 258.1 13.615 0 C4 H17 N5 O13 F 
           362.0811 -7.2 -19.9 3.5 256.2 11.663 0 C10 H15 N3 O8 F3 
           362.0665 7.4 20.4 15.5 253.7 9.173 0.01 C20 H12 N O6 
           362.0817 -7.8 -21.5 19.5 256.5 11.99 0 C24 H12 N O3 
           362.0659 8 22.1 -0.5 257.7 13.199 0 C6 H15 N3 O11 F3 
           362.0654 8.5 23.5 17.5 253.6 9.116 0.01 C19 H7 N5 F3 
           362.0829 -9 -24.9 15.5 255.1 10.578 0 C21 H13 N O4 F 
           362.0647 9.2 25.4 3.5 257.1 12.587 0 C9 H14 N3 O10 F2 
           362.0643 9.6 26.5 -1.5 259.5 15.023 0 C3 H16 N5 O15 
           362.0836 -9.7 -26.8 6.5 255.8 11.292 0 C12 H16 N3 O10 
           362.064 9.9 27.3 12.5 249.7 5.19 0.56 C18 H11 N O4 F3 
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Figure S3.12: Element composition analysis of compound 7o (continued). 
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Figure S3.13: Element composition analysis of compound 10s or 11s. Highlighted formula 

matches with required element composition.  

Elemental Composition Report

Single Mass Analysis
Tolerance = 10.0 mDa   /   DBE: min = -1.5, max = 50.0
Element prediction: Off 
Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron Ions
375 formula(e) evaluated with 9 results within limits (up to 50 closest results for each mass)
Elements Used:
C: 0-40    H: 0-80    N: 0-5    O: 0-20    
Minimum:                             -1.5
Maximum:               10 10 50
Mass       Calc. Mass  mDa    PPM    DBE    i-FIT   Norm   Conf(%) Formula
354.0882 354.0884 -0.2 -0.6 -0.5 69.4 1.207 29.92 C8 H20 N O14 
           354.0879 0.3 0.8 17.5 70.2 2.003 13.49 C21 H12 N3 O3 
           354.0897 -1.5 -4.2 4.5 69.7 1.496 22.4 C9 H16 N5 O10 
           354.0919 -3.7 -10.4 21.5 70.8 2.63 7.2 C26 H12 N O 
           354.0838 4.4 12.4 13.5 70.7 2.484 8.34 C16 H12 N5 O5 
           354.0937 -5.5 -15.5 8.5 70.9 2.678 6.87 C14 H16 N3 O8 
           354.0825 5.7 16.1 8.5 70.9 2.731 6.51 C15 H16 N O9 
           354.0978 -9.6 -27.1 12.5 72.1 3.879 2.07 C19 H16 N O6 
           354.0785 9.7 27.4 4.5 71.7 3.445 3.19 C10 H16 N3 O11 
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C h a p t e r  4  

CONCLUSION AND FUTURE DIRECTIONS 

 
This work has demonstrated the cell-free TX-TL system as a reliable and convenient 

platform for the engineering of biosynthetic pathways. The TX-TL system is capable of 

expressing multiple pathway enzymes and simultaneously maintaining an active metabolism. 

The lack of cell membrane enables high-throughput screening of multiple pathway 

combinations, rapid tuning of protein expression levels, and efficient substrate scope studies. 

This work presents three different biosynthetic pathways for exploring various parts of the 

metabolic network in the TX-TL system. The production of 2,3-butanediol, 1,4-butanediol, 

and violacein showed that the TX-TL system is capable of producing compounds of different 

chemical spaces. These three pathways are cofactor dependent, and the production of final 

pathway metabolites suggests active cofactor metabolism. Chapter 2 and Chapter 3 have both 

demonstrated the practicality of TX-TL. Chapter 2 has shown the mapping between the cell-

free TX-TL system and the small-scale in vivo system, in which case, similar findings are 

drawn from the design space exploration of a metabolic pathway in both systems. Chapter 3 

has indirectly shown the comparison between the cell-free TX-TL system and the in vitro 

system made with purified proteins, in which case, findings drawn from the TX-TL system 

agrees with previous findings drawn from the in vitro system. The cell-free TX-TL system 

can become a new tool that bridges the whole cell system and the purified protein assay, 

which offers an alternative platform for the engineering of biological systems.  
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The cell-free TX-TL system allows for analyzing biosynthetic pathways in modules, which 

enables engineering biosynthetic pathway with a real systems approach, rather than trial and 

error. The system provides an alternative means to identify metabolic bottlenecks, study 

reaction mechanism, and characterize pathway dynamics. A biosynthetic pathway can be 

easily de-compartmentalized and reassembled by manipulating the DNA materials added to 

the system. Substrates or intermediates can be added to test for enzyme expression and 

enzyme activity, and individual components of natural biological systems can also be 

removed for investigations. The direct access to cellular components also reduces the 

timeline for design-build-test. By adding linear DNA in the cell-free TX-TL system for 

prototyping pathways, results of enzyme expression levels and metabolic outputs can be 

obtained in one day.  

We envision that the cell-free TX-TL system will become the standard research and 

development platform for engineering biological systems in the future. Similar to the wind 

tunnels used for aeronautic research, the cell-free TX-TL system can be reconfigured for 

different prototyping applications for engineering biosynthetic pathways. This work has 

mainly focused on the industrial relevance of TX-TL, and the capabilities of TX-TL have 

not been fully investigated. However, the cell-free TX-TL system can be further explored by 

making extracts from different organisms,111-112 reformulating buffer to reroute metabolic 

network,66, 113 and identifying dimensionless parameters that capture biochemical 

dynamics.114-116 The gap between TX-TL and the whole cell in vivo system or the gap 

between TX-TL and the purified protein in vitro system can be filled in with mathematical 
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models and computational simulations. The biomolecular breadboard TX-TL can also help 

identify dynamics of biological systems by providing access for measuring key parameters. 

Engineering the cell-free TX-TL system for different applications can help TX-TL better 

complement bioengineering research. The ingredients that are added into the currently TX-

TL system can be expensive and potentially non-essential. Reformulating buffer can develop 

a metabolic network similar to the one in vivo, prolong system lifetime, and most likely 

reduce costs. All of which can further enhance the industrial relevance of the cell-free TX-

TL system. Further engineering and development efforts towards the investigation of the 

viscoelastic properties of TX-TL can also enable the commercialization. Research and 

development efforts for optimizing mixing and will guide the efforts for large-scale 

synthesis, automated droplet formation, and screen assay with microfluidics.  

Challenges of the cell-free TX-TL system include quality control on a few levels. At the 

dawn of cell-free extract production in the Murray Lab, batch to batch variability is very 

prominent. However, the variability can be reduced by implementing effective cell-growth 

control, using the same protocol, and maintain procedure consistency. Variability on the 

buffer used can be problematic. Current protocol calls for small amounts of unstable 

cofactors, which can be improved through reformulation and reliable measurement methods. 

Quality control of ingredients added to the cell-free TX-TL system will also improve 

reproducibility of experimental results. For example, the purity of DNA added into the 

system can impact protein synthesis, and quality control of the DNA added can ensure 

consistent results.   



 

 90 

The opportunities for the cell-free TX-TL system include exploring unfamiliar biochemical 

environments and expanding the biochemical space for biosynthesis. Chapter 3 demonstrates 

the production of natural products that originate from an organism that can cause human 

infection.117-118 With the help of transcriptomics and proteomics, the investigation of 

heterologous biosynthetic pathways in E.coli based TX-TL can be a much safer alternative 

for natural product discovery. Similarly, extracts of invasive organisms can be made to 

investigate its metabolic network in a safer environment. Cell growth can be eliminated in 

the TX-TL platform, where an active biochemical network is still maintained. The potential 

toxicity effect of the produced metabolites may be reduced since cell growth has been 

eliminated. For product characterization, the production of target metabolites can be scaled 

up using a continuous exchange system, which also extends the lifetime of TX-TL.    
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A p p e n d i x  A  

DESIGN SPACE EXPLORATION OF THE 2,3-BUTANEDIOL 
PATHWAY 

 
 
 ABSTRACT 

This work reports the production of meso-2,3-butanediol (2,3-BDO) in the cell-free 

transcription-translation (TX-TL) system. This work showcases the first example of 

simultaneous enzyme expression and chemical synthesis from non-native pathways in the 

cell-free TX-TL systems in the Murray Lab. 1g/L of 2,3-BDO is observed after overnight 

TX-TL reactions. The production of 2,3-BDO validates the active reduction of NAD+ in the 

TX-TL system. Combinations of various concentrations of plasmids encoding individual 

pathway enzymes are tested for improved metabolite production rate. We find that increasing 

the concentration of plasmid encoding the first enzyme of the pathway increases the target 

production rate by two-fold.  

INTRODUCTION 

The cell-free transcription-translation (TX-TL) system is becoming a platform for the 

prototyping of biological systems. Specifically, the cell-free TX-TL system has been used to 

prototype biological circuits. Although other cell-free systems have been applied for protein 

synthesis or metabolite production, simultaneous protein synthesis and metabolite 

production from a non-native pathway have not been reported before this work. The meso-

2,3-butanediol (2,3-BDO) is used to test the capabilities of the cell-free TX-TL system. 2,3-
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BDO has applications in pharmaceutical, agrochemical, and fine chemical industries.119-120 

Studies have shown significant promise for the commercial production of bio-based 2,3-

BDO.121-122 Enzymes of the pathway have been previously characterized in vitro.123-125 The 

2,3-BDO pathway consists of three enzymes (shown in Figure A.1): acetolactate synthase 

(alsS) converts two pyruvate molecules into (S)-2-acetolactate and carbon dioxide, 

acetolactate decarboxylase (alsD) converts (S)-2-acetolactate into (R)-3-acetoin (ACT), and 

2,3-BDO dehydrogenase (budC) converts ACT to 2,3-BDO with the help of NADH. In this 

work, we explore the design space of the 2,3-BDO pathway by measuring metabolite 

production rates of TX-TL reactions with varying enzyme expression levels, which is 

achieved by varying the concentration of plasmids encoding individual pathway enzymes. 

We also change the concentrations of cofactor and substrates to understand dynamics of the 

cell-free TX-TL system. 

 

Figure A.1: The meso-2,3-butanediol biosynthetic pathway. 

RESULTS AND DISCUSSION 

We first test different reaction conditions for improved production of 2,3-BDO in TX-TL 

using plasmids from previous studies.124 Plasmid encoding T7 polymerase (plT7) and IPTG 

are added to TX-TL reactions to induce protein synthesis. The effect of plT7 on protein 
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expression in cell-free TX-TL is characterized using a plasmid encoded with a T7 promoter 

followed by GFP. The final concentration of GFP produced in TX-TL is linearly dependent 

on the plasmid concentration added to reactions in the range between 0.1 to 1 nM (shown in 

Figure A.2a). The effect of plT7 and IPTG on metabolite production is shown in Figure A.2b. 

We specifically test 0.5 mM, 2.5 mM, and 5 mM of IPTG and 0.2 nM, 0.4 nM, 0.6 nM, and 

0.7 nM of plT7. We find 0.6 nM of plT7 and 0.5 mM IPTG is enough for the required enzyme 

expression that leads to metabolite production, which matches with the value shown in 

previous studies.65 The production level of 2,3-BDO stays around 1 g/L or 11 mM. Such 

translates to at least 11 mM of NADH is reduced in TX-TL. We test the effect of adding 

extra NAD+ to the cell-free TX-TL system and find that extra NAD+ does not impact BDO 

production positively or negatively (data not shown). We keep the concentration of NAD+ at 

0.33 mM for the rest of the reactions.    

TX-TL reactions with varying enzyme expression levels are achieved by modulating plasmid 

DNA concentrations. Segments of genes encoding individual enzymes are cloned under the 

same promoter (T7-lacO) and RBS from the original vector. Plasmid encoding individual 

enzymes are added into TX-TL reactions to test for metabolite production. TX-TL reactions 

added with multiple plasmids are compared to TX-TL reactions added with the original 

plasmid encoding all pathway enzymes (shown in Figure A.3). The production level of 2,3-

BDO is very similar in both reactions. The rate of metabolite production in TX-TL is 

examined. Time course measurements of TX-TL reactions added with different plasmid 

ratios are conducted for up to 4 hours. The TX-TL system can be resource limited. The rate 

of protein production is approximately constant within the first 4 hours of TX-TL reactions 
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for plasmids with strong promoters and of concentrations lower than 1 nM.126 The production 

rate of metabolite within the first 4 hours can reveal the effect of plasmid concentration on 

protein production and possibly metabolite production.  

a. 

 
b. 

 

Figure A.2: The effect of T7 polymerase and IPTG on 2,3-BDO production. a. GFP 
Production under T7-lacO promoter. b. The effect of IPTG and plasmid encoding T7 
polymerase on the BDO production. BDO concentration above is measured at the end of 12-
hour TX-TL reactions. Series with circle represents result from reactions with 0.5 mM of 
IPTG, series with square represents result from reactions with 2.5 mM of IPTG, and series 
with triangle represents result from reactions with 5 mM of IPTG.  
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The original plasmid design may not have balanced enzyme expression for metabolite 

production. Initial testing of the original plasmid indicates significant accumulation of the 

intermediate ACT (shown in Figure A.3), which suggests that the expression of enzyme 

budC is much lower than enzyme alsS or enzyme alsD. There is also no measurement of 2,3-

BDO until two hours into the TX-TL reactions, which suggests the original plasmid construct 

may limit budC production. The original plasmid contains genes encoding pathway enzymes 

in a polycistronic manner. The low budC expression might be due to the mRNA secondary 

structure or the lack of internal RBS optimization of the original plasmid design.127 

Monocistronic design or adjusting RBS strength can help balance enzyme expression for 

improved target metabolite production.  

 

Figure A.3: Metabolite production in TX-TL reactions. Above shows the first four hours of 
time course measurement of BDO (left) and ACT (right) from TX-TL reaction with 1 nM of 
original plasmid with alsS, alsD, and budC arranged in polycistronic fashion (closed circle) 
and TX-TL reaction with 1 nM of each plasmid encoding a pathway enzyme (open circle). 
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Figure A.4: Modulating enzyme expression levels for improved 2,3-BDO production in TX-
TL. Top two graphs show BDO (left) and ACT (right) time course measurement for plasmid 
ratio of alsS:alsD:budC = 3:1:1 (circle), 1:3:1(square), and 1:1:3 (triangle), and total DNA 
concentration of 0.5 nM. Bottom two graphs show BDO (left) and ACT (right) time course 
measurement for plasmid ratio of alsS:alsD:budC = 6:1:1 (circle), 1:6:1 (square), 1:1:6 
(triangle),  and total DNA concentration of 0.8 nM. 

We tested the effect of each enzyme on the production of 2,3-BDO by varying concentration 

ratio of plasmid encoding the particular enzyme. Experimental data indicates that the 

addition of plasmid encoding enzyme alsS significantly increases the production of 2,3-

BDO. Increasing the concentration of plasmid encoding enzyme alsD or budC does not 

substantially increase the production rate of 2,3-BDO or ACT. Figure A.4 shows that 

increasing the ratio of plasmid encoding alsS increases the production rate of 2,3-BDO. We 

hypothesize that the metabolite production is limited by the expression of alsS. The 
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nucleotide sequence length for alsS is twice as long as the ones for alsD and budC. The 

transcription and the translation rate for alsS are relatively lower as a result of its sequence 

length (A.E.1). Furthermore, the kinetic parameters from previous studies also indicate that 

the catalytic rate of alsS is lower than alsD or budC (data shown below),125 which may hint 

that alsS is the rate-limiting enzyme. The highest production rate observed was 

0.4gBDO/L/hr with plasmid ratio of alsS:alsD:budC = 3:1:1.  

A mathematical model that simulates the 2,3-BDO pathway dynamics in the cell-free TX-

TL system is presented. Equation A.E.1 describes the dynamic of mRNAs (mi) in the system, 

and i corresponds to the pathway enzymes alsS, alsD, and budC:   

9:;
9<

=
=>?
@A,;

CA,DEF;G

=>?
@A,;

HCA,I HG
− :;

JA
,				∀		𝑡 > 𝜏0  (A.E.1) 

where kTX represents the transcription rate (previously measured to be 1 ± 0.5 mRNA 

nucleotide per second128), which is at least one order magnitude smaller than in vivo. Nm,i 

represents the length of a given mRNA, 1686 for alsS, 768 for alsD, and 771 for budC. Psi 

represents the concentration of plasmid encoding pathway enzyme i. R represents the 

concentration of mRNA polymerase (which is approximately 30nM128). τm accounts for the 

exponential decay lifetime (which is about 12 minutes). km,f  and km,r are unknown, but KTX = 

km,f /(kTX/Nm,i+km,r) was empirically measured to be approximately 2 nM.128 τ0 represents a 

time delay for mRNA production, which is about 15 min.128 Equation A.E.2 describes the 

dynamic of enzymes (Ei) in the system, and i corresponds to the pathway enzymes alsS, alsD, 

and budC:     
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where kTL represents the translation rate, which has a lower bound of 4 amino acids per 

second128 and is also less than the value in vivo. Np,i represents the length of a given enzyme, 

562 for alsS, 256 for alsD, and 257 for budC. b represents the concentration of ribosomes (> 

30nM128). kd·Ei represents the enzyme degradation rate (approximately 15 nM/min). kE,f and 

kE,r are unknown, but KTL = kE,f /(kTL/NE,i+kE,r) can be approximated to be less than 0.5 nM 

based on previous empirical data.128 Equation A.E.3 describes the pyruvate (Pyr) 

consumption in the system: 

9EWX
9<

= − CY,ZN[\]^EWX
_A,PHEWX

− 𝑘𝑃𝑦𝑟 (A.E.3) 

where kc,p  and Km,p represents the Michaelis-Menten constants obtained (121/s and 13.6 mM 

respectively125), k is a consumption rate added to simulate the consumption of pyruvate for 

TCA cycle. Since the concentration of enzyme alsS would remain zero for about 20 min, the 

excess consumption accounts for the decrease of pyruvate concentration during time delay 

for mRNA production. Equation A.E.4 describes the acetolactate (Actl) dynamics in the 

system: 

9bY<c
9<

= − CY,[N[\]dbY<c
_A,[HbY<c

+ CY,PN[\]^EWX
_A,PHEWX

 (A.E.4) 
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where kc,a  and Km,a represents the Michaelis-Menten constants obtained (4000/min and 1.3 

mM respectively129). Equation A.E.5 and A.E.6 describes the 3-acetoin (Act) and meso-2,3-

butanediol (BDO) dynamics in the TX-TL system: 

9bY<
9<

= − CY,fNfghibY<
_A,fHbY<

+ CY,[N[\]dbY<c
_A,[HbY<c

 (A.E.5) 

9jkl
9<

= CY,fNfghibY<
_A,fHbY<

 (A.E.6) 

where kc,b  and Km,b represents the Michaelis-Menten constants obtained (58/s and 0.85 

mM124). Note that kc,b  and Km,b were measured with the presence of significant amount of 

NADH, but NADH is a limiting factor for in vivo systems.130 kc,b and Km,b were also measured 

with the assumption that the forward rate and reverse rate for the production of 2,3-BDO is 

in equilibrium. The result of the mathematical model is very different from data collected 

experimentally (shown in Figure A.5). The model predicts the production of 2,3-BDO starts 

to plateau in less than two hours, and the consumption of the acetoin completes by the end 

of two hours.  The difference between the simulation and experimental data might be because 

the model has not taken into account resource limitations of the TX-TL system. We 

hypothesize that the cofactor NADH must have been slowly released over time in the TX-

TL, and there can be other competing enzymes in the TX-TL that also utilizes NADH for 

other background reactions.  
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Figure A.5: Simulation of the 2,3-BDO pathway in TX-TL. Red represents the concentration 
of 2,3-BDO, blue represents the concentration of acetolactate, and green represents the 
concentration of acetoin. 

MATERIALS AND METHODS 

Cell-Free Expression Preparation and Execution 

Preparation of the cell-free TX-TL expression system was done according to protocols 

previously described by colleagues,33 resulting in extract with conditions: 8.9−9.9 mg/mL 

protein, 4.5−10.5 mM Mg-glutamate, 40−160 mM K-glutamate, 0.33−3.33 mM DTT, 1.5 

mM each amino acid except leucine, 1.25 mM leucine, 50 mM HEPES, 1.5 mM ATP and 

GTP, 0.9 mM CTP and UTP, 0.2 mg/mL tRNA, 0.26 mM CoA, 0.33 mM NAD+, 0.75 mM 

cAMP, 0.068 mM folinic acid, 1 mM spermidine, 30 mM 3-PGA, 2% PEG-8000. When 

possible, inducers such as IPTG, pyruvate (60 mM), and plasmids were added to a mix of 

extract and buffer to ensure uniform distribution. TX-TL reactions were conducted in PCR 

tubes and kept at 29°C with incubation in PCR machine. The temperature was chosen for 
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maximum protein production in the cell-free system. Time course measurements were drawn 

from the same tube every hour, and each tube contains at least 20 ul reaction volumes. At the 

end of each reaction, 9 volume of methanol was added to precipitate proteins and terminate 

reactions.  The reaction mixture was centrifuged for 15 min at 14000 rpm. The supernatant 

is taken for compound detection using GC-MS, and the protein precipitate is analyzed with 

SDS-PAGE gel.  

Gas Chromatography Mass Spectrometry (GC-MS) Method 

Supernatant from TXTL reaction mixture was analyzed with GC-MS (Hewlett Packard 6890 

GC System and 5973 Mass Selective Detector) equipped with an Innowax column (Agilent, 

30 m x 0.25mm ID, 0.25 um film thickness). A double gooseneck liner (Restek SKY Liner, 

splitless double taper gooseneck, 4 mm x 6.5 x 78.5) was used to present a minimally reactive 

surface to improve 2,3-BDO response. The GC oven program is 80°C for 1 min, 15 °C/min 

to 150 °C, then 60 °C/min to 230 °C, and held for 1 minute.  The inlet temperature is 210 °C. 

Helium was used as carrier gas in constant flow mode at 0.9 ml/min. Injection volume was 

1 ul, interface temperature was 250 °C, Quadrupole temperature was 126 °C, Acetoin and 

meso-2,3-butanediol were quantified with ion extraction at 45 m/z. The retention times are 

3.7 min and 5.94 min, respectively.  

Plasmid DNA and PCR Product Preparation 

Plasmids used in this study were constructed using standard cloning procedures and 

maintained in a JM109 strain. PCR products were amplified using Pfu Phusion Polymerase 
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(New England Biolabs). Plasmids were miniprepped using QIAprep spin columns (Qiagen). 

All plasmids were processed at stationary phase. Before use in the cell-free reaction, both 

plasmids and PCR products underwent an additional PCR purification step using a QiaQuick 

column (Qiagen), which removed excess salt detrimental to TX-TL and were eluted and 

stored in 10 mM Tris-Cl solution, pH 8.5 at 4°C for short-term storage and −20°C for long-

term storage. 
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A p p e n d i x  B  

HIGH-THROUGHPUT DESIGN SPACE EXPLORATION OF THE 

1,4-BUTANEDIOL PATHWAY IN TX-TL 

The goal of this work is to develop a high-throughput screening platform that utilizes the 

cell-free TX-TL system to explore the design space of a metabolic pathway. Exploring the 

optimal ratio of enzyme expressions in the cell-free TX-TL system may serve as an 

alternative to the in vivo system for improving metabolite production. Appendix A shows 

that the ratio of enzyme expressions can be modulated by varying concentration of plasmid 

encoding individual pathway enzymes. Here we explore the possibility of characterizing the 

1,4-BDO pathway in TX-TL using a screening assay. It may be easy to predict the optimal 

ratio of pathway enzyme expression levels by analyzing the production rate of mRNA and 

protein mathematically. However, balancing enzyme expression levels of a complex 

metabolic pathway in a biological system with finite resources remains a challenge.34  

We plan to work with a high-throughput platform to quickly scan many combinations of 

enzyme expression levels and cofactor concentrations for desired pathway functions. This 

work is in collaboration with the Abate Lab at UCSF to demonstrate design space exploration 

of a metabolic pathway on a high-throughput droplet-based microfluidic system. The system 

can generate droplets of aqueous liquid dispersed in an inert carrier oil, inject materials into 

droplet after droplet formation, and sort fluorescence-based molecules.131 The system can 

create and sort 106 droplets in one day.  
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Genomatica has previously developed an assay enzyme that detects the production of 1,4-

BDO by converting 1,4-BDO back to 4HB-aldehyde (Figure B.2). The conversion step also 

converts cofactor NADP to NADPH. The application of the assay enzyme to the TX-TL 

system will allow for high-throughput detection of 1,4-BDO. An NADPH assay kit can be 

applied to obtain fluorescent signals from each TX-TL reaction. The fluorescence signal is 

very critical for the system to function because of the droplet size. Figure B.1 shows the 

overall workflow of characterizing the 1,4-BDO pathway using the microfluidics system 

coupled with the cell-free TX-TL system. The left side of Figure B.1 represents different 

tubes containing DNA that encodes individual pathway enzymes, substrate, and TX-TL 

mixture. After TX-TL reactions with various conditions undergo incubation, an assay 

enzyme is added to consume 1,4-BDO and produce NADPH. The NADPH kit is applied to 

generate a corresponding fluorescent signal for measurement. The ability to collect a large 

amount of time-point data using a high-throughput system will enable system identification 

and therefore allow us to identify limiting factors for the production of 1,4-BDO.  

From Figure B.3 to Figure B.4 shows the progression of understanding the logistics of 

applying an NADPH kit and the potential plan of executing a high-throughput screening 

platform. In Figure B.3, a process of heating and cooling is added to deactivate enzymes 

present in the TX-TL system, which can eliminate false positives and substrate competition 

between the added ADHX and ADH produced from TX-TL. It turns out that there are quite 

a few steps required for an NADPH kit to provide reliable fluorescent signals, which could 

be detrimental to droplet formation. Developing a high-throughput system with fluorescent 

proteins, click chemistry, or other simple fluorescent assays might be better alternatives.  
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This work also explores the use of assay enzyme ADHX for detecting 1,4-BDO in TX-TL. 

Two systems were developed: (1) fluorescence measurement using assay enzyme coupled 

with the NADPH kit and (2) absorbance measurement with assay enzyme. Figure B.5 shows 

the calibration curve for NADP and NADPH between 0 and 3 uM. Although the assay kit is 

specific for NADPH and not NADH, it is hard to differentiate NADPH or NADP (Figure 

B.5b). Figure B.6 shows that the signal of absorbance (a) and the signal of fluorescence 

against the concentration of 1,4-BDO.  

Other venues of high-throughput screening include MALDI. Significant efforts will be 

needed to ensure the reliability of the MALDI system. Most importantly, the omission of 

PEG will be necessary for TX-TL to be a competitive platform against other cell-free options.   

 

Figure B.1: High throughput design space exploration for system identification in TX-TL.   
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Time-course dataAssay
enzyme

Incubate

NADPH
kit

Incubate Fl
uo
re
sc
en
ce

Combinations



 

 106 

 

Figure B.2: 1,4-BDO pathway with a detection assay. 

 

Figure B.3: Overview of experimental plan. 
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Figure B.4: Detailed schematics for TX-TL in droplets. 
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Figure B.5: Testing the robustness of the NADP/NADPH kit a. NADP measured using 
NADP Extraction and NADPH Extraction b. NADPH measured using NADP Extraction and 
NADPH Extraction. 
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Figure B.6: Results from assay enzymes and NADP/NADPH kit: a. Absorbance of BDO 
assay, b. Fluorescence of NADPH kit. 
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