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Abstract 

This dissertation explores three separate issues in the field of gravitational-wave astronomy: optimal 

detection algorithms for quasi-periodic signals, gravitational-wave signatures of the equation of state 

in the early universe, and local Newtonian gravitational noise from nearby airborne masses as possible 

contaminants of the gravitational-wave signal. 

Continuous quasi-periodic signals are waveforms that maintain phase coherence over times longer 

than practical observation times, although the phase may drift in a way that can be modeled with few 

parameters. Sensitivity to such signals is limited by the computational cost of the analysis, especially 

since the detection algorithm must search over many values of the parameters in the phase model; 

it is therefore crucial to develop computationally efficient search strategies. One such strategy is 

a hierarchical stack search: a technique combining coherent phase corrections on short stretches 

of data with incoherent frequency drift corrections among several such stretches. The procedure 

is repeated at least twice, with each pass increasing the confidence in any putative signal. This 

dissertation discusses how to choose parameter values and observation times for greatest sensitivity, 

and shows how several astrophysically interesting sources may be detectable by this method. 

A background of gravitational waves originating in the Big Bang or a pre-Ilig-Dang collapsing 

universe will not thermalize in any cosmological epoch, but may be amplified by an intermediate 

epoch when the wavelengths were stretched outside the Hubble radius. The present-day spectral 

index is related simply and generically to the initial spectrum, and to the cosmological equation of 

state at the beginning and end of the intermediate epoch. This dissertation derives this relation, 

and compares it to related but more model-specific formulae in the current literature. 

Finally, this dissertation considers two atmospheric sources of background Newtonian gravita

tional noise (infrasonic pressure waves and wind-advected density perturbations), and two sources 

of transient Newtonian gravitational signals (atmospheric shockwaves and massive airborne bodies, 

especially tumbleweeds). Neither background noise source will exceed the noise floor for advanced 

detectors, but sonic booms and wind-borne debris striking the detector can both produce detectable 

spurious signals through their gravitational effects. Possible corrective measures arc discussed. 
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Chapter 1 Introduction 

1.1 General background 

Gravitational waves are a form of radiation predicted by Einstein 's general theory of relativity (GR), 

and by most other theories of gravity that are consistent with the special theory of relativity. They 

arc a generic result of the fact that changes in the gravitat ional field propagate a t a fini te speed, 

which , in GR at least , is the same as the characteristic speed c of light (or any other massless 

field). Simply put, imagine a configuration of masses A that changes over a timescale T into a new 

configuration B . The changes in the associated gravitational field ripple outward at a speed c. In 

the wave zone, corresponding to distances from the field source that are » CT , what one sees are 

the field configurations of A and B , connected by transverse fields in an expanding shell of thickness 

CT . This is the gravita tional wave pulse. At distances r much larger than the dimensions of the 

source, the expanding shell is spherical , and its field amplitude decreases as l /r . Meanwhile the 

force-producing static or background fields from that source decrease typically as l/r'l., so eventually 

the fields of the wave pulse or wave t rain come to dominate over the background gravitational field. 

In this way, dynamic objects at astronomical distances can produce detect.able effects even though 

their direct gravitational influence is almost entirely negligible. 

Of course, the above description applies not just to gravitational waves, but to any propagating 

massless field- in particular, to electromagnetic waves. Indeed, gravitational radiation is simply the 

gravita tional analogue of electromagnetic waves. However , there are certain key differences between 

electromagnetic and gravita tional fields, which have profound effects on the nature of their radiation. 

Compared to gravitational fields, electromagnetic fic~lds are much more strongly coupled to elec

tromagnetic charges. However , these charges come in two signs, so that any macroscopic object will 

be essentially electrically neutral. Thus, electromagnetic radiation is typically an incoherent super

position of signals from the motions of microscopic charges. The radiation is therefore typically at 

high frequencies, and carries information about the thermodynamic state of the system. (This is 

only a general rule; centimetric and longer waves tend to be due to the bulk motions of charges in 

a system.) Also, since the waves couple strongly to charges, they are easily blocked by intervening 

material , and do not penetrate from the depths of dense emitters. On the plus side, their strong 

coupling makes them relatively easy to detect . 

Dy contrast , gravitational fields are extremely weakly coupled to gravitational charges (i.e., 

masses), but these charges come in only one sign. T hus strong gravitational fields are produced by 
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macroscopic accumulations of mass, and gravitational waves are generated by the coherent motions 

of these masses. The radiation is t herefore typically at low frequencies (below 104 Hz or so), and 

carries information about the bulk distribution and motion of mass in the system. The weak coupling 

of the fiel<l means that the waves are not significantly absorbed by any intervening matter; they carry 

information from regimes of density that are impenetrable to other forms of radiation. However, 

this weak coupling also makes them incredibly difficult to detect. 

Auother technical difficulty involved with detecting gravitational waves is that gravity, at least 

in GR, is thought to obey Einstein 's general principle of relativity: that an isolated, freely-moving 

observer cannot discern the effects of gravity on the basis of purely local measurements. This is 

related to the principle of equivalence, in that an apparatus cannot measure a gravitational wave 

simply from the acceleration of a charge (test mass) in the detector, because gravity will affect 

the test mass and the detector equally. The only way to detect gravitational waves is by observing 

differential acceleration between separated test masses (or in extended bodies), where the differential 

acceleration grows with the distance between the test masses. The gravitational wave is thus a tidal 

field, as shown in Fig. 1.1. The characteristic amplitude of the wave is normally taken to be the 

double time integral of the tidal field, which is a dimensionless number. Physically it can be thought 

of as the fractional change in separation between two free test masses initially at rest. By contrast, 

electromagnetic waves (also shown in Fig. 1.1) are actual dipolar electric fields, which can produce 

local accelerations of electric charges within a detector. 

Gravitational waves, like electromagnetic waves, come in two polarizations. Fig. 1.1 shows a right

circularly-polarized wave; left-circularly-polarized waves are also possible. More conventionally, one 

defines the polarization of a wave in terms of polarization states called + and x. Waves with pure 

+ polarization have tidal forces that stretch outward in the vertical direction and squeeze inward in 

the horfaontal direction for half of the wave cycle, and then reverse for the other half of the wave 

cycle. Horizontal and vertical are defined with respect to some arbitrary reference frame t ransverse 

to the direction of propagation. Waves with pure x polarization have the same stretching and 

squeezing behaviour, but in directions 45° off of the horizontal and vertical directions. 

1.1.1 Interferometric detectors 

In recent years, an international effort has been underway to build detectors capable of measuring 

the minute tidal fields generated at the Earth by a gravitational wave of astronomical origin. T he 

two basic types of detectors arc resonant bar detectors and interferometric detectors. 

A resonant bar detector consists of an extended body, constructed of particular materials and 

suspended in such a way as to minimize the damping effects and thermal noise in its resonant modes. 

A passing gravitational wave induces differential tidal forces on the parts of the body, causing the 

body to vibrate. If the wave frequency is close to the resonant frequency of the body, the vibration 
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Figure 1.1: Pictorial depiction of the difference between the dipolar electrical field of an electro
magnetic wave, and the quadrupolar tidal field produced by a gravitational wave. Some points to 
note: 1. The gravitational radiation field is a tidal field, inducing relative accelerations on separated 
charges (test masses) , whereas the electromagnetic radiation field produces measurable accelera
tions on individual charges. 2. The gravitational wave completes a cycle for every half cycle of the 
spinning masses. More generally, the fundamental frequency of a gravitational wave is twice the 
fundamental frequency of the source. Electromagnetic radiation, on the other hand, generally has 
the same fundamental frequency as the charge motion that produced it . 
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in the body will be strongly amplified. Motion sensors around the surface of the body measure this 

vibration. Bar detectors are thus narrowband detectors, being sensitive for the most part only to 

gravitational waves whose frequencies are confined to the resonance peak of the detector. Spherical 

bar detectors are equally sensitive to all polarizations of waves coming from any direct.ion; other bar 

shapes will have preferred directions and sensitivities. 

Perhaps a more promising class of detectors, and the one that I will focus on throughout this 

thesis, are interferometric detectors, which use laser interferometry to measure tiny perturbations 

in the separations of widely-separated test masses. A typical detector configurat ion is shown in 

Fig. 1.2. The test masses are suspended in a vacuum system and isolated from external vibrations. 

A laser beam that has been modulated at MHz frequencies is split and sent down each arm of the 

interferometer, where it bounces back and forth several times between the reflective test masses, then 

the light from the two arms is recombined and sent to the photosensor. The mirrors are normally 

positioned so that the recombined light interferes destructively (or nearly so). Any change in the 

relative path length between the two arms will change the phase of the recombined light, resulting 

in incomplete destructive interference. On timescales less than the storage time of light in each arm , 

then, the photosensor output will be a "'MHz carrier wave whose amplitude can be thought of as an 

instantaneous measure of the relative lengths of the two arms. When a gravitational wave passes, 

the tidal field induces differential accelerations in the test masses as indicated on the figure. If the 

frequency of the wave is higher than the natural frequency of the test-mass suspension, the masses 

can be thought of as free masses. Then the fractional change in the arm length at any instant is 

just the dimensionless amplitude of the passing wave. 

This assumes that the wave is of + polarizat ion and propagating transverse to the interferometer 

plane; waves with other polarizations or coming from other directions will have reduced sensitiv

ity, reducing the average sensitivity by a factor of "' v'5 in gravitational wave amplitude (p. 421 

of [l]). This is one disadvantage of interferometric detectors over spherical bar detectors. However, 

interferometric detectors have the advantage that they can be constructed on large scales (up to 

several kilometres for terrestrial detectors), magnifying the differential motion produced by a given 

gravitational wave. Also, since the detector responds basically instantaneously to an incoming wave, 

it can detect waves over a large range of frequencies. 

Currently there are several interferometric gravitational-wave observatories at various stages of 

construction or testing in various countries around the world. The TAMA project has built and is 

testing a 300 m interferometer in Japan. The GEO project is building a 600 m interferometer in 

Germany. The VIRGO project is constructing a 3 km interferometer in Italy. The LIGO project 

is building three kilornetric interferometers in the United States: a 4 km and a 2 km detector in 

Washington, and a 4 km one Louisiana. Much of the discussion in chapters 2, 3, and 5 has been 

motivated by the anticipated sensitivities of the two 4 km LIGO interferometers. In addition to 



Laser 

-

Test 
mass 

I 

Photosensor 

Test 
mass 

2 

Beam 
splitter 

5 

Test 
mass 

3 

--
Test 
mass 

4 

Figure 1.2: Schematic of an interferometric gravitational-wave detector. Hanging test masses arc 
indicated by number. Filled arrows indicate the direction of propagation of the laser beam. Open 
arrows indicate the differential motion induced in the test masses by a gravitational wave of + po
larization moving transverse to the interferometer plane over half of its wave cycle. 
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these terrestrial interferometers, there is LISA, a proposed space detector, which would use test 

masses in separate spacecraft in solar orbit. In concept the space detector can be thought of as an 

interferometric detector , except that it uses phase-coherent active laser tranceivers in place of actual 

mirrors, and docs not use multiple reflections between the spacecraft to increase the optical path 

length. 

The sensitivity of any interferometric detector is set by the measurement noise in the quantity 

h(l) = 8L(t)/L, where Lis the interferometer arm length and JL is the differential change in the arm 

leugths measured by the interferometer. The noise is normally quoted as a power spectral density 

S1t(f) , defined by (h(J)h(J')*) = Si.(Jfl)J(J - f') , where ii(! ) is the Fourier transform of h(t) in the 

absence of any signal, and ( . .. ) denotes an expectation over all instant iations of (stationary) noise. 

Sometimes the sensitivity is given as a characteristic noise amplitude .J f Sh(!). The noise power 

spectral density has dimensions of 1/(frequency), whereas the noise amplitude is dimensionless, 

giving it a certain aesthetic appeal. To go into detail about the various sources of noise that limit 

each interferometer is beyond the scope of this thesis, not to mention this introduction. Fig. 1.3 

shows some anticipated noise spectra for interferometers in LIGO. 

1.1.2 Sources of gravitational waves 

As discussed earlier, gravitational and electromagnetic radiation are produced by qualitatively very 

different processes; it therefore makes sense to expect that strong gravitational emitters will not 

necessarily be strong electromagnetic emitters. Strong sources of electromagnetic radiation will 

typically be objects containing large numbers of charges in highly excited thermodynamic states, 

whereas strong sources of gravitational radiation will be massive objects with large bulk velocities. 

These properties are largely orthogonal: while there are some objects that exhibit both sets of 

properties, there is no reason to expect the two different populations of strong emitters to have 

much overlap. One can therefore expect gravitational-wave astronomy to reveal wholy new classes 

of previously undetected, perhaps even unpredicted , sources. 

Nonetheless, current astrophysical theory can predict a number of potential sources of strong 

gravitational radiation, which serve as tangible objectives for the recent effort to build gravitational

wave detectors. The following is a brief synopsis of some of the predicted sources that are motivating 

the current observational effort . I group these sources into burst sources and continuous emitter·s. 

Burst sources: These are sources that produce signals of finite duration , less than the observation 

t ime of the detector looking at it. The theoretical sensitivity of the instrument to such a source 

is fixed by the noise properties of the instrument and the amplitude of the signal from the source. 

Roughly, a source has a characteristic amplitude at a given frequency equal to the dimensionless 

amplitude h of its waveform at that frequency, multiplied by the square root of number of wave cycles 
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Figure 1.3: Characteristic noise spectra for interferometers in LIGO. The solid curve shows the 
expected noise spectrum for LIGO I, the first interferometers that will be used in LIGO for a 
gravitational-wave observation run, in 2002 [2] . The dashed curve shows a typical noise curve for 
LIGO II interferometers based on enhancements to be made in 2005 [3]; it should be noted that the 
LIGO II interferometers will also be tunable for improved narrow-band performance. The dotted 
curve shows an anticipated noise spectrum for "advanced" LIGO (LIGO III) interferometers, based 
on the original LIGO design proposal [4]. The ultimate sensitivities achievable at the LIGO facilities 
may be better by up to an order of magnitude. 
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that it spends in a unit logarithmic frequency interval about that frequency. If this substantially 

exceeds the dimensionless noise amplitude of the detector at that frequency, then the signal is 

detectable, provided that one scans the detector output with a template or source model that is 

matched in phase (and, somewhat less critically, in amplitude) to the incoming waveform. Less 

optimal search techniques will lower the effective sensitivity. Some proposed sources of burst-type 

signals are: 

Binary inspirals. When two bodies orbit, they lose energy through gravitational radiation, caus

ing them to spiral together. The last phases of inspiral before coalescence generate a characteristic 

"chirp" of gravitational waves increasing in amplitude and frequency. If the bodies are sufficiently 

massive and sufficiently compact (allowing for high orbital velocities and strong gravitational emis

sions), the final inspiral frequency will sweep through a detector's pass-band within the observation 

time of the instrument, forming a burst signal. Some proposed sources in this category are: neutron 

star binaries, stellar-mass black hole binaries, binary systems of a neutron star and a stellar-mass 

black hole, neutron stars or stellar-mass black holes orbiting supermassive black holes in the galactic 

core, or possibly even two supermassive black holes inspiralling during a galactic merger. 

Black hole mergers. When two black holes collide, they will produce a characteristic burst of 

gravitational radiation, followed by a damped ringdown as the final hole settles into a stationary 

state. Stellar-mass black holes will produce this burst at the frequencies of tens to hundreds of Hz 

accessible by ground-based detectors. Supermassive black hole mergers will be at the much lower 

frequencies (10- 1 to 10- 4 Hz) observed by space-based instruments. A great deal of computational 

effort is underway to model this process numerically, and produce suitable matched templates for 

signal analysis. 

Suvernovae. A supernova occurs when the degenerate core of a massive star or an accreting 

white dwarf exceeds its Chandra.<>ekhar mass limit, causing it to collapse. If the object is spinning, 

or the collapse is not entirely symmetrical, it may produce a burst of gravitational waves at high 

frequencies (tens of Hz to several kHz). This is one of the few proposed sources that may produce 

a strong signal in both the gravitational and electromagnetic continua. 

Newborn neutr'on stars. The product of a supernova explosion could in some ca.5es be a hot, 

rapidly-rotating neutron star. This star may be highly unstable, and could radiate away most of its 

angular momentum over the course of a few motnths by means of gravitational radiation; during 

this time, the wave frequency would sweep from around a kHz to around a couple hundred Hz or so. 

Continuous sources: These are sources whose emissions la.5t much longer than the observation 

time of the instrument. The sensitivity of a detector to these sources therefore depends not only on 

the properties of the wave and the detector, but also on the length of time spent. observing. T he 

signal amplitude can be estimated as for burst sources, but., instead of using the number of cycles 
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spent by the wave in a unit logarithmic frequency, one should use the maximum number of cycles 

that the wave spends during the entire observation; this gives a sensitivity that generally improves 

as the square root of observing time. Continuous sources can include members of the class of burst 

sources if it is theoretically or computationally impractical to build a phase-matched template for 

the entire burst; sensitivity then depends on the square root of the length of the template. Some 

typical continuous emitters are: 

Neutron stars. A rotating neutron star will emit gravitational radiation if it has a density or 

mass-current distribution that is not symmetric about its rotation axis. The waves will typically 

be at the second and higher harmonics of the rotation frequency. This source is discussed in more 

detail in section 1.2.1 and in chapters 2 and 3. 

Compact binaries. At the low frequencies of space-based detectors, binary systems of white 

dwarfs, or of a white dwarf or neutron star around a supermassive black hole, may produce enough 

gravitational radiation to be detected, but not enough to complete their inspiral over the course of 

an observation. These sources would be observed as continuous emitters. 

Unresolved binaries. White dwarf binaries are sufficiently common in our Galaxy that, at fre

quencies below about 10- 4 Hz, there will be too many at any given frequency to resolve one from 

another over the course of an observation. The signals will then form a broadband stochastic back

ground. Although such a continuous broadband signal is largely indistiguishable from the broadband 

noise in a given detector, it can be distinguished by correlating the output of two detectors having 

independent noise. In the correlated output , the amplitude of the common signal grows relative to 

the independent noise as the square root of the observation time. 

Cosmic strings and domain wulls . Another source of boadband stochastic background signals, 

these objects are the products of high-energy phase transitions in the early universe. When the 

fundamental particle fields in the early universe settled from a symmetric state into a lower energy 

vacuum state, they may have settled into different states in different parts of the universe. At the 

junctions of incompatible vacuum states there may be strings or sheets of the original high-energy 

"false" vacuum. As these objects merge or vibrate they will emit gravitational waves, which form a 

stochastic background in the universe today. 

Primordial gravitons. Perhaps the ultimate achievement of gravitational-wave cosmology would 

be the detection of gravitational waves that come to us directly from the Big Bang, or even possibly 

from an imploding universe before the Big Bang. These waves are discussed in more detail in 

section 1.2.2 and chapter 4. 
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1.2 Specific background 

This thesis deals with several widely-separated topics in the field of gravitational wave astronomy. 

Chapters 2 and 3 deal with data analysis schemes for gravitational waves from rotating neutron stars 

and similar objects. Chapter 4 discusses the spectrum of primordial gravitational radiation from the 

early universe. Chapter 5 deals with the noise and spurious signals produced in gravitational-wave 

detectors by the gravitational field of the Earth 's atmosphere, or of airborne objects. Since these 

topics arc quite separate, I provide in the following sections specific background material that will 

bf! assumed in subsequent chapters. 

1.2.1 Neutron stars 

A neutron star is a compact stellar object, having a mass typically in the range of one to two solar 

masses, but a diameter of 10 to 20 kilometres. Conveniently, these densities allow the stars to rotate 

rapidly, with periods measured in milliseconds. Pulsars are highly magnetized rotating neutron stars 

that produce detectable radio pulses as they rotate, by means of synchrotron radiation. Observations 

of radio pulsars show that many, indeed most, have frequencies in the 10- 1000 Hz pass-bands of 

proposed interferometric detectors. Neutron stars also have intense gravitational fields, such that 

even neutron stars in other galaxies could produce detectable gravitational-wave signals, provided 

that the local gravity near the star fluctuates by some significant fraction as they rotate. 

Of course the most appealing feature of neut ron stars as potent ial gravitational-wave sources 

is that, unlike most other putative sources, neutron stars are known unequivocally to exist. Their 

main disadvantage is that their gravitational-wave amplitudes cannot be estimated, even to order 

of magnitude, with any certainty. In order to produce fluctuating gravitational tides as it spins, a 

neutron star must have a non-a.xisymmetric density distribution, or non-axial internal mass flows 

that can alter the gravitational field through gravitomagnetic forces (the gravitational analogue of 

magnetic fields). There is at present no compelling proof that axial symmetry will necessarily be 

violated to any significant degree. 

Nonetheless, the fact that many radio pulsars exist in our Galaxy and have been detected makes 

them ideal fi rst candidates for gravitational-wave searches. One simply has to pick a pulsar, de

termine its pulse timing, and correlate the gravitational-wave detector output with the pulse phase 

(and its harmonics) . By this technique, the gravitational signal will grow linearly with observation 

time, while stochastic noise in the signal will grow only as the square root of observation t ime. After 

sufficiently long observation, one will either detect a signal, or at the very least begin to improve on 

the theoretical upper limits. 

However , interesting as this is, a more ambitious goal is to search for signals from neutron stars 

that have not previously been detected, or whose rotation phase cannot be well characterized in 
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advance. This is an important task, since the strongest theoretical emitters of gravitational waves 

arc likely to be in this category. For instance, the non-axial density perturbations are likely to be 

strongest in young neutron stars and to settle out as the star ages. Newborn neutron stars may even 

have unstable fluid modes, and be in the process of radiating away much of their angular momentum 

in the form of gravitational waves. In both cases, one might expect the youngest neutron stars to 

be in other galaxies, or to be shrouded in dust or a supernova remnant, both of which would make 

radio detection difficult. Accreting material from a companion might also produce nonaxisymmetric 

matter distributions or drive instabilities, and thus produce copious gravitational radiation; however, 

the strongest neutron star accretors do not seem to emit strong radio signals, so the gravitational

wave phase evolution will not be known in advance. Finally, there is the simple fact that if strong 

gravitational emitters are rare, one would do well not to restrict one's search sample to known radio 

pulsars. 

Chapters 2 and 3 discuss the data analysis hurdles that need to be overcome in any search 

for pulsars or other incomplet ely-characterized coherent continuous signals; that is, a signal that 

can be treated as a modulated sinusoid of indefinite duration, where some or all of the frequency 

and modulation parameters are not known in advance. Simply put, the central problem is that 

search sensitivities arc limited by the amount of computational processing power available for data 

analysis. Maintaining the advantage of longer coherent (i.e., phase-matched) signals not only requires 

accumulating larger data sets, but also requires more precise knowledge of the modulation. When the 

modulation is not fully characterized in advance, one must search over a range of parameters, with 

a precision that increases with the length of the observation. The result is that the computational 

power required to keep up with the data increases as some large power of the observation t ime. 

When computing resources are limited, one is forced to find an optimal tradeoff between increasing 

the observation time and maintaining close phase coherence, in order to maximize the sensitivity of 

the search. 

Chapter 2 takes a first-cut look at the problem, using a simple brute-force search algorithm: 

a stretch of data is demodulated in the t ime domain according to a parameterized phase model , 

a power spectrum is then produced using a fast Fourier transform (FFT) and scanned for excess 

power in any frequency bin. The procedure is repeated over a mesh of parameter values in the 

parameter space. The modulation effects considered are intrinsic phase shifts due to spindown or 

gradual motion of the source (parameterized by the Taylor coefficients of the phase function), and 

the Doppler modulation due to the rotation and revolution of the Earth (parameterized by the 

position of the source on the sky). The analysis considers the best way to lay out search points in 

the parameter space, and the optimal tradeoff between the number of parameter values searched 

and the length of the data stretch. Even considering these optimizations, and given a computer 

capable of performing 10t2 floating-point operations per second (1 Tfiops), such a brute-force search 
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can only process about 18 days worth of data in a like amount of time if searching the entire sky for 

objects with relatively low intrinsic frequency drift (frequencies of :S 200Hz drifting on timescales of 

~ 1000 years). For the more dynamic behaviour expected of stronger gravitational emitters (e.g., 

for frequencies up to 1 OOOHz changing on timescales under 40 years), such a search algorithm is 

limited to processing stretches of data under a day in length . 

Chapter 3 extends the methods and results of chapter 2 to more sophisticated search techniques, 

many of which are used by radio astronomers for radio pulsar searches. The first technique is a stack 

search, in which several power spectra from short stretches of data are stacked (added) incoherently 

to boost signal strength . This gives a lower signal than a single coherent Fourier transform of the 

entire dataset, but requires fewer computations, and thus can result in higher overall sensitivity 

in a computationally limited search. The second technique is a hierarchical seurdi, in which an 

initial low-precision, short-observation-time search produces a list of candidate signals (most of 

which are due to noise), and then attempts to verify (or deny) these signals using a higher-precision, 

longer-observation-time search. Again, this allows computational resources to be allocated more 

efficiently, resulting in higher search sensitivities. Chapter 3 also considers two other types of signal 

modulation: Doppler modulation from a source in a close binary orbit, and stochastic frequency 

drift due to torques from material accreting onto a source. 

The final achievable sensitivities depend strongly on the type of source one is searching for, and 

on how well one has constrained the parameter space of signal modulations in advance. In general, 

though, the threshold wave amplitude hu1 that one can detect with 99% confidence using a 1 Tflops 

computer is within an order of magnitude of the threshold h3;yr achievable with 4 months of data if 

one had vrecisely characterized the phase evolution in advance. These sensitivities admit a number 

of possible detectable sources for LIGO II or LIGO III detectors, including Galactic core pulsars 

with dimensionless deformities on the order of 10- 6 or higher , and newborn neutron stars shedding 

angular momentum via gravitational radiation at distances of 5 MPc or so. Perhaps the most 

promising source would be an accreting low-mass x-ray binary such as Seo X-1, which, if emitting 

enough gravitational radiation to balance the angular momentum gained by accretion, would be 

radiating at five times the detectable threshold in narrowbanded LIGO II. 

1.2.2 Primordial gravitational waves 

Perhaps one of the most intriguing uses of gravitational wave astronomy is to study phenomena in 

regimes that are completely opaque to electromagnetic radiation, and even to neutrino observations, 

but not to gravitational radiation. Gravitational waves couple so weakly to matter that they are not 

absorbed to a significant extent by any concentration of matter that can occur in nature. While their 

propagation can be affected by the gravitational effects of large masses or by the overall curvature 

of the universe, these effects do not cause the gravitational radiation to thermalize; the information 
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content of the gravitational waveforms is essentially unaffected. 

This feature of gravitational radiation is particularly important when considering primordial 

radiation from the early universe. The universe was opaque to electromagnetic radiation until the 

era of recombination, about a million years after the Big Bang, when the ionized plasma filling the 

universe cooled enough to recombine into neutral gas. This is the visible "surface" of the universe for 

electromagnetic radiation. By contrast, in the standard Big Bang model, primordial gravitational 

waves were created out of Planck-scale oscillations when the universe was only 10- 43 seconds old 

and governed by the enigmatic laws of quantum gravity, and these waves have not been significantly 

absorbed by any process in the universe since that time. Gravitational waves therefore have the 

potential of directly transmitting information about the quantum-gravitational structure of the 

universe during the Planck era. 

However, while primordial gravitational waves have not been absorbed or thermalized to any 

significant extent since their creation, they have been affected in predictable ways by the large-scale 

curvature of the expanding universe. This is in fact a prerequisite for the possibility of detectable 

primordial gravitational waves in the present day. Ordinarily when an oscillatory radiation field 

exists in an expanding universe, the amplitude of oscillation is decreased and the wavelength is 

increased in proportion with the increasing cosmological scale factor , normally denoted a. Quantum 

mechanically, this corresponds to conservation of the number· of radiation quanta in any mode, 

while simultaneously redshifting the frequency (and hence lowering the energy) of each mode. If this 

were the only effect at work, then the number of gravitons in any mode today would be unchanged 

since the Planck era. The usual default assumption is that the universe began in a quantum

gravitational ground state, with only vacuum fluctuations in the gravitational field; this would 

result in no detectable gravitons in the present era. 

Fortunately, the situation can change if the cosmological scale factor a increases faster than a 

linear function of cosmological proper time t. This is the criterion for an accelerated, or inflationary, 

universe. In an inflationary universe, the cosmological scale a (which determines the distance between 

points) is increasing as a higher power oft than the Hubble scale a/(da/dt) (which determines the size 

of a causally connected region of spacetime). Eventually the wavelength of a given gravitational wave 

mode may get stretched outside the cosmological horizon, so that points in space one wavelength 

apart are no longer in causal contact. When this happens, the oscillation of the wave is suppressed, 

and what was previously a propagating fluctuation in the spacetime metric becomes a constant offset 

of the metric in each independent, causally disconnected region. The dimensionless amplitude of 

the gravitational wave quickly approaches a constant value, where it remains as Jong as the wave is 

outside the cosmological horizon. 

After a (hypothetical) period of inflation , the universe enters an era of decelerated expansion, 

with a increasing more slowly than a linear function of t, and thus more slowly than the Hubble 
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scale. In this era, wave modes that were previously out of causal contact with themselves come back 

into causal contact, and begin oscillating again. At this point their amplitude begins to decrease as 

a - 1 once again. However , the intermediate period when the wave amplitude was constant mean:s 

that the amplitude has, on average, decreased more slowly than a - 1 • This is called varametric 

amvlification of the wave, since, in quantum mechanical terms, particle creation has occurred. It 

is stimulated particle creation if it amplifies an excited state of a mode (i.e., the mode originally 

contained real gravitons) , or spontaneous particle creation if it amplifies the vacuum fluctuations 

(i.e., the ground-state waveform) of a mode. The latter is of particular interest to cosmologists, 

since it means that inflation could create a detectable graviton spectrum even if the initial state of 

the universe was a quantum-gravitational vacuum. The shape of the spectrum could then be used 

to characterize the expansion of the universe during the inflationary and post-inflationary eras, or 

even to test the assumption of a vacuum initial state. The most ambitious goal of such observations 

would be to probe the state of the universe at the very instant that space and time came into being. 

Perhaps even more intriguing is the possibility of using gravitational waves to make observations 

of the universe before the Big Bang. Recent work in string theory has suggested that a collapsing 

universe might experience an era of strongly-coupled strings that could halt the collapse and cause 

the universe to rebound. Thus the "Big Bang,'' i.e. , the start of expansion, might be a string

energy-scale event rather than a Planck-energy-scale event. Since the string energy scale is thought 

to be at least one or two orders of magnitude lower than Planck energies, the universe would remain 

transparent to gravitational waves throughout the rebound. 

Furthermore, during the collapse phase the cosmological scale factor a is expected to be ex

periencing accelerated contraction (i.e., as a lower power of - t that is less than 1). This causes 

gravitational wave modes to be pushed outside of the cosmological horizon , as in the case of ac

celerated expansion. The parametric amplification, however, is dominated by coupling between the 

gravitational waves and the cosmological curvature around the time of the bounce (when the Hubble 

scale becomes undefined) . This amplification is harder to see intuitively than in the case of inflat ion, 

but follows relatively simply from integrating Einstein's field equations for a small perturbation on 

a homogen~~ous, isotropic cosmology. The result is that gravitational waves (whether they arc real 

gravitons or vacuum oscillations) from the pre-Big-Bang universe will not only pass through the Big 

Bang unscathed, but may even be amplified to detectable levels in the process. 

Chapter 4 discusses how one could use observations of a primordial gravitational wave background 

to measure certain properties of the universe during the Planck and inflationary eras , or during the 

pre-Big-Bang era, as the ca.c;e may be. Simply put, the parametric amplification factor depends on 

the size of the scale factor a at the times when a particular gravitational wave was forced out of and 

when it reentered the Hubble radius. Since this occurred at different times for different wavelengths, 

the power-law index of the gravitational spectrum over some frequency band can be used to compute 
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some combination of the instantaneous power-law behaviours of a when waves of those frequencies 

exited and reentered the Hubble radius. This in turn can be used to study the properties of the 

dominant energy field in the universe at those times, since this field is what determines the rate of 

expansion or collapse. Or, if one knows the dominant energy field, and hence the expansion rate, one 

can factor out. the amplification factor from the observed spectrum to obtain the initial spectrum of 

the Big Bang or pre-Big-Bang universe. 

Unfortunately, the simplest and standard assumption of vacuum initial conditions, followed by 

exponential inflation, followed by evolution dominated by a relativistic radiation field, followed finally 

by pressureless ma tter-dominated evolution, gives a gravitational spectrum that is decreasing with 

frequency in a well-determined way. Since observations of the cosmic microwave background place an 

upper limit on the total amplitude of cosmological perturbations (from gravitational waves and other 

sources) a t long wavelengths, one can extrapolate this to get an upper limit on the perturbations in 

the pass-bands of proposed detectors. For interferometric observatories such as LIGO the signal is 

a discouraging two orders of magnitude below the sensitivity of even advanced detectors, assuming 

a four-month observation, and increases only as the square root of the observation time. For LISA, 

which observes at lower frequencies, the sensitivity can approach the upper limit imposed by the 

microwave background [5]. However, this discouraging estimate has prompted many theorists to 

propose more elaborate cosmological models , including models with post-inflationary energy fields 

other than matter or relativistic radiation [6], and of course the string-motivated pre-Big-Bang 

cosmologies [7]. All of these models can have graviton spectra that increase with frequency over 

some band, and can , for certain choices of their parameters, produce a detectable background. 

Given the large number of cosmological models in the literature, and the larger number of 

parameters that can influence the gravitational spectrum, the intent of my analysis in chapter 4 is 

not to show how one can produce a detectable background. Instead, the intent is to show how such 

a background, if detected, can measure certain general properties of the early universe, independent 

of the details of any particular cosmological model. Specifically, the spectral index (logarithmic 

slope) of such a background depends only on three parameters: the parameter / = p/ p of the 

equation of state at the time when the waves exited the Hubble radius (t = Ii) and when they 

reentered (t = / 1 ), and the average quantum occupation number N ( n) of a mode, where n = aw 

is the conformal (expansion-invariant) frequency of the mode. Cosmological background spectra 

are usually measured by a dimensionless quantity O(w) = (w/pc)(dPgw/dJJJ) , where dpgw is the 

gravitational-wave energy density in a frequency interval dJJJ about the frequency w, and Pc is the 

critical energy density required to make the universe spatially fla t . The spectral index of this quantity 

produced by an inflationary universe is 

-- - --+ + dlnO dlnN 2 ( /i + 1 ) 2 ( ' ' - 1/3) 
d ln w - din n /i + 1/3 / / + 1/3 ' 
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and for a bounce cosmology it is 

--=--+2 +2 dlnO dlnN ( 21'i ) ( 1'/ -1/3) 
dlnw dlnn 'Yi + 1/3 1'! + 1/3 

1.2.3 Local gravitational fields 

Gravitational waves are not the only source of fluctuating gravitational fields at a detector site. 

The test masses in a gravitational-wave detector will also be influenced by the ordinary Newtonian 

gravitational forces of nearby moving masses. These forces are not gravitational radiation, but are 

the (effectively) instantaneous near-field forces at distances r « CT , where c is the speed of light 

(or gravitational) propagation, and T is the timescale over which the field is varying. The st rength 

of these forces decreases as r - 2 , rather than r - 1 as for gravitational radiation. Collectively these 

near-field forces are called gravity gradients, since they are simply gradients '\?<I> of the Newtonian 

potential field <I>. I should note that, in areas of research other than gravitational wave detection, 

the term "gravity gradient" is more often used to refer to the gradient in the gravitational field; 

that is, to the instantaneous local tidal field tensor Y'a'Vb<I>. However, throughout this thesis I will 

cont inue to use the term to refer to the instantaneous local gravitational field vector 9a = \7 <i <I> , so 

as to distinguish it clearly from the tidal field tensor of the propagating gravitational wave. 

For terrestrial detectors, the test masses arc surrounded by other masses, both inside and outside 

of the detector facilities. Some of these masses may be in motion, and thus cause fluctuations in 

the gravitational force felt by the test mass. Although these masses and their motions are much 

smaller than the astrophysical sources of gravitational radiation, what they lack in luminosity they 

can make up for in proximity. The three basic basic sources of gravity gradients for terrestrial 

detectors are: density perturbations of the ground, density perturbations of the atmosphere, and 

individual massive objects. In each case, one is concerned primarily with time variations in these 

perturbations on the order of 0.3 seconds to fractions of a millisecond, corresponding to the 3 Hz to 

"'kHz pass-bands of terrestrial gravitational-wave detectors. Fortunately, fluctuations in the local 

gravity tend to be strongly decreasing with frequency in this frequency range. Unfortunately, it is 

extremely difficult to isolate or shield the test masses from these forces; typically, the only way to 

reduce gravity gradient noise is to eliminate the source of the fluctuating field. 

Density perturbations in the ground in the relevant frequency range are caused by a stochastic 

background of pressure and shear waves propagating through the upper layers of the Earth's crust. 

Of primary concern for gravitational-wave detectors are waves in the upper few tens of metres of 

the crust: both pressure waves (P-waves), which generate the strongest density perturbations, and 

shear waves (S-waves), which can slightly raise and lower the level of the surface of the earth. These 

waves are not discussed in this thesis, but are dealt with in great detail by Hughes and Thorne [8] . 

Density perturbations in the atmosphere arc primarily of two types: adiabatic pressure pertur-
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bations (sound waves) , which propagate at the speed of sound (about 330 m/s at the surface of the 

Earth) , and isobaric temperature perturbations, which are carried past the detectors at the wind 

speed (anywhere from 0 m/s to 30 m/s or so) . Sound waves can be caused by wind, weather, or 

human activity in the vicinity of the detector , whereas temperature perturbations are largely caused 

by solar heating and are then mixed into the surface airmass by turbulent convection and advec

tion. These processes have been studied by micromcteorologists, and by optical astronomers who 

arc concerned with the effects these perturbations have on optical seeing. Chapter 5 of this thesis 

applies some of the results of these studies to estimate the atmospheric gravity gradient noise in 

a LIGO-type interferometric detector, with the result that neither source of gravity gradient noise 

will dominate the noise floor even for advanced detectors. However, the gradients from tempera

ture perturbations advected along turbulent vortices come close enough to the "advanced" LIGO 

(LIGO III) noise floor to warrant further study. Sonic impulses or shockwaves, such as those pro

duced by supersonic projectiles or aircraft, can also produce transient signals in LIGO through 

their gravity gradients. Chapter 5 gives an analysis of these signals and their detectability, and 

concludes that the sonic boom of a supersonic aircraft is potentially a significant contaminant of 

the gravitational-wave signal; however, such a spurious signal should be easy to veto using external 

infrasound monitors. 

Finally, there are a large number of individual objects moving in and around detector facilities 

whose gravity gradients could perturb the test masses. Inside the facility one must be concerned with 

the movements of people and equipment. This is discussed by Thorne and Winstcin [9). Fort~nately, 

it is possible to regulate these human activities inside the facility to reduce the gravity gradient noise. 

Outside the facility, things are not so easy to control. Gravity gradients can be produced by anything 

from a passing rabbit or duck, to a rifle bullet, to a wind-blown tumbleweed . In some cases these 

objects may produce detectable signals through their gravity gradients. However, since these are 

transient signals, there is some hope that signal discrimination techniques will be able to veto these 

events, so as not to reduce the sensitivity to true gravitational waves. Chapter 5 concludes with an 

analysis of the most significant signals from outside objects. While most objects moving smoothly 

past the detector do not create significant signals in the detector pass-band, a massive object, such 

as a tumbleweed, that collides with the outer wall of the detector facility could produce a detectable 

signal. A fence ,...., 30m out from the detector test masses should reduce such events to undetectable 

amplitudes. 
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Chapter 2 Phase-coherent search technique for 

periodic sources 

This chapter has appeared previously as the article "Searching for periodic source::> wit h LIGO,'' by 

Patrick R. Brady, Teviet Creighton, Curt Cutler , and Bernard F. Schutz (10] . 

Summary: We investigate the computational requirements for all-sky, all-frequency searches for 

gravitational waves from spinning neutron stars, using archived data from interferometric gravita

t ional wave detectors such as LIGO. These sources are expected to be weak, so the opt imal strategy 

involves coherent accumulation of signal-to-noise using Fourier transforms of long stretches of data 

(months to years). Earth-motion-induced Doppler shifts, and intrinsic pulsar spindown, will reduce 

the narrow-band signal-to-noise by spreading power across many frequency bins; therefore, it is nec

essary to correct for these effects before performing the Fourier transform. The corrections can be 

implemented by a parameterized model, in which one does a search over a discrete set of parameter 

values (voints in the parameter space of corrections). We define a metric on this parameter space, 

which can be used to determine the optimal spacing between points in a search; the metric is used to 

compute the number of independent parameter-space points N 1, that must be searched , as a function 

of observation time T . This method accounts automatically for correlations between the spindown 

and Doppler corrections. The number N p(T) depends on the maximum gravitational wave frequency 

and the minimum spindown age T = f / j that the search can detect. The signal-to-noise ratio re

quired, in order to have 993 confidence of a detection, also depends on Np(T) . We find that for 

an all-sky, all-frequency search lasting T = 107 s, this detection threshold is he~ (4- 5)h3;yri where 

h3 ;y r is the corresponding 993 confidence threshold if one knows in advance the pulsar position and 

spin period . 

We define a coherent search, over some data stream of length T , to be one where we apply a 

correction, followed by an FFT of the data , for every independent point in the parameter space. 

Given realistic limits on computing power, and assuming that data analysis proceeds at the same 

rate as data acquisition (e.g., 10 days of data gets analyzed in ,...., 10 days), we can place limitations 

on how much data can be searched coherently. In an all-sky search for pulsars having gravity-wave 

frequencies f ~ 200Hz and spindown ages r ~ lOOOYrs, one can coherently search ,...., 18 days of data 

on a teraflops computer. In contrast , a teraflops computer can only perform a ,...., 0.8-day coherent 

search for pulsars with frequencies f ~ lkHz and spindown ages as low as 40Yrs. 

In addition to all-sky searches we consider coherent directed searches, where one knows in advance 
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the source posit ion but not the period. (Nearby supernova remnants and the galactic center are 

obvious places to look.) We show that for such a search , one gains a factor of "' 10 in observation 

time over the case of an a ll-sky search, given a 1 Tftops computer. 

The enormous computa tional burden involved in coherent searches indicates a need for alterna tive 

da ta analysis strategies. As an example we briefly discuss the implementa tion of a simple hierarchical 

search in the last section of the paper . F\.trther work is required to determine the opt imal approach. 

2.1 Introduction 

T he direct observa tion of gravitational waves is a realistic goal for t he kilometer-scale interferometers 

which are now under construction at various sites around the world (4, 11]. However , the battle to see 

these waves is not over when the detectors are constructed and running. Searching for gravitational 

wave signals in the interferometer output presents its own problems, not least of which is the sheer 

volume of data involved . 

Potential sources of gravita tional waves fall roughly into three classes: bur::; ts, stochastic back

ground, and continuous emitters. 

Burs t sources produce signals which last for times considerably shorter t han available observation 

times. T he chirp signals from compact coalescing binaries belong to this class. Since theoretical 

waveforms, valid during the inspiral phase of t he binary evolution , have been accurately calculated 

using post-Newtonian methods [12], it is possible to search the da ta stream for chirps using matched 

fil tering techniques. Detailed studies have been carried out to ascerta in the opt imal set of search 

templates (13, 14], and a preliminary investigation of search algorithms is now under way [15]. Detec

tion of other , not so well understood, sources in this class- e.g., non-axisymmetric supernovae-has 

received limited attention [1] . 

Flanagan [16] has determined how to cro::;s-correlate the output of two detectors in order to search 

for a stochastic background of gravitational radiation, which was implemented by Compton [17] and 

applied to data taken during a period of 100 hours by two prototype interferometers detectors in 

Glasgow and Garching [18]. In [5], Allen presents a deta iled discussion of the potential significance 

of detecting a stochastic background. Compton 's work, and simulations performed by Allen, have 

demonstrated that this kind of analysis requires minimal computational resources. 

In this paper we consider some issues involved in searching for continuous wave sources. Through

out our discussion we use pulsars as a guide to develop a search strategy. 

2.1.1 Gravitational waves from pulsars 

Rapidly rotating neutron stars (pulsars) tend to be axisymmetric; however , t hey must break this 

symmetry in order to radiate gravitationally. The pulsar literature contains severa l mechanisms 
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which may lead to deformations of the star, or to precession of its rotation axis, and hence to 

gravitational wave emission. The characteristic amplitude1 of gravitational waves from pulsars 

scales as 

(2.1) 

where I is the moment of inertia of the pulsar, f is the gravitational wave frequency, f. is a measure 

of the deviation from axisymmetry and r is the distance to the pulsar. 

Pulsars are thought to form in supernova explosions. The outer layers of the star crystallize as 

the newborn pulsar cools by neutrino emission. Estimates, based on the expected breaking strain 

of the crystal la ttice, suggest that anisotropic stresses, which build up as the pulsar loses rotational 

energy, could lead to i; .:S 10- 5 ; the exact value depends on the breaking strain of the neutron star 

crust as well as the neutron star's 'geological history', and could be several orders of magnitude 

smaller. Nonetheless, this upper limit makes pulsars a potentially interesting source for kilometer 

scale interferometers. Figure 2.1 shows some upper bounds on the amplitude due to these effects. 

Large magnetic fields trapped inside the superfluid interior of a pulsar may also induce defor

mations of the star. This mechanism has been explored recently in [19], indicating that the effect is 

extremely small for standard neutron star models (i; .:S 10- 9). 

Another plausible mechanism for the emission of gravitational radiation in very rapidly spinning 

stars is the Chandrasekhar-Friedman-Schutz (CFS) instability, which is driven by gravitational radi

ation reaction (20, 21). It is possible that newly-formed neutron stars may go through this instability 

spontaneously as they cool soon after formation. The radiation is emitted at a frequency determined 

by the frequency of the unstable normal mode, which may be less than the spin frequency. 

Accretion is another way to excite neutron stars into emitting gravitational waves. Wagoner (22) 

proposed that accretion may drive the CFS instability. There is also the Zimmermann-Szedinits 

mechanism (23) where the principal axes of the moment of inertia are driven away from the rotational 

axes by accretion from a companion star. Accretion can in principle produce relatively strong 

radia tion, since the amplitude is rela ted to the accretion rate rather than to structural effects in the 

star. However, accreting neutron stars will be in binary systems, and these present problems for 

detection tha t go beyond the ones we discuss in this paper. We hope to return to the problem of 

looking for radiation from orbiting neutron stars in a future publication. 

2.1.2 Three classes of sources 

Observed pulsars fall roughly into two groups: (i) young, isolated pulsars having periods of tens or 

hundreds of milliseconds, and (ii) older, millisecond pulsars. The young pulsars are most likely to 

deviate significantly from axisymmetry; however, they are generally observed to have low frequencies, 

1 We adopt the definition of h e provided in Eq. (50) of Thorne [l] . 
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so that there is a compet ition between the frequency, f , and deviation from axisyrnmetry, t:, in 

Eq. (2.1) . On the other hand, millisecond pulsars, whose waves are higher in frequency, tend to be 

quite old and well annealed into an axisymmetric configuration. 

Radio observations can only probe a small portion of our galaxy in searching for pulsars. A 

significant effect reducing the depth of radio searches is dispersion of the signal by galactic matter 

between potential sources and the earth. Given current evolutionary scenarios for pulsars- that 

they are born in supernova explosions- it seems likely that most pulsars should be located in the 

galactic disk, and the youngest of these will also be shrouded in a supernova remnant, making them 

invisible to radio astronomers. 

Blandford (24, 1) has pointed out that there could exist a class of pulsars which spin down 

primarily clue to gravitational radiation reaction. For sources in this class the frequency scales as 

f ex T - 1/ 4 , where r is the age of the pulsar. If the mean birth rate for such pulsars in our galaxy is 

rj] 1
, the nearest one should be a distance r = Rv;:;Jfi- from earth , where R:::: lOkpc is the radius 

of the galaxy. The intrinsic gravitational wave amplitude (that is, the amplitude h at some fixed 

distance) of a pulsar in this class is proportional to T -
1!2

. Thus, the nearest source in this class 

would have a dimensionless amplitude h e at the Earth 

( ) 

1/2 
h e :::: 8 x 10- 25 20~:rs (2.2) 

In arriving at this expression we have assumed that the age T of typical pulsars in this class is much 

less than the age of our galaxy, so that the population has reached a steady state. This means that the 

gravitational ellipticity and the gravitational wave frequency must satisfy t:2 » 1.2 x10- 18 (lkHz/ !)4
• 

Assuming the existence of such a class of pulsars, with TB .'.S 2 x 104 Yrs, we see from Fig. 2.1 that 

there is a large region of parameter space that is both (i) detectable by the LIGO detector and (ii) 

physically reasonable, in the sense that t: < 10- 5 and f lies in the range 200- 1000 Hz. 

Note that Blandford's argument can be slightly re-cast to yield an upper limit on the gravitational 

wave strength of any isolated pulsar- i.e., any pulsar whose radiated angular momentum is not being 

replenished by accretion. The age of an isolated pulsar must be shorter than the age computed 

assuming the spin-down is solely due to gravitational wave emission. Correspondingly, if we set TB 

equal to 40 yrs (corresponding to the birthrate for all pulsars) , we get the following upper limit for 

measured gravitational wave amplitude of an isolated pulsar: h e < 2 x 10- 24
. Of course, this is a 

statistical argument. This bound could certainly be violated by an isolated pulsar that just happens 

to be anomalously close to us. 

It is important that any search st rategy should be general enough to encompass all three of the 

above classes, allowing for the significant changes in frequency which may be inherent in the sources 

(see section 2.2). 
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Figure 2.1: Characteristic amplitudes he [see Eq. (2.11)] for several postulated periodic sources, 
compared with sensitivities h3;yr of the initial and advanced detectors in LIGO. (h3;yr corresponds 
to the amplitude he of the weakest source detectable with 99% confidence in ~yr = 107 s integration 
time, if the frequency and phase of the signal, as measured at the detector, is known in advance.) 
Long-dashed Jines show the expected signal strength as a function of frequency for pulsars at a 
distance of 10 kpc, assuming non-axisymmetries of i: = 10-5 and i: = 10-8 , where i: is defined in 
section 2.3A. Upper limits are also plotted for the Crab and Vela pulsars, assuming their entire 
measured spindown is due to gravitational wave emission. The dotted lines indicate the strongest 
waves received at the earth for Blandford's hypothetical class of pulsars; each line corresponds to a 
particular birth rate. 
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2.1.3 The data analysis problem 

The detection of continuous, nearly fixed frequency waves will be achieved by constructing power 

spectrum estimators and searching for statistically significant peaks at fixed frequencies. In practice, 

this is achieved by calculating the amplitude of the Fourier transform of the detector output given 

by applying a fast Fourier transform (FFT), a discrete approximation to the true Fourier transform: 

h(f) = Jr 1T e21ri/t h(t) dt . (2.3) 

The main hope of detection lies in the fact that one may observe the sky for long time periods of 

time T. When such a data stretch is transformed to make the underlying signal monochromatic, 

the signal to noise ratio grows as ...ft in amplitude (or as T in the power spectrum). One will 

likely need to have integration times of several weeks or months in order for the expected signals 

from nearby sources to rise above the noise. However, such long data stretches pose a significant 

computational burden; using 107 s of data to look for signals with gravitational wave frequencies 

up to 500Hz requires calculating an FFT with N ::::::: 1010 data points. Calculation of a single such 

FFT would take about ls on a 1 Tflops computer, assuming that all 1010 points can be held in fast 

memory. Unfortunately, this is not the whole story. 

The detection problem is complicated by the fact that the signal received at the detector is 

not perfectly monochromatic. Earth-bound detectors participate in complex motions which lead to 

significant Doppler shifts in frequency as the Earth rotates, and as it orbits around the sun (this orbit 

is significantly perturbed by the moon and the other planets). The time dependent accelerations 

broaden the spectral lines of fixed frequency sources spreading power into many Fourier bins about 

the observed frequency. In order to maintain the benefit of long observation times, it is therefore 

necessary to remove the effects of the detector motion from the data stream. This can achieved by 

introducing an inertial (barycentered) time coordinate and carrying out the FFT with respect to it. 

The difficulty of doing this was first estimated by one of us (25]. However, we must also consider 

the additional complication that the signal may not be intrinsically monochromatic. If the signal 

exhibits intrinsic frequency drift, or modulation, due to the nature and location of the source -

as is expected for pulsars which spin down with time - these effects can also be removed in the 

transformation to the new time coordinate. 

Unfortunately, the demodulated time coordinate depends strongly on the direction from which 

the signal is expected, and on the intrinsic frequency evolution one assumes for the source. Thus, 

in searching for sources whose position and timing are not well known in advance, one must apply 

many different corrections to the data, performing a new FFT after each correction. Given the 

possibility that the strongest sources of continuous gravitational waves may be electromagnetically 

invisible or previously undiscovered, an all sky, all frequency search for such unknown sources is 



24 

of considerable interest . To obtain some idea of the magnitude of this task, consider searching the 

entire sky for signals with (fixed) frequencies up to 500Hz using 107 s worth of data. Assuming the 

entire data stream could be held in fast memory on a machine capable of 1 Tflops, it would take 

108s to complete the search. Introducing intrinsic spindown effects into the search increases the 

computational cost , at fixed integration time, by many orders of magnitude. This computational 

cost is the central problem of searching for unknown pulsars in the output from gravitational wave 

detectors and is the focus of this paper. 

2.1.4 Summary of results 

We parameterize the space of pulsar signals by the position of the source on the sky { () , </>}, entering 

through Doppler shifts due to the detector 's motion, and by spin down parameters f k which charac

terize the intrinsic frequency evolution. [See Eq. (2.13).) We constrain the range of possible values 

of the spindown parameters using the (spindown) age T = f / j of the youngest pulsar that a search 

can detect , thus l!kl ~ r - k. For the computationally-intensive search over all sky positions and 

spindown parameters, it is important to be able to calculate the smallest number of independent 

parameter values which must be sampled in order to cover the entire space of signals. We have 

accomplished this by introducing a distance measure and corresponding metric on the parameter 

space. T he analysis is patterned after a similar one developed by Owen (14) for gravitational waves 

from inspiralling, compact binaries. Using our metric one can compute the volume of parameter 

space, thus inferring the number of independent points that must be sampled in order to cover the 

entire space. We define a coherent search to be one where we perform one demodulation and FFT 

of the data for every independent point in the parameter space. Besides telling us the computa

tional requirements for a coherent search, the metric approach tells us how to place the points most 

efficiently in parameter space, in a similar way to that discussed by Owen. 

We have found it useful to present the results based on several possible search strategies, which 

cover different regions of the parameter space. Accordingly, we define a pulsar to be old if its 

spindown age T is greater than 103 Yrs and young if T 2:. 40 Yrs. A pulsar is considered to be slow 

if its gravita tional wave frequency is f ;S 200 Hz and fast if f ;S 103 Hz. 

A coherent all-sky search of 107 seconds of data for old, slow pulsars requires approximately 

1.1 x 1010 independent points in the parameter space; only one spindown parameter is needed to 

account for intrinsic frequency evolution. In contrast , an all-sky search for fast, young pulsars in 

107 seconds of data requires 8 x 1021 independent parameter space points to be sampled, using 

three spindown parameters to model intrinsic frequency evolut ion. Note that searches for old, fast 

pulsars (such as known millisecond radio pulsars) and young, slow pulsars (younger brothers of 

the Crab and Vela) are automatically subsumed under the latter search. These results mean the 

following. Assuming unlimited computer power and stationary, Gaussian statistics, a pulsar with 
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unknown position and period must have strain he ~ 4.3h3;yri if it is in our 'old, slow' category, and 

he ~ 5.lh3/yri if it is in our 'young, fast' category, to be detected with 99% confidence in a 107 

second search. Here h3;yr is the strain required for detection with 99%-confidence in a 107 second 

integration, assuming the pulsar position and period are known in advance2 : 

hs/yr(f) = 4.2 JSn(f) X I0- 7 Hz. (2.4) 

Thus, when considering an all-sky, all-frequency pulsar search, the LIGO sensitivity curves shown 

in Fig.I effectively overestimate the detector's sensitivity by a factor of ....,4-5, even in the limit of 

infinite computing power. 

Our ability to perform searches for continuous waves will certainly be limited by the available 

computing resources. Assuming realistic computer power - say of order 1013 flops - we estimate 

that computing limitations will effectively reduce the sensitivity of the detector by another factor of 

...... 2, even for some reasonably optimized and efficient search strategy. However, more work will be 

needed to develop an optimized algorithm, and thus to refine this latter estimate. 

While the concept of the metric is introduced in the framework of an all-sky search for unknown 

pulsars, it is clear that we may use the same approach to examine the depth of a search over limited 

regions of the parameter space. In particular, once the scope of a search is decided, the optimization 

procedure discussed in section 2.6 can be used to determine the observation time and grid spacing 

which maximizes the expected sensitivity of a search. As an example, we consider coherent directed 

searches, in which one assumes a specific sky position (such as a particular cluster or supernova 

remnant) and searches only over spindown parameters. Again, we present results for two concrete 

scenarios based on fast, young pulsars and old, slow pulsars. Similar considerations apply to directed 

searches as to all-sky searches; that is, the curves in Fig. 2.1 overestimate the detector sensitivity 

for 107 second integration. Table 1 summarizes the results for both cases. 

We note that in each type of search, the number of parameter space points, and hence the compu

tational requirements, were reduced significantly by the assumption that the points were placed with 

optimal spacings given by the metric formalism. Nevertheless, the bottom line is that limitations on 

computational resources will severely restrict the integration times that can be achieved. Assuming 

access to a Tflops of computing power (effective computational throughput, ignoring possible over

heads due to interprocessor communication or data access), we find the following limits on coherent 

integration times: For young, fast pulsars we are limited to about 0.8 days for an all-sky search, and 

18 days for a directed search. For older, slower pulsars, on the other hand, we are only limited to 

9 days for an all-sky search, and nearly 160 days for a directed search. The threshold sensitivities 

that these strategies can achieve, relative to the noise curves in Fig. 2.1, are plotted as functions of 

2This differs from equation (112) in [1] because we have specified 99% confidence, and we have used Lhe correct 
exponential probability function for power. 
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Table 2.1: The number of independent parameter points Np(T, µmax = 0.3) required for a coherent 
T = 107 s search, for four fiducial types of pulsar. We list the requirements both for all-sky searches 
and for directed searches (i.e., searches where the source position is known in advance). Also listed 
are the threshold values hih of the characteristic strain he required to have 993 confidence of 
detection, assuming unlimited computer power. These threshold values are given by hth/ h3;yr = 
(1/1.90) j ln(50NNp) - 1 where N = 2/maxT. Here h3;yr is the corresponding threshold, assuming 
the pulsar 's position and period and are known in advance. 

Search Parameters Np hih/h3/yr Np hth/hs/yr 
f (Hz) r (Yrs) (all-sky) (all-sky) (directed) (directed) 
< 200 > 103 i.1 x lorn 3.7 3.7 X 106 3.3 
< 103 > 103 1.3 x 1016 4.2 1.2 x 108 3.5 
< 200 > 40 1.7 x 1018 4.3 8.5 x 1012 3.9 
< 103 > 40 8 x 1021 4.6 1.4 x 1015 4.1 

computing power in Fig. 2.2. 

2.1.5 Organization of this paper 

In section 2.2 we outline the physics of pulsars which is relevant to the detection of continuous 

gravitational waves. The discussion is phenomenological and based almost entirely on pulsar data 

collected by radio astronomers. We focus attention on effects which may lead to significant frequency 

evolution over periods of several weeks of observation. 

Then, in section 2.3, we introduce a parameterized model of the expected gravitational waveform, 

including modulating effects due to detector motion. 

From this, we go on in section 2.4 to describe the basic technique used to search for signals, by 

constructing a demodulated time series. Livas (26] , Jones (27] and Niebauer [28] have implemented 

variants of this basic search strategy over limited regions of parameter space (in particular they have 

not considered pulsar spin-down, and have restricted attention to small areas of the sky). 

For the more computationally-intensive search over all sky positions and spindown parameters, 

it is important to be able to calculate the smallest number of independent parameter values which 

must be sampled in order to cover the entire space of signals. In section 2.5 we develop the metric 

formalism for calculating the number of independent points in parameter space. 

In sections 2.6 and 2.7 we apply this formalism to determine the computational requirements of 

an all-sky search for unknown pulsars and a directed search, respectively. 

Finally in section 2.8, we list some possible alternatives to a straightforward coherent search of the 

interferometer data. Detailed studies of the pros and cons of each are currently under investigation . 
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Figure 2.2: Relative amplitude sensitivities h3;yr/hth achievable with given computational resources, 
for various coherent search strategies: (a) directed search for old (r ~ lOOOYrs), slow (f ~ 200Hz) 
pulsars, (b) all-sky search for old, slow pulsars, (c) directed search for young (r ~ 40Yrs) fast 
(f ~ lOOOHz) pulsars, and, (d) all-sky search for these same sources. For a given computational 
power, we have determined the optimum observation time as described in sections 2.6B and 2.7. 
Thus hth is the expected sensitivity of the detector for the optimal observation time, and with 99% 
confidence, assuming only that the frequency bandwidth of the source is constrained in advance; see 
Eq. (2.56) . 
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2.2 Pulsar phenomenology 

Currently, the only expected sources of continuous, periodic gravitational waves in the LIGO band 

are pulsars. In this section, therefore, we review those properties of pulsars which may be important 

in the detection process. In general, the search technique we present later is capable of detecting any 

nearly monochromatic gravitational wave with sufficient amplitude. However, it is useful to have a 

concrete physical system in mind when considering the expected gravitational waveform. 

That pulsars are rapidly rotating neutron stars is now well established [29] . Their high densities 

and strong gravitational fields allow them to withstand rotation rates of hundreds of times per second. 

Moreover, pulsar emission mechanisms require large magnetic fields, frozen into (co-rotating with) 

the neutron star. Indeed these large field strengths may produce non-axisymmetric deformations 

of the pulsar. However, the most remarkable feature of pulsars is the very precise periodicity of 

observed pulses. 

There are more than 700 known pulsars, all at galactic distances, concentrated in the galactic 

plane. Based on the sensitivity limits of radio observations the total number of active pulsars in our 

galaxy is estimated to be more than 105 [30, 31]. 

2.2.1 Spindown 

Pulsars lose rotational energy by electromagnetic braking, the emission of particles and, of course, 

emission of gravitational waves (32, 33] . Thus, the rotational frequency is not completely stable, but 

varies over a timescale r which is of order the age of the pulsar. Typically, younger pulsars (with 

periods of tens of milliseconds) have the largest spindown rates. Figure 2.3 shows the distribution 

of rotational frequencies and spindown age, r = f /(df /dt). 

Current observations suggest that spindown is primarily due to electromagnetic braking; however, 

for detection purposes it is necessary to construct a sufficiently general model of the frequency 

evolution to cover all possibilities. For observing times tobs much less than r, the frequency drift is 

small and the rotational frequency3 can be modeled as a power series of the form 

f (t) = Uo/2) (1 + L fktk) . (2.5) 
k 

If r min is the shortest timescale over which the frequency is expected to change by a factor of order 

unity, the coefficients satisfy 

If I < - k 
k "" 7min · (2.6) 

Clearly, for an observation time tobs « Tmin, the first few terms in this series will dominate. 

3We choose to parameterize the frequency by what will be the gravitational wave frequency, Jo , thus introducing 
the extra factor of 2 into this expression. 
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Figure 2.3: Gravitational wave frequency versus spindown age, r = f /(df /dt), measured in years, for 
540 pulsars which have measured period derivative. The figure clearly shows a large concentration 
of pulsars in the mid-left of diagram. Most of these are isolated pulsars. The standard evolutionary 
scenario suggests that pulsars move from higher frequencies and shorter spindowns left and up 
towards this main bunch. In contrast, many of the millisecond pulsars lying in the upper right of 
the figure are in binary systems, and it is widely believed that these are pulsars which have been 
spun up by mass accretion from the companion star. 
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Observations suggest that pulsars are born in supernova explosions with very short periods 

(perhaps several milliseconds), and subsequently spin down on timescales comparable to their age. 

Supernovae are observed in galaxies similar to our own at the rate of two or three per century, so we 

might expect Tmin ,...., 40 years for pulsars in our galaxy. It is at this point that the distinction between 

various classes of pulsars becomes important. The known millisecond pulsars are old neutron stars 

which have have been spun up to periods of only a few milliseconds, possibly by episodes of mass 

transfer from a companion star. As seen from Fig. 2.3, timing measurements of millisecond pulsars 

yield very long spindown timescales, Tmin 2: 107 years. 

2.2.2 Proper motions 

Pulsars are generally high velocity objects [32), as can be inferred by the distance they move in their 

lifetimes. Proper motions cause Doppler shifts in the observed pulsar frequency. If the motion is 

uniform (constant velocity), it simply induces a constant frequency shift - an effect which is un

detectable. However, acceleration and higher order derivatives of the source's motion will modulate 

the observed frequency. 

Studies of millisecond pulsars in globular clusters have shown that acceleration in the cluster field 

can produce frequency drifts which are comparable in magnitude to the spindown effects (34, 35). 

Once again, we expect these effects to be well modeled by a power series in t/Tcross, where Tcross 

is the time it takes the pulsar to cross the cluster. We expect that Tmin :::; Tcross for these objects 

(since if not, the pulsar will already have escaped the cluster). Thus the frequency model adopted 

above should be sufficiently general to encompass the observational effects of proper motions of the 

sources. 

A large proportion of millisecond pulsars are also in binary systems. Unfortunately, such pulsars 

participate in proper motions which vary over very short timescales (their orbital periods). The 

time-dependent Doppler effect due to these motions is not modeled accurately by a simple power 

series as in Eq. (2.5). They would require a more elaborate model involving as many as five unknown 

orbital parameters. Including these effects in a coherent, all-sky search strategy would be prohibitive 

(see section 2.6). In a search for gravitational waves from a known binary pulsar, however, it would 

be important to deal with this effect. 

Proper motions can also affect a search if the star moves across more than one resolution element 

on the sky during an observation. For the lengths of observation periods envisioned here, this is 

unlikely to be a problem. In an observation lasting a year, however, a pulsar with a spatial velocity 

of 1x103 km s- 1 at a distance of 300 pc will move by about half an arc-second, which is comparable 

to the resolution limit for our observations if the pulsar frequency is lkHz. 
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2.2.3 Glitches 

In addition to gradual frequency drifts due to spindown, some young pulsars exhibit occasional, 

abrupt increases in frequency. The physical mechanism behind these frequency glitches is not well 

understood, although the number of observations of glitch events is growing (30] . Given the stochastic 

nature of glitching, and the expectation that several months will elapse between major events, we 

will ignore glitching in this paper. 

2.3 Gravitational waves from pulsars 

In order to gain insight into the detection problem it is also important to understand the expected 

gravitational wave signal. Several mechanisms have been discussed in the literature which may 

produce non-axisymmetric deformations of a pulsar, and hence lead to gravitational wave genera

tion [19, 20, 21, 23, 36, 37]. 

In general, a pulsar can radiate strongly at frequencies other than twice the rotation frequency. 

For example, a pulsar deformed by internal magnetic stresses, which are not aligned with a principal 

axis, can radiate at the rotation frequency and twice that frequency [38]. If the star precesses, it 

will radiate at three frequencies: the rotation frequency, and the rotation frequency plus and minus 

the precession frequency [23]. The important point, however, is that the signal at the detector is 

generally narrow band, exhibiting only slow frequency drift on observational t imescales. 

Therefore, in this section we outline the main features of the expected waveform and the cor

responding strain measured at a detector for the case of crustal deformation; other scenarios give 

similar results except for the presence of more than one spectral component. 

2.3.1 Waveform 

Adopting a simple model of a distorted pulsar as a tri-axial ellipsoid, rotating about a principal axis 

with a frequency given by Eq. (2.5), one may compute the expected gravitational wave signal using 

the quadrupole formula. The two polarizations are 

h+ = ho(l + cos2 i) cos{27T lo [t + L,h ~~:;]} , 

h x = 2ho cos i sin{27T lo [t + L,!k ~~;]} , 

(2.7) 

(2.8) 

where i is the angle between the rotation axis and the line of sight to the source. The dimensionless 

amplitude is 

ho = 27T:G l zz J6 € , 
c r 

(2.9) 
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where 

(2.10) 

is the gravitational ellipticity of the pulsar. The distance to the source is r , and I jk is its moment 

of inertia tensor. 

The strength of potential sources is best discussed in terms of the characteristic amplitude he, 

defined in Eq. (50) of [l], and simply related to ho by 

(32 
he= y 15ho . (2.11) 

For a typical l.4M0 neutron star, having a radius of lOkm and at a distance of lOkpc, the dimen

sionless amplitude is 

he= 7.7 x 10- 25 _€_ l zz lOkpc (_h._)2 . 
IQ- 5 lQ45 g cm2 r lkHz 

(2.12) 

The magnitude of the gravitational ellipticity, €, represents the central uncertainty in any estimate 

of gravitational waves from pulsars. Models of neutron star structure generally include a crystalline 

outer layer, the crust, of the star surrounding a superfluid core. Since the moment of inertia of 

the crust represents only about 103 of the total moment of inertia and the superfluid core cannot 

support non-axisymmetric deformations, the tightest theoretical constraint, € < 10-5 , is set by the 

maximum strain that the neutron star crust may support [39, 1). It has also been suggested that 

stresses induced by large magnetic fields might result in significant gravitational ellipticity. Recently, 

Bonazzola and Gourgoulhon [19) have considered this possibility, finding discouraging results; their 

calculations indicate io- 13 :S € :S io-9 depending on the precise model they consider. 

In any case, an upper bound on the gravitational ellipticity is € ,...., 10- 5, although typical values 

may be significantly smaller. 

2.3.2 Signal at the detector 

Observing the gravitational waves using an earth-based interferometer introduces two further diffi

culties into the detection process: Doppler modulation of the observed gravitational wave frequency, 

and amplitude modulation due to the changing orientation of the detector. 

For the purpose of detection, the Doppler modulation of the observed gravitational wave fre

quency, due to motion of the detector with respect to the solar system barycenter, is a large effect. 

Assuming the intrinsic frequency model (2.5) for the pulsar rotation, the gravitational wave fre-
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quency measured at the detector is 

(2.13) 

where x(t) is the detector position, v(t) is the detector velocity, and ft is the unit vector pointing 

to the pulsar, in some inertial frame. We generally choose this frame to be initially comoving with 

the Earth at t = 0. The frequency measured in this frame is identical to that measured at the solar 

system barycenter except for an unimportant constant shift in Jo. 

To understand the amplitude modulation we must introduce the Euler angles, {0, ~' '11} , which 

specify the orientation of the gravitational wave frame with respect to the detector frame. The 

dimensionless strain at the detector is 

h = F+(0, ~' w)h+ + Fx (0, ~' w)hx (2.14) 

where F+ and Fx are the detector beam patterns given in Thorne [l]. In searching for continuous 

gravitational waves from a particular direction, the Euler angles become periodic function of sidereal 

time, thus resulting in an amplitude and phase modulation of the observed signal [1, 19, 26]. For 

observation times longer than one sidereal day, the amplitude modulation effectively averages the 

reception over all values of right ascension, and over a range of declination that depends on the precise 

position of the pulsar. In particular, the effect of this process is to allow detection of continuous 

waves from any direction, but at the cost of reducing the measured strain (see Fig. 2.4). 

2.3.3 Parameter space 

To facilitate later discussion it is useful to parameterize the gravitational waveform by a vector 

.A = (.X0 , X) such that 

(2.15) 

Here s is the maximum number of spindown parameters included in the frequency model determined 

by Eq. (2.5). These vectors span an s + 3 dimensional space on which .X°' can be thought of as 

coordinates. (Note that n~ = 1-n~ - n~ is not an independent parameter.) In particular we denote 

the observed phase of the gravitational waveform by 

(2.16) 

where f gw(t' ) is given by Eq. (2.13). 

Initial interferometers in LIGO should have reasonable sensitivity to gravitational waves with 
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frequencies 

f ~ 40Hz, (2.17) 

while advanced interferometers are expected to have improved sensitivity down to 

f ~ lOHz. (2.18) 

Moreover, theoretical constraints suggest that pulsars with spin periods significantly smaller than 

one millisecond are unlikely. This helps to constrain the highest frequency that one may wish to 

consider in an all sky search to be about 2kHz. According to the discussion in section 2.2, the 

spindown parameters satisfy 

(2.19) 

where Tmin is the minimum spindown age of a pulsar to be searched for. Finally, nx and ny are 

restricted by the relation 

n~ + n~ ~ 1. (2.20) 

2.4 Data analysis technique 

Radio astronomers are familiar with searching for nearly periodic sources in the output of their 

detectors (35, 40]. The technique employed by them is directly applicable to the problem at hand (26, 

27]. 

In the detector frame the gravitational wave signal can be written as 

h(t; .X) = Re [Ae-i<l>(t;~)] (2.21) 

where A = (ho++ihox), ho+ = F+(l+cos2 i)ho and hox = 2Fx(cosi) ho . The orbital phase ¢(t; .X) 

is given by Eqs. (2.16) and (2.13). Introducing a canonical time 

(2.22) 

the above signal becomes monochromatic as a function of tb. (The presence of the amplitude mod

ulation complicates the following analysis without changing the conclusions significantly; therefore, 

we treat A as constant in this and the next section4 .) Figure 2.4 shows the normalized power spec

trum computed from the signal as a function oft in Eq. (2.21) (with fk = 0), compared with the 

spectrum from the signal as a function of tb. It is clear that the maximum power per frequency bin 
4 Amplitude modulation can be viewed as the convolution of the exactly periodic signal with some complicated 

window function. Thus, in reality, the power spectrum of a stretched signal will not be a monochromatic spike at a 
single frequency, but will be split into several discrete, narrow spikes spread over a bandwidth 5f ~ io- 4Hz. After a 
preliminary detection, the amplitude modulation spikes would provide a discriminant against false signals [26]. 
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is significantly reduced when frequency modulation is not accounted for. 

Radio astronomers refer to this technique of introducing a canonical time coordinate as stretching 

the data. Since interferometer output will be sampled at approximately 16kHz, in a practical search 

for pulsars up to 2kHz gravitational wave frequency, the stretching can probably be achieved by 

resampling the data stream appropriately. This method, which is called stroboscopic sampling by 

Schutz [25], has the benefit of keeping the computational overhead introduced by the stretching 

process to a minimum. We will return to this issue in a later publication. 

Now, a search of the detector output, o(t), for gravitational waves from a known source is 

straightforward. One assumes specific para.meter values (in the waveform (2.21), computes the 

demodulated time function tb[t; (] using Eq. (2.22) and stretches the detector output accordingly, 

thus 

(2.23) 

If the assumed parameters (are not too much different from the actual parameters X of the signal, the 

stretched data will consist of a nearly monochromatic signal. One then takes the Fourier transform 

with respect to tb, 

(2.24) 

Here T~bs is length of the observation measured using tb. The power spectrum is then searched 

for excess power. (The threshold is set by demanding some overall statistical significance for a 

detection; see section 2.6.) Notice that the gravitational wave frequency, >.0 = Jo, is treated some

what differently than the other parameters; the Fourier transform searches over all possible values 

in a single pass. Given a sampled data set containing N points, the entire process, from original 

data through to the power spectrum, requires of order 3N log2 N floating point operations (to first 

approximation) . 

H all the parameters are not known accurately in advance, it will be necessary to search over 

some of the remaining parameters X; a separate demodulation and FFT must be performed for 

each independent point in parameter space that one wishes to search. There are many possible 

refinements on this strategy which could reduce the computational cost of a search by circumventing 

certain stages of the procedure described here. We mention some of them in section 2.8, however, 

we focus attention on this baseline strategy in this paper. 

One more issue that arises in the discussion of stretching is how it effects the noise in the detector. 

Throughout this paper we assume that the noise in the detector is a stationary, Gaussian process; 

however, when we stretch the output data stream the noise is no longer strictly stationary unless it is 

perfectly white. Real detectors will have colored noise, with correlations between points sampled at 

different times. Stretching the data modifies these correlations in a time dependent manner. In our 
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Figure 2.4: Power spectra for two simulated signals, each with gravitational wave frequency 5Hz, 
computed using approximately 10 days worth of data; they are normalized with respect to the 
maximum power achieved if the source were directly above an interferometer which remained sta
tionary during the entire observation. The signal was assumed to come from declination 0° and 
right ascension 90°; in fact, the amplitude modulation is only sensitive to changes in declination. 
The detector latitude was chosen to coincide with LIGO detector in Hanford Washington. The solid 
line corresponds to a Doppler and amplitude modulated gravitational wave signal. The dashed line 
is the same signal but with the Doppler modulation removed by stretching. The (unreasonably) 
low frequency was chosen for illustrative purposes, so that both curves could appear on the same 
scale. For realistic gravitational wave frequencies (,..., 500Hz) the Doppler modulated signal would 
be further reduced by roughly two orders of magnitude. 
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case this is a very small effect, having a characteristic timescale of several hours, and besides this the 

noise in real detectors may be intrinsically non-stationary on similar timescales due to instrumental 

effects. Correcting pulsar searches for such non-stationarity is an important problem, but one that 

we do not address here. We simply assume that Sn(!), the power spectral density of the noise, can 

be estimated on short timescales and used in the conventional way for signal to noise estimates. 

Moreover, the effects of stretching on noise are only a consideration when the noise is not white; 

since stretching affects the power spectrum only within bands """' 10- 1 Hz wide, the detector spectrum 

can usually be taken as white, unless we are near a strong feature in the noise spectrum. The precise 

nature of these effects is being explored by Tinto (41] . 

2.5 Parameter space metric 

In general, neither the position of the pulsar nor its intrinsic spindown may be known in advance of 

detection. Therefore, the above process, or some variant on it, must be repeated for many different 

vectors (until the entire parameter space has been explored. How finely must one sample these 

parameters in order to minimize the risk of missing a signal? A similar question arises in the context 

of searching for signals from coalescing compact binaries using matched filtering; Owen (14] has 

introduced a general framework to provide an answer in that case. We adapt his method to the 

problem at hand by defining a distance function on our parameter space; the square of distance 

between two points in parameter space is proportional to the fractional loss in signal power due to 

imprecise matching of parameters. The number of discrete points which must be sampled can then 

be determined from the proper volume of the parameter space with respect to this metric. 

2.5.1 Mismatch 

The one-sided power spectral density (PSD) of the detector output, stretched with parameters(, is 

Po(!) = 2 Jo(f; €)12 . (2.25) 

Now, suppose a detector output consists of a signal with parameters .X, and stationary, Gaussian 

noise n(t) such that 

o(t) = h(t; .X) + n(t) . (2.26) 

Thus, the expected PSD of the detector output, once again stretched with parameters [, is 

E[ Po(!) l = 2 Iii(!; A, 6.A)J2 +Sn(/) ' (2.27) 
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where D.X = ( - X, and Sn(!) is the one-sided power spectral density of the detector noise. (As 

discussed at the end of the previous section, we ignore the small effects of stretching on the noise.) 

The notation h(f; A, D.X) indicates the Fourier transform of a signal, with parameters A, with respect 

to a t ime coordinate tb[t; X + D.X]. We define the mismatch m(A, D.A) to be the fractional reduction 

in signal power caused by stretching the data with the wrong parameters, and by sampling the 

spectrum at the wrong frequency; specifically, 

(2.28) 

Remember that A = (>.0 =Jo)). 

In the present circumstance, it is sufficient to consider a complex signal 

(2.29) 

where the amplitude A is constant. The function tb[t; XJ, computed using Eqs. (2.22), (2.16) and 

(2.13), is explicitly written as 

- f ( - ) k+l tb[t;XJ = t+ ~ ·n+ L:-k k t+ ~ ·n 
c k + 1 c 

(2.30) 

Now, the Fourier transform h(/; A, D.X) is 

(2.31) 

where 

(2.32) 

and D.>.0 = f - Jo. Here, t should be interpreted as a function of ib defined implicitly by ib = 

tb[t; X + D.X] . Using Eqs. (2.30)-(2.32) it is easy to show that m(A, D.A) has a local minimum of zero 

when D.A = O; 

0, 

Thus, an expansion of the mismatch in powers of D.A is 

m(A, D.A) = L 9ap(A)D.>.0 D.>.ll + O(D.A3
) , 

a,/J 

(2.33) 

(2.34) 

(2.35) 
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where 

(2.36) 

In this way the mismatch defines a local distance function on the signal parameter space, and, for 

small separations 6..X, 9of3 is the metric of that distance function. Note that the metric formulation 

(2.35) will generally overestimate the mismatch for large separations, as demonstrated in Figure 2.5. 

Calculations using this formalism are considerably simplified by partially evaluating the right

hand side of Eq. (2.36). The form of the signal (2.29) allows us to write 

(2.37) 

where <I? is given by Eq. (2.32), and where we use the notation 

T:"b. I ( ... ) = '.I'.!bs 1 b ( • • • )dtb 
b 0 ~.>.=O 

(2.38) 

2.5.2 M etric and number of patches 

Up until now, we have treated the frequency of the signal as one of the parameters, >.0 , which must 

be matched. In our search technique, stretching and Fourier transforming the data yields an entire 

power spectrum, automatically sampling all possible frequencies. We would really like to know the 

number of times that this combination of procedures must be performed in a search. T his requires 

knowledge of the mismatch m(.X, 6..X) as a function of tS, having already maximized the power (i.e., 

minimized m) over >.0 . The result is the mismatch projected onto the (s + 2)-parameter subspace: 

where 
90i90j 

'Yij = 9ij - -- ) 
900 

and i = 1, . . . , s + 2. We will generally refer to µ as the projected mismatch. 

(2.39) 

(2.40) 

Technically, 'Yii should be computed from 90 13 evaluated at the specific value of >.0 at which 

the minimum projected mismatch occurred. However , since this number is unknown in advance 

of detection, we evaluate 'Yii for t he largest frequency in the search space. In this way we never 

underestimate the projected mismatch. 

In a search, the parameter space will be sampled at a lattice of points, chosen so that no location 

in the space has µ (given by Eq. (2.39) greater than some µm ax away from one of the points. This 

is equivalent to tiling the parameter space with patches of maximum extent µ;i!. The number of 
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Figure 2.5: Fractional reduction in measured signal power caused by demodulating with mismatched 
parameters (in this case, an error in the assumed declination of the source). The solid curve is the 
true power ratio, the dotted is that given by the quadratic approximation of the metric. Note that 
the widths of the curves agree well down to 703 power reduction (m ,...., 0.7), beyond which the 
metric approximation significantly underestimates the range of parameters permitted for a specified 
power loss. The curves are computed for a sky position of 0° right ascension, 45° declination, and 
no spindown. 
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points we must sample at is therefore 

N - fp Jdet ll1'ii llds+2X 
P - Vpatch ' 

(2.41) 

where Vpatch is the proper volume of a single patch, and s + 2 is the reduced dimensionality of the 

parameter space P (excluding >.o). 

Optimally, one should use some form of spherical closest packing to cover the space with the 

fewest patches. Our solution uses hexagonal packing in two of the dimensions and cubic packing in 

all the others; in this way the volume of a single patch is 

V. _ 3v'3 (4µmax) (s+
2
)/

2 

patch - 4 8 
+ 2 

(2.42) 

Finally, we note that Eq. (2.41) may overestimate (conceivably, greatly overestimate) the number 

of points one must sample if the parameter space submanifold folds in upon itself, so that points 

that seem widely separated on the submanifold are actually close together in the embedding space 

of possible signals. While we have no reason to think this is occurring, we also have not seriously 

tried to investigate this possibility; it is a difficult, non-local question. Until this is resolved, it is 

perhaps safest to regard N 71 given by Eq. (2.41) as an upper limit on the required number of sample 

points, though we suspect it is close to the actual number. 

2. 6 Depth of an all sky search 

We are finally in a position to estimate the depth of a search for periodic sources using LIGO. The 

detector participates in two principal motions which cause significant Doppler modulations of the 

observed signal: daily rotation, and revolution of the Earth about the Sun. The latter is actually 

a complex superposition of an elliptical Keplerian orbit with a smaller orbit about the earth-moon 

barycenter, and is further perturbed by interactions with other planets. For now, however, we use 

a simplified model which treats both rotation and revolution as circular motions about separate 

axes inclined at an angle e = 23°27' to each other. Although a simplification, this does remove any 

spurious symmetries from the model; thus, an actual search using the precise ephemeris of the earth 

in its demodulations should give comparable results. In this model, then, we write the velocity of 

the detector in a frame which is inertial to the solar system barycenter but initially comoving with 

the earth: 

v = -(ORc1sinnt-nARAsinOAt)x 

+(ORct cos nt - DARA cos e(cos nAt - l])y (2.43) 
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where Rd = 6.371 x 108 (cos l) cm, l is the latitude of the detector, and RA = 1.496 x 1013cm is 

the distance from the earth to the sun. The angular velocities are n = 27r/(86400s) and nA = 

27r / (3.15567 4 x 107 s). Our coordinate system measures x towards the vernal equinox and z towards 

the north celestial pole, and we arbitrarily choose to measure time starting at noon on the vernal 

equinox. 

The number of spindown parameters f k which must be included to account for all intrinsic 

frequency drift depends to a large extent on the type of pulsar one wishes to search for. We 

determined this number on a case by case basis, including all parameters which lead to a significant 

increase in the number of parameter space patches. Equivalently, the following geometric picture 

suggests a simple criterion for deciding when there is one spindown parameter too many included in 

the signal parameterization. Let >..L be the last, 'questionable' spindown parameter f 8 (so L = s+2). 

With respect to the natural metric '°Yij on parameter space, the unit-normal to surfaces of constant 

>.. L is just 'YiL / ( 'YLL ) 112 , where 'Yij is the inverse of '°Yij. The spindown parameter >.. L is unnecessary 

if the proper thickness of the parameter space in this normal direction nowhere exceeds half the 

proper grid spacing; that is, if 

(2.44) 

In practice, one has included more spindown parameters than necessary if and only if minp 'YLL > 

4L - 2L+2j 
Tmin µmax · 

2.6.1 Patch number versus observation time 

It is extremely difficult to obtain a closed form expression for the metric, let alone its determinant. 

Therefore, we present results for two concrete scenarios which suggest themselves based on the 

discussion in section 2.2: (i) hypothetical sources with Jo ~ lOOOHz, and spindown ages greater 

than T = 40Yrs; incidentally, this also includes the majority of known, millisecond pulsars; and 

(ii) slower sources (!0 ~ 200Hz) having spindown ages in excess of T = lOOOYrs. The number of 

parameter space points which must be searched is plotted as a function of total observation time in 

Fig. 2.6. The numbers are normalized by a maximum projected mismatch µrnax = 0.3. 

In considering an optimal. choice of observation time, it is useful to construct an empirical fit to 

Np(tobs, µmax)· Notice first that all the parameters 6.A in <I>, given by Eq. (2.32), appear multiplied 

by the gravitational wave frequency Jo; thus, Np ex Urnax)s+2 where f max is the maximum gravi

tational wave frequency to be searched for. Furthermore, provided the determinant of the metric 

is only weakly dependent on the values of the /k, one may also extract a factor of T-s(•+2ll2 ; our 
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investigations suggest the validity of this approach. In this way we arrive at the expression 

where 

N11 :::: max [NaFa(tobs)] , 
aE{O,J. .. } 

Na = ( J max) s+2 (40Yrs) s(s+l)/2 (~) (s+2)/2 
lkHz r µmax 

Fo(tobs) = 6.9 x 103 T2 + 3.0 T 5 

1.9 x 108 T 8 + 5.0 x 104 T11 

F1 (lobs) = 4.7 + TG 

2.2 x 107 T 14 

F2(tobs) = 56.0 + T 9 , 

(2.45) 

(2.46) 

(2.47) 

(2.48) 

(2.49) 

and T = tobs/(8.64 x 104s) is the observation time measured in days. These formulae are normalized 

using only the data corresponding to Fig. 2.6(a), and subsequently compared with computed values 

for several frequencies and spindown ages r. The analytic fit is in good agreement with the computed 

results for a variety of parameters; however, the fits generally break down for observation times less 

than one day. We stress that more spindown parameters may become important for observation 

times longer than 30 days. 

Schutz [25] has previously estimated the number of points which must be searched in the absence 

of spindown corrections; he argued that this number scaled as T 4 for observation times longer than 

about a day. The difference between his previous estimate and the expression in Eq. (2.47), which 

shows that the number of points increases as T 5 , derives from an asymmetry between declination 

and right ascension which was not accounted for in his argument. 

The benefit of the metric formulation is that it accounts for the significant correlations which exist 

between the intrinsic spindown and the earth-motion-induced Doppler modulations by using points 

which lie on the principal axes of the ellipsoids described by Eq. (2.39). Replacing the invariant 

volume integral in Eq. (2.41) by 

(2.50) 

gives the number of points required for a search if, instead, one chooses them to lie on the { n.,, ny, Ji, '2, ... } 

coordinate grid. Figure 2.7 shows the total number of points computed using this method compared 

to the results obtained using the invariant volume integral. For sufficiently long integration times, 

the difference can be several orders of magnitude. 

2.6.2 Computational requirements 

The number of real samples of the interferometer output for an observation lasting tobs seconds, 

and sampled at a frequency 2/max, where /max is the maximum gravitational wave frequency being 
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searched for, is 

N = 2/rnaxtobs · (2.51) 

For each X that is used to stretch the detector output, a search then requires an FFT, calculation 

of the power, and some thresholding test for excess power. Assuming that the stretching and 

thresholding require negligible computations compared to performing the FFT and computing the 

power, the total number of floating point operations for a search is 

(2.52) 

where N 11 is given by (2.45)-(2.49). The additive 1/2 inside the square brackets accounts for the 

three floating point operations per frequency bin which are required to compute the power from the 

Fourier transform. 

A guideline for a feasible, long-term, search strategy is that data reduction should proceed at a 

rate comparable to data acquisition. Thus, the total computing power required for data reduction, 

in floating point operations per second (flops), is 

(2.53) 

For a prescribed maximum projected mismatch µmax, and maximum available computing power 

Pmax, this expression determines the maximum allowed coherent integration time. Alternatively, 

given the computing power available for data reduction, Pmax, it provides an implicit relation between 

µmax and the integration time. 

The idea now is to choose µmax and tabs so that we maximize the sensitivity of the search. In 

order to do this we must first obtain a threshold, above which we consider excess power to indicate 

the presence of a signal. 

As discussed in section 2.4, we assume that the noise in the detector is a stationary, Gaussian 

random process with zero mean and PSD Sn(/). In the absence of a signal, the power P0 (!) = 
2lii(f) l2 is exponentially distributed with probability density function 

e - Po(/)/Sn(/) 

Sn(!) 
(2.54) 

We assume that there is independent noise in each off maxtobs frequency bins for a given demodulated 

power spectrum. In general the noise spectra obtained from neighboring parameter space points will 

not be statistically independent; however, one may expect that the correlations will be small when 

the mismatch between the points approaches unity. Therefore, we approximate the number of 

statistically independent noise spectra in our search to be N 11 (tobs, µmax = 0.3). In order that a 
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detection have overall statistical significance a, we must set our detection threshold so there is less 

than 1 - a probability of any noise event exceeding that threshold. For a detection to occur, the 

power in the demodulated detector output must satisfy 

(2.55) 

where P0 (!) was defined in Eq. (2.25) , and Pc is the threshold power. 

In other words, if the power at a given frequency exceeds Pc, we can infer that a signal is present; 

the expected power in the signal is then Pc - Sn. Thus, the minimum characteristic amplitude we 

can expect to detect is 

< F~(e, <1?, '11) > (1- < µ >) tobs ' 
(2.56) 

where< F;_(e, '1>, '11) >is the square of the detector response averaged over all possible source posi

tions and wave polarizations. < µ > is the expected mismatch for a source whose signal parameters 

.>: lie within a given patch, assuming that all parameter values in that patch are equally likely. We 

note that the characteristic detector sensitivities h3;yr in Fig. 2.1 are obtained from this expression 

by setting lobs = 107 seconds, < µ >= 0, and f maxtobsNv = 1 in the expression for Pc; this agrees 

with Eq. (2.4). 

The optimal search strategy is to choose those values of tobs and µmax which, for some specified 

computational power Pmax and detection confidence a, maximize our sensitivity 0 which is defined 

by 

1 
0(tobs1 µmax) = -h ex 

th 

(1 - ~ µmax)tobs 

Pc/Sn - 1 
(2.57) 

where Pc/ S11 is given by Eq. (2.55) . Assuming an overall statistical significance of a = 0.99, we have 

computed the optimal observation time tobs and optimal maximum mismatch µmax, as functions of 

computing power, for the two searches considered in the previous subsection. The results are shown 

in Fig. 2.8. 

2. 7 Computational requirements for a directed search 

In sections 2.5 and 2.6 we examined the computational requirements of an all-sky pulsar search. In 

this section we examine the computational requirements for a directed pulsar search, by which we 

mean a search where the position is known but the pulsar frequency and spin-down parameters are 

unknown. Obvious targets in this category are SN1987 A, nearby supernova remnants that do not 

contain known radio pulsars, and the center of our galaxy. Such searches will clearly be among the 

first performed once the new generation of gravitational wave detectors begin to come on line. 

Our treatment of directed pulsar searches closely parallels that of of the all-sky search, so we 
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can be brief. Since the source position (nx, ny) is known, we can simply remove the Earth's motion 

from the data. Below we imagine that the signal has already been transformed to the solar system 

barycenter. Then the unknown parameters describing the pulsar waveform are 

(2.58) 

where the fi are the same as defined in Eq. (2.5) and s is just the number of spindown parameters 

included in the frequency model. We again calculate the metrics gii and "Iii using Eqs. (2.37) and 

(2.40) respectively, and then calculate Np using (2.41) (except the integral is now overs-dimensional 

parameter space). Assuming hexagonal packing in two dimensions and cubic packing in the others, 

the size of each patch is Vpatch = (3~/4)(4µmax/s)812 . (Except for s = 1, where V.>atch = 2µ;itx .) 

We arrive at the expression 

where 

Np~ max [NaGs(t)] , 
sE{l,2 ... } 

Na= (/max ) s (40Yrs) s(s+l)/2 (~) s/2 
lkHz r µmax 

G1 (tobs) = 1.5 X 103 T 2 

G2(tobs) = 6.97 x 101 T5 

G3(tobs) = 2.89 X 10- 4 T 9
, 

(2.59) 

(2.60) 

(2.61) 

(2.62) 

(2.63) 

where T = tobs/(8.64 x 104s) is the observation time measured in days. Comparing these results 

with Eqs. (2.45)- (2.49), we see that for our fiducial parameter values (/max = lkHz, Tmin = 40Yrs, 

µmax = 0.3) and observation times T of order a week, Np is "" 105 times larger for an all-sky search 

than for a directed search. Another way of putting this is: after using one's freedom to adjust the 

frequency and spin-down parameters in optimizing the fit, only "" 105 distinguishable patches on 

the sky remain. Equivalently, a single directed search can cover an area of"" 10- 4 steradians. Thus 

"" 1000 week-long, directed searches would be sufficient to cover the galactic center region. 

We can calculate the optimal µmax and tobs as a function of computing power for a directed 

search in the same way as we did for the all-sky directed search. (Except the factor m in Eq. 2.57 

becomes 8~2 for the directed-search case.) The results are shown in Fig. 2.9, for our two fiducial 

types of pulsar. We see that knowing the source position in advance increases tobs by only a factor 

of "" 10, for 1 Tflops computing power. The resulting gains in sensitivity can be seen in Fig. 2.2. 
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2.8 Future directions 

Searching for unknown sources of continuous gravitational waves using LIGO, or other interfer

ometers, will be an immense computational task. In this paper we have presented our current 

understanding of the problem. By applying techniques from differential geometry we have estimated 

the number of independent points in the parameter space which must be considered in all-sky and 

directed searches for sources which spin down on timescales short enough to produce observable ef

fects; these numbers were used to compute the maximum achievable sensitivity for a coherent search 

(sec Fig. 2.2) . Furthermore, the metric formulation can be used to optimally place the parameter 

space points which must be sampled in a search. 

Our analysis takes no account of bottlenecks in the analysis process due to data input/output and 

inter-processor communication. These are important issues which may impose further constraints 

on the maximum observation time; however, it seems premature to address such problems until we 

know the hardware that will be used to conduct searches for continuous waves. 

Unfortunately, Fig. 2.8 shows that it will be impossible to search, in one step, 107 seconds worth 

of data over all sky positions. However, it is also unnecessary. We foresee implementing a hierarchical 

search strategy, in which a long data stream is searched in two (or more) stages, trading off sensitivity 

in the first stage for reduced computational requirements. Having determined a number of potential 

signals in the first stage-presumably at a threshold level which allows many false alarms due 

to random noise-these candidate events would be followed up in the second stage, using longer 

integration times. The longer integration times would be possible because the search would only 

have to be performed over much smaller regions of the parameter space, in the neighborhoods of 

the candidate signal parameters. In this way, one can achieve a greater sensitivity than a coherent 

search using the same computational resources. 

Clearly one can imagine many different implementations of this rough strategy, and we have not 

yet determined the optimal one. Nevertheless, we have considered the simple example where the 

data is searched in two stages. Candidate signals from an all-sky search of a short stretch of data 

[T( t) seconds long] are followed up using longer Fourier transforms to achieve greater sensitivity. One 

can estimate T(l) using Fig. 2.8 and an assumption that roughly half of the total computing budget 

is used on the first stage; this turns out to be a valid assumption. A simple argument along these 

lines goes as follows. Consider a search for 'young, fast' pulsars that begins by coherently analyzing 

stretches of data that are all "' 1 day long (possible with "' 4 x 1012 flops, by Fig. 2.8). Imagine 

that in the second stage of the search one follows up all templates such that Po(/, X) > 4.6Sn(/) , by 

seeing whether templates with roughly the same parameter values are exceeding this threshold every 

day. (Here P0 (!, X) is the power of the stretched data at frequency f , for stretch X. This threshold 

implies that one is following up only one out of every hundred templates.) It seems likely that this 
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second stage will not be more computationally intensive than the first. To exceed this threshold, a 

pulsar must have he ~ 12h3;yr· This is factor of roughly 3 better than if one restricted oneself to 

coherent searches considered above, but is a factor of 3 worse than the sensitivity one could achieve 

with unlimited computing power. 

A refinement of this strategy would be one in which the first pass consists of several incoherently

added power spectra. That is, one slices the data into N sequential subsets, performs a full search 

(as described in this paper) for each subset, and adds up the power spectra of the resulting searches 

for each of the parameter sets . This technique has been used to good effect by radio astronomers 

searching for pulsars [35] . Since the addition of power spectra is incoherent, there is a loss of 

signal-to-noise ratio in the final summed power spectrum of 1/ ./Fi in relation to a full coherent 

search over the whole timescale. However, the computational savings involved allow one to search 

stretches of data which are much longer overall. For some optimal choice of N, this will result in 

higher sensitivities when one follows up candidate detections using coherent searches. D. Nicholson 

(private communication) has estimated that a 1 Tfiops computer could perform such a search of 107 s 

of data, over all sky positions but ignoring pulsar spindowns. A subsequent paper will present a 

concrete analysis of this and other hierarchical scenarios (42] . 
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Figure 2.6: Number of independent points in parameter space as a function of total observation time, 
using a maximum projected mismatch µmax = 0.3. The parameter ranges chosen were: (a) maximum 
gravitational wave frequency 1 OOOHz, minimum spindown age Tmin = 40Yrs (hypothetical young 
pulsars); (b) maximum gravitational wave frequency 200Hz, minimum spindown age Tmin = 103Yrs 
(observed, slow pulsars). The short-dashed curve represents the total number of patches ignoring all 
fk . The long-dashed curve is the number of patches including only / 1 in the search. The dotted line 
is the number of patches including both fi and /2. Also shown is the empirical fit given in the text; it 
was normalized by the results shown in (a). In some regimes, searching over an additional spindown 
parameter would seem to reduce the number of patches; however, this actually only indicates regions 
where the parameter space extends less than one full patch width in the additional dimension. In 
such regimes one must properly discard the extra parameter from the search, forcing one to choose 
always the higher of the curves. 
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Figure 2.7: The total number of parameter-space points needed to search for pulsars having gravi
tational wave frequency up to lkHz, and spindown age greater than r = 40Yrs. The solid line is the 
number computed using the metric and properly accounting for correlations between various terms 
in the frequency evolution. The dotted line is the same number computed directly by assuming the 
points must lie on the grid of coordinates used to parameterize the signal. The benefits of using the 
metric to optimally place the points to be searched in parameter space is clear. 
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Figure 2.8: The optimum observation time (thick solid line), and maximal projected mismatch (dot
ted line) as functions of available computational power. Both graphs assume a threshold which gives 
an overall statistical significance of 993 to any detection (although the results should be insensi
tive to the precise value). Each of the graphs corresponds to: (a) the situation encountered when 
searching for periodic sources having gravitational wave frequencies up to lOOOHz, with minimum 
spindown ages Tmin = 40Yrs. (b) The equivalent results for gravitational wave frequencies up to 
200Hz, with minimum spindown ages Tmin = 103Yrs. The transition region seen in figure (a) is 
due to the fact that a longer integration time would require searching over an additional spindown 
parameter, as seen in Fig. 2.6. In this region it is more efficient, as one adds computational power, 
to lower mismatch thresholds, rather than searching over the additional parameter. 
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Figure 2.9: The optimum observation time (thick solid line), and maximal projected mismatch 
(dotted line) as functions of available computational power for directed searches. Both graphs 
assume a threshold which gives an overall statistical significance of 993 to any detection (although 
the results are insensitive to the precise value). Each of the graphs corresponds to: (a) the situation 
encountered when searching for periodic sources having gravitational wave frequencies up to lOOOHz, 
with minimum spindown ages Tmin = 40Yrs. (b) The equivalent results for gravitational wave 
frequencies up to 200Hz, with minimum spindown ages Tmin = 103Yrs. The transition regions, 
where the optimum observation time does not increase, are due to the fact that a longer integration 
time would require searching over an additional spindown parameter. 
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Chapter 3 Time-frequency and hierarchical 

search techniques for periodic sources 

This chapter is adapted from the paper "Searching for periodic sources with LIGO. II: Hierarchical 

searches,'' by Patrick R. Brady and Teviet Creighton (42]. 

Summary: The detection of quasi-periodic sources of gravitational waves requires the accumula

tion of signal-to-noise over long observation times. This represents the most difficult data analysis 

problem facing experimenters with detectors like those at LIGO. U not removed, Earth-motion in

duced Doppler modulations and intrinsic variations of the gravitational-wave frequency make the 

signals impossible to detect. These effects can be corrected (removed) using a parameterized model 

for the frequency evolution. In a previous paper, we introduced such a model and computed the 

number of independent parameter space points for which corrections must be applied to the data 

stream in a coherent search. Since this number increases with the observation time, the sensitivity 

of a search for continuous gravitational-wave signals is computationally bound when data analysis 

proceeds at a similar rate to data acquisition. In this paper, we extend the formalism developed by 

Brady et al. (Phys. Rev. D 57, 2101 (1998)], and we compute the number of independent correc

tions Nv(AT, N) required for incoherent search strategics. These strategies rely on the method of 

stacked power spectra- a demodulated time series is divided into N segments of length AT, each 

segment is Fourier transformed, a power spectrum is computed, and the N spectra are summed 

up. This method is incoherent; phase information is lost from segment to segment. Nevertheless, 

power from a signal with fixed frequency (in the corrected time series) is accumulated in a single 

frequency bin, and amplitude signal-to-noise accumulates as "'N114 (assuming the segment length 

AT is held fixed). For fixed available computing power, there are optimal values for N and AT 

which maximize the sensitivity of a search in which data analysis takes a total time NAT. We 

estimate that the optimal sensitivity of an all-sky search that uses incoherent stacks is a factor of 

2- 4 better than achieved using coherent Fourier transforms, assuming the same available computing 

power; incoherent methods are computationally efficient at exploring large parameter spaces. We 

also consider a two-stage hierarchical search in which candidate events from a search using short data 

segments arc followed up in a search using longer data segments. T his hierarchical strategy yields a 

further 20- 603 improvement in sensitivity in all-sky (or directed) searches for old (2?: lOOOyr) slow 

(~ 200Hz) pulsars, and for young (2?: 40yr) fast (~ lOOOHz) pulsars. Assuming enhanced LIGO de

tectors (LIG0-11) and 1012 flops of effective computing power, we examine the sensitivity to sources 
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in three specialized classes. A limited area search for pulsars in the Galactic core would detect 

objects with gravitational ellipticities of e 2: 5 x 10- 6 at 200 Hz; such limits provide information 

about the strength of the crust in neutron stars. Gravitational waves emitted by unstabler-modes of 

newborn neutron stars would be detected out to distances of,....., 8 Mpc, if the r-modes saturate at a 

dimensionless amplitude of order unity and an optical supernova provides the position of the source 

on the sky. In searches targeting low-mass x-ray binary systems (in which accretion-driven spin up 

is balanced by gravitational-wave spin down) , it is important to use information from electromag

netic observations to determine the orbital parameters as accurately as possible. An estimate of the 

difficulty of these searches suggests that objects with x-ray fluxes exceeding 2 x 10- 8erg cm- 2s-1 

would be detected using the enhanced interferometers in their broadband configuration. This puts 

Seo X-1 on the verge of detectability in a broadband search; the amplitude signal-to-noise would be 

increased by a factor of order ,....., 5- 10 by operating the interferometer in a signal-recycled, narrow

band configuration. Further work is needed to determine the optimal search strategy when limited 

information is available about the frequency evolution of a source in a targeted search. 

3.1 Introduction 

The detection of gravitational waves from periodic sources is seemingly the most straightforward 

data analysis problem facing gravitational-wave astronomers. It is also the most computationally 

intensive. The long observation times required to detect these waves mean that Earth-motion 

induced Doppler effects, and intrinsic frequency drifts, degrade the signal-to-noise if not removed. 

Since these effects depend sensitively on the location and intrinsic properties of the source, searches 

for periodic (or quasi-periodic) sources wiJI be limited primarily by the computational resources 

available for data analysis, rather than the duration of the signals or the lifetime of the instrument. 

For this reason, it is of paramount importance to explore different search strategies and to determine 

the optimal approach before the detectors go on line at the end of the century. 

In a previous paper [10] , hereafter referred to as Paper I, we presented a detailed discussion of 

issues that arise when one searches for these sources in the detector output. Using a parameterized 

model for the expected gravitational wave signal, we also presented a method to determine the 

number of independent parameter values that must be sampled in a search using coherent Fourier 

transforms (which accumulate the signal to noise in an optimal fashion). The results were presented 

in the context of single-sky-position directed searches, and all-sky searches, although the method 

outlined in Paper I is applicable to any search over a specified region of parameter space. Livas [26], 

Jones [27] and Niebauer et al. [28] have implemented variants of the coherent search technique 

without the benefit of the optimization advocated in Paper I. 

In this paper, we discuss alternative search algorithms that can better detect quasi-periodic 
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gravitational waves using broadband detectors. These algorithms achieve better sensitivities than 

a coherent search with equivalent available computational resources. This improvement is accom

plished by combining coherent Fourier transforms with incoherent addition of power spectra, and 

by using hierarchical searches tJ;iat follow up the candidate detections from a first pass search. 

The most likely sources of quasi-periodic gravitational waves in the frequency bands of terrestrial 

interferometric detectors are rapid ly rotating neutron stars. We use these objects as guides when 

choosing the scope of the example searches considered below. Nevertheless, the search algorithms 

are sufficient to detect any source of continuous gravitational waves with slowly changing frequency. 

A rotating neutron star will radiate gravitational waves if its mass distribution (or mass-current 

distribution) is not symmetric about its rotation axis. Several mechanisms that may produce non

axisymmetric deformations of a neutron star, and hence lead to gravitational wave generation, have 

been discussed in the literature (20, 21, 19, 37, 23, 22). A neutron star with non-zero quadrupole 

moment produces gravitational waves at a frequency equal to twice its rotation frequency if it rotates 

about a principle axis. Equally strong gravitational waves can be emitted at other frequencies when 

the rotation axis is not aligned with a principal axis of the source (19, 38). If the star also precesses, 

the gravitational waves will be produced at three frequencies: the rotation frequency, and the rotation 

frequency plus and minus the precession frequency (23). 

For concreteness, we consider a model gravitational-wave signal with one spectral component. 

This is not a limitation of our analysis since the search strategy presented below is inherently 

broadband; it can be used to detect sources that emit gravitational waves at any frequency in the 

detector pass-band. Additional knowledge of the spectral characteristics of a signal might allow 

us to improve our sensitivity in the case when multiple spectral components have similar signal

to-noise ratio. In such a circumstance, a modified search algorithm would sum the power at all of 

the appropriate frequencies. In a background of Gaussian noise, the sensitivity would improve as 

(number of spectral lines) 114 for only a moderate increase in computational cost. 

Finally, we mention several other works that consider searching for quasi-periodic signals in the 

output of gravitational wave detectors. Data from the resonant bar detectors around the world 

has been used in searches for periodic sources. New et al. (43) have discussed issues in searching 

for gravitational waves from millisecond pulsars. Krolak (44) and Jaranowski et al. [45, 46) have 

considered using matched filtering to extract information about the continuous wave sources from 

the data stream. Finally, work is ongoing in the Albert Einstein Institute, Golm, to investigate 

line-tracking algorithms based on the Hough transform [47, 48, 49); this technique looks promising, 

although we must await results on the computational cost and statistical behavior before we can 

make a detailed comparison to the techniques described in this paper. 
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3.1.1 Gravitational waveform 

The long observation times required to detect continuous sources of gravitational waves make it 

necessary to account for changes in the wave frequency. Physical processes responsible for these 

changes, and the associated timescales, were discussed in Paper I. In addition, the detector moves 

with respect to the solar system barycenter (which we take to be approximately an inertial frame), 

introducing Doppler modulations of the gravitational-wave frequency. To account for these two 

effects, we introduce a parameterized model for the gravitational-wave frequency J (t ; ..\) and phase 

</>(t; ..\) = 27r J J (t; ..\) dt measured at the detector: 

(3.1) 

(3.2) 

Here Jo is the initial , intrinsic gravitational-wave frequency, x(t) is the detector position, v(t) is t he 

detector velocity, ft is a unit vector in the direction of the source, and fk are arbitrary coefficients 

that we call spindown parameters. (We refer the reader to Paper I for a detailed discussion of this 

model and its physical origin.) The vector ..\ denotes the search parameters - the parameters of 

the frequency model that are (generally) unknown in advance. In the most general case that we 

consider below, the search parameters include frequency Jo, the polar angles (B, cp) used to specify 

ft, and the spindown parameters J k : 

(3.3) 

We note that the parameter >.0 = Jo defines an overall frequency scale, whereas the remaining 

parameters define the shape of the phase evolution. It is convenient to introduce the projected 

vector X = (>. 1 , >.2 , >.3 , >.4 , . .. ) of shape parameters alone. 

The strain measured at the interferometer is a linear combination of the + and x polarizations 

of the gravitational waves, and is given by the real part of 

h(t; ..\) = A e-i(<t>(t;).)+lltJ . (3.4) 

The time-dependent amplitude A and phase '11 depend on the detector response functions and the 

orientation of the source; they vary gradually over the course of a day (see references [19, 45]) . 

In what follows, we treat A and \JI as constants. Our analysis may be generalized to include the 

additional phase modulation. This effectively increases the dimension of the parameter space, by 

one, and the number of points that must be sampled, by ,...., 4, which translates into a reduction in 
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relative sensitivity of,..., 6%. 

3.1.2 Parameter ranges 

The computational difficulty of a search for quasi-periodic signals depends on the range of parameter 

values that are considered in the search. The intrinsic gravitational wave frequency Jo ranges from 

(near) zero to some cutoff frequency !max· If gravitational waves are emitted at twice the rotation 

frequency, theoretical estimates (50, 51] suggest that 

< /max,..., 1.2 kHz to 4 kHz (3.5) 

depending on the equation of state adopted in the neutron star model. Observational evidence

the coincidence of the periods of PSR 1937+21 and PSR 1957+20- favors the lower bound on 

gravitational wave frequency /max :::::: 1.2 kHz [33]. The spindown parameters fj are allowed to take 

any value in the range I/ii ~ (1/rmin)i where Tmin,..., fl j is the characteristic timescale over which 

the frequency might be expected to change by a factor of order unity. Observations of radio pulsars 

provide rough guidance about the timescales Tmin· In Paper I we considered two fiducial classes of 

sources that we denoted: (i) Young, fast pulsars, with f max = 1000 Hz and Tmin = 40 yr, and (ii) 

old, slow pulsars, with !max = 200 Hz and Tmin = 1000 yr. To facilitate direct comparison with the 

achievable sensitivities quoted in Paper I , we again use these two classes to present our results. 

The two extremes of sky area to be searched are: (i) zero steradians for a directed search in which 

we know the source location in advance; e.g., a supernova remnant, and (ii) 471' steradians for an 

all-sky search. We consider both of these cases, as well as the intermediate case of a 0.004 steradian 

search about the galactic center. 

It has been suggested recently that the gravitational wave frequency of new-born, rapidly

spinning neutron stars may evolve on a timescale of months rather than decades (52, 53, 54, 55]; 

an active r-mode instability can radiate away most of a neutron star's angular momentum in the 

form of gravitational waves within a year. Thus, new-born neutron stars may be loud enough to be 

detected in other galaxies, in which case optical detection of a supernova can serve as a trigger for 

a targeted search. Therefore, we consider the case of a directed search for sources with frequencies 

off max=200 Hz and evolution timescales of Tmin=l yr. 

A final class of sources that we consider are accreting neutron stars in binary systems. Several 

such binary systems have been identified via x-ray observations; the rotation frequencies of the 

accreting neutron stars are inferred to be ,..., 250- 350 Hz Umax=700 Hz). Bildsten [56] has argued 

that these accreting objects in low mass x-ray binaries (LMXBs) may emit detectable amounts of 

gravitational radiation. Since the positions of these sources are well localized on the sky by their 

x-ray emissions, the earth-motion induced Doppler modulations of the gravitational waves can be 
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precisely determined. The difficulty with these sources is the unknown, or poorly-known, orbits of 

the neutron stars about their stellar companions, and the stochastic accretion-induced variations in 

their spin. We estimate the size of these effects, and outline a search algorithm in Sec. 3. 7.3. These 

issues deserve further study in an effort to improve the search strategy. 

3.1.3 Search technique 

In searches for continuous gravitational waves, our sensitivity will be limited by the computational 

resources available, rather than the duration of the signal or the total amount of data. Therefore, 

the computational efficiency of a search technique is extremely important. For example, matched 

filtering (convolution of noise-whitened detector output with a noise-whitened template) may detect 

a signal with the greatest signal-to-noise ratio for any given stretch of data; however, it becomes 

computationally prohibitive to search over large parameter spaces with long data stretches. A 

sub-optimal, but more efficient, algorithm might achieve the best overall sensitivity for fixed com

putational resources. 

We present two possible search strategies to accumulate signal to noise from the data stream. 

Central to both of these methods is the technique we adopt to demodulate the signal. We can 

remove the effects of Doppler and spindown modulations by defining a canonical time coordinate 

(3.6) 

with respect to which the signal, defined in Eq. (3.4), is perfectly sinusoidal: 

(3.7) 

(Remember, we treat A and IJt as constant in time.) The introduction of the new time coordinate can 

be achieved by re-sampling the data stream at equal intervals in tb. The power spectrum, computed 

from the Fourier transform of the re-sampled data, will consist of a single monochromatic spike, 

whose amplitude (relative to broadband noise) increases in proportion to the length of the data 

stretch. In practice the data will be sampled in the detector frame, so that a sample may not occur 

at the desired value of tb. Consequently, we advocate the use of nearest-neighbor (stroboscopic) 

resampling (25). This method will not substantially reduce the signal to noise in a search provided 

the detector output is sampled at a sufficiently high frequency. (See Appendix B, Sec. 3.10.) 

When the waveform shape parameters X are not known in advance, one must search over a mesh 

of points in parameter space. The result of a phase corrected Fourier transform will be sufficiently 

monochromatic only if the true signal parameters lie close enough to one of the mesh points. In 

Sec. 3.2 we rigorously define what is meant by "close enough," and show how to determine the 
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number of points for which corrections should be applied. This number depends on the adopted 

search strategy, and increases as a large power of the total observation time Tdata· Note that the 

method of resampling followed by a Fourier transform has the benefit that a single Fourier transform 

automatically searches over all frequencies Jo, leaving only the shape parameters X to be searched 

explicitly. Other demodulation techniques, such as matched filtering, must apply separate corrections 

for each value of Jo in addition to the X. This increases the computational cost dramatically. 

A signal can also be accumulated incoherently from successive stretches of data by adding their 

power spectra [35]. However, even if each data stretch is demodulated to sufficient precision that 

the power from a signal is focused in a single Fourier frequency bin, residual errors in X may cause 

the power to be at different frequencies between successive spectra. A more precise knowledge of 

the phase evolution is required to correct for this drift; i.e., a finer mesh in parameter space. Once 

a set of parameter corrections AX is assumed, it is relatively easy to correct for the frequency drift: 

successive power spectra are shifted in frequency by a correction factor 6.f, where 6.J is computed 

by differencing J(t; >.), in Eq. (3.1), between the initial and corrected guesses for X, as a function 

of the start time of each data stretch. Once the spectra have been corrected by 6.f, they can be 

added together. This accumulates signal-to-noise less efficiently than coherent phase corrections and 

FFT's, but is computationally cheaper. 

Stack-slide search 

The search techniques considered in this paper are variants on the following scheme. First, the data 

stream is divided into shorter lengths, called stacks. Each stack is phase corrected using a mesh 

of correction points sufficient to confine a putative signal to ,..., 1 frequency bin in each stack. This 

procedure is complicated somewhat by the evolution of the spindown parameters with time. The 

following recipe determines the parameters used to phase correct each stack. Choose X from the fine 

mesh, compute the barycentred time t + x(t). n/c for the start of the entire search and the start of a 

given stack. Call the difference Atstart· The appropriate spindown parameters to use for the given 

stack are those on the coarse grid which are closest to: 

(2+n) ( n ) n-k 2=n= k). k (Atstart) 

fk = 1 + 2:n=l ).(2+n) (Atstart)n 
(3.8) 

The phase corrected stacks are FFT'd and the power spectra stored for as long as they are required 

in the next step. The individual power spectra are then shifted, relative to each other, to correct 

for residual frequency drift. The corrected power spectra are summed, and searched for spikes that 
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Figure 3.1: A flowchart representation of the stacked slide algorithm to search for sources of contin
uous gravitational waves. Notice that the computational cost of sampling the fine grid is reduced 
by sliding the power spectra, rather than re-computing an FFT for each point on the fine grid. 

exceed some specified significance threshold1 . The procedure is summarized in the flowchart in 

Fig. 3.1. 

Hierarchical search 

We also consider a two-pass hierarchical search strategy. In this case, one performs an initial search 

of the data using a low threshold that allows for many false alarms. This is followed by a second pass, 

using longer stretches of data, but searching the parameter space only in the vicinity of the candidate 

detections of the first pass. This procedure is summarized in Fig. 3.2. The advantage of a hierarchical 

1T he method of stacking power-spectra has been used by radio astronomers in deep searches for millisecond 
pulsars, although all coreections were applied to the data stream via resampling and not sliding the spectra. For more 
information on the implementation , see (35). 



Lisl of 
"candidale sources": 

bins f and patches A. lhat 
exceed lhreshold rf-1l 

Acquire data series 
of lenglh T ( I ) 

First pass: 

61 

Search entire range 
in f and A. using 
lhreshold rf- 1

> 

Second pass: 
Search only bins in f and 
patches in A. around 
candidale sources, using 
threshold rf-2l 

Figure 3.2: A flowchart representation of the hierarchical algorithm to search for sources of con
tinuous gravitational waves. It should be noted that while this approach will almost certainly be 
incorporated into the eventual search algorithm for gravitational waves, the real benefit of such an 
approach will be to increase the confidence in a detection made using some other technique. 

search are two-fold: (i) the low threshold on the first pass allows detection of low-amplitude signals 

that would otherwise be rejected, and (ii) the second pass can search longer data stretches on a 

limited computing budget, because of the reduced parameter space being searched, thus excluding 

false positives from the first pass. If the thresholds and mesh points are optimally chosen between 

the first and second passes, this technique achieves the best sensitivity of the strategies considered 

here and in Paper I for given computational resources. 

3.1.4 Results 

The sensitivity 0 = l/hth of a search is defined in Eqs. (3.38) and (3.39). The t hreshold strain 

amplitude hth is defined such that there is a 13 a priori probability that detector noise alone will 

produce an event during the analysis, and therefore is the minimum characteristic strain detectable in 

the search. We compare our results for the sensitivity 0 to a canonical sensitivity determined by the 

search threshold h3;yr = 4.2JSn(J) x l0- 7Hz, where Sn(/) is the one-sided power spectral density 
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of the noise in the detector. This threshold is the characteristic amplitude of the weakest source 

detectable with 993 confidence in a coherent search of 107 seconds of data, if the frequency and 

phase evolution of the signal are known. The relative sensitivity 0rel is given by 0rel = h3;yr/hthi a 

relative sensitivity 0rel = 0.1 for a search means that a signal must have a characteristic amplitude 

he 2: 10 x hs/yr to be detected in that search. Figure 3.3 shows hs/yr based on noise spectral estimates 

for three detector systems in LIGO: the initial detectors are expected to go on-line in the year 2000, 

with the first science run from 2002- 2004; the upgrade to the enhanced detectors should begin in 

....... 2004, with subsequent upgrades leading to, and perhaps past, the advanced detector sensitivity. 

The expected amplitudes he of several putative sources are also shown; we use the definition of 

he given in Eq. (50) of Ref. [1], and Eq. (3.5) of Paper I. The strengths of gravitational waves 

from the Crab and Vela radio pulsars are upper limits assuming all the rotational energy is lost 

via gravitational waves. The estimates of waves from the r-mode instability are based on Owen et 

al. [55], and those from Seo X-1 are based on the recent analysis by Bildsten [56]. 

The results presented in this paper are based on three reasonable assumptions about any search 

strategy: (i) data analysis should proceed at roughly the same rate as data acquisition; (ii) finite 

computational resources will be available to perform the data analysis; (iii) in a search, the overall 

false alarm probability should be small (usually take to be 13). Given these assumptions, there is 

an optimal choice for the duration Tdata of data to be analyzed, and how many stacks it should be 

be divided into. The optimal choice is that which maximizes the final sensitivity of a search subject 

to the constraints (i)- (iii)2 . To demonstrate the existence of this optimum point, we have plotted 

the relative sensitivity of a search for young, fast pulsars as a function of the number of stacks and 

the available computing power in Fig. 3.4. The optimal number of stacks can be read off the plot 

for fixed computing power. Note that the maximum sensitivity in this plot is quite flat, especially 

in the regime where one is most computationally bound. This may be extremely relevant when 

implementing these search techniques; data management issues may impose more severe constraints 

on the size and number of stacks than computational requirements do. This remains to be explored 

when the data analysis platforms have been chosen. 

Figure 3.5(a) shows the optimal sensitivities that can be achieved, as a function of available 

computing power, using a stack-slide search. The results are presented for both fiducial classes of 

pulsars: old (r ~ 1000 yr) slow (! $ 200 Hz) pulsars, and young (r ~ 40 yr) fast (! $ 1000 Hz) 

pulsars. In each case, we have considered both directed and all-sky searches for the sources. The 

results should be compared with those of Paper I, in which we considered coherent searches without 

2It may seem that the optimal duration of data to analyze is equal to the amount of data taken by the instrument. 
This is not neccessarily true for a given algorithm (e.g., the stack-slide search, or the two-stage hierarchical search). 
Suppose, under the stated assumptions, we determine the optimal amount of data Tdata to analyze using a given 
algorithm. Now, hold the computational resources fixed, but increase the amount of data by a factor of 10, so that 
we have 10 times as long to analyze it. Unfortunately, the computational cost increases by more than a factor of 
10 because the number of parameter-space corrections increases faster than Tdata · Thus, we cannot complete our 
analysis in the time it takes to acquire the data. Implications of this point are further discussed in Sec. 3.8. 
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stacking: the use of stacked searches gains a factor of .....,2- 4 in sensitivity. 

The use of a two-pass hierarchical search can further improve sensitivities by balancing the 

computational requirements between the two passes. Figure 3.5(b) shows the sensitivities achievable 

when each pass uses a stack-slide strategy. The sensitivities achieved exceed those of one-pass stack

slide searches by ......, 20- 603. 

The computational requirements for all-sky, all frequency surveys are sufficiently daunting that 

we explore three restricted searches in Sec. 3.7: (i) a directed search for a newborn neutron star in 

the young (~ 1 year old) remnant of an extra-galactic supernova, (ii) an area search of the galactic 

core for pulsars with r ~ 100 yr and f ~ 500 Hz, and (iii) a directed search for an accreting neutron 

star in a binary system (such as Seo X-1). Figure 3.6 shows the relative sensitivities attainable in 

such searches. With computational resources capable of 1 Tflops, we expect to see galactic core 

pulsars with enhanced LIGO if they have non-axisymmetric strains of € 2: 5 x 10- 6 at frequencies 

of ......, 200 Hz. Estimates of the characteristic strain of gravitational waves from an active r-mode 

instability in a newborn neutron star suggest that these sources will be detectable by the enhanced 

interferometers in LIGO out to distances ......, 8 Mpc; the rate of supernovae is ......, 0.6 per year within 

this distance. Finally, gravitational waves from accreting neutron stars in low-mass x-ray binary 

systems (LMXBs) may be detectable by enhanced interferometers in LIGO if we can obtain sufficient 

information about the binary orbit from electromagnetic observations. Seo X-1 is on the margins of 

detectability using the enhanced LIGO interferometers operating in broadband configuration. We 

estimate that the amplitude signal-to-noise from these sources could be improved by a factor of 

......, 5- 10 by operating the interferometer in a signal-recycled, narrow-band configuration. 

3.1.5 Organization of the paper 

In Sec. 3.2 we extend the metric formalism that was developed in Paper I to determine the number 

of parameter space points that must be sampled in a search that accumulates signal to noise by 

summing up power spectra. This method can then be used to compute the number of correction 

points needed in a stack-slide search. Approximate formulae, useful for estimating the computational 

cost of a search, are presented for the number of corrections needed in an all-sky search, and also in 

directed searches of a single sky position. 

We discuss the issue of thresholding in Sec. 3.3. Then we present the computational cost esti

mates, and determine the optimal parameters for single-pass, stack-slide searches in Sec. 3.4. 

Section 3.5 contains a general discussion of hierarchical searches for periodic sources using a 

single interferometer. Schutz [57] has emphasized the potential of hierarchical strategies in searches 

for periodic sources. The relationship between the threshold in the second stage of the search, and 

the threshold required in the first stage is discussed in detail. We also present the computational 

cost of each stage of the search. These results are used in Sec. 3.6 to determine the optimal search 
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parameters in hierarchical searches for our fiducial classes of sources. 

We discuss three specialized searches in Sec. 3.7. In particular, we discuss issues that arise when 

the source of gravitational waves is in a binary system (e.g., an LMXB). Introducing a parameterized 

model of the binary orbit , we estimate the number of parameter space points that must be sampled in 

a search for the gravitational waves from one of the objects in the binary. When the gravitational

wavc emitter is accreting material from its companion, we also allow for stochastic changes in 

frequency due to fluctuations in the accretion rate. 

Detailed formulae for the number of points in parameter space when dealing with a stacked 

search arc presented in Appendix A (Sec. 3.9). In Appendix B (Sec. 3.10) we discuss the loss in 

signal to noise that can occur when using nearest neighbor resampling to apply corrections to the 

detector output. If the data is sampled at 16 384 Hz, we demonstrate that this method will lose less 

than 13 of amplitude signal-to-noise for a signal with gravitational wave frequency ::;:; 1000 Hz. 

3.2 Mismatch 

In a detect ion strategy that searches over a discrete mesh of points in parameter space, the search 

parameters and signal parameters will never be precisely matched. This mismatch will reduce the 

signal to noise since the signal will not be precisely monochromatic. It is desirable to quantify this 

loss, and to choose the grid spacing so that the loss is within acceptable limits. This can be achieved 

by defining a distance measure on the parameter space based on the fractional losses in detected 

signal power due to parameter mismatch. In Paper I we derived such a measure in the case where 

the search was performed using coherent Fourier transforms; this method was modeled after Owen's 

computat ion of a metric on the parameter space of coalescing binary waveforms [14) . We extend this 

approach to the case of incoherent searches, in which several power spectra are added incoherently, 

or stacked, and then searched for spikes. 

Let h(t ; .A) be a hypothetical signal given by Eq. (3.4) with true signal parameters >. = (!0 , A); 

we use the complex form of h(t ; .A) without loss of generality. If the data containing this signal are 

corrected for some nearby set of shape parameters X + LlA, the signal will take the form 

(3.9) 

where the subscript bis used to indicate the corrected waveform , and </>[t; >.] is defined in Eq. (3.2). 

In a stacked search, the data are divided into N segments of equal length LlT seconds, each of these 

segments is Fourier transformed, and then a power spectrum Ph (J ; >., LlA) is computed according to 

the formula 
N 

H(J ; >., LlA) = 2 L lhk(J; >. , LlA)l 2 
• (3.10) 

k= l 
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The Fourier transform of each individual segment is defined to be 

(3.11) 

where 6.¢ is given by 

6.¢[t; >. , 6.>.] = 2Tr(f - fo)tb + </>[t; (Jo, X + 6.X)] - </>[t; >.] . (3.12) 

Here 6..X = (! - / 0 , 6.X) denotes the error in matching the modulation shape parameters and the 

error in sampling the resulting power spectrum at the wrong frequency. Both of these errors lead to 

a reduction in the detected power relative to the optimum case where the carrier frequency and the 

phase modulation are precisely matched. 

The mismatch m(>., 6..X), which is the fractional reduction in power due to imperfect phase 

correction and sampling at the wrong Fourier carrier frequency, is defined to be 

m(>., 6..X) = 1 - H(f; >., 6.3) 
H(fo; >.,O) 

(3.13) 

Remember >. = (.X0 , X) = (!0 , .X1 , .X2 ... ). Substituting the expressions for H from Eq. (3.10) into 

Eq. (3.13), we find 
N 

1 "" - ~2 m(>., 6..X) = 1 - N A 2 L.)hk(f; >., 6..X)I . 
k= l 

(3.14) 

It is easily shown that m(.X, 6..X) has a local minimum of zero when 6..X = 0. We therefore expand 

the mismatch in powers of 6..X to find 

m(>., 6..X) = L 9cxf3 (.X)6.N~ 6..Xf3 + 0(6.>. 3 ) , (3.15) 
cx,/3 

where (o: ,/3) are summed over 0,1, .. . ,j, . ... The quantity 9cxf3 is a local distance metric on the 

parameter space. This metric is explicitly given by 

(3.16) 

where a A>.<> denotes a partial derivative with respect to 6,,XCX. It is convenient to express 9cx{3 as a 

sum of metrics computed for the individual stacks, that is 

N 
1 "" (k) 9cx13(.X) = N ~ 9cxf3 (>.) 

k=l 

(3.17) 
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where the individual stack metrics g~~ (-\) are explicitly given by 

(3.18) 

The phase error A</J is given in Eq. (3.12), and we use the notation 

1 lkt:.T I ( .. . )k = AT ( .. . )dtb . 
(k- l)t:.T t:.>.=O 

(3.19) 

In a search, we will look for spikes in the power spectrum H(J ; -\,AX) computed from the detector 

output; that is , we will look for local maxima in the frequency parameter f. The relevant measure 

of distance in the space of shape parameters X is the fractional loss in power due to mismatched 

parameters AX, but after maximizing over frequency. We therefore define the projected mismatch 

µ(X, AX) to be 

(3.20) 

where 

(3.21) 

is the mismatch metric projected onto the subspace of shape parameters, and !max is the maximum 

frequency that we include in the search. The meaning of the minimization min I is clear from the 

definition of the mismatch in Eq. (3.14). 

Technically, "fij should be computed from g0 fJ evaluated at the specific value of f at which the 

minimum projected mismatch occurred. Since this number is unknown in advance of detection, 

we evaluate "fij for the maximum frequency that we include in the search. In this way we never 

underestimate the projected mismatch. 

The distance function, and in particular the metric in Eq. (3.21), can be used to determine 

the number of discrete mesh points that must be sampled in a search. Let P be the space of all 

parameter values X to be searched over, and define the maximal mismatch µmax to be the largest 

fractional loss of power that we are willing to tolerate from a putative source with parameters in 

P. For the model waveform in Eqs. (3.1), (3.2), and (3.4) this parameter space is coordinatized 

by X = ( (} , ¢, Ji, h, ... ) where (} ,¢ denote location of the source on the sky, and fj are related to 

the time derivative of the intrinsic frequency of the source. Each correction point of the mesh is 

considered to be at the center of a cube with side 2Jµmax./n, where n is the dimension of P; this 

insures that all points in P are within a proper distance µmax of a discrete mesh point as measured 
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with the metric 'Yii· The number of patches required to fill the parameter space is 

(3.22) 

Since µmax is the maximum loss in detected power after the power spectra have been added, 

Nv (AT, µm ax, N) is the number of patches required to construct the fine mesh in the stacked search 

strategy described in Sec. 3.1.3. The coarse mesh in the stacked search strategy requires that the 

spikes in the individual power spectra be reduced by no more than µmax; consequently, the number 

of points in such a mesh is simply Nv(AT, µmax, 1). 

3.2.1 Directed search 

In most cases, the forms of Eqs. (3.2) and (3.6) are sufficiently complicated to defy analytical 

solu tion, especially since v in Eq. (3.2) should properly be taken from the true ephemeris of the 

Earth during the period of observation. However, for the case of a directed search, that is a search 

in just a single sky direction, the phase correction is polynomial int, and the metric can be computed 

analytically. To a good approximation, the metric is flat - the spacing of points in parameter space 

is independent of the value of the spindown parameters (11 , /2 , . .. , /,,) . For a given number s of 

spindown parameters in a search, the right-hand side of Eq. (3.22) can be evaluated analytically. 

The result is expressed as a product N,,G,, where 

N. - /:r,ax(AT)a(s+3)/2 
8 

- ( / )a/2 s(a+i)/2 
µmax S Tmin 

(3.23) 

depends on the maximum frequency /max (in Hz), the length of each stack AT (in seconds), the 

maximal mismatch µmax , and the minimum spindown age Tmin (in seconds) considered in the search. 

The dependence on the number of stacks N is contained in G,,(N), which are given by 

Go(N) = 
G1(N) ~ 

G2(N) ~ 

Gs(N) ~ 

1 , 

0.524N , 

0.0708N3 , 

0.00243N6 , 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

when N » 4. The detailed expressions for G,(N) are presented in Appendix A (Sec. 3.9). For up 

to 3 spindown terms in the search, the number of patches is then 

(3.28) 
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The maximization accounts for the situation where increasing s, the dimension of the parameter 

space, decreases the value of N 8 G8 because the parameter space extends less than one patch width 

in the new spindown coordinate f 8 ; one should not search over this coordinate. 

3.2.2 Sky search 

For signal modulations that are more complicated than simple power-law frequency drift, it is im

possible to compute Np analytically. In an actual search over sky positions as well as spindown, 

one should properly compute the mismatch metric numerically, using the exact ephemeris of the 

Earth in computing the detector position. In Paper I we computed Np(D.T, µrnax, 1) numerically, 

with the simplification that both the Earth's rotation and orbital motion were taken to be circular. 

However , in this paper we are concerned also with the dependence of Np on the number of stacks 

N . This significantly complicates the calculation of the metric and its determinant, and makes it 

necessary to adopt some approximations in the calculation. Fortunately, the results of interest here 

are insensitive to small errors in NP. 

In Paper I we mentioned that there are strong correlations between sky position and spindown 

parameters . This requires the use of the full s + 2 dimensional metric. However, these correlations 

are due primarily to the Earth's orbital motion, which has a low-order Taylor approximation for 

times much less than a year. Therefore, we treat the number of patches as the product of the number 

of spindown patches times the number of sky positions M 8 , computed analytically using only the 

Earth's rotational motion. We note that this approximation is appropriate only for computing the 

number of patches; when actually demodulating the signals, the true orbital motion would have to 

be included. This approximation works well so long as the orbital residuals (the remaining orbital 

modulations after correction on this sky mesh) are much smaller than the spindown corrections 

being made at the same power in t. The residual orbital velocity at any power tk is roughly 

0.k rn (A )k -~=X - X ~d 
k!~ c , 

(3.29) 

where a.k is a number of order unity, M., is the number of sky patches, and r = lAU and n = 27r /yr 

are the Earth's orbital radius and angular velocity. When the range in this residual is comparable 

to or larger than the range in the corresponding spindown term fktk , the "spindown" parameter 

space must be expanded to include the orbital residuals. The range in a.k is difficult to arrive at 

analytically. We have found that using a maximum value of ~ 0.3 gives good agreement with the 

numerical results of Paper I (i.e., for N = 1), to within factors of"' 2. 

One other approximation was made in computing the number of sky patches. We found that 

the measure J det h'ij I for the sky position metric is almost constant in the azimuth cp, and has a 

polar angle dependence that is dominantly of the form sin 20. When performing the integral over 
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sky positions, we approximated the measure by v' det l'Yij I '.:::'. constant x sin 28; this approximation 

is accurate to about one part in 104 . 

Given these approximations, the number of patches for a sky search is 

Np= max [M,N,G, Il (1 + 0.3rOk+1r,~,;n )] 
sE{O,l,2,3} k=O Ck!~ 

The number of sky patches M 8 , in the (s + 2)-dimensional search, is given approximately by 

where 

A = 0.014, 

B = 0.046(~T/1 day)2 
, 

C = 0.18(~T/lday)5N3 . 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

This is a fit to the analytic result given in Appendix A (Sec. 3.9). The number of spindown patches 

N,G, in the (s + 2)-dimensional search is 

ss/2 
N,G, = (s + 2),12 N,G, (3.35) 

where N, and G, are given in Eqs. (3.23)- (3.27), and the prefactor on the right corrects for the sky 

dimensions. The remaining product terms IT in Eq. (3.30) represent the increase in the size of the 

spindown space in order to include the orbital residuals. 

3.3 Thresholds and sensitivities 

The thresholds for a search are determined under the assumption that the detector noise is a sta

tionary, Gaussian random process with zero mean and power spectral density Sn(!) . In the absence 

of a signal, the power Pn(J) = 2jii.(f)i2 at each sampled frequency is exponentially distributed with 

probability density function e - Pn/Sn /Sn. The statistic for stacked spectra is p =I:~ Pn(J). The 

cumulative probability distribution function for p, in the absence of a signal, is 

1p/Sn - r rN- 1 -y(N, pf Sn) 
CDF[p/ Sn, N] = 

0 
e (N _ l)! dr = (N _ l)! (3.36) 

where -y(N, p/ Sn) is an incomplete gamma function. 

A (candidate) detection occurs whenever pin some frequency bin exceeds a pre-specified threshold 
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Pc chosen so that the probability of a false trigger due to noise alone is small. There are f maxD.T 

Fourier bins in each spectrum, and N 11(D.T, µmax, N) spectra in the entire search. Therefore, we 

assume that a search consists of N 11f maxD.T independent trials of the statistic p, and compute the 

expected number of false events F to be 

(3.37) 

(In reality, there will be correlations between the statistic computed for different frequencies and 

different patches. Since this will reduce the number of independent trials, Eq. (3.37) overestimates 

the number of false events. This is a small effect that should not change the overall sensitivity 

of a search by much. It is only in the case that the number of trials is initially small that one 

should be concerned with this effect; unfortunately, we operate in the other extreme.) If F « 1, 

the number of false events F is approximately equal to the probability that an event is caused by 

noise in the detector. Consequently, a = 1 - F can be thought of as the confidence of detection. In 

a non-hierarchical search, the threshold Pc is set by specifying a and then inverting Eq. (3.37). 

Finally, how does the threshold Pc affect the sensitivity of our search? We define a threshold 

amplitude h t h to be the minimum dimensionless signal amplitude that we expect to register as a 

detection in the search, that is 

(Fi(e, ~. w))(1 - (µ))D.T 
(3.38) 

where (F~ (8 , ~. w)) is the square of the detector response averaged over all possible source positions 

and orientations, and (µ) = µmax/3 is the expected mismatch of a signal that is randomly located 

within a patch3 . The sensitivity e of the search is then defined by 

e = _1 ex: (1 - µm ax /3)D.T 
h t 11 pc/N - Sn 

(3.39) 

For any given search strategy, the goal of optimization is to maximize the final sensitivity of the 

search, given limited computational power. 

3.4 Stack-slide search 

A stack-slide search is the simplest alternative to coherent searches we consider here. The main 

steps involved in the algorithm are shown in the flow chart of Fig. 3.1. In this section we estimate 

3The average expected power loss for a source randomly placed within a cubical patch is (µ) = µma.x/3 . In Paper 
I we quoted an average that was computed for ellipsoidal patches; this is not appropriate to the cubical grid t hat will 
likely be used in a real search. 
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the computational cost of each step, and determine the ultimate sensitivity of this technique. 

The first step, before the search begins, is to specify the size of the parameter space to be searched 

(i.e., choose !max, r, and a region of the sky), the computational power P that will be available 

to do the data analysis, and an acceptable false alarm probability. From these, one can determine 

optimal values for the maximal mismatch µmax for a patch, the number of stacks N, and the length 

D.T of each stack, using the optimization scheme discussed at the end of this section. For now, we 

treat these as free parameters. 

Coarse and fine grids are laid down on the parameter space with Npc = Nv(D.T, µmax, 1) and 

Nvf = Np(D.T, µmax, N) points, respectively. The data-stream is low-pass filtered to the upper cutoff 

frequency f max, and broken into N stretches of length D.T. 

Each of the steps above have negligible computational cost since they are done only once for 

the entire search. The subsequent steps, on the other hand, must be executed for each of the Npc 

correction points. 

Each stretch of data is re-sampled (at the Nyquist frequency 2j max) and simultaneously demod

ulated by stroboscopic sampling for a set of demodulation parameters selected from the coarse grid. 

The result is N demodulated time series, each one consisting of n = 2f maxD.T samples. Since stro

boscopic demodulation only shifts one in every few thousand data points (assuming a sampling rate 

at the detector of 16 384 Hz), the computational cost of the demodulation itself is negligible. 

Each stretch of data is then Fourier transformed using a fast Fourier transform (FFT) algorithm 

with a computational cost of 3nNlog2 (n) floating point operations. Power spectra are computed 

for each Fourier series, costing 3 floating point operations per frequency bin, i.e., a total cost of 

l.5nN floating point operations. 

For demodulation parameters in the coarse grid, the power of a matched signal will be confined 

to ,...... 1 Fourier bin in each power spectrum, but not necessarily the same bin in different spectra. 

To insure that power from a signal is accumulated by summing t he N spectra, we must apply the 

following steps for each of the Np/ correction points in the fine mesh. 

For a given set of parameters from the fine mesh, one determines which power spectra from the 

coarse grid are to be summed, using Eqs. (3.8). For each of the N spectra to be stacked, the frequency 

of a putative signal with initial frequency f max is computed using Eq. (3.1). These can be read from 

a look-up table generated when the meshes were laid out. Each spectrum is re-indexed so that the 

power from such a signal would be in the same frequency bin (we ignore the computational cost 

of this step), and the spectra are added [0.5n(N - 1) floating point operations]. We automatically 

account for corrections at other frequencies by applying the fine grid corrections in this way. It may 

be possible to reduce the computational cost of this portion of the search by noting, for example, 

that we over count the fine grid corrections for signals with frequency f max/2 by a factor of 2n 

where n is the dimension of the parameter space being explored. Since it is difficult to assess the 
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Table 3.1: The optimum stack length AT, number of stacks N, maximal projected mismatch µmaxi 
and the relative sensitivity 6rel = h3/yr/h,h as functions of available computational power for di
rected, stack-slide searches. The threshold was chosen to give an overall statistical significance of 
993 to a detection (although the results are insensitive to the precise value). The optimization was 
performed numerically using simulated annealing, which accounts for some of the fluctuations in the 
observation times. 

Young (rmin = 40yr), fast Umax = lOOOHz) pulsars. 
Compute power AT N µmax 6rel 

(flops) (days) 
1.00 x 1011 0.52 157 0.49 0.13 
3.16 x 1011 1.15 56 0.43 0.13 
1.00 x 1012 1.24 60 0.41 0.14 
3.16 x 1012 1.51 55 0.43 0.15 
1.00 x 1013 1.65 58 0.43 0.16 
3.16 x 1013 1.79 62 0.43 0.17 
1.00 x 1014 2.01 63 0.42 0.18 
3.16 x 1014 2.31 62 0.42 0.19 
1.00 x 1015 2.57 64 0.43 0.20 
3.16 x 1015 2.93 64 0.43 0.21 
1.00 x 1016 3.17 69 0.44 0.22 

Old (rmin = 103yr), slow (/max= 200Hz) pulsars. 

Compute power AT N µmax 6rel 
(flops) (days) 

1.00 x 107 1.15 236 0.49 0.23 
3.16 x 107 1.58 206 0.49 0.25 
1.00 x 108 2.04 199 0.50 0.28 
3.16 x 108 2.63 192 0.49 0.31 
1.00 x 109 3.54 172 0.49 0.34 
3.16 x 109 4.29 183 0.49 0.38 
1.00 x 1010 5.26 192 0.49 0.42 
3.16 x 1010 6.52 197 0.49 0.47 
1.00 x 1011 12.62 95 0.47 0.52 
3.16 x 1011 19.41 59 0.43 0.55 
1.00 x 1012 21.28 62 0.42 0.58 

feasibility of using this in a real search, we simply mention it so that it might be explored at the 

time of implementation. 

The resulting stacked spectrum is scanned for peaks that exceed the threshold Pc· Since this has 

negligible computational cost , the number of floating point operations required for the entire search 

is 

C = 3nN N 11c [log2 (n) + 0.5 + N 111(N - l)/(6N N 11c)] . (3.40) 

If data analysis proceeds at the same rate as data acquisition, the computational power P required 

to complete a search is P = C/NAT floating-point operations per second (Flops). Equation (3.40) 
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Table 3.2: Same as in Table 3.1, but for an all-sky search. 

Young (Tmin = 40yr) , fast Umax = lOOOHz) pulsars. 
Compute power !:l.T N µm ax erel 

(flops) (days) 
LOO x 1011 0.04 1232 0.50 0.07 
3.16 x 1011 0.06 890 0.49 0.07 
LOO x 1012 0.08 651 0.49 0.08 
3.16 x 1012 0.11 475 0.49 0.08 
LOO x 1013 0.16 329 0.50 0.08 
3.16 x 1013 0.21 250 0.48 0.09 
LOO x 1014 0.30 166 0.50 0.09 
3.16 x 1014 0.36 152 0.49 0.10 
LOO x 1015 0.37 179 0.50 0.10 
3.16 x 1015 0.41 184 0.50 0.11 
LOO x 1016 0.51 154 0.50 0.11 

Old (rmin = 103yr) , slow Umax = 200Hz) pulsars. 

Compute power !:l.T N µmax ercl 

(flops) (days) 
LOO x 1011 1.18 54 0.42 0.14 
3.16 x 1011 1.33 55 0.42 0.14 
LOO x 1012 1.55 53 0.42 0.15 
3.16 x 1012 2.40 31 0.31 0.16 
1.00 x 1013 2.84 27 0.27 0.16 
3.16 x 1013 3.10 27 0.28 0.17 
1.00 x 1014 3.22 29 0.30 0.17 
3.16 x 1014 3.38 30 0.28 0.18 
LOO x 1015 3.77 29 0.29 0.19 
3.16 x 1015 4.67 24 0.27 0.19 
LOO x 1016 5.81 19 0.21 0.20 

and the definition of n = 2/max!:l.T imply that the computational power is 

P = 6/maxNpc [log2(n) + 0.5 + Nv1(N - 1)/(6NNpc)] . (3.41) 

The final sensitivity e, defined in Eq. (3.39), of the search is determined once we know the 

function Np, the frequency /max , the maximal mismatch µmax, and the confidence level a= 1 - F. 

An optimized algorithm will maximize e as a function of µmax, N, and !:l.T, subject to the constraints 

imposed by fixing the false alarm probability F , and the computational power P. 

The results of the optimization procedure are given in Tables 3.1 and 3.2 for the fiducial classes 

of pulsar defined in Sec. 3.L2. In each case we have set the probability of a false alarm threshold 

at F = 0.01 (indicating a 99% confidence that detector noise will not produce an event above 

threshold), and have determined optimal values of µmax, N , and !:l.T for a range of values of the 

available computational power. Table 3.1 shows the results for directed searches for young, fast 
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(rm;n= 40 yr , fmax=l 000 Hz) and old, slow (rm;n = l 000 yr, fmax=200 Hz) pulsars, respectively. 

Table 3.2 shows the results for an all-sky search for the same two classes of source. The optimal 

sensitivities achieved by these searches are summarized in Fig. 3.5(a) of the Introduction. 

It is worth pointing out here that we have assumed memory and I/O requirements to be irrelevant 

in determining the computational cost. Specifically, power spectra generated on the coarse grid are 

stored as long as they are needed for the sliding portion of the search. In practice, it may prove 

necessary to recompute power spectra, or to retrieve them from slow-access data storage. Such 

hardware- and implementation-specific details are beyond the scope of this paper. 

3.5 Hierarchical search: general remarks 

The basic hierarchical strategy involving a two pass search is represented schematically in Fig. 3.2. 

In the first pass, N (l ) stacks of data of length 6T(l) are demodulated on a coarse and fine mesh 

of correction points computed for some mismatch level µ <1l, and then searched by stacked Fourier 

transforms. A threshold signal-to-noise level is chosen that will, in general, admit many false alarms. 

In the second stage, N<2l stacks of length 6 T<2l are searched on a finer mesh of points computed at 

a mismatch level µ <2l, but only in the vicinity of those events that passed the first-stage threshold. 

The second stage will involve fewer correction points than the first , so the second-stage transforms 

can be made longer and more sensitive. The goal of optimization is to find some combination of 

6T<1l, 6 T<2l, µ <1l, µ <2l, N<1) , and N<2l that maximizes the final sensit ivity for fixed computational 

power P , and second pass false alarm probability F <2l. 

3. 5 .1 Thresholds 

In the first pass of a hierarchical search, each of Nj1l = f max6T(l) frequency bins in N~}) = 

Nv(6 T(1), µ (ll, N{ll) stacked power spectra will be scanned for threshold crossing events . If (as 

we assume) all of these trials are statistically independent, the number of false events above the 

threshold p<1) will be 

p (i ) - N(l) N(1)(1 - CDF(p<1l / 5(1) NPl]) 
- p f I n , · (3.42) 

We assume that the number of false events will significantly exceed the number of true signals in 

this pass; consequently, the number of events to be analyzed in the second pass will be p(l). 

The second stage uses a coarse grid with N~~) = Nv(6T(2), µ <2l, 1) points, and a fine grid with 

N~~) = Np(6T(2), µ <2l, N<2l ) points. On average each false alarm will require N~~) /N;}l coarse 

grid points, and N;~) / N;}) fine grid points in the second stage. (When a second-pass mesh is 

coarser than the first pass's parameter determination, the corresponding ratio should be taken as 

unity.) Furthermore, since the first stage will identify the candidate signal's frequency to within ,..., 2 
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frequency bins, the second-stage search should be over the 26T(2) / 6T(1) second-stage frequency 

bins that lie in this frequency range. Once again, we assume the noise in all frequency bins (and 

over all grid points) is independent, so the number of false events that exceed the threshold p(2 ) in 

the second stage is 

1- Q = p(2) 

N<2l 6T(2) 
= 2p(i)-7!.l_ __ (l - CDF[p(2l /S(2l N<2>]) 

N(1) 6T(1) n ' 
pf 

= 2f maxAT(2l N~~l (1 - CDF[µ<1l / S~1l, N(1l]) 

x (1 - c nF(p(2l; s~2l, N(2l]) , (3.43) 

where a is our desired confidence level for the overall search. 

The thresholds p(l) and µ<2l cannot be assigned independently; rather, they should be chosen so 

that any true signal buried in the noise that would exceed (in expectation value) the second-stage 

threshold will have passed the first-stage threshold. In other words, it serves no purpose to set µ<2> 

any lower than the weakest signal that would have exceeded p(1). A signal that is expected to pass 

the second-stage threshold exactly has an amplitude I h,{2l 12 = p(2) - N(2) S~2 ). We define the false 

dismissal probability D to be the probability that such a signal will be falsely rejected in the first 

pass. Since the spectral power of a true signal increases with NAT, the signal seen in the first pass 

has amplitude lh(1ll2 = IM2ll2(N(1)6T(1l)/(N(2)6T(2l), and the thresholds satisfy the relation 

D [
p{l) - lh(l) 12 (1)] 

= CDF {l) ,N 
Sn 

[ 
p{ll ( µ{2) (2)) s!i2l N(1) 6T(1) (1)] 

CDF s~l) - s~2) - N s~l) N{2) 6T(2) 'N (3.44) 

Now, for any choice of 6T{I), 6T(2), etc., the thresholds p(1l and p{2) are completely constrained 

by our choices of final confidence level a and false dismissal probability D. The false dismissal 

probability is fixed at D = 0.01 in our optimization; this is an acceptably low level, meaning that 

only one signal in a hundred is expected to be lost in this type of search. 

3.5.2 Computational costs 

The computational cost C{l) of the first stage of the search follows the same formula as for a simple 

non-hierarchical search, that is 

C{l) = 6/maxN(l) AT{l) N~~) (log2(2/maxAT(l)) 

+0.5 + N~})(N(i) - l)/(6N(1) N~~l)]. (3.45) 
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For each of the p {l) first-stage triggers, the second stage requires N~~) /N;}) (minimum 1) coarse 

grid corrections (each involving N<2> FFT's of length ~T<2>), along with N;~) /N;}> (minimum 

1) frequency shifts and spectrum additions. Each of the coarse grid corrections requires the usual 

2/ maxN(2) ~T(2) [3 log2 (2/ max!:l.T<2>) +0.5] floating-point operations. The incoherent frequency shifts 

and spectrum additions require only 2(N<2> - l)!:l.T(2) / !:l.T(l) floating point operations since the 

frequency correction and power summation need only be applied over a bandwidth of ,...., 2 first-pass 

frequency bins. The total cost of the second pass is therefore: 

= 
2p(1) N (2) !:l.T(2) N(2) { 
----{-l) __ .:...vc_ 3/max [log2(2/max!:l.T(2)) 

Nvl 

N<2l (N<2l - 1) } 
+o 5] + vi 

. -N~("--2 )-N.....,.~~....,.)-!:l.-T-(1-> . (3.46) 

We require that data analysis proceed at the rate of data acquisition. Since the amount of data 

used in the second-stage of the search will generally be greater than that used in the first, we require 

that the analysis be completed in N<2> !:l.T<2> seconds. Thus the computational power is given by 

P = (C{l) + c<2>)/N<2l !:l.T(2> . (3.4 7) 

Our final sensitivity 0 is given by Eq. (3.39), using the observation time, mismatch level, and 

threshold of the second stage of the search. Optimization then consists of maximizing this function 

over the six parameters !:l.T(ll, ~T(2l, µ{ll, µ <2>, N(ll, and N <2>, for specified a, D , and P. 

3.6 Hierarchical search with stacking 

It turns out that the optimization described in the previous section is only weakly sensitive to the 

parameters µ{l) and µ< 2l; that is, even if we choose values for µ (ll and µ <2l quite different from the 

optimal ones, we can recover nearly all of the sensitivity by adjusting the other parameters for the 

same computational power P . In particular, if we arbitrarily fix µ <1l = µ <2) = 0.3 and re-optimize, 

we obtain sensitivities within 203 of the optimal. 

This becomes very useful when we consider the generalized two-stage hierarchical search with 

stacking. Normally this would involve optimizing over six variables (µ{l).(2), N{l) ,(2), and !:l.T(l),(2)) 

with one constraint on P. However, by assuming that we can continue to set µ {1) = µ <2l = 0.3 

with minimal loss of sensitivity, we can reduce our degrees of freedom back down to four minus one 

constraint. 

The results of this optimization for our four canonical example searches are given in Tables 3.3 and 

3.4. We have chosen a final confidence level a = 0.99 and a false dismissal probability of D = 0.01. 
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Table 3.3: The optimum stack length AT<1•2) and number of stacks N<1•2) for the first and second 
stages of directed, hierarchical searches. For numerical convenience the maximal projected mismatch 
was chosen in advance to be µmax = 0.3. The last column gives the overall relative sensitivity 
0rel = h3;yr/hth · The threshold was chosen to give an overall statistical significance of 993 to a 
detection (although the results are insensitive to the precise value). 

Young (rmin = 40yr), fast Umax = lOOOHz) pulsars. 
Compute power AT<1l N(1) AT<2l N(2) µm ax 0rel 

(flops) (days) (days) 
1.00 x 1011 2.12 16 2.40 31 0.30 0.19 
3.16 x 1011 2.18 20 2.87 35 0.30 0.21 
1.00 x 1012 4.52 9 4.59 22 0.30 0.23 
3.16 x 1012 4.18 12 5.24 22 0.30 0.24 
1.00 x 1013 8.87 5 8.93 12 0.30 0.25 
3.16 x 1013 5.19 13 5.62 29 0.30 0.27 
1.00 x 1014 6.61 11 8.11 20 0.30 0.28 
3.16 x 1014 9.41 8 11.70 13 0.30 0.29 
1.00 x 1015 9.88 9 10.57 19 0.30 0.31 
3.16 x 1015 8.15 13 8.93 31 0.30 0.32 
1.00 x 1016 12.17 9 15.78 15 0.30 0.34 

Old (rmin = 103 yr) , slow (!max = 200Hz) pulsars. 

Compute power AT(ll NPJ AT(2J N(2) µmax 0rel 
(Bops) (days) (days) 

1.00 x 107 2.37 58 2.39 185 0.30 0.36 
2.51x107 3.43 47 3.46 132 0.30 0.39 
6.31x107 4.31 47 4.69 110 0.30 0.42 
1.58 x 108 6.66 32 7.07 76 0.30 0.46 
3.98 x 108 4.77 81 5.69 152 0.30 0.50 
1.00 x 109 10.24 31 11.69 62 0.30 0.55 
2.51 x 109 9.75 48 9.80 115 0.30 0.59 
6.31x109 14.35 34 15.00 75 0.30 0.64 
1.58 x 1010 17.71 32 20.65 60 0.30 0.69 
3.98 x 1010 19.78 36 23.01 69 0.30 0.74 
1.00 x 1011 25.44 32 28.76 64 0.30 0.81 

Table 3.3 shows the results for directed searches for young, fast (rmin=40 yr, fmax= l 000 Hz) and 

old, slow (rmin=lOOO yr, fmax = 200 Hz) pulsars, respectively. Table 3.4 shows the results for all-sky 

searches for the same two classes of source. The optimal sensitivities achieved by these searches are 

summarized in Fig. 3.5(b) in the Introduction. 

3. 7 Specialized searches 

The strongest sources of continuous gravitational waves are likely to be the most difficult to detect 

since the frequency of the waves will be changing significantly as the source radiates angular mo

mentum. As we have seen in the previous sections, an all sky search for these sources is unlikely to 
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Table 3.4: Same as in Table 3.3, but for an all-sky search. 

Young {rmin = 40yr), fast Umax = lOOOHz) pulsars. 
Compute power 6.T(1) N(l) 6.T(2) N(2) µmax 0rel 

(flops) (days) (days) 
1.00 x 1011 0.09 169 0.10 462 0.30 0.09 
3.16 x 1011 0.12 160 0.12 451 0.30 0.09 
1.00 x 1012 0.16 105 0.16 349 0.30 0.10 
3.16 x 1012 0.20 83 0.26 204 0.30 0.11 
1.00 x 1013 0.28 56 0.34 174 0.30 0.11 
3.16 x 1013 0.50 30 0.56 97 0.30 0.12 
1.00 x 1014 0.60 31 0.78 72 0.30 0.13 
3.16 x 1014 0.94 21 1.07 55 0.30 0.14 
1.00 x 1015 1.17 22 1.30 47 0.30 0.15 
3.16 x 1015 1.33 23 1.77 40 0.30 0.16 
1.00 x 1016 2.64 11 2.75 26 0.30 0.17 

Old (Tmin = 103 yr), slow Umax = 200Hz) pulsars. 

Compute power 6.T(l) N(l) 6.T(2) N(2) µmax 0rc1 
(flops) (days) (days) 

1.00 x 1011 3.68 9 4.10 15 0.30 0.20 
3.16 x 1011 5.44 6 7.28 8 0.30 0.21 
1.00 x 1012 8.09 4 8.55 8 0.30 0.23 
3.16 x 1012 9.78 4 10.14 7 0.30 0.24 
1.00 x 1013 14.78 3 14.95 5 0.30 0.25 
3.16 x 1013 16.75 3 19.54 3 0.30 0.26 
1.00 x 1014 14.88 4 16.18 6 0.30 0.27 
3.16 x 1014 20.80 3 23.89 3 0.30 0.28 
1.00 x 1015 22.66 3 25.47 3 0.30 0.28 
3.16 x 1015 35.03 2 36.25 3 0.30 0.29 
1.00 x 1016 20.79 4 23.89 5 0.30 0.29 

achieve the desired sensitivity with available computational resources. To reach better sensitivity 

levels, it will be usefu l to consider targeted searches for specific types of source. In this section, we 

consider three such searches: {i) neutron stars in the galactic core as an example of a limited area 

sky survey, (ii) newborn neutron stars triggered on optically observed extra-galactic supernovae, and 

(iii) low mass x-ray binary systems such as Seo X-1. 

3.7.1 Galactic core pulsars 

Area surveys of the sky will certainly begin with the region most likely to hold a large number of 

nearby sources. Based on population models of radio pulsars in our Galaxy (58] , there should be 

many rapidly rotating neutron stars in the galactic bulge. As an example of a limited area search, we 

therefore consider the optimal strategy for searching an area of 0.004 steradians about the galactic 

core, for sources with frequencies f ~ 500 Hz and spindown ages r ~ 100 yr. The choice of a 
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Table 3.5: The optimum stack length 6T(1•2) and number of stacks N<1·2) for the first and second 
stages of an hierarchical search for pulsars located in a sky region of 0.004 steradians about the 
Galactic center, with T ~ 100 yr and f ~ 500 Hz. For numerical convenience the maximal projected 
mismatch was chosen in advance to be µmax = 0.3. The threshold was chosen to give an overall 
statistical significance of 993 to a detection (although the results are insensitive to the precise value). 

Compute power 6T(t) N(lJ 6Tl2J N(2) µmax 0rel 

(flops) (days) (days) 
LOO x 1011 4.72 7 5.50 13 0.30 0.22 
3.16 x 1011 5.56 7 5.65 14 0.30 0.23 
LOO x 1012 7.76 5 8.64 10 0.30 0.24 
3.16 x 1012 9.05 5 10.97 7 0.30 0.24 
LOO x 1013 15.81 3 16.84 5 0.30 0.26 
3.16 x 1013 18.33 3 18.37 5 0.30 0.27 
LOO x 1014 19.90 3 23.86 3 0.30 0.27 
3.16 x 1014 30.07 2 3L67 3 0.30 0.28 
LOO x 1015 33.21 2 35.33 3 0.30 0.29 
3.16 x 1015 35.26 2 39.99 3 0.30 0.30 
LOO x 1016 38.13 2 43.57 3 0.30 0.31 

0.004 steradian search is arbitrary; it includes the entire molecular cloud complex at the core of the 

galaxy( ....... 300 pc radius at a distance of ....... 8.5 kpc). 

It is easy to include a correction factor, to allow for this limited area, in our calculation of 

the number of patches by reducing the ranges of the integral over 'P in Eq. (3.22). Given the 

approximations in Sec. 3.2.2, this amounts to reducing Np in Eq. (3.30) by 

0.97 x ( 0~~4) ' (3.48) 

where the multiplicative factor 0.97 is the correction for the difference in functional form between 

the mismatch metric and the angular area metric dfl2 = sin2 (} d8d</> in the direction of the galactic 

center (i.e., -28.9° declination). 

The optimal choices of N(l),(2) and 6T(l},(2) for a hierarchical stacked search are shown in 

Table 3.5 as a function of available computing power; the relative sensitivity of this search is shown 

in Fig. 3.6 of the Introduction. 

We note from Eq. (3.6) of Paper I that gravitational waves from rapidly rotating neutron stars 

might be expected to have a characteristic amplitude of 

-25 f I zz 8.5kpc f 
( )

2 

he= 2.3 x 10 10-5 1045gcm2 -r- 500Hz ' (3.49) 

where f = (!,,,, - 11111 )/Izz is the non-axisymmetric strain, Iii is the moment of inertia tensor, r is 

the distance to the source, f is the gravitational wave frequency, and he has been averaged over 

the detector responses to various source inclinations [l). Theoretical estimates of the strength of 
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the crystalline neutron star crust suggest that it can support static deformations of up to f. ,...., 10- 5 , 

though most neutron stars probably support smaller deformations. From Figs. 3.3 and 3.6, we 

see that 1 Tflops of computing power should allow us to detect pulsars with strains as small as 

f. ,...., 5 x 10-6 at 8.5 kpc using enhanced LIGO detectors. 

3.7.2 Newborn neutron stars 

Several recent papers (52, 53, 54] have indicated that newly-formed fast-spinning neutron stars may 

be copious emitters of gravitational radiation. If the newborn neutron star is rotating sufficiently 

fast, its r-modes (axial-vector current oscillations whose restoring force is the Coriolis force) are 

unstable to gravitational radiation reaction. As the star cools, viscous interactions eventually damp 

the modes in isolated neutron stars. Numerical studies (55] indicate that neutron stars born with 

rotational frequencies above several hundred Hz will radiate away most of their angular momentum 

in the form of gravitational waves during their first year of life. Estimates of the viscous timescales, 

and the superfluid transition temperature, suggest that the r-modes are stabilized when the star 

cools below ,...., 109 K and are rotating at ,...., 100- 200 Hz. During the evolutionary phase when most 

of the angular momentum is lost, the amplitude and spindown timescale are expected to be 

(3.50) 

(3.51) 

These estimates are based on Eqs. (4.9) and (5.13) in Ref. [55]. (We note that the "characteristic 

amplitude" used in Ref. [55] is appropriate to estimate the strength of burst sources, and is different 

from our he.) Here "'is a dimensionless constant of order unity; it parameterizes our ignorance of 

the non-linear evolution of the r-mode instability. The distance to the neutron star is r, and tis 

the actual age of the star. Figure 3.3 shows h e as a function of frequency with "' = 1 at distances 

r = 2 Mpc and 20 Mpc. 

Sources outside our Galaxy are potentially detectable due to the high gravitational-luminosity of 

a newborn neutron star with an active r-mode instability. Nevertheless, it is a significant challenge 

to develop a feasible search strategy for these signals since the frequency evolves on such short 

timescales (compared to those considered above). One approach is to perform directed searches on 

optically observed supernova explosions. Although some supernovae may not be optically visible, 

and this instability may not operate in all newborn neutron stars, the computational benefits of 

targeting supernovae are substantial (if not essential). Based on the estimates in Ref. (55], most of 

the signal-to-noise is accumulated during the final stages of spindown. With limited computational 

resources, it seems best to limit the directed searches to frequencies $ 200 Hz, when the spindown 
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Table 3.6: The optimum stack length ~T(1 •2l and number of stacks N(l ,2) for the first and second 
stages of an hierarchical for newborn neutron stars spinning down due to an active r-mode instability. 
We assume that a supernova has been identified and accurately located on the sky, so this is a directed 
search for an object with Tmin = 1 yr, and f ~ 200 Hz. For numerical convenience the maximal 
projected mismatch was chosen in advance to be µmax = 0.3. The threshold was chosen to give 
an overall statistical significance of 993 to a detection (although the results are insensitive to the 
precise value). 

Compute power 
(flops) 

1.00 x 1011 

3.16 x 1011 

1.00 x 1012 

3.16 x 1012 

1.00 x 1013 

3.16 x 10l3 

1.00 x 1014 

3.16 x 1014 

1.00 x 1015 

3.16 x 1015 

1.00 x 1016 

~T(1) 

(days) 
1.08 
1.22 
1.22 
1.67 
2.51 
2.63 
2.28 
4.58 
3.94 
5.94 
4.63 

4 
4 
5 
4 
3 
3 
4 
2 
3 
2 
3 

~T(2) 

(days) 
1.16 
1.25 
1.26 
2.16 
2.79 
3.39 
2.32 
4.97 
4.04 
6.07 
5.00 

6 
7 
8 
5 
3 
3 
6 
3 
3 
3 
3 

0.30 
0.30 
0.30 
0.30 
0.30 
0.30 
0.30 
0.30 
0.30 
0.30 
0.30 

0rcl 

0.08 
0.09 
0.09 
0.10 
0.10 
0.11 
0.11 
0.11 
0.12 
0.12 
0.13 

timescale is ....., 1 yr. Table 3.6 shows the optimal search criteria in a hierarchical stacked search 

for neutron stars aged two months or older; the upper frequency cutoff is f max = 200 Hz and the 

minimum spindown timescale is Tmin = 1 yr. The sensitivities achievable in a search are shown in 

Fig. 3.6 of the Introduction. 

Figure 3.6 shows that 1 Tflops of computing power will not suffice to detect newborn neutron 

stars as far away as the Virgo cluster(~ 20 Mpc); however, such sources will be marginally detectable 

within ....., 8 Mpc by enhanced LIGO detectors. The NBG catalog [59) lists 165 galaxies within this 

distance (assuming a Hubble expansion of 75 km/s/Mpc, retarded by the Virgo cluster). From the 

Hubble types and luminosities of these galaxies, and the supernova event rates in [60), we estimate 

a total supernova rate of....., 0.6 per year in this volume, of which ....., 103 would be of type Ia, ....., 203 

of type lb or le, and ....., 703 of type II. (We note that the total rate is consistent with values given 

in Ref. [61) .) At present, it is not known what fraction of these will produce neutron stars with 

unstable r-modes. 

3.7.3 X-ray binaries 

A low-mass x-ray binary (LMXB) is a neutron star orbiting around a stellar companion from which 

it accretes matter. The accretion process deposits both energy and angular momentum onto the 

neutron star. The energy is radiated away as x-rays, while the angular momentum spins the star up. 

Bildsten [56) has suggested that the accretion could create non-axisymmetric temperature gradients 

in the star, resulting in a substantial mass quadrupole and gravitational wave emission. The star 
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spins up until the gravitational waves are strong enough to radiate away the angular momentum 

at the same rate as it is accreting; according to Bildsten's estimates the equilibrium occurs at 

a gravitational-wave frequency ""' 500 Hz. The characteristic gravitational-wave amplitudes from 

these sources would be 

2: 4 x 10- 27 
( 

R )s/4 ( M )-1/4 
lOkm l.4M0 

( 
F ) i/2 ( ! ) - 1/2 

x 10-sergcm-2s-1 600Hz ' (3.52) 

where R and M are the radius and mass of the neutron star, and F is the observed x-ray flux at 

the Earth. 

The amplitude of the gravitational waves from these sources make them excellent candidates 

for targeted searches. If the source is an x-ray binary pulsar- an accreting neutron star whose 

rotation is observable in radio waves- then one can apply the exact phase correction deduced from 

tho radio timing data to optimally detect the gravitational waves. (In this process, one must assume 

a relationship between the gravitational-wave and radio pulsation frequencies.) Unfortunately, radio 

pulsations have not been detected from the rapidly rotating neutron stars in all LMXBs (i.e., neutron 

stars that rotate hundreds of times a second). In the absence of direct radio observations, estimates 

of the neutron-star rotation rates are obtained from high-frequency periodic, or quasi-periodic, 

oscillations in the x-ray output during Type Ix-ray bursts. (See Ref. (62) for a summary.) But this 

does not provide precise timing data for a coherent phase correction. To detect gravitational waves 

from these sources, one must search over the parameter space of Doppler modulations due to the 

neutron-star orbit around its companion, and fluctuations in the gravitational-wave frequency due 

to variable accretion rates. The Doppler effects of the gravitational-wave detector's motion can be 

computed exactly, because the sky position of the source is known. 

In most cases, the orbital period of an x-ray binary can be deduced from periodicity in its x-ray or 

optical light curve. In some cases, the radial component of the orbital velocity can be computed by 

observing an optical emission line from the accretion disk, as was done with the bright x-ray binary 

Seo X-1 (63). Such observations do not determine the phase modulation of the gravitational-wave 

signal with sufficient precision to make the search trivial; however, they do substantially constrain 

the parameter space of modulations. 

In this subsection, we consider a directed search for an x-ray binary in which the orbital pa

rameters are known up to an uncertainty c5v in the radial velocity Vr of the neutron star, and an 

uncertainty c5¢ in the orbital phase. It is assumed that long-term photometric observations of the 

source can give the orbital period P to sufficient precision that we need not search over it explicitly. 
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We therefore parameterize the phase modulations as follows: 

( 
v1P v2 P . ) 

</>(t; A) = 2rr / 0 t + 2rrc cos 2rrt/ P + 2rrc sm 27rt/ P , (3.53) 

where A = (Jo , v1 , v2) are our search parameters, the gravitational-wave frequency Jo is constrained 

to be$ !max, and the pair (v1 ,v2) is constrained to lie within an annular arc ofradius Vr, width c5v, 

and arc angle c5</>. 

Applying the formalism developed in section 3.2 to this problem gives essentially the same result 

as for a sky search over Earth-rotation-induced Doppler modulations if one converts time units by 

the ratio P/day. In the case of the Earth's rotation, a search over sky positions n corresponds to 

a search over an area rrv~ot cos2 (.X) in the equatorial components of the source's velocity relative to 

the detector, whereas in the case of a binary orbit, the search is over a coordinate area vrc5vc5¢>. So 

we can simply multiply Eqn. (3.30) by the ratio of these coordinate areas to obtain the number of 

grid points Np in the parameter space: 

Np ~ 

A = 
B = 
c = 

UmaxP)
2 v,.c5~c5</> (A- 2 + B - 2 + c -2) - 1/2 

2µmax C 

0.5 ' 

l.6(AT/P)2 , 

6.4( AT I P)5 N 3 . 

(3.54) 

(3.55) 

(3.56) 

(3.57) 

Accounting for the intrinsic phase variations of the spinning neutron star itself is problematic 

since changes in the accretion rate may lead to stochastic variations in the rotation frequency of 

the star. Consider a typical neutron star (with radius 10 km, mass l.4M0 and moment of inertia 

1045 g cm2) in an accreting system. If the torque from accretion turns off, or doubles, for some 

reason, we can expect the gravitational-wave frequency to drift by 

Af ~ 3.6 x 10-s ( 1.5 x 10~ M0 yr-1) ( d:y ) H z , (3.58) 

over a time t, where M is the rate of accretion onto the neutron star. For the sources of interest to 

us, accretion proceeds at (or near) ~he Eddington rate M ~ 1.5 x 10- 9 M0 yr- 1. If we require that 

the frequency drifts by less than one Fourier bin A/ $ 1/ AT during a coherent observation, the 

observing time t = AT must satisfy 

AT $ 18days. (3.59) 

The frequency will make a random walk as the accretion rate fluctuates about its mean value. 

This type of random walk cannot be modeled as a low-order polynomial in time. Nevertheless, the 
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Table 3.7: The optimum stack length AT(1•2) and number of stacks N(1•2) for the first and second 
stages of an hierarchical search for sources of continuous gravitational waves that are in binary 
systems. We assume the orbit is characterized by two orthogonal velocity parameters that are 
known to within a total error of 17(km/s)2

, and that the frequency f :::; 500 Hz is experiencing a 
random walk typical of Eddington-rate accretion. For numerical convenience the maximal projected 
mismatch was chosen in advance to be µmax = 0.3. The threshold was chosen to give an overall 
statistical significance of 993 to a detection (although the results are insensitive to the precise value). 

Compute power AT(l) N(l) AT(2) N(2) µmax 0rel 

(fl.ops) (days) (days) 
1.00 x 1011 7.12 11 8.60 
3.16 x 1011 7.33 14 8.51 
1.00 x 1012 4.72 49 8.31 
3.16 x 1012 5.13 50 8.47 
1.00 x 1013 5.84 57 8.27 
3.16 x 1013 6.14 56 8.46 
1.00 x 1014 6.78 55 8.38 
3.16 x 1014 6.69 48 9.17 
1.00 x 1015 7.40 49 8.93 
3.16 x 1015 7.53 55 8.99 
1.00 x 1016 7.00 51 9.71 

53 
57 
58 
58 
56 
57 
57 
57 
58 
56 
58 

0.30 
0.30 
0.30 
0.30 
0.30 
0.30 
0.30 
0.30 
0.30 
0.30 
0.30 

0.40 
0.40 
0.40 
0.41 
0.41 
0.41 
0.42 
0.42 
0.42 
0.42 
0.42 

stack-slide technique is well suited to search for these sources since corrections for the stochastic 

changes in frequency can be applied by shifting the stacks by +l, 0, or - 1 frequency bins when 

required. In a search using N stacks, each of length AT, this kind of correction would be applied 

after a time t such that 

3.6 x 10-8Hz(t/day) = 1/ AT. (3.60) 

The number of times that these corrections must be applied is then NAT /t, and the number of 

distinct frequency evolutions traced out in this procedure is 3Nt:..T/t. Monte-Carlo simulations of 

stacked FFT's of signals undergoing random walks in frequency have shown that one can increase t 

by up to a factor of 4, i.e., allowing drifts of up to ±2 frequency bins, while incurring only ,..., 203 

losses in the final summed power; however, we have not yet studied in detail how this combines 

with the mismatches generated from other demodulations, or how to search over all demodulations 

together in an optimal way. For now we assume a factor of 3o.oo3N(t:..T/day)
2 

extra points in our 

search mesh for mismatches of µmax:::::: 0.3. 

As an example, we consider a search for gravitational waves from the neutron star in Seo X-

1. This system has an orbital period P = 0. 787313 ± 0.000001 days [64], a radial orbital velocity 

amplitude of Vr = 58.2 ± 3.0 km/s, an orbital phase known to ±0.10 radians [63], and an inferred 

gravitational-wave frequency /max ~ 500 Hz [56]. We note that the uncertainty in P is basically 
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negligible over the < 18 day coherent integrations expected. The remaining uncertainties give: 

Np = 10
5 30.003N(AT/day)~ ( A- 2 + B - 2 + c - 2) - 1/2 (3.61) 

µmax 
A 0.5' (3.62) 

B 2.6(6.T/day) 2
, (3.63) 

c = 21(6.T /day)5 N 3 , (3.64) 

where it is understood that 6.T ::; 18 days, in order for the random-walk stack-slide corrections to 

achieve maximum sensitivity. 

Table 3. 7 shows the optimal search criteria for a hierarchical stacked search for the Seo X-1 pulsar 

under these assumptions. The sensitivities achievable in such a search are shown in F igure 3.6 of the 

Introduction. We see that 1 Tflops of computing power may be sufficient to detect this source using 

enhanced LIGO detectors if it is radiating most of the accreting angular momentum as gravitational 

waves. The sensitivity to these sources would be enhanced by a factor ,....., 5- 10 if the interferometer 

is operated in a signal-recycled, narrow-band configuration during the search. 

3.8 Future directions 
We have presented in this manuscript the rudiments of a search algorithm for sources of continuous 

gravitational waves. We have completely neglected overheads associated with memory and I/0 in 

our analysis. These are potentially serious issues that depend on the platform chosen for the analysis. 

To investigate them requires implementation of the schemes presented in this paper. This will test 

the algorithms with real dat a, and, hopefully, highlight the shortcomings of the computational cost 

estimates presented here. It will also allow direct comparison with other approaches such as t he 

line-tracking method that is being explored by Papa et al. [47, 48, 49) . 

Several issues remain to be explored. The two-stage hierarchical searches discussed in this paper 

use only 60 days of data to achieve optimal sensitivity. At LIGO, it is planned to acquire ,.....,1 yr 

of da ta in the first science run. Should we discard all but ,.....,60 days of it? Clearly not. We have 

explored two possible search algorithms in this paper , but there are infinitely many algorithms to 

choose from. The goal is to find the one that uses all of the data to achieve optimal sensit ivity in 

the sense that we have used it. The algorithm that achieves this goal will be more complex than 

the two-stage hierarchical algorithm - we suspect it will be a multi-stage hierarchical algorithm. 

At this point, the urgency is to implement any reasonable search algorithm. Experimental advances 

will probably outpace gains achieved by optimizing the algorithm to use all the data. 

Further theoretical work is also needed to determine the parameter space that should be searched, 

especially in the case of active r-mode instabilities and radiating neutron st ars in LMXBs. We have 
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performed preliminary estimates in this paper; however, the promising nature of these sources should 

make them high priorities in targeted searches. 

Finally, it would be worthwhile to consider what advantage, if any, can be gained by using data 

from multiple interferometers at the initial detection stage of a search for continuous gravitational 

waves. 

3.9 Appendix A: Patch number formulae 

The approximate formulae given in Eqs. (3.25)- (3.27) are valid when N » 4. General expressions 

for the Gs can be derived by setting i = 0 in Eqs. (3.2) and (3.6), and using Eqs. (3.12), (3.17) , 

(3.18), (3.19), (3.21), and (3.22): 

Gi(N) _!!_)5N2 -4 
6v'5 

2 

7r Vl 75N6 - 840N4 + 1100N2 - 432 
180Vf55 

75600/i05 

3675N12 - 58800N10 + 363160N8 - 1053360N6 

+1484336N4 
- 987840N2 + 248832 

(3.65) 

(3.66) 

(3.67) 

In Eq. (3.22) we approximate the metric as having constant determinant and evaluate it at the point 

of zero spindown; this introduces small errors of order ([N D.T]/r)2 . 

Equations (3.31)- (3.34) for the number of sky patches ignoring spindown and orbital motions 

provide an empirical fit to a numerical evaluation of the metric determinant. The determinant was 

found to have an approximate functional dependence vfY0j ,.., I sin WI with corrections of order 

v/c ~ 10- 4 . Assuming this dependence to be exact, Eqs. (3.21) and (3.22) give 

M - 2/7r 
8 

- 4µmax/(s + 2) 
d t I 

90i90j I e g .. __ _ 
tJ 900 / c /max • 

, . ,..;2 

(3.68) 

Here 9a/3 is the mismatch metric, defined in Eqs. (3.17)- (3.19), computed using only the Earth

rotation-induced Doppler modulation. Since the Earth's rotation is a simple circular motion, and 

since we are evaluating the metric at a single point in parameter space, we can carry out the integrals 

in Eq. (3.19) analytically, to obtain 

(3.69) 
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akO 

ak1 = 

ak2 = 

boo = 

bu = 

b22 

bo1 = 

bo2 = 

b12 = 
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( k - ~) 6<1> + ~; {sin(k6<I>) - sin([k - 1]6<1>)} (3.70) 

/maxv/c {sin(k6<I>) - sin([k - 1]6<1>)} 
6<1> 

(3.71) 

!7;/c {cos([k -1]6<1>) - cos(k6<I>)} (3.72) 

l~<I> { -24 + ~ + 6 G) 2 

<I>+ 4<1>
3 

+ 24~ cos <I>+ 24~<1> sin <I>+ 3 G) 2 

sin 2<1>} (3.73) 

f'fr.ax(v/c)
2 

(2<1> +sin 2<1>) (3.74) 
4<1> 

f'fr.ax(v/c)2 (2<1> - sin 2<1>) 
4<1> 

(3.75) 

b10 = 
1~;v { -4 + 2~<1> + 4 cos <I>+ 4<1> sin <I>+ ~sin 2<1>} (3.76) 

/maxv/c { . ( V . ) } b20 = 
2

<1> - 2<1> cos <I> + sm <I> 2 + ;; sm <I> (3 . 77) 

b _ f'fnax(v/c)
2 

. 2 <I> 
21 -

2
<1> sm . (3.78) 

Here <I> = 27r N 6T / (1 day) is the total angle over which the Earth rotates during the observation, 

6 <I> = <I>/ N is the angle rotated during each stretch of the data, and v is the maximum radial velocity 

relative to the detector at latitude >. = 45° of a point at a polar angle () = 7r / 4 on the sky, that is 

27r .Hearth cos >.sin() 
v= 

lday 

3.10 Appendix B: Resampling error 

(3.79) 

In this paper, we have assumed that coherent phase corrections are achieved through stroboscopic 

resampling: a demodulated time coordinate tb[t] is constructed, and the data stream h(t) is sampled 

at equal intervals in tb at the Nyquist rate for the highest frequency signal present, /Nyquist= 2/max· 

However, since the data stream is initially sampled at some finite rate / 8 = R/Nyquist (where R is the 

oversampling factor), this can introduce errors: in general, there will not be a data point exactly at 

a given value of tb , so the nearest (in time) datum must be substituted. Consequently, there will be 

residual phase errors 6.<I>(t) E [-7r /2R, 7r /2R) caused by rounding to the nearest datum even if one 

chooses a phase model whose frequency and modulation parameters exactly match the signal. The 

phase of the resampled signal drifts until the timing error is ~ 1/2/8 , at which point one corrects 

the phase by sampling an adjacent datum, which shifts in time by 1/ / 8 • These residual phase errors 

reduce the Fourier amplitude of the signal by a fraction 

1

1 N . I F = N L e•t:.4>(k/ / Nyquist) , 

k=l 

(3.80) 
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where N = / Nyquist6.T is the total number of points in the resampled data stream. 

The uncorrected signal will in general drift by many radians in phase, which is the reason why 

we must apply phase corrections in the first place. This means that 6.if!(t) will sweep through the 

range (-7r /2R, 7r /2R) many times over the course of the observation. So, regardless of the precise 

form of the phase evolution, we expect 6.if!(k/ /Nyquist) to be essentially evenly distributed over this 

interval. Thus, replacing the sum with an expectation integral, we have 

F ~I!!:. r 12n ei4'> dif!I = sin(7r/2R) . 
7r } _" /2R 7r /2R 

(3.81) 

The fractional losses in amplitude 1 - F for a few values of the oversampling factor R are given in 

Table 3.8. 

The highest gravitational-wave frequencies we consider are 1000 Hz, requiring a resampling rate 

of / Nyquist = 2000 Hz. Since LIGO will acquire data at a rate of 16 384Hz, corresponding to an 

oversampling factor of R > 8, we have a maximum signal loss due to resampling of 1 - F = 0.63. 

Resampling errors will increase if the number of data samples is reduced by some factor before 

phase-correcting. 

Table 3.8: The percentage reduction (1-F) in amplitude of a signal as a function of the oversampling 
factor R. The LIGO interferometers will collect data at / 8 = 16 384Hz, so that the data will be 
oversampled by R ~ 4 compared to the maximum gravitational wave frequency that we expect on 
physical grounds. In fact, it seems more likely that R ::: 8 for real signals. 

R= 2 3 4 5 6 7 8 
1- F = 10.03 4.53 2.63 1.63 1.13 0.83 0.6 
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Figure 3.3: Characteristic amplitudes he [see Eq. (3.5) in [10]) for several postulated periodic sources, 
compared with sensitivities h3/yr of the initial, enhanced (broad-band and narrow-band) and ad
vanced detectors in LIGO. (h3;yr corresponds to the amplitude he of the weakest source detectable 
with 99% confidence in hr = 107 s integration time, if the frequency and phase of the signal, as mea
sured at the detector, are known in advance.) Long-dashed lines show the expected signal strength 
as a function of frequency for pulsars at a distance of 8.5 kpc assuming a gravitational ellipticity 
<: = 10- 5 of the source (see Ref. (10)) . Upper limits are plotted for the Crab and Vela pulsars, 
assuming their entire measured spindown is due to gravitational wave emission. The characteristic 
amplitude of waves from r-modes is also shown. These signals are not precisely periodic; rather, they 
chirp downward through a frequency band of,...., 200 Hz in 2 x 107 seconds. Finally, the strength of 
the gravitational waves from LMXBs, normalized to the observed x-ray flux from Seo X-1, is plotted 
under the assumption that gravitational waves are entirely responsible for their angular momentum 
loss. 
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Figure 3.4: A contour plot of the relative sensitivity defined in Sec. 3.1.4 as a function of available 
computing power, and the number of stacks in the search. The plot indicates the sensitivity that 
can be achieved using a stack-slide search for sources with f ~ 1000 Hz and r ~ 40 yr. The darkest 
shading represents the worst sensitivity. For fixed number of stacks the sensitivity improves with 
increasing computing power as expected. Notice that for fixed computing resources there is generally 
a point of optimal sensitivity; indeed the number of stacks at this optimal operating point should be 
compared with those given in Table 3.1. It is important to notice that the maximum falls off very 
slowly as the number of stacks increases. 
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Figure 3.5: Relative amplitude sensitivities 8rel = h3;yr / h th achievable with given computational 
resources, for (a) one pass stack-slide search strategies, and (b) two-pass hierarchical strategies 
(using the stack-slide algorithm in each pass). The results are presented for our fiducial classes of 
sources: (i) all-sky search for young (r 2:'.: 40 yr), fast (f ~ 1000 Hz) pulsars, (ii) all-sky search 
for old (r 2:'.: 1000 yr), slow (J ~ 200 Hz) pulsars, (iii) directed search for young, fast pulsars, and, 
(iv) directed search for old, slow pulsars. For a given computational power, we have determined 
the optimum observation time, and number of stacks as described in Secs. 3.4 and 3.6. Thus hth is 
the expected sensitivity of the detector for an optimal stack-slide search, with 993 confidence. For 
comparison, the relative sensitivity achievable in a 107 second search with infinite computing power 
is shown in the bar on the right of each figure. When the relative sensitivity of a search exceeds this 
reference value, using finite computational resources, it indicates that the search uses more than 107 

seconds of data. 
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Figure 3.6: Panel (a) represents the relative amplitude sensitivities 0rel = h3;yr/ hth achievable with 
given computational resources, in three specialized searches: (i) A search for a new-born neutron 
star (whose direction is determined by observing an optical supernova) that is spinning down by 
gravitational wave emission via an active r-mode instability. We took r 2:'.: 1 yr and f ::::; 200 Hz. (ii) 
A search for pulsars in a region extending 0.004 steradians about the galactic core, with r 2:'.: 100 yr 
and f ::::; 500 Hz. (iii) A source in a binary orbit, e.g., Seo X-1. We assume the orbit is characterized 
by two orthogonal velocity parameters, known to within a total error of 17(km/s)2 ; we further assume 
that the frequency f ::::; 500 Hz experiences a random walk typical of Eddington-rate accretion. For 
each of these sources, panel (b) shows hth for initial (upper lines), enhanced (middle lines), and 
advanced (lower lines) interferometers in LIGO, assuming 1 Tflops of computing power. Thus this 
is the characteristic amplitude of the weakest source that can be detected with 993 confidence 
using a two pass-hierarchical search strategy. We have also indicated the threshold sensitivity hth 
for enhanced LIGO in narrow-band searches for LMXBs; the center frequency coincides with the 
expected wave frequency for Seo X-1. 
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Chapter 4 Gravitational waves and the 

cosmological equation of state 

This chapter is adapted from the paper "Gravitational waves and the cosmological equation of state,'' 

by Teviet Creighton [65]. 

Summary: As is well known, primordial gravitational waves may be amplified to detectable levels 

by parametric amplification during eras when their wavelengths are pushed outside the cosmological 

horizon; this can occur in both inflationary and "pre-big-bang" or "bounce" cosmologies. The 

spectrum of a gravitational wave background is expressed as a normalized spectral energy density 

O(w) = (w/pc)(dPgw/dJ.J.J), where Pc is the critical energy density that makes the universe spatially 

flat, and dpgw is the energy density of gravitational waves in a frequency band dJ.J.J. The logarithmic 

slope of n is simply related to three properties of the early universe: (i) the gravitons' mean initial 

quantum occupation number N(n) (:: 1/2 for a vacuum state), where n = w/a is the (invariant) 

conformal frequency of the mode and a is the cosmological scale factor, and (ii) & (iii) the parameter 

'Y = p/ p of the cosmological equation of state during the epoch when the waves left the horizon 

( 'Y = 'Yi) and when they reentered ( 'Y = 'YI). In the case of an inflationary cosmology, the spectral 

index is 

-----+ + dlnO dlnN 2 ( 'Yi+ 1 ) 2 ( 'YI - 1/3) 
dlnw - d ln n 'Yi+ 1/3 'YI+ 1/3 ' 

and for bounce cosmologies it is 

dlnO dlnN 2 ( 2'Yi ) 2 (11 - 1/3) -----+ + 
d lnw - dlnn 'Yi+l/3 "11+ 1/3 

These expressions are compared against various more model-specific results given in the literature. 

4.1 Introduction 

The prospect of a detectable cosmological background of gravitational waves has opened up a new 

avenue for the investigation of fundamental physics and cosmology. Gravitational waves couple 

very weakly to matter, and are not blocked or thermalized during any cosmological epoch back to 

Planckian densities. The waves do, however, couple to large-scale cosmological spacetime curvature, 

and can therefore provide information about the evolution of this curvature, and hence about the 

fundamental physics of the matter fields driving this evolution. 
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A great deal of work has been done on this subject, deriving gravitational-wave spectra from 

various cosmological models, usually in hope of producing a model that would generate a detectable 

signature in planned gravitational-wave detectors. The most comprehensive of these is a recent paper 

by Gasperini [66], which presents a general prescription for constructing gravitational-wave spectra 

from fairly arbitrary cosmologies. The results in the present paper are consistent with Gasperini's 

results, although I derive them using a different formalism and consider a more generic cosmology. 

The primary intent of this paper, however, is more the reverse of this: rather than deriving a 

spectrum from a particular cosmological model, this paper shows how generic properties of the early 

universe can be immediately deduced from an observation of a gravitational-wave background in 

any spectral band. To this end, I have chosen as my observable the spectral characteristic that is 

least susceptible to the tunings of particular cosmological models - namely, the spectral index -

and have expressed it in terms of quantities that are most directly related to the underlying physics 

of the cosmological "fluid" - namely, the equations of state p = 'YP· Furthermore, since the initial 

state of the gravitational waves (before amplification) is potentially one of the more interesting 

characteristics that might be deduced from observations, I have left it as a free parameter, rather 

than making the usual assumption of starting the waves in a quantum ground state. 

4.1.1 Organization of this paper 

In Sec. 4.2, I present a skeleton of the derivation of the main formulae of this paper. Much of 

the derivation has been done in one form or another in the published literature, and those familiar 

with the field will find nothing surprising, except perhaps the consideration of non-vacuum initial 

conditions in Sec. 4.2.2. Since the result is largely a generalization of the more model-specific 

formulae found in the literature, Sec. 4.3 compares this paper's formulae with those published 

previously. Sec. 4.4 presents some concluding remarks. 

4.2 The cosmological and wave equations 

I consider gravitational waves that are linear perturbations on the spatially flat FRW metric: 

(4.1) 

where the conformal time coordinate 'T] is related to proper time t by dt = a(ry)dry (I have chosen units 

in which c = 1). The cosmology has a perfect fluid source that obeys the instantaneous equation 

of state p = 'YP, where 'Y need not be constant but typically evolves slowly ('Y' h « a' /a, where 

' = d/dry) . Causality considerations require that 'Y ~ 1; realistically, we can assume 'Y < 1, since 

not all of the energy in the universe will be in the maximally-stiff field. One can solve Einstein's 
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equations to zeroth order in h to obtain the exact solut ion 

{1 1) dTJi } a(TJ) = ao exp 'lt · , 
'lo ao/ab + flJo dry2[l + 3-y(TJ2)]/2 

(4.2) 

which reduces to the usual power-law evolution a(ry) ,...., ry2/(l+3-y) during epochs of (nearly) constant 

'Y· 

Following the notation in Eq. (2) of (67], I write the linear perturbations in the form: 

h ~ µn(TJ) U ( ) (j) 
o(J = L.,, _(_)_ n X e0 (J , 

. a T/ 
n ,3 

(4.3) 

where e~J is some basis of polarization tensors, Un(x) ex ein ·x is a spa tial harmonic function with 

a true (physical) wave number k = n/a and frequency w = n / a (n = llnJJ), and µn(TJ) obeys the 

Schrodinger-like equation: 

II ( 2 a") µn + n - ""(; µn = 0 . ( 4.4) 

Physically, the relative magnitudes of n2 and the effective potential a" /a are related to whether the 

wave is inside or outside of the Hubble radius. Comparing k to the Hubble radius TH = a/ (da/dt), 

one has: 

k2r 2 = ~ = ~ x 1 - 3-y 
H (a'/a)2 a"/a 2 · 

(4.5) 

Roughly speaking, a wave that is hitting the effective potential (a" /a increasing to meet n 2 ) is one 

that is exiting the Hubble radius, to order of magnitude. Similarly, a wave that is emerging from 

the effective potiential is reentering the Hubble radius. The exception is for epochs when 'Y -t 1/3; 

see the remarks near the end of Sec. 4.2.1. 

Cosmological amplification of waves occurs where initially oscillatory waves hit the effective 

potent ial during epochs of accelerated collapse (a' < 0, 'Y > - 1/3) or accelerated expansion (a' > 0, 

'Y < - 1/3), when Ja" /al is increasing, and then emerge into a post-inflationary universe (a' > 0, 

'Y > - 1/3) in which la" /al is decreasing. A schematic of such an evolution is shown in Fig. 4.1. 

The periods when the wave initially hits the potential and when it finally emerges from it will be 

denoted by subscript i and f , respectively. The (complex) amplification factor of the emerging waves 

f3n = µn ( T/ f ) / µn ( T/i ) is 

(
. a; ) 1'11 dry] i+- - . 

a1n 'Ii a2 ' 

(4.6) 

this is Eq. (11) of (67] with a sign error corrected , and reexpressed in the current notation. 

If the evolution of a(ry) between ai and a1 is monotonic, one can follow (67] and use the equation 
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(a' /a)2 

11i 111 11! 

Figure 4.1: Schematic of the evolut ion of the effective potential la" /al (sollid line) and Hubble scale 
(a' /a)2 (dotted line) for inflation (11<111) followed by decelerating expansion (11>111). Also shown 
are the times 11i and 111 when a wave with squared conformal frequency n 2 (dashed line) hits and 
emerges from the potential barrier. 

of state to reexpress the integral over 11 as an integral over a, eventually obtaining, for a1 » a i: 

(4.7) 

where (-y) is the average of 'Y from 11i to 111 with weighting factor 1/a2
• 

The derivation of Eq. (4.7) breaks down for the case of a bounce cosmology, where a(11) is not 

monotonic. In this case, however, Eq. (4.6) is almost entirely dominated by the contribution of 

the integral J d11/a2 near the time of the bounce. Modeling the bounce as smooth with some finite 

concavity a~ around the minimum ao , we obtain: 

(4.8) 

4.2.1 Dependence on n 

The amplification factor f3n is at least implicitly dependent on n, since waves of different n will 

hit and emerge from the effective potential at different times 11i and 111 , and hence with different 

ai , a1. For periods of constant -y, we have a,...., 112/(1+3-Y). The condition n 2 = a"/a for hitting 

or emerging from the effective potential implies that ai.f ,...., n-2/(1+3-Y•.1), and that a~.f/(aiJn) ,...., 

/2/ll - 3'Yi.JI ,...., constant . If 'Y is changing gradually near 11i.J these formulae remain true up to 

corrections of order ('Y' h)(a' /a) - 1 . Furthermore, the weighted average ('Y) in Eq. (4.7) depends 

only very weakly on 11i.f• and hence on n , except for values of n 2 near the peak of the effective 

potential. These considerations, combined with Eqs. ( 4. 7) and ( 4.8), give 

(4.9) 
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--~- --- ----------- -

...... 
'Tli 'T/1 = .,,, 

Figure 4.2: Schematic of the evolution of the effective potential and Hubble scale for inflation (ry < ry1 ) 

followed by a radiation-dominated equation of state (ry > 11i). Note that 'Tl! = ry1 independent of n 
for a broad range of frequencies. 

for inflationary cosmologies, and 

(4.10) 

for bounce cosmologies. 

A special case is when 'YI ~ 1/3 (the equation of state for a relativistic or radiation-dominated 

fluid), for which the effective potential a" /a ~ 0. This is depicted in Fig. 4.2. If the transition to 

radiation dominance is rapid, then 'T/f, and hence a1 and a/, are independent of n for a wide range 

of n. However, waves that are well outside the Hubble radius at the moment of transition will have 

a// a 1 » n, as is clear from Eq. ( 4.5) and Fig. 4.2. So the appropriate terms in Eqs. ( 4. 7) and ( 4.8) 

have behaviour 

a1 i+ - 1 ,..., - . I 
a' I 1 

a1n n 
(4.11) 

This is the same dependence as one would get by naively plugging"// = 1/3 into Eqs. (4.9) and (4.10), 

so these equations are correct even as 'YI -t 1/3. (This argument also applies for waves that hit the 

effective potential during radiation-dominated collapse.) 

A similar situation occurs for waves that remain outside the Hubble radius throughout an inter

mediate period of 'Y ~ 1/3, when formally they have emerged from the effective potential and are 

oscillatory. This is depicted in Fig. 4.3. The effect of an intermediate period tlry of zero effective 

potential is a term,..., sin(ntlry)/n in the final amplitude. If the waves remain well outside the Hubble 

radius throughout this era, then ntl11 « 1, and this term is a constant with respect ton. Once again, 

Eqs. (4.9) and 4.10 remain unchanged. Both this and the preceding cases confirm one's physical 

intuition, that the final spectrum cannot resolve the details of sudden phase transitions that occur 

when the waves are much larger than the Hubble radius. 

Eqs. (4.9), (4.10) also break down when 'Yi, / ~ - 1/3, but this condition will never arise. When 
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(a'/a)2 
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Figure 4.3: Schematic of the evolution of the effective potential and Hubble scale for inflation 
(11 < 111 ), followed by radiation dominance (111 < 11<112), followed by generic decelerated expansion 
(11 > 112). Waves emerging from the potential barrier after 112 will have been outside the Hubble 
radius throughout the period of radiation dominance. 

'Y :::::: - 1/3, one has a ~ e"11 , so a"/ a :::::: constant, and waves will neither hit nor leave the effective 

potential. 

4.2.2 The initial and final spectra 

Most analyses of primordial gravitational waves assume that the initial state of the metric pertur

bations (during the Planck era or during pre-Big-Bang collapse) is a quantum-mechanical vacuum. 

While this is a reasonable assumption, one does not know the initial state in advance of observation. 

In fact, primordial gravitational waves are a potential means of observing the initial state of the 

cosmos. It is instructive, therefore, to leave the initial graviton spectrum as a free parameter. 

I parameterize the initial spectrum using the mean quantum occupation number of graviton 

modes as a function of mode frequency, N ( n) . In the semiclassical approach, the creation of gravitons 

can be treated as the classical amplification of the vacuum energy Fu.,;/2 in each mode, so I normalize 

N(n) to be 1/2 for a mode in the ground state (no real gravitons), 3/2 for the first excited state 

(one real graviton), and so on. This approach is valid provided the final state is classical (l.Bnl » 1). 

Cosmological perturbation spectra are normally expressed as a normalized energy density per 

logarithmic frequency interval, n = ( dE / dV d In w) /Pc (where Pc is the energy density required to 

make the universe spatially flat). There are 2w2dwdV modes in a frequency interval dw in a volume 

dV, each with energy Fu.,;N(n) (where n = w/a), so the initial energy spectrum is: 

(4.12) 

Note that a;nitiat is the (constant) scale factor of the universe at the time that one is evaluating the 

initial spectrum; it is not the same as ai, which depends on n . 

In considering the logarithmic slope of the spectrum I ignore overall amplitude factors, which are 
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highly model-specific. The energy spectrum at the present day is quadratic in l.Bn l, so its logarithmic 

slope is: 
dlnS1 _ dlnO;nitial + 2dlnl.Bnl 
d In w - d In n d In n ' 

(4.13) 

where the evaluation is at n = w/aprmnt· Combining this with Eqs. (4.12), (4.9), and (4.10) gives 

the pricipal result of this paper: 

dlnn dlnN 2 ( 'Yi+ l) 2 ( "11-1/3) 
dlnw = d lnn + "fi+ l/3 + 'Yt+l/3 

(4.14) 

for an inflationary cosmology, and: 

din n din N 2 ( 2"fi ) 2 ( "// - 1/3) 
dlnw= dlnn + "/i+l/3 + "11+ 1/3 

(4.15) 

for a bounce-type cosmology. 

4 .3 Comparison with special cases 

The formulae given above are consistent with results established previously in the literature. I first 

show this for the two "standard" cases of deSitter inflation and of cosmological rebound from a state 

of weakly coupled strings. I then compare with recent papers that consider more generic pre- and 

post-inflationary evolutions. 

4.3.1 Standard inflation 

The "standard" model for an inflationary cosmology consists of a period of deSitter expansion 

('Y = - 1) due to the universe being in a false vacuum with nonzero energy density. In the post

inflationary era, the universe quickly reheats to a radiation-dominated equation of state ('Y = 1/3), 

followed by cooling to a matter-dominated equation of state ( 'Y = 0) . If we assume the initial graviton 

state from the Planck era was a vacuum, then for waves that emerged into the radiation-dominated 

universe we have N = 1/2, 'Yi= - 1, 'YI= 1/3, and 

dlnn=O. 
dlnw 

This is, of course, the flat spectrum predicted by Harrison and Zel'dovich [68, 69] . 

(4.16) 

The last two decades of the spectrum (10- 16- 10- 18 Hz) consist of waves that emerged more 

recently, when the universe was matter-dominated ("11 = 0) . In this band the spectrum is tilted 

towards low frequencies, with a spectral index of - 2. 
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4 .3.2 Standard string-motivated rebound cosmologies 

The earliest, and still one of the most general, analysis of gravitational waves from a pre-Big-Bang 

universe was performed by Starobinski (70], who considered the present spectral index of gravitational 

waves in a cosmology with arbitrary asymptotic early- and late-time equations of state, and unknown 

evolution through the "bounce." Eq. (2) of (70] can be shown to give the same spectral index as 

Eq. ( 4.15) with a flat initial graviton spectrum, given two notational differences. First, Starobinski 

uses a spectral energy density e(w) "' dpgw/dw, rather than O(w) "' dpgw/dlnw, so the spectral 

indecies are related by d ln n Id In w = d In e/ d In w + 1. Second, Starobinski 's equation of state 

parameter q is related to this paper's 1 by q = 2/(3 + 31). 

More recently, string theory has been used to provide a justification for the cosmological rebound, 

and to hypothesize a particular model of imploding universe that leads to a gravitational-wave 

spectrum increasing with frequency (7, 71]. These models are consistent with the current derivation 

provided one recognizes that the current formalism applies to the Einstein frame (where the metric 

represents intervals measured by physical rulers and clocks), rather than the string frame (where the 

metric geodesics describe the trajectories of weakly coupled strings). In the Einstein frame, a typical 

evolution consists of an epoch of decreasing lengthscale a and weakly coupled strings, followed by 

a period of strongly coupled strings that reverse the collapse, followed by relaxation of the string 

dilaton and an expanding radiation-dominated universe, eventually cooling to matter dominance. As 

usual, a vacuum initial state (N = 1/2) is normally assumed. Most modes hit the effective potential 

during the epoch of weakly interacting strings, when the kinetic term of the dilaton dominates the 

energy background, giving a nearly maximally stiff equation of state bi ~ 1). For waves that emerge 

during the radiation-dominated phase b1 ~ 1/3) , Eq. (4.15) gives: 

dlnO = 3 . 
dlnw 

(4.17) 

Eq. (3.3) of (7] and Eq. (5.7) of (71] also give a spectral index of 3 for low frequencies. These papers 

also predict a logarithmic cutoff at high frequencies, n "'w3 ln2 (ws/w), where Ws is the maximum 

frequency of waves that encountered the effective potential during the epoch of maximal stiffness 

(typically of order 1011 Hz, depending on the details of the strongly coupled string epoch) . This 

effect occurs only for 1• exactly equal to 1, which the current analysis doesn't consider, and only 

affects the spectral index within a decade of w 8 in any case. 

The low-frequency tail (w < 10- 16 Hz) of waves that emerge when '"YI = 0 will also be tilted 

towards high frequencies, but with a spectral index of 1. 
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4.3.3 Nonstandard equations of state 

A recent paper (6] has explored the effects of an intermediate phase between the inflationary and 

radiation-dominated eras, in which the dominant cosmological fluid had an equation of state stiffer 

than radiation (1/3 < 'YI < 1) . One consequence is that the background gravitational-wave spec

trum would be tilted towards high frequencies for those wavelengths that emerged during this era. 

Assuming an initial vacuum (N = 1/2) and deSitter inflation , Eq. (4.14) gives us: 

dln 0 = 2 'YI - 1/3 . 
dlnw "11+1/3 

(4.18) 

Eq. (3.32) of (6] gives the same dependence on 'Y· 

Eq. (3.31) of (6] extends the analysis to the case of a maximally-stiff equation of state ('YI = 1), 

which this paper does not consider. This gives a high-frequency logarithmic cutoff n ,...., w ln2 (wifw), 

where w 1 is the highest frequency that encountered the amplifying potential. The cutoff does not 

affect the spectral index at frequencies more than a decade or so below w1 , which is likely in the 

MHz to GHz range (well above the pass-bands of proposed gravitational-wave detectors). This is 

analogous to the situation mentioned earlier , when 'Yi -t 1 during collapse. 

Schwarz (72] also considered non-radiation-dominated equations of state in the context of QCD 

phase transitions, which could cause temporary excursions from 'YI = 1/3, creating steps in the final 

gravita tional-wave spectrum. Eq. (15) of [72] is identical to Eq. (4.18). Schwarz also points out that 

this spectral index is valid even if 'YI is changing rapidly, provided that the total change in 'Yi is 

small ( « 1 +'YI ). 

Gasperini [66] has performed an even more general analysis of the primordial gravitational wave 

spectrum, considering generic evolution of a(17) both in the early and late cosmological epochs. As 

usual, the initial state of the waves was taken to be a vacuum (N = 1/2). Eqs. (4.14), (4.15) can 

then be written as: 
dlnO = 4 + 4 
dlnw 1 + 3'Yi 

4 
(4.19) 

or 
dlnO = 

6 
_ 4 4 

dln w 1+3"fi 1+3"fl 
(4.20) 

for monotonic or bounce cosmologies, respectively. By comparison, Eq. (4.26) of [66] gives the 

spectral index as 4 - 2111 - 211i+l, where 11 = la - 1/21 and a is the exponent of the power law a,...., 17" 

during the epoch when the waves first strike the effective potential (for 11i+1) and when they leave 

the effective potential (for 111). Gasperini's results are identical to Eqs. (4.19) and (4.20), provided 

one recognizes two things. 

First, a phase of slowly varying a corresponds to a phase of slowly varying 'Y, with a = 2/ (1+3"{). 

Inflationary cosmologies have 'Yi< - 1/3, hence C¥i+i < 0. Bounce cosmologies have -1/3 <'Yi :'.5 1 
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and ai+1 ~ 1/2. Either cosmology has - 1/ 3 < 'YJ ~ 1 and a 1 ~ 1/2. (The condition 0 <a< 1/2 

corresponds to the physically unrealistic case of "I > 1.) 

Second, Gasperini assumes in Eq. (4.26) of (66] that all waves leave the effective potential at 

the same cosmological epoch, so that v1 is a constant across all frequencies (normally v1 = 1/ 2 for 

radiation dominance) . In fact , the spectral index (but not necessarily the normalization) given in 

Eq. (4.26) of [66] is valid for v1 varying across frequencies. 

4.4 Conclusions 

Eqs. (4.14) and (4.15) show how much can be determined about early cosmology from an observation 

of the spectral index of primordial gravitational waves. Al though these formulae are quite simple, 

they still involve three independent parameters: 'Yi, 'YI • and N(n). To make definite statements 

about any one of them, one must make assumptions about the others. The usual procedure is to 

assume that we know N (n ) and "// , leaving 'Yi to be deduced; however, it is quite possible that 

future advances in theory will fix both 'Yi and "// , allowing gravitational-wave observations to probe 

directly the Planck-scale structure of the universe. 

The formulae are also useful in showing which cosmological theories produce equivalent gravi

tational signatures. For instance, a monotonically inflating cosmology with "/&, < - 1/ 3 will yield 

the same spectral index as a bounce-type cosmology with "fi2 = ('Yi, + 1)/(3"/is - 1) in the range 

(-1/ 3, 1/ 3). Since these are physically valid ranges for 'Yi in each case, if follows that a mono

tonic cosmology cannot be distinguished from a bounce cosmology given only the gravitational-wave 

spectral index. 

The purpose of this paper was to present the simplest possible expressions relating a generic cos

mological gravitational-wave signature to the physical processes that produced it, with a minimum 

of assumptions about the underlying cosmological model. I have deliberately chosen an approach 

of "maximum ignorance,'' allowing, as much as possible, for the observations to dictate the cosmo

logical parameters. Formulae such as these may prove valuable in an era when gravitational-wave 

observations begin to explore a new realm of physics, possibly revealing things beyond our most 

informed predictions. 
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Chapter 5 Gravity gradient noise from airborne 

sources 

Summary: The test masses in gravitational-wave detectors will be sensitive not only to astro

physical gravitational waves, but also to the fluctuating Newtonian gravitational forces of moving 

masses in the ground and air around the detector. These effects are often referred to as gravity 

gradient noise. This paper considers the effects of gravity gradients from density perturbations in 

the atmosphere, and from massive airborne objects near the detector. These have been discussed 

previously by Saulson, who considered the effects of background acoustic pressure waves and of 

massive objects moving smoothly past the interferometer; the gravity gradients he predicted would 

be too small to be of serious concern even for advanced interferometric gravitational-wave detectors. 

In this paper I revisit these phenomena, considering transient atmospheric shocks, and estimating 

the effects of sound waves or objects colliding with the ground or buildings around the test masses. 

I also consider another source of atmospheric density fluctuations: temperature perturbations that 

are advected past the detector by the wind. I find that background acoustic noise and temperature 

fluctuations still produce gravity gradient noise that is below the noise floor even of advanced in

terferometric detectors, although temperature perturbations carried along non-laminar streamlines 

could produce noise that is within an order of magnitude of the projected noise floor at 10 Hz. A 

definitive study of this effect may require better models of the wind flow past a given instrument. 

I also find that transient shockwaves in the atmosphere could potentially produce large spurious 

signals, with signal-to-noise ratios in the hundreds in an advanced interferometric detector. These 

signals could be vetoed by means of acoustic sensors outside of the buildings. Massive wind-borne 

objects such as tumbleweeds could also produce gravity gradient signals with signal-to-noise ratios 

in the hundreds if they collide with the interferometer buildings, so it may be necessary to build 

fences preventing such objects from approaching within about 30m of the test masses. 

5 .1 Introduction 

Interferometric detectors such as LIGO and VIRGO rely on exquisite sensitivity to the positions of 

hanging test masses in order to detect the perturbations of passing gravitational radiation. The sen

sit ivity is so great that the measurements can also be affected by fluctuations in the local Newtonian 

gravitational field, which create tiny accelerations of the a mass. This noise source, known as gravity 

gradient noise or Newtonian gravitational noise, is caused by the near-field gravity of masses moving 
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near the interferometer, and is not to be confused with the far-field propagating gravitational waves 

that the instruments are intended to measure. 

Gravity gradient noise has the potential to be quite insidious, since it cannot be shielded by 

improvements to the test-mass vibrational isolation. The only effective way to eliminate gravity 

gradient noise is to eliminate the moving masses that create the perturbing fields. Fortunately, 

though, the strongest perturbations to the local gravitational field arc at frequencies well below the 

detectors' pass-bands. Since the proposed terrestrial interferometric detectors all have sensitivity 

cutoffs around 3 Hz or higher, we need only worry about noise sources that can perturb the local 

gravity field on timescales less than about 0.3 seconds. Most of the noise sources that I consider 

arc motivated by the expected sensitivity of advanced LIGO interferometers, which were originally 

projected to have a low-frequency cutoff around 10 Hz, and instrumental noise of Sh ,.... 2 x 10- 45 H z- 1 

in the gravitational-wave signal output a t that frequency (4)1. Although changes in instrumentation 

technology will modify the ultimate sensitivity goals of LIGO, this "standard" advanced LIGO noise 

level is a good reference point when considering now noise sources. Also, as pointed out below, 

gravity gradient noise will make it difficult to push the detector noise much below this level at 

10 Hz, regardless of improvements to the interferometers. 

Saulson (73] was the first to estimate the effect of gravity gradient noise on terrestrial interferomet

ric detectors , considering the effects of seismic waves passing through the earth and of sound waves 

in the air. In both cases he found the spectral density of noise in the interferometer path-length dif

ference to be Jess than 10- 39m2 Hz- 1 around 10 Hz, corresponding to noise in the gravitational-wave 

signal at levels less than 10- 46Hz- L for a 4 km interferometer. By comparison, this is significantly 

less than the noise floor of,.... 2 x 10- 45Hz- 1 that advanced LIGO interferometers expect to achieve 

at 10 Hz. More recently, a detailed analysis (8] has been made of seismic gravity gradient noise; this 

study indicated that seismic gravity gradient noise would be within a factor of 2 of the advanced 

LIGO noise floor at 10 Hz for most times, and could actually exceed this noise floor during seismically 

noisy times, making seismic gravity gradients a significant barrier to improvements in low-frequency 

sensitivity. It therefore seems prudent to revisit the issue of atmospheric gravity gradients as well. 

In Sec. 5.2 I consider gravity gradients caused by atmospheric pressure perturbations- the same 

noise source considered by Saulson. Attention is paid, however , to the effects of the ground, and 

of buildings that reduce the pressure noise in the immediate vicinity of the interferometer test 

masses. However , I find that these tend only to weaken the gravity gradient noise in the pass-bands 

of interferometric detectors, reinforcing the conclusion that this noise source is not of any great 

concern . 

A much stronger source of high-frequency density perturbations in the atmosphere is the presence 

1Specifically, I will be using the noise curve in Fig. 10 of (4], not Fig. 7, whose suspension thermal noise is a factor 
of 3 too small. 
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of temperature fluctuations, which are advected past a detector by the wind. In Sec. 5.3 I analyze this 

as a potential source of gravity gradient noise. However, I find that while small-scale temperature 

perturbations can produce high-frequency temperature fluctuations at any given point, they do not 

produce the same high-frequency fluctuations in the test mass position, since a given pocket of warm 

or cool air will affect the test mass gravitationally over the entire time that it is in the vicinity of the 

test mass, which is on the order of seconds. This produces a cutoff in the noise spectrum above a few 

tenths of a Hz. The presence of turbulent vort ices around the interferometer buildings can increase 

the high-frequency component, but still probably not enough to show up in the gravitational-wave 

noise spectrum. 

In Secs. 5.4 and 5.5 I turn away from sources of background noise to consider possible sources of 

transient gravity gradient signals that might be detected as spurious events in the gravitational-wave 

instruments. Sec. 5.4 extends the analysis in Sec. 5.2 to look at the effects of atmospheric shockwaves, 

such as might be generated by an explosion or supersonic aircraft. I find that sources such as 

these can indeed produce detectable signals that might be interpreted spuriously as gravitational

wave events. However, such signals would easily be vetoed using acoustic monitors outside the 

interferometer buildings. 

Sec. 5.5 analyzes the gravity gradients produced by individual objects, such as wind-borne debris, 

moving around outside the interferometer buildings. Saulson considered this effect for the case of 

objects moving with fairly uniform velocity, but typically, in order to produce significant signal above 

3 Hz, an object's motion must be changing on timescales of less than 0.3 seconds. In particular, 

I find that objects colliding with the interferometer buildings produce much stronger signals than 

objects simply passing by the buildings. As an example, tumbleweeds at the Hanford LIGO facility 

will be a steady source of spurious signals in advanced detectors if they are allowed to collide with 

the end stations. Preventing such signals requires shielding a region of a few tens of meters around 

the end station, screening any wind-borne debris that masses more than a few hundred grammes. 

Sec. 5.6 presents some concluding remarks, including recommendations to the gravitational-wave 

experimental groups and possible directions for further research. 

5.2 Atmospheric pressure waves 

Pressure perturbations are the only type of atmospheric gravity gradient noise considered by Saul

son [73] . The derivation in this section gives largely the same result as his. 

Consider a plane pressure wave with frequency f propagating through a homogeneous airspace 

at some sound speed c. If the fractional pressure change 8p/p is small, it will induce an adiabatic 

density change 8p/ p = 8ph p, where 'Y ~ 1.4 is the ratio of heat capacities at constant pressure and 

constant temperature for air at normal temperatures. The gravitational acceleration produced by 
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this wave in the direction of propagation ez is: 

I Gz8p 2Gpc 
9z(t) = - 3 dV = -

1
8p(t+1/4/), 

r 'YP 
(5.1) 

where p ~ l.3kg m- 3 and p ~ 105 N m- 2 are the ambient air density and pressure, and 8p(t) is 

the pressure perturbation measured at the same point as the acceleration is being measured. By 

symmetry, there is no acceleration transverse to the wave. 

Now consider sound waves in the vicinity of the interferometer. First, since the interferometer is 

only sensitive to motions of the test mass parallel to the arms, the gravitational acceleration is re

duced by a factor cos 8, where 8 is the angle between the propagation direction and the interferometer 

arm. 

Second, the interferometer test mass is inside a building, which can in principle be used to 

suppress noise within a distance rmin of the test mass. Roughly speaking, this results in a high

frequency cutoff factor C{27r /rmin/c), where the function C(x) depends on the precise shape of the 

building, the manner in which it reflects sound waves, and many other factors, but is normally close 

to 1 for x .:S 1. For instance, if one simply removes from the volume integral in Eq. {5.1) a cylinder 

with length and diameter both 2rmin aligned with the z-axis, then C(x) ,...., 1 for x .:S 1, but oscillates 

with an amplitude of,...., 0.3 for x .2: 1. This function is shown in Fig. 5.1. The constant-amplitude 

oscillations of C(x) for large x reflect the assumption that the sound wave has a coherence length 

much longer than the building size, so the field between the two ends of the excluded cylinder is 

generated almost entirely by the first half-wavelength beyond each cap. Realistically, the actual 

high-frequency behaviour of C{x) will depend on how the sound waves bend and scatter around the 

building; however, this should not change the order of magnitude of C(x). The behaviour shown in 

Fig. 5.1 is therefore probably a good estimate of the true cutoff function for x .:S 1, and a reasonable 

order of magnitude estimate for x .2: 1. For the LIGO end stations, rmin is of order 5 metres, giving 

x,...., f /{lOHz); the factor will not be too far off for the frequencies of greatest interest. More precise 

estimates would depend on the specific architectural details of a particular facility. 

Third, the interferometer is on the ground, not in homogeneous empty space. For simplicity I 

assume that the waves are almost entirely reflected off the ground; I will justify this assumption in 

Sec. 5.2.1. In this case the gravity gradient in directions parallel to the ground contributed by the 

reflected wavefront is the same as if the wavefront were extended below ground, while the pressure 

perturbations measured by detectors near the ground {much less than a wavelength) will be doubled. 

The acceleration experienced by an interferometer test mass is therefore: 

Gpc 
9z(t) = -

1
cos(8)C{27r/rmin/c)8p{t+ 1/4/) . 

'YP 
{5.2) 

The gravitational wave signal h{t) in the interferometer is related to the acceleration of one of the 
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Figure 5.1: Plot of the factor C(x) indicating the reduction in sonic gravity gradient noise due to 
setting the density perturbations to zero within a cylinder of diameter and length 2rmin centered 
on the test mass (and aligned with the wave), versus x = 27rrmin/>. where>. is the wavelength. 
The oscillatory behaviour above x = 1 results from the ends of the cylinder coming in and out of 
phase with each other. A more accurate model of the scattering of sound waves off an interferometer 
end station building would modify the behaviour of C(x) for x > 1, but probably not change its 
magnitude significantly. 
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test masses by ii(t) = g(t)/L, or in frequency space h(J) = (27rf) - 2g(J)/L, where Lis the length of 

the interferometer arm. Thus: 

- Gpc .-
h(J) = 

4
7r2-ypLf3 cos(O)C(27rfrmin/c)i6p(J) . (5.3) 

Assuming stationary noise, the one-sided spectral density S1i(lfl) is given by (h(J)h(J')*) = Sh(lfl)6(!

f') , where( ... ) denotes an expectation over all random phases of all plane wave modes contributing 

to the noise, and * denotes complex conjugation. Taking mode amplitudes and directions to be 

uncorrela ted , this gives: 

(5.4) 

where Sv(IJI) is the acoustic noise spectral density measured outside the building in the vicinity of 

a particular test mass. Since the two test masses in an arm are many wavelengths apart , their noise 

will be uncorrelated, and will thus add in noise power. Similarly, the noise from the two arms will 

add in power. (Actually this is a bit of an overestimate, since the noise in the motion of the test 

masses a t the corner station will be somewhat correlated.) Noting that (cos2 0) = 1/3, one finds 

that the total noise in the gravitational wave signal is: 

( )

2 4 
_ G pc 1 (i) 2 (i) 

S1i(lfl) - 42£ 316 2 L C(27r f rmin/c) Sv (I JI) , 
7r 'Y p i=l 

(5.5) 

where i denotes a particular test mass in the interferometer, r~ln is the dead air radius about the 

ith test mass, and S~i) (If I) is the acoustic noise spectrum measured outside the building enclosing 

that test mass . 

Infra.sound noise spectra should be taken at the actual interferometer sites, but one can make 

estimates based on typical terrestrial atmospheric noise. An empirical study (74) collected 256 power 

spectra of 1- 16 Hz infra.sound data from a rural forest 50km from New York City over a period of 

months, and found that the average noise spectrum SvU) was relatively flat at 6- 16 Hz, though 

with widely varying amplitude: 253 of the spectra had noise under ......, 100nbar2 /Hz, 50% under 

......, 300nbar2 /Hz, and 75% under......, 1000nbar2 /Hz. I use Eq. (5.5) to compute the corresponding noise 

in the LIGO detector. Assuming that the end masses (with rmin ......, 5m) dominate the contribution to 

the gravity gradient noise and contribute equally, the noise in the gravitational-wave signal around 

10 Hz is: 

Sh(IJI)......, (6 x 10- 48 Hz- 1
) ( -

1- ) -
6 

( Sv(IJI) ) C(J /lOHz) . (5.6) 
lOHz 1 000nbar2 /Hz 

The results are plotted in Fig. 5.2, using infra.sound power spectra read off of Fig. 3 of (74). 

Even the third-quartile power spectrum is between two and three orders of magnitude below 
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Figure 5.2: Plot of dimensionless strain noise J f S1i(/) versus frequency f for infrasonic atmospheric 
gravity gradients. The solid curve is the projected noise floor for advanced LIGO detectors; the 
dotted curves are the first, second, and third quartiles of noise produced by gravity gradients from 
ambient pressure waves. Data for the infrasonic noise power are taken from Fig. 3 of (74] . Clearly 
the pressure waves would not contribute significantly to LIGO noise in any frequency range. 
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the expected noise floor of 2 x 10- 45Hz-1 at 10 Hz projected for advanced LIGO interferometers. 

Thus ambient infrasound is probably a negligible effect for determining the noise floor for most 

interferometric gravitational-wave detectors. Nonetheless the issue cannot be completely resolved 

without infrasonic noise data from the actual interferometer sites. 

5.2.1 Ground absorption 

In the derivation above I treated the sound waves as being reflected off the ground. Now consider 

what happens if a sound wave is absorbed by the ground. The energy flux in a travelling compression 

wave is G312 p- 112((8x/x) 2 ), where G is the compression modulus of the medium (Gair = /'Pair), and 

((8x/x) 2
) is the average squared dimensionless compression factor over a wave cycle. The gravity 

gradient noise induced by such a wave goes as c2 ((8p) 2 ), where ((8p)2 )....., p((8x/x)2 ), and c = VCTP 
is the wave speed in that medium. Therefore, if a sound wave is completely absorbed by the ground, 

the resulting ground motions will produce gravity gradient noise contributions in the ratio: 

/1 Pground ground S (ground) ( ) 3/2 ( G ) - 1/2 

siair) = -p::;- Gair . 
(5.7) 

Now for Gair = /'Pair = 1.4 x 105N m- 2
, Gground ....., 3 x 108 N rn- 2

, Pair = 1.3kgm- 3
, Pground ....., 

1.8 x 103kg rn- 3 , the ratio turns out to be of order 103 ; that is, if sound waves were completely 

absorbed by the ground, the resulting ground vibrations would produce gravity gradient noise levels 

about 1000 times greater than the atmospheric gravity gradients. However, it was shown in [8) 

that seismic gravity gradients are only just large enough to worry about. So the only way that 

atmospheric gravity gradients can be larger or of the same order as seismic gravity gradients is if 

the waves are mostly reflected off of the ground. This was one of the assumptions used in deriving 

Eq. (5.2). 

5.3 Atmospheric temperature perturbations 

The largest small-scale atmospheric density perturbations are caused not by pressure waves but 

by temperature perturbations. As heat is transported up through a convective atmospheric layer, 

convective turbulence mixes pockets of warm and cool air to form temperature perturbations on all 

lengthscales down to a few millimetres. On the timescales of interest (less than a second) these per

turbations are effectively "frozen" into the airmass, while pressure differences disperse rapidly in the 

form of sound waves. Perturbations in the air density p ex: p/T are therefore casued predominantly 

by the temperature perturbations, which are typically several orders of magnitude larger than the 

pressure perturbations. Although they are frozen into the airmass, these temperature perturbations 

can cause rapid time-varying density fluctuations 8p = - p8T/T as the wind carries them past a 
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Figure 5.3: Schematic of a pocket of air with temperature perturbation 6.T over a lengthscale l, 
being advected past a test mass k along a streamline S. The pocket has an instantaneous velocity 
v(t) and position r (t) relative to the test mass, and x(t) is the projection of r(t) onto the axis of the 
interferometer arm. { S} denotes a reference plane intersecting orthogonally with all streamlines S. 

point in space. This is the primary source of "seeing" noise that affects optical astronomy. 

The appendix to this chapter gives a rigorous mathematical derivation of the gravity gradient 

noise spectrum due to these temperature perturbations. This section gives a qualitative derivation 

that reproduces the final result to order of magnitude. 

The gravity gradient signal at some frequency f is casued by pockets of warm or cool air with 

some lengthscale l being advected past the interferometer test mass at a speed v, where l ,....., v /27r f. 
Consider a single such pocket of air with a temperature perturbation fJT away from the ambient 

temperature T . The gravitational acceleration produced in the instrument as a function of time t 

is 9x(t) = Gpl3(fJT/T)x(t)r- 3 (t), where pis the ambient air density, r(t) is the distance of the air 

pocket from the test mass as it is blown past, and x(t) is this distance projected onto the axis of the 

interferometer arm. This geometry is sketched in Fig. 5.3. 

Now in general, the noise power spectral density in any quantity a due to a background of 

independent, uncorrelated events is Sa(IJI) = (2/ 6.t)la(f)l2
, where a(!) is the Fourier spectrum 

from a single event and 6.t is the spacing between events. Assuming uncorrelated pockets of air, then 

independent pockets of air arrive along any given streamline at intervals 6.t ,....., l/v, and streamlines 

separated by more than l add noise incoherently (i.e., add linearly in power). This gives the following 

noise spectrum: 

Sg(lfl),....., 2l { dA (Gp)2 fJT2(l )IGs(f)l2, 
v } {S} l 2 T 

(5.8) 
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where J{ S} denotes an integral over a plane crossing all streamlines S, and Gs(!) is the Fourier 

transform of the function G(t) = x(t) /r3(t) taken along a given streamline. The quantity c5T2(l) 

is the average squared temperature difference between points a distance l a.pa.rt. Turbulent mixing 

theory, as well as actual micrometeorologica.l measurements, predict a power-law behaviour for small 

separations: c5T2 (l) ,...., c}lP , where p is typically 2/3. This applies for horizontal separations l up 

to of order 50 times the height of a given air pocket above the ground (75]. For streamlines more 

than a metre or so above ground level, then, this behaviour for c5T2 should be good out to distances 

z,...., 50m, corresponding to frequencies .2: 0.2Hz(v/10ms-1) . 

Eq. (5.8) gives the gravity gradient noise on a given test mass in the interferometer. Denoting the 

test masses by the index k = 1 ... 4, and assuming that ea.ch test mass contributes independently to 

the noise in the gravitational-wave signal h, one has Sll(l/I) = (27r / )- 4 L - 2 L:k S9 (1fl). Combining 

this with Eq. (5.8) and the relation l ,...., v /27r f yields: 

(5.9) 

The more rigorous analysis in the appendix (Sec. 5. 7) gives an expression with roughly the same 

form, but covers the factors of order unity, and also accounts for the fa.ct that wind speed can vary 

along a streamline and between streamlines. The more accurate formula is: 

Sh(IJI) = 27f2 (~;) 
2 

c}(27r n -(p+7) sin(p7f /2)f(p + 2) L J Fs,k(J)•{; S,k(f)w dA ' (5.10) 
k {S} 

where w is the wind speed of the streamline as it crosses the plane of integration, and Fs,k(J) and 

Gs,k(J) are Fourier transforms of functions Fs,k(t) and Gs,k(t) describing the motion of a point 

along a streamline S pa.st a test mass k, of the form: 

F(t) = x(t) ( )P+3 
r(t)3vt , (5.11) 

x(t) 
r(t)3 · 

G(t) (5.12) 

It is worth noting that the frequency structure of S1i(l/I) depends on the time behaviour of the 

functions x(t) and r(t) describing the position of a point on a streamline relative to a test mass, 

which can be some distance a.way. The minimum distance Tmin from the test mass to the passing 

air is thus an additional important scale in the problem: if x(t) and r(t) change significantly only 

on timescales,...., r·m111 /v, then the noise spectrum will be cut off at frequencies .2: v/27rrrnin· 

By comparison, the temperature noise spectrum Sr( lfl) measured at a point depends only on the 

local properties of the atmosphere at that point. Applying similar order-of-magnitude arguments, 

one can write Sr(lfl) ,...., (2l/v)ctlPIH(J)l2 , where H(t) ,...., 1 for !ti ;s l/v and 0 otherwise. At high 
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Figure 5.4: Schematic of a uniform airflow streamline passing an interferometer corner station. () 
is the angle between the airflow and the axis of the interferometer arm, r0 is the distance from the 
test mass to the streamline at closest approach, r0 cos 'I/; is the projection of this distance onto the 
ground, and v =constant is the velocity of the airflow. 

frequencies 2: 0.2Hz(v/10ms- 1) the system involves only one lengthscale l, giving the spectrum a 

power-law dependence: 

(5.13) 

This is the same, to order of magnitude, as the exact result given in Eq. (5.39). 

5.3.1 Uniform airflow 

The gravity gradient noise is easy to compute from Eq. (5.10) for the case of uniform airflow parallel 

to the ground with some constant velocity v . Placing the reference plane orthogonal to v and passing 

through the test mass, the equations of motion for a given streamline past the test mass become 

quite simple: v(t) = w = v, x(t) = vtcosB+r0 sinBcos'I/;, r(t) = (r~ +v2 t 2
)

112
, where r0 is the 

distance from the test mass to the nearest point on the streamline, and r0 cos 'I/; is the projection of 

this distance onto the ground. The geometry of the airflow is shown in Fig. 5.4. It is easy to show 

that: 

G(f) 

F(f) 

= -
47rf [i cos() Ko(27r fro/v) +sin() cos 'I/; K1 (27r f ro/v )] 
v 

= vP+3{;(J). 

(5.14) 

(5.15) 

I perform the integral over the above-ground half of the reference plane, out from some radius 1'min 

that is roughly the closest distance that the outside air can approach the test mass. This gives a 
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noise contribution from a single test mass equal to: 

87r2 cos(7r(p- l)/2)r(p + 2) ( G~tn r c} (
2
; f) P (27r/) - 5 

x { cos2 B [K5(x) - Kf (x)] + ~ sin2 B [Kf (x) - Ko(x)K2(x)]} , (5.16) 

where x = 271' frmin/v. 

For typical values v,...., lOm/s and rmin,...., 5m, at frequencies above 10 Hz or so, one has x,...., 30 or 

more, well into the exponentially damped regime of the Bessel functions. Even for gale-force winds of 

30m/s or so, the argument x of the Bessel functions will still be of order 10 or more. The asymptotic 

expansions of Ko , Ki, and K 2 give K3(x) - Kf(x) ,...., K[(x) - Ko(x)Ki (x) ,...., 7re- 2z /(2x2). Also, 

I note that the total noise will be dominated by the contribution from the two end stations, which 

have smaller rmin than the corner station. So the total noise in the interferometer for uniform airflow 

is: 

(5.17) 

I consider "typical" values of p = 2/3, p = 1.3kgm-3 , T = 300K, L = 4 OOOm, and rmin = 5m. The 

parameters v and c} can vary on a minute-by-minute basis, and should really be measured at the 

site of a given interferometer. However, c} ,...., 0.2K2 m- 2/ 3 is a typical daytime peak temperature 

fluctuation index [76], and v ,...., 20m/s might be typical of a fairly windy day. At frequencies around 

10 Hz, this gives a noise spectrum of: 

(5.18) 

The two dotted lines in Fig. 5. 7 show the gravity gradient noise spectra computed from Eq. (5.18) 

for wind speeds of lOm/s and 30m/s. 

Clearly the exponential cutoff makes this a negligible source of noise for LIGO or similar detectors. 

Physically this cutoff arises from the fact that the gravity from a particular temperature perturbation 

passing near the end station will affect the test mass coherently over the second or so that it takes to 

travel the width of the end station. Thus, even though the temperature noise spectrum has a high

frequency power law tail (reflecting the fact that temperature perturbations exist on all lengthscales), 

the gravity gradient signal will have this much sharper exponentially cut-off tail. 

5.3.2 Potential flow near the end station 

As described above, uniform airflow is not likely to produce much atmospheric gravity gradient noise 

in the pass-band of interferometric detectors, since the shortest timescale over which the gradients 
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Figure 5.5: Schematic of the airflow streamlines around the corner of an end station, assuming 
an incompressible vorticity-free flow. The dot ted lines are the streamlines, r min is the minimum 
distance that the airflow can approach the test mass, R m is the scale distance at which the flow 
velocity v approaches the free-streaming speed V , and X , Y , and R are coordinates used to describe 
the velocity field. 

change is of order the wind crossing time of the interferometer buildings. However, if an air pocket 

could be made to accelerate over shorter timescales, it might produce a stronger gravity gradient 

signal at high frequencies. 

One possibility is the acceleration of the air as it is forced up and around the wall of an end 

station: streamlines that approach the ground-wall corner of the end station can have curvature 

scales much shorter than the building size. Treating the flow as incompressible and vorticity-free, 

the resulting velocity field near the corner is (p. 27 of [77]) : 

V z = - 2AX , V z = 2AZ, (5.19) 

where A= v /2R is a constant, and R , X , and Z are measured from the corner. This approximation 

is clearly only good near the corner, since it gives velocity increasing monotonically with radius; one 

would expect v to approach the free-streaming airspeed V at a distances Rm of order the building 

height. Fig. 5.5 shows a schematic of the airflow near the corner. 

It is clear from Eq. (5.19) that, although the streamlines are sharply curved near the corner of the 

end station, the advection speed is smaller in direct proportion. The shortest timescale over which 

the motion can change is of order Rm/ V for all streamlines. Thus the streamlines close to the corner 
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will contribute no more high-frequency noise than the streamlines further out, at distances of order 

Rm, and the spectrum should not differ greatly from the one for uniform flow, Eqs. (5.17), (5.18). 

5.3.3 Vortices 

Perhaps the most serious contenders for high-frequency atmospheric gravity gradient noise are cir

culating vorticies of air near the end stations. This is somewhat stretching the assumptions of the 

formalism I have established, since I had previously separated the effects of the homogeneous tur

bulence (which establishes the temperature perturbations on various lengthscales), and wind flow 

(which carries these perturbations past the instrument). However, the results in this section are 

only expected to be good to order of magnitude anyway, in the absence of detailed hydrodynamic 

analysis of airflow past a particular interferometer building. I therefore apply the above formalism 

to a simple model for a turbulent-like flow past an interferometer end station. 

For simplicity, I specialize to airflow along the axis of an interferometer arm, since these give the 

largest gravitational accelerations. A simple model for the turbulent flow is to take a uniform flow 

and then add a cycloidal motion to it. This gives x(t) ""vt - Rsin(vt/R), z(t) ""ro - Rcos(vt/R) , 

r(t) = Jz2 (t) + x2 (t) , where R is the radius of the cycloidal motion, and ro ""Tmin is the distance 

from the test mass to the unperturbed streamline. I treat the speed v along the streamline as a 

constant. If R is also a constant, then one would expect the Fourier transform of G(t) = x(t)/r3 (t) 

(Eq. (5.12)) to have a spike at frequency f = v/27rR, with a width oforder,...., v/ro. However, to give a 

somewhat more realistic behaviour for R, I treat it as growing from zero at the leading edge of the end 

station to some scale value Ro over the half-length ,...., rmin of the end station: R(t) = RoJvt/rmin · 

The square-root dependence mimics the less-than-linear growth of the thickness of a boundary layer. 

Although quite crude, this model covers the essential features of a turbulent flow past the building: 

a uniform translation, accompanied by circulating motions over a range of radii with a scale set by 

Ro, with both the uniform flow rate and the circulation speed set by the free-streaming airspeed v . 

A typical streamline of this type is shown in Fig. 5.6. 

The Fourier transform of G(t) is too complicated to perform analytically, but is simple enough to 

compute numerically using a fast Fourier transform. The resulting G(/) has the usual exponential 

cutoff with frequency scale v/27rrmini as for a smooth streamline, but then rises to a second peak 

value of ,...., ( 4/v) J R&/r~in at a frequency f "" 0.06v /Ro and decreases from there as 1- 3 . This 

high-frequency tail is the power law that one would expect from the cusps on the bottom of the 

cycloid. Since I treat v as constant, F(f) = v11+3G(J). The cross-sectional area of streamlines 

that contribute significantly around this peak frequency is of order ,...., 2rm1nRo· Plugging these into 
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Figure 5.6: Schematic of a vortex-like streamlines across the top of an end station. The quantity 
rmin is the minimum distance that the airflow can approach the test mass, and Ro is the typical 
radius of circulation at this distance. 

Eq. (5.10) one gets a noise spectral density of 

(5.20) 

at the peak frequency off ,..., 0.06v /Ro , where I have assumed p = 2/3. 

For wind speeds around lOm/s, a cycloid radius Ro ,..., 0.06m(v/10m/s) puts the noise peak at 

the 10 Hz seismic noise wall for advanced LIGO detectors. The atmospheric gravitational noise 

contribution from a single end station is then: 

-49 - 1 C7' V Tmin -
( 

2 ) ( ) 20/3 4 
S11(max) ,..., (1.3 x 10 Hz ) 0.2Km-2/3 IOm/s ( 5m ) (5.21) 

This is over five orders of magnitude below the expected advanced LIGO noise floor of 2x10-45 Hz- 1 

at 10 Hz. Gale-force winds (v ,..., 30m/s) will bring this up to 2 x 10- 46Hz- 1
, still an order of 

magnitude below the advanced LIGO noise curve. The dashed lines in Fig. 5.7 show the actual data 

from the numerical Fourier transforms for these two cases. 

Since even the worst-case estimate is still an order of magnitude below the advanced LIGO noise 

floor (as well as the seismic gravity gradient noise floor in [8]), it seems unlikely that turbulent 

vortices will be sufficient to raise the atmospheric gravitational noise to significant levels, even given 

the approximations made in this analysis. However , to settle this matter definitively would require 

a much more sophisticated numerical analysis of the temperature perturbations and airflow past the 

buildings of a particular facility. 
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F igure 5. 7: Plot of dimensionless noise amplitude J f Sh(!) versus frequency f. The solid line is the 
projected noise floor for advanced LIGO detectors. The two dotted lines are the gravity gradient noise 
levels caused by temperature perturbations advected along smooth streamlines at lOm/s (left curve) 
and 30m/s (right curve). The dashed lines are the noise levels caused by temperature perturbations 
advected along cycloidal vortices, as described in Sec. 5.3.3, at lOm/s (left curve) and 30m/s (right 
curve); in each case the size scales R.o of the vortices have been tuned to maximize the noise at 
10 Hz. Even given these fine-tunings, the gravity gradient noise curve in the worst-case scenario is 
still nearly an order of magnitude (in amplitude) below the advanced LIGO sensitivity. 



119 

5.4 Shockwaves 

Although atmospheric pressure waves are unlikely to be a significant source of gravity gradient noise 

in interferometric gravitational-wave detectors, the sudden pressure changes caused by atmospheric 

shockwaves could potentially produce detectable transient signals in the detector, if such shocks 

occur in the vicinity of the detectors. Shocks arc specifically a matter of concern because they can 

produce significant pressure changes over timescales less than 0.1 s, corresponding to the lower end 

of the pass-bands of most interferometric detectors. 

Consider a shock that produces a sudden jump in air pressure in the vicinity of one of the 

interferometer test masses: 6p(t) = 6p0(t - to). It is a simple matter to take the Fourier transform 

and apply Eq. (5.3) to obtain: 

-( ) Gpc 6.p . 2tr/to ( ) ( / ) h f = 87r3"(L/4 Pie cos () C 27r fr min c . (5.22) 

Here, () is the angle between the interferometer arm and the normal to the shock front. If the shock 

has a finite rise time 6.t, we can mimic this analytically by convolving in the time domain with a 

Gaussian of width a ,...., 6.t. In the frequency domain this multiplies our amplitude by a Gaussian of 

width a ,...., 1/ 6.t, giving an exponential cutoff at frequencies above 1/ 6.t. Typical shocks from, for 

instance, supersonic objects have rise times on the order of a few milliseconds (78] , corresponding 

to cutoff frequencies of a few hundred Hz. However, one expects the dominant contribution of the 

signal to come from much lower frequencies, before the building-size cutoff factor C kicks in. 

Shocks are transient phenomena that will produce signals in the detector, rather than raising 

the noise floor. What one would like to know is what signal-to-noise ratio the shock will produce. In 

general this depends on what filters one is using to search for signals, and how well these filters overlap 

with the signal produced by a shock. However, the signal from a shock is likely to overlap quite well 

with templates designed to search for generic impulsive phenomena; such templates are likely to be 

used in advanced interferometers as control over nonstationary instrumental noise improves. Thus 

it is reasonable to consider the signal-to-noise ratio p that a matched filter would give: 

P2 = ( 'o 4h(f)h*(f ) df = l oo l2/h(f)l2 din J. 
Jo S,.(f) -oo f S"(J) 

(5.23) 

This shows, roughly speaking, that the relative magnitude of the dimensionless signal amplitude 

21/ h(J)I and the dimensionless noise amplitude J f S,.(f) over a logarithmic frequency interval gives 

a good indication of the signal-to-noise ratio produced in the detector. 
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5.4.1 Sonic booms 

Sonic booms caused by supersonic bodies are one example of atmospheric shocks that might affect 

interferometric gravitational-wave detectors. Direct shockwaves from a supersonic aircraft will typ

ically hit the ground in a "carpet" about 15- 20 km wide under the aircraft's flight path. Outside 

this carpet, the temperature gradient near the ground will completely reflect the shockwave before 

it touches down. However, shockwaves will also reflect downward off of the temperature inversion 

in the stratosphere and thermosphere, forming secondary and higher-order "carpets" out to many 

hundreds of kilometres. (79]. The presence or absence of these higher-order waves can depend quite 

sensitively on conditions in the upper atmosphere. 

A detailed prediction of these effects is beyond the scope of this paper. However, to give an 

indication of their potential seriousness, I will consider what would happen if a supersonic aircraft 

were actually to overfly the instrument at a height of several kilometres. 

The characteristic profile of a sonic boom is a symmetric N-wave, consisting of a shock that 

increases the pressure by an amount t::.p, followed by a smooth decrease in pressure of 2t::.p over 

a time t::.t, followed by a second rising shock t::.p to restore the ambient pressure. According to 

Eq. (9.78) of (80], the strength of the shocks is: 

(5.24) 

where 'Y is the adiabatic coefficient of air (1.4 at normal temperatures), M is the Mach number of 

the aircraft (its speed divided by the sound speed), tt is a. dimensionless form factor that depends 

on the shape of the aircraft (typically around 1), l is the length of the aircraft, 8 is the ratio of 

the aircraft's typical thickness to its length, and r is the closest distance that the aircraft came to 

the point of measurement. Between the two shocks, the rate of change of pressure in a direction ex 

parallel to the line of flight is given, in Eq. (9.80) of [80], as: 

1 dp 'Y (M2 - 1)112 1 
p dx ~ 'Y + 1 M 2 r · 

(5.25) 

The shock fronts move outward at the sound speed c in the direction orthogonal to their surface, 

while the entire cone travels in the ex direction along with the aircraft at a speed Mc. The total 

change of pressure between the two shocks is 2t::.p. From these facts and Eqs. (5.24) and (5.25), one 

can show that the time between the two shocks is: 

M t3/4rl/4 
t::.t ~ 25/4('Y + 1)1/2 tt8---

(M2 - 1)3/s c 
(5.26) 

On frequency scales higher than 1/ t::.t (typically a few Hz for a supersonic aircraft a few kilometres 
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away), the sonic boom looks like simple Heaviside shocks, giving 8p(!) "'1/ f. At lower frequencies, 

though, the entire N-wave looks like the derivative of a 8-distribution, giving 8p(/) "' f. Performing 

the Fourier transform analytically and plugging into Eq. {5.3), one obtains: 

- _ Gpc 1 6.p . [sin{rr/6.t) ] 27ri/to 
h(!) - 4rr3 -yL / 4 p cos(O)C{2rrfrmin/c) rrf 6.t - cos(rrf 6.t) e , (5.27) 

where to is the time when the midpoint of the N-wave crosses the detector. As expected, the 

amplitude goes roughly as 1- 4
, except for frequencies less than 1/ 6.t, where it goes as 1- 1• 

Now let us plug in some typical numbers. The numbers G = 6.67 x 10- 11m3 kg- 1s- 2 , p = 
l.3kg m- 3 , -y = 1.4, c = 332m s-1, and L = 4000m can be treated as constant. A supersonic 

jet aircraft might have a length of l = lOm, a typical diameter of 8l = 2m, and be traveling at 

Mach M = 1.5 at a distance of r = lOkm or so. Let cos(} be 1 for an upper limit. Then 6.t "' 0.2s, 

and for frequencies f ~ lOHz the dimensionless signal amplitude is: 

- . - 19 2 1/8 ( 8 ) ( l ) 
3

/
4 

( r ) -3/4 ( J ) -
3 

21/h(f)I "'1.4 x 10 (M - 1) C(2rr/rmin/c) 0.2 lOm lOkm lOHz 

(5.28) 

This is three orders of magnitude above the expected noise floor of J f Sh(!) "' 1.4 x 10- 22 at 10 Hz 

for advanced LIGO interferometers! 

By contrast, consider a .30-calibre rifle bullet (l ~ 0.025m, 8 ~ 0.3) passing at Mach 3 within 

lOm of an interferometer test mass. (This stretches the assumption of a plane-wave shock front at 

the test mass, but the order of magnitude should be correct.) The bullet produces a much stronger 

double shock, but with a time interval 6.t "' 0.5ms, so 1/ Deltat"' 2kHz. The low-frequency tail of 

this signal will have dimensionless amplitude: 

21/ii(!)I 
- 23 Af2(Af2 - 1)- 5/8 ( 8 ) 3 ( l ) 9/4 

1.8 x 10 2.5 C(2rr/rmin/c) 0.3 0.025m 

r - 1/4 ( J ) - 1 

x (lorn) lOHz · {5.29) 

This is nearly an order of magnitude below the dimensionless noise amplitude in advanced LIGO, 

and therefore too small to be of any serious concern. 

Fig. 5.8 shows more complete gravity gradient signal spectra computed using Eq. (5.27) with 

the above parameters for a supersonic aircraft and rifle bullet. These arc plotted along with the 

anticipated dimensionless noise amplitude for advanced LIGO detectors. 

5.4.2 Vetoing shockwave signals 

While atmospheric shockwaves are a potential source of spurious signals in gravitational-wave de

tectors, they are easy to veto using environmental sensors. One need simply place infrasound mi-
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Figure 5.8: Plot comparing dimensionless signal strengths 21/ii f of gravity gradients from sonic 
booms with the dimensionless interferometer noise amplitude f Sh(!), as a function of frequency. 
The solid line is the projected noise amplitude for advanced LIGO detectors. The dotted line is the 
signal from a .30 calibre bullet travelling at Mach 3 within 10 m of the end station; the dashed line 
is the signal from a 10 m long aircraft travelling at Mach 1.5 at a distance of 10 km. The aircraft's 
sonic boom can produce a detectable gravity gradient signal. 
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crophones outside the buildings and test-mass vacuum enclosures. If these sensors detect a pressure 

change of more than a millibar over timescales of 50- 100 milliseconds, then one might expect spuri

ous signals with dimensionless amplitude of ....., 10-22 in the 10- 20 Hz frequency range. The stretch 

of data containing the potential spurion can then be discarded. 

Alternatively, if the same shock profile is detected in an array of at least three sound sensors, 

then one can determine the direction of propagation of the shock and predict the actual induced 

test-mass motions. The spurious signal could then be subtracted out of the data stream. This is a 

much trickier procedure, and would only be necessary in the unlikely event that significant amounts 

of data were being corrupted. 

In either case, it is clear that infrasound sensors will be important environmental monitors for 

advanced interferometric detectors. 

5.5 High-speed objects 

Another potential source of spurious signals in the interferometer is the gravity gradient caused by 

the motion of an individual massive object past the interferometer end station, or the collision of such 

an object with the end station. The latter is particularly serious, since the sudden deceleration of the 

object can produce a signal at high frequencies. The issue of human-generated gravity gradient noise 

has been addressed in (9), but there arc other sources outside the facility that must be considered, 

such as stray bullets and wind-borne debris. In particular, the Hanford LIGO facility is plagued by 

tumbleweeds, which can produce non-negligible gravity gradient signals. 

The general formula for the spurious gravitational-wave signal produced by a moving object is: 

- GM ( )() x(t) 2rri ft 

h(!) = 47r2Lf2 1- oo r 3(t) e dt, (5.30) 

where M is the mass of the object, r(t) is its distance from the test mass as a function of time, 

and x(t) is its distance from the end mass in the direction parallel to the interferometer arm. For 

an object travelling parallel to the ground in a straight line at speed v, Eq. (5.30) becomes (as in 

Eq. (5.14)) : 

h- (J) _ GM [}.,,. ( 27r J Tm in) () _ . T/ ( 27r f Tm in) . () ·'·] 2rri fto - L 2 f \.O cos i .n 1 sm cos 'I' e , v 7r v v 
(5.31) 

where () is the angle between the line of motion and the interferometer arm, rmin is the distance of 

closest approach between the object and tho test mass, t/J is the angle projecting this distance onto 

the ground, and t0 is the time of closest approach. K o and K1 are modified Bessel functions of the 

second kind of order 0 and 1, respectively. 

Under moderately windy conditions (wind speeds up to 15m/s or so), tumbleweeds at the Hanford 
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LIGO facility will bounce along the ground at 5- lOm/s. In stronger winds, the tumbleweeds become 

airborne, with speeds approaching the wind speed; they can fly right over the LIGO buildings, or 

impact with considerable force. The same may be true of wind-borne debris at other interferometer 

facilities. However, the value of rmin is usually at least 5m, so for frequencies above 10 Hz one 

has 2nfrmin/v 2: 10 even for very strong winds (v "'30m/s) . In this regime the Bessel functions 

are exponentially damped, so these objects will not produce significant gravity gradient signals 

simply by blowing past the instrument. A rifle bullet, on the other hand, might be moving around 

1 OOOm/s, putting us in the small-argument regime of the Bessel functions, where K 0 (x) "' - ln(x) 

and K 1 (x) "' x - 1 . Taking the most dangerous geometry () = n /2, 'lj; = 0, and assuming a bullet 

mass of around 5 grammes, this gives a dimensionless signal amplitude near 10 Hz of: 

(5.32) 

This gives a signal-to-noise ratio of about 1 at 10 Hz, a bit below the detectable threshold. In fact , 

even if one fine-tunes the bullet speed v, the largest signal-to-noise ratio that one can get at 10 Hz is 

about 2, for a speed of around 250m/s. Since events with signals less than about 5 times the noise 

will probably be ignored in any case, one can conclude that objects flying past a test mass are not 

likely to be serious sources spurious events. 

If an object does not pass smoothly by the interferometer but instead collides with an end station, 

the signal at "' 10 Hz can be large even for slow-moving objects: it is the deceleration time, not the 

end-station-crossing time, that sets the frequency scale of the signal. Suppose an object collides end

on with the end station at a speed v, coming to a stop within a distanced at constant acceleration. 

Let t = 0 denote the time that the object comes to rest. The motion of the object is then given by: 

{ 

Tmin - d - Vt 

r(t) = x(t) = rmin + (vt) 2 /4d 

Tmin 

t :5 -2d/v 

-2d/v ::; t::; 0 

t 2: 0 

(5.33) 

The Fourier transform of l/x2 (t) is tricky to do analytically, so I have relied on numerical fast Fourier 

transforms, and then made approximate analytic fits to the result. However, one can qualitatively 

predict the shape of the signal in frequency space. The function l/x2 (t) starts out near zero and 

then slowly rises over a timescale rmin/v to a value r~in• then quickly levels off at that value over 

a timescale d/v. So on frequency scales « v/rmin, l/x2 (t) looks like a step function, whose Fourier 

transform goes as 1/ f. On frequency scales 2: v/rmin but « v/d, one sees the deceleration as a 

cusp (discontinuous first derivative), giving a Fourier transform that goes as 1/ J2. On frequency 

scales 2: v / d, the deceleration appears smooth , but the onset of deceleration in sudden, giving a 
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1/ / 3 behaviour. The following gives a good fit to the numerical Fourier transform: 

I 
{oo e2;i/ t dt' "'_1_. [5.9(/rmin )+14 (/rmin ) 2 + 59 (/3r~ind)] - 1 

} _ 00 X (t) VTmon V V V 
(5.34) 

The two breakpoints separating the three branches are at frequencies Ji = 0.4v/rmin and h = 
0.24v/d. More precisely, since the deceleration occurs over a well-defined time 2d/v, the third branch 

of the Fourier transform is oscillatory with nodes every v /2d in frequency space; the functional fit 

in Eq. (5.34) is an envelope containing these oscillations. 

For a 5 g bullet striking an end station at 1 OOOm/s, the signal at 10 Hz is dominated by the 

low-frequency tail regardless of stopping distance. The dimensionless signal amplitude is then: 

21Jh(J)l rv 3 X 10- 22 (M) (l0Hz)
2 
(~)

2 

. 
5g f Tmon 

(5.35) 

The signal amplitude is about the same as for a passing bullet, although the dependence on f (and 

rmin and v) is different . For a tumbleweed or other wind-borne object, by contrast, the sudden 

deceleration can create significant high-frequency noise. A typical tumbleweed at Hanford has a 

mass of M = O.lkg and a diameter of 0.4m, and can be compressed by about half that amount 

(d = 0.2m). Larger weeds can be twice as large in diameter, putting their masses in the 0.5- lkg 

range (81]. For moderate to high wind speeds (v = 10-30m/s), the signal at frequencies above 10 Hz 

is dominated by the second branch of Eq. (5.34), giving a dimensionless signal amplitude of: 

21/h(J)l rv 5 x 10- 21 (!:!_) (-v-) (10Hz) 3 (~) 3 . 
lkg lOm/s f Tm in 

(5.36) 

Thus even a "typical" O.lkg weed at these speeds will produce a signal-to-noise ratio of around 

4 at 10 Hz in advanced LIGO interferometers, which is in danger of being interpreted as a real 

gravitational-wave event. In a more extreme case, a lkg tumbleweed blown airborne by a strong 

30m/s wind will produce a signal 100 times higher than the noise at 10 Hz, which is easily detectable. 

Fig. 5.9 shows the signal spectra for the objects discussed above, plotted against the dimensionless 

noise amplitude expected in advanced LIGO detectors. Since tumbleweeds are a potential source 

of spurious detectable events, one should consider ways to reduce the tumbleweed gravity gradient 

noise. Fortunately, the signal goes as r ;;;?
0

, so a simple fence preventing the weeds from approaching 

the end station should be sufficient. A fence 30 m out from the end station will reduce the signal

to-noise ratio to 1 for tumbleweed masses up to lkg and speeds up to 30m/s, reducing the risk of 

spurious events. 
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Figure 5.9: Plot comparing dimensionless signal strengths 21/ h(f) of ravity gradients from airborne 
objects with the dimensionless interferometer noise amplitude f Sh(!) , as a function of frequency. 
The solid line is the projected noise amplitude for advanced LIGO detectors. The short-dashed line 
is the signal from a .30 calibre bullet passing next to the interferometer end station at 1000 m/s, 
while the dotted line is the signal from that same bullet colliding with the end station. The long
dashed line is the signal from a large 1 kg tumbleweed passing next to the end station at 30 m/s, 
while the dot-dashed line is the signal from that same tumbleweed colliding with the end station, 
assuming that it compresses by 20 cm on impact. The tumbleweed mass and speed are both near the 
upper end of the expected range, representing the greatest danger of spurious signals in the detector; 
evidently these tumbleweed signals can be detected quite easily by advanced LIGO detectors. 
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5.6 Conclusions 

T his paper has studied two sources of background gravity gradient noise, from infrasonic atmospheric 

pressure waves and from wind-advected temperature per turbations, in order to determine whether 

they constitute a limi ting noise floor for interferometric gravitational-wave detectors- in particular, 

for the "advanced" LIGO detectors projected in [4) . The paper also analyzed two sources of grav

ity gradient signals, from transient atmospheric shockwaves and from massive airborne bodies, to 

determine whether they would constitute detectable spurious events in these interferometers. The 

following summarizes the results and suggests possible further work that may need to be done. 

Current estimates suggest that infrasonic pressure waves will not be a significant source of gravity 

gradient noise, being over two orders of magnitude below the advanced LIGO noise floor at 10 Hz. 

Nonetheless, these estimates are not based on actual noise measurements at an interferometer site, 

so infrasound measurements at these sites are recommended to confirm them. F\irther empirical 

studies might also analyze the specific effects of building shapes and of infrasound coherence lengths 

on the noise spectrum, although these refinements would likely only serve to reduce noise estimates 

above 15 Hz or so. 

Wind-advected temperature perturbations, although the dominant source of atmospheric density 

fluctuations, do not produce significant high-frequency gravity gradient noise, due to the long times 

that any particular pocket of warm or cool air spends in the vicinity of an interferometer test mass. 

A possible exception is when the airflow forms vortices around the interferometer buildings, since 

this will produce a noise spectrum peaked around the typical vortex circulation frequencies near 

the test mass. The current crude analysis of these effects suggests that the noise is still an order 

of magnitude below the advanced LIGO noise floor at 10 Hz even in the worst-case scenarios, but 

the model could be improved significantly. Numerical models of the airflow and of temperature 

per turbations near an interferometer building may be required to settle this issue definitively. 

Gravity gradients from atmospheric shockwaves are potentially serious sources of spurious sig

nals in interferometric gravitational-wave detectors. For instance, the sonic boom from a supersonic 

aircraft overflying an advanced LIGO detector could produce signal-to-noise ratios of several hun

dred. Although such overflights are expected to be rare or nonexistent, they point out the potential 

seriousness of shocks from weaker or more distant sources, even if the signals are several orders of 

magnitude smaller . It is therefore strongly recommended that advanced interferometric detectors 

include infrasonic detectors as environmental monitors. Such sensors could easily be employed to 

veto spurious atmospheric gravity-gradient events. 

Gravity gradients from wind-borne objects such as tumbleweeds are another possible source 

of spurious events in gravita tional-wave detectors, if these objects are allowed to collide with the 

buildings housing the interferometers. Fences or other structures should be used to keep these 
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objects at least 30 metres from the test masses, in order to eliminate the risk of spurious signals. 

Obviously the number of things that can affect interferometric detectors through gravity gradient 

forces is immense; I have considered here only the few sources that I considered the most worrisome. 

I encourage other researchers to consider the implications of this often-neglected effect. 

5.7 Appendix: The temperature noise spectrum 

This appendix presents a more rigorous mathematical derivation of Eq. (5.10) used in Sec. 5.3. 

Consider a time-varying field of temperature perturbations oT(r, t) about some average tem

perature T. This produces a gravitational perturbation 9x(t) = J dV Gpxr-3 (8T /T), where p is 

the average air density, and the x-axis is along the interferometer arm. The spectral density of 

gravity gradient noise S9 (1fl) is given by twice the Fourier transform of the gravity autocorrelation 

C9 (r) = (g(t)g(t + r)). Thus: 

Sa(lfl) = 2 ( c; r 1_: dr I dV I dV' r3~;:)3 (8T(r, t)oT(r', t + r))e2
1rifr . (5.37) 

The temperature noise measured at a point ro, on the other hand, is given simply by: 

Sr(lfl) = 1_: dr(oT(ro, t)oT(r0 , t + r))e2
"ifr . (5.38) 

On sufficiently small scales, the temperature perturbations in the Earth's turbulent boundary 

layer can be treated as homogeneous and isotropic. The expected squared temperature difference 

between two points is then a function only of their separation: ([8T(r) - 8T(r + ~r)]2) = Dr( ll ~rll). 

The function Dr(~r) is called the temperature structure function of the atmosphere, and for small 

~r reduces to a power law Dr(r) = 4~rP. If a wind with speed v blows these perturbations past a 

measuring station, the temperature autocorrelation is (8T(r0 , t)oT(ro, t + r)) = O'f - (1/2)c}(vr) 71 

for small r, where O'f is the mean squared temperature fluctuation. This results in a high-frequency 

power law tail: 

Sr(lfl) = c~v71 (27r j)-(71+1>r(p + 1) sin(p7r /2) . (5.39) 

Turbulent mixing theory, as well as micrometeorological measurements of Sr(lfl), show that the 

value of p is normally 2/3, characteristic of a type of turbulence known as Kolmogorov turbulence. 

See, for example, [75] for discussion of this type of turbulent mixing, also [76] and references therein. 

We are interested in S9(1fl), which is somewhat trickier to calculate than Sr(lfl), since it involves 

a correlation between points separated in space as well as time. However, chaotic turbulence will 

almost certainly destroy high-frequency correlations between widely separated points, so the high

frequency behaviour of S9 (lfl) will come from correlations between nearby points. That is, the 
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high-frequency support of (ciT(r, t)ciT(r' , t + T)) will come from those points r' at time t + T whose 

fluid elements were near r at time t. 

Consider two fluid elements moving along paths S and S' passing through r and r', respectively. 

This is shown schematically in Fig. 5.10. Let r0 be the distance from r to the nearest point on S ' , 

and let To be the time it would take a pocket of air at r' to be carried to this point on S'. In order for 

these points r and r' to contribute to the high-frequency component of the spectrum, the distance 

r0 must be fairly small, of the order v/ f where v is the wind speed past r. I treat the streamlines 

as relatively straight over these scales, in which case the temperature perturbations at (r, t) and 

(r' , t + T) correspond to physical pockets of air separated by a distance JrZ + v(r)2 (T - To)2, for T 

near To. Assuming that the T-dependence of the correlation function is due entirely to this advection, 

the correlation function can be written explicitly as: 

c2 
/2 

(ciT(r, t)ciT(r', t + T)) =a} - ; [r5 + v2(T - To )2Y , (5.40) 

where typically p ~ 2/3. 

This term contains the entire T-dependence of the gravity perturbation in Eq. (5.37), so the first 

integral I do is the Fourier integral over T . This integral has the form J~00 (f32 + x2 ) 11
-

1l 2 e iax dx = 
27r-112(2/3/a) 11 cos(7r11)r(11 + 1/2)K _11 (a/3) . Formally the integral diverges for 11 ~ 1/2, but the 

closed-form expression remains approximately correct for large a provided the integrand is cut off 

smoothly for large x » 1/a. Physically this corresponds to the fact that a smooth, large-scale cutoff 

of the temperature correlations in Eq. (5.40) will not affect the high-frequency component of the 

temperature noise. For horizontal winds near the ground the spatial correlation function is cut off 

on horizontal distance scales of ,...., 50 times the fluid elements' altitude z above ground, giving a 

low-frequency cutoff around,...., 0.02v / z (Fig. l.A4 of [75]) . Typically this will be below the relevant 

frequency range for interferometric detectors; I ignore it to obtain pessimistic (upper-limit) noise 

estimates. The high-frequency noise tail is then: 

(Gp) 2 jdv jdv' [~c}vP(,/27rf) -(v+l)a(p) 
T r3(r')3 

(
2 f ) (p+l)/2 l 7rvro J((v+l)/2(27rfro/v)e2tri/To , (5.41) 

where a(p) = - 27r- 112 cos(7r[p + 1)/2)f([p + 2)/2) ~ 0.873 for p = 2/3. 

Next is the integral over dV' . The exponential decay of the Bessel function K(p+l)/2 restricts the 

support of this integral to values ro ;S v /27r f , representing the fact that high-frequency fluctuations 

can only arise from the rapid change of the spatial correlation function over small lengthscales. This 

range in r0 defines a narrow bundle of streamlines S' about the streamline S passing through r. I 
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assume that the size of this bundle is less than the distance from the test mass to the bundle, so 

that the values of x' and r' on a given S' can be replaced with the nearby values on S. Now for 

points near r the volume element dV' can be written in terms of the new parameters r0 and To as 

dV' = 2rrr0 dr0 v(r)dTo. Since the airflow, being very subsonic, is nearly incompressible, the volume 

element retains this form for all points along the bundle: if v(r') decreases below v(r), for instance, 

the length element v(r' )dTo will decrease, but the cross-section of the bundle (i.e., the relevant range 

of 2rrrodro) will increase to compensate. Plugging in this volume element and integrating over ro, 

one obtains: 

S9 (IJI) = (i) 2 j dV j vdTo [ r3~;:) 3 c}vP(rrf) -(v+l)a(p) 
x2rrf([p+3]/2) (2~/ r e27ri/ro] . (5.42) 

Let t' be a new time coordinate denoting the time it takes for an air pocket to reach r' from some 

fixed reference plane that crosses all streamlines orthogonally, and t be the corresponding coordinate 

for the point r. Then To is just t' - t, and the volume element dV can be written as w dt dA, where 

dA is a cross-sectional area element on the reference plane, and w is the wind speed across that area 

element. Plugging this in, and ignoring the spatial separation between S and S', one obtains: 

( i r c}(rr n - (p+3la(p)(rr /2)f([p + 3]/2) 

x f w dA (/
00 

~ vv+3e-21ri/tdt) (/_
00 

~' 
3 

e27ri/tdt') , 
J{s} - oo r -oo (r) 

(5.43) 

where I have used f{s} to denote an integral over the entire reference plane; i.e ., over all streamlines 

s. 
The noise in the gravitational-wave signal h(t) due to the gradients at a given test mass is 

Sh(lfl) = (2rrf)-4S9 (lfl)/L2 , where Lis the interferometer arm length. The noise at each test mass 

adds incoherently to the total signal. Combining these with Eq. (5.43) yields the result given in 

Eq. (5.10). 
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Figure 5.10: Schematic showing the parameters used to describe streamlines of air flowing past an 
interferometer test mass. { S} denotes a plane insersecting all streamlines; S and S' are two such 
streamlines passing through the points r and r', respectively, where the coordinate origin is centered 
on the test mass k. The distance between the streamlines, measured at r , is ro. The positions of 
the points r and r' along the streamlines S and S' are parameterized by the times t and t' that it 
would take for a pocket of air to move from {S} to r or r'; ro is the difference t - t' . v (r) is the 
wind velocity along S through the point r; w is the wind velocity through the plane { S}. 
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