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Abstract 

This thesis deals with three topics, all of which are related to the generation or 

detection of gravitational waves: 

(I) The Standard Quantum Limit (SQL) for LIGO and Quantum Non­

demolition (QND) measurements, which allow one to overcome the SQL. 

Two particular QND measurement schemes are considered: (i) a Speed Meter, in 

which a small Fabry-Perot cavity attached to a LIGO test mass produces a phase 

shift proportional to the test mass's speed; and (ii) the Braginsky-Khalili nonlinear 

meter (BK-meter), in which a gravity-wave-induced motion of the nodes of the light 

beam inside a LIGO optical cavity is read out using a nonlinear medium which couples 

light to a microwave readout device. Our analysis shows that 

(a) Using the Speed Meter one can perform naturally a broad-band QND mea­

surement of a force acting on the test mass; however, this requires circulating light 

power which is unrealistically high for LIGO. 

(b) The BK-meter can provide a natural way to perform a narrow-band QND 

measurement of a force acting on the mirrors of the optical cavity. 

While neither of these QND measurement schemes can be immediately imple­

mented for LIGO, they might provide conceptual steps towards the design of a prac­

tical QND interferometer. 

(II) Mechanical thermal noise in LIGO. We develop a new method of calcu­

lating thermal noise in mechanical systems, which is based on a direct application of 

the Fluctuation-Dissipation theorem. This method is capable of handling mechanical 

systems with inhomogeneous dissipation, by contrast with previous methods (based 

on decomposing motion of the system into normal modes), which give incorrect results 

when the dissipation is inhomogeneous. 

We apply our direct method to an internal thermal noise in LIGO test masses. 

We find that: 
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(a) The test-mass surface defects will make a larger contribution to thermal noise 

than was previously inferred by combining the (incorrect) mode-sum method with 

measurements of the Q 's of the test masses ' modes. 

(b) Our direct method is more precise and computationally less expensive for small 

beam sizes than the previous mode-sum method. 

We also apply our direct method of analysis to suspension thermal noise m 

LIGO. We find that by careful positioning the laser beam spot on the mirror face and 

by monitoring independently the motion of the suspension wires , it may be possible 

to reduce the suspension thermal noise by a factor ,...._, 100 in spectral density. 

(III) R-modes in Neutron Stars (NS) in Low-Mass X-ray Binaries (LMXBs). 

We study the suggestion that the accretion of gas onto a neutron star in an LMXB 

triggers an instability in which the star's r-modes are amplified by gravitational-wave 

emission. We find that if this is the case, then the subsequent neutron-star evolution 

depends critically on whether the neutron-star viscosity decreases with temperature, 

or is temperature-independent. 

In the former case, the Neutron Star goes through runaway cycles of rapid ( ,...._, 1 

month) heating-rapid ( rv 1 month) spindown-slow ( rv 105 years) cooling-slow 

( ,...._, 106 years) spin-up. In this scenario the duration of the gravitational radiation 

from the unstabler-modes is so short that even LIGO-III interferometers are unlikely 

to be able to catch a single LMXB in the throes of its gravitational-wave emission. 

In the latter (temperature-independent) case, however, the Neutron Star probably 

settles down into an equilibrium state with constant spin rate and temperature, and 

becomes a steady emitter of gravitational waves, which might be detectible by LIGO­

II interferometers. 

All of the capters in this thesis, except the introductory chapter I, have been 

published or are in press. 
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Chapter 1 Introduction 

In some heuristic sense, LIGO 1 (the Laser Interferometer Gravitational-wave Ob­

servatory) can be thought of as a constant battle between God and Devils. "God" 

provides astrophysical sources, which produce gravitational waves; through LIGO, 

humans will detect and measure these waves and study the Universe (which is God's 

creation, some argue) . "Devils," on the other hand , will keep confusing our knowl­

edge of the Universe by introducing microphysical noise into the gravitational-wave 

detectors. 

Chapters II and III of this thesis study the nature of some microphysical "devils" 

and ways to neutralize their actions , while Chapter IV studies a particular class of 

astrophysical sources of gravitational waves. 

More specifically, Chapter II (papers I and II) studies detector noise which is fun­

damentally due to the quantum-mechanical nature of the LIGO test masses. Tech­

niques to reduce this quantum-mechanical noise are called Quantum Nondemolition 

( QND) measurements. In Chapter II we analyze two specific QND measurement 

schemes. 

Chapter III (papers III and IV) concentrates on issues in thermal noise in LIGO 

test masses and their suspensions-i.e., noise that is ultimately caused by local dissi­

pative processes ("anti-Maxwell demons" ). We develop a theoretical approach which 

allows us to better understand the thermal noise in LICO , and suggests ways of 

reducing it. 

Chapter IV (paper V) deals with r-modes in strongly accreting rapidly rotating 

neutron stars. R-modes are a class of oscillatory motions in rotating stars, which 

are similar to Rossby waves in the ocean in that their restoring force is Coriolis in 

origin and disappears if the star is nonrotating. When r-modes are excited, they 

1 Everything in this section equally applies to other intereferometric gravitational wave detection 
systems-to VIRGO, GE0-600, TAMA, etc. 
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emit gravitational waves and grow as a result of gravitational-radiation reaction, 

with the growth energy coming from the star's rotation. We study the thermal and 

spin evolution of neutron stars, which are spun up by accretion to high rotational 

frequencies ("" 300Hz) and in which the r-modes become unstable. 

In what follows we give a separate subintroduction for each of these chapters. 

1.1 Towards Quantum Nondemolition Measurement 

for LIGO 

In this section of the Introduction we discuss the limit that Quantum Mechanics places 

on the precision of a displacement measurement for a free mass. Since LIGO measures 

the relative displacement of freely suspended test masses on which gravitational waves 

act, this "free-mass standard quantum limit" constrains LIGO's gravitational-wave 

sensitivity. We then discuss some ideas on how to overcome this quantum-mechanical 

limit in the context of LIGO. 

1.1.1 Standard Quantum Limit for a free test mass. 

Let us consider a measurement in which a displacement x of some free mass m is 

monitored over a time interval of duration T. Then, unless a measuring apparatus 

is prepared in some special way, there is a quantum-mechanical limit (called the 

Standard Quantum Limit, abbreviated as SQL) on how well such a measurement can 

be performed (Braginsky and Khalili, 1992) . The error of measurement averaged over 

the duration of the measurement process cannot be less than 

;n; 
6.xsQL = y -;; . (1.1) 

Special ways of preparing a measuring apparatus so that the limit ( 1.1) can be over­

come are referred to as "Quantum Nondemolition (QND) measurements" 2
. 

2The notions of SQL and of QND measurement are used in broader contexts than just monitoring 
displacement of a free mass. They are especially extensively used by the Quantum Optics community. 
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Qualitatively, the origin of the SQL can be demonstrated as follows: 

Consider an idealized process of monitoring x , which consists of two discrete dis­

placement measurements, x1 and x 2 , taken at the beginning and end of the time 

interval 7 respectively. If the precision of the first measurement is 6x1 , then due to 

the Heisenberg uncertainty principle the test mass should get a momentum kick, the 

value of which has an uncertainty 6p1 ~ n/ 6x1 . If 6x1 and 6p1 are uncorrelated (no 

"special preparation" of the measuring device) , then the uncertainty of the second 

measurement is 

( 1.2) 

where bx2 is the intrinsic error of the second measurement (i.e., the noise superposed 

onto the output by the measuring device itself). Therefore, the following inequality 

holds: 

(1.3) 

Minimizing Eq. (1.3) with respect to ~x1 , we obtain the Standard Quantum Limit 

(SQL): 

(1.4) 

This SQL is not an artifact of our idealized form of measurement. Every mea­

surement of position introduces a back-action kick, which affects the overall precision 

of subsequent position measurements. The process of a realistic continuous position 

monitoring introduces a back-action random force acting on the test mass . The more 

intrinsically precise is the measurement, the greater is this back-action force. This 

statement can be quantified in the following way: 

Let x ( t) be the operator for the test-mass position in the Heisenberg picture. Then 

the output of a continuous position measurement x(t) can be written as (Braginsky 

and Khalili, 1992) 

x(t) = x(t) + bx(t) . (1.5) 

Here bx(t) is an operator representing the intrinsic noise introduced by the measuring 

device itself [analog of bx2 in Eq. (1.2)] . (Example: if the measuring device is an 
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interferometer like LIGO, then 6x(t) is the measurement error due to shot noise). 

One can construct the spectral density Sx (J) of this intrinsic noise: 

Sx(J) =I: (6x(0)6x(t))e 2rriftdt. ( 1.6) 

We shall denote by Sp(!) t he spectral density of the continuous back-action force 

F8 A acting on the test mass . (For LIGO the role of the back-action is played by 

the radiation-pressure noise). The Heisenberg uncertainty relation is enforced by the 

following inequality: 

(1. 7) 

which holds as long as bx and the back-action force F8 A are uncorrelated (i.e., when 

there is no special preparation of the measuring device) (Braginsky and Khalili, 1992) . 

In this case, the spectral density of the total noise in the displacement measurement 

is given by the sum of the intrinsic and the back-action noises: 

(1.8) 

Here Z(J) is the admittance of the mechanical system; for a free t est mass Z(J) = 

-m-1 (27r n-2. 
Taking into account the generalized uncertainty relation ( 1. 7), one can infer from 

Eq. (1.8) that 

5total (J) > Ji 
x - m(27r !)2 (1.9) 

Equation ( 1. 9) is a rigorous formulation in spectral language of the Standard Quantum 

Limit for a free mass . 
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1.1.2 Standard Quantum Limit for LIGO 

In LIGO, rather than measuring the displacement of a single free mass, one measures 

a linear combination XLJGO of displacements of the four different test masses: 

(1.10) 

One can view i 11Go as one of the generalized coordinates of the sysem of four test 

masses; the corresponding conjugate momentum operator is 

(1.11) 

The generalized momentum operator PL IGO is chosen in such a way that [ i 11Go, PLIGO J = 

in. One can go through an argument which is completely analogous to the argument 

in the previous section, and obtain the SQL for XLIGO. The only difference from the 

case of a free mass is that dxrreemass/dt = Pfreemass/m, whereas for LIGO there is an 

extra factor of four: dx11Go/ dt = 4p1rGo/m. Therefore, after simple algebra, one gets 

" SQL " SQL 
uXLIGO = 2uxfreemass> (1.12) 

or, in spectral language, 
SQL _ 4Ji 

SxL1co - m(27r !)2' (1.13) 

where m is the mass of each of the identical test masses. It is conventional to discuss 

LIGO's output in the language of the interferometer's strain h = x 1 rGo/ L, where Lis 

the length of each of the interferometer 's arms. In terms of strain the SQL for LIGO 

becomes 

(1.14) 

In LIGO-II interferometers (ca. 2004-2007) the quantum noise (1.14) will be compa­

rable to the suspension thermal noise and comparable to the shot noise at f "" lOOHz 
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(the minimum of the LIGO noise curve), and thus will be a significant contributor to 

the total noise (Weiss, R. et al. 1998). To overcome the SQL in LIGO III (ca. 2008), 

it will be necessary to increase the mass m from llkg to, say, 300kg (which may be 

impractical), or to use techniques of Quantum Nondemolition measurements , which 

are the subject of the next section. 

1.1.3 Quantum Nondemolition (QND) measurement for LIGO 

It has been known for almost twenty years that the SQL is not a fundamental limit, 

and that in principle it is possible to beat the SQL by so-called QND measurement 

techniques (Braginsky and Khalili, 1992) . However, all of the QND schemes proposed 

so far are of gedanken nature and are not practical for implementation in LIGO. The 

two main difficulties in inventing a practical QND scheme are: 

(1) It is hard to invent a QND measurement which does not require very large circu­

lating optical power , and 

(2) It is hard to invent a QND scheme which works over a broad range of frequencies 

t::..f""' f, which is what is required in LIGO. 

The yet unrealized "Holy Grail" of the field has been to find some practical way 

of implementing QND measurements. The work in this thesis does not change this 

state of affairs; instead, two more purely gedanken schemes for QND measurements 

are discussed in papers I and II. We would like to believe that these new gedanken 

schemes may provide insight that will aid in the search for a practical solution. 

Two QND measurement procedures have been previously invented in the context 

of optical measurements of test-mass displacement (Unruh 1982, Jaekel and Reynaud 

1990, Vyatchanin et al. 1993, 1995, 1996) . We first discuss these measurements from 

an intuitive point of view, and then make a brief excursion into the mathematical 

formalism. We show that in this class of procedures it is difficult to perform a broad­

band QND measurement. 

We then outline in general terms QND techniques based on measuring the test­

mass speed (Braginsky and Khalili, 1990; paper I of this thesis; Braginsky et al., 
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test mass 

laser 
'Vin --

\JI out 

11<j>=2( ~le )x 

Figure 1.1: An optical transducer. 
The test-mass displacement x is determined by measuring the phase shift ¢ of the 
reflected light. 

1999) . We explain why speed meters are generally more suitable to perform broad­

band QND measurements , by contrast with displacement meters. This will enable the 

reader to put in context paper I of this thesis . 

Finally, we will give a brief introduction to paper II, which deals with a particular 

narrow-band QND measurement scheme. 

QND in the context of displacement measurements. In this subsection we 

restrict ourselves to optical measurements of the displacement of a single test mass. 

(The generalization to LIGO is straightforward.) Figure 1.1 depicts a particular 

displacement measurement that we have in mind: a laser beam is reflected off the 

test mass, and the displacement of this test mass is inferred by measuring the phase 

shift of the reflected light. Figures 1.2a and 1.2b present cartoons of the quantum 

state of the incident and reflected light respectively. 

These cartoons provide intuitive insight for understanding and inventing QND 

schemes. The incident light is assumed to be in a coherent state, with equal mag­

nitudes of phase and relative amplitude fluctuations. [In this we follow a series of 

papers by Vyatchanin et al. 1993, 95, 96. In the other version of this QND mea­

surement (Unruh 1982, Jaekel and Reynaud 1990) the input light is squeezed.] We 

draw a coherent state as a circular blob of "quantum uncertainty" in the light's os-
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coherent squeezed 
p p 

x 
x 

optimal quadrature 

a) b) 

Figure 1.2: Phase-space cartoons of incident coherent light (Fig. 1.2a) and 
reflected squeezed light (Fig. 1.2b) for the measurement scheme of Fig. 
1.1. 
These cartoons treat the light as a single-mode oscillator and therefore have only 
intuitive value. The optimal quadrature of the light, which should be used when 
measuring an external force acting on the test mass, is the one perpendicular to the 
large axis of the squeezed ellipse (Fig. 1.2b). 
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cillator phase space 3 . The amplitude fluctuations of the incoming light drive the 

displacement fluctuations of the test mass ; these displacement fluctuations in turn 

create fluctuations in the phase of the reflected light. Thus, the reflected light will be 

in a state with phase and amplitude correlated, i.e., in a particular case of a squeezed 

state. The cartoon of the quantum state of this reflected light is shown in Fig.1.2b; 

the "blob" of quantum phase and amplitude uncertainty is an inclined ellipse, which 

depicts the correlation between the amplitude and the phase of the reflected light. 

We observe that the phase noise of the reflected light is larger than that of the 

incoming light. This increase in the phase uncertainty due to the radiation-pressure 

back-action enforces the SQL. 

If our aim is to measure an external force acting on the test mass, then instead of 

measuring the phase one can do better by measuring a particular linear combination 

of the phase and amplitude of the reflected light. A linear combination of phase 

and amplitude is called a quadrature in the language of Quantum Optics. As was 

pointed out by Vyatchanin and Matsko (1993), when monitoring an external force 

the optimal quadrature to measure is the one perpendicular to the small axis of the 

ellipse of "quantum uncertainty" in Fig.1.2b. Before we describe how to implement 

such a measurement, let us discuss more mathematically the squeezing of the light 

by interaction with a test mass (the so-called ponderomotive squeezing). 

It is convenient to consider both the incoming and outgoing light as a sum of 

a classical monochromatic wave and quantum vacuum fluctuations (Vyatchanin and 

Matsko, 1993): 

'!/Jin= Aeiwo(t-x/c) + {'x:i dD)n(w~ + D) ain(wo + D)ei(wo+n)(t-x/c) + c.c., 
1-wo V C 

(1.15) 

'!/Jout = Aeiwo(t+x/c) + /_:
0 

dD n(w~: D) aout(wo + D)ei(wo+n)(t+x/c) + c.c. (1.16) 

3 For a single-mode oscillator these cartoons can be justified rigorously in terms of Wigner pseudo­
probability functions. However, in our situation there are many modes involved, and therefore one 
cannot rigorously use a single-mode phase space to describe the light. It serves a purely intuitive 
purpose here. 



10 

Here ?/Jin/out stands for an in/outgoing light wave operator, which for our purposes 

can be considered to be scalar; wo is the angular frequency of the incoming light , 

S is the area of the beam, c is the speed of light , and A is chosen to be real. The 

operators ain ( w) represent vacuum quantum fluctuations superposed on the classical 

monochromatic wave. They observe the usual commutation relations for a scalar 

field quantized in one spatial dimension: [a(wi), a(w2 )] = 0 and [a(w1 ), at(w2 )] 

27!'o(w1 - w2 ). The incoming light power is given by W = cSA2/ 47l'. 

The operator for the radiation-pressure force is Frp = (S/27!')?/Jtn?/Jin, and the 

Fourier component of its fluctuating part is 

( 1.17) 

This fluctuating force will displace the test mass randomly; the fluctuating displace­

ment is given by 

~ (") = _ Ffl(D) 
Xfl H mD2. (1.18) 

The operators for the outgoing modes are related in the Heisenberg picture to the 

operator of the test-mass displacement x through a0 ut(w0 + D) = ain(w0 + D) + 
2iJ27l'Ww0 /nc2x. Therefore, 

(1.19) 

where X 5 is the test-mass displacement caused by an external perturbation other than 

the radiation-pressure force (e.g., by a gravitational wave). Equation (1.19) is a multi­

mode Bogolyubov transformation, and the state of the reflected light is a so-called 

multimode squeezed state (see, e.g., Milburn and Walls 1994). 

The process of measuring a particular quadrature of the outgoing field is mathe-
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matically equivalent to measuring quantity 

B( ,.!... {\) - i¢(0.) ( + {\) + - i¢(0.) t ( {\) '+'> ol - e aout Wo ol e aout Wo - ol . ( 1.20) 

The optimal choice of </>(D) for measuring the signal X 8 (corresponding to the quadra­

ture perpendicular to the squeezed ellipse of Fig. 1.2b) turns out to be (Vyatchanin 

et al. 1993, 1995, 1996) 

(1.21) 

With this choice of</>, the spectral density of the noise when measuring X 8 is 

BtotaI(D) = WsQL BSQL(D) = WsQL _n_ 
x W x W mD2' (1.22) 

where Wis the power of the incoming light and WsQL = mc2 D2 /2w0 . We see that by 

increasing the input power W beyond WsqL, we can beat the SQL, thus performing 

a QND measurement on the test mass . The Bx ex w- 1 scaling of the noise spectral 

density with optical input power is a common feature of all optical QND measure­

ments. [In the scheme proposed by Unruh (1982), the input light is squeezed as well. 

The scaling Bx ex w-1 then holds if the magnitude of squeezing is kept constant.] 

The practical implementation of a quadrature measurement can be performed by 

a homodyne detector; see Fig. 1.3 for a diagram and an explanation. A homodyne 

detector measures the quadrature 

(1.23) 

where </> is the phase of the local oscillator used in the homodyne detection. The 

important experimental constraint is that </> is frequency-independent, by contrast 

with what is required for a QND measurement on a free test mass [cf. Eq. (1.21)]. 

This feature of frequency-independence of the homodyne phase makes the simple­

minded QND scheme described above suitable only for narrow-band QND measure-
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Figure 1.3: Principle of operation of a homodyne detector. 
The beam splitter BS mixes the field '1/Jout with the strong local oscillator field, which 
has a tunable phase ¢. The currents from the two photodiodes, D 1 and D2 , are 
subtracted to give the output. The Fourier component of the output is the quadrature 
B(rl, </>) = ei<Paout(wo + 0) + e- i<Pa1ut(wo - fl). 

ments. 

Two methods are known which allow one to extend the ideas in this subsection 

to broad-band QND measurements: (1) use a speed meter instead of a displacement 

meter (Braginsky and Khalili 1990), or (2) put the outgoing light through a carefully 

tuned off-resonance Fabry-Perot cavity before performing the homodyne detection 

(Kimble et al. 1999). Speed meters are discussed in the next subsection and in paper 

I; the work on Kimble's idea is still in progress, and it will not be discussed in this 

thesis. 

Speed meter as a QND measuring device. In the previous subsection we dis­

cussed optical schemes for a test-mass displacement measurement; in those schemes 

the phase shift of light reflected off a test mass was proportional to the test-mass 

displacement x : 

t::.¢ ex: x. (1.24) 

One can also construct an optical measuring device that responds to the test mass's 
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speed, rather than its displacement. In this case t::..¢ ex x or, in Fourier language, 

t::..¢(D) ex iDx(D). ( 1.25) 

Particular examples of such speed meters are analyzed in a paper by Braginsky and 

Khalili (1990) and in paper I of this thesis; here we concentrate on the generic features 

of speed measurements. 

From Eq. (1.25) we see that zero-frequency motion of the test mass is not cou­

pled to light ; therefore, the fluctuating radiation-pressure (back-action) force satisfies 

Ffl(D) = 0 for D = 0. More generally, for small D, we must have 

(1.26) 

which should be compared with the analogous Eq. (1.17) for a displacement meter. 

Putting together Eqs. (1.18), (1.25) and (1.26), we see that 

(1.27) 

where C is a constant which does not depend on frequency [by contrast with Eq. 

(1.19)]. Therefore, for an optimal quadrature measurement, one can use a frequency­

independent homodyne phase. This allows a broad-band QND measurement to be 

performed on a speed meter by using conventional techniques of Quantum Optics. 

A particular example of a QND measurement by a speed meter is worked out in 

detail in paper I. In this paper, we consider a scheme where a rigid Fabry-Perot cavity 

is attached to the test-mass itself. The cavity's mirrors have equal reflectivity, and 

it is pumped on resonance; therefore, the light goes straight through the cavity. The 

phase shift of the light exiting the cavity does not depend on the cavity's stationary 

position; however, it is sensitive to the cavity's speed. 

In the paper we identify the optimal linear combination of the output modes 

which should be measured to extract information about an external force acting on 

the test mass. We devise a homodyne-detection-based QND measurement scheme, 
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which works for a broad range of frequencies. Unfortunately, in the paper the broad­

band nature of such a measurement is not emphasized; we hope that the preceding 

paragraphs have filled in this gap . Nonetheless, paper I contains the first analysis of 

a measurement by a speed meter, in which the light field is explicitly quantized and 

homodyne detection is used. 

Narrow-band intracavity QND measurement Paper II presents an idea for 

a QND measurement which is completly different from the ideas discussed above. 

It is based on a proposal by Braginsky and Khalili (1996) for a new design of a 

gravitational-wave detector, in which the signal is read out from the inside of a 

Fabry-Perot resonator. In this scheme, the gravitational-wave-induced spatial shift 

of the standing optical wave inside the LIGO resonator is read out by a microwave 

oscillator containing an optically-nonlinear medium. The details of this design are 

reviewed in paper II. 

We trace exactly the path by which the back-action is enforced in this scheme, 

starting from the microwave oscillator used for the readout , through the nonlinear 

medium into the light , then through the light to the test-mass mirrors that confine 

it. We find a side effect of this back-action, unnoticed by Braginsky and Khalili: the 

fluctuations of light pressure, which enforce the back-action, will be independently 

recorded by the microwave readout device. We show that this side effect allows one 

to perform a QND measurement, but only in a narrow range of frequencies. 

Since paper II was written, Braginsky, Gorodetsky and Khalili (1997, 1998) have 

come up with new ideas for an intracavity measurement, which probably make the 

original Braginsky-Khalili idea obsolete. The QND scheme of paper II is not readily 

applicable to these new intracavity measurements, and therefore its ultimate relevance 

is uncertain. We include paper II in this thesis for completeness, and also because 

the idea for QND measurements presented in it is different from all previous QND 

ideas, and may suggest directions for future QND research. 
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1.2 Issues in thermal noise for LIGO 

A LIGO interferometer generally monitors the linear combination 

(1.28) 

of the displacements of the four test masses [cf. Eq. (1.10)]. The quantity xi is in 

fact the displacement of the mirror surface of the i-th test mass , averaged over the 

beam spot on the mirror. 

The term "thermal noise" in the context of LIGO refers to noise in the interferom­

eter output, caused by random mechanical motions of thermal origin. In particular, 

each of the xis will be fluctuating due to random thermal motion of its i-th mirror 

surface. Thermal noise is expected to be the dominant noise for LIGO in the fre­

quency band of 35 - 130Hz for LIGO-I and of 20 - lOOHz for LIGO-II (Weiss et al. 

1998). 

From now on we concentrate on a single test mass, since the thermal noises from 

all of the test masses just add linearly in spectral density. 

In general, thermal noise can be subdivided into two components: 

(i) Internal thermal noise, which is directly connected to dissipative processes in the 

test mass itself, and 

(ii) Suspension thermal noise, which is connected to dissipative processes in the fibers 

by which the test mass is suspended. 

Before the work reported in this thesis, both suspension and internal thermal noise 

were analyzed by using the so-called method of normal-mode decomposition (NMD) 

(Saulson 1990, Gillespie and Raab 1995, Bondu and Vinet 1995) . In what follows we 

present the ideas behind NMD, with the ultimate purpose to point out under what 

circumstances this method of calculation is not correct. Our presentation of NMD 

differs somewhat from the original presentation in Saulson (1990) 

The key steps for the NMD calculation of thermal noise are: 

a) Identify all the elastic normal modes of the test mass and suspension. These modes 
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can be characterized by generalized coordinates q1 , q2 , etc. The readout variable x 

[in our case, the displacement of the mirror surface averaged over the laser beam spot 

[cf. Eq. (3.3) of paper III] is a linear combination of these generalized coordinates: 

(1.29) 

where ai are real numbers . 

b) Assume that each of the modes is an independent (we will specify shortly what 

exactly is meant by this) oscillator coupled to the heat bath. Such oscillators are well 

described by a Langevin-like equation in the frequency domain: 

(1.30) 

where qi(w) is the fourier component of the qi(t), the loss angle c/>i(w) is responsible for 

the damping of the i-th mode, and wi is the angular frequency of the i-th mode. The 

random Langevin force fi satisfies the single-mode Fluctuation-Dissipation relation 

(Callen and Welton 1954, Saulson 1990): 

(1.31) 

where S1i (w) is the spectral density of the Langevin force fi, ks is the Boltzmann 

constant and Tis the temperature of the elastic system. Substituting Eq. (1.31) into 

Eq. (1.30), one can find the spectral density Sq; of the thermal fluctuations of the i-th 

mode: 

(1.32) 

c) All of the normal modes were assumed to be independent; therefore the spectral 

density of the readout Bx is a properly weighted sum of the spectral densities of the 

normal modes: 

(1.33) 
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where a's are taken from Eq. (1.29). 

Saulson has argued that for most materials used in the LIGO test masses and 

suspensions, the loss angle </>( w) will be aproximately frequency-independent in the 

range of frequencies of interest (say, 10 - 104 Hz). One can then measure cPi by 

measuring the quality factors Qi of the various normal modes, and using the relation 

</>i(wi) = 1/ Qi. 

In practice, to use Eq. (1.33) for calculation of internal thermal noise , one needs 

to run costly computer simulations for a particular test mass, which evaluate the 

angular frequencies wi of the modes and their coupling coefficients to the light beam 

ai· The smaller the beam size on the mirror, the larger the number of modes which 

contribute to the internal thermal noise. For small beam sizes the series in Eq. (1.33) 

converges slowly. 

The NMD method has a more serious drawback than just high computational 

cost and poor convergence. The method heavily relies on the assumption that the 

modes are independent, i.e., uncorrelated with each other. Speaking mathematically, 

NMD assumes that (fdj) = 0 for i =/:- j, i.e., that the Langevin forces of different 

modes are uncorrelated. Paper III shows that this assumption is valid only when 

the sources of dissipation are distributed homogeneously in the test mass, and that 

spatially inhomogeneous dissipation always introduces correlations between diferent 

modes. In this case, one must add complicated cross-terms to the right-hand-side of 

Eq. (1.33), and the NMD computations become intractable. 

Paper III develops a new method, based on earlier ideas of Gonzalez and Saulson 

(1994), for evaluating thermal noise in mechanical systems. This method is based 

· on a direct application of the Fluctuation-Dissipation theorem and can handle in­

homogeneous dissipation and arbitrary beam sizes with fairly simple computations. 

The single most important result of paper III is that the dissipation at the mirror 

surface will make a significantly larger contribution to the internal thermal noise than 

inferred from NMD. 

Although paper III focuses explicitly on the internal thermal noise, its philosophy 

and method can be equally well applied to the suspension thermal noise. In paper 
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IV Braginsky, Vyatchanin and I use this direct-computation method to devise and 

analyze a scheme for reducing suspension thermal noise by a factor rv 10 in amplitude. 

The key to this reduction is a careful adjustment of the position of the beam on the 

test-mass-mirror, and an optical-fiber-evanescent-field monitoring of the motion of 

the suspension fibers. 

1.3 R-modes in rapidly rotating strongly accret­

ing neutron stars 

Chandrasekhar, Friedman and Shutz (CFS) have shown that some oscillatory modes 

of rapidly rotating stars can be driven by gravitational-radiation reaction (Chan­

drasekhar 1970, Friedman and Schutz 1978). Recently Andersson (1998) has discov­

ered, and Friedman and Morsink (1998) showed analytically, that r-modes are subject 

to the CFS instability. Chapter IV (paper V) considers the thermal and spin evolution 

of accreting neutron stars in which r-modes become unstable. 

This subsection gives a brief introduction to the CFS instability and to the physical 

nature of r-modes in rotating stars. Its purpose is to make the contents of Chapter 

IV understandable for a non-expert in theoretical astrophysics. 

1.3.1 The CFS instability. 

Figure 1.4 shows a picture of a star that is rotating rapidly in a clockwise direction. 

Let's consider a mode of the star, which looks like an ocean wave propagating along 

the equator against the direction of the star's rotation (i.e., counterclockwise). The 

surface of the star appears distorted in Fig. 1.4 due to this ocean-wave mode. One 

can show that when the rotational frequency of the star is increased, while keeping 

the wave-number of the excited mode fixed, then eventually the pattern of the mode 

is dragged by the star in the clockwise direction, even though the mode is propagating 

counterclockwise relative to the star. 

When being dragged forward, such a mode carries negative energy and negative 
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angular momentum; that is, the star as a whole has smaller energy and angular 

momentum when the mode is excited than when the mode has no excitation. 4 

Therefore, the rotating star can lose angular momentum and energy by growing 

the negative-energy oscillatory mode. If this mode is coupled to gravitational radia­

tion, then gravitational waves carry away the excess of angular momentum and en­

ergy. In this case the mode keeps growing due to the gravitational-radiation reaction . 

This instability was discovered by Chandrasekhar (1970) for Maclauren spheroids , 

and discussed more generally by Friedman and Schutz (1978) . Neutron stars pro­

vide a natural setting for the CFS instability to operate, since their rotational fre­

quency can be very high (r-v lkHz). However , for the CFS instability to operate, the 

gravitational-radiation reaction has to overcome viscous damping of the modes. It 

turns out that for f-modes (the fundamental-order "ocean waves" described above), 

the rotational frequency at which the CFS instability starts operating is very close 

to the theoretically maximal possible rotational frequency (the so-called "break-up" 

frequency). Thus, the CFS instability is probably not important for f-modes in real 

astrophysical situations. Recent ly Nils Andersson (1998) discovered , and Friedman 

and Morsink (1998) proved analytically, that r-modes are dragged forward by rota­

tion at any angular velocity, even very small ones, and therefore are subject to the 

CFS instability. Lindblom, Owen and Morsink (1998) have computed the timescales 

of the r-mode gravitational-radiation driven growth and of the viscous damping, and 

have shown that the driving dominates for rapidly spinning newborn neutron stars­

and, as a result , the r-mode instability will limit the rotational frequencies of neutron 

stars born in supernovae. R-modes were discovered and discussed in a classic paper 

by Papaloizou and Pringle (1978). R-modes are essentially vorticity patterns, which 

move relative to a rotating star (see Figures 1.5 and 1.6) . The restoring force for the 

r-modes is the Coriolis force; in the slow-rotation limit, the r-mode frequency f is 

4The negative angular momentum and energy can be understood from the following analogy: 
Consider a carriage moving fast with constant velocity, and a tennis ball in the carriage which 

flies backwards relative to the carriage, but moves forward relative to the ground. Then the motion 
of the ball reduces the momentum and kinetic energy of the whole system relative to what it would 
be if the ball were lying on the carriage floor. In this sense, the ball carries negative momentum and 
negative kinetic energy. 
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counterpropagating "ocean wave" 

rotating 

star 

Figure 1.4: The CFS instability. 
An equatorial "ocean wave" oscillatory mode is propagating counter to the rotation 
of the star. When the star rotates fast enough, the mode pattern gets dragged along 
in the direction of the star's rotation. Then the mode carries negative energy and 
angular momentum. 
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Fluid Motion in the m == 2 r-mode 
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• The flow pattern is shown along with 
the small elliptical paths (on the left) of 
individual fluid elements. The flow pattern 
moves (to the left) past the fluid particles 
as the mode evolves. 

Figure 1.5: The r-rnode patterns I (courtesy of Lee Lindblom). 
R-modes are vorticity patterns which move relative to the star. All r-modes propa­
gating counter to the star's rotation are CFS-unstable (Andersson 98). 
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Flow Pattern for the m == 2 r-mode 

Polar View 

Equatorial View 

Figure 1.6: The r-mode patterns II (courtesy of Lee Lindblom). 
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related to the rotational frequency of the star f 0 by 

f 
= (l - l)(l + 2) + 

l + 1 J01 
(1.34) 

where l is the r-mode angular wave number. [In general, an r-mode's angular depen­

dence is characterized by two integers, m and l. However, as Papaloizou and Pringle 

(1978) have shown, for barotropic stars only r-modes with m = l can exist.] 

R-modes couple to gravitational radiation predominantly through their current 

multipole moments, by contrast with f-modes, which couple to gravitational radiation 

through density multipole moments. The reason the r-mode instability is so strong 

is that the lowest-order r-mode (l = m = 2) satisfies the CFS criterion for instability; 

whereas typically only high-order (l = m 2:: 4 or 5) f-modes are CFS unstable. (For 

low-order modes radiation-reaction is stronger and viscous damping is weaker, than 

for high-order modes). 

1.3.2 R-modes in strongly accreting neutron stars. 

Bildsten (1998) has conjectured that gravitational radiation could limit rotational fre­

quencies of neutron stars in Low-Mass X-ray Binaries (LMXB's). This, Bildsten has 

argued, could explain why these neutron stars all have similar rotational frequencies, 

which do not seem to depend strongly on the rate of accretion. Bildsten's original 

idea was that the crust of an accreting neutron star could possess non-axisymmetric 

quadrupole moment which would emit gravitational waves; these waves would pro­

vide a gravitational-radiation reaction torque sufficient to compensate the accretional 

·spin-up torque. 

Andersson, Kokkotas and Stergioulas (1998), and Bildsten (1998) have idepen­

dently hypothesised that r-modes could also be the source of gravitational waves in 

the accreting neutron star, and that the r-mode instability may provide an alternative 

explanation for the observed narrow range of rotational frequencies of neutron stars in 

LMXB's. According to them, the r-mode instability would be triggered once the neu­

tron star, which is spun up by accretion, reaches some critical frequency of rotation. 



24 

Then , they have argued , the star's r-modes would grow so that the gravitational­

radiation reaction would compensate the accretional spin-up torque. 

Whatever is the mechanism of the gravitational-wave emission, neutron stars in 

LMXB's could be a potentially detectable periodic source for LIGO-II, Bildsten and 

Andersson et al. have shown. One could then distinguish the r-mode gravitational 

waves from waves produced by frozen-in mass inhomogeneities, since they have dif­

ferent frequencies (!quadrupole = 2fo, whereas fr-mode = ( 4/3)fo for the l = m = 2 

r-mode). 

In paper V we have investigated further the proposal that the r-mode instability is 

active in neutron stars in LMXB's. Our conclusions depend crucially on whether the 

dissipation of the r-mode decreases with temperature (as is the case, e.g., when shear 

viscosity dominates the r-mode damping), or instead is temperature-independent (as 

is the case when, e.g., the mutual friction of proton and neutron superfiuids dominates 

the damping). 

In the "temperature-dependent" case we found that the neutron star will undergo a 

few-million-year-long cycle of slow (,....., 106 years) spin-up-rapid (,....., lmonth) runaway 

heating-rapid (,....., lmonth) spin-down-slow (,....., 105 years) cooling. 

We have shown that in this case it is very unlikely that any of the currently 

observed neutron stars in LMXBs in our galaxy are in the r-mode excited state of 

the cycle. The detection of gravitational radiation from extragalactic LMXBs in the 

r-mode excited state is also not likely, even with advanced LIGO interferometers. 

H. Spruit (1998) has independently and simultaneously discovered the thermal 

runaway effect and argued that it will produce a gamma-ray burst of 1 - 8 x 1051 erg. 

In the "temperature-independent" case, we find that a steady-state equilibrium 

is reached, in which both angular velocity and temperature are constant or are oscil­

lating with periods of several hundreds of years. We make a robust prediction that 

this equilibrium neutron-star core temperature is around 4 x 108K. In this case the 

neutron stars are emitters of gravitational waves which could be detected by inter­

ferometers similar in sensitivity to LIGO-II, precisely in the way which was proposed 

by Bildsten and Andersson et al. 
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Therefore, paper V argues , if LIGO detects gravitational waves coming from a 

LMXB, which have the r-mode frequency, it will provide a strong experimental evi­

dence for the superfiuid nature of the neutron-star core. 
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for LIGO 
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2.1 Paper I: Speed Meter as a Quantum Nonde-

molition Measuring Device for Force 

Written with F. Ya. Khalili, published in Phys. Rev. D, 54, 4725; 

presented here with minor changes . 

ABSTRACT 

Braginsky has proposed a speed meter (a speed or momentum measur­
ing device), consisting of a small Fabry-Perot cavity rigidly attached 
to a freely moving test mass. This paper devises an optical readout 
strategy which enables the meter, when monitoring a classical force 
via speed changes, to beat the standard quantum limit-at least in 
principle. 

2.1.1 Introduction 

A laser interferometer gravitational wave detector is, in essence, a device for monitor­

ing a classical force (the gravitational wave) that acts on freely moving test masses 

(the interferometer's suspended mirrors). "Advanced" detectors, expected to oper­

ate in the LIGO/VIRGO interferometric network [1] in the middle or later part of 

the next decade, will be constrained by the standard quantum limit (SQL) for force 

measurements [2, 3], 

(2 .1) 

Here n is Planck's constant, m is the mass of the test body on which the force acts, 

and T is the duration of the force. 

It is well known that the SQL is not an absolute barrier to further sensitivity 

improvements [2]. With cleverness, one can devise so-called quantum nondemolition 

(or QND) measurement schemes, which beat the SQL. Although fairly practical QND 

techniques have actually been devised for resonant-mass gravitational-wave detectors 

[4], no practical QND technique yet exists for the interferometric gravitational-wave 

detectors on which LIGO /VIRGO is based. The effort to devise such a technique is 

of great importance for the long-term future of the LIGO /VIRGO network. 

Although a practical QND technique for such detectors is not yet known, several 

idealized techniques have been formulated [5] and are playing helpful roles in the 
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search for a practical technique. Most of these idealized techniques are based on opti-

cal measurements of a test mass's position. One, however , is based on measurements 

of the mass 's speed or momentum. This "speed meter" has been devised in initial, 

conceptual form by Braginsky [6], and he has argued that it should be capable of 

beating the SQL. 

The purpose of this paper is to demonstrate that, when coupled to a specific 

optical readout scheme that we have devised , Braginsky 's speed meter does , indeed, 

beat the SQL, at least in principle. 

2.1.2 The Basic Idea of the Speed Meter 

The fundamental idea underlying Braginsky's speed meter is to attach a small, rigid 

Fabry-Perot cavity to the test mass, whose speed is to be measured. The cavity's two 

mirrors are to have identical transmissivities and negligible losses, in the idealized 

variant we shall analyze. This means that , when the cavity is at rest and is excited 

by laser light that is pricisely in resonance with one of the cavity's modes , the light 

passes straight through the cavity without reflection and emerges from the other side 

unchanged. When the cavity starts moving, by contrast, it sees the incoming light 

Doppler shifted; and, as a result, the light emerging from the other side gets phase 

shifted by an amount 
A W 0 VT 
uc/>=-' c 

(2.2) 

where v is the cavity's speed, w0 is its eigenfrequency, and T is its ringdown time. 

Here and throughout we assume that v « c/(w0 T). 

By measuring the phase of the emerging light, one can infer the speed of the cavity 

without learning anything about its position. This absence of information about 

position implies (Braginsky has argued) that such a device should be able to evade 

any back-action force of the measurement on the cavity's velocity (or momentum), 

and therefore should be capable of beating the SQL. 
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Figure 2.1: Optical readout system for the QND speedmeter. 

2.1.3 Our Readout Scheme for the Speed Meter, and an 

Analysis of its Performance 

In this section we shall exhibit an optical readout scheme for such a speed meter 

which does, indeed, enable it to beat the SQL. Our readout scheme is sketched in 

Fig. 2.1, whose details will become more clear in what follows. 

Let 

'!/Jin = Ae-iwo(t-x/ c) + ('° dw ;r;:;; a(w )e-iw(t-x/ c) 
lo y-;;; (2.3) 

be the incoming field on the left side of the cavity. The first term on the right-hand 

side of Eq. (2.3) represents classical pumping, and the second term shows quantum 

fluctuations of the incoming field; x is the position of the cavity and acquires time 

dependence when the cavity is moving; sis the area of the beam. Also a(w), b(w), 

c(w) and d(w) represent annihilation operators for four modes as in Fig. 2.1 , and t(w) 

and r(w) represent frequency-dependent tranmission and reflection coefficients of the 

cavity respectively. In our set-up t(w0 ) = 1, r(w0 ) = 0. 

Any motion of the cavity induces a time-dependence of x in Eq. (2 .3), and hence 

with respect to the cavity the classical pump acquires frequencies different from w0 . 

The resulting effect of the cavity motion is to scatter the classical part of the incoming 

wave into modes which would otherwise carry only vacuum fluctuations . A simple 

calculation produces the following relations: 
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c(w) t(w)a(w) + r(w)b(w) 

Wo {SC -
+iA~y y;;;(t(w) - l)X(w - w0 ), (2.4) 

d(w) r(w)a(w) + t(w)b(w) 

. Wo [SC -
+iA~y y;;;r(w)X(w - w0 ) , (2.5) 

where X(D) is defined by 

(2.6) 

We assume that the cavity is pushed by an external signal force F5 (t) (due, e.g., 

to a gravitational wave). Then its position obeys the free-mass equation of motion 

F = Fs + Fil = mx, (2.7) 

where Fil stands for the random force produced by quantum fluctuations of the light. 

This force, as evaluated using momentum conservation, has the following Fourier 

transform 

J~:;o {[1 - t (w0 + D)] [a (w0 + D) +at (w0 - D)] 

-r (w0 + D) [b(w0 + D) + bt (w0 - D)]} (2.8) 

·for n « w0 , where W = scA2 /27r is the power of the incoming wave. Equation (2.8) 

can be simplified by noting that for the Fabry-Perot cavity t+r = 1, so the expression 

for the fluctuating force becomes 

c 
r(w0 + D)[a(wo +fl) - b(wo + D) 

+at(w0 - D) - bt(wo - D)]. (2.9) 
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It is clear from Eq. (2.9) that f(w) = [a(w) - b(w)] / J2 is the only combination of 

the incoming modes which appears, multiplied by x, in the interaction part of the 

Hamiltonian . Therefore, all information about the motion of the cavity should be 

recorded in f and ft. The obvious suitable choice of readout is 

( )
_c(w)-d(w) 

ew - J2 , (2 .10) 

since, by putting Eqs. (2.6), (2.7), (2.9) into (2 .10) , we can express it as solely a 

function of f and the signal force: 

e(wo + D) = [t(wo + D) - r(wo + D)]f (w0 + D) + 

2i :;~2 r(wo + D) 2 [! (wo + D) +ft (wo - D) J 

rr; .wo J2nW ( ") Fs(D) +v L.Z- --r w0 + H --. 
c hwo mD2 

(2.11) 

It is attractive to read out e(w) using homodyne detection as sketched in Fig. 2.1. 

The measurement output then is the homodyne quadrature 

(2.12) 

where 'lj;(D) is a phase factor that we shall fix below so as to minimize the noise 

(see also [7]). Then the quantum noise spectral density in this measured quantity, as 

computed from the formula (y(D)y(D') ) = Sy(D)c5(D + D'), is 

Sy(D) = 2a2 (D) {1 - cos [2'1/J (D)] -

2a (D) sin [2'1/J (D)]} + 1 

where a(D) = (2Ww0/mD2c2 )lr(w0 + D)l2. This noise is minimized for 

1 
tan 2'1/Jmin(D) = a(D)" 

(2 .13) 

(2.14) 

Putting in explicitly r( n) = iDTringdown/ ( 1 + iDTringdown)) we see that for large power 
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W » mc2 /woT~ngdown the minimum noise is 

1 
Sy= 4a(D) 2 (2.15) 

Here Tringdown is the e-folding time for resonant light to escape from the cavity. Now 

suppose that the form of the signal , Fs(D) , is known and we use an optimal filter to 

search in the output y(D) to see whether the signal is actually present . The signal to 

noise ratio for this search is given by 

§_ = ~ 1°2 16nWwolr(wo + D)l
2 

IFs(D)l
2 

dD . 
N 2n 01 mc2D2 nmD2 (2.16) 

When the detection frequency is sufficiently small, i.e. , when 

n << 1 I Tringdown) (2.17) 

then 'ljJ(D) is a constant ('1/J ---t mc2 /4WwoTr~ngdown), which makes homodyne detection 

technically possible (see Fig. 2.1). The signal to noise ratio may then be higher than 

that limited by the SQL, provided that sufficiently large input power can be used: 

s w (s) 
N = Wsq1 N SQL ' 

(2.18) 

where 

(§_) = _1 j IFsl
2 

dD 
N SQL nm n2 

(2.19) 

and 
mc2 

Wsq1 = 2 l 67rWoTringdown 
(2.20) 

Thus the minimum detectible force may be lower than the Standard Quantum Limit 

by a factor of JWsq1/W: 

~ 
Fmin = v~6FsQL· (2.21) 

If Tringdown is sufficiently small, then from Eq. (2.17) we see that one could perform a 
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broad-band QND measurement by using the frequency-independent homodyne phase. 

Equation (2.20) obviously holds for a broad-band signal as well , but the expression 

for WsQL is different and the homodyne phase acquires frequency dependence, which 

makes the detection very difficult. 

2.1.4 Conclusion 

We have considered a particular example of a speed meter, and have shown that using 

this speed meter one could in principle perform a broad-band QND measurement of 

an external force acting on the test mass. In particular, we have shown that, for the 

readout scheme of Fig. 2.1, the minimum measureable force Fmin is given by 

~ 
Fmin = v W6Fsq1 , (2.22) 

where 6FsQL is the standard quantum limit [Eq. (2.1)], W is the laser power, and 

Wsq1 is the minimum laser power required for beating the SQL: 

WsQ1 
mc2 

167l"W0 T 2 

m 4 x 1015s-1 
( O.Ols) 2 

5 x 104Watt-k- --
10 g W 0 T 

(2.23) 

Although it is not outrageous to imagine achieving the laser powers W > WsQL 

at which Eq. (2.22) reports a beating of the SQL, there are many serious practical 

obstacles to implementing such a speed meter in a real interferometric gravitational­

wave detector. Nevertheless, this speed meter might contain the conceptual seeds 

from which will grow a practical QND scheme for the LIGO / VIRGO network. 
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ABSTRACT 

A new optical topology and signal readout strategy for a laser interfer­
ometer gravitational wave detector were proposed recently by Bragin­
sky and Khalili. Their method is based on using a nonlinear medium 
inside a microwave oscillator to detect the gravitational-wave-induced 
spatial shift of the interfero:meter's standing optical wave. This paper 
proposes a quantum nondemolition ( QND) scheme that could be real­
istically used for such a readout device and discusses a "fundamental" 
sensitivity limit imposed by a higher order optical effect . 

2.2.1 Introduction and Summary 

Laser interferometer gravitational wave detectors (LIGO, VIRGO, GEO 600, TAMA) 

are designed to detect small perturbations h in the spatial metric due to gravitational 

waves (GW) passing through the Earth [1] . Being very far from major astrophysical 

sources [2] , these detectors are likely to encounter GW's that are very weak, so the 

detectors must be correspondingly sensitive-e.g., the first LIGO interferometer will 

be able to detect GW's with h ,...__, 3 x 10-21 in the frequency band of 30 - 300Hz. 

Improving the sensitivity of measurement may be necessary to achieve the first GW 

detection and will surely be necessary to improve the event rate. 

One of the major noise sources in traditional interferometers is the so-called shot 

noise. What is being detected is the phase shift of the output optical wave [1 J: 

(2.24) 

where Wopt is the angular frequency of the optical wave and Tew is the half-period 

of a gravitational wave. For coherent optical pumping the uncertainty in the phase 

due to -shot noise is given by 6.¢ = 1/ vNew, where New is the number of photons 

introduced into the interferometer during Tew. Thus a gravitational wave can be 
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detected if 

(2 .25) 

Therefore, in order to increase the gravity-wave sensitivity of the interferometer, we 

have to increase the number of photons in the resonator (and hence the consumed 

laser power) as N ex 1/ h2
. On the other hand, the presence of the large number of 

optical photons in the resonator poses severe technical and fundamental problems. 

Among the technical problems are distortion of mirrors due to overheating, and large 

laser power consumption [1]. The fundamental problem is that phot ons in the inter­

ferometer will randomly buffet the mirrors inducing random motion indistinguishable 

from the motion produced by a gravitational wave. Balancing this radiation pressure 

noise and the shot noise produces the Standard Quantum Limit (SQL) for monitoring 

the displacements of the test masses [2]. 

Recently Braginsky and Khalili have proposed a new way to improve the sensitivity 

of an interferometric GW detector without increasing the interferometer 's optical 

power [3]. Their method entails a new type of GW readout based on a microwave 

oscillator containing an optically nonlinear medium, which is placed inside the GW 

detector 's high quality Fabry-Perot resonator. The advantage of this readout method 

is that, unlike conventional interferometers, it does not require large optical power 

circulating inside the FP resonator in order to achieve high sensitivity. In section 

2.2.2 the principles of this scheme are briefly outlined and some numerical estimates 

are quoted . 

Section 2.2.3 describes a potentially practical Quantum Nondemolition (QND) 

strategy which can be used in the Braginsky-Khalili readout system (BK-meter) . We 

show in Sec. 2.2.3 and Appendix A [cf. Eq. (2.44)] that a QND measurement can be 

performed within a narrow frequency band centered around 

(2.26) 

where Wopt and N are the frequency of light and the number of photons stored in 
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the FP resonator respectively, L is the distance between the end mirrors of the FP 

resonator and m is the mass of each of the test masses to which the mirrors are 

attached . For N = 2.8 x 1020
, L = 4km, m = lOkg, Wopt = 3 x 1015 one obtains 

D0 /27r = 60Hz, which is within LIGO band. For the resonator's relaxation time of 

10 seconds (as assumed in [3]), the necessary laser power to achieve this number of 

photons inside the resonator is '""' 9Watt. 

We demonstrate in Appendix B that the bandwidth 6D of this measurement 

determines the optimal power input to the microwave oscillator: 

Do 
Woptimal rv WsQL 6D , (2.27) 

where WsQL is the power input necessary to achieve the Standard Quantum Limit 

sensitivity at frequency D0 ; cf. Eq. (2.47) where the expression and the numeri­

cal estimate for WsQL are given. The signal-to-noise ratio achieved by this QND 

measurement is greater by a factor of JDo/ 6D than the SQL: 

(2.28) 

Section 4 and Appendix C discuss a higher-order optical effect in the BK readout 

system and derive the sensitivity limit that it imposes. In particular , thermally 

excited mechanical modes in the test masses will, after interacting with light inside 

the FP resonator, produce a "double conversion" of photons, which will be registered 

as noise by the detector; cf. Eq. (2.48) and Eq. (2.49). 

2.2.2 Principle of operation of the BK meter 

The layout of the BK meter is shown in Fig. 2.2 (for more detail the reader is referred 

to [3]). Three freely suspended mirrors-A,B and C-form walls of an L-shaped 

Fabry-Perot (FP) resonator which supports a standing optical wave, driven by a laser 

at end A or C. Section A-B of the resonator would be in one arm of the LIGO (or 

other) vacuum system, and B-C in the other. The block D containing two thin slabs 
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of non-linear medium (Fig. 2.3) is sandwiched between two thin focusing lenses two 

focal lengths apart. The lenses and the block are attached to mirror B. When the po­

larization tensor of a gravitational wave is aligned with the arms of the FP resonator , 

the distances between A and B and between B and C will change in counterphase­

i.e., when one is increasing, the other one will decrease. This will produce the net 

spatial shift of the standing optical wave with respect to mirror B, thus changing the 

amplitude of the optical field within the two slabs of nonlinear medium. The slabs 

have cubic nonlinearities that are equal in magnitude but opposite in sign. They are 

positioned symmetrically with respect to the crest of the standing optical wave as 

shown in Fig. 2.3 . Block D, which contains the slabs, is placed in between the plates 

of a capacitor which in turn is part of a microwave oscillator. 

The spatial shift in the optical standing wave produces changes of electric field in 

the first and second slabs that are equal in magnitude and opposite in sign: 

(2.29) 

Since the two slabs have the opposite nonlinearities , x~3 ) = -x~3), the change in the 

index of refraction is the same for both of them: 

(2.30) 

This change in dielectric constants of the plates in turn changes the value of the 

microwave oscillator's capacitance, thus producing a shift in its resonant frequency: 

r - Kwopth UWe -
2 

(2.31) 

where We is the frequency of the microwave oscillator, Wopt is the frequency of the 

optical wave, and K = 167r2x(3) lNnwoptWe/V c. Here l is the width of each of the 

nonlinear slabs and V is the volume of the capacitor. This shift is seen as a phase 
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A 

See Fig. 2 

c 

Figure 2.2: The Braginsky-Khalili readout system. 
Two thin lenses focus light on block D containing nonlinear medium. Block D is 
shown on Fig. 2.3. 
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Figure 2.3: Nonlinear readout device. 

~ut 

Transmission 
Line 

This is an enlarged view of block D from Fig. 2.2. Two slabs of nonlinear medium are 
positioned at the points of maximal gradient of the intensity of the optical standing 
wave. The spacial shift of the optical standing wave changes the resonant frequency 
of the microwave LC oscillator. 
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shift in the readout of the microwave oscillator: 

(2.32) 

where T; is the oscillator's ringdown time. 

Braginsky and Khalili compare this with the traditional optical readout schemes 

in which the phase shift of the recombined optical wave is detected: 

(2.33) 

where T; is the ringdown time of the two traditional FP resonators, one in each arm 

of the interferometer. For x(3
) = 10-14cm2 /Volt2 (fused silica), E;pt = 107Volt2 /cm2 

(optical breakdown of fused silica), they calculate Kin Eq. (2.31) to be of order 1, 

so for T;pt rv T; the responses of both systems in terms of phaseshift are of the same 

order, 

</>opt rv </>e · (2.34) 

For coherent pumping in both cases the uncertainty in the phase is 6.¢ rv 1/ ~' 

where New is the number of photons (optical in conventional interferometers and 

microwave in the BK readout system) introduced into the interferometer during an 

averaging time (half the GW period). So to achieve the same level of sensitivity, one 

needs to pump the same number of photons in both cases, but the power needed 

by the BK meter is smaller by a factor of Wapt/ We rv 104
. The BK estimate for the 

microwave power is 

(2.35) 

for Ne rv 1020 . For more detailed estimates the reader is refered to Ref. [3] . 

2.2.3 QND for the BK readout system 

Any readout system that monitors the displacement of the mirrors must exert on them 

a fluctuating back action force, thus enforcing the Heisenberg uncertainty relation. 
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As a consequence of this, all straightforward displacement measurements run into the 

Standard Quantum Limit (SQL) [4], [5] 

jr;; 
6xsq1 = y -:;;; , (2.36) 

where 6x is the minimal uncertainty in displacement of a free mass m monitored 

over a time interval T. This SQL for displacement can also be written in terms of the 

limiting spectral density of the mirrors ' displacement fluctuations[4]: 

5SQL(D) = _h_ 
x mD2 (2 .37) 

where Dis the frequency. Then 6x = V S~QL 6D, and for D ,..._, 6D ,..._, l/T one recovers 

Eq. (2.36) 

The SQL for a free mass is by no means a fundamental limit; it can be overcome by 

a variety of techniques [6] which are known collectively as Quantum Nondemolition 

(QND) measurements. All previously proposed QND schemes that are applicable 

for conventional GW interferometers utilize highly non-classical states of light , and 

none of them are practical because of technical difficulties (most especially because 

of the large required optical pumping power and because losses so easily destroy the 

non-classical states of light) . In this paper a different strategy is proposed, one which 

does not require the deliberate creation or detection of any non-classical state of light 

and thus can be more practically implemented. This scheme, however, is confined to 

narrow-band measurements. 

We begin by describing the backaction mechanism by which the BK readout sys­

tem enforces the Heisenberg Uncertainty relation on the measurement of the test-mass 

position. The quantum state of the BK microwave oscillator satisfies the usual phase­

number uncertainty relation 

(2.38) 

The more accurately the BK-meter reads out </>e , the larger will be the fluctuations 

6Ne in the oscillator's number of microwave photons. The x(3) nonlinearity will 
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transform !:::.Ne into an uncertainty of the optical index of refraction of the slabs: 

(2.39) 

where 6Ne is the fluctuation in Ne, 6n1 and 6n2 are the resulting fluctuations in n 1 and 

n2, E is the coefficient of dielectric permitivity and V is the volume of the capacitor. 

Braginsky and Khalili have argued[3] that 6n1 and 6n2 cause a redistribution of the 

optical energy between the left and the right parts of the FP resonator , thereby giving 

rise to a net difference in the forces buffeting the mirrors: 

{JF = KWopt n6Ne 
We L ' 

(2.40) 

where L is the total length of the FP resonator. This fluctuating force will cause 

fluctuations in the positions of the mirrors, thus causing fluctuations in the spatial 

shift of the optical field with respect to the mirror B and the nonlinear slabs attached 

to it: 

bx(D) = -~ 6F(D) = -~Kwopt n {JN (D) 
2 mD2 2 We L e ) 

(2.41) 

where 6x(D), 6F(D) and 6Ne(D) are Fourier components of the corresponding quanti-

ties, mis the mass of each of the mirrors, and the factor ~ comes about when motion 

of all three mirrors is taken into account. 

Now we are ready to describe our QND method, but first the following simple 

remark must be made. Suppose for a moment that all of the mirrors are rigidly fixed. 

As already mentioned above, fluctuations in Ne, by changing the optical coefficient 

· of refraction of the slabs [Eq. (2.39)], will redistribute optical energy between the 

left and right parts of the FP resonator. A straightforward calculation [Eq. (2.66) in 

Appendix A] shows that this alone will change the optical field inside the nonlinear 

slabs so that 
nWoptl 

5E1 = -5E2 = Eo y'2 6n, 
c 2 

(2.42) 

thereby simulating a spatial shift of the optical field as in Eq. (2.29). Here l is the 
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width of the nonlinear slab, n _ n 1 = n2, on - on1 = -on2 and E 0 is the peak 

amplitude of the optical standing wave inside the FP resonator. 

Now if we release the mirrors, the back action (2 .41) will affect our reading as 

well, and the total fluctuations of the optical field inside the nonlinear slabs will be 

given by 

0E2(0) = (2.43) 

;;;. Woptl ( W~pt fiN ) v L.nE0-- 1 - 6--- on(O) 
c 0 2 mc2T 

where T = L/c; cf. Eq. (2.67) of Appendix A. From the above equation we see 

that for a given frequency 0 = 0 0 we can adjust N in such a way that oE1 (0) = 

oE2(0) = 0 and thus the readout system does not register any fluctuations due to the 

back action (but only for that value of 0). Thus a QND measurement is performed. 

The relationship between the QND angular frequency 0 0 and the number N of optical 

photons in the Fabry-Perot resonator is 

(2.44) 

see Eq. (2.26). 

The essential reason that this readout is QND is that it registers not only the 

fluctuations of the mirrors' displacement x due to backaction [the second term in large 

parentheses in Eq. (17)], but also directly the back-action force (the first term). Thus 

a position-momentum correlation is introduced into the measurement procedure, and 

such correlations are known to make QND possible[4]. For L = 4km, 0/2n = 60Hz, 

Wopt = 3 x 1015s-1 , and m = lOkg the necessary number of optical photons to perform 

QND is 

N = ~-~6 mc2T rv 2.8 x 1020. 
6 Wopt fi 

(2.45) 

The QND measurement described above is clearly narrowband. In principle one can 

dynamically tune the frequency at which the QND is performed by changing the laser 

power and thus changing the number of optical photons N in the resonator, provided 
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that the frequency of the signal changes slowly compared to the ring-down rate of the 

optical resonator. In practice the issues of fluctuations in N and stability of control 

systems may be a serious abstacle for such dynamical tuning. Analysis of these and 

other practical difficulties is beyond the scope of the present work. 

Appendix B considers a particular scheme for measuring of the phase of the mi­

crowave oscillator. In this scheme the oscillator is coupled to a transmission line, 

and the physically measured quantity is the phase quadrature of the outgoing elec­

tromagnetic wave propagating along the transmission line. Having specified fully the 

measurement model, we find that if the bandwidth of measurement is .6.D then the 

signal-to-noise ratio for the narrow-band QND measurement can be as high as 

(2.46) 

The above signal-to-noise ratio is achieved when the pumping power of the microwave 

oscillator is given by 

Woptimal 

(2 .47) 

where V is the volume of the capacitor and WsQL is the minimal power necessary to 

achieve the SQL sensitivity level; cf. Eq. (2.80) of Appendix B and Eq. (2.27) of 

the introduction. For V = (.Olmm) 3 , We= 1011s- 1 and for other parameters having 

numerical values as in Eq. (2.45), we get Woptimal = O.lWatt(Do/.6.D) (cf. the lkW 

of the optical power required to achieve the SQL in a conventional interferometric 

scheme). 

While we have not devised a general proof, it seems likely that no other microwave 

readout scheme can operate with a power less than in Eq. (2.47); expression (2.47) 

is probably a general relation for optimally disigned microwave readout schemes. 
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2.2.4 Higher-order optical effects; fundamental sensitivity 

limit 

In this section we identify and discuss a fundamental limit on the sensitivity of the 

BK readout system-a limit that applies whether or not the system is being operated 

in a QND mode. 

In an interferometric GW detector, mirrors are installed on the surfaces of test 

masses , which have internal elastic mechanical modes of frequencies nm/27r ~ 12 kHz. 

The noise curve of the interferometer will have large peaks near these frequencies. 

When photons of frequency Wopt interact with walls oscillating with the frequancy 

nm, some of the photons will be Up Or down converted to frequencies Wopt ± 0,m· 

These up or down converted photons in turn interact with the "noisy" walls, and if 

there is a non-zero component of the mirrors' motion at nm ± n, then some of the 

photons will Up Or down convert a second time to frequencies Wo ± 0. If n is the 

frequency of detection, then this second-order process of double frequency conversion 

will be registered by the BK readout system as a signal from a gravitational wave. 

The perturbation theory for FP resonators with moving walls is worked out in 

detail in Appendix C. Here just the main result is quoted. From Eq. (2.107) the 

noise curve in units of 1/JHz is given by 

(2.48) 

where Te is the temperature of the test masses, Im is the damping rate of their 

mechanical modes, and Erv max (ox(3) /x(3)) ol/ >..). Here ox= xi3
) + x~3)) x(3) = xi3» 

>.. is the wavelength of light in the resonator and ol is the spatial offset of the slabs 

from the position in shown Fig. 2. For L = 4 km, n = 60rad/sec, Te = 300K, 

nm = 7.2 x 104rad/sec, m = lOkg and Im = 10-snm we get the noise level of 

(2.49) 

It is not unimaginable that future interferometers will achieve sensitivities ...JSti ,..._, 
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10-29 
/ .JHZ for low frequency ( 10 - lOOHz) narrow band signals (by, e.g., using the 

QND technique described in this paper). In this case, Eqs. (2.48) and (2.49) show 

that higher order effects will give rise to a "fundamental" low frequency noise limit 

of magnitude 

(2.50) 

2.2.5 Conclusions 

In this paper we have shown that a practical QND measurement might be possible 

for a narrow-band measurement by a gravitational wave interferometer using a BK 

readout system. Also it was shown that second-order effects set a "fundumental" 

limit on the precision of the measurement. 
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2.2.6 Appendix A: physics of the nonlinear medium inside 

the BK Fabry-Perot resonator 

First consider one slab of nonlinear medium positioned inside a FP resonator. Let x1 

(Fig. 2.4) be the total path length from the left mirror to the left edge of the slab, 

x 3 be the path length from the right mirror to the right edge of the slab and l be the 

width of the slab. For simplicity of the calculation, we assume l « .\ where .\ is the 

wavelength of light in the resonator. Also for convenience define T1 = xif c, T2 = l/c, 

T3 = x 3 / c. The eigenfrequencies w of this optical resonator were worked out in [3]. 

They satisfy the following eigenequation: 

sin(wT) (n - 1) sin(nwT2 ) x 
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Figure 2.4: Thin slab of nonlinear medium inside a Fabry-Perot resonator. 
The changing index of refraction of the slab will redistribute optical energy between 
the left and the right parts of the resonator. 

where T = T 1 + T3 + nT2 . This equation has approximate solutions 

2 T2 
w = w0 + (n - l)w0-{cos [w0 (T1 -T3 ) ] - l} 

2T 

(2 .51) 

(2.52) 

where w0 = 7rk/T, and k is any integer. When the slab's index ofrefraction n changes, 

w changes accordingly: 

(2.53) 

The total optical energy contained in the resonator is 

U=Nnw (2 .54) 

where N is the number of optical photons. We can find all of the forces acting on the 

mirrors by taking derivatives of U with respect to T1 and T3. For example, 

(2.55) 
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Nh aw 
Fright= --­

e 873 
(2.56) 

where F1ert and Fright are the forces acting on the left and the right mirrors respectively, 

with the positive direction being out of the resonator. When taking derivatives of w, 

one has to keep in mind that w0 also depends on 7 1 and 7 3 . 

The force acting on the slab of nonlinear medium is F 1ert - Fright. The total spatial 

shift of the optical wave with respect to the slab due to the forces acting on the end 

mirrors and the slab itself is 

3 [ - - ] 6x(S1) = -
2

mS12 F1ert(D) - Fright(D) , (2.57) 

where "tildas" stand for Fourier Transforms. If F 1ert and Fright are produced by a 

fluctuating index of refraction n = n0 + 6n , then on substituting Eqs. (2.55) and 

(2.56) into Eq. (2.57) we get 

(2.58) 

By then putting Eqs. (2.53) and (2.58) together we obtain 

_ 3Nhn w2 7 2 . _ 
6x(S1) = ---n2- sm [w (71 - 73)] Jn(D). 

me H 7 
(2.59) 

For the two slabs of opposite nonlinearities ( 6n1 = -6n2 = 6n) in the configuration 

of Fig. 2.2, their two contributions add up to give 

Nnh w2 7 2 _ 
6i(S1) = -6---6n(S1) . 

me S12 7 
(2.60) 

The above expression is a manifestation of the back action as explained in Sec. II. 

Now let the amplitude of the optical electric field in the left part of the resonator 

be 

E1eft = Eo sin ( wex) (2.61) 
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where x is the spatial coordinate with the origin at the left wall. Then the field in 

the middle of the left slab is given by 

(2.62) 

Now 
dE1 dEo . dw 
-d ::::::: -d sm(wT1) + EoT1 cos(wT1)-. 

n n dn 
(2.63) 

In the case when two slabs are present inside the FP resonator, their contributions 

to the frequency and field changes add up linearly (since the perturbations are very 

small). For the configuration of Fig. 2.2 we see from Eq.(2.53) that dw/dn = 0, so 

dE1 dEo . 
-d = -sm(wT1). 

n dn 
(2.64) 

But F1eft ex E5, so 
dEo/dn 1 dF1en/dn 

Eo 2 F1eft 

T d OW 
(2.65) 

w dn OT1 · 

Putting Eq. (2.53) and Eq. (2.64) into Eq. (2.65) and doing exactly the same calcu­

lation for the second slab, we obtain 

'E - -'E - E nwoptl' u 1 - u 2 - o ,!(') un 
v2c 

(2.66) 

for the case when mirror B is in the middle of the resonator. Combining this with 

the back action from Eq. (2.60), we finally get Eq. (2.43) of Sec. 2.3: 

(2.67) 
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2.2. 7 Appendix B : Calculation of optimal microwave power 

and signal-to-noise ratio for a QND measurement 

Consider the microwave oscillator as shown on Fig. 2.3. In order to get information 

about the phase of the oscillator, we have to couple it to the outside world. Whatever 

the nature of this coupling is , it will cause dissipation of the induced oscillations and 

hence, by the fluctuation-dissipation theorem, give birth to a fluctuating component 

of the oscillator's current. 

For concreteness, we model this coupling by an open transmission line of impedance 

R. We assume that the oscillator, consisting of the capacitor C and inductor £, is 

driven on resonance by a generator G with a voltage output of amplitude V0 (see 

Fig. 2.3). We also assume the transmission line encompasses all of the dissipation 

present in the oscillator, i.e. , more generally, that we can access all of the information 

escaping from the oscillator. And finally, we set the temperature of the outside world 

to 0 (in reality, one will have to cool the oscillator to temperatures below the ones 

corresponding to a microwave frequency). The ingoing vacuum modes drive fluctua­

tions in the circuit as described above, and the phase of the outgoing wave contains 

information about the phase of the oscillator. 

The ingoing modes are described by the positive frequency part of a voltage op-

era tor 

(2.68) 

where ain(w) is the annihilation operator for the ingoing mode of frequency w nor­

malized so that (O lain(w)a/n(w') IO) = o(w - w'). Then the fourier component of the 

outgoing wave is 

2n+w' 
(2.69) 

where a = R/ £ is the ringdown rate of the microwave oscillator and Owe is the 

variation in the oscillator's resonant frequency due to fluctuating optical fields in the 
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slabs of nonlinear medium, as explained in Sec. 2.2.2 : 

ow = 8Jr2 X( 3)lNnwoptWe OE1 - oE2 

e vf2VL Ea 
(2 .70) 

Here V is the volume of the capacitor. The change of the optical field inside the slabs 

is given by 

;;:.E ( Nn w~pt) v L. 0nwoptr2 1 - 6-
2
---

2 
On(Sl) 

me 'T n 
fr. Wopt ) +v L-Eo-xs(Sl , 

c 
(2.71) 

where the first term on the right-hand side is due to the fluctuating index of refraction 

of the slabs [cf. Eq. (2.43) of Sec. 2.2.3 and discussion therein], and the second term 

is due to the CW-induced relative displacement X 5 of the slabs with respect to the 

standing optical wave. The fluctuations on of the indices of refraction of the nonlinear 

slabs in the above expression are caused by the voltage fluctuations on the plates of 

the capacitor, which in turn can be traced to the incoming vacuum modes of the 

transmission line: 

(2. 72) 

where d is the distance between the plates of the capacitor. Collecting Equations 

(2.69), (2.70), (2.71) and (2.72) together, we can write down the expression for the 

phase quadrature of the outgoing wave in the transmission line, which is the measured 

readout signal: 

r(Sl) 

(2.73) 
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The measured x is then given by 

X measured ( D) 

where W = 11a2 
/ R is the power pumped into the microwave oscillator by the generator 

G. The corresponding spectral density of the Gaussian noise seen by the readout 

system is 

(2.75) 

The first term on the right-hand side corresponds to the back-action noise and the 

second term corresponds to the intrinsic noise of the measuring device. 

We aim to perform a measurement with a narrow frequency band centered around 

the frequency D0 at which the back-action noise is zero: 

Do = J 6Nn Wopt . 

mT C 

We write Bx as a Taylor expansion in frequency around D0 : 

S (D) ,..,., A(D )W (D - Do)2 + B(Do) 
x - 0 D2 w ' 

0 

(2.76) 

(2 .77) 

where A and B can be read from Eq. (2 .75) . If the relevant bandwidth is 6.D, then 

we place a limit (D - D0 ) 2 ::; 6.D2 and 

S (D) < A(D )W 6.D
2 
+ B(Do) 

x - o D6 w (2 .78) 

Minimizing the right-hand side of the above equation with respect to W , we find the 
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expression for the minimum noise in a fixed bandwidth: 

Sxoptimal(D) < 2VAB~~ = (2.79) 

1 A 2T '6.D '6.D 
27r2 N Do '"'"' SxsQdDo) Do ' 

which is achieved at the input power 

(2.80) 

In the above expressions A is the wavelength of light inside the FP resonator and 

SsqL(D0 ) is the Standard Quantum Limit noise at the frequency S10 for a free mass. 

Clearly, the signal-to-noise ratio for this narrow-band measurement is )Do/ '6.D greater 

than that in the case of the SQL: 

(2.81) 

2.2.8 Appendix C: Perturbation theory for Fabry-Perot cav­

ity with moving walls 

In this appendix we derive a formal series for the optical field inside a Fabry-Perot 

resonator which is pumped by a monochromatic laser beam and the walls of which are 

free to perform motions small compared to the wavelength of light A. The expansion 

parameter is bx/ A, where bx is the change of length of the resonator. For our purposes 

we are only interested in expanding up to (bx/A) 2
; and we use this formal series to 

derive Eq. (2.48). 

The following situation is considered: for simplicity we assume that light is 

pumped on resonance by a laser beam E;n = ae-i(woptt-kx) through the left mirror 

which is at rest and has reflectivity r and transmissivity T. For concreteness it is as­

sumed that the fluctuations in length bx originate from the motion of the right mirror 

which is assumed to be perfectly reflecting. Further, we assume that the plain wave 
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approximation is applicable and hence the optical field inside the resonator satisfies 

the one-dimensional wave equation: 

( 
32 32 ) 
8t2 - c2 8x2 A(x, t) = 0 (2.82) 

The general solution of of the above equation is 

(2.83) 

where f and g are arbitrary functions. The boundary conditions at the left mirror 

(x = 0) and at the right mirror (x = L +ox) read respectively 

g(t) - r j(t) = Tae-iwoptt (2.84) 

and 

f (t +To+ 
0
:) + g (t - To -

0
:) = 0 (2.85) 

where To= L/c. Eliminating g(t) from these two equations, we get 

(2.86) 

or, expanding in ox up to second order, 

f(t +To) - r f(t - To) 

-~ [f' (t +To)+ r f' (t - To)] ox (2.87) 
c 

__ l [j" (t +To) - T j" (t - To)] OX2. 
2c2 

We take a Fourier tranform of the above equation and then solve it by iterations: 

(2.88) 
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where 

f(O)(w) = lT-a.ro(w - Wopt), (2.89) 

f (l) ( ) _ 2iwoptTa. ( ) 
w - ) ( ) . Ox w - W 0 pt , c [(1 - r) cos (wTo - i 1 + r sm (wT0)] (1 - r) 

(2.90) 

c2 [(1 - r) cos (wT0) - i(l + r) sin (wT0)] (1 - r) 

J d , cos(w'T0)6x(w' - w0 Pt)ox(w - w') 
x w (1 - r) cos(w'To) - i(l + r) sin(w'To) · 

(2.91) 

When writing down the above terms we took into account the fact that 1 - r « 1. 

The structure of J(2
) is clear: it corresponds to upconversion of light at frequency 

Wopt to an intermediate frequency w' and then from w' tow, with w' being integrated 

over. From Eqs. (2.83) and (2.84) 

A(x,w) c::::-2isin(~x) f(w). (2.92) 

The BK readout system detects the square of the amplitude of the optical field: 

where 

and 

5( 2>(x, st) 

S(x, t) IA(x , t)l2 

5(o)(x, t) + 5(l>(x, t) + 5(2>(x, t) + ... 

5(0)(x , S1) = 4sin2 (W;tx) C 20(S1), 

5(l>(x, st)= 0 

2wopt C 2 { sin [wop~ -n' x J sin [ wopt ~n-n' x J 
- ( c ) J .C(st').C(st - S1') + 

2 [sin (wopt+n x) +sin (wopt-n x) J } 
c c ox(st')ox(st - st')dst' . 

.C(st).C(st') 

(2.93) 

(2.94) 

(2.95) 

(2 .96) 
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In the above expression C = Ta / (1 - r) and 

L:(D) = (1 - r) cos(DT) + (1 + r) sin(~h) . 

In real interferometers Ox represents, for example, motion of the surface of the 

mirror due to the thermal excitation of the test mass's internal modes. In what 

follows the contribution from the internal mode of lowest frequency is considered and 

then it will be shown that the sum of contributions of all the higher modes will have 

the same order of magnitude. It is assumed that the thermal noise is a Markoff 

Gaussian process, and therefore is described by the following equation: 

F(D) 
ox(D) = D2 - D2 + D' 

m 'l'"'/m 
(2.97) 

where Dm is the eigenfrequency of the mechanical mode, I m is the damping rate and 

F(D) is the Langevin force satisfying 

(2.98) 

where D = kBTe/m/m* is the velocity diffusion rate . Herem* is the effective mass of 

the mode (approximately given by the mirror mass m) , kB is Boltzmann's constant 

and Te is the temperature of the enviroment. To calculate the spectral density of the 

fluctuations of 5(2) (the goal of this analysis) , we will need the 4-point correlation 

function: 

D2 

8
7r2 [o(D1 + D2)o(D3 + D4) (2.99) 

+o(D1 + D3)o(D2 + D4) + o(D1 + S14)0(D2 + D3)] . 

Using the above expression, Eq. (2.96) and Eq. (2.97), we obtain 

(5(2)(x, D1)5(2)(x, D2)) = (2w0C)4 [M1c5 (Di) c5 (rh) + M2 (x, Di) c5 (D1 + D2)]. 

(2.100) 

Here M2(D) , which characterizes the spectral density of fluctuations of 5(2), is given 
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by 

D2 

871" 2 j [K (D, D') K (-st , -D') + (2.101) 

K (st, D') K (-st, -st+ D')] dst', 

where 

K(S1,S1') 
1 

.C(S1')(S1' 2 
- D~ + ZfmSl') [(st - S1') 2 

- D~ + Z/m (D - Sl')] 

{

sin ( wop~-D' X) sin ( Wopt~D-D' X) 
.C(D _ S1') (2.102) 

[sin ( ~ x) + sin ( ~ x) J sin ( 7x) } 
+ .C(D) . 

It is possible to integrate Eq. (2.101) exactly, but it is clear that the main contri­

bution will come from mechanical and optical resonances, D' = Dopt and D' = Dm. 

For /m « (1 - r)/r (which is the case for, e.g., fused silica) the major contribution 

in Eq. (2.101) is due to the mechanical resonances: 

(2.103) 

where 

[sin (w0r~+0 x) +sin (w0r~-0 x)J2 
K 2 (x, D)'"" 16sin2 (Dmr)(S1r) 2DinS12/m ' (2.105) 

(2.106) 

We are only interested in detection frequencies such that Dr « 1. Then for the 

configuration of nonlinear slabs shown in Fig. 2.2, the main contribution to the noise 

in the BK meter readout will come from K2 and K3 . The spectral density of the 
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displacement noise will be 

(2.107) 

where E characterizes the degree of positioning error and the mismatch of nonlineari­

ties of the two slabs: 

(
lxPll - lx~3 ll oz) 

E rv max (3) , - . 

X1 >. 
(2.108) 

Here <5l is the spatial offset of the central point between the two slabs. 

Equation (2.107) is the main result of this Appendix. Its implications are discussed 

at the end of Sec. 2.2.4. 
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Chapter 3 Issues in thermal noise for 

LIGO 
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3.1 Paper III: Internal thermal noise in t he LIG O 

test masses: a d irect approach. 

Published in Phys. Rev. D, 57, 659 

ABSTRACT 

The internal thermal noise in LIGO's test masses is analyzed by a new 
technique, a direct application of the Fluctuation-Dissipation Theorem 
to LIGO 's readout observable, x(t) =(longitudinal position of test-mass 
face, weighted by laser beam's Gaussian profile). Previous analyses, 
which relied on a normal-mode decomposition of the test-mass motion, 
were valid only if the dissipation is uniformally distributed over the 
test-mass interior, and they converged reliably to a final answer only 
when the beam size was a non-negligible fraction of the test-mass cross 
section. This paper's direct analysis , by contrast, can handle inhomo­
geneous dissipation and arbitrary beam sizes. In the domain of validity 
of the previous analysis, the two methods give the same answer for 
Sx(J), the spectral density of thermal noise, to within expected accu­
racy. The new analysis predicts that thermal noise due to dissipation 
concentrated in the test mass's front face (e .g., due to mirror coating) 
scales as 1/r6, by contrast with homogeneous dissipation, which scales 
as 1/r0 (r0 is the beam radius); so surface dissipation could become 
significant for small beam sizes. 

3 .1.1 Introduction 

Random thermal fluctuations are expected to be the dominant noise source for the first 

interferometers in the Laser Interferometer Gravitational Wave Observatory (LIGO) 

at frequencies between 35 and 100 Hz [1]. This thermal noise is generally decomposed 

into a suspension thermal noise and an internal thermal noise for the test masses. 

The former can be traced back to the friction in the test masses' pendular suspension 

system; the latter is due to internal damping inside the test masses themselves. Tra­

ditionally, thermal noise calculations have been based on a normal-mode expansion 

[2], [3] . However, Gonzalez and Saulson have also performed an exact calculation of 

the suspension thermal noise by applying directly the Fluctuation-Dissipation (FD) 

theorem [5] in its most general form, due to H. B. Callan and T . A. Welton [9]. 

The purpose of this paper is to use the general method of Gonzales and Saulson to 

calculate the internal thermal noise (also, [10] has somewhat complementary to this 
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paper's treatment of the internal thermal noise). 

In Section 3.1.2 we analyze a general situation when a measuring device (e.g. , a 

laser interferometer) monitors the displacement of the surface of a test mass whose 

internal degrees of freedom are in thermal equilibrium with each other. We develop 

a general formalism for using the FD theorem to calculate the thermal noise in the 

most general surface readout quantity. In brief our method is as follows : 

To work out the thermal noise at a particular frequency f, one should mentally 

apply pressure oscillating at this frequency to the observed surface of the test mass. 

The spatial variation of this pressure should mimic that of the light beam intensity 

(for example, in the case of a gaussian beam this oscillating pressure has a gaussian 

profile of the same width as the beam). The thermal noise is then given by 

(3.1) 

where kB and T are the Boltzmann's constant and the temperature of the mirror 

respectively, Fa is the amplitude of the oscillating force applied to the surface (i.e., the 

pressure integrated over the surface), and wdiss is the time-averaged power dissipated 

in the test mass when this oscillating pressure is applied. 

To demonstrate the computational power of this general approach, in Section 3.1.3 

we consider the case of a cylindrical fused silica test mass monitored by a circular 

gaussian laser beam. For the case when the radius of the beam is much less then 

the size of the test mass and the dissipation is uniformly distributed throughout test 

mass volume, we derive an analytical expression for the thermal noise [cf. Eq. (3.15) 

of Section 3.1.3]: 

Sx(f) = 4kBT 1 - 0"
2 

I¢ [l + O (ra)]. 
f ?T3 Eara R 

(3.2) 

Here O", Ea, and ¢ are the Poisson ratio, Young's modulus, and dissipational loss 

angle [Eq. (3 .11)] of the test-mass material, ra is the radius of the laser beam (which 

is defined here as a radius at which the intensity of light is 1/e of the maximum 

intensity), Risa characteristic size of the test mass, and I = 1.87322 ... in the case of 

a gaussian beam. Putting numbers in Eqs. (3.1) and (3.2), we find that our results are 
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in agreement with those of Raab and Gillespie [3], who used the more complicated and 

computationally involved method of normal-mode decomposition. It is interesting to 

note that as r0 / R tends to zero, our simple analytical formula becomes more precise, 

whereas the more complicated and computationally involved method of normal-mode 

decomposition requires summing over a larger number of modes and thus becomes 

computationally more expensive. 

Not only can the normal-mode decomposition be computationally expensive, it can 

also be misleading. We demonstrate this point in Section 3.4.4 by considering a test 

mass which has a lossy surface, e.g., due to a lossy mirror coating. We estimate the 

contribution of the surface to the thermal noise using the general method of Section 

3.1.2, and show that it differs from the estimate obtained by the method of normal 

modes (which gives a result too small by a factor of at least,...., r0 / R). This breakdown 

of the normal-mode analysis will in general happen when the sources of friction are 

not distributed homogeneously over the test mass. The fundamental reason is that in 

this case different normal modes can have a common Langevin driving force (which 

is not so if the defects are distributed homogeneously). 

Our analysis shows that thermal noise due to surface losses near the laser beam 

spot scales as Sx(f) ex 1/r6, whereas thermal noise due to volume losses scales as 1/ro. 

Correspondingly, for small beam spots the surface losses could become significant. To 

protect against this, it is important to keep the surface near the laser beam spot as 

free of potential sources of friction as possible. 

3.1.2 General method 

For concreteness, consider a situation where LIGO's laser beam is shining on the 

circular surface of one of LIGO's cylindrical test masses. The phase shift of the 

reflected light contains information about the motion of the test mass's surface. The 

variable read out by this procedure can be written as 

x(t) = j f (f')y(r, t)d2r. (3.3) 
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Here i is the transverse location of a point on the t est-mass surface, and y(i, t) is the 

displacement of the boundary along the direction of the laser beam at point i and 

time t. The form factor f ( f') depends on the laser beam profile and is proportional 

to the laser light intensity at the point i [3]; it is normalized by J f (i)d2r = 1. 

The internal thermal noise of the test mass is defined as the fluctuations in x ( t), 

and our objective is to find the spectral density Sx(f) of these fluctuations. We 

assume that the test mass is in thermal equilibrium at temperature T . 

Callen and Welton 's generalized Fluctuation-Dissipation Theorem [9] says that 

the spectral density of the fluctuations of LIGO 's readout variable x(t) is given by 

the formula 

(3.4) 

where kB is Boltzman's constant and Y(f) is a complex admittance associated with 

x(t). This complex admittance can be understood and computed as follows. Introduce 

a special set of generalized coordinates for the test mass's degrees of freedom-a set 

for which x is one of the coordinates. (Since x is not the coordinate of a normal mode 

of the test mass, these generalized coordinates will not be the usual ones associated 

with normal modes.) Apply to the test mass a generalized force F(t) that drives the 

generalized momentum conjugate to x but does not drive any of the other generalized 

momenta. This generalized force will show up as the following interaction term in 

the test mass's Hamiltonian: 

Hint= -F(t)x. (3.5) 

This driving force, together with the test mass's internal elastic forces and internal 

dissipation, will generate a time evolution x(t) of the observable x . Denote by F(f) 

and x(f) the Fourier transforms of the (arbitrary) driving force F(t) and the observ­

able's response x(t). Then the admittance that appears in the thermal noise formula 

Eq. (3.4) is 

Y(f) = 2mfx(f)/ F(f). (3.6) 

The physical nature of the driving force F(t) can be deduced by inserting the 
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definition (3.3) of the observable x into the interaction Hamiltonian (3 .5): 

Hint = - j P(f')y(r, t)d2r, (3.7) 

where 

P(r, t) = F(t)f(f') . (3.8) 

From Eq. (3.7) we see that the generalized force F(t) consists of a pressure P(f, t) 

[Eq. (3.8)] applied to the test mass's surface. Note that the spatial distribution of 

this pressure is the same as LIGO's laser beam intensity profile. 

The real part of the admittance, Re[Y(j)], describes the coupling of the test 

mass's dissipation to the observable x. We can see this most clearly by applying 

an oscillatory pressure P(f, t) = Fa cos(27r ft)f (f') to the test mass 's face . From the 

response formula (3.6) we infer that the power Wdiss that this oscillatory pressure feeds 

into the test mass, and that the test mass then dissipates, is related to IRe[Y(j)]J by 

IRe [Y (!)JI = 2~~iss 
a 

(3.9) 

Substituting Eq. (3.9) into Eq. (3.4) , we get 

(3.10) 

Equation (3.10) is the most important equation of this paper. Let us reephasize 

it's physical content: 

1. Apply an oscillatory pressure 

P(f, t) = Fa cos(27r jt)j (f') to the face of the test mass. 

2. Work out the average power Wdiss dissipated in the test mass under the action 

of this oscillatory pressure. 
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3. Use Fa and W<liss in Eq. (3.10) to calculate Sx(J) . 

This procedure is different from the one employed in previous calculations of 

internal thermal noise for the LIGO and VIRGO test masses [2], [3], [4]. The previ­

ous authors decomposed a test mass's motion into normal elastic modes; then they 

calculated the contribution of each mode to Sx independently and added up these 

contributions. This method of "normal-mode decomposition" works fine in many 

cases, but it has two drawbacks: 

1. The fundamental assumption in this method is that different normal modes have 

independent Langevin forces. This assumption is correct only if the sources of 

friction are homogeneously distributed over the test-mass volume. It breaks 

down if the defects are more concentrated in one place than in others- for ex­

ample, when there is significant damping concentrated in the test-mass surface. 

We will return to this in Section IV. 

2. For a small laser beam diameter the sum over normal modes converges very 

slowly, so one has to sum over many modes, which may be computationally 

expensive. By contrast, using the new method described in this paper, one can 

write down a simple analytic expression for the low-frequency noise in the case 

of a narrow laser beam. In the next section we derive this expression and make 

comparison with the normal-mode decomposition results derived in [3]. 

3.1.3 Thermal noise due to homogeneously distributed damp­

ing 

Consider the case where all the friction in the test mass comes from homogeneously 

distributed damping. It is conventional to characterize such friction by an imaginary 
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part of the material's Young's modulus: 

E = Ea [1 + up(!)] ; (3.11) 

¢(!) is called the material's "loss angle." It is suspected [6], [2] that for fused silica, 

which will be used in LIGO's test masses, ¢ might be independent of frequency 

within LIGO's detection band (but there is no evidence for such behavior of¢ for 

figh-quality resonators-see [7] for some healthy scepticism). In this !-independent 

case the damping is called "structural." 

To calculate the thermal noise for homogeneous dissipation, we express Wdiss in 

Eq. (3 .10) as 

Wdiss = 2n}Umax1>U), (3.12) 

where Umax is the energy of elastic deformation at a moment when the test mass is 

maximally contracted or extended under the action of the oscillatory pressure of Eq. 

(3.8). 

LIGO's detection frequencies (10- 300Hz) are much lower than the eigenfrequen­

cies of the test mass's normal modes (the lowest of which is ,....., 6kHz); so we can 

assume constant, non-oscillating pressure P(f') = Faf(r) when evaluating Umax · 

In the case when the beam profile is gaussian and the centre of the light spot 

coincides with the centre of the transverse coordinates, we have 

(3.13) 

where ra is the radius of the laser beam. When the characteristic size of the test mass 

R is much greater than ra, we can approximate the test mass as an infinite half-space 

in order to find Umax· Appendix A uses elasticity theory to derive Umax in this case 

[cf. Eq. (3.27)]: 

F5 2 [ (ra)J Umax = 7r2 Eara (1 - (J )I 1 + 0 R ' (3.14) 

where Ea and a are the Young's modulus and Poisson ratio of the material respec-
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tively, and I r::::: 1.87322. Here O(r0 / R) is a correction due to the finite size of the 

cylinder. Putting Eqs. (3.14) and (3 .12) into Eq. (3 .10) , one gets 

4k8 T 1 - <J
2 

[ (r0 )] 
Sx(J) = -j-1f3Eoro 1¢ 1 + 0 R . (3.15) 

Below we take the numerical values 1 used by Gillespie and Raab [3] : r0 = 1.56cm, 

Ea= 7.18 x 1010Pa, <J = 0.16, ¢ = 10- 7
, the mirror diameter of 25cm and the mirror 

length of lOcm. Gillespie and Raab, after summing over the relevant ,....., 30 modes , 

get 

(3.16) 

Our analytical approximation (3.15) (which should be valid to within ,....., 10 percent 

in this case) gives 

Sx(lOOHz) r::::: 8.7 X 10-40m 2 /Hz . (3 .17) 

Notice that our analytic expression in Eq. (3 .15) gets more exact when r 0 / R --+ 0, 

whereas , by contrast, the sum over modes converges more slowly and gets more 

complicated. 

The ratio r0 / R may turn out to be of order unity in real experiments. In this case, 

Eq. (3.15) can only be used for order-of-magnitude estimates. To work out the exact 

value of the internal thermal noise, one would need to calculate Umax numerically. 

We have done such a numerical computetion using finite-element techniques. More 

specifically, we have used finite-element software called PDEase2D [Version 3.0], which 

runs as part of Mascyma [Version 2.1], to solve the elasticity equations for the loaded 

mirror and to compute Umax and, by virtue of Eqs. (3 .12) and (3.10), Sx· The exact 

answer for the mirror and light spot parameters given above is 

Sx(lOOHz) = 8.76 X 10-40m2/Hz, (3.18) 

which is consistent (better than expected) with our analytical approximation. 

1Note that our definition of the beam radius (location where intensity has fallen to l/e of its 
central value) differs by J2 from the beam radius of Ref. [3] (location of 1 / e amplitude falloff). 
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The purpose of the present section is to convince the reader that the method 

presented in this paper is correct and could be computationally cheaper than the 

normal-mode expansion. The next section concentrates on the cases where a direct 

application of the FD theorem can be crucial for getting the right results, and the 

method of normal-mode decomposition fails. 

3.1.4 The case of surface damping 

In this section we study thermal noise due to surface losses-caused, e.g., by inadequate 

polishing or by a lossy mirror coating. 

From Eq. (3.10) we see that the key quantity in the thermal noise calculation is 

the power dissipated in the test mass when an oscillating pressure is applied to the 

laser beam spot on the test-mass surface. The power dissipated at each point of the 

material is proportional to the square of the stress at this point. Most of the surface 

stress is in or near the spot to which the pressure is applied, so 

W coating (Fa) 2 
2 _ F5 

diss ex 2 r o - 2 · 
ro ro 

(3.19) 

Thus the thermal noise due to the surface damping scales like 

Sx(boundary) ex 1/r6. (3.20) 

For comparison, the thermal noise due to bulk damping [Eq. (3.15)] scales as 

Sx(bulk) ex l/ro. (3.21) 

Thus as the spot size decreases, the thermal noise due to surface damping grows faster 

than that due to bulk damping. 

Contrast this conclusion with the intuition one gets from normal-mode decompo­

sition. There one is concerned with how much the surface contributes to the quality 

factors (Q's) of the normal modes. For a typical mode the strain at the surface is at 
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most of the same order as the characteristic strain inside the test mass (likely, much 

less for first few modes-because of the free boundary condition). Therefore, one 

would presume that the surface contributes no more than some mode-independent 

fraction of the test mass's Q's. In order of magnitude this fraction should be the ratio 

of the power dissipated in the surface to that in the bulk if one applies an oscillating 

pressure uniformally to the whole surface, which in the context of our method cor­

responds to a beam radius of R. Therefore the normal-mode estimate of the surface 

thermal noise is at least r0 / R less than the correct value. 

Current experiments show that the mirror coating does not contribute significantly 

to the Q's of the test-mass normal modes. The conclusion commonly made is that 

coating is also not likely to contribute significantly to the internal thermal noise. The 

above analysis shows that this conclusion is not justified and that there might be a 

significant contribution of the coating to the internal thermal noise, despite the fact 

that Q's are not significantly changed. 

3.1.5 Discussion and conclusion 

The normal-mode decomposition of the thermal noise is exact when the defects are 

distributed homogeneously through the volume of the test mass. However, as was 

shown explicitly in Section IV for the case of surface losses, when the defect distribu­

tion is not homogeneous, the normal-mode decomposition may be misleading, and a 

direct application of the Fluctuation-Dissipation theorem is required. 

Thermal noise is ultimately linked to friction in the test mass; this friction is 

caused by various (structural and otherwise) defects. Those defects which are closer 

to the beam spot will contribute more to the thermal noise that is read out by the 

laser beam's phase shift. Although this fact is a direct consequence of the formal­

ism developed in this paper, we would like to give an intuitive example in order to 

emphasize this point. 

Consider, for the sake of simplicity, a one dimensional elastic test mass with two 

identical defects A and B, as shown on Fig. 3.1; A is closer to the beam spot than 
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----- -- ----- --1 Laser beam · - ---- --------
'--~~~~~~~~~~~~~~~~~~~_____, 

Figure 3.1: Example of normal-mode decomposition breakdown. 
Identical defects A and B create fluctuating strees in different parts of the test mass. 
The stress created by defect A will influence the phase shift of the laser beam readout 
more than the stress created by defect B, although both A and B make identical 
contributions to Q's of the test mass 's elastic modes. 

B . Each of these defects creates a random stress which pushes apart or pulls together 

the left and right . (relative to the defect) parts of the test mass. By conservation 

of momentum, the part of the test mass which is lighter will respond more to the 

random stress than the other part; therefore defect A will have a larger effect on the 

optical readout than the B. 

Note that if the defects A and B are positioned symmetrically with respect to 

the centre of the test mass, they will have the same effect on the Q 's of all elastic 

modes (we assume for simplicity that only one-dimensional longitudinal modes are 

present-and all of them are either symmetric or antisymmetric with respect to the 

centre). Therefore, the normal-mode decomposition applied to the test-mass with 

just one defect-A or B-would give the same result for the thermal noise as read 

by the laser. Clearly, we have found yet another illustration of the breakdown of the 

normal-mode decomposition . 

The considerations presented above lead to the following advice for real experi­

ments: keep the neighbourhood of the laser beam spot as clean of defects as possible. 

Not only does our direct applicatin of the Fluctuation-Dissipation Theorem have 

broader validity than the normal-mode decomposition; it is also be computationally 

simpler. In the case of homogeneous structural damping it yields a simple analytical 

expression for the internal thermal noise spectrum [cf. Eq. ( 3 .15)]: 

Sx(f) = 4kBT 1- CJ
2 

I¢ [l - O (ro)]. 
f 7r3 Eoro R 

(3.22) 

This result is consistent with the numerical sum-over-modes done in Ref. [3] and is 

accurate when the radius of the laser beam is small relative to the size of the test mass, 
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i.e. in the regime when the sum over modes converges especially slowly. \i\Then r 0 / R 

is not small, a numerical solution of the elasticity equations to deduce the dissipation 

power wdiss' and thence the thermal noise ( 10)' is straightforward and is probably 

also much simpler than performing a sum over modes. 
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3.1.6 Appendix: The strain energy in a test mass subjected 

to a gaussianly distributed surface pressure 

The objective of this Appendix is to derive Eq. (3.14) of Section III for the energy of 

elastic strain in a cylindrical test mass when the pressure P(f') = F0 f (f') is applied 

to one of it's circular faces. (As was discussed in Section III, we can assume that 

the pressure is constant in time since LIGO's detection frequencies are much lower 

than the lowest normal-mode frequency.) For a circular laser beam with a gaussian 

intensity profile f(T) is given by [cf. Eq. (3 .13)] 

(3.23) 

where we assume that the centre of the light spot coincides with the centre of the 

test mass's circular face. 

If the radius of the laser beam r0 is small compared to the size of the test mass, we 

can approximate the test mass by an infinite elastic half-space. Then our calculation 

of the elastic energy is correct up to a fractional accuracy of O(r0 / R), where R is the 
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characteristic size of the test mass. 

Let y ( f') be the normal displacement of the surface at location r under the action 

of the pressure P(f'). In the linear approximation of small strains 

y(r) = j G(r, ii)P(r1)d2r', (3.24) 

where G(f', r1 ) is a Green's function. The calculation of G is a non-trivial albeit 

standard exercise in elasticity theory [8] , which gives 

- 1 - 0'
2 1 

G(r, r') = E 1- 'I' 
Jr o r-r 

(3.25) 

where O' is the Poisson ratio and E0 the Young's modulus of the material. The elastic 

energy stored in the material is 

j P( f')y( f')d2r 

2 I 
1 - O' j P(f')P~) d2rd2r' 

Jr Eo If' - r' I 
(3.26) 

1 - 2 -(r2+r'2)/r6 
()' F.2 J C d2 d2 I ~3 ~-4 o r r, 

Tr Eor0 vr2 + r'2 - 2rr' cos e 

where e is the angle between rand r1 . The integral in the last term of Eq. (3.26) (as 

was pointed out by Glenn Sobermann) can be taken by introducing "polar" coordi­

nates R and ¢: r = R cos¢, r' = R sin¢. One then integrates out the radial part of 

the integrand and expands the remaining angular part in a power series with respect 

to cos e; termwise integration of this power series finally yields Eq. (3.14) [up to a 

fractional error of O(r0 / R)] 

(3.27) 

where 
7r3/2 [ oo (4n - 1)!! l 

I = - 1 + L ( ) ( ) ~ 1.87322. 
4 n=l 2n !4n 2n + 1 

(3.28) 
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It can be shown that if, instead of an infinite half-space, we consider a finite cylin­

drical test mass, the leading fractional correction to the elast ic energy is of the order 

O(ro/R). 
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3.2 Paper IV: How to reduce the suspension ther-

mal noise in LIGO without improving the Q's 

of the pendulum and violin modes. 

Written with V. B. Braginsky and S. P. Vyatchanin, 

To appear in Measurement Science and Technology 

ABSTRACT 

The suspension noise in interferometric gravitational wave detectors is 
caused by losses at the top and the bottom attachments of each suspen­
sion fiber. We use the Fluctuation-Dissipation theorem to argue that 
by careful positioning of the laser beam spot on the mirror face it is 
possible to reduce the contribution of the bottom attachment point to 
the suspension noise by several orders of magnitude. For example, for 
the initial and enhanced LIGO design parameters (i.e., mirror masses 
and sizes, and suspension fibers' lengths and diameters) we predict a 
reduction of rv 100 in the "bottom" spectral density throughout the 
band 35 - lOOHz of serious thermal noise. 
We then propose a readout scheme which suppresses the suspension 
noise contribution of the top attachment point. The idea is to monitor 
an averaged horizontal displacement of the fiber of length l; this al­
lows one to record the contribution of the top attachment point to the 
suspension noise, and later subtract it from the interferometer read­
out . This method will allow a suppression factor in spectral density of 

7.4 (l/d2
) i_Mg/7rE(6.l/d2

), where dis the fiber's diameter, Eis it's 
Young mo ulus and M is the mass of the mirror. For the test mass 
parameters of the initial and enhanced LIGO designs this reduction 
factor is 132 x (l/30cm)(0.6mm/d) 2

. 

We offer what we think might become a practical implementation of 
such a readout scheme. We propose to position a thin optical waveg­
uide close to a fused silica fiber used as the suspension fiber. The 
waveguide itself is at the surface of a solid fused silica slab which is 
attached rigidly to the last mass of the seismic isolation stack (see Fig. 
3.6). The thermal motion of the suspension fiber is recorded through 
the phaseshift of an optical wave passed through the waveguide. A laser 
power of lm W should be sufficient to achieve the desired sensitivity. 

3.2.1 Introduction 

Random thermal motion will be the dominant noise source in the frequency band of 

35 - 100 Hz for the first interferometers [1] and in the frequency band of 25 - 126 
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Hz for the enhanced interferometers 2 in the Laser Interferometer Gravitational Wave 

Observatory (LIGO) 3 . 

The thermal noise in this frequency band is caused by the losses in the suspension 

fibers , in particular at the top and the bottom of each fiber's attachment point. So 

far the only known way to reduce the thermal noise has been to improve the quality 

of the suspension fibers and their attachments. Here we suggest a different approach: 

In Section 3.2.2 we will present a general analysis of the suspension noise based on a 

direct application of the Fluctuation-Dissipation theorem. We will explicitly separate 

the contributions to the thermal noise of the top and the bottom attachment points 

of the suspension fibers. It has been a common opinion that the top and bottom 

attachments contribute equally to the thermal noise. We shall challenge this point of 

view. In fact, we will show that if one shifts the laser beam spot down from the center 

of the mirror by an appropriately chosen distance h, the contribution of the bottom 

attachment point to the thermal noise can be reduced by several orders of magnitude. 

Fig. 3.4 presents plots of this reduction factor in the frequency band 35-lOOHz for 

three different choices of h. What is plotted here is the ratio Sbottom (!)/Stop(!), where 

Sbottom (!) and Stop(!) are the spectral densities of thermal noise contributed by the 

bottom and the top attachment points respectively. All three values of h are close to 

I 
h = M(R + l) (3.29) 

[cf. Eq. (3.42)], where l is the length of the suspension fiber, I is the test-mass moment 

of inertia for rotation about the center of mass in the plane of Fig. 3.2 (see later), R 

is the radius of the mirror face and M is the mass of the test mass. The numerical 

values of these parameters for the initial and enhanced LIGO interferometers are 

2 To be specific, we refer to the step 4 of LIGO enhancement - see [2]. In these the suspension 
thermal noise was calculated assuming the structural damping mechanism. However, the nature 
of dissipation in fused silica (e.g., viscous vs structural) is not yet fully established for the above 
frequency bands. 

3 The analysis of this paper is fully applicable to all other Interferometric Gravitational Wave 
detectors (e.g., VIRGO, GE0-600, TAMA, etc.). For the sake of brevity in this paper we will refer 
only to LIGO. 
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M = lOkg, l = 30cm, R = 12.5cm, (3.30) 

I= 4.73 x 105g cm2
, h = 1.llcm. 

Out of the three graphs presented in Fig. 3.4, the one with h = 1.0cm seems to be 

the optimal one. From the graphs we see that reduction factors of c:::: 10-2 in the 

"bottom" component of the thermal noise is possible over the entire band of serious 

thermal noise: 35 to 100 Hz . 

In Sec. 3.2.3 we concentrate on the top attachment point. Lossy defects at the 

top create noise not only in the test mass motion, but also noise in the motion 

of the fiber. The latter is significantly larger than the former - by a factor of 

order j2 / J;endulum at frequencies above the pendulum frequency and below the violin 

resonances (which are the frequencies of interest for LIGO thermal noise) . We show 

that if one monitors the average horizontal displacement of the suspension fiber of 

length l, one can essentially record the fluctuating "driving force" originating at 

the suspension top, and then subtract it from the interferometer's readout, thereby 

reducing thermal noise originating at the suspension top. The reduction factor in the 

spectral density of thermal noise is given by P = 0.93 · l/ >. [cf. Eq( 3.54)]. Here 

(3.31) 

is the length of the segment of fiber near it's top where the bending is greatest, d 

is the fiber's diameter, E is the fiber 's Young modulus and g is the acceleration of 

gravity. For a fused silica fiber of diameter d = 0.6mm one gets a thermal noise 

reduction factor of Pc:::: 132. 

We offer a particular way of implementing such a procedure. The basic idea is 

shown in Fig. 3.6. A fused silica slab is rigidly attached to the "ceiling" (i.e., to 

the last mass of the seismic isolation stack), and a waveguide ab is carved into the 

slab's surface. A monochromatic optical wave is set up in the waveguide, and a 

fused silica fiber used as the suspension fiber is positioned close to the waveguide, 
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Figure 3.2: The single-fiber suspension. 
We consider a test mass suspended on a single fiber. The fiber's bottom is attached to 
the top of the test mass, and the fiber's top is attached to the last stage of the seismic 
isolation stack. It is assumed that at attachment points the fiber is perpendicular to 
the surface to which it is attached. 

within the optical wave's evanescent field . When the fiber is displaced relative to 

the waveguide, it will change the optical wave's propagation speed , thus inducing 

an overall phaseshift of the wave. The detailed calculations in Sec. IIIB show that 

,..__, lm W of optical power in the wave is sufficient to reach the required sensitivity. 

3.2 .2 How to reduce thermal noise originating at the bottom 

attachment point 

The model and formalism The particular suspension that we consider is sketched 

in Fig. 3.2. We consider a compact rigid test mass of mass M suspended by a single 

fiber of length l and mass m; the fiber 's bottom end is attached, for concreteness, to 

the top of the test mass (the main conclusions of this paper are also valid when the 

test mass is suspended by a fiber loop, as is planned for LIGO) . References [3], [4], 

[5], [7] give detailed explanations of how to use the Fluctuation-Dissipation theorem 

directly (without normal-mode decomposition) to calculate the spectral density of 
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thermal noise 4
. In what follows we use the approach elaborated in [7] . 

To calculate the spectral density Sx (f) of suspension's thermal noise at frequency 

J we imagine applying an oscillating force F perpendicular to the test mass 's mirror 

surface at the center of the readout laser beam spot 5 : 

F(t) = Fo cos(27r ft) . (3.32) 

Then Sx is given by [cf. Eq (3) of [7]] 

(3.33) 

where Waiss is the average power dissipated in the system (suspension, in our case) 

when the force F(t) is applied, k8 is Boltzmann's constant and Tis the temperature. 

For concreteness, assume that the dissipation in the fiber occurs through structural 

damping (our conclusions will hold equally well for viscous or thermoelastic damping). 

In this case, the average power dissipated during the oscillatory motion of frequency 

f is given by [8] 

(3.34) 

where Umax is the energy of the fiber's elastic deformation at a moment when it is 

maximally bent under the action of the oscillatory force in Eq. (3.32), and ¢(!) is 

the "loss angle" of the material. The energy of the fiber's elastic deformation is given 

by 

(3.35) 

where E is the Young modulus of the fiber material, J is the geometric moment 

of inertia of the fiber (for a fiber with circular cross section of diameter d one has 

J = Jrd4 /64), z is distance along the fiber with z = 0 at the top and z = l at the 

4The original formulation of the Fluctuation-Dissipation theorem is given in [6]. 
5This prescription is only valid when the test masses are perfectly rigid, which is a good approx­

imation when dealing with suspension thermal noise. The case when the test masses are no longer 
considered to be rigid (e.g., for an internal thermal noise calculations) is treated in detail in [7]. In 
that case the force F(t) must be spread out over the laser beam spot instead of applied to its center 
point. 
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Figure 3.3: Periodically driven test mass and suspension fiber. 
Motion of the test mass and the suspension fiber under the action of an oscillating 
force applied at the center of the laser beam spot in two different cases: a) the beam 
spot is positioned at the mirror center, the fiber bends equally at the top and the 
bottom, and b) the position of the beam spot is shifted down from the center of the 
mirror, so that there is no bending of the fiber at the bottom. 

bottom, and y(z) is the fiber's horizontal displacement from a vertical line. 

This method of calculating thermal noise is useful for a qualitative analysis of 

the system, as well as quantitative analysis. In particular, it allows one to see which 

part of the suspension fiber contributes the most to the thermal noise . Assume, for a 

start, that the laser beam is positioned exactly in the middle of the mirror. Then to 

work out the thermal noise one has to imagine applying the oscillating force Fin Eq. 

(3.32) to the mirror center; the motion of the fiber and the mirror under the action 

of the force are shown in Fig. 3.3a. Here we assume that the detection frequency f 

(and hence the frequency of the applied force) satisfies fp , fr<< f << fv, where fp, 

fr, fv are the frequencies of the pendulum, rocking and first violin mode respectively 

(this condition implies that horizontal and rotational motion of the test mass is not 

affected by the presence of the fiber, and that the fiber itself remains straight). 

From Fig. 3.3a it is clear that the fiber bends equally at the top and the bottom 
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(we always assume that at the attachment point the fiber has to be normal to the 

surface to which it is attached) . The total energy of elastic deformation is 

1 2 Mg>. ( F )
2 

Uo = -Mg>.a = -- - -
2 2 Mw 2 l ' 

(3.36) 

where >. = J J E /Mg is the characteristic length over which the fiber is bent near the 

attachment points , w = 27r f is the angular frequency of detection, and a is the angle 

between the straight part of the fiber and the vertical. 

The bending of the fiber at the bottom can be avoided if one applies the force 

F in Eq. (3.32) not at the middle of the mirror, but at some distance h below the 

center. In particular, we should choose h so that the mirror itself rotates by the same 

angle as the fiber under the action of the applied force; the resulting motion is shown 

on Fig. 3.3b. Physically this means that if we position our laser beam at a distance 

h below the mirror center, then the bottom attachment point will not contribute to 

the thermal noise when h is carefully chosen. This means that the overall suspension 

noise will be reduced by a factor of order 2 (in fact, more precisely, by a factor of 

2(1 + R/l), where R is the radius of the mirror and l is the length of the string, -

see later in this section) . 

In the rest of this section and Appendix A we find the general expression for the 

suspension thermal noise, and we then work out the optimal h for the frequency band 

of interest for LICO. We will assume that when a periodic oscillation of frequency f 

is induced in the system, the average power dissipated as heat in the suspension is 

given by 

(3.37) 

Here li'T and &8 are the amplitudes of oscillations of the angles CiT and a 8 respectively 

(see Fig. 3.2 ), and (top and (bottom are frequency-dependent quantities characterizing 

dissipation at the top and the bottom respectively. For the case of structural damping 

(top = (bottom = 7f J</>(f)M gA, (3.38) 
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where A is given by Eq. (3.31) of the introduction. 

To compute Wdiss we need to evaluate O T and oB by analyzing the dynamics of 

the oscillations. This is done in Appendix A, see Eqs. (3 .68) and (3.67). Putting 

these equations into Eq. (3.37) and then into Eq. (3.33), we obtain [cf. Eq. (3.69)] 

8kBT { I /M - R(g/w 2 + h) }
2 

w2 [I g - M gR (g/w 2 - R)] cos(kl) - (Jw2 - M gR) sin(kl)/k 

{ 
2 [I / M - h [R +tan (kl) /k - g/w2]l 2} 

X (top+ (bottom COS (kl) J / M _ R(g/w2 + h) .(3.39) 

Here k = w / c = 27r f / c, c = J glM /m is the speed of propagation of a transverse 

wave in the fiber. From the above equation we can infer the ratio of the bottom and 

the top contributions to the thermal noise: 

Sbottom(f) = (bottom(!) cos2 (kl) [I /M - h [R +tan (kl) / k - g/w
2
]] 2 (3.40) 

Stop(!) (top(!) I / M - R(g/w2 + h) 

This is the most important equation in this section of the paper; it will be discussed 

in the next subsection. 

The case of low-frequency suspension noise When the detection frequency f 

is far below the frequency of the fundamental violin mode, fv , then kl << 1 in Eq. 

(3.40) and 

tan~kl) ~ l [l + ~ (kl) 2
]. (3.41) 

Let us assume that the top and the bottom are equally lossy, i.e., (top = (bottom, as 

the would be for structural damping, Eq. (3.38) above. We choose h to be 

I 
h = M(R+ l) 

(3.42) 

Putting Eqs. (3.42) and (3.41) into Eq. (3.40), we get 

(3.43) 
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Figure 3.4: A plot of SbottomU)/ Stop(!) as a function of frequency f for three 
different positions of the laser beam spot . 

where wP = j9fi. 
For the initial and enhanced LIGO design fv '.::::'. 400Hz, M '.::::'. lOkg, I '.::::'. 4.73 x 

10-2 kg x m2
, R '.::::'. 12.5cm, and the interesting frequency range where suspension noise 

is expected to dominate is 35 - lOOHz (actually, this depends on the stage of enhance­

ment. The frequency band specified above is where the suspension thermal noise is 

expected to dominate in the initial LIGO; in the enhanced version this frequency 

interval will be larger). In this case Eq. (3.43) gives SbottomU)/Stop(f):::::: 0.002-0.2. 

In Fig. 3.4 we give plots for Sbottom/ Stop as a function of the detection frequency 

f for three different choices of h. We have used Eq. (3.43) to make all the plots and 

we set I, M, R and l to the numerical values appropriate for the initial and enhanced 

LIGO design and given at the beginning of this section. 

The first curve is plotted for h given by Eq. (3.42), in our case h = l.llcm. The 

second and third curves are for h = l.Ocm and h = 0.9cm; these values of h are 

chosen so that Sbottom/ Stop = 0 for f = 80Hz and f = 105Hz respectively. Out of 
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the three cases the choice h = lcm gives the best overall performance across the 

considered frequency band, with the typical reduction factor of 

(3.44) 

From Eq. (3.39) we see that choosing h close to the value in Eq. (3.42) reduces the 

total suspension thermal noise by a factor close to 2(1 + R/l) ,...., 3 relative to the case 

when h = 0. 

High-frequency suspension thermal noise A somewhat less interesting obser­

vation is that for h = 0 and fn = fv(n + 1/2), where n is an integer, 

(3.45) 

Unfortunately, at f = fn the interferometer's noise is dominated by shot noise. How­

ever, if one uses an advanced optical topology - for example, resonant sideband 

extraction - then it is possible to reduce the shot noise in a narrow band around any 

chosen frequency. Then the thermal noise may dominate in this narrow band, and 

our observation (3.45) may be useful in case one tries to reduce the thermal noise by 

cooling of the fiber top. 

3.2.3 How to control noise from the top 

The concept In this section we propose a recipe for how to decrease the influence 

of the thermally fluctuating stress at the top part of the suspension fiber. The basic 

idea is the following: 

Intuitively, the fluctuations at the top cause bending of the fiber at the top, which 

will be a random process in time. This random bending will randomly move the rest 

of the fiber and ultimately drive the random motion of the test mass. We propose to 

measure directly the thermally driven fluctuations in the horizontal displacement of 

the fiber, and from them infer the fluctuating force which drives the random motion 



90 

of the mirror. We can then subtract the motion due to this fluctuating force from the 

interferometer output6 . 

Formally this amounts to introducing a new readout variable q as follows: 

q = Xmirror + Xfiber· (3.46) 

Here Xmirror is the horizontal displacement of the laser spot's center (i .e. the signal 

ultimately read by the interferometer's photodiode), and 

xfiber = fo
1 

dz<I>(z)y(z) (3.47) 

is the fiber's horizontal displacement weighted by some function <I>(z) to be discussed 

below. We will postpone the discussion of how to measure q experimentally until the 

next section; here we concentrate on finding the optimal <I>(z) and seeing what is the 

maximal possible reduction in the thermal noise. 

To find the spectral density of fluctuations in q we need to imagine acting on 

the system with sinusoidal force Fq ex cos(27r ft) that appears in the interaction 

hamiltonian in the following way 

(3.48) 

cf. the discussion of the Fluctuation-Dissipation theorem in Ref. [7]. From the Eq. 

(3.48) we observe that applying the generalized force Fq to the system is equivalent 

to applying two forces simultaneously: one is a force of magnitude Fq applied to the 

mirror surface at the center of the beam spot, and the other is a force distributed 

along the fiber in the following manner: 

dFfiber ( ) --- = Fq<I> z . 
dz 

(3.49) 

The resulting motion of the system is shown in Fig. 3.5 . The intuitive idea is to 

6The idea of thermal noise compensation is not new (e.g., [ll], [10]). However , our detailed 
treatment and concrete experimental proposal is different from anything prior to this paper. 
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Figure 3.5: Motion of the test mass and suspension fiber under the action 
of the generalized force Fq defined in Eq. (3.48) of the text. 
The force Fq should be chosen so that there is no bending of the fiber at it's top and 
bottom attachment points. 

choose the weighting function <I>(z) so that when the beam spot's height h has also 

been appropriately chosen, Fq induces no bending of the fiber at the top or at the 

bottom. 

In the case of structural damping the dissipated power is proportional to the 

elastic energy U of the fiber. Thus formally one has to choose <I>(z) and h so that U is 

minimized. It is convenient to reformulate the problem: to find the shape of the fiber 

y(z) and beam-spot height h for which the functional in Eq. (3.35) has a minimum, 

and after this calculate the distribution <I>(z) of the driving force on the fiber that 

will produce the desired shape y(z). In Appendix B we carry out this straightforward 

but somewhat tedious task. We obtain [cf. Eq. (3.78)] 

Yoptimal ( Z) Fq ( z) 2 
( 3 ( r + 1) - z / l ) 

Mw 2 l 2(3r2 + 3r + 1) 

rv ::2 ( f) 
2 

( 0.76 - O.isf) . (3.50) 

Here r = R/l, R is the radius of the mirror, l is the length of the fiber, w = 21f f is the 



92 

angular frequency of detection. We substitute here and below r = 0.42 corresponding 

to the initial and enhanced LIGO test masses. The profile of the distributed force 

acting on the fiber and hence of <I>(z) is mainly determined by y"(z) (see Appendix 

B): 

which gives [cf. Eq. (3.81)] 

<I>o(z) 

<I>(z) c::: <I>o = - Mgy"(z), 
Fq 

w; ( z) 3 
- w2l 1 + r - l 3r2 + 3r + 1 

w; ( z) --2 1.53 - 1.08- ) 
w l l 

(3.51) 

(3.52) 

where Wp = Ffi,. When the force distribution has this optimal form, the elastic 

energy has the minimum value 

3 >.Mg>. ( Fq )
2 

3r2 + 3r + 1 l 2 M w2 l 
1.08).. TT 
-- X U1Q 

l ' 
(3.53) 

where U0 is the elastic energy in Eq. (3.36). Therefore, for a fused silica fiber with 

E c::: 6.9 x 1010Pa and d = 0.6mm, we get ).. c::: 2.lmm and the maximal reduction 

factor for the spectral density of suspension thermal noise is 

l 
p = 1.08).. '.::::' 132. (3.54) 

Experimental realization: preliminary remarks. Before describing a particu­

lar experimental realization of the above scheme, a few general remarks are in order. 

First, one might worry that our averaging function <I>(z) is frequency dependent 

- in general, that could make the experimental implementation very difficult. In 

particular [see Appendix B, Eq. (3.80)], <I> consists of two components: <I>= <I>o + <I>1, 

where <I>0 and <I>1 as given by Eq. (3.80) have very different frequency dependence. 

However at the frequencies of interest <I>0 » <I>1, and then the approximate formula 
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(3.52) for the averaging function <I>(z) = <I> 0 (z) is a product of two terms: one which 

depends only on the frequency f (i.e. <I>(z) ex 1/ f 2 ), and the other which depends 

only on the coordinate z. This feature makes the scheme feasible for a broad range 

of frequencies. It is sufficient that our device measures the displacement of the fiber 

with the frequency-independent averaging function ~(z) ex j2 x <I>(z), and that the 

frequency dependence is then put back in during data analysis when constructing the 

readout variable q: 
rl -

q = Xmirror + 17(!) Jo dz<I>(z)y(z), (3 .55) 

where 77(!) ex 1-2 is chosen so that 77~ = <I>. 

As mentioned above, Eq. (3.52) is an approximation valid when the fiber has no 

inertia, i.e. when f « fv = (lowest violin-mode frequency) . When the inertia of the 

fiber becomes important (<I> 1 ,....., <I> 0 ), it is no longer possible to factor out a frequency­

dependent part of <I>. As a result , when f gets closer to fv , the effectiveness of the 

thermal noise suppression (i.e., the value of P) is reduced . A detailed analysis shows 

that if we choose ~(z) so that the thermal noise compensation is optimal (P = Pmax) 

at low frequencies J « fv, then at f = 0.2fv we have P,....., 0.9Pmaxi at f = 0.32fv we 

have P,....., 0.5Pmaxi and beyond this Pis reduced sharply as we approach the first violin 

mode. For the fused silica fiber discussed above f v ,....., 400Hz, so the compensation is 

effective throughout the band 35 - lOOHz where suspension thermal noise dominates. 

It is worth emphasizing that this deterioration in the reduction factor only happens 

when we use the averaging function <I> 0 instead of <I> 0 + <I> 1 close to the violin frequency. 

Thus, this limitation is one of technology and not of principle. Perhaps, it is possible 

to conceive of a scheme where the correct averaging function is implemented at all 

frequencies. However, we have not been able to do so. 

Secondly, any sensor used for monitoring the fiber coordinate Xfiber will have an 

intrinsic noise which will deteriorate the quality of the thermal-noise compensation. 

In particular, the overall reduction factor Peff is given by 

1 1 sfiber measU) ---+-----
Peff - P Sfiber therm(!)' 

(3.56) 
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where sfiber measU) is the spectral density of intrinsic noise of the device which mea­

sures the average displacement of the fiber and Sfiber therm (J) is the spectral density 

of thermal fluctuations of the same displacement. 

For the case of structural damping it is easy to estimate 

V ( J>..¢kT -14 Sx fiber therm f)J ,...._, Mg ,...._, 10 cm, (3.57) 

where we assume that ¢ ,...._, 10-7 for fused silica. If our goal is to achieve P ,..._, 100 

then the condition Peff ::::::: P implies 

J sfiber meas! < < sfiber therm! 10-15 
,...._, Clll p . (3.58) 

We shall take the above number as a sensitivity goal that our measuring device should 

achieve. 

Experimental realization: proposed measurmg device Now we are ready 

to describe a possible practical implementation of our thermal-noise compensation 

scheme. Figure 3.6 illustrates the basic idea. We propose to use a fused silica optical 

fiber with the refractive index n1 for the test mass's suspension. Next to this fiber we 

attach to the top seismic isolation plate (i.e., the "ceiling") a rigid block of the fused 

silica A with the same index of refraction n1 . On the surface of this rigid block we 

put a thin optical waveguide with refractive index n 2 such that n 2 > n1 , so that the 

waveguide is at a distance ,...._, Aopticai/2n from the suspension fiber. It is assumed that 

the side of the waveguide close to the suspension fiber does not have any coating, 

i.e., it is "naked." In this configuration the optical wave may propagate through the 

waveguide without substantial scattering even though the suspension fiber is within 

the wave's evanescent zone. This device will produce a relatively large response to 

the displacement xfiber in the form of a phaseshift of 6.¢ of the optical wave: 

A 271" xfiber 21fl 
u¢ = K , 

Aoptical Aoptical 
(3.59) 
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Figure 3.6: A proposed scheme for compensation of the suspension thermal 
noise. 
The optical waveguide ab is positioned close to the suspension fiber made of fused 
silica. A horizontal displacement of the suspension fiber is recorded through a phase 
shift of an optical wave propagating through the waveguide. 
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where the dimensionless factor K depends on the values of n 1 and n 2 and for typical 

optical waveguides is K ,..__, io-3 . Equation (3.59) implies that in order to register 

Xfiber ,..__, 10-15cm we need a sensitivity 6.¢ ,..__, 10-7 _ Thus for averaging time of 

Tgrav = O.Olsec we need to use the power of coherent light of W "'"' lm W . This power 

can be decreased if one uses a resonant standing wave in the waveguide. 

Apart from the shot noise of the laser light, let us briefly discuss two other kinds 

of noise in this sensor. A more complete discussion will be presented elsewhere. 

The first kind is seismic noise. A simple calculation shows that the seismic contri­

bution to the noise in the readout variable q is about twice as large in spectral density 

as the seismic contribution to the noise in Xmirror· Thus the seismic noise will not be 

an issue at frequencies above the "seismic wall" of the LIGO sensitivity curve. 

The second kind of noise we want to mention is the mechanical thermal fluctua-

tions of the waveguide itself. Our estimates show that if these fluctuations are caused 

by structural damping (and not by some surface or contact defects), then the ratio 

of the mechanical thermal fluctuations of the waveguide to those of the fiber is 

(3.60) 

Thus, if the system is sufficiently clean then the mechanical thermal fluctuations of 

the waveguide will probably not significantly reduce the sensitivity of our sensor. 

It is worth noting that in order to achieve the optimal compensation of thermal 

noise, the distance d(z) between the suspension fiber and the waveguide has to vary 

in accord with the optimal profile of the averaging function: 

d =A - Blog [<I>(z)], (3.61) 

where A and B are constants to be discussed elsewhere. In this case the phase of the 

waveguide's output records the optimally averaged coordinate Xfiber of the fiber. 

The profile d( z) may be difficult for experimental realization. However, we find 

that in the simplest case when <I>(z) is a constant over the length l of averaging, the 
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factor P is reduced very little: from P = 132 to P ,..__, 120. 

3.2 .4 Conclusions 

In this paper we have done two things. 

Firstly, we have shown that by an appropriate positioning of the laser 's beam 

spot on the surface of each test-mass mirror , one can reduce the contribution of the 

suspension fiber 's bottom to the suspension thermal noise by two to three orders of 

magnitude in the frequency band of 35 - lOOHz for the initial LIGO design. 

Secondly, we have proposed a way to compensate the suspension thermal noise 

originating from the top of each fiber by monitoring independently the fiber's random 

horizontal displacement . In the best case, with the system parameters for the initial 

or enhanced LIGO design, one can get a reduction factor of the order of P = 130 

in spectral density over the entire 35 - lOOHz band , when both the first and second 

procedures are applied; and with realistic defects in the design one should be able to 

get a reduction of at least P ~ 100. 

The device that compensates the suspension thermal noise can ease the require­

ments to quality of suspension system. In particular, if this device allows the reduction 

factor of P = 100, this would effectively increase the quality factors of pendulum and 

violin modes by a factor of P = 100. So far the highest quality factor Q ~ 108 of the 

pendulum mode was achieved in [9] for a fused silica suspension fiber, which allows 

one to reach the Standard Quantum Limit for averaging time of 10-3sec. Implemen­

tation of our proposal could effectively increase this quality factor to Qeff ~ 1010 , 

which would reduce the thermal noise in LIGO to the level of Standard Quantum 

Limit for averaging time of 10-2sec. Then the techniques which allow one to beat 

the Standard Quantum Limit (see, e.g., [13]) could be used in the enhanced LIGO 

interferometers. 
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3.2 .5 Appendix A: Motion of the periodically driven suspen­

sion fiber 

In this appendix we solve the dynamical problem of finding the amplitudes &T and 

aB of oscillation of the top and bottom bending angles in Eq. (3.37) when a periodic 

force 

F = F0 cos( wt) (3.62) 

is applied to the mirror at a distance h below the mirror center [we use these ampli­

tudes in Eq. (3.37) of the text]. For convenience we complexify all of the quantities: 

where x is the displacement of the test mass's center of mass and 'I/; is the angle by 

which the mirror is rotated (see Fig. 3.2) under the action of the force F(t). As usual, 

w = 27r f is the angular frequency. 

From the projection of the Newton's Second Law on the horizontal axis we have 

(3.63) 
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and, for the rotational degree of freedom, the equation of motion is 

2 -
F0 h + MgRaB = Iw 'lf; , (3 .64) 

where R is the radius of the test-mass cylinder and I is the moment of inertia for 

rotation about the test-mass center of mass in the plane of the Fig. 3.2. In the two 

equations above we assume that O'.B and 1f; are small. 

The fiber's horizontal displacement y from a vertical line approximately satisfies 

the wave equation: 

(3.65) 

where z is distance along the wire , with z = 0 at the top and z = l at the bottom, 

and c = j glM /m is the transverse speed of sound in the wire. In this Appendix we 

use Eq. (3.65) for flexible wire since it's solutions are simple. If one takes the stiffness 

into account this changes the solutions of Eq. (3.65) by a relative order of >. / l, see 

e.g. [12]. However, when using Eq. (3.65), we must allow non-zero bending angles at 

the top and bottom attachment points, O'.T and O'.B. The energy of elastic strain of 

the wire then consists of two components: one from the bulk of the wire given by Eq. 

(3.35), and the other from the bending at the attachment points given by Eq. (3.36). 

The solution to Eq. (3.65) is 

y(z, t) =A sin (kz) eiwt, (3.66) 

where k = w / c is the wave vector of an off-resonance standing wave induced in the 

fiber and A is a constant. The boundary condition is set at the bottom by 

Asin(kl) 

kA cos (kl) 

x + R'lf; 
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Putting these two equations into Eqs. (3.63) and (3.64), we find 

0
B =-Fa J /M - h [R +tan (kl) /k - g/w2

] 

MgR2 + (Iw2 - MgR) [g/w2 - tan (kl) /k] (3·
67

) 

and 

aT =-Fa J /M - R(g/w2 + h) 
[Jg - MgR (g/w 2 - R)] cos(kl) - (Iw 2 - MgR) sin(kl)/k · 

(3.68) 

Putting Eqs. (3.67), (3.68) and (3.37) into Eq. (3.33), we finally get for the spectral 

density of the suspension thermal noise: 

8kBT { J/M - R(g/w2 + h) }
2 

w2 [Jg - MgR (g/w 2 - R)] cos(kl) - (Iw 2 - MgR) sin(kl)/k 

{ 

2 [J/M-h[R+tan(kl)/k-g/w2
]]

2
} 

(top+(bottomCOS (kl) J/M-R(g/wZ+h) · (3.69) 

3.2.6 Appendix B: Calculation of the optimal detection strat-

egy 

Here we calculate the optimal shape Yoptimai(z) of the fiber and the vertical position 

of the laser beam spot h that minimize the fiber's elastic deformation energy [Eq. 

(3.35)]. 

It is easy to deduce from Eq. (3.35) that energy minimizing function y(z) obeys 

the equation y 1111 (z) = 0. Therefore, 

(3.70) 

where ai are constants to be determined. 

Let us discuss the boundary conditions. Strictly speaking, the boundary condi­

tions should be such that the fiber is perpendicular to the surface of attachment at 

both the top and the bottom. Therefore, at the top we have y(O) = y'(O) = 0, from 

which immediately follows aa = a 1 = 0. However, at the bottom it is more conve­

nient for our calculations embody the bending of the fiber, on the lengthscale >., in a 
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bending angle aB as in Fig. 1, and correspondingly add an additional term 

Uadd = (l/4)Mg>.a~ (3. 71) 

to the energy functional in Eq. (3.35), and then in Eq. (3 .70) evaluate y(l) and it 's 

derivatives above the >.-scale bend. Our energy minimization procedure will make the 

angle a 8 so small that the additional elastic energy as given by Eq. (3.71) is negligible 

compared to U in Eq. (3.35) 

The coefficients a 2 and a3 can be inferred from force and torque balance at the 

test mass: 

Fq - Mgy'(l) = -Mw2 (y(l) + R(y'(l) + etB)), 

and 

It is useful to rewrite these equations in a dimensionless form: 

where 

~(I+ TJ(r - a)) + raB = -fo, 

TJ~ + etB(l - µra) = -µs~o; 

c = y(l) 
<,, l ) 

y' ( l) l 
TJ = y(l) ) 

h 
s = l' 

w2 Ml 2 

a= w~ ::=. 10-3 -7- 10-6
, r = 0.42, µ = -

1
- = 19, 

(3.72) 

(3.73) 

where Wp = J971,. Here we have used for estimates the mirror parameters for the 

initial and enhanced LIGO interferometers. Solving the above system of equations 

( 3. 73) for ~ and etB (taking TJ as a parameter), we get: 

TJ - µs(I + rJ(r - a)) 
aB = fo [I+ ( )][I ] ::=. fo[TJ - µs(I + TJ(r - a))] TJ r - a - µra - rrJ 



102 

l-µr(a+s) 
~ = -fo[l + ( )][l J ""-fo(l - µr(a + s)) r; r - a - µra - rr; 

Let us choose the parameter s so that O'.B = 0 for some angular frequency w0 in the 

frequency band 35 - lOOHz where thermal noise is most serious: 

~ 'r/ ~ 'r/ 
8 

- µ[l + r;(r - ao)] - µ[1 + r;r]' 

Then we get for O'.B and ~ 
'r/2 

aB '::::' ~o (a - ao) 
1 + r;r 

1 
~':::'-~o--

1 + r;r 

(3.74) 

(3.75) 

We can express the coefficients a3 and a2 in terms of~ and r; by combining Eqs. 

(3.70) and (3.73), and we can then calculate the elastic energy according to Eq. (3.35): 

(3.76) 

This function has the minimal value 

u l 3 x [], = 1.08.A x [}, 
min '::::' )." X 1 + 3r + 3r2 o l o 

at optimal r; given by 
3(1 + 2r) 

'r/opt = = 1.69. 
2 + 3r 

(3.77) 

Here U0 is the energy of elastic strain of the fiber when the force of magnitude Fq 

is applied in mirror center, as worked out in Eq. (3.36). Now we can figure out the 

optimal shape of the fiber's horizontal displacement: 

Yoptimal ( Z) Fq ( z) 2 
( 3 ( r + 1) - z / l ) 

Mw 2 l 2(3r2 + 3r + 1) 

'::::' ::2 ( 7)2 ( 0.76 - 0.187). (3.78) 

From Eq. (3.74) we get h = l x s '::::' l.55cm. 

Using (3.75) one can show that a 8 ::; 1.7 · 10-3 · ~o over the frequency band 
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35 - lOOHz. From this and Eq. (3.71), one can compute the energy due to the 

bending at the fiber bottom: Uadd c:::: 1.4 · 10- 5 x Ea. We see that Uadd « Umin and 

hence over the frequency band of interest the small bending at the bottom does not 

contribute significantly to the total energy of elastic deformation. 

The profile of the distributed force and correspondingly the function <I> are given 

by 

Fq<I>(z) = -pw2y(z) - Mgy"(z) + IEy""(z). (3.79) 

Here pis the fiber density per unit length. Since y""(z) = 0, the function <I> consists 

of two terms <I>(z) = <I>0 (z) + <I> 1 (z), where 

(3.80) 

2 3 2 
WP ( z) WP ( z) <I> 0 (z) = - · 1 + r - - · = - · 1.53 - 1.08- . 
lw 2 l 3r2 + 3r + 1 lw 2 l 

(3.81) 

We see that <I> 0 is much greater than <I> 1 in our frequency range (10 - lOOHz for the 

initial LIGO). 
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Chapter 4 Runaway heating by r-modes 

of neutron stars in Low-Mass X-ray 

binaries (paper V) 

To appear in ApJ 

ABSTRACT 

Recently Andersson et al., and Bildsten have independently suggested 
that an r-mode instability might be responsible for stalling the neutron­
star spin-up in strongly accreting, Low Mass X-ray Binaries (LMXBs) . 
We show that if this does occur, then there are two possibilities for the 
resulting neutron-star evolution: 
If the r-mode damping is a decreasing function of temperature, then 
the star undergoes a cyclic evolution: (i) accretional spin-up triggers 
the instability near the observed maximum spin rate; (ii) the r-modes 
become highly excited through gravitational-radiation-reaction, and 
in a fraction of a year (0.13yrs in a particular model that we have 
considered) they viscously heat the star up to T ,....., 2.5 x 109K; (iii) 
r-mode gravitational-radiation-reaction then spins the star down in 
tspindown '.:::::'. 0.08(Jfinal/130Hzt6yrs to a limiting rotational frequency 
ffinal, whose exact value depends on the not fully understood mecha­
nisms of r-mode damping; (iv) the r-mode instability shuts off; ( v) the 
neutron star slowly cools and is spun up by accretion for ,....., 5 x 106yrs, 
until it once again reaches the instability point, closing the cycle. The 
shortness of the epoch of r-mode activity makes it unlikely that r­
modes are currently excited in the neutron star of any galactic LMXBs, 
and unlikely that advanced LIGO interferometers will see gravitational 
waves from extragalactic LMXBs. Nevertheless, this cyclic evolution 
could be responsible for keeping the rotational frequencies within the 
observed LMXB frequency range . 
If, on the other hand, the r-mode damping is temperature independent, 
then a steady state with constant angular velocity and Teare ,....., 4 x 108K 
is reached, in which r-mode viscous heating is balanced by neutrino 
cooling and accretional spin-up torque is balanced by gravitational­
radiation-reaction spin-down torque. In this case (as Bildsten and An­
dersson et al. have shown) the neutron stars in LMXBs could be po­
tential sources of periodic gravitational waves, detectable by enhanced 
LIGO interferometers. 



107 

4.1 Introduction 

Most of the rapidly accreting neutron stars in Low Mass X-ray Binaries (LMXBs) 

are observed to rotate in a strikingly narrow range of frequencies-from 260Hz to 

330Hz (see, e.g., Van der Klis 1997). A natural explanation for this could be some 

mechanism which prevents further neutron-star spin-up once the rotational frequency 

is sufficiently high. Recently several such mechanisms were proposed: 

White and Zhang (1997) suggested that magnetic braking could be responsible 

for halting the spin-up; this idea will not be discussed here. Bildsten (1998) pointed 

out that, because gravitational radiation reaction is a sharply increasing function of 

rotational frequency, it might halt the spin-ip. In his original manuscript, Bildsten 

identified one mechanism for triggering the necessary gravitational waves: lateral 

density variations caused by temperature dependence of electron capture reactions. 

While his manuscript was being refereed, Bildsten learned of the discovery that an 

r-mode instability, driven by gravitational radiation, can be very strong in spinning 

neutron stars (Andersson 1998, Friedman and Morsink 1998, Lindblom, Owen and 

Morsink 1998, Andersson, Kokkotas and Schutz 1998, Owen et al 1998) ; and the 

r-mode experts learned of Bildsten's gravitational-wave idea for saturating LMXB 

spinup. Both groups independently saw the connection: Bildsten (1998) and An­

dersson, Kokkotas and Stergioulas (1998) proposed that the r-mode instability could 

provide enough gravitational-radiation reaction to halt the LMXB spinup. In this 

letter we examine the consequences of this proposal. 

Our conclusions depend crucially on whether the dissipation of the r-modes de­

creases with temperature (as is the case, e.g., when shear viscosity dominates the 

r-mode damping), or instead is temperature-independent (as is the case when, e.g., 

the mutual friction of proton and neutron superfiuids dominates the damping). In the 

former case (Section 2 of this paper) we find that the neutron star will undergo a spin­

up-heating-spin-down-cooling cycle; in the latter case (Section 3) it will probably 

settle down to a stable equilibrium state with an internal neutron-star temperature 

of about 4 x 108K. 
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4.2 The case of "viscous" r-mode damping 

Let us consider first the case when dissipation is a decreasing function of temperature. 

We show that, if some r-modes become unstable in a neutron star spun up by accre­

tion, then they heat up the neutron star through shear viscousity. As the neutron 

star heats up, the r-modes become more unstable. A thermo-gravitational runaway 

takes place, in which the r-mode amplitude grows, as a result of this growth the 

star's temperature rises, the dissipation becomes weaker and the instability becomes 

stronger. Within a fraction of a year the r-modes ' gravitational radiation reaction 

spins the star down to a rotation frequency which is close to the minimum of the 

critical stability curve (probably around 100 - 150Hz, but the exact value depends on 

poorly understood dissipation mechanisms-see below) , with a final temperature of 

about 2 x 109K. The instability then shuts off and the star begins a several-million­

year epoch of neutrino cooling and accretional spinup, leading back to the original 

instability point. 

Figure 4.1 shows a typical evolutionary trajectory A --+ B -+ C --+ D -+ B of the 

neutron star in the log(T8 ) - D plane, where T8 is the temperature of the star 's core 

measured in units of 108K, and fl = D/ .jirGp. Here 0 is the angular velocity of the 

neutron star and p is it's mean density. The portion A --+ B of the curve represents 

the accretional spin-up of the neutron star to the critical angular frequency Dcr(T); 

B --+ C represents the heating stage in which the r-modes become unstable, grow 

and heat up the neutron star; C --+ D shows the spindown stage in which the r­

mode amplitude saturates because of poorly understood nonlinear effects, and the 

angular velocity decreases due to the emission of gravitational radiation; and D --+ B 

represents cooling back to the equilibrium temperature with simultaneous spin-up by 

accretion. All four stages are discussed in more detail below. 

The initial (steady-state) temperature T0 of the neutron-star core in steadily ac­

creting LMXB's is somewhat uncertain; according to Brown and Bildsten (1998), 

who analyzed heat transport during steady thermonuclear burning of the accreted 

material and nuclear reactions in the deep ocean, T0 = 1 - 4 x 108K. In Fig. 4.1 we 
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Figure 4.1: Cyclic evolution of a strongly accreting neutron star in an 
LMXB. 
The r-mode damping is assumed to decrease with the temperature T of the neutron­
star core. Line K - L- M represents the "stability curve"; when the neutron star gets 
above this line, r-modes grow due to gravitational radiation reaction. Leg A--+ B of 
the evolutionary track represents the accretional spin-up of neutron star to the critical 
angular frequency; B --+ C represents the heating stage in which the r-modes become 
unstable, grow and heat up the neutron star; C --+ D shows the spindown stage in 
which the angular velocity decreases due to the emission of gravitational radiation; 
and D --+ B represents the neutron-star cooling back to the equilibrium temperature 
with simultaneous spin-up by accretion, thus closing the cycle. 
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assume T0 = 108K. 

The curve K - L - Mis the so-called r-mode "stability curve" (Lindblom, Owen 

and Morsink 1998). If the neutron star is represented by a point above the curve, then 

some r-modes in the star are unstable and grow. Otherwise, all r-modes decay. The 

portion K - L of the stability curve is determined by the shear viscosity, or by mutual 

friction if part of the star is superfiuid. Its exact location is uncertain precisely because 

the dissipation of the r-modes at the relevant temperatures is poorly understood. If 

shear viscosity dominates the dissipation, then the equation of the K - L portion of 

the stability curve is given by 

( ) 

1/6 n = 0 1 !!_ rr-1/3 
er · 1 8 ' 

rJo 
(4.1) 

where rJ is the shear viscosity of the neutron star material, and rJo is the shear viscosity 

due to electron-electron scattering in the neutron star [we have used Eqs (2.10), 

(2.14), (2.15) and Table I of Owen et al. (1998) to work out Eq. (4.1)]. If only 

shear viscosity due to to electron-electron scattering were operating, with the shear 

viscosity given by rJo = 347p914T- 2 , where all quantities are in cgs units (see Cutler 

and Lindblom 1987 and references therein), then the critical rotational frequency at 

T = 108 K would be 130Hz, which is much less than observed values (van der Klis 

1998). However, the friction is probably larger than this (and therefore Der is also 

larger) because of interaction of the core fluid with the crust and maybe mutual 

friction in a superfiuid state. The emphasis of this paper is not to figure out whether 

the r-mode instability is relevant for LMXBs, but to investigate the consequences if it 

is relevant. For purpose of illustration, we assume that rJ = 244 x rJo; this makes the 

critical rotational frequency 330Hz at T = 108K, which is consistent with observations 

(van der Klis 1998). This choice of viscosity is a cheat since we don't yet know the 

T and p-dependence of rJ. However, unless the damping is due to mutual friction, rJ 

is likely to decrease with increasing temperature, which is a sufficient condition for 

thermo-gravitational runaway. Our choice of viscosity possesses this feature; therefore 

we believe it has a good chance of representing the real physics. 
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The portion L - M of the stability curve is determined by bulk-viscosity dissi­

pation; it's exact location is also a subject of yet unsettled controversy [the heart 

of the problem is the calculation of Lagrangian perturbation in density (Lindblom, 

Owen and Morsink 1998, Andersson, Kokkotas and Schutz 1998), which, to our best 

knowledge , has not been reliably carried out by any of the groups]. Of the two cur­

rent estimates of the bulk-viscosity contribution to damping of the r-modes, we have 

chosen the one which gives the higher values of nm thus maximizing its effect (see 

Lindblom, Owen and Morsink 1998). The fact that, for the evolution curve shown in 

Figure 4.1 no part is in the region where the bulk viscosity dominates suggests that 

the details of the bulk viscosity will not be of particular importance. 

In this work for concreteness we specialize to a polytropic model of a neutron star 

with p ex: p2
, and consider the r-mode with l = m = 2, which is expected to have 

the strongest instability in such polytropes (Friedman and Morsink 1998, Lindblom, 

Owen and Morsink 1998). We assume that the time evolution of the normalized 

angular velocity n = n; V7fGP of the star and the dimensionless amplitude a of the 

r-mode are given by phenomenological Equations (3.14), (3.15), (3.16) and (3.17) of 

Owen et al. (1998): 

dn 2a2Q n (4 1 M 
dt = - 1 + a 2Q Tv + V 3 IM X p, 

(4.2) 

da ( 1 1 1 - a
2Q) 

dt = - Tgrav + Tv 1 + a 2Q Q 
( 4.3) 

when a 2 < k (the saturation value of a 2
, which we assume to be k = 1), and by 

Q2 = k, (4.4) 

dD 2D kQ 

dt Tgrav 1 - kQ 
(4.5) 

when a is saturated due to not yet understood non-linear effects. Here a is the 

dimensionless amplitude of the r-mode defined by Eq. (1) of Lindblom, Owen and 

Morsink (1998), and Tv and Tgrav are the viscous and gravitational timescales for the 
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r-mode dissipation and are given by Eqs . (2.14) and (2.15) of Owen et al. (1998): 

Tgrav 
- -6 -3.260 sec, 

1 : (108K)
2 
+ _;_ (_I_)6 D2. 

T 5 T TB 108K 
(4.6) 

In the above equation the viscous damping rate is a sum of contributions from the 

shear and the bulk viscosities; the former is determined by is which we took to be 

1.03 x 104sec in order to fit the observed data; the latter is determined by TB which 

is taken to be 6.99 x 1014sec, in agreement with Owen et al. (1998). 

Note that Tgrav is negative since gravitational radiation always amplifies the r­

mode. The second term in Eq. ( 4.2) represents the neutron-star spin-up by accretion; 

M and M are the mass of the neutron star and its accretion rate respectively, and 

p is a factor of order unity which depends on the accretion radius and the angular 

velocity of the neutron star; it's exact value is not essential for the physics discussed 

here and we set p = 1 from here onwards. The numerical parameters Q and I are 

given by 0.094 and 0.261 respectively for a polytrope star of adiabatic index / = 2 

(Lindblom, Owen and Morsink 1998). For the evolution shown in Fig. 4.1 we took 

M = 1.4M0 and M = 10-8 M0 /yr, and we assumed a random initial perturbation of 

magnitude a = 10-8 when the neutron star reaches the stability curve K - L. 

Now consider the star's thermal evolution. The r-mode deposits heat into the star 

at the rate 

Waiss = 2Er-mode a
2

S1
2 
M R

2 J (4.7) 
Tv Tv 

where Er-mode is the energy in the r-mode [cf. Eq. (3 .11) of Owen et al. (1998)]. 

Here R is the radius of the neutron star taken to be 12.53km, and J = 1.635 x 10-2 

for the polytropic model considered here. At the relevant temperatures the neutron 

star is expected to cool predominantly by the modified URCA proc.ess (this is not 

entirely true, since close to 108K neutrino bremstruhlung cooling from the crust and 

radiative cooling by photons might become significant. However, their cooling rates 

are not significantly larger than that of the modified URCA process at 108K, and they 
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become negligible at higher temperatures. In this work for simplicity we assume that 

modified URCA is the only cooling process; the inclusion of other processes would 

not change the general evolutionary picture). The modified URCA cooling rate, 

reduced by heating from nuclear reactions in the deep crust, is given by (Shapiro and 

Teukolsky, 1983) 

Lcool = 7 x 1031 (T: - r:)erg/sec. (4.8) 

Here the subscript 8 indicates that the temperature is measured in units of 10sK and 

Tis the equilibrium temperature of the neutron star before the r-mode heating starts, 

taken to be lOsK for our calculation. The thermal evolution equation is then given 

by 
dT Wdiss - Lcoo1 

dt Cv 
(4.9) 

where Cv is the heat capacity of the neutron star, taken to be 1.4 x 103s ( erg/K) x Ts 

[from Shapiro and Teukolsky (1983), Eq. (11.8.2). However, the heat capacity of 

neutron star with a superfiuid core is less]. 

Equations (4.2), (4.3), (4.5), (4.4) and (4.9) determine the time evolution of the 

angular velocity S1 and temperature T. Figure 4.1 shows the predicted evolution, for 

the representative parameter values, introduced above. The evolution consists of four 

stages: 

The first stage A --+ B is the spm-up of the neutron star, during which it's 

angular velocity S1 is increasing towards the critical one, and the r-mode instability 

is suppressed by viscosity; since we assume that the star begins at its equilibrium 

temperature Ts =Ts = 1, its temperature changes little during the spin-up. For an 

assumed accretion rate of 10-s M8 /yr this stage takes ,..._, 5 x 106 years. 

When the angular velocity reaches its critical value, the r-mode starts to grow 

and the second stage B --+ C begins. The neutron star gets heated up by the r­

mode through viscosity, the r-mode becomes more unstable, and thermo-gravitational 

runaway follows. It takes 0.13 years for the r-mode's amplitude to evolve from a= aw 

to a = 1, where aw ::: 1.2 x 10-5 is the value of the r-mode amplitude at which the 

accretional torque is exactly compensated by the gravitational radiation reaction [see 
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Wagoner (1984)]. For our intuition it is useful to define two characteristic a-dependent 

timescales for stage B --t C : the thermal timescale [cf Eq. (4.7)] 

dt CvT -5 2Tv 
tth = d l T = -W . ,....., 3. 7 x 10 T8 2 og d1ss O'. 

(4.10) 

and the timescale for the decrease of angular velocity [cf Eq. (4.2)] 

dt 1 Tv Tv 
to - ,....., -- "'5 x -- dlog n - 2Q a 2 - a2. ( 4.11) 

Clearly, the neutron star heats up much faster than it spins down due to gravitational 

radiation. Therefore, during this stage the angular velocity of the star decreases by 

only a small amount , 60 = 0.0003. Physically, the reasons for such little change in 

n are that the r-mode amplitude grows so quickly, and that in this phase the angular 

momentum loss is not manifested in a reduction of the angular velocity, but instead in 

the growth of the r-mode itself (the r-mode which is driven by gravitational radiation 

reaction carries a negative angular momentum). 

Eventually the r-mode amplitude saturates due to nonlinear effects. This initiates 

the third stage of the evolution, in which all of the angular momentum loss is man­

ifested by reduction of angular velocity (since the r-mode cannot grow any more), 

and the star spins down C --t D to the critical angular velocity. At point C1 the 

temperature of the neutron star is such that the neutrino cooling exactly compen­

sates the dissipative heating from the r-modes. After that the temperature does not 

change much until the spin-down stage is terminated. The physical reason for this 

is that even though the thermal timescale at C1 --t D is comparable or smaller than 

the spindown timescale, the rate of dissipative heating does not change much. If the 

heat capacity Cv of neutron star were zero, we would have Wdiss = Lcool at all points 

of C1 --t D. This would imply T <X 0 114 , so even then the temperature would not 

change significantly over this last part of the spin-down. 

An analytical expression for the duration of this rapid spin-down stage can be 
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derived from Eqs (4.5) and (4.6): 

( 4.12) 

where n1 is the angular velocity at the end of the spin-down. In our simulations 

ispindown is about 0.14 years. 

After the neutron star reaches the stability curve, the r-mode is damped by viscos­

ity stronger than it is driven by gravitational-radiation reaction; therefore its ampli­

tude decreases and the neutron star cools back to its original equilibrium temperature, 

while being spun up by accretion. This part of the evolution is represented by D -+ B 

on Fig. 4.1; its timescale is the same as that for the original accretional spin-up, i.e. 

,....., 5 x 106 years. After this the cycle is closed and can repeat itself as long as the 

accretion continues. 

We believe that the sharp kink at point C is not a real physical effect, but a 

result of our poor understanding of the non-linear saturation of the r-mode; however, 

this artificial feature of our simulations does not seem to affect the existence of the 

thermo-gravitational runaway and the subsequent rapid spin-down to a lower angular 

velocity. Despite a large number of uncertainties in the details of the evolution, we 

believe that this scenario is robust so long as the r-mode instability does occur m 

LMXBs, and the damping of the r-modes decreases with temperature. 

If the above described evolutionary scenario is generic, it is then clear that none of 

the currently observed LMXBs can possess an actively operating r-mode instability­

otherwise we would observe a rapid spindown on a time-scale less than a year. How­

ever, it is conceivable that many of the neutron stars in these LMXBs have undergone 

the r-mode instability at some stage of their evolution, and are currently below the 

stability curve, evolving along leg D -+ B of Fig. 1. 

From Equations (4.12) and (4.2) we can estimate the fraction r of neutron stars in 

extragalactic LMXBs that are in the phase of active emission of gravitational waves: 

r = tspindown rv 1.6(1/k) x 10-8 (nf )-6 

iaccretion 0 .1 
( 4.13) 
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The quantity D 1 is bounded from below by the rotational frequencies of young pulsars 

(this statement is true only if the r-mode damping is the same for young and old 

pulsars at the same temperatures). The rotational frequency of the recently discovered 

N157B (Marshall et al 1998) is 62.5Hz. Using the braking index theory one can project 

the initial rotational frequency of this pulsar to be no smaller then lOOHz, which 

implies D1 > 0.08. Therefore, only r < (6/k) x 10- 8 of neutron stars in extragalactic 

LMXBs are in the phase of rapid gravitational wave emission, which implies that to 

catch one star in this phase, gravitational-wave detectors must reach out through a 

volume large enough to encompass ,....., 0.1 - 0.01/r ,....., 106 galaxies like our own (this 

assumes that there are 10 - 100 strongly accreting neutron stars in LMXBs in our 

galaxy) . An analysis similar to that of Owen et al (1998) shows that even "advanced 

LICO" detectors are unlikely to be able to see these sources at such great distances. 

4.3 The case of temperature-independent r-mode 

damping 

There is a possible alternative evolutionary scenario which is similar to the one pro­

posed by Bildsten (1998) and Andersson , Kokkotas and Stergioulas (1998) (we thank 

Lee Lindblom for pointing this out). It may be that the r-mode damping is dominated 

not by normal dissipative processes, but by mutual friction in the neutron-proton su­

perfiuid . Detailed calculations of the effect of such friction on the r-mode damping are 

in progress (Lindblom and Mendell); however for our analysis the essential feature of 

this dissipative process is already known: it is temperature independent. Therefore, if 

this process dominates , one would not expect a thermo-gravitational runaway; instead 

the neutron star will reach a state of three-fold equilibrium. The neutron star will 

"sit" on the stability curve [(1/Tgrav) + (1/rv) = O], the amplitude of the r-mode will 

adjust so that the accretional torque is compensated by the gravitational-radiation 

reaction torque (a = aw '.:::'. 1.2 x 10-5 for our model), and the temperature of the 

neutron star will adjust so that the cooling compensates the frictional heating from 
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the r-mode: Wdiss = Lcool· From Eqs (4.2), (4.6), (4 .7) and (4.8) one can work out 

the equilibrium temperature: 

( 
f 

) 
1/8 ( . ) 1/8 1/8 

T = 4.2 x 108K M ( 1.4M0P) 
eq 330Hz 10-8 M8 /y M ( 4.14) 

where f is the rotational frequency of the star. 

It is interesting to examine how (and whether) the star reaches this equilibrium 

point. For temperature-independent damping, Eqs ( 4.2) and ( 4.3) form a closed 

system with two independent variables, S1 and a. To investigate the behavior of the 

star after it reaches the stability curve at 0 = Ocri we set 0 = Ocr + D1 and expand 

Eqs ( 4.2) and ( 4.3) to first order in D1 . After trivial algebraic manipulations, we can 

then reduce the system of two first-order differential equations to a single second-order 

differential equation: 
d2 x ( ) dx __ 8V(x) 
dt 2 + I x dt - 8x . ( 4.15) 

Here x =Ina, and 1(x) and V(x) are given by 

i(x) = 2Qexp(2x) 
Tv 

(4.16) 

and 

V(x) = _6_ (Qexp(2x) _ ~). 
Tgrav Tv Tacc 

( 4.17) 

In the above Equations Tgrav is given by Eq. (4.6), and Tacc = (l/p)j(3/4)0cJM/ Mis 

the timescale for the neutron star to be spun up by accretion to the angular frequency 

Clearly Eq. ( 4.15) can be thought of as an equation of motion for a particle of unit 

mass in the potential well given by V(x) and with the damping 1(x). The bottom 

of the potential well corresponds to the equilibrium state described above, and the 

damping insures that the "particle" gets there (i.e. that the neutron star settles into 

the equilibrium state). However, the damping is small. To see this, consider damped 

oscillatory motion close to the bottom of the well. The complex angular frequency of 
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this motion is given by 

W = /12/ ('Tacc'Tgrav) - i / (2'Tacc )· ( 4.18) 

The period of these small oscillations is 

p ""' 230 ( M ) 1/2 ( 10-s A!"0Y-1) 1/2 ( j )-5/3 y 
1.4M0 M 330Hz ' 

( 4.19) 

but the timescale on which they are damped (i.e. the timescale on which the equilib­

rium is reached) is 'Teq""' 2Tacc ""' 107y. 

Since the damping is so small, fluctuating disturbances may keep this nonlinear 

oscillator off it 's equilibrium position. For example, in our evolutionary scenario we 

have assumed that there is a mechanism which gives a some non-zero initial value. 

Presumably, the same mechanism could keep the oscillator in an excited state. Then 

the amplitude of the r-mode , and hence the temperature of the star 's core, would 

vary on the timescales of hundreds of years . Detailed investigation of these issues is 

a subject for further work. However it is clear that the time-averaged temperature 

should be close to the equilibrium value given by Eq. (4 .14). 

If the r-mode damping does not depend on temperature , we can expect r-modes 

to be excited in many of the rapidly rotating neutron stars in LMXBs. These pre­

sumably superfluid steady gravitational-wave emitters could be detected by enhanced 

LIGO gravitational wave detectors , as discussed in Bildsten (1998) and Andersson , 

Kokkotas and Stergioulas (1998). Recently, Brady and Creighton (1998) have con­

sidered the computational cost of such detection. Their conclusion was that with the 

enhanced LIGO sensitivity and available computational capabilities one could detect 

gravitational-wave emitters in LMXBs that are as bright in X-ray flux as SCO-Xl. 

If the rotational frequency of the emitting neutron star is localized to within a 

few 10s of Hz using astronomical observations (by, e.g., QPO's) , one could narrow­

band the interferometer response around the frequency ofr-mode oscillations (see e.g. 

Meers 1988) . This could allow LIGO to detect gravitational-wave emitters in LMXBs 
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which are 10 - 100 times dimmer in X-ray flux than SCO-Xl. 

Positive detection of gravitational waves at the r-mode oscillation frequency would 

make a strong case for the superfiuid nature of the r-mode damping. 

4.4 Conclusions 

In this paper we have investigated the recent proposal that the accretional spin-up of 

the neutron star in an LMXB is stopped by r-mode gravitational radiation reaction. 

There are two possible evolutionary scenarios. In the first scenario, the neutron star 

goes through cycles such as that shown on Fig. 4.1. The necessary condition for 

this scenario to be relevant is that r-mode damping should decrease with increasing 

temperature. In this case, it is very unlikely that any of the currently observed 

neutron stars in LMXBs in our galaxy are in the r-mode excited phase of the cycle. 

The detection of gravitational radiation from extragalactic LMXBs in the r-mode 

excited phase is also not likely, even with advanced LIGO interferometers. 

In the second scenario, r-mode damping is temperature independent, and a steady­

state equilibrium is probably reached, where both angular velocity and temperature 

stay constant, or are oscillating with periods of several hundreds of years. Equation 

( 4.14) makes a robust prediction for the temperature of these objects to be:::::::'. 4x108K; 

this temperature is on the high end of what is typically expected; and it might be 

possible to test this prediction by observations. In this case the neutron stars are 

emitters of periodic gravitational waves, which could be detected by interferometers 

like enhanced LIGO . 
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