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ABSTRACT 

As its title indicates, this thesis treats the problem of 

stationary, spherical, optically thick accretion into black holes. 

By the phrase "optically thick" it is meant that (1) radiative 

energy transport can be adequately described by the diffusion 

approximation and (2) the photons are everywhere in local energy 

equilibrium (LTE) with the accr~ting gas particles. 

In Chapter 1, a general set of equations governing time­

independent spherical accretion into black holes is formulated. 

The equations are fully general relativistic and are applicable to 

optically thick . regions, optically thin regions, and the transition 

regions which join them. The radiation is treated using frequency­

integrated moments. The full, infinite series of moment equations 

is given, together with the limiting forms the equations take in 

the optically thick regime. 

In Chapter 2, we present the mathematical theory of stationary 

spherical optically thick accretion. We analyze the integral curves 

of the differential equations describing the problem . We find a 

one-parameter family of critical points, where the inflow velocity 

equals the isothermal sound speed. Physical solutions must pass 

through one of these critical points. We obtain a complete set of 

boundary conditions which the solution must satisfy at the horizon 

of the black hole, and show that these, plus the requirement that 

the solution pass through a critical point, determine a unique 

solution to the problem. This analysis leads to a generalization 
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of the well-known Bondi critical point constraint, which arises 

in the adiabatic accretion problem and which is effective at the 

point where the inflow velocity equals the adiabatic sound speed. 

We show that this point can be regarded as a "diffused critical 

point" in our problem. The analysis also yields a simple expression 

for the diffusive luminosity at radial infinity. Finally, we find 

a satisfying explanation for the rather peculiar critical point 

structure of this problem in an analysis of the characteristics and 

subcharacteristics -present in the problem and in a "hierarchical" 

analysis of the waves which propagate along them. 

In Chapter 3, we apply the theory of optically thick accretion 

developed in Chapter 2 to a wide range of physically different 

accretion regimes. Numerical solutions are presented and their 

physical properties are discussed. For solutions in which radiation 

pressure PR dominates gas pressure PG, but in which gas energy density 

(including its rest-mass) pG dominates radiation energy density 

PR' we pay particular attention to the adabaticity of the flow. Our 

quantitative results in this regime agree very well with Begelman's 

(1978) theory. We find the dimensionless number which governs the 

importance of heat diffusion in our problem and show that it reduces 

to the idea of "trapping of photons" and to the Peclet number in the 

appropriate limits. We find that solutions with PR > PG and PR > PG 

are always essentially adiabatic, owing in part to a relativistic 

suppression of heat flux which becomes important in this regime. 

The diffusive luminosity at infinity for these solutions is the 

Eddington limit of the black hole; with the adiabatic accretion rate, 

"efficiencies" of up to order unity are possible. We give preliminary 
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consideration to the question of the stability of our solutions 

against convection and conclude that the Schwarzschild criterion 

is applicable, even for our non-static accretion flows. We show 

that solutions with PR > PG are everywhere stable against convection. 

On the other hand, solutions which start out at radial infinity with 

PG > PR are unstable to convection (if the adiabatic index of the 

gas yG exceeds 17/12) from radial infinity down to the point where 

PR- PG and the radiation-gas ~ixture has attained an adiabatic 

index of 17/12 . Inside this point, the solution is stable against 

convection. The diffusive luminosity at infinity for these solutions 

is reduced from the Eddington limit of the black hole by the factor 

(yG - 1)4PR
00

/yGPG
00

; it is further reduced by the ratio of the 

electron scattering opacity to the actual opacity at infinity, if 

this differs from unity. In most cases, energy diffusion has a 

negligible effect on the accretion rate of these solutions. 
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Chapter 1 

Stationary Spherical Accretion into Black Holes: 

Equations of Structure 

This chapter is a paper by Kip S . Thorne, Richard A. Flammang, and 
. 

Anna N. Zytkow. It was published in the February, 1981, issue of the 

Monthly Notices of the Ro yal Astronomical Society, Volume 194, 

pages 475-484. 
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Mon. Not. R. astr. Soc. (1981) 194, 475-484 

Stationary spherical accretion into black holes - I. 
Equations of structure* 

Kip S. Thorne and Richard A. Flammang 
W. K. Kellogg Radiation Laboratory, California Institute of Technology, 

Pasadena, Ca/lfornia 91125, USA 

Anna N. Zytkow Copernicus Astronomical Center, Polish Academy of Sciences, 
Warsaw, Poland 

Received 1980 June 20; in original form 1980 March 31 

Summary. A general ~et of equations governing time-independent spherical 
accretion into black holes is formulated. The equations are fully general 
relativistic and are applicable to optically thick regions, optically thin regions, 
and the transition regions which join them. The radiation is treated using 
frequency-integrated moments. The full , infinite series of moment equations 
is given; the user of the formalism can truncate the series wherever he wishes. 

There is an extensive literature on the theory of stationary spherical accretion of gas into 
black holes - including, for example, adiabatic accretion treated general relativistically (e.g. 
Michel 1972; Blumenthal & Mathews 1976; Begelman 1978a); general relativistic, optically 
thin accretion with radiation losses to infinity and down the hole (e.g. Schwartzman 1971; 
Shapiro l 973a, b; Meszaros 1975a, b ); optically thick accretion with diffusive heat flow 
treated using Newtonian gravity (e.g. Kafka & Meszaros 1976; Begelman 1978b, 1979); and 
accretion with the transition between optically thin and thick regions treated using either a 
Newtonian moment formalism (Tamazawa et al. 1975) or the general-relativistic transfer 
equation (Schmid- Burgk 1978). 

Despite this extensive literature, there are a number of unresolved issues about spherical 
accretion. For example, it is not yet known whether a black hole of any size (microscopic to 
macroscopic), residing at the centre of a star, will eat the entire star on a free-fall time-scale 
($1 yr) or on an Eddington-limited time-scale (- 108 yr) or on some intermediate time­
scale. Nor is the efficiency for converting gravitational energy of inflowing gas into 
outflowing radiation known as a function of the mass of the hole and of the properties of 
the gas fa1 from the hole - except for a few special regimes that have been studied in detail. 

This is the first of a series of papers which will analyse these issues. In this paper we 
formulate a general set of equations governing the hydrodynamics of the accretion and the 

*Supported in part by the National Science Foundation (AST79-22012). 
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transfer of radiation through the accreting gas. Subsequent papers will use these equations 
to study various regimes of accretion. 

We have chosen to formulate a new set of equations because all previous sets are either 
Newtonian (require v/c ~ I, GM/rc2 ~ I) rather than general relativistic, or are restricted 
to adiabatic or optically thin flows. The sole exception is the set of equations used by 
Schmid-Burgk (1978). However, Schmid-Burgk's equations involve three non-trivial 
coordinates in the photon phase space: radius r, photon 'energy at infinity' E ,,,,, and photon 
angular momentum J - and consequently they are too complex to be useful in a survey 
study of a wide variety of accretion regimes. Our equations will be made simpler (one non­
trivial coordinate, r) by the use of Thorne's (I 981) moment formalism for relativistic 
radiative transfer. 

Our equations for the structure of the flow (equations 18 and 19 below) are perfectly 
general and accurate, so long as the following assumptions are satisfied : (i) the hole is 
spherical (Schwarzschild geometry with no rotation) ; (ii) the gas flows radially inward from 
rest at infinity; (iii) gravity produced by the gas and radiation is negligible compared to the 
gravity of the hole; (iv) the flow is stationary on time-scales long compared to hydro­
dynamical and radiative diffusion times; (v) the stress-energy of the gas is describable as a 
perfect fluid with isotropic pressure (no viscosity except that due to photon transport). The 
user of the equations can insert whatever physics he wishes , so long as it is compatible with 
these five assumptions. 

The slow growth .of the hole due to accretion can be studied by constructing a sequence 
of stationary solutions of our equations . 

The mathematical conventions used in this paper are those of Misner , Thorne & Wheeler 
(I 973) - including the use of geometrized units in which c = G = 1. For those readers who 
feel ill at ease in geometrized units, the translation to cgs units is given in the Appendix. 

2 The equations 

2.1 LIST OF BASIC VARIABLES 

The basic variables, in terms of which our equations are formulated , are the following. For 
each variable we list the equation in which it first appears and any other equations in which 
it may be explicated . 

Black hole variables 

M mass of hole (a constant): (I), 
r Schwarzschild radial coordinate : ( 1 ). 

Gas-motion variables 

v inward velocity of gas as measured by an observer at fixed r in his local proper reference 
frame : (2), 

y = (1- 2M/r) 112 (l - u2r 112 'energy parameter' of the flow : (2) , (3), 
M0 = 4trr2 p 0 vy rate of accretion of rest mass into the hole (a constant): (7) . 

Gas-state variables 

Pa rest-mass density of gas: (6) , 
CTG specific internal energy of gas: (6) , 
PG pressure of gas : ( 6) . 
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Radiation-state variables 

w0 =PR zeroth moment of intensity ; equal to radiation energy density : (8), (10) , (13) , (14) , 
w1 = L/4rrr2 first moment of intensity; L is the outflowing luminosity as measured by an 

observer moving with the gas : (8), (I I), (13), (14), 
w2, w 3 , ... second, third and higher-order moments of intensity : (8) , (I 3), (14) , 
L.,, luminosity far from the hole (at 'radial infinity'; a constant): (12) . 

Variables characterizing radiation-gas interaction 

e1 emissivity into !th moment of radiation: (15), 
K1 opacity for /th moment of radiation: ( 15) , ( 16), (17) . 

2.2 EXPLANATION OF BASIC VARIABLES 

We describe the gravitational field of the black hole by the Schwarzschild metric 

(I) 

where M is the mass of the hole and (t, r, e, .p) are the Schwarzschild space time coordinates. 
Contributions of the inflowing gas to the gravitational field are neglected . 

We describe the local flow speed of the gas by its inward velocity u (ordinary velocity, not 
four-velocity) as measured in the Jo~al proper reference frame of an observer at rest in the 
Schwarzschild coordinate system. The four-velocity of the gas is then 

u= y(l-2M/rr1 o/ot- uy o/or, (2) 

where 

y = - u · o/o t =(I - 2M/r) 112 (I - u2 r 112 (3) 

is the 'energy-at-infinity per unit rest mass' ('energy parameter' for short). For gas in free­
fall (geodesic motion) y is a constant, independent of radius . The flow is assumed to be 
stationary so that u and y are functions of r but not oft. 

The 'local rest frame of the gas' has orthonormal basis vectors. 

e0 = u = y(I - 2M/rr1 o/ot-uy o/or, 

e;=-uy(I-2M/rr 1 o/ot+yo/or, 

ee=r-1 a;ae , e,p=(rsiner1 o/otp. 

(4) 

Expressed in this basis , the flow has four-acceleration a= ae; , expansion e, rotation w = 0 , 
shear a =a(e;© e;-~ee©ee-~e.p©e.p), and extrinsic curvature rere=r,p;.p=b , 
where 

a=y' , e=-r-2(r 2 uy)', a=-(2r/3)(uy/r)', b=y/r . (5) 

(cf. equations 5.2, 5.3, 5.14 of Thorne 1981). Here and throughout this paper a prime 
denotes derivative with respect to r, d/dr . In our application of Thorne's ( 1981) radiative­
transfer moment formalism we shall choose the world Jines of the gas as our 'fiducial 
congruence', and the local rest frame of the gas (equation 4) as our 'fiducial reference 
frame'. 

In its local rest frame the gas is described physically by its density of rest mass p 0 (equal 
to number density of baryons multiplied by some standard rest mass per baryon), its specific 
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internal energy Ile, and its pressure PG - which we assume to be isotropic. The components 
of the stress-energy tensor of the gas are 

all other Tf} vanish. 

T;; _Tee_ r::P:P -p 
G- G -~G - G• (6) 

Rest-mass conservation and stationarity of the flow guarantee that the rest-mass accretion 
rate is independent of radius: 

(7) 

(Here ur is the radial component of the four-velocity in the Schwarzschild coordinate 
frame.) 

The radiation is described by its frequency-integrated moments w 0 , w 1 , w 2 , .•. , which are 
defined by (cf. equation 5.6c of Thorne 1981). 

/!(2/ + 1) f I 
W1 = J(µ)P1(µ) 2rrd µ. 

(2/+I)!! _ 1 

(8) 

Here I is the radiation intensity (erg cm-2 s-1 sr-1
) measured in the local rest frame of the gas 

(equation 4); it is a function of 

= (cosine of angle .between direction of photon). 

µ momentum and outward radial· direction e; 
(9) 

The integral (8) is over all photon directions, as measured in the gas's rest frame ; P1(µ) is the 
Legendre polynomial of order I; and (2/ + 1) ! ! = (2/ + 1) · (2/ -1) · · · (2 or I). (Note that 
(2/+1)!!/[/!(2/+I)] is the coefficient of the µ 1 term in P1(µ).) We introduce special 
notations for the zeroth and first moments. 

PR:;: Wo, 

L/4rrr2 = w 1 . 

(10) 

(11) 

One can easily see from equation (8) that PR is the energy density of the radiation, L/4rrr2 is 
the outward flux of radiation energy, and L is the local luminosity - all as measured in the 
local rest frame of the gas. The luminosity measured at radial infinity (where we assume that 
u = 0) will be denoted L~: 

L~ = L(r = 00). (12) 

In Newtonian theory a more familiar notation for the first three moments is 

w0 = 4rrJ, w 1 = 4rrH, w2 = 4rr(K - 1/31) . (13) 

The stress-energy tensor for the radiation has the following components, as measured in the 
local rest frame of the gas: 

T~0 =PR' T~; = T~0 = L/4rrr2
' T~; = 1hPR + W2' 

rl.0 = rt:P = 1hPR - 1hw2 , all other T~~ vanish; 

cf. equation (5.9) of Thorne (1981). 

(14) 

The radiation-gas interaction is characterized by multipole moments, e1, of the 
emissivity, and by opacities, Ki, for each multipole (/ = 0, I, 2, 3, .. . ). The rigorous defini-
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tion of e1 and K1 is 

P
0

(E1-K1W1)=1!(
2
l+I) f 1 f~(dfv) P,(µ)dv2rrdµ. 

(21 + 1) ! ! - I o dr interaction 
(15) 

Here Iv is the specific intensity (ergcm-2 s-1 Hz-1 sr-1
) of the radiation, vis the radiation 

frequency, and r is the proper time - all as measured in the local rest frame of the gas; and 
(dlvfdr)irtteraction is the 'interaction' (or 'source') term in the equation of radiative transfer. 
(The quantity p 0 (e1 -K1w1) is denoted s1 in Section 5 of Thorne (1981). In Section 6 of 
Thorne (1981 ), from which we obtain expressions (16) and (17) for K1, p 0 (e1 - K1w1) is 
denoted & ff · · · f and w1 is denoted ..II;.;. · · · f (1 factors of r ).) 

We lump into -p 0 K1w1 all parts of the integral (15) which are directly proportional to 
w1• For example, Thomson scattering by non-relativistic electrons appears in this term, with 

(Ko)T = 0, l * 0 or 2 (16) 

(equation 6.25 of Thorne 1981 ). Here oT is the Thomson cross section, mp is the proton 
rest mass, and µe is the mean molecular weight per electron . Also, single-photon absorption 
processes appear here with opacities i< 1 that are approximately the same for all l. (For 
example, in the diffusion regime with Iv nearly a blackbody, i< 0 is the Planck mean and 
i< 1 is the Rosseland mean of Kv, the frequency-dependent absorption opacity.) Double­
Compton scattering (one photon in and two out), plus Comptonization of the new photon, 
appears in -p0 K 0 w 0 with a negative opacity 

_ oT 16a ( kT )
2 

[( 45 mec
2 

aT
4

)
1

'
2

] (Ko)oc+c- --- -- --2 In - 3- -- --
mpµe 1T mec 4rr a kT PR 

(17) 

(equation 6.43 of Thorne 1981). Here me is the electron rest mass, a is the fine-structure 
constant, T is the temperature of the Comptonizing electrons (assumed to be in local 
thermodynamic equilibrium with each other), aT 4 is the equilibrium radiation energy 
density, and this expression is valid only when (i) the expansion time-scale 11 /fJ I is long 
compared to the Comptonization time-scale tc = [c(p 0 /mpµe)oT (4kT/mec 2

)]-
1

; (ii) the 

mean distance [(p 0 /mpµe)aT r 1 [mec 2 /4kT] 112 travelled by a photon during one 
Comptonization time tc is short compared to all macroscopic length-scales; (iii) the 
radiation field is nearly isotropic, w0 :i> (all other w1); and (iv) PR$ Yi.aT 4

• For discussion 
of the regimes PR "'aT 4 and PR > aT 4 see Section 6.3.4 of Thorne (1981). 

In expression (15), p 0 e1 includes all parts of the integral not directly proportional to w1• 

For example, isotropic single-photon emission and Comptonization of the emitted photon 
appear in e0 ; cf. Section 6.3.3 of Thorne (1981 ). Isotropic emission contributes nothing 
to E / for l ;. 1 . 

2.3 EQUATIONS GOVERNING BASIC VARIABLES 

Of the basic variables listed in Section 2.1, three are constants (M,M0,L~); one is the indepen­
dent radial coordinate (r); and the rest are functions of r ('dependent variables' : v,y; P0 , 

TIG, PG; PR, L, w2 , w3 , .• • ; e0, e1 , e2 , •.. ; and K 0 , K 1 , K 2 , ... ). The user of our equations 
must supply his own expressions for the emissivities e1 and opacities K1, and one 'equation of 
state' for the gas relating p0 , TIG, and PG to each other. The remaining dependent variables 
(v,y; two of Po. nG and PG; PR· L, Wz, W3, ... ) will then be determined by the following 
equations - in which the mass of the hole M, the accretion rate M 0 , and the luminosity-at­
infinity L~ are assumed to have been specified: 
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The energy parameter y is expressed algebraically in terms of density and radius by 

[( M0 )

2 2M] 112 

Y(Po,r)= 
2 

+l--
47Tr Po r 

(18a) 

(derivable from equations 3 and 7). . 
The velocity v is expressed algebraically in 

conservation (7): 
terms of y, Po and r by the law of mass 

Mo 
v(y,p 0 ,r)= 

2 41Tr PoY 
(I 8b) 

The relativistic Bernoulli equation, V · [{a/at) · T] = 0 where T is the total stress-energy 
tensor, can be expressed as 47Tr 2 T( =constant. Here T ( is the time-radial component of T 
in the Schwarzschild coordinate frame. When the gas stress-energy tensor ( 6) and radiation 
stress-energy tensor (14) are inserted into this equation, it becomes the following expression 
for L in terms of the other variables : 

· ( PG 4pRf3 + W2) 
L(I + v2)y2 =Loo+ M0 y 1 + Oc +- + ----

Po Po 

. ( PG 4pRf 3 + W2) 
-M0 I+nG+-+----

Po Po at r = oo. 

(18c) 

Here in determining the value of the constant we have assumed that at r = 00 v = 0 (and 
hence y = 1) . 

The equation of radial force balance T'~ ;~ = 0 can be expressed as the following differen­
tial equation: 

Y(PG + 1hPR)
1 

+(Po+ PonG +PG+ %PR)Y
1 

(Lv2y2)' 1 3 , 
--

2
- -3 (r yw2) in general (18d) 

41Tr vy r 

= 0 in photon-diffusion regime (equations 20 below). 

The zeroth moment of the radiative transfer equation (radiation energy balance; equation 
5 .I Oc of Thorne (1981) with k = 0) can be expressed as the following differential equation: 

(
PR

1 

4 P0

1

) (Ly
2

)' 
VYPR - --- +p0(Eo-KoPR)---

2
-

PR 3 Po 41Tr y 

= - re:)' W2 in general ( 18e) 

= 0 in photon-diffusion regime (equations 20 below). 

In the photon-diffusion regime, if the radiation time-scale (P 0 K 0 f 1 is sufficiently short 
(equations 21 below), then the photons will be very nearly in radiative energy equilibrium: 

(18e') 

= aT 4 if the emitters and absorbers in the gas are in thermodynamic equilibrium with 

each other at temperature T. 

The first moment of the radiative transfer equation (radiation force balance; equation 
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5. lOc of Thorne (1981) with k = 1) can be expressed as the following differential equation: 

I 4 I L 
- (PRY) + PaK1 --
3y3 4rrr2 

(Lv2y2)' 1 3 , 
= PaE1 + 

2 
- 3 (r yw2) in general 

4rrr vy r 

= 0 in photon-diffusion regime (equations 20 below). 

(l 8f) 

The second moment of the radiative transfer equation (equation 5 .1 Oc of Thorne ( 1981) 
with k = 2) can be expressed as the following equation for the second moment of the 
radiation field : 

16 (vy)' · 4 r (Ly
5 

)' PoK2W2--r - PR+- - --
45 r IS y 4 4rrr3 

I [ 4 2 I 10 (VY)'] I 4 = P0 E2 + vyw2 + - (r vy) +-r - w2 -yw3 - -yw3 
3r2 21 r r (18g) 

- r r: )' W4 in general 

= 0 in photon-diffusion regime (equations 20 below) . 

The Ith moment of the radiative transfer equation (equation 5. lOc of Thorne ( 1981) with 
k =I) can be expressed as the following equation for the Ith moment of the radiation field : 

(l -1 )212(1 + 2) (vy )I 12 I 
PoK1W1 - (2/- 3)(2/-1)2 (2/ + 1/-; Wf _ 2 + {2/- 1) (2/ + 1) YW1-1 

+[1
2
(1+3)y' -1

2
(1- l)y/r] w 

(2/-1)(2/+l) I-I 

, [4(r
2
vy)' 51(1+1) (vy)'] , 

= PoE1 + VYW1 + - --+ r - W1 -YW1+1 
3 r 2 3(2/-1)(2/+3) r 

(18h) 

+ [ u - 2)y' -('; 
2
} J w1 + 1 -(l- l)rC:)'w1 + 2 in general 

= 0 in photon diffusion regime (equation 20 below). 

2.4 BOUNDARY CONDITIONS 

The equations of structure (18) must be solved subject to boundary conditions at r = 00 

and at r = 2M (horizon of hole). 
We presume that the states of the gas and radiation at infinity are specified by the user of 

the equations : 

p 0 (r = 00) = P0 oo, Oc(r = 00
) = OG ~ , PG(r = 00

) = PGoo, 

PR(r = 00) = PRoo, L(r = 00) =Loo, W1(r = 00) = Wfoa . 
(19a) 

If the gas is optically thin at r = 00 , then all photons will be moving precisely radially there 

16 
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[!(µ) = (PR .. /rr)8 (µ-1)], and consequently 

L .. 
PR=--, 

4rrr 2 

!!(2! + 1) L .. 
w1 .. = (optically thin). 

(2!+1)!! 4rrr 2 

We have presumed throughout that the gas is at rest at infinity: 

v(r = oo) = 0, y(r = oo) = l. 

(l 9a') 

(l 9b) 

At the horizon, physical conditions in the rest frame of the gas must be perfectly normal. 
The most important condition of 'normality' is finiteness of the four-acceleration, a= yL 

y'(r = 2M) is finite. (l 9c) 

If acceptable physics (opacities, equations of state, ... ) is put into the equations of structure 
(18), then because those equations are standard physical laws (energy conservation, force 
balance, etc.), they plus 'finite a' presumably will guarantee complete 'normality' at the 
horizon. For example, the relation y = (I - 2M/r) 112 

( 1 - v2f 1
12 (which follows from the 

equations of structure I Sa, b ), together with finiteness of a = y', guarantees that 

v = I, y finite and positive at r = 2M, ( ! 9d) 

which is a 'condition of normality' corresponding to the gas world lines being time-like and 
the laws of physics io the rest frame of the gas there by being 'normal'. 

In solving the equations of struct·ure (18), one may well introduce approximations which 
break the power of 'finite a' to guarantee normality at the horizon . For example, one may 
introduce the diffusion approximation in equations (18d)-(18h) . The diffusion approxima­
tion is notoriously acausal - it permits thermal pulses to travel faster than the speed of light, 
and thereby permits transfer of information out of the horizon. With such an approxima­
tion, one should not be surprised that 'finite a' is an insufficient boundary condition at the 
horizon (see Flammang 1981, a sequal to this paper). One must then impose additional 
normality conditions independently. A sufficient set of additional conditions is that 

P0 , Ile, PG, PR ,L, W2, w 3 ; ... all be finite at r = 2M, ( l 9e) 

and - perhaps more crucially - that the radiation intensity I(µ), as measured in the rest 
frame of the gas, be non-negative for allµ: 

00 (2!+1)!! 
!(µ) = L w1P1(µ);;. 0 for all -1 .;;; µ.;;; 1, at r = 2M. 

/=O 4rrl! 
(l 9f) 

3 Discussion of the equations 

Two regimes of our equations of structure (18) deserve special note: The first is the photon­
diffusion regime, in which (i) the gas is optically thick to the flow of radiation on macro­
scopic scales: 

where 

~=max [(K1P 0 f 1], 
1;;.1 

1 [minimum of macroscopic length-scales r, 
.!!' = - x 

y l(lnpR)'i-1
, l(Inp 0 )'i- 1

, l(lnpc)'l- 1 

(201) 

l(lny)'l- 1
, 
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and (ii) the emissivity is isotropic 

for all/ ;;;. 1. 

483 

(20b) 

Here [n/ 2] =(the largest integer less than or equal to n/2) . In this regime photons diffuse 
through the gas with mean-free paths of order X, and their diffusion drives the magnitudes of 
the radiation moments down to 

W1 - (X/!f')l(l + 1) /2) (v + X/!f')[l/2) PR for all / ;;;. 1. 
(20c) 

(See equations (18f)-(18h), in which we presume that the opacities K1 are slowly varying 
functions of Po and PG: I (In K 1)' I ::; I (Jn p 0 )

1 I + I (In Pc)' I.) Note that near the hole , where 
v - 1, the second moment w 2 is comparable in magnitude to the first L/4rrr2

, whereas the 
moments of order I ;;;. 3 are negligible compared to L/4rrr2 independently of velocity v. It 
may be interesting to compare this discussion of the photon diffusion regime with that in 
equations (7 .5) of Thorne (1981 ). The discussions differ because Thorne treats v as of order 
unity , whereas we make special allowance for the possibility that v ::; X/.Y. 

The second special regime is that of radiative energy equilibrium. This occurs when the 

photons are diffusing (equations 20) and when, in addition, the time-scale to build up and 
maintain an equilibrium radiative energy density is short compared to macroscopic 
time-scales : 

(21 a) 

X0 = (K 0 p 0r1
, !f'o = [minimum of macroscopic time-scales I e1- 1

, Id Jn PR fdr 1- 1
] ? !f' /v 

with d/dr =(proper time derivative moving with gas). In this regime energy exchange 

between the photons and the gas (equation 18e) maintains photon energy equilibrium : 

PR= e0 /K 0 in general, 

= aT 4 if the emitters and absorbers in the gas are in thermodynamic 

equilibrium with each other at temperature T. 

(21 b) 

One will typically have photon diffusion without radiative energy equilibrium whenever (i) 
scattering opacity (which contributes to K 1 , K2, . .. but not to Ko) is far greater than absorp­

tion opacity, and (ii) the gas is expanding (or compressing) with a time-scale 11 /fl I between 

(P oK1r 1 and (P 0 Kor 1. 
To make the equations of structure (18) tractable, it will be necessary to truncate the 

radiation moment expansion - i.e . to ignore all moments above some order /max and to 

make some wise guess as to the values of Wfmax + 1 and W/max +2 in the moment equations 

(18h) of order lmax and lmax -1. In the diffusion regime, /max= 2 is a reasonable choice, and 
setting w 3 = w4 = 0 in the moment equation (18g) is reasonable ; cf. equation (20c) . In 
optically thin and marginally thick iegimes, one may want to compare results using different 
values of lmax in order to see how small an lmax is viable. 

Because the flow is subsonic (u = 0) at infinity and supersonic (v = 1) at the horizon , it 
will possess a critical sonic point analogous to that which occurs in models of stellar winds . 
The sonic point is rather well understood in the case of general relativistic , adiabatic inflow 

(e .g. Blumenthal & Mathews 1976; Begelman l 978a) ; there it occurs when vis equal to the 
adiabatic sound velocity . In a sequel to this paper, Flammang (1981) will analyse optically 
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thick inflow with local thermodynamic equilibrium (equations 20 and 21 satisfied). He will 
show that there is a 'full-fledged' critical point of the equations when v is equal to the 
isothermal sound velocity, and in addition there is a 'latent' critical point of the equations 
when vis equal to the adiabatic sound velocity. The requirement that the flow pass smoothly 
through these two critical points, plus the boundary conditions at infinity and at the horizon, 
will determine both the mass accretion rate M0 and the luminosity-at-infinity Loo in terms of 
the mass M of the black hole and the physical state of the gas at infinity. 
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Appendix: Translation of equations into cgs units 

The body of this paper uses geometrized units - i.e. units where Newton's gravitation 
constant G and the speed of light c are both one. Box 1.8 of Misner et al. (1973) explains 
how to translate geometrized units into cgs units. We list below, as an aid, the translation 
of the basic variables which are introduced in Section 2 .I and which appear in our funda­
mental equations (18). To put our equations into cgs units, one must replace the symbol in 
the left column by the expression in the right column. 

M(cm) ->- GM/c 2 (Ming) 
r (cm) ->- r (r in cm) 
v (dimensionless) ->- v/c (v in cm s-1) 
y (dimensionless) ->- y (dimensionless) 
M 0 (dimensionless) ->- GM0 /c 3 (M0 in gs-1) 
Po (cm-2

) ->- Gp0 /c 2 (P 0 in g cm-3) 

OG (dimensionless) ->- nGfc2 (OG in ergg-1) 
PG (cm-2

) ->- GpGfc4 (PG in dyne cm-2
) 

w1 (cm-2) ->- Gwifc4 (w1 in ergcm-3 =dyne cm-2) 

PR (cm-2
) ->- GpR/c4 (PR in ergcm-3

) 

L (dimensionless) ->- GL/c 5 (Lin ergs-1) 
L"° (dimensionless) ->- GL"°/c 5 (L"° in erg s-1) 
€1 (cm-1) ->- Ei/C

3 (€1 in ergg-1 s-1) 
K1 (cm) ->- K1c 2/G (K 1 in cm 2 g-1) 



12 

Chapter 2 

The Theory of Optically Thick Accretion 

This chapter is a paper published in the June, 1982, issue of the 

Monthly Notices of the Royal Astronomical Society, Volume 199, 

Page 833. 
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Abstract 

In this paper, the problem of spherical, steady-state, optically 

thick accretion into black holes is solved. We analyze the integral 

curves of the differential equations describing the problem. We 

find a one-parameter family of critical points, where the inflow 

velocity equals the isothermal sound speed. Physical solutions 

must pass through one of these critical points. We obtain a complete 

set of boundary conditions whic_h the solution must satisfy at the 

horizon of the black hole, and show that these, plus the requirement 

that the solution pass through a critical point, determine a unique 

solution to the problem. This analysis leads to a generalization of 

the well-known Bondi critical point constraint, which arises in the 

adiabatic accretion problem and which is effective at the point where 

the inflow velocity equals the adiabatic sound speed. We show that 

this point can be regarded as a ·"diffused critical point" in our 

problem. The analysis also yields a simple expression for the 

diffusive luminosity at radial infinity. Finally, we find a satisfying 

explanation for the rather peculiar critical point structure of this 

problem in an analysis of the characteristics and subcharacteristics 

present in the problem and in a "hierarchical" analysis of the waves 

which propagate along them. 

1. Introduction 

The purpose of this paper is to understand what happens when a 

black hole finds itself surrounded by an optically thick cloud of gas . 

Physically, we expect the black hole to draw matter inward and, at the 

same time, to compress it. As the inflowing material is compressed, 
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it will heat up, and this will establish a temperature gradient-­

which, in turn, will lead to an outflowing luminosity. 

A satisfactory resolution of this problem seems especially 

important now for two main reasons. First, there are the important 

astrophysical applications. For example, most quasars lack jets, 

rapid time variability, and significant polarization and could thus 

be powered by steady, spherical accretion into a large black hole. 

In order to produce the enormous luminosities observed in these sources, 

one must either assume very high efficiencies or one must feed the black 

hole with a large accretion rate. In the latter instance, conditions 

will be very optically thick near the black hole, and the results of 

the present paper will apply. Indeed, we shall find that steady, 

spherical, optically thick accretion into black holes can effortlessly 

produce luminosities up to the usual Eddington limit. 

There is also the possibility that runaway Roche-lobe overflow 

in a close binary system could eventually lead to the formation of 

a "black hole core star" [cf. Taam, Bodenheimer, and Ostriker (1978), 

and Thorne and Zytkow (1977) for a discussion of the neutron-star 

case.] Furthermore, recent calculations of core collapse in massive 

supergiants suggest that the end product may be not a supernova but 

a "star" with a central black hole [Woosley (1980)]. 

But there is another, more fundamental, reason to turn our 

attention to this problem: it is, or can be made, a well-posed problem 

of mathematical physics; and we shall see that to understand the 

answer deeply requires the introduction of some new, essentially 

mathematical, ideas into the standard lore of accretion physics. 
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Steady, spherical accretion was first studied by Bondi (1952), 

who considered adiabatic accretion of a polytropic gas using 

Newtonian gravity. The corresponding general relativistic problem 

was treated by Michel (1972). The more complicated problem where the 

effects of radiative transfer are taken into account, has been 

studied, in the optically thin limit, by Shvartsman (1971), 

Shapiro (1973a,b), and Meszaros (1975). All of these 

authors have paid particular attention to the roles played by 

magnetic fields and synchrotron emission. In the case of optically 

thin accretion, photon energy densities are so tiny that radiation 

has a negligible influence on the flow, and the problems of radiative 

transfer and hydrodynamics effectively decouple. When conditions are 

optically thick the situation is very different. In this case 

radiation pressure can build up and decisively alter the accretion 

flow. Tamazawa et al. (1975) considered a particular accretion 

problem which went optically thick near the black hole. They found 

exponentially diverging luminosities when they tried to integrate 

their equations down into this optically thick inner region. To 

continue their solution on down to the horizon, they assumed the flow 

to be exactly adiabatic and then used the resulting temperature 

gradient to compute a luminosity in the diffusion approximation. The 

heat lost from each inflowing fluid element as a result of the 

ensuing luminosity gradient was neglected in their equation of 

energy conservation. While this procedure is physically justifiable 

and was entirely satisfactory for the particular problem Tamazawa 

et al. were considering, it sidesteps, rather than confronts, the 

issues we wish to investigate here. 
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The first attempt at a fully self-consistent analysis of optically 

thick accretion was made by Kafka and Meszaros (1976). They used a 

highly simplified set of equations, first employed by Maraschi et al. 

(1974) to study accretion onto a compact star. These equations are 

Newtonian, neglect the pressure and internal energy of the gas, and 

include only electron-scattering opacity. Unfortunately, the solutions 

found by Kafka and Meszaros are unphysical: they all have subsonic 

velocities at the "horizon" of their Newtonian black hole. Of course, 

a meaningful description of the flow near the horizon of the black 

hole can only be given in a fully relativistic treatment. As was 

pointed out in the first paper of this series [Thorne, Flammang, and 

Zytkow (1981)--hereafter paper l], the inflow velocity, as measured 

by local, static observers~ must equal the speed of light at the 

horizon of the black hole. Thus the flow cannot be subsonic there. 

Begelman (1978), using the same equations as Kafka and Meszaros, 

treated the problem of optically thick accretion by analogy with 

Bondi's theory of adiabatic Newtonian accretion. Because his 

equations were Newtonian, Begelman was not able to consider, except 

in an approximate way, relevant boundary conditions at the 

horizon of the black hole; he also misidentified the 

critical points in his problem . Nevertheless, the basic perturbative 

approach used by Begelman is quite sound. As a result, many of 

Begelman's approximate analytic results are correct, and these 

provide some valuable physical insight. 

Vitello (1978), who considered spherical, optically thick 

accretion onto compact stars, seems to have been the first to point 

out in the literature that, with radiative transfer treated in the 
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diffusion approximation, the resulting set of basic equations 

describing the accretion problem have critical points where the 

inflow velocity equals the isothermal sound speed. 

More recently, Gilden and Wheeler (1980), in a fully relativistic 

treatment, studied the time-dependent behavior of optically thick 

plasma located within ten Schwarzschild radii of a black hole. 

They found that the solution quickly relaxed to steady-state "free­

fall" regardless of initial conditions. As we shall see later on, 

this result is obtained because the region Gilden and Wheeler were 

studying lay well inside of the relevant "critical points" of the 

corresponding steady-state problem. Their conclusion, that an 

optically-thick cloud of gas always falls into a central black hole 

on a free-fall timescale, is valid only for the material in this 

inner region. Further out, the material is basically in hydrostatic 

equilibrium and, in particular, can be supported by radiation pressure 

gradients (luminosity). However, the time-dependent calculations of 

Gilden and Wheeler provide a valuable demonstration of the stability 

of the innermost regions of steady, optically-thick accretion 

flows into black holes. Finally, Gillman and Stellingwerf (1980) 

reconsidered the problem posed by Kafka and Meszaros in a completely 

relativistic analysis, this time including gas pressure, but, like 

Kafka and Meszaros, found only unphysical "solutions". 

Obviously, this problem is in dire need of a clean, definitive, 

understandable solution, and this is what we will attempt to present 

in the following sections. Specifically, we consider the problem of 

steady-state, spherically-symmetric accretion into a Schwarzschild 

black hole in those circumstances where the density is high enough 
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to ensure (1) that photon transport can be adequately described by 

the diffusion approximation and (2) that the photons and the gas are 

in local energy equilibrium (LTE). These two conditions constitute 

the definition of the phrase "optically thick" as used here. As its 

title indicates, this paper will focus on the formal, mathematical 

aspects of the problem. In a sequel paper [Flammang (1982)), specific 

numerical solutions and their physical character will be discussed. 

2. Basic Equations 

The equations we shall need are discussed in Thorne, Flammang, 
. 

and Zytkow (1980) [paper 1). When specialized to the case of interest 

here (see Appendix A), they can be written as: 

2 
4nr p vY 

0 

Y' 
y 

HYM 
0 

+ 
P' 

p+P 

L 

. 
M 

0 

E 

constant 

0 

constant 

L 2 3 2 
4

PR [TT'+ Yy') -4nr Y (l+v ) 
Po Kl 

(la) 

(lb) 

(le) 

(ld) 
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expressing conservation of "rest mass", conservation of radial 

momentum, Bernoulli's equation (corrected to include heat transfer), 

and the diffusion of photons, respectively. In these equations, 

the following variables have the same meaning as in paper 1: 

r Schwarzschild radial coordinate 

p = density of "rest mass" 
0 

v radial inflow velocity as measured by local, static 

observers 

y [l-2M~r]~ 1-v 
energy, per unit rest mass, at infinity 

Here M is the mass of the black hole. 

M 
0 

rest mass accretion rate 

first-moment opacity 

(2a) 

(2b) 

(2c) 

(2d) 

(2e) 

(2£) 

and a prime denotes .differentiation with respect to r. In addition, 

the following new variables appear: 

p total pressure (gas plus radiation) (2g) 

radiation pressure (2h) 

p total energy density (gas plus radiation), 

including rest mass (2i) 

H total enthalpy, including rest mass, per unit 

rest mass (2j) 
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T = common temperature of gas and radiation. (2k) 

All of the above quantities are as measured by observers moving 

with the inflowing matter. 

E = total mass-energy accretion rate, including "PdV work", and 

allowing for heat transfer--equals M, the rate at which the 

black hole gains mass (21) 

( 2rn) 

Here L = 4nr2w
1 

is the diffusive luminosity measured by observers 

moving with the inflowing matter; w is the first moment of the photon 

intensity [cf. equation (10) paper l]. 

. . 
It is a simp~e matter to verify that, with M, M

0
, and E specified, the 

equations ( 1) are sufficient to determine a solution to our problem. We 

presume of course that p, P, and Kl are some given functions of p
0 

and 

T (equations of state, opacity law). 

After considerable manipulation (see Appendix B) the following 

equations for first-order derivatives can be obtainPd~ 

.£ y' 
y 

r T' 
T 

= c-..t 
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v -v 
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c 
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c 

(3a) 

(3b) 
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v -v 

c 
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' (TY) 

is the isothermal sound speed squared [cf. (B4)] 

(Jd) 

( Je) 

(4a) 

(4b) 

(4c) 
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qb + a 

is the adiabatic sound speed squared [cf . (Bll) and (Bl2)] 

a 

b 

q 

T 
p +P 

(aa:J 
T 

[cf. (BlO)], and where S is the entropy per unit "rest mass". 

(4d) 

(4e) 

(4f) 

(4g) 

These equations will be discussed in the ensuing sections; but, 

in order to lay some groundwork for that discussion, it is helpful 

first to consider the adiabatic limit of equations (1) and (3) . 
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3. The Adiabatic Problem 

If we adopt a reduced level of description of our problem by 

forbidding the diffusion of photons altogether, we obtain the 

adiabatic limit of the equations (1): 

2 
47Tr p vY 

0 

Y' 
y 

HY 

+ 
P' 

p+P 

H 
00 
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constant 
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(Sc) 

To obtain the adiabatic limit of equations (3), note that (3e) and 

the adiabatic condition S' = 0 tell us that 

2 2 
v - v 

s c 
2 2 c (6) 

v -v 
s 

Substituting this value of £ in the equation (3) gives 
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2 c 
vs 2 2 

v - v 
s 

(1 - v ) 2 -
s rY 

[ 

2 M 2 
(1 - v ) 

2 2 
v -v . s 

(7a) 

(7b) 

( 7 c) 

(7d) 

the adiabatic limit of (3). [It is worth noting here that the isothermal 

limit of the equations (3) is obtained by putting!/?= 0 in them. J 

Since there is only one differential equation in the system (5), 

only one of the equations ( 7) is independent. Thus we may adopt ( 7d) and 

plot the trajectories defined by it in the two-dimensional "phase plane" 

[r xv]. In order to construe t such a diagram, it is necessary to fix 

. 
three parameters, for example M, M , and H • The result is shown schema tic-o Cl) 

ally in Fig. 1 [cf. also Blumenthal and Ma thews ( 1976) J. Since the 

entropy S is constant along each curve in Fig. 1, we may regard 
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this figure as a "contour diagram" of the function S(r,v) defined 

implicitly by equations (Sa,c) and an equation of state. The 

"saddle point" of this figure corresponds to the point where both 

the numerator and denominator of (7d) vanish: 

c 0 (Sa) 

v (Sb) 

This point is a "critical point" of (7d) in the usual mathematical 

sense of the term [cf. Birkhoff and Rota, Ch. 5, §1]. Equations (8) 

may be solved for the "sonic radius" 

r 
s 

Note that, since a gas of extreme relativistic particles has 

v 2 = 1/3, we have 
s 

r ::?. 3M 
s 

Since the boundary conditions for the accretion problem are 

v 1 at r 2M 

v 0 at r 00 

(9a) 

(9b) 

(lOa) 

(lOb) 

[cf. equations (19b,d) of paper l], it is clear from Fig. 1 that we 

must choose the "critical" solution which passes through the sonic 

point and connects the points (lOa) and (lOb) (dark curve in the 

figure). This procedure fixes the entropy of the solution for given 
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. 
values of M, M , and H . Turning this statement around, for given 

0 00 

M, H , and S , the value of M is uniquely determined. 
00 00 0 

In view of the great usefulness of the "phase plane" Fig. 1 in 

understanding and solving the adiabatic problem, we shall employ a 

generalization of this approach in the succeeding sections where the 

full problem with photon diffusion is analyzed. 

4. Discussion of Basic Equations 

In this section we begin an analysis of the equations set forth in 

§2 describing accretion with photon diffusion. First note that, compared to 

their adiabatic counterparts in §3, these equations possess one more 

variable, L, and hence one more equation to describe it [ ( ld), or (3e)]. 

Thus two of the equations (3) are independent. Second, the critical velocity 

in this higher level description of the problem is the isothermal sound speed 

v , not the adiabatic sound speed vs. Third, £ (via £) enters c --

the numerators of all of the equations (3), where it competes 

with C -- except in equation (3d) for v' where its role is 

nevertheless similar. 

Because two of the equations (3) are independent, and because 

of the especially important roles played by v and £ on the right-hand 

sides of (3), it is wise to adopt (3d) and (3e) for v' and L' and to 

consider the trajectories or integral curves defined by them in the 

three-dimensional space [ r Xv XL]. To do this, it is necessary to fix three 

parameters, for example M, M , and E. 
0 
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First we look at the turning points of r, v, and L. The 

numerator of (3d) vanishes when 

2 
1-v 

c 
2 

1-v 
2v 

2 
c £ v 

On this surface in [r x v x L], integral curves have dv 

numerator of (3e) vanishes when 

2 2 
v - v 

s c 
2 2 c £ 

s 
v -v 

s 

(lla) 

0. The 

(llb) 

[cf. equation (6)]. On this surface the integral curves of (3d,e) 

have dL = 0. Finally, the denominators of both (3d) and (3e) vanish 

when 

v v 
c 

On this surface in [r xv x L], integral curves have dr 

that 

£ £ v 
c 

s 
when v = v 

c 

(llc) 

0. Note 

(12) 

This means that the surf aces (lla) and (llb) intersect each other 

in the surface (llc)--i.e., all three intersect along some common 

curve in [r x v x L] which we can characterize simply by 

v 

c 

v 
c 

This situation is illustrated in Figure 2a. 

(13a) 

(13b) 
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All of the points which lie on this curve are critical points 

in the usual mathematical sense of the term, and these are the only 

critical points with v < 1 in the problem. Accordingly, we shall 

call the curve defined by (13) the "critical curve." Note that (13a) 

causes all of the numerators in (3) to vanish if v = vc. 

We have already noted that integral curves have dr = 0 on the 

surface v = vc. From (3d) it is easy to show that r attains a 

local maximum at v = vc if £ < C there and that r attains a local 

minimum at v = vc if ol > C there. Integral curves of this sort 

are shown in Figure 2b [the curves x-x and y-y in the figure]. 

It is obvious that integral curves such as these are of no 

use to us: v(r) and L(r) are double-valued for some values of r 

and are not even defined for other values of r. The fix is equally 

obvious: we must choose an integral curve which passes through the 

surface v = vc with ol = C, i . e., it must pass through the critical 

curve. 

Actually, through each critical point there pass two different 

integral curves [see Appendix C for proof]. This also is illustrated 

in Figure 2b. The integral curve labelled b-c-d in the figure is 

of no interest in the accretion problem; the one we want is the 

one labelled a-c-e. 

Our boundary condition on the velocity at the horizon of the 

black hole [equation (lOa)] defines a straight line in [r x v x L]: 

v = 1 

r = 2M 

(14a) 

(14b) 
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hereafter called the "inner boundary line". On this line, equation 

(3d) reads simply 

v' - -
1 

4MY
2 (15) 

Since this is always negative, all integral curves coming off the 

inner boundary line (14) point into the physical region v < 1, r > 2M. 

[They continue on into the equally physical region v > 1, r < 2M, 

of course.] 

5. Quasi-Exponential Behavior of the Luminosity 

Equation (3e) reveals a crucial feature of the behavior of 

the system (3d,e). Because L' appears on the left-hand side and L 

(via£) appears on the right, we may suspect that this equation 

will cause the luminosity L to behave in a quasi-exponential fashion. 

[Indeed, this is the quasi-exponential behavior that has bedevilled 

all who have attempted numerical solution of this problem - cf. 

Tamazawa, et al. (1975), Kafka and Meszaros (1976), Gillman and 

Stellingwerf (1980). The possibility of quasi-exponential behavior 

of the luminosity in simplified models was also noted by Begelman 

(1979) . ] The exponential rate implied by equation (3e) is 

k = 

2 2 
v - v s 

2 2 
v - v c 

HYM 
0 

qr " L 

This rate k may be reexpressed in a variety of useful ways 

[see Appendix DJ. In its most general form, it is 

(16) 
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2 
v c 
2 
v s 

1 
2 

Y(l+v) 
( 17) 

where x is the "thermal diffusivity" of the accreting material [cf. 

(D3) and (D4)]. This form is valid regardless of the physical 

mechanism underlying X· For the case at hand, where the energy 

transport is due to photons diffusing in local energy equilibrium, 

we have 

[cf. (B9) and (D7)] where 

is the photon mean free path. 

A 
b 

Ve. 2.. (18a) 
~ s 

(18b) 

Note that k changes sign by passing through a zero at v = v 
-- s 

and by passing through a pole at v = v . Because k is negative for 
c 

v > v and for v < v but is positive for v < v < v , the luminosity 
s c c s 

A 

L has the qualitative behavior shown in Figure 3 in these three 

different velocity regimes. 

When this quasi-exponential behavior of L is sufficiently 

pronounced, it is clear that it serves to select a certain L(r,v), 
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which we shall denote by L (r,v), which has the property that the 
0 

integral curves of (3d , e) relax with rate k toward the surface 

L = L (r,v). In this case it is also clear from equation (3e) that 
0 

L (r,v) is approximately equal to the luminosity which causes L' to 
0 

vanish , i.e ., 

L (19) 

0 

[cf. (4b) & (llb)] . 

These ideas can be put on a firm footing [see Appendix E for 

details J by defining a parameter T along integral curves of (3d, e) by 

k dr (20) 

[cf. (E2)]. Then one can just integrate (3e) along each integral 

curve to obtain 

[cf . (E4)]. Now it is easy to see that the surface L 

(21) 

L is defined 
0 

by those integral curves which have L(T ) bounded as T ~ 00 • For 
0 0 

such integral curves we have 

[cf. (E5) ] • 

00 

L(r) = J l.r(r) e r-r /£r / 
/-

(22) 
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It is clear enough even now--and we shall discuss it in detail 

in the next section--that only these integral curves with bounded 

luminosity are relevant to the solution of our problem, Hence the 

equation (22) which characterizes them will prove to be extremely 

important to us. 

From (22) we can derive [see Appendix E] an accurate version 

of (19): 

L 

(23) 

along those integral curves which define the surface L L 
0 

The 

series (23) is by no means.guaranteed to converge everywhere. For 

example, it will certainly not converge for v ~ v where k vanishes 
s 

A 

and where L has a pole. When (23) does converge, and converges 
s 

rapidly, we have pronounced quasi-exponential behavior in L; this 

condition is sometimes referred to as "stiff" behavior [cf. Gear 

(1971)' §11.1]. In this case, (23) tells us that L will be close 
0 

A 

to L . This slight "offset" of L from L is illustrated in Figure 4. 
s 0 s 

6. Construction of Solutions 

We are now ready to begin the construction of a solution 

to the optically-thick accretion problem. 

First, return to the "critical curve" of equation (13) and 

Figure 2 . It is clear that we have a one-parameter family of 

acceptable integral curves of the type labelled "ace" in Figure 2b, 
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each of which passes through the critical curve at a different 

critical point. Now the parameter T defined in equation (20) diverges 

to + 00 along these integral curves as they approach their critical 

point [cf. equation (E8) and accompanying discussion in Appendix E]. 

This, together with the fact that L is finite on the critical curve, 

means that the one-parameter family of integral curves which passes 

acceptably through the critical curve is the same ~ the one-parameter 

A A 

family of integral curves which defines the surf ace L = L in the region 
0 

v < v . 
s 

Now turn to the horizon of the black hole and to the "inner 

boundary line" of (14) . • Since v = 1 > v at the horizon, k is 
s 

negative there and the luminosity behaves as in Figure 3a. Now if 

we choose an integral curve with L # L at the horizon, then ILi will 
0 

grow as exp T where T -+ + 00 as r -+ 0 [cf. (21) and Appendix E]. Nor 

will rapid quasi-exponential behavior of L set in only at some 

r « 2M: from (14), (17), (18), and (D8) we have 

(24) 

Hence the quasi-exponential behavior of L is already very stiff at the 

horizon, and it remains so all the way down to r = O. Since integral 

curves with exponentially unbounded luminosity do not represent physical 

solutions, they must be ruled out. Hence we have the boundary 

condition 

L L at r = 2M 
0 

(25) 
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Now the thoughtful reader may object that in the argument 

leading to (25) we are using information about the behavior of the 

solution in the region r < 2M to partially determine the solution 

in the region outside the black hole--which is supposed to be causally 

disconnected from the region inside the horizon. This objection would 

indeed be valid if we were considering a completely hyperbolic problem 

with the fastest characteristic velocity equal to the speed of light. 

But in fact we are making use of the "parabolic" diffusion approxima­

tion to describe energy transport in our equations, and this intro-

duces into our problem the well-known "infinite-velocity characteristics" 

typical of parabolic systems. For this reason, the solution in the 

region r > 2M can, and indeed must, depend on conditions inside the 

horizon, and if (25) does not hold, the solution inside the horizon 

will not be physical. 

While it must be conceded that it is a bit of an embarrassment 

in principle to have information propagating out from behind the 

horizon of a black hole, the important question is, "Does it matter 

in practice?". The answer is "No": if we perturb L away from L 
0 

by some amount at some r < 2M, we cause an enormous change in the 

solution for smaller r, but an exponentially insignificant change 

in the solution for larger r. Indeed, by rapidly damping the infor­

mation trying to propagate outward, the diffusion approximation is 

doing the best it can to atone for its "acausal" nature. [For a discussion 

of "causal" heat equations, see Israel (1976) and references cited therein.] 

Because (14) and (25) fix r, v, and L at the horizon, it might 

seem that these conditions would serve to select a unique integral 
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curve coming out from the horizon. Actually this is not the case: 

there is a remaining degree of freedom at the horizon in the variable 

Y because (14) fails to determine Y there [cf. (2d)]. Equivalently , 

from (15) we may regard this remaining degree of freedom as residing 

in dv/dr at the horizon. Hence we have a one-parameter family of 

integral curves coming out from the horizon which satisfy our boundary 

conditions (14) and (25). 

Because i has very stiff quasi-exponential behavior at the 

horizon, (23) converges rapidly there, and its leading term, L , 
s 

~ 

provides a good approximation to L. But if i is anywhere near i 
s 

~ 

in the region v > v , r < r , it is easy to see from (3d) that L is 
s s 

irrelevant to the determination of v' there, as 

> for v > v , r < r 
s s 

(26) 

[cf. (llb) and (9a)]. Hence we have, to a very good approximation, 

r v' 
v 

whose solution is 

or 

M 

Y
2 2 

r v 

y 

for v > v , r < r 
s s 

(27) 

constant (28a) 

(28b) 

;f Y ::::=: I (28c) 
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So as r increases along our one-parameter family of integral curves 

satisfying (14) and (25) at the horizon, v decreases in accordance 

with (28) until v ~ v or r ~ r 
s s 

The behavior of v in the region v < v < v is not so easy to 
c s 

determine, even though we can limit our attention to those integral 

curves with L L , which pass acceptably through the critical curve. 
0 

Certainly, if we consider very optically thick cases, where k becomes 

arbitrarily large, we can cause _ (23) to converge as fast as we please 

and can make the leading term approximation , L = L , as good as we 
s 

like. In such cases, v' is well described by the adiabatic limit of 

(3d), equation (7d), which can be rewritten as 

[cf. (9a)]. 

r 
v LI 

But for v < v , r > r , this equation gives 
s s 

-........ - 2. 

Indeed, from (3d), this conclusion is valid [for v <vs, 

long as 

2 2 
lot-at I < Iv -v I s c 

r > r ] 
s 

(29) 

(30) 

as 

(31) 

Hence we are assured, in some cases at least, that integral curves 

which proceed inward from the critical curve will have v increasing 
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and will eventually encounter the surface v = v . The big remaining 
s 

question then is, "What happens at v = v ?"--the subject of the next 
s 

section. 

7. Behavior Near the Sonic Surface 

In this section we shall investigate the behavior of integral 

curves of (3d,e) near the "sonic surface" v = v . First we need to 
s 

determine the important qualitative features of this behavior. Then 

we can proceed later on to a mathematical treatment . 

We have already seen how L behaves as in Figure 3a for v > v 
s 

and as in Figure 3b for v < vs' and we have seen how L
0 

and Ls are 

related as in Figure 4. Now at v vs' L has a pole, whose sign and 
s 

strength are determined by the sign and magnitude of C there [cf. (llb)]. 

~ 

But k vanishes at v = v 
s 

Hence L has no tendency to behave quasi-

exponentially there , (23) fails utterly to converge, and integral 

curves with L = L '.'decouple" from L for v '\, v . Also, from (3e), 
0 s s 

L' is independent of L at v = v and depends only on the value of C 
s 

there. From these ideas alone, we can readily sketch the generic 

behavior of integral curves of (3d,e) in the neighborhood of the 

surface v = v . Figures Sa and Sb show two examples. 
s 

In Figure Sa , C is positive for v '\, v , and so L has a pole 
s s 

at v v of the sign shown in the figure. The integral curves with 
s 

L = L are fairly close to L for v >> v and for v << v , but they 
0 s s s 

gradually decouple from L as they approach the sonic surf ace v = v s s. 

Still, the pole in L is sufficiently strong so as to cause these two 
s 

integral curves with L = L 
0 

to miss each other at v = with the 
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one coming from the horizon passing below the one coming from the 

critical curve. 

Figure Sb shows another case. Here C is negative for v ~ v , 
s 

and so L has a pole of the sign shown in the figure. Again the 
s 

pole in L is strong enough to cause the two integral curves with 
s 

L = L to miss each other at v = v , but this time the one coming 
0 s 

from the horizon passes above the one coming from the critical 

curve. 

But now it is clear that, if we can adjust C in the region 

v ~vs' then we ought to be able to effect a meeting at the sonic 

surface of an integral curve with L = L coming from the horizon and 
0 

an integral cur~e with L = L coming from the critical curve. Figure 
0 

Sc shows such a case. 

From (4a) we see that, for v ~ v , adjusting C basically amounts 
s 

to adjusting r. From this, and from the Figures S , we can deduce 

that integral curves with L = L intersect the sonic surface as 
0 

shown in Figure 6. · Integral curves with L = L which come from the 
0 

horizon intersect the sonic surface along the curve labelled BSD in 

the figure, while integral curves with L = L coming from the critical 
0 

curve intersect the sonic surface along the curve labelled ASE. Only 

the integral curve which passes through the point S of Figure 6 has 

L = L on both sides of the sonic surface, and hence only this 
0 

integral curve satisfies both our boundary conditions (14) and (2S) 

at the horizon and the condition (13) at the critical curve. This 

integral curve, then, is our solution! 
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Now that we understand the behavior of integral curves near 

the sonic surface, we can proceed to an analytic treatment of the 

situation there. From equation (22), all integral curves which 

satisfy our boundary conditions (14) and (25) at the horizon and 

which pass through the sonic surface arrive at the sonic surface 

with a luminosity given by 

00 

2 css) = J Z~c-rJ e-r- ,tr- (32a) 
0 

Here we have adjusted the "constant of integration" left unspecified 

by (20) so that 

Near the sonic surf ace 

(llb) to rewrite (32a) 

SS 

" J L (ss) Mo = 
V" = 0 

0 

it is 

as 

Hr 
t 

at v v 
s (32b) 

advantageous to use (20), (16), and 

I/ 2.._ v~ 

[-cJ -I .5 c.. 
e ~~..,.. (33) v2.-v2. 

c.. 

Similarly, from (22), all integral curves which pass acceptably 

through the critical curve and which pass through the sonic surface 

arrive at the sonic surface with a luminosity given by equation (32a) 

provided we again make use of (32b). Using (20), (16), and (llb) 

then yields 
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(.(.. 

-'\ J L cs~) == .M" (_ (34) 
.SS 

But if we are able to join at the sonic surface an integral 

curve which satisfies boundary conditions (14) and (25) at the 

horizon and an integral curve which passes acceptably through the 

critical curve (13), then certainly L will be continuous across the 

sonic surface and the right-hand sides of (33) and (34) will be 

equal. This gives us the very interesting result 

J V2-\li, 
s c.. 

vt..-v2.. 
(.. 

c 0 (35) 

Equation (35) says that, along our solution, C must vanish, at least 

once, somewhere between r = 0 and the critical curve. But since T 

is a minimum at v = v along integral curves which pass through the 
s 

sonic surface with d(v - v )/dr < 0 [see Appendix E], the factor 
s 

exp [-T] is peaked at v = v and, in order to satisfy equation (35), 
s 

C will have to vanish somewhere near the sonic surface. Indeed, 

from (20), (32b), and (1 7), 

v(v+v ) 
s 

2 2 

v 
c 

2 (v - v ) v 
c s 

2 
1 [-~~r dx

2 l (36a) 

2 
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where 

v 
c 

2 

2 2 
v - v 

s c 

x 
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1 

Y(l+v 
2

) 
s 

v - v 
s 

(36b) 

(36c) 

Now if we consider progressively optically thicker, and hence more 

adiabatic, cases by, e.g., letting x become smaller and smaller, we 

see that the factor exp [-T] "squeezes down" tighter and tighter 

around the point where our solution crosses the sonic surface. And 

in the adiabatic limit, x ~ 0, equation (35) requires 

c 0 at v v 
s 

--just as in equations (8) of §3! Thus equation (35) is the 

(37) 

generalization of the well-known "sonic point condition" of adiabatic 

accretion theory to the present problem where the photons are allowed 

to diffuse. Just why the "sharp" adiabatic constraint (37) should 

become transformed into the "spread out" constraint of equation (35) 

will be explored in §9. 

Behavior at Large Radius: The Region v < v 
~~~~~~~~~~~-~~~~~~~~~~~~~~---,c-
8. 

In this section we examine the behavior of our solution in the 

region v < v . First, since L must be finite at r 
c 

oo , we have from 
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(4b) that £ + 0 like l/r there. Hence from (3d) 

r 
v 

II I ....._, - 2. 

Thus our last boundary condition, (lOb), is satisfied. 

(38) 

The behavior of v closer to the critical point is not so easy 

to determine. We have already noted in §6 that, if conditions are 

sufficiently optically thick so as to enforce (31), then our 

solution will have 

,..... 

v 
VI 

throughout the region v < v . Otherwise, we may expect some 
c 

modification of (39) near the critical point. 

A 

(39) 

Now let us consider the behavior of L along our solution in 

the region v < v . We have already noted that, at its critical 
c 

point , our solution has L L [cf. (12) and (13)]. As our solution 
s 

proceeds away from its critical point toward larger r, it will have 

L ~ L by virtue of (23) because lkl is so large near the critical 
s 

point . Since our solution passes through the critical curve, it 

satisfies equation (22) throughout the region v < v . Hence, in 
c 

particular, L at r co is given by 

co 

L 
co J (40) 

0 

where we have adjusted the "constant of integration" left unspecified 
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by (20) so that 

0 at r oo (v 0) (41) 

[cf. (Ell, El2)],and where, recall, T 00 at our solution's critical 

point [cf. (ES)]. 

Now if we let x 

L 
00 

1 

f 
0 

exp(--r), (40) becomes 

i (x) dx 
s 

(42) 

So L is just an average of L between our solution's critical point 
00 s 

and r = oo , with most of the weight in the average lying in the 

region where x ~ 1/2 or T ~ 1. Hence we have, to a first approximation, 

But from (llb), 

A 

L 
s 

A 
b 

L ~ L (T ~ 1) 
00 s 

(4a), and (4b)' 

2 2 
v - v 

s c ----
2 2 

v -v 
s 

which, from (38), is just a constant at larger: 

L 
s 

A 
~-

b ~- :::)- T ,_, for r -+ oo 
Soo 

(43) 

(44) 

(45) 
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Indeed, in many cases L is virtually constant along our solution 
s 

throughout the region v < v 
c 

In such cases it is not necessary to 

make much of a fuss over the integral (40), we just have the simple 

and useful result that 

L 
00 

R:: L 
Sc.o 

Significant modifications of (46) can arise only if: 

(46) 

(i) L 
s 

is still varying appreciably along our solution for some distance 

outside the critical point, and (ii) the factor exp(-T) fails to cut 

this region off in the integral (40). One can imagine cases where 

both of these conditions might be satisfied. For example, if 

conditions are sufficiently optically thin, then the width of the 

constraint (35) is great, and C could change sign rather close to 

[but, of course, inside of] the critical point--in which case the 

factor in square brackets in (44) would be somewhat less than unity 

for some distance outside the critical point, and, if x ~ 1/2 in 

this region, then the value of L there will dominate the integral 
s 

(42). In such a case, L00 would be less than L 
Soo 

On the other hand, it is clear that, for sufficiently optically 

thick cases, we can cause the factor exp[-T] to cut off the integral 

(40) as far out in radius as we please, and hence that, in this limit, 

because of (45), the approximation (46) becomes arbitrarily accurate . 

From (4f) and (B8a), we have, for a nonrelativistic, perfect gas, 

A 
b 

(4 7) 
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and if we define 

L, -:;::;. 
(48) 

--which is just the "Eddington luminosity" defined with the actual 

first-moment opacity Kl rather than the electron-scattering opacity, 

then we can re-express (45) as 

-~ (49) 

9. Theory of Critical and Subcritical Points 

Why does the adiabatic accretion problem of §3 have a critical 

point when v = v ? Why does the present problem, where the photons 
s 

are allowed to diffuse, have a critical point where v = vc, and why 

does it have the "spread-out" constraint of equation (35) as a 

remnant of the adiabatic description? This section is concerned with 

the answers to these questions. A discussion of this sort seems 

especially important because the concept of a critical point has 

been subjected to a good deal of abuse in the astrophysics literature. 

If we take the basic conservation equations and the diffusion 

equation which underlie the equations (1) and "linearize" them in 
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flat spacetime and then combine them by suitable acts of differ-

entiation, we obtain the equation governing small perturbations of 

our medium: 

0 (SO) 

[See Appendix F for derivation]. In this equation¢ stands for 

the perturbation in. any quantity [density, pressure, velocity .. . ], 

subscript t denotes a time derivative, and subscript x denotes a 

space derivative [for simplicity , only one space dimension has 

been retained, the generalization to three is straightforward and 

adds no insight~]. Equation (50) may be factored to 

(51) 

[the remarkable resemblance of equation (17) will be explained in 

due course!]. 

Consider first the adiabatic description of our problem, where 

xis zero in equation (51). Then the low order term of (51) gives 

us three velocities, which are just the characteristic velocities 

in an adiabatic gas: 

-v 
s 0 ' +v 

s 
(52) 
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+ Let us call these three characteristics S , 0, and S , respectively. 

+ 
Of course, the characteristics s- correspond physically to adiabatic 

sound waves, and the characteristic 0 arises because entropy pertur-

bations are "frozen into" an adidbatic gas and hence must move with 

the same velocity as the gas. Now these characteristics play their 

usual role of propagating information about the solution through the 

gas from one spacetime point to another and thus tell us whe~e we 

must specify boundary conditions in order to set well-posed physical 

problems. 

Now consider a solution of the adiabatic, steady-state, spherical 

accretion problem, and identify the + x direction with the direction 

of increasing r~ Then it is easy to see that 0 characteristics 

carry their information from r = 00 down to r = 0 and that the S 

characteristics do the same, only faster. But the situation is quite 

different for the s+ characteristics: because their net outward 

velocity is v - v, which is negative inside the sonic point, they 
s 

behave as shown in Figure 7a . But then from the figure it is 

obvious that the surface r = r 
s 

+ acts as the "source" of the S char-

acteristics, and indeed it is easy to show that, going backward in 

time, each S+ characteristic approaches r 
s 

+ s e 

where 

as 

(53) 

(54) 
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along our solution and where s selects the characteristic . The 

situation becomes somewhat more clear if we switch for a moment 

from the coordinates r and t to: 

cr _ tanh (sirs) 

T - tanh (at) 

Then Figure 7a becomes transformed to Figure 7b, and now it is 

quite clear that we must specify a boundary condition on the 

surface T = -1, -1 < cr < 1, in order to determine a solution in 

the future. Bu~ this entire "surface" lies at r =rs (t = - 00), 

(55a) 

(55b) 

and the fact that we must specify a boundary condition here shows 

up in the steady-state problem as the constraint (8) of §3. From 

this example, it is clear that we can expect to find critical points 

in equations describing stationary flow whenever the flow velocity 

equals a characteristic velocity. 

Now when we improve upon the adiabatic description of our 

problem by allowing photon diffusion, x is no longer zero in 

equation (51). Because the characteristic velocities are given 

by the highest-order derivative terms in the perturbation equation, 

these are no longer given by (52) but are instead 

(56) 
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Let us call the corresponding characteristics 00 - c+ + C , , and oo 

+ 
respectively. The characteristics c- correspond physically to 

isothermal sound waves, and it is easy to see on physical grounds 

that short wavelength acoustic perturbations must be isothermal. 

+ 
The characteristics 00-, because they actually coalesce to form one 

double characteristic, reveal the parabolic aspect of our s y stem of 

equations. Though this parabolic quality derives from our adopting 

the diffusion approximation to describe energy transport, it is the 

equation of energy conservation which cannot be put into character-

istic form. For our present purposes, however, it will be adequate 

to think of this double characteristic as propagating information 

in both directions at an infinite velocity (i.e., everywhere perpen-

dicular to the gas four-velocity). 

Now consider a solution of the steady, spherical accretion 

problem including the effects of photon diffusion. Then the oo and 

C characteristics carry their information from r = 00 down to r = 0. 

The C+ characteristics, because they have a net outward velocity of 

v - v, which is negative inside the critical point, behave just like 
c 

the S+ characteristics did in the adiabatic case; and where v = v 
c 

there is a surface r r 
c 

+ which acts as the source of the C charac-

teristics just as in Figures 7a,b + drawn for S in the adiabatic 

case. Again, because we must specify a boundary condition on this 

surface, our solution has a critical point there. + The oo character-

istics propagate their information from r = 0 out to r = 00 Indeed 

we saw in §6 how our solution depended, albeit insignificantly, on 

conditions inside the horizon of the black hole, and there we 
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identified the 00+ characteristics as the culprit responsible for 

this "acausal" dependence. 

At this point, it is natural to wonder what has become of S , 

+ 0, and S . Since these correspond to the low-order wave operators 

in Eqn. (51), they have lost their status as characteristics and are 

known instead as "subcharacteristics" [cf , Cole (1968), §4.1]. The 

fact that the low-order, subcharacteristic wave operators are present 

along with the high-order, characteristic wave operators in the 

perturbation equation (51) suggests that the subcharacteristics S , 

0, and S+ will have some role to play in our problem--a role which 

should somehow pass over smoothly to their role as characteristics 

when we take the adiabatic limit x 7 0. 

In order to understand the differing roles played by the char-

acteristics and subcharacteristics in our problem, it is helpful to 

investigate the physical nature of the waves which propagate along 

them. Such a "wave hierarchy" analysis can be carried out by con-

sidering the signall.ing problem corresponding to equation (51), using 

Laplace transforms to obtain exact solutions, and then making appropriate 

asymptotic expansions to follow the waves of interest--or by means of a 

much simpler technique which will be employed here [cf. Witham (1974), 

§10, for an excellent discussion]. 

The basic idea behind the simplified technique can be put as 

follows. A roughly steady wave profile propagating with velocity v 

satisfies 

0 (57) 
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to zeroth-order. A more refined approximation to the true behavior 

of this wave can then be obtained by substituting this zeroth-order 

approximation into the full perturbation equation in all of the wave 

operators save the critical one, which is retained as a directional 

derivative in order to follow the wave. 

Thus, to follow the isothermal sound waves with v 

2x 

-v a in (51) and obtain 
c x 

v 
s 

v 
c 

2 

2 
2 2 ca + v a ) "' + (v - v ) cp t c x 'I' xxx s c xxx 0 

we use 

(58) 

The three x-derivatives in this equation are remnants of the other 

waves and can thus be integrated out without loss. We have then 

( dt -+ vc Jx) cp v 2.. 

Cr- v2. ) f - c.. 
(59) - G 

;I_ /(. vi. 
j 

An elementary solution of (59) is 

1 
"'¥ (.. -t s (x i) (60a) e -V 

(. 

where 

2 
v 

(60b) c 
2x 



Thus the isothermal sound waves v 

ye given by equation (60b). 
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v are damped at the rate 
c 

Now let us follow the adiabatic sound waves with v = v . We 
s 

use a 
t 

-v a in (51) and obtain, after integrating out two 
s x 

x-derivatives, 

-2 

An elementary solution of (61) is 

where 

1 

I 4rrv t 
s 

exp (-

-

( t > O) 

(61) 

(62a) 

(62b) 

Thus the adiabatic sound waves with v = v are diffused, so that an 
s 

initial 0-function disturbance has a gaussian width a given by 

at a time t later. 

2v t s 
(63) 
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Now, physically, it is obvious that it is this diffusion of 

the adiabatic sound waves which is responsible for the transformation 

of the sharp adiabatic sonic point condition (8) into the spread-out 

constraint (35) which we found in §7. Indeed, when xis small, 

the weighting function exp(-T) in (35) is, to an excellent approx-

imation, just the gaussian 

where z - r - [r] 
v 

[cf. (54)] and where vs is the same as in (62b). [Here we have 

neglected the relativistic correction factor Y(l+v~) in keeping 

with the simple, non-relativistic analysis of this section.] 

We can understand the result (64) quite simply in terms of the 

(64) 

(65) 

propagation of the diffusing adiabatic sound waves near the sonic 

point of our solution. 

First, it must be pointed out that the full perturbation 

equation describing the propagation of these waves is quite 

complicated. It contains, for example, terms arising from the 

spherical geometry and terms arising from gradients in the 

unperturbed solution, effects which (50), and hence (61), do not 

take into account. Here, however, we aim only to understand the 

limit form (64), and if 
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ff << (66) 

at the sonic point 

then we can safely ignore the terms which are absent from (61) and 

can use it as it stands to investigate the propagation of the diffusing 

adiabatic sound waves near the sonic point. 

First we must transform (61) to Schwarzschild coordinates t and 

r - or, more conveniently, z. We obtain 

Near the sonic point we have 

v - v 
s 

a z 

and so we want to study the behavior of ¢ obeying 

With the coordinate transformation 

S - "2 e 

_\_ 

2o<. 

(67) 

(68) 

(69) 

(70a) 

(?Ob) 
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[Note thats is constant along each subcharacteristic S+], equation 

(69) becomes simply the heat equation 

(71) 

from which we can deduce the usual Green function for the initial-

value problem: 

or, in terms of z and t, 

G[z,z ;t] 
0 

(t > 0) 

1 
exp 

(72) 

-at 2 
( ze - z ) 

0 

2 Vas [ 1 - e -2 a t] 
(73) 

Now, because we are study ing the steady-state accretion problem, we 

are interested in the ultimate fate of perturbations, i.e., the limit 

of G as t -+ oo: 

exp (74) G [z, z ] 
00 0 

1 
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This is independent of z, but depends on z
0 

exactly as in (64). 

Equation (74) is telling us that points in a finite region around 

[r] are effective in determining our solution in the future. It 
V=Vs 

is for this reason that our generalized sonic point constraint (35) 

averages over these points and does so with the weights given by (74). 

Thus it seems that we can speak of our sonic point as being a "diffused" 

critical point. Perhaps better, since this diffusion results from 

the action of the higher-order ~erms in (51) and since the presence 

of these terms also converts the S+ from characteristics to subchar-

acteristics, it seems appropriate to call our sonic point a subcritical 

point. 

It is worth pointing out that if, proceeding as before, we 

follow the v = 0 waves of (51), which generate the subcharacteristics O, 

we obtain the simplified equation 

(7 5) 

Again, these low-order waves are diffused, and the relevant diffusion 

coefficient for these waves is just x itself . These diffusing 

subcharacteristic "waves" correspond physically to isobaric entropy 

perturbations . 

Now we can deliver on the promise made immediately following 

equation (51) and can explain why k, the local growth rate for L in 

our steady-state equation (3e), has the form shown in equation (17) . 

We can derive (17) from the basic perturbation equation (51); the 

essential step is to impose the steady flow requirement on the perturba-

tions ¢we will consider. We then have [cf. equation (4) of paper l] 
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v y <P' (76a) 

y <P' (76b) 

where, as before, a prime denotes differentiation with respect to 

Schwarzschild radius r. Since the conditions (76) require that 

<Pt + vcj>x = 0, by imposing them we are abandoning any consideration 

of physical perturbations [sound waves, entropy perturbations, ... ] 

and are studying instead the response of our steady-state system 

(3d,e) to perturbations. Inserting (76) into (51) we obtain, after 

integrating out three primes, 

<P I 

where 
v -x 

_L 
'( 

(77a) 

(77b) 

is evidently the local growth rate (in radius r) of perturbations <P 

which satisfy the steady flow conditions (76). [The rate k of 

equation (17) is virtually the same as k0 except for an additional 

2 -1 factor of (l+v ) which arises because k refers specifically to 

A 

the behavior of L in our steady-state system whereas k0 refers to 

the behavior of local quantities such as density, pressure, etc. 

[cf. (2m)].] Thus the somewhat bizarre form of equation (17) 

for k is in fact a natural consequence of imposing the steady-flow 

requirement on equation (51), which describes the way our fluid 

wants to behave when it is perturbed. 
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10. Example of Numerical Solution 

Numerical solutions and detailed discussion of their physical 

properties are the province of paper III of this series. Neverthe-

less, we include one example here in order to assure the patient 

reader that all of the considerations in the preceding sections do 

in fact lead to actual solutions! The numerical technique, which 

will also be described more fully in paper III, basically amounts 

to patching together the three kinds of pieces shown in Figure 3, 

making appropriate joins at the critical and subcritical po ints, 

and taking care to observe our boundary conditions at the horizon. 

The accreting gas has been taken to be ionized hydrogen obeying the 

perfect gas equation of state; opacity is due to electron scattering 

and free-free absorption. Figure 8 shows the run of v, p0 , T, and L 

versus r; Table 1 summarizes some of the important parameters of 

this particular solution . Note that the rest-mass accretion rate M0 

is about one order of magnitude greater than the adiabati c accretion 

rate 

(7 8 ) 

~ 

of a f = 4/3 gas [cf. Bondi (1952)]. The luminosity 100 is indistin-

~ 

guishable from Ls,oo in accordance with (46), and both are within 

. 06% of Ll LEd in accordance with (49) . 
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11. Conclusion 

Stationary, spherically-symmetric, optically thick accretion 

flows into black holes possess critical points where the inflow 

velocity equals the isothermal sound speed and subcritical points 

where the inflow velocity equals the adiabatic sound speed. The 

critical point corresponds to the existence of a stationary character­

istic surface, and the subcritical point corresponds to the existence 

of a stationary subcharacteristic surface. 

Critical and subcritical points will arise in any steady flow 

problem in which both characteristics and subcharacteristics are 

present--i.e., they will arise whenever the basic perturbation equation 

describing the time-dependent behavior of the system contains both 

high- and low-order wave operators. In particular, all hydrodynamics 

problems with radiative transfer treated in the diffusion approximation 

with LTE will have the characteristics and subcharacteristics discussed 

in this paper. If such problems involve steady flow in one dimension, 

then the ideas and techniques used here will carry over directly. In 

particular, the crucial issues of which boundary conditions one can 

specify and where one can specify them are made completely clear in 

this approach. 

As regards the roles played by the critical and subcritical 

points in the optically thick accretion problem, the following 

heuristic picture can be given. First, in the adiabatic accretion 

problem, as we have seen, the sonic point constraint determines the 

rest-mass accretion rate. Now when we seek to improve upon this 

description by allowing photon diffusion, we necessarily introduce 
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a new variable into the problem, namely the luminosity. Thus, 

roughly speaking, we need some new constraint to determine a unique 

solution to the problem. The (isothermal) critical point provides 

this. Indeed we saw how the luminosity at infinity was intimately 

connected with this critical point. But we have also seen that, if 

conditions are very optically thick, the adiabatic sonic point, 

now a subcritical point, plays much the same role as it does in 

the strictly adiabatic case, so we can still think of it as determining 

the rest mass accretion rate. Finally, as conditions become pro­

gressively optically thinner, this neat division of labor between 

the critical and subcritical points no longer applies, and their 

action in determining the accretion rate and the luminosity becomes 

more mutual. 

With the basic theory of optically thick accretion into black 

holes now firmly in hand, it is possible to move on with some 

confidence to consider some of the possible astrophysical applications. 

Two opposite limits_immediately suggest themselves. In the first, 

the accretion solution is followed sufficiently far out into the 

hydrostatic region beyond the subcritical and critical points so 

that the self-mass of the accreting material becomes comparable 

with the mass of the central black hole. From this point on, the 

problem becomes one of standard, Newtonian stellar-model building, 

all of the very highly developed lore of that field can be 

brought to bear. 

At the opposite extreme, there is the case where the accretion 

flow becomes optically thin at some finite radius. Here one must 

consider the details of radiative transfer in a "photosphere" with 
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large fluid velocities and significant steady-state compression 

[Cf. Payne and Blandford (1981) for a discussion of this situation 

in a particular limit.]. Beyond this photospheric transition 

region, one would join on to an optically thin accretion solution. 

Because it can easily produce luminosities up to the usual 

Eddington limit, spherical optically thick accretion into black 

holes would seem to be a promising mechanism for powering the 

enormous light output of quasars. When more work is done along 

the lines sketched above, it will be possible to put this idea 

to a real test. 
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Appendix A 

Here the equations (18) of paper 1 are reduced to 

the form (1) of the present paper. With (20) and (21) of paper 1 

in force, the photons are diffusing and are in local energy equilibrium 

with the gas. Because they are diffusing, we have 

w """'" 
).. w -I - 0 
~ 

(Ala) 

and wz.. .,...,,. Cv+~).1- w 
~ ~ D 

(Alb) 

with (A2) 

[cf. equation (20c) of paper l]. Here A stands for the photon mean 

free path, and £stands for the smallest local macroscopic length 

scale [see equation (20a) of paper 1 for details]. Thus we may 

neglect w2 in the radiation stress-energy tenior [equation (14) of 

paper l] and write 

(A3) 

i.e., the radiation pressure is isotropic and equal to one third 

of the radiation energy density. With (A3), we may reexpress the 

equation of conservation of radial momentum [(18d) of paper l] as 

in ( 1 b) [cf . ( 2 g , i) ] . 
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Similarly, we may reexpress the relativistic Bernoulli 

equation [(18c) of paper l] as in (le) [cf. (2j,rn)]. In this 

equation, w2 has been neglected. This point requires some discussion. 

The contributions of the first three moments of the photon distribution 

to the Bernoulli equation are in the ratios 

2 
-(l+v )w

1 

Using (Al) and ignoring signs and factors of order unity, these 

become 

v , 

Thus for v << 1, the w
2 

term is small compared to both of the 

others; but for v ~ 1, as is the case near the horizon of the 

(A4a) 

(A4b) 

black hole [cf. equation (19d) of paper l], the w
2 

term is comparable 

to the w
1 

term - though both of these are then small compared to 

the w
0 

term. This means that ignoring w
2 

will lead to substantial 

errors in calculated values of w
1 

near the horizon. Fortunately, 

we shall see that the precise value of w
1 

at the horizon has an 

insignificant influence on the rest of the solution. For this 

reason, retaining w2 in the Bernoulli equation, which would require 

adding the second moment of the radiative transfer equation 

[(18g) of paper l] to our system, is a refinement which in the end 

would not carry its own weight. 



67 

Because the photons are in local energy equilibrium with 

the gas, we have 

4 aT , (AS) 

where T is the gas temperature, from the zeroth moment of the 

radiative transfer equation [(18e) of paper l]. From (AS), the 

first moment of the radiative transfer equation [(18f) of paper l] 

becomes 

L 
.±- T 3 3 a. 

fo k, 
(Tr) I' (A6) 

which, with (2m), gives (ld). 

The equation of "rest mass" conservation [(18b) of paper 1) 

appears here unchanged as (la). 
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Appendix B 

Here the basic equations of structure (1) are solved for the 

first-order derivatives of various quantities of interest. 

By making use of (la) and (2d), the equation of conservation 

of radial momentum (lb) can be expressed as 

(_ 

[Cf. (4a), (4e), (4f)]. By using (la) and (2d) and also 

(Bl), the transport equation (ld) can be written as 

c:::t. -/-b 

[Cf. (4b), (4e), (4f)]. Equations (Bl) and (B2) can be 

solved for the pair (3a) and (3c). In these equations, the 

quantity a/(1-b):v~ is the isothermal sound speed squared. 

To show this, we need the "reciprocity relation" 

-- f +P 

[Cf . Cox & Giuli (1968), §9 . 11]. Then we have 

(Bl) 

(B2) 

(B3) 
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po( 'd'dpP ) ( 'd'dpP) 
2 a o T o T (E) v - --

p + p - TG~)--
(B4) c 1-b (a':JT 'dp T 

Po 

The last quantity in this equation is the square of the isothermal 

sound speed. 

Equation (3b) is easily derived from (la), (lb), (2d), and 

(3a); then (3d) is easily obtained from (la), (3a), and (3b). 

Equation (3e) can be obtained by first differentiating (le) 

with respect to r. Then, by subtracting off (lb) and using the 

first law of thermodynamics 

(BS) 

we obtain the important result 

(B6) 

So the derivative of the redshifted enthalpy is just the redshifted 

temperature times the entropy derivative. Finally, by differentiating 

(le) and subtracting off (lb), one can obtain 
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Bi= yi - (I-A) ...r: JJ / fo { o 

A - f:p (~~.)T where -

and B - T - (-#-) .L°' T - Cv f-tf J. T ~ -
(>tf 

Note that the reciprocity relation (B3) guarantees that 

A-+ b { 

From (B7), (3a), and (3c), . the remaining part of equation (3e) 

is readily derived. In this equation, q is given by any of the 

following expressions 

I-A 
B -

B r - I 3 

and the quantity qb+a=v~ is the adiabatic sound speed squared. 

To show this, use the first law of thermodynamics to write 

(B7) 

(B8a) 

(B8b) 

(B9) 

(BlO) 

(Ella) 
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From this and (BlO) it follows that 

(Bllb) 

Then we have 

(Bl2) 

The last quantity in this equation is the square of the adiabatic 

sound speed. 
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Appendix C 

Here we show that two different integral curves pass through 

each critical point. By elliminating £from equations (3d, e) and 

performing some algebra, we can obtain the very useful result 

( 2 2) 2 r , ( 2M) v -v y -v + 1--
s v r 

where rs is as defined in equation (9a). 

Because of (Cl) it suffices to expand only equation (3d) 

about the critical point. Carrying out this expansion yields 

( ai ) ( a1 ) ~(ai ) J 
( 

2) __:!._ + __:!._ c v') + ___.;:z_ -1 ci') 
~ v, = 1 - vc (-£) ~__S'.___~ cp cp a1 cp cp 

vc ( )cp 2vc f.cp (ave) + [(ave) -l] (v') +.(avAc) (L') 

where 

ar av cp a1 cp cp cp cp 

,.... 
L - -;tv 
~ 

[Cf. (4b) and (lla)]. Substituting from (Cl) for (L') then 
cp 

yields a quadratic equation for (v')cp with two solutions. 

(Cl) 

(C2) 

(C3) 
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Appendix D 

In this appendix we discuss the local growth rate k of §5. 

First, by making use of (la) and (4b) in (16) we obtain 

k v ( v 2.-1~/) 

v 2.. - Ve.. 1... ~ (I f LI) 
(Dl) 

where (D2) 

is the photon mean free path. Thus the fundamental length scale 

underlying k is Ay· 

Equation (Dl) may be reexpressed more conveniently as 

k 
vz_ 

c. -v '2.. 
s 

Here X is the "thermal diffusivity" defined as 

x -

where K is the thermal conductivity and Cp is the specific heat 

at constant pressure. Equation (D3) is valid regardless of the 

particular physical mechanism which provides energy transport. 

(D3) 

(D4) 
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When this role is played by photons diffusing in local energy 

equilibrium, we have from (A6) 

The specific heat at constant pressure is 

p-rP 
v 1-

" 
"T 

So x is given by 

A--h 

From (D7) it follows that 

v 2... 
s 

(o T 

v 1.. 
c.. 

v 2... 
..5 

(DS) 

(D6) 

(D7) 

(D8) 
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Appendix E 

In this appendix we develop a method for translating the idea 

of Figures 3 and 4 into equations. First, use (16) and (19) to 

rewrite equation (3e) as 

""'-L / k (El) 

Now pick some arbitrary integral curve C of the equations (3d,e). 

Along C, all of the variables in our problem are a function of a 

single paramete~--for example, radius r. But it is very useful 

to define a new parameter T along C by 

k dr (E2) 

Then (El) becomes 

(E3) 

which we can just integrate along c, 

L ( T) L ( T ') 
s 

(E4) 

T 
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Now all integral curves of (3d,e) satisfy equation (E4). But 

the surface L = L (r,v) is characterized by those integral 
0 

curves which have the property that L(T ) remains bounded as T ~ oo. 
0 0 

For such integral curves we have 

CIC> 
....-. 

L (r) J 

From (E5) we can obtain a useful series. Represent L (T') 
s 

by its Taylor series about T: 

l:- -
00 

1 (d)n 
n=o n! dT J 

T 

So 

1( r) = f (~ ~)n 
n=o k dr 

£ ( r) 
s 

T-T 1 

e 

(E5) 

(E6) 

(E7) 

This series converges when !kl is large compared to the rates at 

which L and k itself are varying. 
s 
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Now, we need a few results concerning the behavior of the 

parameter T defined in (E2). First consider the integral curves which 

pass acceptably through the critical curve of equation (13). Along 

these we have 

T f k dr 

J - ; 

[
d (v - v ) ]-l 

J k c 
dr 

2 2 
v - v 

s 
v+v 

c 

v 
c 

v 
s 

2 

2 
1 

d ( v - v ) 
c 

which diverges to + 00 like ln I 1 
v - v 

c 

d (v - v ) 
c 

v-v 
c 

(E8) 

and because d(v - v )/dr is finite (and negative) c . at v = v 
c 

for those 

integral curves which pass acceptably through the critical curve. 

It turns out that our solutions have k ~ 

diverges to + 00 like ln .! there. 
r 

1 as r + 0. Hence T 
r 

Now consider an integral curve C.which passes through the surface 

v =vs. From (E2), since k vanishes at v =vs' T is stationary there. 

To find out if T is a maximum or a minimum there, let x = v - v along 
s 

C,. Then dT/dx = k (dx/dr)-
1

, and 

(E9) 
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Since k(x) = f(x)x where f(O) < 0 [cf. (17)], (dk/dx)x=O 

is negative. 2 2 
Hence [d T/dx ]x = 

0 
has the sign of 

Only those integral curves which pass through the surface v = v 
s 

with this quantity positive are relevant to the solution of the 

accretion problem. Hence T achieves a minimum at v = v along such 
s 

integral curves. It will be convenient to choose the "constant of 

integration" left unspecified by (E2) so that 

T 0 

along these integral curves. 

at v = v 
s 

(ElO) 

Finally, consider the behavior of T along an integral curve 

which satisfies our boundary condition (lOb) at r = 00 : 

T J k dr + constant 

J 1 
x 

2 2 
1- v /v 

s 
2 2 

1- v /v 
c 

1 (vr 2) d ( l) + constant 
r 

(Ell) 

Hence from (38) T constant for r ~ oo, and again it is 

convenient to set the "constant" equal to zero so that 

T = 0 at r = c:o (El2) 
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Appendix F 

The basic physical laws underlying equations (1) are con-

~ervation of baryon number 

0 (Fla) 

conservation of energy and momentum 

0 (Flb) 

and the photon diffusion equation 

(Flc) 

Here~ and~ are the baryon four-velocity and four-acceleration, q 

is the photon energy flux as measured by observers moving with the 

baryons, ~is the stress-energy tensor, and ~ projects orthogonal 

to it. The conductivity K for photons diffusing in LTE is given 
y 

by (DS). In this appendix we shall use n, the number density of 

baryons, rather than p
0 

in order to avoid the awkward subscript. 
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Specialized to the case of flat spacetime and small velocities 

~, the basic equations (Fl) become 

-

d p + p 
p -

dt n 

d d 
n + V' • q + q • -dt Y. 

dt 

_$+ k1r [E'T + T -f+. :::_] 
where 

+ V-\J - ~ 

0 (F2a) 

0 (F2b) 

0 (F2c) 

0 (F2d) 

(F3) 

These are not quite the usual Newtonian equations because we have 

not assumed small accelerations, nor have we assumed that the fluid 

is non-relativistic. 

When linearized upon a uniform b~ckground with v 0, s_ = 0, 

the equations (F2) become in turn: 
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+ 0 (F4a ) 

0 (F4b) 

- 0 (F4c) 

0 (F4d) 

In these equations, differentiated quantities are perturbation values, 

and undifferentiated quantities are unperturbed (background) values. 

In order to simplify subsequent manipulations it is convenient 

to "scalarize" the equations (F4) as well by considering only one 

space dimension; the generalization back to three is always trivial . 

Then we have finally, 

0 (F5a) 

= 0 (F5b) 
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D (FSc) 

+ (FSd) 

It remains only to combine these four first-order equations into 

one fourth-order equation. Using (FSa), we can combine (FSc) and 

(FSd) as 

;?:+P 
1'1 

111 t (F6) 

Combining (FSa) and (FSb) we obtain 

'1t.1:. p '>< .>< 
(F7a) 

Vt_ 
(°-t f' 

VI. )c .x 
+ b T><x Cl 

V\ I 
(F7b) 

[cf . (4e) and (4f)], whence 

T - (F7c) 
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Using this in (F6) we have 

(F8) 

[cf . (4c) and (B9)]. Using (B8a,b) and (B9) we can re-express the 

left-hand side of (F8): 

( ~t...ti1[B _TTt. _ 1 -:-cl_ T A [ i.. I 
( ..,. I) lo r' J I< 0 -;f" T "'""= t - v'- r, )c Xj (F9) 

To eliminate the T derivative we differentiate (F9) twice with respect 

to x (Laplacian) and use (F7c) again. After some rearrangements, 

this gives 

l<~TA 

<(·H') 13 

[cf. (4d) and (BlO)]. Using (E6) and (E4) it is easy to check that 

the factor multiplying the expression in brackets on the right is 

2 2 
xv /v , so we have finally 

s c 

2 
v 2 

Xv 2 X s ~ + ~ - v ~ s ~xxxx - 2 ttxx ttt s txx 
v 

c 

0 (Fll) 
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-- as in equation (5) of the text. Here we have replaced n by the 

general symbol ¢, which stands for the perturbation in any quantity 

describing the state of our fluid. This is permissible of course 

because all such perturbations are linearly related to one another. 
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Table 1 

H 3M
8 

M 2.954 x 
-5 

0 
10 M

0
/yr 

L 9.795 x 104 
L,., 

00 

L 9.795 x 10
4 

LG> 
s '00 

1. 878 x 10-9 
g/crn 

3 
Po OJ 

' 

T 4.313 x 105 OK 
OJ 

v 8.308 x 10-3 [ c] 
s 'OJ 

v 2.814 x 10-4 
[c] 

c 'OJ 

[PG/PR] 1. 532 x 10-3 

OJ 
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Figure Captions 

Fig. 1. Integral curves of equation (7d); r is Schwarzschild radius 

and v is locally measured inflow velocity. The curves are 

labelled by their value of S, entropy per unit rest mass, 

in arbitrary units. The unique accretion solution is shown 

by the dark curve. 

Fig. 2. These figures are drawn in the three dimensional 

space [r xv x L]. Figure 2a shows the mutual intersection 

of the three surfaces £ = .&,, £ = -4,, and v = Ve [equations 

(lla,b,c) of §4]. The "critical curve" in which all three 

intersect [equation (13) of §4] is a one-parameter family 

of "critical points" of the differential equations (3d,e). 

Figure 2b shows two integral curves, xx and yy, which pass 

through the surface v = vc, but not through the critical 

curve. These integral curves have extremal values of r 

in the surface v = Ve· Also shown in Figure 2b are the 

two integral curves, bed and ace, which pass through the 

critical curve at the critical point c. See §4 for 

discussion. 

Fig. 3. This figure shows the qualitative behavior of tQe luminosity 

L as a function of radius in the three different velocity 

regimes v > v (Fig. 3a), v < v < v (Fig. 3b), and v < v 
s c s c 

(Fig. 3a). The quasi-exponential behavior shown here is 

governed by the rate k of §5 which changes sign at v = v 
s 

and at v v . 
c 
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This figure shows the relationship between L and L 
0 s 

discussed in §S. The "offset" shown here between L and 
0 

L arises, in a first approximation, because L ' > 0 
s s 

[cf . equation (23)]. 

Fig. s. These figuies show the- qualitative behavior of integral 

curves of equations (3d,e) near the "sonic surface" v = v . 
s 

All three figures are drawn so that r increases to the right 

and v increases to the left. Figure Sa shows a case where 

C is p0sitive for v ~ v and so L has a pole at v = v of 
s s s 

the sign shown. The integral curve with L = L in the region 
0 

v < v passes through the sonic surface at the point A, while 
s 

the integral curve with L L in the region v > v does so 
0 s 

at the point B. Figure Sb shows a case where C is negative 

for v ~ v and so L has a pole at v = v of the sign shown. 
s s s 

The integral curve with L = L in the region v > v passes 
0 s 

through the sonic surface at the point D, while the integral 

curve with L = L in the region v < v does so at point E. 
0 s 

Figure Sc shows a case where C has been adjusted so as to 

join the two integral curves with L = L on either side of 
0 

the sonic surface. These two integral curves meet at the 

point S on the sonic surface. 
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Fig. 6. This figure shows how integral curves with L L intersect 
0 

the sonic surface v = v . Integral curves with L L s 0 

coming from the horizon intersect the sonic surface along 

the curve BSD. Integral curves with L L coming from the 
0 

critical curve intersect the sonic surface along the curve 

ASE. The arrow along the bottom of the surface shows the 

direction of increasing C on the sonic surface. The points 

A, B, S, D, E are the same as the ones in Figures 5. 

Fig. 7. These figures show the behavior of the S+ characteristics 

of the adiabatic accretion problem. Figure 7a shows this 

behavior in terms of Schwarzschild coordinates r and t. 

In Figure 7b, the transformation of equation (55) of the 

text has been applied so that each characteristic is a 

straight, vertical line (transformation to characteristic 

coordinate) and so that the infinite future and the infinite 

past are brought in to where we can look at them. 

Fig. 8. This figure shows the run of velocity, density, temperature, 

and luminosity versus radius for the solution with the 

parameters given in Table 1. The units for these quantities 

are the speed of light, grams/cm3 , degrees Kelvin, and solar 

luminosities, respectively. The crosses mark the critical 

point; the circles mark the subcritical point. 
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(a) 

Fig. 5a 
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Chapter 3 

Optically Thick Accretion in Specific Cases 

This chapter is a paper submitted for publication to the Monthly 

Notices of the Royal Astronomical Society. 
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Abstract 

In this paper we apply the theory of stationary, spherical, 

optically thick accretion developed in paper II of this series (Flammang 

1982). For this theory to be applicable, it is necessary that the 

photons be everywhere diffusing through and in local energy equilibrium 

with the accreting gas particles. We investigate this class of solutions 

over a wide range of physically different accretion regimes. Numerical 

solutions are presented and their physical properties are discussed. 

For solutions in which radiation pressure PR dominates gas pressure PG' 

but in which gas energy density (including its rest-mass) pG dominates 

radiation energy density pR' we pay particular attention to the 

adiabaticity of the flow. Our quantitative results in this regime agree 

very well with Begelman's (1978) theory. We find the dimensionless 

number which governs the importance of heat diffusion in our problem 

and show that it reduces to the idea of "trapping of photons" and to the 

Peclet number in the appropriate limits. We find that solutions with 

PR > PG and pR > pG are always essentially adiabatic, owing in part to 

a relativistic suppression of heat flux which becomes important in this 

regime. The diffusive luminosity at infinity for these solutions is the 

Eddington limit of the black hole; with the adiabatic accretion rate, 

"efficiencies" of up to order unity are possible. We give preliminary 

consideration to the question of the stability of our solutions against 

convection and conclude that the Schwarzschild criterion is applicable, 

even for our non-static accretion flows. We show that solutions with 

PR> PG are everywhere stable against convection. On the other hand, 

solutions which start out at radial infinity with PG > PR are unstable 

to convection (if the adiabatic index of the gas /G exceeds 17/12) from 
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radial infinity down to the point where PR - PG and the radiation-gas 

mixture has attained an adiabatic index of 17/12. Inside this point, 

the solution is stable against convection. The diffusive luminosity at 

infinity for these solutions is reduced from the Eddington limit of the 

black hole by the factor (!'G - 1)4PR
00

/7GPG 
00

; it is further reduced by 

the ratio of the electron scattering opacity to the actual opacity at 

infinity, if this differs from unity. In most cases, energy diffusion 

has a negligible effect on the accretion rate of these solutions. 
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1. Introduction 

In a previous paper, Flammang (1982), hereafter paper II, we set 

forth the complete mathematical theory of stationary spherical accre-

tion into black holes with radiative transfer treated in the diffusion 

approximation with LTE. In this paper, a sequel, we shall investigate 

in detail the properties of the resulting solutions over a very wide 

range of physically different accretion regimes. Whereas the emphasis 

in paper II was on generality and completeness, the emphasis here will 

be on simple physical description of specific cases. 

We restate here the principal assumption of both paper II and this 

paper. (1) The diffusion approximation is applicable; that is, the 

photon mean free path must be small compared to local macroscopic length 

scales. It turns out that the .relevant local macroscopic length scale 

is always greater than or of order r, the local value of the radius. 

(2) The photons are in local energy equilibrium with the gas particles, 

which in turn are in thermal equilibrium with one another at some tern-

perature T. (3) Photon viscosity is negligible. This assumption is 

actually nugatory: its validity is guaranteed by assumption (1) above. 

(4) No "chemical" effects are considered (ionization reactions, e+e-

pair production, nuclear reactions, ••• ). A model gas free of these 

complications would be ionized hydrogen (10
4 

°K < T < 109 °K), but others 

could equally well be considered. (5) Magnetic fields are not consid-

ered. 

The relevant parameter space for the problem being considered here 

is three-dimensional. A convenient set of parameters is fM, p , T }, 
t ooo 00 

the black hole mass and the rest-mass density and temperature at radial 
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infinity. Another convenient set is [M, p v }, where v is the 
0 oo, s 00 s 00 

adiabatic sound speed at infinity. Since M provides only gravity, 

which is simple, whereas p and T determine the accretion flaw's 
0 00 00 

microphysics, which can be quite complicated, we shall employ Figure 1, 

which shows the p - T plane, to organize our discussion of results, 
0 00 00 

always bearing in mind that there is also a third parameter, M, which 

has to be taken into account as well. 

We begin in section 2 with a brief discussion of certain aspects 

of the numerical technique used to generate the solutions discussed in 

this paper. This information will be useful to anyone faced with the 

task of numerically integrating equations similar to the ones considered 

here, but the general reader can skip over it. In section 3 we consider 

solutions whose pres.sure is dominated by radiation, but whose energy 

density is still dominated by rest mass (region Ia of Figure 1). We 

pay particular attention to the question of the adiabaticity of the flow 

and to the effect of energy diffusion on the rest mass accretion rate 

~ • In section 4 we find the dimensionless number which governs the 
0 

importance of energy diffusion in our problem. We show that this 

dimensionless number reduces to the idea of "trapping of photons" and 

to the Peclet number of standard fluid mechanics in the appropriate 

limits. Section 5 is devoted to relativistic accretion: cases in 

which the energy density in the radiation exceeds that in rest mass 

(region Ib of Figure 1). Here we find that a "relativistic correction" 

to the heat transport equation (the first moment of the radiative 

transfer equation in the diffusion limit) is fully as important as 

and in fact nearly cancels - the Newtonian term. The net effect is to 

render all solutions in this region of the figure essentially adiabatic. 
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Solutions in region Ib boast the highest "efficiencies" E = LjM
0

, 

which can in fact approach unity in this region of the figure. In 

section 6 we consider the question of stability against convection and 

argue therein that the Schwarzschild criterion is the correct one, even 

for our non-static accretion solutions. From this we show that solu­

tions with radiation pressure PR dominating gas pressure PG (region I 

of Figure I) are stable against convection. In Section 7 we consider 

solutions which start out at radial infinity with gas pressure domina­

ting radiation pressure (region II of Figure 1). We show that if the 

gas has an adiabatic index yG in excess of 17/12 then the solution is 

unstable to convection from radial infinity down to the point where PR 

approaches PG and the gas-radiation mixture has attained an adiabatic 

index of 17/12. Inside this point the solution is stable against con-

vection. 

Notation in this paper is the same as in paper II; in particular, 

unless otherwise noted, natural units (G = c = 1) are used. 

2. Method 

Because of the special mathematical character of the system of 

equations describing accretion with photon diffusion [equations (1) of 

paper Ill, certain rather special techniques must be employed to obtain 

good numerical representations of solutions on a computer. First, one 

must always integrate from critical points toward subcritical points. 

Otherwise, as one approaches a critical point, the solution will 
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inevitably diverge and become very unphysical [cf. Figures 3 of paper 

II]. [This was the problem encountered by Kafka and Meszaros (1976) in 

their numerical work.] Thus one must integrate outward from the horizon 

to the sonic (subcritical) point, inward from the critical point to the 

sonic point, and then outward again from the critical point to radial 

infinity. 

Second, because our equations are stiff, and because the length­

-1 scale for this stiff behavior, k , is a very sensitive function of v 

[cf. equation (17) of paper II], it ~s necessary to use an integrating 

routine with variable step size and to always keep the step size com-

fortably below jk-ll· 

Finally, when integrating stiff equations, it is necessary to use 

some form of an impl~cit scheme in order to obtain stable results. The 

"backwards Euler method" 

(2.la) 

[cf. Gear (1971), §11.l] works, but the semi-implicit method 

(2.lb) 

is far more accurate and just as stable [cf. Potter (1973), §II.6(d)J. 

In these equations, y stands for the dependent variable(s), h is the 

step size, subscripts denote the step number, and a prime denotes 

differentiation with respect to the independent variable (radius r, in 

our problem). 
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3. Solutions with PR~~~R 

Here we discuss solutions which lie in region Ia of Figure 1. 

Figure 2 shows an example; Table 2 summarizes a few parameters of this 

solution. The velocity shown in the figure is that measured by local 

observers sitting at fixed radius r. As was discussed in paper I (Thorne, 

Flammang and Zytkow 1981), the inflow velocity so defined must equal 

unity (speed of light) at the horizon of the black hole. From this value 

it falls off smoothly with radius - as r- 1/ 2 in an inner ("free-fall") 

-2 . 
region and as r in an outer ("hydros ta tic") region. Also shown in the 

figure are the adiabatic and isothermal sound speeds, v and v respec-
s c 

tively. As was discussed extensively in paper II, where the inflow 

velocity equals the isothermal sound speed, our solution passes through 

a critical point of · the differential equations describing our problem, 

and where the inflow velocity equals the adiabatic sound speed, there 

is a sort of "diffused critical point" dubbed a subcritical point in 

paper II. 

Corresponding to the power-law behavior of v(r), the rest-mass 

d . . - 3/ 2 . h f f 11 . d . hl ensity p varies as r in t e ree- a region an is roug y con-
o 

stant in the hydrostatic region. From the figure, the inflowing material 

is compressed by a factor of more than 105 by the time it crosses the 

horizon of the black hole. In response to this compression, the temp-

erature rises inward; but the eye can disceren that T starts rising at a 

radius smaller than that at which p starts to rise. To see this effect 
0 

more clearly, we define the local "adiabaticity" 
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po T 1 2 
Tpt - v c 

ex 0 
(3.la) 

2 
q - v 

c 

where 

Po 

(~~o) S 
q = 

T 
(3.lb) 

where S is the entropy per unit rest mass (cf. equation Bllb of paper II) 

and plot ex on a linear scale at the top of the figure. This choice for 

ex is uniquely determined by the requirements that ex be linear in the 

temperature gradient, equal to unity if the flow is strictly adiabatic, 

and equal to zero if the flow is strictly isothermal - in the relativistic 

sense (TY)' = o, rather than T' = 0 (cf. equation A6 of paper II). As the 

figure shows, the flow is nearly adiabatic at both small and large radii 

but deviates toward isothermal flow in an intermediate region. 
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Physically, the flow is nearly adiabatic at small radii 

because the velocity is so large there. Diffusion, though it is present, 

is unable to compete with the inward transport of energy due to the bulk 

fluid motion. Hence diffusion is not able to push the solution very far 

from adiabatic. This is the idea of 11 trapping photons" [cf. Rees (1978), 

Begelman (1978)]. The same idea finds its expression in the standard 

terminology of fluid mechanics in terms of the Peclet number, .(} [cf. 

Landau and Lifshitz (1959), §53]. The Peclet number is just the heat -

conduction analog of the Reynolds number -- it describes, in rough, 

dimensional analysis terms, the relative importance of energy transport 

by bulk fluid motion versus energy transport by diffusive processes. It 

turns out that the idea of "trapping of photons" is an appropriate 

estimator of adiabaticity only in region Ia of Figure 1 (the only region 

where it was meant to apply) and that the Peclet number is appropriate 
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only in region II of the same figure (where PG> PR). Accordingly, in 

§4 we shall generalize and reconcile these two dimensional-analysis 

approaches to the question of adiabaticity and shall find a dimensionless 

number which applies throughout Figure 1--and indeed which applies regard-

less of the specific form of the equation of state of a fluid or the 

specific mechanism responsible for heat conduction. 

Physically, the solution shown in Figure 2 is nearly adiabatic at 

large radii because macroscopic length scales are so huge there. The 

fact that the quantities shown in Fi~ure 2 all go flat at large radii 

shows that these macroscopic length scales have become very large com-

pared to the local value of r there. For example, using the fact that 

the solution of Figure 2 is nearly adiabatic at large radius, it follows 

from equations (7a) ?nd (38) of paper II that the density scale height 

has asymptotic value 

2 
r 
M 

2 
v 

s 
as r -+ CIO (3.2) 

More relevant to the issue of adiabaticity however, by making use of 

equations (El), (23), (44), and (38) of paper II, it is possible to 

deduce that, for the solution shown in Figure 2, the asymptotic scale 

height for the luminosity L is 

L 

L 

1 
6 

M 
2 
v 

4 which increases as r at large radii. 

(3.3) 

Only in the middle region of Figure 2, where macroscopic length 

scales are becoming as short as r itself but where v is not yet too 

large, is diffusion able to relax the solution significantly away from 
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adiabatic flow. 

Figure 2 also shows the behavior of the luminosity L [cf. equation 

10 of paper I] and the quantity L defined as 
s 

(3.4) 

[cf. equations (44) and (2m) of paper II]. In this expression A and b 

are given by 

A 
po 

(a0U - p+P 
T 

(3.5a) 

= 1 - b (3.5b) 

b T (~i) -
p+P 

Po 

(3.5c) 

[cf. equations (B8a), (B9), and (4f) of paper II], PR is the radiation 

pressure, Kl is the first~moment opacity [cf. equation (2f) of paper II], 

and Y is given by 

y 

[equation (2d), paper II]. 

2M 
1--

r 
2 

1-v 
(3.6) 

The pole in L at the subcritical point is very 
s 

much in evidence in Figure 2. As was emphasized in paper II, the luminosity L 

hugs L everywhere except in the neighborhood of the subcritical point. 
s 

At the subcritical point itself, the strength of the pole in L has been s 

adjusted so as to make L continuous across the subcritical point [cf. 

paper II, §§5 and 7, for a thorough discussion]. Note that the r
1

/
2 
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behavior of L and L at small radii can be deduced by using the free­s 

fall approximation v o: r-l/2 and the adiabatic approximation T3 
cc p in 

0 

equation (3.4) for L • This conclusion is valid however only for solu­
s 

tions which lie in region Ia of Figure 1. As was pointed out in paper 

II, the luminosity at infinity is given, to an excellent approximation, 

by the value of Ls there [see Table 2]. For solutions lying in region 

I of Figure 1, the value of L at infinity is very nearly equal to 
s 

the usual Eddington limit [cf. paper II, §8 for discussion]. 

The solution of Figure 2 has a rest-mass accretion rate M which 
0 

exceeds the adiabatic rate 

( M ) = 2 "2 re ~ p jv 3 
( 3. 7) 

OAd o, s,a:i 

[Bondi (1952)] by roughly a factor of 7 [cf. Table 2]. Physically, this 

occurs because pressure builds up in the inward radial direction less 

rapidly than it would if the flow were strictly adiabatic. With smaller 

pressure gradients, there is less force to resist the tug of the black 

hole's gravity, and the resulting accretion rate exceeds that predicted 

by the Bondi adiabatic formula. 

Figure 3 shows another solution lying in region Ia of Figure 1. 

Some of its properties are summarized in Table 3. It differs from the 

solution of Figure 2 in that the density at infinity is lower by about 

a factor of 4 and the temperature at infinity is a bit higher--resulting 

in an asymptotic adiabatic sound speed v that is higher by about 
s' cc 

a factor of 3 [cf. Table 3]. 

As is immediately apparent from the figure, this solution deviates 

much farther from adiabatic flow than does the solution shown in Figure 

2. The plot of a(r) now exhibits a deep, wide, nearly isothermal 
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trough. Physically, this occurs primarily because the photon mean free 

path, which in region I of Figure 1 is simply inversely proportional to 

the density, is longer than it was in the solution of Figure 2. Hence 

diffusion is more effective and is able to relax the solution to nearly 

isothermal flow over a decade and a half of radius. Because this solu-

tion is less adiabatic than the solution of Figure 2, its accretion rate 

exceeds the adiabatic rate (3.7) by an even greater amount--by about a 

factor of 86 in this case [cf. Table 3]. 

That photon diffusion could cause solutions in region Ia of Figure 

1 to deviate from adiabatic flow in the manner shown in Figures 2 and 3 

and that this, in turn, would cause the rest mass accretion rate to 

exceed the Bondi prediction was first correctly pointed out by Begelman 

(1978). In fact Begelman was able to deduce an expression for the ac-

cretion rate of solutions lying in region Ia in cases where diffusion is 

able to relax the solution significantly away from adiabatic flow. His 

result can be written as 

where we have defined 

4rr 
3 

M 
2 

K V 
es s,= 

(3.8a) 

(3.8b) 

[Begelman (1978), equations (27) and (28)]. [Here K is the electron­
es 

scattering opacity and 1Ed is the Eddington luminosity.] As Tables 2 

and 3 show, the agreement between Begelman's prediction and our numeri-

cal results is very good --- especially if the (small)(~0 )Ad term 

is dropped in (3.8a) . 
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It is interesting that, from (3.8b), we have for the efficiency in 

the regime under discussion 

co 1t:d L 

€ ~ -.-

4. The Dimensional-Analysis Approach 

to the Question of Adiabaticity 

(3.9) 

As we noted briefly in the previous section, the idea of "trapping 

of photons" has been used in the past to simplify the optically thick 

accretion problem in region Ia of Figure 1. In this approach, it is 

argued that the relevant dimensionless quantity to consider in deciding 

how adiabatic the flow will be is 

rv 

!..)' 

[Begelman (1978)] - a quantity we shall hereafter refer to as the 

(4 .1) 

"trapping parameter", gT. On the other hand, conventional fluid mechanics 

texts suggest the "Peclet number" 

hv 
x 

(4.2) 

for the same purpose [Landau and Lifshitz (1959), §53]. In these expres-

sions, \ is the photon mean free path 
)' 

' 
(4.3) 

h is a local macroscopic length scale characteristic of the problem 

at hand, and x is the "thermometric conductivity" Ccf. Landau and 

Lifshitz (1959) §50]. When energy transport is due to photons diffus-

ing in local energy equilibrium, x is given by 
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4PR 
2 

A 
v 

c (4.4) x - \)' p+P B 2 
v 

s 

[cf. paper II, Appendix DJ. In this expression for x, p is the total 

energy density--including "rest mass energy", P is the total pressure-

gas plus radiation, and B is given by 

B 
T 

p+P 

= b/q 

(4.5a) 

(4.5b) 

[cf. (2i), (2g), (B8b), and (BlO) of paper II]. It is easy to check that 

(} and @r are quite different from one another, even though they are 

obviously trying to get at the same idea. Accordingly, in this section 

we shall derive a dimensionless number which is an accurate estimator of 

adiabaticity in our problem, and then we will be able to comment on the 

applicability of .Q and o . 
T 

We seek a dimensionless number which is large when the flow is 

nearly adiabatic and which is small when diffusion has its maximum 

effect and produces isothermal flow. The quantity a:/(l - a:) would seem 

to be ideally suited to the task. A bit of calculating then shows that 

hr. v 
2 

a: v c 
1 - O'. x 2 ' v 

(4.6a) 
s 

where 

"' 
h"' 

L 
- 2 L 

( 1 + v )Y L' 
(4.6b) 

[see Appendix A]. This result is exact; accordingly, we propose that 
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2 
hv v 

c 
( 4. 7) iP - 2 x v s 

is the relevant dimensionless quantity to consider when trying to esti-

mate the importance of diffusive energy transport in general fluid flows. 

Here, as before, h stands for a macroscopic length-scale which charac-

terizes the problem at hand. 

2 2 
From (4.4), the following approximate values of X v /v can be 

s c 

deduced for the various . regions of Figure 1: 

1 PG 
region lb (4.8a) 4 A.I 

2 
PR 

v 
1 s region Ia (4.8b) x 2 ~ 3 /.../ 

v 
c 

PR 8 
")' region II (4.Sc) 3 p · 

G 

Here pR = 3PR is the radiation energy density, pG is the gas energy 

density (including "rest mass energy") and PG is the gas pressure. 

[For the numerical value shown in (4.Sc), it has been assumed that the 

gas consists of single particles (yG = 5/3) like ionized hydrogen]. 

2 2 
Thus x v /v is of order \ in region Ia of Figure 1 but is much smaller 

s c )' 

than t._ elsewhere in the figure. 
)' 

From (4.Sb), cp reduces to 

(4.9) 

in region Ia of Figure 1, in essential agreement with the trapping 

parameter .(} --as long as h ~ r. We have already seen in the last sec­
T 

tion that h is indeed roughly equal to r in the inner, free-fall region 

of our solutions but that h greatly exceeds r in the outer, hydrostatic 
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region [cf. (3.2), (3.3)]. Thus t?T is an appropriate estimator of adia-

baticity in spherical accretion flows only for the inner regions of 

solutions which lie in region \Ia of Figure 1. 

From (4c) and (4d) of paper II, we have that 

2 
v 

s 
2 
v 

c 

= (4.10) 

2/ 2 Consequently, the ratio v v in the various regions of Figure 1 is 
s c 

given approximately by 

1 PG 
3 PG 

region lb (4. lla) 

2 
PR v 4 s 

2 ~ 
3 PG v 

region Ia (4.llb) 

c 

5 
3 

region II (4.llc) 

[Here we have used the facts that q ~ 1/3 if PR > > PG and that q ~ 2/3 

if PG >>PR - again assuming that the gas is non-relativistic and is 

composed of single particles like ionized hydrogen.] Thus v
2
/v2 is of 

s c 

order unity in region II of Figure 1 but greatly exceeds unity else-

where in the figure. Hence ~ and t? agree in region II. Outside of 

region II however, the Peclet number t? is bound to be in serious error. 

As an extreme example, for the idealized equation of state with PG = 0 

[Maraschi et al., (1974); Kafka and M~szaros (1976); Begelman (1978)], 

2 x vanishes because v = 0 [cf. (4.4)], and this makes g infinite! 
c 

However it is certainly not true that diffusion becomes unimportant in 

the limit PG + O. I h . 1. . 2/ 2 . f. . d h n t is imit, X v v remains inite, an t us ~ 
s c 

continues to provide an accurate estimate of adiabaticity. 
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The critical reader may object that all of the dimensional-analysis 

approaches to the question of adiabaticity discussed in this section, 

including the ~ proposed here, are swindles inasmuch as, to obtain 

anything like accurate results in the outer, hydrostatic region of our 

solutions for example, one must be prescient enough to use the (a priori 

unknown) scale height for the luminosity in expression (4.7) for~--

rather than, say, the density scale height [cf. (3.2) and (3.3)]. This 

objection is of course entirely valid and merely underscores the tenta-

tiveness of any dimensional-analysis approach to physics: it is no sub-

stitute for actually solving equations. 

5. Relativistic Accretion: The Case pR~ 

Here we discuss· solutions which lie in region lb of Figure 1. In 

this region, the adiabatic sound speed is nearly equal to its limiting 

value, 

2 1 
v = s 3 (5.la) 

[cf. equation (4d) of paper II]. The corresponding sonic radius for the 

adiabatic accretion problem is 

r = 3M s (5.lb) 

[equation (9) of paper II]. Hence accretion in this regime is necessar-

ily relativistic, and solutions will be approximately hydrostatic down 

to radii of the order given by (5.lb). 

We have already seen in equation (4.8) that X v2/v2 is much smaller 
s c 

in region lb of Figure 1 than it is in region Ia. This is due to the 

presence of the factor A in equation (4.4) for X v
2
/v

2
. 

s c 
From ( 3. 5), 
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A is given by 

3 PG 
region Ib 4 PR 

(5.2a) 

A 
PG 

= :::::: p+p 

1 elsewhere (5.2b) 

Thus solutions in region Ib of Figure 1 will be far more adiabatic than 

otherwise comparable solutions in region Ia. This effect has a simple 

physical explanation which we shall briefly describe here. 

The first moment of the radiative transfer equation in the diffusion 

lirni t is 

L 
--2 
4:n:r 

y~ + -y (5.3a) 

[equation (18f) of paper I]. The term Y' in the parentheses on the 

right is just the radial acceleration of the accreting gas [cf. equation 

(5) of paper I], and its presence in (5.3a) is a relativistic correction 

which takes into account . the inertia of the energy which is being trans-

ported relative to the gas rest frame. This term is given by the rnornen-

turn equation [(lb) of paper II]. Thus we have 

L 
--2 = 
4:n:r (

P' 

y 4:R P') p+P (5.3b) 

and now it is quite clear that, as p + P + 4PR (P + PR) in region Ib, 

the "correctionn largely cancels the entire effect! With LTE, the sur-

viving piece is only 
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2 4:rrr 
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2 
v 

c 
(5.3c) 

[cf. (4f,e,c) and (B9) of paper II] - hence the appearance of the factor 

A in (4.4). 

This relativistic suppression of heat flux is sufficiently great to 

guarantee that all solutions in region Ib of Figure 1 will be essential-

ly adiabatic. From (4.7) and (4.8a) we have 

(5.4) 

in region Ib. ~ will attain a minimum along a given solution for 

v ,$.vs= l/~ ~ 1, whereas the other factors in (5.4) are large -

pR/pG because we are· considerin~ region Ib and h/A
7 

because the diffu­

sion approximation must hold. 

Since solutions in region Ib of Figure 1 are essentially adiabatic, 

we can readily establish all the desired results analytically. First, 

the luminosity at infinity, as always, is given by the value of L there 
s 

[cf. equation (3.4)]. Again, in region I of Figure 1, this value is 

essentially equal to the Eddington luminosity. The rest mass accretion 

2 rate ~ = 4:rrr p vY [equation (la), paper II] can be evaluated at the 
0 0 

sonic point (sp) using equations (5.1): 

. 
M 

0 

From (3.6) and (5.1) we have Y 
sp 

1 

V3 

l/J2. 

y 
sp 

To get p
0 

sp 

p , use the relativistic Bernoulli equation 
0 00 

(5.5) 

in terms of 
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HY constant (5.6a) 

[equation (5c) of paper II], where 

H - (5.6b) 

is the total enthalpy, including rest mass, per unit rest mass. In 

. Ib f F. 1 H 4 p I h. h . . 1 l/3 f region o igure , ~ R p
0 

w ic is proportiona to p
0 

or 

adiabatic flow. Hence p
0 

Y3 is cons.tant and p = 2 · 12 p Thus 
O Sp y "- 0 co 

we have 

( 5. 7) 

It is quite a tribute to the robustness of Bondi's non-relativistic 

theory that his formula for the accretion rate (3.7) is only off by a 

factor of l / 2-J2 in this case. Combining our result for the luminosity 

at infinity with this result for the accretion rate, we have for the 

efficiency € = L /M 
co 0 

€ = 1 

3v'3 
A. /co 

2M (5.8) 

where A is the photon mean free path at infinity [cf. equation (4.3)]. 
/co 

6. Stability Against Convection 

In a static, chemically homogeneous star, the criterion for 

stability against convection is the well-known Schwarzschild criterion 

jdT/drj < !dT/dr!Ad [Schwarzschild (1906)], which can be expressed more 
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simply as dS/dr > O, where S is the entropy per unit ress mass. The 

direction dr appears in this formulation solely because, in a static 

star, the Newtonian "force of gravity" acts in the direction of decreas-

ing r. By the equivalence principle, an accelerated blob of fluid will 

be unstable to convection if its entropy gradient points in a direction 

opposite to its acceleration. In our problem, this acceleration, 

including the Newtonian "gravitational acceleration", is given by the 

momentum equation [(lb) of paper II] which can be written as 

A 

r 
a = 

A 

YP' 
p+P 

(6.1) 

where ar is the radial acceleration [cf. equation (5) of paper I]. Thus 

the acceleration is directed opposite to the pressure gradient, and we 

have the more general criterion for stability against convection 

dS 
dP < 0 ( 6. 2) 

It might be thought that, even in this form, the simple criterion 

(6.2) cannot be applied to our problem because our solutions are not 

static. A careful analysis of the stability of our solutions, including 

non-convective instabilities, is an interesting and worthwhile task but 

is one which is well beyond the scope of this paper. In what follows 

we shall give a few simple but compelling heuristic arguments in favor 

of the validity of (6.2) as the appropriate criterion for stability 

against convection in our problem. 
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From (6.1), radially adjacent fluid elements will experience 

different outward radial accelerations if they happen to lie in regions 

with different YP' (pressure force) or if they have different values of 

p + P (buoyancy effect). In either case, relative motion of the two 

fluid elements commences. 

Consider a localized Lagrangian perturbation in the radial velocity 

of the form 

(6.3) 

where subscript 1 denotes a perturbation value and where x is some 

coordinate perpendicular to ro The time scale to restore horizontal 

pressure equilibrium if it should be disturbed by (6.3) is l / v k , which 
s x 

is finite. The time scale on which (6.3) would try to drive horizontal 

pressure differences is h/ v
1 

where h is the pressure scale height. Since 

v
1 

is infinitesimal this time scale is effectively infinite. Thus 

horizontal pressure equilibrium prevails. 

Suppose, for the sake of definiteness, that our unperturbed solution 

has P' < 0 [as is always the case] and S' < 0 so that the stability 

criterion (6.2) is violated. Then the perturbation (6.3) will draw up 

high entropy material from below and place it radially adjacent to lower 

entropy material it has pulled down from above. With horizontal pressure 

equilibrium, the only source of relative acceleration in equation (6.1) 

is differences in p. Then, assuming only (op/oS)P < 0 [as is always the 

case], the material which has been uplifted experiences the greater 

outward radial acceleration, i.e., the perturbation is unstable and the 
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convective motion is driven. If we assume instead that S' > 0 in our 

unperturbed solution, the conclusion is reversed. 

Processes taking place on the background Lagrangian time scales 

h. / v, where h . are scale heights, seem to be irrelevant here because the 
l l 

unperturbed solution is spherically symmetric , and thus these proc~sses 

affect radially adjacent fluid elements equally. The horizontal compres-

sion of the fluid as it moves inward will cause k to vary as l / r, but x 

this will not affect our conclusion. - The vertical stretching of the 

fluid as it moves in (v' < 0) tends to reduce, but can never reverse, the 

horizontal entropy contrasts caused by (6 .3 ) . Similarly, horizontal heat 

flow can only reduce, but can never reverse, these entropy contrasts. 

The result is a slowing down of the initial growth rate of the perturba-

tion (6 .3 ) , but, again, not a change in the stability criterion ( 6 .2) . 

This is obvious physically; it also follows from a study of the roots 

of the appropriate limit (O ~ O, v ~ 0 ) of the dispersion relation given 

by Goldreich and Schubert (1967) [their equation (32)]. 

Still, it would be a mistake to regard (6.2) as the last word on 

stability against convection in our solutions. We have argued that 

there are localized Lagrangian perturbations which grow. A comprehen-

sive analysis could conceivably turn up effects we've not anticipated. 

More likely, it might cause us to reinterpret, or interpret more care-

fully, what we mean by stability in an accretion flow. In the meantime, 

however, we shall presume that solutions which satisfy ( 6 .2) are stable 

against convection and that those which violate it are not. We can take 
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considerable comfort in the fact that convection will be an important 

energy transport mechanism only when the convective velocity exceeds the 

inflow velocity. Hence it will only be important in the subsonic, quasi-

hydrostatic region of our solutions, and it is very hard to imagine (6.2) 

being wrong in these regions. 

We have already remarked that P' < 0 in all of our solutions. 

Hence, for our purposes, the stability condition (6.2) is equivalent 

to S' > O. From equation (3e) of paper II, we have the fundamental 

relationship 

L' MYTS' 
0 

(6.4) 

" 2 2 where L = (1 + v )Y L; so we can deduce the sign of S' just by looking at 

" the run of L versus r in our solutions. 

Figures 2 and 3, which show solutions lying in region Ia of Figure 

1, plot L rather than£, but it's easy to check that the monotonic rise 

" of L with radius shown in these figures is a property shared by L as 

well. Thus these solutions have S' > 0 and are stable against convec-

tion. This same information is contained in the plots of a(r) of course. 

The fact that a < 1 in these solutions means that the temperature gradi-

ent is subadiabatic [cf. equation (3.1)]. 

It is not necessary to have numerical solutions to find out whether 

" L is an increasing or a decreasing function of r. As was emphasized in 

" paper II, L is always very nearly equal to L 
s 

[except 

near the subcritical point (v = v ) where £ has a pole]~ and it is easy 
s s 

to deduce the radial dependence of L from equation (3.4) for L We 
s s 



126 

have already pointed out in §3 how this procedure gives the correct r 1/ 2 

dependence of L and L at small radii for solutions lying in region Ia 
s 

A 

of Figure 1. Thus, in this region of Figure 1, L increases steadily with 

radius until it reaches its asymptotic value at infinity. Hence all 

solutions in region Ia of Figure 1 are stable against convection. A 

similar analysis of the supersonic asymptote of (3.4) for solutions in 

region lb of Figure 1 yields the behavior L ~Yr at small radii, so 
s 

A 

again L increases with radius to meet its asymptotic value at infinity. 

Hence all solutions in region lb of Figure 1 are also stable against 

convection. 

We have found that solutions throughout region I of Figure 1 are 

stable against convection. It is extremely interesting that the same 

conclusion does not hold for solutions lying in region II. 
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7. Solutions with PG~Roo 

In this section we discuss solutions which start out at radial 

infinity in region II of Figure 1. First, it needs to be pointed out 

that such solutions will not necessarily remain in region II as they 

proceed inward. For example, if the accreting gas has an adiabatic 

index /G of 5/3, like ionized hydrogen, then an adiabatic solution 

starting out in region II obeys 

where 

(T) - ~) + fn _]_ = 
T)oo 

' 

' 
(7.la) 

( 7. lb) 

as it proceeds inward. Hence, with T) small, such a solution will 
00 

attain T) = 1 when 

e 
( 7. 2) 

and will actually cross over into region I when p /p ~ 
0 ooo 

8 
Se /1"1oo· 

We shall see below that diffusion will only hasten this approach to 

T),..., 1. Note that such a solution will be unable to attain T) > > 1 

outside the horizon of the black hole. 

Using the fact that an adiabatic solution has p / p ~ ( r /r ) 3 / 2 
0 0 00 0 

for r < < r
0

, where r = M/2 v
2 

for /G = 5/3 (Bondi 1952), (7.2) is 
0 s 00 

equivalent to r/r
0 
~ (r:je)

2
/

3 
or r/2M ~ (T)oof e)

2
/

3 /4 v; 
00

• Hence an 

adiabatic solution with /G = 5/3 attains T) = 1 outside the black hole's 

horizon if it starts out with 
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.1 ( 7. 3) 

(here T4 is T/10
4 

°K and p
0 

is measured in g/cm3 ). Since (7.3) holds 

good for the entirety of region II, it follows that for Ye = 5/3 all 

solutions starting out in this region of the figure will attain ~ = 1 

well outside the horizon of the black hole. 

The principal result to be reported in this section is that solu-

tions which start out at radial infinity with PG>> PR and Ye> 17/ 12 

are unstable to convection down to the point where q = 5/12. 

5/3, this corresponds to the point where ~ = 3 or 8PR = 3PG. 

to this point, the solution is stable against convection. 

If /' = 
G 

Interior 

First, consider that part , of region II with PG > >PR. There we 

have 

and 

A 
b 

2 
v ex: T 

s 

0: (7.4a) 

(7.4b) 

Consequently, we have the following behavior of L on the two asymp­
s 

totes of equation (3.4): 

L o: 
s 

rT 

1 

v > > v s ( 7. 5a) 

( 7. 5b) 
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[constant factors have been omitted]. Now assume for the moment that 

the solution is nearly adiabatic [relaxing this assumption only 

strengthens our conclusions!] and suppose, for the sake of definiteness, 

that 3 2 
/G = 5/3 so T cr p

0
• Then, using the free-fall approximation 

p cr 
0 

-3/2 . r 1n (7.5a), we have that 

on both of its asymptotes, whence 

(7.6a) 

(7.6b) 

" everywhere. Since p is everywhere a decreasing function of r, L now 
0 

decreases with radius, and this means our solution is unstable to con-

vection. This is true in region Ila of Figure 1 where Kl is constant 

and equal to the electron scattering opacity, and in region IIb, where 

bremsstrahlung opacity dominates, the prospects for stability are even 

worse, as Kb cr p
0
/T 7/ 2; so in this region L cr T7/ 2, which falls off 

even faster with radius p • 
0 

Now to determine the point where our solution makes the transition 

from the unstable region of Figure 1 to the stable region, note that by 

making use of the thermodynamic identity (v2 - v2 ) = b(q - v2 ) we have 
s c c 

quite generally 

L cr r 
s 

( 7. 7) 

on the supersonic asymptote of equation (3.4) (here we have used the 

fact thatK.1 ~Kes =constant for PR,.._, PG and have ignored constant or 

nearly constant factors). With L ~ L , or directly from equation (ld) 
s 

of paper II, it is easy to see that L also will obey (7.7). Then with 
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-2/3 4; 5/3 r ~ p we see that L will be stationary when T p is constant, 
0 0 

i.e., when d £n T/d £n p = 5/12. But at this point, the solution is 
0 

strictly adiabatic [cf. (6.4)]. Hence the solution makes the transition 

from instability to stability against convection when q = 5/12 [cf. 

(3.lb)J. 

Since our equations make no provision for convection, we cannot 

use them for a quantitative study of solutions which start out in region 

II of Figure 1. We can, however, gain considerable insight as to how 

such solutions will behave by means of certain simple considerations. 

First, take the easiest case: forbid all diffusion and hold in 

check all convection. Then we have adiabatic flow, and, from equation 

(9a) of paper II, the accretion rate will be 

• 2. I 3 M =i='11'.~p v 
0 ';:, ooo soo ( 7. Sa) 

(neglecting small relativistic corrections), where 

( 7. Sb) 

will lie in the range 

1 < s < 2\[2 ( 7. Sc) 

for yG = 5/3 (Bondi 1952), the exact value depending on \o• 

Now turn on diffusion, but continue to artificially suppress 

convection. Then the diffusive luminosity at infinity is immediately 

given by the value of L there. Thus we have from equation (3.4) 
s 
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( 7. 9) 

in region II. This is much smaller than the Eddington luminosity of 

courseo First, Kl CXl can be dominated by bremsstrahlung (region IIb), 

an obvious effect. In addition, Loo is down by the factor 8PR/5P G' 

which arises physically because in region II the radiation pressure 

gradient provides only a small fraction of the total pressure gradient 

needed to support the outer nearly hydrostatic regions of our solutions. 

Indeed, equation (7.9) can be derived from the equation of approximate 

hydrostatic equilibrium and the equation of radiation force balance 

relating L to Pi (to get the factor of 8/5, use the adiabatic approxima­

tion d £ nT/d£ np ~ q ~ 2/3). 
0 

Turn now to the effect of diffusion on the accretion rate in region 

II. We have already seen that in region II, as long as q > 5/12, diffu-

sion induces superadiabatic temperature gradients. Hence pressure will 

now increase inward more rapidly than is assumed by the adiabatic 

formula (7.8), and this will cause the accretion rate to be less than 

the adiabatic rateo 

It is important to check whether diffusion will have an appreciable 

effect on the accretion rate. Note from equation (4.8) that x v2
/v2 

s c 

is much smaller in region II than it is in region Ia. First, A tends 
)' 

to be smaller because of the higher characteristic densities or, in 

region IIb, because bremsstrahlung opacity exceeds electron scattering 

opacity. In addition, X v
2
/v

2 
is down by the factor SP /P compared to 

s c R G 

its value in region Ia. This factor is just the ratio of the heat 

capacities (at constant p
0

) in the radiation and in the gas (for )'G = 

5/3). Physically, this factor appears in (4.Sc) because in region II 
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the heat capacity of the fluid is dominated by the gas particles, while 

the vastly outnumbered photons still bear the burden of diffusively 

transporting the energy. 

We can estimate whether or not energy diffusion will have a signi-

ficant effect on the accretion rate by looking at l~(r0 ) I' where 

2 
r = M/ 2 v • If this quantity is large, diffusion will have a negli-

o s 00 

gible effect on the accretion rate. From (4.7) and (4.8c), with h ~ r
0

, 

v ~ vs 
00

, and other factors approximately equal to their values at 

infinity, we have 

(7.lOa) 

~) es 
00 

( 7. lOb) 

[In equation (7.lOb), p
02 

is p
0 

measured in units of 100 g/cm3 and T
7 

is temperature in units of 10
7 

Kelvin - values characteristic of the 

sun's center.] From (7.lOb) it follows that, for M > M diffusion will 
~ 0 

not have a significant effect on the accretion rate of a solution which 

starts out in region II of Figure 1. 

Now, finally, we must allow convection to proceed. Convection will 

provide an additional luminosity and will change the temperature gradi-

ent of our solutions. In a static star, the effect of convection is 

always to push the temperature gradient back down towards its adiabatic 

value. Not so here. With convection, equation (6.4) will be modified 

to 

f. 1 + f. 1 

d c 
M y TS' 

0 
(7.11) 
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where Ld and Lc are now the diffusive and convective luminosities, 

respectively. tc will be positive, but there is no~ priori reason for 

£~ to be positive - any more than there is an ~ priori reason for £d to 

be positive. If L' is positive, convection will reduce the magnitude 
c 

of the temperature gradient and will thus increase the accretion rate; 

if £• is negative, convection will steepen the temperature gradient and 
c 

reduce the accretion rate. 

Convection will not be able to significantly perturb our solution 

away from adiabatic infiow at radial' infinity. Hence the result (7.9) 

for the diffusive luminosity at infinity will remain valid even when 

convection is present. 
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8. Conclusion 

From the discussions in the preceding sections, it is clear that 

the behavior of an accreting black hole depends very much on what it 

is being fed. In the different regions of Figure 1, a wide variety of 

different physical effects become important and each changes the accre-

tion picture in a different way. In this report, we have tried to give 

a coherent account of why these effects arise, when they will be 

important, and how they will affect our accretion solutions. 

Because of the wide diversity of accretion regimes considered in 

this paper, it is possible to give a comprehensive overview of diffu-

sive accretion only by doing a certain amount of violence to the issues 

discussed in the preceding sections. Nevertheless it seems a good idea 

to emphasize in closing that the diffusive accretion problem has a 

characteristic accretion rate 

(8.la) 

where 

(8.lb) 

is given by Bondi's (1952) theory, and has the diffusive luminosity at 

infinity 

(8.2a) 
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LEdd region I 

~ 

[ 4PR 'Y - 1 . ] G es L 
Ye PG K l 

00 

Edd 
region II 

given in paper II, and hence has a characteristic "efficiency" 

€ = L /M given by 
00 0 

2 
i; 

(8.2b) 

(8.2c) 

(8.3) 

The result (8.2) for the diffusive luminosity is ironclad. The result 

(8.1) for the accretion rate, on the other hand, is subject to modifica-

tion by energy diffusion (region Ia), relativity (region lb), and 

convection (region II). 
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Appendix A 

Here, equation (4.6) of the text is derived. From (3.1), write 

ex - { ~ - v~ p~) 
(Al) = Pa 

1 - ex p' T' 0 

T - q-
Po 

Next, observe that the numerator of this expression contains the combi-

nation of derivatives that determines L while the denominator contains 

the combination which determines£•. Thus, from (B2) and (B7) of paper 

II, we have 

ex 
1 - ex . 

B p+P 
A ~ VPcfl 

R 
2 

(l+v )Yf.' 
(A2) 

[where we have also used equations (la), (2j), (4b,c), and (B9,10) of 

paper II to simplify the result]. Inserting (4.3) and (4.4) of the 

present paper into (A2) then yields equation (4.6), the desired result. 
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Table 2 

M 3M
0 

10-9 3 
~o = 7.81 x g/crn 

' 
T .982 x 106 0 

K 
00 

v 2.11 
s ,oo x 10-2 [ c] 

v 4.25 x 10-4 [ c J c,oo 

. 
4.65 10-6 MJyr M x 

0 

(Mo) Ad 6. 90 x 10-7 MJyr 

(Mo) Beg 4.98 x 10-6 M /yr 
0 

L .982 x 10
5 

L 
00 0 

L .982 x 105 
L0 s,= 
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Table 3 

M 3M 
0 

Po= 1. 96 x 10-9 g/cm3 

' 

T 1.24 x 106 OK 
'JO 

v 6.68 x 10-2 CcJ s,= 

v 4. 77 x lo-4 
[c] 

c' co 

"F-1 4.67 x 10-7 MJyr 
0 

(fio) Ad 5.45 x 10-9 MJyr 

(Mo) Beg 4.97 x 10-7 M / yr 
0 

L .983 x 105 1 
= 8 

L . 983 x 10
5 

10 s' co 



Fig. 1. 

Fig. 2. 

Fig. 3. 
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Figure Captions 

This figure shows the location, in the temperature-density 

plane, of the various different physical accretion regimes 

considered in the text. In region I, radiation pressure 

exceeds gas pressure; and, in region Ib, the energy density 

in radiation exceeds that in the rest mass of the gas. In 

region II, gas pressure exceeds radiation pressure; and, in 

region Ilb, bremsstrahlung opacity dominates electron scatter-

in opacity. In region III the electrons are degenerate. This 

region is not considered in this paper. In this figure the 

temperature T and the rest mass density p
0 

are measured in 

cgs units. 

This figure shows the radial dependence of various quantities 

of interest for the solution with the parameters of Table 2. 

The velocities v, v , and v are the inflow velocity, the 
s c 

adiabatic sound speed, and the isothermal sound speed, 

respectively, all measured in units of the speed of light. 

The dark spot, where v = v , marks the critical point; the 
c 

open circle, where v = v , marks the subcritical point. s The 

rest mass density p and the temperature T are in cgs units. 
0 

The luminosities L and L are in solar units. The local 
s 

adiabaticity a, which is plotted on a linear scale, is 

dimensionless. See §3 for definitions and discussion. 

This figure shows the radial dependence of various quantities 

of interest for the solution with the parameters of Table 3. 

Symbols and units are as in Figure 2. See $3 for discussion. 
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