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ABSTRACT

This dissertation is written in three tracks. Track 1,(Pages ii-vi)
is intended for those many many people who don't know any physics but who
do know how to read English and a bit of Hungarian perhaps.

Track 2 is intended for those one hundred or so people in the whole
world who do know classical physics and have serious interests in, or
are experts in relativity theory. Papers 1, 2 and 3 dealing with relati-
vity are entirely Track 2.

The remaining paper is Track 3 and is for the benefit of even fewer
people who have a simultaneous interest in relativity and quantum field
theory.

I will not discuss the abstracts of the individual papers here -
since each paper is preceded by its own abstract, Suffice it to say
that this dissertation is a collection of papers dealing with the theo-
retical aspects of how gravitational waves may (or may not) be gener -
ated by gravitational bremsstrahlung,and in Paper I Walter and I try to
show that some classical relativity problems may be solved with much

greater ease via a quantum approach.
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A Limerick to

Gravitational Waves

There once was the theory of relativity
Which serious students pursue with humility,
Whether gravitational radiation

Is real, or just imagination

To them, became a matter of facility.

Oh you sly, sneaky, ancient gravity waves
You're putting experimentalists in their graves!
If you really exist

Why are you missed?

You even make theorists hide in their caves.

Some argue it's a matter of lucky detection,
Or perhaps of a different research direction.
But we'll all be elated

If waves are really generated,

'Cause then Nature will verify our prediction,

Einstein thought God was not malicious

I agree, but say Nature is capricious.

She will not simply reveal

Or make it easy to steal,

The secret treasures that make Her delicious.

When at last the darn radiation is found
New explanations and theories will abound.
In the zeal of celebration

Let's recall the quotation

"It's so sad that Einstein won't be around."

Pasadena April, 1977



Part

II.

I1I.

vii

TABLE OF CONTENTS

INTRODUCTION - entirely Track 1.

Paper 1.

Paper 2.

Paper 3.

Paper L.

The Generation of Gravitational Waves. 1. Weak-
Field Sources [ in collaboration with Kip S.
Thorne, published in the Astrophysical Journal,
200, 2(1975)].

The Generation of Gravitational Waves. III.
Derivation of Bremsstrahlung Formulae [ in
collaboration with Kip S. Thorne, to be pub-
lished in the October 1, 1977 issue of the
Astrophysical Journal].

The Generation of Gravitational Waves. IV.

Bremsstrahlung [ material which will ultima-

tely become a joint publication with K.S.Thorne].

The Gravitational Scattering of Zero-Rest-Mass

25

98

153

Plane Waves [ in collaboration with Walter De Logi,

to be published in the July 15, 1977 issue of
Physical Review D ].



1. INTRODUCTION

During the course of the past several years while I've been a
graduate student at Caltech, the hope that somewhere,somebody's gra-
vitational wave detector will actually detect gravitational waves by
the middle of the 1980's has improved considerably.( However, 1 should
remark that the "... hope that gravitational waves will be detected
within the next ten years ..." is a statement that has been heard for
at least the past ten years!)

The work we've done in Papers 1, 2 and 3 was intended to provide
an additional theoretical tool by which gravitational radiation sources
may be analyzed. Any tool, regardless of how sophisticated it is or how
much promise it offers, is worthless unless applied to solve a problem.
We applied the mathematical tools we constructed to gain further insight
into the bremsstrahlung problem, and had some success. The interesting
results are contained in Paper 3, but we paid a price of some rather
detailed and tedious preliminary work. It showed that the 'post-linear'
formalism was usable and effective however it is safe to say that it
did not provide a calculational shortcut to the final results. Since the
contents of the papers speak for themselves, my remaining remarks in
this section are intended to shed some light on how the work we did
actually came to pass.

In 1972 K.S. Thorne ( henceforth cited as Kip) and I decided to
analyze in detail 'The Gravitational Bremsstrahlung Problem' with the
hope that we could remove the previous restrictions on the ratio of the
masses and any constraints on the velocities. Of course we only held
out hope for the weak-field case. After about a year of probing ( up
several blind alleys) we realized that our initial approach using
flat-space propagators was inadequate. We kept getting divergent vol-
ume integrals for the gravitational stress. The desire to solve the
problem and find an answer (i.e. our personalities) forced us to return
to the mathematical foundations of radiation problems and devise a
scheme that would work. The result of all this hard work and fancy
mathematics is Paper 1. The interesting physics was still to come.

By early 1975 Kip and I had the 'tools' to actually " Plug-In-



And-Grind " away at the physics problem we set out to solve. The
results of this somewhat tedious task (usual polite understatement)
are laid out in Paper 2 of the thesis - Paper III. of the published
series. We never intended to have a Paper 2 just with formulas and
a separate paper just with results -~ but the length and complexity
of the details ( and the page limitations of the Astrophisical Jour-
nal) forced us into it.

While all this was going on Walter De Logi ( henceforth cited as
Walter ) and 1 started looking into the bremsstrahlung problem from
the quantum point of view using diagrams. This approach was partially
motivated by Richard Feynman's questions and suggestions during my
oral candidacy exam in February 1975. Naturally our first results
using diagrams had nothing to do with the problem we originally set
out to solve. Walter and I digressed ( after a seminar given at
Caltech by Phil Peters ), when we realized we could do plane wave
scattering problems faster and easier using diagrams - with the added
exciting bonus of being able to scatter waves from a scatterer with
angular momentum - something that Peters could not do. The results of
a few minutes of creative insight and several months of work is what
turned out to be Paper L.

Concurrent with the work with Walter, the anmalytical and computer
work for Paper 3 was going on. I spent several months looking for a
theoretical and/or programming mistake while trying to get the numeri-
cal results of our Paper 2 to agree with the results published by
Peters - I finally concluded (correctly) that yes, there was a mistake
somewhere. Peters had a previously undetected typographycal error in
his paper and the discrepancy nicely vanished after a simple correction.
At last, by the spring of 1977 we had the results to 'THE Gravitational
Bremsstrahlung Problem' which is included here for the enjoyment of the
reader. I think it contains the most interesting material in the whole
thesis, and as it is written here is material which will ultimately be
published in a joint paper with Kip.

For completeness, i.e. a desire to beat the bremsstrahlung problem

to death from all directions, Walter and I tried, but could not find



sufficient time to complete the problem using a quantum approach,
Unfortunately that piece of work is mot part of this thesis but will

be published seperately, as soon as it’s finished.
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THE GENERATION OF GRAVITATIONAL WAVES, 1. WEAK-FIELD SOURCES*

Kip S. THORNE AND SANDOR J. KovAcs
California Institute of Technology
Received 1974 December 9

ABSTRACT

This paper derives (§§ II-1V) and summarizes (§ VI) a new ““plug-in-and-grind” formalism
(i.e., an algorithm) for calculating the gravitational waves emitted by any system with weak
internal gravitational fields. If the internal fields have negligible influence on the system’s motions,
then the new formalism reduces to standard “linearized theory.” Whether or not gravity affects
the motions, if the motions are slow and internal stresses are weak, then the new formalism re-
duces to the standard **quadrupole-moment formalism™ (§ V). In the general case the new
formalism expresses the radiation in terms of a retarded Green’s function for slightly curved
spacetime, and then breaks the Green’s function integral into five easily understood pieces:
direct radiation, produced directly by the motions of the source; whump radiation, produced by
the “gravitational stresses” of the source; transition radiation, produced by a time-changing
time delay (*‘Shapiro effect™) in the propagation of the nonradiative, 1/r field of the source;
Jocusing radiation, produced when one portion of the source focuses, in a time-dependent way,
the nonradiative field of another portion of the source; and tail radiation, produced by “back-
scatter” of the nonradiative field in regions of focusing.

Subject headings: gravitation — relativity

1. INTRODUCTION
a) Introduction to This Series of Papers

Thanks to the pioneering work of Joseph Weber (1960, 1969), ““gravitational-wave astronomy” may be a reality
ov 1980. Although Weber’s “events” may turn out to be nongravitational in origin, second-generation detectors
oi the Weber “resonant-bar” type, with amplitude sensitivities roughly 100-fold better than today’s bars, are now
under construction (Braginsky 1974; Fairbank and Hamilton, as described in Boughn et al. 1974); and third-
ezneration detectors are being discussed. The third generation should be able to detect and study the gravitational-
wave bursts generated several times per year by supernovae in the Virgo cluster of galaxies. Detectors with other
designs may succeed in detecting waves from pulsars (see, c.g., Braginsky and Nazarenko 1971) and from near-
encounters of stars in dense star clusters (gravitational bremsstrahlung; see, e.g., Zel’dovich and Ponarsv 1974).
And, of course, totally unexpected sources may be detected. (For reviews of the prospects for gravitational-wave
astronomy see Misner 1974; Rees 1974; and Press and Thorne 1972.)

In preparation for the era of gravitational-wave astronomy, our Caltech research group has embarked on a
new project: We seek (1) to elucidate the realms of validity of the standard wave-generation formulae; (2) to devise
new techniques for calculating gravitational-wave generation with new realms of validity; and (3) to calculate the
waves generated by particular models of astrophysical systems. Throughout this project we shall confine ourselves
to general relativity theory.

Most past calculations of gravitational-wave generation use one of three formalisms: (1) “linearized theory™
or its quantum-theory analog; (2) the “quadrupole-moment formalism™; (3) *“first-order perturbations of station-
arv, fully relativistic spacetimes.”

*Linearized theory™ is the formalism obtained by linearizing general relativity about flat spacetime (see, c.g.,
chapters 18 and 35 of Misner, Thorne, and Wheeler 1973—cited henceforth as MTW). 1t is also the unique linear
spin-two field theory of gravitation in flat spacetime—and as such it has a simple quantum-theory formulation.
(For references and overview see, in MTW, § 7.1, box 7.1, and part 5 of box 17.2). Linearized theory is typically
used to calculate wave generation when the source’s selt-gravity has negligible influence on its motions (e.g., waves
from spinning rods and from electromagnetic fields in a cavity). In this paper we shall devise a new wave-generation
formalism valid for any system with small but nonnegligible self-gravity; and in Paper 11I (Kovdcs and Thorne
1975) we shall use that formalism to calculate the gravitational bremsstrahlung produced when two stars fly past
zach other with large impact parameter, but with arbitrary relative masses and velocities.

The “ quadrupole-moment formalism”” (in which the wave amplitude is proportional to the second time deriva-
tive of the source’s mass quadrupole moment) dates back to Einstein (1918), and has been canonized by Landau

* Supported in part by the National Aeronautics and Space Administration [NGR 05-002-256] and the National Science Founda-
tion [MPS75-01398].
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and Lifshitz (1951). The derivations of this formalism which we find in the literature are valid only for systems with
slow internal motions and weak (but nonnegligible) internal gravitational fields (see, e.g., the post®2-Newtonian
derivation by Chandrasekhar and Esposito 1970, the matched-asymptotic-expansion derivation by Burke 1971,
and the de Donder gauge derivation by Landau and Lifshitz 1951 as made more explicit in chapter 36 of MTW).
However, a detailed analysis given in Paper 11 (Thorne 1975) shows that only the slow-motion assumption is
needed: the quadrupole-moment formalism is valid for any slow-motion system, regardless of its internal field
strengths. Paper 11 also extends that formalism to include the radiation produced by all of the source’s other mo-
ments (both “mass” moments and “current” moments); and it derives formulae in terms of the moments for the
near-zone fields, the radiation field, the radiation reaction, and the cnergy, momentum, and angular momentum
carried off by the waves. In a forthcoming paper Thorne and Zytkow (1976) will use the extended formalism of
Paper II to calculate the *“current-quadrupole™ gravitational waves produced by torsional oscillations of neutron
stars,

“First-order perturbations of stationary, fully relativistic spacetimes™ is a technique that has been used ex-
tensively in recent years to analyze waves from ““fast-motion” oscillations of black holes and neutron stars, and
from particles moving in the Schwarzschild and Kerr gravitational fields. (For reviews, see Press 1974, Ruffini
1973, and § 36.5 of MTW; see also the recent paper by Chung 1973.) It is not yet clear whether our project will
delve into this technique.

b) Overview of This Paper
In this paper we confine attention to systems with weak internal gravitational fields. Section Il rewrites the
exact Einstein field equations in a non-covariant form (*‘de Donder form ) that is amenable to weak-field approxi-
mations. Section I1I gives a systematic account of approximate, weak-field formalisms based on the exact de Donder
form of the field equations—including the accuracy of the various formalisms and their relationships to each other.
Section 1Va applies the analysis of § 11 to astrophysical systems, and concludes that, when analyzing their struc-
ture and evolution, one must typically calculate the stress-energy tensor ,T*¥ and gravitational field 4% with
accuracies:
|Gerror in ;T#¥)[,T°°| < €2, |(error in 1h*")/A%) < e,
e = (typical value of ;A% inside source) ~ (mass of source)/(size of source) .

Section IVa also concludes that the external gravitational field ,** must typically be calculated to accuracy

[(error in ") [,h%] < €2

if one desires reasonable accuracy in the radiative part of that field. :

Section 1Vb presents a *‘postlinear™ formalism for calculating a system’s structure and evolution (,7% and
11**) to the desired accuracy; and § [Ve derives a formula for the higher-accuracy external field (,4*), which con-
tains the radiation. Section V shows how the resulting formalism, when applied to slow-motion systems, reduces
to the standard ‘ quadrupole-moment formalism.”

We recommend that, before tackling the rest of this paper, the reader peruse § VI. That section summarizes
our postlinear formalism and our formula for the external (radiation) field.

The “guts” of this paper, in terms of complex calculations, reside in the Green’s function manipulations of
§ 1Vc. Our particular way of handling the Green’s functions is motivated in Appendix A, and has becn influenced
by the following papers: DeWitt and Brehme (1960) (exact Green’s functions for scalar and vector wave equations
in curved spacetime); Robaschik (1963) (exact Green’s function for tensor wave equation in curved spacetime);
John (19734, b), Bird (1974), and especially Peters (1966) (Green’s functions in weakly curved spacetime). Although
these papers had much influence on us, our specific manipulations are so different that we have found it impossible
to trace the details of that influence in our writeup.

II. EXACT GENERAL RELATIVITY, REWRITTEN IN “ WEAK-FIELD LANGUAGE”

We begin by writing the exact, nonlinear Einstein field equations in an arbitrary coordinate system in the form
(§20.3 of MTW; § 100 of Landau and Lifshitz 1962)

HEZ s = 16m(—g)(T* + 1£L1) 1)
where “L-L”" means “Landau-Lifshitz,” and where 4
Hﬁ‘i’ﬂ = gnvgaa — gavguﬂ : (za)
g = (—g)%",  (—g) = —det|g,| = —det]e*] ; (2b)
1y = [16m(—g)]"Ha™ ag™ u — 9 a0 + $8%8ais™ 007
= (87818 08" + 87818 58"0) + 80807 0% (29)

+ #H2%%g** — 22NN (28vo8as — LpeBn)S" 38"} . )
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The equations of motion for the material stress-energy tensor 7+ follow directly from the field equations (I) and
can be written in the equivalent forms

T, =0, ()T + 152,)) s = 0. 3
[Here and throughout this series of papers we use the notation and sign conventions of MTW; in ptlrtiuulur C ==
G = 1; g.p and g* are the components of the metric; commas and &'s denote partial dunv‘mvm Yope= gy e

aY/Bx“ semicolons denote covariant derivatives with respect to the metric gq5; and our signature is (w + + +).]

Now, and henceforth in this paper, we impose three restrictions on our analysis: (1) We confine attention to
systems with ““weak internal gravity ”~—i.c., to systems throughout which one can introduce nearly Lorentz co-
ordinates, (2) We confine ourselves to “isolated systems”—i.e., to systems that are surrounded by a region (““local
wave zone”’), much larger than a characteristic wavelength of the emitted waves, in which all waves are outgoing
and in which external masses have negligible influence on the gravitational field. (3) We restrict our analysis to
the interior of the source and its local wave zone, and throughout these regions we use nearly Lorentz, asymptoti-
cally flat coordinates, specialized to satisfy the de Donder gauge condition.

Mathematically, these restrictions state that the “gravitational field”

v = gt g @)
has the properties ~
[*] « 1 everywhere, (5a)
|4 ~ 1fr as r—o,  wherer = (x2 + y? + z%)¥2, (5b)
h* is devoid of incoming waves at r — co , (5¢)
h* , = 0 (de Donder condition) . (5d)
With these restrictions, the cxact Einstein field equations (1) take on the form
[ = — 16n(— V(T + 1f2,) — (—g)~ V2o jis,, . ©)
Here []; is the wave operator for scalar fields in the curved spacetime described by the metric g.;:
= (—g)"1a,l(~ ) g, . Y

[Appendix A, which is best read after one has finished reading the rest of the paper, explains why we write the
field equations in terms of [, rather than in terms of some other wave operator such as [J; = 9*¢,.@, (the flat-
space wave operator) or [, (the curved-space wave operator for tensor fields).]

Equations (2b)~(7) are the exact, nonlinear equations of general relativity for any isolated, weak-field system-—
but they are written in a very special coordinate system rather than in generally covariant form.

Because |A*Y| « 1, we can cxpress each quantity in our formalism, except 7", as a power series in h*. When
writing down such a power series, it is convenient to raise and lower indices of 4** with the Minkowski metric
Nap = "I"" = diag(—1, 1, 1, I):

b =nh, Il =num ™, h=h2, et (8a)
1t is also convenient to define a “trace-reversed” gravitational field /# by
v = h% — Lhey#, (8b)

and to raise and lower its indices, like those of 2%, with the Minkowski metric. Note that equation (8b) implies
h=ht=-h, R = v — Ymev ‘ (8c)

To derive the explicit power series expansions for g, g%, g,., etc., one can proceed as follows. Equation (4) is
the desired expansion for g**. It contains only two terms:

- "Tw o Euv . (93)

The expansion for the metric determinant ( —g) is obtained by inserting expression (9a) into the second of equations
(2b):

(—g) = —det [¢*"] = —det|n* — k| =1 =k + }H(A)* — K*h,4) + O[(R)*]. (9b)

The contravariant components of thc metric are then obtained by inserting (9a, b) into the first of equations

(2b):

g = (—g) V%" = g — (B — Lhn™) — JAR™ + I9[(R)* + 2h%%h,4) + O[(hY] ; (%)
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and the covariant components are obtained as the matrix inverse of these contravariant components:
Euv = Muv + Euv = ’}_E.’Iuv + Eua}iav = %I‘{Euv + 'él{nuv(ﬁa - 2E¢wﬁaﬂ) & O{(E)J] e (Qd)

The connection coefficients 1'%, which appear in the usual expression T7#%,, = 0 for the cquations of motion, are
obtained by inserting expansions (9¢, d) into the standard formula

l‘ucﬂ = 'i‘gw(gm,ﬂ + Eypa — grzﬁ,y) = %(E“a,ﬁ + Izuﬂ.rx - iirtp'u) - %(S“a/_l.ﬂ =t Suﬂii.r: - naﬁii'“) + O[(Il)‘:J ] 9 )

e

Similarly, the scalar-wave operator [, is obtained by inserting expansions (9b, ¢) into equation (7), and using the
d= Donder gauge condition (5d) to simplify:

s = 78,85 — (B — Ym™)8,0, + Ol(h)*] ; (o)
and the components of the Landau-Lifshitz pseudotensor are obtained by inserting expansions (9a,b, ¢, d) and the
de Donder condition (5d) into equation (2¢):

iy, = (1677)_1{:277m7huﬁ“.aﬁw.v + m\u.,]vn;—za?\'vﬁﬂu'p - ("I“A’?uvﬁgv.nﬁw.h + nm"]uvilqv.nrlun.t\)
i o 'é'(z"]ah'qﬂu = 7)"‘“"}“)(2%5’] ot 7);:07]”)[;“. E.Oﬂ'u} + 0[(/—;)3] . (9g)
Henceforth in this paper we shall regard ¢**, (--g), 8", guv» M, ) and £ as shorthand notation for the
infinite power series expansions, whose first few terms are shown in equations (9). Given these expansions, the full
content of general relativity is embodied in the equations of motion for the matter
T, = =T# T = IV, T+ (102)
and the Einstein field equations
O = —16m(—g)VH(T™ -+ 1420y — (—g)~Y2hee e, (10b)
Henceforth we shall not impose the gauge conditions i*¥, = 0; rather, we shall regard them as conscquences of
the equations of motion (10a) and the field equations (10b).
I APPROXIMATION FORMALISMS FOR WEAK-FIELD SYSTEMS!

The formulation of general relativity embodied in equations (9) and (10) is an excellent starting point for deriva-
tions of weak-field approximation formalisms. To get a formalism of desired accuracy, one can simply truncate
each infinite series appearing in equations (9) and (10) at the appropriate point.

We shall describe the accuracy of a formalism in terms of its *“errors” (i.c., the deviations of its solutions from
exact solutions of the exact equations [9] and [10]). In discussing errors, we shall use the small dimensionless
paramster

¢ = (characteristic size of /" inside the system) . (11)

If the system is a dynamically changing lump of matter with mass M and linear size L (e.g., a pulsating star or an
exploding atomic bomb), then

e~ MJL.

If the system is several lumps with masses m and sizes [, scparated by distances b » I (e.g., a binary star system or
two stars flying past each other), then

¢ ~ m/b if one is interested only in the relative motions of the lumps,

€ ~ mfl if one is also interested in the internal structure and
dynamics of the lumps.

We shall characterize every weak-field approximation formalism by two integers ny and m,. These “order
indices™ tell us the magnitude of the errors made by the formalism:?

|(errors in T#)[T°°| ~ &'z (12a)
|(errors in A¥) (R0 ~ €™, (12b)
1 This section is closely related to the Havas-Goldberg (1962) analysis of approximation formalisms for equations of motion of

point masses.
2 Note that all of the |7%*| are < T°°, and consequently all of the |h**| are /%, This fact dictates the form of equations (12).
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For example, a formalism of order (ng, m,) = (1, 1) makes fractional errors of order ¢ in both the stress-energy
tznsor and the gravitational {ield, while a formalism of order (2, 1) makes fractional errors €2 in 74" and ¢ in i*Y,

Errors in 2**, when fed into the equations of motion (10a), produce errors in 7*¥; and similarly, errors in T4,
when fed into the field equations (10b), produce crrors in ##Y. This [eeding process places constraints on the order
indices (nr, n,) of any self-consistent approximation formalism. The constraints are revealed explicitly by an order-
of-magnitude analysis of equations (10a, b):

Consider a weak-field system with characteristic field strength e and characteristic length-time scale /. Below
each term of equations (10a, b), write the order of magnitude of that term:

To, = = T2, T™ — DT (132)
T (D) (fHIT)
[0 = —16m(~g) V2T — 16m(—g) 21y, — (—g)~V2he 2 , . (13b)
(/%) (€°/1%) (*/F7)
Equation (13a) shows that fractional errors €™ in A** produce fractional errors e*1 in T#%; i.e., €'t > ™ *1; ie.,
np < ny kL. (14a)

Equation (13b)—together with. the order-of-magnitude field equation T° ~ e/I>—shows that fractional crrors
<7 in T*" produce fractional errors €'r in A*Y; i.c., €' = €'r; i.e,

My < ngp. (14b)

Equations (14a, b) can be restated as the following constraints on the order indices of any self-consistent
zpproximation formalism:

n, = Hy — 1 or  my =np. (15)

In other words, the order (nr, n,) of any approximation formalism must be either (n, n — 1) or (n, n) for some integer
o

Suppose that a specific system has been analyzed using an approximation formalism of order (r, n -~ 1). Denote
ov T (x%) and ,_;,/*"(x“) the explicit expressions obtained in that analysis for the system’s stress-energy tensor
znd gravitational field. From these expressions it is straightforward to generate an “improved ™ gravitational field
-7*(x*) with fractional crrors €*. The key to doing this is the structure of the ficld equations (10b): In these field
zquations, fractional errors of order "1 in #** produce fractional errors of order €" in both ], and the expression

—16m(— g} (T + 1f20) — (—g)~ 22 f2
Hence, (¢, x) satisfies the differential equation
wa-nial = pa-pl— 160(—gYV3(T* + 12, — (—g) V2R .0 ] . (16)
Here the prefix (n, n — 1) means that a quantity is to be calculated, with fractional error €, using ,7*" and , _ ,i*".

This inhomogeneous, linear wave equation for ,4** can be solved using the retarded scalar Green’s function for
curved spacetime (DeWitt and Brehme 1960):

I (the retarded scalar Green’s function for the curved spacetime with the metric (,_ 1,2,
e, G(Z, P) = o o e=hSL A7)
’ of the (n, n — 1) approximation—a Green’s function with fractional errors "
The result is
B (P) = f un=n[167(—=g)T™" + t£20) + B B o oo yG(P', P)dX" . (18)

This paragraph can be summarized as follows: Any approximation formalism of order (n, n — 1), when augmented
by equation (18) for h**, becomes an approximation formalism of order (n, n).

Special relativity and linearized theory provide a simple example of the above remarks: Special relativity is the
approximation formalism of order (1, 0) which one obtained by the extreme truncation process of setting 1** = 0
in equations (9) and (10):

o =0, ottty =0, 08uv = Muv s I, =0. (19a)
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The retarded scalar Green’s function for a space with metric 2, = 7, 18
oG(P', P) = (47) " 18,0t [A750(x® — x7)(x7 — x)]. (19b)

(Here 8, is zero il 7 lies in the causal past of 7, and it is the Dirac delta function otherwise.) Hence, equation
(18)—by which one must augment special relativity in order to obtain a formalism of order (I, 1)—has the form

0 e ]
e = 4 [ TP ullimr = Yo = oy =4 [ B XD pe )

The resulting (1, 1) formalism (eqs. [19] augmented by eq. [20]) is the “lincarized theory of gravity” (see, e.g.,
§ 7.1, box 7.1, and chapter 18 of MTW).

Newtonian theory and the ““quadrupole-moment formalism for wave generation™ are another example. New-
tonian theory is the weak-field formalism of order (2, 1) which one obtains by not only truncating cach scries that
appears in equations (9) and (10), but by also imposing the slow-motion and small-stress assumptions

v = |TYe, /T2 < ¢, [THT0| % 1€, (21)
(size of system)/(characteristic time scale of changes) < ¢'2.

Equation (18), by which one augments Newtonian theory in order to obtain a formalism of order (2, 2), has the
form, when evaluated in the radiation zone

HET(E, xX) = (2/r)ETT(¢ — r) = (gravitational radiation field) . (22)

Here £;; is the reduced quadrupole moment of the source, and TT denotes *““transverse-traceless” part. This is the
standard wave-generation formula of the quadrupole-moment formalism; see chapter 36 of MTW.

IV. WAVE GENERATION BY A WEAK-FIELD SYSTEM
a) Motivation

Weak-field systems are of two types: those with negligible self-gravitational forces (rotating laboratory rods,
microwave cavities, etc.), and those whose internal motions are significantly influenced by sclf-gravity (pulsating
stars, binary star systems, ctc.).

For a system with negligible self-gravity, special relativity gives a fairly accurate description of the internal
motions; and, consequently, linearized theory [the (1, 1) formalism obtained by attaching eq. (18) or (20) onto
special relativity] gives a fairly accurate description of gravitational-wave generation.

For most weak-field astrophysical systems, self-gravitational forces are important. In this case, when analyzing
a system’s internal motions, one must use a formalism of order (2, 1); and when calculating the waves those
motions generate, one must augment the (2, 1) formalism by equation (18), thereby raising its order to (2, 2).2
If the system has slow internal motions and weak internal stresses, Newtonian theory [order (2, 1)] will suftice for
analyzing its motions, and the quadrupole-moment formalism [order (2, 2)] will suftice for wave generation.
However, for analyzing fast-motion systems (e.g., two stars flying past cach other with high velocity and deflecting
cach other slightly—the relativistic bremsstrahlung problem), one needs unrestricted (2, 1) and (2, 2) formalisms.
The objective of the next two sections is to derive such formalisms.

b) The Postlinear Formalism

A weak-field formalism of order (2, 1), unrestricted by any constraints on velocities or stresses, can be obtained
by truncating equations (9) and (10) at the appropriate order:

e (23a)
(—)=1—~3h=1+,h, (23b)
8% = 7" — kv (where & = i — L), (23¢)
18 = My + 2fluy 5 (23d)
1M = 3G + 10 — 1heg™), (23e)
105 = (*® — 1h“%)0.0,, (23f)

3 In very special cases second-order gravitational forces may .be as important, for the system’s motions, as first-order fqrccs. An
example is a radially pulsating, weak-field star with adiabatic index very near 4/3 (Chandrasekhar 1964); see also the discussion
accompanying cquations (61) below. When analyzing such systems, one needs tormalisms of order (3, 2) and (3, 3).
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Lfrcfﬂ—r, = (16”)-1 1 rm"i:\u. 15 v 111% + My 7] ”"A Ii.ﬂ“.n - ("?m\"iuv 1][«7\;‘” 1ii”,h St 77”""1” lﬂuv.n 1?'0.4\)

o 1(7 “‘ A 7](! 7 #)(z'qvn"lﬂ = ’70"71'”)1];“.1\ lﬁnﬂ.u} > (238)
27'”,\; = _11‘“m 'J.Tm i llwav zT‘m ) (2451)
YRR oy = —=16m T . (24b)

We shall refer to the formalism described by these equations as the “postlinear formalism.” To analyze a system
using the postlineur formalism, one must first specify the functional dependence of the stress-energy tensor 7%
on the system’s nongravitational variables (e.g., density, pressure, velocities, electromagnetic field tensor, ...)
and on the gravitational field /4“"; and one must then solve cquations (24a, b) %lmul(kuuuusly for the system’s
motions (,7* accurate up to fractional crrors ~e?) and for the gravitational field (,/% accurate up to fractional
crrors ~¢). Paper 111 will carry out such a calculation for the motion of two stars of arbitrary relative masses and
velocities, which fly past each other with large impact parameter.

¢) The Postlinear Wave-Generation Formalism

Having calculated a system’s internal structure and motions using the postlinear formalism, one can then cal-
culate the gravitational waves the system emits, 2%, by evaluating expression (18). In evaluating (18) onc needs an
cxplicit expression for the retarded Green's (unutnon l(‘( 77 associated with the metric 18y = v + 114y In
the next subsection (§ [Veli]) we derive ,G(#, /’) thenin § ch (i) we place constraints on our system which simplify
1G(Z, 7); and finally in § 1Ve(iil) we use 16(” ) to evaluate the wave field .

i) The Green's Function ,G(7#*, P)

We shall obtain ,G(%, #) by taking the weak-field limit of the exact Green's function G(#', 2?) for a space
described by an exact metric g,,. The exact Green’s function is formally rather simple, so long as the congruence
of geodesics that emanate from the source point .2’ does not get focused so strongly along the future light cone of
&' that geodesics cross. Henceforth we shall assume “no crossing of geodesics on the light cone.” Later (cqs.
[48], [48'], [48"] below) we shall examine the constraints placed on the radiating system by this *no-crossing”
assumption.

DeWitt and Brehme (1960) have derived the cxac.t Green’s function G(#', #) for the case of no crossing. Their
Green’s function consists of a *“direct part™ and a “tail”

G(#', P) = Goireer 4 Gtatl | 25)

The dlrt‘u part is nonzero only if 2 lies on the future I1ght cone of #' [denoted J ' (#)]. By virtue of the “no-
crossing” assumption, when 2 is near J*(:#') there is a unique geodesic from & to # with a unique squared
length

Q(#', #) = (*““World function,” sce Synge (1960))
= 4(—1 for timelike geodesic, 1 for spacelike geadesic)(proper distance along geodesic)?
=g in notation of DeWitt and Brehme (1960). (26)
Because J*(#') is characterized by Q = 0, G¢*** must have the form
G, P) = (dm) NP, P B[, P, @7

where 8., is the Dirac delta function on and near J*(#’), and is zero on and near the past light cone [ (7).
The quantity A(2', #) is an amplitude factor which would be unity in flat spacetime, but in curved spacetime is
given by

8202/ axeox |
lg(A)g(7")| V>

We shall use an expression for the tail different from, but cquivalent to, that given by DeWitt and Brehme. To
derive our expression we insert equations (25) and (27) into the wave equation

AP, P) = — (28)

LGP, P) = —[g(P(P")] " H8(x — x)B(x* — x¥)S(x2 — x2)3(x® — x)
= ~[g(P)e(P)] " 8,x — X) . 9)

The result is
DsGt““ s —(41T)_1{(D5A112)8(£2) + [2"[\,31[2 + (E1\Sl)._\”2]b,(£l _!_ (VL‘I)ZALQS"(S)‘)} N (30“)
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where & and 8 are the first and second derivatives of the Dirac delta function for 2 on and near J*(&'), and
are zero for 2 on and near J~(#'); V is the 4-dimensional gradient operator; and Vi is the covariant derivative
along the 4-vector

K=VQ. (30b)
[Here and below we suppress the subscript “ret” on 8(£2).] We then manipulate expression (30a) using the relations
Q8"(Q)) = —28(Y), (V)2 = 202, 0L — 4 -"—“E_L:.'A"'VKL\ . (30¢c)

(The first of these is a standard identity for Dirac delta functions; the second and third are eqs. [1.11] and [1.63]
of DeWitt and Brehme 1960.) The result is

[1LGHE = —(4m)~H(,A¥2)3(C) . (31)
We then use relations (30c) and the relation A(#, #) = 1 to rewrite this in the form
OGS — (4m)~H(1 — A¥2)3(0)] = +(4m) ~(Vc In A)8/(02) . (32)

Equation (31) tells us that G*! jumps from zero outside the light cone to a finite value inside the cone, without
having any singularities on the cone. Equation (32) allows us to write (restoring the subscript “ret”’)

GeUP Py =0 it P ¢ I (P) (33a)

= = m) [ I M@, ) 2P, PO AP, PN, P - g @) P ().
‘(33b)
Here I-(#) means “the interior of the past light cone of 7”’; and condition (33a) suppresses the unwanted light-
cone part of (33b) [i.c., suppresses (4m)~}(1 — AY2)§(L)].
Equation (33) is the form of the tail which we shall use. This form was su ggested to us by the work of Peters
(1966).
We now specialize the above equations for the retarded Green’s function to the case of a weak gravitational

field 1g., = M. + 1h,.. beginning with equation (26) for the world function. Let A be an affine parameter along the
geodesic linking %' to £:
%(X) = geodesic with coordinates é&(\) ; F(0) =%, ¥(1) =&, 0L A=< 1. (34)

The equation (26) can be rewritten in the form (cf. Synge 1960, p. 47)
W7, #) = f 3g.,(d€*[dN)(d€*[dN)dh . (35)
%
The right-hand side is actually an action principle for the geodesic equation (cf. MTW, box 13.3). Therefore, if we
evaluate the integral along the “straight line”
oB(A): (N = x¥ + A(x* — x¥) (36)

(see Fig. 1), which differs by a fractional amount of O(e) from the true geodesic (A), we will make fractional errors
in Q of O(e?). Such errors are acceptable in ,G(#, 2), since its fractional errors are also O(e*); cf. equation (17).
The result of integrating expression (35) along the slightly wrong curve ,%(}) is

1P, P) = U, P) + y(P,P), 37
where
AP, P) = XXy, (38a)
WP, P) = }X°X° f hagd (38b)
o€
Xo=x*— x¥. (38¢)

'Equation (37) is the desired expression for the world function. Turn next to the amplitude factor A(Z’, 2).
Either by direct calculation from egs. (28), (23b), (37), (38), and (B12), or by invoking equation (95) on page 63 of
Synge (1960), one arrives at the expression

det 192,44

MNP, P) =— ;
14A( ) [.g:8 "2

=—(1 = 3.h = 3 k) det |1 Q o] = 1 + 2(&, ). (39)
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(a) (b)

FI1G. 1.—The points 2, &, " used in evaluating the postlinear Green's function ,G(#”, &) and in calculating the postlinear
gravitational-wave field ;4*Y(2). Part (a) shows the parametrized straight-line curves ,%(A) and ¢ ”(A) linking &, %, and 2°7; part (b)
shows the 4-vectors X*, X*"; and X* linking them.

Here .
o P, P) = }X°X* f - (40a)
o¥

where ; R, is the Riccei tensor, accurate to first order in 14,,:

IRaﬂ = _‘} Ihaﬁ.pp - (40b)

In equation (39) we have simplified notation by using a prime to denote quantities evaluated at 7', ie., \i' =
(") while 17 = h(%). Henceforth we shall reserve primes for this purpose—except that 8" and 8" are still deriva-
tives of Dirac delta functions.

Turn next to the “source term™ (In A) ,.€2# for the tail (eq. [33]). The tail itself is of O(¢) compared to the direct
part of the Green’s function; therefore we can permit fractional errors of O(e} in the tail—which means we can use
the zero-order value of %" in the source of the tail:

AP, @) = x5 — 3 =5 X, (41)
By combining this with equation (39) and by using equation (B7) of Appendix B, we bring the source of the tail
into the form
(In;A(Z', )] o[ AP, 7)) = B(F", 27), 42)
where
B, P) = XX f LRyp\%d (43a)

”
o

and ,%” is the “straight line” from 2’ to 2" (see Fig. 1)
o¥": £ = x* + AX*. (43b)

Turn, finally, to the propagator G(£”, ?) and the volume element (--g")"2d*x” which appear in equation (33)
for the tail. Because the tail is of O(e) compared to the direct part of the Green’s function, we can ignore all curved
space corrections in the amplitude of the propagator (but not its phase), and in the volume element:

G(P", P)(—g") 3" = (4n) 28,0, [L AP, P))d*x" in expression (33b) for ,Gt . (44)

All of the pieces for the first-order Green’s function are now at hand. By combining them (egs. [25], [27], [33],
[39], [42], and [44]) we obtain the following result:

G, F) = (G + .G, N
,Gatrect —. (411')‘1[1 + 0‘(-0}': ‘q})]areb[lﬂ(‘l?" 't?)] ’ (45b)
G = 0 it ¢ 1-(2)

45¢
= —(4m)"2 f B(Z', P)3rot L UP', PE 1oL AP, P)Ndx" P c I (D). 0
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Here ,Q(7", 7) [and similarly (Q(%", ") and [ Q(#", 7)] is given by equations (37) and (38), «(#’, #) (the *“focus-
ing function™) is defined by expressions (40), :md B(.#’, 7") (the “tail generator™) is defined by expressions (43).
it) Constraints Designed to Simplify the Green's Function

Expression (45) for the Green’s function is valid only if geodesics cmanating from & fail to cross on and near
JH(#"). Crossing would be caused by gravitational focmmg and at any crossing pumt the exact amplitude factor
A(Z', #) would diverge. Thus, the criterion for no crossing is finiteness of A alon" J# (Y,

Consider our first- ordcr expression (39), (40) for ;A. Evaluate it in the mean rest-frame of the source, with
coordinates centered on %’ so that

Xe=rn*, n°=1, n = (unitspatial vector pointing from #’ to &),
r = (spatial distance from %’ to %), (46)
A = F[r = (fractional distance from #' to %) ;

and invoke the first-order field equation ;R s = (1Tep — $mes 17)- The result is
AP P =1+2, o=} f (P, Tog)F(| — Flr)dF . 7
0

This expression for ;A can never diverge if the source is bounded, because once the integration point 7 gets outside
the source, ;7,5 vanishes and ;A stops increasing. However, if the focusing function « approaches unity inside the
source, then second-order and higher effects will come into play. As one moves out into the vacuum beyond the
source, those second-order ellects will be essentially those of the *“focusing” or “ Raychaudhuri” equation; they
will produce a divergence. Thus, the constraint

CONSTRAINT: «(#?,?)« 1 forall & and P (48)

is necessary lor the validity of the first-order analysis, and simultancously protects us from “geodesic crossing.”
Yor a system that is roughly homogeneous with mass M and linear size L, equation (47) gives

«n~ (ML) ~ e 1; (48)

so there is no problem in satisfying the constraint (48). However, for a highly inhomogeneous system (lumps of
mass m and size /, separated by distances b > 1), and for rays originating in one lump and passing through another,
equation (47) gives

e ~ bl ~ Bl m]l).

In this case the constraint (48) is significant: it says that to avoid too much ray focusing, the lumps must not be
too far apart:

(b1 « ({m) ~ 10°(/|Ro)(Mo[m) . (48")
The Green’s function (45) would be much easxer to use if, throughout it, we could replace the first-order world
function £ by its zero-order approximation o€ = ln, X" X", Let us examine ;Q (eqs. [37] and [38)) in the rest

frame of our source, for points # on or near J, (/”)
P, P) = WX+ X)X+ X + 297, D)X + X)] = X(—X°+ X + A1), (49a)

where

X = |X| = (distance from source to field point), (49b)
s = Y(Z', #)| X = (*Shapiro time delay’’) . (49¢)

For field points 2 far outside the source, the dominant contribution to the Shapiro time delay is the asymptotic
“1/r” field of the source. It produces a huge delay of

A = 2M In (X/L) = (Shapiro time delay due to asymptotic field of source),
M = (mass of source), (50)
L = (characteristic size of source) .

This delay is time independent and is independent of where inside the source 2’ is located (aside from a negligible
piece of size ~2ML|X); therefore its only effect on the radiation is to delay the arrival time at a given radius,
Henceforth, for ease of calculation, we shall remove this constant delay from the argument of our Green’s function.
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We can always reinsert it at the end of the calculation if we wish. With this constant delay removed, we can rewrite
Q as
1 :
AP, P) % X[— X0+ X + (Mts — Al % oUP, P) + AP, P) + AXU,]

for &’ inside the source and Z far outside it , (51
where

U, = P,/M = 4-velocity of source; X*U, = =X . (52)

The remaining “internally produced™ delay between &' and 2, Atg — A, is of the same order of magnitude as
the total delay between two internal points 2" and #":

(Ats — A)gep ~ (Atg — Mgz ~ (Atg)g.2- ~ j 1hoodF ~ M for homogeneous source
ACross source (53)
~ mIn (b/I) for lumpy source .

Henceforth we shall assume that this internal time delay is small compared with the characteristic time scale on
which the source changes—i.e., small compared with the characteristic reduced wavelength A of the radiation
emitted,

CONSTRAINT: (Afo)imurna ~ mIn (B < A. - (54)

[Example: If Ais 100 times larger than the Schwarzschild radius, 2m, of a lump, then b// can be as large as exp (10) ~
2 x 10* without causing problems. Another example: If A > b (which is the case for bremsstrahlung), and if / > m
(which is required for fields to be weak), then the condition b 3 / (separation of lumps bigger than size of lumps)
guarantees that constraint (54) is satisfied.]

The constraint (54) allows us to expand our delta functions 8(;£2) in powers of the internal time delay. Discarding
terms that are quadratic and higher-order in (Afg)nernat/A, We obtain for the Green’s function (45)

J P, P) = ;GO 4 Gl (55a)
LGIHP, P) = (4m) HBal(EX“KPeg) + P, P XXP0s) + AP, P) + AXUJSei3X X np)} 5
GNP, P) =0 if P ¢TI (P) Ea

=— (4m)"? f B(P', P")8 ot 3 X X 05) 810 (3 X Xgnop)dix”  if P € I(P). (55¢)
In these equations
Xo=xt — x¥, X¢=x%—x, X =x"—x; (56)

sec Figure 1.
Equations (55) are our final form for the scalar Green’s function in a space with linearized metric ,g,, = 7., +
11uy- This Green’s function has fractional errors

|(errors in yG)/,G| ~ Maximum of {€?, «e, [(Afs)inrernar/Ale} in general,
~ €2 for most sources ; (57)
and it has been stripped of its asymptotic time delay (eq. [50]).
iii) The Gravitational-Wave Field ,h*

By inserting expressions (55) for , G(#', #) into equation (18) we obtain the following expression for the gruvita;
tional field far outside a weak-field source:

WY = Y+ GhE R+ AW+ DY (58a)
iy = 4 f Seoe (BX X Py )a )L — HP) Y (58b)
" = & [ o, PG X X g TP W (58¢)
P = 4”. A7, @) + AXOU]S (on(3 X" X Pyp)o TP )d X, (58d)
i = & [ (B XXttt + (167) 0 B ' (58¢)

P4y, = (—=1/xn) Jf B(#', ."/‘")S’M(’5X‘"X""r,,,ﬁ)Sm(},\_’"Y"’na,,)._,’f“"(W’)(I*x”d“x' . (58f)
P el = (&)
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Here 2’ and #" are source points with coordinates x¢ and x* (cf. Fig. 1); the field point # has coordinates x*;
T, v, and (A* are the stress-energy tensor, the pseudotensor, and the gravitational field obtained by a post-
linear analysis (cqs. [23] and [24]); 8., 1s the Dirac delta function on the future light cone of the source and zcro
on the past light cone; &', is the derivative of 8,,, with respect to its argument; X, X% and X“ are

Xo=x* — x*, Xe= x* — x*, X = x* = x%; (59a)

«, B, and y are defined by integrals of the first-order Ricci tensor ; R,, and of the metric perturbation ,4*, along the
straight line between two points

1

P, P) = §XXP J Res(e® + AX#N(L — NdA, (59b)
(1]
1

B, ") = X< X f Rop(x% + AX*)A%A (59¢)
0
1

AP, P) = 1XoXP f s X+ AXDYN ; (59d)
0

- AX®U, is that portion of y which is produced by the asymptotic, 1/r, external field of the source
—AX*U, = A(—X*U,) = (Shapiro time delay produced outside source)
x (distance from source point to field point) (59%)

(see § 1Vc[ii] above); and &’ € I~ (%) means that the integration (58f) is performed over field points 2’ that lie
inside but not on the past light cone of &,

Each piece of the distant gravitational field ,A** has its own physical origin and significance:

The first piece ;A% is the ““direct field.” It is produced by the stress-energy ;7" and propagates as though space-
time were flat. It includes the zero-order, nonradiative, *“1/r”" field of the source, and also that portion of the radia-
tion produced “directly” by the source’s motions. If the internal gravity of the source has negligible influence on
the source’s structure and evolution, then all other parts of ,4*¥ will be negligible compared with the direct field
(““linearized theory”; cf. eq. [20] and the associated discussion).

The second piece " is the “focusing field.” Tt is the amount by which the direct field is augmented due to
focusing as it passes through regions of nonzero Ricci curvature (nonzero stress-energy).

The third piece ,h4y is the “transition field” (first discovered in the equations of general relativity by Chitre,
Price, and Sandberg 1973, 1975; analog of ““clectromagnetic transition radiation,” Ginzburg and Frank 1946).
It is the amount by which the direct field changes due to Shapiro-type time delays within the time-varying source.

The fourth piece A4’ is the “whump field.” It is the field generated by “gravitational stresses” 2%, +
(167)~*h*2 , \h*° ,. We have given it the name “whump™ because in our minds we have a heuristic image of
gravitational stresses linking various pieces of the source, and going “whump™ (i.c., quickly rising in strength and
then quickly falling) as the pieces of source move past each other.

The final piece A%}, is the “tail field.”” It is generated by the direct field in those regions where focusing has
deformed the geometry of the direct wave fronts. ‘

Although it is useful, heuristically and in calculations, to split ;44" into these five pieces, one should not attribute
too much physical significance to each individual piece. For example, no individual piece satisfies the Einstein
field equations or the de Donder gauge condition. However, the five individual pieces combine in such a way that
their sum does satisfy the feld equations and gauge condition; see Appendix C.

Y. SLOW-MOTION LIMIT OF THE WAVE-GENERATION FORMULAE

Consider a weak-field system which has slow internal motions and weak internal stresses. Characterize it by the
following parameters:

L = (size of system)
= (characteristic time-scale of system) = (reduced wavelength of radiation)
M = (mass of system) (60)

v = (|TY|/T%)nax = (Maximum internal velocity)
82 = (|TY|/T°°) max = maximum of (stress)/(density) .
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Chapter 36 of MTW derives the quadrupole-moment formalism for gravitational wave generation under the
following assumptions (eqs. [36.18] of MTW)

L/A« 1 whichimpliesv « 1 ; (61a)
M|L < LIA, S®<«L[X. (61b)

Constraint (61a) is the standard slow-motion assumption—the only assumption truly necessary for validity of the
quadrupole-moment formalism (see Paper II). Constraints (61b) say that the motion must not be toe slow if a
weak-field calculation is to yield the quadrupole-moment formalism. In terms of the characteristic frequency
w = 1/A this “not too slow” assumption says

w? > (MJLYMILY), o> S*S/L). (61b)

A violation of these assumptions occurs, in dynamical systems, only when the gravitational and stress forces
counterbalance each other so precisely that second-order gravity, ,4*Y, can affect the motion significantly (cf.
Chandrasekbar 1964). In this case an analysis based on the postlinear approximation cannot possibly give a correct
description of the radiation.

It is instructive to see how the postlinear radiation formulae (58) of this paper yield the quadrupole-moment
formalism, when applied to a system satisfying constraints (61).

We begin by combining the direct and whump fields (58b, ¢) and then breaking them up again, differently:

By + 25{5} = 2’;:'5‘&1 =+ 2’75‘\”;2 ) (62a)
sty = 4f 83 X=X (= 18)T™ + 218 )aw 2", (62b)
s = () [ B BX XL 0 B L ' (620)

We then evaluate expression (62b) in the rest frame of the source

e Uy 1y
zﬁﬁ\(n - 4J‘( 1.?)(2|r" i 1'L—L)rn: d3x’ : (63)

x — x|
and by carrying out the analysis of* MTW § 36.10, we bring the spatial transverse-traceless part of this field into
the form

[ehBiws (8, XN = QRr)(d2[d®)EE( — 1) ~ (M[r)(L[3)? . (64)

Here F, is the “reduced quadrupole moment” of the source, and £ is its transverse-traceless part. This is the
standard quadrupole-moment formula for the radiation field. ~

An order-of-magnitude analysis shows that all other parts of our expression (58) for ,h;, are negligible. In
particular, by using the following relations valid for the source’s interior

1};00 o~ MfL, 1’;01 ™ A!U/L, IE”‘ Lo MSZIL s le e, A{SZILS 3 IERE.D o 1};“3/ﬂ »

1}';&5" i -150:5/[’ ; B~ ML, (65a)
as well as the relations
e~ ML, (y+ AXU,) ~rM, (65b)
we obtain for the ratio of each other part to the “DWI1"” part (eq. [64]):
2 - M S2\2
| 2higal (A )| ~ (“L“) (U + m) «1, (66a)
= ML\ [ §?
(2P S )T | ~ (L—H() (m) <1, (66b)
|8 1Rt )]~ |aPAE Rt 2| =~ My S « 1 (66¢)
2N TRI\27'DW1 2N TL/\2M"DW1 L L/i‘ -

* Note that (—,£)xT*" + 1£%,) here plays the same role as 7%¥ + ¥ in MTW. The key properties which they share are (i)
vanishing coordinate divergence; (ii) same role in retarded integral for ,A*".
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VI. SUMMARY OF OUR ** PLUG-IN-AND-GRIND "~ FORMALISM FOR WAVE GENERATION

Our postlinear formalism for wave generation can be summarized as follows:
Regime of validity. The formalism is valid for any system satisfying these constraints: (i) The gravitational field
must be weak everywhere:

|h=] « 1 everywhere , (67a)

and the source must be isolated (see discussion preceding eq. [4)). (ii) Gravitational and nongravitational forces
must not balance each other so precisely as to enable second-order gravity to influence the system’s motions
significantly. (iii) The source must not focus substantially light rays emitted from within itself. Mathematically
this constraint says

|(?', #)] « 1 for &' any cvent inside the source,
2 any event on the future light cone of #’, (67b)

where « is defined by equation (59b). For further discussion of this constraint, see the first half of § IVe(ii). (iv) The
“Shapiro time delay” for light propagation within the source must be small compared with the characteristic time-
scale A for internal motions of the source. Mathematically this constraint says that in the mean rest-frame of the
source

(Ats)internal = V7', P)[|x — x'| < X. (67¢)

Here x and x' are spatial locations of events 2 and &’ that lie inside the source, #2 is on the future light cone of
2, and y is defined by cquaticm (59d). For further discussion, see the sccond half of § 1Ve[ii].

Calculation of the systen’s motion. For a system satisfying these constraints one calculates the internal structure
and dynamics by using the postlinear formalism of § Vb (eqs. [23] and [24]).

Calculation of the dutamﬁcld To calculate the gmwtdtlon.ﬂ field o21*¥ in the radiation zone, far from the source,
one takes the result of the postlinear analysis, plugs it into equations (58) and (59), and grmds

In Paper 111 we shall use this formalism to calculate gravitational bremsstrahlung radiation.

APPENDIX A

WHY USE THE CURVED-SPACE SCALAR-WAVE OPERATOR?

In laying the foundations of our analysis (in and near eq. [6]) we write the Einstein field equations in terms of the
curved-space scalar wave operator [J;. We choose to do this because the obvious alternatives (the flat-space wave
operator []; or the curved-space tensor wave operator [],) would ultimately lead to complications or dangers in
our analysis.

The flat-space operator [], treats the field propagation from the outset as though it were on flat-space charac-
teristics (straight coordinate lines). Because the true characteristics suffer the Shapiro time delay which involves
a logarithm of distance, the use of [J, would lead to logarithmic divergences in the radiative field at large r. If one
were sufficiently careful, one could remove those divergences without serious error—but that is a dangerous enter-
prise. Even if one succeeded, one would be left in the end with the interesting effects of focusing, time delay
(““transition radiation”), and tail all lumped into the whump part of the field. We prefer to keep them separate.

Consider next the curved-space tensor wave operator .

Dt};uv = ﬁuv;aa o 2Rauﬂv};«xﬂ - 2Ra(uﬁv)a (Al)

(cf. MTW eq. [35.64]). Because the true propag gation equation for very weak gravitational waves on a curved
background is [ ]A** = 0, it is tempting to formulate our analysis in terms of (7, rather than [J,. By using [, we
push into the *““whump™ part of ;4*" an important phys;cal effect: the curvature-induced rotation of polarization.
In effect, p.xrt of our whump field corrects the error in our direct field’s unrotated polarization. Had we used [,
rather than [ [, polarization rotation would have shown up in § IVc(iii) as a separate piece of the radiation field.

The tensor wave operator has a disadvantage which, for our purposes, outweighs the above advantage. Suppose
that one constructed a tensor Green’s function for [,

UG (', @) = —Hg* g™ + g8")(gg) **6.(x = %), (A2)
or for any other wave operator with the form

(lotnech™ = I*%¢, + (any ** background ™ field)** ,/i* . (A3)
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That Green’s function would have a first-order tail ;G5 (#’, 2) with “sources”™ 8*“# involving the Riemann
tensor (cf. eqs. [43a] and [45c]). Such a tail would originate everywhere on the light cone of &', whereas the tail
G for our scalar Green’s function originates only on rays that have passed through matter. In practical cal-
culations involving lumpy sources—see, ¢.g., Paper 11— that tail would be as difficult to calculate as the whump
part of the field. We prefer our scalar tail because of its greater simplicity. By using "1y we dump all serious calcula-
tional complexities, for lumpy sources, into the whump part of the field.

APPENDIX B
LINE-INTEGRAL IDENTITIES

The weak-field Green’s function (G(#”, %) used in this paper involves three integrals «, 8, v along “straight
lines.”” In this appendix we take the line of integration to be

oB(A): E=x+AX, 0<A<1, Xo=x* -2, (B1)
The three line integrals are
1
y = 40X [, (B2)
0
1
« = }X“X"J. TRl — XX, (B3)
0
1
B= X“X"J 1R AN (B4)
0
where 1/,, is assumed to satisfy the de Donder condition
y® = shyy? — ik, =0 (B35)
and the Ricci tensor is therefore given by
1Ry = _% lhuv.oﬂ ’ (B6)

and where the index notation used is that of a Lorentz frame in flat spacetime.

Below we list a number of useful identities linking the line integrals e, 8, v, their derivatives at point 7, and the
values of 1/i,, and ; R,, at &:

X, = 1B, (B7)

X*Xoa ,, = —f + LX°X°R,,, (BS)
Xvy, =y + YX*Xoih,, , ' (BY)
XOX o = X°XOh,y + YX° XXM (B10)
P == =l ot (B11)

Similar identities involving derivatives at 2’ and mixed derivatives at %" and # can be derived fairly easily. For
example, :
Yo = =2 — Y h— Y0, (B12)
where i = 1(P) and I = W(P).
The derivations of these identities are quite straightforward. The necessary techniques are illustrated by the
following derivation of identity (B7): By differentiating definition (B3) and making use of equations (B1), we obtain

o1 1
@, = X* J R = NdA + X X" j (ER,Jee) (g7 [axP)N1 — A)dA
0 0

1 1
an RuM1 — N\ + LXK f (R JAST )AL — X)dA
(4] (1]

Il

1 1
X f R,M1 = NdA + LX* X f Ry oX2(1 — NydA .
(1] 0
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Here R, == ¢R,,[0¢7 is the derivative of R,, at the integration point % (). When multiplied by X* this expression
gives

Xoa, = X4X* j ' RNl — Xydx + 3XoX° 'f 1 (Ryy o X?)A(1 — X)dA
u1 ,01
= XX | RuM1 = NdA + LXeX” JO (AR [dNN(1 — Nd.
By integrating the last expression by parts we obtain
Xta, = X*X* J: RuIA1 = A) = Hdld)(X* — A)]dA = $X4X" J; ' R,A%dA = 18:  QED.

In this case the integration by parts gave no endpoint terms; but in other cases (eqs. [B8]-[B12]) nonzero endpoint
terms are obtained.

In manipulations of our weak-field Green’s function ;G(#’, #) and of our second-order gravitational field
M (see, c.g., Appendix C) two other identities are useful:

Bd" = («8),” — «,"3, (B13)
(8" + @d),,” = "8 + li;ws.na . (B14)
Here 8 is the flat-space propagator between 2’ and &
8 = B3 X°Xn50) o (B15a)
which is related to the 4-dimensional Dirac delta function
Sy(x — x) = 8(x® — x)8(xt — xV)E(x% — x*)3(x? — x¥) (B15b)
by
8,0 = —dmwd,(x — x'); (B15¢)

and &' is the derivative of the propagator (B15a) with respect to its argument. The absence of primes on indices
and on /’s in (B13) and (B14) indicates that all derivatives and endpoint terms are taken at &; none are at 2. The
identities (B13) and (B14) can be derived with some lubor from the identities (B7)-(B11).

APPENDIX C

PROOF THAT THE “PLUG-IN-AND-GRIND” FORMULAE FOR .i** SATISFY THE FIELD
EQUATIONS AND GAUGE CONDITION

Here we briefly sketch the proof that our second-order gravitational field (eqs. [58]) satisfies the second-order
Einstein field equation (eqs. [16] with n = 2) and the de Donder gauge condition * ‘h** , = 0. As part of our proof
we shall derive expressions for the amount by which each piece of ,i*" fails, by itself, to satisfy the field equation
and gauge condition.

A preliminary step in our proof is to rewrite the ** tail” and “transition™ fields (58f) and (58d) in new forms.

Although expression (58f) for the tail seems optimal for practical radiation calculations, the restriction 2’ &
I~ (#) makes it nasty for formal manipulations. To get rid of this restriction we take expression (B13) for &', in
it we replace # by #”, and then we insert it into expression (58f). The result,

R4 = (1/m) j f (2(Z, 2°)) 5+ Brer(3 X% X2 005) 8 corl 3 X X1 p)e T (P )i x"d X (cn

is an expression which gives the same value for .44} whether one impoqu or omits the restriction 2’ ¢ I7(2). One
way to see that (C1) is oblivious to the restriction " € I (%) is this: Take the source equation (31) for the tail
of the exact curved-space Green’s function; calculate its lowest-order form

Gtaﬂ ® _(47) l[(;(?)o' .@)] "8(#X“Xﬂ1}‘,g) 5

invert this using a flat-space propagator; use the resulting G**" to calculate ;/i# ; the result will be expression (C1)—
and nowhere in the derivation did one need to impose the restriction #’ € I ().
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Expression (58d) for the transition field involves a *“time-delay function” y(#’, Z) from which the logarithmic,
“external time delay’ A(— X“U,) has been removed. A straightforward subtraction of the external time delay
is well suited to practical calculations, but poorly suited to formal manipulations of JA=*. In the formal manipula-
tions of this appendix we shall perform the truncation in a **smoother” manner: We surround the source by a
(hypothetical) cloud of negative-mass material, with total mass, — M, equal in magnitude to that of the source,
+ M. We put the cloud far enough from the source (e.g., at radius % ~ 100L) that it is very diftuse. and thus
contributes negligibly to the line integrals « and £; but near enough that the Shapiro time delay 2V In (£/L) in
going from source L to cloud % is small compared with the time scale A of the source’s internal motions. The cloud
automatically removes the external Shapiro time delay; no artificial truncation of ¢ is needed. The second-order
gravitational field is then given by equations (58) and (Cl) everywhere (inside the source and out), except that we
must remove the artificial truncation from (58d):

s = 4 f AP, PSS X X ) TP ) . (©€2)

Turn now to the proof that our second-order field satisfies the second-order Einstein field equation. We begin
by applying the first-order wave operator

10 = (0" — h*)8.8, (C3)

to cach of the five pieces of our second-order field. By applying ;[ to the direct field (cq. [38b]) and by using
equation (B15c) we obtain

(Ol = —16m(1 = § F),T% — 4,%70,0, f Beed bXOXPn,) TP )d'x . (Cda)
By applying ,([J; to the whump field (eq. 58¢) and by using (B15c) we obtain
1Ohly = =167ty — 4 1R, (C4b)
By applying 4[], to the tail field (eq. [C1]) and by using (B15c) we obtain
\Cloahty, = —4 J [P, P)] 28 5a(b XX ) TP )l . (C4c)

By applying [, to the focusing field (58¢c), and by using (Bl5c) and the relation «(#, #) = 0 (cf. eq. [B3]) we
obtain

10Ok = 4f [P, D))" 8ol 3 X XP2p)o TH(P)d X" + 8 ‘ [(Z", P)],o[8eer(3X X 0 )] 2o T () x" .
) (C4d)
By applying ,[], to the transition field (C2), and by using (B14), (Bl5c), and «(#, #) = 0, we obtain
1[Tsohh, = 415""6‘,6,"- 8rot(FX X 0gg) s TH(Z)d " — 8 J. [P, P)],o[8ree(F X X )| 2o T(P)d*x" . (Cde)
By adding up all five pieces (Cda)-(C4c) we obtain
1Osf® = = 16m[(1 = 1/, T% + %] — J#0 5 07, (C35)
which is the second-order Einstein field equation (16). '

Turn now to a proof that our field (58) satisfies the dc Donder gauge condition ,A**, = 0 except for fractional
errors of O(e?). From (58b) and the relation

o, J Sret(FX X nag)f(P)dx" = [ B XXX )0 (P )d X", (Co)
valid for any function f(#’), we obtain

Ny = 4J Beatl 1 X X Yo T(P)L — AP}, vd'x' (C7a)
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From (58¢), (C6), and ,/*” , == 0 we obtain

ZE:JVV,V = 4_[ Sret('}"‘mX&q::ﬁ)[lti'iv—L,v + (167)_11-11‘0,:” lﬁw.a]at .9'd4X' .

(CTb)

We now add (C7a) and (C7b) and use the postlinear equations of motion (24a) rewritten in the form

(cf. eq. [3]) to o-btain

LT — h) + ], =0

G+ ).y = ()70 [ B XX B g B el

W/

We then use 4*°(#"),,» = 0 together with (C6) and a relabeling of indices to obtain

(AE + "), = (4m)~%9, [ 8ot (F X X0 11 P (P oo 1RP(P)dEX

We then give #’ the new name 2" and rewrite ,1**(#") as a retarded integral (the solution to eq. [24b]); the result

1S

Ay + h),, = (1m)o, f f 810t F X0 X0, 0) P9 (P) 8t L XO X 00)) pron o T*(P)dix"dix" (C7c)

By applying @, to expression (Cl), adding it onto (C7c), using identities (B14) and (B15c), and integrating by parts,

we obtain

(I + Ry + JaY),, = —48, J AP, P8 1S XX Pyag)s TP )

G (C7d)
—40, | P, PY.o(LX X neg)s T (P )X
Comparison with expressions (C2) for ,h4% and (58¢) for ,h% shows that
GAE + o+ oBEL + ohih + AR, = 0 (C8)
i.c., our total second-order ficld dees satisfy the de Donder gauge condition.
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ABSTRACT

Formulae are derived describing the gravitational waves
produced by a stellar encounter of the following type: The two
stars have stationary (i.e., non-pulsating), nearly Newtonian
structures with arbitrary relative masses; they fly past each
other with an arbitrary relative velocity; and their impact
parameter is sufficiently large that they gravitationally de-

flect each other through an angle small compared to 90°.
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I. INTRODUCTION AND MOTIVATION

The gravitational interaction of two stars flying past each other
not only deflects their trajectories; it also prdduces gravitational waves.
Those waves are the analogue of the electromagnetic bremsstrahlung radiation
produced when an électron flies past an ion. For this reason they are
called "gravitational breﬁsstrahlung radiation."

Formulae for gravitational bremsstrahlung radiation have been derived
by many researchers 1n a variety of different contexts, using a variety of
different methods and a variety of different approximations. Everybody
agrees on the spectrum and angﬁlar distribution of the radiation for the
rather trivial case of low stellar velocities and large impact parameters.
Howevéf, at high velocities different methods give discrepang results {;ee
Paper IV for details and references); and at no velocity, low or high, has
theré beeﬁ a detailed study of the amplitude as a function of time, angle,
and polarization. The time dependence of the amplitude is important because
that is what would be measured by a broad-band gravitational-wave detector--for
example by Doppler tracking of interplanetary spacecgaft (Estabrook and Wahlquist
1975; Thbrng and Braginsky 1976).

In this paper and its sequel (Kovdcs and Thorne 1977; "Paper IV") we
shall attempt to gi&e a definitive and complete treatment of the bremsstrah-
lung p}oblem for the case of large impact parameters (i.e., for small
déflections of the stell#r trajectories). We sﬁall place'noACOnstraints on
the stellar velocities Qr on thé ratio of the masses of the two stars.

This paper will be confined to a derivation of the amplituae as a func-
tion of time, angle, and polarization. Paper IV will examine the details

of that amplitude, will use it to compute other features of the radiation
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including spectra, angular distribution of radiated energy, total energy
radiated, low~-velocity limit of various quantities, and high-velocity limit.
Paper IV will also compare with the results of previous computations and
will attempt to resolve their high-velﬁcity diécrepancies.

In computing gravitational bremsstrahlung at high velocities, v v c,
one must not use either "linearized theory" or the '"quadrupole-moment

formalism."

Linearized theory makes fractional errors of order unity at

low velocities or high velocities; and the quadrupole-moment formalism makes
fractional errors larger than unity at high velocities. (For discussion see,
e.g., §IV.a of Paper 1I.) By contrast, the "post-linear formalism" constructed

in Papers I and II (Thorne and Kovhecs 1975; Crowley and Thorne 1977) makes

fractional errors of order (gravitational radii of stars)/(impact parameter) << 1,

whether the encounter velocity is high or low. This paper will utilize the
post-linear formalism.

This paper is divided into eight sections. Section II gives a post-linear
analysis of the stars' trajectories and "first-order" gravitational fields
iﬁvv; 8II also introduces the notation to be used throughout the paper (see
its third paragraph). Section III introduces the parameters and functions in
terms of which the radiation fic{d will be expressed; and it presents a
number of formulae and geometric relationships to be-used in the derivation
of the radiation field. Section IV presents formal‘post—linear expressions
for the second-order gravitational field éﬁuv, which contains the radiation.
That field is broken up into five parts: "direct,”" "focussing," "transition,"
"tail," and "whump." Section V evaluates the direct field in terms of the

pafameters and functions of 8III; §VI evaluates the sum of the focusing,

transition, and tail fields; and 8VII evaluates the whump field. Section VIII
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adds all the pieces together to yield the full second-order field iﬁ“v

(eqs. 8.1 and 8.2); and In the rest-frame of one of the stars it projects

out the radiation field (transverse-traceless part of The final

Zhjk)'
radiation field (eqs. 8.11 and 8.13) is expressed in terms of two time-

and angle-dependent amplitudes for two orthogonal states of polarization.

II. POST-LINEAR ANALYSIS OF THE STELLAR ENCOUNTER

Coﬁsider two_stars A ﬁnd B with arbitrar§ masses m, and My which
undergo a near encounter. Let the {nitial relative velocity of the stars
(veiocity of A as measured in rest frame of B, and velocity of B as measured
in rest fram; of A) be v ; and let the impact parameter of the encounter.be
b. Require that the stars' radii LY and Ty be small comparéd with their

impact parameter

r

A B

<<b, r, << b 3 (2.1a)
so that one can ignore tidal interactions between the stars and tidal
gravitational radiation (Mashoon 1973). On the other hand, require that

the stars be sufficiently large

Ty >> ™ Ty >> L (2.1b)

that their internal gravity is nonrelativistic, and the post-linear formal-

ism is valid. Also require that

g = (m, +m)/(bv?) << 1 , (2.1c)

so that the angles of deflection of the stellar trajectories are very small.
p 2

We shall use the dimensionless quantity C as an expansion parameter
in analyzing the encounter and the emitted radiation. In particular, we

shall calculate the stars' trajectories, velocities, and accelerations only
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up to first order in f . This will be sufficient to give us fractional

errors in the gravitational-wave field of order

2
(error in wave field)/(wave field) ~ Y 2 (2.2)

wvhere

-1/2

v?) ‘ (2.3)

Y= Q-
(see D'Eath 1977). To obtain greater accuracy than (2.2) at high veloci-
ties one would have to perform a post-post-linear calculation or use an

entirely different type of approximation scheme--e.g,, that of D'Eath (1977).

We shall analyze the stars' motions using the post-linear formalism
of Papers I and II. That formalism is couched in the language of flat
Minkowskii spacetime, even though spacetime is actually curved, We shall
perform the analysis using frame-independent Minkowskian language and nota-
tion. Greek indices will run from 0 to‘3, Latin indices from 1 to 3; sans-
serif 1e£ters (printed version) of letters with arrows over them (manuscript)
will denote 4-vectors and 4-tensors; bold-face letters (printed version) or
letters with squiggles under them (manuscript) will denote 3-vectors and
3-tensors; subscripted commas will denote partial derivatives; geometrized
units (c = G = 1) will be used; and the aignature of the metric will be —++ .

Each star carries with itself a clock thét reads proper time—-—'rA for
star A and Ty for star B. The clocks are synchroniied to read T, = T

A B

at the moment when they are nearest each other. We shall denote the world

=0

lines of the centers of the stars by
o 1 a (¢} -, a o
Zpy () =z, (t ) +3,7(1)) » 2 (tg) =z (1) +4.7 (1) .« (2.4a)

Here ZAG(TA) and ZBu(TB) are the spacetime coordinates (in an
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arbitrary post-linear courdinate f{rame) of star A when its clock reads

a o
B %A and zy  are the stars'

unperturbed coordinates (coordinates in the limit Z - 0); }Aq and }Bu are

time TA, and of star B when its clock reads T

the first-order corrections to the unperturbed coordinates. We shall de-

note the 4-velocity of star K (=A or B) by

«

P _ .« = g ¥ a .
UK = dZK /dTK =, + Vi = de /dTK-Fd%K /dTK : (2.4b)

and we shall denote its gravitationally-induced 4-acceleration by
o - o = o
a, = dUK /dTK dwK /dTK R _ (2.4¢)

The unperturbed world lines zAa(TA) and zBa(TB) are straight lines
in our (arbitrary) post-linear coordinate frame; see Figure 1. Define the
"impact vector"

o . ” vector separating the two stars
b = 2y (TB=0) -2, (TA=0) =| at their moment of closest approach -
in the case of unperturbed world lines/.

(2.5)

0f course, ba is orthogonal to the unperturbed world lines of both stars

> s
u = b *u

[
B A

= 0 . (2.6)

e .
Call the center point of b the "collision event" and denote it ;c . In

3 ) > >
terms of ;;, g, and the unperturbed 4-velocities uysup the unperturbed world

lines are described by

-> - 1 > -+
zK(TK) - + 2 €k b + Wt 3 (2.7a)
€, = -1, €y = +1 5 (2.7b)
The moving stars generate a post-linear gravitational field iﬂuv' Its

trace reversal



1huv = lhuv EEPRLTY 1B (2.8a)

is related to the first-order metric of spacetime by

1gw = nuv ¥ 1huv * (2.8b)

 (See eqs. (I,23¢c,d)--i.e., eqs. (23c,d) of Paper I; and recall that inkeeping with

our flat-space notation all indices are raised and lowered using the Minkowskil
metric nGB') The gravitational field iﬁvv is generated by the post-linear

stress—energy tensor ZTuv z (we shall drop the prefix 2) through the
flat-space wave equation (I,24b)

ol —uv
f 1 N 4b

= e ],1\) .
N gp = 16T T _ (2.9a)

This equation has the solution

iﬁ““(x) = 167 f 0C06x") T™™(x') ax . (2.9b)

Here x and x' denote field event and integration event; d x' is the flat-

" space 4-volume element

L ] 1 A
-dhx' = dx0 dxl dx2 dx3 . (2.10)

and 0G(x,x‘) is the flat-space propagator of equations (I,19b) and (II,6b)

1, a o

et B G0 1 (2.11)

RICRDE (1/4m) §

In this propagator Gfe is the retarded Dirac delta function--which 1is zero

t

for x in the causal past of x', and is the ordinary Dirac delta function

otherwise.

Equation (2.9b) shows that iﬂ“v obeys a linear superposition law, This

allows us to split it into a field due to star A plus a field due to star B



=WV _ = uv =WV . = | - ¥ TAVI Y
1h lhA + lhB s lhK (x) lém J OG(x,x ) TK (x")d'x' . (2.12)

VI
Here TKl is the post-linear stress—energy tensor of star K. This stress~

energy tensor satisfies equation (I,24a)

Ty Wl = B S 180
where lruuv are the first-order Christoffel symbols computed from the first-
order metric (2.8b). Equations (2.12) and (2.13) are a coupled set of
equations which determine: (i) the internal structures of the stars, (ii) the
gravitational fields of the stars, (iii) the_gravitational deflection of the
stars' world lines, and (iv) the gravitational field of the system.

Because the stars are small compared to thelr impact parameter, their
internal structures are influenced by their self-gravity, but not by
each other's gravity--i.e., tidal interactions can be neglected. We shall
take thg internal structure of each star as given, and shall focus atten-
tion exclusively on the stars' relative motions.
Our neglect of tidal interactions implies that each star's self field has
no influence on its trajectory. Hence, the motion of star A 1s governed
entirely by the field of star B, and conversely. By using this fact and
performing a 3-volume integral of equation (2.13) over the interior of star
K, one can readily verify that the ceﬁter of star B moves along a geodesic
W _

=7 ¥ 4 hApv’ and the center of star A moves along a

(AN [V hBu\J

of the metric g

geodesic of the metric g = n . The proof is identical to that

found in standard references—e.g., Exercise 39.15(d) of Misner, Thorme, and

2

Wheeler (1973)--cited henceforth as MIW.] The resulting geodesic equation

for star K--accurate to first order in the deflectlon parameter L--is



&
(&M

a_ 1 o a - ,Q B v
e 2410y Byt Pk v, T aPkrey ) %k Yk (2.14)

Here the symbol K' means "the other star”, i.e., "not K"; and is

. 1"k op
the field of star K' at the location of K.

In calculating lhK‘uB for use in thls geodeslc equation, we can treat
star K' as a point source (tidal interactions negligible), which moves
along the undeflected world line zK.q(TK.). The resulting fractional

o
errors in a, are of order . The stress-energy tensor for star K' at

event x' is then
T, % (x') = % B8, Ix' - 2, (r, 0] d (2.15)
X' X Ly mKN-th U-Kc 4 X Zy TK' TKl N .
where 64 is the 4-dimenslonal Dirac delta function

6,00 = 8§60y 5 8¢=2) 6t (2.16)

By putting this stress-energy tensor into equation (2.12) for iﬁk,uv and

integrating over dax' we obtain

Pt ) = 161wy w M w,” f o2t e (2.17)

The integral over Tgr can be performed using expression (2.11) for the
propagator. The result is

= v I"mKl uK'u uK.\)
it (%) = =

>
J(Ki & lﬁ(l

5 (2.18)

-»>,
Here.Kk. is the unique past—directed null vector reaching from the field

point x to the unperturbed world line of star K'. The corresponding tréce—
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reversed gravitational field (metric perturbation) is

PV, 1 w
by (u, " w5 0)
Wiy - KR! TR T2 : (2.19)
g &

-

->
(KK| . uKl)

Here we have used the fact that the unperturbed 4-velocity U has unit

length relative to the unperturbed metric: uK.u uK.v nuv = -1,

In evaluating the 4-acceleration of star K we shall need the gradient
of 1hK,uu(x). We can evaluate the gradient by letting the field point X
change by an arbitrary, small amount to * + E + 7The dependence of expres-—

sion (2.19) on x 1s contained entirely in the null vector JFK'; thus the
-+
change in 1hK' is
<>
> o s -¥
) ;ﬁk| = £ (V ;ﬁk') - - xl&b_:fw
§ J(Kl * Uper

(2.20a)

. -
where V> denotes the gradient along £ (notation of MIW), The quantity

-
VE'KK' can be calculated using the relations (cf. eq. 2.7a)

-5

. ] -

J(K|=ZK,—X - >§c+"2'5K|ﬁ+G-KITK"'x ’

-

KD =0, K, <0 " (2.20b)

. >
which determine 'KK' and Tk in terms of the field point x . 1In particu-

lar,

> > Fo
VY X = ﬂVE x + Upr VE Ty © = + gt K 3 (2.20c)

v_p.
£ K' E ¥

from which we can obtain

-> - -> > s
0 =Ky * (VEJ(;K.) =K ‘E 4 Cagr =Ky Vg Ty (2.20d)



Solving (2.20d) for Vé TK} and inserting back into (2.20¢) we find

X,k X, ®u
> e X! E > -> e T w,,
VZ'KK' = —E F e > Wer T E |+ +k ———725— , (2.20e)
i 'KK' 4 U~KI .KK' tou,,

whére N 1is the Minkowskii metric. Combining this result with (2.20a) and

recalling that E is arbitrary, we obtain

uov, 1
iy ~ l'va(uK! uKl + 2 n ) J{K'CI
h_, = L . (2.21)
1'K" ,a e )2 K'a v
\K' lLKI . K' UK,

We are now in a position to cvaluate the 4-acceleration of particle K.

By inserting expression (2.21) for the gradient of4ﬁk, into equation (2.14),
we obtain
e P,,a i i 'K,
aKa e e . [(ZYZ-— ].)(uK,a + _—)’—‘}\——_*—~)+(Y~;—l’-<-——:-}\—)(?.uxa— 4YUK,G)]
Cegr * vgn) kgr © vy kgt * vy -
' (2.22)
Here
y=3, -0 =a —y2y 12 (2.23)

is the specific energy of star A as seen in the rest frame of B--and also
the speclfic energy of B as seen in the rest frame of A. Also TLK. is
.zk.eValuated at xa = ZKQ(TR); i.e., it is the unique past-directed null
vector reaching from the "field point" x =‘ZKa(TK) to the world line of K'.
We now derive an expression for ﬁk, as an explicit function of TK, the
proper time of the accelerated star. In our derivation we can treat both
stars as though they moved aiong the stralght lines zK(TK) and ZK‘(TK'); by

doing so we make fractional errors in aKu of order z . From equations

(2.7) for the unperturbed world lines we have



kpo = LRk']x=ZK(TK)

-r =5 > >
=z (Tpe) = 2, (T) = €4b +u

-
KITKI = uK1l: . (2-243)

The time T,,, at which the field rust be "emitted" in order.to reach star

K
K at time TK, is determined by the condition that EK' be null
> (2 2 2 2 ;
0= (kK') = b - Te ~ Tge 2y Teler - (2.24b)
Solving for TK' we obtain
Ty = Y TK - R(TK) i (2.24¢)

where £ is defined by
1/2 149
pr) = 2+ (0% TS = ke v 2 /

K' at the moment, in his frame, when the

clock of K reads T

distance from K' to K, as mcasured by star
= [(2.25)
K

jy combining expressions (3.24c) and (3,24a) we obtain the relation
-> =5 -> -»
keo = gpib + [y Tp= 200 ] wer = Tpup 3 (2.26)

and by inserting this into expression (2.22)-for aKa and using the rela-

tions

-+ 2 + 2 - > >

U = Upy = =L 5 u ;K' ==y, ﬁk- b = Upr ® D=0 5

we obtain
> "' 2 2, = 3 2, +
z" ——————23(T : (Y @ +vepib + T [y (1= 3v%) - u ) . (2.27)
K

The spatial part of this acceleration, as seen in the rest frame of

K', is depicted in Figure 2.
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->
The perturbation Ve of the 4-velocity of star K is the integral of

-> ‘
&K over time TK’ with initial value _\;K(—m) = 0. Straightforward integra-

tion gives

e Y (1-3v") G- b
> -3v7) u,,~-u
u = YAV e Y s+ Lk
b

] -
e AR

2
K (2.28)
Notice that the total deflection angle of K as seen in the rest frame of
K' is
|spatial part of w.(=)| 2Y>(L+v2) m,,/(Yvb) 2
_ K - g _20+vS) K
2 E
(2.29)

ABK

|spatial part of ;K! Yv v

which agrees with equation (25.49) of MIW--where the derivation required
M << My e (Our derivation is valid for arbitrary relative masses of K
and K',)

If we wished, we could integrate GK(TK) to obtain‘ZK(TK), the pertur-
bation in the world line of star K due to gravitationalhdeflection. We
shall not do so because our calculation of the bremsstrahlung will require
no explicit knowledge of ';K(TK).

The chief results of this section are: (i) expressions (2.4) which
split into perturbed and unperturbed parts the world lines, 4-velocities,
and 4-accelerations of the two stars; (ii) expressions (2.7)-for the unper-
turbed world line of star K; (iii) expression:(2.27) for the 4-accelefation
of star K; (1lv) expression (2.28) for the perturbation of the 4-velocity of
star K; and (v) expressions (2.18), (2.19), and (2.21) for the first-order
gravitational field of star K' at points far from the surface of K' (dis-

tances T >> rK,).



IIT. CEOMETRY AND NOTATLON FOR THE BREMSSTRAHLUNG CALCULATIONS

We turn now from the details of the stellar encounter to a calculation
of the bremss-;trahlung it produces. In this section we introduce the nota-
tion and géometric relationships to be used in the calculation.

Most of our analysis will be frame-independent. It will often utilize

an expansion of vectors and tensors in terms of four "basis vectors"

and polnted aleong impact direction

-

u, = (unperturbed 4-velocity of star AY , (3.1a)
->

up = (unperturbed 4-velocity of star B) § (3.1b)
& - unit vector, orthogonal to 4, and u

b = v/ = ( o A B (3.1c)

unlt vector, orthogorn-l to UA’ u , and ﬁ
and such that uA, “B' B . g NfQEP a rlght-hdnded (3.1d)

system, i.e., 3Y5 A up b’ ¢q

-
1]

- The scalar products of these vectors are [cf. eqs. (2.6) and (2.23)]

" ) )
"'2 1"'2__1 -J o‘: ="Y § 52:&2-:-{-1 7 .
A B > A .
& S - Foo e (3.2)
uA.bnuA'qrauB-b=u5'q~l’:'q=0 %

" The observer is located far from the region of space where the stars
encounter each other. His separation from the encounter region is described

by a past directed null vector

t = past-directed null vector reaching from the - ) (3.3)
~ \ observer's world line to the "collision event" x./ - '

The scalar products of % with the 4-velocities of the stars will be denoted

by

=
(]

Tl distance from encounter region to ob- ) (3.44)
A server as seen in rest frame of star A / °

=+ distance from encounter reglon to ob-— ;
RB - k- = " £ (3-4b)
: Vg server as seen in rest frame of star B .



We shall sometimes work in the rest frame of star A. In that frame
I .. -5
we shall use Minkowskii coordinates with )% along the y direction, ¢

along the z direction, and the motion of B along the x direction (Fig. 3):

- = -5 -

> - - -> -+ >
u, = eg s uBﬁYeo+Wex, r = ey, q=e, - (3.5a)
-»>
In this frame the null vector k is
> > -+
= - : 3.5b
k RA(eO + n) L ( )
_ f{unit spatial vector pointing from)  -» + >,
= (collision event toward distant = aex+Bey+(‘iez ’ (3.5¢)
observer
C+plesli=n ) (3.54)

We shall refer to (o,B,8) as the "direction cosines" of the observer.
We shall also sometimes work In the rest frame of star B using coor-
dinates _E,;c-,;,; with

- > -> > -> > -> -»

>

Uy, T YeG = VYED . Ug = ep }':—of;, § =8 4 (3.6a)
->

> > —

k = —RB(eU+ n) . : (3.6b)

>

=T + Po + Foe 3 (3.6¢)

n (10;‘- y Z H *

-(-1.2 + B‘Z + EQ 1 . (3.64d)

Using equations (3.2)-(3.6) one can readily derive the following rela-
tionships among the quantities that refer to star A and those that refer to

star B:

Ry = YL+ @Ry, Ry =y(1- R, (3.7a)
oot Hoa 2o (3.7b)
° 1l+av ‘ 1-oav

- B R '
b=yav b rya-wy - N
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& - §

0 Ya+w) P TYaw

. (3.74d)

Note that the scalar products of the observer's null vector K. with

the fundamental basis vectors EA’ EB’ E " E are
k-u =R keou, = T« %a-pr =-FR
"2 “A‘? ug = Ry s A B
- -> —_—
k * q= -GRA= —GRB . (3.8)

As the observer moves along his own world line, he sees a tlme-changing
gravitational field (radiation). We shall express the time dependence in

terms of two parameters, T, and TB’ which are functions of the observer's

A

proper time T, * These parameters are defined as follows (see Fig. 4a):
. -+
At proper time T, the observer is at a specific event ZO(TO) along his
+
world line.. The past light cone from ZO(TO) intersects the unperturbed world

line of star K at a proper time Tk = ko along that world line. We shall

refer to Tpo 89 the "retarded time for star K", and we shall define
'.[‘K = VYT, 8 (3.9)

The distance from K' to K at time ko’ as pmeasured in the rest frame of K'

we shall denote by

1/2

.

It

2t ) = B + T, (3.10)

(cf. eq. 2.25). A simple calculation in the rest frame of either star A or

star’B ylelds the following relationships between the two retarded times:



Tho = - av)YTBO - b, Tpo = L 4 uv)YTAO + Bb (3.11a)
or, equivalently,
T, - Y[TB_ V(QTB+ Bb)1 , Ty = y[TA+ v(({[‘A + Bb)] . (3.11b)

Figure 4b shows several 4-vectors which will play important roles in

our derivation of the radiation field. The first of these is the vector

E *> - g - (vector reaching from star A at

+ =
B Bo A Ao time T to star B at time T

» ) . (3.12a)

Bo

=382 2 (Gb-F 5 _ 2. B 2 (3.12b)
s“ =8 (ab - BT 7 67L,% = (ob - BT)" + 878,

is positive, except in the special case that one star is precisely in the
> 2
"shadow" of the other [E parallel to k and therefore null; 6§ = § = 0 ,

ab - ETA = b — BTB = 0]; in that case 32 vanishes. Note also that § has

the following projections on the 4-velocities of the stars:

SpESuy =Ty, = YT, = ~(aTy+Bb) ’

(3.12¢)
> > - -
=8 = - = ~(aT h "
Sp = S°uy = YT, - Tp o ~(BT B-) 3
and that these projections satisfy
2 2 2 2 2 2

T8 .t s° 48" =g, % (3.124d)

’

§.%k =0 . _ : (3.12¢)



The next vector of interest is

-» - -> i
Y= S+ SA u, = (projection of S orthogonal to A)

-r
- [ vector perpendicular to u, and reaching
from world line of A to B at <t '

Bo
Note that
->
2 2 > = -
¥ lu 5 ¥ k = SA RA %

Another useful vector is

from B at T to world line of A

-5 -+ - -di
N=3+ (5.-2,) 6 _ [ past-directed null vector reaching ).
B A" B Bo

->
Its scalar product with Uy

My EM=-u, =8, Y5, +v2, =y, - wTl, ,
is used in the construction of another vector

> _ > _ -> ..
TER® M, U, = ¥+ (s - 20 @ - ya,)

= [ vector reaching orthogonally from)
world line of A to tip of M

Note that

+2 2 > > .
3= p® Jokm(sg )R+ M R, .

Note also that in the rest frame of A

c YT o, Y=b, Y

B =0l |X|=R’B

X
I = y(r,- ve,) F=b, =0, |- My = Y(L,m VT

(3.13a)

(3.13h)

(3.14a)

(3.14b)

(3.15a)

(3.15b)

(3.16a)

A)'
(3.16b)



A useful check on our final answer for the radiation field Is provided
by the following demand: If we interchange stars A and B, and reverse the
sign of g so it once again reaches from A to B at the moment of cleosest
approach, and precisely.reverse the spatial direction of the ohserver as
seen in either frame A or frame B, then the obser&er should see precisely
the same radiation field as before. Iﬁ other words, the radiation field

should be unchanged by the conversions

-5
u

+ »> > g— -+ -+ >
A_’UB’ “B+UA; + -5, q*-q ,

TA * TB $ TB * TA 5 £A i 2B 5 EB * 2A 3 (3.17)

IV. FORMAL EXPRESSIONS FOR GRAVITATIONAL FIELD IN WAVE ZONE

In Paper I we derived a "plug-in-and-grind" formula for the gravita-
tional field éﬁuv far outside any post-linear system. This gravitational
field satisfies the Lorentz-gauge condition éﬁu“'v = 0 and has fractional
errors of 0(82), where ¢ 1is the magnitude of the internal field of the
source. By contrast, the iﬁUU of §I1 has fractional errors of 0(g).

The formal expressions for éﬁuv (81V.c.iii of Paper I, with minor
changes in notation) involve the following biscalars--i.e., the following

scalar functions of a source point x' and a field point x: (i) the flat-

space propagator
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1l

i% S Pl (xa— x> )(XB- xB )nGB] (4.1)

\j
OG(x,x ) ret 2

[cf. eq. (2.11) and associated discussion]; (ii) the derivative of the flat-

, 1 .6 o' .- B g
space propagator with respect to the 1nterval-i (x - x )(x-x )ncB:

of Gex") = 75 81 56 68 B0 o)

= - ————QL-—T— -2 G(x,x") = (4.2)

(XO_ x0 ) axO 0

(iii) the focussing function (eqs. I,40a and I,59b)
1
L} L}
a(x,x') =.%(x“- & StPl o 3 J Rag X'+ AG=x")] A@-D (4.3a)
0

(iv) the tail generator (eqs. I,43a and I,59¢)
1
Blx') = ™ 2 0P~ ) J (R X'+ Ax-xINZ an (4.3b)
4 .
and (v) the time-delay function (eqs. I,38b and I,59d)
1
Yo = 3 6O e 8 |
0

1ha8[x'+ A(x=x"')] dax . (4.3c)

Here lhaB is the post-linear metric perturbation of §II, lRGB is the
Ricci curvature tensor calculated from the post-linear metric to first order
in 1hGB’ and A is a flat—space affine parameter al;ng the straight line
reaching from x' to x (cf. eq. I,36). In place of the full time-delay func-
tion y(x,x"') we shall be using a truncated version of it: .

T " o vy _ [ contribution produced by source's )
¥ (x,x") = y(x,x") (stationary, external, "1/r" field

(4.3c")
The truncation process is discussed at length in §IV.c.1i of Paper I; and

we shall make it explicit in 8VI below.



The external field éﬁﬂv conslsts of five parts (eqs. 1,58):

a "direct field"

't’?];"(x) = 161 [ o606 Tuv(x')[l—l-l_{(x')] FLY (4, 4a)
a "focusing field"

huv(x) = 16 J a(x,x") G(x,x ) ™ (x ) d 4 - (4.4b)

a "transition field"

(x) 16m J YT(x,x') OG'(x,x') ™ (x") ! 3 (4.bc)

a "tail field"

hho (x) = -16m ” GCO0x™ 2Gx"x") (0 (" x") TVt
where the integral is over source points x' inside and not on the G el
past light cone of x; and a "whump field"

ad 4 '

iy (x) = 16w j oG0esx") ey d'xt . (4.4e)
The external field is the sum of these five parts

THY . pHv Y 4 RV THY THV 4.5

2h i M P S P L 5 St

The sources of the external field are the post-linear stress-energy tensor

™V and the gravitational "whump stresses" (eqs. I,58e and 1,23g)

W o avaBydps — = s 4,6 a)
wEN 1hu8,y 1hAp,U t
where
’MWGBYADG = 12" {% nuvnaonﬂcnvk " nuanv?x (nwnﬁo + n%7P)
A
e (n“cnwnmnYp Mo YR P 8 )

(ZnUY Vo nuvnYU)(Znalan Ap GB)} (4.6b)
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For some purposes it is useful to express the sum of the focusing, transi-
tion, and tail fields in the following form ( eqs. 11,36 and II,37c):

—HV —uv . —HV @ —HV
ghp () + Jhpp(x) + Hhp (0 = Hhppppy, ()

- -3, [ RICRD 1E“B(x') 31 1"ﬂ”"(x') ! . .7

L]
Here 0 = 3/ox"  and O 3" .

In order to use the above formalism, we need explicit expressions for the

uv —v

post-linear stress-energy tensor T and gravitational field lh v
ny uv -
The stress-energy splits into parts TA and TB assoclated with the
two stars

e Hv v
T T, + Ty ) (4.8)

In its own instantaneous rest frame, each star is assumed to be a static

Newtonian spherel with stress-energy tensor that has physicaf components

1’l‘his assumption is needed for case of exposition in &I. However, Crowley
and Thorne showed in Paper IT that the bremsstrahlung radiation is indepen-
dent of the internal structures of the stars. The stars need only satisfy

the constraints of equations (2.1).

00 _ 03 _ Ik _
TK = pK(r) 5 TK = 0‘, Ty << pK(r) for 0 <r < ry

. (4.9)
TKC"B =0 for r>r, r = (x2+ y2+ 22)1/2 7
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The center of the star (orligin of reference frame for eq. [4.9]) moves
along the world line ZKG(TK) which was computed i'_‘ §II. At most stages of
the calculation we can ignore the internal structures of the stars, and
treat them as point masses‘with the following stress-—energy tensor (valid in

any post-linear reference frame):
WV, 0y H Vo 1 fx "~
Ty {(x") [ mKUK (TK) UK (‘K)[1+2 1h(x )] GAIX ZK(TK)]dTK . (4.10)

o )
Here ZK (Tk) and UKthk) are the world line and 4-velocity of star K at time
Tgs as glven by equations (2.4), (2.7), and (2.28); and {1 +-% iﬁ] is an
approximation to (~g)_l/2.

Like the stress-cnergy tensor, the post-linear grav.tatioual field lﬂuv

splits into two parts produced by the two stars

THY _ T owv = v
i At g (4.11a)

[cf. eq. (2.12)]. For field points far from star K we can write

H .V
W - oK K (4.11b)
Y S >
Fx T %
- . : T
where ug is the unperturbed 4-velocity of star K and‘K]<is the unique
past-directed null vector from the field point x te the unperturbed world
line of K; see equation (2.18). This expression for iﬁkuv(x') ignores the
gravitational deflection of the stars' trajectories—i.e., it makes frac-
tional errors of order ¢ . It is easy to write an expression for Jﬁkyv(x')
which takes account of the deflection of trajectories, and which also takes

account of the intermal structure of star K--but we shall not need such ex-

pressions.
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The largest compenent of our external field is
700 4,12
g % IR, bRy - Chs128)

The radiative part of the field will be

m m m,+ 1 ‘
—IT A" . "A"B . 00, A "By _ =00
T g bl geleB Gy OOCE W o g0, (4.12b)
27ik HP %& 2 2
—Hy 2
The fractional errors in our formulas for 2h “ are 0(e”) . Consequently,

any terms which are cubic in the masses (e.g., mAsz/RAbz) or of higher

order can be shoved into the error and ignored. We shall do this ruthlessly

throughout the computation. For example, in all parts of Zﬂvv_except the

“direct" part, Tuv appears multiplied by a quantlty propc~tional to my or

my (see eqs. [4.4b,c,d]). 1In such cases we need keep only those parts of

TUV which are linear in m, or va—whlch means that in place of equation(4,10)

we can use the stress-energy tensor of an undeflected star

TK”"(x') = mKuK“ qu Jél’[x'- 2, (1) JdTy . (4.13)

V. DIRECT FIELD

Hv

- When T and iﬁuvare split up into "A+B" contributions, expression

(4.4a)'£or the direct field reads

KV
= = ' Wey - | Ll T bt
oy (x) = 167 J oB06x") [1,77(1 lhB) + 170 1hA)]atx' i

B a¥er (5.1)

~167 f 0G(x,x') [T'uU h, + T, WY
A 2

h.]
1'A° "B 1B,

The second line is of quadratic order in the masses--and at quadratic order

it is ignorant of the gravitational deflection of the stars' trajectories;
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v ;
only the first-order (undeflected) TKl and l Y enter, As a result, the
second line has nothing whatsoever to do with the radiatlon. It is simply
a nonlinear contributor to the stationary self fields of stars A and B.

Because we are not interested in the nonlinearities of the self fields, we

shall drop the second line and write
THV = ' Hv
hp ™ (x) E IGRJOG(x,x ) T (1= ghigd dxt : (5.2)

Here the summation is over K = A and B, and K' means '"not K".

Since the field point x is far outside the source, we can use the
polnt-mass stress—energy tensor (4.10) in evaluating expression (5.2). By

inserting it into (5.2), integrating over x' to remove the 6.,' of TK"‘“, in-

tegrating over TK to remove the Gret-of 0G (eq. 4.1), and omitting nonlinear

self-fields as above, we obtain

M.V
tm, u M UV 3
F - § | AKX <1—§1hK.)} : (5.3)
K Ky " Uk ret

Here j?K is the unique past -directed null vector reaching from x to the
perturbed world line of K, and "ret" means "evaluated at the tip of ‘T(K o
Because we are interested only in the "1/r" (radiative) part of the field,
we can replace ‘}FK by the vector 4 ,Of 8IIT and Fig. 4; such a replace-
ment produces time-dependent errors of 0(1/:2). By making this replacement,
by splitting -ﬁK into ité unﬁerturbed and perturbed parts (eq. 2.4b), and
by dropping terms cubic in the masses, we obtain

4
) - Z[mx"k v

® K ret

4 |
+ Pl ZuK A “x"(
Kk - o




The first line is the non-radiative '"Coulomb" gravitational field of the
source. It has nothing whatsoever to do with radiation, so we shall drop
it. The second is the "direct” part of the radiation field. Because it is
quadr-atic in the masses, we make a negligible error by evaluating it not at
the true retarded time of the deflected trajectory, but rather at the re-

tarded time ko of the unperturbed trajectory (cf. Fig. 4a):

4 kW
Ve Y K_ (b, v) _ m_ v R, I = .
php (x) =L )= [2“1{ b Sl (+ > vz (5.5)
K{keug K=y at z, (v, )
K 'Ko’*

The field lh'l{‘ [zK(TKo)] can be evaluated by taking the trace of expression
(4.11b) and by invoking (2.24a)

s —!‘mKl
1bg 2 (T ) = 5—5— ¢
s 'kKl' uK'

and by then using expression (2.26) to evaluate KK' . The result is
lhK'IzK(TKD)] = "l"mK| /Q(TKO) =' "!’m-Krlg‘K (5-6)

[cf. eq. (3.10)]. By inserting this expression into (5.5), and by inserting
expression (2.28) for wK(TK), and by invoking equations (2.7b), (3.xc), (3.4),

(3.8), (3.9), and (3.7a,c¢), we bring the direct fleld into the final form

Y  w§ 2(1-v2) +Gv(1+v?) , Ba+vh (r, \
4m ok I 2 = Q : — L :
'A"p vi(1+av)R, %, v(1+av)R,b \"A
. 20-vh) —avae v’y v
A uB uB 2 - \-i-- + 1
v (l—ccv)RB!LB v(;—av)RBb B

2
o v)[ -2y(1-3v?) ( 1 1 )]
+ + =
YA YB o2 RL, ~ BRI,
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2 T
(v V)| 2y(A+v™) A
5, [ VR, b (E; * ]ﬂ
5 3 2 T
+ ﬁ(u qu)[:%XRi%ﬂ_)— (E—B- + l)] 3 (5.7)
. B .

As a check on this result, one can verify that it is invariant under the

transfofmation (3:37) s

VI. FOCUSING, TRANSITION, AND TAIL FIELDS

There are two methods for calculating the focusing, transition, and
tail fields: that of Paper I (eqs. 4.4b,c,d above) and that of Paper II
(eq. 4.7 above). Method I has the disadvantage that it reqﬁires a very
special treatment of "shadow regions" (i.e., of observation events x fromv
which one star is viewed as lying partially in front of the other). How-
ever, outside the shadow regions method I has the advantage that the Dirac
delta.functions in the integrands cause all volume iﬂtegrals to collapse
into line integrals. Method II, on the other hand, permlts one to treat
shadow regibns on an equal footing with non-shadow regions; but its volume
integrals do not collapse into line integrals. As indicated in Paper II,
mefhod II is powerful fqr proving theorems, while method I is powerful for
carrying out e%plicit computations.

In this section we first use method II to show that the sum of the
focusing, transition, and tall fields, éi;;RTL(x)' has a form in shadow
regions which is the ﬁnaly:ic extrapolation of its nonshadow form. We then
use method I to cglculate analytically the nonshadow form of éﬁg;RTL’ and
we assert on the basis of the method-II analysis that this analytic re-

sult is valid also in shadow regions.



For the method-IT analysis pick a specific event Z  on the world line

B

of the center of star B, and construct the future light cone J+(ZB) in the

rest frame of star A. Figure 5 is a spatial diagram of J+(ZB). In that
figure the shadow region is the extrapolation to large distances of the cone

marked "shadow region." The half-angle of the shadow cone, 0_ , is
0s = (rA + rB)/b €< 1 . (6.1)

In 8V of Paper II Crowley and Thorne showed that throughout the method-II
computation one éan use a monopole, point-mass idealization of the stars'
structures without producing any fractional errors larger than YrA/b and
YfB/b . This is equally true in the shadow regions and outside the shadow
regions. This can only be true if the shadow has no influence on the form
of ﬁE¥RTL——i.c., if E¥¥RTL in the (very small) shadow regions is obtain-
able by analyt;c continuation of its form in the adjacent non-shadow regions.
Havingbestablished this important fact, we now compute the nonshadow

R

form of hprpqy,

using method I. In nonshadow regions the focussing field
vanishes, so we need compute only the transition field and the tail field,

and then add-them together.

a) Transition Field

Iﬁ expression (4.4c) for the transition field we can split the time-
deiay function YT'and the stress-energy tensor gHV into parté due to each
star. As with the direct field (§V), products involving the same star—-i.;.,.
YAT TAPv and YBT TBDU—Hlead to nonradiative, nonlinear corrections to self-

fields; they are of no interest to us, so we drop them. Expression (4.4c)

then becomes



—WV, . _ ¢ Wy .= _ T
Ppr(¥) = Ezhm,}:(") i zh'ra,x(")‘”’“foG'(x-x')YKv (X,X')Txuv(x')d&x' .

(6.2)

Let us calculate YA?(x,x') in the rest frame of star A, for x the lo-
cation of the distant observer and for x and x' such that the ray joining

them does not pass through star A (no shadow at x); see Figure 6. We begin

by calculating the untruncated time-delay function of equation (4. 3c):
1
1,0 o B B'
] RN, o1 s -
Ya06x") =5 (xT=x” )= )
0

' et
thB[x + A(x=x")1dA s (6.3)
The post-linear field lhAaB produced by star A in its own rest frame (Fig.

6) is

ZmA

s =TT % 3 : (6.4)

"
cf. eq. (2.19). Here x" is the spatial part of the vector X reaching from

the origin (center of star A) to event x". This expression is valid not only
at events far from star A, but also arbitrarily close to A's surface, because

A 1is spherically symmetric (eq. 4.9 and footnote 1). Define

X = x -x " (6.5)

and combine with equations (6.3) and (6.4) to obtain

1
ot 0.2 2
Ya) =m0+ k7 =S 6.6)
5 0 -~ -~ 5
A straightforward integration yields
‘ e .
- m (COZ +51%1 ) 1%l + x - x
Y, (x,x7) = Ln e | e (6.7)
A x| |x'[ %] + x'+x

The truncation process, as described in §IV.c.ii of Paper I, consists of



dropping the contribution to the delay function (6.6) which comes from out-
slde the immediate neighborhood of the source--e.g., the contribution from

outside a radius of ~10b. Performing this truncation, we get

T "y -
YA (x!x ) -

mA[(XO)2 + ]X|2] 10b | x| ,
- £ ( - ) . (6.8)

x| [x"[[X] + %'+ X

We now manipulate éE¥¥ B(x) (eq. 6.2) keeping in mind equation (6.8)
2 |

for TA? and using expression (4.2) for .G'

0
THY — 1 . 3 T n 4
ZhTR,B(X) 167 J 5 [ 7 OG(x’x')] Ty (x,x") TB (x") a*x’
X" 3x
= -167 30 J OG(X,X') %YAT(K,X') TB‘N(X') d['x'
ax X

+1611J (G Gex") i—ﬁ[i—o YAT(x,x')] T,V dr . e

(1 0 T ' 0 0 o 0
Because /X )YA (x,x')] depends on x only through the quantity X =x -x ,
and because the propagator forces XO = IXI = RA = (distance to observer),
the differentiation on the last line of (6.9) causes that line to be « 1/RA?
(after oG has been integrated out), rather than cflIRA --i,e,, 1t makes the
last line nonradiative. For this reason we can drop the last line and write
\Y ] 1 T ' 4

2Py, 3 = - 161 <5 I SR 5 v, G TLVGED &%t . (5a10)

d ax 7 X A
By inserting expression (6.8) for YA?’ expression (4.13) for the "undeflected"

TBHV’ and expression (4.1) for 0G(x,x'), and then integrating out the delta

functions we obtain
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MoV D2 g2
{ b i -
SV D [lmAmBun ug [(X7) ||§| ] . lObeI }
~  TR,B e U .
’ ax k -uB X |.}5| lxll 1§| + % e ;,5 f':‘f}s(‘r};o)
(6.11)
At the evaluation point, x' = zB(TBO), Xu is null with
0 0 0 _ _ . ’ .
X" = x =z (ty ) = IX| = |x] - n zp (T, )i —
/1% = n o+ 0Clzg| /Ry nE s -
Consequently, to order 1/RB (radiative order)
H oV 0 .
v BmAmBuB ug (dTBOIdx ) d/dTB(IEBI +n EB) "
2TR,B Ry Ty - ;
~B ~ ~B B 'Bo
here dTBo/dx0 follows from eqs. (6.12), (2.4b), and Figure 3:
de = {_ﬂd (z 0 _ .‘7 )} L = v(1 - av) (6.14)
dt G Wy ™ BT Iyl g "X "7V : i
Bo B Bo

The quantities IEBI and n ° 2z, are conveniéntly evaluated by reference to
Figure 4 and the associated discusslon in 5III: EB(TBO) can be thought of
as a 4-vector which is purely spatial in the rest frame of A. When thought
of thus it is identical to the 4-vector Y of Figure 4. This fact, together

with the relation n = --k/RA and equations (3.13b), implies that

+ > > '
nezpltg )= <k ¥/R, = -8, | |EB(Tno)| = Y| = Ly - (6.15)
By combining this result with expression (3.12c) for SA’ with expres-
sion (3.10) for EB , and with expression (3.9) for TB we obtain
. = + y 5 6.
[d/atg(fzp] +ne2p)] = vy(a+ Tp/0) (6.16)

Bo
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By combining equations (6.15), (3.12d), and (3.12c) we obtain

1 1 EB+ SA F,B-aTB—Bb
e S iy o etz = 2 = 3 i (6.17)
PNETTEC I

Ty~ Ty, A s s

Finally, by inserting equations (6.14), (6.16), and (6.17) into (6.13) and

invoking equationsg (3,5d) and (3.10) we obtain

2
ﬂgw ) SmAvab(ab-BTB) _ 8mAva[-6 Tyt B(ab—BTB)] WV
2 TR,B 2 2 B B °
e £ S7(L - av) S7(1 - av)
Ry " (6.18)

The analogous expression for éﬁ¥; A can be derived either by an

analogous calculation in the rest frame of B, or by invoking the invariance

FHV
relation (3.17): The total transition field (2 TR z 2 TR B) is then
THY . g ) e
L v 2vb (b - BT ) ) 2v[-8°T, + B(ub -BT,))
S, & RAR,ASZ(l-PEv) R,S%(1+av)

: 2vb(ob - BT)  2v[-86°T+ Blab - BTy))

u — = % (6.19)
B "B RBLBsz(l-av) RBSZ(l—(:v)

-
Note that this transition field diverges as S2 + 0 ——i.e., as S
-
becomes null-—i. e., as S becomes parallel to k --i.e., as the observer
moves into the shadow region; cf. Figure 4. . It is easy to verify that the

divergence has the form

1 db impact parameter of ray from star K,
2_v§ Rl T rg s b (as it passes star K' on its way to
¢ ray dx R observer at x

(6.20)
(cf. eq. 6.13), We will discuss the significance of this divergence in §VI.c

below.



b) _ Tall Field

By discarding terms that represent nonlinear corrections to self

fields, we can rewrite the tail field (4.4d) as

h.r, (x) = 2 (agcy ; (6.21a)
e g0 = -16m ” GCO6X") By (x"x") (6" (<" x ") TK“"(x')a"x"d 4 .

(6.21b)
Here the x' integral is over events x' inside and not on the past light cone of x.

Let us calculate BA(x",x') in the rest frame of star A. In doing so
we must take account of the internal structure of sFar A, because SA is zero
unless the sFraight line from x' to x" passes through A, By combining ex-
nression (4.3b) for B with the post-linear field equation _iRaB =
SH(TGB - %-TYYnuB) and with expression (4.9) for TAaB’ and by using spherical
polar coordinates centered on the event x' (Fig. 7a), and

by expressing the affine parameter in terms of radius r as X = r/x" , ve

obtain

3 &
B xt) = 1?4 () [ty o/ et L (6.22)
: 0

‘Let us now perform the integral over x" in expression (6.21b), using

expression (4.2) for 0G':
/4
J OG(X,X")BA(X":X') OG'(X",X')d}X"

!||l

= I G(x,x") B (x",x ) t" at" OC(X".X )] d x (6.23)

= +_'- {-aaT"- h":ll:;aT OG(X’XIC'IL) I BA(xn ,x')dﬂ"] QG("' ,X )dt" "Zdt" .



In the third line we have used integration by parts, plus.the fact that,
as long as the points x and x' are very far outside of star A and x" is in
the shadow region where BA 40, OG(x,x") and 0G(x”,x') have negligible de-
pendence on angle (9",¢"); This negligible angular dependence allowed us

to pull the OG'S out of the angular integral and evaluate them on the "center

line'" of the shadow

ng = (t",",0,0) . (6.24)

The angular integrgl in the third line of (6.23) can be performed using

equation (6.22)
"

T
I B, (x",x")aq" = (e % ("2 (3 [ I 4WDA(r,Q")r2dQ" dr
0

all
angles
= 4ﬂmA[(t")2-+(r")2](F")_3 H(r"—rs) ¥ (6.25)
Here H(Z) is the Heaviside step function
0 £ <0
H(z) = 8(ghHdg' = ' (6.26)
=00 1 r>0

and r is the distance from the center of star A to the source point x'
_(see Fig. 7a). By inserting expressions (6.25) and‘(d.l) into (6.23), by
integrating first over t" and then using the fact that OC(x,xEL) is a

function of xo- t", we obtain
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I Oc(x’xu) BA(X",X‘) OG' (xu’xl)d[*xu

ey 2+ ( 2,

{3 " 1 1 ’ ||2 1 " ('2 "
= IITHTI al‘." t"(r")"“- H(x"- ) OG(x,xCL) o Gret_’(_ El t '|'2 ) de dr
; J R(zr"r ) [ (r")z] ¢ )+[(t")2+ (r")?] 5 o ) d
=m ~ 1- G{x,x" —_————— |7 G, X! r'"dr"

A ! 3 2 Jo |t at” 0 CL7f npm
3 i H(r"nr
= A"—OI [INCIEI )] " ar"
9x
0
3 G(x x ) :
= =2 —0- I [ ] dr" i (6.27)
r tll=rll )

We now change our origin of spatial and temporal coordinates so it 1is centered

]
on star A with xO # 0 , and use the relations (Fig. 7b)

rs = lf'l ’ " = Ifll +a, f-a Ifln A
o" . o' - " mopt m |x|I + a 2
o 2 r Jen B

plus expression (4.1) to write

[ 0G(x,x")B‘,‘(x",X') 0(3'(x",:c') B

v

& 1.0 0"2 . % n 2
"A 2 Opagl~ X CL) g (x-xp)7)
= - -—2-1?—'-*-6 , da
ax 0 [f | + a
A 2 1{G - x()')_-(IX'I"‘ |%])]
2 ¥ (x'| +8) %[ (xﬁ—xo ) 2 —(x-x )% 0_0

(6.28)

..'x'l_:a
= le+a§3-5'

(6.29)
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By invoking expressions (6.28), perfoming the differentiation with respect
to a, setting

- l_:::! = (retarded time.. as measured by A) = (6.30)

&
Ao ’

and using x0 = |§| = RA (aside from fractional errors v 1/RA), we bring this

into the form

J OG(X,X")BA(X",X') DG'(x",x')dl‘x“

_“_h_ 9 [_ H[TAO * I.’f B!
2w aer 1_(]2:'] + a) RA(1+E d

T

)] a(l+n'n')=TA—x0- | x*]

o' ; * = - ¥

A H[TAQ_ o lf l] .

2m BTAO_ (t 0 (6.31)

- 4 %! .
Ao “ : 5) RA

We now evaluate 2—}][. B by inserting (6.31) and (4.13) into (6.21b), and

integrating out the 54(x -zB). The result is

V @

0
T Sm g “B Uy a3 [Hlra, 2z - 1) - (6.32)
‘2 TL,B d’l’ —zo+z ‘n B : ’
¥ B ~B

In the rest-frame of A the zero-order world line of B is (cf., TFig. 3 and eqs.

3.5)

Zg = YTg s Zp = vatB‘ gx'-#-g . : (6.33)_

By putting this into (6.32), using the geometric -relationships of Figure

3 and integrating out Tg , we obtain
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o |z.| =0

2hpp, b~ R g, L - av)

u Y _ 0+ N
v SNl Up o [ In|Ty - 2y Zp 5']
A Ao TAo™ “B

(U 0 .
'SmAF%uB uy [(dTBlfdx )d/dTB(EEBI*'EB D) (634
vO-avk, [ Izl 4z w

3~ Tp1

where TBl(xO) is defined by

€5,35)

Tyo = £ o lf[ = ZBO(TBl) + IEB(TBl)l .
Notice that expression (6.34) for the tail of B is identical to expres-—
sion (6.13) for the transition of A -—except that it is evaluated at a dif-
ferent time TBI Just as we evaluated (6.13) using 4-vector techniques, so
ﬁe shall evaluate (6.34) using 4-vector techniques. We begin by noting'that

relation (6,35) says that to reach Tyy O0 the world line of B, one should

(;) begin at the field polnt x, (i1) go back along the past light cone of

x until it hits the world line of A at zA(TAo), (1ii) go back along the past
light cone éf zA(TAO) until it hits the world line of B at Tp1e Comparison
of this prescription with Figure 4 shows that TB1 occurs at the tip of the

> ¥
vector M -—and that therefore (since J is purely spatial in the rest frame

of AS

) = J . (6.36)

(T3 S

Zp

By combining this relation with (6.33), (3.16), (3.5¢), and (3.7a,b) we

obtain
| ‘ vzyzr z *
d B B X
- (|z | + z_ *n) : = +u, *n=v ( +n )
[dTB (I..B] 7B ~]TB=T31 lfnl g 2T EBI

- (6.37)

iﬁ('r; EEA)

>\ v -
= VY(Tgr-Fu) = MA [Y(I-GV)TA+ Y(u—v)lA] = RA A



and by combining with (6.35), (6.33), (3.16b), and (2.3) we obtain

0 dr vz, *\  y(d| + W s
dx = A(-)' = (l 4 'i-?‘BT ) B rer—— = l"l‘\' . (6. 38)
Zp

9] Ha

&
In the rest frame of star A where J is purely spatlal, equations (3.5b) and

(3.12)-(3.15) imply

1 - 1 _ Ry B el
Iz]+z'gm'*_‘§.'> B L.-5) ]
Zgt T I 3] -k J/R, R B RS
R, [%, —(aT, + Bb)
. [_A___;___.] . 6.39)
R s
By combining equations (6.37)-(6.39) with (6.34) we obtain
= = Tl oo T T )
v _BmAmB vb (b ~ BT 5) BmAva[ 6 1A+ B (ab BIA)] 0w
2™L,B 7t 2 Y8 Yg
? (1L - av) RARA S (1 - av) RA S
(6.40)
. v
The analogous expression for ?hTL A can be derived elther by an analo-

gous calculation in the rest frame of B, or by invoking the invariance

relation (3.17). The total tail field is then

—1v ~ _ 52 _
o n v, 2vb (ab-BT,,) , 2v[- "1yt Blab=5T)]
Wy + R (l+EV)RB9,BSZ 1+ @R, 52
. o R
2vb (cb-8T, ) 2v[-6°T + B(ab-AT,)] :
+uM u V- 5 5+ g8 & (6.41)

2 .
(1 - av)RAZAS (1 - av)R, §

This tail field, like the transition field (eq. 6.19), diverges as the

observer moves into the shadow region--and in just the same manner (eq. 6.20).



c) Sum of Focusing, Tall, and Transition Fieids

Let us add the tall and transition fields (6.41) and (6.19). In doingso,
by invoking equations (3.11b), (3.7), and (3.5d) we can show that the second
term in‘each { } of (6.41) cancels the second term in each { } of (6.19).
As a result, the sum of the tail field, transition field, and (vanishing)
focusing field in non—shadou regions is

THV H v H \Y] _ P Y
2PFTRIL =( B Yo Y Y ) 2vb(°‘b BT, ob ETA)

+ s
mymy 1+av 1-ov 4 Z

(6.42)

S RBQB S RAzA

By the argument at the beginning of § VI, this formula is also valid in
* shadow régions.
Because of its validity in shadow regions, expres<ion (6.42) must not
contain any of the near-shadow divergence (eé. 6.20) that characterizes
"the transition and tall flelds individually. The divergence in the tail
must precisely cancel the divergence in the transition. That this is indeed
true one can verify using expressions (3.7), (3.10), (3.11b), and (3.12b) in

the neighborhood of the shadows--i.e., at

|8] << 1, |ob -'E‘TAI <<bgj; |6 <1, lab - BTB| << b. (6.43)

This kind of cancellation between transition field and tail field has
show£ up previously in computations of electromagnetic radiation reaction
for charged bodies moving in weak gravitational fields (Ru&olf 1975). We
suspect that the cancellation may be a rather general feature of computé—
tions with Green's functicns in weakly curved spacetime. This strengthens
the’ warning at the end of 8IV of Paper I: One should not attribute great

physical significance to the individual pieces of a weak-field Green's
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function or to any single one of the five pieces of our gravitational

field ,n"". Only the full Green's function and full radiation field are

physically meaningful,

VII. WHUMP FIELD

a) Whump Field Expressed in Terms of Whump Integrals

The whump field (4.4e) is an intégral of products of first—-order fields.
Only cross products (field of A times field of B) contribute to the radia-
tion; "AA" products and "BB" products are nonlinear corrections to self
fields and can therefore be ignored. Using this fact, we can rewrite the

"whump stresses" (eq. 4.6a) as -

WY _ o MVOBYAPO | WVAESeBYy 3 =
W ( M ) 1PacB v lhBAp,c 5 (7.1)

By combining this expression with equation (4.11b) for and then in-

lhKa$

serting it into equation (4.4e) for the whump field, we obtain

ZE;“(X) - 54mAmB(M“"“8Y)‘°0 + yiVApoadyy eo(®) » (7.22)

Ax “aB “BA VBp

- 1 1 y;
e, (x) = J 4t G(x,x") (—~) (]f—-) oy (7.2b)
YG 0 o RA !Y' B : d x '
2
_ vy = > > _ (spatial distance from x' to unperturbed )
Ry = RK(X ) =g *Ug = \world line of K as measured in rest frame of K/ .
(7.2c)
uvaByipo

By invoking expression (4.6b) for M » performing the contraction of
indices with the u's and using equations (3.2) for the scalar products of

the u's, we bring (7.2a) into the form
o 2 -+ > o ook A\Y
zr\:w(x) = (lo/w)mAmB{%- (2y"- 1) C(LN)-lT 2y[uA(”(uB-e)“) + (b'uA)-(uuB }]

(ll V) e p _ WY + g _‘_L 2_ p
+ 20, P Y up e € upmve p] " [yCuge€-uy) +32y"= De” 1} .

(7.3)



The "whump integrzls" (7.2b) satisfy two important identities. Because,

in the rest frame of star K

1

L 1 R = B
KRK ’0_' axo. x' ¥

they satisfy

"
u, * €= ¢ *uy, = 0 a (7.4)

Through much of the rest of this section we shall work in the rest

frame of star A, where

0 0 .
Vg ~ Ly u, = o, ugt =Y, u, T oyve . {(7.5)

In this rest frame 'he identities (7.4) become
eo =0 , 8(10 = -y cax % (7.6)

The basis vectors of this coordinate system are

> -> - -1 > -> > -> -+ >
ey =, s € =V (uB/Y—uA) 3 ey=)5 s e =q . (7.7)
i % 0
By combining equations (7.4), (7.6) andl’\with £ = Eaﬂ.ga@ —58 we obtain
the relations
2
g (2-v7) e
0By _ “xx a B a By _ XX (o R)
e = g (uA u, + ug ug ) = — v,y
vy . v Y
+ c:\x"'ezx ﬁ(au B) % exz+€zx- (cxu R)
v B w )% U
(S, Syx p(o, B _(Exz  Eax\ (o B)
v 2 A v 2 ]9 Ya
vY VY
u .
+e %0 4 et e, WD r e 0P (7.8a)



66

P T L P | a a g o _ - o 7.8b
e )" == g b, e vcyx?fz Ve, 4 (7.8b)
T = B -1 £) B B 2 R 7.8
(Uge €)= -y "e_ v, te, v +szxy¥: tyve a4 (7.8¢c)
eot 2 B TR E Ze » (7.84)
o XX vy 2z 3]
By inserting these expressions into (7.3) we obtaln
THVY
Zhw b i P v, ” i [(1 3v ‘) exx}
lamAmB A A B B v2 2
. ’ 2 2, & sy
4y M W] oy @ev) (A-3vT) Pxx _1_1
YA Y 2 2
3 v
( v) (2-3v*- v*) &x 2i1-39%) [Eay € X\
+ 2, _Yeeawde vh Sx  yta-aw?) (G ._.v__)
2v 2n 2v o
(u, V) ul_Exx xﬁ1+v ) [Exy-Eyx
¥ &8 Yp vY 2w 2v 2T
a v Y- ~3v2v™) Cax Y -3D) [Exe” Cux
+ 2 Y TV ) LBK
4 uA 2v 21 2v 2T )
" 2 .
(u v) 1 €2x Y(1+v7) [Exz- &
+ 2 L b 7o) % X
TSt oy o
.. Te e .
zz (u VY[ *yz zZy BV Yzz
+ Y (l+v )[- 7 rq ( o + q'q -
wl, 2.2 Exx _Yawd & .
Rl B e~ 2 2 | * (7.9)

b) Trick for FEvaluating Whump Integrals

Our task now is to compute the spatial whump integrals cjk and insert

them into equation (7.9). In computing cjk we shall use a trick suggested
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by the method of Peters (1970). We now derive the trick:
As in Papers I and II, define the Green's function for the spacetime

with metric

1808 T naB ¥ 1hAuB (7.10

by’

v - CIB_ GB (. _'1_ ' )
IEIB CA(x,x Yy = lhA )GA,GS = -[1 3 1hA(x )}64(4 %) & (Fal11)

Split GA(x.x') into a flat-space part plus a perturbation due to the field
1Macg

G, = o&.t+8c, - (7.12)

and invoke the flat-space equation

oB
n oc,aB = —54(x—x')

to bring (7.11) into the form

lEAascx) 3,25 (CCnx") = o8 3,05 AC,(x,x")

E]f AGA(x,x') . (7.13)

Now apply the differential operator BY - By. to both sides of this equation
)
and use the fact that OG is a function of x'- x' (so [3Y+ BY.] 0G = 0) to

obtain

aB : ' :
[1hA (x)].Y aaaB OG(x,x') =[3f(3Y+ BT.) AGA(x,x ) . (7.14)

Next apply —BA. to both sides and use —BA. 0G = BA OG to obtain

— af 1y = o . . v
[lhA (x)]‘Y BGBBBA 0G(x.x ) E]f(3Y+ BY.)BA. éGA(x.x Y & (7.15)



68

Then multiply both sides by 167 TBuv(x') and integrate over x' using

\Y] \Y ' ' 4
1hBu (x) = 16m J TBU (x") Oc(x,x ) dx' (7.16)
to obtain

— oB = HV _ . v BV, gy b,
174y 1PB a8 " []f{ 16w I [(ay+aY.)aA. BG, (x,x")JT," (x")d % } =
(7.17)

Then invert this equation using the flat-space Green's function to obtain

— a'B’ —u'v'
J [y v 2B arpr] oBCRex')d X

= 167 J [(3#2.1)3), AG, (x,x")] TB”“(x') &% . (7.18)

Here the primes on the indices on the left-hand side indicate that the iﬁ]s

are evaluated at x', not x. Next rewrite the left-hand side using the

gauge condition

—_ atlpt
lhAa B 5 = 0 + (negligible terms quadratic in masses)
’

and using integrations by parts and using Ba' 0G = raa OG , to obtain

ol s 2 4 g U'\" ' '

J 1hA ' 1hB '8 Oc(x,x )d'x
- | (5> ro y gl
1A 'Y. lhB ,)\'),C{‘B' Oc(xsl )d'x

- — a'B' = u'v' " 4 ,
J (lhA ' lhB ,A') BG,BB. 0G(x,x ) d'x

— 'Rt L T T
a'f A G(x,x') dax‘ .

= 3% J M gyt ot
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Then invoke the relation (eqs. 4.11p and 7.2¢)

B!

_f&“' - mklk“ugﬂeK (7.19)

and combine with equations (7.2b) and (7.18) to obtain

o . B VRN
(lrlvr)‘rrsAmB(uA 3., aB)uB up sYA

= 167 J((3Y+ LN 86, Ge, %) T (x ) dxr . (7.20)

Then insert thé stress—energy tensor for B (eq. 4.13) and integrate out
the x' on the right-hand side to obtain
m (%2 ) By e, = an? | [+ 8,33, AG,(x,x")]
AYVA To’VA B A Y O y'lA' AN

oo - dt .
Y X ‘B(‘B) B

(7.21)
'Finally, speclalize to the rest frame of A and thereby obtain

2 o
eyA,OO = (4w /mA) J [(8Y+ BY,)BA. AGA(L,A )]x‘=ZB(TB) drg . (7.22)

The perturbation in the Green's function is easily determined by comparing
p .

equations‘(7.12) and (4.1) with equations (55) and (56) of Paper I:

AGA(x,x') = aA(k,x') OG(x,x‘) + YA?(x,x') OG'(x,x')

‘ . v. " ‘o t 4.'-]0 if x'g’]’._(x)lr
. J 0G(x,x ) BA(x ,x") 0G (x ,x') d'x

[ |1 26 %' ¢ 176 | -
(7.23)

Here x'e 1 (x) means that x' lies inside and not on the past light cone of x.
We shall restrict ourselves to field points x which are not in shadow regions.
(As with the focusing-plus-transition-plus tail field (§VI), the analysis

of Paper II gharantees that the whump field in shadow regions is
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the analytic extension of that in nearby nonshadow regions.) The restric-—
tion to nonshadow regions allows us to set otA(x,x') = 0, and to invoke

equations (6.8), (4.2), (6.5), (6.31) and (6.30) to obtain

" xH? + [x]? oobx] "
E;AGA‘“'“’“[ [ Iz'Hffo“i‘}[_—'58006(“'*)]

X

0 .
Hlt, - x - |x']]
1 Ao s
+~2? 30[ ) J = (7.24)

1
— L
ho™ * + 2 nliy

In the first line we can bring the differentiation all the way to the left

by invoking the fact that

0 0 _ _ (quantity that can be dropped Qithout)
KLk )BOX ; 0(1/RA) a (chahging radiative part of field v (F25)

We can also use the relations (cf. Fig. 6 and eqgs. 4.1, 6.5, 6.30)

1 1,,02 . 1,12 1 0, .
Glx,x") = =6 [~ =(X)° + = |X]F] = —F—— 8¢x+ [x]) ,
0 41 ret 2 2 1% 2TT(XU+ I§l) =
I e B T LD (7.26)

n

XO o [)~(| |§| = RA +(fractional errors « 1/RA) ’

I?_" I Ifl + 25' *X= R-A(h:-'l + x' *n) + (fractional errors « 1/RA)

to bring (7.24) into the form

0
§(t, - x + x'+m)
27 : = Ao ~ = ‘
-5‘; AGA(L,X') = —BO{ RA n l?frl-i—_)f' o B
v
H(t, - - x'D
- - T = . (7.27)
' .
(TAo- L = E)RA

We can then use the fact that
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o' ', — o
(3j+ aj,)(TAO X +i: 11) = nj+nj~ 0

plus relations (7.26) to write

B, = x b oS )
Ao f

2 Ty e ~ o 1O b
m, (aj+ Dj.) AGA(x,x ) = 80 { RA(Ix.l 3 5, 'Q) (n’+ n” )

OI
6(t, - x - |x']) ) '
Ao ' x| (nd+ nd )} ; (7.28)

0 o
RA(TAD x + x ' 3)

and we can combine this with (7.22) to obtain

$o 3 O, s
ﬁill . ) (n'+ n” ) G(TAO— X+ % 3)
2% 7,00 0 A RA(]§'1 +x'*n)

@l nd’y sr, - - et

= : 0,° = :I} dtg. (7.29)
RA(TAO- x + 1:' . 1:) x'=zB(TB)

(Note that it does not matter whether we put our spatial indices up or down:

Sj = Sj for any §.)

This is our "trick equation" for eQaluating the whump 'integrals, Its
power lies in the fact that it involves only a single line integral along the
world line of star B, whereas the originai whump Integrals (eq. 7.2b) involve
extremely diffcult 3-dimensional integrals over the observer's past light cone.

c) Evaluétion of Whump Integrals

For the special case of €, = —v—l €, we can use the fact that the

ix jo -
]
[ ] quantity in eq. (7.29) is a function of xo— xo to rewrite (7.29) as

Six 1 @e ol 60, - %4 2o w
21r),00 = ;"3030 J{ RA([§'I + x'*n)
(nj+ nj') G(TAA— xo'- If'l)
-t Oi dTB-
RA(TAO- x + )f.| *n) x'=zB(TB)



We can then integrate out the delta functions and wipe out the 8090 on

each side of the equation (the integration constant is zero because e

vanishes in the limit TA + @), and we can use the relations

o

: 0 ; x' = Zg lies at the
T - 2, = &, "N c==b g = T <= e
Ao g &g R [ B Bo] & elp of 5 in Fip. & ) (7.30a)

: 0 | ]] x' = g lies at the
1, =2z, + |z == [1 = T e i
a0 " %t 1% [Tg= Ty,y) tip of M in Fig. 4 (7,300)

(cf. eqs. 6.12, 6.30, and 6.35), thereby obtaining

ij _ [ nj + n ]
2 VRA U] 2T M | yr gy )

nj + nj'
- VRA(if‘I T ic- . B)der/dTBl sag B 3 . (7.31)
x'=z, (T,

For the more general case, expression (7.29) reduces to

. T . 0',
E. (n"+ n’ ) n O6(T, - x + x'*n)
( 2:) 00 = 2% I . =
) RA(I§|1 +5'.5)

] v 1
(ad+ nd ) ¥ ol - x - Ix'])
+ 0 ‘ = dTB
Ry(Tpo~ ¥+ x"* n) x' =2y (15)
5t e ) 5, 3
B I Ao & "y n _nt o
9 R axk LIx'[+x"=n |
- 0' 1] 1
G(TAO- - _lf I)r 3 K 3 0+ nj
- R Py Ll ey 0' dry »
A 9% Ix Thoo x F x'en 5
. o ~ o~ JxTmza(rg)

By integrating out the delta functions and wiping out one 80 we bring’

this into the fomm
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L -
Eiky ., {[j_@_;u_hr}k___-_j
21 0 0 R, ([x'"|+x%x"+n) dr, /dt
’ AN -~ - Al Bo L
Ao J X ZB(TBO)
VoL -
& (nj+ nj )nk
R ([x"] + x" *n)dt, /dr
AN KL ~ ~" Ao p1Jd x'= zB(TBl)

B R, dt

& [ gk nj'nk' __(nj+ nj')__(nk+ nk'_)][ 1 B
ERIEREFIRTY ('] + x' 7w ATTho’ WTpo U [ %"= 25(Tp)

. .t 1 . (] - "
i [ ot ' (ol (ke )J[ ) ] e
+ -‘. T . .
[f l(lf l x E) (i?_c'l + 5' . Ll)? RAdrAOIdTBl x'= ZB(TBI)

Notice that the trace of this equation, after integration over time, reads

21 | R, [x'|dT, /dT
iy A =
A o BoJ x zB(TBo)

(7.33)

(st
RA[f ](ITAO/dTB sha 5 fr Y

B Bl

In equations (7.31), (7.32) and (7.33) it is helpful to note that, for

.= % or T.= T

- Vi
B~ 'Bo g Ty 808 for X' EAT,)
'
1 o o B AN 3 [ =1/vy_ ]
- B T
dTAo/dTB (x"|+x" - n)2 ks 95 [x T+ % R

} vy
= 30[-[? +§' - n] (7.348)

~

(cf. eqs. 6.30 and 6.33), and that similarly
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1 [ e N O S el T S
dt, 7t [Ix'TAx T+ x"m '] +%' * w2
53 (0 + o) /vy (7.34b)
= 0 —13? +'~, 'B . -

In particular, by combining (7.34b) with (7.32) and integrating over time,

we obtain

ex [ __ ol o) L G ad) ey
2m RA(IE_"] +§| . E)dTAo/dTﬂo RA(lf'I*' f' 2 l~) '
: x'= zp(tg )
]
nj'(nx+ nx') (nj + nj)/vY
+R(|'l+'-)dr Jdt ’R([.|[+.,) . (7.35)
A § E z Ao Bl A b f E x'= ZB(TBI)
In the first bracket
. _ o . o m
dIAo/dTBo B d(zn - ’J) /‘“3 =Wl -8y g (7.36a)

in the second
dt, /dt,, = d(z 0+|z |y 7z, = Y1+ vyt Hez ) =yQ+ 1"') (7.36b)
Ao’ “TB1 B " 1%p B B e AR 4

(cf. eqs. 7.30 and 6.33). Combining these relations with (7.35), we obtain

Exi [nj(l'*‘mx') +nj'(1,“ Vﬂx)]

2m ' A1
Ryllz'l 2" - ohar, fany e o (o

_ [ nj(l +\rnx') + nj‘(] -vnxﬂ (7.37)
VR, (Tx T+ =" nydr, 7dt,. | o 25 (1) . ,

Equations (7.31), (7.32), (7.33), and (7.37) are somewhat formal expres—
slons for the whump integrals. We now evaluate -them explicitly in terms of

Y TR : 2
the same parameters (a,B,G,a,B,S,v,Y,b,TA,TB,E.A,.Q.B,S ,RA,RB) as appear in
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equations (5.7) and (6.42) for the direct, focusing, trarsition, and

tail fields.

The whump integrals € ., gyx’ and €,x can be evaluated by inserting

the vectors of Figure 4 Into expression
for insertion are

= _... Ve
For TB TBo i.e., for x z

‘xv . y! . z
n- TB/SLB , I b/”B , n

dTAOIdTBo= vY(1 - av) §

- ef. eqs. (3.5¢), (3.16a), and (7.36a).

For g = Tp1 ——i.e., for x" =z

1 _ - = -
lx'] = [3] =M, = y(2,- vr

xl A} -Z'

nt = J"/MA , n = M, n

= xl —
dTAo/dTBl =y[l+vn ] = R,A/MA

cf+ eqs. (3.5c), (3.16b), and (7.36b).

hY
A .

(7.31).

T

at tip of

=0

he relevant quantities

v

(7.38a)

.
0, [x'| =1Iv]=25;

(7.38b)

(7.38¢)

(7.38d)

(7.39a)

(7.39b)

(7.39c)

(7.39&)
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By inserting these quantities into expression (7.31) and then invoking

(3.7), (3.10)-(3.12), and (3.16) we obtain the following:

eqs.
€ b(ab-BT,)  b(ub-BT,)
. L , .40
vS RB ZB vS RA RA
[ x TB(ab-BTB)
2m vSZ RB zn
-2, =2 = = o 2
y{BQ+avr, + [vB® - G +av)bT, - GBvb”)
- -41)
2 3 (7.4
VSTR, £A
e (32 3
o O SR . [(1+av)'1‘ vBbT +b] ) (7.42)
2T s?r vS“R, L,
YU ATA
By combining relations (7.31) and (7.37) we obtain
- v
E:xj ij L n nj - nxnj
2n R (lx'] +x' +m) dr, /dr e
Bo X —zB(TBO)
(7.43)

x' _nl'l‘
R ([x'l + x'rmydr, fdty, 'z (Ty) .

By then inserting expressions (7.38) and (7.39) into (7.43) and by invoking

(3.7) , (3.10)-(3.12),and (3.16) we obtain

o =B 3 (ub-BTB)(aTB+ Rb)
21 SZRB zB

+ =L —[B@+w, 2+ @ & -Twbr, - & b7] (7.44a)

S RAQA




T

£ —-¢€ 8T, (ur +Eb) o _ _ 5
hic < Wi - PO A AP L NP X (7. 46b)
2m s?R_ % s’R, % A A
R “8 A A

We next insert expressions (7.38), (7.39) and (3.7a) into (7.33), obtalning

€ +& +¢
By G Syt e 11 (7.45)
2n 2w RARA RB B
We next turn to Gzz. According to (7.32), with n® =0 and

dxo/dTAo = 1, it is given by

Loz =[ (") ]
27 RA([f | # xUem)dr, fdtg, o ZB(TBO)

Bof 1 - (nz)2+ ne*n'
[ — ) dTB . (7.46)
RyC(lx'] + x* -m) 2, . .

Bl x'= 2y (o)

———

The integral that appears here can be evaluated using n = (o,83,8) and

x' = (vyr_,b,0):

B

E B
J 3~ (5% non (1- 6% + Cavyry Bb)(bzwzyzrnz)"l/z
R g w J at
; 2 T O5 Ll )
RA(If'[ + x" *n) i R, [(b™+v Y 1g )lf + avyTg+ Bb]
BvYT, - ob ' [x'] T n® - %Y )
_ . (7.47)

RAva[(bzwzyzrnz.)1/2+ YT+ 8b) 'RAbvy(lx' | + %" *n)

By combining this with (7.46) and invoking (7.38), (7.39), (3.7), {3.10)—

(3.12), and (3.16) we obtain
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872 EB ‘ 2
kel i ¥ GV)(Ub-BTBi + §7bv]
bvS" R
B
i o o
+ —5 [(1+ av)(ab-[&TA) + §"bv] . (7.48)
bvS R

By combining this result for ¢ with (7.45) for € 4+ € + ¢
2z xx yy zz

with (7.40) for cxx' and with (3.12b) for S2 we obtain

Eﬂ - (Gb—BTB)TB[TB- v(aTy+ 8b) ] .
2m RBZ Szbv (7.49)
B
(cb-BT )T [T + v(oT,+ Bb)]
s A A A a = . (7.49)

2
RAQ,AS bv

L
We turn finally to 8y7+ E"zy . From equation (7.32) with n” =0 and

0 =
dx /dTAO = 1 we have

r '
i @
2" oy | n%¥+ 0¥ ) (7.50)
2m ' i L
LRA(I_)E i +x E)d‘er/dTBo x ZB(TBO)

z y' 8o z, y, y' ﬂl
n'’n 2n" (n’4n” ) ‘
+ R ([x'l +x'* n)dt, /dr x'= z_(T )” R (lxt‘ % 3 ,n)?Jx“_,, (1 )dTB.
ANl ~ ~ Ao bl 3 Tp1 TBl p 1% x n 2p(Ty

The integral that appears here can be evaluated using n = (a,B,8) and
g_c' = (VYTB,b,O):

I 28 [B+ b(bzszzrﬂz)—uz :

2.2 2 2.17% )
R, [ vy 1) "% + avytg + 8b)

I 2n” (n)+ ny')

dTB=
Ry(|x'| +x' +m?

d‘rB
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a(b2+ VZYZTBZ)I/Z‘

=2 7 -
6RAbVY[(bZ+ vzyz-rﬁz)]/2+rwy"rB + Rb]

b (-87)vrT, + aBb

' ] 1
2|x' | (2% n* - 0¥ (ny)2+ n'n'n’ ]

= = R . (7-51)
R, bvy n lae?] # ' =)
By combining this with (7.50) and invoking (7.38), (7.39), (3.7), (3.,10)-
(3.12), and (3,16) we obtain
+ -
€, f:EX L8 ) b(aT + Bb) ) 28 17, v(oT + Bb)]
27
RBSZ R’B _ bv
p— -_"" + Y ™ i
i 3 ; b(cuA Bb) . 2£A[TA+ v((lTA+ Bb)1] . (7.52)
P\ASZ 2’!\ bv

This completes our evaluation of the whump integrals.

d) Final Answer for the Whump Field

By inserting expressions (7.40), (7.41), (7.42), (7.44), (7.45), (7.48),

(7.49) and (7.52) for the whump integrals into equation (7.9) for the whump

field, we obtain

— 1V —_—
2hy v Ho Yy (1_3\,2) {, b(ab-BT,) . b(ub—STB)}

u
= (u u, +u
4m A A B Y 3 5 5
A" v vS RA !LA- vS RBQ'B
o y(2=v2) (1-3v%) [ P(@b-BT,)  b(ob-BTp)
+ u : v2 82R 2 Sz L
A = ATA i RB B

e 4l

+ pMy A"){——’f— (BT,-Gb1[2(1-v")T, + v(1+v?) (a1 ¥Bb) )

2.2
vSRAﬁ’.A
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2 ,
- [BTB-ab][(z—sz—v[')TB ) (aT,+5b) ]}

R_%
vSRBB

2
+ E(uunv) - —2—12—— {ETA—Hbl[(2—3v2— vb)TA + v(1—3v2) (-(;TA-}-_B.b)]
S RAEA

+ ﬁl—— [BTB-ahJ[zu-vz)TB w iy (u'l‘B+Bb)]}

VIS Rty
g Av)(__L__ [2(1-vF W, 2 rvQ+d)T, (ar,+8b) ]
v'S R 2 AT A

_._L___, [12-87 )z s v(1—3v2)TB(aTh+ﬁb)]}

v T 2.
+ q(uuB ) { T'-Yf_ [(2-3v —v‘}EA + v(1-3v )TA(u1A+Bb)]

(7.53)
+ ——Y§~— [2(1-v )1 = v(l-!-vz)TB(a'l‘B+Bb)]}
v S RB?,

. pHyY 2(]+v2){ (cv.b-gTA)TA[TA-l- 'V(ETA+ Bb) ]
Yy (b A

2
RAR,AS bv

¥ 3

(0b-BT) T, {T ~ V(I Ab)] }
RBE,BS bv

= [b(aT, +8b) 22, [T +v(aT +Fb))
+ y(u \))Y (140 ){ 62[ A ASTA A ]

R,S 4 by
_ & | blargteb) . 29 [Top=v(aT +gb) ]
Rys” g e

2
q"q" 2(1+v ){ 5 [~ (1+av) (BT -—ab) + Thuv)
bvSs RA

E

va RB

+ [(l-OW)(er —ab) + 6 bv]}
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2 2
vS RAEA vS RBRB <

i} fmﬁz[_l_ . _1_] }
4 Rada  Rghs.

b(gT,-ah) b(RT.-uh)"
PRI {?_szz [ i J

VIII. TOTAL FIELD AND GRAVITATIONAL~-WAVE AMPLITUDES

The total gravitational field 2.1*_1‘”\, in the radiation zone, with the non-
radiative "coulomb" part removed, is obtained by adding together the direct
field (5.7), the focusing"plus-transition-plus—taii field (6.42), and the

whump field (7.53). The result is:

by AV

=g
[

TR oo (n. v
lunAmB[HAAuA B N B, T

(V)

HoaBuy "+ Ry b V)

(uu v)

+

(u
2t “qA ¢ u

+ ubbr;”r:\' # My M + quq“q\_’ + By v . (8.1)

The coefficients which appear here are as follows:

2a~v") +avan’) | BawD (T,
By g i — ('r ¥
v (l-tav)RAR.A v(l—fﬁv)RAb A
(1-3vHb. , 2vb [ SFTa  SOFTy "y
B 3 = 2 T2 ¥ (8:da)
v l+av LS RAR,A S RBJ?,B
21~ - av(ivd) B Ty
Hgp = 2 - ('E"+ .
v (1--0cv)RB!?.B v(l—ctv)RBb B
[a-avPn 2w [T BTy .
3 1-av 52R 2 s2 ) * ’
v AA Rels
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HAB =

|

1
Sl

=
on i

+

w

g-a
L___._J

B pel
ob=-BT ab B’rJ ]
t ]

-+

2 2
Y(2=v") (1=3v >b[ (8.2¢)

2 2
v S RAR’A S RBQ'B

2. (T
IVALCSA'ADN N
A~ WRo £, L

A

_2'2_Y—" [eb-Br, I[2(1-v )T + v (1+v2) (ar L))

v'S RAJLA

2
+ —-2—??{-—— [ab-B7, ][(2 By )T o A" ) (ot +8b) ] (8.24)
8 “BE‘B

- S0 )

+ —2—;—— [ob- am T E5-mvy’ )'I‘ + HEI-5y )@t +Bb) ]
v 'S RASZ.A

- e [ab-pT (21D - v (D) (cn430)] (8.2e)

- 5P 2a~v?e, P vy, @ 4B ]

s P fsg 2 -—v(l—3v2)TB(o;’l‘B+Bb)] . (6.2£)

R s i b aEAT
qu VZSZR z [¢2- Ao )z 2, v(1-3v )TA(of['A+Bb)]

* ——l———- [2(1-v* )2 v(1+v2)TB(chB+Bb)] , (8.2g)

vSRBQ
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B (@b-BT )T
Y (+vT) A CH - _
be = bv {- ) [TA!_ V(LlTA-!- Ab) ]

S RAﬂA
(ab-BTP)TB
+ ———-2——‘——— [TB— v(aTB+ Bb)] s (8.2h)
S £
Rty
Hb . Y2(1+v2)-g{b(QTA+Bb) ) —ZP,A[TA-F v(aTA+8b)] }
q SZRA R’A bv

_ Yz (l+v2) 5 {b(a'rn+3b) , 20, [Tp-v (T +8b) ] }

" (8.21)
2 2 bv
S RB B
voawhe,
= = [(14+av) (ab=-BT ) + §“bv]
W Les2R =
A
Y2(1+v2)2B i
-2 [(1~av) (0b-BT, ) - 6°bv] . (8.23)
vaZRB ®

o [ =BT, BT 2045 1 ]
W= =2bvy T 2 - L A+ w2 ) (8.2K)
s’R2,  s°R 8, A'a Rp'm

All of the quantities that appear in these coefficients are defined in 5III.
One can easily verify that the gravitational field (8.1) possesses the
star-interchange properties of cquations i 0
In the radiation zone where this field. exists, the post-linear gauge

condition -I?N = 0 reduces to
2 FRy)

x| S
2h k\) 0 5 (8.3)

where k is the propagation vector of equations (3.5) and (3.6). It is
straightforward but ted:t.ous to verify that our gravitational-wave field (8.1)
satisfles this gauge condition. The verification utilizes equations (8..1), (8.2);
(3.8), (3.7), (3.12b), and the following relationship [which is derivable

-

from equation (3.5a) or (7.7), and 41'?’= —a Re +ea @E +g ®; +Z ®; ]:
07 0 x x vy 'y z z
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Wy Ve PP e M) L (8.0

=1 U —
vz 2 {uB up + u,u, 2YuA
IE 1s also straightforward, but tedious to take the slow-motion limit
of expression (8.1) in the rest frame of star A and verify -that its spatial
components, 2K3k’ agree with the slow-motion field derived in Paper IV (eq.
26). In taking the slow-motion limit the following approximate relationships

[derivable from eqs. (3.5a), (3.7), and (3.10)—(3.12)} are helpful:

-> > > > -> > > > >
uAneo,uB=e0+vex,\b=ey,q=ez,
11 o S s _ VI(aT+Bb)
RB RA R * TB TA = v(aT+8b) , E.B—Q,A = .
2. .2 s
o -0 =-v(B™HS") , B-B = val , § - &8 = vad
s? = 622412y + (b-BT)2 (8.5)

Here the quantities on the right-hand side of each expression can be inter-—

preted as

T=T, =T , L=2 +28, o=a, B=B, 6&6=73,

with fractional errors of 0(v). (8.6)

In any Lorentz frame the radiation field is obtained by projecting out
the transverse-traceless part of Zij (see Box 35.1 of MIW). Let us perform

such a projection in the rest frame of star A--which has basis vectors

-> - -> >
o= Uy s 8= G-/, & =F, § =7 (8.7)

(cf. eq. 7.7)., For the purpose of the projection we shall introduce
spherical polar coordinates (r,8,¢) centered on star A with the polar axis

along the direction of motion of B (x direction), and with (0,¢) = (n/2,0)
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along the impact direction (y direction):
X =71 cos 0 , y =1 sin 0 cos ¢ , z=1r sin O sin¢d . (8.8)

The orthonormal basis vectors associated with these spherical coordinates

are
> 8
€ =€ (8.9a)
> > > > - ->
e. =n =¢e_ cos 0 + e sinfBcos¢+ e sinOBsin¢ , (8.9b)

r X Y z

e, = -6 sin0+ e_cos 0 + o cos  si 8.9
eﬁ = -e_sin eycos cos ¢ e_cos €sin ¢ " (8.9¢c)
-> > > :
e$ = —eysin ¢+ e _cos ¢ . (8.9d)

& P> >
The observer, located In the e~ = n direction, uses the basis vectors ea
r

~ )
and e. to characterilze transverse directions; and he uses their tensor

products

“ ® - -y ®-»- “+> ® -> 4 > ® -» (8 10)
e = e e - g e e = €A KW e e e . .
+ ¥ x 0 b ) )

(o]

as the polarization basis states for the gravitational waves:

“+r
—TT o

_ <>
h™ ™ = A+ e, * A B, s (8,11)

2

By applying the standard transverse-traceless projection operation to 2E5k
(Box 35.1 of MIW), we obtain the following expressions for the wave ampli-

tudes A+ and Ax g

1 ,» ‘:: -»-. -» *-—: -*

A, =5 e 5 Gh G =Ey oh = ex) B (8.12a)
1 - = -+ -+ =2 i

A »5 (e6 * ,h dap ey 2t ey . (8.12b)



86

These expressions are most easily evaluated in the rest frame of star A

. -+ - -> > " v TR
(basis vectors ey €. ey, ez), using equations (8.1) and (8.7) for 2h and

.)n -
equations (8.9c,d) for e} and er . The result is

6 ¢
4m 4m
A"B ~ YMA"p
A+ = bRA Q+ . Ax = -"b—R:-- ax ¥ (8.13a)

where RA is the distance to the observer in the rest frame of star A (which

we are using), and O.+ and Qx are dimensionless amplitudes given by
1 N N % 2 2
0+ 7 bRA[sin 0(vy HBB llqu) + (8in"¢ - cos“B cos“d) -(qu- be)

- cos 0sin0 cos ¢ \r\mbB - cos0 sinfsin¢ WHqB

+ (1 + coszﬂ)cos (bs"LndJHbq] (8.13b)

= ) 5 : "
ax =3 bRA[?. cos Bcos ¢ sin ¢(lqu— !lbb) + sin® s;.n(va}le

- 5in 0 cos ¢ VYHqB + cos 8(c052¢ - sin2¢)Hbq] (8.13c)

The dimensionless amplitudes 0+ and Q_ are functions of the velo-

-1/2

city v and energy factor y = (1—v2) of star B, the impact parameter b,

the observer's angular location (8,¢), and the observer's proper time Tg*
One can express 0.+ and (@ _ explicitly in terms of these parameters by

making use of the direction-cosine relations

00=cos 8, B=sinbBcos ¢, 6 = sinBsing . (8.14)

the equations of SIII, and expressions (8.2) for the H's.
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In Paper IV we shall examine the details of the radiation field (8.13)
and 1ts assoclated spectrum; and we shall compare it with the various

speclal cases that have been computed by other researchers.,

While carrying out this research we relied heavily on insights gained
from close scrutiny of Peters (1970) bremsstrahlung calculation. Peters'
formalism and approximation scheme were different from ours; but they were

sufficiently similar to give us insight.
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FIGURE CAPTIONS

Figure 1. (a) Spatial diagram of unperturbed stellar encounter in center-—

of-mass frame. (b) Spacetime diagram of same encounter:

Figure 2. The spatial part of the 4-acceleration of star B, as seen in

the rest frame of star A. The equation describing ag is [cf. eq. 2.27]

-m,

(b2+ sz

2.2
B ® 373 (I+ 2y"v7)b Sy— ywige .

2 2
T )

Since yvty is distance travelled by B, the acceleration is directed
toward the focal point shown in the figure. In the limit v << 1 the
focal point colncides with the location of A;‘but for vy >> 1 it is far

on the other sid. of A. The vertical component of the acceleration is
proportional to the inverse cube of the distance from A to B, Note that
as y * @ the acceleration becomes more and more orthogonal to the trajec-~

tory of B.

Figure 3. Spatial diagram in the rest frame of A showing the direction n
to the observer with its direction cosines &, B, §; and showing the
vector b that reaches to the point of B's closest,approach, and the

spatial part of the velocity of B, up -

Figure 4. (a) Definition of retarded times T and TBo (b) Definition of

Ao
> ;
several vectors §, M, J to be used in the derivation of the radiation

field-

Figure 5. A diagram showing the conical region of spacetime where star A
shadows star B. 7This diégram is confined to the future light cone J+(ZB)
of a specific event ZB on the world line of B. In other words, the one

spacetime direction suppressed from this diagram is the direction lead-

ing off J+(ZB). The coordinates X,¥,2 used in the d;agram are the

spatial coordinates of an inertial frame of star A.
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Figure 6. Spatial diagram of the geometry used in computing the time-delay
function YA(x,x') in the rest frame of star A, The arigin of the

spatial coordinates is at the center of star A.

Figure 7. The spatial geometry used in evaluating BA(X",x') and
4
J 0G(x,x") BA(x",x') OG'(x",x')d'x". In equations (6.22)-(6.27) we
use the coordinates and parameters of diagram (a). Thereafter we

switch to the coordinates of diagram (b).
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(to distant observer)

Fig. 6
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THE GENERATION OF GRAVITATIONAL WAVES

1.

IV. BREMSSTRAHLUNG

This is material that will ultimately be

a joint publication with Kip Thorne.

%
Supported in part by the National Aeronautics and Space Administration

[NGR 05-002-256] and the National Science Foundation [AST75-01398 AO01].




100

ABSTRACT

This paper uses the mathematical formalism and equations derived
in the first three papers of this series to give the results of our
analysis of gravitational bremsstrahlung. We develop some new insights
about the detailed structure of the waveforms and compare our results
with those of other investigators. The key features of the analysis
include a) the need to use not one, but two naturally occurring time
scales, b) the symmetry property in the center-of-velocity frame, that
reflection through the origin leaves the magnitude of the wave ampli-
tudes unaltered, c) fairly simple analytic formulae for the amplitude
as a function of time, direction, and polarization, d) proof that in
the relativistic case there is no logarithmic dependence on ¥
in the total cnergy radiated, e) analytic formulae for the power spec-
trum in the extreme forward direction, wvalid for arbitrary velocities

and f) expressions for the zero-frequency limit.
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I. INTRODUCTION

We anticipate somewhat optimistically perhaps, that the detection
of gravitational waves will become a reality by the mid 1980's. 1In this
spirit we have embarked on this series of papers dealing with the genera-
tion of gravitational waves., Our aim is to elucidate the realms of
validity of the present computational techniques and to try to devise
new techniques valid in new realms. Our ultimate purpose is to be able
to calculate the waves generated by models of astrophysical systems.

The literature is replete with references by many researchers on the
topic of gravitational radiation and a thorough review of computational
techniques has been given by 'Thorne (1975).

The foundations for this paper have been laid down by the first
three papers in this series (Thorne and Kovacs 1975, "Paper I"; Crowley
and Thorne 1977, "Paper II"; Kovacs and Thorne 1977, “"Paper II1"), In
this paper we give the results of our detailed analysis of gravitational
bremsstrahlung.

The context in which aspects of this particular problem have been
investigated previously has varied widely. The various approaches in-
clude the use of Newtonian theory, Turner (1977), Hansen (1972); post-
Newtonian theory, Wagoner and Will (1978), Turner and Will (1977); the
"quadrupole-moment formalism,'" Ruffini and Wheeler (1971); perturbation
of the Schwarzschild geometry, Peters (1970), Misner (1972); quantum
gravity, Barker and Gupta (197h), Smarr (1977), Feynman (1961); the
method of virtual quanta, Matzner and Nutku (1974); the method of

colliding plane waves, D'Eath (1977).
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Nowhere before has there been a detailed analysis of the wave
amplitude as a function of time, angle and polarization valid for arbi-
trary velocities and unrestricted mass ratios. Our analysis is valid
for weak fields only and also requires that the angle of deflection
be small compared to 90°. There is no hope of detecting gravitational
radiation from any astrophysical system by surrounding the source with
detectors covering U steradians. Therefore we focus little attention on

the total gravitational wave luminosity L .. or the total energy radiated

GW
per hertz dE/dv — instead we concentrate on the structure (i.e., time,
polarization and frame dependence) of the amplitudes since the amplitudes
are the quantities that gravitational wave astronomers are seeking to
detect (see MIW, chapt. 37).

This paper is divided into six sections. Section IT gives the
well known low-velocity limit and defines our notation and coordinate
system, Section ITI discusses the frame dependence of the amplitudes,
the symmetry properties in the center-of-velocity frame and the need to
use two time parameters TA’TB to describe the radiation., Section IIIL
concludes by giving expressions for the wave amplitudes, [egs. (3.17)
and (5.18)] and their symmetry properties [eq. (3.20)], in the frame of
star "A" as a function of time and angle. Section IV analyzes the high
velocity limit of the amplitudes and breaks the radiation zone into
three overlapping regions of interest: the '"forward-region," the
"intermediate-region" and the "backward-region" [eq. (%.1)]. Section V

is devoted to the frame and time dependent features of the wave forms

and includes a comparison between our work and that of Peters (1970).



103

Section VI contrasts our results with those of other authors and gives
an expression for the specific flux [eq. (6.9)], valid for arbitrary
velocities in the extreme forward direction. Section VI concludes by

giving the zero-frequency-limit of the radiation.
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II. LOW-VELOCITY LIMIT

Consider two objects (stars, planets, black holes...) which undergo
a near encounter. Require that their interaction be entirely gravita-
tional; and for specificity, call them '"stars.," Require that the stars’

sizes r, and r, be small compared to their impact parameter b

r, <<b, r, <<b (2.1a)

A B
so that tidal interactions can be ignored. Also require that they

move with low relative velocity v, and that their impact parameter be

large enough to guarantee only small deflection of their orbits:

2
vez l, ¢ :.(mA + mB)/(bv ¥ 2l (2.1b)

The assumptions v << 1 and b >> (mA % mB)/v2 >> (mA b mB) ("slow
motion'" and "weak relative gravity") guarantee that the orbital motion
can be analyzed with high accuracy using Newtonian gravitation theory,
and (by virtue of 2,la) using a point-particle description of the stars.
This is true even if one or both of the "stars" is a black hole (D'Eath
1975). Moreover, these same assumptions guarantee that the gravitational
waves emitted can be computed with high accuracy from the Newtonian

motion using the standard "quadrupole-moment formula"

hjkTT = (2/x) ‘fjkTT(t-r) (2.2)

(eq. 36.20 of Misner, Thorne, and Wheeler 1973). Again this is true even
in the case of black holes (Thorne 1977b).

The computation of the orbits and waves is so straightforward that
we shall not give the details here, we give only the final result for

the radiation field.
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We shall describe the final result using Cartesian coordinates
(t,x,y,z) in which star A is initially at rest at the origin; the
moment of closest approach is time t = O, the orbit of star B lies in
the x-y plane with initial velocity in the x-direction, the unit spatial

vector pointing from the origin toward the observer is

n =cosf e+ sin € cos © ey + sin 6 sin @ e, s (2.3)

~

and the observer is in the radiation zone, a distance r from the origin.
(See Figure 1, and note our unconventional relationship between
Cartesian and polar coordinates; a more conventional approach would make

the notation change e - e

e, ~ &, Ey -8, e - gy .) We shall decompose

the radiation field into two orthogonal polarization states with basis

tensors
et =e ®e e ®e, =, Q@c_ te @e (2.ha)
a ~0 ~0 ~ ~ ~ ~0 ~Q ~ ~0

e, and e are unit vectors in the 6 and ¢ directions

e, = r_18/39 = -e_ sin 6 + e cos 0 cos @ + e_cos 6 sin ¢, (2.4b)
~0 ~ ~y ~a 2
ew = (r sin 6)—18/8¢ bt ¥ sin ¢+ e cos ¢. (2.4c)

In describing the time dependence of the radiation field we shall use
retarded time t - r, measured in units of the time b/v for star B to

travel a distance equal to the impact parameter:

Te [t = £) v/b: (2.5a)
and we shall use the function

£(T) = (1 + Te)l/2 g (2.5b)
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which equals the distance between the two stars at "time" T, measured
in units of the impact parameter.
In terms of the above quantities, and to first order in the deflection
parameter r, the gravitational-wave field (transverse-traccless part of

the metric perturbation) is given by

hjkTT (t,r,6,9) = A_._ E+ " A’x f:x ’ (2.6a)
= )— =
A (LmAmB/br) a,, A (hmAmB/br) a s (2.6b)
Y LT | - S T B cumel
Q+ =53 + ?1 sin 8 + 5(&1n ¢ - cos O cos w)
_ £ i 21
T T .
+ Fjg + 7 +-1} cos 6 sin 0 cos ¢ , (2.6c)
Ll :
g = = cos O cos sin ¢ - E—-+-I + 1} sin @ sin @ . (2.684)
PR ® JE ’

Here A+ and A are the amplitudes of the two polarization states. Note
X

that their magnitude is hmAmB/brJ which has the physical significance

and size
hmAmB/b L relative gravitational potential energy of
B e stars at moment of closest approach
(distance from stars to observer)
= J Newtonian gravitational potential at observer's
- location produced by stars' relative potential energy

il

0.5 x 10(e2) (52 (@) (o) .

Here my and m, are measured in solar masses, Pb: the impact parameter b
is measured in solar radii %D: and distance to the source r is measured
in units of the distance to the center of our galaxy. Perhaps it is not

totally hopeless to think of detecting such radiation in the 1980's

(Zel'dovich and Polnarev 1974).
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The time dependence and angular dependence of the radiation field
are contained in the renormalized amplitudes Q+ and G*. They are of
order unity for |T| £ 1. Equations(2.6c,d) express them in terms of
impact parameter, b, velocity times retarded time, v(t -r) = T, distance
between stars, £ = (1 + T2)1/2, and observer's angular location (0,¢).

Notice that, the radiation pattern (2.5) is totally insensitive to
the relative masses of stars A and B: it depends only on the product of
their masses and the amplitude is not frame dependent in the low-velocity
case., Moreover an observer at @€ < n/2 (toward whom star B moves in a
frame where star A is at rest) sees precisely the same radiation features
as an observer in the opposite direction (toward whom A moves in a frame
where B is at rest). This fact is embodied in the parity properties of

Q+, d,, and the polarization tensors:

a->a,e - e
+ +7 ~+  ~+

1f (6,9) > (7-0, wip): (2.8)

a, »Q, e

B ¥ ™0

Figure 2 displays the time behavior of Q+ and ¢ for several loca-
tions of the observer. Notice that, by choice of convention, the ampli-
tudes begin at zero for T + -, but, except in special locations, they
do not tend to zero for T » +oo! Since the displacement of a free-mass

detector is directly proportional to the amplitude of the wave, brems-

strahlung radiation will produce a permanent change in the distance be-

tween the test masses of a free-mass detector. This angle dependent

effect occurs because the stars' gravitational interaction permanently
changes the magnitude of Ejk' No such effect occurs for radiation from
sources (e.g., stellar collapse) which begin in a stationmary state and end

in a stationary state.
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Free-mass (broad-band) detectors respond directly to the amplitude
of a wave and have no mechanical restoring forces. On the other hand,
resonant detectors (Weber~type bars, supercooled monocrystals of sapphire,
etc.) can be tuned to yield information about the spectral content of the
incoming waves. For our case, the spectral characteristics of the
radiation are given by the Fourier transform of the renormalized ampli-

tudes 04 and Gx. These transforms are defined by;

+00 +00 of
1 ~iwt 1 1 ~i(w/v)T
G = f a e dt = —f g e dT . (2.9a)
i o + 1/2 v +
v (29 b (2x) o

For the amplitude (2.6c,d) these Fourier transforms are

1 b i 2 o 2 . 2 2
q+m = (pn)l 5 (#9[}{KO sin 0 + uK1(31n 6 + sin ¢ - cos O cos m)]

+ i{e{Kl + uKO] cos 6 cos € cos @}] $ (2.9b)

_ 1 (= ‘ i
an —<£;;En§ (v,) [[uKl cos 0 cos @ sin O }

+i{-(K1+ uKO) sin 0 sin cp}:I r (2.9¢)
where

u = w/vb, Ky = Ko(u), K, = K (u) , (2.9d)
and where K.0 and Kl are modified Bessel functions.,

The specific flux carried by the waves in the two polarization

states is (see p. 1027 of MIW)

gt [2xgsy L P lua |2
v 2 - 8 br +

bm,m_ \2
A'B 2 - - "
e ) u [{K051n O -+ uK1(81n 0 51n2¢ - c0526 c032¢)}2],

]
5|
AN

(2.10a)
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where v = w/Eﬁ is the frequency of the radiation. The total cnergy

radiated per unit frequency is

dE _ (ot | Xy 2
dv _I\fv HFJrraa

m,m - 2 ]
. G ({:_1;) [(1/5 +u )uQKOg 4 Su"KOK1 + {1 + u2)u2K12}; (2,11)

and the total energy radiated is

2

m
dE 371 (CATB\ v
bE = ) 3, dv = E—(—b—) T (2.12)

To gain insight into the low frequency domain of the radiation one
should not concentrate on Q%” or Q*m, they diverge as w — O; rather,
one must look at the recal physical energy carried by the waves and
consider dE/dv as w — 0. The zero frequency limit of dE/dv may be read
off from eq. (2.11) since the term in square brackets - 1 as w -0. The

result is,

2
dE _ 6l [MA"B .
vl (_b (2.13)
Alternatively it may be obtained by noting that for w - 0O
+00 +00 +0
1 n ' 1 dy 1
0@ = qf @ (T)dT - f——xth:- a |
W enl/2 ) % (2n) /2 de 20’2 % te

. '()_,11)75 Aa-; (2.14)

where AQ+ denotes the change between the early and late limiting values

x
of @ . Using eq. (2.6c, 2.6d) we can recad off these values for AQ; 3
X b
4G = 2 cos Osin0 cos ¢ 6Q, = - 2 sin 0 sin g (2.15)

and using (2.11) we get:



dE Gt oy 2 A"B g (8 27 ..
E;Lluﬁo ‘:ﬁjv 4 5v)r dQ = 2(%—-)f[|ﬂa+l + lwaxi th

. % (l‘:g)afﬁ A(I+|2 + Imxig:' an (2.16a)

which when integrated gives
2

.‘_‘l.El ;&(Eﬁ) . (2.16
dvl 8 LB .16b)
As a closing remark in this section we note that either for the non-
relativistic or the ultra-relativistic case the w —» 0 limit of dE/dv
may be attained by two methods — the tedious method of actually Fourier
transforming the specific amplitudes then taking the w — O limit or the
rather trivial approach of looking at the net change in hjkTT before
and after the '"collision."

The above amplitudes and spectra have been previously derived by
Ruffini and Wheeler (1971). Utilizing a quantum mechanical approach,
Smarr (1977) obtained the same results for the w = O case. Turner
(1977) used a purely Newtonian multipole expansion formalism to
calculate the amplitudes and spectra for various bound and unbound

orbits as a function of eccentricity.
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ITII, ARBITRARY VELOCITIES

a) Assumptions

Turn now to the case of a stellar encounter with arbitrary relative
velocities v; but still insist that the stars be small compared to the
impact parameter b (negligible tidal interaction) and that the impact

parameter be large enough to guarantee small deflection angle:
2 -2 2 ”
r, <<b, ry «<b, ¢ E(mA}mB)/(bv Y g™ m Ty (3.1)

In Paper III we used the post-linear wave-generation formalism of
Papers I and II to compute the gravitational-wave field for such an

encounter to within fractional accuracy

(error in wave field)/(wave field) = O(gyg) x (5.2)

(Our analysis was not able to say whether the error was (, (7, gyg,

QTJ, vww w The C72 error was deduced by D'Eath (1977) using a mathe-

matical formalism very different from ours.) Unfortunately, our computa-

tion relied on the assumption that the stars are large enough

T, S>my, Ty S>my (Z.5)

that their internal gravity is nonrelativistic. Thus, we have no
guarantee that our results are valid if one or both of the objects are
black holes or neutroa stars. On the other hand, we know that the
weak-interval-gravity assumption (3.3) is unnecessary in the low-velocity
case v << 1, where the "quadrupole-moment formalism" is valid (Thorne
1977b), and also at high velocities y >> 1, where the '"colliding plane-
wave" formalism is valid (D'Eath 1977). 1In both these limits the waves

are independent of the stars' internal structures so long as tidal
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forces can be neglected (rA Kb, 1y < b): black holes give the same
radiation as normal stars. There is no apparent physical reason why

structure-independence should break down at intermediate velocities.

Thus, it seems reasonable to assume that our results are valid

independently of the assumption (3.3).

b) Description of the Waves

Recently Thorne (1977a) has proposed that the results of gravita-

tional wave calculations be expressed in terms of a complex scalar field
A=A + iA. (3.4a)

which has the property that at a fixed event in spacetime and in any
reference frame the spatial, transverse, traceless part of the metric
perturbation is

TT F x
hjk = Real (Af. 1 nk) e A ey (3.4b)

Here

+
= - 4 = = ; !
e, - ie, e 1®e &%e,, e ge, + e e, , (3.he)

b3=1]

and e and e, are vectors with the following properties: (i) they are

purely spatial in the chosen reference frame; (ii) they are orthonor-

mal and are orthogonal to the propagation L-vector k of the waves

Sa . Sb = gabJ ga * b =45 (SJ‘"d)

(1iii) together with any future-directed L-vector €’ the triad

e

ey & k forms a right-handed system

£ (So’ €1 So» B) =0 (3.he)
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(here € is the Levi-Civita tensor): (iv) e, lies in some chosen

fiducial plane (2-space) which passes through the propagation vector k.

For our bremsstrahlung problem we choose our fiducial 2-space to

be the one spanned by the propagation vector k and the difference up-u,

between the stellar b-velocities
fiducial plane k A (EB - Ea) . (3 .5)

In writing down our formulae for the gravitational-wave field A
we shall find it convenient to use three different reference frames:
the rest frame of A (denoted 8), the rest frame of B (denoted éﬁ, and
the center-of-velocity frame (denoted §),.

The rest frame of A is the same as that used in the low-velocity

problem (Figure 1). In this frame the propagation vector is k = e 41,

0

where n is the unit radial vector pointing toward the observer (eq.

2.5); and Up-U, = (7-1) ey + Vre . Consequently the spatial part of

the fiducial 2-surface is the n A e, plane. The unit vector e must

lie in this plane and must be perpendicular to n; thus, up to sign

(which is of no importance), e. is the unit vector pointing in the 0

1
direction: e = SO' Conditions (3.kd,e) and the demand that e, be
purely spatial then guarantees e, = SW:
i b3 = = .
in frame 8 (rest frame of A) &1 = & & & (3.6)

Comparison of equations (3.4b,c) with (2.hka) and (2.5a) reveals that
the above choice of fiducial 2-surface (eq. 3.5) leads to polarization
base states which are the same as those used in our low-velocity

analysis.
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The rest frame of B (framefg) is related to that of A by a Lorentz
boost with velocity + ve, and a translation bgy designed to place the

origin of coordinates on star B:

T op(t - vx), X = y(x-vt), y=y-b, 2=z, (3.7a)
— ol O = s 5. |
r = ’)’(1 - QV)I', t-1r= "7"(1__—(“,) » (3.7b)
O = cos § = x/r, B = sin O cos @ = y/r . (3.7¢)
(o] (o] o . | wc 2
Here r = (x° + y2 + 22)1/L and r = (;2 * ¥ + 22 1/ are distance from

source to observer as measured in the two frames; t-r and t-r are
retarded time; and we assume |t-r| << r, rEJ;[ << r (observer in
radiation zone). 1t is straightforward to verify that in frame S the
spatial part of the fiducial 2-surface is the oA e direction

(where E.is the unit spatial vector pointing toward the observer), and

that consequently

: e _ - =
in frame 8 (rest frame of B) e = ga, & = Sé (3.8)

where (e _,e _) are related to (e_, e , ¢ )in the same way as(e, S@)
x y z 6
are related to (Sx’ e, gz); see equations (2.4b,c) and Figure 1.

-~

y
The center-of-velocity frame & moves with speed + v e relative

to &, and with speed -v e_ relative to §, where
~X

= ~ ~2.=1/2 L2
- o/w), 5= )P (/21 (5.9)
The spatial origin of 8 is situated half-way between the trajectories

of the two stars. Thus

t = y(t-vx), x=y(x-vt), =y - b, z=2z; (3.10a)
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¥ = y(l-ov)r, B =Sl —*——Eéab ; (3.10b)
7(1-ov)

and similarly

E = JESR), %=F(%eVE), -y +ob, F=3; (3.10¢)
. o en ~ ~ T-T+1/2 b
r = 7(lov), t-r =-— , (3.104)
7(1+av)
& = cos 6 = 2/;, E = sin O cos ; = ;/; . (3.10e)

In frame 8 the basis vectors for the polarization tensors are:

£ = 83 £2 = & (3.11)
Here (95’ ga) are related to (Si’ &5 gE) in the same way as (ge, g@)
are related to (gx, Sy’ gz); see equations (2.4b,c) and Figure 1.

In Paper III we derived the full wave-zone gravitational field
(the trace-reversed metric perturbation) ﬁpv’ in frame-independent
language (equation III-8.1). From that result one can compute the
scalar gravitational-wave field A by projecting out the spatial, trans-
verse, traceless part of ﬁuv in any frame one wishes, and then equating
it to expression (3.4tb).

The gravitational waves of equation (I1I-8.1) have symmetry prop-
erties similar to those which we encountered in the low-velocity limit:
The radiation field is totally insensitive to the relative masses of
the stars A and B; it depends only on the product of their masses.
Consequently, in the center-of-velocity frame, where the encounter would
have forward-backward symmetry if the masses were identical, the radia-

tion always has forward-backward symmetry:
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A4(E,;,5,5) = A+(E,;,ﬁ - 6,0+ 1) ,

This is the arbitrary-velocity analogue of equation (2.6); in the
language of Paper IIIL it is the symmetry property (III-3.17). Of
course, the waves are also symmetric under reflection through the

plane of the encounter

I
>
~~
(mi
-
H
-
o
a
I
g
-

A+(t:r, 0, (P) =

~

AX(E:;;E: cl-’)

Il
]
>
—~
rt
.
a1
.
(e}
-
1
S
=

(3.12b)

¢) Analytic Expressions for the Amplitude

Previous computations of bremsstrahlung (Peters 1970; Matzner and
Nutku 197%) have been carried out in the rest frame of one of the stars.
To facilitate comparison with those results, we shall express our
amplitudes in terms of the coordinates (t,r,0,w) of the rest frame of
star A (Figure 1). 1In our expressions we shall use the direction
cosines of the observer, as seen in the rest frame of A

a = cos 6, B = sin 0 cos o, & = sin 6 sin o ; (5.13a)

and also the analogous direction cosines, as seen in the rest frame

of B
& = con B =0V B = sin 0 cos o = E
1-ov? ¢ y(1-av) ?
S = sin @ sin O = 8 (3 lvb)
q‘) 7i 1_0:"’ » o LD

Whereas in the low-velocity case there is only one characteristic
timescale associated with the radiation, At = b/v = (time for star B to

move a distance equal to the impact parameter), in the general case



117
there are two timescales. The first is the analog of At = b/v: Star
B, as it passes star A, exerts a gravitational acceleration on A.
Because of the "relativistic pancaking' of B's Coulomb gravitational
field, A's acceleration has duration At ~ b/(vy) rather than At ~ b/v.
Because the moment of closest approach is t = 0, this will produce

radiation which is naturally described by the retarded-time parameter

T, = vy(t-r)/b . (3.14a)

The radiation should have a bump at time T, =0, of duration AT, ~ 1.

The second characteristic timescale is associated with the
acceleration of star B, As seen in B's rest frame $ its own accelera-
tion has duration At = b/(v7). The radiation produced by this
acceleration is doppler shifted, as seen in the observer's rest frame
(A's frame): there it has duration At = y(l-Gv) At. The strongest
radiation is emitted at the moment of closest approach, t = 0, when
star B is at (x = 0, y = b, 2z = 0). The observer sees this radiation
emanating from B at retarded time t - r == - fBb. Thus, it is reasonable

to introduce the time parameter

o o EoraPb _ t-refb _ v(t-rifb) TgrPey
B At y(l-av)At T (1-ov)b T y(T-aw) ?

(3.14b)

and to expect the radiation to contain some sort of bump at time TB = 0

with duration ATB~1 .

In writing down the radiation field it is convenient to introduce
the following functions of our time parameters:

2,1/2 2,1/2 . e
Ay = (L + Ty / s dp= (1% 07) / , (3.15a)
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57 = (o - B TB)2 +3 2.5 = (- P TA)2 g 8 0." (3.15b)

The two expressions for 82 are equivalent by virtue of equations
(3.13b) and (3.14b). The functions 1/£A? and 1/.233 describe the rise
and fall of the gravitational accelerations that the stars exert on
each other (eq. III—2.27), while 52 is the squared length of the
h-vector which reaches from star A at the moment it crosses the past
light cone of the observer to star B at its passage through the light

cone (eq. III-3.12). Note that T,, T , £

A Ty EB’ and S° as defined here

A)
are renormalized by a factor b from the same quantities in Paper IIT:
2 z ~

( A., B’ A.’ B’

In terms of the above parameters the scalar gravitational-wave

amplitudes are given by

A = (hmAmB/br)G+, A = (hmApB/br)Gx 4 (3.17a)
. 2 o 18 2 2 :

A+ = G1 sin 0 + G2(51n @ - cos O cosﬁ@) + G5 cos € sin @ cos ©

+ G, cos 0 sin 0 sin ¢ + G5(1 % cosze) cos ¢ sin ¢ , (3.17b)
A, =G, cos 0 (2 cos © sin o) - G, sin 0 sin ¢ + G, sin 0 cos g

+ G_ cos @ (cos2 - sin2 ) (3.17¢)

5 (P (.P . .
Here the functions Cl""’GS are
o - 2020-%9) - av(1+A)] 1 prv(ie ) oy
2(1 -av)? Iy~ of -av) Iy

" ‘_72 1—3v2+ vs " 7(1%v )£ ’ eply G-y
) v " T-av oy A B) 2| Ey T (T, |

(3.18a)



e 0-BT O0~BT
- 2(Lev7) . 1 A B L
By = AT, Ty - &y L) 2|7 gy b (3.18b)
A B
2, (T
6. = M— ._...}i o 1
3 1-av Ia
2 C-BT O~BT :
. 2 e ’ 1 A _ B
S [Q(I—V My = Wb il Bi]sg [ t, (- )’
(3.18¢c)
by = ____251__15 '%— [(2u3v2-vh)£A? + v(l—ng)TA(aTA+B)]
P o2v(l-av)s A
- le(1-v®) e F - v T (o B || (3.184d)
Ia B B' B
) B o
H1wvD)s |OT4tP 24Ty Oy B 28T,
By, = 2 ) " v + 7 i v . (3.188)
i 2(1-ov)s A 7 B Y

In expressions (3.17) we have introduced the same renormalized ampli-
tudes 04 and Gy as for the low-velocity case (egs. 2.5a,b). (Note that
because of the factor r in (3.17a), Q+ and @ are not scalar fields.)
Equations (%.17a,b,c) for G+ and @ are the aEfE e equations
(111-8.1%b,c) and (III-8.2), with b replaced by unity because of our

renormalization of T T £ yJ 82

A B A B
tions that utilize equations (III-3.7) and (III-3.11lb).

, and with some algebraic modifica-
It is straightforward, using equations (II1-8.5) with b = 1, to
take the low-velocity limits of C!.+ and Gx and show that they agree
with equations (2.6c,d).
In expressions (3.18) the dependence on the function 82 is somewhat
delicate. For observation events at which one star is in the "shadow"

of the other, 32 vanishes. However, the quantities which multiply 1/S2
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in Gl""’GS also vanish in the shadow — and they vanish in such a
way that Gl""’GS change smoothly and not sharply as the observer
moves into and then out of the shadow. For further discussion see
§ VIc of Paper III.

The forward-backward symmetry (3.12a) does not show up very clearly
in expressions (3.17), (3.18) for A+ and Ax because those expressions
are written in the coordinates of A's rest frame, By transforming

(3.12a) from center-of-velocity coordinates to A's coordinates (egs.

3.10a and 3.9) we find that the amplitudes must be the same at the

events (tl’ X15 Yy» 21) and (tg, X5 Yoi 22) where

t, = y(t-ve ), x5 = - y(xp-vty), ¥, = - b, oz, = -z
(3.19)

In terms of spherical polar coordinates r,0,¢ and the retarded time

parameter TA (eq. 3.14a) this relationship says

Ar (TAE’ r21 92: qb) = AW(TAI’ rl’ 91: qﬁ) »
A (TA2, ry 6 qb) = - A (TAl, ry, 0, @1) & (3.20a)
where
TA1+v7B1 cos Ol-v

il

7{l-ayv)r,, cos 6, =- (ml) 19y TR

Tpo = 7(iow) T2
(3.20b)

Note that the direction cosines and A-B time parameters associated with

these '"equivalent" events are related by



Op = =0, By= =By By = =By, Ty = Tp {8 20e]
G, =-0, By=-8, B =-8, T,=T,: (3.204)

cf. equation (3.13b), (S.lhb), and (3.20b).
Before displaying graphs of the wave amplitudes and discussing
their spectral features (§ V below), we shall derive high-velocity

(¥ > 1) formulae for them,

IV, HIGH-VELOCITY LIMIT

In the high-velocity limit, ¥ >> 1, it is useful to split the
radiation zone into three overlapping regions: the '"forward region,"
the "intermediate region,'" and the "backward region.'" 1In terms of

angles measured in the center-of-velocity frame S, these regions are

forward : 6 << w/2 ,

intermediate ;_1 «< 6 ; ;—1 «<n-90,
backward : w - 0 << ﬂ/2 5 - (4.1)

When one transforms to the rest frame of star A using the relations:

~

~ /2

cos 6 + v ~ v ~ 7+1

cos 9 = ——————o , Vo=, Y = (——-) y > 1 ()_;.2)
1+v cos 6 7+l & ’ ’

one finds the following locations for these three regions:

forward : 0 << 7"1/2 ,

intermediate : 9" << 6 << if2 ,

backward ; @ >>/7"1/2 . (4.3)
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We shall now derive limiting forms for the gravitational-wave
amplitudes (3.17), (5.18) in the forward, intermediate, and backward

regions.

a) Forward Region

In the forward region we introduce D'Eath's (1977) angular variable

=6y =0y’ = e (%.ha)

which has values of order unity at the angles of greatest interest, and
which satisfies

y << 71/2, U <<y (4.4b)

throughout the forward region. We also introduce the notation
C = cos @=cos g S=sing=singy. (4.ke)

The two time parameters TA and TB are reclated to each other and to

retarded time (eqs. 3.14b and 3.1%a) by

: 27(T, + ¢ cos o)
o, y(t-r) 2 A

3 N
A b B 1y P

(4.5)

We expect the waves to show structure on the timescales ATA ~ 1 and
ﬁTB ~ 1, which correspond to times t as measured by the observer in A's

rest frame

L]
At ~ b/y for AT, ~1; bt ~-%(1+¢2)/7“ for AT, ~ 1. (k.8)

Careful scrutiny of equations (3.17), (3.18) reveals that, when viewed

on the slow timescale AEA ~ 1, A+ and Ax have discontinuous time

derivatives at the time T, = - ¥ cos ¢ (i.e. T

) = 0); but the values of

B
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A+ and Ax are continuous there. When viewed on the faster timescale

ATB ~ 1 near TB = 0, the time derivatives vary smoothly but there is

no significant change in the amplitudes themselves. This behaviour
permits us to focus attention exclusively on the slow timescale

AT, ~ 1, but suggests that we shift the origin of our time parameter

A

TA to the moment TA = - ¥ cos ¢ of discontinuity:

~

T, B Ty ¥ cos o =

M_ﬂ =
A b '1{005({)-—-

2(e-x) |
b

| =

To derive the high-velocity limit of expressions (3.13)-(3.18) we
now replace 6 throughout those expressions by ¢/7, we replace cos
~
by ¢ and sin ¢ by s, we replace TA by TA - ¥ cos @, and we expand in

powers of g = 1/7, keeping careful track of the magnitudes of the

§ cos . (h.7)

errors at

A% and Ax

7’:—5

i

7(1-av)

Q1
I

and also

each step.

are

e,

1 2
E’E(l*"@ 1

1-\1;2
L+

2"1‘A

r

The results for various parameters appearing in

&

=
!

[}

1 22
1—581‘!;’
St‘;s’
2ys

2)
1+y
~ h!2 A S
T, + —t_— T %

(4 .8a)

(%.8b)

(%.8¢)

(4.8d)

(L.9a)
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: g 2
In all these expressions the fractional errors are of order € - except

)
v and o (eq. h.8a), where they are of order EF. The result for A+ and

Ax is
oy iy,
Geoq - i ] i )
A, + A, = e (qbq-lﬂk) e (Q++-1Gx), (4.9b)
br ¥
2 L
l Py ~ 1 ~
6, = L | e’ +<-1H§)|TA| (?"“2 -1 -5 TA)
(1) 1+y 1+y

2 A~
+ %- [%—((1-2c ¥ = (1P2C2)$2 - 2c2¢% + vc(1+2c2-+2(1+c2)¢2)T

" A
s} "~ n ~
% ((1-2c2) - (1+hc“)¢2) TAL + 2c¢TA§] ¥ (4.9¢)
hygs 2y 2 2 ' %
¢ = 25 y(1d)s® 4 2047 I, (—c v s TA)
(1+\‘J ) S(_ 1+1‘T4
~ ~ ~
+ = c(l+¢2) - 2((1+c2) + cewe)vT + 2c(1+2¢2)T 2 . oyT,”
N A A A A
(h.9d)
These formulae for A+ and A, have fractional errors of order maximum
-1 -1/2 . . I
(r =, vy ). Notice the absolute-value signs on T, : they produce

the discontinuities in the time derivatives of the amplitudes -
discontinuities which would actually be smoothed out if one looked on
i - 2
the shorter timescale ATA o (Le¥ )/7 [ATB ~ 1],
Equations (M.h), (H.?), and (4.9) are our final, forward-direction,
high-velocity formulae for the gravitational waves in terms of either
center-of-velocity coordinates (%,;,5,5) or rest-frame-of-A coordinates

(t,xr,0,0). We shall discuss these formulae in § V below.
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b) Backward Region

Formulae valid for the backward region can be obtained from the
above forward-region formulae by invoking the symmetry relations

(3.12) - or, equivalently, (3.20) and (3.12b):

2\ Lm Jim, m
A v iA = (IZ‘C) bi‘mB (@ +ia) = o 2 (a -+ ia), (4. 20a)
+ X 7 "
Q+ = [expression }.9c], G = [expression L4.9d7 , (4.10b)

where the quantities appearing in (4.9c,d) are given by

/2
1 + cos O N = 1/2
o= (1 — Q) = (n - O)W2, 7= (y/2) / , (.10¢) |
¢ = - cos 9=~ cos w, s =+ sin @ = + sin o, (4.104)
(1 F(E-E) 1

= [ ) (XY = AEE) L
TA“(e)(b) b 5 Ve s B
(EA and Se) = (expressions 4.9a) . (k.10£)

c) Intermediate Region

In the intermediate region, y-l << 0 << nfe (;—1<< o, ;—1<< w -0),
it is convenient to introduce the new angular variable
~ \1/2
1/2 g 1 - cos @
x =0 (7/2) / = 0y = (“‘—*—**i: ) ’ (4.11a)
1 + cos 6
which has values of order unity at the angles of greatest interest, and

which satisfies

-1/2 1/2 ~el

¥ <<y <<y’%, Y << x <<y (k.11b)

throughout the intermediate region. We also introduce the notation
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c = €os @ = COS ¢, s = sin @ = sin @ . (k.11e)

As we have seen, in the forward (and also in the backward)

direction, A4 and A)(vary on the slower of the two timescales TA and

~
B In the forward direction the slower timescale is TA = TAe-constant;

N

T
in the backward direction it is TB = TA + constant. In the inter-
mediate region it turns out that there is a continuous transition from
variation on timescale TA to variation on timescale TB' To make this

transition apparent it is convenient to introduce a timescale

defined by

c 1/C c
- —2* = (é—;) )(T - ‘é‘ . (!#. 12)

llere the relationships between the various timescales are derived by
inserting equations (4.11) into (3.10b), (3.7c), and (3.1ka,b), and by
ignoring fractional corrections of order (2/7)1/2. Notice that at
x - (27)—1/2 (the forward edge of the intermediate region),
i'* TA + %c; at x - (27)"1/2 (the backward edge of the intermediate
region), 1~ Ty = éc; and at 3 = 1 (8 = 7/2), 1 = (t-r)/v.

To derive high-velocity, intermediate-region formulae for A+ and
A we now replace O throughout expressions (3.13)-(3.16) by (2/7)1/2x,
we replace cos ¢ by ¢ and sin @ by s; we replace TA and TB by
(27)1/2x (t‘l c/2) (egs. 4.12); and we expand in powers of M ?5(2/7)Lé,

keeping careful track of the magnitudes of the errors at each step.

The results for various parameters appearing in A.+ and Ax are
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y = 2/1?, v=1- %ﬂu, o =1 - %ﬂgx? , (4.13a)
y(l-ov) = x2, B = Txe, &= Txs , (%.13b)
& =-(1-31x2), B=mwTe, 5= s , (4. 13¢)
T, = e'n“lx(f;- %c), £y = en“lx | §- -;-cl 5 (4.13d)
T, = 21 T+ o), by =21 X |t 2el (h.13e)
Y (4. 13£)

In all these expressions the fractional errors are of order TF or
2 2 . X 8 :
(M) or (7Vx)" except in v (fractional exror of T ), ¢ (fractional
- =
error Tﬁx%), ani @ (fractional error Tﬁx l'). The final results for

A and A are
'. x

. lhmm 2, bm,m
: A'B " 1+ AB i
A+ + 1A = (@ + iQ.) = (..._X_) — (a+ % l(2)() , (k.14a)

ol 2y | b¥
2L 3 g =S e
3/2 | gl 2
¢ -7
+ X 1 1
slel 18§ <5 lel, C(h.14D)
(")t ar f <o L]
3/
2 . 1 1
Gx=_£;%F—§x 1 if -§|c|<i<§|d

o - (s239)7L if Ll <t. (4. 14c)
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As in the forward and backward directioms, so also here, € and
+
Gx are continuous functions of time, but their time derivatives are

discontinuous, The discontinuity at } = - %—c is caused by the
passage of T, through zero (eqs. 4.13d,e). If one were to look on the
rapidly varying timescales TA and TB rather than the slower timescale
T,, one would see a smooth change of derivative at 1 = T %-c.

Formulae (%.14) are embarrassingly simple considering the
tortured route by which we have arrived at them. There must be some

easy way to derive them; but we have not yet tried to find it.

V. DISCUSSION OF THE WAVE FORMS

The pioneering, and most definitive previous work on this problem,
was that of Peters (1970). He studied the same type of encounter as we
do, but with the added restriction that one star (say B) is a test

particle with infinitesimal mass, and the other star is massive:
<<m, . 5.1
m, " (5.1)

His method (first-order perturbations of the Schwarzschild field of
star A) was not amenable to the comparable~mass case. However, our

analysis has shown that the radiation is independent of the mass ratio
my /.

By comparing Peters' equations (2.23) and (2.2}) with our (3.k4),
(2.6}, (5.1Ha), and (3.15a), one can derive an expression for the renor-

malized amplitudes G and O, in terms of Peters metric functions A,B,C:
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da o
ETi'z §%§ [A sin“0 + B(cosgo cose@ - sin2¢)—‘2c cos Osin @ cosw] ,
A
(5.2a)
da 1
— - B cos @ cos @ sin o + C sin @ sin o] . (5.2b)
T, ~ hvy ? )

Peters gives horrendously complicated expressions for his functions
A,B,C in his Appendix A. The fundamental quantities which go into

those expressions, rewritten in terms of our variables, are

— — . - = 2
OperErs = Pys = 5in 0 €08 o, €pppppg = Oyg = 08 O, (5.2¢)

=V =7 (5.2d)

PpeTERS  VUs? 7pETERS ~ "us’  TPETERS T (TA/vy)US ’

We did not have the fortitude to check analytically Peters' results
against ours; so we checked them numerically instead. When we failed
to get agrecement, we asked Peters for help; he rechecked his formulae
against his original 1969 computations and found a misprint in the
paper; and after correction of the misprint, his formulae (5.2) and
ours [analytic time derivatives of eqs. (5.15) and (5.16)] gave identi-
cal numerical results. Peters' misprint was the omission of a factor

of (1+ﬁ?y2) in the denominator of the W2 term in his expression for A.

Peters never discussed or graphed his wave forms, so we shall
give a thorough discussion here:

Figure 3 shows the wave form A+(t) in the forward and backward
direction (0 = 0 and 5, ¢ = 0) for various velocities ranging from
v = 0,000l to v = 0.9999. (Ax vanishes in the plane of the encounter.)

Plotted vertically is
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br A4 B q’. br A+ ToiF 1/2 (1+
gy B2 gy for 6 = O, 3 ol 5 for ¢ = x;
bmymy~ ¥ b, myy” (1-v) 8
(5.3a)

cf. equations (3.18b). Note that in the rest frame of A, which we are
using, at a fixed distance r from the source the backward amplitude is
smaller than the forward amplitude by the factor [(1-v)/(1+v)]1/2_

Plotted horizontally is

_wy{t-r) _ _ v(t-x _ _—
TA R for 6 = 0, TB = T%:;y% for 9 = n (5.5b)

cf. equations (3.1ka,b) and (3.20c,d). Note that the wave form in the
backward direction changes more slowly, by the doppler factor
(Liwv)y = [(l+v)/(1~v)]1/% than the wave form in the forward direction.
The wave forms of Figure 3 were computed from equations (3.17), (3.18).
Figure 3 shows clearly the transition from the low-velocity
regime [uppermost curve; eq. (2.5)7 to the high-velocity regime
[lowermost curve; eq. (4.9)]. Notice how, as v increases, the slope of
the wave form becomes discontinuous at T, = Ty = O. Notice, moreover,
that the discontinuity is smoothed out when one examines it on the "fast"
timescale (ATB =2yT, ~ 1 in forward direction; AT, = 274T, ~ 1 in
backward direction). These phenomena were discussed analytically in
§ IVva,
Figure 4 shows the wave forms A+(t) and Ax(t) in the directions

0 = n/2, ¢ = 0, n/2 (directions which are transverse in the center-of-

velocity frame). Plotted vertically is
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bra br ¥ A
. HOY X +OX ¥ 40X % (‘_).ha)

Jrie > 3/2 - BJ2 7
hmAmBy hmAmB(Ey -1) g

cf. equations (3.9) and (3.10b). Plotted horizontally is

-151_1/% L1 _1_)1/% 1
2y A 2 27 B 2

=PY”£E§1+%=(JJUEﬂ&£l  (5.h)

B .
Figure 4 shows the transition from the low-velocity regime [uppermost
curve of each set; eq. (2.8)] to the high-velocity regime [lowermost
curve; eq. (h.lh)]. Notice, again, the development of the disconti-
nuities in slope at high velocities, as discussed in § IVe,

Figure 5 shows the wave form A+(t) at very high velocities, ¥ >> 1,
in the extreme forward region ¢ < 7_1 (or, equivalently, in the extreme
ba;kward direction nt - 6 $ 3/2) and in the plane of the encounter, o = O.

The curves are labeled by values of the angular parameter

97/2 in forward directions

v
i

Y= o7

{1 + cos 0 1/2 e L 5)~j2 in backward directions (5.5a)
1l - cos 6 - h # ” - =

[cf. eqs. (4.ha) and (4.10c)7]. Plotted vertically is

bra bTA, a
i & —5 =5 in forward directions, (5.5b)
hmAmBy 16m,m.y vd
- braA br A a,
5 e = t = —5 1in backward directions (5.5¢)
1+§ A"8”  16m Lo
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[cf. eqs. (4.9b) and (4.10a)]. Plotted horizontally is

ALy B y(t-r) _ Y(E-%) 1. . ’ e A
T, +y=1T, = v 3 5 ¢ in forward directions, (5.5d)
T +4¢ =T, = }iﬂg- hoi + ‘-‘-iif':il-!--l U in backward directions (5 ”e)
ATY T BT T2 b v @ : L

Notice how, for § > 0.5, the overall amplitude drops with decreasing vy,
and the characteristic timescale increases. As | gets somewhat larger

than 1, this behavior is described by the intermediate-region formulae

a4 «=1/y, AT, =Yy

[cf. eqs. (4.12) and (4.14)]. As { increases into the domain ¥ 2 1, one
can see the wave form beginning to approach the "inverted mesa" shape

(Fig. ha) characteristic of the intermediate region.

Vi. SPECTRUM AND ENERGY

a) Total Energy Radiated

The total energy carried off by the waves, as seen in the rest

frame of star A, is

+00 M 27
. 1 2 2
AE = 3= f f f [(atA+) +(3,.4)) ] redquedt; (6.1)
-0 0O O

see, e.g., equation (35.27) of MIW. Peters (1970) evaluated this triple
integral numerically for various encounter velocities v. We have not
repeated his computations, but we have confidence in them, From Peters'

graph one can read off the high velocity limit
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’ e 5
AE = 20 (mAmB/b )by, (8.2a)
where the factor of 20 is uncertain by a few tens of percent. Matzner
and Nutku (1974) used the method of virtual quanta to compute AF in the

high velocity limit, and obtained
o]
AE = 256 (mAmB/b‘“)gby5 in (hyg). (6.2b)

Smarr (1977) evaluated the zero-frequency limit of the spectrum (see §c
below) and, assuming (incorrectly) that dE/dwd@ is roughly constant up to

an angle~independent cutoff frequency mc==K7/b with K~ 1, he obtained

AE = 10 K (bmA’mB/b2)2b)r“5 in (hyg) (6.2¢)
in agreement with Matzner and Nutku.

It is straightforward for us to compute AE at high velocities to

within a factor of order unity: We first compute the energy radiated

-1

per unit solid angle, dE/dQ, in the extreme forward region 6 < y ;

in
the intermediate region 7—1 K g << ﬂ/2, and in the extreme backward
region 6 2 n/2. 'Then we integrate over solid angle.
In the extreme forward region the amplitude has magnitude
m,m

AB 2
A+ Ax br 7

(6.3a)
[eq. (4.9)], and it varies on a timescale A&A‘* 1 corresponding to
At ™~ bfy (6.3b)

[eq. (%.7)]. Thus, in this region

A 5 m,m
dE 2 + A'B S
@t ('A—:) MN(T) 7. (6.3¢)
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5 . .
The region encompasses a solid angle AQ ~ ¥ —, so it contributes an

amount

m

(AE)

m
A'B 3
extreme forward ( 2 ) 7 (6.3d)

to the total energy.
In the intermediate region (which Smarr presumed was responsible
for the logarithmic term)

A'B AB ¥

m,m 73/2 m,m
br x “Tbr ©

~ ~ .!
A+ Ax (6.4a)
[eqs. (4.1%a) and (4.11la)]. These amplitudes agree with Smarr's zero-

frequency values. The characteristic timescale in this region is

At~ 1, corresponding to

1/2

At ~ byy” ~ be (6.4b)

[egs. (4.12) and (4.1la)]. Thus, in this region

2 2
A\ m 2
dE 2 (Ktt) A N(ﬁ) r_, (6.kc)

dqQ b2 6.5

: -1
The region extends from near 0 = ¥ to near 0 = :t/2, so it contains

a total energy

:1/2 2

m
dE . A"B\ 3
(AE)intemediate = fl Hﬁ&tsmede ( 2 ) Y . (6.4d)
Almost all of this energy is at the extreme forward edge of the region.

An analogous computation gives for the energy in the extreme back-

ward region 6 & 11/2
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2

(AE)backward Nﬂ(_fgg) 72' (6'5)

Thus, the total energy radiated in the rest frame of 'star' A
[(6.3d) plus (6.4d) plus 6.5)] varies as 73, as found by Peters (1970),
and not as 75 in (hya) as found by Matzner and Nutku (1974) and inferred
by Smarr (1977). While we understand why Smarr's method failed (incor-
rect assumption that the cut-off frequency is angle independent), we have
not dug deeply enough into the Matzner-Nutku method of virtual quanta to

understand its failure.

b} Spectra

To obtain expressions for the specific flux ?:x or the energy
radiated per unit frequency in the arbitrary velocity case we have to
Fourier transform the wave amplitudes (3.17), as we did for the low
velocity case [eqs. (2.8)-(2.11)]. Unfortunately, the Fourier transform
of eq. (3.17) cannot be expressed in closed form for arbitrary values of
(6,p). However, in the precisely forward direction (6=¢=0) and pre-
cisely backward direction (9==ﬂ, m==0) the Fourier transform of the ampli-
tude [eq. (3.17b)] can be done analytically.

Using eqs. (3.17b,c) with @=G=1, B=B=56=5=0, (A vanishes) we

obtain for the '"+" polarization

_72(1+v2) (2TB2+1) (1+v)(2TA2+1)

a+(9=O,CP=0) = ov 7£B = ‘EA ’ (6’6)

It suffices to discuss only the forward amplitude 64(0’0) since the back-

ward amplitude q+(ﬁ,0) is obtained by using the Doppler shift relations

/2

(4.10); see also eq. (5.3a,b), i.e., G_P(:t,o):[(l—v)/(1+v)] G+(0,0).
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The Fourier transform of (6.8) is defined by

"'i(mb/V'}’)TA
a d

©
b U[
S . a (0,0) e T
+w v7(2ﬂ)i7§ J +

Ay (6.7)

since t-1r = TAp/vy. Performing the integral we obtain

n
1+ v)b
a o2 (. .
e *5————175'[(1'FV) K2(x) (1-v) KQ(Y)] P (6.8)
ve(2n)
where K, denotes a modified Bessel function with argument x = wb/vy or
y = 7(1-v)x. Using equation (2.9a), we obtain for the specific flux in

the forward direction for the case of arbitrary velocities

2 2 2
Lim L 2 2
ff"“:( AmB) y (1+v7) x (1+v) K (x) - (L-v)K (y) . (6.9)
v br 2 2 2
167v
The low-velocity limit of (6.9) may be obtained by setting x = ub/v,
v > 1 and utilizing the recursion relations for the derivative of Ka(x).
The result is
2
Lm me L
5+ z(*e___ x
v = ) 16z K1 (x) for v << 1. (6.10)
This agrees precisely with the low-velocity results of §II if we set
6 = ¢ = 0 in equation (2.9a).
Figure 6 shows the specific flux in the forward (9;=O) and backward
(6 =) direction for velocities ranging from v = 0.0001 to v = 0,9999999.

Plotted vertically is
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- 3:+ lwa ‘2
Vv _ + _
Logo | 17, Ieb)e log; - tox =0 o=
7 (rm.AmB rb) ¥
(6.11a)
- o + 2
log JV (1+v) = log Iwaﬂ)] (1+V) for ==
2 - - 1 - B
10 7)4 (ll‘mAmB/ rb)r) l-v 10 8')’ + l-v

Plotted horizontally is

for 6=x (6.11b)

wh (14-v)1/2

wb
1og10 [;;] for 6=0, or 1og10 v \1 -

since for the backward direction the frequency is redshifted by the
Doppler factor 1/y(l1+v) = [(1-v)/(1-kv)]1/2.

The structures of the curves may be understood in terms of TA’TB and
Figure 3. For low velocities only one timescale T=TA’: T, is relevant,
so the spectrum of Figure 6 shows only one characteristic frequency
(w~ v/b). At high velocities ¥ >> 1, the two timescales TA and TB are
no longer the same, so the spectrum shows two characteristic frequencies;
that associated with its peak (w ~ vy/b; ATA ~ 1) and that associated with
the beginning of its exponential fall-off (w ~ vyg/b; ATB'V 1). The
ffv o v"2 behavior between peak and exponential fall-off due to the tem-
poral discontinuity of A at high velocities in Figure 3. In the limit
v=1(y =®), a true discontinuity would exist in Figure 3, and the
?v o« v"2 behavior in Figure 6 would continue forever. The behavior,
3v o vhg, is easily understood by noting that a discontinuity in 8A+/8t

produces a behavior ka S l/m2 in the Fourier transform of G;, and there-

fore ?v o« |w04w|2 o< 1/w2 < 1/v2.
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c) Zcro-Frequency Limit

To obtain formulae for the zero frequency limit we proceed by cal-

culating the net change in A  as we did for the low-velocity case in
X

QII. As T,, T

ar Ty 7 - the amplitudes G'-k and ax + O since all the co-

efficients G; through Gg > 0, cf. equation (3.18). For Ty, Ty > +o0
only Gl and G, are nonzero, and we can write
(o
( 2y .
A(I+ g L+v") 51n9c;03c13 [2 cos 0 - v(1+ cos 9)] " (8.12a)
(L-vcoso)
D - ~2v(1 + ve) sin @ sin o (6.12b)
“Tx T (1-vcos0) 3 Yt

where AG+ denotes the change between the early and late limiting values
X

of flt. The energy radiated per unit frequency interval per unit solid

angyle for either polarization is given by equations (2.13) and (2.14),

2
2 Lhm 2
dE r er +X 1 AT
—_—— = ——— J — ———— it . o 2z
(dwdn)+ 2 (v ) 50 ( b ) (A@-;) . LR

21
x

Use of (6.12a) and (6.12b) in (6.13) gives us our final answer for the

zero-frequency limit

2 2 2
dE ! 21LmAmB 72( 1+ vg) sin® 0 cos® Q
v B = = T 2cos 0-v(l+coso)
+ 32x (1-vcos0)
(6.14a)
2 2
!
dE . i 72( 1+ v?‘) gin” & s © (6.14D)
dedg) = 2\ b 2 . g
x 8 (1-vcosb)
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This result agrees with equation (2.12) of Smarr (1977) if we let QmA =

(o]
, m, =m, and = (L+v7)r. . /bv. (There is an overall factor of

Tscn’ ™B SCH
1/2 difference due to different conventions.) We recover our previous
results, cf. equation (2.15), if we integrate (6.14) over solid angle

and take the low-velocity limit.

Because of the singe term in equation (6.14) there is no zero fre-
quency radiation emitted in the precisely forward (0=0) direction. How-
ever, there is forward beaming due to the (L -vcos0) factor in the de-
nominator for nonzero values of 6 within the usual "forward cone," i.c.,
for 0 <0 S 1/y. To determine the high-velocity limit of (6.14) in the
"forward region" we reintroduce the notation we used in §IVa, and make

use of equations (4.ha), (k.ke), (4.8a,b). A careful expansion in

powers of € = 1/7 gives

o 2
bmm,\ 2.2 Ly
(Hd_‘?_‘.)'l_ _2_,( ‘2 B) ey (1-y/2) (6.15a)

) 2
dwdQ = sr(l_' ‘;”’)1}
2
!
( dE ) 2 (HuAmB) 52\32 -
d T2\ b ! e " 7
cﬂﬂx %2 5W1+w)

Note that these expressions for the energy radiated in the '"forward
region'" have the same 7h dependence as equation (6.9) for energy radi-
ated in the precisely forward (6 = 0) direction. The symmetry proper-
ties discussed in §TII tell us that dE/dmdQ for the backward region (in
frame A) is given by

dE backward (1-v ar forward ( 2
dwdq = \T7v/ | dman 6.16)

Hexk
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where (dE/dudQ)forward is equation (6.15 a or b). To evaluate the energy

radiated through the "forward cone'" we integrate equations (6.15) over
solid angle, where our angular variables are | and ¢ with O < § = 1 and

0 = ¢ = 2x. The expression for dE/dw is

2
1 ), [ T,m
-

|

(_g_g)x - l;ré (I_n_‘gl_‘_‘%)z [zn(e) te 1/2] ’> . (6.17b)

We now turn our attention to the energy radiated at zero frequency

in the "intermediate region." We use equations (4.11a), (%.13a), and

(4.13b) in equation (6.14a) and (6.1%b) to obtain

2 2
(~—‘1E ) Ai(hmAmli) S PR (6.18a)
dedg) = 2\ b Xgne e
2
bmm, \ 2
dE 8 A'B ) s°
(m) "'"’2( b ) 2.6 s (6.18b)
x bl |

Note that since 2/TF = ¥ these expressions have the 75/x2 dependence we

expect from equations (k.1llb,c) and (6.13). To get an expression for

the energy emitted into the "intermediate region'" we integrate equations

(6.18) over solid angle. The angular variables are x and ¢, with limits

(27)—1/2 < x = ﬂ/E, 0= ¢= 2n., The final expressions are given by

o)
Ym,m, \
dE\ _ 2 A'B ) in(2y)
(dw) B :rt( b ) L (6.19a)
+ l
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o
)
(_‘LE_) =§( LmAmB) tn(27) (6.19b)
dw % Tt b T#

which are consistent with equation {2.13) of Smarr's (1977) zero fre-

quency analysis. The agreement is more transparent when we note that

fn I}{i:’r:l =B [(}fi)m)] = % ip [(1+v)7] = 2 gn[27)

where we have neglected terms of order 1/72. To get an order of magni-

tude estimate of relative amounts of energy radiated into the 'forward

cone" vs. the "intermediate" region we use (6.17), (6.19), and get

(dE/dw)forward
+ or X ! (6.20)
intermediate  In(2y) ° -
(dE/dw)+ or X

This shows that in the zero frequency limit, the energy radiated into
the "intermediate region" dominates by a factor of ~ In(y) the energy
radiated into the '"forward cone," in agreement with Smarr. Because the
cutoff frequency of the spectrum is a function of angle (9,@), this
effect is no longer valid when we consider the total energy radiated.

(See remarks in §VIa.)



142

REFERENCES

Barker, B. M., and Gupta, S. N. 1974, Phys. Rev. D, 9, 55k .

D'Eath, P. 1975, Phys. Rev. D, 12, 2183,

D'Eath, P. 1977, Phys. Rev. D, in press.

Crowley, R, J., and Thorne, K. S. 1977, Ap. J., in press; cited in text
as Paper 1I.

Feynman, R. P.—unpublished letter to V. F. Weisskopf, January 4 to
February 11, 19561.

Hansen, R. 0. 1972, Phys. Rev. D, 5, 1201.

J

Kovacs, S. J., and Thorne, K. S. 1977, Ap. J., in press; cited in text
as Paper III.

Matzner, R. A., and Nutku, Y. 1974, Proc. Roy. Soc. London, A335, 285.

Misner, C. W. 1972, Phys. Rev. Letters, 28, 994,

Misner, C. W., Thorne, K. S., and Wheeler, J. A. 1973, Gravitation
(San Francisco: W. H. Freeman and Co.); cited in text as MIW.

Peters, P. C. 1970, Phys. Rev. D, 1, 1559.

Ruffini, R. R., and Wheeler, J. A. 1971, in Relativistic Cosmology and

Space Platforms, Proceedings of the Conference on Space Physics,

E.5.R.0., Paris, France, p. 132.

Smarr, L. 1977, Phys. Rev. D, (to appear April 15, 1977).

Thorne, K. S. 1975, Lectures presented at the International School of
Cosmology and Gravitation, Erice, Sicily, March 1975.

Thorne, K. S. 1977a, in preparation.

Thorne, K. S. 1977b, in preparation (Paper VI of this series).

Thorne, K. S., and Kovdcs, S. J. 1975, Ap. J., 200, 245; cited in text

as Paper I.



143

Turner, M. 1977, Stanford University preprint.

Turner, M., and Will, C. M, 1977, in preparation.

Wagoner, R. V., and Will, C. M. 1976, Ap. J., 210, 76k.
Zel'dovich, Ya. B., and Polnarev, A. G. 197%, Astr. Zhur., 51, 30;

English translation: Sov. Astron.—AJ, 17 (1974).




Fig. 1.

Fig. 2.
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FIGURE CAPTIONS

Spatial diagram in the rest frame of A showing the trajectory

of "star" B and the orientation of the unit vectors e_ and e .

o ®
Note that the polar angle 6 is measured from the x-axis.

The time-evolution of the renormalized wave amplitudes for
slow-motion bremsstrahlung in the rest frame of "star" A. The
location of the observer is determined by the values of 0 and
@. (See Fig. 1.) Note that for an observer in the plane of
the encounter (the x~y plane), @ = 0 and the 'x"-polarization

vanishes.

Plot of the renormalized wave amplitude 04/72 (in frame A) in
the forward (& = 0) direction for v = 0,0001, 0.1, 0.3, 0.5,
0.7, 0.96, 0.9999 (uppermost to lowermost). Note that as v

increases the slope tends to become discontinuous at TA:=TB:=O.
This plot also describes the amplitude in the backward direction

(6 = ﬂ); see eq. (5.3).

a) Plot of the renormalized wave amplitude 04/73/2 for 6 = ﬂ/2,

5 = 0 for velocities from v = 0.0001 (uppermost curve) to v =
0.999999 (lowermost curve). Note the discontinuity in the slope
as v increases is symmetric about t‘= 0.

b) Plot of O; /73/2 for 6 = %/2, § = 7f2. The range of

O x
velocities is the same as in a) above. Note the development of

a discontinuity in the slope of G% and in the second derivative

of Q at t = 0 as v increases (lowermost curve in each set).
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Fig. 6.

15

Plot of G;/72 in the x-y plane for v = 0.9999 and for various
values of the angular parameter | = 6. For § << 1 we are in
the extreme forward region and the curves are similar to the
lowermost curve in Fig. 3. As { increases and we move away
from the x-axis we enter the forward most part of the inter-
mediate region and the curves begin to resemble the "inverted
mesa" shape of Fig. ta. These plots are also valid for back-

ward directions; see egs. (5.5).

Plot of the specific flux eq. (6.1la) in the precisely forward
direction for various velocities as a function of frequency.
As w increases the first "bump'" is near W ~ vy/b (for ATA ~ 1)
followed by a 1/u?dependence (which on the log scale gives a
slope of -2) until at w n‘vyg/b (for ATy ~ 1) the curve drops

off exponentially.
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PAPER U,

That gravity should be innate, inherent, and essential to matter,
so that one body may act upon another at a distance through a
vacuum and without the mediation of anything else, by and through
which this action and force may be conveyed from one to
another, is to me so great an absurdity, that I believe no man
who has in philosophical matters a competent faculty of thinking,

can ever fall into it.

Newton
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The Gravitational Scattering of

*
Zero-Rest-Mass Plane Waves

'
WALTER K. DE LOGI and SANDOR J. KOVACS, JR.

W. K. Kellogg Radiation Laboratory

California Institute of Technology, Pasadena, California 91125

ABSTRACT

We have used the Feynman-diagram technique to calculate the
differential cross sections dri/dQ for the scattering of zero-rest-
mass plane waves of spin O, 1, and 2 by linearized Schwarzschild
and Kerr geometries in the long-wavelength, weak-field limit
(wavelength of incident radiation >> radius of scatterer >> mass
of scatterer). We find that the polarization of right (or left)
circularly polarized electromagnetic waves is unaffected by the
scattering process (i.e., helicity is conserved), and that the
two helicity (polarization) states of the photon are scattered
differently by the Kerr geometry. This coupling between the pho-
ton helicity and the angular momentum of the scatterer also leads
to a partial polarization of unpolarized incident light. Eor
gravitational waves, on the other hand, there is neither helicity
conservation nor helicity-dependent scattering; and the angular
momentum of the scatterer has no polarizing effect on incident,

unpolarized gravitational waves.
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I. INTIRODUCTION

Recent observations by Harwit_gE_El.l have placed an upper limit
on the difference of deflection between left and right circularly
polarized radio beams passing near the limb of the sun. Whereas pre-
vious electromagnetic tests of general relativity (light bending near
the sun, Shapiro time delay of radar signals, gravitational redshifte)
probe only the geometric optics limit of electromagnetic-gravitational
coupling, this experiment goes beyond geometric optics. The deflection
is independent of polarization in the geometric optics limit; but for
real, physical waves the helicity of the wave should couple to the
angular momentum of the deflecting object ("magnetic-type" gravitational
effect) to produce helicity-dependent deflection — helicity dependence
which, for the sun, is below the accuracy of Harwit et al., but which
should exist nevertheless.

A number of recent papers have used general relativity theory to
investigate this helicity dependence and other aspects of the interac-
tion between incoming waves and a gravitating body.3"15 Gradually the full
picture of such interactions is emerging; but there remain as yet a
number of gaps in the picture. The purpose of this paper is to fill in
one of those gaps: the full details of the long-wavelength limit for

rotating and weakly gravitating bodies

(wavelength) z 2n/w >> (size of body) = L

>> (gravitational radius) = M (1.1)

for scalar and gravitational waves as well as electromagnetic.
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In the regime 2i/w >> L >> M it is better to speak of a "scattering"
of the waves than a "deflection'"; and it is most useful to calculate the
amplitude Tfi for scattering of an incoming plane wave Ii) into an out-
going (final) plane wave |f). From this scattering amplitude one can
derive everything of interest — the explicit form of the scattered
wave; the differential scattering cross section do/dﬂ; the amount of
focussing; the deflection angle in the regime where it has meaning,

i.e., (wavelength) << (impact parameter); etc.

We, like some others before us,lh-15 have found the Feynman-diagram
technique to be far more powerful than partial-wave analyses for studying
the long-wavelength limit of classical scattering. Historically the
Feynman technique was first used in conjunction with quantum electro-
dynamical p’focesseg.l&'18 Its efficiency as a problem-solving tool
soon led to its widespread use in many aspects of quantum interactions,
including quantum gravity.lg-21 However, since classical scattering is
the long-wavelength limit of quantum scattering, one can perfectly well
use the technique to solve our type of classical problem.

Our paper is in six sections. Section II gives the Lagrangians,
vertex rules and diagrams needed for each type of wave (scalar, electro-
magnetic, and gravitational), as well as the formula for the differential
scattering cross section in terms of the transition amplitude. In sec-
tions III, IV, and V we treat the scattering of scalar, electromagnetic

and gravitational waves, respectively. Section VI discusses and con-

trasts our results with those of other authors.
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IT. FEYNMAN DIAGRAMS FOR SCATTERING

The classical problem of the scattering of a massless field prop-
agating in a slightly curved spacetime may be treated by quantizing
both the gravitational background and the scattered field. 1In this
scenario both fields evolve in a Minkowski spacetime and couple accord-
ing to the Feynman vertex rules. This approach may be contrasted to the
work of Peters,ls in which the gravitational background is considered
to be a passive nondynamical entity, whose influence on the propagat-
ing field is embodied in a curved spacetime Green function. In this
section we summarize the relevant Feynman rules.

The wave equation for source-free scalar waves
OV - uRY = O (2.1)

may be obtained from the Lagrangian density

Jog , o8
Ly = = "5 (8 W’Qy,

. + uRV?) (2.2)

&

where u is a constant, R the curvature scalar, g = det Hgoﬁ” and

0= (-g)ﬁl/2 aa(gaﬁd—g BB). For u = 1/6, ¥ represents conformally

invariant waves.

Following Freynmamlg"21 and Gupta,22 and since we require that

|h™| << 1 everywhere, we expand the gravitational field about the

flat Minkowski background:

Vg g - goﬁ = noﬁ - 2n%® (2.3)

where the gravitational coupling constant A = N8n and we use units in
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which G = h = ¢ = 1. Indices are raised and lowered using the
Minkowski metric Mo = noﬁ = diag (-1,1,1,1), commas denote partial
derivatives, semicolons denote covariant derivatives with respect to

0B

the metric and h is the trace reversed metric perturbation.

The determinant factor«J—g, gOﬁ and R now become infinite series

in A,
Vg = A- qeclg ) = V(- ase| D= 1 - NF 4 00?)  (2.8)
£ = 1% - AE® - I 8®) 4 0(?) (2.5)

—éi’aa) + 0(2%) (2.6)

where the trace of the metric perturbation is denoted by-ﬁ = Epu.

Expanding (2.2) in powers of A we find that:

2g = 5 Al (2.7)
n=0 %
where
__1 oB
;£O S n \l‘,a‘!’,a (2'8)
- [P T08 o L Oh 2
£ =h \I!,a‘l',ﬂ- u(h , 08 reh’a)v ; (2.9)

The free (i.e., noninteraction) Lagrangian ib describes the free
propagation of the scalar field ¥ in Minkowski space, whereas the
terms proportional to A, }2, etc. represent the interaction parts
of #, i.e., they determine how the gravitational field“ﬁOﬁ couples to
the scalar field VY. In this formalism, quantization of the Lagrangian
density is equivalent to treatingT\Oﬁ and V¥ as quantum field operators.

From;£1 we may derive the amplitude T21 for a transition of the
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scalar field from an initial plane wave state with wave-vector
" " 1 o 3 - n " 2 a . N
("momentum") "k to a final state with "momentum'" "k~ while absorbing

a graviton with momentum qa and polarizationzOﬁ (Fig. 1)
. ooatBrl, 2 1 2
Tpy = 2he [ k(a kB) % u(q@qB 5 Nggd 11 = (2.10)

Here we have used the notation A(OPB) = %(AOP + Boﬁﬁ) and the super-

p
script 1 (2) denotes the initial (final) state. Conservation of L-

momentum requires that,

2_15 = 15 +9q . (2.11)

In this calculation we shall limit ourselves to interactions propor-
tional to 32, (single graviton exchange); in other words, we shall
calculate the scattering cross sections in the first Born approxima-
tion. In the classical limit for the scattering of waves with angular
frequency w by a mass M with angular momentum J, this corresponds to
calculating at first order in the dimensionless quantities Mw and sz.
Since our interest is restricted to a gravitational background geometry
generated by classical energy-momentum distributions which are not
affected appreciably by the scattering process, we may replace the
virtual graviton by an external field.23 In particular we consgider

G stands for the

only static fields; hence in the vertex rule (2.10) e

3-.dimensional Fourier transform of-ﬁGB and the graviton L-momentum is
0

pure spacelike (q = 0).

The transition amplitude T,, above has been normalized by the

21

definition

(25 - k- _3)1‘21 (2.12)
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where 521 is the S-matrix connecting the initial to the final state.

With this normalization for T21, the differential cross section for

the scattering of a zero-rest-mass wave with frequency w into a solid

angle d is:

21 2

where D denotes the density of final states:

2
W

b= (21()3

ao . (2.14)

Turn now to the scattering of electromagnetic waves off a slightly
curved background. The manifestly covariant photon Lagrangian density,

obtained by minimal coupling to gravity, is:
3 lwr—— uo v =
Loy =-pN-8 (g 8 F, Fg) (2.15)

where F i is the electromagnetic field tensor computed from the
1)

Maxwell vector potential Au by:

F = A - A . (2.16)
BV v, 1 TPRY

From (2.15) and (2.16) one obtains the field equations for the source-

free electromagnetic field:

F + ka;u + F = 0 (2.17)

v A

E_ =0 , (2.18)

We expand the photon Lagrangian density in powers of A according to

(2.7) and obtain:
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;{0 = .E. TluaquFquOﬂ (2- 19)

1’1 = (-l-]paﬂVB - %ﬁquaqu)vaF (2.20)

Qﬂ .
After proper permutation of the photon labels, i& provides the graviton-

photon-photon vertex rule (see Fig. 1)

T, - ona0P 1k(oz2k6) (1E__ 28_*) . 1E(a2€*5)(15 . 2_15) _ lk(a2€*ﬁ)(2_l§ . 1_5_)
- 2k(0}eﬁ)(1k. 28*)-w% noa((¥5 . ?E)({E . ?E*)
- (13 : 23*)(25 5 15)]] . (2.21)

Here lka and 1ea are the L-momentum and polarization vector of the

. . 2, 2 a ] .

ingoing photon, whereas k and € denote the respective properties of

the outgoing photon. In accordance with the external-field approximation
o

Eoﬁ denotes the Fourier transform of h ~. Note that the transition

amplitude (2.21) is invariant under a gauge transformation of the form:

€, > Eyut T K (i =1,2) (2.22)

where 7 is an arbitrary scalar.
Finally we turn to the scattering of gravitational waves by the
gravitational background. One arrives at the matter-free Einstein

field equations

R =0 (2.23)

2, = —= J-gRr . (2.24)



: : e uy : I
Taking for our basic fields 12 = *f:g gﬂv and g S 4 /\-—g rather
v Hv

than the metric itself, we can express the Einstein gravitational

1

Lagrangian density (2.24) in the particularly convenient Coldberg?Y

form:

s - =Lp (25% )"

% (2.25)
1677 T PR B P Bw . -

,U ,fﬂ

After we expand (2.24) in powers of A, the components of ib become:

v X s OB, e T B L R8s Ky &
Ly = = I (2h Bos h h,“ ¢t h hug, a_) (2.25)
] _ ruv "'Oﬁr SN 36_ e - T BJ e
fl = «h (hOﬂ,pl g F 2 1ua hvﬁ 2 huﬁ O}v
» O - }._ o
b h hp.v,()’ 5 h’Ph’ V) . (2.27)

The interaction part il’ appropriately symmetrized with respect to the
raviton labels, provides the expression for the three-graviton vertex
g > P P g

(see Fig. 1):

Top = Kel “2[1.:2? 2%.* 1k“ ekv - lguveg:{ogqalliﬁ N 25‘)}}11/1?308‘10-21{{3]
L UP ﬁlkﬁ Ekoc _ qﬁ(e—rual aﬁlk"} _ 10;1‘ Qéu)r,gkv)l
* h[¥5 _?Elgusegﬁvg s ;hLEBV2—+uB v q - ?E?E BVLT#S]
_ [1k . ?h(lzpve—* . 2- HVLE) - q {El 2i*uv e ?ﬁE;k }Zuv
+q, (a° k-qg° k)e =2§1
; [1ku1kv152€* + (0 OQLBQ”H o3 . C)__,lkﬁl?:gé'xoﬁ)]} ) (2.28)
wvhere 1ka, 1508; 2k0, géo“; and qa,‘éaﬁ refer to thg momenta and

. : . 4o 12— ;
polarizations of the gravitons and "e: e denotes the tensor inner
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product. Unlike the graviton-photon-photon transition amplitude
(2.21), the three-graviton transition amplitude is not invariant under
the analogous gauge transformation, which in this instance is of the
form;

. B L P s PR (= 1,9) (2.29)

where xa represents an arbitrary vector.

In general, the gauge invariance of the amplitudes is guaranteed
by the Feynman-diagram formalism as long as all the diagrams of the
same order in the coupling constant are included. Due to our ignorance
of the propagator for an object of mass M and very high quantum mechani-
cal spin, we omit all diagrams but the graviton-pole diagram. (This
difficulty in formulating the quantum problem could probably be avoided
by a classical analysis.) In the external-field approximation (no
recoil of scatterer) the amplitude corresponding to this diagram is

IRy . ; .
} stands for the 3-dimensional Fourier transform

given by (2.28) where e
of Y. The external-field approximation serves to simplify the alge-
bra but the effect of the omitted diagrams is to yield an amplitude

(2.27) that is not gauge invariant, and is valid only for small scat-

tering angles.

ITI. SCALAR WAVES

Since the waves have wavelength much larger than the scatterer,
they cannot probe (at first order) either the scatterer's internal
structure or the quadrupole and higher-order moments of its gravita-

tional field. For this reason, and because we calculate only to lowest
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order in A, we can approximate the scatterer's gravitational field by
the linearized metric for the exterior of a spherical body endowed with

angular momentum:

M Py | o™
goo“—(l_—?)’ goj gjo_'T(EXE)j’ Bik = (1 +"r-)5jk- (3.1)

Here M is the mass of the body and Ma = J is its angular momentumn.

The Fourier transforms of the h are given by,

o
T =M
oo 2
q
Z.:.‘E. :iz\__M_(an).
oj jo 2q2 ~ ~j
ejk = 0 (3.2)

where q is the (pure spacelike) momentum transfer q = 2~ - 15 (qo = 0).

Permitting the angular momentum per unit mass a to vanish in (3.1) or
(3.2), we recover the linearized Schwarzschild geometry. Using Egs.
(2.10), (2.13), (2.14), and (3.2), the differential scattering cross

section becomes

M2

doy ., 2 2 2 1~ 2-\\2 5
(Eﬁ) = . (1 -2u sin 9/2) + W (5 ( k X 5)) l . [B.3)
sin’ ©/2
In the above w is the angular frequency of the scalar wave, lﬁ and EE

~ ~

are unit 3-vectors along the propagation directions of the incident
and scattered fields respectively, and © is the angle between IE and
and 2&. Allowing a to vanish (linearized Schwarzschild geometry) one
recovers the result previously obtained by Peters:13
do M2 2 2
o 2 ——— - 2 i . ,)
(dQ)SCﬂW. — (1 u sin~ 0/2) (3.4)
sin 9/2



Due to the r_l dependence of the Newtonian potential, for the case of
minimal coupling (u = 0), Eq. (3.5) reduces to the usual 1/sinh o/2
Rutherford-type cross section. For non-minimal coupling (u # O), the
cross section still exhibits the Rutherford-type angular dependence,

but only for © << 1. This is not surprising, since it is the scalar
curvature R which gives rise to u-dependent terms in the cross section.
Considering that R is nonzero only along the worldline of the scatterer,
we see that for large impact parameters (i.e., small scattering angles)
the scalar curvature cannot significantly contribute to the differential
cross section. One may rewrite the scattering cross section for
rotating bodies (3.3) in the suggestive form:

M2a2w2 . e

do do . 2 2 ;
035) = Cﬁﬁ)SCHW. + ———— sina& sin 0 sin ¢ (3.5)
sin 9/2
with @, 6, and © as shown in Fig. 2.

Equation (3.5) shows that the effect of angular momentum is to

add a positive semi-definite term to (do/dq) For small scattering

SCHW®

angles this angular momentum term is negligible with respect to

(dc/dQ) This can be easily understood by noticing that for large

SCHW®
impact parameters the r"'1 dependence of the Newtonian potential 3;

dominates the r"2 dependence of the magnetic-type gravitational field
-Eoi’ which is the source of the angular momentum term. Another inter-

esting feature of (3.5) is that the scattering in the backward direc-

tion is finite and independent of the angular momentum a:

do

2 2
30 loeg = ¥ (1 - 20)7 (3.6)
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IV. ELECTROMAGNETIC WAVES

Theoretically more interesting and of possible observational
importance is the gravitational scattering of electromagnetic waves.
We choose the polarizations of the photons to be purely spacelike

1 1 2 2
["e = (0,7e), “e = (0,7¢)] and use Egs. (2.13), (2.14), and (2.21).
The result for the scattering of electromagnetic waves with initial

Iy

1 . -
polarization "€ into some polarization & is:

M2

=
b sin’ e/2
2B x %) - ale - %D 4 (- T x %) - 2k - o)

. ((25 ) 15) " 15) . 2(15 .2, )]

¥ ~ ~
(o (1 + cos 0)(Ye - %™y - (k- 2%k - o)

: (4.1)

~

For linear polarization (li and 25 real) the contribution of the angular

momentum a to the cross section (4.1) will be proportional to a w2

5
. . : 1 2 < ;
whereas for circular polarizations ( € and E complex) the contribution

will include an aw-term. We first consider circular polarizations

(i.e., pure helicity states) and we choose for the photon basis states:

1R 1 x -
er =—— (¢ 1§)
L Jb b y
€. = (6. + i@ (4.2)
~L -Jé ~Q ~q) .

where €, € € are unit vectors in the x, y, ©, and ¢ directions.
~X o~ ~

Y’ §Q’
After some algebraic manipulations (4.1) yields:
do do

G@'rL = Ga'ia = © )
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"g%)RR = M2 [COthO/E + 2aw cos 0/2(cos o cos 9/2

LL

-

2
+ sin « sin ©/2 cos tp)]2 + b 32w2 sin2 o' cotgz-gésin @ (b.1)

where the first (second) subscript denotes the initial (final) polarization
and the upper (lower) sign in (4.4) refers to the RR (LL) case. For the
linearized Schwarzschild geometry (L4.4) reduces to recent results obtained
by Peters:13

SCHW. SCHW.

oy " - (& - ¥2 cotg'o/2 . (1.5)

In the circular polarization basis the scattering matrix is diagonal,
which explicitly shows that helicity is conserved by the scattering
process. This is not restricted only to our situation, but rather is

a general property of electromagnetic wave propagation in any orientable

space time manifold.11’25

Moreover, for the Schwarzschild geometry the
scattering cross section is helicity independent, whereas for a rotat-
ing scatterer it is helicity dependent. This results in a differential
gravitational deflection of right and left circularly polarized electro-

magnetic radiation by a rotating object., For a given impact parameter

b of the incident beam, we define the angular splitting as:

_ (angle by which R helicity photon is scattered minus
5 = angle by which L helicity photon is scattered -

(k.8)

. 2 .
We then solve the inverse scattering problem . and find, to lowest

order in aw:

§ = 2aw cos (Eg)s[fn(%) = %] . (4.7)
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To obtain this result we have used the constraint that;
LM
b K << 1 . (k.7)

It must be stressed that so far we have only discussed pure helicity
states. For any linearly polarized or unpolarized incident wave the

scattering cross section summed over final polarization states becomes:

ng) .2 cotghQ/Q + b a® me[cos2 ©/2(cos a cos 9/2
dQ’ total 5 5

+ sin & sin ©/2 cos ) + (sin @ cotg 6/2 sin ¢)“] (k.8)
which for the Schwarzschild case reduces to (4.5). We therefore con-
clude that all linearly polarized incident beams are deflected through
the same angle. However, since the diagonal elements of the scattering
matrix in the circular polarization basis are unequal, linearly polarized
incident waves become elliptically polarized. For an unpolarized wave
packet, on the other hand, the paths of different helicity photons are
split by an amount given by (4.7). 1In addition, the angular momentum

a induces a partial polarization of the scattered waves. We define

the amount of this polarization by:

do do
(d_Q)RR - (d_Q)LL

d d k.9
(Gre * GLL fi

and we find to lowest order in a:
p=>L4auw|cos acos /2 + sin & sin ©/2 cos g|sin 0/2 tg 0/2 . (4.10)

In concluding this section we note that independent of a or the initial
polarization, the cross section for scattering in the backward direction

vanishes.
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V. CRAVITATIONAL WAVES

Using (2.13), (2.14), and (2.28) we compute the differential cross

section for the scattering of gravitational waves from an initial

polarization Lg into some final polarization EE:
da Mg & 2 ,1n 2 2\ 1= 2% 2
() = —g— (cos” 0 + wT(kx ) - a))|"e:2 17 . (5.1)

sin’ 9/2

This result was derived in the transverse-traceless (TT) gauge.2
Although the transition amplitude (2.28) is not gauge invariant by
itself, (5.1) yields reliable results for small momentum transfers,
i.e., for small scattering angles. By analogy with the photon case,

we choose for the graviton basis states the circular polarizations

given by:
1—'R. 1 ~ o~ ~ ~ o~ ~
= - + )
g "3 (88 - B8 *i(B8 +E2))
Q‘R 1 ~ o~ ~ o~ ~ o~ ~ o~
o > - e + f 2 e . B
=L 2 [EOEQ sqﬁm l(sgsm ¥ &qﬁg)] (5.2)

Substitution of the initial and final states into (5.1) yields

2 r

(gg) = (99) = B - (cosEO % a2m2sina o' sinag sinem)(l - cos O)h (5.3a)
dQ’RL dQ’ LR o L

16 sin @/2
d d Mo > 2o 2 > 2 L
(=) = (95 | - (cos™@ + a"w sin” a sin"® sin"g)(1 + cos 6) .(5.3b)
dQ’RR dQ’LL R

16 sin 0/2

The nonvanishing of (5.3a) clearly illustrates that here, unlike the
electromagnetic case, helicity is not conserved. Moreover there is
neither different scattering of opposite helicity states (cf. 5.3) nor

partial polarization of unpolarized incident gravitational radiation.
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The latter is easily seen by noting that the scattering cross section

for either helicity state is given by [adding (5.3a) and (5.3b)])

do 2 282 .2
( )R = 055)L _——7“57; (cos™® + a"w sin” a sin "5 utn w)

(cosEQ +-% sinhG) " (5.4)

Similarly, for the scattering of orthogonal linear polarizations

denoted by

-2 (g2 +2% ) {5.5)

one finds, after summing over the final polarizations and use of (5.1),

2
(dQ) = ———T————— (cosQO 5 dulEla" o sinte sin qﬂ
sin 0/2
(cos o +‘E sian c0522¢) (5.6a)
d 2 2 22 2 2 2
E%)x 2 ———n757; (cos™® + a w sin” a sin @ sin"¢)
(cong +-% sinhO sin22qﬁ . (5.6b)

For unpolarized incident gravitational waves [i.e., averaging over ¢
in (5.6a) and (5.6b) and summing], the differential scattering cross
section is given by (5.4). Allowing a » 0, we recover Peters' results

apart from a factor of cosEO:

(do)SCHW.

da )SCHW.
dQ’THIS paper

9( PETERS

. (5.7)
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For small angle scattering there is good agreement. One may
recover Peters' result exactly by calculating the scattering of gravita-
tional waves off a massive spin-0O meson. Inclusion of all the relevant
Feynman diagrams then leads to a gauge invariant transition amplitude.
Actually, for the choice of the TT-gauge only the graviton-pole and

seagull diagrams survive, and one obtains Peters' results exactly, i.e.:

2
dg\SCHW. M 1~ 2.2 -
(_&-ﬁ)l—— o = —"'E—"‘ %. % | . (0.8)
e>r e sin ©9/2

As a concluding remark, we note that independent of the polarization of
the incident gravitational wave and the angular momentum E,the Cross
section for backscatter is nonzero. Whereas the exact dependence of
(dg/dﬂ)gzn on the angular momentum a cannot be inferred from the cross
sections derived above (they are valid only for small scattering angles),
one finds from (5.8) that the gravitational backscatter in a linearized

Schwarzschild geometry is given by:

do SCHW. 2 .
dQ)O:ﬂ =M. (5.9)

In addition, if the incident radiation is in a pure helicity state,

the backscattered radiation must have the opposite helicity.

VI. SUMMARY AND CONCLUSIONS

The differential cross sections for the weak-field gravitational
scattering of long-wavelength scalar, electromagnetic and gravitational
waves have been calculated using Feynman perturbation methods.

For the linearized Schwarzschild geometry, we have recovered the
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results obtained by Peters,lé although he used a Green function for-
malism. In particular, for electromagnetic waves helicity is conserved,
whereas for gravitational waves it is not. Endowing the scatterer
with an angular momentum a, leads to helicity-dependent effects in
electromagnetic wave scattering. Although the photon helicity is still
conserved, the coupling between this helicity and the angular momentum
of the scatterer results in a) different scattering of right and left
circularly polarized photons and b) partial polarization of unpolarized
incident electromagnetic radiation. The high-frequency limits of these
effects have been discussed before by Mashhoon.s’11 Whereas in the high
frequency limit (wM >> 1), the angular split § [defined by (4.6)], and
polarization p [defined by (4.9)] are proportional to amhl, in the low-
frequency limit (wM << 1) they are proportional to aw. This confirms
the belief that the magnetic-type gravitational field of a rotating
body distinguishes between the helicity states of a photon only in the
diffraction limit, i.e., when the wavelength of the incident photon is
of the same order as the Schwarzschild radius of the scatterer.

Gravitational waves do not exhibit any of these angular-momentum-
induced effects.

As a final comment, we note that this method may easily be applied

to the gravitational scattering of non-integer spin or massive fields.
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FIGURE CAPTIONS

The graviton-zero rest mass field-zero rest mass field vertex.
The wavy line represents a graviton. The solid lines repre-

sent either scalar, electromagnetic, or gravitational quanta.

The spatial orientation of the angular momentum a and the
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scattered direction k relative to the incident direction
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