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ABSTRACT

This dissertation consists of two studies on the general-relativistic theory of
black holes. The first work concerns the fundamental issue of black-hole forma-
tion: in it I seek geometric constraints on gravitating matter systems, in the
special case of axial symmetry, which determine whether or not those systems
undergo gravitational collapse to form black holes. The second project deals
with mechanical behavior of a black hole: specifically, I study the tidal deforma-

tion of a static black hole by the gravitational fields of external bodies.

In the first paper 1 approach the problem of geometric constraints deter-
mining gravitational collapse or non-collapse through the initial-value formalism
of general relativity. 1 construct initial-value data representing noncollapsing,
nonsingular, axisymmetric matter systems and examine the constraints
imposed on this construction by the initial-value equation derived from the Ein-
stein field equations. The construction consists of a nonsingular, momentarily
static interior geometry with nonnegative mass-energy density, matched
smoothly to a static, vacuum exterior geometry (described by a Weyl solution of
the Einstein field equations) at a boundary surface. The initial-value equation is
found to impose restrictions on the choice of the boundary surface for such a
system. Two such constraints are obtained here, appropriate to spherical and
toroidal interior-region topologies. These constraints are studied by applying
them to simple examples of Weyl exterior geometries. The "hoop conjecture" for
the general geometric-constraints problem states that a system must collapse
to a black hole unless its circumference in some direction exceeds a lower
bound of the order of the system’'s mass. The examples examined here show,
however, that the constraints derived in this study are not generally correlated
with any simple measure of system size, and thus that they do not embody the

hoop conjecture.
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The second paper examines the tidal distortion of a Schwarzschild black
hole by bodies ("moons") suspended above the horizon on "ropes.” A solution of
the Einstein field equations is constructed describing this configuration, using
the Weyl formalism for axisymmetric, static, vacuum geometries. The intrinsic
geometry of the tidally deformed black-hole horizon is obtained from this solu-
tion; 1 construct embedding diagrams to represent the shape of the horizon and
the tidal bulges raised on it for both weak and strong perturbations. The rela-
tions among the masses of the hole and moons, the binding energy of the sys-
tem, and the rope density and tension are calculated from the solution and
shown to be mutually consistent. Also, the Riemann curvature tensor represent-
ing the tidal fields near the horizon is calculated. This solution is found to agree
with a previous calculation by Hartle of black-hole tides, in the limit of perturb-
ing moons far from the horizon. In the opposite case of moons very near the
horizon, this solution approaches the static limit of the distorted horizon in
Rindler space calculated by Suen and Price. The results of this study thus sup-
port the use of the Rindler approximation to Schwarzschild spacetime in calcu-

lating static black-hole tides, and its extension to dynamical situations.
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INTRODUCTION

Solutions of Einstein's General Theory of Relativity which can describe black
holes were found within just a few years after the theory itself was first
announced--the spherically symmetric, uncharged Schwarzschild solution in
1916 and the spherically symmetric, charged Reissner-Nordstrom solution in
1918. But for decades the idea of such "ultimately collapsed’ objects was
regarded as, at best, an unrealizable mathematical abstraction. Such thinking
began to change in the early 1960's, when observations began to reveal unex-
pectedly violent phenomena in the universe, phenomena which might involve
extremely strong gravitational fields. These discoveries sparked a renewal of
interest in general relativity theory and in black holes in particular. In the
succeeding two decades a great deal of research has been done on the funda-
mental theory of black holes. Questions on the formation and stability of black
holes, on their local and global properties, on their classical and quantum
dynamics, have been and are the subjects of extensive investigation. In recent
years black holes have become part of the stock-in-trade of the astrophysicist
as well as the relativist; attention is being focussed on the behavior of black

holes as real physical objects in astrophysical situations.-?

This dissertation consists of two studies in general relativity theory ger-
mane to black-hole physics: first, a search for geometric constraints on noncol-
lapsing, gravitating systems; second, a description of a Schwarzschild black hole
distorted by the tidal effects of fixed external masses. The first work deals with
an issue of fundamental theory, seeking conditions on the geometry of matter
systems which determine whether or not gravitational collapse to a black hole is
inevitable. The second project concerns the mechanics of an interacting black
hole, specifically, the gravitational deformations of a static black hole by exter-

nal bodies. In both studies consideration is restricted to axially symmetric
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systems, so that the powerful Weyl formalism®* for static, axisymmetric

geometries can be used to describe the gravitational fields.

Part One: Geometric Constraints on Nonsingular, Momentarily Static,
Axisymmetric Systems in General Relativity

The only mechanism by which black holes can be formed, other than pri-
mordially, is gravitational collapse of matter systems. It is held that any
sufficiently compact assemblage of matter and energy will collapse under its
own gravity to form an event horizon and thus a black hole. The proper charac-
terization of "sufficiently compact” is an unsolved problem. Indeed, the rela-
tionship between system size and black-hole formation might be considered the
oldest problem in black-hole theory. In 1795 Laplace® calculated that the
escape velocity from the surface of a spherical body of fixed density and
sufficiently large radius would exceed the speed of light; such a body would
render itself invisible by means of its own gravity. Laplace's result, expressed in
terms of a relation between the mass of the body and its radius, coincides with
that of the Schwarzschild radius for a spherical, uncharged black hole--despite
the fact that Laplace's calculation used Newtonian gravity and Newton's corpus-

cular theory of light.

In this century the size-constraint problem has been solved only for the
case of spherical symmetry. An uncharged, spherically symmetric body must
lie outside its Schwarzschild radius, i.e., it must have circumference greater
than 2nrs, where rs is related to the mass M of the body by rs =2M (G=c=1),
else it will be inside the horizon of a black hole and in a state of dynamical col-
lapse. Studies of gravitational collapse in less symmetric situations have led to
the formulation of the "hoop conjecture': for a body of mass # the formation of

a horizon and a black hole is inevitable if and only if the body is compacted such
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that its circumference in every direction is less than a bound of order 47¥ (i.e.,
if and only if a hoop of this circumference can be passed around the body in
every direction.)!® The aim of the research presented in Part One is to gain

insight into the hoop conjecture by considering the case of axial symmetry.

The size-constraint question lends itself to treatment as an initial-value
problem. If a matter system is described on an initial-value hypersurface (i.e.,
at an initial "moment of time'), what constraints on the initial data ensure that
collapse to a black hole is inevitable or can be avoided in the course of the sub-
sequent evolution? The field equations of general relativity can be cast in the
form of equations for such a Cauchy problem; in this formulation, six of the ten
independent Einstein field equations describe the evolution of the system, and
the remaining four are conditions governing the initial-value data.® The full
dynamical problem is too intractable, even under the simplifying assumption of
axial symmetry, to yield useful results on this question. So in Part One I con-
sider a more manageable question: if I demand that the system be noncollaps-
ing on the initial hypersurface (which guarantees that subsequent collapse can
be avoided in principle), how is its geometry constrained by the field equations
which govern the initial-value data? That is, what geometric conditions must the

system satisfy in order to be even momentarily noncollapsing?

The hypothetical noncollapsing system is described by a three-dimensional
initial-value hypersurface consisting of a bounded interior region occupied by
matter and an asymptotically flat, vacuum exterior region. The interior is
required to be axisymmetric and momentarily static, embodying non-collapse.
It must also satisfy the physical requirements that the locally measured mass-
energy density be nonnegative, and that no physical singularities be present.
The exterior is required to be axisymmetric and to be a slice of a fully static

region (i.e., the exterior region outside the light cones of the interior at its
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moment of stasis is required to be static); the latter condition embodies the
absence of gravitational waves. These conditions imply that the exterior can be
described by a Weyl solution of the Einstein field equations.®* Such solutions
have singular, unphysical "sources"; in this construction a region of the solution
containing the singular source is replaced by the nonsingular interior geometry
described above. 1 seek geometric constraints related to the hoop conjecture
from the limitations on this construction imposed by the initial-value field equa-

tions.

On a hypersurface of momentary stasis such as described above, the four
 initial-value field equations reduce to one, which equates the three-dimensional
curvature scalar of the hypersurface to a multiple of the locally measured
energy density.® This equation can be manipulated into a form which equates a
total divergence with a quantity which is nonnegative by virtue of the nonnega-
tivity of the energy density. Integrating this equation over the interior region
gives an integral over the matter/vacuum boundary surface which consequently
is required to be nonnegative. This requirement constitutes a geometric con-
straint on the system. By using different descriptions of the interior geometry, I
obtain two such constraints, one applicable primarily to sources of spherical
topology, the other applicable to sources with toroidal topology. (The technique
of obtaining surface integrals constrained to be nonnegative from volume
integrals of manifestly nonnegative integrands is one that has provén useful for
other problems in gravitation theory as well. For example, recent work on the

positivity of mass of isolated systems has utilized this method.”)

The constraints thus obtained can, in appropriate circumstances, be
expressed entirely in terms of quantities characterizing the exterior geometry.
Their significance is that in any given exterior, surfaces for which a constraint

inequality is violated are forbidden as matter/vacuum boundaries for a
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momentarily static system as described here. In Part One I apply these con-
straints to simple cases of Weyl exterior geometries with both spherical and
toroidal interior topologies. Applied to the Schwarzschild exterior, the
spherical-topology constraint is in accord with the result given above: the source
must extend outside its own Schwarzschild radius. In some more complicated
examples the constraints forbid the matter boundary surface to be arbitrarily
near the singular source of the full Weyl geometry, i.e., the constraints identify a
forbidden region in these exterior geometries within which the matter boundary

surface cannot lie.

The geometric constraints obtained in Part One do not, however, embody or
support the hoop conjecture. The example calculations show that the con-
straints are not, in general, correlated with any simple measure of boundary-
surface size. Furthermore, in some examples the constraints forbid as bound-
aries of momentarily static systems surfaces with arbitrarily large circumfer-
ences, in contrast to the hoop conjecture. But these results do not disprove the
hoop conjecture either. The constraints of Part One and the hoop conjecture
are logically distinct. The hoop conjecture, as formulated above, is a necessary
and sufficient condition for the inevitability of collapse to a black hole: a system
compacted as described in the conjecture must form a black hole, while a sys-
termn not so compacted can avoid such a fate.. The constraints obtained here are
necessary but not sufficient conditions for the construction of a momentarily
static system as described above: a surface in an exterior Weyl geometry for
which either of these constraints is violated cannot be the boundary of a non-
singular, noncollapsing system with positive mass-energy density, a surface
satisfying the constraints may or may not be suitable as the boundary of such a
system. Additionally, the initial-value formalism used here does not establish

the inevitable formation of a black hole from systems violating the constraints.
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Thus the fact that the constraints forbid some surfaces with arbitrarily large
circumferences does not contradict the hoop conjecture. And there is no exam-
ple in these results of a momentarily static system with circumference in every
direction much less than its mass. In fact the Weyl geometries studied here pro-
vide no possibility for such a counterexample: all the source-surrounding sur-
faces examined in them have largest circumferences larger than a bound of

order 4wM.

The hoop conjecture and the size-constraint problem remain subjects of
active study. For example, Schoen and Yau? in recent work motivated by Part
One of this thesis, prove a size constraint reminiscent of the original Laplace®
result. They show that a bounded system, in which the proper or comoving den-
sity of mass-energy is bounded below by a positive constant A, possesses an
apparent horizon (and eventually forms a black hole) if its "radius," suitably
defined, exceeds a certain limit of order A™/?, (The quantity they define as the
measure of radius is essentially the largest minor radius of any torus that can
be enclosed in the matter region.) Thus Schoen and Yau do obtain a size con-
straint for noncollapsing systems, though it differs considerably from the hoop
conjecture. Notably, the constraint is given in terms of the local mass-energy
density rather than the total mass measured remotely; also, the size measure

used depends on the detailed nature of the interior geometry.

In their proof Schoen and Yau use techniques of functional analysis far
removed from the methods I employ in Part One, but in both works the problem
of conditions ensuring collapse or non-collapse is treated as an initial-value
problem; in both cases geometric constraints are derived on the initial-value
data. Perhaps other applications of this approach might yield results more
directly related to the hoop conjecture than those discussed above. The results

of Part One also indicate another possible approach to the size constraint
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question: geometric conditions bearing on the hoop conjecture may be deriv-
able from the static, vacuam Einstein field equatiaﬁs themselves, at least in the
axisymmetric case. The observation that all the source-surrounding surfaces in
examples of Weyl geometries studied here have circumferences in some direc-
tion larger than a bound of the order of the system mass M suggests this possi-
bility.

Part Two: Tidal Distortions of a Schwarzschild Black Hole

By the early 1970's the principal features of the fundamental theory of
black holes were becoming well established, and interest turned to the problem
of finding black holes in nature.? This stimulated research efforts on the roles
black holes might play in various areas of astrophysics.? In addition, discoveries
in the 1970's on the quantum mechanical and thermodynamic properties of
holes suggested interesting consequences of black-hole physics for statistical
mechanics, particle physics, and other fields.!® Both of these lines of inquiry
require further understanding of the interaction of black holes with other physi-

cal systems.

The research to be described in Part Two of this dissertation grew out of a
program of studies in black-hole dynamics in which I participated in collabora-
tion with K. S. Thorne, R. H. Price, R. J. Crowley, W. H. Zurek, D. A. Macdonald,
W.-M. Suen, M. Mijic, L. S. Finn, and X.-H. Zhang. The aim of this program is to
express and understand the laws of black-hole physics in a form which accords
with an interpretation of the black-hole horizon as a time-evolving, two-
dimensional membrane in three-dimensional space. Such a membrane is
assigned physical properties, such as conductivity and viscosity, the values of
which are consequences of these laws. This reformulation provides an intuitive

conceptual framework for dealing with questions on the physical interactions of
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black holes. It has been applied successfully to problems involving the electro-
dynamics of holes!!!?; the study discussed in Part Two is part of an extension of

this formalism to gravitational problems.

One important aspect of the gravitational interaction of black holes with
other systems is tidal deformation of black holes by the gravitational fields of
external bodies. Black-hole tides play an important role in the exchange of
angular momentum between a rotating black hole and external matter!31415.16;
they may also be important in processes invoked in speculations on the statisti-

cal mechanics of holes.!”

As part of the program of studies described above,
Suen and Price!® have calculated static and dynamical tidal effects on the hor-
izon in the space seen by a uniformly accelerated observer (Rindler space). This
horizon is planar; Rindler space is an approximation to Schwarzschild spacetime
in a region very close to the horizon, so close that the horizon curvature (i.e., its
spherical shape) is not evident, In Part Two I present a detailed examination of
tidal distortion of an actual Schwarzschild black hole, in the static case. These
calculations provide means to corroborate the results of Suen and Price and
verify the validity of the deformed Rindler-space approximation to a real,
deformed black hole. Further, they extend the Rindler-space results (for the

static case) to a full, curved, Schwarzschild horizon and link those results with

the findings of previous studies on black-hole tides.

The calculations in Part Two begin with the construction of an approximate
(perturbative) solution of the Einstein field equations describing a Schwarzschild
black hole tidally distorted by the gravitational fields of bodies fixed on the polar
axis of the hole outside its horizon. As this configuration is static, axially sym-
metric, and vacuum outside of the hole and the perturbing bodies or "moons,"
the desired solution is obtained via the Weyl formalism applicable to just such

geometries.®* Because the solution must be static, the formalism implies the
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presence of "ropes” from infinity supporting the moons and specifies their prop=
erties. Moreover, all the masses, binding energies, and rope tensions in the

solution are found to obey completely consistent relations.

Various features of the static tidal deformation of a Schwarzschild black
hole are extracted from this solution: The shape of the distorted horizon is
obtained directly from the solution metric. "Embedding diagrams' (surfaces in
FEuclidean three-space having the same intrinsic geometry as the horizon) are
calculated to represent the shape of the horizon and its tidal bulges, both for
weak and for strong deformations. Also, the components of the Riemann curva-
ture tensor measuring the tidal gravitational fields in the vicinity of the horizon

are calculated from the metric of the solution.

The solution thus obtained for the static, tidally deformed Schwarzschild
black hole provides the desired comparisons discussed above. In the limit in
which the perturbing moons are far from the horizon in comparison to its size,
the horizon geometry derived from this solution is in agreement with the results
obtained by Hartle!3!* for the same physical situation, using different perturba-
tion techniques. The opposite limit, in which the moons are very close to the
horizon compared to its size, is the configuration describable by the Rindler
approximation. The intrinsic horizon geometry and the Riemann curvature com-
ponents calculated from this solution can be compared with the same quantities
calculated by Suen and Price!® for the distorted horizon in Rindler space. Com-
plete agreement is found between the two sets of results, in the appropriate
limit. Hence the calculations of Part Two confirm the validity of the Rindler
approximation for calculating black-hole tidal effects in the (strongly perturbed)
static case, and they therefore lend support to the results obtained using that

approximation in dynamical calculations.
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Geometric Constraints on Nonsingular, Momentarily
Static, Axisymmetric Systems in General Relativity

Ion H. Redmount

Theoretical Astrophysies 130-33
California Institute of Technology
Pasadena, California 91125

ABSTRACT

This paper attempts to examine the relationship between sys-
tem size and gravitational collapse for the case of axial
symmetry. The approach here is to construct non-collapsing sys-
tems, with momentarily static matter interiors and static vacuum
exteriors, and to find limitations on the validity of the construc-
tion. Specifically, the exteriors are static, axisymmetric, asymp-
totically flat, vacuum geometries, described by Weyl solutions of
the Einstein field equations. These solutions have singular sources
(miked singularities, except for the Schwarzschild solutionj; here,
regions of the Weyl solutions containing the singularities are
replaced by momentarily static material bodies. These are
described by axisymmetric solutions of Brill's time-symmetric
initial-value equation, with nonnegative energy density, joining
smoothly to the Weyl geometries at the ‘bodies’ boundaries. The
consistency requirements of such a construction limit the choice
of surfaces in the exterior geometry suitable as matter/vacuum
boundaries; general constraints on the boundary location and
geometry are derived here. For the explicit examples of the -
metric and the Bach-Weyl ring metric as exteriors, these con-

straints forbid the boundary surface to be arbitrarily near the Weyl



s

singularity.

The "hoop conjecture" demands, roughly, that the largest cir-
cumference of the boundary surface of such a non-collapsing sys-
tem aiways exceed a limit of the order of the system’'s mass. The
specific examples studied here are all consistent with the hoop
conjecture, but they show that the boundary constraints derived in
this paper are not in general related to boundary-surface size and

thus that these constraints do not embody the hoop conjecture.
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1. INTRODUCTION

In astrophysical calculations and speculations about black holes one usually
takes for granted several "articles of faith" that relativity theorists have not yet
proved with any rigor.! These include the hypothesis of cosmic censorship, the
rapid-loss-of-hair conjecture, and the hoop conjecture. Of these, the one for
which we have the least concrete evidence is the hoop conjecture. This states
that a black hole forms when and only when a mass M gets compacted into a
region with circumference in any direction Cs$4n#M, so a hoop of that circumfer-
ence can be slipped over the region and rotated through 360 degrees.?? This
statement of the conjecture is deliberately imprecise, but it indicates the form
which a rigorous result hnklng system size and black hole formation is expected
to take. The proof of such a result is also likely to require certain physical con-
straints such as a positive-energy-density condition. The motivation of this
paper is to seek insight into this size-constraint problem by considering a spe-

cial case.

More specifically, 1 restrict attention to axisymmetric éystems and
approach the problem not by examining black hole formation but the opposite--I
ask what conditions must obtain for a material system to be non-collapsing.
Specifically, 1 consider a bounded matter system (occupying the "interior"”
region /) which is axisymmetric and momentarily static; the latter embodies
non-collapse and implies that the system can be described with Brill's time-
symmetric initial-value formalism.* The exterior region FE, i.e., the region out-
side the light cones of the interior at the moment of stasis, is required to be
axisymmetric, fully (not just momentarily) static, asymptotically flat, and
vacuum. These conditions embody the absence of gravitational waves and imply
that the exterior is a slice of a Weyl solution of the vacuum Einstein equations.®

This shows that the boundary surface of the matter interior lies outside the
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absolute event horizon (if there is one), since the Weyl solutions are devoid of
horizons except possibly at the edge of the Weyl coordinate patch.®? I further
impose the physical conditions that the local energy density be everywhere non-
negative, and that no physicai singularities occur. 1then formulate the Question
thus: given a specific Weyl solution, and assuming a general interior geometry
satisfying the above conditions and matched smoothly to the Weyl exterior, what
constraints are imposed on the matter/vacuum boundary surface? Do these
constraints have any bearing on the size of the boundary surface, which the

hoop conjecture suggests should be "larger in all directions” than ~4mM?

I am aware of one previous calculation of this sort: a cursory study by
Thorne® of constraints on interior solutions for the Weyl-type gravitational field
of a thin-ring torus. Thorne's calculaticn showed that the location of the
interior's surface in the Weyl exterior is bounded away from the immediate
neighborhood of the Weyl toroidal singularity. However, this gave no substantial

insight into the hoop conjecture.

My analysis of constraints on momentarily static, axisymmetric systems
proceeds as follows: in Section II I introduce the time-symmetric initial- value
formalism which forms the basis of my calculations, and 1 derive the junction
conditions for matching interior and exterior geometries. In Section III 1
describe the exterior and interior geometries, and using the initial-value equa-
tion and the junction conditions 1 derive a constraint on the matter/vacuum
boundary surface; in Section IV I utilize an alternative description of the interior
to derive a second such boundary constraint, particularly suited to toroidal sys-
tems. In Section V and Section VI I apply the boundary constraints of Section I1I
and Section IV, respectively, to simple examples of Weyl exterior geometries,
and examine the implications of these constraints and their possible interpreta-

tions. In Section VII I discuss the possible extension of these results to exterior
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The principal conclusions of this analysis are: there do exist constraints on
the location of the matter/vacuum boundary in the Weyl exterior, for non-
collapsing systems as described here. For systems with toroidal topology, equa-
tion (4.11) represents a rigorous constraint. For spherical-topology systems,
constraints are given by equations (3.24), (3.30), and (3.43), although the deriva-
tion of the most generally applicable of these, equation (3.43), relies on an
unproved assumption; see Appendix C. It may well be possible to close this gap

in the derivation, though I have not been able to do so.

Applied to the spherical-topology I-metric (Section V) and to the toroidal
Bach-Weyl ring metric (Section VI), my constraints imply the existence of a for-
bidden region near the Weyl singularity, within which the boundary of the matter
system cannot lie. These examples further show that the constraints are not, in
general, related in any obvious way to a minimum size for the matter system,
and do not in any obvious sense embody the hoop conjecture. On the other
hand, 1 have found no violation of the hoop conjecture in these examples; more
precisely, the examples do not test my constraints against the hoop conjecture,
because none of the candidate boundary surfaces in the [-metric or ring metric

exteriors have arbitrarily small circumference in all directions.

Although 1 have not accomplished the original goal of this research--to
prove a special case of the hoop conjecture or to find a counterexample to it--
the formalism I have used and the results | have obtained here may prove useful
in the hands of other researchers. Specifically, further manipulations of this
formalism may yield additional boundary constraints for non-collapsing systems
which are stronger than the ones I have derived, more generally applicable, or
more amenable to interpretation as size constraints or manifestations of the

hoop conjecture. It may also be possible to clarify the geometric meaning of the
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constraints derived here, perhaps by applying them to additional explicit exam-

ples of Weyl geometries.

II. GOVERNING EQUATIONS AND JUNCTION CONDITIONS

A. Initial-Value Equations

The requirements of a momentarily static interior and a fully static exterior
allow this problem to be treated using the time-symmetric initial-value formal-
ism,* the hypersurface of constant time at the moment of interior stasis being
time-symmetric. The three-dimensional geometry of the system on this hyper-

surface (hereafter denoted Z) is governed by the single initial-value equation
G p=16me (2.1)

where R is the three-dimensional curvature scalar and ¢ is the locally meas-

ured energy density. 1 further assume the weak energy condition
£>=0 throughout T (2.2)

and the absence of any physical singularity on Z. The approach I take is to re-
strict all calculations to the hypersurface ¥ and to study the two-dimensional
boundary surface between its interior and exterior regions. The above relations
and assumptions determine the matching conditions across and constraints

upon that boundary.
B. Junction Conditions Across a 2-Surface

The derivation of junction conditions across a two-surface in 2 is similar to
that of junction conditions across a three-dimensional hypersurface in space-

time.? Let I be a two-dimensional surface in £. The first step in this derivation
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is to express the three-dimensional curvature scalar )% in the vicinity of & in
terms of the intrinsic and extrinsic curvatures of & This may be done by con-
tracting the Gauss-Codazzi equations written in Gaussian normal coordinates, in
a manner analogous to that for the higher-dimensional calculation cited

above. After some manipulation, one obtains
@ =P R +28(TrS)/ dn —(TrS)*—Tr (%) (2.3)

where @R is the curvature scalar for the two-dimensional geometry of &,
TrS=S5% , is the trace of the extrinsic curva;aure of &, Tr(SE)=S“ﬁsﬁa is the trace
of its square (the sums over o and § extend over the two dimensions of &), and
8/ On is the derivative with respect to proper distance normal to 4. The second
step of the derivation is to integrate equation (2.1) over an infinitesimal interval
of proper length across & in the normal direction, using the above result for
(B)r. That the intrinsic geometry of  be well defined requires that the metric
restricted to I and the curvature scalar @R be continuous across &, and con-
sequently that TrS and Tr(S?) have no delta function discontinuities at 4. Given
the assumption that the energy density ¢ contains no singular surface layer, this

integration thus implies the junction condition

A(TrS)=lira(TrS) | 18-5=0 (2.4

where n is the proper distance normal to the surface &

In summary, the junction conditions across a two-surface & in the time-
symmetric hypersurface ¥ are: the intrinsic geometry of 4 must be continuous
across the surface, and (in the absence of a singular surface layer) the trace of

the extrinsic curvature of I must be likewise continuous.
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Iil. DERIVATION OF A BOUNDARY CONSTRAINT

My approach to the derivation of constraints on the two-dimensional
matter/vacuum boundary surface is to write the three-dimensional curvature
scalar @R in the interior region of ¥ as a total divergence plus a nonpositive
guantity; equation (2.1) and the inequality (2.2) then imply that the divergence
so obtained must be nonnegative. By integrating this divergence over the inte-
rior volume and invoking the assumption of nonsingularity to apply the diver-
gence theorem, I obtain surface integrals over the boundary which are con-
strained to be nonnegative. Applying the above junction conditions to these
integrals yields integrals, involving exterior quantities, which likewise are
required to be nonnegative. To carry out this approach it is necessary to
describe the interior and exterior geometries of ¥ with appropriate coordinate

systems.
A. Exterior Coordinate System, Metric, and Field Equations.

Since the exterior region is a slice of a static, axially symmetric, vacuum
four-geometry, it can be described in complete generality by the Weyl formal-

ism.® The four-metric of the exterior spacetime can be put in the form
dsf=—exp{RYr(pr.2£)}dt*+expiRlyz(or 25)—¥r (o 25) [i[dpf+dzf]
+pfexpt—RyYE(pr.zE)id¢® . (3.1)
Restricted to &, this gives the three-metric
dof=exp{R(yr—¥r)}[dpE+dzf]+pEexpt—RyYpide® (3:2)

(the subscript E denotes "exterior"). For metric (3.1) in vacuum, the Einstein

field equations reduce to
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8%Yg/ 0pE+(1/ pg)yr/ Bpp+d*yr/ 828=0 (3.3)
8ve/ 0pe=pe[(8¥r/ O0pg)*—(8Y5/ 825)°] | (3.4)
Oye/ 82p=Rpr(8Yr/ Bpr)(0Ys/ 02r) . (3.5)

It is also required that yz=0 for pr=0 to avoid a conical singularity on the 2
{symmetry) axis, and that far from a bounded source %z approach the

Newtonian potential:

liIE¢E=—M/r+O(M3/1'3) (3.6)

where r=(pf+2£)% and M is the total gravitational mass of the system as meas-
ured at infinity. Condition (3.8) ensures that the metric (3.1) has the appropri-
ate asymptotic behavior at infinity.!® Equation (3.3) means that ¢z is a har-
monic potential in a Euclidean "background space" with cylindrical coordinates
(pE.¢.2g). Since ¥z can be determined from ¥z by integrating equations (3.4)
and (3.5), the entire exterior geometry is specified if ¥z, or its fictitious

"source" in the flat background space, is given.

The matter/vacuum boundary surface can be defined in terms of the exte-
rior Weyl coordinates by specifying a meridian (‘go=constant) curve for the sur-
face. In general two cases of interest arise. In the "spherical topology" case,
the interior region includes a segment of the symmetry axis. The boundary
meridian in this case is an open curve with end points on the symmetry axis; I
assume the curve intersects the axis orthogonally at its ends so that the bound-
ary surface has no cusps. The other case is that of "toroidal topology”; here
the symmetry axis lies wholly outside the matter (interior) region. In this case
the boundary meridian is a closed curve, which I assume to be simple,i.e., non-
self-intersecting. It is convenient to specify the meridian for either case

parametrically, using proper length A along the meridian as parameter and
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defining the meridian with two functions pr=R(A), zz=Z(A); 1 take these to be
twice differentiable. With A and ¢ as coordinates on the boundary surface, the
intrinsic geometry of the surface approached from the exterior is given by the

two-metric
ds§ =d N+ R*(\)expi—2¢z(R(A),Z(N)]d¢? . (3.7)
The coordinate basis vectors tangent to the boundary are 8/ 8¢ and
d/dA=R'(A\)8/ Bpg+Z'(N)8/ 8zg (3.8)

where here and below primes denote derivatives with respect to A. The normal

to the surface is
d/dn=-2'(N)d/8pg+R'(N\)0/ 0zg . (3.9)

1 choose the direction of increasing A on the meridian so that (3.9) gives the
outward-directed normal; this orientation of A is analogous to the orientation of
the coordinate & in ordinary three-dimensional spherical coordinates. The
metric (3.2), restricted to a boundary meridian, shows that both d/dA and
d/ dn are unit vectors. Figure 1 illustrates possible boundary geometries, coor-

dinates, and associated vectors.

The trace of the boundary surface extrinsic curvature, for use in the junc-
tion conditions of Subsection II.B, can be calculated directly given the above
boundary coordinates, vectors, and metric. Iobtain

RIZH_ZIRH

TI‘SE'= R'2+Z'2

+7'/ R+d(Ryz—yz)/ dn
(3.10)

=—ag'+Z'/ R+d(RYgp—yg)/ dn
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where
cz(AN)=-tan 7'/ R") (3.11)

is the angle between the vectors 8/0pr and d/dA, as indicated in Figure 1.
(Since the metric (3.2), restricted to a p=constant surface, is conformally flat,
oy is this angle as measured both in the physical space and in the background
space). Here, as above, the subscript E denotes quantities calculated on the

exterior side of the boundary.

B. Interior Coordinate System, Metric, and Field Equations

Because the interior geometry is only momentarily static, it is not con-
strained as strongly as is the exterior; it can be described in several ways. One
simple description uses a three-metric similar to that of the vacuum Weyl

metric:

dof=expiR[yi(pr.21)~¥(pr.21)}[dpf+dzf]+pfexpt—RY (o1.21)ide®  (3.12)

where here and below the subscript I denotes "interior." BSince ggg is not

specified, no generality is lost in this description.

Under the assumptions made here, it is always possible to cover the interior
region with coordinates (p;,¢,2;) such that the metric takes the form
(3.12). The ¢ coordinate derives from the axial symmetry. The existence of
these interior coordinates hinges on the existence of coordinates (p;,2z;) in
which the metric has the above-indicated isothermal (conformally flat) form on
a two-dimensional g=constant slice of the interior. The uniformization theorem
for Riemann surfaces (Appendix A) guarantees the existence of such an isother-
mal coordinate patch covering this slice, provided that the slice is simply con-

nected. Since vacuum regions may be included as part of the interior if
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necessary, the g=constant slices of the interior can be assumed simply con-
nected without loss of generality. The uniformization theorem further ensures
that these coordinates (p7,27) can be chosen so that their values fill any desired
bounded, simply connected region in the plane R (Here this choice is limited
by regularity requirements of the full three-dimensicnal interior coordinate sys-
tem; in particular, p;y=0 on the symmetry axis is required, with p;>0, say, off
that axis, in order that y; and 9¥; be nonsingular). For example, for a toroidal-
topology interior, the coordinates (p7,27) might be chosen to fill a unit disk in
the right half of the plane; for a sphérical—toboiogy iﬁﬁerior, the right half of the
unit disk centered on the origin is convenient. The latter choice makes the
coordinates regular even at the "corners” of the interior slice, where the meri-

dian meets the symmetry axis. (See Appendix A).

Since the metric (3.12) has the same form as (3.2), the description of the
boundary surface from the interior is similar to that from the exterior. The
boundary meridians are defined by two functions, p;=P(A) and z;=3(A). The

intrinsic geometry of the boundary is given by the two-metric
ds§ =dA*+P2(Nexp{—Ry(P(A).F(\)ide® . (3.13)
The coordinate basis vectors tangent to the boundary are 8/ 8y and
d/ dN=P'(A\)8/ dpr+ZF'(N)o/ 0z; . (3.14)
The normal vector is
d/ dn==3"(\)8/ dp;+P'(N\)d/ 02; . (3.15)

With the orientation of A already specified from the exterior, I make (3.15) the
outward-directed normal by choosing the appropriate sign for the coordinate z;.

As above, both d/dn and d/dA are unit vectors. The configuration of interior
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coordinates and vectors is as shown in Figure 1. The trace of the boundary

extrinsic curvature is calculated as before, with the result

TrS,= % +3'/ P+d (29, —y;)/ dn
(3.16)
=—o,'+F'/ P+d(2y—yr)/ dn
with
a;(N)=—tan™Y(Z"'/ P") . (3.17)

The potentials v;(p;,2;) and ¥;(p;.2;) in (3.12) need not satisfy equations
like (8.3), (3.4) and (3.5), which are consequences of the vacuum Einstein field
equations. The functions 7; and %; are constrained only by the initial-value
equation (2.1). The calculation of the scalar curvature ®)F for the geometry

described by the metric (3.12) is straightforward, and yields
) Ry =2§2[8%y;/ 8pF+(1/ p1)(8Y1/ Bpr)+ 0%/ 02F]~[0%y,/ DpF+0%y;/ B2F]

—[(8Y1/ Bp )R+ (BY1/ 821)* l3expiR(¥r—1)} (3.18)

=16me=0

C. A Boundary Constraint Inequality

It is convenient to express (3.18) in terms of the covariant gradient V for

the three-metric (3.12). If this is done, a little rearrangement yields

KO R +(Vyr)2=e VIV (¥ [V(2y —y )+ 71/ p1)Vp 11} (3.19)
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where all the dot products in this equation are given by the metric (3.12). This
form is suitable for deriving a boundary constraint via the approach outlined at

the beginning of this section. Combined with (2.1) and (2.2), (3.19) implies

V-8V (V{291 —y1)+ (717 p1)Vpr =¥ [Bre+ (VY )2] = 0 . (3.20)

I integrate this expression over the interior region 7 and apply the divergence
theorem to the left-hand expression, obtaining a surface integral over the bound~

ary 6/:
gdzA ¥ [d(2yr—yr)/ dn+(y1/ pr)dp;/ dnl=_[d®Ve [Bre+(Vy;)?] =0 . (3.21)
i

The metric (3.13) gives d?A=dAP(A)exp{—y¥;(P(A).Z(A\))}d¢ and the operator

(3.15) applied to p; gives dp;/ dn=—2". Dividing out the p-integral, I obtain
S ==AN PN RYr—r)/ dn-F (Nyr)=[1/ (2m)] fd® Ve [Bre+(Ty,)?] = 0 (3.22)
0 I

where the left-hand expression is a line integral taken over the boundary meri-

dian, with all quantities evaluated at p;=P(}A), 2;=F(N).

The interior coordinates which give rise to the metric form (3.12) and
thence to the inequality (3.22) are not unique, since the region of the plane filled
by the coordinates (p;,2;) can be freely chosen {subject only to the requirement
of simple connectivity, and the conditions p;=0 on the symmetry axis, p;>0 else-
where). Any two such coordinate systems must be related by a conformal
transformation on the coordinates (o;,2;). i.e., if (p7,27) and (3;,27) are two sets
of isothermal coordinates on a p=constant slice of the interior, then p;+i2; must
be an injective analytic function of p;+iz; (allowing for a possible sign change for
the z coordinate). Under these transformations, hereafter termed "gauge

transformations,” the potentials 3; and 7; are not invariant; only the



-27-

combination pje_v’=l|6/ d¢|| and scalars constructible from the geometry (3.12)
are. Thus the splitting off of the (Vi;)® term in (3.19) and the weighting of the

1

volume integrand in (3.21) by e’ are gauge-dependent, making the boundary

constraint inequality (3.22) gauge- dependent.

To isolate this gauge dependence, and because exterior quantities are more
completely and simply determined than interior ones, it is convenient to
express (3.22) in terms of exterior quantities wherever possible. The junction
conditions of Subsection II.B require that the two-metric (3.7) be continuous
with (3.13), and that the extrinsic curvature trace (3.10) be continuous with
(3.18). Solving the latter condition for d(R¥;—y;)/dn and substituting the

result into (3.22) gives

SN Pl (Y —yE)/ dn+Z'/ R—ag'+or']-F (147)} =0 . (3.29)
0

This constraint can be rendered a bit more tractable by specifying a choice
of gauge. Let.# be a p=constant slice of the interior I; the boundary of #, &4
consists of a meridian for toroidal-topology interiors, a meridian plus a segment
of the symmetry axis for the spherical-topology case. Let )V denote the covari-
ant derivative on .# corresponding to the restriction of the metric (3.12) to.#
Let P; be the solution to the covariant Laplace equation ®V?3;=0, where the
Laplacian is also constructed from (3.12) restricted to.#] subject to the follow-
ing boundary conditions: on the boundary meridian, ;=F(}A), as defined in Sub-
section II1.A; if 8.#contains a segment of the symmetry axis, §;=0 on that seg-
ment. Exactly one such p; always exists, since if DCR® is the region of the plane
filled by the interior coordinates (p;,2;), finding p; is equivalent to solving the
Dirichlet problem on 2 with the corresponding boundary conditions on
8D. Given p;, the corresponding 2; is determined by the Cauchy-Riemann

equations, except for its overall sign and a possible overall translation. The sign
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is fixed by the requirement that (3.15) represent the outward normal to 87; the
translation is unimportant. Thus for any interior geometry considered here
there exists a unique set of interior coordinates ("matched” coordinates) in
which the metric has the form (3.12) and the radial coordinate 3; matches the
exterior radial coordinate pgz at the boundary, provided the map (97,27): #->R°
(or equivalently, (97,27): D-R®) is injective. A sufficient condition for this, rely-
ing only on exterior quantities, is that if the meridian exterior radial coordinate
R()\) has only one local maximum, then injectivity of the matched coordinates is
guaranteed for any interior geometry (see Appendix B). In matched interior
coordinates, (3.23) takes the form

{"m“dxzf?[d(zw—yg)/ dn—og'+o 1+ 2= (1471} = 0 . (3.24)

Here oy is given by (3.17), subject to the matching condition P(A)=F(A); F(\)
and 7;{P(7).Z(\)) are those appropriate to the matched interior coordinates
(®r.21).

The inequality (3.24) méy be further transformed ’by treating some of the
terms as integrals in the Weyl "background” space, i.e., the exterior coordinate
space with a flat Euclidean metric. Let dl be background-space length along the
meridian, and ®B)d/dn the unit outward normal derivative at the boundary sur-
face in the background space. Since the metric (3.2), restricted to a g=con-
stant surface, is conformally flat, the scale factor between physicai and back-
ground space meridian lengths is the same as that between physical and back-
ground space normal distances. Thus dA{(d/dn)=dl(®)d/dn). Consequently, I

can write

[==dNR(dYg/ dn)=[1/ (zﬂ)]gﬁ;dzAg Bdyp/dn | (3.25)
0
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where d®4p is the background space area measure.But the integral on the right
side of (3.25) can be evaluated via Gauss's Law, i.e., by integrating (3.3) in the
background space between 8/ and a coordinate sphere at infinity, applying the

flat-space divergence theorem and utilizing (3.8). 1 obtain

S ANR(dyg/ dn) = 2 . (3.26)
0

A similar transformation begins with
J Mmaxg )\ R (dyg/ dn)=[1/ (2m)] 33; d?Ag Bldyg/dn . (3.87)
©

The flat-space divergence theorem can be applied to the integral on the right
side of this equation (equations (3.4), (3.5), and (3.8) imply that ¥z is of order
(M/7)? as T-=, so the integral over the sphere at infinity vanishes), with the
result

{‘wdx}?(dn/ dn)=-[1/ (2n)]£d3 Vg(8Ryg/ 0pp+0%yp/ 025)

—[1/(2m)] { d3Vp(1/ px)(Byz/ OpE) - (3.28)

The integrals on the right are over the exterior volume FE, with d%Vy the
coordinate-space volume measure. It follows from equations (3.4), (3.5), and
(3.8) that the integrand of the first integral on the right equals the flat-space
divergence of the vector field —¢z®B)Wyz, where BV is the flat-space gradient.
The integrand of the second integral is just the flat-space divergence of the vec-
tor field (yg/pr)(8/8pg). Applying the divergence theorem to both integrals
and converting the resulting surface integrals into line integrals in the physical

space, 1 obtain
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™ dAR(dyg/ dn) = — ™ dA[Ryp(dye/ dn)+yzZ'] . (3.29)
0 o}
Using this and (3.26) in (3.24) gives

4M+_[Am°xd)\21?[’¢5(d’l//5/ dn)—ag'+a;/' 1+ Z'(1+yg)-F " (1+y)}=0 .  (3.30)

The boundary constraint (3.30) still depends on the interior geometry, but
only through the coordinate derivative 3" and its derivative 3" along the meri-
dian. These appear in a;', as per (3.17), and in the last term of the integrand.
The metric (3.182), specialized tc a boundary meridian and in matched coordi-

nates, yields the condition

1=exp{R[y(R(N).Z W) -¥r(RN).FONBIR WP+G(W)?] . (3.31)

The junction conditions of Subsection I1.B require that the boundary two-metrics
(3.7) and (8.18) be continuous; coupled with the coordinate- matching condition
P(A)=R(A) this means ¥; is continuous with ¥z at the boundary. Thus v; at the

boundary depends only on 3" and exterior quantities, i.e.,

Yi(RN).ZN)=ve(R(N).Z(\)-Flog[(R'WP+F'(A\)?] . (3.32)

This remaining dependence of (3.30) on interior quantities is dependence on the
actual interior geometry rather than gauge dependence, since the choice of
matched coordinates fixes the gauge. This may be seen by reexpressing (3.30)
in terms of the matched interior coordinate p; (dropping the tilde). This coordi-
nate is uniquely and invariantly defined, as above, as the solution to ®Vv?;=0 on
#, with boundary conditions p;=F(A) on the boundary meridian and p;=0 on the
symmetry axis if d.# contains a segment thereof. Since dp;/dn=-3" on the

meridian by (3.15), and similarly for dpg/ dn, inequality (3.30) may be written
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aM+ ™ ANR [yp (dyp/ dn)+or' —og']
0

+H(1+yr)(dpr/ dn)—(1+yg)(dpg/dn)} =0 . (3.33)

Here a; is defined as the angle from 8/8p; to d/ dA, measured in accord with
the orientation indicated in Figure 1; ag is similarly defined. In terms of p;

and pg, this means
o;=tan[(dp;/dn)/(dp;/ dN)] ; eg=tan~![(dpg/dn)/(dpg/dN)] . (3.34)
Also y; is given on the meridian by
Yr=¥z—¥log[(dp;/ AN?*+(dp;/ dn)?] . (3.35)

Hence the dependence of the boundary constraint (3.33) on interior quantities
appears only through the function p;. I have not been able to eliminate this

dependence from this constraint in general.

The usefulness of the constraint (3.30) is in identifying surfaces in any given
exterior geometry which are forbidden as boundaries of systems satisfying the
£=0 and nonsingularity assumptions made here. The interior coordinates,
specifically the coordinate derivative 2 for matched coordinates, must be
specified in some way to evaluate the inequality (3.30); then, surfaces violating
the inequality are forbidden. Surfaces satisfying the inequality may or may not
be acceptable boundaries, since they may bound interiors satisfying (3.20) but

violating the £=0 condition.
D. Double-Matched Coordinates

The boundary constraint (3.30) becomes very simple for cases in which the

matched interior coordinates are also "double-matched,” ie., they satisfy
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FA)=Z(A) as well as P(A\)=R(A). In such cases y; and yz are continuous at 8/

as well as ¥7 and ¥&, and of course o;'=az'. Inequality (3.30) reduces to

aM+ ™A Ryp(dyp/dn) =0 . (3.36)
[§]

If in addition the boundary surface is chosen to be an equipotential surface of
Yg, then the integral can be evaluated via (3.26).The boundary constraint

becomes

Yelor = —R {(3.8v3

for a double-matched system with a ¥z-equipotential boundary.
E. Maximization with respect to 3"

It is also possible in certain cases to eliminate the interior coordinate
dependence of (3.30) by maximizing the left side of the inequality with respect
to the interior function 2. I denote the left side of (3.30) #)[3"], and regard it
as a functional of 3", different functions 3" correspond to different interior
geometries since matched interior coordinates are assumed in (3.30). If there
exists a function Z5'(A) for which 4 is maximized, for a given exterior geometry
and boundary surface, then the maximum value of #; can serve to identify a for-
bidden surface. Specifically, a surface with [ 36']<0 is forbidden as a matter/

vacuumn boundary for any interior geometry under the assumptions made here.

It is a straightforward variational problem to extremize #; with respect to

&' The first variation is
6 = {)‘m“[}éIog(]?'2+3"2)—1//g](63")d)\=— {“muyf(ag')dx (3.38)

and the second variation is
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2 F= o _F_(6zdn (3.39)
4}

R!2+3’!2
Thus the choice of 3" for which & is extremal is given by
Fo N =xtexp[Ryz(R(N).Z(\)]-[R' (N F# (3.40)

provided of course that

[B' (N P=exp[Ryz(R(A).Z(N))] (3.41)

holds on the entire boundary meridian.  This choice of 2%’ is equivalent to

Y1{R(A\), Fo(N))=0 . (3.42)

The choice of sign in (3.40) is fixed by the orientation of d/dA and d/ dn on the
boundary meridian. For those cases in which the negative square root applies
along the entire meridian, (3.39) implies that 3%’ gives a maximum of ;. This is
actually a local maximum in the space of functions 3", establishing it as a global
maximum poses some difficulties (see Appendix C). In using this boundary con-

straint I assume the global maximality of [ 30'].

If condition (3.41) holds on the boundary meridian, and if the negative sign
in (3.40) is admitted by the topology over the entire meridian, then the bound-

ary constraint takes the form
Jl[gg']=4M+f}‘m“d>\§R[ng(dq,lzg/ dn)—aE'+cx}°)’]+Z’(1+7E)—3{,’§ =0 (3.43)
(i

with 2%’ given by (3.40) and af% given by

af0r=— R'if’é:;ff” =(d/d\)[tan"(-F5/ B)] . (3.44)

Surfaces violating (3.43) are forbidden. Because of the aforementioned
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conditions necessary to establish the existence and maximality of 3%’ this form
of the boundary constraint is most readily applied to systems of spherical topol-

ogy, rather than toroidal systems with closed meridians.
IV. A SECOND BOUNDARY CONSTRAINT

A boundary constraint distinct from (3.30) or (3.43) can be derived via the
same procedure as in Section III, starting from a slightly different interior
description. I obtain the new boundary constraint by maintaining gauge invari-

ance throughout the calculation.
A Alternative Interior Description

The interior metric can be written

dof=exp[2Q(p1.27)] [dpf+dzf] + exp[2B(ps.2/)] dp® (4.1)

The existence of coordinates in which the metric takes this form is guaranteed
by the uniformization theorem, as in Subsection IIL.B. Since p; does not appear
as a factor in g4, here, the restrictions p;=0 on the symmetry axis, p;>0 else-
where are not needed in this description. However, regularity of the geometry
on the symmetry axis requires that the function g8 be singular there (i.e., that ef
vanish), if the axis passes within the interior region. The form of the metric
(4.1) is preserved under gauge transformations of the type discussed in Subsec-

tion II1.C; here the function g8 is gauge invariant, while € is gauge-dependent.

The boundary surface is specified as before, by two functions
pr=P(\), 2;=3(A); 1 make no assumption of matched coordinates here. The

boundary's intrinsic geometry is given by the two-metric

ds§ =d\*+exp[2B(P(N).F(N)]d¢* . (4.2)
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The coordinate basis vectors on the boundary are 8/ 8¢ and d/dA as given by
(3.14); the normal vector d/dn is given by (3.15). The trace of the boundary

extrinsic curvature is again calculated directly, with the result
TrS;=—[a;'+d(@+8)/ dn] (4.3)

where oy is as given by (3.17).

The scalar curvature @R for the geometry described by (4.1) is given by

B py=—2e RR4[(8/ 8p1)?+(8/ 02,)2](Q+B)+(88/ Bpr)?+(8B8/ 821)% . (4.4)

B. Derivation of the Alternate Boundary Constraint

In terms of the covariant derivative V and covariant divergence correspond-

ing to the metric (4.1), equation (4.4) takes the form
® ry=—2[V¥(@+8)-VQ-VE] (4.5)

where the dot product in the last term is also that of (4.1). This expression for
®)R; can be rearranged for integration over the interior volume in different

ways; ] maintain gauge invariance by rewriting it in the form
~[%O R +(VP1=ePV-[e FV(Q+6)] . (4.6)
Thus by the initial-value equation (2.1), I obtain
V- e PV(@+B)]=—e P[Bre+(VB)?]<0 . (4.7)

The divergence on the left is gauge invariant because the quantity on the right
is.
I derive the desired boundary constraint by integrating (4.7) over the inte-

rior volume and applying the divergence theorem to obtain a surface integral.
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Because of the singularity of # on the symmetry axis, that axis must be excluded
from the integration volume if this is to be done. For spherical-topology sys-
temns, this means that the resulting surface integral consists of two terms, an
integral over the boundary surface plus an integral over an infinitesimal
"sheath" about the symmetry axis. But the integral over the sheath has the
form

J d*4lePd(Q+g)/dn]=2n [ dAd(Q+B)/dn . (4.8)
Sheath Sheath

In general d@/ dn will be finite at the symmetry axis. But dg/dn=e¢ Fd(ef)/dn
diverges to —= there, since e vanishes while d(ef)/dn approaches -1 by ele-
mentary flatness (the negative sign appears because the outward normal from
the interior at the sheath points toward the symmetry axis). With the sheath
term negative and infinite, the integral over the actual matter/vacuum bound-
ary surface is not constrained at all by the inequality in (4.7). Thus the bounad
ary constraint to be derived by integrating (4.7) is useful only for toroidal-
topology systems, in which the interior region contains no segment of the sym-
metry axis.

For such toroidal systems, integrating (4.7) over the interior volume and

using the divergence theorem yields

[=*dNd(@+B)/ dn=—[1/ (2m)] [dVe #[Bre+(VB)2]<O . (4.9)
0 I

By the junction condition (2.4), the trace (4.3) must be equal to (3.10). Solving

this equality for d{@+8)/ dn in (4.9) gives



Wi
_[Amud)\[d(?y’/g-‘yg)/ dn+2'/ R—ag'+o;')=[1/ (Zﬁ)][dalfe"ﬁ{anMVﬁ)z]
(4.10)
=0
The integral of ;' around the boundary meridian gives 2r for an arbitrary regu-
lar interior; the integral of ag’' cannot be so given for all cases but can be

evaluated in any given case (see Appendix D). Thus the boundary constraint has

the form
=t \[d(2yg—yg)/ dn+2'/ R—ag]=—2r (4.11)
0

This has the same significance as the constraint (3.24) or (3.30); it identifies sur-
faces in a given exterior geometry which are forbidden as matter/vacuum bound-
aries under the £>0 and nonsingularity assumptions. Surfaces for which {4.11)
is violated are forbidden; the suitability of surfaces for which it is obeyed is
undetermined. Although this condition, in contrast to that of Section IlI, has the
disadvantage that it can only be applied to toroidal systems, it has the desirable
feature that it can be evaluated using only exterior quantities, without further

assummptions.
V. APPLICATION OF THE BOUNDARY CONSTRAINTS: A SPHERICAL-TOPOLOGY EXAMPLE

The boundary constraint derived in Section Il can be examined by applying
it to simple examples of Weyl exterior geometries. The simplest of these, in
terms of the Weyl formalism, is the Curzon metric, for which the background-
space source is a point monopole.!! (This geometry is quite distinct from the
Schwarzschild solution for a point monopole in the physical space; the Curzon
geometry is not spherically symmetric.) Condition (3.43) may be applied to this
geometry, but no particularly interesting results are obtained A shghtly more

complicated set of Weyl geometries, those with a line source in the background
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space, does reveal some important features of the consiraint.

A. The ['-Metrics

Specifically, the background source for these geometries is a line mono-
pole, of linear density ['/ 2, extending from zz=—a to 2z=+a on the symmetry
axis in the background space. This source is fictional; its linear density is the
physical mass M of the system, measured at infinity, divided by its coordinate
length, so that I'e=M. Equation (3.3), the Laplace equation for ¥z, is easily
solved for such a source in prolate spheroidal coordinates (u,v,¢), related to the
Weyl coordinates (pg.2g.¢) by pg=asinhusinv, zgp=acoshucosv, with
w€[0,+=), ve[0,7r]. In these coordinates the Weyl equations (3.3), (3.4), and

(3.5) have the solution

Yr=T"log[tanh{u/ 2)] (5.1)
in®y
=—(I%/ 2)log |1+ == 5.2
The resulting spacetime metric is'®
sinfy | T
dsf=—tanh¥ (u/ 2) dt?+tanh ™ (u/ 2) |1+ —— [dpg+dzf]
sinh*u
+pftanh ™ (u/ 2) d ¢?
(5.3)

.2 1-T?
=—tanh®(u/ 2) dt?+(M / T)%sinh?u tanh & (u/ 2) [1+ ;;h%] [du?+dv?]

+(M / T')%sinh?*u tanh T (u / 2)sin®v d ¢?

The time-symmetric hypersurface ¥ of concern here is given by any constant-Z
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hypersurface in this geometry.

The metric {5.3) describes a family of geometries parametrized by I". If
I'=1, so a=M, the geometry is just the Schwarzschild geometry'®; the usual
Schwarzschild coordinates (f,7,8,¢) are related to the above (f,u,v,p) coordi-
nates by r=2Mcosh®(u/R2), =v. If I'c(0,1), so a>HM, the source is more
elongated in the z-direction than in the spherical case; I term such geometries
"prolate." Similarly, if I'e(1,+=), a <M, the source is more compressed in the z-
direction than in the spherical case; these geometries I label "oblate.” In the

limit T»+e, @ -0, the T-metric becomes the Curzon metric.!3
B. The Spherical-Topology Boundary Constraint

The surfaces of constant w in the [metrics, equipotentials of ¥z, provide a
convenient one-parameter family of surfaces to which to apply the criterion
(3.43). All the necessary quantities can be calculated from the metric (5.3) and
the relations between (pz,2g) and (z,v). The #-maximizing interior coordinate

derivative 39, as per (3.40), is given by

. -1
sin®v

%
—— cosz'u] . (5.4)

3’0'=—tanhr(u/ 2) 1—[1+
This exists for all w if I'<1; if I'>1, for small 2 the argument of the square root
will be negative for v near 0 and 7. Itherefore apply criterion (3.43) only to the
spherical (Schwarzschild) and prolate I-metrics. The functional & 3’0'] of

(8.43) takes the form
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S Fouw]=_2M {2—(T'+ 1/ Necoshu —(1/ T —T')sinh®ulog[coth(u / 2) 3

w

+(M/ F)sinhuf dvlsin®v

I?-3 |

e N . ( . r2-1
sin®v | 2 1-T®cos?v sin®v
1+ 1+ 1-11+ —] 2
sinh®u l sinh®u [ sinh®u cos

\

[y

1-T#
s .2 ——{ . 2 r2-1 +%
sin®v 2 sin®v
+|1+ -1+ R !
iy [l 1 e cos v] (5.8)

The notation &;[3Zp'u] indicates that the functional #[3"], evaluated at
F'=34 is a function of the u-value on the surface to be evaluated. Forbidden

surfaces are those with 4] 252 ]<0.

If I'=1, the integral in (5.5) reduces to an elementary form; the resulting

expression for 4 is
F) Z0'u]=4HM (1 +sinhu —coshu)=4HM (1-e ™) (5.8)

where the superscript (S) denotes the Schwarzschild case. This result means
that for the Schwarzschild exterior geometry, none of the u =constant surfaces,
with ©=0, are forbidden. That is, none of the surfaces of constant Schwarzschild
radial coordinate r, with r=2¥M, are forbidden. This is in accord with the
existence of an exact interior solution which can be matched to the
Schwarzschild exterior at any sphere of Schwarzschild radius r=2M.
Specifically, the Schwarzschild exterior four-geometry can be matched to a
closed Friedmann interior geometry to describe an expanding or collapsing
sphere of matter with uniform density and zero pressure.!'* At the moment of
maximum expansion of the Friedmann interior, the geometry is momentarily
static and time-symmetric; all of the hypotheses underlying the boundary con-
straint derivation apply here. The Schwarzschild coordinate radius of the

matter/vacuum boundary at the moment of stasis can be freely chosen to be

_}ﬁ
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any value r=2M. The interior Friedmann metric on the hypersurface of time
symmetry can be cast in the form (3.12), and the coordinates (p;,2;) can be
chosen so that at the boundary surface p; coincides with pz of the Weyl coordi-
nates for the Schwarzschild exterior. In that case one finds that ;=0 holds
throughout the interior, which means, as in Subsection IIL.E, that the interior
coordinate derivative on the boundary, 3", coincides with the & -maximizing
function 3. That is, the & -maximizing interior coordinate used to derive (5.6)

actually occurs in the Friedmann/Schwarzschild system.

For prolate I'-metrics, with I'<1, an analytic evaluation of the integral in
(5.5) is not possible. It can, however, be studied with approximate and numeri-

cal calculations. I find that #; has the limiting behavior
lim A Fo'w]=(RM/ D)[~(1-T)*+B(1-T% 2.1 -T*/ 2)(u/ 2%+ 0(uThH]  (5.7)

where B is the beta function. Thus at w=0, 4] Z¢ 2] takes the value
—(RM/T)(1-T)?, which negative for all I'e(0,1). The function &[0 2] increases
monotonically with u, approaching the limit 4¥ as uw-+«~, Consequently in
every prolate I-geometry there is a value ug such that &[5 %] is zero, and
S Fo'iu] is negative for u <wg, positive for u>u. If the higher order terms in u

are neglected, equation (5.7) implies that the zero-crossing value uq is given by

wo=R[(1-TV?3/ B(1-T%/2,1-T%/2)]¥T* | (5.8)
The neglect of the higher order terms is valid only if » is small and 2(1-T®) is
large; numerical calculations indicate that the fractional error in the value of ug
given by (5.8) approaches 20% for I" values near 1, is less than 1% for I'<0.7, and
vanishes as ['+0. By the boundary constraint (3.43), surfaces with u <uq are for-

bidden as boundary surfaces.
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The constraint imposed by the condition ] F0o'i2]=0 on u=constant bound-
ary surfaces in the prolate Imetrics takes a simple form in the limit in which
the background-space source is very large, i.e., the limit @ »«~ or I'-0. Equations

(56.1) and (5.8) imply, in this limit,

lizg ¥s(uo)=—2+0() . (5.9)

Since ¥z is a monotone increasing function of u, the boundary constraint
HA[F0 )20, ie., u=ug becomes equivalent to (3.37). This occurs because in
the limit I'»0, the "double match" of coordinates discussed in Subsection III.D is
achieved; by equation (5.2), yz-0 as I'>0, which means Z¢'»Z' in that limit, as

may also be seen directly.
C. Interpretation of the Boundary Constraint: Sizes and the Hoop Conjecture

The results of this example calculation indicate that the boundary con-
straints of Section Il do not admit of interpretation as simple size constraints.
The three simplest measures of the size of the w=constant surfaces in the I-
geometries, consistent with axial symmetry, are the polar circumference
Cp=2Amax, the equatorial circumference Cg, and the proper area A. These are

given by
112
Cp(w)=(2M/ IsinhutanhT(u / 2)f(sinh2u+sin2'u) 2 dv , (5.10)
0
Cp(u)=(2nM/ TsinhutanhT(uw/2) (5.11)
1-T®

A(u)z(zﬂM’?/I‘z)sinh”rzutanh‘ar(u/2)f(sinh2u+sin2'u) 2 sinvdv . (5.12)
()

These equations show that in any prolate [~metric, for © <1, Cp behaves as
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wl®T, Cg as u'™T, and 4 as w12 Thus as u-0, Cp-o while Cp~>0 and A-0 in

these prolate geometries.

The form of the boundary constraints of Section I1I suggests that these con-
straints might constitute lower bounds on Cp, i.e., that surfaces with Cp values
less than some minimum might be forbidden. But among «w=constant surfaces
in a prolate I-metric, the forbidden surfaces are those with O<u<uq Since
Cp-o as u-0, the set of forbidden surfaces contains members with Cp values
larger than any specified bound, larger than the Cp value of any given non-
forbidden surface. Further, since Cp-»~ as ©-»0 and as ©v =, there exists a éosi—
tive value of u, for I'<1, at which Cp(u) is a minimum. This is a property of the
I~metric, without any reference to the boundary constraint. Numerical calcula-
tion reveals that ug is small compared to unity (e.g., ©g<0.01) for any value of I'

I®T. in particular, Cp is decreasing with

less than 1. Thus at ug, Cp behaves as u
increasing w. Therefore the minimum value of Cp must occur at a u-value
greater than u,, i.e., on a non-forbidden surface. The Cp values of the forbidden

u=constant surfaces are bounded below by Cp(ug), given approximately by

equations (5.8) and (5.10); neglecting higher order terms, I obtain
Cplug)=(4M/ T B(1 TR/ 2,1 -T%/2)]V/T(1-T)?-*T | (5.13)

There exists one forbidden and one non-forbidden » =constant surface having Cp
equal to any given value greater than Cp(ug). These results appear to rule out
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