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ABSI'RACT 

This dissertation consists of two studies on the general-relativistic theory of 

black holes. The first work concerns the fundamental issue of black-hole forma

tion: in it I seek geometric constraints on gravitating matter systems, in the 

special case of axial symmetry, which determine whether or not those systems 

undergo gravitational collapse to form black holes. The second project deals 

with mechanical behavior of a black hole: specifically, I study the tidal deforma

tion of a static black hole by the gravitational fields of external bodies. 

In the first paper I approach the problem of geometric constraints deter

mining gravitational collapse or non-collapse through the initial-value formalism 

of general relativity. I construct initial-value data representing noncollapsing, 

nonsingular, axisymmetric matter systems and examine the constraints 

imposed on this construction by the initial-value equation derived from the Ein

stein field equations. The construction consists of a nonsingular, momentarily 

static interior geometry with nonnegative mass-energy density, matched 

smoothly to a static, vacuum exterior geometry (described by a Weyl solution of 

the Einstein field equations) at a boundary surface. The initial-value equation is 

found to impose restrictions on the choice of the boundary surface for such a 

system. Two such constraints are obtained here, appropriate to spherical and 

toroidal interior-region topologies. These constraints are studied by applying 

them to simple examples of Weyl exterior geometries. The "hoop conjecture" for 

the general geometric-constraints problem states that a system must collapse 

to a black hole unless its circumference in some direction exceeds a lower 

bound of the order of the system's mass. The examples examined here show, 

however, that the constraints derived in this study are not generally correlated 

with any simple measure of system size, and thus that they do not embody the 

hoop conjecture. 
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The second paper examines the tidal distortion of a Schwarzschild black 

hole by bodies ("moons") suspended above the horizon on "ropes ." A solution of 

the Einstein field equations is constructed describing this configuration, using 

the Weyl formalism for axisymmetric, static, vacuum geometries. The intrinsic 

geometry of the tidally deformed black-hole horizon is obtained from this solu

tion; I construct embedding diagrams to represent the shape of the horizon and 

the tidal bulges raised on it for both weak and strong perturbations . The rela

tions among the masses of the hole and moons, the binding energy of the sys

tem, and the rope density and tension are calculated from the solution and 

shown to be mutually consistent . Also, the Riemann curvature tensor represent

ing the tidal fields near the horizon is calculated. This solution is found to agree 

with a previous calculation by Hartle of black-hole tides, in the limit of perturb

ing moons far from the horizon. In the opposite case of moons very near the 

horizon, this solution approaches the static limit of the distort ed horizon in 

Rindler space calculated by Suen and Price . The results of this study thus sup

port the use of the Rindler approximation to Schwarzschild spacetime in calcu

lating static black-hole tides, and its extension to dynamical situations. 
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INTRODUCTION 

Solutions of Einstein's General Theory of Relativity wbich can describe black 

holes were found witbin just a few years after the theory itself was first 

announced--the spherically symmetric, uncharged Schwarzschild solution in 

1916 and the spherically symmetric, charged Reissner-Nordstrom solution in 

1918. But for decades the idea of such "ultimately collapsed" objects was 

regarded as, at best, an unrealizable mathematical abstraction. Such thinking 

began to change in the early 1960's, when observations began to reveal unex

pectedly violent phenomena in the universe, phenomena which might involve 

extremely strong gravitational fields. These discoveries sparked a renewal of 

interest in general relativity theory and in black holes in particular. In the 

succeeding two decades a great deal of research has been done on the funda

mental theory of black holes. Questions on the formation and stability of black 

holes, on their local and global properties, on their classical and quantum 

dynamics, have been and are the subjects of extensive investigation. In recent 

years black holes have become part of the stock-in-trade of the astrophysicist 

as well as the relativist; attention is being focussed on the behavior of black 

holes as real physical objects in astrophysical situations .1·2 

This dissertation consists of two studies in general relativity theory ger

mane to black-hole physics: first, a search for geometric constraints on noncol

lapsing, gravitating systems; second, a description of a Schwarzschild black hole 

distorted by the tidal effects of fixed external masses. The first work deals with 

an issue of fundamental theory, seeking conditions on the geometry of matter 

systems which determine whether or not gravitational collapse to a black hole is 

inevitable . The second project concerns the mechanics of an interacting black 

hole, specifically, the gravitational deformations of a static black hole by exter

nal bodies . In both studies consideration is restricted to axially symmetric 
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systems, so that the powerful Weyl formalism3·4 for static, axisymmetric 

geometries can be used to describe the gravitational field's. 

Part One: Geometric Constraints on Nonsingular, Momentarily Static, 

Axisymmetric Systems in General Relativity 

The only mechanism by which black holes can be formed, other than pri

mordially, is gravitational collapse of matter systems. It is held that any 

sufficiently compact assemblage of matter and energy will collapse under its 

own gravity to form an event horizon and thus a black hole. The proper charac

terization of "sufficiently compact" is an unsolved problem. Indeed, the rela

tionship between system size and black-hole formation might be considered the 

oldest problem in black-hole theory. In 1795 Laplace5 calculated that the 

escape velocity from the surface of a spherical body of fixed density and 

sufficiently large radius would exceed the speed of light; such a body would 

render itself invisible by means of its own gravity. Laplace's result, expressed in 

terms of a relation between the mass of the body and its radius, coincides with 

that of the Schwarzschild radius for a spherical, uncharged black hole--despite 

the fact that Laplace's calculation used Newtonian gravity and Newton's corpus

cular theory of light. 

In this century the size-constraint problem has been solved only for the 

case of spherical symmetry. An uncharged, spherically symmetric body must 

lie outside its Schwarzschild radius, i.e., it must have circumference greater 

than 2nr8 , where rs is related to the mass M of the body by rs= 2M (G=c =1), 

else it will be inside the horizon of a J::>lack hole and in a state of dynamical col

lapse. Studies of gravitational collapse in less symmetric situations have led to 

the formulation of the "hoop conjecture": for a body of mass M the formation of 

a horizon and a black hole is inevitable if and only if the body is compacted such 
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that its circumference in every direction is less than a bound of order 4rrM (i.e., 

if and only if a hoop of this circumference can be passed around the body in 

every direction.) 1·2 The aim of the research presented in Part One is to gain 

insight into the hoop conjecture by considering the case of axial symmetry. 

The size-constraint question lends itself to treatment as an initial-value 

problem. If a matter system is described on an initial-value hypersurface (i.e., 

at an initial "moment of time"), what constraints on the initial data ensure that 

collapse to a black hole is inevitable or can be avoided in the course of the sub

sequent evolution? The field equations of general relativity can be cast in the 

form of equations for such a Cauchy problem; in this formulation, six of the ten 

independent Einstein field equations describe the evolution of the system, and 

the remaining four are conditions governing the initial-value data.6 The full 

dynamical problem is too intractable, even under the simplifying assumption of 

axial symmetry, to yield useful results on this question. So in Part One I con

sider a more manageable question: if I demand that the system be noncollaps

ing on the initial hypersurface (which guarantees that subsequent collapse can 

be avoided in principle), how is its geometry constrained by the field equations 

which govern the initial-value data? That is, what geometric conditions must the 

system satisfy in order to be even momentarily noncollapsing? 

The hypothetical noncollapsing system is described by a three-dimensional 

initial-value hypersurf ace consisting of a bounded interior region occupied by 

matter and an asymptotically ft.at, vacuum exterior region. The interior is 

required to be axisymmetric and momentarily static, embodying non'"collapse. 

It must also satisfy the physical requirements that the locally measured mass

energy density be nonnegative, and that no physical singularities be present. 

The exterior is required to be axisymmetric and to be a slice of a fully static 

region (i.e., the exterior region outside the light cones of the interior at its 
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moment of stasis is required to be static): the latter condition embodies the 

absence of gravitational waves. These conditions imply that the exterior can be 

described by a Weyl solution of the Einstein field equations .3·4 Such solutions 

have singular, unphysical "sources"; in this construction a region of the solution 

containing the singular source is replaced by the nonsingular interior geometry 

described above . I seek geometric constraints related to the hoop conjecture 

from the limitations on this construction imposed by the initial-value field equa

tions. 

On a hypersurface of momentary stasis such as described above, the four 

initial-value field equations reduce to one, which equates the three-dimensional 

curvature scalar of the hypersurface to a multiple of the locally measured 

energy density.6 This equation can be manipulated into a form which equates a 

total divergence with a quantity which is nonnegative by virtue of the nonnega

tivity of the energy density. Integrating this equation over the interior region 

gives an integral over the matter /vacuum boundary surface which consequently 

is required to be nonnegative. This requirement constitutes a geometric con

straint on the system. By using different descriptions of the interior geometry, I 

obtain two such constraints, one applicable primarily to sources of spherical 

topology, the other applicable to sources with toroidal topology. (The technique 

of obtaining surface integrals constrained to be nonnegative from volume 

integrals of manifestly nonnegative integrands is one that has proven useful for 

other problems in gravitation theory as well. For example, recent work on the 

positivity of mass of isolated systems has utilized this method.7) 

The constraints thus obtained can, in appropriate circumstances, be 

expressed entirely in terms of quantities characterizing the exterior geometry. 

Their significance is that in any given exterior, surfaces for which a constraint 

inequality is violated are forbidden as matter /vacuum boundaries for a 
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momentarily static system as described here. In Part One I apply these con

straints to simple cases of Weyl exterior geometries with both spherical and 

toroidal interior topologies. Applied to the Schwarzschild exterior, the 

spherical-topology constraint is in accord with the result given above : the source 

must extend outside its own Schwarzschild radius . In some more complicated 

examples the constraints forbid the matter boundary surface to be arbitrarily 

near the singular source of the full Weyl geometry, i.e ., the constraints identify a 

forbidden region in these exterior geometries within which the matter boundary 

surface cannot lie. 

The geometric constraints obtained in Part One do not, however, embody or 

support the hoop conjecture. The example calculations show that the con

straints are not, in general, correlated with any simple measure of boundary

surface size. Furthermore, in some examples the constraints forbid as bound

aries of momentarily static systems surfaces with arbitrarily large circumf er

ences, in contrast to the hoop conjecture. But these results do not disprove the 

hoop conjecture either. The constraints of Part One and the hoop conjecture 

are logically distinct. The hoop conjecture, as formulated above, is a necessary 

and sufficient condition for the inevitability of collapse to a black hole: a system 

compacted as described in the conjecture must form a black hole, while a sys

tem not so compacted can avoid such a fate . . The constraints obtained here are 

necessary but not sufficient conditions for the construction of a momentarily 

static system as described above: a surface in an exterior Weyl geometry for 

which either of these constraints is violated cannot be the boundary of a non

singular, noncollapsing system with positive mass-energy density: a surface 

satisfying the constraints may or may not be suitable as the boundary of such a 

system. Additionally, the initial-value formalism used here does not establish 

the inevitable formation of a black hole from systems violating the constraints. 
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Thus the fact that the constraints forbid some surfaces with arbitrarily large 

circumferences does not contradict the hoop conjecture. And there is no exam

ple in these results of a momentarily static system with circumference in every 

direction much less than its mass. In fact the Weyl geometries studied here pro

vide no possibility for such a counterexample : all the source-surrounding sur

faces examined in them have largest circumferences larger than a bound of 

order 41TM . 

The hoop conjecture and the size-constraint problem remain subjects of 

active study. For example, Schoen and Yau? in recent work motivated by Part 

One of this thesis, prove a size constraint reminiscent of the original Laplace5 

result. They show that a bounded system, in which the proper or comoving den

sity of mass-energy is bounded below by a positive constant A, possesses an 

apparent horizon (and eventually forms a black hole) if its "radius," suitably 

defined, exceeds a certain limit of order A-112 . (The quantity they define as the 

measure of radius is essentially the largest minor radius of any torus that can 

be enclosed in the matter region.) Thus Schoen and Yau do obtain a size con

straint for noncollapsing systems, though it differs considerably from the hoop 

conjecture. Notably, the constraint is given in terms of the local mass-energy 

density rather than the total mass measured remotely; also, the size measure 

used depends on the detailed nature of the interior geometry. 

In their proof Schoen and Yau use techniques of functional analysis far 

removed from the methods I employ in Part One, but in both works the problem 

of conditions ensuring collapse or non-collapse is treated as an initial-value 

problem; in both cases geometric constraints are derived on the initial-value 

data. Perhaps other applications of this approach might yield results more 

directly related to the hoop conjecture than those discussed above. The results 

of Part One also indicate another possible approach to the size constraint 
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question: geometric conditions bearing on the hoop conjecture may be deriv

able from the static, vacuum Einstein field equations themselves, at least in the 

axisymmetric case . The observation that all the source-surrounding surfaces in 

examples of Weyl geometries studied here have circumferences in some direc

tion larger than a bound of the order of the system mass M suggests this possi

bility. 

Part Two: Tidal Distortions of a Schwanschild Black Hole 

By the early 1970's the principal features of the fundamental theory of 

black holes were becoming well established, and interest turned to the problem 

of finding black holes in nature .9 This stimulated research efforts on the roles 

black holes might play in various areas of astrophysics .2 In addition, discoveries 

in the 1970's on the quantum mechanical and thermodynamic properties of 

holes suggested interesting consequences of black-hole physics for statistical 

mechanics, particle physics, and other fields. 10 Both of these lines of inquiry 

require further understanding of the interaction of black holes with other physi

cal systems. 

The research to be described in Part Two of this dissertation grew out of a 

program of studies in black-hole dynamics in which I participated in collabora

tion with K. S. Thorne, R. H. Price, R. J. Crowley, W. H. Zurek, D. A. Macdonald, 

W.-M. Suen, M. Mijic, L. S. Finn, and X.-H. Zhang. The aim of this program is to 

express and understand the laws of black-hole physics in a form which accords 

with an interpretation of the black-hole horizon as a time-evolving, two

dimensional membrane in three-dimensional space. Such a membrane is 

assigned physical properties, such as conductivity and viscosity, the values of 

which are consequences of these laws. This reformulation provides an intuitive 

conceptual framework for dealing with questions on the physical interactions of 
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black holes. It has been applied successfully to problems involving the electro

dynamics of holes 11
·
12

; the study discussed in Part Two is part of an extension of 

this formalism to gravitational problems . 

One important aspect of the gravitational interaction of black holes with 

other systems is tidal deformation of black holes by the gravitational fields of 

external bodies. Black-hole tides play an important role in the exchange of 

angular momentum between a rotating black hole and external matter13·14·
15

·
16

; 

they may also be important in processes invoked in speculations on the statisti

cal mechanics of holes. 17 As part of the program of studies described above, 

Suen and Price18 have calculated static and dynamical tidal effects on the hor

izon in the space seen by a uniformly accelerated observer (Rindler space). This 

horizon is planar; Rindler space is an approximation to Schwarzschild spacetime 

in a region very close to the horizon, so close that the horizon curvature (i.e., its 

spherical shape) is not evident. In Part Two I present a detailed examination of 

tidal distortion of an actual Schwarzschild black hole, in the static case. These 

calculations provide means to corroborate the results of Suen and Price and 

verify the validity of the deformed Rindler-space approximation to a real, 

deformed black hole . Further, they extend the Rindler-space results (for the 

static case) to a full, curved, Schwarzschild horizon and link those results with 

the findings of previous studies on black-hole tides. 

The calculations in Part Two begin with the construction of an approximate 

(perturbative) solution of the Einstein field equations describing a Schwarzschild 

black hole tidally distorted by the gravitational fields of bodies fixed on the polar 

axis of the hole outside its horizon. As this configuration is static, axially sym

metric, and vacuum outside of the hole and the perturbing bodies or "moons," 

the desired solution is obtained via the Weyl formalism applicable to just such 

geometries. 3•4 Because the solution must be static, the formalism implies the 
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presence of "ropes" from infinity supporting the moons and specifies their prop

erties. Moreover, all the masses, binding energies, and rope tensions in the 

solution are found to obey completely consistent relations. 

Various features of the static tidal deformation of a Schwa.rzschild black 

hole are extracted from this solution: The shape of the distorted horizon is 

obtained directly from the solution metric. "Embedding diagrams" (surfaces in 

Euclidean three-space having the same intrinsic geometry as the horizon) are 

calculated to represent the shape of the horizon and its tidal bulges, both for 

weak and for strong deformations . Also, the components of the Riemann curva

ture tensor measuring the tidal gravitational fields in the vicinity of the horizon 

are calculated from the metric of the solution. 

The solution thus obtained for the static, tidally deformed Schwarzschild 

black hole provides the desired comparisons discussed above. In the limit in 

which the perturbing moons are far from the horizon in comparison to its size, 

the horizon geometry derived from this solution is in agreement with the results 

obtained by Hartle,13·14 for the same physical situation, using different perturba

tion techniques. The opposite limit, in which the moons are very close to the 

horizon compared to its size, is the configuration describable by the Rindler 

approximation. The intrinsic horizon geometry and the Riemann curvature com

ponents calculated from this solution can be compared with the same quantities 

calculated by Suen and Price18 for the distorted horizon in Rindler space. Com

plete agreement is found between the two sets of results, in the appropriate 

limit. Hence the calculations of Part Two confirm the validity of the Rindler 

approximation for calculating black-hole tidal effects in the (strongly perturbed) 

static case, and they therefore lend support to the results obtained using that 

approximation in dynamical calculations. 
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Geometric Constraints on Nonsingular. Momentarily 
Static. Axisymmetric Systems in General Relativity 

fan H. Redmount 

Theoretical Astrophysics 130-33 
California Institute of Technology 

Pasadena, California 91125 

ABSTRACT 

This paper attempts to examine the relationship between sys-

tern size and gravitational collapse for the case of axial 

symmetry. The approach here is to construct non-collapsing sys-

terns, with momentarily static matter interiors and static vacuum 

exteriors, and to find limitations on the validity of the construe-

tion. Specifically, the exteriors are static, axisymmetric, asymp-

totically fiat, vacuum geometries , described by Weyl solutions of 

the Einstein field equations. These solutions have singular sources 

(naked singularities, except for the Schwarzschild solution); here, 

regions of the Weyl solutions containing the singularities are 

replaced by momentarily static material bodies. These are 

described by axisymmetric solutions of Brill's time-symmetric 

initial-value equation, with nonnegative energy density, joining 

smoothly to the Weyl geometries at the bodies' boundaries . The 

consistency requirements of such a construction limit the choice 

of surfaces in the exterior geometry suitable as matter /vacuum 

boundaries; general constraints on the boundary location and 

geometry are derived here. For the explicit examples of the r-
metric and the Bach-Weyl ring metric as exteriors, these con-

straints forbid the boundary surface to be arbitrarily near the Weyl 
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singularity. 

The "hoop conjecture" demands, roughly, that the largest cir

cumference of the boundary surface of such a non-collapsing sys

tem always exceed a limit of the order of the system's mass. The 

specific examples studied here are all consistent with the hoop 

conjecture, but they show that the boundary constraints derived in 

this paper are not in general related to boundary-surface size and 

thus that these constraints do not embody the hoop conjecture. 
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1. INTRODUCTION 

In astrophysical calculations and speculations about black holes one usually 

takes for granted several "articles of faith" that relativity theorists have not yet 

proved with any rigor .1 These include the hypothesis of cosmic censorship, the 

rapid-loss-of-hair conjecture, and the hoop conjecture. Of these, the one for 

which we have the least concrete evidence is the hoop conjecture. This states 

that a black hole forms when and only when a mass M gets compacted into a 

region with circumference in any direction C!.4TiM, so a hoop of that circumfer

ence can be slipped over the region and rotated through 360 degrees. 2•3 This 

statement of the conjecture is deliberately imprecise, but it indicates the form 

which a rigorous result linking system size and black hole formation is expected 

to take . The proof of such a result is also likely to require certain physical con

straints such as a positive-energy-density condition. The motivation of this 

paper is to seek insight into this size-constraint problem by considering a spe

cial case. 

More specifically, I restrict attention to axisymmetric systems and 

approach the problem not by examining black hole formation but the opposite--! 

ask what conditions must obtain for a material system to be non-collapsing. 

Specifically, I consider a bounded matter system (occupying the "interior" 

region I) which is axisymmetric and momentarily static; the latter embodies 

non-collapse and implies that the system can be described with Brill's time

symmetric initial-value formalism. 4 The exterior region E, i.e., the region out

side the light cones of the interior at the moment of stasis, is required to be 

axisymmetric, fully (not just momentarily) static, asymptotically ft.at, and 

vacuum. These conditions embody the absence of gravitational waves and imply 

that the exterior is a slice of a Weyl solution of the vacuum Einstein equations .5 

This shows that the boundary surface of the matter interior lies outside the 
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absolute event horizon (if there is one) , since the Weyl solutions are devoid of 

horizons except possibly at the edge of the Weyl coordinate patch.6·7 I further 

impose the physical conditions that the local energy density be everywhere non

negative, and that no physical singularities occur. I then formulate the question 

thus: given a specific Weyl solution, and assuming a general interior geometry 

satisfying the above conditions and matched smoothly to the Weyl exterior, what 

constraints a r e imposed on the matter/vacuum boundary surface? Do these 

constraints have any bearing on the size of the boundary surface, which the 

hoop conjecture suggests should be "larger in all directions" than ..... 4rrM? 

I am aware of one previous calculation of this sort: a cursory study by 

Thorne8 of constraints on interior solutions for the Weyl-type gravitational field 

of a thin-ring torus . Thorne's calculation showed that the location of the 

interior's surface in the Weyl exterior is bounded away from the immediate 

neighborhood of the Weyl toroidal singularity. However, this gave no substantial 

insight into the hoop conjecture. 

My analysis of constraints on momentarily static, axisymmetric systems 

proceeds as follows: in Section II I introduce the time-symmetric initial- value 

formalism which forms the basis of my calculations, and I derive the junction 

conditions for matching interior and exterior geometr ies. In Section III I 

describe the exterior and interior geometries , and using the initial-value equa

tion and the junction conditions l derive a constraint on the matter /vacuum 

boundary surface; in Section IV I utilize an alternative description of the interior 

to derive a second such boundary constraint, particularly suited to toroidal sys

tems. In Section V and Section VI I apply the boundary constraints of Section III 

and Section IV, respectively, to simple examples of Weyl exterior geometries , 

and examine the implications of these constraints and their possible interpreta

tions. ln Section VII I discuss the possible extension of these results to exterior 
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geometries more general than the Weyl solutions. 

The principal conclusions of this analysis are: there do exist constraints on 

the location of the matter /vacuum boundary in the Weyl exterior, for non

collapsing systems as described here . For systems with toroidal topology, equa

tion ( 4.11) represents a rigorous constraint. For spherical-topology systems , 

constraints are given by equations (3.24), (3 .30), and (3.43), although the deriva

tion of the most generally applicable of these, equation (3.43), relies on an 

unproved assumption; see Appendix C. It may well be possible to close this gap 

in the derivation, though I have not been able to do so. 

Applied to the spherical-topology r-metric (Section V) and to the toroidal 

Bach-Weyl ring metric (Section VI) , my constraints imply the existence of a for

bidden region near the Weyl singularity, within which the boundary of the matter 

system cannot lie . These examples further show that the constraints are not, in 

general, related in any obvious way to a minimum size for the matter system, 

and do not in any obvious sense embody the hoop conjecture . On the other 

hand, I have found no violation of the hoop conjecture in these examples; more 

precisely, the examples do not test my constraints against the hoop conjecture, 

because none of the candidate boundary surfaces in the r-metric or ring metric 

exteriors have arbitrarily small circumference in all directions. 

Although I have not accomplished the original goal of this research--to 

prove a special case of the hoop conjecture or to find a counterexample to it-

the formalism I have used and the results I have obtained here may prove useful 

in the hands of other researchers . Specifically, further manipulations of this 

formalism may yield additional boundary constraints for non-collapsing systems 

which are stronger than the ones I have derived, more generally applicable , or 

more amenable to interpretation as size constraints or manifestations of the 

hoop conjecture . It may also be possible to clarify the geometric meaning of the 



-18-

constraints derived here, perhaps by applying them to additional explicit exam

ples of Weyl geometries. 

Il. GOVERNING EQUATIONS AND JUNCTION CONDITIONS 

A lnitial-Value Equations 

The requirements of a momentarily static interior and a fully static exterior 

allow this problem to be treated using the time-symmetric initial-value formal

ism,4 the hypersurface of constant time at the moment of interior stasis being 

time-symmetric. The three-dimensional geometry of the system on this hyper

surface (hereafter denoted~) is governed by the single initial-value equation 

C3) R = 16rre (2.1) 

where (3) R is the three-dimensional curvature scalar and e is the locally meas

ured energy density. I further assume the weak energy condition 

e~ 0 throughout~ (2.2) 

and the absence of any physical singularity on~. The approach I take is to re

strict all calculations to the hypersurface ~ and to study the two-dimensional 

boundary surface between its interior and exterior regions. The above relations 

and assumptions determine the matching conditions across and constraints 

upon that boundary. 

B. Junction Conditions .Across a 2-Surface 

The derivation of junction conditions across a two-surface in ~ is similar to 

that of junction conditions across a three-dimensional hypersurface in space

time .9 Let 5be a two-dimensional surface in I: . The first step in this derivation 
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is to express the three-dimensional curvature scalar (S) R in the vicinity of 5in 

terms of the intrinsic and extrinsic curvatures of /T. This may be done by con-

tracting the Gauss-Codazzi equations written in Gaussian normal coordinates, in 

a manner analogous to that for the higher-dimensional calculation cited 

above. After some manipulation, one obtains 

(2.3) 

where C
2) R is the curvature scalar for the two-dimensional geometry of 5, 

TrS=Sa a is the trace of the extrinsic curvature of 5, Tr(sa)=SapsPa is the trace 

of its square (the sums over a and {3 extend over the two dimensions of 5), and 

al on is the derivative with respect to proper distance normal to fT. The second 

step of the derivation is to integrate equation (2.1) over an infinitesimal interval 

of proper length across 5 in the normal direction, using the above result for 

(s)R. That the intrinsic geometry of 5 be well defined requires that the metric 

restricted to 5 and the curvature scalar C2) R be continuous across 5, and con-

sequently that TrS and Tr(S 2) have no delta function discontinuities at 3. Given 

the assumption that the energy density e contains no singular surface layer, . this 

integration thus implies the junction condition 

ll(TrS) =lim(TrS) I ;L6=0 
6-+0 

(2.4) 

where n is the proper distance normal to the surface 3. 

In summary, the junction conditions across a two-surface 5 in the time-

symmetric hypersurface ~ are: the intrinsic geometry of 5must be continuous 

across the surface, and (in the absence of a singular surface layer) the trace of 

the extrinsic curvature of :Ymust be likewise continuous. 
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m. DERIVATION OF A BOUNDARY CONSI'RAINT 

My approach to the derivation of constraints on the two-dimensional 

matter /vacuum boundary surface is to write the three-dimensional curvature 

scalar (3 ) R in the interior region of 2: as a total divergence plus a nonpositive 

quantity; equation (2.1) and the inequality (2.2) then imply that the divergence 

so obtained must be nonnegative . By integrating this divergence over the inte

rior volume and invoking the assumption of nonsingularity to apply the diver

gence theorem, I obtain surface integrals over the boundary which are con

strained to be nonnegative. Applying the above junction conditions to these 

integrals yields integrals, involving exterior quantities , which likewise are 

required to be nonnegative. To carry out this approach it is necessary to 

describe the interior and exterior geometries of 2: with appropriate coordinate 

systems. 

A. Exterior Coordinate System. Metric, and Field Equations. 

Since the exterior region is a slice of a static, axially symmetric, vacuum 

four-geometry, it can be described in complete generality by the Weyl formal

ism. 5 The four-metric of the exterior space time can be put in the form 

dsg=-exp~21f; E(P E, ZE) ldt 2+exp~2[ /E(P E ,z E )-1-'E(PE ,zE)] H dp j+dzg] 

+pjexp~ -21/1 E(P E' z E) l d q;2 

Restricted to 2::, this gives the three-metric 

d aj=exp~2( /E-1-1 E) l [ dp i+ dzg]+p iexp~ -21/IE l d q;2 

(3.1) 

(3.2) 

(the subscript E denotes "exterior") . For metric (3.1) in vacuum, the Einstein 

field equations reduce to 
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(3.3) 

(3.4) 

(3.5) 

It is also required that 'lE=O for PE=O to avoid a conical singularity on the z 

(symmetry) axis, and that far from a bounded source 'if!E approach the 

Newtonian potential: 

lim 'if!E=-M Ir+ O(M3/ r 3) 
r->co 

(3.6) 

where r=(p}+zt)* and M is the total gravitational mass of the system as meas

ured at infinity. Condition (3.6) ensures that the metric (3.1) has the appropri

ate asymptotic behavior at infinity. 10 Equation (3.3) means that 'if!E is a har-

monic potential in a Euclidean "background space" with cylindrical coordinates 

(pE,<tJ.zE). Since ?'E can be determined from 'if!E by integrating equations (3.4) 

and (3.5), the entire exterior geometry is specified if 'if!E, or its fictitious 

"source" in the fiat backgrouad space, is given. 

The matter /vacuum boundary surface can be defined in terms of the exte-

rior Weyl coordinates by specifying a meridian (i;o=constant) curve for the sur-

face. In general two cases of interest arise. In the "spherical topology" case, 

the interior region includes a segment of the symmetry axis. The boundary 

meridian in this case is an open curve with end points on the symmetry axis; I 

assume the curve intersects the axis orthogonally at its ends so that the bound-

ary surface has no cusps. The other case is that of "toroidal topology"; here 

the symmetry axis lies wholly outside the matter (interior) region. In this case 

the boundary meridian is a closed curve. which I assume to be simple, i.e., non-

self-intersecting. It is convenient to specify the meridian for either case 

parametrically. using proper length >... along the meridian as parameter and 
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defining the meridian with two functions PE=R(A.) , zE=Z(A.) ; 1 take these to be 

twice differentiable . With A. and rp as coordinates on the boundary surface, the 

intrinsic geometry of the surface approached from the exterior is given by the 

two-metric 

(3.7) 

The coordinate basis vectors tangent to the boundary are a; arp and 

(3.B) 

where here and below primes denote derivatives with respect to A.. The normal 

to the surf ace is 

(3.9) 

I choose the direction of increasing A. on the meridian so that (3.9) gives the 

outward-directed normal; this orientation of A. is analogous to the orientation of 

the coordinate e in ordinary three-dimensional spherical coordinates. The 

metric (3.2), restricted to a boundary meridian, shows that both di dA. and 

d/ dn are unit vectors . Figure 1 illustrates possible boundary geometries, coor-

dinates, and associated vectors. 

The trace of the boundary surface extrinsic curvature, for use in the junc-

tion conditions of Subsection II .B. can be calculated directly given the above 

boundary coordinates, vectors, and metric . I obtain 

(3.10) 
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where 

(3.11) 

is the angle between the vectors 8/ 8pE and di dA., as indicated in Figure 1. 

(Since the metric (3.2), restricted to a 9'=constant surface, is conformally fiat, 

a..E is this angle as measured both in the physical space and in the background 

space). Here, as above, the subscript E denotes quantities calculated on the 

exterior side of the boundary. 

B. Interior Coordinate System, Metric, and Field Equations 

Because the interior geometry is only momentarily static, it is not con

strained as strongly as is the exterior; it can be described in several ways. One 

simple description uses a three-metric similar to that of the vacuum Weyl 

metric: 

where here and below the subscript I denotes "interior." Since g 00 is not 

specified, no generality is lost in this description. 

Under the assumptions made here, it is always possible to cover the interior 

region with coordinates (p1 .9' ,ZJ) such that the metric takes the form 

(3.12). The 9' coordinate derives from the axial symmetry. The existence of 

these interior coordinates hinges on the existence of coordinates (p 1 , z 1 ) in 

which the metric has the above-indicated isothermal (conformally fiat) form on 

a two-dimensional 9'=constant slice of the interior. The uniformization theorem 

for Riemann surfaces (Appendix A) guarantees the existence of such an isother

mal coordinate patch covering this slice , provided that the slice i.s simply con

nected. Since vacuum regions may be included as part of the interior if 
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necessary, the c;o=constant slices of the interior can be assurned simply con

nected without loss of generality. The uniformization theorem further ensures 

that these coordinates (p1.z1) can be chosen so that their values fill any desired 

bounded, simply connected region in the plane R2. (Here this choice is limited 

by regularity requirements of the full three-dimensional interior coordinate sys

tem: in particular, p1=0 on the symmetry axis is required, with p1>0. say, off 

that axis, in order that ?'I and 'I/II be nonsingular) . For example, for a toroidal

topology interior, the coordinates (p1 ,z1 ) might be chosen to fill a unit disk in 

the right half of the plane; for a spherical-topology interior, the right half of the 

unit disk centered on the origin is convenient. The latter choice makes the 

coordinates regular even at the "corners" of the interior slice, where the meri

dian meets the symmetry axis. (See Appendix A) . 

Since the metric (3.12) has the same form as (3.2), the description of the 

boundary surface from the interior is similar to that from the exterior. The 

boundary meridians are defined by two functions, p1=P(A.) and z1=;;'(A.). The 

intrinsic geometry of the boundary is given by the two-metric 

(3.13) 

The coordinate basis vectors tangent to the boundary are a; ac;o and 

(3.14) 

The normal vector is 

(3.15) 

With the orientation of A. already specified from the exterior, I make (3 .15) the 

outward-directed normal by choosing the appropriate sign for the coordinate ZJ. 

As above, both d/ dn and d/ d'/I. are unit vectors. The configuration of interior 
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coordinates and vectors is as shown in Figure 1. The trace of the boundary 

extrinsic curvature is calculated as before, with the result 

(3.16) 

=-a./+;]"/ P+d (21/lr/I )/ dn 

with 

(3 .17) 

The potentials /'r(Pr.zr) and 1/lr(Pr.zr) in (3.12) need not satisfy equations 

like (3.3), (3.4) and (3.5), which are consequences of the vacuum Einstein field 

equations. The functions 'lI and 1/lr are constrained only by the initial-value 

equation (2.1). The calculation of the scalar curvature (s)R for the geometry 

described by the metric (3.12) is straightforward, and yields 

(3.18) 

=16ne~O 

C. A Boundary Constraint Inequality 

It is convenient to express (3.18) in terms of the covariant gradient V for 

the three-metric (3.1 2). If this is done, a little rearrangement yields 

(3.19) 
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where all the dot products in this equation are given by the metric (3. 12). This 

form is suitable for deriving a boundary constraint via the approach outlined at 

the beginning of this section. Combined with (2.1) and (2.2), (3.19) implies 

(3 .20) 

I integrate this expression over the interior region I and apply the divergence 

theorem to the left-hand expression, obtaining a surface integral over the bound• 

ary of: 

(3.21) 

The metric (3.13) gives d2A=dAP(A.)exp~-1/IJ(P(A.),]'(A.))~di;o and the operator 

(3.15) applied toPJ gives dpJ/dn=-7'. Dividing out the i;o-integral, I obtain 

j"maxdA.[P(A.)d (21/IJ/I )/ d:n-J''(A.)/'J ]= [ 1/ (2rr) JJ d 3 Ve '/!1[Brre+(V'1/JJ )2] ~ 0 (3 . 22) 
O I 

where the left-hand expression is a line integral taken over the boundary meri-

dian, with all quantities evaluated at PI=P(A.) , zI=J'(A.) . 

The interior coordinates which give rise to the metric form (3. 12) and 

thence to the inequality (3 .22) are not unique , since the region of the plane filled 

by the coordinates (pJ,ZJ) can be freely chosen (subject only to the requirement 

of simple connectivity, and the conditions PI=O on the symmetry axis, PI>O else-

where) . Any two such coordinate systems must be related by a conformal 

transformation on the coordinates (pJ ,ZJ), i.e ., if (pJ,z1) and (pJ,ZJ) are two sets 

of isothermal coordinates on a )&'=constant slice of the interior, thenpJ±iZJ must 

be an injective analytic function of p1+izJ (allowing for a possible sign change for 

the z coordinate) . Under these transformations, hereafter termed "gauge 

t ransformations," the potentials 1/JJ and ?'I are not invariant; only the 
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combination p1e --i'1=llBI Bip ll and scalars constructible from the geometry (3.12) 

are . Thus the splitting off of the (V'if;1 )2 term in (3 .19) and the weighting of the 

volume integrand in (3.21) by e 1'i are gauge-dependent, making the boundary 

constraint inequality (3.22) gauge- dependent. 

To isolate this gauge dependence, and because exterior quantities are more 

completely and simply determined than interior ones, it is convenient to 

express (3.22) in terms of exterior quantities wherever possible. The junction 

conditions of Subsection II.B require that the two-metric (3. 7) be continuous 

with (3.13), and that the extrinsic curvature trace (3.10) be continuous with 

(3.16). Solving the latter condition for d(2'if;1 -7I)ldn and substituting the 

result into (3.22) gives 

f'°'maxdf..~P[d(2'if!E!E)ldn+Z'/ R-o:E'+a/]-7'(l+f'I)~ ~ 0 
0 

(3.23) 

This constraint can be rendered a bit more tractable by specifying a choice 

of gauge. Let.Atbe a ip=constant slice of the interior I; the boundary of.At, a.A( 

consists of a meridian for toroidal-topology interiors, a meridian plus a segment 

of the symmetry axis for the spherical-topology case. Let (2>v denote the covari

ant derivative on .At corresponding to the restriction of the metric (3.12) to.At. 

Let p1 be the solution to the covariant Laplace equation (2>V'2p1=0, where the 

Laplacian is also constructed from (3.12) restricted toul(, subject to the follow

ing boundary conditions: on the boundary meridian, p1=R(A.), as defined in Sub-

section III .A; if 8.Atcontains a segment of the symmetry axis, p1=D on that seg

ment. Exactly one such PI always exists, since if D c:RZ is the region of the plane 

filled by the interior coordinates (pl ,ZJ ), finding PI is equivalent to solving the 

Dirichlet problem on D with the corresponding boundary conditions on 

aD. Given p1 , the corresponding zI is determined by the Cauchy-Riemann 

equations, except for its overall sign and a possible overall translation. The sign 
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is fixed by the requirement that (3.15) represent the outward normal to BI; the 

translation is unimportant. Thus for any interior geometry considered here 

there exists a unique set of interior coordinates ("matched" coordinates) in 

which the metric has the form (3.12) and the radial coordinate p1 matches the 

exterior radial coordinate PE at the boundary, provided the map (p1 ,z1 ):..At4If

(or equivalently, (p1 ,z1 ): D4'ff-) is injective. A sufficient condition for this, rely-

ing only on e1..'terior quantities, is that if the meridian exterior radial coordinate 

R(A.) has only one local maximum, then injectivity of the matched coordinates is 

guaranteed for any interior geometry (see Appendix B). In matched interior 

coordinates, (3.23) takes the form 

f"=dA.~R[d (21/IE-'lE )/ d:n-a.E'+cx./]+Z'?''(l +71 )~ ~ 0 
0 

(3 .24) 

Here cx.1 is given by (3.17), subject to the matching condition P(A.)=R (A.); ;;'(A.) 

and 11 (P(A.),;J'(A.)) are those appropriate to the matched interior coordinates 

('f5I,z1 ). 

The inequality (3.24) may be further transformed by treating some of the 

terms as integrals in the Weyl "background" space, i.e., the exterior coordinate 

space with a fiat Euclidean metric. Let dl be background-space length along the 

meridian, and (B)d/ dn the unit outward normal derivative at the boundary sur-

face in the background space . Since the metric (3.2), restricted to a c;o=con-

stant surface, is conformally fiat, the scale factor between physical and back-

ground space meridian lengths is the same as that between physical and back

ground space normal distances. Thus dA.(d/ dn )=dl (CB>d; dn ). Consequently, I 

can write 

(3 .25) 
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where d 2AB is the background space area measure .But the integral on the right 

side of (3.25) can be evaluated via Gauss's Law, i.e., by integrating (3.3) in the 

background space between BI and a coordinate sphere at infinity, applying the 

fiat-space divergence theorem and utilizing (3.6) . I obtain 

J"maxdA.R(d'if!EI d:n) = 2M (3.26) 
0 

A similar transformation begins with 

(3.27) 

The fiat-space divergence theorem can be applied to the integral on the right 

side of this equation (equations (3.4), (3.5), and (3.6) imply that 'YE is of order 

(M/r)2 as T-" 00 , so the integral over the sphere at infinity vanishes), with the 

result 

(3 .28) 

The integrals on the right are over the exterior volume E , with d3 Vn the 

coordinate-space volume measure. It follows from equations (3 .4), (3 .5), and 

(3.3) that the integrand of the first integral on the right equals the flat-space 

divergence of the vector field -1/JE(B)l/1/JE, where (B)I/ is the flat-space gradient . 

The integrand of the second integral is just the flat-space divergence of the vec-

tor field ("JE/ PE )(8/ BpE). Applying the divergence theorem to both integrals 

and converting the resulting surface integrals into line integrals in the physical 

space, I obtain 



-30-

Using this and (3.26) in (3.24) gives 

4M + J""rDAxdA~R[ 1/IE(d1/JEI dn )-aE'+a/]+Z'(l+yE )-7'(1 +y1 )~ ~ 0 
0 

(3.29) 

(3.30) 

The boundary constraint (3.30) still depends on the interior geometry, but 

only through the coordinate derivative 7' and its derivative 7" along the meri

dian. These appear in a/, as per (3.17), and in the last term of the integrand. 

The metric (3.12), specialized to a boundary meridian and in matched coordi-

nates, yields the condition 

(3.31) 

The junction conditions of Subsection Il.B require that the boundary two-metrics 

(3. 7) and (3.13) be continuous; coupled with the coordinate- matching condition 

P(A)=R (A.) this means 1/11 is continuous with 1/JE at the boundary. Thus ?'I at the 

boundary depends only on7' and exterior quantities, i.e ., 

(3.32) 

This remaining dependence of (3.30) on interior quantities is dependence on the 

actual interior geometry rather than gauge dependence, since the choice of 

matched coordinates fixes the gauge. This may be seen by reexpressing (3.30) 

in terms of the matched interior coordinate PI (dropping the tilde) . This coordi

nate is uniquely and invariantly defined, as above, as the solution to C2h;r2p1 =0 on 

ult, with boundary conditions p1=R(A) on the boundary meridian and p1=0 on the 

symmetry axis if o.At contains a segment thereof. Since dp 1 I dn =-7· on the 

meridian by (3.15), and similarly for dpEI dn, inequality (3.30) may be written 
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4M + f'>--rnaxdft.~R [ 1/IE(d1/JEI dn )+a/-aE'] 
0 

(3.33) 

Here °'I is defined as the angle from 8/ 8pI to d/ dft., measured in accord with 

the orientation indicated in Figure 1; °'E is similarly defined. In terms of p I 

andpE, this means 

(3.34) 

Also -YI is given on the meridian by 

(3.35) 

Hence the dependence of the boundary constraint (3.33) on interior quantities 

appears only through the function PI· I have not been able to eliminate this 

dependence from this constraint in general. 

The usefulness of the constraint (3.30) is in identifying surfaces in any given 

exterior geometry which are forbidden as boundaries of systems satisfying the 

f:~O and nonsingularity assumptions made here. The interior coordinates, 

specifically the coordinate derivative ;;· for matched coordinates, must be 

specified in some way to evaluate the inequality (3.30); then, surfaces violating 

the inequality are forbidden. Surfaces satisfying the inequality may or may not 

be acceptable boundaries, since they may bound interiors satisfying (3 .20) but 

violating the f:~O condition. 

D. Double-Matched Coordinates 

The boundary constraint (3.30) becomes very simple for cases in which the 

matched interior coordinates are also "double-matched," i.e., they satisfy 
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7(A.)=Z(A.) as well as P(A.)=R(A.) . In such cases rl and rE are continuous at a! 

as well as 1/11 and 1/IE. and of course cx./=cx.E'· Inequality (3.30) reduces to 

4M+f>.mM.dA.R'¢1E(d'¢1Eldn) ~ 0 
0 

(3.36) 

If in addition the boundary surf ace is chosen to be an equipotential surface of 

1flE· then the integral can be evaluated via (3.26). The boundary constraint 

becomes 

(3.37) 

for a double-matched system with a '¢IE-equipotential boundary. 

E. Maximization with respect to 7' 

It is also possible in certain cases to eliminate the interior coordinate 

dependence of (3.30) by maximizing the left side of the inequality with respect 

to the interior function7·. I denote the left side of (3.30) J11[J"J, and regard it 

as a functional of 7·; different functions 7· correspond to different interior 

geometries since matched interior coordinates are assumed in (3 .30). If there 

exists a function 7o'(A.) for which J11 is maximized, for a given exterior geometry 

and boundary surface, then the maximum value of J11 can serve to identify a for-

bidden surface. Specifically, a surface with .91[30']<0 is forbidden as a matter/ 

vacuum boundary for any interior geometry under the assumptions made here . 

It is a straightforward variational problem to extremize J11 with respect to 

7·. The first variation is 

6J11= J'-max[1Jllog(R'2+7'2)-1/IE ](67')dA.=-J'-max!J(67')dA. (3.38) 
0 0 

and the second variation is 
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(3.39) 

Thus the choice of;;'' for which 9 1 is extremal is given by 

(3.40) 

provided of course that 

(3.41) 

holds on the entire boundary meridian. This choice of :J'o' is equivalent to 

(3.42) 

The choice of sign in (3 .40) is fixed by the orientation of d/ dA. and d/ dn on the 

boundary meridian. For those cases in which the negative square root applies 

along the entire meridian, (3 .39) implies that ;;'o' gives a maximum of 9 1 . This is 

actually a local maximum in the space of functions;;''; establishing it as a global 

maximum poses some difficulties (see Appendix C) . In using this boundary con-

straint I assume the global maximality of 9 1[;;'0']. 

If condition (3.41) holds on the boundary meridian, and if the negative sign 

in (3 .40) is admitted by the topology over the entire meridian, then the bound-

ary constraint takes the form 

91[;J'o']=4M + JArnudA.!R[ 'if!E(d'if!EI dn)-a.E'+a.}0>•]+Z'(l+yE)- ~·j ~ 0 
0 

with ;J'o' given by (3.40) and a.J0>· given by 

(3 .43) 

(3 .44) 

Surf aces violating (3.43) are forbidden. Because of the aforementioned 
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conditions necessary to establish the existence and maximality of ;;0 •• this form 

of the boundary constraint is most readily applied to systems of spherical topol

ogy, rather than toroidal systems with closed meridians . 

IV. A SECOND BOUNDARY CONSTRAINT 

A boundary constraint distinct from (3.30) or (3.43) can be derived via the 

same procedure as in Section III, starting from a slightly different interior 

description. I obtain the new boundary constraint by maintaining gauge invari

ance throughout the calculation. 

A. Alternative Interior Description 

The interior metric can be written 

(4.1) 

The existence of coordinates in which the metric takes this form is guaranteed 

by the uniformization theorem, as in Subsection III.B. Since p1 does not appear 

as a factor in g'P'P here, the restrictions p1=0 on the symmetry axis , p1>0 else

where are not needed in this description. However , regularity of the geometry 

on the symmetry axis requires that the function {3 be singular there (i.e., that eP 

vanish), if the axis passes within the interior region. The form of the metric 

(4.1) is preserved under gauge transformations of the type discussed in Subsec

tion III.C; here the function {3 is gauge invariant, while Q is gauge-dependent. 

The boundary surface is specified as before, by two functions 

p1=P(A.), z1 =;l(A.) ; I make no assumption of matched coordinates here . The 

boundary's intrinsic geometry is given by the two-metric 

(4.2) 
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The coordinat e basis vectors on the boundary are a; acp and d/ dA. as given by 

(3.14); the normal vector d/ dn is given by (3.15). The trace of the boundary 

extrinsic curvature is again calculated directly, with the result 

TrS1=-[cx/+d( Q+{J)I dn] (4.3) 

where cx1 is as given by (3.17). 

The scalar curvature (S)R for the geometry described by (4.1) is given by 

B. Derivation of the Alternate Boundary Constraint 

In terms of the covariant derivative 'J and covariant divergence correspond

ing to the metric (4.1), equation (4.4) takes the form 

(4.5) 

where the dot product in the last term is also that of ( 4.1). This expression for 

<3>R1 can be rearranged for integration over the interior volume in different 

ways; I maintain gauge invariance by rewriting it in the form 

(4.6) 

Thus by the initial-value equation (2 .1) , I obtain 

(4.7) 

The divergence on the left is gauge invariant because the quantity on the right 

is. 

I derive the desired boundary constraint by integrating ( 4. 7) over the inte

rior volume and applying the divergence theorem to obtain a surface integral. 
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Because of the singularity of {3 on the symmetry axis , that axis must be excluded 

from the integration volume if this is to be done. For spherical-topology sys-

terns, this means that the resulting surface integral consists of two terms, an 

integral over the boundary surface plus an integral over an infinitesimal 

"sheath" about the symmetry axis . But the integral over the sheath has the 

form 

J d2A[e-Pd(Q+p)/dn]=2rr J dA.d(Q+{J)/dn . 
Sheath Shea.th 

(4.8) 

In general dQ/ dn will be finite at the symmetry axis . But d{3/ dn =e-Pd(eP)/ dn 

diverges to -co there, since eP vanishes while d(eP); dn approaches -1 by ele-

mentary flatness (the negative sign appears because the outward normal from 

the interior at the sheath points toward the symmetry axis) . With the sheath 

term negative and infinite, the integral over the actual matter/vacuum bound-

ary surface is not constrained at all by the inequality in ( 4 . 7). Thus the bolli\d

ary constraint to be derived by integrating ( 4. 7) is useful only for toroidal-

topology systems, in which the interior region contains no segment of the sym-

metry axis. 

For such toroidal systems, integrating (4 .7) over the interior volume and 

using the divergence theorem yields 

j"rntJXdX d( Q+{3)1dn=-[11 (2rr)]j d 3Ve -P[Bm:+(\7{3)2]~ 0 (4. 9) 
O I 

By the junction condition (2 .4), the trace (4.3) must be equal to (3.10) . Solving 

this equality for d(Q+{3)1 dn in (4 .9) gives 
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f>-,,,....,d A[ d. ( 21/; E--YE )I dn + Z'/ R-o:E' +o:/] =( 1/ (2rr) ]j d 3 Ve - ll [ Brrc + (\7{3) 2] 
o I 

(4.10) 

~o 

The integral of o:/ around the boundary meridian gives 2rr for an arbitrary regu-

lar interior; the integral of as' cannot be so given for all cases but can be 

evaluated in any given case (see Appendix D) . Thus the boundary constraint has 

the form 

j"m.u.d>..[d (2i/le1c)I d:n +Z'/ R-o:E'];;:: -2rr 
0 

( 4.11) 

Th.is has the same significance as the constraint (3.24) or (3.30); it identifies sur-

faces in a given exterior geometry which are forbidden as matter/vacuum bound-

aries under the e;;:::Q and nonsingularity assumptions. Surfaces for '"'hie h ( 4.11) 

is violated are forbidde~ the suitability of surfaces for which it is obeyed is 

undetermined. Although this condition, in contrast to that of Section III. has the 

disadvantage that it can only be applied to toroidal systems. it f>..as the desirable 

feature that it can be evaluated using only exterior quantities . without further 

assumptions . 

V. APPLICATION OF TIIE BOUNDARY CONSTRAINTS: A SPHERICAL-TOPOLOu'l EXAMPLE 

The boundary constraint derived in Section III can be examined by applying 

it Lo simple examples of Weyl exterior geometries . The simplest of t!J.ese. in 

terms of the Weyl formalism, is the Curzon metric. for which the background-

space source is a point monopole. 11 (This geometry is quite distinct from the 

Schwarzschild solution for a point monopole in the physical spa ce ; the Curzon 

geometry is not spherically symmetric .) Condition (3 .43) may be applied to this 

geometry. bul no particularly interesting results are obtained A slightly more 

complicated set of Wey! geometries. those with a line source in the background 



-38-

space, does reveal some important features of the constraint. 

A The r-Metrics 

Specifically, the background source for these geometries is a line mono-

pole, of linear density r;2, extending from zE=-a to zE=+a on the symmetry 

axis in the background space. This source is fictional; its linear density is the 

physical mass M of the system, measured at infinity, divided by its coordinate 

length, so that ra =M. Equation (3.3), the Laplace equation for '¢'E • is easily 

solved for such a source in prolate spheroidal coordinates (u,v ,ip), related to the 

Weyl coordinates (pE,zE,IJO) by PE=asinhusinv, zE=acoshucosv, with 

uE:[0,+ 00), v E:[O,rr]. In these coordinates the Weyl equations (3.3), (3.4), and 

(3.5) have the solution 

'¢'E=rlog[tanh(u/ 2)] (5.1) 

n2 [ sin2v J'E=-(1-/2)log 1+ . 2 smhu 
(5.2) 

The resulting spacetime metric is 12 

[ 

. 2 -i-2 
ds}=-tanh2r(u/ 2) dt2 +tanh-2r(u/ 2) 1+ ~m ~ [dpj+dz}] 

sinh u 

(5.3) 

+(MI r)2sinh2u tanh-2r(u/ 2)sin2v dip2 

The time-symmetric hypersurface ~ of concern here is given by any constant-t 
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hypersurface in this geometr y. 

The metric (5 .3) describes a family of geometries parametrized by r . If 

f= l , so a=M. the geometry is just the Schwarzscbild geometry13 ; the usual 

Schwarzscbild coordinates (t ,r ,8,cp) are related to the above (t ,u ,v ,cp) coordi

nates by r=2Mcosh2 (u/2), 8=v. If fE'(O,l) , so a>M. the source is more 

elongated in the z-direction than in the spherical case; I term such geometries 

"prolate." Similarly, if fE:(l,+oo), a<M. the source is more compressed in the z-

direction than in the spherical case; these geometries I label "oblate." In the 

limit f->+oo , a ->O, the f-metric becomes the Curzon metric .13 

B. The Spherical-Topology Boundary Constraint 

The surfaces of constant u in the r-metrics, equipotentials of 'if!E, provide a 

convenient one-parameter family of surfaces to which to apply the criterion 

(3.43). All the necessary quantities can be calculated from the metric (5.3) and 

the relations between (pE,zE) and (u ,v) . The di-maximizing interior coordinate 

derivative 7 0·, as per (3.40) , is given by 

(5.4) 

This exists for all u if f~l; if f>l. for small u the argument of the square root 

will be negative for v near 0 and rr . I therefore apply criterion (3.43) only to the 

spherical (Schwarzscbild) and prolate f-metrics . The functional .9'1[7o'] of 

(3.43) takes the form 
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d1L7o':u ]=2M~2-(r + 11 r)coshu-(11r-r)sinh2ulog[coth(u/2)B 

1T 

+(MI r)sinhuf dv,sin2v[l + ~in2~ 
Slnh U 

0 

r2-s r [ __u -- 2 r2-1 -n 
2 11 + 1-r cos2v 1-[1 + sin2v cos2v] 

sinh2u sinh2u 

[ 
· 2 1:f-r [ . 2 r<L1 ]+*] + 1 + ~m v ti - 1 + ~m v c os2v . 

sinh.2u s1nh2u 
(5.5) 

The notation d 1[,70';u] indicates that the functional 9 1(,7'], evaluated at 

,7';::. ,70', is a function of the u-value on the surface to be evaluated. Forbidden 

surfaces are those with d 1[,70';u]<O. 

If f;::.1, the integral in (5.5) reduces to an elementary form; the resulting 

expression for 9 1 is 

df5>[,%';u ]=4M(l +sinhu -coshu);::.4M(l-e-u) (5.6) 

where the superscript (S) denotes the Schwarzschild case. This result means 

that for the Schwarzschild exterior geometry, none of the u;::.constant surfaces, 

with u~O. are forbidden. That is, none of the surfaces of constant Schwarzschild 

radial coordinate r, with r~2M, are forbidden. This is in accord with the 

existence of an exact interior solution which can be matched to the 

Schwarzschild exterior at any sphere of Schwarzschild radius r~2M. 

Specifically, the Schwarzschild exterior four-geometry can be matched to a 

closed Friedmann interior geometry to describe an expanding or collapsing 

sphere of matter with uniform density and zero pressure. 14 At the moment of 

maxi.mum expansion of the Friedmann interior, the geometry is momentarily 

static and time-symmetric; all of the hypotheses underlying the boundary con-

straint derivation apply here. The Schwarzschild coordinate radius of the 

matter /vacuum boundary at the moment of stasis can be freely chosen to be 
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any value r~2M . The interior Friedmann metric on the hypersurface of time 

symmetry can be cast in the form (3.12), and the coordinates (p1 ,z1 ) can be 

chosen so that at the boundary surface PI coincides with PE of the Weyl coordi-

nates for the Schwarzschild exterior. In that case one finds that "YJ=O holds 

throughout the interior, which means, as in Subsection III .E, that the interior 

coordinate derivative on the boundary, ;]", coincides with the .!1i,-maxi.mizing 

function 'J'0'. That is, the 9 1-maximizing interior coordinate used to derive (5.6) 

actually occurs in the Friedmann/Schwarzschild system. 

For prolate r-metrics, with f<l, an analytic evaluation of the integral in 

(5.5) is not possible. It can, however, be studied with approximate and numeri-

cal calculations . I find that 9 1 has the limiting behavior 

where B is the beta function. Thus at u =O, § 1( 'J'0' ;u] takes the value 

-(2M/f)(l-f)2 , which negative for all fE:(0,1) . The function § 1['J'0 ';u] increases 

monotonically with u, approaching the limit 4M as u 4+ 00 • Consequently in 

every prolate f-geometry there is a value u 0 such that 9 1['J'0';u0] is zero, and 

~['J'0';u] is negative for u<u0 , positive for u>u0 . If the higher order terms in u 

are neglected, equation (5.7) implies that the zero-crossing value u 0 is given by 

uo=2[(1-r)21B(1-ra12.1-re;2)]11r2 
. (5.8) 

The neglect of the higher order terms is valid only if u is small and 2( 1-f2) is 

large; numerical calculations indicate that the fractional error in the value of u 0 

given by (5 .8) approaches 20% for r values near 1, is less than 1% for f<0 .7, and 

vanishes as f40. By the boundary constraint (3.43), surfaces with u <u0 are for-

bidden as boundary surfaces . 
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The constraint imposed by the condition J1i[J'0';u]~O on u=constant bound

ary surfaces in the prolate r-metrics takes a simple form in the limit in which 

the background-space source is very large, i.e ., the limit a 400 or r4o. Equations 

(5.1) and (5.8) imply, in this limit, 

lim 1/IE(uo)=-2+ O(r) r-.o (5.9) 

Since 'I/IE is a monotone increasing function of u, the boundary constraint 

d1 [J'0';u]~O . i .e .. u~u0, becomes equivalent to (3.37). This occurs because in 

the limit r4o, the "double match" of coordinates discussed in Subsection III.Dis 

achieved; by equation (5.2), ?'E40 as r4o, which means J'0'4Z' in that limit, as 

may also be seen directly. 

C. Interpretation of the Boundary Constraint: Sizes and the Hoop Conjecture 

The results of this example calculation indicate that the boundary con-

straints of Section III do not admit of interpretation as simple size constraints. 

The three simplest measures of the size of the u =constant surfaces in the r-

geometries, consistent with axial symmetry, are the polar circumference 

Cp=2Xma:x. the equatorial circumference CE, and the proper area A. These are 

given by 

l-r2 
Cp(u)=(2M/r)sinhr2utanh-r(u/2)J(sinh.2u+sin2v) 2 dv 

0 

CE(u )=(211-M I r)sinhu tanh-r(u/ 2) . 

1-1'2 

(5.10) 

(5.11) 

A ( u) = (2nM2 / ~)sinh1 +r2u tanh-2r( u/ 2) j ( sinh2u + sin2v )-2 -sinv dv . ( 5.12) 
0 

These equations show that in any prolate r-metric , for u«l, Cp behaves as 
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ur2-r, CE as u 1-r. and A as uC 1-r)2
. Thus as u->O, Cp-> 00 while CE->O and A->O in 

these prolate geometries . 

The form of the boundary constraints of Section III suggests that these con

straints might constitute lower bounds on Cp, i.e., that surfaces with Cp values 

less than some minimum might be forbidden. But among u =constant surfaces 

in a prolate r-metric, the forbidden surfaces are those with Cb;;;u <u0 . Since 

Cp-> 00 as u->O, the set of forbidden surfaces contains members with Cp values 

larger than any specified bound, larger than the Cp value of any given non

forbidden surface . Further, since Cp->oo as u->O and as u->oo, there exists a posi

tive value of u, for r<l. at which Cp(u) is a minimum. This is a property of the 

r-metric, without any reference to the boundary constraint. Numerical calcula

tion reveals that u 0 is small compared to unity (e.g. , u 0<0.01) for any value of r 

less than 1. Thus at u 0 , Cp behaves as urLr; in particular, Cp is decreasing with 

increasing u . Therefore the minimum value of Cp must occur at a u-value 

greater than u 0 , i.e., on a non-forbidden surface. The Cp values of the forbidden 

u=constant surfaces are bounded below by Cp(u0 ), given approximately by 

equations (5.8) and (5.10); neglecting higher order terms, I obtain 

Cp(u0)=(4M I r)[B(1-r2/2,1-r2/ 2)]11r(1-r)2-21r . (5 .13) 

There exists one forbidden and one non-forbidden u =constant surface having Cp 

equal to any given value greater than Cp(u 0) . These results appear to rule out 

any interpretation of the constraint (3.43) as a lower bound on Cp for acceptable 

boundary surfaces. 

The other simple size measures for the u =constant surfaces, CE and A, van

ish at u=O for f<l and are monotone increasing with u . The condition u";?::u 0 for 

non-forbidden surfaces does put lower bounds on CE and A for such surfaces, 

namely CE(u 0) and A(u0 ) respectively. Equations (5.8), (5 .11), and (5 .12), with 
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higher order terms neglected, give 

1-r 

CE(u0)=(4nM/r)[(1-I')2/ B(1-pl;2,1-pl;2)] r2 
(5.14) 

(5 .15) 

However these equations imply that both CE(u 0)40 and A(u0)40 as f4Q. Thus 

given any positive lower bounds on CE and A, there exists a prolate r-geometry 

with non-forbidden surfaces, according to (3.43), having CE and A values smaller 

than those bounds . This indicates that condition (3.43) cannot be interpreted in 

general as a lower bound on CE or A for acceptable boundary surfaces either. 

Condition (3.43), as illustrated in this example, also does not appear to bear 

upon the hoop conjecture. The conjecture would place a lower bound on the 

largest circumference of allowed boundary surfaces , but the constraints of Sec-

tion III serve to identify forbidden rather than allowed surfaces. If the Section 

III constraints placed an upper bound on the largest circumference of forbidden 

boundary surfaces, the result would support, though not prove, the conjecture. 

But as shown above, forbidden u =constant surf aces in prolate r-metrics can 

have arbitrarily large polar circumferences. In fact the example of u =constant 

surfaces in r-metrics does not even test the boundary constraints obtained here 

against the hoop conjecture; none has arbitrarily small circumference in every 

direction. Since the integral in (5.10) exceeds rrsinh1-~u for all I'<l. Cp exceeds 

CE for all u =constant surfaces in a prolate f-metric . Numerical calculations 

show that the minimum value of Cp(u) decreases monotonically with increasing 

I', and therefore Cp(u) for any prolate f-metric is bounded below by the 

Schwarzschild minimum 4rrM (a similar result holds for the oblate, f>l. 

geometries, with the roles of Cp and CE reversed) . Consequently I have not been 

able to relate the J11~0 boundary constraint to the hoop conjecture . 
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Vl. AN EXJ\MPl.F. OF' THE TOHOIDAL-TOPOLOGY EOUND/\HY CONSTW\ll'JT 

The toroidal boundary constraint ( 4.11) can also be examined by means of a 

simple example. One tractable toroidal exterior geometry has a ring source in 

the background space. given by PE=b. zE=O in terms of the Weyl coordinates. 15 

I shall call this exterior solution the "ring metric." 

A The Ring Metric 

This geometry is most easily described using polar coordinates (T ,ti) cen-

tered on the ring. related to the Weyl cylindrical coordinates by 

PE=b +rcostl, zE=rsint1. The range of r is from 0 to 00 ; ti ranges from 0 to 2rr if 

r~b. The coordinate rp is common to both systems. The solution to (3.3) and 

(3.6) for this system is 

1/IE= -(!.!Irr)[ ml (p Eb) JM K(m) (6.1) 

where 

m =4pEb I [(pE+b )2 +z}]=4b (rcost1+b )/ [~+4b (rcostJ+b )] (6.2) 

and 

K(m)= J12.(1-msin2a.)~da. 
0 

(6.3) 

is the complete elliptic integral of the first kind with parameter m. The solution 

to equations (3.4) and (3.5) for this function 'if!E is given by 

?'E=-[M2m 2/ (4rr2pEb )][/\2(m )-4( 1-m)K(m)k(m )-4m ( 1-m )K2 (m )] 

-[M 2m 2/ ( 4rr2b 2) ][ /\2(m. )-4( 1-m )K(m )k(m )+4( 1-m. )(2-m )K2 (m) J (64) 

where 
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. .r/2 K(m)=dK(m)/ dm =* (1-msin2a)-31 2sin2cx da (6.5) 
0 

As before, M is the total mass of the system measured gravitationally at infinity. 

The asymptotic forms of 1/JE and "IE near the ring source (T->O) are useful 

for analyzing surfaces with condition (4.11). These forms are 

1/JE=-[M I (nb )]Uog(Bb/ r)-[Tcosti/ (2b )]log(Bb /r)+rcosti/ (2b) 

+o[(r2; b 2)log(b /r)]! (6.6) 

f'E=-[M2/ (4rr2b 2)]~costi[ 4b /r-(r I b )log2 (8b /r)+(3r I b )log(Bb Ir) 

-5r 1 (2b )]+2[log2 (Bb ;T)-2log(Bb 1r)+1]+ o[(r2; b 2)log2 (b 1 r)]! (6. 7) 

and are valid for r «b . 

The three-metric of the Weyl exterior geometry for this solution is given by 

(3.2). In terms of the coordinates (T,ti,)O), this metric has the form 

with 1/JE and f'E as given above. 

B. Application of the Boundary Constraint 

The surfaces of constant r, rE(O,b ), are a convenient family of surfaces to 

test as possible boundaries; equation (6.6) shows that these surfaces approach 

equipotentials of 1/JE as r I b ->O, although they are not such in general. These 

surfaces cannot be tested by constraint (3.43); the necessary condition (3.41) 

for the existence of the 9 1-maximizing coordinate derivative ;;'o' translates in 

this example into 

V'ti E: [ 0, 2rr] (6.9) 
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Numerical calculations show this to be violated for every case I have examined . 

However these surfaces ar e ideal for testing with the constraint (4.11). All the 

necessary quantities can be calculated from the equations of Subsection VI.A. I 

label the left-hand side of ( 4 .11) § 2: it is given here by 

§ 2 \r )= f 2
rrra(2'if!E-/E )I ar d~+211[(1 -r21 b2)--*-2] (6 .10) 

0 

where 

o'if!EI 8r=[M I (2rr)](mpEb )-*~[(BTpEb -4br2cos~)/ (4pEb +re)2 

(6.11) 

and 

+([2K(m)L(m)-(2-m)L2(m)]/ PE+ mL2(m)/ b )(8TpEb-4br2cos~)I (4pEb +re)2l 

(6 .12) 

with 

L(m)=K(m)+2mk(m) (6 .13) 

and m as given by (6.2). Possible ?'=constant boundary surfaces must have 

§2(r)~-2rr: surfaces with § 2 (r) <-2rr are forbidden. 

Numerical calculations show that § 2(r) increases monotonically with 

increasing r I b, with b fixed. A careful evaluation of equations (6.11) and (6.12) 

at r=b shows that both B'if!EI Br and 8-yEI Br are bounded at that limit; conse

quently the integral in (6.10) remains finite as r-->b. The second term diverges: 

thus 
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(6 .14) 

The behavior of § 2 in the limit T ~o can be determined using the asymptotic 

forms of 1/JE and 'YE· equations (6 .6) and (6 .7), or by expanding (6.11) and (6.12) 

in that limit . The resulting integral can be evaluated explicitly, with the 

result 

(6 .15) 

for T <<b. The three separate error terms are given because different error con-

tributions dominate in different ranges of b IM values. This result implies 

(6.16) 

the limit taken at fixed b. Limits (6.14) and (6.16), plus the monotonicity of 

§ 2(T), show that for every ring geometry (every value of b), there exists a value 

ToE(O,b) at which §2(T)=-2rr, with §z<-2rr for T<To and §2>-2rr for T between 

To and b. Hence every ring geometry has a range of T=constant surfaces, viz .. 

those with TE(0,T0), which are forbidden as matter/vacuum boundaries by 

(4.11), and a range of such surfaces, with TE:[T0,b ), not so forbidden. The value 

of To can be obtained in the appropriate limit from equation (6 .15); neglecting 

the error terms, I find 

To=Bb/exp(l+2rrb/ M) (6.17) 

The approximation involved here is accurate for To«b ,M; because of the 

exponential in the denominator, this approximation is very good for b ?:.M and 

becomes arbitrarily accurate as b/ M increases . 
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As in the example of Section V, the boundary constraint obtained in this cu.1-

culation assumes a simple form in the limit of a large background-space source, 

which here means b IM ~ 00 (and there meant r-1=a/ M ~=). In this limit r 0/ b 

becomes very small so the surface r=r0 becomes an equipotential of 1f!E· Then 

equations (6.6) and (6.17) imply 

lim 1/IE lr--r = -2+ O(MI b) 
l>/M-+oo - o 

(6.18) 

The function ?/IE increases outward from the ring "source," so in this limit the 

constraint ~r0 on possible boundary surfaces becomes equivalent to 

(3.37). This is a somewhat serendipitous result, since (3.37) follows from the 

spherical-topology boundary constraint under the assumption that the interior 

coordinates are double-matched. The toroidal-topology constraint, however, 

does not specify or restrict the interior coordinates at all. 

C. Interpretation of the Toroidal Constraint: Sizes and the Hoop Conjecture 

Like the results of Section V, this toroidal example indicates that the bound-

ary constraint (4.11) cannot be simply interpreted as a bound on surface size . 

The r=constant surfaces in the ring metrics have three simple size measures of 

interest, the meridian circumference Amax• the outer equatorial circumference 

CJ (defined as the circumference at t1=0), and the area A. These are given by 

CJ(r)=2n(b +r)exp~-1/IE(r.C1=0)~ , 

A (r)=2n /
21

r exp~f'E(r.'li)-21/IE(r,'li) l(b +rcostJ)r dtl , 
0 

(6.19) 

(6.20) 

(6.21) 

where 1flE and i'E are given by (6.1) and (6.4), or (6.6) and (6.7) in the 
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appropriate limit . (The inner equatorial circumference Cf, that is, the equa

torial circumference calculated at Cl=rr, can also be obtained easily in a form 

like (6.20), but aside from the curious result that for certain values of b and r, 
Cf>CJ, it provides little additional information). In the limit r«b, in which 

(6.6) and (6.7) are valid, the integrals in the above equations can be performed, 

giving 

>-max(r)=2rrrexp![M I (rrb )]log(Bb /r)-[M2/ (2rr2b 2)][log(Bb I r)-1]2 ~ 

xI oHM2/ ( 4rr2b 2)] [ 4b/ r-(r; b )log2(Bb /r)+(Sr; b )log(Bb; r) 

-5T I (2b )J+[M I (rrb )][r I (2b )][log(Bb I r)-l]l 

x~ 1 +o[(r-2; b 2)log2(b /r)]l 

CJ(r)=2rr(b +r)expHM I (rrb )][log(Bb I r)-T I (2b) log(Bb I r)+r I (2b) Jl 

x~ 1+ O[(T2 / b 2)log(b /r)]l 

A(r)=4rr2rexpH2M I (rrb )]log(Bb I r)-[M2 I (2rr2b2)][log(Bb I r)-1]2l 

x(bI 0~[M2/ (4rr2b 2)][ 4b I r-(r I b )log2 (Bb /r)+(3r I b )log(Bb Ir) 

-5r I (2b )]+[MI (rrb )](r I b )[log(Bb /r)-l]l 

-Tl iHM2 I ( 4rr2 b2)][ 4b /r-(r I b )log2 (Bb I r)+(3r I b )log(Bb Ir) 

-5r I (2b )] +[MI (rrb )](r I b )[log(Bb I r)-l]l) 

(6 .22) 

(6.23) 

(6 .24) 

where Io and I 1 are hyperbolic Bessel functions. As ?'40 (with b fixed), equa

tions (6.22) and (6.24) are dominated by the exponential behavior of I 0 , while 

(6.23) is dominated by expHM/ (rrb )]log(Bb/r)~. so in this limit Amax, CJ, and A 
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all diverge to +co. 

This asymptotic behavior shows that the boundary constraint 9r--2rr, 

which in this example takes the form ~r0, cannot be interpreted in general as 

identifying as forbidden surfaces with Amax, CJ, or A -values smaller than some 

lower bound. Every ring geometry contains forbidden r=constant surfaces with 

Amax, CJ, and A values greater than any given bounds, greater than those values 

for any given non-forbidden surface. Thus for a boundary surface to have a 

size--as measured by Amax, CJ, or A-- greater than some fixed bound is not 

equivalent to satisfying the constraint (4.11). In fact, numerical calculations 

show that in a wide range of ring geometries, the r=constant surfaces with the 

smallest values of Amax, CJ, and A satisfy (4.11) . 

As b IM 4 00 , with r IM fixed, Amax(r) approaches the limit 2rrr. Thus 

r=constant surfaces exist in ring geometries with arbitrarily small values of 

Amax, and since r0/ M is dominated by the exponentially decreasing denominator 

of (6.17) in the b IM 400 limit, ring geometries exist in which surfaces with arbi

trarily small Amax values are not forbidden by the toroidal boundary 

constraint.The constraint, therefore , does not imply a lower bound on Amax for 

acceptable boundary surfaces. I cannot prove a similar result for the size meas

ures CJ and A using the ring geometries, howAver, because r=constant surfaces 

with arbitrarily small CJ and A values do not exist in those geometries. Approxi

mate and numerical calculations indicate that the A values for r=constant sur

faces, for any b IM values, are bounded below by a value slightly in excess of 

4M2 . Similarly, CJ values for these surfaces have a lower bound slightly greater 

than lBM . 

The above results indicate that the toroidal boundary constraint ( 4.11) is 

not directly connected with the hoop conjecture . Like the spherical-topology 

constraint, the inequality (4.11) serves to identify forbidden boundary surfaces 
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rather than to specify allowed ones; the hoop conjecture characterizes allowed 

surfaces. Also, the ring metric example shows that surfaces forbidden by (4.11) 

can have arbitrarily large circumferences, a result which, while not disproving 

the hoop conjecture, does not support it. Of course, like the r-metric calcula-

tion of Section V, the ring metric example does not actually test the hoop con-

jecture, since the ?'=constant surfaces examined all have circumferences (CJ) 

greater than a fixed bound of order M. 

VII. EXTENSION OF THESE RESULTS 

Some of the results of Sections III and IV can be applied to surfaces in a 

wider class of exterior geometries than the Weyl metrics . Specifically, the 

assumption of vacuum in the exterior can be relaxed. The spatial metric form 

(3.2) can be obtained in any axisymmetric, static exterior; the corresponding 

four-metric takes the form (3.1) only in special cases of this, irJ.cluding 

vacuum, 16 while the Weyl equations (3.3), (3.4), and (3. 5) occur only for the 

vacuum case. The derivation of the spherical-topology boundary constraint, up 

to the inequality (3 .24), depends only on the three-metric form (3 .2); the Weyl 

vacuum field equations are used only in obtaining (3.30) from (3.24). Thus the 

spherical-topology constraint .!11W'J~O can be applied to surfaces in any 

axisymmetric, static exterior geometry, provided .!11W'J is given by 

.!11W'J= JXmaxd>-..!R[d(21/Jc-'lE )/ dn-ac'+a/] + Z' -,7'(1 +71 )! (7.1) 
0 

with all quantities defined as before, rather than by (3.30). The results (3.36) 

and (3.37) for the case of double-matched coordinates do not apply for non-

vacuum exteriors, since these are derived from (3.30). The maximization of 

.!11 with respect to ,7' carried out in Subsection III .E can be performed in non

vacuum cases, however, since (3.24) has the same,7'-dependence as (3 .30). The 
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derivation of the toroidal-topology boundary constraint in Section IV never util

izes the Weyl field equations, so the constraint ( 4.11) can be applied in non

vacuum exteriors with no change . 

It is thus possible to identify surfaces in arbitrary axisymmetric, static 

exterior geometries which are forbidden as boundaries of momentarily static, 

nonsingular matter systems by means of the inequalities (3.24) or (4.11), for 

either spherical or toroidal topology respectively. The usefulness of this gen

eralization to .non-vacuum exteriors is limited, however, by the fact that the 

exterior geometry, specifically the exterior coordinates and the potentials 1f!E 

and l'E· must be known explicitly in order to evaluate the constraint 

inequalities . Consequently these constraints are likely to prove most useful for 

special exteriors, such as the Weyl vacuum geometries or electrovacuum gen

eralizations thereof. 

VIII. SUMMARY 

Approaching the problem of boundary constraints for non-collapsing 

axisymmetric systems via the time-symmetric initial-value formalism, I have 

here obtained the two geometric conditions d 1 ~ 0 and 92~ -2rr for spherical 

and toroidal topologies respectively, where di is given by the left side of (3.24) 

or (3.30), and 9 2 is given by the left side of (4. 11) . Both of these constraints 

identify surfaces in given exterior geometries which are forbidden as boundaries 

of momentarily static, nonsingular matter systems, i.e ., surfaces for which the 

derived inequalities are violated are so forbidden. Applied to specific examples 

using as exterior geometries the prolate r-metrics and the toroidal ring metrics, 

these constraints define neighborhoods of the Weyl singularities within which the 

surfaces examined are forbidden; i.e., the constraints require that the surfaces 

of momentarily static material bodies giving rise to these exterior geometries 
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lie outside the delineated neighborhoods. 

I have not been able to cast these boundary constraints in any form sugges

tive of bounds on surf ace size. Further, the results of the example calculations 

of Sections V and VI are not in accord with any interpretation of the constraints 

as limits on boundary circumference or area. Consequently these constraints 

do not in any obvious way embody or support the hoop conjecture. Neither do 

my results disprove the conjecture : since none of the source-surrounding sur

faces in the geometries I have examined have circumferences much smaller 

than 4rrM in all directions, no counterexample to the hoop conjecture could be 

found. Apparently the quantities di and § 2 appearing in the constraint inequal

ities describe geometric properties of momentarily static axisymmetric sys

tems, as constructed here, distinct from boundary size ; my results show that 

these properties do impose limits on the construction of such systems . I have 

not succeeded in formulating an intuitive interpretation of these properties; 

perhaps their meaning can be clarified by further researches and by studying 

the application of these constraints to more examples of Weyl exterior 

geometries . 

The initial-value formalism used here might prove useful in other investiga

tions of size constraints and the hoop conjecture. Manipulations of the initial

value equation and junction conditions different from those I employed in Sec

tions III and N might yield different results and constraints, perhaps ones 

readily related to system size and to the hoop conjecture. It is also possible 

that results germane to the hoop conjecture might be obtained directly from 

the vacuum, static Einstein field equations, or from the Weyl form of those equa

tions given in Subsection III.A. The fact that all source-surrounding surfaces in 

the Weyl geometries I have studied here have largest circumferences exceeding 

a limit of order M lends support to this possibility. 
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APPENDIX A:. EXISI'ENCE OF ISOTHERMAL INTERIOR COORDINATES 

The uniforrnization theorem for simply connected Riemann surf aces states 

that a simply connected Riemann surface is conformally equivalent to (i.e., 

there exists a bijective function, analytic in the local complex coordinates on 

the Riemann surface, from that surface onto) exactly one of the following: the 

extended complex plane Cu~cxiL the complex plane C, or the unit disk 

.6=~zE:C: jz l<lL according as the surface is elliptic, parabolic, or hyperbolic 

respectively. 17 A Riemann surf ace is elliptic if it is compact (closed), hyperbolic 

if it is noncom.pact and carries a negative nonconstant subharmonic function, 

and parabolic if it is noncom.pact but carries no such function. Further, any 

simply connected domain in the extended complex plane which omits two or 

more points of Cu~ cxi~ is hyperbolic . 18 Of interest here is the application of the 

uniforrnization theorem to the two-surfaceult=I 19'=9'o' a i;o=constant slice of the 

interior, to establish the existence of a single patch of isothermal coordinates 

covering all of .At, and thus a single patch of coordinates for I in which the 

metric has the form (3.12) or (4.1) . 

The nonsingularity assUillption made here implies the existence of a C1 

two-rnetric 19 on.At. This , in turn, implies the existence of local C1 isothermal 
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coordinates20 in neighborhoods of all points of .At. Where two such coordinate 

patches, say (x,y) and (u,v), overlap, they must be related by the Cauchy

Riemann equations, hence u ±iv must be an analytic function of x +iy; that is, 

the local isothermal coordinates impart a Riemann-surface structure to.At. Let 

.A'=l; I rp=rpo be a constant-i;o slice of the entire hypersurface of time symmetry 

(interior I and exterior E) . By the above arguments, ..His also a Riemann sur

face. 1 assume that uY, like.At, is simply connected; the uniformization theorem 

then guarantees that ..Nis conformally equivalent to some domain in Cu~ooj . The 

function establishing this conformal equivalence maps.Atc..Ninto some sub

domain of this ; since .At omits more than two points of .A' and the function is 

bijective, the image of .At omits more than two points of Cu~ 00 j and is therefore 

hyperbolic. Consequently.Alis hyperbolic and conformally equivalent to the unit 

disk /), and to any hyperbolic domain of Cu~ 00 j. The functions on.At.establishing 

these equivalences are analytic in x +iy for all local isothermal coordinates 

(x ,y ), so they preserve the isothermal form of the metric and provide the 

desired global isothermal coordinate patches on.At. 

The interior coordinates (p1 ,z1 ) can be taken to fill any hyperbolic domain 

in the extended complex plane. For example, for a toroidal interior a unit disk 

translated into the right half plane, i.e., ~z EC: z =a+reio-, a>l, O~r<l. ~&-:;;2rrL 

or simply the unit disk b. (if the metric form ( 4.1) is used so that the restriction 

p1 >0 is not required), might be a convenient choice. Let f :.At~b.. be the confor

mal map establishing these interior coordinates, neglecting the translation by a. 

Then f maps the boundary meridian a.At.onto the unit circle. Results from the 

mathematical theory of conformal representation serve to establish the regular

ity of this coordinate map at the boundary. Specifically, if R cc is a simply con

nected domain and PEBR a frontier point of R such that it is possible to con

struct two circles through P , one entirely inside R and one entirely outside, and 



-57-

if g : R 4 /::,. is a conformal map of R into the unit disk, then as z approaches P in 

R, the derivative g'(z) tends to a unique, finite , nonzero limit.21 Here P is a 

boundary meridian point; let N(P) be a local (isothermal) coordinate neighbor

hood of P on the y?=constant surface JI!'. I take R to be (the local-coordinate 

image of) N(P)n.Atand g to be the global coordinate map f composed with the 

local coordinate map on N(P). The quoted theorem implies that the derivative 

of f is nonvanishing--the interior coordinates are regular--at any meridian point 

Pat which the tangent vector d/ dA. is continuous.Most importantly, this means 

that d8/ dA., the derivative of coordinate polar angle with respect to meridian 

proper length, does not vanish anywhere on a C1 or smoother meridian; the 

length A. and coordinate angle e are monotonic functions of each other. 

Similar conclusions obtain for spherical-topology interiors, except that for 

this case aAthas "corners" where the meridian meets the symmetry axis. If a 

unit disk is chosen as the range of the interior coordinates, the coordinate map 

f must behave as ( z -z 0) 2 , in terms of a local complex coordinate z, in the 

vicinity of such a corner (at z 0), in order to convert the right angle of the corner 

into a straight angle on the unit circle. It is convenient to compose such a coor-

dinate function with a function such as 

((w)=-i [-i(w+l)/ (w-1)]*-1 
[ -i(w + 1)/ (w-1)]*+ 1 

, WE/::,. (Al) 

which, using the principal branch of the square root, maps the unit disk bijec-

tively onto the right half of the unit disk. The points w = ± 1 are mapped to the 

corners (=+i, the square root behavior of ((w) there converting straight angles 

to right angles. The composition of f as above, a Mobius transformation on the 

unit disk if needed to position the corner points, and the function ( gives a con-

formal map of .At onto the right half of the unit disk, providing isothermal inte-

rior coordinates appropriate to the spherical-topology case. These coordinates 
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are regular at all boundary points, the square root behavior of t at the corner 

points cancelling the square behavior off there . 

APPENDIX B: INJECTIVITY OF MATCHED INTERIOR COORDINATES 

The existence of isothermal interior coordinates, the first of which matches 

the corresponding exterior Weyl coordinate (PE) at the boundary, hinges on the 

injectivity of the analytic function 'P!+iZI:vlt--'>C defined by the stipulation that 

the real part PI is a harmonic function onvltwith boundary values 'lh=PE on the 

boundary meridian and, in the spherical-topology case, PI=O on the symmetry 

axis. Alternatively, the function PI+iZI can be regarded as an analytic function 

on the domain DcC occupied by some global isothermal interior coordinates 

(pI,ZI ), with the boundary values for PI appropriately mapped from a.Atto an. 

By the results of Appendix A, D may without loss of generality be taken to be the 

unit disk A for the toroidal-topology case, or the right half thereof, 

A+=~z EA: Rez >OL for the spherical-topology case. 

The number of times an analytic function takes on a given value in its range 

can be counted by examining its behavior on the boundary of its domain. Let 

~cc be a domain bounded by a simple closed curve 'ft, and let w = f (z) be an 

analytic function regular in ~ and on 'ft; further let '€' be the image of 'ft under 

f, and suppose z 0 is a point in~ with f (z 0) not on 'ft'. Then the quantity 

[1/ (2rr)]f¥sargU (z )-/ (zo)l=[l/ (2rri)J;f d logU (z )-f (zo)l . (Bl) 

where ~ denotes variation around 'ft , equals the number of zeroes of 

f (z)-f (z 0) in~. a positive integer since z 0 is in~. But this integral is equal to 

[ 1/ (2rri )Jj.(11 (w-w 0)] dw =[ 1/ (2rr)]~·arg(w-wo) , (B2) 

which is just the number of times the curve<&' encircles the point w 0 =/ (z 0), 
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i.e .. the number of times the point f (z) circles w 0 as z is moved once around 

the curve <fl. In particular, f is injective in 9lJ if <fl' is simple, i.e., unless the 

curve <fl' is traced multiple times by f (z) as z circles re once or <fl' loops inside 

itself.22 

Thus the image of BD under the map 'lh+iz1 reveals whether the matched 

interior coordinate function is injective. The complete image depends on the 

interior geometry, but the first coordinates of the image points are given by the 

boundary conditions on p1 . If the exterior radial coordinate on the meridian, 

R("A), has a single local maximum, then the image curve under the matched

coordinate map cannot be traced multiple times, nor can it loop inside itself. 

Consequently for R (A.) to have a single local maximum is a sufficient condition 

for the injectivity of the matched-coordinate map 'f5I+iz1 , and thus for the 

existence of the matched coordinates described in Subsection III.C. It may be 

noted that this condition obtains in the examples discussed in Section V, where 

matched interior coordinates are assumed. 

APPENDIX C: GIDBAL MAXIMALITY OF 9 1[,7cJ'] 

In cases where the conditions for the existence and maximality of the 9 1-

maximizing interior coordinate derivative ;;'0 ', described in Subsection III .E, are 

satisfied, the question whether ;i'o' gives a global (in the space of functions;;' ') or 

just a local maximum of 9i can be examined by reducing the variational prob

lem to a collection of maximization problems in one real variable . Let 7J(A.) be a 

C1 function on [O,A.maxJ with appropriate end-point values . lf I take;;''= ;i'o'+q?') 

then the functional .9"1fJ''] becomes a function of the variable q, a different 

function for each ?'), which I denote .9"i(q ;?')) . The variational problem with 

respect to ;;'' is equivalent to the one-variable maximization problem with 

respect to q, considered for all possible functions 7'). In particular, ;i'o' gives a 
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global maximum of .9iW'J if and only if q =O gives a global (over the domain of 

q) maximum of d 1(q ;r;) for every possibler;. 

The derivatives of § 1(q ;r;) are given by expressions similar to (3 .38) and 

(3.39): 

dz .9i (q ;r;)I dq 2= j>'maxH7o'+q 'Tl}/ [R'2+ (7o' +q17)2]~ 772 dA. (C2) 
0 

The choice of 7 0·, equation (3 .40),ensures dd1/dq=O at q=O for every'r), and if 

the topology of the system imposes 70·~0 on the entire meridian, then 

d 2 di! dq 2<0 holds at q = 0 for every r;, so 7· = 70• or q =O is a local maximum of 

§ 1. It remains to be shown whether, for any particular rJ , there exist any other 

local (in q) maxima with larger values of di than d 1(0:rJ) or .91 takes on values 

larger than .9"1(0:r;) at the boundaries of the domain of q. 

I have not been able to resolve these questions. A principal difficulty is de-

lineating the domain of q, given rJ, i.e ., characterizing the set of functions 7 ' 

which are possible second-coordinate derivatives for some interior geometry. If, 

for example, 7·~0 on the entire meridian (by (3.15), this is equivalent to 

dp1 / dn";:?:.Q on the entire meridian) holds for any admissible interior second 

coordinate, with matched first coordinate, then d 2d 1/ dq 2<0 holds on the entire 

domain of q for any rJ . If the domain of q is connected, this implies that q=O is 

a global maximum for any T), hence that 7·= 7 0• is a global maximum. The 

sufficient condition7·~0 is guaranteed if ex../, defined by (3.17), is required to be 

nonnegative, provided R'>O. 7 '=0 at A.=O, R'<D.7 '=0 at A.="Amax• and the 

matched interior coordinates are injective, so the interior coordinate image of 

the meridian does not "loop," as discussed in Appendix B. For these conditions 

imply tan- 1(7'/ R')E:[ -rr,0] , which precludes 7'>0. I have not succeeded, 
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however, in establishing these or any other sufficient conditions for the global 

maximality of ;;'c' in general, nor in finding any constraints on exterior quanti-

ties under which such conditions obtain. The question of global maximality 

remains open; I assume it in applying the results of Subsection III .E. 

APPENDIX D: THE INTEGRAL OF 0..1' FOR TOROIDM.. GEOMETRIES 

It is easily shown that 

(Dl) 

holds for any toroidal geometry, with arbitrary nonsingular interior and with 

P(>..)and)'P1.) the meridian values of any choice of isothermal interior coordi

nates. First, rearranging equation (4.10) gives 

jJ\~a/d>..=[11 (2rr)]j d 3 Ve-ll[Bm;+(V',8)2]- f>.rruudA. TrSE (D2) 
C I C 

Everything on the right side of this equation is gauge invariant, i.e., invariant 

under conformal transformations of the interior coordinates, so the integral of 

a./ over the meridian is likewise invariant. It can therefore be evaluated 

directly by making a convenient choice of interior coordinates. By the results 

described in Appendix A, the interior coordinates may be chosen to fill the unit 

disk, so that P(i\.)=cos[e(>..)], 7(i\.)=sin[8(A.)], with the polar angle ea monotonic 

function of i\.. Substituting these into the definition of a../, I obtain 

J')\mta.a/dA.=- ( 0de= +2rr 
c ~'IT 

(D3) 

which is the desired result. The orientation of the end point values of e(A.) is 

determined by the stipulation that (3.15) give the outward-directed normal 
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vector, which requires d 8/ dA.<0. 

A similar result does not obtain for the integral of aE' . In the ring-metric 

example of Section VJ, the integral of aE' over the meridian does equal 2rr. In 

Thorne's8 toroidal exterior solution, however, there are closed curves, candi

dates for boundary meridians, which are curves of constant PE; the integral of 

o.E' over such curves is zero. Thus it is necessary to evaluate the integral of aE' 

explicitly in each individual case. 
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Figure Caption 

FIG. 1. Possible boundary and interior geometries, illustrated in exterior 

(Weyl) coordinate space. The configuration of the vectors d/ dA., d/ dn, and the 

angle cx(A.) appears the same whether these quantities are defined from the inte

rior (I) or the exterior (E). 
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PART TWO: TIDAL DISTORTIONS OF A SCHWARZSCHILD BLACK HOLE 
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ABSTRACT 

This paper examines the tidal distortions of a Schwarzschild 

black hole by static point masses ("moons") suspended on ropes 

above the horizon. A solution of the Einstein field equations for the 

hole plus moons is constructed, using the Weyl formalism for 

static, axisymmetric, vacuum geometries. This solution accounts 

for the masses of the moons and hole, the binding energy of the 

system, and the mass density and tension in the suspending 

"ropes" in a mutually consistent manner. 

Various features of the tidal deformation of the hole are 

extracted from the solution: The intrinsic geometry of the dis-

torted horizon is obtained; embedding diagrams representing the 

shape of the horizon and of the tidal bulges raised on it are calcu-

lated for both weak and strong perturbations; and the components 

of the Riemann curvature tensor measured in the orthonormal 

frame of a static observer near the horizon are also calculated. 

These results corroborate the findings of other calculations of 

static black-hole tides: The horizon intrinsic geometry obtained 

here agrees with the results of a previous calculation by Hartle in 

the limit of moons far from the horizon. ln the opposite limit of 

moons very close to the horizon, this solution approaches that of a 
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calculation by Price and Suen in which the Schwarzschild horizon 

is approximated by the fiat horizon of Rindler space. Thus this cal

culation confirms the validity of the Rindler approximation to the 

Schwarzschild geometry for calculating the tidal effects of strong 

static perturbations, and provides support for the extension of that 

approximation to dynamical black-hole tides. 
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I. INTRODUCTION 

In recent years much interest has centered on the study of black holes as 

real physical objects, and on the mechanics of their interactions with other phy

sical systems. Tidal effects on black holes, a manifestation of the gravitational 

interaction between black holes and external bodies, are of particular interest. 

Such effects are expected to play a major role in the behavior of black holes in 

astrophysical contexts. The exchange of angular momentum between a rotating 

black hole and surrounding matter is affected by the behavior of black hole 

tides. 1·2 ·3·4 Tidal distortion should also contribute to the properties of black 

holes as sources of gravitational radiation. And tidal effects are potentially 

important (though thus far ignored) in gedanken experiments used to elucidate 

the quantum statistical mechanics of black holes and of the thermal (Hawking) 

radiation they emit. (Recent work by Unruh and Wald5 and Bekenstein6 on this 

subject involves hypothetical interactions between a black hole and "machines" 

lowered to and raised up from the vicinity of the hole's horizon. Such machines 

would produce tides on the horizon, which would alter these interactions in ways 

yet to be determined.) 

The aim of this paper is to develop insight into the phenomenon of tidal dis

tortion of a black hole by examining in great detail a simple case, and thus to 

provide a basis for future, more complex calculations. Several researchers have 

previously studied tidal distortion of black holes in a variety of contexts and with 

various methods. Hartle 1·2 and Hartle and Hawking3 have calculated the effects 

of tidal perturbations on slowly rotating black holes and obtained results 

describing the shapes of tidal distortions produced and the rate of change of the 

black hole's angular momentum due to tidal friction. Teukolsky4 has extended 

these tidal-friction results to rapidly rotating holes. Geroch and Hartle 7 have 

constructed the complete class of static, axisymmetric, distorted black hole 
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solutions, and examined some of the mathematical and physical properties of 

these solutions . The model solution for a tidally distorted black hole studied in 

this paper is a special case of the Geroch-Hartle solutions . 

The study described in this paper was undertaken as part of a program of 

research into black-hole physics in collaboration with K. S. Thorne, R. H. Price, 

R. J. Crowley, W. H. Zurek, D. A. Macdonald, W.-M. Suen, M. Mijic, L. S. Finn, and 

X-H. Zhang. This program aims to develop a general formalism for analyzing 

black-hole dynamics, which entails regarding the horizon as a time-evolving sur

face or membrane in three-space endowed with physical properties, e.g., electri

cal conductivity and shear viscosity. This membrane formalism has proved 

especially useful for treating electrodynamic processes involving black holes~·9 

and the present paper is part of an effort to extend the formalism to gravita

tional processes. Suen and Price 10 have studied examples of static and dynami

cal tidal distortions of a horizon "viewed up close," using the planar horizon in 

Rindler space as an approximation to the curved horizon of a Schwarzschild 

hole . The reliability of their results , however, hinges on the initially untested 

validity of that Rindler approximation. The calculations of this paper generalize 

the work of Suen and Price, in the static case, to a complete, curved, 

Schwarzschild horizon-and lend support to their conclusions by substantiating 

the Rindler approximation. 

The procedure used here is to model a simple physical situation featuring 

tidal distortion of a black hole: that of a Schwarzschild black hole perturbed by 

bodies fixed on the polar axis of the hole outside the horizon. This situation is 

static, axisymrnetric, and vacuum except for the hole and the perturbing 

masses, making it possible to describe the spacetime geometry corresponding 

to this configuration by means of the Weyl formalism of general relativity. 11 The 

effects of black-hole tidal distortion are explored by examining the Weyl solution 
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obtained, and the results are compared to those of a variety of other calcula

tions on black-hole tides . The general Weyl formalism and the solution obtained 

from it for the perturbed black hole are presented in Section II below. The 

intrinsic geometry of the distorted horizon is explored in Section III; Section IV 

contains a discussion of the various definitions of the masses of the hole and 

perturbing bodies and a discussion of the role of binding energy in the solution. 

In Section V the Riemann curvature tensor for the spacetime geometry in the 

vicinity of the distorted horizon is calculated, for purposes of comparison with 

other tidal-curvature calculations. 

The solution obtained here succeeds in illustrating a number of aspects of 

the effects of tidal perturbations on a black hole, in the static limit. It yields 

expressions for the shape of the horizon with tides both for weak perturbations 

[equations (3.8), (3.14), and (3.33)] and for strong ones [equation (3.31)]. These 

agree with the results of other calculations in special limits: that of Hartle1 for 

distant perturbing bodies and that of Suen and Price10 in Rindler space, for 

bodies near the horizon. This solution provides a consistent account of the 

masses involved in the configuration, and of the relations among the masses 

measured locally. the masses measured at infinity, and the gravitational binding 

energy of the system. Finally, the solution gives values for the tidal Riemann

curvature components of the geometry near the horizon, which can also be com

pared with the results of the equivalent calculation in Rindler space; again, com

plete agreement is obtained. 
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II. GEOMETRY OF A SCHWARZSCHILD BLACK HOLE WITH TIDAL DISTORTIONS 

A. General Formalism 

Axisymmetric, static, vacuum solutions of the Einstein field equations can 

be described by the Weyl formalism. 11 This formalism uses coordinates (t ,p,z ,stJ) 

in which the metric takes the form 

The vacuum Einstein equations in these coordinates reduce to 

B2-,/;!op2 + (llp)a'ifl;ap + o2'ifl/oz 2 = o (2.2) 

(2.3) 

a-y;az = 2p(81/J/8p)(a'ifl/8z) (2.4) 

Equation (2.2) implies that 1/1 is a harmonic function in a fictitious Euclidean 

"background" space with cylindrical coordinates (p,z ,tp). For asymptotically fiat 

solutions with bounded sources, 1/1 approaches the Newtonian gravitational 

potential at spatial infinity: 

lim 1/1 = -ml R + O(m3/ R 3) 
R-+oo 

(2.5) 

where R=(p2+z 2) 112 and m is the total active gravitational mass of the system, 

as measured at infinity. The function 1/1 is determined by specifying a (usually 

singular) source for it in the background space. This source is artificial; its form 

is not closely connected with that of the physical object which generates the 

gravitational field. 
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Once 1/J is known, the function 'l is calculated by integrating equations (2.3) 

and (2.4), with the boundary condition that 1=0 on the symmetry axis in the 

absence of a conical singularity there . Thus the solution is completely charac-

terized by the function 1/J or its background-space source . 

B. Description of a Schwarzschild Black Hole in the Weyl Formalism 

The Schwarzschild solution, being static, axisymmetric, and vacuum, can be 

described with the Weyl formalism .12 The background-space source for 1/J in this 

description is not a point, and not spherically symmetric: this is a manifestation 

of the distortion inherent in the Weyl coordinates . The correct source is a line 

singularity of "linear density" 1/ 2 and coordinate length 2M, where M is the 

physical black-hole mass . The source occupies the segment -M~z~M, p=O on 

the symmetry axis in the background space (see Figure 1) . The "linear density" 

of the source is just the physical mass of the hole divided by the coordinate 

length of the source, and is unrelated to any physical density. 

Equation (2.2) for 1/J is most readily solved in the presence of such a source 

by transforming to prolate spheroidal coordinates (u ,v ), related to the cylindri-

cal Weyl coordinates by 

p = M sinhu sinv (2.6) 

z = M coshu cosv (2.7) 

where uE:[O.+oo) and v E:[O,rr]. The coordinates t and rp are of course unaltered. 

In these new coordinates, equations (2 .2), (2.3). and (2.4) have the solution 

1/1=log[tanh(u/2)] (2.B) 

= - 1-10 [i + sin2v 
"Y 2 g sinh2u (2.9) 
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In the (t ,u,v ,i;o) coordinates, the metric (2.1) becomes 

Under the coordinate transformation 

r = 2M cosh2(u/ 2) 

e=v 

with t and i;o unchanged, the metric (2.10) becomes 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

This is the Schwarzschild metric in the usual Schwarzschild coordinates, which 

shows that (2.10) is indeed the desired solution. It describes a black hole of 

mass M, with the event horizon at the location u=O of the "line-mass source." 

The cylindrical Weyl coordinates, and the prolate spheroidal coordinates, cover 

only that part of spacetime which lies outside the horizon. 

C. A Schwarzschild Black Hole with Suspended "Moons" 

An approximate solution for a black hole tidally distorted by the gravita

tional influence of nearby bodies can be constructed with the formalism of the 

preceding section. Beginning with the Schwarzschild solution described above, 

additional sources, representing the perturbing masses, are added to the Weyl 

background space. The function 'I/; for the new solution is obtained exactly by 

superposition. Equations (2 .3) and (2.4) for -y are integrated approximately, for 

appropriate source configurations, by linearizing in the perturbing contribution 

to'I/;. 
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The simplest perturbed configuration is that of a single "moon" fixed on the 

symmetry axis outside the black hole . This positioning preserves the stasis and 

axisymmetry required in the Weyl formalism, though it is only an approximation 

to a more realistic physical situation, such as a slowly orbiting moon. In the 

present calculation the moon is represented by a point monopole of "mass"µ at 

the point p=O, z =b (with b >M) in the Weyl background space, as indicated in 

Figure 1. This choice simplifies the mathematics, but it introduces two 

subtleties into the problem. First , such a source in the background space 

corresponds to a Curzon singularity in the physical space .13 The distinctive and 

bizarre gravitational features of the Curzon geometry manifest themselves in 

the strong-field region, i.e., near the singularity, where the contribution to 1/J 

from the moon is at least of order unity . As these features probably do not 

correspond to the gravitational field near any real physical gravitating body, this 

solution is useful only in the moon's weak-field region, where the Curzon gravita

tional field closely resembles that of the Schwarzschild geometry. Second, the 

"mass" µ of the moon is related to the various dynamically defined masses of the 

configuration in somewhat complicated ways which emerge from the solution 

itself. These relationships are treated in detail in Section IV below; in the con

struction of the solution here it is simplest to regard µ as just a parameter 

characterizing the moon. 

The "potential" 1/1 for the perturbed configuration is just the sum of the 

Schwarzschild potential (subscript 0) and that from the source representing the 

moon (subscript 1): 

1/1 = 'I/lo + 1/lt +) 

= log[tanh(u/ 2)] - µ[p2+(z -b )2]-112 (2.14) 

= log[tanh(u/ 2)] - µ[M 2sinh2usin2v +(b -Mcoshucosv )2]-112 
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Here the superscript ( +) refers to the configuration with a single moon above 

the hole. The coordinates (p,z) and (u,v) are as described above. The expres

sion for 1/tf +) is just the background-space harmonic potential for a "point" 

source at the designated location. 

Since this is a static solution of the Einstein equations , the event horizon of 

the perturbed black hole can be identified as the surface on which the metric 

coefficient gtt is zero. 14 By equation (2.1), this is the same as the surface on 

which 'If! diverges to - 00 • As equation (2.14) shows, this is the surface u=O, since 

1/to diverges to - 00 there while 1/tf +)remains finite. Thus for this particular coordi

nate representation of the geometry, the coordinate position of the black hole's 

horizon remains unchanged by the perturbation. 

The primary aim of this calculation is to study the geometry of a gravita

tionally perturbed black hole and the tidal gravitational fields near the horizon. 

Since the source configuration used here is a physically reasonable model only 

for calculations restricted to the moon's weak-field region, this solution is of use 

only if the horizon lies in that region. Thus the model parameters µ , b , and M 

must be constrained so that the condition 11/tf +)I «1 holds for u near zero. With 

1/tf +) as given in (2.14), this is equivalent to the restriction µ«b -M on the model 

parameters. 

The function -y is calculated by integrating 8-y/ av along a curve of constant 

u from the symmetry axis . Equations (2.3) and (2.4) imply the desired deriva

tive of r 
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-2( a'l/lol az) ( a'l/II +)I az)] - 2pz tanv [ ( a'l/lol ap) ( a'l/lol az) (2.15) 

In (2 .15) the terms of a'l/ av are expanded in powers of the derivatives of 1/lf +l, 

and the terms of second order in 1/lf +) are discarded, in accord with the pertur-

bative scheme discussed above. The zeroth-order terms just give the derivative 

of the unperturbed Schwarzschild y0 ; the first-order terms give the desired per

turbation term -yf+l. That is, 

(2.16) 

where 

1 [ sin2
v 

i'o = -2log 1 + sinh2u (2.17) 

and 

a.,,f +>;av = 2p2cotv [ (a'!/101 ap )(01/lf +l; ap )-(81/101 az )(01/Jf +l I az )] 

-2pztanv [(81/10/ az )(01/lf +); ap)+ (a'!/101 op )(01/lf +)I az)] (2.18) 

(Actually in this case, with a single perturbing moon, the second-order terms in 

8"j/ av could be integrated. They would give the y function appropriate to the 

moon source by itself. But in this calculation such higher-order terms are not 

necessary, and in configurations involving more than one moon they could not 

be handled so easily, so here they are disregarded throughout.) The derivatives 

needed to evaluate ayf+l; av are obtained from equations (2.6), (2.7), and (2.14); 
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the result, after a bit of manipulation, is 

a1f +) 2 M 
--= (b-Mcoshucosv)sinv . (2.19) 

av [M2sinh2usin2v +(b -Mcoshucosv )2] 312 

This equation might be integrated exactly, but it is convenient at this point to 

restrict attention to the neighborhood of the horizon, and perform an approxi-

mate integration of (2.19) for u near zero. This specialization is done because 

the vicinity of the horizon is the region of interest in this calculation, and 

because the perturbation expansion in equation (2.15), which underlies (2.19), is 

valid only if the neglected 0[(1/lf+>)2] terms are much smaller than the zeroth-

and first-order terms. This is true near the horizon but not near the Curzon 

singularity. In the limit u -)0, equation (2.19) becomes 

a7f +);av = 2µMsinv (b -Mcosv )-2[ 1 +O(u2)] for u«l . (2.20) 

This is easily integrated, with the result 

7f+> = 2µ[1/ (b -M) - 1/ (b-Mcosv)][l+O(u2)] + cC+) for u «l I (2.21) 

where C(+) is an integration constant. 

Equations (2.14), (2.16), (2.17), and (2.21), put into the Weyl metric (2.1), 

constitute the solution for the geometry, near the horizon, of a Schwarzschild 

black hole perturbed by a single moon. A peculiar feature of this solution 

presents itself. It is not possible to choose the integration constant cC+) in 

(2.21) so that /'t +), and consequently )', vanishes on the symmetry axis both 

above (v =O) and below (v =rr) the black hole. The form of the Weyl metric (2.1) 

implies that a nonvanishing 'l on the symmetry axis corresponds to a conical 

singularity there . Such a singularity, in turn, corresponds to a singular distribu-

tion of stress-energy on the axis, which may be interpreted as that of a "rope" or 

"strut" supporting the gravitating masses. Hi This structure is inevitable in any 



-79-

Weyl solution involving more than one separate (positive) mass; without it, the 

configuration could not be static. Dynamical information about the mass 

configuration can be extracted from quantitative studies of this "rope" or "strut" 

structure; see Section N. 

In the black-hole-plus-one-moon solution described above, different 

rope/strut structures are possible, depending on the choice of the integration 

constant cC+). If cC+)=Q, then ')'=O at v =O, i.e., on the segment of the symmetry 

axis between the "north pole" of the black hole and the moon (equation (2.4) 

implies that')' is constant along any segment of the symmetry axis not contain

ing a singularity of '1/J). But then ')'~O at v =rr, i.e., below the black hole, and it 

can also be shown that ')'~0 above the moon. (This is done by integrating 

(o')'/ op)dp+(o')'I oz)dz along a small semicircle in the background space from 

just below the moon source to just above it.) In this case the black hole and 

moon may be described as suspended on, or held apart by, "ropes from infinity." 

Alternatively, if cC+>=-4µM / (b 2-M2), then ')'=O at v =rr, and also above the 

moon, but not at v =O, between the moon and the hole. This configuration 

corresponds to a black hole and moon held apart by a "strut" between them. 

Any other choice of cC+) entails a combination of rope and strut structures. AB 

this solution is expected to reveal features of the black-hole geometry on the 

horizon directly under the moon. the version with cC+)=Q, with the black hole 

and moon suspended on ropes and no strut between them, is the most useful. 

Of course a black hole cannot be suspended from a rope , even in principle: 

attaching the rope to the hole presents insurmountable problems . These 

difficulties can be avoided by adding a second moon, identical to the first, at the 

background-space position p=O, z =-b (see Figure 1). Between symmetrically 

placed moons, the black hole requires no support; for a proper choice of 

integration constant, the moons are suspended by ropes from infinity and the 
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hole is unencumbered. The contributions of the lower moon to the Weyl poten-

tials 'I/I and -y are exactly analogous to those of the upper moon: 

(2 .22) 

(J-yf-> 
--= av -2µM (b +Mcoshucosv )sinv 

[M2sinh2sin2v + (b + Mcoshucosv )2]312 

= -2µMsinv (b +Mcosv )-2 [1+ O(u 2)] for u«l, (2.23) 

and hence 

-yf-> = -2µ[1/ (b +Mcosv) - 1/ (b +M)][l+O(u2)] + cH for u«l, (2.24) 

where the superscript ( -) refers to the lower moon. The desired two-moon solu-

tion is obtained by adding the contributions of the upper and lower moons (since 

the equation for 1 1 is linearized in '1/11), with integration constants c(+)=cH=o. 

The resulting total Weyl potentials are 

'I/I= log[tanh(u/ 2)] - µ[M 2sinh2usin2v +(b -Mcoshucosv )2]-112 

-µ[M2sinh2usin2v +(b +Mcoshucosv )2J-112 (2.25) 

= log[tanh(u/2)] - 2µb/(b 2-M2cos2v)[l+O(u2)] for u«l, 

-y = --=-i.21 og[l+ ~in2~ + 4µb[l/(b2-M2) 
smhu 

(2.26) 

where the last line of equation (2.25) and equation (2 .26) are limits near the hor-

izon. As desired, 1=0 at v =O and at v =rr, i.e ., between the black hole and both 

moons. 
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III. INTRINSIC GEOMETRY OF THE DISI'ORTIID HORIZON 

One of the first questions which arises concerning the black hole perturbed 

by suspended moons , as described by the Weyl solution of the preceding section, 

is : What is the shape of the perturbed black-hole horizon? This can be answered 

by examining the intrinsic geometry of the horizon, as described by the metric 

given by (2 .1), (2.25), and (2.26) . Specializing this metric to a horizon section 

(t =constant, u =O) gives the horizon-section metric: 

(3. 1) 

where 1/11 and ?'l are the perturbation terms in the Weyl potentials of the solu

tion. One way to elucidate the nature of this intrinsic geometry is by construct

ing embedding diagrams, two-dimensional surfaces in Euclidean three-space 

with the same surface metric. 

Two regimes are of interest in this problem: the weak-perturbation regime, 

in which the change in the shape of the horizon from its unperturbed sphericity 

is small. and the str ong-perturbation regime, in which the moons are close to 

the horizon and the change in horizon shape, at least in the immediate vicinity 

of the moons, is pronounced. In both regimes the magnitude of the perturbing 

potential 1f;1 is much less than unity near the horizon, since the solutions of Sub

section Il.C are derived under that assumption. Quantitative criteria distin

guishing the two regimes are a bit more subtle; they emerge in the course of the 

embedding diagram calculations. 

A The Weak-Perturbation Regime 

In the weak-perturbation regime it should be possible to represent the hor

izon geometry by a two-surf ace in Euclidean three-space defiiied by the 
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spherical coordinate equation r=rR(tJ). (Here r and '8 are the usual spherical-

polar radial and meridional coordinates, respectively. The tildes distinguish 

them from Schwarzschild coordinates.) The weakness of the perturbation 

should imply the condition (dfR/ d'/J)2«3/2 . If this condition obtains, then the 

metric of the two-surface, denoted ds2
2 , is given by 

(3.2) 

where the term d.f:€=(dfR/ d '/J)2d'/J 2 has been dropped. The equality of this 

metric and the horizon metric (3 .1) is equivalent to the equations 

al sin'/J = 2M e -1ti sinv (3.3) 

(3.4) 

Expanding the exponentials in these equations in powers of 'if;1 and ?'l (retaining 

only the zeroth- and first-order terms). substituting the appropriate expressions 

for 'if;1 and ?'l from equations (2.25) and (2.26) (evaluated at the horizon), and 

finally , dividing (3.4) by (3.3), gives the following differential equation for 'lJ as a 

function of v: 

d'/J/sin'/J = [1+4µb/(b 2-M2)](dv/sinv)-[4µb/(b 2-M2cos2v)](dv/sinv) (3.5) 

Both sides of (3.5) are exact differentials; the equation has the solution 

tan('/J/2) = tan(v/2) b+Mcosv [ l-2µJ//(b2-Jl2) 

b-Mcosv 
(3.6) 

where the integration constant has been chosen to preserve symmetry about 

the black-hole equator: l1(rr-v )=rr-l1(v ) . To use (3.6) to obtain 3l (~). 1 employ 

the identity 

[b +Mcosv i-2
µJ//(b

2
-

112
> =ex [- 2µM lo [b +Mcosv ]] 

fl-Mcosv p b 2-M2 g b-Mcosv 
(3.7) 
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I assume, anticipating a result below, that the criterion defining the weak-

perturbation regime ensures that the argument of the exponential in (3. 7) is 

small, so that terms of second order and higher in the expansion of the exponen-

tial are negligible. (The factor 2µM I (b 2-M2) is of order 1/J1; if the moon is not 

allowed to be arbitrarily near the horizon, so that b -M is bounded below 

appropriately, the logarithm will not alter substantially the magnitude of the 

exponential argument .) I make such an expansion and apply the result to equa

tion (3.3); the resulting solution for fYl is 

fll(l1) = zM[l + 2µMcosv lo [b +Mcosv J + 2µb ] 
b 2-M2 g b -Mcosv b 2-M2cos2v 

= ZMlf 1 + 2µMcos'S log[b +Mcos'G] + 2µb l 
b2-M2 b -Mcos'lJ b 2-M2cos2 'G 

(3.8) 

where the higher-order terms have been dropped. 

Equation (3.8) gives the desired embedding surface for the horizon-section 

shape, but its validity is restricted by the condition (d&l Id 'G)2«fil'l2 employed 

in its derivation, and by the stronger condition that the discarded term 

(dfil'l/ d'G)2d'S2 must be negligible compared to the perturbation terms retained 

in &l 2d'lJ2 . The latter condition determines the range of model parameters for 

which the geometry of the perturbed horizon is faithfully represented by the 

embedding surface defined by r=fll('lJ), with &l ('lJ) given by (3.8); it can be 

taken to be the quantitative criterion for the weak-perturbation regime . This 

condition is easily evaluated: Equation (3.8) implies 

d &l 1 d 'S = _2Mlr 2µM sinv 10 [ b + M cosv l 
b2-M2 g b -Mcosv 

(3.9) 
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(where again the higher order terms are dropped), which in turn implies 

(3. 10) 

i.e., the right hand side of (3.9) is of no larger order than this for any choice of 

model parameters. Thus the condition that (df/l/ d'6)2 be negligible in com

parison to the perturbation terms retained in f/l 2 is equivalent to the parameter 

constraint 

(3. 11) 

i.e •I 

(3. 12) 

plus the l1f'1 I «l, i.e., µ«b-M, constraint already imposed. As mentioned 

above, this is sufficient to ensure that the argument of the exponential in (3 . 7) is 

small (in this case, smaller than order 1f'1 logl1f'1 1). It also means that the 

higher-order terms ignored in (3.8) and (3.9) are smaller than order 

(,P1 logI1f'1 I )2 and are thus safely negligible. Hence the weak-perturbation 

approximation is self-consistent. Criterion (3.12) for this regime can be 

expressed in the convenient form 

b -M » (µM) 112 (3.13) 

in terms of the model parameters. 

For configurations satisfying (3.13) then, the embedding surface defined by 

(3.8) represents the intrinsic geometry of the horizon section. Both perturba

tion terms in fl'l(~) are nonnegative and both assume their maximum values at 

the poles of the black hole, 'l!l=v =O and 'l!l=v =rr, and their minimum values at 

the equator, 'l!l=v =rr/ 2. Thus the perturbed horizon is prolate, elongated in the 
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direction of the moons; the polar circumference of the hole is greater than its 

equatorial circumference. In this sense the moons "raise a tide" on the black 

hole. Figure 2 illustrates the shape of the embedding surf ace . 

Configurations with the moons very far from the hole, i.e ., with 

b»max~M. µl, are special cases of the weak-perturbation regime. In this case, 

which I term the "distant weak-perturbation limit," the embedding surface 

profile (3.B) assumes a simple form. Expanded in powers of µ/ b and M / b, 

~(&) can be expressed in the form 

~(&) = 2Mexp[(2µ/ b )( 1 + M2/b 2)][1 +(4µM 2/ b3)P2(cos&)][ 1+O(m4/ b4)] , (3.14) 

where m=max~µ. M~ and P 2 (cos&) is the Legendre polynomial of degree 2. This 

is the form of a prolate spheroid with small eccentricity; the distant moons pro

duce a simple quadrupole tidal deformation of the horizon (see Figure 2). Har

tle1 obtains a similar result by different methods, as a consequence of a pertur

bative calculation of tidal effects on slowly rotating black holes . Hartle obtains, 

for the horizon of a Schwarzschild hole perturbed by a distant static moon, the 

embedding diagram 

r = 2M [1+2µ(M2/ R 3)P2(cos&)] (3 .15) 

to leading order in the perturbation. The notation is as above, with R the 

Schwarzschild radial coordinate at the location of the moon. (This is related to 

the Weyl coordinate b used above by b =R-M. Since in this result R»M. b and 

R are interchangeable in (3.15) .) The exponential factor in (3.14) absent in 

Hartle's result indicates that the mass parameter M must be interpreted 

differently in the two formalisms; this is discussed in Section N. The factors 

containing the angular dependence, i.e., the shape of the surface, are the same 

in the two results, except for a factor of two in the perturbation term which 
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occurs because Hartle 's configuration has one moon instead of the two used 

above. (The mass alteration implied in the exponential factor in (3 .14) would 

contribute to the angular term in higher order in the perturbation, so it does 

not alter this agreement) . Thus in the distant weak-perturbation limit , the 

tidally deformed black-hole geometry obtained from the Weyl solution of Subsec

tion II.C is in accord with Hartle's calculation. It may be noted that the moon in 

Hartle's calculation is supported by tangential stresses in a spherical shell about 

the black hole, rather than by ropes from infinity as used here; in the distant 

weak-perturbation limit this difference does not alter the tides produced. 

B. The Strong-Perturbation Regime 

In the strong-perturbation regime, the horizon shape departs substantially 

from that of a sphere . In this case an embedding diagram of the type used in 

the preceding section, the construction of which relies on the smallness of the 

departure from spliericity, would not be suitable. Another type of embedding 

surface can be constructed, however, without assuming near-sphericity, by 

using cylindrical coordinates (Jf. z, ~) in the Euclidean three-space instead of 

the spherical polar coordinates used before. (The tildes serve to distinguish 

these coordinates from the Weyl coordinates.) The embedding surface is defined 

by the equation z = Z('jf) . Strictly, a single-valued function Z only defines an 

embedding surface from one pole to the equator, but the horizon is symmetric 

about its equator. The corresponding surface metric is 

(3.16) 

This is matched to the horizon-section metric (3 .1) as the surface metric in the 

preceding section was . The azimuthal terms determine p; with that result the 

remaining terms yield dZ/ dp. The results are : 



-87-

p = 2Msinve -'ti (3.17) 

(3.18) 

Equation (3.18) has an inconvenient form; a change of variable gives a more 

manageable equation. Let ~ be proper length in the meridional direction on the 

horizon section, measured from the "north pole," i.e., v =O. The metric (3.16) 

implies 

(3.19) 

and therefore 

(3.20) 

Expanding this to linear order in 1/11 and ?'i and substituting their values from 

(2.25) and (2.26) yields 

( ) 2 _ . 2 I 8µ,bM
2
cos

2
v [ 1 1 ] O( 2)) dZ I d ~ - sm v 1 + 2 2 2 2 2 2 + 2 2 + 1/11 

b - M cos v b - M cos v b - M 
(3.21) 

The proper distance ~can be obtained as a function of v from the metric (3.1), 

so this can be solved for Z. Performing the integrations exactly is problemati-

cal, but an approximate solution is possible . 

The first term in (3.21) is the contribution from the unperturbed spherical 

geometry; the second term, proportional to µ, is the perturbation contribution. 

In the strong-perturbation regime the latter should dominate, at least near the 

pole. This occurs if and only if the configuration satisfies the constraint 

1/1 1M/(b-M) » 1 (3.22) 

which can be expressed in terms of the model parameters as 
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b -M « (µM) 112 (3 .23) 

This can be taken to be the quantitative criterion for the strong-perturbation 

regime; it is precisely the opposite of the criterion (3.13) for the weak

perturbation regime. For configurations satisfying (3.23), the zeroth-order (in 

1/11) term in (3.21) can be neglected, except near the equator where the factor 

cos2v suppresses the first-order term. This still leaves an unwieldy expression 

for dZ/ dr:.J. The expression becomes tractable, however, in the limit r:.J«M or 

equivalently, v «1. i.e .. in the immediate vicinity of the pole. It is thus possible 

to examine the strongly perturbed horizon geometry in the region almost 

directly under the nearby moon. 

According to the metric (3.1), v =[r:.J/ (2M)][l +0(1/11)]. In the aforemen

tioned limit, this is a small quantity, so the higher-order terms on the right can 

be neglected, and sinv and cosv can be expanded in powers of r:.J/ (2M). Also, let 

s 0 be defined as the proper distance from the north pole of the horizon along the 

symmetry axis to the coordinate location of the upper moon in the unperturbed 

Schwarzschild geometry (in the full black-hole-plus-moons geometry this dis

tance is actually infinite, because of the peculiarities of the Curzon geometry 

near the moons). The metric (2.10) implies that if u 0 is the prolate spheroidal 

u-coordinate value at the moons' locations (Mcoshu0=b ), then 

s 0/ (2M)=u 0 +0(u&). Constraint (3.22) and the 11/11 I «1 condition on the horizon 

ensure u 0«1. Thus b can be expanded in powers of the small quantity s 0/ (2M) 

in this regime. With these two expansions, some terms which appear repeatedly 

in this analysis take the forms: 

1/(b-M) = (BM/s~)[l+O(s51 M2
)] 

1/(b+M) = [1/(2M)][l+O(s~/M2)] 

(3.24) 

(3.25) 
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1/ (b -M cosv) = [BM I (s 5 +!'j2 ) )[ 1 + O(s§ I M2)+ O(!'j2 / M2) + 0( 1/11)) , (3 .26) 

1/ (b + Mcosv) = [ 1/ (2M))[ 1 + O(s5 I M2)+ O(!'j2 / M2)+ 0(1/1 1)) (3 .27) 

The terms which arise in 1/lf-) and ,.f-), viz., (3 .25) and (3 .27), are negligible in 

comparison to those from 1/lf +) and ,.f+), viz., (3 .24) and (3.26) . This fits the phy

sical situation: in this regime, with the moons very close to the horizon in com

parison to its size, the horizon geometry near the north pole is influenced far 

more by the nearby upper moon than by the lower moon on the other side of the 

hole . This contrasts with the situation in the distant weak-perturbation limit, 

where it was seen that the effect of one moon was just half the effect of two , i.e., 

the two moons contributed equally. 

If (3.21) is expanded in powers of !'j/ (2M) and s 0/ (2M) and only the dom

inant terms are retained, it takes the form 

(3.28) 

where the omitted higher-order terms take the form of a factor like those in 

(3.26) and (3 .27). As above, the strong-perturbation-regime criterion states that 

the first (unperturbed) term is negligible compared to the second (perturba

tion) term; in the expansion used here, the criterion (3.23) becomes 

µM3 / s6 » 1 (3.29) 

If the unperturbed term in (3 .28) is neglected, then that equation implies 

(3 .30) 

This can be integrated, with the result 
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(3 31) 

lo leading order. Equation (3.17) implies 

(3.32) 

so lo dominant order D can simply be replaced by p in (3.31 ). to describe the 

embedding surface entirely in terms of the Euclidean-space coordinates 

Equations (3.31) and (3.32), then, define an embedding surface of the form 

z=Z(Jf) which reproduces the horizon-section geometry in the neighborhood of 

the pole in the strong-perturbation case . This result reveals that in the limit 

s 0 «D«M. i.e .. in the region far from the pole compared to the moon' s distance 

but not compared lo the size of the horizon. the horizon geometry is conical. Jn 

this region dZ / dD or dZ / dp approaches the constant value ±(32µM I sJ )1/ 2 , 

which behavior corresponds to a right circular cone. The shape of this embed-

ding surface is shown in Figure 3 . 

Because of the approximations used in its derivation. the embedding sur-

face defined by (3.31) and (3.32) does not fix the "orientation" of the perturba-

lion of the horizon geometry; it cannot distinguish between a "bulge" and a 

"depression." (These terms are to be understood in terms of the intrinsic 

geometry: the question whether the horizon is displaced up or down in the exter-

nal space is ill-defined.) But in equations (3.21) and (3.28) the unperturbed and 

perturbation terms contribute with the same sign, and the relative size of the 

perturbation term is greatest at the pole. decreasing monotonically to zero at 

the equator . This means the perturbed horizon-section geometry is prolate , Jn 

the strong-perturbation regime as well as in the we<.1k- -in fuel for uny choice of 
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model pararneters--the moons can be said to raise a tidal bulge on the horizon. 

Equation (3.31) can be compared with a result in the same form for the 

weak-perturbation regime . If the model parameters are chosen so that the con

ditions (µM 3 ) 114«s0 «M hold, then the configuration belongs to the weak 

regime, but in the neighborhood of the pole the expansions in powers of s 0/ M 

and r::J/ M used above can still be applied . The embedding surface profile Z(r::J) 

can be obtained by taking the square root of both sides of Equation (3.30), using 

the weak regime condition that the unperturbed term is dominant and expand-

ing the root of the right side in powers of the perturbation term, and integral-

ing . Alternatively, it can be obtained by a change of coordinates in the embed-

ding space: Z=±[&l{&)cos&-&l(O)], p=&l{&)sin&. Both methods yield the 

result 

(3 .33) 

to first order in the small quantities . This profile differs markedly from the 

strong-perturbation form (3.31) . Here Z(r::J) is dominated by the unperturbed 

term, which gives the spherical shape of the Schwarzscbild horizon section. The 

small perturbation contribution is superposed on this . The perturbation terms 

also differ in the two regimes . Notably, in the limit s 0 «r::J«M, the perturbation 

term in this weak case does not correspond to the conical geometry to which 

the surface described by (3.31) tends; rather, its behavior is governed by the 

logarithmic term in (3 .33) . This implies that away from the pole the horizon 

deformation it describes flattens out like a "pith helmet." This profile is com-

pared with that described by (3.31) in Figure 3. Of course the horizon-section 

shape itself remains nearly spherical everywhere, in accord with the original 

definition of the weak-perturbation regime. 
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It is in the strong-perturbation regime that the solution constructed here 

for a tidally deformed Schwarzschild black hole can be compared to the calcula

tions by Suen and Price10 for a tidally deformed Rindler horizon. The Rindler 

horizon is fiat; Rindler space is a good approximation to Schwarzschild space

time only ·in a region very near the horizon and very small in extent in com

parison to the horizon size M . Equivalently, Rindler space corresponds to a limit 

M 4 00 of the Schwarzschild geometry, in which the distance measures s 0 and r::i 

are held fixed . In such a limit the strong-perturbation-regime criterion takes 

the form (3 .29). The parameterµ is not held fixed in the limiting process, but as 

is shown in Section N, it scales as 1/ M. Consequently, the criterion (3.29) is 

satisfied in the limit, which means the Rindler-space problem corresponds to the 

strong-perturbation regime of the Schwarzschild tidal-distortion problem as for

mulated here. Suen and Price construct a solution with a single mass suspended 

above the Rindler horizon, in contrast to the two moons used here. But as noted 

above, in the two-moons solution the horizon geometry near a pole (r::i«M) is 

dominated by the influence of the nearby moon, the effects of the second moon 

near the other pole being negligible, when s 0«M. So the two solutions are 

indeed comparable. Solving the linearized Einstein equations in fiat spacetime, 

Suen and Price calculate the intrinsic geometry of the tidally deformed Rindler 

horizon, and obtain an embedding diagram of the form z = Z(jf). Their result 

matches exactly the embedding surface obtained here , defined by equations 

(3.31) and (3.32), for the appropriate limit of the distorted Schwarzschild hor

izon. 
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C. The Scalar Curvature for the Horizon-Section Geometry 

The horizon-section geometry associated with the metric (3.1) can also be 

characterized by its two-dimensional scalar curvature C2> R, without reference to 

any embeddings. The calculation of C2> R from (3 .1) is straightforward; it yields 

(3.34) 

Expanding this to linear order in 1/11 and ")' 1 and utilizing the expressions for 

those functions from (2.25) and (2.26) gives 

<2>R = [11(2M2)]~1+4µb/ (b 2-M2cos2v)-Bµb/ (b 2-M2) 

+ [ 4µM 2b I (b 2-M2cos2v )3][ 4(b 2-M2) - 5(b 2-M2)sin2v + 2M2sin4v ]l , (3.35) 

with the higher-order terms omitted. This somewhat unwieldy result is in 

accord with the results of the preceding sections on the horizon-section 

geometry. For example, C2>R is related16 to the principal radii of curvature 

a 1, a 2 of the two-surface by <2>R = 2/ (a 1a 2) . On the symmetry axis, with 

a 1=a 2=a, equation (3.35) implies 

(3 .36) 

to leading order. But this radius can also be obtained from an embedding 

diagram of the form z = Z(p) by evaluating I (1/p)dZ/ dpl-1 on the symmetry 

axis. 17 Using equations (3.17), (3.19), and (3.21) for this gives precisely the same 

expression as (3.36). 

All the perturbation terms in (3.35) are of order 1/11 except the term 

16µM2 b (b 2-M2)/ (b 2-M2cos2v )3, which is of order 1/J 1M I (b -M). This term dom

inates the scalar curvature if the strong-perturbation-regime criterion (3.22) is 



-94-

satisfied; the unperturbed term dominates if the configuration belongs to the 

weak-perturbation regime and condition (3.12) obtains. Thus the distinction 

between strong- and weak-perturbation regimes is a coordinate-invariant 

geometric one: in the strong regime the horizon-section curvature is dominated 

by the perturbation, while in the weak regime the unperturbed curvature is the 

primary contribution. 

Equation (3.35) takes on a simpler form in the limit s 0«M, r:::J«M. If only 

the leading terms are kept, it becomes 

C2>R = [1/(2M2)][1-(16µM/s6)(s6+2r:::J 2)/(s6+r:::J2) 

+ (256µM I s8)(M2s6)1 (s6 +r:::J2 ) 3] (3.37) 

via the expansion used in the previous section. As above, the horizon-section 

radius of curvature at the pole can be extracted from this. In the weak

perturbation regime, where the first term in (3 .37) dominates, the calculation 

yields 

(3.38) 

to leading order, which agrees with the value obtained from the embedding func

tion Z given by (3.33). In the strong-perturbation regime, the last term in (3.37) 

dominates, hence 

a = [s6 / (4µM)] 112so/ 4 (3.39) 

with all smaller terms neglected. This result likewise agrees with that obtained 

from the corresponding embedding function, equation (3.31). 

The results of Suen and Price 10 for the Rindler horizon can also be formu

lated in terms of the horizon intrinsic curvature. Their formulae agree with the 

strong-perturbation-regime expressions above, i.e., equations (3.37) and (3.39), 
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in the appropriate limit. 

N. DYNAMICM.. MASSES IN THE "BLACK HOLE AND MOONS'' SOLUTION 

The solution constructed here for a tidally distorted black hole is charac

terized in part by the mass parameters M and µ,, for the black hole and moons 

respectively . The relationships between these parameters and the physical 

masses in the problem can be extracted from the solution itself. The boundary 

condition (2 .5) on the Weyl potential 1/J, and the expression (2 .25) for 1/J in this 

solution, imply that the total active gravitational mass of the system of black 

hole and moons is M + 2µ . This includes the combined effects of the black hole, 

the moons, their gravitational binding energy, and the contributions of the 

"ropes." More detailed calculations are needed to determine what masses are to 

be attributed to these components separately. 

A The Mass of the mack Hole 

Since this solution is stationary and axisymmetric, the mass of the black 

hole itself can be determined by means of the generalized Smarr Formula 18·19 : 

Ma = 2n" Ja + [JC/ (4rr)] .A . (4.1) 

Here the black hole mass Ma is defined16 as 11 (Brr) times the integral over the 

horizon section of the curl of the stationary Killing vector field 8/ at. The first 

term on the right consists of the horizon angular momentum JH , defined as a 

similar integral with the axi.symmetric Killing vector a; arp, and the horizon 

angular velocity n". As the solution here is static, both of these quantities are 

zero. The factors in the last term are "· here the proper acceleration of a static 

observer at the horizon, renormalized to compensate for the redshift of the 

observer's proper time with respect to coordinate time20 (also termed the 
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surface gravity of the horizon), and .A, the proper area of the horizon section. 

The horizon surface gravity IC can be evaluated in several ways; a simple for

mula is21 

(4.2) 

where the limit given means the limit on the horizon, and the four-vector f is the 

tangent to the horizon generators; in this static case l is a; at . The index a 

runs over all four spacetime coordinates; it is convenient to use (t, u, v, sei) 

here . Of course Ir J 2 is just the metric coefficient gtt . With the metric given by 

(2.1), transformed into prolate spheroidal coordinates, and the potentials 1/J and 

-y given by (2.25) and (2.26), the above formula for IC takes the form 

The derivatives of 1/Jl and -y1 do not contribute to !C2 because they are ftnite on 

the horizon and are multiplied by factors which vanish in the limit u 40. The 

result (4.3) is exact. The potential 1/11 in (2.25) is exact, but 7 1 from (2.26) is only 

accurate to first order in 1/J1. Substituting these into (4.3) gives the result 

IC= [ 1/ (4M)] exp[ -4µb I (b 2-M2)] [ 1 +0(1/Jf}] (4.4) 

To this order in the perturbation, tc is independent of v, i.e., it is uniform over 

the horizon; actually this is a general feature of the horizon surface gravity for 

any stationary black hole.22 
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The horizon-section area .A is easily calculated directly from the metric 

(3.1): 

.A= BrrM e 1 1 sinv dv 2.r 
7 -2"1 

0 

(4.5) 

Substituting these results into the Smarr Formula ( 4.1) gives the desired rela-

ti on: 

Mn= M [ 1+0(1ff)] (4.6) 

To the accuracy of these calculations, the black-hole mass parameter M is the 

actual black-hole mass. 

The issue of the interpretation of the black-hole mass parameter arose in 

Subsection III.A above, in the comparison of the horizon geometries obtained 

from this solution and from the Hartle 1 calculation in the distant weak-

perturbation limit . As equations (3.14) and (3.15) show, the same shapes are 

obtained once the different number of moons is taken into account, but the dis-

tinct overall factors indicate that the mass parameters "M" in the two formal-

isms must be different. The above result shows that the mass parameter in the 

Hartle calculation, which l now label MHarUe to avoid confusion, is not the actual 

black-hole mass as defined for the Smarr Formula. That is, equation (3.14) 

describes a black hole of mass M. put equation (3.15) does not. However, these 

equations imply the relations 

MHartle = [.A I ( 16rr) ]112 [ 1 + O('!fr)] = M exp[2µb I ( b2-M2) ][ 1+0(1ff)] ( 4. 7) 

among the Hartle mass parameter, the horizon area, and the black-hole mass. 
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The physical effect of the perturbation on the black-hole mass is not clear 

in the relations (4.7); it is necessary to specify more precisely what perturbed 

and unperturbed configurations are to be compared and how the comparison is 

to be made . One possible comparison is between unperturbed and perturbed 

configurations linked by a specified physical process. For example, consider the 

following process: the initial state is an unperturbed Schwarzschild black hole 

of mass M0 , with the perturbing moons arbitrarily far away. Let the moons be 

lowered slowly on ropes from infinity, symmetrically along a common axis, until 

a given configuration of the type described by the solution constructed here is 

reached. If the moons are lowered slowly enough, i.e., quasi-statically, the area 

of the horizon will be conserved in this process. (The rate of change of the area 

for such a process is determined by the square of the shear rate,23 and is 

inversely proportional to the square of the process timescale. The total change 

in area is thus proportional to the inverse of the timescale, so it vanishes for an 

arbitrarily slow process.) This area is just 16rrM6 in terms of the initial mass. 

The Smarr Formula and the result (4.4) for tc imply that the mass M in the final 

configuration obeys 

M = (M6 IM) exp[ -4µb/ (b 2-M2)][ 1+0(1/lr)] (4.8) 

This has the solution 

M =Mo exp[ -2µb/ (b 2-M8)] [1+0(1/lr)J (4.9) 

which also implies 

"= Jeoexp[ -2µb1 (b 2 -M6)][1+0(1/lr)J (4.10) 

where /Co= 1/ ( 4M 0) is the initial unperturbed horizon surface gravity. Thus for 

the process described here, the gravitational field of the moons causes a 
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reduction in the horizon surface gravity. In accord with the Smarr Formula, 

with the horizon-section area conserved in the process, the mass of the black 

hole is reduced proportionately by the perturbation. 

B. The Masses of the Moons and the Contributions of the Ropes 

The physical masses of the moons in this solution can be obtained by 

several methods . The different methods confirm each other's results and reveal 

a variety of features of the solution. 

One way to obtain the active gravitational mass of a moon in this geometry 

is to examine the metric encountered by observers much closer to the moon 

than to the black hole. 24 Consider a neighborhood of the upper moon much 

smaller in (coordinate) extent than the moon/horizon separation b -M , but 

much larger than µ. In this neighborhood the black-hole contributions to the 

Weyl potentials defining the metric can be approximated by their values at the 

moon location: 'V'o=log[tanh(u0/2)] and ')'o=O. In that portion of this neighbor

hood away from the moon and from the supporting rope, e.g ., near the axis 

between the moon and the hole, the perturbation term ')'1 can also be approxi

mated by zero. The metric in this region then assumes the form 

ds 2 = -tanh2(uo/ 2) e 2111 dt 2 + tanh-2 (u0/ 2) e -
2
1'1 (dp2 + dz 2) 

+ p2 tanh-2(u 0/ 2) e -2t0 drp2 

When re-expressed in local proper time/distance coordinates defined by 

and 

f = tanh(u0/ 2) t 

p = co th( uo/ 2) p 

(4.11) 

(4.12) 

(4.13) 
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z = coth(u 0/ 2) z (4.14) 

this metric takes on the very simple form 

ds2 = - e 2'¢1 dt2 + e -2'¢1 (dp2 + dz2 + -p2 d ~2) 

( 4 .15) 

where rp=rp and the metric is expanded to first order in 1/11 in the last line . But 

this is just the form of a weak-field metric25 with Newtonian potential 'if; 1 . In the 

hatted coordinates, 1/11 is given by 

(4 .16) 

where b =b coth(u0/ 2) and the lower-moon contribution 'if;f-> is in this approxi

mation a small constant which can be ignored. Equation ( 4.16) has the form of 

the Newtonian potential generated by the mass 

'j1=µcoth(u 0/2) = µ [(b +M)I (b -M)]V 2 ( 4.17) 

This is the active gravitational mass of the moon, to leading order, as detected 

by local observers. 

The physical mass of the moons also manifests itself in the tension in the 

ropes. This is determined by the nonzero value of the function -y on the sym

metry axis in the region of the ropes. This value can be obtained by integrating 

the Weyl equations (2 .3) and (2.4) along a curve from a point on the symmetry 

axis between a moon and the hole, where -y is zero, to a point on the axis on the 

other side of the moon, i.e., on the rope . If 'if; is written as 1/Jo + 'if;1 and equations 

(2.3) and (2.4) are expanded out, three groups of terms appear. The 1/16 terms, 

when integrated, just give the value of -Yo on the rope, namely zero. The 'if;[ 

terms give the value of -y for the moon's Curzon geometry by itself, also zero, 
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plus a cross term describing the influence of one moon on the other, which can 

be neglected. The desired value of 'll on the rope comes only from the 1/J01/J1 

cross terms. 

A convenient choice of integration path is the coordinate semicircle 

- -
p=rsin8, z =b -rcose, with the restriction r«b-M . The desired integrand is 

df'/dB = (Bf'/8p)dp/dB+ (8f'/Bz)dz/dB 

= r cose ! 2p [ ( 81/Jol Bp) ( B1f;1/ ap) - ( 81/Jol az )( B1f;1/ az)] l (4.18) 

where the ellipsis represents all the terms which give zero when integrated. All 

the necessary quantities are given in Subsections II.B and 11.C; some manipula-

tion yields 

d-y/ d. e = [ 2µsinB/ (Msinh2u 0)]! 1 +O[r I (b -M)]l + . .. (4 .19) 

Since 'l is constant on the symmetry axis between the moon and the hole and is 

also constant above the moon. the integral of (4.19) over e from 0 to 1T cannot 

depend on r; neglect of the O[r I (b -M)] terms entails no approximation. The 

integral gives 

(4.20) 

This is accurate to first order in 1/J1 , the only approximation in its derivation 

being the neglect of the interaction of the two moons with each other. 

The stress-energy of the rope corresponding to this value of 'l on the sym-

metry axis can be derived by calculating the Riemann curvature tensor for the 

space time geometry in the immediate vicinity of the rope . This calculation is 

given in Appendix A; it shows that the rope is characterized by a proper linear 
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mass density A. and tension T obeying 

A.= T = -y/ 4 (4.21) 

to leading order in the perturbation, with -y the value in ( 4.20) . But this tension 

supports the weight of the moon; it should equal the (passive) gravitational mass 

'j1, of the moon times the proper acceleration of a static body at the moon's posi

tion. This acceleration is easily calculated; it is the magnitude of the vector 

U0"'ilo. UfJ, where ilo. is the covariant derivative in this geometry and uo. is the 

four-velocity of a static object. In the (t, u, v, rp) coordinate system, uo. has 

components [(-gtt )-112, 0, 0, O]. If the acceleration is calculated in the unper

turbed Schwarzschild spacetime (neglecting the gravitational attraction 

between the moons), the "force-balance" equation becomes 

T = 'jJ,/ [ 4Mcosh4 (u0/ 2) tanh(u0/ 2)] (4.22) 

accurate to first order in the perturbation. This and the above results imply 

J1, = µ/ tanh(u 0/2) = µ[(b +M)I (b-M)] 112 (4.23) 

in agreement with the result of the active mass calculation (4.17). 

The result (4.21) for the rope tension does not depend on position along the 

rope; in accord with (2.3), "/is constant over the entire length of the rope. This 

means that the rope is weightless--no additional tension is needed to support 

any length of it. This property is a consequence of the "equation of state" A.= T. 

The "equation of motion" for a static radial rope in the Schwarzschild geometry, 

derived in Appendix B, takes the form of a force-balance equation: 

~ 1/ [ 2M cosh2(u/ 2)]~ dT I du = (A.-T) ~ 1/ [ 4Mcosh4(u/ 2) tanh(u/ 2)B , (4.24) 

expressed here in the prolate spheroidal Weyl coordinates. The left-hand side of 
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this equation is the derivative of the tension with respect to proper distance 

along the rope: the quantity in braces on the right is the proper acceleration of 

a static object. Thus X-T must be the proper density of passive gravitational 

mass: the negative contribution of the tension to that mass is a relativistic 

effect. If A. and T are equal (the highest tension or lowest density any rope can 

have, according to the strong energy condition) then the gravitational mass of 

the rope vanishes. Thus the ropes in this solution for a black hole with moons 

contribute no gravitational mass to the configuration. 

It appears, therefore, that the ropes give rise to no gravitational effects 

here except for the curvature located in the ropes themselves. Even the conical 

geometry in the neighborhood of the ropes is fiat everywhere but on the ropes. 

A curious coincidence arises in connection with this conical geometry, however. 

As shown in Appendix A, the geometry in the neighborhood of any point on the 

ropes can be described by a cone, with angle a between its axis and generators, 

given by 

a = arcsin ( e ""?CP>) 

(4.25) 

~ 1T/ 2 - (32µM I s8) 112 if s 0 «M , 

where the last two expressions are to first order in the perturbation, and the 

last involves the expansion used in Subsection III.B. In that section it was found 

that the horizon-section geometry of a strongly perturbed black hole 

approached a conical form at distances C1 from its poles large compared to the 

moon-pole separation s 0 but small compared with M. The comparable angle a 

describing that cone is given by 
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a = rr I 2 - arc tan ( I dZ I d p I ) 

~ rr/2 - (32µM/sff)11 2 (4.26) 

The same conical geometry is found in both instances. This appears to indicate 

that away from the pole on the strongly perturbed horizon, the tidal influence of 

the moon drops off with increasing r;,. and the geometry is dominated by the 

presence of the rope on the axis . This interpretation, although intuitively 

appealing, is complicated by the fact that in the r;,«M limit in which this result 

is seen, the horizon geometry is influence by the "half rope" extending from the 

nearby moon to infinity. An arbitrarily small neighborhood of a point on the 

rope, as treated in Appendix A. is influenced by a "full rope" extending in both 

directions. I have not found any simple physical explanation of these results 

which resolves this difficulty and accounts for the coincidence of the conical 

geometries. 

The difference between the total gravitational mass of the perturbed-black

hole system measured at infinity, M + 2µ, and the sum of the locally measured 

gravitational masses of the three bodies, M + 2'j1, is the gravitational binding 

energy of the system (since the ropes contribute no gravitational mass). Since, 

as shown in Subsection N.A, above, the mass M attributed to the black hole is 

the same by both measures, the binding energy can be determined by compar

ingµ and 'j1. Alternatively, calculating the binding energy by other methods pro

vides an independent way to obtain 'j1. 

One way to do this calculation is to examine the energy of a massµ allowed 

to fall freely from infinity to the desired moon position in the field of the black 

hole26; the kinetic energy released in such a fall is the negative of the binding 

energy of a static mass at the moon position. For the purposes of this calcula

tion, the moon can be regarded as a test particle in the static, unperturbed 
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Schwarzschild spacetime . This neglects the moon-moon interaction, as in the 

previous calculations, and gives results accurate to first order in the perturba

tion. It also means that the covariant time component of the four-momentum of 

the particle, Pt, is conserved in the fall27; it retains its value at infinity, viz ., 

Pt = -µ. The total energy of the particle measured by a static observer in the 

Schwarzschild spacetime is -Uapa = -(-gtt )-112p, = µcoth(u/ 2), where ua is 

the observer's four velocity, given above, and u is the prolate spheroidal "radial" 

coordinate of the observer's position. If the particle is stopped at the desired 

moon position u 0 and its total energy in the local static frame converted into 

rest mass, the resulting particle has mass 71 given by 

'j1=µcoth(uo/2) (4.27) 

This mass is the mass of the moon at infinity plus the negative of its binding 

energy, i.e., this mass plus the binding energy is the mass-at-infinity of the 

moon. Hence this is the desired proper mass of the moon. This result is in 

agreement with the previously obtained values for 'j1, in ( 4 .17) and ( 4 .23), and 

t hus confirms the accounting of total energy described above . 

In comparing the results of this study to other calculations of tidal effects 

on black holes, it is very important to make the correct identification of param

eters for the perturbing mass. In the comparison of the horizon-section 

geometries obtained here and in Hartle's1 calculation in the distant weak

perturbation limit [equations (3.14) and (3 .15)], no distinction was made 

betweenµ and 'ji, . In that limit, however, u 0 is large and coth(u0) is very near 

unity. The discrepancy betweenµ and 'j1 would give rise to a correction of higher 

than leading order in b IM, so the distinction does not affect the agreement 

between the two results. In physical terms this just shows that the binding 

energy of a moon is a negligible fraction of its mass in the distant weak-
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perturbation limit. 

The binding energy is significant, however, in the strong-perturbation 

regime . In the limit s 0 « M , the expressions (4.17), (4.23), and (4.27) take the 

form 

Ji,= 4Mµ/ s 0 (4.28) 

to leading order; clearly Ji,»µ characterizes this regime . This expr ession 

appears in all the strong-perturbation-regime results in Subsections III .B and 

III.C. It is this expression which is to be identified with the perturbing mass in 

the Rindler-space calculations of Suen and Price 10 (hence the statement in the 

closing paragraph of Subsection III .B that the mass parameter µ scales as 1/ M 

in the M-H:t:J limit matching the Schwarzschild and Rindler geometries) . Com

plete agreement is obtained, as stated previously, between the strong

perturbation-regime results obtained here and the corresponding Rindler-space 

results, when this identification of the moon's proper mass Ji, with the Rindler

space mass (which is unaltered by any binding energy) is made . 

V. RIEMANN TENSOR COMPONENTS IN THE VICINITY OF THE DISfORTED HORIZON 

In dynamical situations the evolution of the horizon of an interacting black 

hole is governed by the Riemann curvature at the horizon (plus any inflowing 

stress-energy) .28 The components of the Riemann curvature tensor near the 

horizon of the tidally distorted Schwarzschild black hole described here can be 

obtained from the metric solution of Subsection II.C. The results give additional 

information on the nature of the tidal deformation, and provide a means of com

parison as a starting point for dynamical calculations . 

To facilitate such comparisons, the components are calculated her e in the 

orthonormal frame of a static observer near the horizon. The basis vectors for 
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such a frame can be written so: 

er= (-gtt)-112 a1at = coth(u/2)e__,,,,1 a1at (5.1) 

ea= (-guu)- 112 a1au = [11(2M)]sech2 (u/2)et1..,.1 a;au (5.2) 

eo = (-gvv)- 112 a/av = [1/(2M)]sech2(u/2)et1-f'1 a/av (5.3) 

e~ = (-grprp)- 112 a;arp = [1/(2M)]sech2(u/2)cscv et1 a1arp (5.4) 

using the metric of Subsection II.C in the prolate spheroidal Weyl coordinates. 

The Riemann-tensor components in this orthonormal frame are related to 

those in the coordinate frame in a simple manner. For example, 

Rfata = [11 (4M2)] sech4(u/ 2) coth2(u/ 2) e -2'ri Rtiau (5.5) 

The calculation of the coordinate-frame components such as Rtutu is straightfor

ward, although the results are unwieldy, e.g. 

+ tanh2 (u/ 2) (a1f'1/ av) (a1f'1/ &v - a-y1/ av) 

+ tanh2(u/ 2) (a1f'1/ au) (a-y 11 au -a1f'1/ au) 

-tanh2(u/ 2) (a1f'1/ au )2 + (112) tanh(u/ 2) sech2(u/ 2) a-y1/ au 

-(3/ 2) tanh(u/ 2) sech2(u/ 2) a'if!1/ au+ tanh3(u/ 2) a'if!1/ au] (5.6) 

Expanding this to linear order in 1/11. using the expressions for 1/11 and -y1 from 

(2.25) and (2.26), specializing to the neighborhood of the horizon (u«1), and 

substituting all into (5 .5) yields, after considerable manipulation, 
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Rtritri = ~ - [ 1/ ( 4M2
)] + (2µb I M 2)1 (b 2-M2) 

as the desired Riemann-tensor component. 

The first term in (5.7) represents the Riemann curvature of the unper

turbed Schwarzschild geometry; the other two terms give the tidal curvature . It 

can be seen that the ratio of the third term to the first is of order 1/f 1 M / ( b - M) 

(the second term is smaller than the first by a factor of order 1/J 1). This implies 

another invariant interpretation of the weak- and strong-perturbation regimes: 

in the weak-perturbation regime [condition (3 .12)] , the Riemann curvature near 

the horizon is dominated by the unperturbed geometry; in the strong

perturbation regime [condition (3.22)], the tidal curvature dominates. 

The principal aim in this calculation of Riemann-tensor components is to 

provide a standard of comparison, in the static limit, for dynamical calculations 

of tidal effects on black holes. Of particular interest is the comparison with the 

Rindler-space results of Suen and Price10 in the static limit. Thus it is useful to 

express (5.7) in the "Rindler limit": M ~00 at fixed r::i, s 0 , and "j1 . It is also con

venient to introduce notation appropriate to the Rindler geometry: AB r::i is 

proper distance on the horizon away from the pole in the v or v direction, let 

eci = ev denote the orthonormal basis vector in that direction. Further, let 

en =ea denote the . orthonormal basis vector in the radial ( u or u) direction, i.e.' 

the direction normal to the horizon. In this notation, the component in ( 5. 7) is 

given in the Rindler limit by 

Rfnffi = -16"f1s& I (s8 + ~2)3 

to leading order; the neglected terms give 

[1+0(1/tf>+O(u 2)+0(s81 M2)+0(~2/ M2)]. The mass "j1 is as 

(5 .8) 

a factor 

calculated in 
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Subsection N.B . 

Other components of the Riemann tensor in this geometry can be calcu-

lated in the same manner. In the Rindler limit, the components are 

R~ ~ = +8}1s3 I (s2 + ~2)3 tC1tC1 0 0 (5.9) 

Rf~t~ = +8J1s& I (s§ + ~2) 3 (5.10) 

R - -8"' s I ( 2 + 2)3 nC1fiC1 - µso so ~ (5.11) 

Rfi~n~ = -8J1,s& I (s5 + ~2) 3 (5.12) 

and 

RC1~C1~ = + 16J1,s& I (s§ + ~2) 3 (5.13) 

also to leading order; the neglected terms give the same factor as for equation 

(5.8). A slight complication enters into the calculation of the remaining com-

ponents. For example, the component RfntC1 is given by 

(5.14) 

to first order in 'if/1 . This vanishes at u =O, though not above the horizon. Calcu-

lating it requires obtaining the derivatives of '1/1 1 and ')'1 to second order in u. 

These can be computed by expanding '1/11 from (2.25) and By1/ av from (2.19) and 

(2.23) in powers of u, retaining the two leading terms in each, and then 

differentiating and integrating as needed. In this way the remaining Riemann-

tensor components can be obtained to first order in u . Jn the Rindler limit, 

these components are: 
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(5.15) 

and 

(5.16) 

where s ~2Mu is the proper distance from the field point to the horizon, meas

ured normal to the horizon. These are "leading-order" expressions like those 

above: the neglected terms give the same factor as before. 

Equations (5.8) through (5.13), (5 .15), and (5 .16), then, give the components 

of the Riemann curvature tensor measured in the orthonormal frame of a static 

observer near the pole of the horizon, in the strong-perturbation case . All other 

components not related to these by index symmetries are zero. As might be 

expected, they show that the tidal curvature fields are greatest near the pole, 

and fall off rapidly for 1:1»s 0, in this configuration with a moon very close to the 

horizon. 

These results show that the Riemann tensor in this geometry possesses an 

interesting symmetry retained from the unperturbed Schwarzschild space

time. 29 Let vfi = ( vf. vf'i, 0, 0) be the four-velocity of an observer moving radially, 

i.e .. in the u direction, normal to the horizon, in the vicinity of the horizon pole: 

the components given are in the static observer's orthonormal frame . Let R'apf6 

be a Riemann-tensor component measured in this moving observer's orthonor

mal frame. Certain of these components obey a special relation, viz .. 

(5.17) 
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hence 

(5 .18) 

Similarly, 

(5 .19) 

and 

(5.20) 

This symmetry of the Riemann-tensor components implies that the components 

with two time indices and two indices in directions tangential to the horizon are 

the same measured in the orthonormal frame of any observer static or moving 

normal to the horizon. 

Suen and Price 10 have calculated the corresponding Riemann-tensor com

ponents for the geometry of a Rindler horizon perturbed by a static suspended 

mass . Their results are in complete agreement with those obtained here . 

VI. SUMMARY 

Using the Weyl formalism for static, axi.symmetric, vacuum geometries , I 

have here constructed a solution to the Einstein field equations describing a 

Schwarzschild black hole perturbed by two suspended "moons." The dynamical 

masses of the bodies in the configuration, the binding energy of the system, and 

the tension in the supporting ropes are all derived from the solution. The rela

tions among these quantities are completely consistent: the total gravitational 

mass of the system, measured at infinity, is found to be equal to the dynamical 

masses of the hole and the moons plus the (negative) binding energy, the ropes 

contributing no gravitational mass; the tension in the ropes is shown to be the 
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value required to support the moons in the gravitational field of the hole . 

This solution reveals a number of features of the tidal deformation of such a 

black hole in the static limit. The intrinsic geometry of the distorted horizon is 

obtained directly from the solution metric; it can be represented with embed

ding diagrams such as are defined by equations (3 .8) , (3 .14), and (3.33) for the 

case of weak perturbations, and by equation (3.31) in the strong-perturbation 

case (see Figures 2 and 3) . In all cases the horizon geometry is prolate, i.e ., a 

tidal bulge is produced. For strong perturbations the intrinsic shape of the tidal 

bulge approaches a conical form away from the horizon's pole; for weak pertur

bations the bulge "flattens out" intrinsically. Another geometric measure of the 

tidal effects, the Riemann curvature tensor, can also be calculated from the 

solution metric, in the vicinity of the horizon. The components of this tensor in 

the orthonormal frame of a static observer near the horizon are given by 

expressions such as equation (5.7), or in the strong-perturbation regime, in the 

neighborhood of the horizon pole , by equations (5.8)--(5 .13), (5.15), and (5 .16) . 

The horizon geometry obtained here accords with that obtained by Hartle1 

in the limit in which the moons are far from the horizon compared to its size. In 

the opposite limit of moons near the horizon, this solution approaches the 

Rindler approximation of Suen and Price. 10 Thus the results of this study 

confirm the validity of the Rindler-space approximation to the Schwarzschild 

geometry for static, strong-perturbation tidal-effect calculations; consequently, 

they lend support to the use of the Rindler approximation for the more compli

cated problem of dynamical tides. 
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APPENDIX A:. SPACE.TIME CURVATURE AND STRE~ENERGY OF THE ROPES 

The Riemann curvature tensor at the rope singularity can be obtained from 

an examination of the spacetime geometry near the rope; from this the stress

energy of the rope follows via the Einstein equations.30 Let P be a point on one of 

the ropes . In an arbitrarily small neighborhood of P, the spacetime metric is 

given by equation (2.1), with the potentials 'r/J and -y evaluated at the point P. 

Local proper time/distance coordinates can be de.fined in the neighborhood: 

f = e1(P)t 

p = e7(P)-"/!(P) p 

Z = e7CP)-"/!(P) z 

and of course~=~. The metric in these coordinates takes the form 

(Al) 

(A2) 

(AS) 

(A4) 
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in the neighborhood of P. This expression shows that the p-'f; plane in the 

neighborhood of P has the geometry of a right circular cone, one with angle ex 

between its axis and any generator, defined by 

a. = arc sin( e --r(P)) (A5) 

(see Figure 4). Here 1(P) is positive and small, as equation (4.20) shows, so ex is 

a real angle near rr/ 2: this cone is nearly planar. The curvature associated with 

this geometry is all concentrated at the apex of the cone, i.e., on the rope. The 

Riemann-tensor components describing this curvature can be obtained by 

evaluating the rotation of a vector parallel-transported around a closed curve 

and utilizing the formula31 

0A11 = -1/ 2 f R 11ftr6 AP •d2"6 

s 
(A6) 

Here A 11 is the four-vector parallel-transported around a small closed curve C, 

and the integration is over the planar region S bounded by C, with differential 

area two-form •d"f:'/6 . This formula is valid in the limit of small areas S and small 

The rotation of a vector upon such transport in the geometry represented 

by (A4) can be seen easily if that metric is written in the form 

(A7) 

where 9'J(=e --r(P) ~ · This is just a fiat spacetime geometry, but with the property 

that the surface sei•=o is identified with the surface sei•=2rre--r(P). (The transfor-

mation performed here is equivalent to slicing a cone radially and unrolling it 

out fiat.) From this form for the geometry in the neighborhood of Pit is easy to 

see that vector components in the f and z directions are unchanged by parallel 

transport around any curve: that vectors in the p-~ plane are unchanged unless 
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they are transported around the symmetry axis, i.e., from the surface \Oll!=O to 

the surface \O• =2rr e _,.(P); and that such vectors so transported are rotated in 

the p-'$ plane. 1f such a vector makes an angle {1 with the ray \O•=o in the p-\0* 

plane and is parallel-transported around the axis to the ray \OIE=2rre--r(P), it will 

make an angle {1+2rr(1-e -')'(P)) with the latter ray. Since the two rays are 

identified, the vector undergoes a rotation in transport by an angle /:,. given by 

/:,. = 2rr ( 1-e -')'(P)) ~ 21T')'(P) (AB) 

where, as (4.20) shows, the approximation here is accurate to first order in the 

perturbation 1f;1 as evaluated on the horizon. This rotation is shown pictorially in 

Figure 4. As (AB) requires, /:,. is small. The changes in the components of the 

transported vector Aa are given by 

(A9) 

and 

(A10) 

again to linear order in the perturbation. Here and below, 9' and rp11. components 

are used interchangeably; the discrepancies involved are of higher order in the 

perturbation, i.e., in -y(P) here. 

The form of the Riemann tensor at the rope follows from these parallel

transport properties. The only nonzero components are R~P~P and those related 

to it by index symmetries. Equations (A6) and (A10) imply 

(A11) 
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where d 2a is the area element, the antisymmetric components of the two-form 

-dl:76 being explicitly summed over . The integration region S is a small area in 

the p-rp plane around the axis, bounded by the transport curve C. Since this 

integral gives the same result for any curve about the axis , no matter how small , 

the Riemann tensor component must have the form 

(A12) 

where o2 (p) is the ordinary two-dimensional Dirac delta function . The integral 

has been treated here as an ordinary fiat-space integral, once again neglecting 

the discrepancy between c,o "' and rp, which would contribute a factor p+0[1(P)]l 

to this result. 

The components of the Einstein tensor follow immediately from the 

Riemann-tensor components32 ; the stress-energy tensor for the rope is then 

given by the Einstein field equations . The components of this tensor are, to lead

ing order , 

(A13) 

with all others zero. But this is just the stress-energy tensor of a rope on the 

axis, with linear density A.=l::l/ (Brr) and tension T=l::l/ (Brr). By (AB), the "equation 

of state" of the rope can be written 

>.. = T = -y(P)/ 4 (A14) 

to first order in the perturbation. 
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APPENDIX B. EQUATION OF SI'RE~ BALANCE FOR A ROPE 

IN SCHWARZSCIIlLD SPACETIME 

The equation of stress balance for a static rope in a gravitational field is 

obtained from the requirement that the covariant divergence of the rope's 

stress-energy tensor vanish.33 Let the four-velocity of the elements of the rope 

be u0 
.. and let wa be a unit spacelike vector, orthogonal to ua. defining the 

direction of the rope . Let the proper mass-energy density of the rope be f:, and 

let 77 be the stress in the rope. The rope can only support stresses in the wa 

direction; thus, its stress-energy tensor has the form 

(Bl) 

The desired equations of motion are the two projections Uo.\lpTafJ=O and 

W o.\lfJT°'fJ = 0. In terms of the quantities in equation (Bl), these equations are 

(B2) 

and 

(B3) 

The first of these is a time-evolution equation; the second gives the tension dis

tribution in the rope . In the case of a static rope in a static geometry, (B2) 

becomes trivial; (B3) gives the condition for static equilibrium. 

For the case of a static rope in Schwarzschild spacetime, the metric is 

given by equation (2.13) in the familiar (t, r, e. q;) coordinates. The rope can be 

taken to occupy an infinitesimal coordinate solid angle 1.50 on the polar axis. In 

these coordinates, the vectors U°' and wa have components 

ua = [ (l-2M/r)-112, 0, 0, O] (B4) 
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and 

WCI. = [ 0' ( 1-2M IT) 112
' 0' 0] (B5) 

The covariant derivatives in the equations of motion are evaluated by standard 

methods; with the above components for the vectors, equation (B2) becomes 

0 = 0, as expected, and (BS) takes the form 

(e + 77)(M I r 2)( 1-2M I r)- 112 + (1-2M Ir )112(d77/ dr + 217/ r) = 0 (B6) 

The stress-energy components e and 77 can be expressed in terms of the more 

familiar linear parameters for a rope: let the rope have linear density A. and ten

sion T. The proper cross-sectional area of the rope is r 2o0. Hence the rope 

parameters are related by e =Al (r2o0) and 77 =-TI (r260), the negative sign 

denoting a tension rather than a pressure. Substituting these relations into (B6) 

and simplifying gives the desired equation: 

(1-2M/r)112 dT/dr = (A.-T) (M/r2)(1-2M/r)-112 (B7) 

where the solid angle factors 60 have cancelled out. This is the equation of 

stress balance for the rope: the left side is the derivative of the tension with 

respect to proper distance along the rope; the right side is the linear gravita

tional mass density times the "acceleration of gravity," i.e., it is the linear 

weight density. This is just the equation to be expected from elementary stat

ics, except for the relativistic contribution of the tension to the gravitational 

mass. 

Equation (B7) takes the form 

[11 (2M)] sech2(u/ 2) dT I du = (A.-T) ~ 1/ [ 4M cosh4(u/ 2) tanh(u/ 2)]l (BB) 

in the Weyl prolate spheroidal (t. u, v, rp) coordinates. 
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Figure Captions 

FIG. 1, Weyl background-space source configuration for the Schwarzschild 

black hole under the tidal influence of suspended moons . The two-moon 

configuration is shown; for the one-moon solution the lower point source is 

absent and the lower "rope" extends up to the line source. 

FIG. 2. Embedding diagram profiles for the weak-perturbation regime, 

defined in terms of spherical coordinates in the embedding space . {a) The 

profile defined by equation (3 .8) for the weak-perturbation regime. {b) The 

profile defined by equation (3.14) in the distant weak-perturbation limit (with 

the moons far from the horizon, giving pure quadrupole deformation) . The dot

ted figures are the profiles of spheres with the same area as the horizon embed

ding surfaces. The size of the perturbation is exaggerated here for purposes of 

illustration. 

FIG. 3. Embedding diagram profiles of the horizon tidal bulges, defined in 

terms of cylindrical coordinates in the embedding space. {a) The profile defined 

by equation (3.31) for the strong-perturbation regime, showing the approach to 

conical form away from the pole. {b} The profile given by equation (3.33) for 

the weak-perturbation case, showing the "pith helmet" deformation, which 

tlattens out into the unperturbed spherical shape away from the pole . The size 

of the perturbation is exaggerated. 

FIG. 4. The conical geometry of the p-'{p plane near the ropes. {a} A coni

cal embedding diagram for the geometry depicted in (p, 93) coordinates. {b) 

The geometry depicted in (p, rp•) coordinates; the rays rp• = 0 and rp• = 2rrsino: are 

to be identified. The rotation of a vector A in the p-9' plane upon transport 

around the axis along the curve C is shown. The angles ex and b. are exaggerated 

for clarity. 
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