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0.2 Abstract 

This thesis is concerned with current problems in, and historical aspects of, the 

problem of radiation reaction in stellar binary systems in general relativity. Part 

I addresses current issues in the orbital evolution due to gravitational radiation 

damping of compact binaries . A particular focus is on the inspiral of small bodies 

orbiting large black holes , employing a perturbation formalism. In addition, the 

merger, at the end of the insprial, of comparable mass compact binaries, such as 

neutron star binaries is also discussed. The emphasis of Part I is on providing 

detailed descriptions of sources and signals with a view to optimising signal analysis 

in gravitational wave detectors , whether ground- or space-based interferometers, or 

resonant mass detectors. 

Part II of the thesis examines the historical controversies surrounding the prob­

lem of gravitational waves , and gravitational radiation damping in stellar binaries. 

In particular, it focuses on debates in the mid 20th-century on whether binary star 

systems would really exhibit this type of damping and emit gravitational waves, and 

on the "quadrupole formula controversy" of the 1970s and 1980s, on the question 

whether the standard formular describing energy loss due to emission of gravita­

tional waves was correctly derived for such systems. The study sheds light on the 

role of analogy in science, especially where its use is controversial, on the importance 

of style in physics and on the problem of identity in science, as the use of history as 

a rhetorical device in controversial debate is examined. The concept of the Theo­

retician's Regress is introduced to explain the difficulty encountered by relativists in 

closing debate in this controversy, which persisted in one form or another for several 

decades. 
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Chapter 1 

Introduction 

1.1 Nature of the Thesis 

This Ph.D. thesis is cross-disciplinary. It contains two conceptually interrelated 

parts, one in the field of physics (Part I), the other in the history of science (Part 

II). 

The physics portion deals with the influence of gravitational radiation reaction 

on the orbits of inspiraling and colliding compact binary systems (binaries made of 

black holes and neutron stars). It also deals with the gravitational waveforms that 

such binaries emit, and information that can be extracted from those waveforms. 

This research is a foundation for planned observations by the LIGO /VIRGO network 

of ground-based gravitational-wave detectors, and the planned low-frequency, space­

based LISA gravitational-wave detector. 

The history of science portion is a historical study of a decades-long controversy 

that has surrounded the issue of gravitational radiation reaction in general relativity. 

In essence, this is a history of the antecedents of the physics research in Part I. 

1 
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The California Institute of Technology offers a Ph.D. in physics, but none in the 

history of science; therefore, this thesis is the basis for the author's physics Ph.D., 

with a minor in the Science, Ethics and Society program. Nevertheless, the author 

and his thesis committee - which contains both historians and physicists - regard 

the work accomplished in this thesis as satisfying the customary requirements for a 

joint Ph.D. in physics and the history of science. 

1.2 Motivation 

Construction is currently underway on a new generation of sophisticated and sen­

sitive gravitational wave detectors, including the American LIGO [l], the French­

Italian VIRGO [2], and others are planned, both of interferometric and resonant 

mass designs. One senses a real prospect that gravitational waves will be detected 

by several instruments in the early years of the next decade. If useful information 

is to be extracted from the observed signals concerning the source systems from 

which they originated, a great deal of theoretical input will be required. Much work 

remains to be done so that the theoretical information available will be sufficiently 

detailed when detections do occur to make optimal use of the observational data 

right away. While the first largely undisputed observational evidence of the existence 

of gravitational waves, from the orbital decay of the binary pulsar PSR1913+16 [3], 

caught theorists somewhat by surprise, there will be no excuse in this instance if 

they are not fully prepared. 

Part I of this thesis presents several contributions to the theoretical understanding 

of one class of potential sources for gravitational wave detectors, binary systems 

consisting of neutron stars and black holes. Such binaries are often referred to as 
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compact binaries. Part I is principally concerned with the evolution of the orbits of 

such systems due to radiation reaction, that is the inspiral of the orbit due to loss 

of orbital energy and angular momentum to the emission of the gravitational waves. 

This inspiral, which causes the orbital motion to become faster and faster as the 

two bodies approach each other, results in a monotonic increase in the frequency 

and amplitude of the waves emitted. Finally the two bodies slam into each other, 

merging quickly and violently. This gives the search from such binaries a distinctive 

"chirp" pattern, which it is hoped will aid considerably in extracting such signals 

from detector noise. However, this will only be the case if one knows beforehand 

exactly how the waveform will evolve, since otherwise one's signal filters will quickly 

fall out of phase with the rapidly oscillating signal [4). The radiation reaction 

problem will thus be a critical one for the detection of signals from such sources. 

Since the evolution of the inspiral chirp depends fairly critically on the masses of 

the binary components, a successful signal extraction should allow one to accurately 

estimate the masses of the bodies (especially the product µ 315 M 215
, where µ is the 

binary's reduced mass and M its total mass, known as the "chirp mass"). However, 

information about the size and internal composition of the two bodies will only 

become significant in the waveform from the merger at the end of the inspiral. This 

is the least well understood part of the evolution, and presents technical difficulties 

to detection. One chapter of Part I of this thesis is devoted to a scheme to learn 

something about this part of the inspiral by proxy. 

Part II of the thesis is devoted to a historical study of gravitational waves, fo­

cusing on the problem of radiation reaction in binary systems. This was long a 

controversial topic in general relativity, with some prominent researchers at one 
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time expressing the view that such systems would not emit gravitational Waves. 

How the situation has evolved to a stage where very large scale experimental efforts 

to detect such signals are underway, with strong theoretical backing, is one of the 

principal questions asked in that study. 

1.3 Estimation of neutron-star equation of state data by 

gravitational wave detectors [Overview of Chapter 2] 

A gravitational wave with a memory refers to one which, on passing through a 

system of particles and moving them relative to each other, leaves them with different 

relative separations after its passage than they had initially. It was thought at one 

time that only waves emitted by sources, some of whose constituent elements were 

gravitationally unbound either before or after the emission, had memories. The 

Christodoulou memory, however, is a non-linear portion of the gravitational wave 

emitted by all sources, including bound systems, such as binary stars [5]. The 

Christodoulou memory can be viewed as the variable gravitational field produced at 

the detector by the energy flux of gravitational radiation emerging from the source 

itself [5, 6, 7). The energy flux can be thought of as the unbound portion of the 

system whose departure results in a permanent change in the source's Coulomb 

gravitational field. 

The Christodoulou memory is thus, in some sense, the wave of a wave, or the 

gravitational field of a wave, and as such is a decidedly non-linear effect. It thus 

might seem surpising that in the wave from a coalesing binary system the memory 

may be as much as a tenth the size of the amplitude of the primary wave. This raises 

the hope that this interesting effect might be detectable by proposed gravitational 



5 

wave detectors such as LIGO. Although the memory is a DC effect, Braginsky 

and Thorne [8) have shown how, by integrating on a timescale reflecting the most 

sensitive frequency of the detector, one can optimise the memory signal during the 

period of the passage of the primary waves past the detector, while the memory 

is building up. For neutron star and black hole binaries observable by LIGO, the 

greatest quantity of gravitational radiation emitted is in the last hundredth of a 

second before the two bodies merge. Since LIGO 's optimum frequency is near 100 

Hz, it is thus well suited to measuring this memory, in frequency terms. 

The possibility of detecting the Christodoulou memory may be of particular 

interest , since the primary wave during this last burst before merger is too high in 

frequency for detection by LIGO in, for instance, binaries containing neutron stars. 

This is unfortunate, since although the inspiral waveform, when detected by LIGO 

or similar intruments, should permit excellent estimates of the masses of the binary 

components, only the coalesence waveform will contain much information about the 

size of composition of the components. At present there are large uncertainties in 

our knowledge of the size and the equation of state of neutron stars. Since the 

Christodoulou memory continues to grow until the two bodies hit each other and 

merge together to form an axisymmetric body, it seems clear that the size of the 

memory would depend quite strongly on the size of the binary components. Thus, 

detection of the memory from coalescing binaries containing neutron stars would be 

one possible way in which gravitational wave detectors of the LIGO type could be 

employed to estimate neutron star radii. 

Such a method of looking for evidence of neutron star equations of state is dis­

cussed in Chapter 2, and the prospects are found , in the end, to be unpromising. It 
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seems unlikely that LIGO will be capable of detecting the Christodoulou memory at 

all, based on current astrophysical estimates of compact binary merger frequencies, 

except by a serendipitous event. Space based detectors, such as the proposed LISA 

[9], may be able to detect the memory from mergers of systems involving super­

massive black holes, due to their sensitivity to lower frequencies than ground-based 

detectors, which allows them to integrate over the more gradual growth of the mem­

ory from such large systems. Such measurements may teach us much about black 

hole physics, but little about neutron-star radii. 

At present , the most promising method of estimating equation of state data from 

neutron star binaries using gravitational wave detectors involves the construction 

of a xylophone of specially tuned narrow band detectors. This arrangement could 

consist of either large spherical resonant mass detectors [10] or special dual-recycled 

interferometers contained in the LIGO housing [11 ]), staggered in frequency across 

the kilohertz range which the coalescence waveform is expected to traverse. For 

such detectors, the power spectrum of the coalescence waveform (its energy per unit 

frequency as a function of frequency) would be the principal quantity of measure­

ment. Therefore theoretical estimates of this function for merging binaries are badly 

needed in order to plan detection and signal analysis strategies. The best models 

of such mergers at present are smooth particle hydrodynamic simulations involving 

only Newtonian gravity with radiation reaction included by applying quadrupole 

formula energy losses to the system [12, 13, 14, 15]. Estimates of the power spec­

trum based on such models are promising, in that they show that the power drops 

sharply above a certain frequency enabling an unambiguous estimate of the cut-off 

point on the basis of yes-no responses from the xylophone of detectors [14, 16] (an 
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additional advantage for these detectors would be that the broadband LIGO de­

tector would presumably see the in.spiral waveform, indicating the presence of the 

coalesence waveform at the higher frequency). 

However, these models, whose primary motivation has not been the estimation of 

gravitational wave effects hitherto, do not take into account the strong relativistic 

gravity of the coalescence phase of the inspiral. Post-Newtonian corrections to the 

spectra indicate that the actual spectra, while still potentially providing highly 

useful information, will be much more complicated than the Newtonian estimates 

would suggest [16]. Efforts have recently been made to simulate actual relativistic 

effects of neutron star mergers [17] , with unexpected results [18], but it is widely 

suspected that the simpifications employed in this simulation compromise the results 

[19, 20]. It remains for other groups, such as the Centrella group, to follow with new 

relativistic simulations for comparison. At present, it is still too early to make a 

definitive statement about the prospects for gravitational wave detectors providing 

strong evidence on neutron star equations of state. 

1.4 Radiation reaction effects in extreme-mass-ratio bina­

ries [Overview of Chapters 3-5] 

In order to extract information about the nature of signals and sources from ob­

servations by LIGO-type detectors, sophisticated filtering techniques, designed to 

increase the signal-to-noise ratio in the output, will be required. In the case of 

coalescing compact binaries, this will require accurate theoretical templates of the 

expected signal [4]. The monotonic increase in frequency and amplitude of the signal 

from these sources (the "chirp") depends crucially on the back reaction effect of the 
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wave emission on the source, which governs the inspiral (the orbital decay due to 

the loss of energy and angular momentum to the waves) . For this reason, it may be 

important in some cases, to calculate not only the energy and angular momentum 

lost "to infinity" by the source, but also, for instance, the same quantities which 

may be carried to the horizon of one or more black holes in the source system itself. 

For this reason, the :flux of energy carried down the hole is calculated in chapters 

3 and 4 dealing with gravitational waves produced by a (relatively) small particle 

orbiting a central black hole. 

While it was long expected that binary star systems would undergo orbital decay 

if they lost energy to the emission of gravitational waves (see part II for a historical 

discussion of doubts on this score), the first papers to make a particular study of 

orbital evolution under radiation damping were those of Peters and Mathews [21] 

and Peters [22] in the mid-sixties. The latter paper showed, in the Newtonian limit 

of weak gravitational fields and small velocities (which is to say, large orbital radii), 

that circular Keplerian orbits would remain circular as they decreased in radius due 

to the damping, and furthermore, that non-circular, eccentric orbits would tend 

to become more circular (less eccentric) under the influence of the back reaction 

effect . Such an orbital circularization is known in other dissipation contexts, such 

as satellites falling to earth as the result of drag in the upper atmosphere. The 

dissipating effect has a tendancy to drive the orbit down in the effective gravitational 

potential, towards the potential minimum which defines circular orbits. 

For this reason, one might have naively expected that the radiation-damping­

induced circularization demonstrated by Peters would be exhibited also in the strong 

field fast motion regime of small orbital radii. This is a difficult issue to test, 
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because no exact solution to the two-body problem of orbital mechanics is known 

in general relativity, the theory which is thought to govern such systems. However, 

well known solutions to the static or stationary gravitational field produced by a 

single massive body exist in general relativity, the Schwarzschild (non-rotating) and 

Kerr (rotating) solutions. These solutions represent , in the point-mass limit , black 

holes. This permits, in principle, the use of perturbation theory to describe the field 

of a relatively small body orbiting around a central black hole. Since one expects 

such a perturbed field to contain gravitational waves far from the source, such a 

method can accurately describe the flux of energy and angular momentum carried 

from the binary system, without the slow-motion or weak gravity approximations 

associated with equal mass binary calculations. 

Perturbation formalisms , such as that of Teukolsky [23] , permit the investigation 

of a conjecture due to Amos Ori, that the Peters ' effect of decreasing eccentricity 

for radiation damped orbits does not entirely hold in the strong field region. Ori's 

argument was that, as the particle approached the innermost stable circular orbit 

(ISCO), after which, for highly relativistic gravity, an orbiting particle loses all dy­

namical stability and plunges into the central body, the alteration in the shape of 

the effective potential (in which the minimum defining stable circular orbits would 

be about to dissapear), would lead to orbital eccentricity increasing rather than 

decreasing. This could be explained in the following terms. Although the particle 

would continue to move towards the potential minimum, and therefore decrease in 

eccentricity (due the narrowing of the potential walls at the bottom) , the poten­

tial itself would be broadening and shallowing as the ISCO approached, and the 

minimum prepared to turn into a saddle point. This broadening effect would at 
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some point overcome the particle's dropping towards the minimum, and cause its 

eccentricity to increase. In order to examine the details of this conjecture, it would 

be necessary to solve the perturbation equations for a Schwarzschild black hole, 

and find , if it existed, the actual point (the critical radius), at which the change in 

behaviour occured. 

The results presented in chapter 3, show that such a critical point does exist 

in the Schwarzschild case, quite close to the ISCO (r = 6M in Schwarzschild) , at 

r = 6.6792M. Down to this radius re slightly eccentric orbits continue to become 

more circular, but as the insprial continues beyond this point, they begin becoming 

more eccentric. The results of chapter 4, dealing with slightly eccentric equatorial 

orbits in Kerr, appear to conclusively confirm the relationship between critical radius 

and ISCO. The position of the ISCO for orbits around a rotating black hole depends 

greatly on the sense of rotation of the orbit relative to the black hole spin, and on 

the rapidity of the black hole's spin. For all cases, except one, the critical point 

at which orbits start becoming less circular occurs within lM or less of the ISCO. 

The exceptional case is for an extreme Kerr black hole (which is rotating as fast as 

the theory permits) , with a particle in prograde orbit. In addition, the results of 

chapter 4 show that for prograde orbits, the critical radius draws closer and closer 

to the ISCO in terms of the Boyer-Lindquist radial coordinate as the black hole's 

rate of spin increases. 

The role played by energy and angular momentum lost to the black hole in the 

calculations of chapter 3 and 4 should briefly be mentioned. In the Schwarzschild 

case, the effect is never of any great importance, being entirely negligible for large 

radii, and constituting on the order of 1 % of the evolutionary effects near the ISCO. 
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For prograde orbits in the Kerr case, the orbit can continue until much closer to the 

central body, and not surprisingly, the contributions due to the waves interacting 

with the black hole are more significant. What one finds in this case is that the 

particle actually absorbs more energy from outgoing waves heading away from the 

black hole then it loses to the waves headed down the black hole. This phenomenon 

is known as superradiance [24]. The contributions for energy lost down the hole are 

not peaked to the same harmonics as those from waves sent to infinity. Therefore 

it turns out that for certain (less-significant) frequencies or harmonics of emitted 

radiation, and for a particle in a prograde orbit, close in (r ,...., 2M) to a black 

hole with large spin (a/ M close to 1, where a is the spin) the particle actually 

gains orbital energy and angular momentum. If one sums over all the frequencies 

however, it continues to lose energy and to decay in its orbit (that is decrease its 

orbital radius). 

Two obvious ways in which this work for slightly eccentric orbits can be gen­

eralized are to the case of generally eccentric orbits around a non-rotating black 

hole, and to the case of general, non-equatorial orbits in Kerr (not confined to the 

equatorial plane of the spinning black hole). In chapter 5 results for the former 

case are presented. Again, it is shown that orbits tend to lose eccentricity up until 

a point shortly before the onset of instability (which is defined for eccentric orbits 

by orbits with a semi-latus rectum of p = 6 + 2e, where e is the eccentricity). For 

orbits with an eccentricity e approaching 1 (the limit at which the orbit becomes 

unbound), the critical semi-latus rectum p (at which eccentricity begins increasing) 

approaches arbitrarily closely the value p at which dynamical orbital instability sets 

in (the equivalent of the ISCO for non-circular orbits). 
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The case of non-equatorial orbits in Kerr is one for which difficulties are en­

countered in the formalism employed in chapters 3, 4 and 5. The constants of the 

motion represented by orbital energy and angular momentum are, with the mass of 

the particle, sufficient to describe equatorial orbits uniquely. In the non-equatorial 

Kerr case, another constant , known as the Carter constant is encountered. While 

mathematically this constant of the motion is on the same footing as the others 

already discussed (it reflects a Killing-tensor symmetry in the underlying Kerr ge­

ometry), it does not have a clear Newtonian analogue, which might have aided one 

in equating a quantity in the far field flux with a quant ity describing the orbital 

motion. Recently, some progress and promising methods have been put forward to 

deal with this problem [25, 26 , 27] . In the meantime, in chapter 6 is presented an 

argument which avoids discussing the details of the radiation reaction force on the 

particle and thus the issue of how to describe the alteration in its orbit due to a 

changing Carter constant caused by wave emission. It does this by showing that 

the symmetries of circular orbits around a Kerr black hole (defined as an orbit of 

constant Boyer-Linquist radius , sometimes referred to as a "quasi-circular" orbit) 

ensure that such an orbit remains circular under radiation reaction. This extends 

this long standing result to the general Kerr case in a particularly useful way, since 

we can expect most black holes to rotate, and many or most bodies orbiting them 

to have non-equatorial orbits. 

The results discussed in chapters 3,4,5 and 6 may have some application to LIGO 

and other ground-based detectors, in the case of binaries with small mass ratios, 

but not so small that their gravitational wave frequencies never enter the LIGO 

bandwidth. In addition the results from such calculations are important since they 
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are not limited to slow velocities and weak fields for the systems they describe, unlike 

the post-Newtonian approximation schemes typically used in the case of comparable 

mass binaries. It is still not known for sure how much accuracy will be lost in signal 

extraction by the use of post-Newtonian templates in signal extraction in LIGO, 

assuming, as seems possible, that exact numerical solutions for equal mass systems 

will be unavailable when LIGO goes online. By applying these post-Newtonian 

estimates to the extreme mass ratio limit, and comparing them with exact strong 

field calculations such as those presented here, it is possible to make useful estimates 

of the likely loss in signal-to-noise ratio involved in employing post-Newtonian signal 

templates[28]. 

Because of their sensitivity to low frequencies, space-based detectors such as LISA 

should be able to detect gravitational waves from solar massed size objects spiralling 

into supermassive black holes of 106 to 109 solar masses. Such systems would be 

well modelled by these results. Assuming supermassive black holes are sufficiently 

common in the universe, which is thought quite likely, and assuming that a space­

based detector is launched early in the next century, as is hoped by its proponents, 

the type of perturbation analysis used in this thesis may play an important role in 

signal analysis. 

1.5 Overview of Part II 

Part II of this thesis is concerned with a historical study of the radiation reaction 

problem in general relativity. Chapter 1 presents a discussion of the central historical 

issues raised by the study, such as the role of analogy in general relativity, the culture 

and practice of theory, and the concept of the theoretician's regress. Chapter 2 
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deals with the prehistory of the gravitational radiation reaction problem, before the 

birth of the general theory of relativity. Chapters 3-5 deal with the development of 

gravitational wave theory from the origins of general relativity to the second world 

war, focusing in chapter 5 on Einstein's abortive attempt to disprove the existence 

of gravitational waves in 1936. 

Chapters 6-8 deal with the post-war controversy over whether gravitational radi­

ation damping existed for binary star systems, focusing on the sceptics who felt that 

such systems did not emit gravitational radiation. Chapter 9 deals briefly with post­

war sources of funding for work in this field. Chapters 10-12 deal with the period 

of the 1960s, when general relativity began to emerge into the mainstream of the­

oretical physics, and great strides were made in the understanding of gravitational 

waves. 

Chapters 13-16 discuss the quadrupole formula controversy of the 1970s and 

1980s, including the further theoretical developments, the impact of experimental 

evidence, and the role of history in the debates over the validity of the quadrupole 

formula for radiation reaction. Chapters 17-20 discuss various issues arising out of 

the study, from the role of style in physics, to the place of relativity in contemporary 

physics, to the technical issues confronting researchers in the back reaction problem 

in general relativity. 
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Chapter 2 

Prospects for detecting the 

Christodoulou memory of 

gravitational waves from a 

coalescing compact binary 

Abstract 

A coalescing compact binary, during its last tenth of a second of life, emits a burst 

of gravitational waves consisting of a high-frequency "chirp", with frequencies much 

greater than 100 Hz, superimposed on a gradually growing memory, known as the 

Christodoulou memory. Most of the memory's growth occurs over the last few 

hundredths of a second, so its signal has strong Fourier components at f ,....., 100 Hz. 

The planned LIGO /VIRGO broadband gravitational-wave detectors have optimal 

performance at frequencies around 100 Hz and should be well suited, in terms of 

17 
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frequencies, to detect the growth of the memory amidst the chirp. If one or both 

of the binary's components is a neutron star (the other being either a neutron 

star or a black hole), then the growth of the memory will be cut off by the star's 

tidal disruption. The larger the neutron star's radius the sooner the cutoff and 

correspondingly the weaker the total memory. Therefore, from a LIGO /VIRGO 

measurement of the memory's strength, one could hope to infer the neutron-star 

radius. The prospects for such measurements to succeed are evaluated quantitatively 

and found to be poor because of the weakness of the memory. Even under optimistic 

circumstances the memory is so weak that only for a black-hole/black-hole binary 

is there much chance of detecting it, and then the prospects are only marginal. 

2.1 Introduction 

The continuing efforts to improve the sensitivity of gravitational-wave detectors, 

and the commencement of ambitious programs to build the kilometer-scale LIGO 

[1] and VIRGO [2] network of detectors, have encouraged attempts to predict the 

behaviour of potential sources and types of gravitational waves. One important type 

are gravitational waves with memory. These are waves which leave a system of free 

masses with a permanent relative displacement following their passage. Braginsky 

and Thorne [3] have discussed the optimal experimental strategy for detecting mem­

ories, and have estimated the sensitivities of a variety of detectors to waves with 

memory. 

Until recently it was thought that waves with memory are restricted to sources 

whose constituent components are not gravitationally bound to each other, either 

initially or finally, or both. However, in 1991 Christodoulou [4] showed that strongly 
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radiating bound systems, such as coalescing compact binary stars, have a signif­

icant memory created by nonlinearities in the wave-emission mechanism. This 

Christodoulou memory is actually the tranverse-traceless part of the gravitational 

field produced by the stress-energy tensor of the gravitational wave itself. [4, 5, 6] . 

Because, for a coalescing binary, it can be as large as a tenth the size of the pri­

mary wave, the Christodoulou memory may be detectable by the planned network 

of gravitational-wave detectors , including LIGO [1] and VIRGO [2]. 

Coalescing compact binaries (whether NS/NS, NS/BH or BH/BH, where NS 

and BH mean neutron star and black hole) are expected to be among the strongest 

sources of gravitational waves for LIGO/VIRGO. Amongst the most interesting 

information that the experimenters might hope to extract from these binaries' waves 

is the neutron star mass-radius relation, since from it one can deduce the equation 

of state of matter at densities from nuclear to about ten times nuclear [7] , which 

is little understood at present. Unfortunately, although waves from such a binary, 

in the frequency band of good expected LIGO/VIRGO performance (roughly 10 to 

300 Hz) , depend strongly on the binary's masses and might therefore allow fairly 

accurate mass measurements [8 , 9, 10] , they are insensitive to the radii of the binary's 

constituents. Strong dependance on the radii occurs only near the end of the inspiral, 

when the two objects are interacting tidally, merging and/or disrupting, and the 

frequencies of the primary waves are around a kilohertz. At these high frequencies 

the LIGO /VIRGO detectors will have relatively poor performance because of serious 

photon shot noise. In view of this , two different methods have been suggested for 

determining the radii [8]. One involves measurements of the kilohertz primary waves 

using specially configured narrow-band detectors . The other uses measurements of 
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the primary waves' Christodoulou memory, detected by the same LIGO/VIRGO 

broad-band detectors which will attempt the mass measurements. This paper and 

a companion one will evaluate these two methods, the memory method here and 

the narrow-band detector method in the companion paper [11]. As we shall see, 

the memory method is not very promising. In contrast, the narrow-band approach 

shows considerable promise. 

The method discussed here relies on the following properties of the memory. 

The memory grows most strongly on timescales of the order of a hundredth of a 

second, and therefore has its strongest Fourier components around the hundred 

Hertz region where the broadband detectors perform best. The primary waves and 

the growth of the memory are both cut off when the binary's neutron star or stars 

are tidally disrupted. The larger the radius of the neutron star, the sooner this 

occurs. As a result, the strength of the memory, and therefore the strength of the 

optimally filtered signal in the detectors, is quite sensitive to the neutron-star radius. 

Specifically, the memory's strength is of the order of (distance to earth)- 1 x (the 

energy carried off by the primary wave burst). The energy carried off is of the order 

of the binary's gravitational binding energy at tidal disruption, that is ,...., µM /2R, 

whereµ and Mare the binary's reduced and total masses and R is the neutron-star 

radius. Therefore, the memory behaves like hex 1/ R. Unfortunately, as we will see 

in section IV, for the case of binaries containing a neutron star, the memory is likely 

to be too weak for either detection or measurement, even when fairly optimistic 

assumptions are made concerning event rate and detector sensitivities. For some 

two-black-hole binaries, however, the memory might be just detectable. 

The paper is organized as follows. In section II, I sketch a derivation, based on 
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the quadropole moment formalism, of the time evolution of the wave's memory. The 

final formula for the memory, Eq. (2.5) , is somewhat innaccurate, because of post­

Newtonian and higher-order relativistic effects. The magnitude and sign of the errors 

are discussed at the end of section IV, and are seen not to change any of the paper's 

conclusions. In section III, I discuss the method of optimal signal processing that 

would be used, with a broadband LIGO/VIRGO detector, to search for the memory 

and measure its size. I also write down the formulas for the memory's signal-to-noise 

ratio and for the detector noise spectrum (assuming an "advanced" LIGO detector 

[1]) which goes into the signal-to-noise formula. In section IV, I describe two different 

calculations of the signal-to-noise ratio, which I have carried out, one based largely 

on numerical integrations, the other on analytical approximations. I give analytical 

formulae and a graph from which one can infer the S / N for any desired binary. In 

section VI apply my results to specific examples of NS/NS, NS/BH and BH/BH 

binaries. In section VI I discuss the implications of my results. Throughout the 

paper I use units in which Newton's constant of gravitation and the speed of light 

are unity, i.e. G = c = 1. 

2 .2 The form of the Christodoulou memory 

Thorne gives an expression for the net Christodoulou memory, when it has ceased 

growing, in terms of the total energy per unit solid angle, dE / dD,', carried off by the 

primary waves [5]. Since the memory, at any moment of retarded time during its 

growth, is produced by the stress-energy of all the waves emitted up until then, one 

can obtain an expression for the time-evolving memory h(t) by replacing dE/dD' in 
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Thorne's formula with t 00 ( d
2 E / dD.' dt')dt'. The result is 

2 ft J d2
E . I h(t) = - --(1 +cosB')e2"f>dD,'dt' . 

r -oo dt1dD.1 
(2.1) 

The mathematical and geometric conventions are as follows: h(t) is a complex 

gravitational-wave field at Earth, equal to h+ + ihx, with the transverse + axes 

chosen arbitrarily and the x axes at 45° to it; the direction from source to Earth 

is the z'-axis (the polar axis) and the + axes are taken to be the x' and y' axes; 

B' and </>' are the polar co-ordinates that correspond to this source-based Cartesian 

system ( x' = r sin B' cos</>', y' = r sin B' sin<//, z' = r cos B'); the angular integral is 

over the direction, in terms of B' and </>', of emission of the primary waves and r is 

the distance from source to Earth. The power radiated by the binary into unit solid 

angle has been evaluated by many researchers, for instance Peters and Mathews (12], 

using the quadropole moment formalism. It is, after averaging over one complete 

orbit, 
d2 E 1 µ 2 M 3 

d
" d = ---5 -(1+6 cos2 e + cos4 B), 
H

1 t 27r a 
(2.2) 

where a, the orbital radius, shrinks due to radiation reaction in a manner given by 

1 

(
256 M 2 ) 4 a= -µ t 
5 

(2.3) 

where t is the time until final coalescence, assuming the system consists of two 

idealised point masses. In these equations, µ = m 1m2/(m1 + m 2 ) is the reduced 

mass and M = m 1 + m 2 is the total mass of the system and B (not to be confused 

with B') is the angle that the primary direction of emission ( B' ,</>') makes with the 

binary's rotation axis. 

To simplify the evaluation of the angular integral in Eq. ( 2.1), orient the x' ,y' 

axes so that the binary's rotation axis lie in the x'-z' plane, and denote by i the 
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angle between the rotation axis and the direction to earth (the z' direction). Then 

cos e = sin l sin B' cos ¢/ + cos l cos B'. (2.4) 

Inserting Eqs. (2.2), (2.3) and (2.4) into Eq. (2.1) and evaluating the angular integral, 

one obtains the following expression for the memory. 

h() - 3 (5µ
3
M

2)1/4( sin
2l). 2 t - - 1 - -- sm l 

32 r4 t 18 
(2.5) 

This expression agrees , except for a factor of two, with the similar equation derived 

by Wiseman and Will [6]. 

Note that h(t) - h+ + ihx is real, so the simplifying choice of orientation for the 

observer's x',y' axes has made hx vanish and left h(t) = h+(t). Note also that the 

memory increases as the time to coalescence t decreases. The objects involved are 

not point masses, however. At some point, say at time tk, tidal forces disrupt them, 

they begin to merge, and the abrupt reduction of energy emitted in the burst, which 

is likely to occur within about one orbital period [13, 14, 15], causes the memory to 

stop growing. Thereafter, it retains the amplitude it had at t = tk. 

The waveform in Eq. (2.5), with its growth terminated at t = tk, is plotted in 

Fig. 2.1. Because hx = 0, the signal sensed by the detector is hd = F+h+, where 

F+ :=:;; 1 is the detector's quadropolar antenna beam pattern function, which depends 

on the orientation of the detector to the incoming wave (Eq. (104a) and Fig. 9.9 of 

Ref[16]). If the detector happens to be so oriented as to maximise hd then F+ = 1 

and therefore hd = h(t). 

For comparison with the time evolution h(t) of the memory, Eq. (2.5), it will be 

important to know the time evolution of the frequency, fp of the primary waves, 
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which is twice the orbital frequency [16]. Therefore 

_1 ( 5M )3/s(M)3/s 
r.M 256µ t 

3.387 x 103Hz(M)3;s(M0 )s/s(lms)3/s. 
4µ M t 

(2.6) 

Recall that for a binary, M / 4µ ~ 1. 

2.3 A nalysing the signal in t he detector 

In order to estimate the ability of a detector, such as LIGO, to detect the memory, 

it is necessary to calculate the signal-to-noise ratio of the signal in the detector. 

An experimenter, knowing the detector 's noise spectrum, constructs a filter which 

is designed to let through the signal, while blocking out as much of the noise as 

possible. The Wiener optimal filter for a signal h(t), seen in a detector with a one­

sided noise spectrum Sh(!), is a function k(t), whose Fourier transform is related to 

the Fourier transform of the signal by 

- h(f) 
k(f) = Sh(!)' (2.7) 

The filter is therefore a function similar to the signal, except that those frequencies 

which are noisy in the detector are suppressed. This is illustrated by the numerically 

derived graph of the filter function, k(t) , in Fig. 2.2. The signal-to-noise ratio after 

optimal filtering, and taking account of the detector's beam pattern, is given by [17] 

or 

s 2 1= (-) =2F~ k(t)h(t)dt 
N -= 

(§_)2 = 4p2 r= lh(J)l2 df 
N +lo Sh(!) . 

(2.8) 

(2.9) 
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In evaluating S / N for the Christodoulou memory, I have used the noise spectrum 

projected for the "advanced" detectors in LIGO, which may be in operation by the 

middle of the next decade. I have approximated their noise spectrum in the following 

way. 

(2.10) 

where hm = 1.0 x 10-23 and lm = 70Hz [1]. 

This approximation to Sh(!) ignores a seismic cutoff (in which Sh rises very 

rapidly below lOHz) because it turns out to have a negligible influence on the signal­

to-noise ratio. (Without the cutoff, Sh ex l- 2 and lhl 2 ex l-4 at small l [Eq. (2.15) 

below], so the cutoff produces a correction,....., (10Hz/70Hz )3 , which is much less than 

one per cent.) Between the seismic cutoff and 70Hz (the optimal frequency) the noise 

is principally due to thermal noise in the test mass suspension, and above 70Hz to 

photon shot noise in the interferometer beam [1]. The frequency of the primary 

gravitational waves from the coalescing binary, which is approaching the kilohertz 

range in the last 1/10 second of the inspiral, will fall outside of the LIGO detection 

window at that time. Although the Christodoulou memory is a DC signal, and 

therefore unobservable because of the low frequency noise, its growth is detectable 

by observing it over the last ,....., 1/lOs of the burst. At the very end of the signal 

the rate of change is quick enough, so that a great part of the signal can be seen 

on the timescale of LIGO's optimal frequency, which is an important advantage 

for detection, as pointed out by Braginsky and Thorne [3]. To the observers, the 

primary wave burst is a precursor to the memory it generates, because the two are 

detectable by them at different times. 

Another type of detector which may go into operation in the next century is a 
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space based interferometer, such as the recently proposed LISA [18]. In the absence 

of seismic noise, such detectors would be much more sensitive to low frequency 

waves, and could therefore see more of the growth of the memory than any earth­

based detector. Its noise spectrum can be modeled in the following way [18]: 

! 
(h~/ Ji)(! I Ji) , f ~Ji 

Sh(!)= (h~/ Ji), Ji :::; f <Ji , 

(h~/!1)(!/!1)-2 , f < !1 

(2.11) 

where hm = 3 x 10-23
, f 1 = 10-3 Hz and f2 = 10-1 Hz. Up to f 1 the noise is due to 

residual effects which perturb the spacecraft 's inertial motion. Above f 1 it is due to 

photon shot noise, and the disimprovement beyond Ji occurs because of the waves 

becoming shorter than the interferometer arm. 

The binary coalescences which the LIGO /VIRGO detectors will be searching 

for are thought to be very rare: a few per year to a few per day at the strengths 

detectable by these instruments. In order to be certain, with 99% confidence, that an 

observed primary-wave signal is not due to the detector's internal Gaussian noise, 

one must require that a signal-to-noise ratio of 6 or better be registered in two 

independant detectors simultaneously [8]. However, once the primary waves have 

been discovered, one can predict from them, to within an accuracy of about O.OOls 

or less , the time at which the memory will register most strongly in the detector. 

With this knowledge, there are no free parameters to be solved for in the memory 

measurement , and the detector's optimally filtered output will therefore be a single 

number. The noise component of this number should be Gaussianly distributed, 

so the usual Gaussian criteria for detection apply. For measurement by a single 

detector, an observed signal with S/N = 1 is real with 68% confidence, which is 

increased to 95% confidence if S/N = 2 and to 99~% confidence if S/N = 3. More to 
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the point, if both LIGO detectors register S/N = 2 then one can be 99~% confident 

that the memory was detected. Therefore, in the following section, I shall regard 

S / N = 2 as a reasonable criterion for detectability by LIGO. In the case of a space­

based detector, where only one instrument would be in operation, S / N 2 3 would 

be required, without a coincident detection by another system. 

2 .4 The signal to noise ratios 

I have computed the signal-to-noise ratio S / N for the Christodoulou memory pro­

duced by NS/BH, NS/NS and BH/BH binaries, under a variety of assumptions 

about the time at which tidal disruption or coalescence terminates the primary 

waves. In order to compute the S/N, one needs to find the Fourier transform of 

the signal h(J) . One method I have used is to calculate this function and the signal 

to noise itself numerically, using a Fast Fourier Transform algorithm taken from 

Numerical Recipes [19]. In an idealized case, with the cut off time tk :::; 0.lms, so 

that 27r fmtk (the detector 's optimal angular frequency times the cutoff time) can 

be regarded as a small parameter, I have been able to do the whole calculation 

analytically, in the following way. 

Write the signal in the form 

(2.12) 

where hk = h(tk) is given by Eq. (2.5): 

3 (5µ3M2)1/4( sin
2 l) . 2 - 1- -- Sln l 

32 r 4tk 18 
_24 (4µ)3/4( M )s/4 1 

2.56 x 10 M M. l74 
0 x 
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(
200Mpc) ( sin

2 l) . 2 x r 1 - l8 sm l. (2.13) 

Here x = 27r f mtk, so that tk is rescaled by LIGO's optimal frequency, fm· The 

distance r is measured in units of 200Mpc for reasons that will become evident 

below. Then one can reexpress Eq. (2.12) as 

(2.14) 

where 8 is the step function , 8( e) = 1 for e > 0 and 0 for e ~ 0. The Fourier 

transforms of the step function and the power law l/t1
/ 4 are well known (see, for 

instance, the Bateman papers (20]). Using them and the convolution theorem it is 

possible to compute the Fourier transform of Eq. (2.14). When the convolution is 

evaluated as a power series in 27r ftk , the result is , 

h(f) = - ihk (1 + ia(27rftk) 1l4 + i(l - ~3 1)27rftk 27rf 

1 8 2 ) 2(1- 71)(27rftk) + ... (2.15) 

where a = p + i(j with p = 0.469 and (j = 1.13, and where / = 6.28, and terms 

which are higher order in ftk are neglected. See the appendix where the derivation 

of this equation is explained in more detail, and the exact values of a and I are 

given. 

Using Eqs. (2.9) and (2.15) and the noise spectrum defined in Eq. (2.10), it is 

straightforward to calculate the signal-to-noise ratio for the memory, seen in an 

advanced LIGO detector. The result is 
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288 ( 4 ) 5/4 +-p 1- -1 x 
119 3 
96 ( 7 2 ] 

- 35 I 1 - 51 )x + .. . . (2.16) 

Again, higher order terms are neglected. The coefficients in this power series in 

x = 27r fmtk are mostly of order unity, except for the x 2 term. Therefore, for an 

error of less than 10% to order x 2
, x = 27rfmtk must be ::; 0.04, which means 

(since f m = 70Hz) , that tk must be ::; 10-4sec. The next large coefficient term is 

the x 4 term, but at that order high frequency contributions from the discontinuous 

derivative at t = tk introduce infinities into the series. So one cannot improve the 

range of validity of the analytic approximation by simply going to higher order in 

the expansion, without drastically altering and complicating the calculation. In the 

numerical case, however, it is straightforward to round off the sharp edge at the cutoff 

(which is unphysical), and so the numerical results are preferred for tk ~ .lms. For 

a comparison of the numerical and analytical results , and a graph of L:, as defined 

in Eq. (2.16) , see Fig. 2.3. 

Since the detector's minimum noise level is hm = 10-23
, and since the memory's 

full strength hk is given by Eq. (2.13), in the limit 27r f mtk « 1 the signal-to-noise 

ratio (2.16) becomes 

s 
N 

(~) 1/2 ( ~ )F+ 
3 7rhm 

F (
4µ)3/4(.!:!_)5/4( 200Mpc/1) 

0.0665 
+ M M0 (27r f mtk) 1! 4 

( 
sin2 1,) . 

X 1-~ Slll
2

L (2 .17) 

This S / N increases monotonically with decreasing cutoff time tk, as one would 

expect . The same calculation can be made in the case of the space-based detector, 
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using the noise spectrum in Eq. (2.11). The result is 

(2.18) 

Here, the expansion is in terms of x1 = 27r f 1tk and x 2 = 27r htk. 

The cut-off time, tk, is constrained in three different ways. One is by the total 

amount of energy radiated in the primary waves, which I shall refer to as Ecw. The 

relation is 

(2.19) 

Since Ecw cannot exceed µ and will typically be less, and since µ cannot exceed 

M/4, then 

9.4 x 10-11sec(MM) (Eµ )4 M 
8 GW 4µ 

_11 ( M) > 9 .4 x 10 sec M . 
8 

(2.20) 

A second constraint on tk comes from the total number of orbits left until t = 0, if 

there were no cutoff, which is 

N =~ft = _±_( 5M )3/8(~)5/8. 
orb 5 p k 57!" 256µ M (2.21) 

This number must exceed unity if the analysis is to make any sense, since the 

quadropole formalism requires averaging over an orbit. This constraint says that 

- (57!")8/5 (64)3/5 (4µ)3/5 8/5 tk - - - - N M 4 5 M orb 
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> 2 x 10-4 sec - - . ( 4µ)3/s( M) 
M M 8 

(2.22) 

This constraint (2.22) is more severe than (2.20) for binaries with realistic mass 

ratios, 4µ/M > 2.77x10-11 (i.e. m 2/m1 > 6.93x10-12 ), while (2.20) is more severe 

in the unrealistic regime of very extreme mass ratios, where 4µ/ M > 2. 77 x 10-11 

(i.e. m2/m1 < 6.93 x 10-12
). Therefore, in cases of interest to us, (2.22) is always 

the active constraint. 

The third restriction is the actual relation between tk and the size of the binary's 

components, which depends on the onset of tidal disruption. If disruption begins as 

the two bodies first touch, then 

~(M) (r1 + r2)4M 
64 4µ M 

3.85 x 10-1sec(~) ( 1 ~r2 )4(~), (2.23) 

where r 1 and r2 are the radii of the two bodies [12]. In the most extreme conceivable 

case, where r 1 +r2 = M (so the sum of the bodies' physical radii is equal to the sum 

of half their Schwarzschild radii, recall that a rapidly spinning hole has a radius equal 

to half of the Schwarzschild radius), this gives tk 2: 3.85 x 10-1 (M/4µ)(M/M8 ). 

In the LIGO /VIRGO frequency band one deals with binaries for which 4µ 2: 

1M8 , M ::::; 300M8 , so (2.22) is generally the active constraint on tk. For LISA the 

mass ratio can be much more extreme, so either (2.22) or (2.23) can be the relevant 

constraint. 

2.5 Examples and applications 

Narayan, Piran and Shemi [21] and Phinney [22] have estimated a coalescence rate 

of a few per year for neutron star /black hole binaries at a distance of 200 Mpc from 
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Earth. To model this type of source I use m 1 = 10M0 , m 2 = l.4M0 . One can derive 

an estimate of the total energy radiated in the primary wave from the energy of the 

last stable circular orbit of the neutron star (treated as a point mass) about the 

Black Hole, which is assumed to be maximally rotating (in order to maximise the 

S/N). This gives Eaw = 0.4828µ [23], which implies (from Eqs. (2.19) and (2.16)) 

that the signal to noise would be, 

S _ 2 o(200Mpc)F ( sin
2 l) . 2 - - . + 1 - -- Sln l. 

N r 18 
(2.24) 

The cut-off time in this case is unrealistically small (tk ~ lOµs, which is much less 

than an orbital period), because of the inadequecy of the quadropole approximation. 

Using my numerical calculation of S/N (see Fig. 2.3) and still taking a deliberately 

exaggerated case, if the two bodies begin to merge as they touch and the black hole 

is non-rotating, then the memory should stop growing at a ~ 40km (in fact , the 

last stable circular orbit in this case is at a ~ 90km). At this stage the frequency 

of the primary waves would have reached about 1500 Hz, and tk = .00036s. In this 

extreme case the signal-to-noise in an advanced LIGO detector would be 

S (200Mpc) F ( sin
2 l) . 2 - = 0.45 + 1 - -- Slll l. 

N r 18 
(2.25) 

If the black hole is near maximally rotating, as seems likely for one which is in a 

binary system, where it would be spun up by infalling debris , then its horizon is at 

half the Schwarzschild radius. Still assuming a radius of 10 km for the neutron star, 

merger could commence no later than when they are touching at a ~ 25km. The 

signal-to-noise then amounts to 

§_ = l.l (200Mpc) F+ ( 1 _ sin
2 l) sin2 l. 

N r 18 
(2.26) 
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Since F+ ~ 1, and since r :::::::: 200Mpc is actually a rough lower bound for how far 

one must look to see several NS /BH coalescences per year (21, 22], and since all of 

these very optimistic examples give S / N of near or less than two, the prospects are 

rather poor for advanced LIGO /VIRGO detectors to see the Christodoulou memory 

from NS /BH binaries. 

If a sizeable fraction of the main-sequence progenitors of NS/NS binaries actu­

ally make such binaries when they die, rather than disrupting during a supernova 

outburst or dying via some other route, then the NS/NS coalescence rate could be 

several per year at distances as close as ,...., 30Mpc [22, 24]. With m 1 = m 2 = l.4M0 , 

and following Rasio and Shapiro [13] in supposing a dramatic reduction in power 

radiated at a :::::::: 20km then 

S _ 0 75 (30Mpc)F ( sin
2 l) . 2 - - . + 1 - -- Sln l. 

N r 18 
(2.27) 

Thus, even under these most optimistic assumptions, the prospects for seeing NS /NS 

memories are dim. 

In the case of two 10M0 black holes, one can set an upper bound on the energy 

radiated in the primary wave by demanding that the total surface area of the holes 

be conserved. For two non-rotating holes this sets Eaw = 0.293M, where Mis the 

total mass. The memory generated by this much energy in the primary wave would 

produce a signal to noise in the detector (derived analytically) of 

S (200Mpc) F ( sin
2 l) . 2 - = 14.0 + 1- -- Sln l. 

N r 18 
(2.28) 

The cut-off time in this case, tk < lµs, is even more unrealistic then in the first cited 

NS /BH case above. In an effort to estimate S / N with a more realistic coalescence 
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time take tk = .0006s, for which the (numerical) result is 

S _ 1 3(200Mpc) F ( sin
2 l) . 2 - - . + 1 - -- Slll l. 

N r 18 
(2.29) 

Since 200Mpc is a lower bound on how far one must look to see several BH/BH co­

alescences per year [22, 24], the prospects are modestly hopeful (but only modestly) 

that LIGO /VIRGO might one day detect the memory of a BH/BH coalescence. 

As was discussed earlier, space-based interferometers are more sensitive to very 

low frequency waves, and might be expected, for that reason, to be better able 

to detect the Christodoulou memory than ground-based detectors. However, they 

have no particular advantage in the case of neutron-star binaries, where the bulk of 

the growth in the memory takes place over a timescale favourable to LIGO. In Eq. 

(2.18), the dominant terms in the series expansion depend on x 1 = 27r f 1tk, where 

f 1 = 10-3 Hz. If tk < .16s, so x1 :S 10-3 , then all terms except the first three are 

negligable and can be ignored. Assuming the constraint in Eq. (2.22) applies to 

the cut-off time, and letting Norb = 1, so that merger is presumed to take place at 

the latest possible time (within the framework of the approximation scheme), then 

tk = (57r /4)815(256/5)315 Mc and so 

4 Mc 
tk = 4.66 x 10- 7IA" 

1v10 
(2.30) 

where Mc = µ 315 M215 is the chirp mass of the binary. In this way, a formula can 

be derived relating the signal to noise generated by a binary with chirp mass Mc at 

a distance r from the detector, to these two quantities, assuming that merger takes 

place when Norb = 1. The approximation should hold good up to Mc/ M0 ~ 300. 

S Mc/M0 ( sin
2 l) . 2 

N ~ ·15 r/200MpcF+ l -18 sm l 

x [1 _ .0997c~::r14 
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(2.31) 

In the case of a 10M0 black hole and a neutron star at r = 200Mpc, then 

Mc= 3M0 and so S/N:::; .5. A NS/NS binary has a chirp mass of Mc= l.219M0 , 

and at r = 200Mpc its signal-to-noise would be S / N :::; 1.1. Two 10M0 black holes 

have a chirp mass of Mc = 8. 7 M0 . At a range of 200Mpc, their signal-to-noise would 

be S/N :::; 1.2. Finally, a binary with chirp mass of 100M0 at a distance of lGpc 

would produce a signal-to-noise ratio of S / N :::; 2.5. This last example, begins to 

approach the sort of large mass systems which are of special interest to space-based 

detectors like LISA, but these systems are of no interest from the point of view of 

measuring neutron-star radii. Obviously LISA would be no more use than LIGO for 

estimating neutron-star radii, but it might well be capable of detecting the memory 

produced by very massive binaries, if, for instance, mergers between super-massive 

Black Holes are sufficiently common within a few Gpc. 

In this paper I have made use of a simplistic quadrapole-moment (i.e. slow­

motion) calculation of the memory. Would a more relativistic approach increase the 

memory, thereby increasing the odds of detection? Finn [25] has made a detailed 

numerical calculation of the power emitted by systems consisting of low mass bodies 

in equatorial orbits around massive rotating black holes. As it happens, his figures 

indicate that the quadropole approximation consistently overestimates the power 

emitted in the burst by a modest factor, and therefore the memory would, in reality, 

be modestly weaker than I have made it. More specifically, in the case of a small 

body in a prograde orbit around a nearly maximally rotating Kerr black hole, Finn 

finds that for an orbital radius of lOM, where M is the mass of the hole, the loss 

of energy due to gravitational-wave emission is roughly 90% of its value as derived 
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by the quadropole formula. When the particle reaches the last stable circular orbit 

at r = M, his result has fallen to about 50% of the quadropole value. The nearly 

Newtonian approximation can therefore be taken as at least a rough guide to the 

results of a more realistic calculation. 

2.6 Conclusions 

In all of the cases considered above involving neutron stars, the signal-to-noise ratio 

fell on or below the threshold for detection (S/N = 2). In addition, one has to 

remember that the indication is that the true memory would be somewhat smaller, 

because of the quadropole formula's overestimation of the energy emitted by the 

binary in the last stages of coalescence. In fact, since detection depends largely on 

the rate of growth of the memory in the last split second of the in.spiral, it seems 

likely that the signal to noise, in practice, could be as low as close to half this paper's 

estimated value, in the case of a rapidly spinning black hole. Therefore the chances of 

even an advanced LIGO interferometer detecting the Christodoulou memory, except 

serendipitously, from sources like these appears to be small. Certainly, there is little 

chance of using the signal to estimate neutron-star radii, unless coalescence rates 

have been drastically underestimated. 

Fortunately another, more promising, method of measuring neutron-star radii has 

been proposed [8] . This scheme involves the use of several narrow band detectors 

with optimal frequencies staggered around lkHz, which would register the strength 

of the primary signal (if any) as it passes through their frequency. The waves' cut-off 

frequency can then be estimated from their responses, and therefore the neutron-star 

radii can be deduced [8]. A companion paper [11] gives a quantitative description 
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and evaluation of this method. 

The results given above indicate (in agreement with a cruder estimate by Thorne 

[5]), that the memory from coalescing binaries consisting of two large black holes 

within~ 200Mpc of earth might be detectable by LIGO. But the lack of any detailed 

understanding of the behaviour of BH/BH binaries makes any prediction uncertain. 

My results merely demonstrate that the memory from such systems may be strong 

enough to be seen by very sensitive detectors. It seems likely that at least the 

existence of the memory might be confirmed by a particularly strong event. 
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Appendix 

1 l 
Let H(t) = h'(t)E>(t - tk), where h'(t) = c/t4 (c = hktf.) fort > 0 and = 0 for 

t < 0. This is the first term in Eq. (2.14), the Fourier transform of which is needed 

to derive Eq. (2.15). The Fourier transform of H(t) is given by 

H(w) =I: h'(w')G(w - w')dw' (2.32) 
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(where w = 2nJ), by the convolution theorem. From the Bateman papers [20], 

h'(w) = a/w314 for w > 0 and =a* /lwJ 314 for w < 0, where 

Therefore 

which implies that 

7rl 7r .3 7r 
a = - -- sec - + ir( - ) cos -

2 r(~) s 4 s · 

iI(w) 
. 100 ei(w-w')tk dw' 
ica 

o w - w' w1314 

. * 10 ei(w-w')tk dw' 
+ica 

-oo w - w' lw'J314 

(2.33) 

(2.34) 

- d - /C · t G(w) - -d H(w) = -
114

eiw k (2.35) 
tk tk 

where /3 = f0
00 

e-ix dx / x314 and / = a/3 + a* /3* ~ 6.28. From this it follows that 

H(w) = j G(w)dtk + F(w), (2.36) 

where F(w) is independant of tk. Now, 

j G(w)dtk 

(2.37) 

which is zero as tk-+ 0. Therefore, F(w) = H(w, tk = 0) = h'(w) , since H(t, tk = 0) 

is simply h'(t). From this, and Eqs. (2.36) and (2.37), and the above expression for 

h'(w), together with the Fourier transform of the second term in Eq. (2.14), one 

derives Eq. (2.15). 
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Figure 2.1: A graph of the data train representing the memory. The dependance of h(t) is r 1/ 4 

for t 2'.: tk and it is constant after this. (Recall that t is the time until final coalescence in the ideal, 
Newtonian, point mass limit.) The discontinuity at tk is rounded off by an elliptical function in 
the numerical calculation , in order to model the actual turn off of the wave, which takes place 
over at least an orbital period of the motion. In this figure, the round-off occurs over 1/500th of a 
second. Both this and the figure below illustrate the case of two 10M0 black holes at a distance 
of 200Mpc, with tk = .0006s. 
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Figure 2.2: A graph of the filter for the signal in Fig. 2.1, derived numerically, using a fast Fourier 
transform. Notice that this function, the integral of whose product with h(t) gives the signal­
to-noise, is appreciably non-zero only in the .Ols or so around tk . Thus the signal-to-noise ratio 
derived from this filter depends almost entirely on the part of the signal where the rate of change 
is about 100 Hz, near the peak of the LIGO sensitivity. The units of k(t) are in Hz. 
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Figure 2.3: A graph of :E (defined in Eq. (2.16)), for an advanced LIGO detector with the noise 
spectrum given in Eq. (2.10), versus cut-off time tk. Note that it is a monotonically decreasing 
function of the cut-off time. The solid line in the graph was derived analytically, from the series 
in Eq. (2.16), and the dotted line represents data which were calculated numerically, by means of 
a fast Fourier transform, and then integrating the product of the signal and filter functions (such 
as those shown in Figs. 2.1 and 2.2), in each case. 



Chapter 3 

Gravitational radiation from a 

particle in circular orbit around a 

black hole: Stability of circular 

orbits under radiation reaction 

with Theocharis Apostolatos, Amos Ori and Eric Poisson 

Abstract 

We use the Teukolsky perturbation formalism to show that : (i) a particle in circular 

motion around a nonrotating black hole remains on a circular orbit under the infiu-
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ence of radiation reaction; and (ii) circular orbits are stable only if the orbital radius 

is greater than a critical radius re ~ 6.6792M, where M is the mass of the black 

hole. A circular orbit is stable if, when slightly perturbed so that it acquires a small 

eccentricity, radiation reaction decreases the eccentricity; a circular orbit is unsta­

ble if radiation reaction increases the eccentricity. Our analysis is restricted by four 

major assumptions: (i) the black hole is nonrotating, (ii) the eccentricity is always 

small, (iii) the gravitational perturbations are linear, and (iv) the adiabatic approx­

imation (that radiation reaction takes place over a timescale much larger than the 

orbital period) is valid. On the other hand, our analysis is not limited to weak-field, 

slow-motion situations; it is valid for particle motion in strong gravitational fields. 

3.1 Introduction and summary 

3.1.1 Motivation 

A particle of mass µ, which interacts with the gravitational field of an isolated 

object of mass M, does not, in general, move on a spacetime geodesic. This is 

due to the fact that the combined system emits gravitational waves; the problem of 

radiation reaction-to determine the influence of this emission on the motion of the 

particle-is a difficult one in general relativity. 

Gravitational radiation reaction has a well-known electromagnetic analogue: A 

charged particle, accelerated by an electric field, does not move according to the 
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Lorentz equations of the motion, because of the emission of electromagnetic waves. 

There are difficult conceptual problems associated with radiation reaction in elec­

tromagnetism [1]; however, these conceptual problems are not a serious impediment 

to computations, at least when radiation reaction is a small effect. The use of half 

retarded minus half advanced potentials, together with the rejection of runaway 

solutions on physical grounds, provide a well-defined calculational basis for most 

applications [2]. 

In contrast with the electromagnetic case, the problem of gravitational radiation 

reaction is plagued with conceptual and calculational difficulties, which are mostly 

due to the non-local character of the problem. Non-locality enters in essentially two 

different ways: (i) As a consequence of the principle of equivalence, a gravitational 

wave can be identified as such only in a region of spacetime larger than several 

wavelengths [3], which precludes the construction of a local radiative field. And (ii) 

because gravitational waves are in general scattered by the curvature of spacetime, 

waves emitted at one time may influence the motion of the particle at some later 

time [4]; these tails in the waves can produce noticeable effects, most especially if 

curvature is large. 

In order to gain insight into the general problem of gravitational radiation reac­

tion, it is important to look at simple special cases for which the above problems 

can be addressed. To study such a simple case is the main purpose of this paper. 

The question of radiation reaction is most pressing in the context of the late 
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evolution of compact binary systems [5], since the waves generated by such systems 

are the most promising for detection by kilometer-size interferometric detectors [6]. 

Extraction of the information encoded in the waves will require an accurate calcula­

tion of the expected waveforms [7]; these theoretical waveforms are used as matched 

filters through which the detected signal is processed [8]. Radiation reaction governs 

the rate at which the wave frequency increases with time, as the compact objects 

spiral together toward coalescence. During the last stages of evolution, when the 

waves are most interesting for detection, the wave frequency sweeps from approxi­

mately 10 Hz to several hundred Hz in just a few minutes, during which the waves 

oscillate about 104 times. It is therefore essential to incorporate radiation reaction, 

to a fractional accuracy of at least 10-4 , into the calculation of the theoretical wave­

forms [7]. Thus, the practical importance of radiation reaction in the evolution of 

compact binary systems provides more motivation for the work presented here. 

Also of interest are the last stages of evolution, under radiation reaction, of 

a solar-mass compact object orbiting a galactic, supermassive black hole. Such 

a binary system could be observed with an eventual space-based interferometric 

detector, which would operate between 10-4 Hz and 10-1 Hz [9]. Because we consider 

small mass ratios (see subsection B below), the results presented in this paper are 

directly relevant to these sources. 

Most of the work devoted so far to gravitational radiation reaction, in particular 

for the two-body problem, has been restricted to weak-field, slow-motion situations 
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[3, 10, 11, 12, 13]. Lincoln and Will [12] have calculated, using post-Newtonian 

theory, the orbital motion of a binary system at post512-Newtonian order, which 

only incorporates radiation reaction at leading order. These calculations are not 

accurate enough for the purpose of constructing matched filters for interferometric 

detectors [7] . Higher-order corrections to the post-Newtonian, radiation-reaction 

force have recently been calculated by Iyer and Will [13]. 

By comparison, very little has been done for strong-field situations. Gal'tsov 

[14] has laid the foundations for strong-field radiation-reaction calculations in the 

case of particle motion in the field of a Kerr black hole. His formalism is based on 

the notion of a local, gauge-dependent radiation-reaction force. However, Gal'tsov's 

only explicit calculation of this force was also restricted to weak-field, slow-motion 

situations. Finn, Ori, and Thorne [15] have studied the strong-field transition be­

tween inspiral and plunge motion in Kerr; however, their analysis does not require a 

detailed knowledge of radiation-reaction effects. In this paper, we present concrete 

results on radiation reaction in strong-field situations. 

3.1.2 The problem, method of solution, and approximations 

We study the effects of radiation reaction on the bound motion of a particle of mass 

µ in the geometry of a Schwarzschild black hole of mass M. Two quantities are 

of fundamental interest: the orbit's averaged radius r0 , and the orbit 's eccentricity 

c. The radius r 0 denotes the averaged value of the orbit's Schwarzschild radial 
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coordinate; the maximal value of the orbital radius defines the eccentricity: rmax = 

r0(l + 6). More precise definitions of r0 and 6 will be given in Sec. IL We shall 

suppose that both the eccentricity 6 and the mass ratio µ/M are much smaller 

than unity. However, we do not suppose that the radius r0 is large, so our analysis 

includes strong-field situations. 

We adopt the Teukolsky perturbation formalism [16), and consider the linear 

gravitational perturbations associated with the motion of the particle. The per-

turbations are described in terms of the complex Weyl scalar '11 4 , which becomes 

radiative at large distances from the source. The rates of loss of orbital energy E, 

and orbital angular momentum L, due to gravitational radiation, can be calculated 

by solving the Teukolsky equation. 

The secular evolution (the evolution over timescales much larger than the orbital 

. . 
period) of r 0 and 6 can be determined from the knowledge of E and L, where 

an overdot denotes time differentiation followed by an average over several orbital 

periods. In particular, the following relations can be derived (Sec. II): r0 = r0 (r0 , i ), 

and i = i(6, r0, E, i). We shall use the perturbation formalism to calculate the 

rates of loss of energy and angular momentum. These calculations are performed (i) 

analytically, for the special case of weak fields and slow motions; and (ii) numerically, 

for the general case. 

Our calculations are restricted to small eccentricities, 6 « 1. The work presented 

in this paper can therefore be interpreted as a stability analysis: A circular orbit 
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with radius ro is slightly perturbed and acquires a small eccentricity c. The orbit 

evolves because of radiation reaction; the sign of E: determines whether the perturbed 

orbit is driven more circular, or more eccentric. Circular orbits are thus stable if 

E: < 0, and are unstable if E: > 0. Previous studies have shown that circular orbits are 

always stable in weak-field , slow-motion situations [11, 12); our own study confirms 

this , and also determines whether this remains true in strong-field situations. 

Recently, and independently of us, Tanaka et al. [17) numerically calculated the 

gravitational waveforms, and the fluxes of energy and angular momentum at infinity, 

for orbits with arbitrary eccentricities. The differences between their analysis and 

ours are significant. Tanaka et al. are mostly concerned with what can be observed at 

infinity, and are not much concerned with radiation reaction. In particular, they do 

not calculate the fluxes of energy and angular momentum at the black-hole horizon, 

which we do here, and which is important for radiation reaction. We have become 

aware of the work by Tanaka et al. very shortly before submitting this paper for 

publication. 

Our calculations are also restricted to small mass ratios. This condition comes 

from two requirements: (i) that the gravitational perturbations be small enough to 

be linear, which implies µ / M « 1, and (ii) that the adiabatic approximation be 

valid. The adiabatic approximation supposes that radiation reaction takes place 

over a timescale which is much larger than the orbital period. We shall show below 

(Sec. IV F) that this implies a restriction on µ/ M; this restriction is not severe 
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at large distances, but becomes µ/M « (1 - 6M/r0 ) 312 for r0 approaching 6M. 

The adiabatic approximation must therefore break down at r 0 = 6M, where, even 

without radiation reaction, circular orbits become unstable. 

The adiabatic approximation is a fundamental feature of our analysis. It allows 

us to suppose that, over timescales comparable to the orbital period, the motion 

of the particle is, in fact, geodesic; non-geodesic behavior becomes noticeable only 

over much larger timescales. Moreover, the motion is also strictly periodic, and, 

consequently, the gravitational waves have a well-resolved frequency spectrum; the 

waves' frequencies change appreciably only over timescales much larger than the 

orbital period. Our problem is therefore one for which we first determine the rates 

of loss of energy and angular momentum for the slightly eccentric, geodesic motion 

of a particle around a Schwarzschild black hole, and then use these rates to infer 

the slow evolution of the orbit. 

3 .1.3 The results 

Our analysis first allows us to prove that, if the particle's orbit is strictly circular 

(c: = 0), then radiation reaction produces a strictly circular evolution. In other 

words, circular orbits remain circular under radiation reaction. Previous proofs of 

this statement were restricted to weak-field, slow-motion situations [11, 12]; our 

proof is valid both for weak and strong fields. 

If the eccentricity is small but not identically zero, our analysis shows that ra-



53 

diation reaction (i) decreases the eccentricity if r0 is larger than a certain critical 

value re, and (ii) increases the eccentricity if r0 is smaller than re. Thus circular 

orbits are stable if ro > re, and unstable if ro <re. The point r0 =re corresponds to 

i changing sign; we have estimated numerically that 

re/M ~ 6.6792. (3.1) 

Our results are most conveniently presented in terms of the dimensionless quan-

tity c(r0 ), defined as 

c(ro) = r.o ~ = dlnc, 
r0 c dln r0 

(3.2) 

and which can be interpreted as the ratio of the inspiral timescale r0/lrol (the 

timescale over which the orbital radius r0 changes appreciably) over the circulariza-

tion timescale c/lil (the timescale over which the eccentricity changes appreciably). 

By virtue of the adiabatic approximation, both timescales are much larger than the 

orbital period. A plot of c(r0 ), obtained numerically, is given in Fig. 1. 

For large r0 (weak-field, slow-motion), c(r0 ) can be calculated analytically (Sec. V 

A), and takes the form 

19 [ 3215 2 377 3 4 ] 
c(ro) = 12 l- 3192v + 1527rV +O(v)' (3.3) 

where v = (M/r0 ) 112 « 1 acts as a post-Newtonian expansion parameter. The 

leading-order term of Eq. (3.3) corresponds to a Newtonian calculation of the orbit, 

together with the use of the quadrupole formula to determine r0 and i [11]. The first-

order correction (at post-Newtonian, v2
, order) corresponds to post-Newtonian cor-
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rections to the orbital motion. The second-order correction (at post312-Newtonian, 

v3
, order) corresponds to effects due to the propagation of the gravitational waves 

in the field of the black hole-effects associated with the tails of the waves. 

For values of r0 approaching 6M (highly relativistic situation; Sec. V B), c(r0 ) 

behaves according to 

c(ro---+ 6M),..., -~(1 - 6M/r0 )-
1

, (3.4) 

and therefore grows to arbitrarily large, negative values. This behavior is a con-

sequence of the fact that circular orbits, even without radiation reaction, become 

unstable at r0 = 6M. We recall that the limit r0 ---+ 6M must be taken with care, 

in view of the adiabatic approximation; orbits arbitrarily close to r0 = 6M can be 

considered at the price of taking µ / M sufficiently small. 

Eqs. (3.3) and (3.4) are derived analytically, and imply that c(ro) must change 

sign at some radius ro = r c· We have therefore provided an analytical proof that 

circular orbits are stable in the range r0 > re > 6M only. However, a numerical 

calculation is necessary to show that c(r0 ) changes sign only once, and to determine 

the value of re , Eq. (3.1). 

The complete evolution of the eccentricity, so long as it remains small, can be 

obtained by integrating Eq. (3.2). It is most convenient to parametrize the evolution 

with r0 , and to express the eccentricity in terms of the function 1(r0 ; r;), defined as 

c(ro) 1ro c(ro') 1 
1(ro; r;) = ln -( ·) = --1-dro , 

c Ti r; To 
(3.5) 
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where ri is some initial radius. If r0 and ri are both much larger than 6M, then 

Eqs. (3.3), (3.5) imply 

1(ro; ri) ~ a(ro/ M) - a(ri/ M), (3.6) 

where 

( ) 19 [1 3215 -1 377 -3/2] a X = - n X + --X - --1T"X 
12 3192 1288 . (3.7) 

If, on the other hand, r0 is very close to 6M, but ri » 6M, then Eqs. (3.4), (3.5) 

imply 

(3.8) 

The behavior of 1(r0 ; ri), for ri arbitrarily fixed to lOOM, is depicted in Fig. 2. From 

this curve one can easily infer the corresponding 1(r0 ; ri) for ri < lOOM. 

As one sees from Fig. 2, during the weak-field, slow-motion phase of the orbital 

evolution, the eccentricity is reduced by many orders of magnitude-the orbit be-

comes essentially circular. The eccentricity reaches a minimum value when r0 =re, 

and then starts increasing. Eventually, if the mass ratioµ/ Mis arbitrarily small and 

the adiabatic approximation holds, the orbit shrinks to a radius r 0 for which the ec-

centricity becomes equal to its initial value; in general this occurs very close to 6M, 

as is indicated on the graph. For reasonable mass ratios, however, the eccentricity 

has not increased by much by the time the adi~batic approximation breaks down. 

As an example, consider a solar-mass object spiraling around a 106 M0 galactic 

black hole; this example is particularly relevant to space-based gravitational-wave 
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detectors [9) . For µ/ M = 10-6
, the adiabatic approximation becomes invalid in 

the vicinity of ro = ri, where rif M = 6.002; our numerical results then imply 

c.(r1)/c.(rc) ~ 4.0. For such binary systems, the inspiral time from r0 =re to r0 = r1 

is of the order of two years. For µ/ M = 10-s , the ratio of the eccentricities is only 

increased by a factor of two. 

3 .1.4 Organization of the paper 

The remainder of this paper is devoted to deriving the results quoted in the preceding 

subsection. We begin with a precise formulation of the problem in Sec. II. We 

first provide definitions for the quantities r0 and c. , and then derive the evolution 

equations r0 = r0(r0 , L) , i = i(c. , r0 , E, L ). Two conditions which ensure that i. <X c. 

are imposed, and are justified in later sections. The first condition is that, for 

circular motion, gravitational waves carry energy and angular momentum in such 

a way that E / L = n = (M/r0
3

)
112

; the second condition is that corrections to E 

and L, due to nonvanishing eccentricity, are second order in c.. The fact that i. <X c. 

implies that circular orbits remain circular under radiation reaction; the stability of 

circular orbits depends on the sign of the proportionality factor. 

We present a brief summary of the Teukolsky perturbation formalism [16] in 

Sec. III. First , the inhomogeneous Teukolsky equation, and its formal solution, are 

described in detail. Then we explain the method for extracting, from the solution, 

the gravitational waveforms , and the rates at which the waves carry energy and 
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angular momentum. The section is concluded with a proof, valid for arbitrarily 

strong fields, that i; / t = n for circular orbits. 

The calculations relevant for slightly eccentric motion are presented in Sec. IV. 

The first step consists of integrating the radial and azimuthal geodesic equations; 

the integration is carried out to second order in the eccentricity. This calculation 

is presented in subsection A, and subsection B offers an overview of the remaining 

steps. The form of the results obtained for r(t) and¢( t) allows us , in subsection C, to 

(i) identify the frequency spectrum of the gravitational waves, (ii) witness important 

simplifications, and (iii) prove that corrections to E and L are second order in the 

eccentricity. All of this may be achieved without performing detailed calculations; 

instead, all computations are kept at a schematic level. These schematic calculations 

are pushed even further , in subsection D, to derive expressions for r0 and µi/c ; this 

allows us to witness more cancellations, which greatly simplify the problem. The 

detail of the remaining calculations are presented in subsection E. Conditions on 

µ/ M, which ensure the validity of the adiabatic approximation, are formulated in 

subsection F . 

We present our analytical and numerical results in Sec. V. We first consider 

the weak-field, slow-motion (ro » 6M) limit of our formalism, and derive post­

Newtonian expansions for the quantities of interest . This analysis yields Eq. (3.3) 

above. We then consider the highly relativistic (r0 --+ 6M) limit of the formalism, 

which is also tractable analytically. This analysis yields Eq. (3.4) above. In sit-
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uations where r0 is neither very large nor very close to 6M, our equations must 

be integrated numerically, which we describe next. Our numerical analysis yields 

Eq. (3.1) above, as well as the graphs presented in the Figures. 

We conclude in Sec. VI with a recapitulation of our fundamental results, and a 

discussion of our approximations. 

Throughout the paper we use geometrized units in which the speed of light and 

the gravitational constant are set equal to unity. Most of the paper is essentially 

self-contained, except for Sec. V, which relies heavily on previous papers in this 

series. These previous papers are concerned with purely circular orbits; paper I 

[18] is devoted to analytical methods, while paper II [19] is devoted to numerical 

methods. Both analytical and numerical methods are utilized in this paper. 

3.2 Formulation of the problem 

3 .2.1 Definition of r0 and c 

Timelike geodesics in the Schwarzschild geometry obey the following equations: 

dt/dr=E/f, 

d<f>/ dr = L/r2
, (3.9) 

(dr/dr) 2 + V(L,r) = E2
, 

where T is the particle's proper time; E = E / µ and L = L/ µ are, respectively, 

the specific orbital energy and angular momentum. We have also introduced f = 
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1 - 2M/r , and V(L , r) is the effective potential for radial motion, 

(3.10) 

We suppose that the motion takes place in the equatorial plane, B = 7r /2, and 

near a minimum of the potential V(L, 1). We define the radius 1 = r0 to be the 

position of this minimum; since 8V/81lr=ro = 0, we have 

(3.11) 

where v = (M/10)112. Radial motion corresponds to small oscillations about r = 10. 

We define the eccentricity c: so that 1 = r0 (l + c:) is a turning point of the radial 

motion, at which E2 = V(L, 1). This equation can be expanded in powers of c: , 

which yields 

(1 - 2v2
)

2 + v2 (1 - 6v2 )c:2 
-

- 2v2 (1 - 7v 2 )c:3 + O(c:4
). 

Eq. (3.11) implies 1 0 = r0 (L) , while Eq. (3.12) implies c: = c:(L, E) . 

3 .2 .2 Radiation reaction-evolution of r0 and c: 

(3.12) 

The results of subsection A imply that the knowledge of the rates of loss of energy 

and angular momentum, due to gravitational radiation, is sufficient to determine 

the evolution of both 1 0 and c: . We are interested in the secular evolution of these 

quantities-the evolution over timescales much larger than the orbital period. The 
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secular evolution is well defined, and can be unambiguously calculated. In contrast, 

the short-term evolution is not so well defined, because gravitational waves cannot 

be localized in a region of spacetime smaller than a few wavelengths [3]. To perform 

a time averaging over several orbital periods is therefore a fundamental feature of 

our calculations. We shall henceforth denote by an overdot the operation of time 

differentiation followed by an average over several orbital periods; thus -J; = ( d'lj; / dt), 

for any quantity 'lj;. 

An evolution equation for r-0 is obtained by using Eq. (3.11) to calculate µro = 

( dr-0 / di )L, which yields 

(3.13) 

Similarly, one may use Eqs. (3.11) and (3.12) to calculate µi (BE:/8E)E + 

(8c/8L)L, which yields 

1 (1 - 2v
2
)(1 - 3v

2
)

1
/

2 
{ [l + v

2
(1 - 6v

2
) c2 + O(c3)] E 

c v2(1 - 6v2 ) 2(1 - 2v2 ) 2 

[ 
1 - 12v

2 + 18v4 
2 3 J · } 1 - (1 - 2v2 )(1 - 6v 2 / + O(c ) D,L ' (3.14) 

where n = v/ro = (M/r-0
3

)
112

. 

The rate of loss of orbital energy is equal to minus the rate at which gravitational 

waves carry energy. We therefore write E = _j;(GW), and expand E(GW) in powers 

of the eccentricity: 

(3.15) 
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E(o) corresponds to circular motion. Similarly, we write L = _ j,(GW) , and 

(3.16) 

In Secs. III C and IV C below, we will show that 

£(0) _ nt(o) £(1) = L. (1) = 0 - ' ' (3.17) 

which implies that the lowest-order corrections to £(GW) and j,(GW) are second order 

in the eccentricity. 

Substitution of Eqs. (3.16) and (3.17) into (3.13) implies 

(3.18) 

the evolution of r0 is therefore dominated by the circular limit of Eq. (3.13), and 

corrections due to the small eccentricity can be ignored. 

Substitution of Eqs . (3.15), (3.16), and (3.17) into (3.14) yields important can-

cellations, and the final answer is 

where 

2 - 27v2 + 72v4 
- 36v6 

g( v) = 2(1 - 2v2 ) 2 (1 - 6v 2 ) • 

(3.19) 

(3.20) 

Thus the calculation of µi requires the computation of FJ(GW) and j,(GW), accurately 
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to second order in the eccentricity. Due to the crucial relations (3.17), µi is itself 

linear in the eccentricity. 

Eqs. (3.17) are therefore the key to the proof that circular orbits remain circular 

under radiation reaction, since Eq. (3.19) implies i(c: = 0) = 0. The problem of 

determining the evolution of r0 and c: is now equivalent to that of calculating F,(o), 

and the pieces of E(2
) and j)2) which do not cancel out when the combination 

E(2) - nt<2 ) is constructed. 

3.3 The perturbation formalism 

This section contains a brief summary of the relevant equations. More detail can be 

found in paper I [18), and in the references quoted herein. 

3 .3.1 The Teukolsky equation 

The stress-energy tensor associated with the motion of a particle perturbs the grav­

itational field of a Schwarzschild black hole. The gravitational perturbations are 

described by the Weyl scalar '114 = -Ca.f3-yona.m/3n'Yfnf, where Ca./3-yo is the Weyl 

tensor, na. = Hl, - f, 0, 0), and ma = (0, 0, 1, -i csc O)/.J2r; throughout we denote 

complex conjugation with an overbar. At large distances, '114 describes outgoing 

gravitational waves; at the black-hole horizon, W 4 describes ingoing waves. 

The Weyl scalar can be decomposed into Fourier-harmonic components according 
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to 

(3.21) 

where sYlm(B, </>) are spin-weighted spherical harmonics [20]; the sums over f, and m 

are restricted to -£ ~ m ~ f and f ~ 2. The radial function Rwem(r) satisfies the 

inhomogeneous Teukolsky equation (16], 

(3.22) 

with 

U(r) = 1-1 [(wr)2 
- 4iw(r - 3M)] - >. , (3.23) 

where>.= (f - l)(f + 2). 

The source term in Eq. (3.22) is calculated from the particle's stress-energy tensor 

T°'f3( x) = µ J dr u°'u.BJ(4)[x-z( T )], where xis the spacetime point , z( T) the particle's 

trajectory with tangent u°' = dz°'/ dr , and T is the particle's proper time. The 

first step is to construct the projections 0T = Ta13n°'n.B, _1 T = Ta,en°'inP, and 

_ 2T = Ta,em°'m.B . Then one calculates the Fourier-harmonic components 5 Twem(r) 

according to 

(3.24) 

where dD, is the element of solid angle. The source is 

(3 .25) 
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where C = fd/dr + iw. 

The inhomogeneous Teukolsky equation (3.22) can be integrated by means of a 

Green's function [21]. The solution at large radii is 

R ( ) 2zH 3 iwr• wlm r --7 00 ,...., µw wlmr e ' (3.26) 

where r * = r + 2Mln(r/2M - 1) , and the solution near the black-hole horizon is 

R (r --7 2M) ,...., µw3 zoo r4f2e-iwr• wlm wlm · (3 .27) 

The amplitudes zt:e;: are defined by 

(3.28) 

where the functions R{!t(r) and R:'e(r) are solutions of the homogeneous Teukol-

sky equation. R!!e( r) is the solution with boundary conditions corresponding to 

ingoing waves at the black-hole horizon, R{!t(r --7 2M),...., (wr)4j2e-iwr*; R{!t(r) rep-

resents a superpostion of ingoing and outgoing waves at large radii, R{!t(r --7 oo) ,...., 

Q~e(wr)- 1 e-iwr• + Q~1Y(wr)3eiwr *. R:'e(r) is the solution with boundary conditions 

corresponding to outgoing waves at infinity, R:'e(r --7 oo) ,...., (wr )3eiwr• ; R:'e(r) rep-

resents a superposition of ingoing and outgoing waves at the horizon. 

The amplitudes zt:e;: satisfy the identities 

zH,oo = (-l)l zH,oo -w,l,-m wlm ' (3.29) 

which we now derive. We use the fact that u6 = 0, which implies s'i' = ( -1 )8 
5 T ; 

substitution into Eq. (3.24) , using sYe,-m(B, </>) = (-l)8Hsfem(B, </>) , then yields 
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s'i'-w,l,-m(r) = (-l)esTwem(r). It follows from this and Eq. (3.25) that f'-w ,l,-m(r) = 

( -1 )eTwem ( r ). The homogeneous Teukolsky equation is invariant under complex con-

jugation followed by w ~ -w, so fl!:/(r) = R~t'0 (r) and Q~w,e = Q~e· Eq. (3.29) 

finally follows from Eq. (3.28) . 

3.3.2 Waveforms; energy and angular momentum fluxes 

At large distances, the two fundamental polarizations of the gravitational waves, h+ 

and hx , can be obtained from Eqs. (3.21) and (3.26); they are 

h .h 2µ " v 1= d zH -iwu + - z X = - L..t -2 I lm W wlm e l 

r em -oo 
(3.30) 

where u = t - r* represents retarded time. The transverse traceless gravitational-

wave tensor is 

(3.31) 

The rates at which gravitational waves carry energy and angular momentum 

to infinity can be calculated from the Isaacson stress-energy tensor [22], which is 

constructed from hJ'[ . An alternative but equivalent method involves reading off the 

multipole moments of the radiative field , as defined by Thorne [23] , and using the 

relevant equations of Ref. [23] to calculate £ 00 and L00
• To present the results , we 

now specialize to the case considered in this paper, in which the frequency spectrum 

of the waves is characterized by a discrete set of distinct frequencies wk . Then 

zt:em =I: zf:nko(w - wk) , (3.32) 
k 
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and 

(3.33) 

(3.34) 

The rates at which the black hole absorbs energy and angular momentum can be 

calculated along similar lines [24]. From '1t 4 ( r -+ 2M) one recovers the gravitational-

wave tensor, from which the Isaacson stress-energy tensor is calculated. The calcu-

lation of the :8.uxes then reproduces the results of Teukolsky and Press [25] , which 

were derived in a completely different manner: 

for 

We have introduced 

.H 
E 

"H L 

Z~m = L Zfuik<5(w - wk)· 
k 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

The total rates of loss of energy and angular momentum are then i;(GW) = 



67 

3.3.3 Proof that EJ(O) = nj,(0) 

For circular motion, the particle's stress-energy tensor is proportional to o( </>- Ot). 

Eqs. (3.24) and (3.25) then imply Twem <X o(w - mf2)-the wave frequency w is a 

harmonic of the orbital frequency n. Eq. (3.28) further implies ztfe;: <X o(w - mf2), 

so that we can write 

ztfe;: = A~00o(w - mf2), (3.39) 

which is a special case of Eqs. (3.32) and (3.37), with wk = mn. Eqs. (3.33)-(3.36) 

then yield 
2 

Eoo = ntoo = ~7!" 2:(mf2)2 1Afmj2, 
lm 

(3.40) 

and 
2 

.H "H µ ~ oo 2 
E = nL = - M2 L...J o:elAem I ' 

47!" lm 
(3.41) 

where O:e = o:1(wk = mn). Finally, Eqs. (3.40) and (3.41) imply E(O) 

Notice that the proof does not require the explicit calculation of A~00 • The key to 

the proof is the observation that for a mode of given m and wk, E00•H / j_,oo,H = Wk/m. 

This property is very general and holds for arbitrary fields; cf. Ref. [26]. 
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3.4 Gravitational waves from slightly eccentric motion 

3.4.1 First step-slightly eccentric motion 

The first step of the calculation consists of solving the geodesic equations for slightly 

eccentric orbits. We begin with the radial equation. Eqs. (3.9) imply 

(dr/dt)2 + U(E,L,r) = 0, (3.42) 

where 

U(E , L,r) = (f/E) 2 [V(L ,r)-E2
] . (3.43) 

Our strategy is to expand r( t) according to 

(3.44) 

and to similarly expand U(E, L, r), using Eqs. (3.11) and (3.12). Collecting terms 

of equal order inc yields (i) a differential equation for e(l)(t), 

(3.45) 

where 

(3.46) 

is the radial frequency-the fundamental frequency of radial motion; and (ii) a linear 

differential equation for e(2
) ( t) ' 

_1_de(1
) de(2) (i) (2) __ 1 - 7v 2 2v2 

t(i) 1 - llv2 + 26v4 t(i) 3 

nr2 dt dt +e ~ - l -6v2 +1-2v2"' + (1-2v2)(1-6v2)"' . (3.4?) 
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Eq. (3.45) can be integrated to give 

~(l)(t) = cosflrt, (3.48) 

where the time origin is chosen so that r(t = 0) - r0 (1 + c:) . Substitution of 

Eq. (3.48) into (3.47) then yields, after integration, 

(3.49) 

Integration of the azimuthal equation proceeds along similar lines. Eqs. (3 .9) . 

imply 

d¢/dt = (L/E)(J/r2
) , (3.50) 

which may be expanded in powers of c; using Eqs. (3.11), (3.12), (3.44), (3.48), and 

(3.49) . Integration then yields 

(3.51) 

where p1(v) = 2(1 - 3v2)[(1 - 2v2)(1 - 6v2)1l2J-1, P2(v) = 2(1 - 3v2)(1 - 7v2)[(1-

2v2)(1 - 6v2)312J-1, p3 ( v) = (5 - 64v2 + 250v4 
- 300v6 )[4(1 - 2v2)2(1 - 6v2)312]-1

; 

and 

n = [1 - 3(1 - 3v
2
)(1 - 8v

2
) 2] n 

q, 2(1 - 2v2)(1 - 6v 2 ) 
6 (3.52) 

is the azimuthal frequency-the fundamental frequency of azimuthal motion. That 

!1q, '/:- !1r reflects the fact that eccentric orbits in Schwarzschild are not closed. 
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3.4.2 The remaining steps-an overview 

The next steps of the calculation consist of (i) substituting the results of the pre-

ceding subsection into the expression for the particle's stress-energy tensor, 

u°'uf3 
T°' 13 = µ-2-t o[r - r(t)]o( cos O)o[¢- ¢(t)]; 

r u 
(3.53) 

(ii) constructing the projections 5 T, and (iii) expanding to second order in the 

eccentricity. In particular, we must expand r-r(t) about r-r0 , thereby introducing 

derivatives of the radial o-function; and expand ¢ - <P(t) about ¢ - n<f>t , which 

introduces derivatives of the azimuthal o-function. 

The next task is to obtain the Fourier-harmonic components sTwem(r ), usmg 

Eq. (3.24). The integration over</> implies that the derivatives of o(</> - n<t>t) are 

integrated by parts , and the n-th derivative of <5( ¢- n</>t) is therefore equivalent to 

Once the source to the Teukolsky equation has been evaluated using Eq. (3.25), 

we calculate z:!e:: using Eq. (3.28). Since the source has support only at r = r0 , the 

integral can be performed analytically, and involves several integrations by parts. 

As a result, z:!e:: can be expressed as a function of (i) r0 , (ii) the functions R!!t0 (r) 

and their derivatives at r = r0 , and (iii) the coefficient Q~e· 

In weak-field, slow-motion situations (r0 large) , the analytical techniques devel-

oped in paper I [18] may be used to calculate, approximately, R{!e(r) and Q~e· The 

result is an analytical expression for Z!fem , valid for r0 » 6M. Since EH/ E00 and 
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iH / L00 are of order v8 and hence very small [14, 27] , the weak-field, slow-motion 

calculation does not require the computation of Z:lm. 

In a strong-field situation, R~00 
( r) and Q~i must be obtained, for a given value 

of r0 , by numerically integrating the homogeneous Teukolsky equation. The result 

is then a numerical expression for z"!:e:;: , valid for that value of r 0 . 

Once z"!:e:;: has been obtained, we observe that the continuous sum over w reduces 

to a discrete sum, as in Eqs. (3.32) and (3.37). We then calculate E(GW) and f;{GW) 

with the help of Eqs. (3.33)-(3.36). Finally, Eqs. (3.18) and (3.19) are used to 

calculate ro and i I c:. 

3.4.3 Frequency spectrum, simplifications, and 

proof that E(I) = i(ll = 0 

Each step of the calculation, as outlined in the preceding subsection, would require 

an extremely long and tedious computation if some remarkable simplifications did 

not occur along the way. These simplifications arise because: (i) The gravitational 

waves possess a frequency spectrum characterized by a discrete set of frequencies. 

As in the circular case, the waves have frequencies equal to the harmonics of the 

azimuthal frequency, w = mf!ef>. However, a small eccentricity also implies the 

existence of side bands [28] , at w = mn<I> ±Or , and w = mf!ef> ± 2f!r. (ii) The 

calculation of E(GW) and i(GW) includes a time averaging, which causes a large 

number of terms to vanish. In particular, all O(c:) terms average out, as do most 
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O(c2
) terms. And (iii) the calculation of i/c only requires the computation of 

E(2) - D,j)2
), which also generates important cancellations. 

We now look more closely into the nature of the waves' frequency spectrum. The 

calculation of sTwem(r) was outlined in subsection B. After the angular integration 

has been performed, it is clear from Eqs. (3.48), (3.49), (3.51), and (3.53) that the 

next step is to integrate over time terms which are proportional to: (i) ei(w-mn<P )t; (ii) 

e±inrtei(w-mn<P)t; and (iii) e±2inrtei(w-m!1<1>)t_ It is also clear that the terms with depen-

dence (i) are dominantly O(c0 ) , while the terms with dependence (ii) are dominantly 

O(c), and the terms with dependence (iii) are dominantly O(c-2). Correspondingly, 

time integration yields terms which are proportional to: (i) o( ¢- mD.q,) , with mag­

nitude O(c0
); (ii) o( ¢-mD.q,±D.r ), with magnitude O(c); and (iii) o( ¢-mD.q,±20.r ), 

with magnitude O(c2
). Finally, Eqs. (3.25) , (3.28), and (3.30) imply that the grav­

itational waves possess the frequency spectrum described previously. 

Our schematic considerations can be pushed further. It is indeed clear from the 

results obtained thus far that z:;.;: must have the following structure (we momen­

tarily remove the H, oo subscripts for the sake of clarity): 

Zwem AemO(w - wm) - ~BimO(w - w_)c - tBh,o(w - w+)c 

+ CemO(w - Wm)c2 + DimO(w - w_)c2 + ntmo(w - w+)c2 

+ Ee;;_o(w - w_2)c2 + Et;;,o(w - w+2)c2 + O(c3
) , (3.54) 

where Wm= mD.q,, W± = mD.q, ± D.r, and W±2 = mD.q, ± 2Dr. The various coefficients 
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of the o-functions are expected to be complicated functions of (i) r0 , (ii) R:t0 (r) 

and their derivatives at r = r0 , and (iii) Q~e· All these coefficients can be calculated 

with the help of the equations presented in this and the preceding section; however, 

we shall now show that only a small number actually need be calculated. 

Substitution of Eq. (3.54) into (3.33)-(3.36), using (3.32) and (3.37), yields 

(3.55) 

(3.56) 

(3.57) 

(3.58) 

where ae = a;(wk =Wm) and az = a;(wk = W±)· These results teach us that the 

ffi · DH oo± d EH oo±Z · 1 1 1 t• h . .b . coe c1ents e.:i an e~ are irre evant to our ca cu a ion; t eir contn ut1ons 

vanish after the time averaging has been carried out. More simplifications arise 

below. 

Eqs. (3.55)-(3.58) imply that corrections to E(GW) and j)GW), due to nonvanish-

ing eccentricity, are second-order in c. Thus E(l) = j,(i) = 0, as was first written in 
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Eq. (3.17). The proof that circular orbits remain circular under radiation reaction 

is now complete. 

3.4.4 Calculation of ro and µi I c 

The calculation of r0 is almost complete. Explicit expressions for A~00 will be given 

in subsection E; these may be used together with Eqs. (3.40) and (3.41) to calculate 

EJ(O) , which is then substituted in Eq. (3.18). 

The calculation of µi / c requires the computation of E(o) and E(2) - n,j_,(2). In 

Eqs. (3.55)-(3.58), a number of terms are explicitly second-order in the eccentricity; 

others are O(c2
) only implicitly , by virtue of the fact that n<t> = n(1-.6.nc2

) , where 

.6.n can be read off from Eq. (3.52) . To make all dependence on c explicit, we now 

O(c2). It follows that the quantity E(2)-n_i(2)+.6.nE(o) only requires the calculation 

of the coefficients B~00± . With the help of Eq. (3.19) , we finally obtain 

·; = - (1 - 2v2)(l - 3v2)1/2 [r - h( )E(o)] 
µc € v2(1 - 6v2) v ' (3.59) 

where I'= I'00 + rH, with 

(3.60) 

2 + -
rH = µ n '"""'(~IB00+12 - ae IBoo-12). 

16 M 2 r ~ em em 
rr ~ w+ w_ 

(3.61) 



We also have 

with v = (M/r0 )
112

. 

h(v) = 1 - 12v
2 + 66v

4 
- l08v

6 

2(1 - 2v2 ) 2 (1 - 6v2 ) ' 

75 

(3.62) 

Eqs. (3.59) - (3.62) imply that the calculation of µi/c is much simpler than the 

individual computations, to second order in the eccentricity, of EJ(GW) and j)GW). 

Because of the occurrence of important cancellations, the calculation only requires 

the computation of B~oo±, and the leading-order part of A~00 • Computation of all 

other coefficients, as well as the 0( c2
) part of A~00 , is superfluous. 

Because of those various cancellations, the calculation of µi / c may now proceed 

in complete ignorance of the O(c2
) corrections to the motion of the particle. The 

only essential correction, the O(c2
) part of n<f> , has already been incorporated into 

Eq. (3.59). The computation of B~oo± only requires a calculation accurate to first 

order in the eccentricity. 

3.4.5 Calculation of A~00 and B~00± 

The calculation follows the lines of subsection B above. We find 

A H,oo 7T ( A H,oo + A H,oo + AH,oo) 
em = "( )2Qin 0 em -1 em -2 em ' 

Z Wm'ro wme 
(3.63) 

where (we momentarily remove all unnecessary indices for the sake of clarity) 

oA oafoR, 

-1afo[(2fo + iwmro)R - foroR'], (3.64) 
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Here, Wm = mn, Jo = 1 - 2M/ro = 1 - 2v2
, R = R:;;,,o;i(ro), and a prime denotes 

differentiation with respect to r 0 • Also 

BH,oo± 7r ( BH,oo± + BH,oo± + BH,oo±) 
lm = ·( )2Qin 0 lm -1 lm -2 lm ' 

i W±ro w±l 
(3.65) 

where 

(3.66) 

with W± = mn ±Dr and R± = R~~o;'(ro). We have introduced 

(3.67) 
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where A= (f - l)(f + 2), and 

The previous equations imply the following symmetry properties: 

(-l)eAH,oo. IJH,oo-,: _ (-l)eBH,oo± d f. _ O IJH,oo- _ BH,oo+ em ' e,-m - em ' an or m - ' e,o - e,o · 

3.4.6 The adiabatic approximation 

We conclude this section by formulating the conditions under which the adiabatic 

approximation holds. The results of this subsection were summarized in Sec. I B. 

We require that the inspiral timescale ro/Jrol always be much smaller than the 

orbital period 27r /D,r· Using Eq. (3.18), this requirement becomes 

1 v5 (1 - 6v2 ) 312 1 
µ/M«47r (1-3v2)3/2 (M/µ)2E(o)· (3.69) 

At large radii, r0 » 6M, ( M / µ )2 E(o) '::::'. 32v10 /5 and the adiabatic condition 

(3.69) becomes µ/ M « (5/1287r )v-5 . This is superseded by a wide margin by 

the condition µ/ M « 1, which ensures that the gravitational perturbations are 

linear. Near r0 = 6M, we may use the numerical results of Sec. V C and put 

(M/ µ) 2 E(o) ::: 9 x 10-4, and Eq. (3.69) becomes µ/ M « 2.8(1 - 6v2)312. This 

condition is far more restrictive than µ/ M « 1. 
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3.5 Analytical and numerical results 

3.5.1 Weak-field, slow-motion case 

Forro» 6M and v = (M/ro) 1l2 « 1, the analytical techniques developed in paper 

I may be used to calculate, approximately, R:z!±e(r) and Q~±e· The expressions 

for these quantities may then be substituted into the equations of Sec. IV D and 

E, to obtain µi/c: in the form of a post-Newtonian expansion. As was mentioned 

previously, there is no need to calculate i;H and j,H , because they contribute only at 

order v8 to the post-Newtonian expansion [27]. The calculations are straightforward 

and will be presented without much detail. 

The calculation of µi/c: up through order v 3 beyond Newtonian requires the 

computation of B!± for f, = 2 and f, = 3. We may use the symmetry properties of 

B!± and only consider nonnegative values of m; for m = 0, only Bfo+ is required. 

We find 

BH- O(v6 ) , 2,1 
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BH-
3,1 (3. 70) 

and B!/,~ = O(v5
) form= {0,2}. In the above, the notation O(iv3

) signifies that 

those terms of order v3
, which are purely imaginary, do not contribute, at order v3 , 

to IB!±l2
. That the coefficients Bfi- are so small is due to the fact that, form= 1, 

w_ = n - 0(1 - 6v2
)

112 = 3v20 + 0( v4
); since w_ is suppressed by a factor v2 with 

respect to w+, the resulting Bfi- is much smaller than Bfi +. 

We now substitute Eqs. (3. 70) into (3.60) and (3.59), and use the post-Newtonian 

expansion 

. ( ) . [ 124 7 ] E 0 =EN 1 - --v2 + 47rv3 + O(v4
) 

336 
(3. 71) 

derived in paper I [EN= 3
5
2 (µ/M)2v 10 is the leading-order, Newtonian expression]; 

this yields 

. . [ 6849 2 985 3 0( 4)] 
c = £N 1 - 2128 V + 152 1l"V + V ' (3.72) 

where i N is the leading-order, Newtonian expression, 

(3. 73) 

Throughout the post-Newtonian regime, v « 1, i is negative-radiation reaction 

therefore reduces the eccentricity. 

Substitution of Eq. (3.71) into (3.18), and use of Eqs. (3.72) and (3.73) yields 

Eq. (3.4). 
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3.5.2 Highly relativistic case 

Analytical calculations may also be carried out in the case where r0 approaches 6M. 

Because h( v) diverges when v2 --t 1/6, cf. Eq. (3.62), and because both E(O) and r 

have well-defined limits when ro --t 6M, µi/s is dominated by the second term on 

the right-hand side of Eq. (3.59). 

Our claim that E(o) is well behaved in the vicinity of r 0 = 6M can be substan-

tiated by (i) an inspection of the perturbation formalism, which shows no sign of a 

singularity at r0 = 6M; in particular, R~t'0 (r) and Q~£, for Mw = mMO = 5-3
/

2m, 

are well behaved. And (ii) with numerical calculations, which confirm the proper 

behavior of E(o) in the vicinity of r 0 = 6M. 

The proper behavior of r can be established as follows. Writing o = (1 -

6M / r0 ) 1/ 2 « 1, we first infer the various 6-dependence of the relevant quantities. 

Using the equations of Sec. IVE, we find that the 5 aem are independent of 6, while 

behaved, Eq. (3.65) then implies B"f:n = ±kem6-1 + ki;,, + 0(6), where kem and ki;,, 

are independent of 6. The fact that, at leading order in 6, Bki and Bim differ only 

by a sign is an important aspect of this discussion. [The case m = 0 requires special 

thought, since then W± = ±60, and Eq. (3.65) suggests that Bf0 might be more , 

singular than 0( 6-1 ) . However, a careful study of the Teukolsky equation reveals 

that this does not happen.] The final step is to substitute our result for B&, into 

Eq. (3.60), and notice a remarkable cancellation of the leading-order, 0(6-2 ) terms. 
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Multiplication by nr = on then ensures that each term in the sum over f and m is 

0( 6°) . That r has a well-defined limit follows from the fact that the sum converges 

for every To ~ 6M, which was verified numerically. 

Having established that r and E(O) have well-defined limits when To approaches 

6M, Eq. (3.59) reduces to 

µi/€'"'"' 2~E(0)1ro=6M(l - 6M/To)- 2
, (3.74) 

for To -t 6M. 

Substitution of Eq. (3.74) and (3.18) into (3.2) yields Eq. (3.4). 

3.5.3 General case-numerical integration 

When To is neither very large nor very close to 6M, R;:~';(T) and Q~±e must be 

calculated numerically. By performing the integration for a wide range of orbital 

radii, we obtain µi / € as a function of T 0 • The numerical results may then be checked 

against the limiting cases (3.72) and (3.74). 

We have carried out the numerical integration using a straightforward generaliza­

tion of the algorithm presented in paper II (19] (we shall not repeat the discussion of 

paper II here). We have constructed our integrator upon the Bulirsh-Stoer method, 

using fortran subroutines given in Ref. [29]; all operations were performed with dou­

ble precision. We have verified that our numerical results are in agreement with the 

limiting cases of subsections A and B; this agreement gives us great confidence in 

our results , which are summarized in Fig. 1. 
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It is easy to obtain high numerical accuracy by adjusting the tolerance of our 

integrator to a very small value; we have typically chosen a tolerance of 10-6 • Al­

though it is hard to prove, we believe our numbers to be accurate to at least six 

significant digits. Consequently, our estimate of the critical radius re (at which i 

changes sign) should be accurate to six significant digits; we have chosen to quote 

only five digits in Eq. (3.1). 

The accuracy of our numerical results is also subject to errors of non-numerical 

origin, which arise because the infinite sum over f must be truncated. The magnitude 

of the error thus induced can be controlled by requiring that the terms ignored 

contribute to a fractional error no greater than a certain value (. Since a multi pole 

of order f, contributes a fractional amount of order (M/ro)l- 2 to E and L [18), we 

arrive at the following criterion on the maximal value off which needs be included 

in the sum, 

lmax ~ 2 - log(/ log(ro/M). (3.75) 

For example, choosing ( = 10-5 yields lmax = 10 for ro/ M = 6, and Rmax = 3 for 

ro/M = 106
• 

The graph of Fig. 2 was obtained by numerically integrating Eq. (3.5), in the 

range between r0 / M = 6 + 10-3 and r0 / M = 100. The integration was performed 

using the extended trapezoidal rule, which is accurate enough for our purposes. 
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3.6 Conclusion 

We have established in this paper that a particle in circular motion around a nonro­

tating black hole remains on a circular orbit under the influence of radiation reaction. 

Furthermore, we have shown that circular orbits are stable only if the orbital radius 

is greater than a critical radius re ~ 6.6792M, where M is the mass of the black 

hole. 

Also, our analysis permits us to follow the evolution, under radiation reaction, 

of an orbit's eccentricity, so long as it remains small. We find that the eccentricity 

is reduced by many orders of magnitude during the post-Newtonian phase of the 

inspiral, but that it starts increasing once the orbit's radius is smaller than re. 

For reasonable values of µ/M, the eccentricity increases by at most an order of 

magnitude before the adiabatic approximation breaks down and the particle begins 

its plunge toward the black hole. 

Our analysis is restricted by four major assumptions: (i) the black hole is non­

rotating, (ii) the eccentricity is always small, (iii) the gravitational perturbations 

are linear, and (iv) the adiabatic approximation is valid. On the other hand, our 

analysis is not limited to weak-field, slow-motion situations; it is valid for particle 

motion in strong gravitational fields. 

We now examine whether any of our four assumptions could be relaxed, and at 

what cost, in future work. 
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Assumption (i) could be removed without much effort , that is, our analysis could 

be extended to the case of a rotating black hole, if and only if the orbit lies in the 

hole's equatorial plane. In the more general and more interesting situation of non­

equatorial orbits , the formulation of the problem of radiation reaction would take 

a significantly different form. In such cases, the motion possesses a non-vanishing 

value of the Carter constant , whose rate of change cannot be simply (if at all) related 

to the rates of change of energy and (vectorial) angular momentum. The general 

analysis would therefore require techniques more sophisticated than the ones utilized 

here; for example, a numerical implementation of Gal'tsov's formalism [14]. 

Assumption (ii) is one of simplicity, and could be removed without introducing 

additional conceptual difficulties. For example, a calculation valid to higher order in 

the eccentricity could be carried out, at the price of a modest effort. A calculation 

valid to all orders in c; could also be performed by numerical integration of the 

geodesic equations; see Ref. [17]. 

Assumption (iii) cannot be removed easily. Strong-field analyses valid for arbi­

trary mass ratios would require either the formulation of a higher-order perturbation 

theory, or the complete numerical solution of Einstein's equations for the two-body 

problem. Both approaches are still a long way into the future. A recent analysis 

by Kidder, Will, and Wiseman [30] suggests that the value of the critical radius re 

should increase with the mass ratio µ/M. 

Assumption (iv) could be removed (at least partially) by incorporating, at the 
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very beginning, radiation-reaction effects into the motion of the particle. Thus the 

motion would be non-geodesic to begin with, and higher-order radiation-reaction 

effects could then be calculated. These higher-order effects would be quite small at 

large orbital radii; but for a given mass ratio, there exists an orbital radius r 0 at 

which the adiabatic approximation breaks down, and at which higher-order effects 

would become important. The breakdown of the adiabatic approximation, and the 

transition from slow inspiral to fast plunge, is discussed in Ref. [15]. 
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Figure 3.1: A plot of c(ro), as defined in Eq. (3.2), as a function of logro/M. Shown is the 
range 10 < r0 /M < 1000, in which c(ro) has the most interesting behavior. For ro/M > 1000, 
c(ro) is well approximated by Eq. (3.3), and approaches the value 19/12:::: 1.5833 as ro tends to 
infinity. The function c(ro) changes sign at ro = re :::: 6.6792M, and approaches minus infinity 
when r0 -t 6M , in a way well described by Eq. (3.4). 
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Figure 3.2: A plot of 1(ro, r;), as defined in Eq. (3.5), for r; = lOOM, as a function of logr0 /M. 
The curve may be continued, both to the left and to the right, using the analytical estimates 
(1.6) - (1.8) . For example, 1(1000M; lOOM)::::; 3.6392. The function 1(r0 ; r;) has a minimum at 
r0 =re::::; 6.6792M, and grows to plus infinity when ro-+ 6M. Horizontal lines intersect the curve 
at two distinct points (ro = r 1 and ro = r 2 ) for which the eccentricity is equal, s(ri) = s(r2 ). 



Chapter 4 

Stability under radiation reaction 

of circular equatorial orbits 

around Kerr black holes 

Abstract 

We examine the evolution, under gravitational radiation reaction, of slightly eccen­

tric equatorial orbits of small objects around Kerr black holes. Our method involves 

numerical integration of the Sasaki-Nakamura equation. It is discovered that such 

orbits decrease in eccentricity throughout most of the inspiral, until shortly before 

the innermost stable circular orbit (ISCO) , when a critical radius r c , is reached 

beyond which the inspiralling orbits increase in eccentricity. It is shown that the 

92 
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number of orbits remaining in this last (eccentricity increasing) phase of the inspi­

ral is an order of magnitude less for prograde orbits around rapidly spinning black 

holes than for retrograde orbits. In the extreme limit of a Kerr black hole with spin 

parameter a= 1, the critical radius may dissapear altogether. 

4.1 Introduction 

Gravitational waves emitted by solar-mass-size compact bodies orbiting massive 

(106 M0 and greater) black holes (and spiralling towards them as they lose energy and 

angular momentum to the emitted radiation) are a favoured source for gravitational 

wave detectors sensitive to low-frequency radiation, such as proposed space-based 

detectors like the Laser Interferometer Space Antenna (LISA) [1]. Systems of this 

type lend themselves to theoretical analysis via perturbation theory, because of 

the extreme mass ratio between the two bodies. In recent years, the Teukolsky 

perturbation formalism for black holes has been employed successfully to describe 

orbital decay of small bodies orbiting a large Schwarzschild (i.e. non-rotating) black 

hole [4, 13, 14]. One result of this work has been to modify the long-standing result 

[12] that, under radiation reaction, orbits tend to become more circular as they 

slowly decay. In fact, inside a critical radius, which is re = 6.6792M for nearly 

circular orbits in the Schwarzschild geometry, non-circular orbits tend to become 

more, rather than less, eccentric [4]. Although a precisely circular orbit would 
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remain circular inside the critical radius, its circularity is longer stable to small 

perturbations as the orbital decay continues. 

Despite their intrinsic interest, these results may prove of limited usefulness for 

any future low-frequency gravitational wave detectors, since there is no reason to 

expect that large black holes should typically have no spin at all. Just the op­

posite (that they should exhibit strong rotation) is perhaps more to be expected 

[2] . Therefore it is of great interest to extend this type of analysis to the case of 

rotating, or Kerr black holes. This presents no difficulty for the Teukolsky pertur­

bation formalism itself, which was developed for the Kerr metric, but a problem 

does arise in dealing with an additional constant of the motion which governs orbits 

around spinning black holes. Unlike the energy and angular momentum, whose flux 

can easily be determined from the waves far from the source, until very recently 

there was no clear understanding of how to calculate the amount of "Carter con­

stant" carried away by the emitted radiation. In spite of this, it has been shown 

recently, for general orbits in Kerr, that circular orbits (defined as orbits of constant 

Boyer-Lindquist radius, and sometimes referred to as "quasi-circular") remain cir­

cular under radiation reaction [3, 15, 16]. While progress continues in developing 

techniques for dealing with general orbits in Kerr [6, 7, 27], it now seems worthwhile 

to investigate the case of nearly-circular, equatorial orbits around rotating black 

holes [5]. Equatorial orbits in the Kerr spacetime, like orbits in Schwarzschild, can 

be said to have zero "Carter constant", which remains unchanged during orbital 
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decay. Looking at these orbits can tell us if the behaviour previously observed for 

slightly-eccentric orbits in Schwarzschild is also seen in the Kerr metric for all values 

of the Kerr spin parameter 0 ~ a ~ 1. 

It is shown in this paper that, for equatorial orbits, it is generally true that a crit­

ical radius, re exists beyond which slightly eccentric orbits become less circular due 

to radiation reaction, and that this radius is encountered shortly before the radius 

of the innermost stable circular orbit (ISCO). This is best illustrated by examining 

the behavior of the parameter c = r0 e,jer0 , where e is the orbital eccentricity, and r0 

the mean radius, and an overdot differentiation by time. This parameter is negative 

for orbits evolving with increasing eccentricities, and positive for decreasing eccen­

tricity. Near the ISCO one can show, as in Sec. 9 below, that c diverges towards 

negative infinity near the ISCO, for nearly all values of a. There is an apparent 

exception to this behaviour in the limiting case of a maximally rotating Kerr black 

hole with a= M. In that case, the horizon and the ISCO are both located at r = M 

in Boyer-Lindquist co-ordinates, although they are still separate in terms of proper 

radial distance. As one approaches r = M, for the case of a prograde orbit around 

an extreme Kerr black hole, c is both postive and finite, approaching the limit of 

3/2 at r = M. Not surprisingly therefore, for prograde orbits around black holes 

with very large a > .99M, the transition to eccentricity-increasing inspiral takes 

place only shortly before the onset of dynamical instability at the ISCO in terms of 

the Boyer-Linquist radial co-ordinate. The number of orbits remaining at this point 
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is an order of magnitude fewer for such cases than it is for retrograde orbits in the 

same geometry. 

Since the radius of the ISCO is much smaller for prograde than for retrograde 

orbits (with a= M, r1sco = M for prograde orbits and r1sco = 9M for retrograde 

orbits), the critical radius is also much smaller for prograde orbits. These results 

demonstrate than the onset of "back reaction instability" for circular orbits precedes, 

and is intimately connected with, the onset of dynamical instability signified by the 

ISCO. It seems reasonable to conjecture that the alteration in the shape of the radial 

protential as the ISCO approaches, at which point the minimum of the effective 

potential vanishes, is reponsible for the gain in eccentricity. 

The organisation of the paper is as follows. In section 2, the orbital equations 

for geodesic motion (.i.e. not including radiation reaction) are solved analytically 

for slightly eccentric, equatorial orbits. In section 3 the Tuekolsky perturbation 

formalism is described, and section 4 shows how to calculate the fluxes of energy and 

angular momentum carried away from the system using this formalism. In section 5 

the Sasaki-Nakamura equation, which is actually solved rather than the Tuekolsky 

radial equation for numerical reasons, is presented. In section 6 the Teukolsky source 

function is calculated for a perturbing particle following the orbits of section 2, and 

the results of both of these sections come together in section 7 to yield the rate of 

change of orbital eccentricity due to radiation damping. This orbital evolution is 

described under the assumption of adiabaticity (that the orbital evolution is much 
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slower than the orbital period), which introduces constraints which are discussed in 

section 8. Finally, in section 9, the analytic and numerical results are presented, 

followed by a discussion of their significance in section 10. A guide to the essential 

points of the arguments is given at the end of section 7. 

4.2 Description of the orbit 

Since the perturbation of the Kerr metric producing the gravitational waves is that 

of a small particle orbiting the black hole, it will be necessary to solve the orbital 

equations for a particle in orbit around a rotating black hole. We require expressions 

for r(t), </;(t) and B(t) to describe the orbit in Boyer-Lindquist co-ordinates. Since 

we restrict ourselves to equatorial orbits, the solution for the B motion is trivial, 

B = 7r /2 is a constant throughout. The equatorial orbital equations for a particle in 

the Kerr spacetime, in these co-ordinates (leaving aside the trivial dB/ dr = 0), are 

well known [17] 

µ"Ei 2dr/dr 

-(aE - Lz/ sin2 B) + (a/ D..)(E(r2 + a2
) - aLz) = ~ ( 4.2) 

(r2 + a2) 
-a(aEsin2B- Lz) + D.. (E(r2 + a2)- aLz) = T, (4.3) 

where Tis proper time,"£,= r2 + a2 cos2 e, D.. = r2 - 2Mr + a2, and the black hole's 

spin parameter a is defined for convenience as a= J. L/M, with J the spin angular 

momentum vector of the black hole, and L a unit vector pointing in the direction 
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of the particle's orbital angular momentum vector. For prograde orbits (in which 

the particle orbits in the same sense as the black hole's spin) a is positive, and for 

retrograde orbits (in which the particle rotates in the opposite sense to the hole), 

a is negative. Recall that we restrict attention to equatorial orbits only, so that J 

and L are either parallel or anti-parallel. In addition, M and µ are the system's 

total and reduced masses respectively. It is a condition of the perturbation scheme 

that µ/ M « 1, where M is the mass of the central black hole and µ the mass of 

the orbiting particle. Finally, E and Lz are the particle's orbital energy and angular 

momentum, respectively. 

We now consider slightly eccentric orbits, and define a mean radius r 0 , so that 

8(R/r6)/8rlr=ro = 0. The eccentricity e is defined so that R(r = ro(l + e)) = 0. 

These definitions are chosen so that as e -r 0, r0 reduces to the constant radius of a 

circular orbit, and so that e corresponds, when e « 1 and in the appropriate limits, 

to definitions of the eccentricity of an orbit commonly used in the Schwarzschild 

geometry and in Newtonian mechanics [4] . These defining equations for r0 and e 

permit us to write the orbital energy and angular momentum in terms of these two 

quantities. Since we assume throughout that e is a small quantity, it is convenient 

to expand E and Lz in terms of it, 

E(ro,e) 

Lz(ro,e) 

Eo(ro) + eE1(ro) + e2E2(ro) + e3E3(r0 ) + O(e4
) 

Lo(ro) + eL1 (ro) + r2 L2(ro) + e3 L3(r0 ) + 0( e4
). 

( 4.4) 

(4.5) 
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Using our two equations in r0 and e, it is easy to show that 

Eo 
1 - 2v2 + qv3 

µ I 

(1 - 3v2 + 2qv3)2 
(4.6) 

0 (4.7) 

( 4.8) 

(4.9) 

Lo (4.10) 

0 (4.11) 

qrov5(q - 3v + qv2 + q2v3 )(l - 6v2 + 8qv3 
- 3q2v4) 

µ 3 

2(1 - 3v2 + 2qv3)2(l - 2v2 + q2v4) 
( 4.12) 

qr0v 5 (q - 3v + qv2 + q2v3 )(l - 7v2 + l0qv3 
- 4q2v4) 

-µ 3 • 

(1 - 3v2 + 2qv3)2(1 - 2v2 + q2v4) 
(4.13) 

Here v = JMlro and q = alM. These results, up to order e2 are given in Ref. [5). 

We wish to write the change in the eccentricity brought about by the loss of 

orbital angular momentum and energy, in terms of the rates of loss of those two 

quantities. Since we have E and Lz as functions of r0 and e, we use the chain rule 

for differentiation to write 

E dE Id 
oE. oE. 

- GW t = -e + -ro 
oe oro 

( 4.14) 

dL Id 
OLz. OLz. 

- GW t = -e + --ro, 
oe oro 

( 4.15) 

where dEGw I dt and dLGw I dt are the total energy and angular momentum carried 

towards infinity and the black hole horizon per unit time by the gravitational waves, 

averaged over several wavelengths. We will write these quantities also in terms of e 
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dEaw 
dt 

dLaw 
--

dt 
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( 4.16) 

• • 2 . 
Lo+ eL1 + e L2 + O(e3

). ( 4.17) 

As we shall find later, E1 = L1 = 0. Eliminating r0 from Eq. ( 4.15), we derive 

. = [- dEaw L' dLaw E']/[aE L' _ aLz E'] 
e dt z + dt ae z ae ' ( 4.18) 

where I _ 8/ar0 • 

Substiting Eqs. (4.17) and (4.5) into Eq. (4.18), we find , keeping terms up to 

order e2
, 

· E' · · E' · · E' · 
- L~ ( Eo - If Lo) - e2 L~ ( E2 - If L2) - e2 L; ( Eo - YJ Lo) 

e = o o 2 

2e(E2L~ - L2Eb) 
( 4.19) 

Now, from Eqs. (4.13), we see that 

Eb .JM - n 
L~ - rJ +a.JM - ' ( 4.20) 

where n is the angular frequency of a circular orbit of radius r 0 . It follows from 

an interesting (and quite general [22]) characteristic of circular orbits, and will be 

shown later in this case that, the circular (i.e. zeroth order in the eccentricity) rates 

of loss of energy and angular momentum are related by 

( 4.21) 

Therefore 

µe = - ej(v)[g(v)Eo + E2 - nt2], ( 4.22) 



101 

where 

j( v) = µ = (1 + qv
3
)(l - 2v2 + q2

v4)(l - 3v2 + 2qv3)~ 
E2 - OL2 v2 (1 - 6v2 + 8qv3 - 3q2v4) 

( 4.23) 

and 

( ) L; E~ Q( v) 
9 v = L~ - Eb = 2(1 + qv3 )(l - 6v2 + 8qv3 - 3q2v 4)(l - 2v2 + q2v 4)2' 

( 4.24) 

where 

Q( v) = 2 27v2 + 72v4 
- 36v6 + 38qv3 

- l 7q2v4 - 144qv5 + 86q2v6 

( 4.25) 

Since e is proportional to e in this equation, it is plain that a precisely circular orbit 

(one with e = 0) , will remain circular under radiation reaction, provided that we 

can indeed show below that Eo = n.io and E1 = .i1 = o. It is also plain that 

the question of the stability of an orbit's circularity will be determined by the sign 

of Eq. (4.22), which requires us to calculate the loss of orbital energy and angular 

momentum up to second order in e. 

Similarly we can solve for i-0 , the rate of change of the orbital radius, which tells 

us that to leading order i-0 = -E0 / Eb, which implies that 

. 2(1 - 3v2 + 2qv3
)

312 
· 

µro/ro = - Eo. 
v2 (1 - 6v 2 + 8qv3 - 3q2v 4) 

( 4.26) 

With this in hand it is possible to proceed to the solution of the geodesic equa-

tions [Eqs. (4.3)]. We expand r(t) about the mean radius r0 in terms of the small 
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eccentricity e, so that 

( 4.27) 

Making use of the expansions of E, Lz and r(t) in terms of e, we expand out the 

equation (dr/dt) 2 = R/T2
, and collect terms of order e2 and e3 (note that the e3 

term in r(t) does not contribute until O(e4
) in R/T2

) , giving us two differential 

equations, 

(drif dt) 2 = n;(1 - ri), 

where we define a radial frequency, 

and 

where 

and 

f1( v) 

h(v) 

h(v) 

1 - 7v2 + l0qv3 
- 4q2v4 

1 - 6v2 + 8qv3 - 3q2v4 

2v2 (1 - 2qv3 + q2v4
) 

(1 + qv3 )(1 - 2v2 + q2v 4 ) 

:F3( v) 
(1 + qv3 )(1 - 2v2 + q2v4 )(1 - 6v2 + 8qv3 - 3q2v4 )' 

:F3 ( v) = 1 - llv2 + 26v4 + llqv3 
- 3q2v4 

- 4lqv5 + 15q2 v6 

( 4.28) 

( 4.29) 

( 4.30) 

( 4.31) 

( 4.32) 

( 4.33) 

( 4.34) 
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Integrating these equations in order, we find, 

( 4.35) 

1 
-f1(v)(l - cos(Drt)) + 2h(v)(l - cos(2Drt)). ( 4.36) 

It remains to solve for the </>-motion. Again we expand out the geodesic equation 

d</> / dt = if!/ T, integration of which yields 

( 4.37) 

where 

2(1 - 3v2 + 2qv3) 
p( v) = [(1 + qv3)(1 - 2v2 + q2v4)(1 - 6v 2 + 8qv3 - 3q2v4)1/2] ( 

4
·
38

) 

and 

n"' n [ 1 

3(1 - llv2 + 24v4 + 13qv3 - 4q2v 4 
- 46qv 5 + 25q2v6 + q3v 7 

- 3q4v 8
) 

~~~~~~~~~~~~~~~~~~~~~~~~e2 
2(1 + qv3)(1 - 2v2 + q2v4)(1 - 6v 2 + 8qv3 - 3q2v 4 ) 

( 4.39) 

is the azimuthal angular frequency. The O(e2
) part of </>(t) which is proportional to 

sin(Drt) is not given, as neither it nor the O(e2
) part of r(t) contribute to the final 

result for e, for reasons which will become clear later. Only the 0( e2
) part of D<t> 

(i.e. D.D) is required, although it is necessary to know r2 (t) to derive D.D. 
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4.3 The Teukolsky formalism 

We employ a scheme previously used in the Schwarzschild case to investigate the 

evolution of slightly eccentric orbits under radiation reaction [4] . This scheme is 

based on the Teukolsky formalism for perturbations of the Kerr metric. In this 

formalism one can decompose the Weyl scalar 'l/;4 (which describes gravitational 

wave fluxes near infinity for such a system) as follows, 

where _2 sr;;:, is the spheroidal harmonic function of spin weight s = -2. The 

normalization used here for these functions is J;'" l-2Sf:(O)l 2 sin8d8 = 1/27r. The 

radial function Rzmw(r) obeys the Teukolsky equation, 

2 d ( 1 dRzmw) ) .6. dr .6. dr - V(r)Rzmw(r) = Tzmw(r , ( 4.41) 

where Tzmw is the Teukolsky source function, to be evaluated below. The Teukolsky 

potential is defined by 

V( ) 
_ K 2 + 4i(r - M)K . , 

r - - .6. + 8iwr + "'' ( 4.42) 

where K = (r 2 + a2 )w - ma and A is the eigenvalue associated with the appropriate 

spheroidal harmonic -2S/:. 

We can define two solutions to the homogeneous Teukolsky equation, Rf!nw(r) 

and R~w(r), with the following boundary conditions, 

( 4.43) 
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RH "' lmw 1 3 Bout eiwr• +~Bin e-iwr• as 
lmw r lmw ' r -+ oo (4.44) 

and 

( 4.45) 

3 -iwr• 
f'..I r e , as r --t oo, ( 4.46) 

where k = w - ma/(2Mr+), r+ = M + vM2 - a 2 is the radius of the black hole 

horizon, and r*, the tortoise co-ordinate, is defined as 

* 2Mr + 
1 

r - r + 2Mr _ 
1 

r - r _ 
r =r+ n - n , 

r + - r _ 2M r + - r _ 2M 
( 4.4 7) 

where r_ = M - -JM2 - a2. 

From Ref. [11], the solution of the Teukolsky equation (solved via a retarded 

Green's function) is 

( 4.48) 

where 

( 4.49) 

and 

Zoo( ) = 1 100 R~w(r)Tzmw(r)d r . . 
2 

r. 
2iw B[~w r .6. 

( 4.50) 

For convenience, we will write Z/!nw = zH(r-+ oo) and Z1'::,w = Z 00 (r-+ r+), 

and therefore our two solutions can be written as 

R ( ) Z H 3 iwr• 
lmw r -+ 00 rv lmw' e ( 4.51) 
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and 

R ( ) Z oo A 2 -ikr* 
lmw r --7 r + ,...., lmwLJ.. e . ( 4.52) 

4.4 Energy and angular momentum fluxes 

Towards infinity, the Weyl scalar can be related to the two fundamental polarizations 

of gravitational waves by 

1 .. .. 
1/J4 = 2(h+ - ihx). ( 4.53) 

From this and Eq. ( 4.40) above, we can determine the averaged energy and angular 

momentum fluxes at infinity, employing the Isaacson stress-energy tensor to define 

the energy :8.ux in the wave [28], as 

( 4.54) 

and 

(dLaw) = L'; = L mlZ~;l 2

, 
dt lmk 41Twk 

( 4.55) 

where the amplitude coefficient is decomposed into a discrete set of frequencies based 

on the particle's orbital motion, 

Z/!nw = L z{!,.kJ(w - wk)· ( 4.56) 
k 

Energy and angular momentum are also lost by radiation through the horizon of 

the central black hole. Again, 1f;4 completely describes the waves as r* --7 -oo, and 
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following the same procedure as with the waves at infinity [24, 8] we find 

(4.57) 

and 

(4.58) 

with an identical decompostion of Z1~w as with Zlfnw, and where 

( 4.59) 

and E = v'M2 - a2 /4Mr + and 

+ (2>. + 3)(96a2w2 
- 48awm) + 144w2 (M2 

- a2
). ( 4.60) 

This result for energy and angular momentum lost down the hole is in agreement 

with that of Teukolsky and Press [8]. The total rates of loss of energy and angular 

momentum by the system are EH + E00 and j}j + L ~. 1 

4.5 The Sasaki-Nakamura equation 

The preceding section makes it clear that our chief task is to calculate the amplitudes 

z{:,;';, and it is apparent from Eqs. ( 4.49) and ( 4.50) that this will entail solving the 

Teukolsky equation to find the amplitude of the in-going waves at infinity, Bf:;,w from 

Eq. (4.44). Numerically this presents a problem, however, since the ingoing waves for 

this solution are completely swamped by the outoing waves at large radii [compare 



108 

amplitudes of B~~r3 and Bfr:nw/r as r --+ oo in Eq. ( 4.44)]. In the Schwarzschild case 

this problem is typically avoided by solving instead the Regge-Wheeler equation, and 

transforming its solution to that of the Teukolsky equation via the Chandrasekhar 

transformation [25]. The virtue of this is that, in the Regge-Wheeler formalism, 

with its short-range potential, the ingoing and outgoing waves near infinity have the 

same order of magnitude. 

In the Kerr case, Sasaki and Nakamura have found an equation with the same 

useful properties as the Regge-Wheeler equation in Schwarzschild which, moreover, 

reduces to the latter equation when a --+ 0 [10]. The Sasaki-Nakamura equation is 

written as follows 

d
2 
Ximw - F( )dXimw - U( )X = 0 
dr2 r dr r lmw . ( 4.61) 

The functio?-s F(r) and U(r) are given in the appendix. The equivalents to our two 

solutions to the Teukolsky equation are 

x{!nw rv Aout eiwr• + Ain e-iwr• as lmw lmw l r --t oo ( 4.62) 

xf!w rv e-ikr* as r--tr+ ' 
(4.63) 

and 

x;=::iw rv eiwr•' as r --+ oo ( 4.64) 

X1':iw rv nouteikr* + Dine-ikr* , as r --tr+ . ( 4.65) 



The transformations between the quantities we require are 

1 [( f3,r) H (3 H ] 
~ O'. + ~ Xtmw - ~ Xtmw,r ' 

Co [( f3,r) 00 f3 00 ] 

- 4w27] O'. + ~ Xtmw - ~ Xtmw,r ' 

and 

Bin 1 Ain 
lmw = - 4w2 lmw1 

where X~': = xt:i:_: jJr2 + a2 , and Co, 0: 1 (3 and 1] are given in the appendix. 

4.6 The source term 

The Teukolsky source term is given by [18] 

where 

B~ -~p8pL_i[p-4 Lo(p-2 p- 1Tnn)] 

B'* 2 

_1_ 8-~2L [ -4-21 ( -2--2~-1T- )] 

2
J2p P -1 P P + P P mn ' 

1 8- -4 -2-
-4P pl+[P l+(P pTmm] 

_1_ 8 -~ 21 [ -4 -2 ~ -1 L ( -2 --2T- )] 

2J2p P + P P -1 P P mn ' 
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( 4.66) 

( 4.67) 

( 4.68) 

( 4.69) 

(4.70) 

( 4. 71) 

and p = (r - ia cos e)-1 , with p its complex conjugate. The operators Ls and 1+ 

are defined as 

Ls= oe + ·me - aw sine+ scote 
sm 

( 4.72) 
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and 

(4.73) 

The tetrad components of the particle's energy momentum tensor can be written 

Tnn ~n~J(r - r(t))J(8- 7r/2)J(¢- ¢(t)), ( 4.74) 
Sln 

Tmn ~m~J(r - r(t))J(8 - 7r/2)o(¢- ¢(t)), ( 4. 75) 
sm 
C- -

Tm,m, .m~o(r - r(t))o(8-1f/2)o(¢- ¢(t)), ( 4.76) 
sm 

where 

- ;; . [E(r2 + a2
) - aLz][i sin8(aE - .L; )] 

2 L:2t sm e 
µp [. . ( Lz ] dr - -- ism8 aE- -- -

2v'2L: sin2 e dt 
( 4.78) 

µpz [ .. 8( E Lz )]2 -. ism a - --
2L:t sin2 e (4.79) 

and i = dt/dr. 

Integrating by parts, and making use of the adjoint operator L ! = Oe - m /sin 8 + 

aw sin e+s cote= oe+ J(8), which bears the following useful relation to the operator 

Ls defined above: 

htr h(8)Ls[g(8)]sin8d8 = - htr g(8)LLs[h(8)]sin8d8, (4.80) 
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with g( 0) and h( 0) arbitrary functions [5], we find that 

Tzmw 1
00 {2-rr 

_
00 

Jo .6.2[{(Ann0 + Ainno + Ainino)6(r - r(t)} ( 4.81) 

+ {(Amnl + Ainin1)6(r - r(t))},rnonumber (4.82) 

+ {Ainin26(r- r(t))},rr]6(</>- </>(t))eiwt-im<Pd<f>dt. (4.83) 

The A's are all functions of r only, and in each case A = A(o) + A(1)(dr/dt) + 

A(2)(dr/dt)2, where (writing _2Sf:i simply as S hereafter for simplicity) 

A(i) 
nnO 

2 (") 3 
- ~2 Cn~r (rS,ee - 2iaS,e + 2r J('rr /2)5,e 

2iaf( 7r /2)5 + r5(J( 7r /2) 2 
- 2), 

A(i) 
mnO 

2~c~~r3 (S,e + f(7r/2)S)(i~ + ~), 
A~o)_ o mm 

2 . K K 2 2i K 
-r CininS(-i(~),r -(~) +-; ~), 

A(i) 
mnl 

2~ r3C~~(5,e + f(7r/2)S), 

-2r2 C- -5(iK + ~) mm ~ r' 

( 4.84) 

( 4.85) 

( 4.86) 

( 4.87) 

( 4.88) 

( 4.89) 

In every case the spheroidal harmonic function (S) and its derivatives are evaluated 

at 0 = 7r /2. 

It is now easy to show, from Eqs. ( 4.49) and ( 4.50) and using integration by parts 

(keeping in mind that we are interested only in closed orbits, for which r + < r < oo 
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always holds strictly), that 

H 1 loo {oo {21r H 
Zin::= 

2
. Bin }_ lo I1n:;:(r)o(r - r(t))o(</>- </>(t))d</>dtdr, 
iw lmw r+ -oo O 

( 4.91) 

for which I/!,;':;':(r) = I1~w(r) + Il;}jr)(dr/dt) + I1~w(r)(dr/dt)2 , where 

dRH,oo d2 RH,oo 
I(i) (r) = RH,oo(A(i) +A(_!) +A(_!)_ ) - lmw (A(_!) +A(_!)_ ) + lmw A(_!)_ lmw lmw nnO mnO mmO dr mnl mml dr2 mm2· 

( 4.92) 

It is necessary to expand z{!,;;: in terms of the eccentricity e, keeping in mind 

that we wish , as shown in section 2 above, to find f;H,oo and j/f ·00 to second order 

in e, and that each of these is proportional to 1z~;:1 2 • However, it transpires that 

only terms up to order e in the integrand of Eq. ( 4.91) contribute to order e2 in e, 

the rate of change of eccentricity derived from f;H ,oo and L1j·00
• The reasons for this 

emerge as we proceed to expand I{!,;;: ( r), o ( r - r( t)) and o ( </> - </>( t)) in powers of e. 

Employing the expansions of r( t) and </>( t) derived above [Eqs. ( 4.27) and ( 4.37)], 

we can write the product of delta functions in Eq. ( 4.91) as a product of two Taylor 

expansions in the small parameter e, about the points r - r0 and </> - Dq,t. 

o(r - r( t) )o( </> - </>( t)) = o(r - r0 )o( </> - Dq,t) - er0 cos Drto'(r - r0 )o( </> - Dq,t) 

( 4.93) 

where the prime denotes differentiation with respect to the function's argument. 

We can integrate by parts in Eq. ( 4.91) to integrate terms containing derivatives 

of delta functions , and this will simply mean that o'(<P- Dq,t) will be replaced by 

imo( </>- Dq,t), since e-im<t> is the only other part of the integrand which depends on 
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¢>. Completing the ¢> integration thus leaves us with the overall factor ei(w-mfl<1>)t, 

and some terms depending on cos D.rt , sin D.rt and, in the 0( e2 ) part , on cos 2D.rt 

and sin 2D.r t. Following the time integration, then, we will have a series of delta 

functions of the type 0 ( w - mn<t>) [at all orders, except 0( e)]' 0 ( w - mn<t> ± nr) (at 

all orders from O(e) up) and, in general, o(w - mD.<t> ± kD.r) at O(ek) and above. 

These delta functions , after integration over w to derive 7./;4 [Eq. ( 4.40)], pro-

duce terms representing energy and angular momentum emitted at the fundamen-

tal (circular motion) frequency Wm = mD.ef>, and at a series of discrete sidebands, 

W± = mD.<t> ± D.r and W±k = mD.<t> ± kD.r. The occurrence of these delta functions 

also justifies the decomposition of zt:,;: referred to earlier [Eq. ( 4.56) above]. 

It is, of course, IZ1"!';1 2 which is integrated in Eq. (4.40) . Therefore, up to order 

e2 , only those 0( e2
) terms in Z{:,;'; which cross multiply with 0( e0

) terms will 

contribute. Since the frequency must be single valued for any given term, only the 

circular harmonic ( wm) term in 0( e2
) survives the Fourier transform which produces 

the Weyl scalar, all other terms being annihilated. The 0( e) terms in Z have no 

circular harmonic term, as mentioned before, so these terms only contribute to loss 

of energy and engular momentum at O(e2
). 

As seen from Eq. ( 4.22) above, it is the difference E2 - D.L2 on which e actually 

depends at leading order. Eqs. (4.54),(4.55),(4.57) and (4.58) show that 

. . mn 
En - D.Ln oc 1 - - , atorder en 

Wk 
( 4.94) 
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which is zero to leading order if wk = Wm = mf2q, . This means not only that the 

O( e2
) terms in z{;,;: do not contribute at all toe below o( e3

), but also that .E0 -n.i0 

is also zero to leading order, as noted above [Eq. (4.21)]. In fact, since the eccentric 

correction to the azimuthal frequency D,q, is itself of 0( e2 ), the circular losses of 

energy and angular momentum contribute to e at O(e2 ) to leading order, like the 

first order terms in Z . Therefore there is no loss of E and Lz at 0( e), and so E1 = 0 

and L1 = 0 as claimed in section 2. 

This proves that a precisely circular equatorial orbit in Kerr will always remain 

circular under radiation reaction (as long as the adiabatic approximation still holds). 

Furthermore it means that to find the leading order correction to this condition 

for slightly eccentric orbits , and thus establish the stability of circularity, we need 

only examine the O(e) terms in Eq. (4.40), and can drop all O(e2
) corrections to 

the motion, except for the ~D, part of Oq,. This also means, of course, that only 

contributions to the loss of energy and angular momentum from the first pair of 

sidebands (w = w±) need be included with the circular harmonic (wm) in calculating 

e to leading order. 

4. 7 Calculation of rate of change of eccentricity 

As a final step before integration of Eq. (4.91) , the function I/:,;';(r) must be ex­

panded up to first order in e. It contains terms which depend on dr / dt which, by Eq. 



115 

(4.27) above, is O(e) at leading order, dr/dt = -eroDrsinDrt + O(e2 ). Therefore 

we will write 

( 4.95) 

Thus, doing a final integration by parts in the integral over r in Eq. ( 4.91 ), we find 

Zi:i;;' = - . 7rin [I/,~L(ro)o(w - mDq,) - eB1~o(w - w+) - eB1-:no(w - w_) + 0( e2
)], 

zwBzmw 

( 4.96) 

where 

The argument of the preceding section shows that, in order to calculate the 

quantity E2 - DL2 + '6.DE0 , we need only evaluate the co-efficients B1°!i in Zzm· 

Therefore, returning to Eq. ( 4.22), we have 

µe/e = -j(v)[r- h(v)Eo] ( 4.98) 

where 

r ( 4.99) 

(4.100) 

and 

1-l(v) 
h(v)=t6.D-g(v)= , (4.101) 

2(1 + qv3 )(l - 2v2 + q2v4 ) 2 (1 - 6v2 + 8qv3 - 3q2v4 ) 
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with 

H( v) = 1 - 12v2 + 66v 4 
- l08v6 + qv3 + 8q2v 4 

- 72qv5 
- 20q2v6 

+ 204qv7 + 38q3v7 
- 42q2v8 

- 9q4v8 
- l44q3v9 + ll6q4v 10 

( 4.102) 

In summary, Eq. ( 4.98) is the equation which allows us to compute the change 

in eccentricity for an inspiralling orbit, and Eq. ( 4.26) defines the rate of inspiral. 

Eq. (4.100), Eq. (4.97 and Eq. (4.92), for r, and Eqs. (4.54) and (4.57) with the 

0( e0
) part of Eq. ( 4.96) for E0 , allow us to express e in terms of the solution of 

the radial Tuekolsky equation R~':, and its derivatives, as well as the incoming 

wave amplitude Bf;.:,w. These quantities are in turn derived numerically by solving 

the Sasaki-Nakamura equation as described below in section 9, and employing the 

transformations given in Eqs. ( 4.66), ( 4.67) and ( 4.68). The important functions 

j(v), h(v) and .0.0 in Eq. (4.98) are all derived in solving the equations of geodesic 

motion for the orbiting body in section 2. 

4.8 Adiabatic condition 

The whole preceding argument depends on an adiabatic condition on the motion 

which says that the inspiral timescale r0 /lrol is much greater than the orbital period 

of the motion 27r /Or. The necessity for this condition is most noticeable in the 

approximation which describes the evolution of the particle's motion under back 
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reaction as passing through a series of geodesic orbits, each defined as if no back re-

action were taking place during that orbit. Once the inspiral proceeds on a timescale 

which is about as short as the time to complete an orbit, this approximation loses 

all validity. Using Eq. (4.26), we find that the adiabatic condition can be written, 

µ v5 (1 - 6v 2 + 8qv3 
- 3q2v4

)
312 1 - « - ---------,,....--------,-

M 27r (1 - 3v2 + 2qv3 ) 312(1 + qv3 ) (M/ µ)2 Eo · ( 4.103) 

Just as the inspiral timescale must be greater than an orbital period, so too must 

the circularization timescale e I e. However' this quantity is almost invariably less 

than the inspiral timescale, so Eq. ( 4.103) is the key condition. For very large 

radii, in the Newtonian limit, (M/µ) 2 E0 '.::::'. 32v10/5 (for a discussion of this limit 

see Ref. [4]) and the condition is simply µ/M « (5/1287r)v-5
, which is very much 

less restrictive than the linear perturbation condition µ/M « 1, upon which the 

Teukolsky formalism rests. Approaching the ISCO however, where the numerical 

results tell us that E0 remains finite and of the same order as its Newtonian value, 

we see that the adiabatic limit on µ / M is proportional to ( 1 - 6v 2 + 8qv3 - 3q2v 4 ) 312 , 

which becomes vanishingly small as the ISCO nears. Therefore, near the ISCO 

the adiabatic condition supercedes the linear perturbation condition, as the leading 

constraint on µ/ M. Only by imagining a test particle which has vanishingly small 

mass can we apply the results of our calculation all the way to the ISCO, but no 

doubt there exist real physical systems, with µ/ M :S 10-6 for instance, which are 

correctly described for almost all of the inspiral by this approximation (recalling that 
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our calculations presume that the particle is a point mass as a further simplification). 

This issue will be discussed more quantitatively in Ref. [29]. 

4.9 Results 

With the results of section 7, it only remains to calculate R~:', Bf~w [Eqs. ( 4.43) 

and ( 4.44)] and -2Sf:i( 7r /2) [Eq. ( 4.40)] numerically to find e/ e. To find the solutions 

to the radial equation [Eq. (4.41)] one actually solves the Sasaki-Nakamura equation 

Hoo · [Eq. (4.61)] for X1rr:w and Ai~w [Eqs. (4.62) and (4.63)]. These solutions are very 

smooth, apart from a singularity at the horizon r +, and so Bulirsch-Stoer integration 

works very well in integrating them. The singularity is avoided by starting the 

integration from a point just outside the horizon (typically at r + + 10-8
) . The 

solutions are insensitive to variations by several orders of magnitude of this small 

increment. Richardson polynomial extrapolation is used to evaluate A}~w as r---+ oo, 

since it can be expressed as the first term in a polynomial in l/wr defining the 

amplitude of the ingoing wave at large r in Eq. ( 4.62) [13]. This amplitude is 

evaluated for several endpoints of integration, doubling the endpoint radius at each 

trial, allowing the extrapolator to evaluate the limit of the amplitude as r ---+ oo, 

h . h. Ain 
W IC IS lmw· 

The Spheroidal harmonic functions are calculated by expressing them as a linear 

combination of spherical harmonics of equal m, summed over all available values in 
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l (truncating the series after 30 terms in practice). Substituting this series into the 

second-order ODE defining the spheroidal harmonics gives us a 5-term recurrence 

relation for the co-efficients of the expansion. This can be solved using matrix 

eigenvalue routines which, like the Bulirsch-Stoer integrator and the polynomial 

extrapolator, are found in Ref. [9]. The derivative of each spheroidal harmonic is 

also expressible as a combination of spherical harmonics of different spin-weight 

values by use of the edth operator [20]. This procedure, for the scalar case only, is 

found in [19]. A more detailed description is given in the appendix to the thesis. 

Useful checks for the numerical results are found in the Schwarzschild limit, in [4] 

and in the circular limit , in [21 J. Analytically the results of sections 2 and 7 reduce 

to those of [4] in the Schwarzschild limit and those of section 2 to the results of [5] 

in the post-Newtonian limit. 

The accuracy of the numerical results is limited by several factors. The relative 

accuracies of the Bulirsch-Stoer integrator and the Richardson extrapolator can be 

increased easily, at some loss in computing speed. For these calculations they were 

set to 10-6 and 10-5 respectively. The solution of the eigenvalue problem has very 

good accuracy, but the approximation of the spheroidal harmonics as a combination 

of spherical harmonics begins to lose accuracy seriously when aw becomes much 

larger than order unity. However, this only occurs for very high (m > 20) harmonics 

of the motion for small radii , and these contributions are not required at the accuracy 

used here. The chief limit on accuracy is, in fact , the number of harmonics in l and 
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m which are calculated. Invariably, for small eccentricity orbits, the leading order 

contribution is for l = 2, m = 2, and the significance of the contribution decreases 

sharply (but less so for small radii) with increasing land m . A simple estimate, used 

in Ref. [4] , enables one to reliably estimate the inaccuracy involved in truncating the 

calculation at l = lmax· It tells us that, for a relative error (in estimates of the loss 

of energy and angular momentum) no greater than ry , with a mean orbital radius r0 , 

then lmax 2: log ry /log( M / ro) + 3. Taking all of these factors into account, we can 

generally estimate the accuracy of the numerical results at 10-5 , and certainly the 

relative errors should be no greater than 10-4 in most cases. 

A useful parameter with which to investigate the orbital evolution is c, which 

represents a ratio of the inspiral timescale to the circularization timescale , or 

r0 de/dt 
c- ----

- e dr0 /dt · 
( 4.104) 

Again, c is positive when radiation reaction circularizes the orbit, and negative when 

it drives the orbit more eccentric. In order to see analytically the behaviour of c as 

the ISCO approaches , recall Eq. ( 4.98) and write 

ro . 
c = --. j(v)[r - h(v)E0 ] . 

µro 
(4.105) 

As r0 ~ r1sco, the radius of the innermost stable circular orbit, the function h( v) 

[Eq. (4.101)] diverges , since rfsco - 6Mrrsco + 8a-./Mrrsco - 3a2 = 0. Since the 

numerical results show that r and E0 remain finite in all cases, it is apparent that r 

(which is otherwise dominant) , contributes negligibly near rrsco. Therefore, making 
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use of the expression for r0 from Eq. ( 4.26), we find for r0 near r1sco, 

1{ 
C"-' -~~~~~~~~~~~~~~~~~~~~~~~ 

4(1 - 2v2 + qv3)(l - 3v2 + 2qv3)(1 - 6v2 + 8qv3 - 3q2v4) · 
(4.106) 

Again, 1 - 6v2 + 8qv3 
- 3q2v4 --+ 0 as r --+ r1sco, so c diverges at the ISCO. However, 

its sign as this point approaches depends on the function 1{ [Eq. ( 4.102)], since 

the expressions in the denominator are all positive for r > r1sco. It is obvious 

that for large r, 1{ is always positive, but for small values of r, which can be 

achieved by prograde orbits around rapidly spinning black holes (a > .95M), 1{ can 

become negative. However, it always becomes positive again before the ISCO, so 

that c--+ -oo at the ISCO, in all cases except one. 

The exceptional case is the extreme one of a--+ M. At this unique point, 1{, and 

all expressions in the denominator of Eq. (4.106) go to zero. Setting q = 1 in Eq. 

(4.106), and canceling factors of (v- l) from both numerator and denominator, one 

finds that 

lim c = 3/2, 
q=l,v-+l 

( 4.107) 

which is both positive and finite, in contrast to the usual behaviour at the ISCO. 

However, as Fig. 1 shows, the curves describing the critical radius and the ISCO 

do approach each other in terms of the Boyer-Lindquist radial coordinate as a --+ M, 

as our analysis of c might suggest. Therefore it is interesting to investigate the 

consequences of this for massive particles inspiraling around near extreme Kerr 

black holes. A useful measure here is the number of orbits left in the inspiral once 
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the particle reaches the critical radius, that is, the number of orbits it will take the 

particle to reach the ISCO. Defining te as the inspiral time between re and rrsco, 

and referring to Eq. ( 4.26) for the rate of inspiral, we have 

te = -irrsco v2(1 ~ 6v2 + 8qv3 - 3q2v4) µdro. 

re 2E0 (1 - 3v2 + 2qv3) ro 
( 4.108) 

To a rough approximation, we can take E0 as constant in this region, and therefore 

µ V 1 v
2 

1 te ~ -. ll - 3v2 + 2qv3(-- + - )lvrsco. 
Eo 2 2(1 - 3v2 + 2qv3 ) ve 

( 4.109) 

Approximately, the number of orbits left in this time will be 

te ten µ v 3 1 V 1 v2 
- 1 Ne ~ - ~ - ~ - e. ll - 3v2 + 2qv3( - - + ) 1vrsco. 

T 27r M 27r E0 1 + qv3 2 2(1 - 3v2 + 2qv3) ve 

( 4.110) 

Note that E0 ex (µ / M) 2 , so that Ne is inversely proportional to µ / M. In the test 

particle limit µ/M ---7 0, Ne ---7 oo. 

For a= -.9M, we find that Ne~ .035M/µ, while for a= .99M, Ne~ .0025M/µ. 

Note that the rate of energy loss is similar in these two cases (retrograde orbits 

radiate more energy for an orbit of given radius than do prograde orbits), but the 

distance between re and rrsco is much smaller in the latter case. The condition of 

Eq. (4.103) at the critical radius for a= .99M is µ/M « .01, so these estimates are 

still applicable to systems with extreme mass ratios, such as compact solar-mass-

size objects spiralling into rapidly rotating supermassive black holes. For such a 

system, a prograde orbit spends an order of magnitude or more fewer orbits in the 

eccentricity increasing phase than does a retrograde orbit. Furthermore, the orbital 
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periods for these two cases (a prograde orbit with r0 ,....., l.5M, and a retrograde 

orbit with ro ,....., 9.5M) are also very different, with the period of the retrograde 

orbit an order of magnitude longer. The retrograde orbit therefore spends a factor 

of hundreds more time gaining eccentricity than the prograde orbit. 

Fig. 1 illustrates the positions of the horizon, ISCO and the critical radius for 

prograde and retrograde orbits around black holes of all spins. Fig. 2 illustrates 

the behaviour of c for Schwarzschild orbits (a = 0) and for prograde and retrograde 

orbits around a Kerr black hole with a = .9M. The dramatic plunge in c towards 

negative values as the ISCO approaches is seen in all three cases. 

4.10 Conclusions 

The results of this paper broadly confirm the experience of the non-rotating case, in 

that radiation reaction tends to reduce orbital eccentricity until near the the ISCO, 

when the onset of dynamical instability is prefigured by a period of decircularization 

of the inspiralling orbit. It seems reasonable to suppose that this effect is induced by 

alterations in the shape of the radial potential R as the ISCO approaches, since at 

the ISCO, the minimum which defines the particle's circular orbit dissapears. The 

tendancy of prograde orbits around rapidly rotating black holes to begin increasing 

in eccentricity only very shortly before the plunge into the black hole (at rrsco) 

suggests that massive bodies in such orbits will not experience much increase in 
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eccentricity at the end of their inspiral, in comparison with bodies in retrograde 

orbits , or the non-rotating case. In the case of prograde orbits around an extreme 

Kerr black hole, the fact that c is positive arbitrarily close to r = M , suggests that 

there is no critical radius in this exceptional case. 

Another effect of the back reaction force on the orbit is one which tends to alter 

the inclination angle, which measures the maximum departure of the orbit from the 

equatorial plane. Ryan [23) has shown that nearly equatorial prograde orbits tend 

to increase their inclination angle under radiation reaction, thus moving away from 

being equatorial, although the effect is not very pronounced. Retrograde orbits, 

on the other hand, tend to decrease their inclination angle (since the spin-orbit 

interaction is attractive for retrograde orbits). Therefore, by the late stages of 

inspiral, one might not expect prograde orbits to have remained very close to the 

equatorial plane. This illustrates the need for a more general calculation of orbital 

evolution in the Kerr geometry, which deals with the issue of the Carter constant. 
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Appendix 

The potential functions F(r) and U(r) of the Sasaki-Nakamura equation (4.61) are 

given in this appendix. 

F(r) - 'r/,r ~ 
- 'fJ r2 + a2 

where 

( 4.112) 

and 

Co -12iwM + A(A + 2) - 12aw(aw - m) ( 4.113) 

C1 8ia[3aw - A(aw - m)) (4.114) 

C2 -24iaM(aw - m) + 12a2 [1 - 2(aw - m)2
) ( 4.115) 

C3 24ia3
( aw - m) - 24M a2 ( 4.116) 

C4 12a4
. ( 4.117) 

~U1 2 ~G,r 
( 4.118) U(r)=( 2 2)2+G + 2 2-FG r +a r +a 
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where 

G 
2(r - M) rb. 

( 4.119) - - + 
r2 + a2 (r2 + a2)2 

U1 - V + ,6_2 [(2a + /3,r) - 'T/,r (a+ /3,r )] 
/3 ,6. ,r 'T/ ,6. ( 4.120) 

a - .K/3 3·K >. 6b. 
- i ,6.2 + i ,r + + r2 ( 4.121) 

/3 - 2b.( - iK + r - M -
2

,6. ). ( 4.122) 
r 
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Figure 4.1: Graphs showing the positions of the horizon ( r +), innermost stable circular orbit 
( rff-co) and critical radius ( r crit) in terms of the mean orbital radius r0 for all black hole spins 
(a ~ M). Positive a indicates a prograde orbit, and negaive a a retrograde orbit. 
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Figure 4.2: Curves showing the evolution of the parameter c, defined in Eq. ( 4.104), as the mean 
orbital radius r0 decreases, for three different types of orbit. For a black hole with spin a = .9M, 
both the prograde (a= 0.9) and retrograde orbits (a= -0.9) are shown. Also shown is the case 
of a Schwarzschild black hole (a = 0.0). In each case c begins to fall quickly towards zero as the 
innermost stable cirular orbit approaches. The strange kink in the a = 0.9 curve near the bottom 
left hand corner of the graph may be due to the function 1-l [Eq. (4.102)], upon which c depends 
strongly near the ISCO [Eq. (4.106)], dropping near to zero in value as r0 decreases. 



Chapter 5 

Gravitational radiation reaction 

for bound motion around a 

Schwarzschild black hole 

with Curt Cutler and Eric Poisson 

Abstract 

A particle of mass µ moves, in the absence of external forces, in the geometry of 

a nonrotating black hole of mass M. The system (black hole plus particle) emits 

gravitational waves, and the particle's orbit evolves under radiation reaction. The 

aim of this paper is to calculate this evolution. Our calculations are carried out under 
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the assumptions thatµ/ M « 1, that the orbit is bound, and that radiation reaction 

takes place over a time scale much longer than the orbital period. The bound 

orbits of the Schwarzschild spacetime can be fully characterized, apart from initial 

conditions, by two orbital parameters: the semi-latus rectum p, and the eccentricity 

e. These parameters are so defined that the turning points of the radial motion (the 

values of the Schwarzschild radial coordinate at which the radial component of the 

four-velocity vanishes) are given by r 1 = pM/(l+e) and r2 = pM/(1-e). The units 

are such that G = c = 1. We use the Teukolsky perturbation formalism to calculate 

the rates at which the gravitational perturbations generated by the orbiting particle 

remove energy and angular momentum from the system. These are then related 

to the rates of change of p and e, which determine the orbital evolution. We find 

that the radiation reaction continually decreases p, in such a way that the particle 

eventually plunges inside the black hole. Plunging occurs when p becomes smaller 

than 6 + 2e. (Orbits for which p < 6 + 2e do not have a turning point at r = ri-) 

For weak-field, slow-motion orbits (which are characterized by large values of p), 

the radiation reaction decreases e also. However, for strong-field, fast-motion orbits 

(small values of p), the radiation reaction increases the eccentricity if p is sufficiently 

close to its minimum value 6 + 2e. The change of sign of de/dt can be interpreted 

as a precursor effect to the eventual plunging of the orbit. 
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5.1 Introduction and summary 

5.1.1 The problem 

A particle of mass µ moves, in the absence of external forces, in the gravitational 

field of a nonrotating black hole of mass M. It is assumed that the motion is bound, 

and thatµ « M, but no restriction is put on the strength of the gravitational field at 

the particle's location: the field is arbitrarily strong, and the motion arbitrarily fast. 

The system (black hole plus particle) possesses a time-varying mass distribution, 

and therefore emits gravitational waves. These waves remove energy and angular 

momentum from the system. The question we intend to tackle in this paper is the 

following: How does the system react to the emission of gravitational waves? Or 

more precisely: What is the orbital evolution under the influence of gravitational 

radiation reaction? 

The present work complements and generalizes two previous analyses: one by 

Apostolatos , Kennefick, Ori, and Poisson [1]; the other by Tanaka, Shibata, Sasaki, 

Tagoshi, and Nakamura [2]. 

Apostolatos et al. [1] considered the evolution, under gravitational radiation re­

action, of slightly eccentric orbits in the Schwarzschild spacetime. This paper gen­

eralizes that work by considering the evolution of any bound orbit. In the language 

to be introduced in subsection D, the results of Apostolatos et al. can be recovered 

by taking the e ---7 0 limit of those presented here. 
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Tanaka et al. [2) have also considered a wide class of bound orbits, and have 

therefore contributed significantly to the problem treated here. This paper extends 

and complements their work by providing: (i) a useful language in which to describe 

the results (the p-e plane, to be introduced in subsection D); (ii) analytical results 

which apply, approximately, to some interesting regions of the p-e plane; and (iii) 

a discussion which is focused entirely on the radiation reaction, rather than on 

the fluxes of energy and angular momentum at infinity, which is the main focus of 

Tanaka et al. 

5 .1. 2 Motivation 

The chief motivation for this work comes from the desire to achieve a deeper un­

derstanding of gravitational radiation reaction in the relativistic two-body problem, 

especially in situations where the gravitational field is strong, and the motion fast. 

(For an overview of the two-body problem in general relativity, see Ref. [3) and 

references therein.) 

For weak fields and slow motions, the physics of gravitational radiation reaction is 

well understood [3, 4, 5, 6, 7, 8, 9). In this context, calculations are carried out using 

post-Newtonian theory [10), and the equations of motion are derived accurately to 

some order in v / c. (Here, v is the orbital velocity, and c the speed of light.) To 

leading order in post-Newtonian theory [11), the radiation reaction is taken into 

account by adding a piece cl>rr to the Newtonian potential [4, 5). Post-Newtonian 
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corrections to the radiation reaction force have recently been calculated by Blanchet 

(8], and by Iyer and Will (9]. 

Because the post-Newtonian expansion is presumably only asymptotic, and not 

convergent (3, 10], it is not clear that post-Newtonian theory will ever succeed in 

providing an accurate description of the radiation reaction in situations where v / c 

is not small. To understand the strong-field effects , it is therefore useful to employ 

an alternative approach. Although limited to the case of orbital motion around a 

nonrotating black hole, this paper presents concrete results on radiation reaction in 

strong fields. 

Because of the restriction µ « M , the results presented in this paper are not 

directly applicable to the inspiral, and final coalescence, of a compact binary system 

of two comparable masses (12]. This problem will have to be solved using either 

post-Newtonian theory, or the techniques of numerical relativity which are currently 

under intense development (13]. However, it is conceivable that certain features of 

the small-mass-ratio orbital evolution will also be present in the more general case. 

(One such feature , the increase of the orbital eccentricity during the last stages of the 

inspiral, will be discussed below.) We may therefore hope that the results presented 

here will eventually be useful for interpretation purposes, when the evolution of 

binary systems with large mass ratios is better understood. In the mean time, 

our results will provide useful ways to check other methods of analysis, including 

post-Newtonian theory and numerical relativity. 
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Additional motivation for our work comes from the possibility that gravitational 

waves generated by the capture of solar-mass compact stars by supermassive black 

holes residing in galactic nuclei may be observed by eventual space-borne detectors, 

such as the proposed LISA (Laser Interferometer Space Antenna) project [14]. Such 

detectors are designed to operate in the frequency band between 10-3 Hz and 10-1 

Hz, so that the waves emitted during the last stages of the capture are observable 

only if the central black hole has a mass ranging from 104 M0 to 106 M0 . To avoid 

tidal disruption by the black hole [15], the captured star must be compact (a white 

dwarf, a neutron star, or a black hole). 

Stars, normal or compact, are continually injected, by N-body processes, toward 

the vicinity of the central black hole, where they lose orbital energy and angular 

momentum to gravitational waves [16]. Eventually the star interacts solely with the 

black hole, and the orbital evolution becomes dominated by gravitational radiation 

reaction. Because these systems have small mass ratios, and because it can be ex­

pected that the stars move on highly eccentric orbits following their capture [16], the 

results presented in this paper are directly relevant to these sources of gravitational 

waves. 

The application of our work to the capture of solar-mass compact objects by 

supermassive black holes will be the subject of a separate publication [17]. 



138 

5.1.3 Method of solution 

There currently exists no prescription to calculate the radiation reaction force acting 

on a (pointlike or extended) particle moving in a given background gravitational 

field, excluding the well-understood case of weak fields and slow motions. (We will 

return to this point , and discuss Gal'tsov's proposal for such a prescription [18] , in 

subsection F.) Nevertheless, the problem considered in this paper can be tackled 

using a rather simple-minded approach, which we now describe. 

A particle of mass µ moves, in the absence of external forces , in the geometry of 

a nonrotating black hole, and slightly perturbs the hole's gravitational field. The 

total field can be calculated by solving Einstein's equations perturbatively about the 

Schwarzschild solution [19]. The resulting equations take the form of linear wave 

equations for the perturbations, with the particle's stress-energy tensor acting as a 

source. The perturbations propagate away from the source as gravitational waves, 

and carry with them energy and angular momentum. Solving the perturbation 

equations allows us to calculate the rates at which energy and angular momentum 

are removed from the system (black hole plus particle) . 

The timelike geodesics of the Schwarzschild spacetime (Sec. II A) can be fully 

characterized, apart from initial conditions, by two orbital parameters, Ethe orbital 

energy per unit mass, and L the orbital angular momentum per unit mass. (Here, 

the mass is that of the particle.) The rates at which these quantities change with 

time are obtained from the solutions to the perturbation equations, and the orbital 
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evolution under radiation reaction is determined. 

Such a calculation can easily be carried out if the two following conditions hold. 

First, the gravitational perturbations produced by the orbiting particle must 

have small amplitudes. This is to ensure that the nonlinearities of the perturbation 

fields can, to sufficient accuracy, be ignored. This will be the case if the inequality 

µ / M « 1 is enforced. 

Second, we must require that the orbits change very little over time scales which 

are comparable to the orbital period. This is because the source term in the wave 

equations - the stress-energy tensor, which depends on the particle's world line -

must be specified before the equations are integrated. The motion of the particle 

must therefore be specified during the time interval over which the wave equations 

are integrated. And because the orbital motion is essentially periodic (Sec. II D), 

this time interval can be set equal to the orbital period. This procedure is self­

consistent only if radiation reaction occurs over a time scale much longer than the 

orbital period, which shall be assumed here. This adiabatic approximation can be 

imposed by formulating additional constraints on the size ofµ/ M. These constraints 

will be derived in Sec. IV D. 

When the adiabatic approximation is valid, the calculation proceeds as follows. 

We begin by assuming that the motion is strictly geodesic over several orbital pe­

riods, and we evaluate the particle's stress-energy tensor. We then compute, by 

integrating the wave equations, (dE / dt) and (dL / dt), the time-averaged rates of 
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change of the orbital parameters. (The average is taken over several orbital pe­

riods.) Finally, we infer from these quantities the slow, secular evolution of the 

orbit. Provided that µ/ M is suitably constrained, the results are compatible with 

the initial assumption, and the calculation is self-consistent. 

In this paper, the gravitational perturbations are described using the Teukolsky 

formalism [20], in which all information about the perturbations is contained in the 

complex-valued function '11 4 , a particular component of the Weyl tensor. In this 

formalism, a single wave equation needs to be solved, and the rates at which energy 

and angular momentum are carried away can easily be obtained from the solution. 

The Teukolsky formalism will be reviewed in Sec. III B. 

5.1.4 Orbital parameters 

The evolution, under radiation reaction, of the bound orbits of the Schwarzschild 

spacetime can best be described in terms of a set of orbital parameters which is 

different from the set {E, L}. For this purpose we introduce p, the orbit's semi­

latus rectum, and e, its eccentricity. Both p and e are dimensionless, and are 

regular functions of E and L. (See Sec. II B below, which contains a more detailed 

presentation.) 

The new orbital parameters are defined as follows. For bound orbits, the radial 

motion (the evolution of the Schwarzschild radial coordinate r as a function of proper 

time r) takes place between two turning points (the values of r at which dr / dr = 0). 
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We denote the periastron by r 1 , and the apastron by r2 , so that r 1 ~ r2 • We define 

p and e such that rif M = p/(1 + e) and r2/M = p/(1 - e), using units in which 

G = c = 1. The semi-latus rectum therefore measures the size of the orbit, while 

the eccentricity measures its degree of non-circularity. 

The bound orbits of the Schwarzschild spacetime can be represented by those 

points in the p-e plane (Fig. 1) which satisfy the inequalities 0 ~ e < 1, p ~ 

6 + 2e. Points for which p < 6 + 2e represent plunging orbits (these do not have 

a turning point at r = r 1). The boundary p = 6 + 2e will be referred to as the 

separatrix. Points on the p-axis represent stable circular orbits, which have vanishing 

eccentricity. Points on the separatrix represent unstable circular orbits, for which 

In the absence of radiation reaction, p and e are constants of the motion. In 

the presence of radiation reaction, p and e evolve slowly, over a time scale long 

compared with the orbital period. The evolution of a given orbit therefore traces 

a trajectory in the p-e plane. (The p-e plane can be regarded as a phase space, 

and the trajectories as phase curves.) Our goal in this paper is to calculate the 

radiation-reaction trajectories. 

5.1.5 The results 

It is most convenient to represent the radiation-reaction trajectories, or phase curves, 

in terms of a phase diagram, in which the tangent vectors (p, e) - the phase velocity 
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£eld- are plotted. (Here and throughout, a dot denotes differentiation with respect 

to time followed by an average over several orbital periods.) Such a representation 

is given in Fig. 1. The results can also be expressed in terms of the function c(p, e), 

where 

dlne 
c(p, e) = -dl . 

. np 
(5.1) 

In Fig. 2 we have provided a three-dimensional plot of c(p, e) for the most interesting 

range of orbital parameters. 

Before we proceed with a summary of our main results , we must first recall one of 

the main conclusions of Ref. [1]: If an orbit has a vanishing eccentricity initially, then 

the radiation reaction does not change the value of the eccentricity. In other words, 

circular orbits remain circular under radiation reaction. [This statement follows 

directly from Eq. (5.89) below, which implies that e ex: e for small eccentricities.] In 

such circumstances, the value of p slowly decreases until p = 6 is reached, at which 

point the particle plunges inside the black hole. 

We now discuss the more general case of orbits possessing nonvanishing eccen-

tricities, £rst describing the results which were obtained using analytical methods. 

We begin with a discussion of weak-field situations (Sec. IV A), that is, orbits 

with large values of p. In this case we find that p < 0, e < 0, and 

19 ( 7 2)-l ( 121 2) c(p--+ oo, e) rv 12 1 + 3e 1 + 304 e ' (5.2) 

which is valid up to fractional corrections of order p-1
. These conclusions recover the 
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well-known result that weak-field radiation reaction decreases both the size of the 

orbit and its eccentricity [21, 22]. In Ref. [1], the first post-Newtonian corrections 

to Eq. (5.2) were calculated for the case of small eccentricities. For completeness, 

we quote this result here: 

c(p---+ oo , e « 1) 19 [ - 1 - 3215p-l + 377 7rp-3/2 
12 3192 152 

(5.3) 

We next turn to cases for which the gravitational field is extremely strong. More 

precisely, we now consider points in the '[re plane which are very close to the separa-

trix p = 6 + 2e. (In this region, the validity of the adiabatic approximation implies 

severe restrictions on µ / M ; see Sec. IV D.) It is also possible, for such orbits, to 

calculate the radiation reaction analytically (Sec. IV B). We find that when the in-

equality p - 6 - 2e « min(l , 4e) is satisfied [a more precise version of this condition 

is given by Eqs. (5.28) and (5.35) below], then p < 0, e > 0, and 

1-e 
c(p---+ 6 + 2e, e » c:/4) ,..., ---. 

e 
(5.4) 

Here, € = p - 6 - 2e, and Eq. (5.4) is valid up to fractional corrections of order 

(c:/4e) ln(c:/4e). 

Equation ( 5.4) is valid for small eccentricities provided that € « 4e. This amounts 

to approaching the point (p, e) = ( 6, 0) along a path which lies very close to the 

separatrix. The result is different if we approach the point (6, 0) in a different 

direction. For example, if we choose a path which lies very close to the '[raxis 



(Sec. IV C) , so that e « p - 6, then we find that p < 0, e > 0, and 

c(p-+ 6, e « p - 6) ,.._, -~(p - 6)-1
, 
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(5.5) 

which is valid up to fractional corrections of order max[p- 6, e2 /(p- 6) 2]. Equation 

(5.5) was first derived in Ref. [1]. Equations (5.4) and (5.5) imply that the point 

( 6, 0) is, in some sense, a singularity of the p-e plane. Not only does c(p, e) diverge 

at that point, but its degree of divergence depends on the direction of approach. 

We remark at the end of Sec. IV C that Eqs. (5.4) and (5.5), but not Eqs. (5.2) 

and (5.3), are in fact valid for any type of radiation field. 

Equations (5.4) and (5.5) both imply that near the separatrix, radiation reac­

tion inc1eases the eccentricity: e > 0 everywhere near p = 6 + 2e [23] . This is in 

marked contrast with weak-field situations, for which the eccentricity always de­

creases. This result, that gravitational radiation reaction increases the eccentricity 

if pis sufficiently close to 6+2e, is the main conclusion of this paper. (This discovery 

was first made by Tanaka et al. [2]. Our contribution is the analytical proof that 

this occurs for any eccentricity.) 

The asymptotic expressions for c(p, e) , Eqs. (5.2)-(5.5), taken together, imply 

the existence of a CTitical curne in the p-e plane, along which de/dp = 0. Equation 

(5.4) further implies that the critical curve meets with the separatrix at e = 1. A 

portion of the critical curve is displayed in Fig. 3. 

The evolution of an orbit under gravitational radiation reaction typically proceeds 
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as follows (Fig. 1). Suppose that the orbit lies initially in the weak-field region, so 

that p » 6. Radiation reaction slowly decreases both p and e, until the orbit 

crosses the critical curve and the eccentricity reaches its minimum. From then on, 

the radiation reaction continues to decrease p, but now increases e. Finally, the 

orbit reaches the separatrix, and the particle plunges inside the black hole. 

Because the critical curve lies relatively close to the separatrix, the change of 

sign of e - a genuine strong-field effect - can be interpreted as a precursor effect 

to the eventual plunging of the orbit. 

The results represented in Figs. 1-3 were obtained numerically. We will describe 

our numerical methods in Sec. V below. 

5.1.6 Future work 

The techniques used in this paper could readily be extended to the case of a particle 

moving in the equatorial plane of a Kerr black hole. This is because the equa­

torial orbits of the Kerr spacetime can also be fully characterized by two orbital 

parameters. The radiation reaction can therefore be calculated in the same way. 

The same cannot be said of orbits in Kerr which lie outside the equatorial plane. 

These orbits are characterized by three orbital parameters: orbital energy, orbital 

angular momentum, and the Carter constant [24]. There is no known relation - and 

it is not even clear whether one exists - between the rate of change of the Carter 

constant and the fluxes of energy and (vectorial) angular momentum carried by 
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the gravitational waves. It is therefore unlikely that this most general problem will 

be solved before the elaboration of a robust formalism for strong-field, fast-motion 

radiation reaction [25]. 

Conceivably, such a formalism might be constructed along the lines of De Witt 

and Brehme's derivation [26] of the curved spacetime version of the Lorentz-Dirac 

equation [27]. The problem to be solved is a generalization of the one examined in 

this paper. A particle of massµ moves in the (arbitrary but known) gravitational 

field 9a/3 of an isolated mass M. (The prototype metric is the Kerr solution, but 

the problem may be formulated more generally.) To first order in µ / M, which is 

assumed small, what are the equations that the motion of the particle satisfies? (To 

zeroth order, the particle follows a geodesic of 9a/3; to first order, the system emits 

gravitational waves and radiation reaction takes place.) 

This problem appears tractable, because the small perturbations produced by 

the particle obey linear wave equations in the background field 9af3, and these wave 

equations can be formally integrated with the help of retarded Green's functions 

[26]. Because the Green's functions have support both on and inside the light cone, 

the resulting radiation-reaction force will depend both on the instantaneous state of 

the particle, and on its entire past history. 

Gal'tsov has already proposed [18], for the special case of the Kerr metric, a 

radiation-reaction formalism based on solutions to the Teukolsky equation [20] of 

the half retarded minus half advanced type. But because of the causal structure of 
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the Green's functions, the radiation-reaction force constructed in this way depends 

not only on the particle's past history, but also on its future history. (This is 

because the advanced Green's function has support inside the future light cone of 

the field point.) It is therefore not clear whether the Gal'tsov formalism is suitable 

for calculating the evolution of the nonequatorial orbits [28]. However, it should 

be quite adequate for the special case of periodic orbits [28], for which the past 

and future histories are identical (apart from the slow evolution due to radiation 

reaction). 

5.1. 7 Organization of the paper 

The rest of the paper is devoted to the derivation of the results summarized in 

subsection E. 

We begin in Sec. II with a detailed study of the bound orbits of the Schwarzschild 

spacetime. Most of the material presented in this section is not new, but for con­

venience the discussion is essentially self-contained. The geodesic equations are 

written, and the orbital parameters E and L defined, in subsection A. In subsection 

B we introduce the semi-latus rectum p and the eccentricity e, and we describe the 

bound orbits of the Schwarzschild spacetime in terms of the p-e plane. In subsection 

C we provide a method for integrating the geodesic equations which is well suited 

both for analytic and numerical calculations. The two fundamental frequencies of 

the motion, the radial frequency nr' and the azimuthal frequency !1.p, are defined 
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in subsection D. In subsection E we integrate the geodesic equations for the special 

case c = p- 6 - 2e « min(l,4e), and derive analytical expressions for nr and f!.p. 

In subsection F we do the same for the special case e « min(l,p - 6). 

In Sec. III we describe our radiation-reaction formalism in detail. We explain the 

basic method in subsection A, and review the Teukolsky perturbation formalism [20] 

in subsection B. In particular, we show how to infer E and L, the rates at which 

the gravitational waves carry energy and angular momentum to infinity, from the 

solution to the Teukolsky equation. [We will ignore, in this paper, the energy and 

angular momentum which are absorbed by the black hole. This will be justified in 

Sec.VE. However, these contributions are included in our analytical calculations.] 

In subsection C we calculate the source to the Teukolsky equation, and we formally 

integrate that equation in subsection D. In subsection Ewe derive equations relating 

. . 
the rates of change of p and e to E and L, and explain why the radiation-reaction 

trajectories (the phase curves of Sec. I D) must cross the separatrix p = 6 + 2e. 

Section IV is devoted to the derivation of our analytical results, in particu-

lar, Eqs. (5.2), (5.4), and (5.5). Weak-field situations are considered in subsec-

tion A, while the strong-field results are derived in subsections B [for the case 

c « min( 1, 4e)] and C (for the case 4e « c « 1). In subsection D we formu-

late constraints on µ/ M which ensure the validity of the adiabatic approximation. 

Finally, in Sec. V, we describe the numerical methods which were used to obtain 

the results presented in Figs. 1-3. We begin with a brief description of the numerical 
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task in subsection A, and then discuss various aspects of it in subsections B-D. In 

subsection E we estimate the overall accuracy of our results, and compare them to 

those of Tanaka et al. [2] . 

5.2 Bound orbits of the Schwarzschild spacetime 

This section is devoted to the study of the bound orbits of the Schwarzschild space­

time. Most of the material presented here is not new, and can be found in the 

classic papers of Hagihara [29] and Darwin [30], or in Chandrasekhar's book [19]. 

The main purpose of this section is to establish the notation used in the rest of the 

paper; it will also serve as a repository of various useful results . For convenience, 

the material is presented in an entirely self-contained manner. 

5.2 .1 The geodesic equations 

The timelike geodesics of the Schwarzschild spacetime are described by the following 

equations: 

dt/dr=E/f, 

d</>/dr = Ljr2
, 

(dr/dr) 2 + V(L,r) = E2
; 

(5.6) 

we have put {) = 7r /2 without loss of generality. Here, the coordinates { t, r, {), </>} are 

the usual Schwarzschild coordinates, and r is the particle's proper time; E and Lare 
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constants of the motion, respectively, the orbital energy and angular momentum, 

both divided by µ, the mass of the particle. We have also defined f = 1 - 2M/r, 

where Mis the mass of the black hole (it is assumed thatµ« M), and the effective 

potential for radial motion is given by 

(5.7) 

The shape of the effective potential is represented in Fig. 4. 

5.2.2 Orbital parameters: p and e 

Apart from initial conditions, the orbits of the Schwarzschild spacetime are com-

pletely characterized by the values of two orbital parameters, which can be chosen 

to be E and l. Bound motion occurs if 

E < 1, L 2:: 2J3M. (5.8) 

When E and L satisfy Eq. (5.8), the equation V(L, r) = E2 possesses in general 

three distinct roots, which we designate by r3 ~ r 1 ~ r2 • This situation is depicted 

in Fig. 4. The motion takes place between the turning points r 1 (the periastron) 

and r 2 (the apastron). We are not concerned with the plunging motion occurring 

inside r = r3. 

We define p, the semi-latus rectum, and e, the eccentricity, such that 

pM 
ri = --, 

l+e 

pM 
r2 = --. 

1- e 
(5.9) 
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Both p and e are dimensionless. As implied by Eq. (5.9), p measures the size of the 

orbit, while e measures its degree of non-circularity. Notice that e is confined to the 

range 0 ::S e < 1; the value of p will be constrained below. These quantities have 

been used previously by Chandrasekhar [19] and Darwin [30] . 

The relationship between {p, e} and { L, E} can be obtained by comparing the 

cubic V(L, r) = E2 to its equivalent form (r - r1 )(r - r2 )(r - r3 ) = 0. This yields 

r3 /M = 2p/(p - 4), 

and 

E2 _ (p - 2 - 2e) (p - 2 + 2e) 
- p(p - 3 - e2 ) ' 

-2 P2 M2 
L =--­

p- 3 - e2 

(5.10) 

(5.11) 

The inequalities (5.8) are then automatically satisfied for any value of p, and for 

any e < 1. 

Stable circular orbits occur when E2 is equal to the minimum value of the effective 

potential. This implies r 1 = r2 , so that 

stable circular orbits ¢:> e = 0. (5.12) 

The radius of a stable circular orbit is equal to pM. 

Unstable circular orbits occur when E2 is equal to the maximum value of the 

effective potential. The turning points r 1 and r 3 are then no longer distinct , and 

the condition r 1 = r3 does not correspond to zero eccentricity. Instead, 

unstable circular orbits {:::} p = 6 + 2e. (5.13) 
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The radius of an unstable circular orbit is equal to (6 + 2e)M/(1 + e). 

It is easy to see that p must satisfy the inequality p ~ 6 + 2e in order for the orbit 

to be bound; otherwise the orbit is a plunging one, with a unique turning point at 

r = r 2 • It is worth noting that this inequality implies rif M ~ (6 + 2e)/(1 + e); 

the periastron radius is therefore always larger than 4M. We also remark that the 

curves p = 6 + 2e and e = 0 meet at p = 6, which implies that stable circular orbits 

occur only for p > 6. 

The bound orbits of the Schwarzschild spacetime can be represented by those 

points in the p-e plane which satisfy the inequalities 0 ::=; e < 1, p ~ 6 + 2e. The 

boundary p = 6 + 2e will be referred to as the separatrix. 

5.2.3 Integration of the geodesic equations 

We integrate Eqs. (5.6) by eliminating r from the system of equations, and by 

choosing r as the parameter along the orbit . Clearly r is a multi-valued parameter, 

and the radial motion possesses two distinct branches. We take the first branch to 

be the motion from r 1 to r 2 , and the second branch to be the motion from r 2 back 

to r 1 . 

Integrating Eqs. (5.6) gives 

t(r) = { 
i(r) 

P - i(r) 

first branch 

second branch 
(5.14) 
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where 

A -1r dr' 
t(r) = E r1 f'(E2 - V')l/2' (5.15) 

with f' = 1-2M/r' and V' = V(L , r') . We have also defined P = 2t(r2), the period 

of the radial motion. Similarly we find 

</>( r) = { ¢( r) 
~</>- J(r) 

first branch 
(5.16) 

second branch 

where 

A -1r dr' 
</>(r) = L ri r'2(£2 _ V')1/2' (5.17) 

and where ~</> = 2J(r2 ) is the amount by which </> increases in the course of one 

radial orbit. 

Equations (5.15) and (5.17) are not directly suitable for numerical integration, 

because their integrands diverge at both turning points. To facilitate the numerical 

integration of the geodesic equations, and also their analytical integration in the 

limiting cases considered below, it is useful to make the substitution 

pM 
r(x)----

1 + ecosx 
(5.18) 

The parameter X ranges from 0 to 21t as r goes from r 1 to r 2 and back to r 1; x is 

therefore a single-valued parameter along the orbit. 

Substituting Eq. (5.18) into (5.7) , and using Eqs. (5 .10) and (5.11), we find 

±(E-2 _ V) 1;2 = . [P - 6 - 2e cos x] 1/2 
esmx ( 2) ' pp-3-e 

(5.19) 
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where the higher (lower) sign corresponds to the first (second) branch of the radial 

motion. When we substitute Eqs. (5.18) and (5.19) into Eqs. (5.15) and (5.17}, we 

find that the factor esinx in (E 2 
- V) 1l 2 cancels the same factor in dr/dx, so that 

the integrands are now regular. We obtain 

and 

t(x) = p2 M(p - 2 - 2e) 1l 2(p - 2 + 2e) 1l 2 

x lox dx' (p - 2 - 2e cos x')- 1(1 + e cos x')- 2 

x (p - 6 - 2e cos x')- 112
' 

</>(x = P1;2 x 1
X d I 

) 0 (p - 6 - 2e cos x')l/2. 

(5.20) 

(5.21) 

Since xis single-valued along the orbit, our expressions for t(x) and ¢(x) are valid 

for both branches of the radial motion. The radial period is then given by P = 

t(27r) = 2t(7r), and fl¢= ¢(27r) = 2¢(7r) . 

The substitution x = 2¢ - 7r changes the right-hand side of Eq. (5.21) into an 

elliptic integral of the first kind. The following convenient expression for fl</> is then 

obtained: 

fl</>- 4 ( p )1/2!{( 4e ) 
- p - 6 + 2e p - 6 + 2e ' 

(5.22) 

where I<( m) = f01r
12 d'lj; (1 - m sin2¢ t 1

/
2 is the complete elliptic integral of the first 

kind [31]. 
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5 .2.4 Fundamental frequencies: nr and nq, 

Equation (5.22) implies that in general, !::i..¢ is not equal to a rational fraction of 2r.. 

This, in turn, implies that the bound orbits of the Schwarzschild spacetime are not 

closed. A consequence of this fact is that the motion as a whole, as seen by static 

observers at infinity, is not periodic int. Only the radial motion shows a periodicity; 

the azimuthal motion does not. 

The purpose of this subsection is to show that there exists a reference frame in 

which the motion is, after all, periodic. This reference frame rotates with a constant 

angular velocity nq, with respect to the static observers at infinity. 

It is clear that r(t) is a periodic function of time, with period P, and that any 

function of r(t) is also a periodic function of time. Any such periodic function, say 

a(t), can be decomposed into a Fourier series of the form a(t) = l:k ak exp(-iknrt). 

Here, the sum is over all integers k, ak = p-1 ft' dta(t)exp(iknrt), and nr is the 

radial frequency: 

(5.23) 

In particular, the function a(t) = d<f>/dt can be so decomposed, and ¢(t) can then 

be obtained by integrating the series representation of a(t) . The result is ¢(t) = 

the constraint l:k bk = 0 which enforces the initial condition ¢(0) = 0. 

We now see that ¢(t)-a0t can be expressed as a Fourier series, and must therefore 
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be a periodic function of time. Clearly, cp(t) - a0t is equal to the angular position of 

the particle, as determined by an observer rotating with constant angular velocity 

ao with respect to static observers at infinity. As seen by this observer, both radial 

and azimuthal motions are periodic int. 

Finally, the angular velocity nq, - a0 can be calculated to be p-1 J[ dt a(t) = 

b.cp/ P, since a(t) = dcp/dt. The azimuthal frequency is therefore given by 

(5.24) 

We may conclude that both r(t) and cp(t) - nq,t are periodic functions of time, with 

a single period P. 

5.2 .5 Orbits near the separatrix: p-+ 6 + 2e 

In this and the following subsections we shall consider two special cases of bound 

orbits, and derive corresponding expressions for P, b.cp, and nq,. We begin with the 

limiting case of orbits lying very close to the separatrix. 

We first define the small parameter 

c _ p - 6 - 2e, (5.25) 

whose magnitude will be constrained below. Substituting this into Eqs. (5.20) and 

(5.22), we obtain 

P 16M(l + e) 112(3 + e)2 [1 + O(c)] 

11!" d A(l - cos x) 
x x 1/2 ' 

0 [c + 2e(l - cos x)] 
(5.26) 
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where A(x) = (2 + ex)-1(1 + e - ex)-2
, and 

.6.¢ = 4(: + 2e)1/2 [1 + O(c:)JK( 4e ). 
e + c 4e + c; 

(5.27) 

These expressions hold whenever c is much smaller than unity. 

To make our expressions for P and .6.¢ more explicit, we demand that 

c « 4e. (5.28) 

The alternative requirement, 4e « c, will be considered in the next subsection. 

Equation (5.28) implies that the argument of the complete elliptic integral in 

Eq. (5.27) is very close to unity. Using the expansion [31] 

we arrive at 

1 16 
K(m) = -

2
[1+0(1 - m)]ln--, 

1-m 
(5.29) 

(5.30) 

For bound orbits which are very close to the separatrix, 4> increases by an amount 

much larger than 271" in the course of one radial orbit. The particle therefore revolves 

many times around the central mass before returning to its apastron. 

We now manipulate Eq. (5.26) in order to obtain a more manageable expression 

for P, in the limit c « 4e. The final answer is given in Eq. (5.34) below. 

The integrand of Eq. (5.26) diverges at x = 0 when c = 0. This corresponds to 

the fact that when c = 0, the particle spends an infinite time at r = r 1 . We shall 

rewrite Eq. (5.26) so as to isolate this divergent piece of the integral. 
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The integrand of Eq. (5.26) also diverges at x = 7r when e = 1. This corresponds 

to the fact that when e = 1, r 2 = oo and the orbit is no longer bounded. We will 

also isolate this divergent piece of the integral, so that the remaining piece will be 

manifestly finite for all values of the orbital parameters. 

We first take care of the piece of P which diverges as c, -7 0. For this purpose, 

we write A(x) = A(O)[l + B(x)], where A(l - cosx) was defined in Eq. (5.26). 

The contribution to P which involves A(O) = (1/2)(1 + e)-2 is divergent, and is 

proportional to 

r dx 
lo [c + 2e(l - cos x)]1

/
2 

1 64e 
2e1/2 In----;:-

( 
c 4e) +o -In- ; 
4e c 

(5.31) 

we have used Eq. (5.29) to evaluate the integral. 

The contribution to P which involves B(l - cos x) is finite as c tends to zero. 

Moreover, it can be checked that setting c, to zero in this term only introduces a 

discrepancy of order ( c / 4e) In 4e / c, which can be absorbed into the second term to 

the right-hand side of Eq. (5.31). We therefore have to evaluate 

r d B ( 1 - cos x) _ r d c (cos x) 
lo x (1 - cos x) 1!2 = e lo x (l + e cos x) 2 ' 

(5.32) 

where C(x) = (3 + 2e - e2x2)(1 - x )112 /(2 + e - ex). 

The integral to the right-hand side of Eq. (5.32) diverges when e = 1. To isolate 

the divergent piece of this integral, we write C(x) = C(-1) + C'(-1)(1 + x) + 

2-1/ 2 D( x ), where a prime denotes differentiation with respect to the argument. 



159 

The contributions to the integral involving C(-1) = 2-112 (3 - e) and C'(-1) = 

2-5
/

2(7e - 3) both diverge when e = 1, because J; dx (l + e cos x)- 2 = rr(l - e2)-312 

and J; dx(l + cosx)(l + ecosx)-2 = rr(l + e)-1(1- e2)-1!2 • On the other hand, 

the contribution involving 

D( cos x) 3 + 2e - e
2 

cos2x [ ( )] 1;2 ------ 2 1 - cos x 
2 + e ( 1 - cos x) 

- 3 + e - H 7 e - 3) ( 1 + cos x) (5.33) 

is finite. 

Gathering the results, we find that the orbital period can be expressed as 

P = 4Me-1f 2(1+et312(3+e)2 

[
l 64e rre(9 + 6e - 7e2

) ( ) 

x n ~ + 4(1 - e2)3/2 +el e 

+ 0 ( :e ln ~)] , (5.34) 

where I(e) = J; dx(l + ecosx)-2 D(cosx) is finite for any e. This integral can be 

evaluated numerically, and we find that I(e) lies within the range -2.1149 '.::::::'.. I(l):::; 

I(e):::; I(O) = 6- 9rr/4 '.::::::'.. -1.0686. 

We now derive an approximate expression for n</>. For convenience, we assume 

that E is chosen small enough that in Eq. (5.34), the first term within the square 

brackets always dominates. We therefore demand that when e -t l, 

(5.35) 
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When Eqs. (5.28) and (5.35) hold, 

_ [7re(9 + 6e - 7e
2
) J ( 64e)-1 

/3 = 4(1 - e2)3/2 + el(e) ln ~ (5.36) 

is always much smaller than unity. 

Using Eqs. (5.23), (5.24), (5.30), (5.34) and (5.36), we find that the azimuthal 

frequency is given by 

(5.37) 

whenever c satisfies the inequalities (5.28) and (5.35); and when these hold, (3 = 

0(27r/.6.</>) = O[(ln4e/c)-1
] » O(c/4e). 

5.2.6 Slightly eccentric orbits: e ~ 0 

It is much easier to derive expressions for P, .6.</>, and Def> for the limiting case of 

slightly eccentric orbits. We now demand that 

e « min(l,p - 6), (5.38) 

which we shall impose throughout this subsection. 

It is a straightforward matter to use the expansion [31] 

7f 
K(m) = -[1 + !.m + .!E._m2 + 225 m3 + O(m4)] 2 4 64 2304 (5.39) 

so as to express Eq. (2.17) as a power series in e. We find 

( 
p ) 1/2 [ 3 ] 

.6.<f> = 27f p- 6 1+4(p-6)2e2 + O(e4) . (5.40) 
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Similarly, we may expand Eq. (5.20) in powers of the eccentricity, and then integrate 

term by term. We obtain 

p = 27r Mp2 
[ 3(2p3 

- 32p2 + 165p - 266) 2 
(p - 6)1/2 1 + 4(p - 2)(p - 6)2 e 

+ O(e4
)]. (5.41) 

Finally, by combining Eqs. (5.23), (5.24), (5.40), and (5.41), we arrive at 

MD, = -3/2 [1 - 3(p2 - lOp + 22) 2 + 0( 4)] 
cf> p 2(p - 2)(p - 6) e e · (5.42) 

In Eqs. (5.40)-(5.42), the symbol 0( e4
) is used to represent those terms which 

are fourth or higher order in the eccentricity; these include terms proportional to 

e4 / (p - 6)4 • The limit p ---+ 6 must therefore be taken with care, always ensuring 

that e « p - 6. 

5.3 Radiation reaction 

In this section we present our method for calculating the effects of radiation reaction 

on the bound orbits of the Schwarzschild spacetime. The method is based upon the 

Teukolsky formalism for black-hole perturbations [20], which is reviewed below. A 

more detailed presentation can be found in Refs. [1, 32]. 

5.3.1 The method 

Our strategy for calculating the evolution, under radiation reaction, of the bound 

orbits of the Schwarzschild spacetime was presented in Sec. I C. In short: 
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We begin by assuming that the motion of the particle is geodesic over a time 

scale comparable to the orbital period. The validity of this assumption follows from 

the adiabatic approximation, which states that radiation reaction operates over a 

much longer time scale. 

We use the Teukolsky formalism to calculate E and L, respectively, the time-

averaged rates at which the gravitational waves carry away energy and angular 

momentum. The waves are generated by the orbiting particle, and the average is 

taken over several orbital periods. 

We assume that the orbital parameters change according to 

/dE) . 
\ dt = -µE , 

;dL) . \ dt = -µL, (5.43) 

so that the total energy of the whole system (black hole plus particle plus waves) is 

conserved. The symbol ( ) designates the time average. 

Because of the radiation reaction, the particle's world line is not strictly a 

geodesic. However, as required by the adiabatic approximation, and in agreement 

with our initial assumption, the deviations from geodesic motion become noticeable 

only after a large number of orbits. 

The only essential assumption made in this calculation is that µ/Mis sufficiently 

small that: (i) the gravitational perturbations obey linear wave equations; and 

(ii) the adiabatic approximation is valid. In Sec. IV D, we shall formulate precise 

conditions onµ/ M which ensure the validity of the adiabatic approximation. 
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5.3.2 The Teukolsky formalism 

In the Teukolsky formalism, gravitational perturbations are described by the Weyl 

scalar '1!4 = -Ca1370n°'m/3n'Yin/', where Ca/3-ro is the Weyl tensor, n°' = ~(1,-f,O,O), 

and m°' = (0, 0, 1, -i cscB)/v'2r. Throughout we denote complex conjugation with 

a bar. At large distances, '1! 4 describes outgoing gravitational waves. 

The Weyl scalar can be decomposed into Fourier-harmonic components according 

to 

(5.44) 

where s ~m ( (), </>) are spin-weighted spherical harmonics [33]. The sums over /!, and 

m are restricted to -£ s; m s; f and f 2: 2. The radial function Rwem ( r) satisfies 

the inhomogeneous Teukolsky equation, 

[ 
d2 d ] 

r
2 f dr2 - 2(r - M) dr + U(r) Rwem(r) = -Twem(r), (5.45) 

with 

U(r) = 1-1 [(wr)2 - 4iw(r - 3M)] - A, (5.46) 

where A= (£ - 1)(£ + 2). 

The source term in Eq. (5.45) is calculated from the particle's stress-energy ten-

sor, 

T°'13(x) = µ j dTu°'u136(4)[x - x'(T)], (5.47) 

where x is the spacetime point, x' ( T) the particle's world line with tangent vector 

u°' = dx'°' / dT, and T denotes proper time. The first step is to construct the projec-



the Fourier-harmonic components sTwem(r) according to 

where d0, is the element of solid angle. Finally, the source is [32, 34] 

Twem(r) = 27r{ 2[.X(>. + 2)] 112r 4 oTwem(r) 

where[,= ld/dr + iw. 

+ 2(2.X )112 r 2 l [, r 3 l-l -1 Twem( 'r) 

+ 'r f Cr4 l-1 
[, 'r -2Twlm (r)}, 
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(5.48) 

(5.49) 

The inhomogeneous Teukolsky equation (5.45) can be integrated by means of a 

Green's function [35]. (The Green's function is so constructed that '1i4 satisfies a 

no-incoming-radiation condition.) The solution at large radii is 

R ( ) 2z 3 iwr* wlm 'r -7 00 ,....., µ w wlm 'r e ' (5.50) 

and represents purely outgoing waves. Here, r* = r + 2M ln( r /2M - 1). The 

amplitudes Zwem are given by 

Z - 1 {oo d R{!e(,,.. )Twem (,,..) 
wlm - 2iµw2 Q~l J2M 'r r4 f2 ' (5.51) 

where the function R{!e ( r) is the solution to the homogeneous Teukolsky equation 

with ingoing-wave boundary conditions at the black-hole horizon: R{!e(r -7 2M) ,....., 

(wr) 4 j2e-iwr•. At infinity, R!!e(r) represents a superpostion of ingoing and outgoing 
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independent of r . The amplitudes Zwem satisfy the identities 

- l 
Z-w,l,-m = (-1) Zwem, (5.52) 

which are derived in Ref. [1]. 

We now specialize to the case considered in this paper, for which the frequency 

spectrum contains only a discrete set of distinct frequencies Wmk (subsection C). We 

then have 

Zwem = L z;mo(w - Wmk)· 
k 

(5.53) 

As indicated, the frequencies Wmk are characterized by two sets of integers, m and k. 

The time-averaged rates at which the gravitational waves carry energy and angular 

momentum to infinity are calculated to be 

E= = L E&rik, t= =I: t&nk, (5.54) 
lmk lmk 

where 
2 

E·= µ 21zk 12 
lmk = -Wmk lm ' 47r 

(5.55) 

and 

(5.56) 

We stress that E= and £= represent time-averaged rates; the average is taken over 

several orbital periods. For reasons to be given in Sec. V E, we will not consider 

here the energy and angular momentum which are absorbed by the black hole. To 
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an accuracy sufficient for our purposes, we shall neglect these contributions to E 
. . . . . 

and L, and set E = E 00
, L = L00

• 

5.3.3 Calculation of sTwem(r) 

We now proceed with the calculation of the source term in Eq. (5.45), taking the 

particle's world line to be a bound geodesic of the Schwarzschild spacetime. Our 

starting point is the particle's stress-energy tensor, which is given by Eq. (5.47). 

After integration, this becomes 

UOIU/3 
TOl13 (x) = µ-

2
-o(r - r')o(cosB)o(<f>- </>'). 

r' ut 
(5.57) 

Here, { t, r, 8, </>}are the coordinates of the spacetime point x, and { t, r'(t), n-/2, </>'(t)} 

describe the particle's world line; the four-velocity ua = dx'a / dr can be obtained 

from Eq. (5.6) . 

Following the procedure given in subsection B, we find 

sTwem(r) = ;7r sl'lm(~, 0) 

x j_: dtsF(r')o(r - r')ei(wt-m<t>'), (5.58) 

where 

( u · n)2 s=O 

sF(r') = -i-t (u·n)(u·m) s = -1 (5.59) 
r u 

(u · m) 2 s = -2 

Here, u · n - uana, etc., and the vectors na and ma are evaluated on the particle's 

world line. 
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To evaluate the integral of Eq. (5.58), we rewrite the integrand as 5 a(t) exp[i(w-

mD¢)t], where sa(t) = sF(r')o(r - r') exp[-im( <P' - D¢t)]. According to the results 

of Sec. II D, the functions sa(t) are periodic int, with period P. This means that we 

can express these functions as Fourier series of the form :l::k sak exp(-ikDrt) , with 

sak = p-l J[ sa(t) exp(ikDrt). We then substitute the series representations of 5 a(t) 

into Eq. (5.58), which is now easily integrated. The result is 

sTwem(r) = µsYlm(~,O)P- 1 Lo(w-Wmk) 
k 

X fop dt 
5
F(r')o(r - r')ei(wmkt-mef>')_ (5.60) 

The frequency spectrum is given by 

(5.61) 

where k is an integer running from -oo to +oo. Equations (5.60) and (5.61) ex-

press the fact that the frequency spectrum contains only a discrete set of distinct 

frequencies, the harmonics of the fundamental frequencies n<t> and Dr. This fact has 

already been used in Eq. (5.53) above. 

We now transform Eq. (5.60) into an integral over r', using dr' /dt = ±J' iJ-1(E2 -

V') 112 , where the higher (lower) sign refers to the first (second) branch of the radial 

motion (Sec. II C); we also have f' = 1 - 2M/r' and V' = V(L, r'). Breaking the 

integration into two parts corresponding to each branch, we find that Eq. (5.60) 

becomes 



X J2 p- 1(E 2 
- Vt 1l 2 I:C5(w - Wmk) 

k 

X LsG±(r)e±i[wmki(r)-mJ(r)]_ 
± 

168 

(5.62) 

Here, G(r) is the Heaviside step function, f = 1 - 2M/r, V = V(L, r); t(r) and 

J;(r) were defined in Eqs. (5.15) and (5.17). We also have sG± = E 5 F/f3 , where 

the right-hand side is evaluated on the first (higher sign), or second (lower sign), 

branch of the radial motion. More explicitly, making use of Eq. (5.59), 

1 
sG±(r) = 4r 4 J2 ../2irL[E ± (E2 

- V) 112] s = -1 (5.63) 

-2.t2 s = -2 

5.3.4 Calculation of Z}m 

In this subsection we calculate the amplitudes ZJm using Eqs. (5.49), (5.51), (5.53), 

and (5.62). These can then be substituted into Eqs. (5.55) and (5.56) to calculate 

the contributions to E and L from each£, m, and k. The final result is obtained by 

summing over all these integers, as shown in Eq. (5.54) 

We start from Eq. (5.49) , which we re-express as Twem = 27r :Es sDwe sTwem, 

where the operators sDwe can easily be identified. For convenience, we also rewrite 

Eq. (5.51) as 

Zwem = (2iµw2 Q~e)-I L sZwem, (5.64) 
s 

where 

Z _ 2 1=d RZfe(r)sDwesTwem(r) 
s wlm - 7r r 4f2 . 

2M r 
(5.65) 
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The right-hand side of Eq. (5.65) can be regarded as an inner product (R , DT) , 

where R and T are functions , and D an operator (we have suppressed the use of 

the indices for greater clarity) . To simplify the evaluation of this inner product , we 

define the adjoint operator Dt such that (R , DT) = (Dt R, T). This new operator 

can be calculated by performing a number of integration by parts on Eq. (5.65). 

After such manipulations, we find that Eq. (5.65) becomes 

(5.66) 

We have introduced 

2[>.(,~ + 2)] 1
/

2 s = 0 

sPl = 2(2>.) 112 s = -1 ' (5.67) 

1 s = -2 

where>.=(!! - 1)(1! + 2) , together with 

oRtfl(r) Rt]l(r ), (5.68) 

(-r f ~ + 2f + iwr) Rt]l(r) , (5.69) 

[ 
d2 d 

r212 dr2 - 2r J(J + iwr) dr 

+ iwr(2- 2M/r + iwr)]RtfAr) . (5.70) 

Equations (5.66)-(5. 70) are valid irrespective of the choice of source functions 

The final step is to specialize to the source functions which are relevant to our 

problem, and to substitute Eq. (5.62) into (5.66) . Using Eqs. (5.53) and (5.64) along 
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the way, we find 

Zin = [2iµ(wmk) 2 Q~mker 1 L sz;m , (5.71) 
s 

with 

(5.72) 

In general, the integrals of Eq. (5.72) must be evaluated numerically. To facilitate 

these integrations , we make the substitution r = r(x) , given in Eq. (5.18), which 

removes the bad behavior of the integrand at r = r 1 and r = r 2 • This change of 

variables also makes the perturbation formalism robust, in the sense that the limit 

e = 0 can be taken directly, without difficulty. 

5.3.5 The radiation reaction equations 

The Teukolsky formalism, as summarized in the preceding subsections, allows us 

to calculate E and L, the time-averaged rates at which the gravitational waves 

carry away energy and angular momentum. Using Eq. (5.43) , we can then infer the 

time-averaged rates of change of the orbital parameters. 

In Sec. II B we have introduced the quantities p and e as a preferred set of orbital 

parameters. The purpose of this subsection is to relate the rates of change of p and 

e to E and L, which are directly obtained from the Teukolsky formalism. 

Since p and e are functions of E and L, we have, using Eq. (5.43) , -E 
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(8E/8p)µp + (8E/8e)µe and -t (8L/8p)µp + (8L/8e)µe. These equations 

can easily be inverted. Using Eqs. (5.10) and (5.11), we find 

µp = 2(p - 3 - e2)1/2 [ 3/2 1/2 
(p - 6 - 2e) (p - 6 + 2e) p (p - 2 - 2e) 

x (p-2+2e) 1l 2E-(p-4)2 L/M] , (5.73) 

and 

µe 
(p 3 e2)1/2 

- - {-p3f2(p _ 6 _ 2e2) 
ep(p - 6 - 2e )(p - 6 + 2e) 

x (p - 2 - 2e)112(p - 2 + 2e)1/2 E 

+ (1 - e2 )[(p - 2)(p - 6) + 4e2]L/ M }. (5.74) 

It is important to notice that Eqs. (5.73) and (5.74) are singular at p = 6 + 2e. 

Radiation reaction produces a slow evolution of the orbital parameters, and there-

fore generates curves in the p-e plane. We can anticipate that the curves must all 

cross the separatrix p = 6 + 2e, so that the particle must eventually plunge inside 

the black hole. To see this , we only need recall that the gravitational waves remove 

angular momentum from the system. This induces a decrease in Vmax , the value 

of the effective potential at the local maximum (see Fig. 4) . When L reaches the 

critical value 2v'3M, the potential barrier disappears altogether. The particle must 

therefore plunge either at , or prior to, this point . In the former case (plunging when 

L = 2v'3M) , the particle's orbit is circular immediately before plunging; in the 

latter (plunging when L > 2v'3M), the orbit is eccentric. 

The detailed behavior of the radiation-reaction curves near p = 6 + 2e will be 
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discussed in Sec. IV B. 

5 .4 Analytical results 

The first part of this section (subsections A to C) is devoted to the calculation of 

the radiation-reaction curves (Sec. III E) in those regions of the p-e plane for which 

the calculation can be performed, to some degree of accuracy, analytically. More 

specifically, we shall be interested in evaluating p and e, as well as the function 

dlne 
c(p, e) = dlnp· (5.75) 

In Eq. (5. 75), the variations in p and e are calculated using the radiation reac-

tion equations (5.73) and (5.74). Notice also that dp and de denote time-averaged 

variations; as usual, the average is taken over several orbital periods. 

In the second part of this section (subsection D), we will use our analytical 

expressions for p and e to formulate constraints on the magnitude ofµ/ M . These 

will ensure the validity of the adiabatic approximation (Sec. III A) throughout the 

p-e plane. 

5.4.1 Weak-field radiation reaction: p » 6 

The effects of gravitational radiation reaction in weak-field, slow-motion situations 

are well understood and can be derived, to leading order [11], using a Newtonian po-

tential of the form <I>rr = (1/5)( d5 Qab/ dt5)xaxb, where Qab is the traceless quadrupole 
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moment of the mass distribution [4, 5, 6, 7]. The radiation reaction force is then 

given by Frr = -µ\liI!rri and the resulting equations of motion can be used to 

calculate the rates of change of the orbital parameters. 

We shall instead follow the equivalent procedure of using tlie p -+ oo limit of 

Eqs. (5.73) and (5.74), together with suitable expressions for E and L, to calculate 

p and e. The equations of Sec. III could be integrated analytically in the limit 

p -+ oo, so as to yield the desired expressions for the :fluxes of energy and angular 

momentum. (See Refs. [32, 36, 37] for similar analytical integrations of the pertur-

bation equations.) However, it is much easier to obtain E and L from Peters' classic 

paper [21], in which they are calculated, to leading order in the weak-field limit, 

using the quadrupole formulae [5]. The results are 

(5.76) 

and 

(5.77) 

Equations (5.76) and (5.77) are valid up to fractional corrections of order p-1
. 

It is then a matter of simple algebra to substitute Eqs. (5.76) and (5.77) into the 

p-+ oo limit of Eqs. (5.73) and (5.74), to obtain 

. 64 ( µ ) 2 -3 ( 2) 3/2 ( 7 2) µp = - 5 M p 1 - e 1 + 8e , (5. 78) 

and 

. - 304 ( µ )2 -4 (i 2)3/2(1+121 2) µe - -15 M p e - e 304 e . (5.79) 
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These equations imply that weak-field radiation reaction decreases both the semi­

latus rectum p and the eccentricity e. 

Substituting Eqs. (5.78) and (5.79) into Eq. (5.75) we arrive at 

(5.80) 

which is valid for large p and any value of e. Equation (5.80) implies the well-known 

result that an initially eccentric orbit becomes circular if radiation reaction operates 

for a sufficiently long time [21, 22). (This conclusion, we stress, is only true for 

weak-field radiation reaction.) 

It is worth noting that the results presented in this subsection are valid also for 

binary systems with arbitrary mass ratios [21], provided that µ is then interpreted 

as the reduced mass of the system, M as the total mass, and p and e as the orbital 

parameters of the relative orbit. 

5.4.2 Strong-field radiation reaction: p - 6 - 2e « 4e 

The region of the p-e plane which lies very close to the separatrix p = 6 + 2e is also 

amenable to approximate, analytical calculations. In this subsection we will take 

c/4e, where 

c: _ p- 6 - 2e, (5.81) 

to be much smaller than unity. 

Our starting point is the statement that when p 6 + 2e, so that the orbit 
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is circular and unstable (Sec. II B), the :fluxes of energy and angular momentum 

are related by E = n<f>t, where n</> is given by the € = 0 limit of Eq. (5.37): 

Mn</>= (1+e)312/(6+2e) 312
• This statement can be justified as follows. Equation 

(5.34) implies that the radial period P diverges when € approaches zero, which 

means that nr = 271" Ip vanishes in that limit. From Eq. (5.61) we then find that 

the frequency spectrum of the gravitational perturbations is given by Wmk = mf!</>. 

Finally, substituting this into Eqs. (5.54)-(5.56) shows that the fluxes of energy and 

. . 
angular momentum at infinity satisfy the equality E = n</>L. It can also be shown 

that this frequency spectrum implies the same relationship between the fluxes at 

the black-hole horizon. (For explicit expressions see Ref. [1].) The desired result 

therefore follows. 

The transformation {E, L} -7 {p, e} is singular at€= O; see Sec. III E. In order 

to calculate p and e in the limit E/4e « 1, we need to know the relationship between 

E and L for orbits which are slightly away from the separatrix. The discussion of 

the previous paragraph allows us to write 

a« 1, (5.82) 

where a is only known to vanish in the limit€ = 0. We do not need to know the rela-

tive magnitude of a, in relation with E, for our purposes. However, it may be argued, 

using Eqs. (5.24) and (5.30), that a= O(D.r/D.cf>) = 0(27r//:::.¢) = O[(ln4e/E)-1
] » 

0(E/4e). We will not need to rely on this crude, nonrigorous estimate. 
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Substituting Eq. (5.37) into (5.82), we arrive at 

-l_ = (6 + 2e)3/2[1 + ,6- a+ o(~)]. 
ME 1 + e 4e 

(5.83) 

We have neglected, in the square brackets, terms of quadratic and higher order in 

a. In Eq. (5.83), the relative magnitude of a, compared to that of ,6 and c,/4e, is 

not precis~ly known [it is most likely that a and ,6 are of comparable magnitude; 

see Eq. (5.36)]. However, this information is not needed to calculate c(e,p). What 

is required for the calculation is the knowledge that ,6 » O(c,/4e), so that the term 

,6 - a is the larger correction term in Eq. (5.83). (We dismiss as improbable the 

possibility that a and ,6 are equal up to terms of order c,/4e or smaller. We have 

verified numerically that ,6 - a is always much larger than c / 4e.) 

The substitution of Eq. (5.83) into Eqs. (5.73) and (5.74) yields 

and 

µe 

µp = -2e-1 (1 + e)(3 - e) 112 (6 + 2e)312 

,6 - a+ O(c/4e) E. 
x ' c 

2e-1 (1 - e)(l + e)(3 - e) 1
/

2 (6 + 2e) 1
/

2 

x ,6 - a+ O(c,/4e) E. 
c 

(5.84) 

(5.85) 

Here, E is evaluated on the separatrix, where it is finite and nonvanishing. Use of 

Eq. (5.75) then gives 

(5.86) 
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which is valid for c/4e « 1. According to our previous estimate for the magnitude of 

a, it is most likely that the correction term in Eq. (5.86) is of order (c/4e) ln(c/4e). 

Although a cannot be calculated analytically, we may nevertheless state that 

near the separatrix, p < 0 and e > 0, which implies that /3- a+ O(c/4e) > 0. This 

statement follows from: (i) the fact that de/dp < 0 near the separatrix, which is a 

consequence of Eq. (5.86); and (ii) the fact that the radiation-reaction curves must 

cross the separatrix, a property that was proved in Sec. III E. 

We have therefore established that radiation reaction acts on orbits which are 

close to the separatrix so as to decrease the semi-latus rectum p, and to increase the 

eccentricity e [23]. This is in marked contrast with weak-field radiation reaction, 

which decreases the eccentricity. We remark that for fixedµ/ M, the divergence of 

µp and µe in the limit c -+ 0 signals the breakdown of the adiabatic approximation. 

This point will be discussed in subsection D. 

The asymptotic expressions for c(e,p), Eqs. (5.80) and (5.86), together with the 

fact that radiation reaction always decreases p, imply the existence of a critical curve 

in the ~e plane, along which de/dp = 0. Equation (5.86) further implies that the 

critical curve meets with the separatrix at e = 1. The existence of such a curve is 

a genuine strong-field effect, which can perhaps be understood as a precursor effect 

to the eventual plunging of the orbit. The precise location of the critical curve can 

be found by numerically integrating the perturbation equations. A portion of the 

critical curve is displayed in Fig. 3. 
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5.4.3 Strong-field radiation reaction: e « p - 6 

The results derived in the preceding subsection are valid for small eccentricities, 

provided that p - 6 - 2e is always taken to be much smaller than 4e. This amounts 

to approaching the point (p, e) = (6, 0) along a path which lies very close to the 

separatrix p = 6 + 2e. In this subsection, we calculate p, e, and c(p, e) also in the 

neighborhood of the point (6, 0), but now approaching it on a path which lies very 

close to e = 0. This amounts to taking the limits e -t 0, p -t 6 in that order, 

always ensuring that e/(p - 6) « 1. As we shall see, the point (6, 0) is a singular 

point of the p-e plane, in the sense that c( e, p) diverges there, and that its degree of 

divergence depends on the direction of approach. 

The results contained in this subsection are not new, and were first presented in 

Ref. [l]. We shall nevertheless repeat this analysis here, for two main reasons. First, 

we wish this paper to be as complete and self-contained as possible, and the case 

e « p - 6 must be discussed. And second, our rederivation of the results will allow 

us to formulate an assumption that was left implicit in Ref. [1]; this assumption 

concerns the order in which the limits e -t 0, p -t 6 are taken. 

Our starting point is the statement that for stable circular orbits, the fluxes of 

energy and angular momentum are related by E = D,q,L, where nq, is given by 

the e = 0 limit of Eq. (5.42): Mnq, = p-3! 2
• This statement is justified by first 

taking the e = 0 limit of Eq. (5.72). [This limit is taken only after the substitution 

r = r(x), Eq. (5 .18), is made, and Eq. (5.19) used.] The explicit evaluation of 
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5 Zfm is straightforward in that limit. The result is that sZfm vanishes unless k = 0, 

which implies that the harmonics of the radial frequency nr do not contribute to the 

frequency spectrum, Eq. (5.61) . Finally, use of Eq. (5.71), and then of Eqs. (5.54)-

(5.56), yields the desired result. (Actually, this argument proves only that the fluxes 

. . 
at infinity satisfy the relation E = n<f>L. However, the argument can be generalized 

so as to also include the fluxes at the black-hole horizon, for which the same relation 

holds. This more complete analysis is presented in Ref. [1].) 

. . 
When the orbit is slightly eccentric, we have that E and L are now related by 

(5.87) 

That the first-order correction is quadratic in e can be expected from the results of 

Sec. II F; this can also be justified rigorously by taking the small-eccentricity limit 

of the relevant equations of Sec. III. This analysis was carried out in Ref. [1], which 

also reveals that 1(p) is well behaved in the limit p --7 6 [38]. This property will be 

used below. 

It is straightforward to substitute Eq. (5.42) into Eq. (5.87) to obtain an expres-

sion for L/ME, and to then expand Eqs. (5.73) and (5.74) in powers of e. The 

results are 

µp= 
2p3/2(p _ 3)3/2 { [(-e )2]} . 

6 
1+0 

6 
E, 

p- p-
(5.88) 

and 

ep1f2(p _ 3)1/2 [ 3 2 
µe 2(p _ 2)(p _ 6)2 p - 12p + 66p - 108 
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(5.89) 

The detailed behavior of µe/eE as a function of p depends on 1(p), which must 

in general be evaluated numerically. However, since I is well-behaved in the limit 

p-+ 6, the behavior of µe/eE in that limit can be calculated unambiguously. 

Taking the limit p-+ 6 in Eqs. (5.88) and (5 .89), we obtain 

108J2{ [ ( e )2]} . µp = - P _ 
6 

1 + 0 p - 6, P _ 
6 

E, (5.90) 

and 

. 27./2 { [ ( e )2]} . µe = (p _ 
6

)2 e 1 + 0 p - 6, p _ 
6 

E . (5.91) 

Finally, substituting Eqs. (5.90) and (5.91) into Eq. (5.75) , we arrive at 

c(e,p) = -~-1-{1+o[p-6, (-e-) 2
] }· 

2p-6 p-6 
(5.92) 

The results presented here are consistent with our previous conclusion that ra-

diation reaction acts on orbits which are close to the separatrix so as to decrease 

p and increase e. We also remark that for fixed µ/ M , the divergence of µp and µe 

in the limit p -+ 6 signals the breakdown of the adiabatic approximation. We will 

return to this point in subsection D. 

It should be emphasized that in both this and the preceding subsections, calcu-

. . 
lations were based on this property of circular orbits that E = D,<f>L. This property 

is very general, and does not depend on the fact that the radiation field is grav-

itational [39] . That E = n <f> .i follows from two key elements. The first is that 
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for circular orbits, the radiation field possesses a frequency spectrum of the form 

w = mD.</>. This follows from the circularity of the orbit only, and holds for any 

type of radiation field. The second key element is that irrespective of its type, the 

radiation field transports energy and angular momentum in such a way that for each 

. . 
frequency component, Ew ex: w and Lw ex: m, where the constant of proportionality 

is the same in both expressions [40]. The equality E = n</>t is therefore valid for 

arbitrary radiation fields, and so are the results presented in this and the preceding 

subsections. 

5.4.4 The adiabatic approximation 

We now use the analytical estimates of the previous subsections to formulate con-

straints on µ/M which ensure the validity of the adiabatic approximation. These 

constraints are most severe in the vicinity of the separatrix. Due to the singularity 

of the transformation {E, L}---+ {p, e} at p = 6 + 2e, see Sec. III E, radiation reac-

tion occurs increasingly rapidly as the orbit approaches the separatrix. Since p and 

e scale with µ/M , the validity of the adiabatic approximation can be maintained at 

the price of decreasing µ / M sufficiently rapidly. For a fixed mass ratio, the adiabatic 

approximation must eventually break down. 

The adiabatic approximation is formulated by requiring that a relevant orbital 

parameter q changes very little over time scales comparable to the orbital period P. 
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More precisely, we demand that 

,6.q « q, (5.93) 

where ,6.q = JqJP is the change in q after one radial orbit. By choosin$ q appropri­

ately, and then estimating q and P, Eq. (5.93) can be transformed into a condition 

on µ/M. 

The case p » 6 

Expressions for p and e which are valid for large p are given by Eqs. (5.78) and 

(5. 79) . Using these results together with P = 27rp312(1 - e2)-312 M, which is valid 

up to fractional corrections of order p-1 , Eq. (5.93) gives 

µ/M « p5/2. (5.94) 

We note that Eq. (5.94) follows whether we choose q = p or q = e. Equation 

(5.94) is superseded by the condition µ/M « 1 which ensures that the gravitational 

perturbations obey linear wave equations. Thus, the adiabatic approximation is 

automatically satisfied in the weak-field limit. 

We have already noted that the results presented in subsection A are valid also 

for binary systems with arbitrary mass ratios, provided that µis then interpreted as 

the reduced mass of the system, and M as the total mass. Since µ / M ~ 1/4, with 

the equality holding when the masses are equal, we see that the radiation reaction 

is necessarily adiabatic when p is large, irrespective of the mass ratio. 
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The case p - 6 - 2e « 4e 

The most relevant orbital parameter in this case is q - £ = p - 6 - 2e, and i can 

be calculated using Eqs. (5.84) and (5.85). The orbital period can be expressed as 

P = ~¢/flq, using Eqs. (5.23) and (5.24). Substitution of Eq. (5.37) then yields 

M (3 - e) 112(6 + 2e)2 ~</>/3- a · 
~£ ~ 327r- ( )l/2 --E. 

µ e 1 + e 27r £ 
(5.95) 

We now need to estimate f3 - a, as well as E. For the former, we recall Eq. (5.36) 

which shows that f3 is of the same order as 27r / ~¢, and the analysis of subsection 

B which suggests that a is also of that order. We therefore write f3 - a ~ 27r / ~¢, 

where ~ means "equal up to a numerical factor of order unity". For E we use an 

estimate based on the quadrupole formula [5]; this estimate should be valid up to a 

numerical factor of order unity. Thus, E ~ (32/5)(µ/M) 2 (1+e)5 (6+2e)-5
, which 

holds for a (fictitious) circular orbit of radius r 1 . Gathering the results, and ignoring 

numerical factors, we arrive at 

(5.96) 

This condition on µ/Mis indeed quite severe. 

The case p - 6 « 1; e « p- 6 

This case can be considered by identifying q with p - 6, whose rate of change was 

evaluated in subsection C. The orbital period is given by Eq. (5.41). We find, 

~(p - 6) ~ 7776h7r(p- 6)-3l 2(M/µ)E. (5.97) 
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Using the quadrupole formula to obtain the crude estimate E::::::: (32/5)(µ/M)2p- 5 , 

and ignoring numerical factors, we arrive at 

µ/M « (p - 6)s/2. (5.98) 

We point out that the analogous result quoted in Sec. IV F of Ref. [1] is incorrect; 

Eq. (5.98) is the correct condition. We remark, comparing Eqs . (5.96) and (5.98), 

that the rate at which µ / M must tend to zero as the point ( 6, 0) is approached 

varies with the direction of approach. This is an additional consequence of the fact 

that this point is a singular point of the p-e plane. 

5.5 Numerical results 

In the first part of this section (subsections A to D) we will describe the numerical 

methods which were used to obtain the results presented in Figs. 1-3. We have 

written our code with the help of FORTRAN subroutines given in Ref. [41]. All 

computations were carried out with double precision. 

In the final part of this section (subsection E) we will estimate the overall accuracy 

of our results, and compare them to those of Tanaka et al. [2]. 

5.5.1 The numerical task 

The main function of our code is to compute, for a given point in the p-e plane, the 

numbers Zfm for each relevant f, m, and k. This involves the numerical integration 
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of Eq. (5.72), after the change of variables r = r(x) has been made [see Eqs. (5.18) 

and (5.19)], and the evaluation of Eq. (5.71). The z;m are then used to calculate 

(M/µ) 2E and (M/µ) 2 L/M via Eqs. (5.54)-(5.56). Finally, these quantities are 

substituted into Eqs. (5.73) and (5.74), to obtain M 2p/ µand M 2e/ µ. 

The computation of each Zlm involves many steps. These include: 

(i) The evaluation of nr and ncf>, which determine the perturbation frequency 

Wmk· For this calculation, we use Eqs. (5.20), (5.21), (5.23), (5.24), and (5.61) . 

(ii) The integration of the homogeneous Teukolsky equation [Eq. (5.45) with van-

ishing source], to obtain R[!mk.e(X) for 0 _s; X _s; ?T. From this we calculate sR[!mk.e(x), 

with the help of Eqs. (5.68)-(5.70). The integration of the homogeneous Teukolsky 

equation also gives Q;; .ei the "amplitude" of the ingoing part of RwH .e(r ---+ oo ), 
mk mk 

which is substituted into Eq. (5.71). Step (ii) is the one which requires the most 

care; it will the subject of subsection C. 

(iii) The computation of sG±(x), t(x), and </>(x), for 0 < x < ?T. Equations 

(5.20), (5.21), and (5.63) are used for this calculation. 

(iv) The evaluation of sP.e, using Eq. (5.67), as well as sYlm(~, 0), using Eq. (2.15) 

of Ref. [32]. 

The computation of E and L formally involves summing over an infinite number 

of terms. In Eq. (5.54), the sum over f is only restricted by f;::: 2, and the sum over 

k is unrestricted. In subsection D we will examine the question of how to truncate 

these sums so as to achieve a desired degree of accuracy. 
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5.5 .2 Integration of functions 

Part of the numerical task involves the integration of several functions of x, as is 

expressed in Eqs. (5.20), (5.21), and (5.72). Because these functions are all smooth, 

the integrations can be performed using Romberg's method, as implemented by the 

subroutine QROMB of Ref. [41] . 

The tolerance of the integrator, ER, can be set to very small values without 

difficulty. Thus, the numerical error introduced by the Romberg integrator can 

be chosen to be negligible compared to the truncation error (subsection D), which 

determines the overall accuracy of the final results. Typically, we have chosen ER= 

10-6 . 

When integrating Eq. (5.21), we have chosen not to take advantage of the fact 

that </>(x) can be written as an elliptic integral. 

5.5.3 Integration of the homogeneous 

Teukolsky equation 

A particularly important part of the numerical task is the integration of the homo­

geneous Teukolsky equation, Eq. (5.45) with vanishing source. We are interested in 

the particular solution R(!g(r) which describes purely ingoing waves, 

(5.99) 
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at the black-hole horizon. Here, f = 1 - 2M/r and r* = r + 2Mln(r/2M - 1). At 

large distances, 

(5.100) 

where Q~e is a constant. The function R-{!e(r) and its derivatives must be evaluated 

in the range r 1 s; r s; r 2 . We must also estimate the "amplitude" Q~e· This is 

difficult, because the ingoing part of R{!e( r) decays as r-1 at large radii, while its 

outgoing part grows as r 3
• 

To avoid such complications [42], it is preferable to integrate, instead of the 

homogeneous Teukolsky equation, the related Regge-Wheeler equation [43], 

[ 
2 d

2 
2M d 2 ( )] ( ) f dr2 + ~ f dr + w - W r Xwe r = 0, (5.101) 

where W(r) = f[£(£ + 1)/r2 -6M/r3
]. For this equation also we choose a particular 

solution X~(r) which is purely ingoing at the black-hole horizon, 

X/J(r--+ 2M) "" [1 + awd + bwd2 + · · ·]e-iwr•, 

where 

At large distances, 

£(£+1)-3 
1- 4iMw ' 

(£ - 1)£(£ + 1)(£ + 2) - 12iMw 
4(1- 2iMw)(l - 4iMw) 

X H( ) Ain D ( ) -iwr• wl r --+ 00 "" wer we wr e 

(5.102) 

(5.103) 
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+ A out p (wr)eiwr* wl we ' (5.104) 

where A:;e and A~':lt are constants , and Pwe(wr) = 1 + iiwe(wr)-1 + hwe(wr)-2 + · · ·. 

Here, 

(5.105) 

1 . = - 8[(t - 1)t (t + 1)(£ + 2) - 12iMwJ , 

and a bar denotes complex conjugation. 

From X~(r) and its derivatives one recovers R'!!e(r) and its derivatives by apply-

ing the Chandrasekhar transformation [44], 

(5.106) 

where .C = fd/dr + iw. Because X~(r) satisfies a second-order differential equa-

tion, the differentiations need not be performed numerically. The Chandrasekhar 

transformation also implies 

Q~e = -4(1 - 2iMw)(l - 4iMw)(Mw)3 A~e · (5.107) 

From Eq. (5.106) one can indeed verify that R!fe(r) satisfies the homogeneous Teukol-

sky equation, with boundary conditions (5.99) and (5.100), if X~(r) is a solution 

to the Regge-Wheeler equation, with boundary conditions (5.102) and (5.104) . 

The numerical integration of Eq. (5.101) proceeds outward from r = 2M(l + E1), 

where EI is a small number; typically EI = 10-s. The integration is performed using 
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the Bulirsh-Stoer method, as implemented by the subroutines ODEINT and BSSTEP 

of Ref. [41]. We have typically set the tolerance of the integrator to EBs = 10-6 • 

The complex-valued amplitude A~e is evaluated by integrating the Regge-Wheeler 

equation up to large values of r (large compared with the scale w-1 ), and by then 

comparing the numerical results with Eq. (5.104). More precisely, the integrator 

pauses at some r, estimates the value of A~m' and then proceeds to a larger value 

of r where another estimation is made. When A~m changes by a fractional amount 

less than the imposed limit EA, the integrator stops and returns that value for A~m· 

In practice, the convergence of this process is quite rapid, thanks to the insertion 

of Pwe(wr) in Eq. (5.104). However, we have found that in general, the required 

accuracy on A~m must be set lower than the accuracy of the integrator. Otherwise, 

the estimator has difficulty converging at all; this convergence problem is more severe 

for larger frequencies. Typically, we have chosen EA = lOEBs, which appears to work 

well for all values of p and e. 

5.5.4 Truncation of infinite sums 

. . 
As pointed out previously, the numerical calculation of E and L must involve the 

truncation of infinite sums over£ and k. This truncation obviously limits the accu-

racy of the numerical results. It is the purpose of this subsection to devise ways to 

truncate the sums so that the error introduced does not exceed a specified size. 

It is easy to formulate a simple prescription for truncating the sums over £. It 
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was shown in Ref. [32] that for circular orbits, a given multipole R contributes a 

fractional amount of order p-(.t.-2
) to E and L. We assume (and we have verified 

numerically) that this result remains valid, at least within an order of magnitude, 

when the orbit is eccentric. We then obtain that in order to achieve a fractional 

accuracy of order E.e., we must include in the sums over R all terms with R :=:; Rmax, 

where 

(5.108) 

We have found that Eq. (5.108) works indeed quite well in the region of the p-e 

plane which was of most interest to us. In principle, E.e. could be chosen to be of 

the same order of magnitude as the previously introduced €-factors. However, it is 

more appropriate to set it only slightly smaller than Ek, which we define below, and 

which shall be the largest of the E's. 

It is more difficult to obtain a prescription for truncating the sums over k . First, 

it is necessary to know something about the distribution of E.e.mk as a function of 

k, for fixed R and m and for given values of p and e. The L.e.mk 's follow a similar 

distribution. 

For very small eccentricities, the distribution of E.e.mk is strongly peaked at k = 0, 

and decays rapidly away from k = 0. It can indeed be shown, using the equations 

of Sec. III, that for e « 1, E.e.mk/ E.e.mo = 0( e2ikl); this analysis was carried out in 

Ref. [1]. 

For larger, but still small eccentricities (Fig. 5), the center of the distribution is 
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pushed away from k = 0 by an amount of order unity which depends on the values 

of p, e, f, and m. However, it is still true that only a small number of k's make a 

significant contribution to L.:k Eemk· 

For large eccentricities (Fig. 6), a large number of harmonics is required, and the 

center of the distribution is displaced from k = 0 by a large amount depending on 

the values of p, e, f, and m. In all cases we have found that the negative values of 

k contribute very little to the total result. 

. . 
Because the distributions of Eemk and Lemk as functions of k are so complex, it 

is not possible to truncate the sums over k at some universal values kmin and kmax· 

Instead, for given p and e, and for fixed f and m, we let the code compute Eemk and 

Lemk from k = 0 outward, comparing the value of the current Eemk to the maximum 

value encountered thus far (for that f and m ). The calculation stops when for several 

successive k's, Eemk drops below a fixed number Ek times the maximum value. The 

calculation is then repeated for the negative k's, using the same maximum value. 

Finally, the sums over k are carried out, and the final answers for L.:k Eemk and 

L.:k Lemk are considered to have a fractional accuracy of order Ek. 

5.5.5 Overall accuracy 

The overall accuracy of our results is determined, at least in part, by choosing the 

value of Ek. A smaller value implies that more harmonics of the radial frequency will 

be included in the sums, which in turn implies a longer running time. For fixed Ek, 
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on the other hand, the running time increases rapidly with increasing eccentricity. 

Practically, therefore, it is not usually possible to set Ek to very small values. We 

have typically chosen Ek = 10-2
• Fortunately, this relatively low accuracy is quite 

sufficient for our purposes. 

Let E denote the overall fractional accuracy of our results. The discussion of the 

preceding subsections implies the following hierarchy between all the the e's: 

(5.109) 

To verify that Ek is indeed a fair estimation of the overall accuracy, we have carried 

out runs with decreasing values of Ek, and checked that the final answers differed by 

the expected amounts. 

It is also useful, to assess our accuracy, to compare our results to the generally 

more accurate ones of Tanaka et al. [2] . Such a comparison was performed for several 

points in the Jre plane, and representative results are shown in Table I. 

As a final remark concerning the accuracy of our results, we note that we have 

not , in this paper, calculated EH and tH , the time-averaged rates at which the 

black hole absorbs energy and angular momentum. Consequently, our results are 

only valid up to a fractional accuracy not better than EH - EH/ E00 ~ tH / t 00
, 

where E00 and t 00 denote the rates at infinity. It can be shown [1] that for circular 

orbits , EH/ E00 = tH / t 00 = O(p-4
). We may assume that this result stays valid, 

at least within an order of magnitude, for eccentric orbits, and conclude that EH~ 



193 

p-4 < 8 x 10-4
• Because we have generally worked with E ~ 10-2 » EH, we can 

safely ignore the contributions _EH and j,H to E and L. This was also done by 

Tanaka et al. [2]. 
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Figure 5.1: The bound orbits of the Schwarzschild spacetime can be represented by points in the 
p-e plane, a portion of which is depicted here. The solid, diagonal line to the left is the separatrix 
p = 6+2e. The bound orbits are located to the right of the separatrix. Radiation reaction produces 
a slow evolution of the orbital parameters, and therefore generates curves in the p-e plane. These 
can be parametrized by p, and have v = ( 1, de/ dp) as tangent vectors. The vector field ii(p, e) is 
also plotted here, with each point (p, e) located at the arrow's tail-end. For convenience, we have 
uniformly rescaled the length of the vectors. The solid arrows represent the calculations of this 
paper. The dotted arrows represent the results of Tanaka et al. [2). 
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c 

6 

Figure 5.2: A three-dimensional plot of the function c(p,e) = dlne/dlnp, for the range 6 < p < 12 
and 0 ~ e ~ 0.55. The function c(p, e) is not defined for p < 6 + 2e. In this region, we hav; plotted 
c(p, e) = -(1 - e)/e, which is equal to c(p, e) at p = 6 + 2e; see Eq. (1.4). The intersection of 
the surface c = c(p, e) with the plane c = 0 defines the critical curve, along which de/dp = O; see 
Fig. 3. The value of c(p, e) at the point (7.5, 0.5) appears anomalous, but there is no reason to 
suspect the accuracy of our results at that point. 
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Figure 5.3: A portion of the p-e plane in which lies a portion of the critical curve (along which 
de/dp = 0). The solid, diagonal line to the left is the separatrix. The filled squares represent 
points on the critical curve. (The thickness of the squares exceeds the numerical uncertainty.) 
The dotted curve consists of straight line segments joining these points. The arrows have the same 
meaning as in Fig. 1. Arrows to the right of the critical curve point down, indicating that radiation 
reaction decreases the eccentricity. Arrows to the left of the critical curve point up, indicating that 
radiation reaction increases the eccentricity. 
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r 

Figure 5.4: The effective potential for radial motion. The three turning points r3 ::; r2 ::; r 1 are 
defined by the cubic V(L, r) = E2 • Bound motion takes place between r 1 , the periastron, and rz, 
the apastron. 
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Figure 5.5: The contributions (M/µ) 2 Etmk to the total rate (M/µ) 2 E, plotted as a function of 
the integer k, for fixed £ and m, and for p = 7.50478, e = 0.188917. See Eq. (3.12) and Table I. 
In part a), £ = m = 2. In part b), £ = m = 5. The order of magnitude of the main contributions 
to the energy flux in part a) (in dimensionless units where G = c = 1) is 10-4, and 10-5 (in the 
same units) in part b). 
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Figure 5.6: The contributions (M/µ) 2 Eemk to the total rate (M/µ) 2 E, plotted as a function of 
the integer k, for fixed f and m, and for p = 8.75455, e = 0.764124. See Eq. (3.12) and Table I. In 
part a), f = m = 2. In part b), f = m = 5. The order of magnitude of the principal contributions 
to the energy flux in part a) (in dimensionless units where G = c = 1) is 10-5 , and 10- 7 (in the 
same units) in part b). 
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Table 5.1: Comparison with the results of Tanaka et al. for two representative points in the p-e 
plane. Shown are: the values of p , e, E, L, ri, rz , fir, r2 4,, and /j.¢; the overall accuracy of our 
results (Tanaka et al. claim a fractional accuracy better than 10-4 ); the values of E and L as 
calculated in this paper and by Tanaka et al.; the relative difference between the results; and the 
values off> and e as calculated in this paper. 

Quantity Point # 1 
p 7.50478 
e 0.188917 

E 
L/M 
rifM 
r2/M 
MD,r 
MD,<!> 

~</> 
€ 

M 2 E / µ 2 (this paper) 
M 2 E/µ 2 (Tanaka et al.) 
ML/µ 2 (this paper) 
ML/µ 2 (Tanaka et al.) 
relative difference 
M2j>/µ 
M 2 e/µ 

0.948279 
3.55000 
6.31228 
9.25279 
0.0210558 
0.0475982 
14.2036 
10-4 

3.16804 x 10-4 

3.16689 x 10-4 

5.96562 x 10-3 

5.96391 x 10-3 

4 x 10-4 

-7.475 x 10-2 

-1.967 x 10-3 

Point# 2 
8.75455 
0.764124 
0.977903 
3.85000 
4.96255 
37.1151 
0.00804892 
0.0153556 
11.9869 
10-2 

2.10080 x 10-4 

2.11580 x 10-4 

2. 75034 x 10-3 

2. 76838 x 10-3 

7 x 10-3 

-2.283 x 10-2 

-2.126 x 10-3 



Chapter 6 

Radiation-reaction-induced 

evolution of circular orbits of 

particles around Kerr Black Holes 

with Amos Ori 

Abstract 

It is demonstrated that , in the adiabatic approximation, non-Equatorial circular 

orbits of particles in the Kerr metric (i .e. orbits of constant Boyer-Lindquist radius) 

remain circular under the influence of gravitational radiation reaction. A brief dis­

cussion is given of conditions for breakdown of adiabaticity and of whether slightly 
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non-circular orbits are stable against the growth of eccentricity. 

6.1 Introduction 

It has been shown some time ago that a particle in a circular orbit around a non­

rotating black hole remains in a circular orbit under the influence of the gravitational 

radiation reaction arising from its orbital motion [1] . Although it has been suggested 

[2] that the same holds true for "circular" orbits (meaning orbits of constant Boyer­

Lindquist radius [3]) around rotating black holes, up to now it has not been shown to 

beyond first post-Newtonian order (see Ref. [4] for the post-Newtonian result , and 

see also Refs. [5] and [6] for more recent work) because of the difficulty of dealing 

with the little understood "Carter" constant of the motion, Q. To date no practical 

method has been developed for describing the rate of change of this constant due 

to gravitational radiation reaction for a generic orbit (see, however, Ref. [7]), and 

without knowing this the evolution of the orbit cannot be predicted. 

In this paper, we study the relation between the rates of change of the three con­

stants of the orbital motion (the energy, E , axial component of angular momentum, 

L , and the Carter constant, Q) , for circular and almost-circular orbits. We first 

show that , for orbits which are precisely circular (in a sense which is well-defined 

within the adiabatic approximation) , the rate of change of Q has just the value 

required for the orbit to evolve into a new circular orbit . Then, we extend the anal-
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ysis to almost-circular orbits (to first order in the orbital eccentricity). This analysis 

leads to the result that in order for an initially-circular orbit to develop non-zero 

eccentricity, the back-reaction force (evaluated for the precisely-circular orbit) must 

resonate with the radial oscillations. Since in the case of a precisely-circular orbit 

the periodicity of the back-reaction force is determined solely by the B-motion, we 

are led to the following conclusion. The only case in which an initially-circular 

orbit will develop an eccentricity is when there is a certain resonance between the 

(small-oscillation) radial motion and the 8-motion. More specifically, this resonance 

condition is To = 2nTr , where n is an integer, and Tr and To are the (averaged) 

periods of the radial motion and the angular motion, correspondingly. 

Ryan [5] has recently examined circular orbits in the Kerr metric numerically and 

found that the above resonance condition is never satisfied (for all black-hole and 

orbital parameters). We are thus led to the conclusion that orbits which are initially 

precisely circular will remain circular upon radiation-reaction evolution. We point 

out, however, that this conclusion does not address the issue of stability against the 

growth of a small initial eccentricity (this issue is further discussed in Sec. V below). 

This paper is organized as follows. In Section II we define instantaneous circular­

ity of an orbit in terms of the instantaneous location and 4-velocity of the orbiting 

particle. We then derive a relation between the rates of change of E, Land Q for an 

instantaneously circular orbit that is perturbed by an ar"f?itrary force and we show 

that this relation is precisely the one required for the circular orbit to evolve into 
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a new circular orbit . One might naively interpret this result by itself as implying 

that an initially circular orbit will necessarily remain circular. However, in Section 

III we show that in order to predict the full evolution of initially circular orbits, 

it is necessary to carry the analysis (of the relation between the rates of change of 

the three constants of motion) to first order in the instantaneous eccentricity. This 

analysis, to first order in the eccentricity, is presented in Section IV, with the con­

clusion that initially circular orbits do, indeed, remain circular. Finally, in Section 

V we give some concluding remarks. 

6.2 Instantaneously circular orbits 

In this section we shall define instantaneous circularity of an orbit and shall show 

that for any such orbits dQ / dr has just the right value so as to leave the evolving 

orbit circular. We shall show that this is true for any arbitrary force which acts on 

the orbiting particle (in fact, this result is precise, and is not limited to the adiabatic 

approximation). 

We take here the point of view that the radiative evolution may be viewed as 

the consequence of some "back-reaction force", which can be treated as any other 

external force [8). We shall therefore begin by constructing a general formal expres­

sion for the evolution rate of all constants of (geodesic) motion, due to an arbitrary 

external force. Let C denote the constant of motion in question. In Kerr, C may 
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stand for either the energy E, the azimuthal angular momentum L, or the Carter 

constant Q (or any combination of these constants, like e.g. the constant D defined 

below). We first express all these constants explicitly as functions of coordinates 

and covariant components of four-velocity [9], that is, 

(6.1) 

For E and L, we simply take 

E = -Ut L =Ucp. (6.2) 

(Throughout, we use the standard Boyer-Lindquist coordinates, r, t, 8, <.p). The cor­

responding explicit expression for Q is slightly more complicated. We could use the 

familiar expression based on the 8-motion in Kerr: 

Q = ul + cos2 8 [a2 (1 - u/) + sin-2 8 u,;] . (6.3) 

We find it more convenient, however, to construct the expression for Q from the 

r-motion. It is straightforward to show that 

Q = .6.- 1 
[ E(r2 + a2

) - aLr - (L - aE) 2 
- r2 

- .6.u; . (6.4) 

(this follows, for instance, from Equations (33.32b) and (33.33c) in Ref. [10]). Here, 

.6. = r 2 - 2M r + a2 , where M is the black hole's mass and aM is its angular 

momentum. For later convenience, we also write this equation in the form 

Q = H(r, E, L) - .6.u;, (6.5) 
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where 

H(r, E, L) -

(L - aE) 2 
- r 2 

• (6.6) 

In view of Eq. (6.2), one readily sees that Eq. (6.4) is just of the desired form, 

Q = Q(xf3 , ua) (with the simplification that the right-hand side does not depend on 

() or ue ). 

When an external force is applied to the particle, C will evolve with time. To 

calculate its rate of change, we differentiate Eq. (6.1) with respect to the proper 

timer: 

(6.7) 

Now, 

(6.8) 

and 

Dua _ F. 
Dr - a' 

(6.9) 

where D /Dr denotes covariant proper-time differentiation and Fa is the force per 

unit rest mass. Equation ( 6. 7) thus reads 

dC _ [ /3 1 ~ oC µ v] ~ oC -d - u C,13 + 2 L.J -
0 

gµv,a u u + L.J -
0 

Fa . 
r a Ua a Ua 

(6.10) 

Notice that the term in brackets does not depend on the external force. When no 

external force is applied, C is conserved. Thus, the term in brackets must vanish 
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identically. Equation (6.10) therefore reads: 

(6.11) 

This is the desired general expression for the evolution rate of all constants of motion. 

Note that this is the precise expression for the instantaneous rate of change of C. 

We have not used the adiabatic approximation (or any other approximation) so far. 

We now define an orbit to be instantaneously circular if its instantaneous values 

of E , L and Q [defined by Eqs. (6.2) and (6.5)] are precisely equal to those of some 

circular geodesic orbit . At a moment when the orbit (on which the force Fo: acts) is 

instantaneously circular, Eq. (6.4) plus circularity (ur = 0) implies 

fJQ - = -2~ur = 0 . 
OUr 

Inserting this into Eq. (6.11) gives 

dQ fJQ fJQ 
-d =~Ft+~Fcp . 

T UUt uucp 

Also, in view of Eq. (6.2) , Eq. (6.11) yields 

dE 
- =-Ft ' 
dr 

dL 
- = Fcp. 
dr 

Substituting Eqs. (6.2) and (6.14) in Eq. (6.13), we obtain 

dQ dE dL 
dr = Q,E dr + Q,L dr · 

Finally, using Eq. (6.5), we rewrite Eq. (6.15) as 

dQ dE dL 
dr = H,E dr + H,L dr · 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

(6.16) 
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This is our final expression for the actual, momentary, rate of change of Q due to 

the external force. [To avoid confusion , we emphasize that the partial derivatives 

in the right-hand side of Eq. (6.16) are to be calculated according to the explicit 

expression (6.6)] . 

We come now to the second part of this calculation, that is to calculate the rate 

of change of Q (compared to that of E and L) required for taking a circular orbit 

into a new circular orbit. From Eq. (6.5) we obtain 

.6.u; = H(r , E , L) - Q = W(r, E , L, Q). (6.17) 

When applied to general geodesic orbits (with constant but arbitrary E, L and Q) 

this equation can be regarded as describing radial motion in an effective potential 

W(r, E, L, Q). Obviously that geodesic motion is circular if and only if the particle 

sits at a radius r where W = 0 (or Ur= 0) and where W:r = 0 (so the particle is at 

the minimum of the effective potential). Correspondingly, an orbit on which a force 

Fa acts is instantaneously circular if and only if it instantaneously satisfies 

W,r =0 . (6.18) 

We now let the force Fa continue to act , but only for an infinitesimal proper time, 

Jr. Following this action, the orbit will be characterized by new parameters, r', 

E' , L' and Q'. We denote the changes from the original parameters by J, that is , 

Jr= r - r', JE = E- E', etc. These changes are infinitesimal because Fa is allowed 

to act for only an infinitesimal time Jr , before the orbit is once more examined for 
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circularity. The corresponding change in Wis given by 

(6.19) 

In order for Eq. (18) to hold after the time OT as well as before (i.e. in order for the 

orbit to remain circular), we must demand 

oW=O. (6.20) 

We denote the value of Q which corresponds to a circular orbit (for given E and L) 

by Qcirc(E, L). Equations (6.19) and (6.20) thus yield, as a necessary condition for 

the orbit to remain circular 

(6.21) 

from which oQcirc is to be determined. Now Eq. (6.17) implies 

W,Q = -1 W,L = H,L' (6.22) 

which together with W:r = 0 [Eq. (6.18)] reduces Eq. (6.21) to the form [11] 

oQcirc = H,EoE + H,LoL. (6.23) 

Finally, dividing by the infinitesimal proper time lapse OT and taking the limit 

OT -+ 0, we obtain 

dQcirc - H dE H dL 
dT - ,E dT + ,L dT . (6.24) 

Comparing Eqs. (16) and (24), we arrive at the desired result . At any moment 

when the orbit, on which the arbitrary force Fa acts, is instantaneously circular, Fa 
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produces an instantaneous evolution of the orbit's Cater constant given by 

dQ dQcirc 
-=--
dT dT 

(6.25) 

which maintains instantaneous circularity. 

For later convenience, let us define 

D = Qcirc -Q = D(E, L , Q) . (6.26) 

Circular orbits are thus characterized by D = 0 . Equation (6.25) then implies that 

if at a particular moment D = 0 , then 

dDjdT = 0. (6.27) 

It should be emphasized again that all the calculations done so far are precise, and 

do not depend on the adiabatic approximation. Note also that these calculations 

refer to the instantaneous rate of change of the constants of motion, at a moment 

when the orbit is instantaneously circular. As we shall see in the next section, Eq. 

( 6.27) by itself does not imply that an initially-circular orbit will necessarily remain 

circular. One must go to the next order in the eccentricity in order to derive this 

result. 

6.3 The need for eccentricity corrections 

Equation (6.27) (which holds whenever D = 0, i.e. whenever the orbit is instan-

taneously circular) has a trivial exact solution, D( T) = 0 . Does this necessarily 
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mean that an instantaneously circular orbit will remain circular forever? We shall 

immediately see that, in principle, the answer is no (though, we shall also see later 

that, within the adiabatic approximation, in most cases a circular orbit will remain 

circular). In fact, the trivial solution D( 1) = 0 to Eq. ( 6.27) is physically meaning-

less. 

To illustrate this, consider the analogous (but much simpler) problem of a free 

particle in one-dimensional Newtonian mechanics. The particle's energy (per unit 

rest mass) is K = (1/2) (dx/d1) 2 
• Assume now that a constant external force F 

(per unit rest mass) is applied on the particle. The evolution of K is then given by 

[in analogy with Eq. (6.11)] 

or, in terms of K itself, by 

dK _ Fdx 
d1 - d1 ' 

~~ = -J2F K 11
2 

. 

(6.28) 

(6.29) 

Now, assume that the particle is initially at rest , i.e. K = 0 . Then, from Eq. (6.29), 

dK/d1 = 0 . Equation (6.29) then admits a trivial exact solution, 

(6.30) 

This trivial solution, which means that the particle will remain at rest forever, is 

obviously wrong. Instead, the particle will certainly accelerate, and the true physical 

solution is [12] 

(6.31) 
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The situation here with respect to Eq. ( 6.27) and its unphysical solution D( T) = O 

is just analogous. As will be shown below (Section IV) , in the extension of Eq. (6.27) 

to slightly-eccentric orbits, dD / dT is (to the leading order) proportional to D 112 • 

Then, in addition to the t rivial solution D( T) = 0, there exists a non-trivial solution 

in which for some short period D grows like T
2 [analogous to Eq. (6.31)] , and this 

is the physical solution. This implies that , momentarily, the eccentricity (which is 

proportional to D 1f 2
) will grow linearly with T, even if initially it Vanishes precisely. 

Recall, however, that we are not particularly interested here in the momentary 

rate of change at a specific point along the orbit . Rather, we are interested in 

the effective long-term evolution of D . Within the adiabatic approximation, this 

long-term evolution is described by an equation of the form 

iJ = S(E , L, D) . (6.32) 

Hereafter, an overdot denotes the long-term rate of change (with respect to the 

proper-time, T) , obtained from the momentary equation of motion by averaging 

over many periods (in Section IV we shall describe this averaging procedure in more 

detail) . The long-term evolution of circular orbits will depend on the asymptotic 

behavior of S near D = 0. It is not difficult to show, based on Eq. (6.27), that the 

zero-order term [i.e. S(D = O)] vanishes identically [13]. As we shall see in Section 

IV below, the general asymptotic form of S is given by 

S(E , L, D) = S1(E , L)D1l2 + S2 (E , L)D + O(D312
) . (6.33) 
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The evolution of an instantaneously circular orbit will depend crucially on whether 

S1 vanishes or not . In the case S1 = 0 , we can approximate Eq. (6.33) by the linear 

equation 

(6.34) 

Then, an initial value D = 0 ensures that D will remain zero forever (we are not 

concerned here about stability to small initial perturbations, though we shall discuss 

the question of stability briefly in Sec. V). On the other hand, if S1 is non-zero, we 

can approximate Eq. (6.33) by 

(6.35) 

As was explained above, the trivial solution D( r) = 0 is physically meaningless. In 

that case, the physical solution will be (at least as long as S1 > 0) 

(6.36) 

which means that the an instantaneously circular orbit will evolve into an eccentric 

one. 

The above considerations make it clear that the value of S1 is crucial for our 

discussion. An orbit which is initially instantaneously circular will (in the adiabatic 

approximation) remain circular if and only if S1 = 0 . In the next section we shall 

calculate Si, and show that it generically vanishes. Only orbits which satisfy a 

certain resonance condition may have non-zero S1 . 
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6.4 Slightly eccentric orbits 

We now analyse the adiabatic evolution of D for slightly eccentric orbits, to leading 

order in the eccentricity. In order to use Eq. (6.11) for the calculation of dD/dr, 

we must first express D in the form D( xf3, Uo:). To simplify the notation, we make 

use of Eq. (6.2) , and simply write L instead of ucp and -E instead of Ut . Recalling 

that Qcirc - Qcirc(E, L), we have from Eq. (6.26) 

D = Qcirc(E, L) - Q(r, Ur, E, L) = D(r, Ur, E, L). (6.37) 

Here, Q(r, Ur, E, L) is to be understood in terms of Eq. (6.4) . This function is 

analytic in its arguments, and it is also not difficult to show that (except perhaps at 

the "last stable circular orbit", which must be excluded here), Q circ( E, L) is analytic 

in E and L. Therefore, D(r, Ur, E, L) in Eq. (6.37) is also analytic in its arguments. 

Now, Eq. (6.11) yields 

dD 
dr 

where the index j runs over the three coordinates r, t, c.p , and 

(6.38) 

(6.39) 

Equation (6.38) [like Eq. (6.11)] describes the precise, instantaneous rate of change 

of D, for any orbit on which any force Fo: is acting. We have not made use of the 

adiabatic (or any other) approximation so far. 
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From the analyticity of D(r, Ur, E, L) it follows that the functions 

(6.40) 

are analytic in their arguments. Now, from the validity of Eq. (6.27) for an external 

force of any type, it follows that for an instantaneously circular orbit [i .e. when 

Ur = 0 and r = rcirc(E, L)], all three functions Dj vanish. In other words, for any 

given E and L, 

Dj(r = ro,ur = O,E,L) = 0, (6.41) 

where ro _ rcirc(E,L). We now expand DJ(r,ur,E,L) around (r = ro,Ur = 0). In 

view of the analyticity of these functions, we have 

(6.42) 

where Jr = r - ro , and the functions D!r and D!ur (which, agam, are analytic 

functions of r, Uri E, L) are evaluated at (Jr = 0, Ur = 0) . 

We are now going to use two approximations (or expansions): the adiabatic ap-

proximation, and the small-eccentricity approximation. These two approximations 

are unrelated, and should not be confused with each other. The exact instantaneous 

equation of motion of D is [cf. Eq. (6.38)] 

dD = DJF. 
dT J. 

(6.43) 

The adiabatic approximation means that the external force Fj is assumed to be 

small, and the right-hand side is to be evaluated to linear order in it. The small-
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eccentricity approximation means that the eccentricity is assumed small and Eq. 

( 6.43) is evaluated to first-order in it . 

In view of the small-eccentricity approximation, the higher-order terms in the 

right-hand side of Eq. (6.42) can be omitted. Substitution in Eq. (6.43) then yields 

(6.44) 

Let us now examine the implications of the two approximations used here on the 

expression in the right-hand side. In view of the adiabatic approximation, the term 

in brackets is to be evaluated as if the constants of motion are fixed and the motion is 

geodesic. In the most general case, D!r and D!ur are (like D) functions of ( r, Ur , E , L) . 

Here, due to the adiabatic approximation, we can fix E and L . Moreover, since or 

and Ur are already first-order in the eccentricity, when evaluating D!r and D!ur we 

may take Ur = 0 and r = ro . Thus, in Eq. (6.44) , D!r and D!ur are just constants 

(which depend parametrically on E and L) [14] . 

Turn now to evaluate or(r) and Ur(r) in the right-hand side of Eq. (6.44). Like 

the entire term in brackets, they are to be evaluated as if the motion is geodesic 

(with fixed E , L, D). In view of the small-eccentricity approximation, we need only 

calculate or( 7) and Ur( 7) to the leading order in the eccentricity. We start from the 

"effective-pot ential" relation 

6.u; = W(r, E , L, Q) , (6.45) 
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[cf. Eq. (6.17)], and, recalling that grr = g;;_1 = 1:1/ p2 , we write it as 

(6.46) 

Here, 

p2 
- r 2 + a2 cos2 e . (6.47) 

In Eq. (6.46), as it stands, the radial motion is coupled to the 8-motion, through p 

In order to decouple the two motions, we define a new independent variable >. by 

(6.48) 

The radial equation of motion now becomes 

(dr/d>.) 2 = W/:1, (6.49) 

in which the right-hand side is independent of e . 

From Eqs. (6.17) and (6.6), W is an analytic function of (r, E, L, Q) . Writing 

Q = Qcirc(E, L)-D, and recalling the analyticity of Qcirc(E, L) , W can be expressed 

as an analytic function of (r, E, L , D) . For an instantaneously circular orbit (i.e. 

for r = r0 and D = 0), both Wand W,r vanish [cf Eq. (6.18)]. The expansion of W 

near instantaneous circularity must therefore be of the form 

w = AD+ Bor2 + O(D2
' Dor, or3

) ' (6.50) 

where A and B are some functions of E and L . Correspondingly, the expansion of 

the right-hand side of Eq. (6.49) will take the form 

W 1:1 =AD - Bor2 + O(D2
, Dor, or3

) , (6.51) 
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where A= A.6.o and B -B.6.0 , and where 

.6.o - .6.(r = ro(E, L)). (6.52) 

Combining Eqs. (6.49) and (6.51), and restricting attention to the leading-order 

eccentricity effect, we obtain 

(d8r/d>.) 2 =AD - B8r2
• (6.53) 

Note that A and B are some functions of E and L only. Therefore, as explained 

above, they can be regarded here as fixed parameters. 

Equation (6.53) describes a simple harmonic oscillator. Its general solution is 

8r(>.) = KVD cos[wr(>. - >.a)] , (6 .54) 

where K = J A/ B and wr = VB are parameters that depend on E and L only. (Do 

not confuse K here with K of Sec. III) . Using this result to calculate Uri we find 

(6.55) 

To simplify the notation, we shall hereafter absorb the constant )..0 into ).. (by shifting 

the origin of the latter if necessary). Substituting Eqs. (6.54) and (6.55) into Eq. 

(6.44) , we obtain 

dD = [KVD 
dT 

( D!r cos(wr>.) 

D!ur .6. -lWr sin( WrA))] Fj( T) . (6.56) 
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From Eq. (6.56) it is already clear that, so far as the instantaneous evolution is 

concerned, dD / dr is indeed proportional to VD . Thus, as explained in Section III, 

although D = 0 yields dD / dr = 0, an instantaneously circular orbit will not remain 

circular later on. Instead, a momentary growth of D like r 2 is to be anticipated. 

However, we are primarily interested here in the long-term adiabatic evolution of 

D . The latter is to be obtained from Eq. (6.56) by averaging it in T over many 

periods. In order to perform this long-term averaging, we must first take a closer 

look at the nature of the time dependence of the force Fi . 

Since the term in brackets on the right-hand side of Eq. (6.56) is already pro­

portional to VD (i .e. to the eccentricity) , when evaluating Fj(r) we are allowed to 

assume that the orbit is a precisely circular geodesic. The e motion of such an orbit 

is periodic in T . Therefore, the backreaction force must be periodic also. The vari­

ous points along the circular geodesic orbit are physically distinguishable from one 

another only by the values of e and d8 / dr . It therefore follows that after completing 

a full cycle of the 8-motion, Fj( T) will return to its original value. A closer look, 

however, reveals that , because of the reflection symmetry of the Kerr geometry, the 

8-motion is symmetric with respect to the equatorial plane. As a consequence, the 

period of FA r) will in fact be half of that of the full 8-motion cycle. 

In order to facilitate the calculations, it is convenient to transform Eq. (6.56) 
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from 7 to A. Using Eq. (6.48), we obtain 

dD 
dJ: = KVD (p2 

( D~r cos(wrA) 

D~Ur fi -IWr sin( WrA))] Fj( 7( >.)) . (6.57) 

According to our expansion scheme, we need only evaluate the term in brackets to 

zero order in the eccentricity. That is, we can replace p and fi by their circular 

counterparts, po and fio , where fi 0 is the constant defined in Eq. (6.52), and p0 is 

a function of 8 only, defined by 

p~ = r~ + a 2 cos2 8 . (6.58) 

We therefore obtain 

(6.59) 

The term in brackets depends on 7 (and hence on>.) through its dependance on the 

8-motion. It is obvious from Eq. (6.58) that p0 is periodic in 7, again with a period 

which is just half that of the 8-cycle. Consequently, the entire term in brackets is 

also periodic (with that one-half 8 period). Let us examine now the periodicity of 

this term with respect to >.. Again, the 8-motion is periodic in >. , and the reflection 

symmetry implies that the motion at 8 < 7f /2 is just symmetric to that at 8 > 7f /2. 

(This can also be deduced directly from the fact that, in the equation of motion 

for 8(>.), (d8/d>.) 2 = 8(8) (cf. Ref. [10]), the function 8(8) admits a reflection 
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symmetry about 7r /2). Thus, if we denote the >.-period of the 0-motion by 

Ao= 27r/we, (6.60) 

then the term in brackets in Eq. (6.59) has a >.-period of Ae/2 . Correspondingly, 

the Fourier transform of this term will take the form 

00 

p~Fj = L Gjei2nwo>. + C.C. ' (6.61) 
n=O 

where C.C. means the complex conjugate of the preceding term. 

Substituting this expansion in Eq. (6.59) yields 

( D~r cos( Wr A) 
00 

Di ~ -Iw sin(w >.))] "'"""'GTl:e2niwo>. 
,Ur 0 r r L...J J 

n=O 

+ c.c . . (6.62) 

It is convenient to transform the last expression from Sine and Cosine to exponential 

functions. The term in brackets can be expressed as 

(6.63) 

where 

(6.64) 

Eq. (6.62) then takes the form 

00 

[{~ e-iwr>.) L Gj e2niw9A 

n=O 

+ c.c .. (6.65) 
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Defining now 

(6.66) 

we obtain 

~~ =VD f ( G~ei(2nwe+wr),\ + G~ei(2nw9 -wr),\) 
n=O 

+ C.C .. (6.67) 

Recall that in this equation the coefficients G± depend on E and L , but not on A . 

Equation (6.67) describes (within the adiabatic approximation, and to leading 

order in the eccentricity) the instantaneous rate of change of D . In order to obtain 

from it the long-term rate of change, we simply need to take its average over a 

sufficiently long period of A . To that end, for any function U(>.) , we formally 

define the long-term averaged rate of change 

(dU) . ~U 
dA - A~~oo ~A ' (6 .68) 

where ~U and ~A denote the difference in U and A , correspondingly, between the 

two extremes of the A-interval considered. Although the averaging is over times 

long compared to 1/we and 1/wr, it is still short compared to the radiation reaction 

timescale, which is the time for substantial orbital inspiral. (Recall that since we 

are using the adiabatic approximation here, if U also depends on the "constants 

of motion", they must be taken as fixed constants in this averaging process.) The 

averaging of the right-hand side of Eq. (6.67) is trivial, in that the term ei(2nwe±wr),\ 

will average to zero, unless 2nwe ± Wr = 0 , in which case it averages to one. Since 
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both we and Wr are taken to be positive, we need only worry about those terms with 

2nwo - Wr in the exponent. We thus obtain 

(6.69) 

where o is a function whose value is unity when 2nwo - Wr = 0 and zero otherwise, 

and Gn = 2 R ( G':_), with lR meaning the "real part of" . 

At this stage it is already clear that , unless a certain resonance condition is 

satisfied (wr = 2nwo for some n), the right-hand side of Eq. (6.69) will vanish. 

Before we further discuss the meaning and implications of this resonance condition, 

however, we shall more directly connect our result (6 .69) to the notation used in 

Section III, and in particular to the parameter S1 . Equation (6.35) is to be obtained 

from the momentary rate of change of D by averaging over proper time. For any 

function U ( r) , the long-term proper-time average (denoted by an overdot) may be 

formally defined as 

u 

where 

. b..U 
hm -

.6. T-7 oo /),. T 

lim b,.,\ lim b..U = 1-1 ( dU) 
.6.,\-too b,. T .6.,\-too /),.,\ d.\ (6.70) 

(6.71) 

is a constant that depends on the orbit. Applying this procedure to D , we obtain 

[15] 

· _ 1 ( dD) ~ _1 ~ 
D = J d.\ = V DJ f:'o GnO(znwe-wr) · (6.72) 
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Comparing now Eq. (6.72) to Eq. (6.35), we find 

00 

S1 = J-l L Gn0(2nwe-wr) · (6.73) 
n=O 

The implications of this result for the long-term evolution of D are obvious. There 

are two different cases: 

a) The resonant case: there exists an integer n such that Wr = 2nwe . In that 

case, we have 

(6.74) 

which is likely to be nonzero in the general case. Then, as discussed in Section III 

[cf Eq. (6.36)] , D will grow like r 2
, which means that the eccentricity will grow 

linearly with T . 

b) The non-resonant case: there exists no integer n for which Wr = 2nwe . In 

that case, we simply have 

(6.75) 

and the equation of evolution will read 

(6.76) 

[cf Eq. (6.33)] . In this case an orbit which is initially precisely circular will remain 

circular (within the adiabatic limit). (The sign of S2 will determine the stability 

against growth of small initial eccentricity). 

For resonant orbits, we have 

Ae = 2nAr , ( 6. 77) 
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where Ao and Ar are the A-periods of the 8- and r-motions , correspondingly. It 

would sometimes be convenient to translate this expression to t-periods. One finds 

that, not surprisingly, the resonance condition is 

To= 2nTr , (6.78) 

where To is the t-period of the 8-motion, and Tr is the averaged t-period of the 

radial motions. [The radial motion, expressed in terms of t (or r) , is quasi-periodic 

rather than periodic, because it is modulated by the 8-motion. The 8-motion itself 

is periodic in either t or r - first , because we are considering a circular orbit here, 

and second, because the resonance condition (6.77) ensures that each time 8 returns 

to its original value, r does also (but not vice versa) .] 

6 .5 Conclusion 

We have shown that , within the adiabatic approximation, an orbit which is initially 

precisely circular will remain circular, under the action of the radiation-reaction 

force. The only exception is if the orbit satisfies the resonance condition To = 2nTr 

, for some integer n , where To is the 8-motion period and Tr is the (averaged) period 

of the small-oscillation radial motion. However , circular orbits around Kerr never 

satisfy this resonance condition [5]. We therefore conclude that , within the adiabatic 

approximation, an orbit which is initially circular will remain circular. 

There are two caveats which should be mentioned here. First, no attempt has 
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been made to address the issue of stability against the growth of a small initial 

eccentricity. This stability would depend on the sign of the coefficient S2 in Eq. 

(6.33) above, which was not calculated here. 

Second, our conclusion that circular orbits must remain circular is only valid 

within the adiabatic limit , i.e. in the limit µ/ M ---+ 0, where µ is the mass of the 

small object. In reality, since the ratioµ/ Mis always finite, an initially circular orbit 

will develop some eccentricity. For concreteness, consider a particle with µ « M 

which at some initial stage (which we denote stage 1) moves along a circular orbit 

with Boyer-Lindquist radius r 1 . Later on, the orbit shrinks due to radiation reaction, 

until (at stage 2) it passes through a new radius, r2 < r 1 . Then, for every finite 

µ/M, one should expect non-zero eccentricity to be present at stage 2. The above 

analysis , however, implies that the eccentricity at stage 2 will decrease with µ (for 

fixed r 1 , r 2 and M) , and will vanish at the limit µ / M ---+ 0 (presumably like µ / M) 

[16]. 

The small eccentricity of non-adiabatic origin mentioned above could in principle 

seed an exponential growth of eccentricity if S2 > 0. In such a situation, an initially 

circular orbit may evolve into a very non-circular one (even for smallµ/ M) . The 

feasibility of this scenario depends, of course, on the relevant values ofµ/ M and 

on whether S2 > 0 and also on the available range of r-values (over which S2 is 

positive) . 

In reality, we know that in the Newtonian limit the orbits become more and more 
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circular as they shrink due to radiation reaction, so we expect S2 to be negative as 

long as r » M (recall that the Newtonian approximation should hold at r >> M 

even if the black hole is spinning) . Consequently, the range over which S2 might 

be positive is bounded. We can therefore expect that if µ/M is sufficiently small 

(and if r 2 is not too close to the "last stable circular orbit" [17]), the instability will 

not have enough time to build up, and an initially- circular orbit will indeed remain 

circular throughout the inspiral, to a good approximation. 
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Appendix A 

Notes on Numerical Methods in 

the Teukolsky Formalism 

Abstract 

Numerical methods employed in solving the radial and 0-equations of the Teukol­

sky perturbation formalism for particles orbiting massive central black holes are 

discussed. 

A.1 Introduction 

Teukolsky has shown how one can separate the equations governing the field pro­

duced by small perturbations of the Kerr metric into differential equations of one 

co-ordinate variable only, in Boyer-Lindquist co-ordinates [l). These equations can 
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be integrated to, for instance, calculate the energy and angular momentum of grav-

itational waves carried away from a small particle orbiting a large black hole. This 

enables one to solve the evolution of the particle's orbit, as it sprials towards the 

black hole due to the loss of orbital energy and angular momentum. The Teukolsky 

radial equation is 

2 d ( 1 dRzmw ( ) 
D. dr D. dr - V r R1mw = T1mw, (A.1) 

where Rzmw( r) is the Teukolsky radial function, Tzmw is the Teukolsky source func-

tion, which describes the perturbation and V(r) is the Teukolsky potential. The 

function D. = r 2 
- 2Mr + a2 depends on a, the black hole's spin parameter. The 

B-equation is 

( a2w2 sin2 B + 2asw cos B 

+ 
m 2 + s2 + 2mscosB 

sin2 B 

2awm - s(s + 1) - >.)sSZ: = 0, (A.2) 

where 8 5/:;:, is a spheroidal harmonic function of "spin weight" s, well known to 

applied mathematics, and >. is its eigenvalue, w is the frequency of the emitted 

radiation and m is the orbital angular momentum number along the direction of the 

black hole's spin. 

The Teukolsky potential is defined by 

V( ) _ K 2 + 4i(r - M)K 8 . >. 
r - - D. + iwr + , (A.3) 

where K = ( r 2 + a 2 )w - ma. 
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We can define solutions to the radial equation, Rf":nw(r) and Rimw(r), with the 

following boundary conditions, 

,,.3Bout eiwr* + 1 Bin -iwr• 
f"'V / lmw - lmwe ' r 

(A.4) 

as r -t oo (A.5) 

where k = w - ma/2Mr +, r + = M + JM2 - a2 defines the position of the black 

hole horizon, and r*, the tortoise co-ordinate, is defined as 

* 2M r + l r - r + 2M r _ l r - r _ 
r = r + n - n---

r + - r _ 2M r + - r_ 2M ' 
(A.6) 

where r_ = M - JM2 - a2. 

From [4], the solution of the Teukolsky equation near infinity (solved via a re-

tarded Green's function) is 

(A.7) 

where 

z _ 1 100 Rzmw(r)Timw(r) d 
lmw - 2· Bin /\2 r. 

ZW lmw r+ L...l. 

(A.8) 

The averaged energy and angular momentum fluxes carried to infinity are 

(A.9) 

and 

(A.10) 
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where the amplitude co-efficient is decomposed into a discreet set of frequecies based 

on the particle's orbital motion, 

Z{fnw = L Z{fnko(w -wk) · (A.11) 
k 

In order to calculate Z1mw and thus the energy and angular momentum fluxes, 

one will require the function Rf:nw and its derivatives and the amplitude co-efficient 

of the in-going waves at infinity BJ~w · The latter presents a problem, in that, 

because the ingoing wave in Eq. (A.5) has a 1/r dependance, while the outgoing 

wave as a r 3 dependance, the former is numerically swamped by the later for large 

r . The standard solution for this is to numerically solve instead the Regge-Wheeler 

equation (for Schwarzschild black holes) or the Sasaki-Nakamura equation (for Kerr 

black holes) [3]. These both have solutions of the type 

,...., Aout eiwr• + Ain e-iwr• 
lmw lmw l as r-+ oo (A.12) 

-ikr* e , as r-+ r +· (A.13) 

It is easy to see here that the ingoing wave amplitude Ai~w is of similar size to 

the outgoing amplitude for large radii . There are straightforward transformations 

between the solutions of the Regge-Wheeler and Sasaki-Nakamura equations (the 

later reduces to the former when a -+ 0) and that of the Teukolsky equation. 
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A.2 Numerical integration of the radial equation 

Both the Regge-Wheeler and Sasaki-Nakamura equations are perfectly smooth and 

well-behaved everywhere except at the horizon, r = r +· Thus the Bulirsch-Stoer 

integration technique, with its rapid convergence is ideally suited to the problem. 

Subroutines ODEINT and BSSTEP of Ref. [2] were employed in all cases to imple­

ment this algorithm. The singularity at the horizon was handled as follows . The 

solution near the horizon is marked by very rapid oscillations. If one chooses as the 

starting point for the integration r = r + + E, where E is in the range 10-4 to 10-10 , 

one finds that the integral is insensitive to changes in E, because the amount of the 

solution "lost" between r + and r + + E sums up to zero. Choosing a value of Ewell 

within this range, such as E = 10-3 works very effectively in estimating the solution. 

In general, the solution seems to be rather insensitive to the accuracy of the initial 

conditions employed, and one may simply employ the estimates of the behaviour of 

Xf:nw and X 1'::iw at r--+ r + given above in Eq. (A.13) . 

A second problem with the radial integration is encountered in finding Ai~w ' 

which requires one to integrate to infinity. The method used here relies on noticing 

that A~~w can be seen as the zeroth order term in an expansion of the amplitude of 

the distant ingoing wave in powers of 1/wr. In short Eq. (A.12) can be rewritten as 

(A.14) 

where P(wr) is a polynomial in powers of 1/wr, with P(wr) its complex conjugate. 
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Thus one can conceive of a quantity Ain(r) = Aj~wP(wr) which can be evaluated at 

finite radii , and which tends towards the constant value Aj~w as r --t oo. Therefore 

one adopts the strategy of integrating to a large value (typically lOOM) in wr, and 

then increasing the end-point radius for successive tries , until the desired accuracy 

of estimating the limiting value of the polynomial as 1/wr --t 0 has been achieved. 

Invariably the accuracy with which this value can be estimated is limited to an 

order of magnitude lower than the current relative accuracy of the Burlirsch-Stoer 

integrator itself. It the latter is set at 10-5 , then the highest relative accuracy that 

can be achieved in estimating Ai~w is of the order 10-5 . Fortunately there is no 

great loss of speed in setting the former accuracy higher, the main speed limit is in 

the accuracy required in estimating Ai~w itself. 

In the Regge-Wheeler case we evaluated P(wr) analytically to fourth order in 

1 / wr , and employed this function to improve the estimate of Aj~w · This provided the 

fastest convergence to accuracy of order 10-5 or so. In the Sasaki-Nakamura case, a 

Richardson polynomial extrapolator was employed instead (subroutine PZEXTR of 

Ref. [2]) to estimate the limiting value of the polynomial numerically. This approach 

had the advantage of placing no limit in principle on the level of accuracy which 

could be reached, in contrast to the truncation of the ploynomial required when 

evaluating analytically. The end-point of the integration was doubled with each 

successive trial in order to allow the extrapolator to converge effectively. 

In the general eccentricity case of chapter 5 it was not possible to analytically 
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derive Z/!nk in a closed form which required one only to plug in the numerically 

derived Teukolsky functions to evaluate it. Z{fnk itself had to be integrated numer­

ically. For this purpose the robust Romberg method (QROMB from Ref. [2]) was 

employed. This integrator had to call the Bulirsch-Stoer routines in order to eval­

uate the Teukolsky functions when required by its own stepping algorithm. This 

arrangement worked very effectively, and for small eccentricities was not a great 

deal slower than the code designed to work in that limit. Nevertheless, limitations 

of computing time did play a role for high eccentricites, because of the enormous 

number of harmonics of the motion which had to be calculated. 

A.3 Estimating the spheroidal harmonics 

In the Schwarzschild case, the solutions of Eq. (A.2) reduce to spherical harmonics 

of spin-weight s. Simple recursive algorithms for calculating such functions exactly 

are given in [6]. The spin weight of the field in the chosen solutions of the radial 

equation is -2. However, the Teukolsky source function contains terms involving 

the spherical harmonics and the so-called "edth" operators which transform between 

spherical harmonics of different weight [6]. It is therefore convenient to calculate 

spherical harmonics of spin wieght 0,-1 and -2. 

In the Kerr case, where one deals with spheroidal harmonic functions, two com­

plications arise. One is that there are no simple algorithms, recursive or otherwise 
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00 

-k(k + l)(slmlskm) = -E bk(slmlskm)(A.l 7) 
k=max(lsJ,Jml) 

where E = A+ 2awm + s( s + 1) - (aw )2
• Since the sYzm 's form an orthonormal basis 

(slmlskm) = 6zk· THe inner-products containing cosine terms can be evaluated in 

terms of Clebsch-Gordon co-efficients, and are only non-zero for l - 2 ::; k ::; l + 2 in 

the first ( cos2 B) term, and for l - l ::; k ::; l + 1 in the second (cos B) term. Therefore 

b1±2[(aw)2(s(l ± 2)ml cos2 Blslm)) + bz±i[(aw)2(s(l ± l)ml cos2 Blslm) 

2aws(s(l ± l)ml cos Blslm)]bz[(aw)2(slml cos2 Blslm) 

2aws(slml cos Blslm) - l(l + 1)) = -Ebz. (A.18) 

Rewriting this expression as a matrix eigenvalue problem 

M·b=-Eb, (A.19) 

we see that we have merely to solve this numerically for a symmetric band-diagonal 

matrix. Many routines are available for the solution of such eigenvalue problems, 

and the subroutines TQLI and TRED2 from Ref. [2) were chosen. The size of 

the matrix for general purposes was chosen to be 30 x 30, since this gave excellent 

accuracy in the estimation of the spheroidal harmonics without compromising speed 

or accuracy in the matrix inversion. The first derivatives of the _2 SZ:( B)'s were 

found by differentiating the series expansion in the _2Yzm 's and employing the edth 

operators to rewrite the resulting expression as an expansion in sYzm 's of different 

spin-weights (s = -2 ands= -1). The second derivative of _2 SZ:(B) was found by 
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recourse to the original ODE, Eq. (A.2). 
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Chapter 1 

Introduction 

In 1994 preliminary site work began at Hanford, Washington, on what its propo­

nents hope will be a new type of astronomical observatory. LIGO, or the Laser 

Interferometric Gravitational- Wave Observatory, consists of two 4km long evacu­

ated steel cylinders positioned at right angles to each other, each containing a laser 

beam reflecting back and forth between mirrors attached to test masses suspended 

from sophisticated supports (designed to insulate the masses from as much local 

vibration as possible) at either end of the tubes. Interference between the laser 

beams from the two arms (which are produced by a single laser), will be employed 

to monitor the relative positions of the test masses. The relative motion of the test 

masses by a small fraction of an atom's breath over their 4km separation may be 

taken as evidence for the passage of gravitational waves. A largely identical device 

is also being constructed at Livingston, Louisiana. The total cost , including initial 

operating expenses, is projected to exceed $300 million. Yet the medium of this 

new astronomy, gravitational radiation, is a phenomenon which has never yet been 

1 
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directly detected, in the view of nearly all experts. Before it can become an ob­

servatory, this project will be a large scale physics experiment. Even in that it is 

unusual, for nearly all "big science" physics experiments have previously concerned 

themselves with nuclear physics or the physics of fundamental particles. 

The theorists whose input will be crucial to LIGO are relativists , theorists who 

specialize in the study of Einstein 's General Theory of Relativity, known familiarly 

as GR. My study does not primarily concern itself with the story of this great ex­

periment and its antecedents, but with the story of the theorists associated with it . 

It is a remarkable situation that such a huge experiment is now going forward on 

the basis of predictions of a body of theory historically riven with controversy, often 

over the very existence of the phenomenon of gravitational radiation, or the type of 

sources most favoured for detection by LIGO, and a group of theorists who were, 

until quite recently, decidedly a small and not very significant minority amongst 

theoretical physicists in general. The process by which the concept of gravitational 

radiation has gone from a controversial and frequently ignored prediction of a mav­

erick theory, to the subject of expensive detection programs is to a large extent 

the story of a community of theorists . How they, in the almost total absence of 

experimental input , were able to construct a phenomenon whose reality would be 

largely accepted by (presumably) hard-headed experimenters and government fund­

ing agencies is surely a remarkable story of the role of theory in modern science. 

The historical themes which this study addresses are several. Amongst the most 

important is the problem of "identity," meaning a scientific group's sense of its 

own history. In particular, the use which is made of history by scientists seeking 

disciplinary space for their research programs and goals (Barkan, 1992). During the 



3 

quadrupole formula controversy of the 1970s and 1980s, extensive use was made by 

the protagonists of the history of the radiation reaction problem in GR. Not only 

did many of them possess a deep familiarity with the literature of the field extending 

back for several decades, but they were able to employ their knowledge of the field's 

history as a rhetorical device to effectively argue their perception of the subject 's 

current state and desirable future course, and, in addition, used the literature as a 

source of possible motivations or tools for the pursuit of outstanding problems in 

the subject. 

An issue of central importance to this study is the role of analogy in science. It is 

in fact the view presented hear that, in this possibly unusual case, the primary mo­

tivation for belief in the existence of the physical phenomenon of gravitational waves 

was a rather abstract analogy with another physical theory, that is the theory of the 

electromagnetic field . Certainly no experimental data in support of their existence 

was available until the late 1970s, and yet a considerable body of work had already 

been devoted to their study across six decades by that time. The controversies over 

the existence and description of these waves which persisted for much of this time can 

therefore be seen as a consequence of varied reactions to this analogy. While most 

relativists accepted the analogy as well-founded, a considerable minority, sometimes 

referred to by the term "sceptics," regarded it as potentially misleading or actively 

damaging. Their refusal, arising from different motives, to accept the implications 

of the analogy played a central role in the various controversies over the problem of 

gravitational waves. 

Much has been written on the subject of analogy in science without , perhaps, any 

conclusions being reached as to its proper use, nature or meaning. It is generally 
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accepted that the use of analogies is quite prevalent in science. On the other hand, 

they are seen as potentially misleading. Roger Bacon reminds us that 

The human understanding is of its own nature prone to suppose the 

existence of more regularity in the world than it finds. And though there 

may be many things in nature which are singular and unmatched, yet it 

devises further parallels and conjugates and relatives which do not exist. 

[from Novum Organum, quoted in Leatherdale (1974).] 

A philosopher of science cautions, "arguments from analogy may be fertile, but they 

are all invalid." (Mario Bunge, quoted in North (1981)). It is not surprising therefore 

that the electromagnetic analogy which inspired the idea of gravitational radiation 

should have been viewed sceptically by some physicists. Indeed, the force of the 

analogy, which seems to have persuaded more often than it dissuaded, is maybe 

more to be remarked upon than its failure to compel acceptance in some cases. 

Nevertheless, in a milieu in which, by and large, the existence of gravitational waves 

was taken for granted, the resistance to the standard picture of them which persisted 

for decades is surely an episode worthy of study. 

Leatherdale, in Analogy in Science (1974), distinguishes analogic discovery (the 

"analogic act" as he calls it), in which a comparison between two physical fields of 

phenomena is drawn for the first time, from analogic argument, in which analogy is 

merely a rhetorical device (such as Galileo's comparison of the earth-moon system 

to Jupiter and the Medicean satellites in order to argue that the earth was a planet). 

One could argue that Einstein's discovery of gravitational waves via his linearized 

field equations was a sort of analogic act. It is perhaps better, however, to regard 

Einstein's 1916 paper as an argument by analogy. The underlying comparison (the 
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mental leap between gravity and electromagnetism) had previously been made by 

Poincare and, no doubt, others. Einstein, in deliberately casting his field equations 

for gravity in an approximate form which invited close comparison with the field 

equations of electromagnetism, clearly hoped to develop the argument underlying 

the original comparison. Sure enough, he was able to construct a linearized theory 

of gravitational waves in close analogy with the extant body of electromagnetic wave 

theory, though not without a few stumbles along the way. Even in the linearized 

theory, the analogy between the two phenomena is not exact. The electromagnetic 

field permits radiation from systems with a varying dipole moment (i.e. vibrations 

along a single axis of symmetry). In his first (1916) paper, Einstein, as he later 

said (1918) , erroneously derived the result that a "mechanical system which always 

maintains its spherical symmetry [can] radiate" (translated and quoted in Cattani 

and De Maria (1993)) . This would be monopole radiation. In fact, as Einstein 

showed in his second paper on gravitational waves (1918), quadrupole radiation (from 

systems with vibrations along two separate axes) is the lowest order of radiation 

possible in linearized GR theory. 1 The analogic argument, somewhat halting at 

first, was nevertheless already proving fecund in helping to differentiate the new 

phenomenon from the original object of comparison. 

This points up an interesting aspect of analogic development of physical theory. 

The tendency of analogies to fail in certain crucial respects, which causes many 

people to distrust them as vehicles for scientific advance, is perhaps the very quality 

which explains their extraordinary fertility. An analogy which is perfect in all its 
1 Mathematically, one can say that this "breakdown" in the analogy is due to the fact that the metric perturbation, 

which plays the role of the electromagnetic vector potential in the linearized equations of gravity, is a tensor quantity, 

not a vector. 
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details may play a useful role in visualization, but it lacks any point of departure from 

which the theory of the new phenomenon may take on a life of its own. This may 

help explain why the sceptics in the history of gravitational wave theory (Infeld, 

Havas, Rosen, Ehlers and especially Bondi amongst others) , were able to play a 

significant role in the development of this theory, because of their emphasis on the 

breakdowns in the analogy. This is not to depict those who broadly accepted the 

analogy as doing so naively, that was far from the case, but it would be easy to see 

how complacency or disinterest might set in if the analogic argument were allowed 

to go uncontested at all or most points. 

The type of abstract mathematical analogy which I have described, and which 

continued to play an influential role throughout the subsequent history of gravita­

tional waves, is a type favoured by the French physicist Pierre Duhem. Duhem was 

critical of the strong use of analogy made by the English school of the 19th century 

(Maxwell, William Thomson (Kelvin) and Faraday all made extensive use of anal­

ogy in their work), but conceded that analogies expressed in mathematical form, 

between well-formulated theories, might be useful where "experimental intuition 

quite naturally poses a problem and suggests a solution for it" in only one of the 

two theories (Duhem, quoted in Leatherdale (1974)). The fact that no experimental 

evidence became available in the case of gravitational radiation until about 1980 no 

doubt helps to explain the continued need for the rather formal analogy elaborated 

by Einstein. This was especially true in the problem of radiation reaction, by which 

is meant the back action of the waves on the emitting system (e.g. its loss of energy 

and momentum to the waves and the consequent alteration of its motion), which is 

a particular focus of this study. The considerable body of theory on back reaction 
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in electrodynamics (a phenomenon known from experiment, in addition to the pre­

diction of theory2
) provided both a source of physical intuition and of mathematical 

tools to the equivalent problem in GR. It was precisely in this area however, in par­

ticular the problem of radiation reaction or radiation damping in orbital systems of 

two massive bodies, each bound gravitationally by the other, that the sceptics were 

least convinced of the virtues of the analogy. From Eddington on, they repeatedly 

resisted attempts to apply Einstein's 1918 quadrupole formula, which described the 

rate of emission of wave energy from a system with a varying quadrupole moment, 

to the case of planetary or binary stellar motion. The first derivation of radiation 

reaction in electromagnetism dates from 1892, and is due to Lorentz (Buchwald, 

1985). This problem continued to be an important one throughout the subsequent 

development of electrodynamic theory in the 20th century. The perceived empirical 

success of this theory (despite difficult conceptual or technical problems) no doubt 

was encouraging to those relativists who were inclined to see a deep, valid analogy 

between their theory and the electromagnetic one. 

Although Einstein's linearized analogy with Maxwell's theory is an interesting 

example of the type of analogy which Duhem was willing to accept, I am inclined 

to disagree with him about the value of the more "visual" use of analogy employed 

by Maxwell and Thomson. Maxwell describes his method of "physical analogy" as 

"that partial similarity between the laws of one science and those of another which 

makes each of them illustrate the other." (quoted in North (1981) ). This may not 

seem very different from the sort of analogy just described, but Maxwell does not 
2In fact, it seems that it was originally expected by Maxwell's British followers that electromagnetic radiation 

directed randomly into space, and not channeled through a wave guide or cable, would quickly damp down the 

action of its source, so that the phenomenon would be evanescent at best . 
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place the same restrictions on his use of analogy which Duhem would. The analogy 

is not restricted to operate where there is no experimental intuition on one side, 

and it may be partial in form, reflected only in some of the characteristics of the 

phenomena under comparison. More importantly, Maxwell employs his analogies in 

an effort to visualize the phenomena under examination. He speaks of seeing the 

electromagnetic field as a system of wheels and pulleys, permitting an analogy with 

mechanics. The key point here is that an analogy is made with something from one's 

visual or sensible experience, and not simply with a set of mathematical equations. 

Maxwell cautions those who would follow Duhem, "By stripping [the analogy] of its 

physical dress ... we might obtain a system of truth strictly founded on observation, 

but probably deficient both in the vividness of its conceptions and the fertility of 

its method." 

Many authors have commented on the role of analogy in enabling or attending 

abstraction in science. Miller does so in Insights of Genius (1996), where he argues 

that increasing abstraction is a central feature of progress in science which is partly 

enabled by the use of analogy. Leatherdale discusses the matter at some length, 

Moles, in his work on scientific creativity, argues that it is a generalizing 

abstraction which empties concepts of their sensual content and leads to 

formal analogy and he refers to the 'classic liaison between analogy and 

abstraction' citing the authority of William James.3 
.. . This [according 

to Leatherdale] puts the thing the wrong way around, for I have argued 

that, in effect , it is the analogic act which brings otherwise discrete areas 

of experience together and enables one to see, for example, that two things 

3 A.A. Moles, La Creation Scientifique (Geneva, 1957). 



are alike in exhibiting a relation. However, it can easily be seen how an 

analogic act may be said to be a necessary prelude to abstraction. As 

Buchanan says, 'argument by analogy is the fundamental technique in the 

process of abstraction' . 4 

9 

The analogy which Einstein draws in his 1916 paper is already at an advanced 

state of abstraction, for its analogy is made with a theory itself abstracted by analogy 

with the theory oflight, itself an abstraction based on analogy with sound (see North 

(1981) for an interesting discussion of Newton's analogies between light and sound), 

and also with water waves. Miller regards the use of analogy between increasingly 

abstract scientific theories as a critical element in the visualization of phenomena 

within these theories. I do not, however, feel that the electromagnetic analogy was 

particularly compelling as a visualization of gravitational waves. Rather, it provided 

a ready-made model for calculations of the waves' behaviour in the theory, based 

on the rather extensive body of work on radiation phenomena in electrodynamic 

theory. I believe that the emergence of a richer, deeper, independent description of 

gravitational waves is in fact signaled by the construction of a more visually descrip­

tive analogy in the period of the 1960s. In doing so, relativists reached back to one 

of the physical metaphors underlying the electromagnetic and optical wave phenom­

ena, water waves. From about 1970 on the metaphor relating gravitational waves 

to ripples of water became quite ubiquitous in textbooks and popular accounts. 

The emergence of this more visually appealing analogy seems to reflect the con­

siderable development which gravitational wave theory underwent (along with much 

of GR theory) from 1957 to 1970 or so. This included developments which did not 

4 S. Buchanan Poetry and Mathematics (New York, 1962). 
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adhere to the straightforward analogy with electromagnetism, but included concepts 

unique to general relativity, such as spacetime curvature and its non-linear interac­

tion with itself (as in the case of the gravitational geon). A new analogy was con­

structed in which "ripples" of curvature propagated against the general background 

curvature of spacetime, consciously relating gravitational waves to the motion of 

waves on the surface of a body of water. This analogy was surprisingly slow to 

emerge, perhaps because the electromagnetic analogy directed attention away from 

the role of curvature in describing gravitational waves. Ignoring the advice of Ed­

dington in 1922, relativists persisted in attempting to calculate the energy carried 

in the waves, an endeavour which was not straightforward in the context of GR 

(where the equivalence principle is believed to restrict one from defining the energy 

of the gravitational field in a "local" sense). The increasing focus on curvature and 

geodesic deviation (describing the relative motion of two particles moving in the 

wave, sometimes compared to two corks bobbing on the surface of the ocean) be­

gun by the work of Pirani led to a new and deeper understanding of gravitational 

waves which permitted or inspired a more visually appealing analogy. I suspect that 

the emergence of a style of analogy with a more apparent sensual content signifies 

in some way a deeper appreciation of the theory itself. Once they have begun to 

make significant progress in dealing with the abstract theory, one senses, physi­

cists are motivated to move "backwards" and construct a more Maxwellian physical 

metaphor which leaps over the intervening layers of abstraction to confront once 

more the analogy with ordinary sensual experience. 

Another important topic, probably related to this matter of analogy, is the ques­

tion of "style" in physics. Repeatedly in this subject one finds references to the 
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style of researchers as playing a considerable role in their attitudes and contribu­

tions. Frequently, one finds protagonists in the quadrupole formula debate described 

as "physicists" (or "phenomenologists") or "mathematicians." Since every contri­

bution to this subject fell within the subject of physics and employed mathematics, 

these designations must be understood as coded references to the question of "style". 

Some of the protagonists, especially Chandrasekhar (1987), were very concerned 

with the role of style in doing physics, in particular, the role of intuition, and the 

types of intuition used in theoretical physics. Leatherdale seeks to explain intuition 

in science in terms of what he calls the "analogic act," the flash of recognition in 

which the similarities between one phenomenon or set of equations and another is 

appreciated. The origin or true nature of intuition need not concern us too much 

here. Of more interest is the role of intuition based on experience in mathematics, 

which allows the theorist to sense a path through a thicket of equations based on his 

experience with a similar formal problem, which might however have been applied 

to a completely different physical situation. 5 

Physical intuition, an even more difficult faculty to pin down, seems to refer to 

the ability of scientists such as Maxwell to appreciate similarities between different 

types of physical phenomena, and construct models based on this which could give 

them a sense of the operation of one set of phenomena, presumably based on prior 

(experimental or theoretical) experience with the other set. The difficulty which 

arises with this later type of intuition in our present case, is that it does not typ-
5 At the 1994 Marcel Grossman meeting in Stanford, California Chandrasekhar compared this ability to appre· 

ciate the similarity between mathematical equations encountered in different settings with the visual impact of 

Impressionist art, especially Monet's paintings of Rheims cathedral at different hours of the day. The mind, just as 

the eye does, recognizes the same object seen under different conditions. See also Chandrasekhar (1987). 
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ically lead to a formal mathematical transformation from the solutions of one set 

of equations to another. The physical argument may be compelling, but not in the 

formal logical sense. Thus the "physicist" may be convinced of his answer, where the 

"mathematician" is completely dissatisfied with the level of rigor of the argument. 

This, I suspect, leads to a difference in emphasis over the relative merits of being 

guided slowly by a careful consideration of the conceptual problems to be considered 

and overcome in constructing a valid method of calculation, and, on the other hand, 

begin partly guided by ones (intuitive?) sense of what is a "physically reasonable" 

approximation, and a "physically reasonable" result . 

An important debate of recent times in the Sociology and Philosophy of science 

is that between realists and social constructivists. It is interesting to note that one 

of the scientists in our story addressed the problem of realism vs. relativism in 

science. Infeld, in discussing the episode related in chapter 6 in his autobiography 

(1941 ), notes that Einstein "destroyed them [i.e. gravitational waves, in whose 

existence Einstein previously believed] in his picture of reality, and ... was forced 

to re-create them once more." Infeld regards the issue of idealism and realism 

(i .e. whether Einstein was simply constructing and deconstructing the waves in his 

mind, or discovering their existence or non-existence in nature by his calculations) as 

impossible to decide, but asserts that realism is a practical necessity for the scientist. 

Every scientist is emotionally a realist [since] a mind which thinks that 

gravitational waves are or are not radiating from his own brain cannot 

bother seriously about this problem. A scientist who has done research 

successfully and regards himself as an idealist must have acted in the 

moments of creation as a realist does, accepting emotionally the reality of 
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the outside world. 

Yehuda Elkana (1978) has coined the phrase "2-Tier-Thinking" for this type of 

doublethink, which lnfeld regards as "strange" and "artificial". We may suspect 

that it is more common than lnfeld would have was believe. Perhaps if realism 

is psychologically necessary for the scientists' motivation (as Elkana also believes), 

some form of relativism is required to permit the scientist to change his mind. 

By referring to the alterations in Einstein's own "picture of reality" as he worked 

through the problem, lnfeld seems to tacitly accept the existence of a framework 

within which Einstein can conceive of gravitational waves as both existing and not­

existing. Such a framework permits the scientist to conceive several possibilities for 

the same reality, and seems to have a relativist quality to it. 

This historical/philosophical debate on realism has a connection with the history 

of gravitational waves, as a result of the studies of the Weber controversy by Harry 

Collins (1975, 1981, 1985, with Trevor Pinch 1993), a noted advocate of social con­

structivism. Collins finds evidence in this study for what he calls the experimenter's 

regress, an impasse reached in experimental science during periods of controversy, 

when the only test for whether an experiment is working correctly is whether it gets 

the right result (does or does not detect gravitational waves), and the only way of 

knowing which is the right result is by reference to the output of a properly oper­

ating detector. Collins' analysis has subsequently been criticized by the physicist 

and philosopher of science, Allan Franklin, who contends that the regress does not 

exist, and that it was in fact possible for the experimentalists involved in the Weber 

controversy to decide which detectors were operating correctly, on the basis of what 

Franklin describes as "rational" or "reasonable" criteria. 
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In discussing the Experimenter's Regress, David Gooding (1990) introduces an 

ancillary concept, the theoretician's regress. 

Some try to defeat the regress by offering a way around the Duhem­

Quine thesis6 - such as a less naive view of the relationship of theory to 

experiment - as Franklin does. 7 I . . . doubt that the epistemic warrant 

of experiment can be saved by insisting on logical or probabilistic rela-

tionships between observation and theory. The experimenter's regress has 

its counterpart in the theoretician 's regress. Many authors have pointed 

out the consensual basis for judgements about the logical compatibility of 

observations and predictions: a test is a test only if scientists decide that 

it is. The use of mathematics and logic involves judgement too. It is easy 

to envisage a theoretician's regress in which skilled processes of modeling, 

inference-making, and so on, are criticized ad infinitum. 

As we shall see, the skilled process of constructing approximation schemes de-

signed to calculate radiation reaction effects within GR theory was in fact criticized 

vigorously by other relativists for several decades. In direct analogy to the experi-

menter's regress, the difficulty was encountered that there was no agreed upon test 

to determine what method or calculational algorithm would be the correct one to 

employ. Furthermore, attempts (such as those made by Jurgen Ehlers) to construct 
6 The Duhem-Quine problem is that an experimental falsification of the predictions of a theory does not logically 

imply that the theory is incorrect. There will always be additional assumptions and auxiliary hypotheses which 

are part of the understanding of the experimental results, but which are not part of the tested theory proper. The 

negative result of the experiment may falsify the theory, or the auxiliary hypotheses and assumptions. 
7 In Franklin (1986), we find that "experiment can provide us with reasons for believing a theory (since) the 

observations help one to decide between competing theories or help to confirm a theory (and) the accepted theoretical 

explanation then provides some support for the experimental results." 
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such a consensus did not meet with more than very partial success. 

One response to the regress was to insist on the primacy of method, and to at­

tempt to construct a "consensual basis" for judging between different algorithms. 

Another was to place less severe requirements on method, but to place a certain 

value on the ability to produce a reasonable result, as discussed above. This alter­

native permitted a bootstrap approach, in whiCh initial attempts with only limited 

formal validity (but justified by, for instance, analogy with a more fully understood 

theory) nevertheless provided a result or results which acted as a guide for sub­

sequent, more sophisticated attempts. As long as the experience gained by the 

successive calculations based on and elaborating on the earlier ones continued to 

support the "canonical" result, it in its turn would continue to lend support to 

them. A calculation which, on the other hand, failed to derive the expected result, 

would be suspect unless and until some explanation or confirmation could be given 

which was deemed satisfactory. An objection to this approach which was frequently 

raised was that if the initial calculations were admitted to be insufficiently rigorous, 

then it was potentially misleading to place any reliance on the subsequent result. 

Additional arguments for the validity of the accepted result, such as the analogy 

with electromagnetic theory mentioned above, were also rejected as insufficient by 

critics. One other discernible attitude was to regard the regress itself as a natural 

and necessary process, a part of "normal" science, which in no way had to, or ought 

to, be defeated. 

The comparison between the experimenter's and the theoretician's regress points 

to a deeper analogy between theory, as practised in this case, and experiment. No 

exact solutions of the Einstein equations of GR were derivable for the central case 
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of a binary star system radiating gravitational waves, and therefore various approx­

imation schemes were employed. These calculations, conducted with the practiced 

skill and experience of the theoretician, intended as probes of the notional "reality" 

represented by the full-blown theory can be seen as a sort of experiment. The anal­

ogy is fruitful in so far as it points out a way of viewing this episode of physics from a 

historiographic point of view. Much recent work in the history of science has rebelled 

against the theory-first picture of science, and has pioneered a more "realistic" ac­

count of experiment, as in books like Peter Galison's How Experiments End (1987) 

and Franklins' The Neglect of Experiment (1986). These books not only redress an 

overly theory-dependent picture of the history of science, as they advertise, but also 

present a detailed picture of the practice and culture of a group of scientists. This 

"in the trenches" perspective on science, and especially experimental science, has 

also informed the contemporary field of sociology of science, exemplified by books 

such as Andrew Pickering's Constructing Quarks (1984), and Harry Collins' Chang­

ing Order (1985). The example of these studies can be absorbed and reapplied to 

the study of the culture and practice of theory. If, as Pickering says, the previous 

histories "highlight the evolution of concepts, not laboratory practice," it is reason­

able to conclude that they have also neglected somewhat the evolution of practice 

in the theorist's office. This study is certainly concerned with conceptual issues in 

GR, but the context is that of the evolution of a body of theoretical practice, in 

the environment of a very particular theoretical culture. A culture which formed 

a niche-like micro-environment within (or even at times outside) the broader body 

of theoretical physics. An issue which provides some framework to the story being 

told indeed, is the desire of this particular group to achieve a greater role within the 
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larger social body, while still retaining their own characteristic identity. 

This question of the place of relativists within the larger theoretical physics com­

munity, and their sense of their own identity, reflects another aspect of the issue of 

analogy. When Einstein so carefully constructs his analogy between GR and elec­

tromagnetic theory, he is not merely interested in its usefulness is an approximate 

method of dealing with his new theory (though that was an important concern, 

since the unfamiliarity and complexity of the non-linear field equations of GR for 

physicists presented a technical barrier to finding exact solutions of the equations). 

He was also addressing one of the original motivations behind his efforts to construct 

GR theory. The existence of radiation, propagating with a speed equal to the speed of 

light, in a field theory of gravitation, demonstrated Einstein's success in constructing 

a relativistic field theory of gravitation, which conformed to the emerging physics of 

special relativistic electrodynamics. Newtonian gravity, which did not conform, for 

instance, to the transformational properties of Einsteinian (as opposed to Galilean) 

relativity, needed to be supplanted by a new theory which was in harmony with 

the new physics. In this paper, I use the term syncretism to refer to this impulse 

of physicists to reconcile or combine the tenets of two distinct bodies of theory. 8 

Certainly the syncretic impulse was a principal motivator in the origin of the idea of 

gravitational waves, as one can see in Poincare's attempts to situate the phenomenon 

in the context of "unified" theories of gravitation and electrostatics. 

Indeed, by founding a theory of gravity which resisted the unification aims of 

many field theorists from Maxwell on, Einstein may have greatly helped the cause 
8 The theological connotations of this term do not perhaps lead us as far astray as one might think, when one 

considers the millenialist and Messianic tone of many recent popular accounts of "the Final Theory" by renowned 

theoretical physicists. 
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of gravitational wave theory. His theory, while it generalized relativistic principles 

to gravity, in fact placed the gravitational force on a radically different conceptual 

footing from the electromagnetic force, depicting it as a fundamental quality of the 

geometry of space and time, the arena in which other interactions, such as electro­

magnetism took place. This reflected his own sense that the two fields were quite 

different, as shown by his insistence on the primacy of the equivalence principle in his 

theory. Had the syncretic movement, which had led to such suggestions as Lorentz' 

that gravity might be the consequence of an imbalance between electromagnetic 

repulsion and attraction (Van Lunteran, 1991) persisted, gravitational waves might 

have been viewed as simply a type of electromagnetic wave which happened to be 

emitted by chargeless bodies. In this way, the analogy might have become simply 

an identity, to the detriment of any interest in gravitational waves per se. Therefore 

it may be said that Einstein preserved the analogy by rescuing gravity from the 

embrace of the field unification. 

It is worth mentioning here also another crucial comparison attending the birth of 

GR, that with the Newtonian theory of gravity which it superseded. In order for GR 

to be successful, it was necessary for it to simultaneously make a radical departure 

from the nature of this theory (an action-at-a-distance theory), while inheriting the 

mantle of its enormous empirical success. This was accomplished by an unusual 

form of analogy, in which the new theory was said to reduce to the old one in a limit 

in which certain parameters (such as the inverse of the speed of light) went to zero 

or became very small. This enabled the new theory to appropriate those empirical 

supports (the vast body of astronomical data, for instance, and the theory of celestial 

mechanics that went with it) of the old theory that were vital to its credibility, while 
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at the same time justifying its own existence by improving upon the old theory 

where it was felt to be failing, experimentally or conceptually. Just as much as the 

analogy with electromagnetism, this analogy with Newtonian gravity underpinned 

much of the work on gravitational waves, since it was this analogy which would be 

frequently used to approximate the motion of gravitationally bound sources. This 

type of analogy, in which an older theory is claimed to be an approximation of the 

theory which supplants it, is also found in the relationship of quantum to classical 

mechanics, for instance, in Bohr's correspondence principle (Darrigol, 1992). 

Despite the success of GR in supplanting Newtonian theory as the normative the­

ory of gravity, attempts at unification with other field theories have persisted. The 

quantum revolution, and the revelations of nuclear and particle physics experiments 

kept field theorists sufficiently occupied for half a century that unification was low 

on their agenda. Nevertheless, in the late 1950s, a number of important quantum 

field theorists such as Richard Feynman and Paul Dirac turned their attention to 

the project of constructing a quantum theory of gravity, to bring this force into line 

with the radically new physics of that era. Many relativists also saw this as an 

important goal of gravitational theory. Since quantum ideas had first arisen in the 

context of electromagnetic radiation, it seemed reasonable to expect that quantiza­

tion of the gravitational field should proceed through first quantizing gravitational 

waves. This provided an important motivation for developing the theory of grav­

itational waves, although despite some formal attempts to recast the subject in a 

more quantum theoretic form (the introduction of the graviton as the mediator of 

gravitational waves), it did not lead to many breakthroughs in the development of 

quantum gravity. Curiously, some hostility to the syncretic impulse in this instance 
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is discernible amongst some relativists. Their self-identity as a group was threatened 

by the activities and attitudes of the unifiers . Ambivalence about the gradual emer­

gence of GR into the physics mainstream, regarding on whose terms this should be 

accomplished, thus may have fed into attitudes regarding the existence and nature 

of gravitational waves. 



Chapter 2 

The Prehistory of Gravitational 

Waves 

Although gravitational waves are almost exclusively a 20th century idea, difficult 

to conceive of before the birth of the modern theory of relativity, the concept was 

nevertheless prefigured in certain ways before Einstein's general relativity (GR) 

theory of 1916. During the 18th century, the theory of celestial mechanics based 

on Newtonian gravity was developed to a pitch of perfection which was as much a 

popular exemplar of the triumph of science in its day as that of Einstein's theory 

of gravity was to be in a later one. Oddly enough, the most signal triumph of each 

theory, in which a famous intractable problem of celestial mechanics was overcome 

by a prodigious intellectual feat, was in each case preceded by attempts to explain 

the anomaly in terms of what we would now call gravitational radiation damping. 

The first intractable puzzle was the problem of the Moon. The theory of universal 

gravitation was first applied to the problem of the Lunar orbit by Newton himself, 
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much to his own dissatisfaction. He later recalled that "his head never ached but 

with his studies on the moon." 1 The Moon's motion presented a number of calcu-

lational difficulties for Newton's gravitational theory. First of all, the Moon's orbit 

around the earth is more like a true binary system orbit than any of the planetary 

orbits. The Moon and the Earth being of rather similar masses, they can both be 

said to orbit a common point, rather than the satellite approximately orbiting the 

central body, as with each of the planets and the Sun. 2 This presents a true "two­

body problem," which Newton was fully capable of solving. More problematic was 

trying to account for the deviations, caused by the attraction of other gravitating 

masses, from the orbit demanded of a closed two-body system by Newton's theory. 

The Sun wrestles with the Earth for influence over our satellite, an influence which 

is continually altered by the motion of the Moon away from and towards the Sun, 

and by the variations in the Earth's own orbit around the Sun. Johannes Kepler 

was the first to suggest that the Sun exerted an attraction on the Moon which was 

responsible for some of the variations in its motion. In the finest detail, one must 

even account for the influences of some of the other planets, principally Venus. This 

"many-body problem" has never been solved in mechanics, except approximately, 

via perturbation theory. Since this approach demands that the perturbing forces be 

small fractions of the central force it is not especially well suited to the lunar orbit, 

in which the Sun's pull is an appreciable fraction of the Earth's attraction. 

Indeed, the problem of the Moon may have helped convince Newton that the 
1 No doubt his acrimonious relationship with John Flamsteed, the astronomer royal, over the ownership of the 

data he chiefly relied upon, contributed to his headache. 
2 The center of gravity of the Earth-Moon system lies some thousand miles beneath the Earth's surface, still a 

considerable distance from the center. 
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Solar system could not be stable to many-body perturbations, and that Deistical 

intervention would be required to restore stable initial conditions through regular 

interventions over the millenia. Amongst English theologians of Newton's day there 

was great resistance to the idea of an eternal universe, which was associated with 

atheistical thought and the mechanical philosophy of Descartes. The strong Mil­

lenialist tradition in 17th century puritan England was no doubt greatly responsible 

for this outlook. Although continental thinkers such as Leibnitz viewed ideas of 

a finite "imperfect" Cosmos as an insult to its creator, many devout Englishmen 

feared the construction of a universe in which God would have no reason for ex­

istence as an open invitation to atheism. Some English philosophers even resisted 

the doctrine of inertia, preferring to rely on God to maintain motion in the world 

(Kubrin, 1995). Newton, who was himself fascinated by millenialist ideas, appears 

to have shared this English prejudice. Indeed, he may have viewed the disorder 

arising from many-body perturbations as a literal form of dissipation, by which the 

amount of motion in the solar system would inevitably decrease (Kubrin, 1995). He 

played with various mechanisms by which God would eventually step in, perhaps 

via some mechanical process, and reform the cosmos. 

The first astronomer to uncover actual evidence of long term alteration in the ce­

lestial motions was Edmond Halley, who examined records of medieval solar eclipses 

made by the Arab astronomer Al-Batanni (known to the Latins as Albategnius), as 

well as ancient eclipses reported by Ptolemy, and discovered apparent discrepancies 

of the order of an hour in the eclipse times, calculating backwards from contempo­

rary lunar positions on the basis of the known lunar period. Halley speculated that, 

if the accuracy of al-Batanni's latitude estimations could be ascertained, there was 
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evidence for a "secular longitudinal acceleration" of the moon, meaning that the 

moon must, in the earlier epoch, have been moving longitudinally (i.e. across the 

sky from east to west) more slowly than it was in Halley's own time. This effect, 

if it existed, would be of considerable interest, since it would show secular and not 

periodic change in the motion of one of the principal celestial bodies. Halley himself 

speculated that the change might be due to an increase in the mass of the earth, the 

consequence of Newton's idea that the earth attracted the aether of space (visible 

in the form of cometary tails) into itself by the force of gravity, and thus continually 

augmented its mass.3 

That such a speculation should first be made in England is not surprising. In­

deed, Halley was forced to defend himself, it seems, against the charge of upholding 

the doctrine of the eternal mechanical cosmos, when he was a candidate for the 

Savilian chair of Astronomy at Oxford in 1691 (Armitage, 1966). Although he was 

not awarded the post, the charges against him appear to have been unfounded (it 

was also alleged that, like Newton, he was a Unitarian). Certainly he was the only 

scientist or philosopher of the time able to advance, by his historical analysis, ev­

idence for the "decrease of motion" in the solar system, and therefore of decay in 

the cosmos. Given how little evidence he had to go on, we may wonder if he was 

rather predisposed to a conclusion which showed evidence for signs of cosmic decay. 

However sharp the difference in outlook between England and the continent may 

have been, Halley's secular acceleration of the Moon did become an accepted fact 

in 18th century astronomy, after further contributions from the English astronomer 
3 Although perturbations and increased mass would not now be thought of as, in themselves, dissipative effects, 

leading to dynamical decay in the sense of loss of momentum from a system, to Newton and Halley they clearly 

did. Both seem to have associated such effects with "loss of motion" and dynamical decay (Kubrin, 1995). 
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Richard Dunthorne and by the German Tobias Mayer and the French J .J. Lalande. 

(Armitage,1966) This intriguing historical effect became one of the best known puz­

zles in celestial mechanics up to the present time. 

Prizes played an important role in the economy of 18th century science, and 

especially in the development of the theory of the moon. The most lucrative prize 

was the British government's offer of up to £20,000 for a method of accurately 

determining longitude at sea. A number of methods which had been suggested over 

the years involved celestial observations from on board ship, and since the use of a 

telescope was impractical from the heaving deck of a ship underway, it followed that 

the Moon, readily visible with the naked eye, was the best independent celestial 

clock available. However, even Newton's lunar theory was inadequate to predict 

the erratic motions of the moon to the required accuracy for navigational reference. 

Either better observations of the full 18-year lunar cycle or an improved lunar theory 

were required. 

Within the purely scientific sphere, the Paris Academy of Sciences offered prizes 

for solutions of problems outstanding in Newtonian gravitational theory several 

times in the 1760s and 1770s. One of these problems, involving Newton's formula 

for the motion of the perigees, had already led Leonhard Euler to suggest that a 

modification of the basic Newtonian theory might be necessary to save the phe­

nomena. This proved unnecessary, after Alexis Claude Clairaut and Jean Le Rond 

D'Alembert , following years of acrimonious dispute between them over the prize, 

each produced a solution (Peterson, 1993). Euler was obliged to have his own St. 

Petersburg Academy offer another prize, tempting Clairaut to resubmit his solution, 

before he could discover its nature. Euler himself received a modest partial share 
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of the longitude prize for his theoretical work, together with Tobias Meyer, for his 

observational work. 

The Paris academy's prize of 1773 sought an explanation of the secular accel­

eration of the moon, whether as a result of perturbations produced by the sun or 

planets, or by the non-sphericity of the earth. Once again the problem proved a 

tough nut to crack, and indeed Lagrange won it for a brilliant thesis on perturba­

tion theory. His conclusion was that the effect was not explicable by perturbations 

within the Newtonian theory. Several alternative hypotheses were offered. Euler 

thought a subtle medium in space retarding the Moon's motion might be responsi­

ble, while Kant suggested that a tidal friction of the moon acting on the earth might 

explain the acceleration, since as the day lengthened all celestial motions would ap­

pear quicker as observed from earth (Felber, 1974; Brosche, 1977). However, since 

the secular acceleration was not observed in the sun, this suggestion was not taken 

up. 

Laplace took a systematic approach to the suggestion that an alteration in the 

basic theory of gravity might be required. In a paper of 1776 he suggested four 

fundamental ways in which the theory might be modified: the 1/r2 relation, uni­

versality, instantaneous propagation and the equivalence of attraction for bodies at 

rest and in motion. Pursuing the last two suggestions (which are clearly linked), 

he calculated the effect on a simple orbit of assuming a finite propagation speed of 

gravity. His conclusion was that it would result in a decrease of the orbital radius, 

and a resultant accelerated longitudinal motion, but that the effect, if entirely due 

to this cause in the case of the moon, would indicate a speed of gravity 7 million 

times that of light. This formidably high speed, still hardly distinguishable from 
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instantaneity, did not provide any compelling numerological motivation to take up 

the idea of finite propagation. 

Laplace's calculation conceives of the gravitational force as mediated by a cor­

puscle passing between the attracting masses. If the Moon is orbiting the earth, and 

emits such a corpuscle, it must aim a little ahead of the Earth's present position in 

order to strike the latter body if it travels with a finite speed. This means it must 

be emitted not only in a "downward" sense, but in a slightly "backwards" direction 

(relative to the lunar motion). Since the direction of emission of this corpuscle in­

dicates the direction of the gravitational pull exerted on the moon by the earth, the 

moon will not only be attracted towards the earth, but also be impeded somewhat 

in its tangential motion by the emission of such non-instantaneous particles. This 

loss of angular momentum will force it to move inward in its orbit (falling towards 

the earth) , which in turn makes it appear to increase the rate of its longitudinal 

motion. The retarding effect clearly depends on the angle the direction of emission 

makes with that of the instantaneous central force. This is simply v / c, where v is 

the lunar velocity, and c is the corpuscle's. 4 This is perhaps the first "radiation 

reaction" calculation in the problem of motion, except that Laplace's corpuscular 

view of gravitation held no place for the radiation emission side of what has been 

called "the Laplace effect" of orbital decay caused by a non-instantaneous force of 

attraction. 

It seems likely that the problem of the secular acceleration of the moon continued 

to attract attention not only because it seemed a possible breakdown of Newtonian 
4 In general relativity the first relativistic correction to orbital motion occurs only at the order (v/c)2 , and the 

first non-conservative correction occurs only at order (v/c) 5 . Therefore there is no reason to expect this effect to 

make itself felt in the earth-lunar system. 
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theory, but because it seemed to be a definite example of decay in the heavens. We 

have already seen how in the England of Halley's day the doctrine of an eternal 

creation was viewed in some quarters as a grave heresy. This millenialist style of 

thought does not seem to have been so prevalent on the continent, and we can 

speculate that proposals such as those of Euler, Kant and Laplace, which sought to 

explain the acceleration of the moon by an appeal to dissipative effects, may not have 

found favour because of an uncomfortable feeling that the world system ought to be 

eternal. Furthermore, the analogy with the human clockmaker which in Newton's 
I 

day depicted the deity as an artificer obliged periodically to rewind the mainspring 

of his creation (or reset the pendulum) and set it once more in ordered motion, 

while appropriate to the rather unreliable clocks of Newton's day, seemed a much 

less flattering portrait by the end of the 18th century. The problem of longitude, 

which had inspired such a detailed study of the moon, in theory and in experiment, 

had also driven a comparable improvement in the science of chronometry. Indeed, 

for practical purposes, the problem of finding longitude at sea was solved by an 

English watchmaker, John Harrison, who invented a series of clocks, followed by 

a portable watch, which could tell time with marvelous accuracy over months at 

sea and in the shipboard environment (Sobel, 1995). By the time of Laplace, it no 

longer seemed appropriate to conceive of a creator so unskilled as a craftsman that 

he could construct his world system only to see it fall into ruin and disorder over 

the course of its own action. 

Subsequently, however, Laplace discovered a complex perturbative effect which 

had been missed by Lagrange, which not only gave a non-dissipative explanation 

for the entire acceleration of the moon, but in fact showed the motion to be pe-
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riodic, but with a period of millions of years. The perturbation had been missed 

by Lagrange, who considered that no combination of the other planets and the Sun 

acting on the lunar orbit could explain the acceleration, because the effect of the 

other planets acted only indirectly on the Moon. Instead, the net effect of the 

planets acted on the Earth's solar orbit so as to reduce its eccentricity by small 

amounts over centuries. This change altered, in the mean, the Moon's position with 

respect to the Sun over its orbit, reducing the net amount by which the Sun tends 

to draw the Moon away from the Earth. Thus the Moon gradually approaches the 

Earth, by just such an amount, as Laplace calculated it, as to precisely account for 

the observed decrease in its orbital period. Eventually, however, the complex effect 

would reverse itself, and begin once more to draw the Moon away from the earth. 

Therefore, in his Celestial Mechanics, Laplace was able to present his solution as 

a tour de force, capping his vindication both of Newtonian theory and the eternal 

clockwork universe concept, by showing the stability of the system of the planetary 

orbits against its own perturbations. His "back reaction" calculation was now only 

presented, when his explanation of the secular acceleration was taken into account, 

as proving that the action-at-a:.distance theory was justified, in view of the absence 

of any such acceleration of the moon in excess of the prediction of his perturbation 

theory (indicating a minimum speed for the propagation of gravity of 100,000,000 

times that of light) (Laplace, 1825). This result was very well-known in the 19th 

century, as is evident from Poincare's paper below, and as is made clear in a recent 

study of gravitation theories in the 18th and 19th centuries. "During the nineteenth 

century these calculations were often presented as an (almost) insurmountable ob­

stacle to all explanations of gravitation based upon the action of an intermediate 
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fluid. " (Van Lunteran, 1991) 

Despite its onetime fame in scientific circles, Laplace's explanation of the accel­

eration of the Moon has not survived to our own day. In the mid 19th century, the 

English astronomer John Couch Adams recalculated Laplace's effect, and showed 

that , owing to the neglect of certain terms which in fact added together to an ap­

preciable sum, Laplace's effect was only half what Laplace himself had calculated it 

to be. In destroying the perfect agreement with observation of this famous result, 

Adams precipitated a fierce controversy, with Leverrier, among others, whose pas­

sions were further inflamed by the nationalistic rivalry between English and French 

science then prevalent . However his correction of Laplace did lead to the revival, 

by Charles Delaunay, Leverrier's leading French rival, of Kant 's tidal friction idea. 

His calculations showed that the slowing of the Earth's rotation by this force could 

account for the remaining half of the effect . It was not however until this century 

that a corresponding acceleration of the Sun was observed. 

However , it is now known, from laser range finding made possible by a mirror 

placed by an Apollo mission, that the Moon is in fact receding from the Earth, not 

approaching it. The explanation for this is found in the phenomenon of tidal friction, 

which, despite its long pedigree first became generally accepted only 30 to 40 years 

ago. 5 The Moon, as is well known, raises tides up on the Earth's oceans, both 

directly below it , and at the antipode of that point. The Earth's rotation however 

drags the tidal bulges somewhat ahead of these idealized positions (typically about 

3 degrees). This is known as a tidal lag, since it means that an observer on the 
5 That there was some competition to the tidal frict ion explanation of the secular accelera tion even in the 1950s 

is shown by the efforts to find part of it cause instead in a long term change in the gravita tional constant, G (Dicke, 

1966). 
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land will see the moon overhead before he experiences the high tide. The near bulge 

naturally exerts its own gravitational attraction on the moon, which tends to pull 

the moon somewhat forward of its own position. The bulge on the other side of the 

planet has a retarding impulse of course, but its effect is smaller, it being farther 

away. The net effect of the tidal bulge is to impart an increased forward momentum 

in its orbit to the moon. This increase in angular momentum forces the Moon 

upward in its orbit , and is gained at the expense of the Earth's rotational angular 

momentum, which is braked by the tidal bulges attraction towards the moon. The 

recession of the Moon from the Earth would cause us to observe a longitudinal 

DECELERATION, except that our own clock is slowing down with the centuries at 

such a rate that we conclude that the moon is moving faster than hitherto. In other 

words , the month has presumably lengthened, but the number of days it contains 

has grown less , due to the lengthening of the day. 

It is hardly surprising that Laplace did not have the last word on so complex 

a subject as the theory of the Moon's orbit , and the same holds true of celestial 

mechanics and perturbation theory in general. Throughout the 19th century there 

were continued refinements in the theory and observation of planetary motions. 

Indeed, it is during this period that the most famous achievement on the subject , 

the prediction (by Urbain Leverrier and independently by Adams) and discovery (by 

J.G. Galle) of the planet Neptune. By the end of that century the most prominent 

anomaly in celestial mechanics was no longer associated with the nearest body to 

the earth but with the nearest planet to the Sun, Mercury. According to standard 

Newtonian theory, the unperturbed orbit of a planet should have it return to its 

closest approach to the Sun at the same angular position in each orbit , but instead, 
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Mercury was observed to shift its perihelion around in its orbit by 43 arc-seconds 

per century, in excess of what could be explained by perturbations from the other 

planets. 

Various explanations within Newtonian theory which would explain the effect had 

been suggested over the years, the most famous being the hypothetical planet Vul­

can, nearer than Mercury to the Sun, whose perturbative effect on the latter would 

account for the shift. Vulcan was searched for repeatedly by several astronomers 

towards the end of the 19th century. One alternative approach, as with the 18th 

century problem of the Moon's secular acceleration, was to posit changes to the 

theory of gravity. In 1908 Henri Poincare, himself perhaps the greatest theorist of 

celestial mechanics and perturbations since Laplace, made a radical (but tentative) 

proposal: that the emission of gravitational waves from the orbit of this quickly 

moving inner planet was removing sufficient energy from its motion as to show up 

in the form of the perihelion shift. He based the idea on an earlier calculation of 

another noted French astronomer, Tisserand. 6 

That Poincare should introduce the idea of gravitational waves at this time was 

due to the influence of Maxwell's theory of electromagnetism, which successfully 

predicted the existence of electromagnetic radiation in the mid 1800s. By 1908 

the efforts to reformulate Galilean relativity to accommodate Maxwellian electro­

dynamics had led to a deepening appreciation of the role played by radiation in 

field theories. Since the speed of light was a key parameter in the new relativistic 

equations for electrodynamics, it seemed reasonable to speculate by analogy that, if 

this new form of relativity were to apply to gravity, that there must exist some form 
6 This calculation was also made by Lorentz, who was the first to calculate radiation reaction for a moving charge 

in the electromagnetic field (Van Lunteran, 1991; Damour, 1982). 
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of "gravitational radiation," which would propagate at the speed of light. Just as in 

the electrical case, where an accelerating charge would emit radiation and brake its 

own motion in consequence, so a massive body orbiting the Sun could be expected 

to lose energy to some as yet unknown type of radiation. Such an effect might ac­

count for hitherto anomalous effects such as the perihelion shift of Mercury. As the 

nearest planet to the Sun, and thus the fastest moving planet , Mercury could be 

expected to lose more energy by this mechanism than any other, and thus exhibit 

most strongly any associated effect on its orbit . 

Now, in discussing the question of how and whether the principle of relativity 

(meaning more or less what we would now call Special Relativity) should be applied 

to gravitational forces (in Science and Method, the New Mechanics) , Poincare is 

well aware of Laplace's result that the propagation of gravity must take place at a 

speed 10,000,000 times that of light , the propagating speed of the electro- magnetic 

force according to the new Lorentzian relativity. However, he prefers to regard 

Laplace's result as largely unsubstantiated and instead proceeds to a discussion of 

the implications of modern relativity for gravitation. 

Are the foregoing theories [Lorentz' unification of the gravitational and 

electrostatic forces] reconcilable with astronomical observations? To be­

gin with, if we adopt them, the energy of the planetary motions will be 

constantly dissipat ed by the wave of acceleration. [onde d 'acceleration, 

Poincare's emphasis] It would follow from this that there would be a con­

stant acceleration of the mean motions of the planets, as if these planets 

were moving in a resisting medium. But this effect is exceedingly slight , 

much too slight to be disclosed by the most minute observations. The 



acceleration of the celestial bodies is relatively small, so that the effects of 

the wave of acceleration are negligible, and the motion may be regarded 

as quasi-stationary. It is true that the effects of the wave of acceleration 

are constantly accumulating, but this accumulation itself is so slow that it 

would certainly require thousands of years of observation before it became 

perceptible .... 

It is in the motion of Mercury that the effect will be most perceptible, 

because it is the planet that has the highest velocity. Tisserand formerly 

made a similar calculation . . . and found that if Newtonian attraction took 

place in conformity with Weber's law [a 19th century non-linear theory of 

electrodynamics], there should result , in the perihelion of Mercury, a secu­

lar variation of 14", in the same direction as that which has been observed 

and not explained, but smaller, since the latter is 38" (Poincare, 1908). 
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Poincare's own calculation, based on the relativistic theories of Lorentz and Abra­

ham, predicted a smaller effect, again in the same sense as the observed effect , of 

7" and 5.6" respectively for Mercury. It seems clear that his use of the term onde 

d 'acceleration means, in this context, what we would now call gravitational waves. 

This identification is made a little problematic by Poincare's usage of the same term 

to describe electromagnetic emission from accelerating charges, and by his employ­

ment of a unified theory of gravitation and electromagnetism, but , as the context is 

the extension of the relativistic principle to gravitation and accelerated motion, we 

can be quite confident of his meaning. 

To sum up, the only appreciable effect upon astronomical observations 

[of extending the principle of relativity to gravitation] would be a motion of 



Mercury's perihelion, in the same direction as that which has been observed 

without being explained, but considerably smaller. 

This cannot be regarded as an argument in favour of the new Dynamics, 

... but still less can it be regarded as an argument against it. 
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In the end, of course, the perihelion shift (like the lunar secular acceleration before 

it) proved to be a conservative effect, whose explanation in post-Newtonian terms 

by Einstein's new general theory of relativity was the most striking initial achieve­

ment of the theory, and helped make it the most famous scientific achievement of 

the century, and Einstein its most famous scientist. Unlike Laplace's explanation 

of the Moon's secular acceleration, Einstein's remarkable result has not since been 

overthrown. In 1938 Einstein and his collaborators (see below for a discussion of the 

Einstein, Infeld, Hoffmann paper) produced a post-Newtonian theory of orbital mo­

tion based on General Relativity, while another colleague, Howard Percy Robertson, 

employed the new scheme to recalculate the Mercury perihelion shift, again agree­

ing with the observed excess from perturbations (Robertson, 1938). Attempts were 

made in the 1950s by Dicke and others to explain part of the effect as the result of a 

large quadrupole distortion of the Sun, which would have thrown out the agreement 

with general relativity, and instead perhaps vindicated the rival Brans-Dicke theory 

(Brans and Dicke, 1961 ), but to date such efforts have not been successful (Will, 

1993). 



Chapter 3 

Early History of Gravitational 

Waves 

In 1916, in a paper exploring the physical implications of the final version of his 

general theory of relativity, Einstein proposed the existence of gravitational radia­

tion as one of its important consequences (Einstein 1916). Although both Maxwell 

and Poincare have been cited as anticipating the idea of gravitational waves (Havas 

1979;Damour 1987), Einstein's was the first concrete description in a relativistic 

field theory. In a subsequent paper of 1918, Einstein corrected an errors in the 1916 

paper which led him to derive an incorrect formula for wave emission by a source, 

and went on to calculate correctly (bar a factor of two) the flux of energy carried 

by the waves far from their source (Einstein 1918). Appealing to the principle of 

conservation of energy, he assigned an equivalent loss of energy to the source system, 

an effect already familiar from electromagnetic theory, nowadays known variously 

as "radiation reaction," "back reaction" or, in cases involving the decay of periodic 
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motion such as orbital motion, "radiation damping." Because Einstein's formula 

for the energy emission depended on changes in the mass quadrupole moment of 

the source, it became known as the quadrupole formula. In deriving the formula, 

Einstein made use of a linearized version of his field equations both for ease of 

manipulation and because of its strong analogy to the field equations of electromag­

netism. Not surprisingly, therefore, his quadrupole formula was itself similar in form 

to the multi pole radiation formulas of electromagnetism, in which field, however, the 

lowest order of emission is the dipole. 

In general there are two distinguishable approaches to the back reaction prob­

lem. The first, and generally the simpler, is the energy balance argument used in 

early derivations of the quadrupole formula (Einstein, 1918; Eddington, 1922). This 

approach has been criticized in principle on several counts in the context of general 

relativity, but was an obvious choice for a first approximation. 

The second approach, more direct but much more complex, is to iteratively cal­

culate the effect of the source's own field (changing because of the source's motion) 

upon the source's motion, to which corrections can then be reapplied to calculate 

the field more accurately. This iteration is carried through one or more steps un­

til it is judged that the reaction effects have been calculated to the desired level 

of accuracy. This problem is part of a more general one known as the problem of 

motion. Laplace's method, which took into account the deflection of the Newtonian 

central force on an orbiting body as a result of the time lag in propagation, was a 

"one-step" calculation of this type. A key issue in this approach is the fact that 

the field, in the case of finite propagation, is "retarded," which is to say that the 

field experienced at a given point in space, at a given time, is not that produced 
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by the source at that time, but that of the source at an earlier time, where the dif­

ference between the two times is the time of propagation of the field changes from 

the source's retarded position to the field point in question. As Laplace showed, an 

orbital decay would be one consequence of introducing retarded propagation instead 

of dealing with instantaneous propagation. 

In the pre-war period gravitational waves did not receive much attention as a 

prediction of GR, despite the high public profile of the theory in the years imme­

diately following its publication. GR's early reputation rested on the few exper­

imental tests comparing it to the predictions of "Newtonian" gravitation theory. 

gravitational waves , though a radical departure from the classical gravitation the­

ory, were not observable, and moreover were initially investigated in the context of 

a straightforward application of electromagnetic field theory ideas t o GR. Weyl's 

text book (1921) did give an early treatment of gravitational waves , following Ein­

stein in discovering three types in the linearized theory, which Weyl categorized us­

ing the nomenclature transverse-transverse (TT), transverse-longitudinal (TL) and 

longitudinal-longitudinal (LL) waves. He did not notice that Einstein had disposed 

of the later two types as the spurious consequence of choosing a co-ordinate system 

in which the formal analogy between the linearized equations of gravity and the 

field equations of electromagnetism would be most apparent . A few papers in the 

1920s made a good start at elaborating a theory of gravitational waves, but only 

one of them had any lasting impact at all , and interest soon seemed to wane in the 

problem, reflecting no doubt the general rejection of GR as an active field in physics 

at this time (Eisenstaedt , 1986a and b ). 

The most important 1920s paper on gravitational waves is that of Eddington in 
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1922. Eddington finds Einstein's 1916 and 1918 papers somewhat lacking, in that 

he feels that Einstein is imposing a condition that the waves travel with the speed 

of light. Essentially he feels that Einstein is forcing the analogy with electromag­

netisim by his choice of co-ordinate conditions. The result of this is Weyl's error in 

including spurious undetectable waves along with waves of a possibly more corporeal 

existence. He shows in fact that TL and LL waves can be made to travel with any 

speed by the appropriate choice of co-ordinates, and notes wryly that such waves 

travel with "the speed of thought." He adds that both of these types of waves are 

associated with a vanishing Riemann curvature tensor, so that it is again only the 

choice of co-ordinates which gives one the impression of a disturbance in the field 

existing at all. TT waves, on the other hand, are associate with a genuine distur­

bance (in the curvature sense) propagating with a definite velocity, in the linearized 

approximation. 

Eddington then considers the case of the emission of gravitational waves by a 

material system. He first of all notes that spherically symmetric disturbances cannot 

emit gravitational waves, and that this is a breakdown of the analogy between sound 

waves and gravitational waves. Proceeding to the case of a rod spinning end over 

end, he rederives Einstein's quadrupole formula for the loss of energy by the rod 

(again by an energy balance argument), but correcting an error of a factor of 2 in 

Einstein's 1918 equation. However, with typical caution, he adds that his linearized 

analysis is not applicable to the problem of a binary star system, 

but it seems likely that the radiation (if any) will not exceed that given 

by [the quadrupole formula]. There is clearly no practical objection to the 

existence of this small radiation from rotating systems, and I can see no 
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theoretical reason for not admitting it. 

Eddington, the great early popularizer of GR had a strong influence on the subject 

of gravitational waves. Bondi regarded him as the inspiration for his particular brand 

of scepticism (Bondi 1990; interview). His remark about the "speed of thought" has 

left the indelible image of him as a sceptic in the folklore of GR. At the same time, 

his identification of the curvature tensor as the key, co-ordinate invariant quantity to 

define the existence and effect of gravitational waves prefigured the modern picture 

of the phenomenon. Some commentators have reacted against the perception of 

Eddington as a sceptic by observing that the waves whose existence he disproved 

are held to be unphysical by the modern theory. 

What Eddington said to distinguish these fictitious (coordinate) waves 

from the real transverse-transverse gravitational waves was unfortunately 

misunderstood by certain other investigators and taken by them as an 

argument against the reality of all gravitational waves." (Rees, Ruffini 

and Wheeler, 1974; pg. 90) 

However, it is perhaps too ahistorical a viewpoint to define sceptics only by reference 

to the modern orthodoxy. Eddington doubted the existence of waves described in 

the textbooks of his day. Moreover, his outlook was marked by a sceptical attitude 

towards easy arguments based on the analogy with electromagnetism. It is perhaps 

not inappropriate that he seems to have gone into the informal tradition as a figure 

in the sceptics camp. 1 

Another English contribution of the twenties is the paper of Baldwin and Jeffery 
1 In some review talks on gravitational waves attended by the author, such as one by Ed Seidel, Eddington is 

presented as the paradigmatic sceptic of gravitational radiation. 
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(1926) on plane waves. Following directly on Eddington's paper they presented an 

exact solution for plane waves , but noted that it was impossible to avoid a singularity 

in the metric for a plane wave front of infinite extent , concluding that it would be 

necessary to describe both gravity and light waves by divergent waves (outward 

spreading) rather than plane waves. The curious fact that one cannot describe a 

plane wave front of infinite extent in the exact theory by a single co-ordinate system 

without finding an apparent (but not real, in the sense of curvature) singularity 

somewhere in the metric (see Misner, Thorne and Wheeler, 1973 pg. 958) was to 

prove problematic later for Einstein and Rosen. 

Another interesting paper of this period is that of Guido Beck (1925) , a Viennese 

physicist who worked on GR for his doctorate under Thirring. His thesis included a 

presentation of a metric describing cylindrical waves. Like the Baldwin and Jeffrey 

paper this discussed an exact solution for plane waves, but having perhaps not had 

the benefit of reading Eddington's paper, Beck continues to include in this class 

of waves solutions which in fact have vanishing curvature (Scwimming, 1980). A 

larger problem for Beck was the emerging hostility to GR amongst some physicists. 

His paper on this subject was rejected by the Annalen der Physik because "general 

relativity was not physics and that [this] periodical was too good to deal with such 

stuff" (Havas, 1995). The paper was, however, accepted by the Zeitscrift fur Physik, 

but that it received little attention is shown by the circumstances of the Einstein 

and Rosen paper on cylindrical waves to be discussed below. Not surprisingly, Beck 

did not continue in the study of GR, although one of his students does play a large 

role in the later history of gravitational waves. 

In short, despite a certain amount of activity in the early 1920s, the theory of 
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gravitational waves made little progress in the first two decades of GR. Even some 

of the contributions which were made, especially Beck's, were forgotten during the 

interstice between 1925 and the re-emergence of interest in GR in 1955 (see Eisen­

staedt, 1986a and b ). Undoubtedly the generally hostile climate towards GR which 

seems to have existed within physics in mid-century is largely responsible for this. 

With no experimental significance that anyone could see, gravitational waves would 

have to wait until issues of principle encouraged their study. Such issues included, 

to begin with a desire to elucidate GR theory itself, especially in ways which dis­

tinguished it from Newtonian theory, rather than merely marginally correcting the 

classical theory, and also a growing interest in quantizing the gravitational field. 

Because the disinterest of many physicists left the development of the theory in the 

hands of pure and applied mathematicians to a great extent, the subject took on a 

peculiar coloration of its own which continued to mark it off from the mainstream 

of 20th century physics. 

The last notable contribution to the problem of gravitational radiation before the 

second World War did continue to wield great influence after the war. This was the 

treatments of gravitational waves and radiation reaction in The Classical Theory 

of Fields by the Russian theorists Lev Landau and Evgenii Lifshitz (1951) , one of 

the classic textbooks of 20th century physics. Because this book did not confine its 

attention to general relativity or gravity, and because of its widespread use across 

many subsequent editions in many languages, this derivation of the quadrupole 

formula is undoubtedly the best known of any that have been published, probably 

by a wide margin. It is also easily the most sophisticated of the pre-war derivations 

and claims, unlike Eddington's calculations, validity for the case of self-gravitating 



43 

systems, such as binary stars. Nevertheless, amongst relativists, it has a remarkably 

mixed reputation. While for many it is the standard demonstration of the formula, 

for others it is unconvincing in its claim of applicability to the case of freely-falling 

systems. 

In some sense, the Landau and Lifshitz derivation divided the post-war relativity 

community into two camps. Those who felt that a reasonable estimate had been 

given of the gravitational radiation from binary star systems, which might serve as 

a guide in future work relating to the problem, and those who held that none of the 

pre-war work could be taken as any sort of guide to the damping of binary systems 

by gravitational waves. 



Chapter 4 

Analogy as the Inspiration of 

Gravitational Waves 

One of the most fruitful of all analogies in the history of physics is that between light 

and water waves (frequently with sound as an intermediate step in the simile) which 

underlies the various wave theories of light . This analogy follows a familiar pattern 

of constructing a metaphor between the theory of a phenomenon and some concrete 

example taken from ordinary experience, upon which a more abstract mathemati­

cal framework for the theory can be constructed. This process reached its modern 

fruition, in the case of the wave theory of light, with the construction and elabo­

ration of the Maxwellian field theory of electromagnetism in the second half of the 

19th century. The extraordinary success of this theory in integrating the concepts 

of radiation and force naturally prompted an analogy with the Newtonian theory 

of gravitational force, inspiring some physicists, such as Maxwell and Poincare, to 

speculate about the existence of gravitational waves. On the philosophical level, 
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this analogy remained quite vague. The analogy between radiation phenomena in 

the electromagnetic and gravitational fields only received concrete expression in the 

earliest elaboration of the first successful field theory of gravity, that of Einstein. 

Even here, it is interesting to note, the analogy remained at an abstract level, real­

ized only in the mathematics. It was no longer necessary to appeal to the physical 

metaphor (water waves or sound) as it was quite sufficient to reduce the equations 

of the new theory, as Einstein did, to a form in which an explicit analogy could 

be drawn with the equations of Maxwell, and upon this resemblance construct an 

analogous description of the new "phenomenon" . Whereas the original underlying 

analogy consisted of correspondences drawn between tangible phenomena, with sub­

tle matter conjured up to fill in the gaps in the physical metaphor (light waves = 
ripples of water or sound, ether water or air), the new approach facilitated by the 

success of Maxwellian theory drew the comparisons between conceptual quantities 

(not descriptive qualities) represented algebraically in the equations (mass electric 

charge, metric perturbation = electromagnetic vector potential) . The new analogy 

thus described an abstract relation between mathematical quantities , with little or 

no attempt at metaphorical illustration. 

This analogy, based partly on the syncretic impulse of physicists to set gravita­

tional theory on the same footing as had been adopted for electromagnetic theory, 

has also proved powerful. Although no experimental evidence in support of the ex­

istence of gravitational waves came to light until the 1970s, the doctrine that such 

a phenomenon existed was fairly quickly adopted in physics, and became more or 

less an accepted part of the 20th century physical canon, as much by non-relativists 

as amongst those active in the field. 
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So while the causes of such widespread faith in a physically unverified hypothesis 

are interesting in themselves, it is just as interesting to focus on the scepticism 

which did exist in relation to gravitational radiation, and to examine its motivation, 

exposition, and the response it engendered. The word sceptic used here has a 

double meaning, referring both to those who publically critiqued the existing theory 

of gravitational waves and to those who advanced the view that gravitational waves, 

or some important feature thereof, did not exist, contrary to the orthodox belief. 

There is some degree of overlap in the two usages, in that those who merely criticized 

the theory were not always, or may not have always been agnostic on the question 

of whether the phenomenon really existed as the theory described it. 

While the analogy with electromagnetism certainly played an important role in 

underpinning the case for gravitational radiation in GR theory, its rhetorical use 

in papers dealing with gravitational waves was usually limited to at most a brief 

opening paragraph. In papers advancing a sceptical position however, there was an 

obvious need to expose the breakdowns in the analogy. It is a natural feature of 

all analogies to have some points where the correspondence does not hold, and for 

the analogy to be accepted as useful these imperfections in the metaphor must be 

seen as essentially unimportant to its purpose. Hence, the fact that the original 

"algebraic" analogy with Maxwell's equations held only for the linearized Einstein 

equations was regarded by most sceptics as a critical flaw. For them, the non-linear 

nature of gravity set it apart from electromagnetism, and made the analogy unfit 

in certain important contexts, most especially in the case of a binary star system, 

which was and still is expected to be one of the few physical systems capable of pro­

ducing any significant quantity of gravitational radiation. As a system held together 
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by strong gravitational forces Eddington observed how unsuited it was for descrip­

tion by linearized gravitational theory. Other favourite topics for the sceptics were 

the equivalence principle, of central importance to GR, but unknown in electromag­

netism theory, and the curious fact that GR defines its own equations of motion, 

without the introduction of an outside force law, again unlike electromagnetism. 

The role played by "theoretical syncretism" in the birth of gravitational waves 

is worth noting. The late 19th century was an era of many attempts to unify the 

gravitational and electrostatic or electromagnetic forces. This naturally encouraged 

the idea of gravitational radiation, yet at the same time discouraged any great in­

terest in it as a separate phenomenon. General relativity, both a realization of the 

syncretic ideal in so far as it was a field theory of gravity, and a denial of it, in that 

it gave gravity an altogether different axiomatic basis from electromagnetism, there­

fore forced the idea of gravitational waves onto the stage by creating the analogy. 

gravitational waves were something distinct from electromagnetic waves, but anal­

ogous to them. A unified theory could well have incorporated gravitational waves 

merely as a special type of electromagnetic radiation, emitted by chargeless bodies. 

By marrying the field picture of gravity to the Riemannian geometric conception of 

space, Einstein paved the way for the full-blown modern depiction of gravitational 

waves as propagating field disturbances, and "ripples in the curvature of spacetime," 

departures from Euclidean :8.atness of space which are pictured as moving across the 

ocean of space as ripple across a pond. 



Chapter 5 

The Einstein-Rosen Paper 

In a letter to to his friend Max Born, probably written sometime during 1936, Albert 

Einstein reported 

Together with a young collaborator, I arrived at the interesting result 

that gravitational waves do not exist, though they had been assumed 

a certainty to the first approximation. This shows that the non-linear 

general relativistic field equations can tell us more or, rather, limit us 

more than we have believed up to now. (Born 1971, p. 125) 

The young collaborator was Nathan Rosen, with whom Einstein had been working 

for some time, producing papers on several topics. They had submitted a paper 

to the Physical Review based on the work referred to in Einstein's letter to Born 

under the title "Do Gravitational Waves Exist?" 1 and the answer they proposed to 

give, as the letter states, was no. It is remarkable that at this stage in his career, 

Einstein was prepared to believe that gravitational waves did not exist, all the more 
1 Although the original version of Einstein and Rosen's paper probably no longer exists, its original title is referred 

to in the report by the Review's referee (EA 19-090). 
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so because he had made them one of the first predictions of his theory of general 

relativity. In his autobiography Leopold Infeld, who arrived in Princeton in 1936 to 

begin an important collaboration with Einstein, described his surprise on hearing of 

the result (Infeld 1941, pg. 239). Despite his initial scepticism, Infeld soon allowed 

himself to be convinced by Einstein's arguments, and even came up with his own 

version of the proof, which reinforced his belief in the result (Infeld 1941, pg. 243). 

However, not everyone was so easily convinced. When Einstein sent the paper to 

the Physical Review for publication, it was returned to him with a critical referee's 

report (EA 19-090), accompanied by the editor's mild request that he "would be 

glad to have your reaction to the various comments and criticisms the referee has 

made." (John T. Tate to Einstein July 23, 1936, EA 19-088). Instead, Einstein 

wrote back in high dudgeon, withdrawing the paper, and dismissing out of hand the 

referee's comments (Einstein to Tate July 27, 1936, EA 19-086): 

Dear Sir, 

We (Mr. Rosen and I) had sent you our manuscript for publication 

and had not authorized you to show it to specialists before it is printed. 

I see no reason to address the - in any case erroneous - comments of your 

anonymous expert. On the basis of this incident I prefer to publish the 

paper elsewhere. 

respectfully, 

P.S. Mr. Rosen, who has left for the Soviet Union, has authorized me 

to represent him in this matter. 2 

2The translation from the German is by Diana Barkan. The emphasis in the letter is Einstein's. 
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To this Tate replied that he regretted Einstein's decision to withdraw the paper, 

but stated that he would not set aside the journal's review procedure. In particular, 

he "could not accept for publication in THE PHYSICAL REVIEW a paper which 

the author was unwilling I should show to our Editorial Board before publication." 

(Tate to Einstein July 30, 1936, EA 19-089). Einstein must have continued in his 

dislike of the Review's editorial policy (which in fairness may have been unfamiliar 

to him, the practice of German journals being less fastidious), 3 for he never pub­

lished there again.4 The paper with Rosen was, however, subsequently accepted for 

publication by the Journal of the Franklin Institute in Philadelphia.5 

What had led Einstein to the conclusion which so surprised Infeld? He and Rosen 

had set out to find an exact solution to the field equations of general relativity 

which described plane gravitational waves, and had found themselves unable to do 

so without introducing singularities into the components of the metric describing 

the wave. As a result, they felt they could show that no regular periodic wavelike 
3 In a letter to Einstein in March 1936, Cornelius Lanczos remarks on "the rigorous criticism common for American 

journals,'' such as the Physical Review (translated and quoted in Havas 1993, pg. 112) . Infeld claims that the German 

attitude, by contrast, was "better a wrong paper than no paper at all." (Infeld 1941 , pg. 190) . Jungnickel and 

McCormmach (1986) describe the editorial workings of the Annalen der Physik in the first decade of this century 

in some detail. They note that "the rejection rate of the journal was remarkably low, no higher than five or ten 

percent,'' and describe the editors' reluctance to reject papers from established physicists (pg. 310). As this was 

the time and place in which Einstein began his published career, the "rigorous criticism" he was to experience very 

shortly after receiving Lanczos' letter must have come as something of a shock. 
4 Einstein's bibliography to 1949, given in Schilpp (1949) lists no papers by him appearing in the Review after 

1936, and the index of the Physical Review from then until his death refers only to one short note of rebuttal, 

mentioned by Pais (1982) in his brief account of the rejection of the Einstein-Rosen paper. 
5 The paper appeared in the Franklin Journal under a different title and with radically altered conclusions in 

early 1937. That it had previously been accepted in its original form is indicated by a letter from Einstein to its 

editor on 13/11/36 (EA 20-217) , explaining why "fundamental" changes in the paper were required because the 

"consequences" of the equations derived in the paper had previously been incorrectly inferred. 
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solutions to the equations were possible (Rosen 1937 and 1955). However, in July of 

1936, the relativist Howard Percy Robertson returned to Princeton from a sabbatical 

year in Pasadena and subsequently struck up a friendship with the newly arrived 

lnfeld. He told Infeld that he did not believe Einstein's result, and his scepticism 

was much less shakeable. Certain that the result was incorrect, he went over lnfeld's 

version of the argument with him, and they discovered an error (Infeld 1941, pg. 

241) . :tWhen this was communicated to Einstein, he quickly concurred and made 

changes in proof to the paper which was then with the Franklin journal's publisher 

(Infeld 1941, pg. 244 and letter, Einstein to editor of the Franklin Journal November 

13, 1936, EA 20-217) . 

Curiously, lnfeld states that when he communicated to Einstein his discovery 

with Robertson of an error in his (Infeld's) version of the proof, Einstein replied 

that he had coincidentally and independently uncovered a (more subtle) error in his 

own proof the night before (Infeld 1941, pg. 245). He does tell us that Einstein's 

position still had to evolve from that of demolishing his proof, to that of reversing it 

(by showing an exact solution for cylindrical waves), and this was Robertson's key 

contribution according to Rosen's paper of 1955. Unfortunately, lnfeld gives us no 

details of the false proofs and their correction in his account, which was intended for 

a popular audience. He does relate the amusing detail that Einstein was due to give 

a lecture in Princeton on his new "result," just one day after completely reversing 

his conclusions on its validity. He was forced to lecture on the invalidity of his proof, 

concluding by stating that he did not know whether gravitational waves existed or 

not (Infeld 1941, pg. 246). 
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Although a footnote attached to the published version acknowledges Robertson's 

help, it does not indicate its nature (Einstein and Rosen 1937). However, it appears 

that his chief contribution was to observe that the singularity could be avoided by 

constructing a cylindrical wave solution. In this way the offending singularity would 

be relegated to the infinitely long central symmetry axis of the wave, where it was 

less objectionable, being identifiable with a material source (Rosen 1955). In view 
I 

of this , Einstein might have been better advised not to dismiss the referee's report 

so hastily, as the anonymous reviewer also observed that, by casting the Einstein-

Rosen metric in cylindrical co-ordinates the apparent difficulty with the metric was 

removed, and it was easily seen to be describing cylindrical waves (Referee's report, 

EA 19-090, pgs. 2,3,5). 

The identity of the Review's referee is unfortunately not known. Few records of 

the journal exist for this period, and the report has only survived amongst Einstein's 

own papers. It is 10 pages long and shows an excellent, if not perfect , familiarity 

with the literature on gravitational waves (the referee knew of Baldwin and Jeffrey's 

1926 paper, but not Beck's of 1925). The copy forwarded to Einstein is typewritten 

and the spelling follows American practice ("behavior" rather than "behaviour", 

"neighborhood" rather than "neighbourhood") . It is likely, therefore, that the au-

thor was an American with a strong interest in general relativity, not a very inclusive 

category at this time. It is tempting to suspect Robertson himself, but there is noth­

ing to support this in his surviving (and extensive) correspondence with Tate. That 

Robertson was familiar with the referee's criticisms is shown by his letter to Tate 

of February 18, 1937 (Caltech archives, Robertson papers, folder 14.6) in which he 

says 



You neglected to keep me informed on the paper submitted last summer 

by your most distinguished contributor. But I shall nevertheless let you in 

on the subsequent history. It was sent (without even the correction of one 

or two numerical slips pointed out by your referee) to another journal, and 

when it came back in galley proofs was completely revised because I had 

been able to convince him in the meantime that it proved the opposite of 

what he thought. 

You might be interested in looking up an article in the Journal of the 

Franklin Institute, January 1937, p. 43, and comparing the conclusions 

reached with your referee's criticisms. 
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This suggests that, in spite of himself, Einstein did benefit from the referee's 

advice in the end, by a very circuitous route. 

If we have to guess at the identity of the referee (assuming it was not Robertson), 

the likeliest chance is that it would have been someone who was in Caltech, with 

Robertson in mid-1936, and who would have been picked by Tate to referee a paper 

on GR. The likliest candidate would be Richard Chace Tolman but there is no 

documentary evidence to back this up, at least amongst Tolman's papers at Caltech. 

However, despite the absence of any further correspondence on this paper between 

Robertson and the Review, the evidence of this one letter (especially his chiding 

of Tate for not "keeping me informed" of the matter) convinces me that Robertson 

himself was the referee. Once he had returned to Princeton he was able to accomplish 

in person what had been impossible for him to effect as the Review's anonymous 

referee, and help change Einstein's mind. 
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In fact the cylindrical wave solution presented in the revised paper had been 

previously published by the Austrian physicist Guido Beck in 1925, but his paper 

has been largely overlooked since. In a 1926 paper by Baldwin and Jeffrey, and 

in the referee's report on Einstein's paper, there was discussion of the fact that 

singularities in the metric coefficients are unavoidable when describing plane waves 

with infinite wave fronts, but although there is some distortion in the wave, "the 

field itself is fl.at" at infinity, as the referee noted (EA 19-090, pg. 9). In any case, 

the Einstein-Rosen paper, as published, contains no direct reference to any other 

paper whatsoever. 

Rosen published a paper in 1937 in a Soviet journal, carrying through what is 

presumably the chief argument of the original version of the Einstein-Rosen paper, 

in order to show that plane gravitational waves were an impossibility due to the 

ineradicability of singularities in the metric. In the immediate post-war period, 

other papers suggested that plane waves were not permitted in General Relativity 

(for example, McVittie 1955). Felix Pirani and Hermann Bondi were both partly 

motivated by these papers to work on the problem of gravitational waves. 6 

In the mid-fifties, Ivor Robinson independently rediscovered the plane wave met­

ric and, together with Bondi and Pirani, published the seminal work on the subject. 

They were familiar with Rosen's paper, and noted that his regularity conditions 

for the metric were 'unnecessarily severe by post-war standards. "In effect, Rosen 

did not distinguish sufficiently between co-ordinate singularities and physical singu­

larities, which could, in principle, be detected experimentally" (Bondi, Pirani and 
6 Interviews with Hermann Bondi and Felix Pirani. Pirani reviewed the McVittie (1955) paper for Mathematical 

Reviews and was dissatisfied with its conclusions (Pirani, 1955). 
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Robinson 1959).7 

Although the main topic of the Einstein-Rosen paper had nothing explicitly to do 

with the back reaction problem, it is very noteworthy as the first serious (if abortive) 

attempt to disprove the existence of gravitational waves. In an interesting passage 

addressing radiation reaction, the published paper suggests that one is not compelled 

to the conclusion that waves emitted by a source must damp the source's motion, 

if one supposes that any outbound radiant energy is matched by a second system 

of incoming waves , impinging on the source. In short, they observed that the use of 

half-advanced plus half-retarded potentials will avoid motion damping in the source 

system even if the waves exist. "This leads to an undamped mechanical process 

which is embedded in a system of standing waves ," in the author's words (Einstein 

and Rosen 1937). The paper refers cryptically to the work of Ritz and Tetrode "in 

former years" relating to the question of advanced versus retarded potentials , and 

it appears that Einstein often quoted Ritz approvingly in this context (Infeld and 

Plebanski 1960, pg.201) . 

Walter Ritz, a Swiss contemporary and friend of Einstein's had complained in his 

criticism of Lorentz's electrodynamics that advanced potentials (in which the field 

at time t is that produced by the source from a future position) were admitted as 

solutions of the equations of electrodynamics just as well as the retarded potentials 

(Ritz 1908). To Ritz, this defied the principle of causality, since effect preceded 

cause. Just as abhorrent to Ritz were combinations of the two potentials, such as 

the average of advanced and retarded fields (half-advanced plus half-retarded) which 
7 In their work, Bondi, Pirani and Robinson followed the new approach of Lichnerowicz in imposing regularity 

conditions on the metric (Lichnerowicz 1955). For a thorough review of the tangled history of plane gravitational 

waves , see Schwimming (1980). 
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allowed "perpetual" motion because, like the instantaneous interaction, it produced 

no motion damping due to back reaction. Ironically, what Ritz regarded as so 

damning, Einstein appears to imply might have a positive virtue, in the context of 

gravitation. 8 

The Dutch physicist Hugo Tetrode, also an acquaintance of Einstein, discussed 

the standing wave potential in a paper of 1922. At the time this solution to the 

classical wave equations seemed a possible explanation for the failure of orbiting 

atomic electrons to radiate. Furthermore, as Tetrode pointed out, in the quantum 

regime, the emission and absorption of radiation seemed to each depend on the 

other, rather than emission being required for absorption, but not the reverse. This 

suggested to him that the classical aversion to making absorption a requirement for 

emission should be discarded. As he put it, "The Sun would not shine if it were 

alone in the universe" (Tetrode 1922). In their paper, Einstein and Rosen appear to 

share Tetrode's preference for this potential, if not for his full action-at-a-distance 

program. 

8Since general relativity is a non-linear theory, the fact that two potentials (the advance and retarded) satisfy 

the field equations does not imply that their linear combination (half advanced plus half retarded) would, as it does 

in electromagnetism. In linearized gravity, however, this obviously does follow . 



Chapter 6 

The Problem of Motion 

Einstein and Rosen's abortive effort to disprove the existence of gravitational waves 

was followed by a project upon which Einstein and Infeld embarked together with 

another of Einstein's younger collaborators, Banesh Hoffmann. They wished to 

develop the post-Newtonian theory of the problem of motion, an ambitious project 

involving intensive calculations (Einstein, Infeld and Hoffmann 1938). In pursuing 

the EIH research, Einstein wished to vindicate his earlier conjecture that in general 

relativity the allowed motions of the particles were completely determined by the 

field equations (Einstein and Grommer 1927) , in contrast to other field theories 

where a separate force law is invoked. 

The problem of motion in GR is essentially the same problem studied as celestial 

mechanics throughout the 18th and 19th centuries from Newton to Poincare. The 

chief difference is that, in GR, unlike Newtonian theory, even the two-body problem 

for equal sized bodies cannot be solved analytically. The subject got off to an 

excellent start, however , with the discovery by Karl Schwarzschild (1916) of an 
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exact solution of Einstein's equations describing the gravitational field of one mass, 

whether a singularity or an extended body. This has allowed perturbation theory 

to be used to describe the motion of a small particle in orbit around such a body. 

An alternative approach, in the case of bodies of equal size, was to treat them as 

weakly interacting, slowly moving masses, thus reducing their motion to that of the 

Newtonian theory, and then calculating corrections to that motion based on GR, 

expanding the motion in powers of such small parameters as the system velocities 

(relative to the speed of light, v/c) and field strength (GM/rc2
). This expansion 

scheme became known as post-Newtonian, and was developed in the early days 

of GR theory by Droste (1917) and De Sitter (1916). Both of these approaches 

led to confirmations of Einstein's early result finding the missing contribution to 

Mercury's perihelion shift, the single greatest contribution of GR to classical celestial 

mechanics to date. Einstein himself introduced the linearized approximation in his 

1916 paper which also discussed gravitational waves. This later formed the basis for 

a "fast-motion" (or "post-linear" or "post-Minkowski" ) expansion of the equations of 

motion, in which the expansion parameter was the field strength, with the velocities 

unrestricted. 

In short, the two basic approximation schemes in use in GR were based on the 

two available analogies with existing theory. On the one hand, the previous New­

tonian gravitational theory, on the other hand, the special relativistic theory of the 

electromagnetic field. For the theory of gravitational waves, each of these presented 

a fundamental problem. Newtonian gravity had never allowed for the possibility of 

gravitational radiation. Suitable as it was for supplying corrections to the equations 

of celestial motion for two bodies, the post-Newtonian expansion proved to be both 
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ambiguous and ad hoc in its depiction of radiation effects. The post-linear or fast­

motion expansions, on the other hand, while eminently suited to describe radiation, 

were difficult to handle when applied to the problem of motion of gravitationally 

bound objects. The linearized theory was not strictly speaking a gravitational the­

ory, lacking as it did the characteristically non-linear features of the gravitational 

force. In fact, the basic linear metric is quite fl.at, with no curvature at all. 

A thorough account of the problem of motion before the second world war is 

given in Havas (1989), who concludes that in the post-war period almost all the 

pre-war work was forgotten or ignored, with the exception of the Einstein-Infeld­

Hoffmann work described above. Two important reasons for this are to be found 

in the extreme dislocations caused by the war, the death and exile of some of the 

participants, and the failure of some early work to be translated into English until 

long after it had been written. The fact that Britain, and especially America, were 

important places of refuge for displaced scientists during the war is obviously greatly 

responsible for the important shift in the lingua franca of physics. 

Einstein's own prestige must have contributed to the relative prominence of the 

EIH method, and we can, with Havas, also assign some credit to the successful 

promotion of the scheme by Infeld, who was a prominent figure in the life of the 

post-war relativity community. In any case, contemporary textbooks still cite EIH as 

the canonical solution of the problem of motion. Among other factors contributing 

to the eclipse of pre-war work was the unfashionable status of GR immediately 

before and after the war, which discouraged work in the field, the fact that much 

of the work predating EIH suffered from minor calculational errors, so that they 

did not correctly derive the EIH solution, and the fact that Vladimir Fock, who 
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did continue to do important work on the problem after the war was viewed with 

suspicion by most relativists due to his unorthodox views on general covariance. The 

language barrier (Fock's book Spacetime and Gravitation (1959) was not translated 

into English until several years after its appearance in Russian) was also a factor in 

Fock's relatively poor reception in the west. 

On the other hand, despite the prominence of EIH as the solution of the problem 

of motion, James Anderson (1995) insists that most subsequent attempts to extend 

the problem of motion, especially in the direction of radiation reaction (not dealt 

with in any of the pre-war work) failed to appreciate or take advantage of the best 

points of the EIH scheme. In his view, EIH, which he counts amongst Einstein's 

most significant work, was the great "lost" scheme of the post-war period, and the 

back reaction problem suffered by a tendency to ignore this "new approximation 

method," as Infeld called it. We may look for the source of the marked disagreement 

between Havas and Anderson in the fact that Havas was and is a trenchant critic of 

EIH, whereas Anderson now regards it as the most significant work on the problem 

of motion in GR. 

In the 1940s and 50s, when attempts were first made to extend the problem of 

motion to the order at which back reaction effects would occur, there were several 

points at which EIH was felt to be wanting as a productive tool. One was its use 

of point sources. Hu attempted to adapt the basic scheme with the use of extended 

sources in his pioneering work in the forties. Another was the whole "slow-motion" 

expansion scheme. Goldberg (1955) was the first to observe that, as reaction effects 

entered at such high order in the expansion, the method appeared ill suited to the 

specific problem. This led to efforts to develop a fast-motion expansion scheme, not 
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limited to slow motions of the source, of which Havas was a principal exponent . 

Up until the 1960s another difficulty which plagued the slow motion schemes was 

the somewhat arbitrary way in which boundary conditions for the problem had to 

be applied to the equations piecemeal at each step in the expansion. Coupled with 

the early difference in choice of suitable conditions, this was perceived to contribute 

strongly to the failure of the various calculations to agree on a common result. This 

failing was not overcome, in the view of most experts , including Anderson but not 

Havas, until the work of William Burke on matched asymptotic expansions in the late 

60s (for which see later) . This problem in imposing conditions reflected the "epis­

temological" difficulty in describing radiation in the post-Newtonian theory. The 

problem of choosing the appropriate potential (retarded or "standing wave"), was in­

timately connected with the choice of approximation scheme. Indeed Damour (1982) 

regards the choice of potential as the chief characteristic of the different schemes, 

associating the retarded potential with the "fast-motion" schemes, and the half­

advanced-plus-half-retarded ("standing wave" ) potential with the post-Newtonian 

schemes. The introduction of "matching" techniques just alluded to eventually per­

mitted the use of different schemes appropriate to different contexts within the same 

problem, to be reconciled with each other by comparison in a context where both 

had validity. 

Not long after the EIH paper was successfully completed, Infeld, who had with 

Robertson's help secured a position at the University of Toronto, put his gradu­

ate student Phillip Wallace to work applying the EIH formalism to the problem of 

motion in electrodynamics. In their paper, as also in the EIH paper itself (where 

radiation effects were not considered), we see a preference for the averaged potential, 
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"half advanced plus half retarded." Infeld and Wallace state that this solution "does 

not specify a privileged direction for the flow of time" and is besides the simplest 

for their method (Infeld and Wallace 1940). They note that this solution does not 

damp orbital motion, and further state that "the addition of radiation seems from 

this point of view arbitrary," since one must choose the retarded potential to obtain 

it . This viewpoint partly reflects Einstein's own, but it should be stressed that he 

was the first to make use of a retarded potential in GR in his seminal 1916 paper 

on gravitational waves. The solutions which admit radiation damping are objec­

tionable because they involve an arbitrary imposition of the arrow of time into field 

theories which are otherwise time-symmetric. Although Ritz had pointed out how 

this arbitrariness was an unsatisfactory feature of electrodynamics, his conclusion 

had been that one must choose the retarded potential to make any sense of it, until a 

theory which imposed it could be found. Einstein however, felt that time assymetry 

had no business in field theories and that its origins lay solely in probability theory 

(Einstein and Ritz 1909). His views may have influenced lnfeld, who preferred the 

"standing wave" solution as the most natural choice in the EIH approximation. In 

the case of the gravitational field, where the existence of radiation could not be 

experimentally proven, lnfeld may have felt there was no compulsion to impose the 

arrow of time, as one would in electromagnetism, knowing from experiment that 

radiation existed in that field. 

The first post-Newtonian attempts to deal with gravitational radiation reaction 

via the problem of motion had to wait until after the war. In 1946 Ning Hu, 

a Chinese graduate of Caltech, presented results based on a scheme inspired by 

the EIH method to the Royal Irish Academy in Dublin, reporting an energy loss 
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disagreeing with the quadrupole formula in the case of an equal mass binary system 

in a circular orbit (Hu 1947) . Shortly before publication, however, he added a note 

in proof after finding a calculational error which changed the sign of his result , giving 

anti-damping instead of damping. In other words, the system would gain, rather 

than lose energy as the result of emitting radiation. The binary would therefore 

slowly increase, not decrease in radius. 1 

In Canada, Infeld and his student, Adrian Scheidegger, worked on the problem 

of gravitational radiation reaction in the EIH formalism (Infeld and Scheidegger 

1951) . They concluded that the most natural treatment of the scheme, employing 

the standing wave boundary condition, led to a no-radiation-reaction result. It was 

possible, they conceded, to find terms at certain large odd powers of v / c (where c is 

the speed of light, and v represents the small source velocities) which appeared to 

correspond to back-reaction terms, but they contended that these could always be 

transformed away by a suitable choice of co-ordinates. The result, when announced 

at an American Physical Society meeting in 1950, "gave rise to a considerable fl.ow 

of discussion," as Scheidegger put it (Scheidegger 1951 ). That same year Infeld left 

Canada, after the McCarthyite campaign against him described above. He returned 

to his native Poland, while Scheidegger continued to argue the no-damping position 

in North America in his absence, before leaving the field of general relativity for 

that of geophysics in the mid-fifties. 

In 1955 came two further contributions. Joshua Goldberg, a student of Peter 
1 Hu seems to have returned to the radiation reaction problem in the 1970s, when we find Anderson referring 

to an unpublished result of Hu's in disagreement with the quadrupole formula, but with the same sign, indicating 

an energy loss by the binary. No details of this calculation are available at present. Hu was at Beijing University 

during the 1970s and 80s . 
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Bergmann (who had criticized the Infeld and Scheidegger results), examined the re­

action problem in the EIH formalism (Goldberg 1955). His conclusions were twofold. 

On the one hand, he denied that the slow motion approach tended to exclude the 

possibility of damping (arguing that co-ordinate transformations which removed 

some back-reaction terms, would reintroduce other reaction terms of odd order in 

v/c), but on the other hand, he determined that it was poorly suited to the back re­

action problem, principally because of the restriction to slow motions of the source. 

In fact, it was generally agreed that radiation reaction terms did not enter into 

the post-Newtonian equations of motion until terms of order at least (v/c)5 beyond 

Newtonian order (or post-2~-Newtonian order). Since first post-Newtonian effects 

(or (v/c) 2 order), such as those obtained by EIH, were both small and difficult to 

calculate, the expansion method seemed unpromising for studying radiation in that 

it had to be pushed to high order to succeed. 

A couple of years later Goldberg was introduced to Peter Havas, a physicist with 

experience in the problem of radiation in electrodynamics, who shared his interest in 

developing a fast motion expansion in general relativity. Havas had been a student 

of Guido Beck's, not in Vienna, where they both began their scientific careers, but in 

Lyons, France, where they both sought refuge after the Anschluss in 1938. Beck had 

worked in the Soviet Union for a period, in Odessa, Ukraine, at the same time Rosen 

was in Kiev, but had to leave when foreigners began to be arrested for espionage, and 

then found himself rendered stateless by the Nazi invasion of Austria. Havas, whose 

studies had been interrupted by the invasion, had worked as an experimentalist in 

Vienna under J. Mattauch, and was continuing his studies at the Atomic Physics 

Institute in Lyons when he encountered Beck there. Seizing a chance to move into 
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theory Havas persuaded Beck to supervise him. This work was in the mainstream 

subjects of atomic and nuclear physics, as Beck no longer worked in GR. 

Following the outbreak of war, like Bondi and Schild in Britain, Beck and Havas 

were interned by the French government. Initially set to forced labour in the camps, 

Havas' future wife (also Austrian but only males were interned) managed to effect 

his release after a few months, and he returned to experimental work at Lyons. The 

city was briefly occupied by the Germans after the invasion of France, but Havas and 

his wife made good their escape before the former's arrival, returning when the city 

was handed over to the control of the Vichy collaborationist government. Since Beck 

was still interned Havas continued his theoretical studies by correspondence while 

working with the nuclear fission group at Lyons. In late 1940 Beck was released, 

and the next year Havas managed to secure a visa for the United States, where he 

finally completed his studies at Columbia University in New York. Beck eventually 

escaped to South America via Portugal (Havas, 1995). 

In the United States, Havas secured a position at a small college in Pennsylva­

nia, Lehigh Universtiy, and worked on electrodynamic theory. His experience in this 

field convinced him to try something similar within GR (inspired by the discussion 

of the EIH work in Infeld's autobiography Quest), and he contacted Goldberg to 

secure an invitation to the Chapel Hill meeting in 1957 (see below), where he saw a 

considerable level of interest in the radiation problem amongst relativists. He was 

particularly inspired by Bondi's talk addressing the differences between electromag­

netism and gravitation in the radiation problem (interview). Being familiar with the 

special relativistic problem of radiation, his instinct was to approach the problem 

via what would later be called a post-Minkowski approximation (i.e. "fast motion") 
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which essentially approximates GR to the special theory, rather than to Newtonian 

theory. Since Goldberg had independently reached a similar conclusion, that this 

was a more appropriate avenue for handling the back reaction problem, they began 

a collaboration based on this approach. 

Also in 1955, the Russian physicist Vladimir Fock treated the orbital damping 

problem in his book Spacetime and Gravitation (Fock 1959). He made use of a 

slow-motion expansion which he had developed independently of EIH, coupled with 

"outgoing-wave only" boundary conditions. His results were in agreement with those 

of Landau and Lifshitz. His work was not translated into English for four years, and 

even then wielded little influence in the west, perhaps because of Fock's unorthodox 

views on general covariance. He employed so-called harmonic co-ordinates in his 

calculations, and claimed a special status for them in physical theory. His views 

in this regard were vigorously opposed by lnfeld and most other relativists then 

and since. Ironically, although lnfeld's defence of general covariance against Fock 

is vindicated by the current orthodoxy, the harmonic gauge condition is related to 

Fock's vindication on the matter of radiation reaction. Fock employed with his 

gauge choice, a retarded Green's function solution corresponding to "no-incoming" 

waves from the past infinity of the source, which are today regarded as the correct 

choice of boundary conditions for this problem. 2 

The EIH method, on the other hand, was plagued for years by the difficulty of 

correctly imposing asymptotic boundary conditions on the source's motion which 

corresponded to outgoing waves carrying energy away from it, as opposed to some 

mix of ingoing and outgoing waves carrying energy both to and from the source, 

2 the same gauge choice and Green's function combination used in Einstein 1916. 
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and tending to cancel each other's effects. We have already seen how Infeld evinced 

a preference for a gauge choice corresponding to a balance of ingoing and outgoing 

waves anyway, but in general, the EIH approach, and other slow-motion approx­

imations, were awkward to deal with in this respect. The reason was that the 

approximation scheme was valid only in the immediate region of the source, and 

so the boundary conditions were imposed by Fock on a rather different wave-like 

solution in the so-called "wave zone," towards infinity. Fock then "matched" his 

two solutions in an intermediate region to impose the boundary conditions on the 

equations of motion for the system. It was not readily apparent in the EIH scheme 

how those conditions were to be imposed on the solution of the sources motion so as 

to match correctly the source with its radiation field. In this case, Fock's prejudices 

proved more beneficial than lnfeld's. Fock was quite clear on the reasons for the 

superiority of his method, declaring in a section titles "On the Uniqueness of the 

Harmonic Coordinate System": 

When solving Einstein's equations for an isolated system of masses we 

used harmonic coordinates and in this way obtained a perfectly unambigu­

ous solution. We found unique results not only for finite and 'moderately 

large' distances from the masses, when the wave-like, i.e. hyperbolic [that 

is to say, finite propagation], character of Einstein's equations was not 

essential and was accounted for by the introduction of retardation condi­

tions, but also for the 'wave zone'. 

lnfeld's adherence to general covariance appears to have discouraged him from ac­

cepting Fock's claims that the harmonic gauge condition was the most suitable for 

radiation theory, since Fock claimed that this suitability arose from an underlying 
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correctness in this choice of co-ordinates.3 

Another reason why Fock's results were not so influential, apart from his rejection 

of general covariance and the fact that his book remained untranslated into English 

for 4 years after its publication in Russian, is perhaps that Fock himself regarded 

his back-reaction result as merely demonstrating that wave phenomena played an 

inconsequential role in the problem of motion in gravity, due to the small size of the 

effect for known astronomical systems. 

3Fock's analogy for this was with "Copernican" versus "Ptolemaic" co-ordinates. Both could be employed for 

calculational purposes, but he insisted that the first must be given a priori status as the correct physical description 

of the solar system. 



Chapter 7 

Influence of Infeld, Rosen and 

Bondi 

Anyone interested in a topic such as the historical debate on the existence of grav­

itational radiation quickly encounters a particular quality to the remembrance of 

such affairs. While the temporary or aberrant scepticism of influential figures such 

as Einstein and Eddington is preserved in the folk memory in occasional anecdotes 

or quotations, the suggestion that there was ever any real debate on such a subject 

is frequently rejected or resisted. Individuals may have made errors at times, or 

held erroneous views, but to suggest that there was ever much public discussion, 

or that there was really a problem in the general sense, would be to go too far. In 

the present case, it is true that until recently GR was a very small field, and the 

number of people working on gravitational waves was even smaller. The scope for 

debate was therefore limited. Furthermore, the particular outlook of each researcher 

or group naturally influenced what made an impression on them at the time, and 
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what remained in memory afterwards. Since the debate, such as it was, achieved no 

posthumous elevation to the status of a significant historical event in the life of sci­

ence, there was no reason to preserve recollection of it. Finally, there is a preference 

not to remember, not to overstress the significance of, something which may be seen 

as vaguely disreputable to the field. It is a characteristic aspect of physics that to 

pose a problem or a question may, in itself, be taken as a sign of bad character. It is 

typical of an established theory framework that certain questions are rendered non­

sensical and certain problems rendered otiose, even where they were once perfectly 

reasonable issues. Bondi (1970), referring to Newton's success in answering dynam­

ical questions about the solar system, while ignoring evolutionary issues, which had 

previously seemed all part of the same problem, sees this as "a vital feature in the 

whole pursuit of science." 

A further problem, in the present context, is one of definition. Broadly speak­

ing, several relativists are remembered as having been sceptical of the existence of 

gravitational waves. Of course, their views did not constitute a monolithic position, 

especially given the status of such views as a minority outsider position. Some peo­

ple did in fact suggest that gravitational waves do not exist, for instance, Einstein 

and Rosen rather briefly. More common was some variant of the view that radia­

tion reaction does not exist as an effect, in the sense that gravitational waves do 

not draw energy from gravitational systems and/or do not transport energy. Into 

this category we may conveniently sweep lnfeld, Bondi, Rosen, Cooperstock and 

Scheidegger, among others. Clearly this is a rather critical position on the subject. 

But Cooperstock, for instance, insists that gravitational waves do exist and can be 

detected by certain instruments, but do not cause radiation damping in systems 
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such as the binary pulsar (which does however, emit them in a detectable form). 

Let us, however, agree to refer, in a general way, to scepticism on the existence of 

gravitational waves, as referring to a viewpoint which regards the "standard" picture 

of gravitational waves (for a given era) as being possibly or actually seriously flawed 

in an integral way. We will also avoid the ahistorical view of regarding successful 

sceptics (those who convert others to their alternative stance) as orthodox, in hind­

sight. Therefore, Eddington will be referred to as a sceptic, although his scepticism 

is nowadays established orthodoxy. Interestingly enough, he is still remembered, in 

the "oral tradition," as it were, as a sceptic. 

An alternative form of scepticism concerns the detail of the back reaction prob­

lem, specifically the quadrupole formula which describes (in the orthodox view) the 

rate of emission of gravitational wave energy from a freely gravitating system. For­

mulated originally by Einstein, the use of this formula, and various derivations of 

it, has been much criticized over the years, on the grounds of insufficient proof of 

its validity. Notable sceptics of this sort, including Havas, Ehlers, Rosenblum and 

others, come under a different usage of the word. They are sceptics in the sense of 

taking an agnostic view of a subject. Most of the previous class (but not all), had 

an alternative view of the nature of gravitational waves in mind. Most of the critics 

of the quadrupole formula did not offer any particular alternative formula to replace 

it, they more typically had a precise view of how it ought to be derived. The two 

forms of scepticism could easily overlap. To say that the quadrupole formula might 

be incorrect implied the possibility (frequently stated by Havas and stressed also by 

Eddington and Bondi) that there was no quadrupole emission at all, so that back 

reaction in gravity could be much weaker than was thought, or even non-existent. 
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We can refer to this type of scepticism as "weak scepticism," or "limited scepticism," 

and to the former type as "strong scepticism." 

A curious duality may be observed here concerning attitudes to the idea of scep­

ticism. On the one hand, the "sceptic" may be viewed as the ideal type of scientist, 

one who has no time for received opinion, unsupported by factual evidence or exper­

imental data. But as time went on in the study of gravitational waves, increasing 

signs of impatience can be observed in some quarters with the sceptical position of 

either type. We shall encounter later Feynman's views on the importance of opti­

mism and the necessity for a progressive research program which sets aside cavils 

or doubts at the outset and presses ahead until either all problems are overcome, or 

the doubts are vindicated by irreconcilable internal contradictions. One can perhaps 

see here an epistemological struggle over the proper balance between scepticism and 

belief in theoretical science. Gravitational radiation, a field with no experimental 

input whatever for several decades of its development, was certainly an ideal arena 

for such a discussion. 

In the context of a small field, and an even smaller subject area, any minority 

position must depend for its survival on a relatively small cast of characters. The 

fortunes of these persons, their success at passing on their views, must considerably 

affect the chances of a successful challenge to the orthodoxy. How influential were 

the sceptics, meaning here, the strong sceptics? Were they outsiders in their field? 

In a professional caste where it is easy to find oneself labeled a crank, were they 

able to command tolerance for their "Menshevik" stance? It is important to keep in 

mind the fluidity, not only in the orthodox position, but in the stance of individuals. 

There can be no hard and fast definition of a sceptic in this field or any other, but we 
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will make do by following, as much as possible, the self-definition of the individuals 

involved. Rosen twice wrote or co-wrote papers whose titles called the existence of 

gravitational waves into question. Bondi also went into print (in a letter to Nature 

in 1957) describing himself as a (temporarily) convinced sceptic. Probably the most 

prominent and outspoken sceptic was Einstein's collaborator, Infeld, so we will begin 

with him. 

Leopold Infeld was born in Krakow in 1898, a part of Poland then ruled by the 

Austrian empire (Pyenson, 1978) . He received his doctorate from the Jagiellonian 

University in his home town in 1921 , but in the young Polish Republic there was 

little academic opportunity in physics, especially for a very young Jewish physicist . 

After spending some time as a rural schoolmaster, he did achieve the position of 

docent at the University of Lwow. In 1933 he obtained a Rockefeller fellowship 

which permitted him to travel abroad, to work in Cambridge with Max Born and at 

Leipzig with Bartel van der Waerden. Since, upon his return to Poland, there was 

still no prospect of academic advancement , despite the publication of some well re­

ceived papers abroad, he left once again, to take up another fellowship working with 

Einstein in Princeton, New Jersey. Here, no doubt, he was able to take advantage 

of his connection with Einstein's close friend , Born. 

His arrival, in late 1936, coincided, as we have seen, with the later stages of 

Einstein's belief that gravitational waves could be shown not to exist. Despite the 

dissapointment of the subsequent failure of this position, the collaboration which 

followed was the making of Infeld 's career as a physicist. The EIH paper became 

the canonical "first post-Newtonian" solution of the two body problem of motion 

in gravitation. Its method permitted much more general calculations of relativistic 
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corrections to traditional problems in orbital mechanics. In fact, the paper was 

immediately followed in Annals of Mathematics by a paper of Robertson's recalcu­

lating the famous perihelion shift of Mercury due to GR, on the basis of the EIH 

results. 

Although the EIH paper made a name for Infeld in physics circles, his close 

friendship with Robertson and the public side of his collaboration with Einstein 

may have been even more responsible for his subsequent professional success. After 

a year at Princeton, Infeld's fellowship ended, unlike the EIH research. Anxious to 

continue his collaboration with Einstein, Infeld suggested the project of writing a 

popular book together, the proceeds of which would pay Infeld's wages for another 

year. Einstein, who clearly valued Infeld as a collaborator, readily agreed. Their 

book, The Evolution of Physics, was a best-seller, and received widespread publicity. 

From then on Infeld had a public profile as "Einstein's collaborator," not achieved 

by any of the other physicists who worked closely with the most famous scientist 

of the age. Despite this, lnfeld seems to have more or less given up the thought of 

securing a professorship at this stage. He had turned 40, and had thought of trying 

to make a living writing popular science books (Infeld, 1941 ). 

However, Robertson, with whom he had become very friendly at Princeton, made 

efforts on his behalf, and persuaded John Synge, a mathematical physicist at the 

University of Toronto, to consider Infeld for a position there. Infeld went to Toronto 

as a temporary lecturer for one year, and did secure a permanent appointment at 

the end of it. Synge, originally from Dublin, was head of an Applied Mathematics 

department at Toronto which had been set up for him. Theoretical Physics did not 

exist at the time, in Canada, as a separate field. When, during the war, Synge left 
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for Ohio State University his department, and Infeld, were merged once more with 

the Mathematics department. Infeld worked hard to found a center for theoretical 

physics in Toronto, but although he produced many students, he could not persuade 

the university to create new positions. Since there was no other center of relativity 

in Canada, most of his students moved into other fields of physics after graduation. 

Nevertheless, Infeld, in spite of the college's lack of enthusiasm for the project, did 

a great deal to promote the field of theoretical physics in Canada (Wallace, 1993). 

When Infeld first went to Toronto, he worked with a student, Phillip Wallace 

on generalizing the EIH method to electrodynamics. In this paper he had some 

interesting things to say about back reaction, in view of his later work, but it 

was not until after the Second World War that he really turned his attention to 

this problem in the gravitational case. In the meantime he finally persuaded his 

department to retain one of his students, Alfred Schild (a war refugee interned 

in Canada by the British as an "enemy alien" along with Hermann Bondi) after 

graduation, but could not manage to get them to pay enough to keep him for long. 

Schild left for Pittsburgh and the Carnegie Institute (where Synge had also spent 

time after the war), taking another young student, Felix Pirani, with him. With 

Schild, Infeld had worked on the motion of a massless "test particle" moving in an 

external gravitational field (Infeld and Schild, 1949 ). 

In the late 1940s, Infeld returned to the EIH formalism with another student, 

Adrian Scheidegger, and addressed the problem of radiation reaction. They con­

cluded that the problem of motion for gravitational binaries allows for no dissipa­

tion of the system's energy by radiation. They published a paper to this effect, and 

Scheidegger addressed the American Physical Society and a conference in Vancouver 
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on the subject. They did provoke some reaction. Scheidegger speaks laconically of 

a "considerable flow of discussion" after his talk at the APS, and Peter Bergmann 

(who was at the APS meeting), had one of his students, Joshua Goldberg respond 

to the Infeld/Scheidegger assertions with a paper of his own. 

As fate would have it however, neither Infeld nor Scheidegger was able to con­

tinue the debate for long at this time. In 1950 Infeld had the intention of spending a 

sabbatical year in his native Poland in an effort to help rebuild the physics commu­

nity in that war shattered country. A small Catholic Canadian paper, the Ensign, 

chose this occasion to launch an attack on him, based on the ludicrous assertion 

that Infeld intended to give away atomic secrets to the Soviet Union or its ally, the 

People's Republic of Poland. Infeld's close association with Einstein was farcically 

presented as evidence of his familiarity with nuclear weapons secrets. The main­

stream press took up this slanderous attack, sometimes under the guise of reporting 

Infeld's denials, and the campaign reached its peak with a personal attack under 

the protection of parliamentary privilege launched by the leader of the opposition 

Progressive Conservative Party, George Drew. 

Drew went so far as to demand that Infeld be prevented from leaving the country. 

The University of Toronto came under pressure to refuse leave for Infeld's visit. 

This had the effect of forcing Infeld to choose between Canada and Poland. In 

the light of the public and personal attacks against him, and under surveillance 

and possible harassment by the Royal Canadian Mounted Police, he chose Poland. 

Rather suddenly therefore, his career in Canada came to an end, and he was forced 

to start over again in Warsaw. 

The motivations for the attacks made against him may have been various. He 
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was an outspoken critic of American and British nuclear policy of the day, having 

stumped the country speaking to impress upon the Canadian public the futility of 

attempting to keep the "secret" of the bomb from the Soviet Union's physicists. He 

himself was a socialist and his American wife was also very left wing, and had in­

volved herself to some extent in progressive Canadian politics, opposing Drew during 

his tenure as Ontario's provincial premier. He had publically joined in the defence 

of those accused in the Gouzenko affair, in which a defector from the Soviet embassy 

in Ottawa had denounced a number of prominent Canadians, including several sci­

entists, some of whom were tried for espionage. The likeliest explanation is that 

he was an attractive target for the politically ambitious Drew and the hysterically 

anti-communist Catholics of the Ensign. The charges were absurd on their face, 

since the Soviet Union had already exploded an atomic bomb. This fact was held 

against Infeld, with amazing chutzpah, by Drew, who regarded it as a suspicious 

fulfillment of Infeld's own prophecy that the Soviets would get the bomb in spite of 

Western efforts to keep it secret. The illogic of preventing someone from traveling 

abroad to give away secrets which he was insinuated to have already betrayed was 

not noted by the press until after Infeld's forced "defection." Likewise, the Cana­

dian defence research establishment only then went on record to say that he held no 

military or scientific secrets. In fact, Infeld's war work was limited to some efforts 

with Synge in ballistics, and some radar work. His former student Wallace did work 

on the abortive British-Canadian bomb project, which was the closest connection 

Infeld had to the bomb. 

After Infeld's departure, Scheidegger continued to put forth the view that grav­

itational back reaction did not exist in GR, exchanging papers with Goldberg in 
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the Physical Review. But, like so many of Infeld's students in Canada, he found it 

difficult to secure an appointment in GR or in theoretical physics. After a few years 

he found employment with an oil company in Canada, and subsequently took up a 

successful academic career in geophysics. With that, the first round of debate on 

the topic of radiation reaction gravity petered out. 

Infeld, despite the misfortune which had forced him to uproot his Canadian fam­

ily and return to his homeland (in a shameful act his two Canadian born children 

were later stripped of their Canadian citizenship, as was Infeld himself, by the extra­

judicial maneuver of "orders in council"), found his personal goal of establishing a 

school of theoretical physics easier to achieve in Poland than in Canada. The Polish 

government was eager to rebuild the country's scientific and educational infrastruc­

ture, ruthlessly destroyed by the occupying Nazis . Infeld, with personal fame as 

Einstein's collaborator and notoriety as a refugee from political persecution in the 

West, became one of the leaders of this rebuilding effort. He made a considerable 

success of the opportunity, establishing a thriving school of relativity, and produc­

ing, as before, many excellent students. His political troubles did not entirely cease 

with his move to a communist country. His arrival coincided with the last years 

of Stalinism, and his association with Einstein was not an unmixed blessing in a 

political environment in which Einstein was still considered an "idealist" opposed 

to the true practice of Marxist science. The fact that Infeld publicly opposed the 

arguments of the Vladimir Fock, who wished to reform GR by removing general 

covariance, did not help matters either. But Infeld did not, like some others, come 

under significant pressure to recant, and after Stalin's death in 1953, the political 

environment changed rather quickly in Poland, following the coming to power of 
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Gromulko. 

In Warsaw, Infeld at last had a thriving group doing excellent work in GR, one 

of only a handful of relativity groups in the world at that time. Furthermore, from 

1955 on, gravitational waves and the problem of back reaction became an active 

topic in the field. It is interesting that Infeld's students in Poland did not share 

his views on the subject. Andrzej Trautman and Jerzy Plebanski did important 

work on the problem of motion and gravitational waves, and both were decidedly 

non-sceptics. Yet throughout this period (late 50s, early 60s), lnfeld continued in 

his own outlook, as shown in his 1960 textbook Motion and Relativity written with 

Plebanski. lnfeld displayed a certain high-handedness in dealing with his students' 

dissent. The chapter of Motion and Relativity dealing with radiation reaction was 

added to the book without his co-author Plebanski's knowledge, after the latter's 

departure for America on a fellowship . The chapter is an excellent account of Infeld's 

position at the time, but entirely fails to represent Plebanski's view, which was 

diametrically opposed. Similarly, in one preprint, lnfeld alludes to the contrary 

views of his students, but asserts that they had come to accept his arguments as 

correct. This did not stretch the truth as much as contradict it entirely. 

Nevertheless, despite these public vanities, Infeld was personally fair with his 

students. Piebanski began to feel uncomfortable enough about his general cir­

cumstances to wish to leave Poland for good and lnfeld helped him in securing 

permission to move "temporarily permanently" to Mexico City. Trautman, who 

was a very prominent contributor to the new advances in the picture of gravita­

tional waves, including an important calculation of the radiation reaction effect 

which supported Goldberg's position in the old debate with lnfeld and Scheidegger 
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(Trautman, 1958b ), remained an important and favoured member of Infeld's group. 

In the end, shortly before his death, Infeld seems to have been finally won over by his 

students' arguments, rather than the other way around, and even published a paper 

with R. Michalska-Trautman which accepted the existence of the phenomenon of 

radiation reaction. In this case, therefore, the advisor did not perhaps influence the 

students so much as they influenced him. In spite of Infeld's great personal success 

as an advisor and the founder of a school, this aspect of his own views was not at 

all transmitted to his students who remained active in the field. Nevertheless, his 

interest in this subject was passed on, and led to much of the significant work which 

developed the study of gravitational waves in the 1950 and 60s. 

Nathan Rosen, Einstein's other collaborator directly involved with the attempt to 

disprove the existence of gravitational waves, also remained a prominent sceptic of 

gravitational waves throughout much of his career. Rosen, born in 1909 in Brooklyn, 

New York, was, like Infeld and many other scientists of the time, a socialist. He 

was so strong in his convictions as to wish to live and work in the Soviet Union at a 

time, the late 1930s when suspicion of foreigners was at its height, and it required 

Einstein's intervention to secure for him a position at the Kiev State University. 

Whatever his opinion of "actually existing socialism" during the era of the great 

purges, he returned to the United States after only 2 or 3 years. In the 1950s, again 

with Einstein's endorsement, he emigrated to Israel and did much to build up the 

Technion institute in Haifa, where he worked until his death in 1995. 

Rosen might be fairly viewed as a professional sceptic in the best sense, and has 

played a prominent gadfly role in the history of 20th century theoretical physics. He 

is said to have been largely responsible for the anti-Copenhagen argument advanced 
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in the famous paper written by himself, Einstein and Boris Podolsky. Although 

he agreed with Einstein that there was a difficulty with their original paper on 

gravitational waves, he felt strongly enough about the argument to publish in a 

Soviet journal a revised version which restricted itself to disproving the existence 

of plane gravitational waves. His arguments were rebutted after the war by Bondi, 

Pirani and Robinson (1959). 

In 1955, at the Bern Jubilee conference, he turned to casting doubt on the phys­

icality of the cylindrical wave solution from the published version of the Einstein.­

Rosen paper. He suggested that they might not carry any energy (based on an 

analysis of the energy pseudo-tensor in cylindrical co-ordinates), but subsequently 

retracted this view (Rosen, 1958). Afterwards, he was perhaps prevented by insti­

tutional commitments at the Technion from pursuing further work on gravitational 

waves personally for many years (Peres, private communication). Indeed, his final 

correction of the Bern paper did not appear until 1993 (Rosen and Virbhadra), an 

unusually long publication delay by anyone's standards! 

However, in 1979, inspired perhaps by the resurgence of interest in the problem 

at that time, he published a paper which returned to the problem of the arrow of 

time in gravitational radiation theory, in a paper whose title notably echoed that 

of his rejected 1936 submission to Physical Review with Einstein (Rosen 1979). In 

"Does Gravitational Radiation Exist?" he adapted the Wheeler-Feynman absorber 

theory to gravitation, and concluded that as the gravitational force interacted much 

less strongly with matter than the electromagnetic field, a source system would 

not undergo radiation reaction for lack of a sufficiently strong absorber field. In 

the Wheeler-Feynman theory it is the field of the absorbers, back-reacting on the 
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source, which breaks the time symmetry of the source field. (Wheeler and Feynman, 

1945 and 1949). However, Rosen's arguments do not appear completely convincing 

even to himself, since towards the end of the paper he retreats to a more Tetrode­

like position, conceding that an absorber (such as a gravity wave detector) could 

presumably act so as to draw energy from the source at a distance. In any case, his 

paper did not excite much debate on the subject. 

However, in the 1950s he was indirectly responsible for one very important con­

tribution to the back reaction problem, when he encouraged his student Asher Peres 

to pursue the problem, in an effort to decide between the rival views of Fock and 

Infeld on the existence of radiation damping in freely gravitating systems. Peres 

developed an approximation scheme which correctly reproduced the EIH and Fock 

results at first post-Newtonian order, but then ran into difficulties calculating the 

radiation effects on the motion. His thesis results found, like Hu, an energy gain by 

the orbiting system, but he subsequently located the source of his error in a failure 

to correctly apply no-ingoing wave boundary conditions to the "near zone" of the 

system. By careful attention to the matching of the "far zone" conditions to the 

near zone solutions, he overcame this difficulty, much to his and Rosen's relief, and 

rederived the quadrupole formula. 

Surprisingly his success had relatively little impact, though his paper was viewed 

very favourably by some experts, such as Kip Thorne. Although he had identified a 

key reason why previous calculations had produced such wildly varying results, he 

could not overcome the sense of dissatisfaction which the slow-motion approach had 

generated amongst some experts (e.g. Bonnor, Havas), and it was not until Burke 

(see below) introduced a general technique for matching far-zone and near-zone 
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. 
solutions that an unambiguous method of imposing the boundary conditions in the 

slow-motion expansions encouraged greater confidence in that type of approximation 

scheme. Nevertheless , Peres' 1960 paper, at least in hindsight, can be seen as a 

turning point for the back reaction calculations. Previously it is difficult to find 

two results which agreed with each other. Subsequently, the great majority of slow 

motion calculations agreed with the quadrupole formula in their predictions, for 

circular binary systems. 

If Rosen himself had widespread influence on the field of gravitational radiation, 

it was perhaps by example. None of his published ideas were ever taken up except 

in rebuttal, but his gadfly role (e.g., he was the originator of a prominent rival 

theory of gravitation to GR) has attracted admirers, such as the most prominent 

current sceptic on gravitational waves, Fred Cooperstock. Rosen always sought to 

be provocative throughout his career, and unlike many scientists, was not afraid 

to stick his neck out with unconventional ideas and views in an effort to challenge 

received opinion and unwarranted assumptions. He continued actively in research 

literally up until his death (I myself refereed a paper of his only shortly before he 

died) , and remained remarkably true to his own convictions in a profession in which 

fear of nonconformity occasionally dissuades people from publishing their best work. 

Another fruitful sceptic was Hermann Bondi, one of the originators of the steady 

state theory of cosmology. Though now decidedly a minority theory, this was at 

one time a strong rival to the the "Big Bang" theory. Bondi took as his mentor in 

the field of relativity, Eddington, and emulated his scepticism in regard to existing 

formulations of gravitational wave theory. Bondi, furthermore, took an individual 

stance towards what was worthwhile in GR. He disliked work of the problem of 
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motion type, producing minor corrections to the Newtonian theory, and saw m 

gravitational waves an opportunity to study an entirely new phenomenon allegedly 

predicted by the theory, which was unknown to Newtonian gravity, and which might 

yield insight into the novel non-linear aspects of the theory. 

Bondi grew up in Vienna between the wars, but chose not to pursue his education 

in physics in Austria during the period of the Christian Social Party dictatorship. 

Instead he went to England, where he secured placement as an undergraduate at 

Cambridge with the help of a recommendation from a relative who was a prominent 

mathematician, Abraham Frankel. At Cambridge he was an almost immediate 

success as a student, but the greatest advantage of his move abroad was shown 

shortly afterwards, in 1938, when Hitler invaded Austria. Acting on Bondi's advice, 

his family left Austria precipitately shortly beforehand, and thus avoided the fate 

shared by many other Austrian Jews under Nazi rule. But exile did not immediately 

rescue Bondi from the class of suspicious persons by reason of his nationality. In 

England once war with Germany broke out he became an "enemy alien," and one 

of the first acts of the Churchill government in 1940 was to order his internment, 

along with many others like him. Nevertheless, in his autobiography, Bondi recalls 

his relief at Churchill's accession to power, owing to the latter's association with a 

policy of confrontation with Nazi Germany. 

A concentration camp cannot be a pleasant place to find oneself in, no matter 

how awful the alternative. Bondi was obliged, with other European exiles, to spend 

more than a year in detention in Canada, to which they were deported, despite 

the perils of U-boat predation, which sank one unescorted vessel full of interned 

refugees just prior to Bondi's crossing. During his internment, Bondi met two other 
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important theoretical physicists, showing the amazing intellectual quality of the 

European refugee population. One was Thomas Gold, his longtime collaborator, 

and co-author of the steady-state theory, another was Alfred Schild, who stayed 

in Canada after his release, and became a student of Leopold Infeld's in Toronto. 

Schild would later co-found the immensely influential series of Texas symposia, for 

which see chapter 12. 

Despite this unfortunate interruption of his academic career, Bondi was deter­

mined to return to England (his family had immigrated to America before intern­

ment took effect), where he resumed his academic career at Cambridge and partic­

ipated in war work, with other rehabilitated "enemies" such as Gold. Aided by the 

marvelous English facility for overlooking any unpleasantness they may have caused, 

he assimilated perfectly to English academic life, and was eventually knighted for 

his later administrative work in the British Department of Defence (Bondi, 1990). 

Bondi 's interest in gravitational waves was sparked initially by the 1955 Bern 

conference commemorating the jubilee of special relativity. It was at this meeting 

(later dubbed GRO, after the successful GR series of meetings inspired by the Chapel 

Hill conference of 1957) that Rosen presented his paper suggesting that cylindrical 

gravitational waves could not carry energy. Following the Infeld and Scheidegger 

work of a few years earlier, the possibility that gravitational waves did not exist was 

in the air. Bondi himself recalls, 

it [the Bern meeting] was particularly memorable for me because of 

the discussions we had ... on gravitational waves. The mathematical and 

physical complexity of Einstein's theory of gravitation is so great that there 

was still confusion, and a variety of opinions, about whether the theory 



predicted the existence of gravitational waves or not. After one of these 

discussions, Marcus Fierz, Professor at the ETH, the federal technical 

university, took me aside and said, 'the problem of gravitational waves 

is ready for solution, and you are the person to solve it .' This remark 

governed a sizeable slice of my scientific work work for many years, and 

led to the 1962 paper on gravitational waves in a fifteen paper series ... 

The 1962 Paper [presumably Bondi, Van den Burg and Matzner] I regard 

as the best scientific work I have ever done, which is later in life than 

mathematicians usually peak. 

(Bondi, 1990) 
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Another factor which encouraged Bondi 's interest in gravitational waves was the 

interest of his student and colleague Felix Pirani. Pirani began his physics career 

as, very briefly, a graduate student of lnfeld's at Toronto, but when Schild left 

Toronto to take up an appointment at Pittsburgh, Pirani went with him and did his 

graduate studies there. Owing to Schild's friendship with Bondi from internment 

together, he then went to Cambridge, where he received a second doctorate working 

with Bondi. Subsequently, after a year in Dublin with Synge (another Toronto and 

Pittsburgh connection) at the Dublin Institute for Advance Studies, he took up an 

appointment at King's College, London, where he formed part of a very active and 

influential group in GR with Bondi, who became professor of Applied Mathematics 

there in 1954. 

Pirani first had his attention drawn to the confused state of gravitational wave 

theory when he was asked to review a paper on the subject for Math Reviews. The 

paper, by MacVittie, attempted to show that plane gravitational waves could not 
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exist, a view previously propounded by Rosen, as we have seen. Pirani felt that 

the result must be wrong, and he benefited from his time in Dublin, where he was 

influenced by Synge in two important respects. The first concerned the equation of 

geodesic deviation, a co-ordinate invariant way of looking at physical interactions 

in GR, based on the curvature tensor, greatly championed by Synge. Pirani was led 

to describe the interaction of a wave with a physical system by showing that the 

particles in the system would be moved about relative to each other by a passing 

wave. This not only helped give a better picture of how a gravitational wave worked 

in practice, but also led to ways of side-stepping the vexed question of whether such 

waves carried energy or not, and could so physical work. 

The second idea which Pirani was introduced to in Dublin was the classification 

of radiation fields by type. He was asked to proofread a book of Synge's which 

discussed this for electromagnetic fields, and was inspired to do the same for gravi­

tational radiation. He then came across a classification scheme based on types of the 

Riemann tensor for different fields, due to Petrov. This scheme, dividing gravita­

tional fields initially into type I,II, and III, with the latter two describing radiation 

fields, was adopted and became quite widespread. The success of this scheme, af­

ter the failure of the earlier Weyl-Einstein attempt at classification illustrates yet 

another irresistible impulse which physicists (and other scientists) are subject to. 

Whereas Pirani was sceptical of the sceptics, Bondi was influenced by Eddington, 

from whose book he learned relativity, in adopting his own brand of scepticism of 

gravitational waves. To begin with, he seems to have been doubtful whether the 

theory really admitted them. In his letter to Nature of 1957, which is remembered 

by many for its critical thought experiment "proving" the likely existence of gravi-
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tational waves, he describes himself as having been a strong sceptic at Chapel Hill 

that same year. Joshua Goldberg, who helped facilitate that meeting in his capac­

ity as as head of the USAF's ARL group on GR, recalls that Bondi advocated the 

non-existence of gravitational waves at that meeting (Goldberg, 1988). Yet the con­

tradiction between various remembered histories mentioned above is illustrated by 

Pirani's remark that "I'm surprised that there was still some doubt on gravitational 

waves carrying energy at Chapel Hill" (interview). Indeed, the famous thought ex­

periment which was used repeatedly in 1937 to circumvent Rosen's pseudo-tensor 

problem was "enabled" by Pirani's ground-breaking work on the geodesic deviation 

description of gravitational waves, which he reported at that conference. 1 

Collaborating extensively with other groups, in Poland, Germany and America, 

and helped by USAF funding secured through Goldberg, the London group pub­

lished a string of papers in the late 50s and early 60s which had a profound impact 

on the theory of gravitational waves. Few can have done as much as Bondi to estab­

lish the current orthodoxy on gravitational waves, and to encourage belief in their 

existence. Nevertheless, Bondi himself remained true to his sceptical roots. In 1962, 

at the Warsaw conference (GR3) organized by Infeld's school, he still regarded the 

question of whether binary systems were damped by radiation as open, and felt that 

it was important to examine the case of two extended bodies, with a real equation 

of state, however idealized. Chandrasekhar was inspired by this talk to take up the 
1 again, while Goldberg clearly recalls some debate on this topic at Chapel Hill, Bryce De Witt , who organized 

the meeting, was quite certain that there was no significant debate on the existence of gravitational waves in the 

late 50s when replying to a presentation by the present author at a meeting in Moscow in 1996. On the whole, 

the conference proceedings, transcribed from a tape recording of the main sessions, tend to bear out Goldberg's 

recollection. The varying opinions of the tenor of the discussion are, however, a signal warning to anyone interested 

in reconstructing this type of recent history of science. 
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problem (interview). 

Bondi felt that two orbiting bodies consisting of pressure free dust would not 

radiate, since the every particle contained in the two bodies would follow a geodesic 

throughout their motion. In an Aristotelian sense, these particles would behave 

"naturally" during their motion, and so perhaps one could regard as non-accelerating, 

in the geodesic sense, and therefore non-radiating. Bondi remained unsure of the 

presence of damping in this highly idealized situation for many years. 

From the mid-sixties on Bondi became increasingly involved in administrative 

work, a fairly typical fate for older physicists, as we have seen with lnfeld and 

Rosen. During the 1970s he worked in the UK Department of Defence, and was 

much less involved in scientific work. Therefore, from about 1965 on, he ceased to 

play an active role in gravitational wave theory. 

As we have seen, none of these three sceptics seemed to impress their concerns 

deeply on their students and collaborators. Bondi's uncertainty about whether 

freely gravitating dust would radiate remained largely private. Another worry of 

his was the existence of tails in gravitational waves, which first came to be realized 

in the period of his intensive work from 1955-65. In 1966 he described this as an 

"absolutely disastrous discovery," which might indeed lead to deep insights, but was 

nonetheless, "extremely serious," in that it prevented a perturbed system from ever 

entirely settling down to a static state again, since its field would always be affected 

by its own once-turbulent past history (Bondi, 1970). Certainly, tails have remained 

an important topic in the study of gravitational waves ever sense, and some have even 

suggested that they might interfere with the detection of gravitational waves, but 

on the whole, posterity has not shared Bondi's concern, which he still feels should 
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be addressed (interview). He perhaps recognized the essentially accommodating 

instinct of most physicists when remarking "no doubt we can live with history in 

gravitation. But that does not prevent me from regretting [it] ." (Bondi, 1970). 

Even if Rosen, lnfeld and Bondi could not implant their own sensibilities in the 

minds of others, each made great contributions to the subject. Infeld, through the 

EIH formalism, his fostering of the post-Newtonian approach to radiation problems, 

and his mentoring of an army of relativists and theoretical physicists, many of whom 

worked on problems related to gravitational radiation. Rosen fostered debate on 

gravitational waves throughout his provocative career, and also contributed through 

his students, such as Peres. Rosen was such an outspoken iconoclast throughout this 

career that his own individual style of physics remains very clear even after his death, 

and still has admirers, such as Cooperstock. Bondi, with his various collaborators 

did as much as anyone to foster a concrete picture of gravitational waves as a real 

theoretical phenomenon, rather than an abstract mathematical analogy. Perhaps 

the sceptical contribution is best summed up, if it must be encapsulated simply, 

in terms of that process. If one thing united the sceptics, it was their resistance 

to a straightforward imposition of an analogy with electrodynamics onto non-linear 

gravitation theory. Complacency with this analogy indeed posed a great threat to 

the idea of gravitational waves, since if it were accepted too sweepingly, they might 

never have achieved an independent existence worthy of note, and remained nothing 

more than a foot note to field theory. If for some, such as Pirani, the need to deepen 

the analogy, by developing a quantum theory of gravity, served as a motivation for 

the study of gravitational waves, for others the need to question the analogy was just 

as compelling a motive. By their efforts, the foundation of a theory of gravitational 
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radiation was laid in the 1950s, just in time for the historical moment of renewed 

interest in GR which followed in the 1960s, and which saw interest in gravitational 

waves reach beyond the narrow borders of GR theory for the first time (see chapter 

12 below). 

If the ideas of the sceptics were taken up in quite a different style by a new 

generation, it is perhaps the general fate of scientists to pass on to posterity not 

their whole idea, but just an element of it, which becomes a tool for their successors 

out of which they construct their own concepts. Indeed, if there can be some regret 

for older scientists in the failure of younger generations to properly understand their 

work and motivations, this lack of the personal in the history of physics is perhaps 

what attracts people to it. Creative young scientists do not feel the dead weight 

of the personalities of dead or aging scientists weighing on them, when attractive 

elements of their thought can be appropriated, stripped of the sensibilities which 

originally animated them, and be given an entirely new meaning in a new style of 

physics. 



Chapter 8 

Do Gravitational Waves Exist? 

The Role of Conferences in the 

1950s 

Between the war and the Bern conference of 1955 marking the 50th anniversary of 

special relativity, general relativity was at a low ebb (Eisenstaedt 1986a and 1986b ). 

Work on the radiation problem seemed confused and controversial, leading only to 

some consensus that the problem required closer attention. At the Bern conference 

Rosen, returning to the cylindrical wave solution of his 1937 paper with Einstein, 

adduced evidence backing up Scheidegger's position by proposing the possibility 

that gravitational waves did not transport energy (Rosen 1955). It is a peculiar 

characteristic of general relativity that the energy contained in the gravitational 

field, and thus the energy in gravitational radiation, is not described in a coordinate 

invariant way. This energy is considered to be real enough, and can be converted 
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into other forms of energy which can be expressed invariantly, but the principle of 

equivalence prevents one from doing this for field energy in gravity. The reason is 

that any observer in a gravitational field is always entitled to imagine himself in a 

locally Lorentz (that is zero gravity) freely falling frame of reference which, locally, 

contains no field energy. Of course, one is not free to transform away the entire 

field energy of a planet but one can always choose co-ordinates on a small portion 

of its surface so as to eliminate the field energy in that region. Thus it is said that 

gravitational field energy is non-localizable. This problem of defining field-energy 

had led Einstein, Landau and Lifshitz and others to employ a non-invariant quantity 

known as a pseudo-tensor to describe energy in the wave flux in their back reaction 

calculations. Rosen now observed that each of these (slightly different) definitions of 

the pseudo-tensor showed no energy at all when applied to the cylindrical waves of 

his 1937 paper with Einstein in cylindrical co-ordinates. Although drawing conclu­

sions on the tentative basis of the pseudo-tensor was regarded as dangerous, Rosen 

observed that the result seemed to support the view of lnfeld and Scheidegger. This 

cast further doubt on the uncertain status of wave phenomena in gravitation theory. 

The Bern conference is remembered as an important stimulus to the field of 

relativity. The discussions there, and the interest taken by Felix Pirani, prompted 

Hermann Bondi to take up the problem of gravitational radiation. Bondi brought an 

open mind to the issue, in the sense that he was sceptical enough of the existence of 

gravitational waves. He was influenced in this by Eddington, from whose writings he 

learned relativity. Eddington's emphasis on a coordinate invariant approach, making 

use of tensorial quantities such as the Riemann curvature tensor, had enabled him 

to show that certain classes of gravitational waves "in existence" before 1922 were 
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spurious (Eddington 1922). Bondi, like some relativists of the day, was not impressed 

by the existing radiation reaction work, finding Landau and Lifshitz" treatment "a 

little glib" . At the same time, gravitational waves seemed like an attractive topic 

within gravitational theory, since in this area the predictions of general relativity 

diverged radically from those of Newtonian gravitational theory. Up to this time, 

most work in relativity, outside of cosmology, had been devoted to deriving small 

corrections to Newtonian theory, such as the famous perihelion shift of Mercury, a 

more precise estimation of which was one of the goals of the EIH paper (Robertson 

1938). The study of gravitational waves , if they existed, seemed likely to generate 

more "new physics" than simply adding terms to Newton's theory. 

Now, as Infeld himself observed when writing of his surprise at Einstein's "proof" 

that waves did not exist, no respectable modern field theorist would, under normal 

circumstances, deny the existence of radiation in a field theory. The mere fact that 

the force was propagated in the field rather than by action-at-a-distance, a basic 

tenet of all relativistic field theories , seemed to imply the existence of radiation. 

Einstein also remarked, in his letter to Born, of the "certainty" which the analogy 

between the linearized Einstein equations and electromagnetism had inspired con­

cerning the existence of a gravitational analogue to the Maxwellian wave equation. 

Bondi nevertheless seized on a key argument made by Infeld and Scheidegger, which 

seemed to him crucial. 

As Scheidegger observed, relativity occupied a "peculiar place" amongst classical 

field theories (Scheidegger 1953). One important peculiarity is that the equations of 

motion are constrained by the field equations, as Einstein had noted. In electrody­

namics , where this was not the case, one was perfectly free to demonstrate damping 
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effects by moving the particles around in whatever fashion, and showing that this 

gave rise, when the field equations were invoked, to radiation and loss of energy 

from the local system. In relativity, it was necessary to show that the motions in 

question were allowed by the same field equations. This was all the more important 

when one considered the question of what type of motion gave rise to radiation. 

One obvious example was an accelerating charge in electrodynamics. What of the 

apparently equivalent case of a falling mass? It was clearly accelerating with respect 

to the person who dropped it, but in a relativistic sense, it was merely following a 

geodesic, doing what came naturally, as it were. In terms of the local spacetime, 

the particle that was really being accelerated was the one still being held in the 

observer's other hand, which was prevented from falling freely. Which one of these 

particles ought to radiate? This question had no immediately obvious answer which 

the relativists of the day could agree upon. E.T. Newman relates how Wheeler once 

asked a roomful of relativists to vote on this question, and recalls the room being 

fairly equally divided. This seems to be a rare example of democracy in science. 

At the Chapel Hill conference of 1957 and elsewhere at that time, Bondi pointed 

out the distinction between two masses being waved about at the end of some­

one's arms, 1 clearly not following geodesics, and clearly emitting gravitational waves 

(but tremendously weak ones!), and two masses in a binary star system, following 

geodesics and, if Infeld and Scheidegger were right, not radiating anything (De Witt 

1957, pg. 33) . Since gravitational forces were likely to be the only forces capable of 

moving large masses very quickly, the issue of whether purely gravitational systems 

could give rise to radiation was an issue of whether such radiation would ever be 
1 A number of those interviewed recalled Bondi vigorously demonstrating this method of generating gravitational 

waves 
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detectable. That issue, to the surprise of most theorists, was soon to become one of 

some practical interest. 

The Chapel Hill conference on "The Role of Gravitation in Physics" brought 

together relativists and theoretical physicists interested in then new topics such as 

quantum gravity. The session on gravitational radiation was lively and varied. Felix 

Pirani presented important new work on wave theory (De Witt 1957, pg. 37). Influ­

enced by the Irish relativist John Synge during a year spent in Dublin (interview), 

Pirani drew attention to the Riemann curvature tensor, whose importance had pre­

viously been stressed by Eddington in his 1922 paper, as an invariant geometrical 

quantity which was well suited to the description of the behaviour of gravitational 

waves. Using the geodesic deviation description of gravitational effects advocated 

by Synge, he showed how particles in the path of a wave were moved about relative 

to each other by the spacetime curvature of the passing wave. In this view, gravita­

tional waves were depicted as ripples in the fabric of spacetime itself, whose physical 

effects were observable by monitoring the relative motion of two adjacent particles 

during the passage of a wave. 

Later in the conference an interesting exchange took place during the section on 

quantization of gravity. During Richard Feynman's presentation on the need for a 

quantum theory of gravity, Rosenfeld made the following remark: 

It seems to me that the question of the existence and absorption of 

waves is crucial for the question whether there is any meaning in quantizing 

gravitation. In electrodynamics the whole idea of quantization comes from 

the radiation field, and the only thing we know for sure how to quantize 

is the pure radiation field. (De Witt 1957, p. 141) 
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Feynman demurred somewhat from the premise, arguing that there existed a 

quantum theory of electrostatics, but agreed that some of his arguments in favour 

of quantization depended on the existence of waves. Bondi was moved to note 

that "this vexed question of the existence of gravitational waves does become more 

important for this reason." Feynman then presented an argument based on Pirani's 

earlier talk. Appealing to the equation of geodesic deviation, he argued that a 

particle lying beside a stick would be rubbed back and forth against the stick by 

a passing wave, and the friction would generate heat , so that energy would have 

been extracted from the wave. Furthermore, he felt that any system which could 

be an absorber of waves, could also be an emitter. For these reasons, he expected 

gravitational waves to exist (supplement to De Witt 1957).2 

This line of argument, suggested by Pirani's new work, was also elaborated in two 

papers published that same year. In a letter to Nature, Bondi used a slightly different 

version of it to refute Rosen's argument of 1955 on energy transport (Bondi 1957) , as 

did Joseph Weber and John Wheeler in a more detailed paper (Weber and Wheeler 

1957). Weber demonstrated real confidence in the physicality of gravitational waves 

by embarking within a few years on an experimental program to detect them, using 

large resonant metal bars as antennae (Weber 1960). Quixotic is probably not quite 

the word contemporary theorists would have used to describe Weber's aim. The 

wave theory, in so far as it existed at all , with no particular notion as to potential 

astrophysical sources or signals , would be better described as a "disabling" rather 

than an enabling theory for experiment. The quadrupole formula, the only guide 

to source strength and signal amplitude, suggested that any waves reaching the 
2 Fred Cooperstock's 1992 paper contains a counter-example designed to invalidate this thought experiment. See 

chapter 16, below. 
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detector would be very weak. With no theory of sources, the question of what 

frequency to search at was theoretically undetermined (interview with Weber). In 

his textbook (1961) , Weber states, 

some experimental work [on gravitational waves] now appears possible. 

Some theoretical issues have been resolved in recent years , and it has been 

possible for a number of physicists to conclude that general relativity really 

does predict the existence of gravitational waves. 

This does appear no more than a minimum amount of theoretical justification for 

any experimental program! It is remarkable that the field of gravity wave detection 

began at a time when the theoretical state of the subject was in such disarray. 

The session devoted to gravitational radiation at Chapel Hill, chaired by Bondi, 

begins with a very clear statement of the sceptical position in regard to gravitational 

waves. Bondi makes some introductory remarks , criticizing those who regard GR 

as an all-encompassing theory, which is more than merely a theory of gravity. He 

prefers to regard it as an "open theory," into which knowledge gained in other fields 

can usefully be fitted . Nevertheless he is not prepared to apply the lessons of other 

fields without due caution. 

The analogy between electromagnetic and gravitational waves has of­

ten been made, but doesn't go very far , holding only to the very question­

able extent to which the equations are similar. The cardinal feature of 

electromagnetic radiation is that when radiation is produced the radiator 

lose and amount of energy which is independent of the location of the ab­

sorbers. With gravitational radiation, on the other hand, we still do not 



know whether a gravitational radiator transmits energy whether there is 

a receiver or not. 

Gravitational radiation, by definition, must transmit information; and 

this information must be something new ... An example of a gravitational 

transmitter is a person sitting very quietly holding two dumbbells, who 

suddenly, unpredictably, starts taking exercise with them. What we want 

to know is what is the effect of his motion? Does it transmit information 

to other regions of space of what the person taking exercise is doing, and 

does it transmit energy? (De Witt, 1957, pg. 35) 

99 

Bondi then presents the work of L. Mardar (then at King's College, London with 

Bondi) on a cylindrical source of gravitational waves. The result is that a pulse 

wave emitted by the source considered initially changes the mass of the source, 

which then however returns to its initial value as the pulse travels to infinity. Bondi 

adds that the waves "carry no energy with them ... while the wave is being sent 

out the mass [of the source] is decreasing, but as the wave dies down the mass 

returns to its original value." Bondi once again emphasizes the importance of the 

unpredictability of emission, since only then can information be transmitted, an idea 

later given concrete form in his "news function". De Witt3 encapsulates this idea in 

the statement "if I know at an initial time that I am going to give you a yes answer, 

then the field already contains it ." 

Wheeler now reasserts the value of the electromagnetic analogy, saying 

How one could think that a cylindrically symmetric system could radi­

ate is a surprise to me. There seems to be a far-reaching analogy [emphasis 

3 possibly Bryce, the chair of the first session, and not Cecile, the conference organizer 



added] between this case and the problem of emission of electromagnetic 

radiation from a zero-zero transmission in an atom or nucleus. The charge 

can oscillate spherically symmetrically, but the system doesn't radiate. 

However, if we have an electron in the neighborhood, internal conversion 

can take place, with still no electromagnetic radiation emitted. This would 

correspond to the uptake of energy of the gravitational disturbance created 

by the 'cylindrical symmetric' exercise of yours. 
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To this Bondi assents that the same underlying explanation, conservation of 

charge in the electromagnetic case, conservation of mass and momentum in the 

gravitational case, may lie behind the failure of spherically symmetric oscillations to 

radiate in the first case, and cylindrically symmetric (or axisymmetric) oscillations 

to radiate in the second case. After some further remarks by Bondi on his own work, 

in which he examines the asymptotic Schwarzschildean field of a three-dimensional 

system which is initially and finally spherically symmetric, and again finds no sign 

of mass loss , it is the turn of Weber. He examines the interaction of a single particle 

with the Einstein-Rosen cylindrical waves. Noting that the pseudo-tensor energy 

density in the waves is everywhere zero, and that the particle is at rest both before 

and after the wave's passage, he concludes that "energy cannot be transferred around 

as long as one has this type of (cylindrical] symmetry and the [Einstein-Rosen] 

metric" . In answer to a question he notes that not all components of the Riemann 

tensor are zero, so the wave does not seem to be trivial. Bondi remarks that a single 

particle must be a poor absorber, to which Weber agrees that one could carry out 

a similar analysis for a pair of particles. 

The next speaker was Pirani , who introduced his classification of types of gravita-



101 

tional waves (based on "Petrov's classification of empty space-time Riemann tensors 

into three canonical types), pictured as propagating discontinuities in the Riemann 

tensor (like shock fronts). In particular, his scheme shows how one can distinguish 

between spacetimes with and without radiation based on the Petrov type. This 

classification scheme was considerably developed in subsequent years, extending its 

types and sub-types far beyond the simplicity of the original threefold breakdown. 

Pirani 's discussion of the equation of geodesic deviation, which appears of direct 

relevance to the thrust of Weber's presentation, and to Bondi's comment on it, was 

given at a subsequent session. 

After Pirani there were talks by Schild on an unsuccessful attempt to construct a 

radiation-reaction force formalism on an analogy with the electromagnetic theory (a 

gravitational radiation reaction force was later constructed by Burke an presented in 

Burke and Thorne (1970)), Pirani reading a communication from Rosen on axisym­

metric fields, and Goldberg on the beginnings of a scheme for "an approximation 

scheme for high velocities". This was inspired by his conclusion that the slow-motion 

method was unsuitable for treating the radiation problem (Goldberg, 1955). Since 

the surface integral method employed by EIH (its most attractive but neglected fea­

ture, according to Anderson (1995)), is not suitable for the fast motion method, he 

proposes to replace the consistency conditions derived in the EIH method from the 

surface conditions with conditions (the Bianchi identities) applicable everywhere, 

not just on the surface, but inside and across the singularity which, in the EIH 

scheme is hidden by the surface of integration. This substitution of volume for 

surface integrals, was going to require the employment in the fast-motion schemes 

of mathematically sophisticated renormalization schemes borrowed from electrody-
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namic theory in order to deal with the infinities introduced into integrals containing 

singularities. 

After talks by Tonnelat on classical unified field theories and Lindquist on cos­

mology, Wheeler summed up the session. 

First, from what Pirani said, we have gained some insight into how we 

may define what the measurability properties are locally of the gravita­

tional field. The tensors and invariants he describes are at the heart of the 

matter. Second, as concerns the radiation problem, we would like to know 

what is the highest degree of symmetry one can have in a problem, and 

still have interesting radiation. This leads one to the question whether, 

even in the case with no symmetry, one has reason to expect radiation. On 

this score, it would be well to recall an important physical fact: that the 

gravitational field of a point charge has close analogies to the electric field 

[emphasis added]. One knows that there is a certain linear approximation 

to the field equations similar in nature to the electromagnetic equations, 

so that is a mass is accelerating, one finds it produces radiation similar to 

the electromagnetic radiation of an accelerating charge. On this account, 

one expects gravitational radiation [emphasis added]. Using this analogy, 

Einstein was able to calculate the rate of radiation from a double star. 

The analogy does not stop there, since 

Bondi has reminded us that if one looks for radiation pressure on a 

particle in gravitational waves, he must take into account the radiation 

produced by the particle itself. The situation here is analogous to an 
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electromagnetic wave passing over a particle. 

In which, as in the Wheeler-Feynman absorber theory, it is only by including the 

radiation re-emitted by the absorbers that one derives the radiation damping force. 

Therefore, in the case examined by Weber, "the electromagnetic analogy suggests 

that if one were to go further, one might expect to find radiation pressure" (despite 

Weber's initial result that the wave does not impart energy to the particle). 

However, Wheeler, who closes the session with this statement of the "non­

sceptical" position, in regard to the wave analogy with electromagnetism, does not 

insist that the analogy has no points of breakdown. He concludes, "one has also to 

consider the nature of the one-sidedness of gravitational radiation. Here one faces 

the problem of what is to be meant by the the difference between retarded and ad­

vanced waves. If one employs the absorption theory of radiation damping in treating 

the above problem, one must employ the use of advanced and retarded waves. In 

flat space the concepts of advanced and retarded waves are easily understood. How­

ever, with gravitational waves, space is curved, and this has the consequence that 

it is difficult to distinguish between retarded and advanced waves. This is due to 

the fact that a pulse sent out by a source gets defracted by the curvature of space 

and secondary waves [tails] are thereby generated, which are in turn scattered. In 

this way, one may ultimately get contributions to an incoming wave, so that the 

distinction between retarded and advanced potentials is lost." 

This "one-sidedness" of curved space was experienced, for instance, in the distinc­

tion which had to be dr~wn in GR between imposing no-incoming wave conditions 

in the past of a system and imposing outgoing wave only conditions in the future of 

the system, which were not equivalent, since curvature scattering produced ingoing 
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waves in the system's future, even when there were none originally. 

It is interesting to see throughout the transcripts of the Chapel Hill conference 

the basic modern ideas on gravitational waves (interaction with absorbers, what 

type of systems can be emitters, classification of the waves) emerging. Simply put, 

the basic social environment out of which such a theory can be constructed is just 

coming into being at this conference. The interplay of ideas between the various 

participants reinforces some thoughts which had been tentative (Bondi remarks in 

response to Wheeler's analogy between spherically symmetric atomic transition and 

Mardar's content-less cylindrical waves that "he has had suspicions on that side 

also"), inspires new collaborations (between Goldberg and Havas, for instance), 

and redirects attention to new formalisms (away from the pseudo-tensor, towards 

the curvature tensor). The conference is followed almost immediately by famous 

articles by Bondi and by Weber and Wheeler focusing on the interaction of the 

Einstein-Rosen cylindrical waves with absorbers. It is hardly surprising that, m 

the wake of this conference, the relativists were determined to set up a body to 

organize future meetings along the same lines. Lacking its own journals and meet­

ings at this time, GR was badly in need of the sort of social superstructure which 

would allow for cross-pollination of ideas between the different active groups, with­

out waiting simply for cultural drift based on the various personal and professional 

relationships to perform this function. An example would be Pirani 's wanderings 

from Toronto to Pittsburgh to Cambridge to Dublin to London, via a haphazard 

network of connections between Infeld, Schild, Bondi and Synge (and the chance of 

being asked to review McVittie's paper for a mathematics journal), which put him 

in a position to make his contributions to gravitational wave theory by introducing 
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to it the tools of Synge's equation of geodesic deviation, and Petrov's Riemannian 

classification scheme. Contrast this with the impact on several different researchers 

at once which his discussion of this work at Chapel Hill had.4 The lesson was not 

lost on the participants. 

So, the success of the Bern and Chapel Hill conferences led to the idea of or­

ganizing a permanent series of conferences along the same lines. An international 

committee was set up to oversee them, and the "GR" series of conferences came into 

being. Chapel Hill, the model for the series, was retroactively designated "GRl," 

with Bern left in the role of the "year zero" of the rebirth of GR theory, as GRO. 

Chapel Hill was followed by a conference in Royaumont, France (1959) , and in 1962 

by a conference in Warsaw hosted by Infeld. These conferences were dominated by 

other matters than radiation, but individual speakers, especially Bondi, continued 

to discuss the state of the field and urge further work on the back reaction problem. 

Despite the rather pointed differences of opinion which have been expressed on 

this subject throughout the history of conferences on relativity, some interviewees 

expressed dissatisfaction with the amount of time devoted to discussion of the back 

reaction problem at these meetings. Havas in particular felt that the first 2 or 3 

conferences after Chapel Hill should have had some time devoted to the fast-motion 

approach to this problem, and wished to speak himself there. He blames Infeld, who 

was prominent on the conference organizing committees (the international board 

which organized all of the early GR meetings), for keeping a rival approximation 
4 One can see evidence of influences on Feynman, Bondi, Wheeler and Weber. In Weber's case , the redirection of 

attention away from the pseudo-tensor and towards the Riemann tensor and geodesic deviation may have had the 

most profound and far-reaching consequences, by encouraging his efforts to construct a gravitational wave antenna, 

a device for "measurement of the Riemann tensor" (Weber, 1961) . 
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scheme to EIH off the agenda. Therefore, no sooner were the social structures put in 

place to alleviate the isolation of the different schools of relativity, but the persons in 

charge of the new form of social organization are left to decide what issues are worthy 

of exposure, which leads to frustration with the forms of societal "governance". 

Havas began work on the fast-motion approximation after Chapel Hill, collabo­

rating with Goldberg who was also interested in this approach. He would have liked 

to present the case for this approximation method at the Royaumont conference, 

but only invited speakers were allowed to contribute. At the Warsaw and London 

(1965) conferences, Havas felt that Infeld was responsible for discouraging debate 

on rival approximation schemes to EIH. At London, W. Tulczyjew was assigned to 

give a report on the radiation problem, but Havas felt that the committee's choice 

was not an appropriate one. Similarly, Ehlers assigned Martin Walker (then a post­

doc with him), to give the report at GR 10 in Padova, 1983, at the height of the 

quadrupole formula controversy, to which both Havas and Cooperstock objected pri­

vately (according to Havas), on the grounds that Walker to was too inexperienced 

to give the report, which would enter the historical record as "gospel truth". Walker 

was also associated with the non-sceptical position on this problem. After Walker's 

report, discussions from the floor were deferred to a workshop session, which gave 

little room for dissenting views to make their presence felt in the proceedings, in 

Havas' view (interview). In general then, the structures established by the commu­

nity, beginning in the late fifties, to foster communication between different groups, 

while highly successful, in terms of longevity, and the eventual proliferation of in­

ternational meetings (Texas symposia and Marcel Grossman meetings, for instance) 

and specialist journals (General Relativity and Gravitation, Classical and Quantum 
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Gravity, also suffered from a lack of responsiveness to the aims and views of research 

programs not represented on the governing bodies.5 The original GR body for in­

stance, was said to be entirely self-appointed, not surprisingly, given the smallness 

of the field , and its domination by a few figures . 

The void left in this regard by the increasingly large and impersonal international 

meetings was filled by smaller and more informal gatherings, of which an important 

prototype was the Stevens' meetings of the 1960s. Held at the Stevens Institute 

of Technology in Hoboken, New Jersey (within sight of Manhattan) , and organized 

by James Anderson, these seem to be far more fondly remembered than all but 

the very first international meetings (Bern and Chapel Hill).6 The Stevens' meet­

ings were ideally situated to attract contributors from the Bergmann and Wheeler 

schools, both based in or near the large urban centers of the eastern US . At these 

meetings anyone was entitled to get up and speak, and reports of work in progress 

were encouraged. The downside of this "free-for-all" was that what the established 

physicists viewed as "crackpots" would also come and make themselves heard, and 

"one had to just sort of grin and bear it," since there was no way of excluding 

them (Anderson, interview). Thus, the relativists attempted to solve the problem 

of trying to be inclusive and exclusive at the same time by organizing meetings on 

5The specialist journals supplied a reference from the mainstream journals which, if they gradually ceased to 

be completely hostile territory for relativity, still presented problems. Nomenclature could be a real battleground. 

For instance, there was a struggle to get the Physical Review to accept the spelling spacetime over the hyphenated 

space- time (Thorne, private communication) . 
6 A number of those interviewed and talked to recalled the Bern and Chapel Hill conferences as a sort of liberation 

from isolation with the discovery of kindred spirits. I encountered similarly enthusiastic recollections of the Stevens' 

meetings. Regarding the GR conferences, Anderson said "the early ones were great," but he found the later ones to 

be too large. "The Stevens' meetings, I think, were small. People did have a chance to interact directly with each 

other. So I think in that sense they did serve a function." (interview) 



108 

two different levels. Therefore, despite the avenue of the more informal meetings, 

established physicists still sought the platform of the larger meetings (one of whose 

attractive characteristics, besides the much larger available audience, was presum­

ably that they were not open to "crackpots"), and felt the problem of underexposure 

of their ideas when denied it. 

As the number of active relativists increased dramatically from the sixties on, 

other regions became able to support informal Stevens' type meetings of their own. 

In the US, this led to "Pacific," "Mid-West" and other gravity meetings, which 

provided a valuable arena for students and young researchers especially to present 

their work. However, it is a testament to the relatively low profile of the radiation 

problem until the 1970s, that the Stevens' meetings, in the recollection of Anderson, 

did not feature a great deal of discussion on the radiation problem. Therefore, in this 

respect at least, the larger international meetings may have been simply reflecting 

the situation on the ground in giving relatively short shrift to this problem after 

Chapel Hill. Those interested in the radiation problem at this time were something 

of a minority within the minority and frequently debate on gravitational waves was 

facilitated by specially organized workshops devoted to the subject (the Fermi school 

of 1961, the Trautman, Pirani and Bondi lectures at the Brandeis summer school 

(1965), Ehlers' Varenna Fermi school of 1976, and so on). 



Chapter 9 

The Economy of Gravitational 

Waves 

An important requirement for the development of any scientific field is funding. 

The field of gravitational wave theory was fortunate in this regard in that, from 

1956 to 1963, Joshua Goldberg was responsible for United States Air Force support 

of research in general relativity, based at the Aeronautical Research Laboratory 

at Wright-Patterson Air Force Base in Ohio. At this time and until the passage 

by Congress in 1969 of the Mansfield Amendment prohibiting the Department of 

Defence from sponsoring basic scientific research , the US armed forces provided 

considerable financial support for even very esoteric subjects in theoretical physics. 

Goldberg was active himself in the study of gravitational radiation, as we have 

seen, and did much to encourage groups such as that of Bondi and Pirani at King's 

College, London. Although support was available for groups outside the US, it 

was not permitted to support scientists based in communist countries, inhibiting 
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the use of these funds to facilitate travel between the London group and Infeld's 

group in Warsaw, who interacted extensively (interview with Pirani). The Air Force 

laboratory itself was home to an active group until the 1970s. With one of his earliest 

grants, Goldberg was able to support the Chapel Hill conference organized by Bryce 

De Witt with Air Force money, and this important meeting became the forerunner 

of the successful General Relativity and Gravitation (GRG) series of conferences, 

which continues today. For a valuable account of this unlikely episode in the history 

of general relativity, see Goldberg (1988) . 

Following the Mansfield Amendment, research in relativity theory in the US de­

pended primarily for its support on the National Science Foundation (NSF). The 

amendment remained in force only for one year, but it helped solidify an emerg­

ing political consensus (symbolized by the support the passage of the amendment 

received from both liberal and conservative congressional leaders) that basic scien­

tific research (especially when conducted within the universities) should not be in 

the military's sphere, but was more appropriately the domain of civilian agencies 

like the NSF (Kevles, 1971 , pg. 414). From 1973 to the present , the chief con­

troller of funding for gravitation physics at the NSF has been Richard Isaacson, like 

Goldberg a relativist who has made important contributions to the theory of gravi­

tational waves. Isaacson had also worked previously at the Air Force laboratory on 

the Wright-Patterson base. By good fortune then, despite the overall decrease in 

funding for theoretical physics precipitated by the Mansfield Amendment and the 

new trend in US government funding, the principal source of funds for research on 

gravitational wave theory remained in sympathetic and knowledgeable hands. 

The advantage of having an insider at the primary funding agency did not en-
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sure that everyone in the field was sponsored to the extent that they desired or felt 

necessary. Complaints about the funding choices made and its effect on research 

directions were very noticeable on the experimental side, where groups and research 

programs depended very heavily on the munificence of different (usually govern­

mental) funding agencies. But even on the theoretical side, work on the problem 

of motion or radiation reaction was computationally so intensive that funding for 

postdocs and assistants could make a big difference to a group or research program. 

It may be that less popular research programs suffered in this regard (such as fast 

motion approximations versus slow motion ones) , but it is difficult to assess the ex­

tent of this factor. Peter Havas has complained, for instance, that Isaacson did not 

regard problem of motion work as of great importance, and that little NSF funding 

was available for this. Certainly, from about 1980 on the theoretical analysis of 

the binary pulsar data was largely in the hands of Damour and his collaborators in 

France. Damour ascribes this to the lack of interest in the subject amongst Amer­

ican theorists and certainly there were other notable American relativists working 

on the problem of motion at this time, besides Havas, such as Ken Nordtvedt and 

Clifford Will. Goldberg felt that the primary factor preventing Havas pushing his 

program ahead was lack of time rather than lack of resources, but Havas clearly feels 

that an increase in resources would have translated to more available time. 

Another researcher with well known complaints against the NSF is Weber, who 

pioneered the field of gravitational wave detection but has seen the lion's share of 

the increasingly large amounts of money going to this field allocated to rival groups 

and research programs. Still, while from the individual perspective, the effect of NSF 

policy can appear to be malign, nevertheless , it seems very likely that the subject of 
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gravitational wave theory has benefited greatly from it close connections with the 

main funding agencies, especially when one keeps in mind how small and isolated a 

field this was at one time. Certainly Isaacson must receive a great share of the credit 

for the present high profile enjoyed by field of gravitational waves, considering that 

LIGO is the most expensive project ever funded by the National Sceicen Foundation. 



Chapter 10 

Evolution of the Physical Picture 

of Gravitational Waves 

By the time of the jubilee conference at Bern in 1955, gravitational waves had had 

a theoretical existence with GR theory for close to 40 years, yet it would be fair to 

say that no convincing picture of their nature and behaviour as a physical effect had 

yet been formulated. Certainly there had been considerable debate as to whether 

they existed or not, whether they carried energy away from real systems and so on, 

but in the leading post-war textbook on GR, Peter Bergmann's Introduction to the 

Theory of Relativity (1942) we find gravitational waves (which are "typical for a field 

theory") introduced as "rapidly variable fields, which must originate whenever mass 

points undergo accelerations." This description can hardly have induced a vivid 

image of the waves in the mind of his readers, but it can be seen as a justification 

for, rather than a description of, the effect. One can't help feeling that, in this period, 

relativists were somewhat embarrassed by this step-child of field theory which had 
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been foisted upon them with no clear purpose to its own existence, no prospect of 

experimental significance and which appeared intractable to theory. 

While we have seen that the abstract style of analogy with electromagnetic field 

theory played an essential role in encouraging the growth of a theory of gravitational 

waves, relativists were slow to construct a descriptive analogy of the phenomenon. 

Perhaps this reflected the lack of a compelling theoretical understanding of the waves 

themselves. In many post-war popular and text-book discussions of gravitational 

waves, analogy is completely eschewed in describing the waves, the authors having 

preferred to substitute an explanation of the effect of the waves on some idealized 

system, such as a circle of particles, which would be deformed into an elliptical 

shape by the passage of the wave (e.g. Goldberg, 1966). That the need for some 

analogy which might strike a chord with the reader was felt is illustrated by the 

use of a comparison with "shear waves," one of two main types of acoustic waves 

in solid matter, in Bergmann's "The Riddle of Gravitation" (1968). Some authors 

(Wheeler, 1962) chose to elaborate the electromagnetic analogy more fully, down to 

the quantum analogy between "gravitons" and "photons." Wheeler includes also 

the circle to ellipse deformation, without diagram provided such as that provided 

by Goldberg. 

By the early 1970s, at least , we find that confidence in the theoretical understand­

ing of the waves had increased to the point where relativists at last felt comfortable 

in reaching back to the metaphor underlying all descriptions of wave phenomena, 

that of ripples on water. In the best known modern textbook, Misner, Thorne and 

Wheeler (1973), we find the use of this physical metaphor right at the beginning of 

the chapter on gravitational waves. Their version is perhaps the canonical one. 



Just as one identifies as "water waves" small ripples rolling across the 

ocean, 1 so one gives the name "gravitational waves" to small ripples rolling 

across spacetime. Ripples of what? Ripples in the shape of the ocean's sur­

face; ripples in the shape (i.e. curvature) of spacetime [emphasis added]. 

Both types of waves are idealizations. One cannot, with infinite accu­

racy, delineate at any moment which drops of water are in the waves and 

which are in the underlying ocean: Similarly, one cannot delineate pre­

cisely which parts of the spacetime curvature are in the ripples and which 

are in the cosmological background. But one can almost do so; otherwise 

one would not speak of "waves"! 
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In Banesh Hoffmann's 1972 biography of Einstein, the same description is found, 

"ripples of curvature traveling with the speed of light," along with "frozen corru­

gations of space-time acquiring for us the aspect of motion because of out passage 

through time." This shows that by the seventies, the picturesque physical metaphor 

was thought suitable for inclusion in a popular account. 

Different similes continue to be expressed side-by-side. The McGraw-Hill Enc. of 

Physics (1983) employs both "ripples in the curvature of space-time" and "propa­

gating patterns of strain." Rees, Ruffini and Wheeler, (1974) state, perhaps a little 

ahistorically, that Einstein showed "that geometry can undulate and carry energy." 

(pg. 84). They later add, when discussing the sceptics (while noting that "doubts 

1 Actually, ocean waves are typically "gravity waves ," that is water waves whose restoring force is supplied by 

the water's own weight and not by surface tension, as with small ripples. It is because of these gravity waves that 

gravitational waves acquired the slightly unwieldy name they bear. It is a sign of their relatively recent emergence 

as an important physical phenomenon that the usage "gravity waves" is now increasingly applied to gravitational 

waves even by physicists. 
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[of the reality of gravitational waves] [of] earlier days have now been dissipated") 

that "any talk of a gravitational wave carrying energy is nonsense. There is no such 

thing as the local density of gravitational wave energy." 

A popular book on The search for Gravity Waves (Davies, 1980) begins with the 

electromagnetic analogy but "caution should be exercised in stretching the analogy 

too far" (pg.26). It also introduces gravity waves as ripples of geometry, but cautions 

against the danger of confusion with mere co-ordinate ripples (pg.49). 

In contrast, Weber's seminal text on gravity wave detection (1961), does not 

allude to any analogy other than the abstract electromagnetic one. There is no 

mention of ripples in spacetime, geometry or anything else. 

If by 1970 relativists were sufficiently confident in their own theoretical picture of 

gravitational waves to begin to advance a more compelling metaphorical description 

to the student or lay-person, we may look for the source of this self-assurance in the 

theoretical work of the previous decade, which laid the foundations for a physical 

(as opposed to merely formal, mathematical) theory of gravitational waves. Two 

research groups in particular played a key role in this endeavour: the Bondi-Pirani 

group in London and John Wheeler's group at Princeton. 

As we have seen, the Bern conference itself helped to inspire Bondi to take up the 

problem of gravitational waves. Both he and Pirani were motivated by the uncertain 

status of the phenomenon at that time to address the issues that had been raised 

(by Mc Vittie, Rosen, Infeld and others) , as to the existence of gravitational waves. 

They began, together with Ivor Robinson, by rebutting the longstanding objections 

to the existence of plane waves in gravity (this view was sufficiently orthodox in 

the immediate post-war period to enter the textbooks , (Bergmann, 1942)). This 
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was of considerable importance, since the cylindrical waves, the only other exact 

wave solution of Einstein's equations available at that time, was entirely unphysical, 

requiring an infinitely long source for generation. With such exact solutions in hand, 

the London group could proceed to a rigorous study of the asymptotic behaviour of 

the waves. While still idealized, the systems they would study, involving a source 

and the distant waves generated by it, would be an acceptable idealization, modeling 

a compact source. 

Bondi has described his 1962 paper with Van der Burg and Metzner as "the best 

scientific work I have ever done," (Bondi, 1990) and it certainly played an influential 

role in persuading people that gravitational waves really could transmit away mass 

and energy from a source. This is the paper in which Bondi introduces the famous 

"news function". The paper itself gives a clear sense of how the particular concerns 

which motivate a scientist to his best work can be completely lost on his audience, 

even when the paper in question is rather successful and influential. 

The paper touches on two problems which Bondi regarded as very troubling. The 

first was the question of whether self-gravitating sources (such as binary systems) 

could radiate. Although by this time most other relativists no longer gave this 

matter such credence, Bondi still quotes lnfeld's Motion and Relativity approvingly 

on the matter of radiation from binary systems. 

The lack of radiation for freely falling particles emerges from lnfeld's 

work, but one would like to generalize this to non-singular equations of 

state. The most clear-cut case then would seem to be pressure-free dust, 

but beyond this it is tempting to suggest that perfectly elastic equations 

of state do not lead to radiation. 
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This is interesting, since Bondi was surely well aware of Trautman's work showing 

that the radiation terms in EIH were not co-ordinate independent, which was carried 

on while Trautman was in London at Bondi's department. Neither Bondi nor Infeld 

seem to have regarded Trautman's 1958 papers as showing that freely-falling systems 

ought to radiate. Certainly whatever objections in principle might have been raised 

against Trautman's paper could have been raised with equal force against Infeld's 

radiation chapter in Motion and Relativity, which Bondi here refers to as almost 

definitive, up to a point. 

Bondi's second worry concerned the presence of what we might call infinitely long 

tails in gravitational radiation. This phenomenon was demonstrated conclusively in 

the 1960s in the work of Newman and Penrose. Tails are disturbances which fail to 

"keep up" with the rest of the wave, thus violating Huyghen's principle, that the 

total disturbance is confined to a single expanding wave front defined by the speed 

of the wave. In GR, tails, which can arise as the wave interacts with the curved 

background metric of the source, bounce around indefinitely, preventing the system's 

field from ever quite settling down to a quiescent, static state again. The source will 

always be surrounded by echos of the original disturbance which caused the original 

burst of radiation, however short-lived. Bondi has referred to the discovery of tails 

in gravitational waves as "absolutely disastrous," since it shows "the world to be a 

much more complicated place than had been thought" (Bondi, 1970, pg.269). The 

problem, as Bondi sees it, is that the source's future behaviour now depends "on its 

earlier history right to the year dot . . . and this dependence on history is something 

which I think we can now definitely identify in the general theory and which makes 

it a markedly less attractive theory." He concludes, "we have to live with this theory 
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... [but] it shows itself to be a little nastier than might be expected." 

When the author visited Bondi in 1995, this problem of tails in GR was still 

one which bothered him greatly. In another interview, Ted Newman well recalled 

Bondi 's strong and controversial rejection of tails until the work of Newman and 

Penrose compelled him to accept their existence. Part of his concern can no doubt 

be found in a practical consideration from his 1962 paper. In this paper Bondi 

manages to show that a massive system which is initially and finally static, but 

which goes through some non-axisymmetric disturbance in between, will have lost 

mass in the meantime to gravitational waves it emitted. The period of emission is 

characterized by a certain function, called the "news function" by Bondi, which is 

non-zero only during this period. One reason for his insistence on initial and final 

stasicity is that, in GR, the problem of defining the mass of a system is a rather 

tricky one, especially is the system is dynamic. One way around this problem, 

increasingly in use from the 1960s on, is to look at the field of the (isolated) system 

far from the system, where it should approximate to the Schwarzschild metric. In 

this context , one can define the mass as being that of a Schwarzschild body with 

an equivalent field. Bondi thus laid great stress on the initial and final stasicity of 

his system, even though he was successful in defining a time-varying mass function 

which reduced to the static field Schwarzschild mass in the static case. Tails which 

refused ever to die away completely were one obvious threat to this picture. A 

system with which consisted of freely falling dust , on the other hand, seemed to lack 

any mechanism do knock itself out of its initial quiescent state (in addition, binary 

systems in general lacked an initially static configuration). Such a system posed a 

threat to the other boundary condition, the initial one. It 



... does not contain news in this sense. Its future is a clear consequence 

of its past, and it would seem difficult to draw a distinguishing line between 

different systems of this kind though conceivably the pressure-free gas 

might be the only non-radiative material, all others radiating if in motion 

(Bondi, van der Burg and Metzner 1962). 
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Bondi regarded the news function as demarcating those systems which could radi­

ate from those which could not . "News" was the characteristic of a radiating system, 

the possibility that information would be carried by radiation out to a distant ob­

server rather presumed the existence of something worth reporting. For Bondi, the 

medium was indeed the message, in the sense that no possibility of a message im­

plied no medium (no waves). This distinction was crucial to Bondi 's interpretation 

of the news function which "nobody has fully understood" in Bondi's view (inter­

view) . From 1960 on, only a handful of researchers, mostly from or influenced by 

the older generation of sceptics, continued to feel that freely-falling systems did not 

(or were likely to turn out not to) radiate. Bondi himself, who ceased to be active in 

the field from 1970 on, did not convince himself that even the idealized freely-falling 

dust case should radiate, in the form of two dust filled stars orbiting each other, 

until recently (interview). In spite of his own doubts on this score, his work, and 

that of others associated with his and Pirani 's group in London played a vital role 

in developing an increasingly convincing picture of gravitational waves in the 1960s. 

His scepticism, too, played a role in convincing another celebrated astrophysicist, 

Chandrasekhar, to take up the back reaction problem (see next chapter). 

Bondi also gives (in part D of (Bondi , Van Der Burg and Metzner, 1962), which 

section is authored by Bondi alone) an important treatment of the reception of a 
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gravitational wave. His receiver consists of "two massive particles ... with a motor 

between them". He analyzes its absorption of incoming waves , consequent motion, 

and assuming the waves are weak, and therefore a linearized scheme is appropriate, 

its own emission. He is able, based on his analysis, to derive the quadrupole formula 

for energy absorption, "identical (apart from a numerical factor) with the electro­

magnetic one". Bondi 's quadrupole formula is , unlike the back reaction quadrupole 

formula, is generally accepted as correct. The problem for sceptics, like Bondi him­

self, is whether a non-linear source, such as a binary system would emit quadrupole 

radiation at all , or according to the same formula. His quadrupole moment of the 

receiver shows the wave very far from the source indeed carries a flux of energy with 

a quadrupole characteristic. Many physicists regarded it as acceptable to equate 

this "far-zone" or "receiver" quadrupole, with the "near-zone" quadrupole moment 

of the source. Others, however, such as Anderson, criticized this as "proof by nam­

ing" (interview) , since they felt there were no grounds for assuming that the two 

quadrupole formulas really expressed the same quantities. 

At Princeton John Wheeler and his students were also interested in addressing 

questions concerning the physical description of gravitational waves. Wheeler and 

his group had some influences acting on them which were unusual. For instance, 

Weber spent time on a fellowship with Wheeler while he developed his ideas of de­

tecting gravitational waves , and this naturally helped stimulate some interest there 

(Misner, interview) . Of course Wheeler himself participated in the debates such as 

whether the cylindrical waves could carry energy, and his students were exposed 

to the controversy at conferences in the late 50s (such as Chapel Hill and Rayon­

nement). Like Bondi, Wheeler and his group disliked the pseudo-tensor approach 
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to the problem of gravitational mass-energy, and preferred to examine the far-field 

effect of a source to determine its mass (two important definitions of gravitational 

mass from this period are the "Bondi mass" and the "Arnowitt-Deser-Misner (ADM) 

mass" from Wheeler 's group). Another topic which focused the Princeton groups 

attention on gravitational waves was the Geon, Wheeler's name for an entity con­

structed of a wave bundle held together by its own gravitational attraction. Wheeler 

had examined the idea of an electromagnetic geon, constructed from high frequency 

electromagnetic waves, and the idea was partly of interest because of a sense that 

such a "body" might prove a classical prototype for a model of elementary particles 

composed of pure field (Brill, interview). 

Wheeler was already a distinguished theoretical physicist when he turned his at­

tention to GR in the 1950s. This was a time in which many field theorists turned 

towards gravity as the next stage in the career of quantum field theory after the suc­

cessful post-war battles with the problems of renormalization and so on in quantum 

electrodynamics. Unlike his student Feynman (who was more typical in this), who 

was primarily interested in quantum gravity, on which only slow progress was made 

at this time, Wheeler adapted effectively to the mores of the relativity community, 

nevertheless retaining a set of sensibilities which set him somewhat apart in that 

milieu. He certainly viewed the geometric description of spacetime as an essential 

feature of the theory, rather than a curiosity of a wayward and eccentric field theory. 

Wheeler set his students Dieter Brill and James Hartle to work on the prob­

lem of the "gravitational geon" . This would be a geon constructed out of short­

wavelength gravitational waves, especially of interest in that they would be pure 

sourceless gravitational field constructs, gravitational disturbances held together by 
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their own gravitational attraction. A tool for the investigation of this problem had 

been borrowed by Wheeler from optics, the idea of the "two-lengthscale expansion" 

or "shortwave expansion," in which very strong (and therefore highly non-linear) 

gravitational fields could be expanded in terms of the ratio of a short lengthscale 

describing local disturbances in the field and a long lengthscale describing the back­

ground curvature in which the disturbances found themselves. This provided a 

scheme in which waves could be studied in the context of their own background 

curvature. That is, the metric was divided into a long-length scale, time averaged 

curvature representing the gravitational field produced by the waves' mass-energy, 

and a short lengthscale, locally varying field representing the actual waves. Brill and 

Hartle (1964) were able to employ this scheme to study the geon, and Brill (1959) 

was able to show that toroidal wave pulses (first proposed as a spatially limited ver­

sion of the Einstein-Rosen cylindrical waves by Weber and Wheeler (1957) , and a 

suitable metric was subsequently suggested by Bondi) appeared to have mass when 

seen from a distance. The gravitational geon was one way in which the reality of 

gravitational waves as an energetic phenomenon was argued at this time. Indeed, in 

recent times Cooperstock (see below) has attempted to show that the gravitational 

geon cannot exist, in support of his energy localization hypothesis, which argues 

that gravitational field energy cannot propagate through vacuum. 

Subsequently, a student of Wheeler's student Charles Misner, Richard Isaacson 

who developed the shortwave expansion description of gravitational waves further, 

was able to produce a tensor quantity, averaged over several wavelengths of a wave 

which described the wave energy in an invariant way. This provided a practical 

means in which the energy in gravitational waves could be calculated for the purposes 
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of estimating their flux of energy, and offered a way to avoid the controversial pseudo­

tensor approach to estimating energy in the wave. 

The two-lengthscale metric scheme played a critical role in visualizing gravita­

tional waves within GR theory. The picture of gravitational waves as small scale 

"ripples" of curvature (gravitational field) superimposed on the largescale back­

ground curvature of spacetime sparked the introduction of the now-commonplace 

metaphor of gravitational waves as "ripples in the curvature of spacetime" (Thorne, 

private communication). It was certainly Wheeler, with his gift both for visualiza­

tion and for neologisms (geon2
, black hole), who popularized the spacetime curvature 

picture of GR, with his Geometrodynamics (1962). It is Wheeler himself who points 

out the 19th century Riemannian premonition of our contemporary picture of grav­

itational waves in a paper by the mathematician William Clifford (Wheeler, RMP, 

1961). Clifford (a well-known Victorian mathematician who popularized Rieman­

nian geometry for an English speaking audience), inspired by Riemann's epochal 

work on non-Euclidean geometry wrote 

I hold in fact (1) that small portions of space are in fact of a nature 

analogous to little hills on a surface which is on average fl.at; namely, 

that the ordinary laws of geometry are not valid in them. (2) That this 

property of being curved or distorted is continually being passed on from 

one portion of space to another after the manner of a wave. (3) That 

this variation of the curvature of space is what really happens in that 

phenomenon which we call the motion of matter, whether ponderable or 

ethereal. ( 4) That in the physical world nothing else takes place but this 

2 which narrowly escaped being called a "kugelblitz" 



variation, subject (possibly) to the law of continuity. (W.K. Clifford, "On 

the Space-Theory of Matter," Proceedings of the Cambridge Philosophical 

Society 2, 157-158 (1876).) 
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Clifford's idea of curvature waves and Poincare's idea of the wave of acceleration 

are quite different concepts in their origins. Einstein's gravitation theory, which 

married Riemannian geometry and relativistic field theory contained the possibility 

within of marrying the two, but it was not until the 1950s and 60s that they were 

really unified in the modern picture of gravitational waves. Wheeler's vision of the 

versatility of the gravitational field, supporting large scale curvature and small scale 

ripples found expression in the two-lengthscale approach, and undoubtedly helped 

foment a new visualization of the idea of gravitational waves. Brill himself recalls 

that "the idea of small scale ripples was around" at that time (interview), although it 

may have been some time before the physical metaphor employed in Misner, Thorne 

and Wheeler really gained currency. 



Chapter 11 

The Problem of Motion in the 

1960s 

In the late fifties, the EIH approximation was further developed by Andrzej Traut­

man, a student in lnfeld's group in Warsaw, who departed from lnfeld's approach in 

adopting "outgoing wave only" boundary conditions. He also confirmed Goldberg's 

earlier claim that the net back-reaction effect could not be transformed away, but 

merely moved between order in the expansion and another. Thus, his paper ad­

dresses the following question, arising out of the lnfeld, Scheidegger and Goldberg 

debate, "whether the situation in GR resembles that in Newtonian mechanics rather 

than that in electrodynamics." The possible resemblances are described as follows. 

In Newtonian mechanics the initial positions and velocities of point­

masses determine their motion completely. The situation is different in 

electrodynamics where the initial values of the field are required besides 

information concerning changes. Two free point-charges of opposite signs 
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may move uniformly around a circle in a standing-wave electromagnetic 

field. However, the same charges may alternatively produce outgoing radi­

ation. Their motion will not then be periodic; they will undergo damping. 

Which of these cases occurs in any particular system depends on the initial 

and boundary conditions. 
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So the question at issue, according to Trautman, is whether or not the anal­

ogy with electromagnetism, which gives rise to gravitational radiation, should be 

favoured over an analogy with Newtonian mechanics, in which orbital motion is not 

damped, and radiation does not exist in the gravitational field . After going over 

the electromagnetic analogy, and presenting a solution to the gravitational field 

equations in the original EIH form, he notes that 

by analogy with the scalar wave equation and Maxwell's theory, so­

lutions of [this] form may be interpreted as representing standing-wave 

fields. In order to get solutions corresponding to 'retarded' or 'advanced' 

fields the series must be supplemented with the missing radiation terms. 

He thus recalls the phrasing of Infeld and Wallace, where the imposition of retarded 

conditions is seen as arbitrary. Indeed, Trautman expresses well the underlying 

philosophical (as opposed to merely technical) objection to the post-Newtonian ap­

proach to the radiation problem of fast-motion advocates (like Bonnor and Havas, 

see below). The slow-motion expansions reduced GR, at first order, to a gravita­

tional theory (Newton's) which did not admit radiation, and never had. Fast-motion 

expansions, of course, reduced GR at first order to special-relativistic dynamics, a 

theory in which the problem of radiation was very advanced, but which was not 
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a gravitational theory. Both therefore had problems, which had to be overcome 

by pressing to higher orders in the relevant expansions, but the post-Newtonian 

method suffered for years from the difficulty of introducing the radiation terms in 

a non-arbitrary way. Trautman himself showed that one could introduce radiation 

terms , with a correct choice of boundary condition, which could not be transformed 

away, contrary to the claims of Infeld and Scheidegger, but he did not recover the 

quadrupole formula result though he did, unlike Hu, find positive damping. 

Specifically what Trautman shows is that a choice of radiation terms correspond­

ing to outgoing waves at the 5th order in the space-space metric terms cannot be 

transformed away, when in combination with the equivalent time-time metric terms 

at 7th order. The slow-motion approximation assumes that the time derivatives are 

smaller by order c than all space derivatives , and therefore that where space-space 

terms in the metric are of order n in 1 / c, the corresponding time-space terms in 

the metric will be of order n + 1 and the time-time terms of order n + 2. It is the 

whole metric, not individual components, which is invariant, so that while it may 

be possible to transform away the radiation terms at order 5 and 6, the radiation 

effect will merely show up at order 7. Whereas Fock, as we have seen, chose a par­

ticular coordinate scheme and stuck with it , Infeld, the upholder of covariance, had 

experimented with different coordinate shifts, in pursuit of a non-damping result. 

Trautman, Infeld's student, rejected Fock's strict adherence to harmonic coordinates 

as "somewhat stringent," seeing "no reason for restricting ourselves to harmonic co­

ordinates only". Instead, he generalized the boundary conditions, in order to inves­

tigate Infeld's old argument that the radiation terms were merely coordinate effects , 

successfully showing that they were not. That Infeld cannot have been convinced is 
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shown by his remarks in Motion and Relativity two years later. 

Indeed, Trautman also (1958a) showed quite generally that imposing outgoing 

wave boundary conditions would lead to a quantity associated with the :8.ux of energy 

in the asymptotic waves being zero or positive, and therefore that such conditions 

should lead either to no radiation, or to radiation carrying energy outward from 

their source. 

At about this time, Rosen, now at the Technion Institute in Israel, encouraged 

his graduate student Asher Peres to attack the problem as a means of deciding the 

dispute between Fock and Infeld over the existence of radiation reaction in the post­

N ewtonian problem of motion. Peres employed a method bearing some similarities 

to that of Fock, making use of the De Donder ("harmonic" ) gauge condition but also 

employing the singularities used by the EIH method (which Rosen disliked) (Peres, 

1959a). His initial results, however, gave anti-damping for the binary system, like 

Hu before him, and thus failed to shed any light on the Fock-Infeld dispute (Peres, 

1959b). After finishing his thesis however, Peres realized where the problem with 

his previous paper lay (Peres, 1959c). In imposing boundary conditions on the 

equations of motion for the binary system, he had inadvertently chosen conditions 

which included incoming as well as outgoing radiation at infinity, so that he was 

unwittingly introducing a source of energy to power the outward spiral of the binary 

(as Eddington might have remarked, the rate of inspiral can proceed at the speed 

of thought, if one is not careful) . 

Peres explains the ease with which such confusion can arise in his correction 

paper, 

at each stage in the approximation procedure . . . there is a considerable 



freedom of choice of solutions, each representing a possible motion and a 

gravitational field belonging thereto. Only one of these solutions behaves 

at infinity as purely outgoing waves; the remaining ones also contain in­

coming waves. However, it is difficult to determine which solution is the 

correct one because then-th term of a series expansion into powers of ( v / c) 

behaves in the wave zone as Rn-2 [R is the separation of the binary com­

ponents], and no boundary conditions for each stage of the procedure are 

known. The purpose of this present note is to give a criterion which partly 

removes this ambiguity. . . . [The] method is not sufficient in general but 

it gives unambiguous results up to the seventh order. As a consequence, 

one has to modify the fields that were previously used and ... [the result] 

agrees with [the Landau and Lifshitz quadrupole formula]. The fact that 

one previously obtained a negative radiated energy should be ascribed to 

the presence of incoming gravitational waves, which were absorbed by the 

particles. (Peres, 1959c) 
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Essentially Peres' method involved expanding the retarded potential at infinity 

as a Taylor series, and then whenever terms like the leading order (unretarded) 

potential occured at some point in the approximation of the system's motion, to 

add the succeeding order (in 1 / c) part of the retarded potential into the next order 

of the slow-motion expansion, thus imposing the retarded potential, outgoing wave 

condition on the motion of the source (Peres, 1960). 

Peres' 1960 paper has been referred to as containing the first correct back reaction 

calculation (Thorne 1989). Nevertheless, the perceived arbitrariness of the slow­

motion approach in imposing the wave zone boundary conditions from one step in 
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the expansion to the next, which seemed reflected in the wildly differing results 

produced by the method, gave rise to arguments that the approach was hopeless 

(Bonner 1963). 

The difficulty with the slow-motion expansion could be addressed, in the manner 

of Fock, by employing a different, fast-motion-like expansion in the region far from 

the source. Such an expansion did admit of radiation fields, while the slow-motion 

approach to the problem of motion could deal successfully with the source. The 

problem would then remain, how to match the two expansions in the two different 

regions to each other, so that whatever boundary conditions were imposed in the 

wave zone would be correctly applied to the solution of the source's motion. Peres 

was meticulous in his matching between the two regions, but, as he noted himself, 

his method was not at all general. A completely general, unambiguous scheme 

would have to wait until the end of the next decade, but in the meantime, Peres and 

Trautman had shown a way out of the dilemma facing the slow-motion approach, 

even while Bonner and others were pronouncing it hopeless. 

While conceptually more appealing in that it took as its starting point the linear 

approximation in which the radiation analogy with electromagnetism had arisen in 

the first place, whereas the post-Newtonian expansion approximated to a theory of 

gravity which had never admitted the idea of radiation at all, the alternative fast­

motion approach, as developed by Havas and Goldberg (Havas and Goldberg 1962) 

and others (for example, Bertotti and Plebanski 1960), was also proving frustrating. 

It was a difficult task to go beyond the leading order corrections to the linearized 

theory and the results of applying that step to the reaction problem, published by 

Smith and Havas, again showed an energy gain in the source (Smith and Havas 
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1965). Therefore in his review paper of 1963, Bonnor concludes that the question 

of whether freely falling sources experienced damping remained unsettled. 

Bonnor's paper contains an interesting comparison of the two main representa­

tives of the slow and fast motion approaches at that time, on the one hand EIH 

and EIH-like schemes, and on the other hand the work of Havas and collaborators. 

With regard to EIH, Bonnor is not greatly impressed by the progress made. 

A choice of solutions of the EIH equations is available, and that made 

by EIH refers to the ... non-radiative field. One can try to use the retarded 

potential instead, though this leads to much arbitrariness ... Nevertheless, 

a number of workers have used the EIH method on radiation problems, 

and their conflicting results are a monument to its unsuitability for the 

task. 

With regard to Havas' approach, Bonnor holds out more hope because "unlike ... 

EIH, [it] is covariant with respect to Lorentz transformations of the fiat Minkowskian 

background metric" (i.e. it satisfies the axioms of special relativity). Nevertheless, 

"the linear approximation tells us nothing about radiation from a freely gravitating 

system" (since in the linear approximation particles are unaffected by each other's 

gravitational attraction), while Havas' "delicate mathematical processes" designed 

to overcome the "great difficulties" of the next level of approximation (first post­

linear) produce an admittedly "disappointing" result, which fails to agree with the 

well known perihelion shift result and, like Hu and Peres' first try, gives "an energy 

gain due to radiation, an inexplicable result". Bonnor still holds out hope, saying "it 

would be of great interest if Havas' method could be carried one step further." With 

this sentiment Havas was heartily in agreement, but unfortunately it was never to 
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be carried out. 

Bonnor had himself adopted the approach of analyzing a simple mechanical sys­

tem which begins and ends in a static state, a model which Bondi adopted. Like 

Bondi, though with a less involved method, Bonnor was able to show that such 

a system would lose mass, but he also concluded that "whether freely gravitating 

bodies radiate, and if so with what effect on the motion, is still an open question." 

Havas and Goldberg benefited from Havas' extensive knowledge of the litera­

ture on the classical problem of motion, and exploited a fast-motion approxima­

tion scheme of Havas' (1957) based on a pre-war one due to the Polish theorist 

Mathisson. 1 Like EIH they employed point sources, and made use of renormaliza­

tion rather than EIH's surface integrals to avoid the resulting divergent integrals. 

As mentioned already, their results (Havas and Goldberg, 1962) disagreed with the 

well known result for the perihelion shift of Mercury. However, Havas regarded the 

radiation effects as being the particular target of the method, and expected that the 

scheme, which had presumably not been pushed to high enough order (one past the 

linear order in the 1962 paper) to recover the perihelion shift, might still correctly 

derive the back reaction on a system due to wave emission. 

At first, Havas, Goldberg, and Havas' student Stanley Smith all did independently 

arrive at a result showing the loss of energy by such a system. In fact Havas had 

derived this result as early as 1957, where he concluded that "the gravitational 

and the electromagnetic radiation damping terms are of the same form, and thus it 

appears that gravitational radiation effects have as much reality as electromagnetic 
1 Interestingly, Havas reports in a recent paper that Mathisson was nearly chosen by Einstein as a collaborator on 

the problem of motion instead of his compatriot Infeld, which might have resulted in an EMH paper rather different 

from the EIH which actually exists. 



134 

ones." But during 1958 Havas noticed an error in his calculations which, as with 

Hu's (very different) calculations years before, reversed the sign of the result. Havas 

recalls that "all three of us had been so sure that there must be damping that we 

had not paid enough attention and each with a different slip had indeed gotten it" 

(Havas, private communication). Smith and Havas, after thorough checking of this 

"disquieting result ," discussed it at length in a 1965 paper. 

They first of all noted that it was contradicted by Trautman's result showing that 

the use of retarded potentials ought to lead to an outgoing flow of radiation. That 

Trautman's result held for the exact theory indicated that the discrepancy was due 

to a failure in the approximation, at least to the order pursued by Smith and Havas 

(again, first post-linear). Therefore, 

... although the possibility should not be overlooked that an approach 

to the problem of gravitational radiation by considerations of energy flux 

at infinity is inherently inadequate, we would rather expect that an in­

vestigation of the higher orders of approximation would indeed yield an 

energy loss in the retarded case (or possibly show the absence of any energy 

change) (Smith and Havas, 1965). 

Despite a great deal of other work on fast-motion approximations of the problem 

of motion (not primarily directed at the radiation problem in most cases) at this 

time (e.g. Bertotti and Plebanski (1960) , Kerr (1959) and Westpfahl (1985)) , the 

result for the binary radiation reaction problem found by Havas and collaborators 

presented a problem for further work on the radiation problem in this approach. 

The first post-linear order was already rather complicated, and it would appear 

there was little stomach for attempting the next order. Havas felt that the method 
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suffered from a lack of exposure, complaining, as we have seen, that at the GR 

meetings of that time, lnfeld, who championed the post-Newtonian EIH method, 

prevented papers being given on its rival. Plebanski, who worked both in the EIH 

and fast-motion schemes reports that Infeld showed some hostility to the latter 

approximation method (interview). 

Havas would himself have liked to press ahead with the next order of approxima­

tion, but lacked the time and the manpower (in the form of students and collabo­

rators), for such an undertaking. In the early 60s he benefited from his association 

with Goldberg at the USAF, and was able to get air force grants to attract visitors 

to Lehigh, such as Plebanski and Moshe Carmeli, who looked at the problem of a 

massive particle moving in an external field, showing how the field could be divided 

into the external field and the particle's own self-field, despite the problems that 

the non-linearities of the field introduced compared with the electromagnetic case. 

With the ending of Air Force funding in the early 70s (and from Havas' point of 

view possibly Goldberg's departure from the ARL) funding for science in smaller 

institutions especially was strongly curtailed. This meant that, for the next few 

years, the field was left to new efforts in the slow-motion approximation. Havas, de­

spite the dissapointment he faced in his own efforts, still viewed with grave, perhaps 

increased, scepticism these efforts, which he suspected were justifying their means 

by their ends. 

In Smith and Havas he writes 

it is perhaps even more unfortunate that the inconsistent approxima­

tion used [Einstein's original linear approximation] led to a result which 

conformed so completely to expectations based on physical "intuition" 



borrowed from electrodynamics; this has led to a ready acceptance of Ein­

stein's [quadrupole] formula for the supposed energy loss and a neglect of 

critical study of its derivation. It also has tempted many authors to justify 

other (classical or quantum mechanical) approximation methods by their 

ability to reproduce [the quadrupole formula], which clearly is not a valid 

criterion. 
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Like Bonnor, he regards the problem of radiation reaction in a freely falling system 

as still open. 

Bondi, who with his collaborators had done much to improve the understanding 

of wave propagation far from the source (see especially Bondi, van der Burg and 

Metzner 1962 and Sachs 1962) made this point at the Warsaw conference of 1962 

(Bondi 1964). However, there were those, like Feynman, who viewed the relativists' 

caution with impatience. As early as Chapel Hill, Feynman was "surprised to find 

a whole day at the conference devoted to this question" (of whether gravity waves 

could carry energy) (letter from R.P. Feynman to Victor Weisskopf, February 11, 

1961 )2 . He was caustic in his appraisal of the discussions at the Warsaw conference, 

writing to his wife that they were "not good for my blood pressure" (Feynman 1988). 

Bondi's lecture, however, inspired the astrophysicist Subrahmanyan Chandrasekhar 

to take up the problem (Chandrasekhar, interview). Born in India in 1910, Chan­

drasekhar is best known for his discovery, while on board ship to England from 

India in 1930, of an upper limit to the mass of White Dwarf stars, above which such 

a star cannot avoid collapsing, crushing its own atoms. This result was extremely 
2 A photocopy of this letter was supplied to me by Kip Thorne. Copies are also to be found in the Feynman 

papers at the California Insitute of Technology, Pasadena 
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controversial in the thirties, and the hostility which Eddington showed towards it 

in public forced Chandrasekhar to leave England for America where he worked for 

the rest of his life at the University of Chicago. In 1983 he received the Nobel prize 

in physics, principally because of his celebrated work on White Dwarfs. In 1962, 

inspired by a desire to work on GR just as the subject was about to take off, he 

gained permission to attend the Warsaw conference, the result of which was that he 

took up the problem of radiation damping of binary systems. 

Throughout the 1960s, Chandrasekhar developed his own slow-motion formal­

ism, dealing with extended fluid bodies (as opposed to point masses) at one post­

Newtonian order after another (Chandrasekhar 1965). By the end of the decade 

he had advanced far enough in the expansion (to post-2t-Newtonian order) to de­

scribe reaction effects. His conclusion agreed with the quadrupole formula result 

(Chandrasekhar and Esposito 1970). 

At about this time William Burke, a student of Kip Thorne's at Caltech, in­

troduced improvements to the slow-motion approach which removed much of the 

arbitrariness in imposing the boundary conditions. Burke selected the problem of 

radiation damping in binaries for himself, since Thorne had been convinced by Peres' 

work that the problem was solved in the slow-motion case. Influenced by Frank Es­

tabrook, and an applied mathematician at Caltech Poco Logerstrom, Burke made 

use of the applied mathematics technique of matched asymptotic expansions, which 

allowed one to determine the solution to the problem of motion in the zone near the 

source, by matching it through an intermediate zone, to the "outgoing wave only," 

or other potential of choice, in the far zone of the waves (Thorne, private communi­

cation). In this way the chosen boundary condition could be unambiguously applied 
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to the solution of the near zone problem, thus addressing the arbitrariness which 

bedeviled the slow motion approach up to this time (Burke 1969). With this novel 

approach, Burke and Thorne also derived the quadrupole formula for emission from 

binary systems (Burke and Thorne 1970). 

Burke also constructed a "radiation-reaction potential" which could describe the 

damping force, and Thorne applied this approach to the damping problem in the 

Regge-Wheeler guage, where he was able to derive the quadrupole formula result in 

only two iterations (Thorne, private communication). It was considered a general 

rule in the subject that a minimum of three iterations of the field equations (three 

rounds of applying corrected equations for the motion of the constituents back to 

the field equations to discover more exact equations of motion), were required to 

describe radiation damping in gravitationally bound systems. This guideline was 

subsequently canonised by Walker and Will in 1980. However, in writing the rel­

evant section of the textbook Misner, Thorne and Wheeler (1973), Thorne made 

use of the De Donder gauge in this ·calculation, in which gauge three iterations 

are required, unlike the special case of the Regge-Wheeler gauge (Thorne, private 

communication). Even so, because of a compensating error, Thorne did recover the 

quadrupole formula, and it was not until Walker and Will's paper that this error 

was discovered. 

Despite Thorne's complacency, to begin with Burke considered that his contribu­

tions did not settle the issue of whether bound systems would experience damping. 

He noted in early versions of his work that his approach was not guaranteed to 

work outside of linearizable systems, and therefore could not settle the issue for 

freely gravitating systems. There is still on display at Caltech the record of a wager 
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between Burke and Thorne on whether non-linear effects would "significantly affect 

the radiation in the lowest order" from sources in free-fall motion. Thorne gave odds 

of 25-1 for this bet , which Burke conceded in 1970. 



Chapter 12 

Emergence of GR into the Physics 

Mainstream 

As we have seen, great progress had been made during the sixties on many fronts 

in the description of wave propagation and interaction with matter. Supernovae 

and binary neutron stars began to be suggested as possible astrophysical sources 

during this period, inspired at first by Weber's work (Dyson, 1963). When Weber 

embarked on his experimental program in about 1960 there was no existing theory 

of sources in the practical sense. Most theoretical work on gravitational wave emis­

sion had focused on binary systems (with the Earth's own orbit around the Sun 

frequently given as an example.) Those who were most convinced of the reality of 

gravitational wave emission from such systems (e.g. Landau and Lifshitz and Fock) 

were also most adamant that the effect was practically negligible. From Weber's 

point of view, the challenge was simply to achieve the maximum sensitivity pos­

sible with his instrument, and therefore, in that sense, the theory deficit was not 
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critical. However, his chosen design, a resonant bar which would "ring" in response 

to gravitational waves oscillating at the bar's fundamental frequency, had a rather 

narrow frequency bandwidth. Therefore it was important to choose a frequency at 

which one was liable to hear something from cosmic sources. Again, the demands of 

sensitivity restricted the choice at hand. A large bar was necessary to achieve higher 

sensitivities, but logistical considerations limited the total size. As total size was a 

principal determinant of resonant frequency the range of operating frequencies was 

thus somewhat restricted. Weber chose an operating frequency of 1661 Hz, relying 

largely on his intuition of the subject built up over a considerable time spent in 

theoretical preparation, partly in collaboration with John Wheeler, with whom he 

spent a postdoctoral fellowship year at Princeton. 

It was only after the beginning of his experimental program that Weber began to 

receive some suggestions as to possible sources. On a subsequent visit to Princeton, 

Freeman Dyson suggested asymmetric supernova collapse, in which a bump in a star 

undergoing gravitational collapse would be spun around more and more rapidly as 

the star shrank, releasing increasing quantities of quadrupole radiation, and sweep­

ing in frequency up through the kilohertz range of the bar (Weber, interview) . 

For many years, this type of source remained a favoured candidate for gravita­

tional wave detection. It was eventually superseded, however, by another suggestion 

of Dyson's published in the book Interstellar Communication (Cameron, 1963) in an 

article titled "Gravitational Machines." The article discusses possible uses of grav­

itational energy by "advanced civilizations," some of which, like the gravitational 

slingshot which powered the Voyager spacecraft , have since become a reality. He 

observes that "if a close binary system could ever be formed from a pair of neutron 
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stars" (whose individual existence, he notes, is "uncertain") (pg. 119) these systems 

would emit sufficient quantities of gravitational radiation (on account of the intense 

fields produced at short range by such highly condensed bodies) to cause the sys­

tem to decay on a relatively short timescale, until its two components plunged into 

each other in a final immensely strong burst of gravitational waves at a frequency 

suitable for detection by Weber's instrument. He estimates that such an emission 

"should be detectable with Weber's existing equipment at a distance of the order of 

100 megaparsecs." 1 Since this gives a range covering an expanse of space containing 

up to 10 million galaxies "It would seem worthwhile to maintain a watch for events 

of this kind, using Weber's equipment or some suitable modification of it." (Dyson, 

1963). 

At first, Dyson's putative source may have been seen as somewhat science fic­

tional. He certainly put it forward in an unusual setting, a book about commu­

nication with extraterrestrials (a very earnest and unsensational one, to be sure). 

Furthermore, at the Warsaw conference (Infeld, 1964), we find someone, an "uniden­

tified questioner" apparently taunting Weber after his presentation with a question 

as to whether he had yet "measured any Dyson neutron binaries". This type of 

source must have seemed almost wildly speculative at a time when the existence of 

neutron stars was very much in doubt (pulsars were not discovered until 1967 by 

Jocelyn Bell and Tony Hewish) . Nevertheless, pulsars have since been discovered 

with binary companions (for which see below) and nowadays , along with the as yet 

undiscovered binary black hole systems, these are the most favoured source for the 

next generation of gravitational wave detectors. 

1 A considerable underestimate relative to more recent calculations 
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During the 1960s GR began to become relevant for perhaps the first time to as­

tronomy and astrophysics, leaving asise the specialist subject of cosmology. Previ­

ously, astronomy had influenced GR (with the Eddington expedition and the Mer­

cury perihelion problem) rather than the other way around. This now began to 

change as a result of transformations within each subject. The strong boost given 

to the practice and theory of radio observations by the military requirements of the 

second world war resulted in the unexpected birth of the field of radio astronomy 

in the immediate post-war period. Significantly the new astronomical discoveries 

which led to astronomers and astrophysicists looking towards GR theory for possible 

explanations were largely discoveries of radio astronomy. Both quasars and pulsars 

were types of sources for which astronomers were unprepared by their optical expe­

rience, and since both gave evidence of being rather massive compact objects, it was 

natural to turn to GR for a theoretical understanding of them, since it was precisely 

in the strong field regime that this theory most strongly departed from the classical 

theory of Newton. 

At the same time, perhaps partly in response to this unaccustomed outside inter­

est, relativists began to make the various predictions of the theory far more concrete 

than had previously been the case. The development of the idea of the black hole 

(and the coining of the name by Wheeler), out of the longstanding formal solution 

to Einstein's equations due to Schwarzschild, belongs to this period2
• We have seen 

how the same is true of gravitational waves. Perhaps the most important single 

element of the coming together of relativity and astrophysics was the attempt to 

find an explanation for the quasi-stellar (quasar) sources. This indeed resulted in 

2 See (Eisenstaedt, 1993) and references therein for this history 
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the coining of a new field, "relativistic astrophysics," and a successful new series of 

symposia to promote it. The first of the Texas meetings, originally promoted by 

Infeld's former student, Alfred Schild, was called specifically to address the quasar 

puzzle, and indeed, at this time we find gravitational waves being put forward as a 

component of one proposed mechanism for the powering of quasars. 

This certainly seems to suggest a definite change in attitude towards gravitational 

waves which had previously been regarded as something of a 7 pound weakling in 

GR, one whose effects would never amount to much from an experimental or ob­

servational point of view. "The weakness of the gravitational interaction makes it 

exceedingly unlikely that gravitational radiation will ever be the subject of direct 

observation." (Pirani, 1962; pg. 199). Quasars, on the other hand, were viewed as a 

problem because if their characteristically high redshifts were assessed as cosmologi­

cal in origin, they must have immense, unprecedented outputs of energy from rather 

compact dimensions (as inferred from the variability in their luminosities on the 

time scale of years). That William Fowler (1964) suggested at this time that they 

might be powered by gravitational wave emission suggests a newfound respect for 

the potential of this previously unappreciated phenomenon (see also Coopers tock, 

1967). 

The particular topic which inaugurated the emergence of GR as an important an­

cillary field to astrophysics was that of gravitational collapse. From the early 1960s, 

the collapse of massive or supermassive stars, first hinted at by Chandrasekhar and 

investigated by Oppenheimer and his collaborators in the 1930s, but largely ig­

nored subsequently, became a favourite candidate for the power source which lay 

behind the apparently immense radio and optical emission in quasars. In 1963 Peter 
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Bergmann and lfred Schild issued a call for a symposium to be held on this subject, 

one of its goals being efforts to avoid the catastrophe of gravitational collapse to 

a singularity. The symposium was actually held in late 1963 at the University of 

Texas where Schild worked. It subsequently gave birth to a regular and highly suc­

cessful series known collectively as the Texas Symposia on Relativistic Astrophysics 

(a phrase said to have been coined by Schild (Ehlers, intro to 9)). From the first 

meeting, with Fowler's (1964) article on the role for gravitational radiation in gravi­

tational collapse and quasar emission, onwards, the topic of gravitational waves was 

invariably addressed at the meeting. Therefore, this subject was clearly viewed as 

one of the important elements of the new subject. 

The accidental quality of the rapid development of the field of relativistic astro­

physics is illustrated by Gold's speech at the closing of the first Texas symposium, 

where he says that 

here we have a case that allowed one to suggest that the relativists with 

their sophisticated work were not only magnificent cultural ornaments but 

might actually be useful in science! Everyone is pleased: the relativists 

who feel they are being appreciated, who are suddenly experts in a field 

they hardly knew existed; the astrophysicists for having enlarged their 

domain, by the annexation of another subject- general relativity. It is all 

very pleasing, so let us hope that it is right. What a shame it would be if 

we had to go and dismiss all the relativists again. 

But, in spite of Gold's anxiety, the genie was out of the bottle. GR was extremely 

slow to shed much light on the topic of quasars, but the reorientation which was 

encouraged within relativity, and the success of the great body of work which went 
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forward on gravitational collapse and black holes, invigorated the subject as never 

before and lent great vitality to the idea of a mixing of relativity with astrophysics. 

Pulsars , discovered in 1967 by Jocelyn Bell and Tony Hewish, were rather quickly 

identified with the idea of neutron stars which had been knocking around in the 

background since the thirties, and greatly helped to underpin relativity's new role. 

Gravitational waves also played a role in the subsequent development of pulsar 

theory, since their emission was expected to quickly damp the wild pulsations of 

the neutron core at the end of the gravitational collapse of the parent star (Thorne, 

1969) . The extent to which the internal dynamic within GR, encouraged by the 

move towards astrophysics, developed its own momentum is seen by the growth in 

interest in gravitational waves , which preceded by some time the emergence of any 

observational input into the subject. By 1967, one finds a new sentiment about the 

prospects for gravitational wave detection, when Wheeler said "gravitational waves, 

I cannot help but feel, are going to be one of the big discoveries of the next ten years. 

One will detect them for the first time. That is one great prediction of Einstein 's 

theory" (Wheeler, 1967). 

Still, it was to the great surprise of most theorists that Weber announced in 

1969 that he was detecting gravitational waves (Weber 1969). Although his results, 

which confounded all theoretical predictions of source strengths then and since, 

were eventually discounted amidst much controversy, they focused much attention 

on the subject, and sparked a great increase in the number of experimentalists 

working on gravitational waves. (See Collins 1975 and 1981 for a detailed account, 

and Franklin 1994 for an alternative viewpoint). On the theoretical front, research 

in the 1960s on black holes, cosmology and other topics had made the field of 
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relativity very relevant to astrophysics. Gravitational waves shared somewhat in 

this popularity, and seemed likely to continue to grow in practical importance as 

experimental interest waxed. The discovery of the first binary pulsar, PSR 1913+16, 

(Hulse and Taylor 1975) was the fortunate and serendipitous occasion which sealed 

this promise. 



Chapter 13 

The Quadrupole Formula 

Controversy - Origins 

The origins of the "quadrupole formula controversy" of the 1970s and 80s can, 

in a sense, be traced to Feynman's remarks at Chapel Hill in 1957. His remarks 

are interesting as an enunciation of the "non-rigorous" approach to relativity (and 

theoretical physics as a whole) and so I quote them at length. 

There exists, however, one serious difficulty [in the study of relativistic 

gravity] and that is the lack of experiments. Furthermore, we are not going 

to get any experiments, so we have to take a viewpoint of how to deal with 

problems where no experiments are available. There are two choices. The 

first choice is that of mathematical rigor. People who work in gravitational 

theory believe that the equations are more difficult than in any other 

field, and from my viewpoint this is false. If you then ask me to solve the 

equations I must say I can't solve them in the other fields either. However, 
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one can do an enormous amount by various approximations which are non­

rigorous and unproved mathematically, perhaps for the first few years. 

Historically, the rigorous analysis of whether what one says is true or not 

comes many years later after the discovery of what is true." [emphasis 

added] (De Witt 1957, pg. 150). 
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This view was previously encapsulated by William Blake in a "Proverb of Hell," 

"What is now proved was once only imagin'd." 1 

Between 1957 and the early 1970s a great deal of work had indeed been done, 

at all levels of rigour, on the subject of gravitational waves. Many relativists had 

taken the course advocated by Feynman (e.g. Peters and Mathews). Others had 

been more cautious, but no less successful in many cases, in improving understand­

ing of gravitational radiation. The extent of their achievement was such that by the 

late sixties, Kip Thorne (like Feynman, a student of John Wheeler, and decidedly of 

the progressive, non-rigorous school) could state that the issue of whether gravita­

tional waves and gravitational radiation reaction existed was at last settled, and the 

stage had been reached at which applications of the theory, such as the quadrupole 

formula, could be made use of in astrophysical applications with little fear of error. 

At this point, the rigorous relativists might well have asked, what role is there for 

us? Now the few years have passed, and we are to be declared redundant in any 

case! The forces of Heaven began to rally themselves. 

Jurgen Ehlers speaks for the virtues of proving what was once imagined in a 1986 

talk on "Folklore in Relativity and What is Really Known". He quotes Synge on 

the advance of science 

1 William Blake, The Marriage of Heaven and Hell, plate 8 



As science advances, it seems to have a sort of scorched earth pol­

icy. The advancing army is full of enthusiasm for its advancing into the 

unknown, and the unknown is always exciting. If it glances back at the ter­

ritory it has overrun, it sees little but dullness, the dullness of what seems 

to be completely known, with little prospect of adding to that knowledge 

by a deeper understanding. 
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Ehlers continues, "so, let us now turn to the dullness of what seems to be completely 

known. Perhaps it is neither dull nor, in fact, really known." (Ehlers, 1987). 

Ehler's attempt to draw the attention of the advancing horde away from its 

headlong forward rush and back towards its own past points up a curious paradoxical 

aspect of the progressive school. In their attitude to history, they are impelled to 

maintain a conservative stance. Although they may take an active interest in history, 

they are usually hostile to revisionism. For the progressive, the history of his field 

has a critical, if passive, role to play as the solid foundation from which further 

advances in the subject may be launched. As we shall see, attempts such as Ehlers' 

to put what has been accomplished in a less certain perspective are answered with 

counter histories designed to reinforce received opinion on what is "known" (what 

Ehlers calls "folklore"). The progressives, as Dieter Brill puts it (interview), are 

a class of "daring conservatives". It is their conservatism with regard to what is 

known which justifies and enables their daring progression into the unknown. 

An example of the progressive school in action (Brill's daring conservatives) is 

given by P.C. Peters' and Jon Mathews' paper (1963) on binary inspiral. This paper 

makes use of the quadrupole formula "result" to calculate the pattern of radiation 

by particles in Keplerian orbits and the evolution of such orbits under radiation 
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reaction. Already the outlook is markedly different from that of Fock, who stressed 

how superfluous the back reaction effect was for any description of orbital motion. 

Peters and Mathews state their attitude to the gravitational wave controversy right 

at the outset. 

The linearized version of Einstein's general theory of relativity is strik­

ingly similar to classical electromagnetism. In particular, one might expect 

masses in arbitrary motion to radiate gravitational energy. The question 

has been raised, however, whether the energy so calculated has any phys­

ical meaning. We shall not concern ourselves with this question here; we 

shall take the point of view that the analogy with electromagnetic theory 

is a correct one, and energy is actually radiated. 

If Peters and Mathews feel obliged to begin with an apology, however defiant, 

a decade later the confidence of the Caltech school has increased, commensurate 

with the increased scope of their horizons. Thorne and Kovacs (1974), in a paper 

presenting a fast-motion scheme intended to apply to non-bound, but gravitationally 

interacting, sources such as those producing gravitational bremsstrahlung radiation, 

outline an ambitious program. 

[Because) "gravitational-wave astronomy" may be a reality by 1980, 

[the] Caltech research group has embarked on a new project: We seek 

(1) to elucidate the realms of validity of the standard wave-generation 

formulae; (2) to devise new techniques for calculating gravitational-wave 

generation with new realms of validity; and (3) to calculate the waves 

generated by particular models of astrophysical systems. 
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That the references to elucidation of "realms of validity" here expresses an out­

look totally at variance with that of the sceptics is to be understood when Thorne 

announces his intention of aggrandizing new realms for the venerable quadrupole 

formula, and not curtailing its range in any way. 

The 'quadrupole-moment formalism' dates back to Einstein (1918), 

and has been canonized by Landau and Lifshitz (1951). The derivations 

of this formalism which we find in the literature are valid only for sys­

tems with slow internal motions and weak (but non-negligible) internal 

gravitational fields. However, a detailed analysis ... shows that only the 

slow-motion assumption is needed; the quadrupole-moment formalism is 

valid for any slow-motion system, regardless of its internal field strengths. 

By 1980 the point has been reached where some consolidation is in order. In 

Thorne (1980), a review paper on "Multipole expansions of gravitational radia­

tion," the abstract begins "this paper brings together, into a single unified notation, 

the multipole formalisms for gravitational radiation which various people have con­

structed." Some reference to philosophical outlook governing the enterprise is still 

in order. 

The reader should be warned that this article and its author do not 

aspire to the high level of mathematical rigor and elegance that charac­

terize much of mathematical relativity [e.g. Penrose's (1964,68) confor­

mal treatment of null infinity, and the Bondi et al. (1962)-Sachs (1964)­

Newman and Penrose (1968) treatment of the asymptotic properties of 

gravitational-wave fields.] Instead, the author seeks a level of rigor that 





154 

Without the resources of a large research group to draw on to advance his fast 

motion research program, Havas nevertheless had one student in the 1970s who 

very much shared his view as to the importance of the back reaction issue in the 

problem of motion, and the failings of the slow motion expansion techniques. Arnold 

Rosenblum was not only determined to carry on the fast-motion approach by his 

own efforts, but he also proved an able and effective propagandist for the counter­

offensive of rigour, whose day had apparently come, well over a decade after Feynman 

had advised relativists "Don't be so rigorous or you will not succeed" (De Witt, 1957 

pg. 150) . 

After receiving his Ph.D. with Havas at Temple University in Philadelphia, 

Rosenblum went to Munich in 1974 to work with the group of the mathematical 

physicist Jurgen Ehlers. There, his enthusiasm for the subject of gravitational ra­

diation reaction and his trenchant criticisms of the current state of it encouraged 

Ehlers to take an interest in the problem. Ehlers certainly came from the "rigorous" 

tradition of GR himself, being of a mathematical school which preferred to deal, 

applied mathematics' style, in terms of theorems and proofs. His was certainly a 

long way removed from the style of relativistic astrophysics, quite towards the other 

end of the spectrum in terms of rigour within theoretical physics. From a mathe­

matician's standpoint, the body of work on radiation reaction certainly left a lot to 

be desired. 

Like Thorne and Kovacs, Rosenblum saw the problem of two masses scattering 

off each other as better suited, at lower levels of approximation, to the fast-motion 

approach than the binary problem. In the scattering problem, two massive objects 

approach each other from a great distance, interact gravitationally, altering their 
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respective paths, and recede to great distances from each other. In analogy with 

electromagnetism, the type of radiation emitted is called bremsstrahlung ("braking 

radiation" ). In the seventies he applied fast-motion techniques developed by himself 

and Havas to this problem. Unlike Thorne and Kovacs (1974), who addressed the 

same problem via a different fast-motion (or post-linear, as they called it) scheme, 

his result, in the slow-motion limit did not agree with the quadrupole formula, giving 

a loss of energy about twice as great (Rosenblum, 1981). Rosenblum was thus led 

to take a very active part in the debate on the validity of the quadrupole formula, 

which he himself helped to spark, by the fact that his own calculations disagreed 

with the established result in one important case. At the same time, he continued 

his efforts to extend the fast-motion scheme to the bound orbits case (Rosenblum, 

1982) . 

Ehlers meanwhile took a rather different approach to the problem. Having not 

himself worked extensively in the problem of motion, he nevertheless kept abreast of 

it for pedagogical reasons. He found the literature on the subject unclear, preferring 

Fock's book as the best treatment. Inspired by Rosenblum's interest he began to 

encourage work on the subject of radiation reaction in his own group, and to invite 

visitors with an interest in it also. He also adopted the role of an independent critic 

of the various methods in use in the field , publishing a review paper on the subject 

in collaboration with Rosenblum, Havas and Goldberg (Ehlers et al., 1976), and 

organizing a workshop on "Isolated Gravitating Systems in GR" at Varenna, Italy 

in 1976 in order to foster efforts to meet the deficiencies of the subject (Ehlers, 

1979) . 
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Ehlers' critique of the subject was wide-ranging. He disliked the use of point­

masses, and worked within his group to discover methods of dealing with finite 

non-rigid bodies (Dixon, 1979). He felt that even with some progress in that direc­

tion, the post-Newtonian schemes, which led to divergent integrals at higher orders 

in the expansion, were highly suspect (a criticism which was aimed by some at Chan­

drasekhar's work which had also used extended bodies). Burke and Thorne's demon­

stration that the post-Newtonian expansions should only be used in the "near zone," 

with matching schemes employed to connect the solutions to wave zone boundary 

conditions was sufficiently encouraging for Ehlers to invite Burke to give a series of 

lectures at the Varenna school. However, from a mathematical point of view, Ehlers 

considered that the matching schemes still lacked rigour, despite further progress 

subsequently by Damour, who introduced another "intermediate zone" in which the 

matching took place. 

For Ehlers, a genuine mathematical relativist, the quadrupole formula episode, 

despite a level of acrimony which surrounded some exchanges at conferences, pro­

vided a welcome level of interaction between relativists of different outlooks. Both at 

conferences, where the mixing of mathematically and observationally inclined peo­

ple was encouraged in this respect by a common interest, and in his group, where 

visitors such as Anderson contributed a different perspective, he enjoyed the mutual 

exposure to different sensibilities. The controversy served therefore, not only to 

improve understanding of a difficult subject, but to cross-fertilize between different 

schools of relativity. 

Ehlers can perhaps be seen as the pure sceptic, not only because of his relative 

disinterest (he had little of his own work invested in the controversy), but because 
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he was very much a sceptic in ordinary sense of "a person who doubts, questions or 

suspends judgement upon matters matters generally accepted" (Webster's). As a 

mathematician, the existence of exact solutions describing gravitational waves, and 

as a physicist, Bondi's famous thought experiment, convinced him that gravitational 

waves were real. The linearized theory was perfectly acceptable for detectors, and 

he felt that on a "reasonable physical level" the review paper of Walker and Will 

(1980) cleared up the question of the quadrupole formula's validity. While some of 

the issues of method remain outstanding (such as the need to define boundary condi­

tions rigorously in curved space time, as opposed to asymptotically fiat spacetime), 

he regards the quadrupole formula as reasonably well justified both experimentally 

and theoretically. His criticisms therefore did not spring from motives of either im­

mediate personal interest, or doubts of the existence of the phenomenon in question, 

but rather from a desire to expose accepted ideas to question, where he regarded 

them as unsoundly held. 

Completely independently from the work of Ehlers, Havas and Rosenblum, an­

other challenge to the quadrupole formula came from Fred Cooperstock, who had 

experience of gravitational wave theory from his days as a graduate student (con­

denser work, connection to Weber's idea), and from his paper on Fowler's quasar 

idea. In the early seventies he was moved, by discussion with A. Papapetrou, to 

make an attempt to remove the problem of tails from the back reaction problem by 

removing the past history of a binary system. Because of scattering of the emit­

ted gravitational waves off the source's own background curvature, a given binary 

system emitting gravitational radiation would be affected by these "tails" from all 

previous states of its history, as its old emissions came back to haunt it. Tails, which 
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had been so bothersome to Bondi (paper and interview), were somewhat problem­

atic to deal with, since technically they required knowledge of the entire past history 

of a source. 

Cooperstock's idea was to imagine a source consisting of two bodies held apart, 

in a static system, by a rigid strut. The strut would then be broken, and the two 

bodies allowed to fall towards each other from rest. Cooperstock's early results 

showed a much higher rate of emission than would be expected from the quadrupole 

formula, and led him also to criticize the basis for this result. At the same time, 

in avoiding one issue of principle with his toy model, he had introduced several 

others just as serious. A rigid strut was not permitted in GR (since its local speed 

of sound would be infinite), and the :fluid bodies themselves would have to be held 

together by some sort of skin. Therefore, Cooperstock began to further elaborate his 

model, in response to counter-criticisms from others. In the meantime, unexpected 

observational results were about to radically alter the context of the debate on the 

radiation reaction problem. 



Chapter 14 

Experimental Impact 

The growth of interest in gravitational waves in the second half of the 20th century 

proceeded in a series of incremental stages. In the 1950s, the emergence of GR theory 

out of its doldrums was sparked partly by very abstract theoretical concerns. Much 

of the interest was cosmological in origin, this being the only arena in which GR was 

seen to have any relevance in mid-century. Bondi came to the study of gravitational 

waves having established his reputation in cosmology. Others who began to take 

an interest in gravity and gravitational waves at this time were field theorists, such 

as Wheeler and Feynman, who were interested in quantum gravity, and who saw 

gravitation as a new realm in which to apply their skills as the problems of quantum 

field theory came increasingly under control. Experimental interest played a role 

at this time too, with the discovery of the Mossbauer effect which permitted much 

more precise measurements of red-shift effects, including the gravitational red-shift. 

Theoretical, epistemological and experimental motivations were blended together in 

the pioneering work of Dicke, also. 
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The second, and greater, surge in interest was inspired by new discoveries in 

astronomy, as we have seen, which inaugurated what has sometimes been called 

the "golden age" of relativity, when the modern theory, with its black holes and 

other strange new artifacts, came into being. Although gravitational waves at first 

shared in the excitement surrounding quasars, pulsars and other new ideas and 

discoveries , as we have seen, at the same time they were soon left behind in the rush 

of applications by hotter topics. The subject of gravitational radiation still seemed 

handicapped by the lack of any experimental input. Although there was more 

optimism than had prevailed previously regarding the possibility of observational 

results , the actual experimental evidence on gravitational waves in 1968 was very 

meager and all negative. 

In the early 1970s, as if on queue, the detection of gravitational waves emerged 

as a hot and controversial topic for the first time. If this was unexpected, the subse­

quent emergence of an apparently ideal test bed for the observation of gravitational 

radiation reaction effects was even less so. By the 1980s radiation reaction in GR 

was a flourishing subject and the advent of ambitious large detector projects was 

creating a demand for unheard of and previously undreamed of levels of precision 

in the theoretical prediction of gravitational radiation effects. Much sooner than 

anyone might have expected, the concrete visualization of gravitational waves as 

a physical phenomenon which was the principle achievement of the theoretical ad­

vances of the late 1950s and 1960s, was bearing fruit in attempts to render the 

phenomenon visible in actual instruments. It was only in keeping with the history 

of the subject itself that this endeavour would prove to be the most controversial 

yet. 
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Throughout the 1960s, Joseph Weber ploughed a lonely furrow in his efforts at 

gravitational wave detection. By the time of the Warsaw conference in 1962, he had 

a detector operating, and he presented his early results . His reception at this stage 

was mixed at best . Nevertheless he succeeded not only in constructing a working 

instrument but in elaborating some of the most important future developments of 

the field of which he was as yet almost the only exponent. His chosen detector 

consisted of a large aluminum bar, seismically isolated from the vibrations of its 

surroundings and fitted with electronic strain gauges which would detect any reso­

nances set up in the bar by a transient disturbance. He also sketched the idea of an 

interferometric detector. One of his students, Robert Forward (also a well-known 

science-fiction writer) was the first to build and operate such a device in California 

in the early 1970s (Thorne, 1989). Weber noted that the Earth itself was a large 

gravitational wave detector on the "Weber bar" model, and set an upper limit on 

the quantity of gravitational waves passing through it which might excite vibrations 

in its mass. As the decade progressed he improved his detector (situated in Col­

lege Park, Maryland) , and eventually set up a second one in Chicago. This would 

allow him to eliminate merely local vibrations affecting one detector by looking for 

coincident disturbances in both. 

In Russia, where the theoretical development of gravitational waves had pro­

ceeded along very different , largely uncontroversial lines , there was also some interest 

in gravitational wave detection, especially by Vladimir Braginsky. The excitement 

generated by Weber's announcements provided a spur to the work in the area on 

which Braginsky was already engaged (Thorne, private communication) . Although 

in the Soviet Union Landau and Lifshitz and Fock were not doubted as they were in 
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the west, at the same time their results had stressed the negligibility of the effects 

of gravitational radiation. Therefore, the principal obstacle which presented itself 

to a would-be gravitational wave astronomer, that the waves appeared to be very 

weak, was as much a factor in the Soviet Union as it was in the west. Nevertheless, 

there also, at least one experimentalist was motivated to take up the challenge. 

In 1969, Weber announced that he was detecting pulses in his instrument in excess 

of what was expected statistically from background Gaussian noise. Over the next 

couple of years he produced an increasing volume of coincidence data between his 

two detectors, including indications of what was called a "sidereal correlation". This 

was an excess in coincidences peaked at certain times of the day, which time varied 

during the year in such a way to suggest that the source or sources of the waves lay 

outside the solar system. Such increased sophistication in Weber's claims overcame 

an initially lukewarm reaction and persuaded several other experimentalists to build 

and operate detectors on a similar basis. Their eventual failure to see sufficiently 

convincing indication of gravitational waves interacting with their instruments led to 

a bitter and protracted controversy with Weber, who has since continued to pursue 

his own research on the basis that at least someof his events indicated the presence 

of gravitational waves. His early results have nevertheless been almost universally 

rejected by other gravitational wave experimentalists. (Collins, 1981; Franklin 1994) 

The reaction of GR theorists to Weber's findings was somewhat mixed. Although 

the discovery of gravitational waves might be thought of as good news for theorists, 

Weber's claims violated all theoretical expectations of signal strength, even though 

these expectations had been radically transformed by other forces in the decade 

since Weber began his detection program. On the one hand, Weber's estimated 
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sensitivity (which was and has been the subject of some uncertainty and considerable 

controversy) and claimed detection rate indicated an unexpectedly strong flux of 

radiation impinging on the earth. The sidereal correlation was held to indicate 

a source in the direction of the center of the galaxy, a plausible source given its 

relatively high density of matter. If the center of the galaxy was the source, and 

if it emitted radiation isotropically so that Weber 's bar was seeing only a small 

fraction of the total output , then it could be estimated that this region of the 

galaxy must be losing hundreds of solar masses a year to the emission of radiation, a 

staggering figure . Such a rate of loss would indicate that the galaxy would disappear 

altogether on a timescale much shorter than its own estimated age! Nevertheless, the 

theoretical reaction to Weber's findings was not uncomplicated rejection. There were 

suggestions that some of the many underlying assumptions behind this calculation 

might not hold true. It was even speculated that there might be experimental 

evidence for such a rate of mass loss from the center of the galaxy, in the form of 

stellar motions in the solar neighbourhood (Goldberg, 1974; pg. 396) . 

In its early phase, theorists had only a minor role to play in the Weber controversy. 

Only in the late 1980s, when Weber claimed to have detected gravitational waves 

from the large supernova 1987a, in circumstances in which only one other detector 

was on the air, did theorists take the fore in rebutting his claims. In that case, 

experimentalists were ill placed to do so, since the detection was inherently non­

reproducible (the supernova in question was the strongest seen from earth since the 

17th century) , and it was accompanied by a new detector theory of Weber's which 

vastly inflated his instruments ' claimed sensitivity. 

Nevertheless , the Weber controversy of the 1970s did encourage some increased 
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theoretical activity, and more importantly, by jump-starting the development of an 

active experimental field of gravitational wave detection, its effects on theory were 

incalculable in the long run. The very fact that Weber's problems included his 

violent conflict with theoretical predictions indicated that, in the long run, experi­

mentalists would find themselves dependent on theoretical guidance. Once the early 

experiments rejected Weber 's results, but the decision was made by several groups 

to persist in the field, they were going to be faced with the necessity of gearing 

their program to meeting a goal laid down by the expectations of theory. Indeed, 

in the long run, the forthcoming "third generation" of detectors expect to rely on 

detailed theoretical predictions of waveforms to actually make the signal visible in 

the detector output by the use of sophisticated signal filtering methods designed to 

seek out certain patterns which would be otherwise lost in the detector noise. 

The next great step for gravity waves came with the discovery of the first pulsar 

observed in a binary star system in 1974. This discovery, for which Hulse and Taylor 

later won the Nobel prize, was immediately recognized as providing the first strong 

field observational test-bed for the theory of GR. Up until this time, all tests of 

the theory had taken place in the realm of first order corrections to the Newtonian 

theory. However, initial reactions from theorists indicated pessimism that the new 

system would ever show measurable signs of orbital decay due to gravitational wave 

emission (Damour and Ruffini , 1974). 

In 1978, after several years worth of observations on the system, Taylor and co­

workers announced that there was definite evidence of such secular orbital decay. 

200 years after Laplace had first conceived of such an effect , a system was found 

which perhaps really did exhibit orbital decay due to a retarded attractive force. 
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The announcement was first made publically at the Texas symposium in Munich, 

continuing a tradition of important new findings emerging first at one of the meet­

ings in that series. New astronomical discoveries tend to disperse quickly through 

channels such as International Astronomical Union circulars and by word of mouth 

(nowadays this occurs even faster via the Internet). For instance, the Damour and 

Ruffini theoretical paper on the new binary pulsar was published in late 1974, al­

though the discovery paper itself appeared only in 1975 in a refereed journal. 

The length of time over which PSR1913+16 had to be carefully observed to 

produce evidence of orbital decay gave a slow motion quality to this confirmation 

of the quadrupole formula which is quite interesting. The first definitive journal 

paper on the orbital decay (Weisberg and Taylor, 1980) appeared quite some time 

after the Texas meeting announcement. Even then caution was still the order of the 

day, and it was only gradually during the 1980s that exhaustive observational and 

theoretical work convinced the great majority of experts that the effect was real, 

and was not explicable by other influences on the system which would have nothing 

to do with radiation damping, such as a third body in the system, mass loss from 

one of the stars, some other form of dissipation, and so on. Even today, it cannot be 

logically ruled out that some other unlooked for effect would throw out the decay's 

agreement with the quadrupole formula. Other binary pulsar systems have been 

discovered since the first one, and as observations continue on these, it is becoming 

apparent that they tend to confirm the observed decay of PSR1913+16. 



Chapter 15 

The Quadrupole Formula 

Controversy - The Style of the 

Debate 

An important feature of the radiation reaction debate in the seventies and eighties 

was the series of review papers by different authors, each employing the history of 

the subject to illustrate a particular view of the contemporary state of the field. 

These papers show that relativists were keenly aware of the history of their field 

and they were able to draw lessons from their reading of history which reinforced 

the points they wished to make. The earliest of these papers was that of Ehlers, 

Rosenblum, Goldberg and Havas (1976). They argued that previous attempts to 

deal with the back-reaction problem were all inadequate in one way or another. In 

consequence, they advanced an outline of a program which would overcome these 

past failings. Essentially an attempt to formulate a research program for the subject , 
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their paper was followed by an Enrico Fermi summer school in Varenna organized 

by Ehlers, whose aim was also to foster new work in the field along more rigorous 

lines than before (Ehlers 1979). 

In 1980 Walker and Will took a very different tack, addressing the problem of 

non-reproducibility which had plagued the subject (Walker and Will 1980). They 

argued that a basic iterative algorithm, applicable for both fast motion and slow 

motion methods, could be followed to recover the quadrupole formula from reaction 

calculations. They presented an analysis of a cross section of well-known calcu­

lations, dating back to the paper of Hu in 1947, and argued that those who had 

advanced through sufficient steps in the iteration recovered the quadrupole formula, 

and that others, with fewer steps, did not (except for a couple which found the 

result with the aid of compensating errors). In this view of the history of the field, 

there existed a definitive method by which the standard results could be recovered 

in a reliable way.1 

This was in stark contrast to the views expressed by Ehlers et al., which were 

to advocate a more general prescription, whose outcome was not yet known. Yet 

another view was put forward by Cooperstock and Hobill in 1982. They refused to 

set forward a general scheme or advocate a particular result, instead arguing against 

preconceived notions (Cooperstock and Hobill 1982) . Their history, as befitted their 

standpoint , was more descriptive than prescriptive, celebrating the diversity in the 
1 Indeed, Walker and Will's iterative test, that three iterations of the field equations were required to successfully 

account for retarded effects in bound orbits, became a benchmark for subsequent research. Since scattering problems, 

where the bodies were not gravitationally bound, were held to require only two iterations, they were typically 

preferred by those employing fast-motion calculations, in which the calculational burden grew excessive at the third 

iteration. 
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development of the field. Another protagonist with an interest in and excellent 

knowledge of the field's history was Damour. His papers were often prefaced with 

a discussion setting his work in a historical context (for example Damour 1982) . 

In this role, the object of history was to motivate the new work being presented, 

and the focus was on the previous failings which were being addressed by the new 

contributions (see, for instance, Damour 1983). A more active role for the historical 

literature was found in the account of James Anderson, who returned to the Einstein­

Infeld-Hoffmann scheme complete with its surface integral method, and married it to 

the matched asymptotic expansions of Burke, with further additions of his own, to 

produce another influential derivation of the quadrupole formula (Anderson 1987). 

A very significant aspect of the debate in the seventies and eighties was the prob­

lem of when theory ends. As we have seen, different authors could look at the same 

history and give very different answers to this question. One answer might be, that 

theory already has ended, and we really know the answer ("Conservative"). Another 

is, it has just ended now, with this paper, for the issues addressed ("Technocrat­

ic"). A third is, it will end, as soon as the general program we advance is carried 

through ("Marxist"). A fourth is that it can never end, and it is best that it should 

not ("Anarchist"). Finally there is the view that the answer is hidden in the past, 

waiting to be extracted and pieced together from the literature ("Archaeological" ). 

It is interesting that just as there was agreement on the details of the history (and 

the debate was largely a historical debate), opinions diverged on the matter of in­

terpretation. The lesson of history was different for everyone. This is still the case, 

but the debate having lost its impetus, the individual perception of history has lost 

its public relevance once more. The dynamic of the debate is that some level of 
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consensus must be found for the resolution of an existing problem, and yet progress 

seems to be measured by many scientists by the extent to which an issue can be 

settled, allowing the next problem to be addressed. A field like General Relativity 

has historical memories of the isolation which may be the fate of a discipline which 

does not progress in this way. The remarks of Feynman at Chapel Hill (De Witt 

1957, pg. 150) express the view of the progressives, when he says "the second choice 

of action is to ... drive on," to "make up your mind [whether gravitational radiation 

exists] and calculate without rigor in an exploratory way". He concludes with the 

advice, "don't be so rigorous or you will not succeed." The contrast in attitude 

suggested here may explain why the debate tended to become more vitriolic in its 

last stages, as a consensus developed for many, while some still argued that the 

matter was unsettled. 



Chapter 16 

The Quadrupole Formula 

Controversy - Conclusion 

At the time of the 9th Texas symposium, held December, 1978, for the first time 

outside the United States in Munich, a vigorous debate on the problem of motion 

for binary systems was still underway. A workshop at the conference was devoted to 

the subject, and the report in the proceedings indicates a wide ranging discussion 

and a fairly rich strain of new work in the field. The problem was, however, to be 

raised to a new level of prominence as the result of the most exciting development 

of the conference: the announcement of a measurable orbital decay in the binary 

pulsar by Taylor and co-workers (discussed above) . The stimulus of what was gen­

erally considered to be rather high quality data on the "higher order" evolution of 

the motion of an apparently isolated binary system containing bodies with strong 

internal fields led to the 1980s being the most prolific of all decades to date for work 

on various aspects of the radiation reaction problem and the problem of motion. 
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Subsequently, the demands of a projected new series of gravitational wave detec­

tors encouraged the continuation of efforts to calculate to ever higher orders in the 

expansion parameters. 

Ehlers, the host of the Munich symposium, gave an overview of the state of the 

field from the point of view of what he described as the "minority of relativity­

theorists" who did not share the widely held opinion that "the implications of GR 

... have been deduced satisfactorily ... [for] the dominant, secular gravitational 

radiation reaction effects on the orbits" of systems including PSR1913+16. He took 

care to emphasize on what grounds his dissent was based. 

The main shortcoming of [these] ... calculations is, in my opinion, not 

that they employ approximations which have not been rigorously math­

ematically justified - that they share with many approximations used in 

physics - but rather that they: 1) employ notions which are not well de­

fined in terms of basic concepts of GR, such as "gravitational field energy," 

"total mass and linear momentum" of a gravitationally bound body inter­

acting with other such bodies, "point particle," "gravitational radiation 

reaction force," "near zone," "radiation zone"; 2) use laws which have not 

been established within GR, such as an "energy balance between radia­

tion and material sources"; 3) depend essentially on ad hoc assumptions 

which not only are without foundation within GR itself, but for which 

there are indications that they may be incompatible with the fundamental 

assumptions of GR or with each other, such as global coordinate con­

ditions, particular global splittings of the metric into a flat background 

and a 'small' perturbation, non-covariant 'outgoing radiation conditions,' 



negligibility of various kinds of 'small ' terms, etc. 

It seems to me to be an important challenge to find. derivations of 

observable relativistic effects, particularly structure and radiation effects , 

of isolated systems which are free of shortcomings, and which are not 

based on mere analogies, however plausible, with Newton's or Maxwell's 

theory. Needed are, in particular, approximation methods which have 

been rigorously justified at least in theories simpler than Einstein's , and 

which permit if not an error estimate, at least a reasonable guess about 

error bounds. (Ehlers , 1980) 
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It is interesting to see Ehlers disclaim any dogmatic objection to the practice of 

physics on "rigorously mathematical" grounds. He is aware both of the practice of 

most physicists , and of the difficulty of the problem at hand which resists efforts 

to prove closed theorems. Instead, he grounds his objections in a failure on the 

part of the majority of relativity-theorists to consistently conform to the principles 

of GR theory itself. Specifically, he attacks efforts to import into GR concepts 

typically found in other physical theories , such as "field energy," "energy balance" 

and so on. In short, there is an epistemological disagreement between those who 

wish to carry forward relativity theory according to the standards current in the 

rest of theoretical physics, attempting to discover within GR quantities analogous 

to those, such as "total mass" and "linear momentum," which would be employed 

in a similar problem in "standard" field theory, and those who prefer to pursue the 

matter according to the peculiar tradition of GR theory itself, eschewing certain 

concepts which, however prevalent in other spheres of physics, were perceived by 

them to have no natural analogue which had been properly demonstrated within, 
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or shown not to violate the precepts of GR. 

There is an important philosophical attack on the practices of radiation reaction 

theory in Ehler's talk , which is made even plainer at a later conference, GRll in 

Stockholm, Sweden (the talk on the "folklore" of physics referred to earlier) . Here 

he says, 

Another statement which seems to be generally believed, usually on 

rather flimsy arguments, is: Newton's theory of gravity is a 'lim­

it' of Einstein's. To understand this limit relation is important since 

1) Newtonian theory successfully explains many gravitational phenomena 

and ii) the approximation methods on which the comparison of GR with 

observations is based assume such a limit relation and even use Newtonian 

concepts such as masses and linear moments of gravitational interacting 

bodies, which have no meaning in GR. 

Note that (this limiting relationship] is assumed in post-Newtonian ap­

proximation methods. If this assumption were incorrect, the comparison of 

GR with observations of the solar system, the binary pulsar or cataclysmic 

binaries would lose its theoretical basis. Unfortunately, there seems to be 

no hope of answering this question rigorously in the near future . 

This is certainly a radical attack on the whole basis of much of modern relativity 

theory, especially on most of its experimental verifications . It is not surprising 

that those relativists whose professional affiliations were closer to physics than to 

mathematics would have a strong interest in rejecting such a sweeping historical 

reappraisal. 

The main thrust of Ehlers' argument proceeds on entirely epistemological grounds, 
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insisting on the elimination of concepts and assumptions which do violence to "the 

fundamental assumptions of GR". Only towards the end does he return to an appeal 

for "rigour," especially in the technical requirement of approximation methods with 

some form of error control or estimation, generally agreed to be a persistent failing 

in this field. His own emphasis shows how diametrically opposed the two main re­

sponses to the advent of experimental data on gravitational radiation were. Ehlers' 

response, as a relativist, is to turn once more to the fundamentals of the theory. To 

derive "observable relativistic effects" which are free of the shortcomings of failing 

to adhere to GR's "fundamental assumptions". For those with an astrophysical 

bent, the tendency had been to turn outward rather than inward, to conform to the 

demands of working within a broader physics community which was, by and large, 

uninterested in the traditional preoccupations of GR, sometimes to the chagrin of 

relativists. In an interview with Alan Lightman (Lightman and Brawer, 1990, pg. 

429) Roger Penrose has remarked, 

People come in from outside, not being experts on general relativity 

or cosmology particularly, but knowing about particle physics, symmetry 

breaking ideas and so on, and bringing this expertise into the subject. I 

think there are very many more of those people than relativists. Locusts 

would perhaps be the wrong analogy, but there are huge numbers of people 

and they see an opening into this subject, and they come in and almost 

take it over. I felt this a bit with supersymmetry. In general relativity, I 

felt this again with a lot of the people who tried to quantize it .... Bringing 

ideas in from other subjects is fine ... as long as the particle physicists 

appreciate the problems of general relativity. I think often they don't. 



People come in without being aware of the very fundamental problems we 

have argued over endlessly among general relativists. There are very fun­

damental difficulties that one has in trying to quantize, and these people 

just try to sweep them away. 
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For the moment however, the new experimental data, from what Taylor described in 

the symposium proceedings as "an ideal machine for testing gravitation theories," 

which might have been designed for the purpose, favoured the back-to-basics appeal 

of Ehlers' tendency. 

One of the strongest threads running through the history of 20th century gravi­

tation theory is the search for decisive tests of rival theories of gravity. If now a test 

had been found for the prediction of the quadrupole formula, it had suddenly be­

come a matter of some importance that the quadrupole formula be more rigorously 

shown to be a consequence of GR, honoring its "fundamental assumptions". 

A large literature on the quadrupole formula in the period after the first an­

nouncement of orbital decay data from the binary pulsar exists. It will have to 

suffice here to discuss two of the most interesting new derivations of the quadrupole 

formula, by Thibault Damour and James Anderson, and then the two main oppo­

nents of the quadrupole formula during this later period, Rosenblum and Coop­

erstock. Damour's detailed analysis of the problem of motion, aimed specifically 

at matching the experimental results from PSR1913+16 is the closest thing to a 

"solution" to the quadrupole formula dispute, in the sense of its wholly or partly 

satisfying as many people as possible. Anderson's approach is regarded by a number 

of authorities as the most accessible and direct derivation of the quadrupole formula, 

which to some extent was incidental to Damour's approach. 
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Damour, a product of the rather formal and mathematical French school of rel­

ativity, did his graduate work in Paris on classical renormalization theory in the 

context of a tensorial (gravitation-like) field. Before college, he had introduced him­

self to the problem of motion in GR by studying the EIH method. This early interest 

encouraged him to work on this type of problem as a student. After completing his 

thesis he was awarded a fellowship to go to Princeton, and arrived there just be­

fore the announcement of the discovery of PSR1913+16. With Remo Ruffini he 

quickly produced a paper on the new find, which was pessimistic that it would ever 

have implications for radiation effects. After that he did no further work on the 

radiation reaction problem until 1978, when he attended the Munich Texas sympo­

sium. The announcement at that meeting of data on orbital decay, and the lively 

discussion on the state of play on the theoretical side encouraged him to address 

the problem. He joined a friend, Nathalie Deruelle, her advisor, Luis Bel, and other 

collaborators in working on the foundations of a new fast motion approach to the 

radiation damping problem (Bel, Damour, Deruelle, Ibanez and Martin, 1981). This 

initial work restricted itself to the (unbound) scattering case for simplicity, as had 

Kovacs and Thorne and Rosenblum, since the extra iteration (identified by Walker 

and Will(1980) as crucial) required by the bound orbits problem was very difficult 

in the fast motion case. He began to develop his own approach to this problem, 

and throughout the 1980s he extended this work, always relating his efforts closely 

to the specific system presented by the binary pulsar. Working on his own, with 

Deruelle, and later with a student Luc Blanchet, he achieved a remarkable level 

of agreement between his problem of motion calculations and the observations of 

Taylor and collaborators on PSR1913+16. 
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Damour, even in a field with a strong interest in its own history, had an extensive 

knowledge of the literature going back to Poincare. In his 1982 paper presented at 

the Les Houches meeting on gravitational radiation, he situates himself in the fast­

motion tradition in the problem of motion, or the "post-Minkowski approximation" 

(PMA), as he preferred to call it. It should be noted that by this time, however, any 

strict boundary which may have existed between slow and fast motion approxima­

tions was becoming somewhat blurred. The work of Burke and Thorne had made it 

absolutely clear that the post-Newtonian approximations (PNA) were quite inappro­

priate in the far zone of the field, where a linear type of approximation was needed 

to correctly express the proper boundary conditions, and matching techniques were 

then used to apply them to the PN A solutions to the motion of the source in the near 

zone. Similarly, in order to avoid a heavy calculational burden Damour truncated 

his expansions for the source motions in the near zone, restricting himself to slowly 

moving objects, such as the binary pulsar system itself. Therefore he too was left 

with a PNA-type of expansion for the equations of motion. Again, different types 

of expansion were more appropriate to different regions in the problem's geometry, 

with matching techniques typically employed to reconcile them. 

One important similarity between Damour's method and EIH was the use of 

point-sources. EIH employed a surface integral around the singularities to "cloak" 

them from view, so that only their field effect beyond the surface in question played 

a role in the problem, and the hidden objects could be presumed to be any body 

which would fit inside the surface and produce the same field. Damour preserved the 

cloaking effect, in order that his bodies could be presumed to be compact objects 

like the neutron star(s) in PSR1913+16, but rejected EIH's surface integral method 
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as too involved calculationally, substituting instead a volume integral. This left him 

with the familiar problem of infinite integrals from the use of point sources within the 

region of integration, which he solved by introducing a mid-century renormalization 

technique from electrodynamic theory, due to Marcel Riesz. This technique had 

been introduced into GR by Havas, who referred to the use of "Riesz potentials". 

Damour preferred to use the term "analytic continuation." 

In certain overall respects , Damour's approach in his 1982 paper (along with 

much of the modern work on radiation) can also be compared to Pock's in the use of 

harmonic gauge conditions, imposition of the "no-incoming" boundary conditions 

and matching techniques. But Damour's wide-ranging knowledge of the literature 

enabled him to sublimate various influences into an overall method which was dis­

tinctly his own. Besides EIH, other early contributors who influenced him were 

Peres and Carmeli (private communication). Another aspect of his assessment of 

the pre-existing literature was his critical approach, which led him to make signif­

icant changes even where he was most inclined to imitate previous efforts , as with 

EIH. 

A quite different approach to EIH and the previous literature is found in the late 

1980s work of Jim Anderson. A student of Bergmann's, Anderson did not work 

on the radiation reaction problem until late in his career. Then he entered the 

field during the quadrupole formula controversy of the late 1970s. Like Damour, 

Anderson was a strong critic of previous attempts to derive the quadrupole formula, 

describing some of them as "proof by naming," since they made use of an energy 

balance argument relating the Bux of energy in the wave zone to the loss of energy 

by the source system without , in Anderson's view, establishing that these quantities 
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were really related. Nevertheless, Anderson did not reject energy balance arguments 

out of hand, and made use of them in his 1980 paper on the quadrupole formula. 

Possibly his most interesting paper on the subject , however, is his 1987 paper, in 

which he revived the EIH method, badly neglected by the field in his view, and allied 

it to Burke's matched asymptotic expansion method and other applied mathematics 

techniques such as "multiple time scale expansions" in order to deal with the problem 

of handling two quite different types of expansions simultaneously. 

Anderson views the EIH paper as "arguably one of Einstein's greatest contribu­

tions to physics" (Anderson, 1995). Largely because of the highly involved calcula­

tions the method required, the EIH surface integrals were not employed by anyone 

other than Infeld himself, whose distrust of retarded potentials led him to reject ra­

diation terms in the expansion. Furthermore, in Anderson's view, the slow motion 

approximation was inherently incapable of dealing with radiation anyway, and it 

was not until the work of Burke on matched asymptotic expansions that this failing 

was overcome. The virtue Anderson saw in the EIH approach was that , by the 

use of surface integrals around point sources, it avoided the need for infinite-mass 

renormalization techniques (such as "analytic continuation"), which were required 

in field theory problems to remove the infinite self-energy of a particle with no phys­

ical extension sitting in its own field. Anderson also addressed Infeld's criticism 

of the arbitrariness of using retarded potentials, and showed that if "the energy of 

the initial field is finite, then in the asymptotic future the field is purely outgoing" 

(Anderson, 1982, 1995). 

Anderson's "archaeological" use of the field's history, in which he constructs his 

new solution from pre-existing elements in the literature stands in contrast with 
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the largely rhetorical use of history in many of the review papers. Nevertheless, 

like many of the other reviewers of the literature in the 70s and 80s, he is quite 

critical of other procedures which purport to derive the quadrupole formula. He 

and Damour are highly critical of each other's calculations, for instance! Each tends 

to regard his own contribution as the only correct derivation of equations of motion 

for radiating systems extant. In this respect they can be grouped with Ehlers, Havas 

and Rosenblum as amongst those who insist on the primacy of method, regarding the 

problem as one of finding one best method which overcomes the important difficulties 

in principle. Thorne (1989), Cooperstock and Hobill (1982) and Walker and Will 

(1980), take a more relaxed view, viewing more than one existing calculation as 

containing positive features. Walker and Will argue that the quadrupole formula 

can be said to be reproducible when specific criteria are met, and list a sequence of 

existing claculations that meet these requirements (as well as others which do not). 

The radiation reaction work in the 1970s and 80s differed in one essential respect 

from that of previous decades. In most cases, the results of the various papers 

published agreed with each other, and with the quadrupole formula. One does not 

need to look far to find a possible reason for this. By this time, both theoretical 

and experimental opinion had largely arrived at the conclusion that the quadrupole 

formula was the "correct" result to leading order. The corollary to this was not 

only the rejection of all other results, but the temptation to reject or view with deep 

suspicion the method or calculation which had led to such a conflicting result. In 

this period only two active researchers persisted in upholding contradictory results 

against the quadrupole formula. One was Arnold Rosenblum, whose fast motion 

scattering calculation (disagreeing with that of Thorne and Kovacs) gave a result, 
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as quoted by Ehlers at the time of the 9th Texas symposmm, which predicted 

energy radiated in excess of that predicted by the quadrupole formula by a factor of 

about 2.3. The other was Fred Cooperstock, whose rigid strut model also predicted 

emission in excess of the quadrupole formula. This represented a reversal of the 

position of the previous generation of sceptics, such as Havas, Rosenblum's mentor, 

who generally tended to suspect that the quadrupole formula overestimated energy 

loss by isolated systems, and who on a number of occasions gave results showing a 

possible energy gain by such systems. 

Despite their fairly isolated position, both Rosenblum and Cooperstock proved 

to be vigorous advocates of their viewpoints . Neither shrank from public debate, 

although the exchanges grew quite vitriolic by the early 1980s. Nevertheless, if noth­

ing else, weight of numbers began to tell. The problem for the minority worsened 

considerably with the unexpected death of Rosenblum in 1991 at the early age of 

47. This was a blow to the fast motion program initiated in the fifties by Havas and 

Goldberg, and always advocated by Havas, for Rosenblum was its last very active 

exponent. As had been demonstrated several previous times in the history of the 

radiation reaction problem, the tenuous position of a minority research program 

in physics was prone to reversals brought on by historical accident in the form of 

personal crises or death of important figures in the minority camp. 

Cooperstock largely gave up the unequal struggle, discouraged by the increasing 

intricacies to which he was led in attempting to refine his idealized model in the 

face of a large battery of critics. The inherent weakness of seeking to overcome one 

important problem in principle by introducing ad hoc initial conditions was seen 

by the exponential increase in other problems of principle brought on as the model 
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was developed. Once again a minority research program encountered difficulties in 

keeping pace with its rivals for one reason or another. 

Cooperstock subsequently completely abandoned his position of the early 80s, 

in preference for a return to the old sceptical stance, that the quadrupole formula 

was wrong because it was too high, not too low, in its prediction of energy loss by 

radiation reaction. He returned to the viewpoint, variously put forward by Rosen, 

Levi-Civita and others in a variety of different contexts, that gravitational waves 

could not carry energy, and therefore radiation reaction did not exist for isolated 

systems. His position was based on his new "energy localization hypothesis" which 

stated that, in the absence of matter, only those co-ordinate systems should be 

chosen to describe the local field energy which eliminated the pseudo-tensors and 

therefore appeared to leave no local field energy. In short, no gravitational field 

energy could be transmitted across a vacuum. However, Cooperstock still maintains 

that gravitational waves exist, and are emitted by systems like the binary pulsar, 

they just do not cause dynamical decay in such systems. Furthermore, such waves 

can be detected, not by resonant bar detectors such as were used by Weber, but by 

the new interferometric detectors which would observe the motion of test masses by 

the waves without , according to Cooperstock's analysis receiving the input of any 

energy. 1 

Since Cooperstock's new hypothesis is a return, in some general sense, to the 

sceptical view of the mid-fifties, it is perhaps not surprising to find him addressing 

some of the arguments which were made during that era. In order to rebut the 

Feynman-Bondi thought experiment of 1957, he has presented a new analysis of a 

I A similar viewpoint regarding the absolute insensitivity of bar detectors has been put forward by Luis Bel 

recently, see below. 
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simple gravitational wave absorber designed to show that it does not receive energy 

from the wave, despite the relative motion of its components (Cooperstock, 1992). 

In a more recent paper, he has attempted to show that a gravitational geon cannot 

exist in GR, since the ability of such a body to hold itself together depends on the 

gravitational waves which compose it having mass and therefore energy (Cooper­

stock, Faraoni and Perry, 1995). What is interesting about these papers is that 

they cast Cooperstock in the role of a historical revisionist, in the sense that he 

seeks an alternative reading of the older literature on the subject by exposing long 

accepted results as faulty. I employ the term revisionist here in its proper sense of 

a historian or other actor who attempts to revise the standard historiography of a 

period in favour of neglected perspectives, rather than in the pejorative sense of one 

who attempts to deny the reality of notorious historical episodes for propagandistic 

purposes. 

Given the historiographic conservativism which, it has already been observed, 

appears to play such a key role in the progressive view of science, it is perhaps not 

surprising that Cooperstock's rebuttals of arguments from a previous era made in 

favour of gravitational waves carrying energy has met with little or no response to 

date from other relativists. Revisionism, generally resisted by any social grouping 

when applied to its own historical self-portrait, is perhaps especially strongly resisted 

by scientists, for whom their standard historical self-representation seems to serve 

a particular practical aim, of motivating new research. Cooperstock's radical re­

reading of history is nevertheless consistent with his earlier historical perspective, 

as expounded in Cooperstock and Hobill (1982). In that paper, noting the paucity 

of experimental support for GR theory, he states that "since the true goal of physical 
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theory is the description of the real world, it is thus particularly appropriate, with 

regard to gravitational theory, to nurture a spirit of scepticism. Surely this is a 

healthy ingredient for the growth of any science." 2 He goes on to warn against 

the twin perils of the "optimist-visionaries" and the "mathematicians." The former 

should note that 

there is much more to general relativity than there is to be found in 

Maxwell theory and while optimism is admirable, it must be realistically 

tempered. On the other hand, the mathematicians forget that physics 

is not mathematics and that rigor is not an end in itself. Real progress 

in physics comes from that subtle interplay between experimental data, 

intuition, and the introduction of generalizing concepts and principles. It 

is probably the dearth of experimental data which distorts the normal flow 

of progress and gives this discipline [GR] a flavor all of its own. 

I have labeled the viewpoint expressed in these words as "Anarchist" in an earlier 

chapter, not in the political sense, but because they appear to reflect somewhat the 

views of Paul Feyerabend in Against Method (1988). Progress in physics, according 

to Cooperstock and Hobill, is the result of a "subtle interplay" between several 

factors, and one should resist the impulse to impose rigid programmatic schemes on 

its pursuit. In this, their view resembles Feyerabend's idea of an "Anarchist theory 

of knowledge," in which "anything goes" if it works, just as Cooperstock and Ho bill 

emphasize the practical necessity for scepticism if the "true goal of physical theory" 

is to be achieved. Cooperstock's subsequent revisionism is therefore necessary, since 

the arguments which were employed in the fifties and sixties to rebut the notion 

2 He adds that this spirit is "exemplified by Rosen." 
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that gravitational waves did not carry energy went largely uncontested at the time. 

Nevertheless, the hostility to reopening old debates is such that Cooperstock has 

been unable to generate any flow of discussion of his new hypothesis. The optimists 

have their gaze fixed firmly on the future, and resist efforts to redirect their attention 

into the past. 

The question of how and when debates are opened in theoretical physics is an im­

portant one in this context. Cooperstock's counter-example to the Bondi-Feynman 

thought experiments is the first serious argument made against them since Bondi 

published his letter to Nature in 1957. Why then is Cooperstock able to publish 

his new hypothesis and arguments and yet not receive any substantive reply? One 

way of looking at such revolts against orthodoxy is outlined by Trevor Pinch in 

a paper on David Bohm's hidden variables interpretation of quantum mechanics 

(Pinch, 1977). Pinch makes use of the idea of "social capital of recognition" in 

science, introduced by Pierre Bourdieu (1975). Bourdieu outlines two "investment" 

stategies by which scientists may gain social capital within their field, the succession 

and subversion strategies. In the former, one gains recognition in small but frequent 

increments, by making progress within an established research paradigm. In the 

latter case, one adopts the high risk, but high yield strategy of opposing orthodoxy, 

which requires that one bring about a redefinition of some part of the field. Pinch 

sees Bohm as having proceeded by the succession strategy during the early part of 

his career, acquiring sufficient recognition amongst the leaders of his field to make 

his subversion strategy (his challenge to the Copenhagen interpretation) feasible. 

Certainly, Cooperstock did not make a practice of opposing orthodoxy throughout 

his career. Indeed, his "strut" model of the radiation problem was not intended as 
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a counter-example to the quadrupole formula. He began his study of this model 

before the radiation damping problem became a hot topic in the wake of results 

from the binary pulsar. Like other sceptics, such as Havas, his opposition to the 

"too easy" acceptance of the quadrupole formula in all physical cases arose out 

of his experience with his own calculations. Although he was willing to mount a 

challenge to the prejudices of his community when the exigencies of his own research 

demanded it, rather than simply set that research aside, he did not embark upon it 

in the knowledge that it would lead to controversy. 

His subsequent publication of his "Energy Localization Hypothesis" did consti­

tute a deliberate assault on an established paradigm which can be compared to 

Bohm's rejection of the Copenhagen interpretation of quantum mechanics. There­

fore one takes special note of the stress which Pinch places on Bohm's having "ac­

cumulated considerable social capital of recognition by his reputation for 'brilliance' 

and his rapport with the quantum elite." Pinch adds 

I consider that the large amount of capital accumulated by Bohm was 

a prerequisite for a controversy over his work to occur. Had a physicist 

with a lesser social capital of recognition produced the rival interpretation 

it might well have been ignored, but for Bohm ... to come out with a ... 

paper in Physical Review, with Einstein waiting in the wings and soon with 

the support of another member of the quantum elite, Louis De Broglie, 

constituted a real challenge to the orthodox interpretation. (Pinch, 1977) 

Note that Pinch gives us at least three criteria which may need to be fulfilled before 

a controversy may develop. First , the posession of requisite social capital by the 

author of the heterodoxy. Second, the currency of the topic. The fact that Einstein, 
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a well-known and long-time opponent of the Copenhagen interpretation who had, 

in Pinch's words, "encouraged Bohm to produce a heterodoxy", was "waiting in the 

wings", indicates that the problem of the interpretation of quantum mechanics was 

a live one. Indeed, Pinch ascribes Bohm's interest in the problem to his membership 

in the elite, where matters of interpretation of quantum mechanics had historically 

been much debated, and continue to be today. Finally, Bohm received key support 

from at least one member of the elite, De Broglie. All this was required, not for 

the success of Bohm's ideas, but in order that they at least merit rebuttal by the 

upholders of the established viewpoint. 

The indifference which greeted Cooperstock's energy localization hypothesis may 

be explained under each or any of these three criteria. We may argue that, following 

his participation (whether planned or not) in an earlier controversy on the losing 

side, he lacked the social capital which Bohm posessed, which would at least enable 

him to provoke a response. But also, in Cooperstock's case, the issue of the radiation 

of gravitational field energy through a vacuum had not been problematic since the 

late fifties. Unlike Bohm, he was not addressing a problem which the elite felt was 

outstanding in some way. In addition, he did not receive any public support within 

his peer group, which might have encouraged a reply. By way of contrast, one 

can examine the case of Jospeh Weber's revised estimate of the cross-section of his 

resonant bar detectors (Weber, 1984). When he first put forward this calculation, 

which greatly increased the estimated sensitivity of his detectors, thus answering 

theoretical objections to the validity of his earlier experimental results, there was 

little response. But subsequently Weber's claimed detection of the 1987a supernova, 

and the endorsement of the main features of his new cross-section argument by a solid 
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state theorist , Giuliano Preparata (Preparata, 1990), who had previously rejected 

it (Preparata, 1988) precipitated rebuttals from high ranking members of the elite 

(Thorne, 1992b ). The fact that Weber's claims were perceived as a potential threat 

to the funding of the rival interferometric detectors (Thorne is closely associated 

with the LIGO project) probably was a factor enouraging some sort of response. 

In passing, just as Pinch notes that the Bohm debate was largely carried on in 

Festschriften, rather than in refereed journals, it is worth observing that Thorne 

and Weber's exchange appears in a volume in honour of Ted Newman. 

Certainly Weber's social capital was depleted after the heavy controversy sur­

rounding his disputed detections of gravitational waves in the early seventies. But 

it is doubtful that his capital had risen between the date of his initial publication 

of his new cross-section (1984) and the response (1990). Instead other factors, such 

as the 1987a supernova, and the ongoing funding struggle for LIGO and other in­

terferometric detectors, increased the relevance of theoretical estimates of detector 

sensitivity, while external support from a specialist added credibility to Weber's 

claims. Therefore, in Cooperstock's case it will be interesting to see what, if any, 

factors contribute to boosting the profile of his new hypothesis. Certainly its rel­

evance could be increased by, for instance, a new explanation being found for the 

decay of the orbit of PSR1913+16, other than radiation reaction. Also, one of the 

main conclusions Cooperstock makes on the basis of his new hypothesis, that res­

onant bar detectors of Weber's type cannot detect gravitational waves, has found 

support from Luis Bel, who reaches a similar conclusion (without reference to Coop­

erstock's ideas on energy localization) in a recent paper (Bel, 1996). This may serve 

to redirect the attentions of the relativity community towards an engagement with 
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Cooperstock's ideas. 

Certainly, the great majority of relativists who remained interested in gravita­

tional waves had plenty to occupy them in the late 1980s and early 1990s. During 

this period the study of gravitational waves became a large important field for the 

first time in its history. The seed first planted by Weber around 1960, and whose 

erratic growth since would have given little grounds for optimism to the casual ob­

server, blossomed at last. In the United States, experimental groups at Caltech 

(led by Ron Drever, and later by Rochus Vogt) and MIT (led by Rai Weiss), with 

vigorous support from the theorist Kip Thorne, secured an unprecedented level of 

funding from the NSF for a large detector program, LIGO. Similar projects followed 

in Europe (the French/Italian VIRGO, the German/British GEO 600) , and Aus­

tralia and Japan, all in various stages of conceptualization or development. Besides 

launching the study of gravitational waves into what can only be called "big sci­

ence," these detector programs offered a new role to gravitational wave theorists. 

In a marked change from the early days of gravitational wave detection, these new 

detectors expect to make use of detailed theoretical predictions of signals from in­

spiralling binaries in order to filter the signal from the relatively strong detector 

n01se. 

One of the consequences of this need is a strong emphasis on the development 

of numerical techniques to allow the exact solution of Einstein's equations on su­

percomputers for the case of a binary black hole system. One of those involved 

in this endeavour is Jeffrey Winicour, who according to Ehlers has produced "the 

first rigorous version of a far-field quadrupole radiation law" (Ehlers, 1987). Wini­

cour was motivated to work on this problem by Ehlers, and succeeded in showing 
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that the quadrupole formula (expressed in terms of explicitly Newtonian quantities) 

would be the Newtonian limit (letting c -7 oo) of the Bondi news function for a 

unique set of initial data on an outgoing null cone (to rule out ingoing radiation). 

Winicour feels that no one ever did produce a completely satisfactory answer to 

the problem of the quadrupole formula, but feels that the issue may in any case be 

superseded by the emergence of numerical relativity. As numerical relativity intro­

duces a new way of looking at the field, he expects that the quadrupole formula 

problem will be forgotten about anyway, as it may not be a problem one can formu­

late in a fully general relativistic manner (interview) . This view of a fully realized 

GR theory finally emerging, freed of the encumbrance of Newtonian concepts, and 

field theory analogies , is intimately connected with the success or failure of the new 

generation of gravitational wave detectors. It is hoped by the proponents of these 

experiments that they will be the first instruments of a new field of "gravitational 

wave astronomy."3 Whereas for thirty years, GR has :flourished due to its increased 

relevance to other fields of physics and astronomy, some of its practitioners can 

now see it emerging as a strong field of physics in its own right, complete with an 

observation program which will provide direct insight into physical systems, such 

as black holes , which are exclusively the preserve of GR theory. In this hope one 

senses the view that to retain its independence as a separate body of theory, GR 

must progress or be eclipsed by more dynamic theoretical disciplines. 

3 One already hears the phrase "electromagnetic astronomers" used by such proponents to describe all presently 

existing astronomers. 
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Technical Matters 

Throughout all this, one notes the tensions within the field over technical matters, 

especially regarding the level of rigour required to inspire confidence in a particular 

result. Relativity has a tradition which places it towards the mathematical end of 

the spectrum in this regard amongst branches of theoretical physics. Yet from the 

sixties on, astrophysics and relativity became increasingly relevant to each other, 

spawning the new field of relativistic astrophysics. Theoretical astrophysics stands 

at the opposite extreme from relativity, preferring a more "physical" approach, 

eschewing not only mathematical rigour, but also (usually) dependence on exact 

results. Order of magnitude calculations and heuristic arguments are common. Such 

arguments, for instance, might be used to identify the "correct" result, as a guide 

when undertaking longer calculations.42 Within relativity there were those whose 

practice tended towards each approach, and it was naturally difficult for them to 

agree on the question of standards of proof.43 For practical purposes, results such 

as the binary pulsar measurements were obviously welcome, but at issue was on 
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whose terms a given result was to be counted as a prediction of general relativity: 

the "astrophysicists" or the "mathematicians". 

While it is tempting to look for a crucial issue or issues upon which the debate 

over gravitational waves or the quadrupole formula hinged at any given time, in fact 

there seems to have been little general agreement on what were the key outstanding 

issues. One topic of considerable importance concerned the use of point sources 

or extended sources. Bondi regarded the use of point sources as a major weakness 

of back reaction calculations, since he expected the source's equation of state to 

have a strong impact on the emission of radiation. Certainly others viewed point 

sources or singularities as problematic. In an exchange with Havas in Paris in 1973 

(Havas, 1973), Thorne describes the use of point sources as the main fault in most 

derivations and cites Chandrasekhar's work as addressing this, yet Havas replies by 

dismissing the importance of this issue. For someone with a background in Dirac's 

electrodynamic theory, as Havas had, point sources were hardly objectionable, since 

the experience there indicated that the use of point sources did not lead to incorrect 

results. 

Indeed, if there were objections to the use of singular or point mass sources, they 

came very much from a GR perspective. Rosen disliked them intensely (Peres, per­

sonal communication), as did Bondi (1964) and later on Ehlers (1980) also objected 

to them. It was felt by some to go against the spirit of modern GR theory to evoke 

bodies smaller than their own Schwarzschild radii. On the other hand, others with a 

background in classical renormalization theory, such as Havas and Damour, did not 

see any great objections to the use of point sources, albeit with some reservations. 

Error estimation was one important bone of contention for those whose tastes ran 
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towards mathematical rigour. Even if one assumes that a particular approximation 

scheme is "correct" (in the sense that, in principle, it approximates to the result of 

the exact theory), and that no calculational mistakes are made along the way, the 

final results may still be wrong by virtue of the neglect of terms in the expansion 

which are in fact of the same order or size as the calculated terms (as, for instance, 

Adams later discovered was the case with Laplace's secular acceleration calculation). 

Typically, the attitude of most researchers was inherent in the choice of expansion 

scheme. Whether working in post-Newtonian or post-Minkowskian schemes, one 

expanded the solution in powers of a quantity which was presumed to be very small, 

so that terms of each succeeding power in the small parameter were assumed to be 

orders of magnitude lower than the previous one. For some relativists, like Synge 

or Damour, this was an unsatisfactory state of affairs. Others took a much more 

pragmatic line, such as Thorne, whose view was that "one could calculate the next 

order correction ... somewhat easily if you permit [certain] leaps of faith". This 

problem, in its pure form, is a good example of the matter of rigour versus physical 

argument. It was generally agreed, even by those, such as Damour, for whom this 

was an issue worth addressing, that it was reasonable, for physical systems with 

appropriately small velocities or internal fields, that the truncation errors would 

be small, and that "it is a matter of rigour only" that they be estimated in a 

sophisticated way. 

As we have seen, boundary conditions were a difficult matter to deal with through­

out the history of this problem. There were several rather distinct aspects to their 

implementation. In the first place, for Infeld at least, there was the question of 

whether a retarded potential was the most appropriate to use in GR for the prob-
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lem of motion. Everyone expected that without this choice of potential there would 

be no radiation damping, but most regarded their use as perfectly natural, either 

in analogy with electromagnetism, or by appealing to causality or other arguments. 

More important was the question of how to impose the boundary condition as­

sociated with this type of potential (with some type of outgoing waves carrying 

away energy) onto the local problem of motion calculations, especially in the post­

Newtonian approximation. Even once this was achieved, there turned out to be a 

subtle distinction between boundary conditions imposed in the past or future of the 

source. In the former case, one called the condition a "no ingoing wave" condition, 

which meant that no waves were bringing energy to the system from elsewhere. In 

the latter, one had an "outgoing wave only" condition. These turned out not to 

be identical, since the source's own background curvature would scatter some of its 

won emissions back onto itself. Imposing "no-ingoing" waves in the past did not 

preclude having "ingoing" waves in the future, whose origin was the source itself. 

Imposing "outgoing wave only" conditions in the future artificially eliminated these 

tails. In the abstract language of spacetime, the past condition had to be imposed 

at "past null infinity" (the region of "infinite retarded time" from which lightlike 

worldlines reach us) whereas the future condition was imposed at "future null infin­

ity" (the region of "infinite advanced time" to which lightlike world lines depart). 

The analysis of these important concepts is due to Penrose, arising out of the work 

of Bondi and collaborators, in the mid-sixties (Penrose 1964, 1965). In Newtonian 

theory, of course, these "null infinities" do not even exist (since the speed of light is 

infinite), underlying the problems for post-Newtonian approximations in depicting 

the asymptotic structure of the radiation spacetimes in the view of its critics. 
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While, from a mathematical standpoint, considerable effort was expended in prov­

ing that a given algorithm imposed the correct boundary condition on the abstract 

geometric infinities defined in the isolated source's spacetime, an objection some­

times made on physical grounds was that this ignored the reality of actual physical 

sources, which really existed in a universe full of other sources. From this perspec­

tive, "no-incoming" type of wave conditions were quite inappropriate. Schutz and 

Futamase made an effort to address this type of objection by taking a statistical 

approach, in which the source was just one in a whole ensemble of sources, all bathed 

in the others ' radiation. Analyzing this ensemble of systems in a post-Newtonian 

scheme, they showed that the quadrupole formula result naturally arose as the con­

sequence of the net interaction of the whole ensemble, without the need to impose 

boundary conditions designed to achieve the result of an outward fl.ow of energy. 

GR, unlike Newtonian theory, lacks a two-body solution. Therefore, apart from 

perturbation theory with only one large body, there is no two-body theory on which 

to approximate binary systems. Therefore two options are available. Approximate to 

Newtonian two-body, or to special relativity. The former works well for conservative 

motion, but where a third interaction is involved, as with an ensemble of absorbers, 

or asymptotic infinity via radiation theory, Newtonian theory is unsuitable, since 

there is no radiation in that theory. This is not a problem for special relativity, but 

as it does not include the two bodies' attraction to each other, it fails to approximate 

the Newtonian motion. The solution therefore was different approximations for the 

gravitating bodies and the "absorber," but the ambiguity in matching the right 

solutions between the two was not solved practically until Burke. 

Of course, it is always possible to attempt to recast Newtonian theory into a form 
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which makes it more directly comparable with GR. This is in fact a crucial step in 

the core analogy with Universal gravity which underlies the main justification for 

GR. Newtonian gravity and GR are, in themselves, about as incommensurate as 

two theories can get. Despite this handicap, relativists have been quite successful 

in appropriating Newtonian gravity for their theory, after the fact. The subterfuge 

of modifying both theories to more closely resemble each other, and then claiming 

one as the "limit" of the other because their modified forms make similar physical 

"predictions" is not often commented upon. That the predictions of classical gravi­

tation theory had to be prudently edited after the birth of relativity theory is shown 

by the fact that the celebrated result of Laplace, that gravity acts with near infinite 

weakness, well known throughout the 19th century, had to be dismissed beginning 

with Poincare in the twentieth. This prediction was not one which the new theory 

could claim for its own, so it ceased to be a prediction of Newtonian theory from 

1900 on. 

Nevertheless, this process seems to have met with a signal failure in the case 

of gravitational radiation. Havas (1979) points out that even the most elaborate 

recastings of Newtonian theory in GR-like forms seem to lack radiation effects. 

Havas traces this to the degeneracy of the "Newtonian metric". Although this 

was not widely seen as a major problem by others involved in radiation reaction 

work, it illustrates the philosophical problem posed by treating radiation effects in 

a Newtonian approximation. 



Chapter 18 

The Conflict of Style in Physics 

To facilitate a discussion of the perceived contrast between the "rigorous" approach 

of "mathematicians," and the "intuitive" approach of "physicists," some eclectic 

comments on the meanings intended by these terms are in order. The word "math­

ematician" is used in a loose way in GR to describe both a professional affiliation 

and a style of doing physics. Some relativists really are mathematicians in the 

professional sense, by training or inclination, and GR is thought to attract more 

mathematicians than other branches of theoretical physics. Nevertheless, most rel­

ativists are physicists by training, a few having even come from an astronomy or 

engineering background. Despite this, some of them may be considered rather math­

ematical in their approach, so care has to be taken to understand what is meant by 

the use of this word in GR. 

To describe a relativist as a "physicist" may seem straightforward, but agam 

there is an operational definition here which may be hard to pin down. Broadly 

speaking, the "physicists" may be more concerned to relate GR theory to issues in 
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other branches of theoretical physics and to carry on their work in the "style" 

of theoretical physics as it is done elsewhere. The "mathematicians" are more 

concerned with the development of GR according to its own historical dynamic, 

its own sense of where the interesting problems lie, and practise a "style" which 

reflects that of applied mathematics. Though there is no universally consistent 

description of what is meant by each of these styles, nevertheless, to the physics 

style we can attach the word "intuition," and to the mathematical style the word 

"rigour." Loosely defined, by "rigour" we refer to the issue of standards of proof, 

and by "intuition," we refer to an inner, possibly unconscious sense of justification 

for certain ideas. 

What is the role of "intuition" in physics? Arguments based explicitly on an 

appeal to intuition rarely make their appearance in published physics papers. If 

physicists do regularly make use of it in their work, then they are eager to censor its 

traces from their discovery accounts. One might conclude that such "inspiration" or 

"insight" is distrusted by a community which regards itself as thoroughly part of the 

rational enlightenment tradition. The "oral" folklore of the community, however, 

provides a rather different picture. Stories of inspiration and intuitive leaps of 

reasoning abound in science in general (Archimedes in his bath, Kekule and the 

Benzene ring) and in physics in particular (Dirac's realization of the analogy between 

Poisson brackets and Heisenberg's commutators which came to him "out of the 

blue" , Einstein's epiphany with the equivalence principle, "the happiest thought of 

my life", both quoted in Chandrasekhar (1987, pg.20), who also relates interesting 

examples concerning Fermi and Heisenberg). Indeed, in personal interaction with 

other physicists, a physicist may reverse the procedure of a published paper, and 
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disguise rational deduction as inspirational insight. An example of this is given in 

a recent forward to Feynman's Lectures of Gravitation (1996) by John Preskill and 

Kip Thorne. 

Sometime in early 1963, Fred Hoyle gave a ... seminar [at Caltech] 

on the superstar model for strong radio sources. 1 During the question 

period Richard Feynman objected that general relativistic effects would 

make all superstars unstable [to gravitational collapse] - at least if they 

were non-rotating. (Preskill and Thorne, 1996) 

The substance of Feynman's objection was subsequently verified by several re­

searchers. Preskill and Thorne continue, 

To Hoyle and Fowler [co-author of the superstar model with Hoyle], 

Feynman's remark was a 'bolt out of blue', completely unanticipated 

and with no apparent basis except Feynman's amazing physical intuition. 

Fowler was so impressed, that he described the seminar and Feynman's 

insight to many colleagues around the world, adding one more (true) tale 

to the Feynman legend. 

Actually, Feynman's intuition did not come effortlessly. Here, as else­

where, it was based in large measure on detailed calculations driven by 

Feynman's curiosity. 

The evidence for these calculations is preserved in the notes for one of the lectures 

published in Feynman (1996) (the lecture was given shortly before the Hoyle seminar 

in 1963) and in notes of Feynman's preserved in the archives at Caltech. 

1 An early model intended to explain the enormous luminosity of quasars. 
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If the oral tradition of a subject (regarding here textbook and memoir accounts 

as merely "collected folktale ," passed on in a manner appropriate to a very literate 

community, but in an informal setting, distinct from the professional literature of 

the journals) is of value in illuminating the attitudes of scientists, it is perhaps 

particulary instructive to look at the special class of legends known as origin myths. 

Physics is particulary rich in origin myths , stories describing the genesis of the 

discipline. A celebrated example is the leaning tower of Pisa experiment. A classic 

example of an origin myth, it relates an incident which probably never happened, but 

which encapsulates the principal moral which contemporary physicists would wish 

to draw from some of the most significant work of an important ancestor figure, a 

progenitor of the social group. The moral is not a surprising one. The myth depicts 

the physicist, Galileo, performing a critical experiment, which at once destroys the 

old opposing, fictitious theory, and confirms his new one. It is not at all surprising 

that physicists should wish to portray their profession in this light , appealing to 

nature in an unambiguous way to confound their adversaries . 

In an equally famous origin myth, centered around another ancestor figure , we 

find a less expected moral. The story of Newton's apple actually derives from a 

real contemporary anecdote, but it is very obviously a myth in the true sense of 

the word. In this story, the physicist is in repose, under a tree. An apple falls , 

not by his agency, and in a flash, a great insight is vouchsafed him. This tale is in 

remarkable contrast to that of Galileo's tower. The scientist sits under a tree, like 

a primitive sage. We might imagine it as the world tree, though it is not the ash of 

northern European myth, instead relecting Christian biblical symbolism. A vision 

of cosmic truth descends upon him from above (literally in many popular modern 
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representations, where the apple is made to strike Newton on the head). The story 

quite clearly conveys the idea of inspiration striking the physicist, and this moment 

of intuitive insight (spoken of by other early modern theorists, such as Kepler2 ) is 

made to stand in, in mythic terms, for all the years of work which Newton was 

also required to do to fully develop the concept of universal gravitation. Yet it 

also stresses the centrality of the moment of insight which gives direction to the 

conceptualizing process. The story, which is an exceptionally popular one amongst 

physicists in terms of retellings, quite consciously portrays the scientist as a seer in 

the old sense, one who is inspired by divine powers. It seems fair to conclude that 

the inspirational mode of thought is one which physicists would wish to lay claim 

to by this origin myth, just as much as they would lay claim to the experimental 

investigation of nature by the Galileo story. 

A third important strand in the origin myths of the scientific revolution is the 

rationalist fable of Galileo confronting church superstition and dogma in his trial for 

heresy. Misleading as it is historically, the popular account of this episode claims 

the mantle of the rationalist tradition as part of the inheritance of physical sci­

ence. The primacy of this same trinity represented by the myths of the tower of 

Pisa, Newton's apple and Galileo's trial, is appealed to by Cooperstock and Hobill, 

quoted earlier ("the subtle interplay between experimental data, physical intuition, 

and .. . generalizing concepts and principles"). The deeper mythological associations 

2 Quoted in Chandrase~har's Truth and Beauty, pg. 66 (1987): "Now, it might be asked if this quality of the 

soul, which does not engage in conceptual thinking and can therefore have no prior knowledge of harmonic relations, 

should be capable of recognizing what is given in the outward world ... To this, I answer that all pure Ideas, or 

archetypal patterns of harmony, such as we are speaking of, are inherently present in those who are capable of 

apprehending them. But they are not first received into the mind by a conceptual process, being the product, 

rather, of a sort of instinctive intuition and innate to those individuals." 
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of the origin myths of physics are perhaps indicated by the original names of the 

three Muses of Helicon, which have been translated as "Meditation," "Memory" 

and "Song" (Graves, 1966). In other words , they represented the three indivisible 

strands of the poetic art. Similarly, physicists lay claim to experimental practice, 

physical intuition or insight , and logical argument as three strands of their science 

in these origin myths. By their suppression of the intuitive strand in their profes­

sional discourse (i.e. in journal papers), they place themselves within the "classical" 

enlightenment tradition, in which the three muses are symbolically subordinated to 

their father "Memory." The alternative romantic view is expressed by Blake, in the 

prelude to Milton, "and the Daughters of Memory shall become the Daughters of 

Inspiration." Thus the upholders of mathematical rigour can be seen figuratively as 

the defenders of Heaven (and therefore both innocence and the tyranny of reason) 

in the face of the onslaught of Blake's forces of Hell (upholding experience and the 

power of the imagination) . 

In studying the controversy following Weber's announcement of gravitational 

wave detections , Harry Collins (1985) has introduced the concept of the Experi­

menter's Regress . This describes the difficulty faced by experimenters when con­

fronted with a dispute over non-confirmation of claimed results. Since none of the 

experiments will exactly duplicate the others ' behavior, achieving consensus is ham­

pered by the problem that the device which is working properly should get the 

correct result , but the correct result can only be known from the output of a prop­

erly operating device. Although Collins ' view has been criticized (Franklin 1994), 

it seems to provide a useful model for understanding the Weber controversy. 

In the theoretical controversy surrounding gravitational waves , one seems to ob-
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serve a similar phenomenon, the Theoretician's Regress. The complex, tedious calcu­

lations designed to approximate to the full general relativity theory can be thought 

of as experiments, with the theory itself in the role of a notional "reality." These 

experiments constituted a delicate technical apparatus, designed to probe this "re­

ality," aided by the craft and mathematical skill of the theorists. "Experimental 

error" was impossible to account for fully, whether as systematic error in the form 

of an inappropriate expansion scheme or failure to properly control errors from ne­

glected terms (a difficult problem which was rarely addressed programmatically), or 

as accidental error in the form of simple calculational mistakes amidst the welter of 

terms which had to be collected. 

As with the experimentalists, direct replication of another method was rarely 

even attempted. Even the best known schemes, such as EIH, were employed with 

improvements designed to simplify the calculations or overcome objections in prin­

ciple, such as the use of point mass sources (Anderson 1995). Therefore, the array 

of review papers, conference workshops and other social efforts to achieve consen­

sus had to overcome the cycle of regression constructed by the fact that the right 

scheme would be the one which gave the right result, but the right result was the 

answer given by the right scheme. The difference in emphasis between those who 

gave weight to having the right answer, and those who preferred to rely on method 

alone gave rise to further disagreement. This last observation may allow us to put 

our finger on the nature of the distinction between the physicists and the mathe­

maticians. The former represent a style which is willing, to an extent, to be guided 

by the ability to "see" the right answer. The latter insists on the full rigour of the 

method alone. That no individual can ever consistently fall in to one group or the 
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other should not disguise the reality of the perception within the field that some 

general distinction of this sort exists. 

An interesting verbal usage by some of those who insist on the primacy of method, 

such as Damour and Anderson, is the use of the plural in referring to the quadrupole 

formula (Anderson 1980; Damour 1982). For both these two there is only one correct 

method, but a multiplicity of answers. The "quadrupole formulas" represent not one 

thing but many things. There is the quadrupole formula describing the flux of energy 

far from the source, and the quadrupole formula describing energy loss in the source. 

This contrasts with the more inclusive view on method of, for instance, Thorne, 

who nevertheless sees a unity symbolized by the common result of the quadrupole 

formula, a unity expressed in the use of energy conservation laws, at a level of rigour 

satisfactory to some, but not all, relativists. As always, there are different views on 

the problem of whether the means justify the ends or the ends justify the means. 

In this case, the use of the plural signifies a subtle weakening of one or the other 

pole in the means-end dialectic. One either has many derivations which all give 

one result , the quadrupole formula, or else one correct derivation applicable to a 

given problem, which may turn out to yield one of the many incarnations of the 

quadrupole formula. This weakening of one pole allows the retention of the basic 

dialectic, but enables an escape from the vicious circle set up by the regress in cases 

where dialectical tension fails to produce any synthesis, by establishing a primacy 

in the underlying dualist order.3 It is possible that in the different choices of which 

pole to weaken one sees one element of the difference in style of doing physics, 
3 Much as the nominal early dualist purity of the Zoroastrian faith was vitiated by the eschatological asymmetry 

(at future null infinity, as it were) of the final triumph of the forces of Ahura Mazda - see Joseph Campbell , 

Occidental Mythology, pg. 201 
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since placing the emphasis on method emphasizes the rationalist project of science, 

whereas lending weight to the significance of the correct result inevitably leads to 

a reliance on one's intuition of which result is actually the correct one. It is never 

possible to disentangle "logic" and "intuition" entirely in the process of science. For 

instance, Chandrasekhar insists on the balance between these qualities in the work of 

the greatest scientists.4 Nevertheless, the style conflict which is frequently referred 

to by the protagonists in the quadrupole formula controversy seems to have its roots 

in a greater emphasis placed on one or other of these two "ways of knowing." 

An event which helped to partially break the cycle was the advent of the binary 

pulsar data. Initially this gave rise to more activity and more disagreement, but 

it also lent outside support to the preferred "right result" given by the quadrupole 

formula. However, it did not put an end to disagreements about the correctness of 

various methods, except in so far as it tended to rule out methods which disagreed 

with the canonical result. This was enough to gradually bring an end to the public 

side of the quadrupole formula controversy. 

The role of social constraints within a community of theorists in the absence 

of experimental data is nicely illustrated by the course of the quadrupole formula 

problem. To begin with, almost no constraints on acceptable answers (in the sense 

of publishable results) were in effect, even if they were inherently "unbelievable", in 

Peres' words. Peres faced strong social pressures encouraging him to accept his first, 

incorrect result. The problem was his thesis project, and the desire to graduate was 

a strong motivation to finish the calculation. It was only after his successful gradu­

ation that he discovered the fl.aw in his algorithm (Peres, private communication). 

4He quotes Fermi as saying that he would never believe a physical argument without a mathematical derivation, 

nor would be believe the mathematics without a physical explanation (interview). 
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Similarly Hu, who had presented his result in public before he discovered an error 

which changed the sign of the answer prior to publication, and Havas, for whom the 

strange result was emblematic of the unsatisfactory state of the field, had their own 

reasons for publishing a result which ran counter to all expectations. Nevertheless, 

it is true that from the mid-sixties on, no further energy gain results were published. 

It seems clear that in the wake of the successful efforts to describe the asymptotic 

behaviour of the radiation, the field was no longer so wide-open to interpretation as 

it had been. The space for acceptable results had shrunk somewhat. The answer to 

the question, what amount of energy is emitted by a self-gravitating system in the 

form of gravitational waves now had a "right" sign and a "wrong" sign. Hand wav­

ing arguments, such as those offered by Hu, relating his expanding orbit result to the 

Hubble cosmological expansion, and Peres, drawing a "reverse" analogy with elec­

tromagnetism in observing that the sign of the gravitational attraction is opposite to 

that of electromagnetism, i.e. like charges attract instead of repelling (and thus the 

field energy density in the binary is negative, and the sign of the change in energy 

is reversed from the electromagnetism case) could no longer be easily employed to 

dress up such a result with an air of plausibility. Admittedly, Peres' argument that 

gravitational waves might carry negative energy was still being advanced by Rosen 

in 1964. In fact, Rosen's bi-metric theory, in common with some other minority 

gravitational theories, is still held, in modern parametrized post-Newtonian theory, 

to predict orbital expansion rather than decay as the result of gravitational wave 

emission (Weisberg and Taylor, 1981). However, this feature of these theories is 

hardly considered a point in their favour by most observers. 

Nevertheless, even the increased sophistication of the field did not suffice to com-



207 

pletely eliminate the space for disagreement. In the 70s, one still found Rosenblum 

and Cooperstock disputing the field with the supporters of the quadrupole formula 

result. Furthermore, the "agnostic" attitude typified by Havas gained new adher­

ents, such as Ehlers. Only with the advent of the binary pulsar data could the 

acceptable field of results be narrowed down more or less completely to one op­

tion. This last stage of the story hardly took place overnight either. It was only 

gradually that the space for dissent was worn down. This was not achieved, in the 

final stages, without some damage to reputations. Whereas, in the early period, 

dissent was permissible, in the 1980s, this was no longer the case. There seems to 

be some evidence that Cooperstock, although he is still professionally very active, 

lost a certain amount of standing on this topic as a result of his open defiance of 

the emerging orthodoxy. Whether this would have been true also of Rosenblum had 

he lived is hard to say, but it seems quite possible. Certainly, the practical effect of 

Cooperstock's loss of standing may be seen in his inability to provoke debate over 

his new challenge to the establishment, in which he revives the old argument over 

whether gravitational waves can carry energy, and in the role of the pseudo-tensor. 

That avenues of expression still remain is evident by the publication of the initial 

paper on his "energy-localization hypothesis" in Foundations of Physics, a journal 

which encourages the publication of "speculation not tied to hard and demonstrable 

facts [but] suggestive of new basic approaches in physics" (Editorial Preface, vol.1 

no.l pg.3, Foundations of Physics) in which Joseph Weber has also published in 

recent years. Nevertheless, as discussed above in chapter 16, provoking a rejoinder 

to initiate debate has proved more difficult than simply gaining a platform. 

Finally, even when the point was reached that room for disagreement on the 
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leading order result for gravitational back reaction was eliminated, the same could 

hardly be said of the question of method. For those for whom this was always a 

central consideration (Havas, Ehlers, Damour, Anderson) there is still much to be 

critical of in all, or all-but-one, of the multitude of derivations of the quadrupole 

formula. Damour, indeed, resists the tendency to reduce the problem to one of ver­

ifying the quadrupole formula (interview), which distracts from the larger question 

of the correct approach to the problem of motion in binary systems. Ehlers and 

Havas, when interviewed, expressed themselves as still unhappy with some aspects 

of the state of the field. Ehlers felt that enough work had now been done at least 

to convince him of the approximate validity of the quadrupole formula. Havas still 

seems to entertain certain reservations on that score. Damour and Anderson both 

continued to be critical of all solutions to the binary back reaction problem except 

their own, not least each others. However, in a context in which the final answer is 

the same, such disagreements in principle do not seem to be the stuff of controversy. 

Therefore the aim of the all of the conferences, workshops, papers, reviews, ap­

peals to experiment and so on, is seen not to be to enforce or encourage agreement 

as such, but to eliminate or reduce the space for disagreement. There seems to be a 

definite distinction between what the community can agree to disagree about , and 

what they must argue out. In the early period (1945-1965 or so) the over-riding issue 

of principle of whether gravitational waves existed or were emitted by binary star 

systems was something which had to be argued out. In the pre-war period, though 

the issue was noted by Eddington, the subject had not matured to the point where 

it could support such a debate. After some point during the early 1960s, the de­

bate ceased to be relevant as a sufficient consensus had formed against the sceptical 
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position. Subsequent attempts to raise this issue by Havas, Rosen or Cooperstock 

have received little attention. Similarly, the quadrupole formula controversy did not 

really emerge in its own right until after 1965. Up to that time the subject could 

not sustain such a debate, since the level of technical certainty or proficiency which 

could sustain a single canonical result had not really crystallized. By the 1970s 

the various post-Newtonian methods having at least agreed with other approaches 

on a consistent basis , there was sufficient ground for a debate over the quadrupole 

formula per se.· The advent of directly relevant experimental data, on top of the 

increasing astrophysical relevance of compact objects and gravitational waves , lent 

urgency to the matter. But gradually in this case the room for dissent was squeezed 

down. Eventually a critical mass of consensus, enough to close off further debate, 

formed around the orthodox opinion. As the field of gravitational waves moved 

into a new era, in which detailed calculations going beyond the quadrupole formula 

would be required for present (PSR1913+16) and future (LIGO etc.) experimental 

efforts, dissent was no longer viewed as healthy or desirable. Further disagreement 

would only retard the progress of a field which was showing signs that it was about 

to take a significant step into the forefront of physics. 



Chapter 19 

General Relativity in Physics 

The many efforts to develop a quantum theory of gravity constitute a further exam­

ple of the syncretic impulse in physics. Again analogy based on wave phenomena 

played a role. Since historically it was the study of radiation which led to the quan­

tization of the electromagnetic field , it was naturally expected by some that the 

same might apply in gravity. For instance, Pirani (decidedly a non-sceptic) states 

The primary motivation for the study of [gravitational radiation] the­

ory is to prepare for quantization of the gravitational field (Trautman, 

Pirani and Bondi 1965, pg. 368) . 

We have already encountered the idea that gravitational radiation was expected to 

play a role in quantization of gravity in the discussion between Rosenfeld, Bondi and 

Feynman at Chapel Hill. At the same time, interestingly, the syncretistic movement 

was resisted psychologically by some relativists who perhaps preferred not to see 

GR converted into just another quantum field theory. This anti-syncretic mood is 

plain to see in a remark made by Mercier in the context of a reply to a paper by 
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Havas advancing the "sceptical" position on the quadrupole formula. 

Physicists .. . perhaps are too conservative in believing that physics 

(theoretical) should always be made and interpreted the same way, e.g. by 

wanting to do within GRG the same as in Electrodynamics. Perhaps, the 

revolution implied by GR is that it is precisely another way of concerning 

the physical world. And Einstein's drama was perhaps that he tried all 

his life to unify gravitation and electricity, believing or suggesting at least 

that these two phenomena are alike, i.e. both interaction, if electricity is 

an interaction. I personally am not sure that mass is a kind of charge, I 

am not sure that physics should consist in assuming a vacuum and putting 

things in it, that there are free fields and perturbed fields , etc. Unification 

in Einstein's sense was never a success. Perhaps the interaction proper 

(electromagnetic, strong and weak) can be unified; I had some argument 

about it in my talk last Monday; but not with gravitation, which is not 

an interaction in the same sense. 

I could go on like that , calling attention upon the fundamental differ­

ence between GRG and physics as it is done elsewhere. (Havas, 1973) 
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For those with sympathy for this view, the position of the sceptics on gravitational 

waves offered some hope. If gravitational waves did not exist, then the analogy which 

drove the quantum gravity project had broken down in a very fundamental way, a 

potentially critical way for the quantization effort , if history was any guide. One 

view (certainly a minority one) seems to be, "if there are no gravitational waves , 
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there are no gravitons, and therefore no quantum gravity". 1 The anti-syncretic 

mood which is evinced by some relativists may partly have its roots in the disdain 

which some other physicists from different traditions are preceived to regard the 

relativity community. 

In the long run, the utility of the basic analogy between gravitational waves and 

electromagnetic waves seems to have been vindicated by its continued acceptance 

by a wide body of scientific opinion, despite the persistence of some public (and 

published) scepticism to the present day. Certainly the quadrupole formula, a par­

ticular bone of contention for many years, achieved experimental vindication in a 

most unexpected and dramatic way with the work on the first binary pulsar. It 

seems clear that an analogy is not a thing whose validity can be proven in any 

meaningful way, but the longevity of this analogy seems a considerable testament 

to its success. That the experimental search for these waves, whose existence at one 

time had no other argument to support it than this analogy, now commands vast 

resources and the efforts of many physicists and other workers , must be an even 

greater one. 

1 Gravitons are an analogue of photons, the mediators of the electromagnetic field, and are an important element 

of most concepts of quantum gravity. Gravitons are thought of as the particles associated with gravitational waves, 

on analogy with the wave-particle dualism encountered in quantum field theories. 



Chapter 20 

Conclusions 

The problem of gravitational radiation and radiation reaction has a history in which 

various characters or types have been posed in opposition to each other. "Sceptics" 

versus "non-sceptics," "mathematicians" versus "physicists" and so on. Under­

standing the meaning lying behind such appellations can prove tricky. In the case 

of sceptics, it seems safe to conclude that this usage refers to those who doubted the 

underlying analogy upon which the idea of gravitational waves was constructed, that 

is the analogy with the electromagnetic field theory. Since the analogy itself has sev­

eral interlinking components (two hyperbolic field theories , similarity of linearized 

field equations, multi pole radiation formulas) as well as several distinct weaknesses 

(equivalence principle, non-linearity of Einstein equations, determination of equa­

tions of motion from field equations), the sceptics did not form a monolithic group 

at any stage, but the writings of all major sceptics betray serious concerns about 

the role played by this analogy, expressing a generally shared sense that this par­

ticular analogy might be highly misleading. This seems to be the common thread 
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running through the sceptical position, from early doubts about the existence of 

gravitational waves to the quadrupole formula dispute. The latter can be seen as a 

natural progression in this light , as this formula was a chief prediction made by the 

analogy in its most potent form, that of the linearized field equations of relativity 

as presented by Einstein in 1916 and 1918. 

The sceptic who best exemplifies this description is Havas, also perhaps the most 

persistent sceptic. Havas' background (his experience in classical electrodynamic 

theory) , and his extensive historical knowledge suited him very well in his role as 

the most searching critic of the analogies with other theories, including the Newto­

nian, but especially the electromagnetic, current in GR. Partly inspired by Bondi's 

remarks on the subject, he became aware early on of the potential pitfalls in re­

lying overmuch on the analogy, and from then on he repeatedly pointed out the 

potential dangers lurking in an uncritical acceptance of the radiation analogy with 

electromagnetism. 

While I have focused on the position of the sceptics, just as interesting, if not 

more so, is the role played by the analogy in creating belief in a phenomenon for 

which no experimental evidence whatsoever existed until quite recently. Several of 

those I interviewed, and the preambles to many papers (such as Peters and Mathews) 

express a very firm conviction in the existence of gravitational waves which is perhaps 

a greater wonder than the doubts of the sceptics. Within the physics community 

its normality makes it less remarkable, but its pervasiveness makes it all the more 

remarkable when viewed from the outside. Mathematical and physical analogy seems 

a slender reed on which to hang such conviction, but it seems that it is not so. The 

fact that the analogy is more spoken of by sceptics than by "believers" should not, I 
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feel, disguise its paramount motivating force for both groups. Pirani, for instance, is 

a good example of someone highly motivated by the strength of the analogy between 

gravity and electromagnetism in this context . Feynman is another example, and here 

one should also note the tremendous success and coherence of quantized field theory 

which encouraged a sense that all field theories would ultimately hang together in 

a tightly interwoven way, and share certain chief characteristics. 

The strange contrast in opinion on Landau and Lifshitz' famous derivation of 

the quadrupole formula is also explicable by the differing reactions to the reliability 

of the underlying analogy. Several interviewees expressed the opinion that Landau 

and Lifshitz had settled the matter for them, as far as the likely correctness of the 

quadrupole formula went . Yet others spoke rather caustically of this derivation, 

describing it as "a little glib ," "full of holes," only credible "if you believe Landau 

was connected to God" (interviews with Bondi and Anderson) . Based on what one 

reads or hears, it is a little difficult to put one's finger on exactly what features of 

their derivation it is that provoked such strong and contrasting opinions. Thorne has 

sought to explain some of the reluctance to accept it on simple misunderstanding 

based on their famously terse style. 

Evgenii Lifshitz, who is responsible for the Landau-Lifshitz prose, writes 

with such terse elegance that most readers overlook the fact that his deriva­

tion is valid for self-gravitating sources. I only discovered it 10 years after 

first reading Landau and Lifshitz. 

However, one can also look for the explanation in the instinctive reactions to the 

electromagnetic analogy, which indeed is implicit in their book's title, The Classical 

Theory of Fields. 
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As to why some researchers were more wary of the "linear" analogy than others 

there is perhaps no single reason. Perhaps some, such as Havas, began with a 

predisposition to accept it. Havas was himself drawn to the problem by his desire 

to extend his experience in the equivalent electrodynamic theory, and in his 1957 

paper, when he still thought his calculations indicated a result with the "correct" 

sign, he concluded with a ringing endorsement of the analogy. However, experience 

convinced him that the analogy was on shaky ground, and that faith in it was liable 

to mislead in the case of gravitational radiation reaction, as he makes plain in his 

1965 paper with Smith. In the intervening period he had become the most exacting 

and detailed critic of the linearized approximation and the analogy it inspired, a 

position he was to continue to occupy throughout the period of the quadrupole 

formula controversy. Similarly, Einstein, who first formulated the analogy precisely, 

later had second thoughts when attempting to construct an exact solution. 

The orthodox position recognizes failings in the post-Newtonian schemes. A 

paper from the Caltech group, part of that group's program of developing a strong 

theory of astrophysical sources and signals for use in signal processing in LIGO-type 

detectors, states that 

there exists no general algorithm that allows one to solve radiation re­

action problems to arbitrary order in a PNE [Post-Newtonian Expansion] 

(as distinguished from, say, a PME [Post-Minkowski Expansion]). In this 

sense, the theory is much less developed than, say, perturbative quantum 

electrodynamics. Nor is it understood whether an infinite PNE ( assum­

ing one could be generated) would converge or merely be asymptotic to 

an appropriate solution of the field equations (Cutler, Finn, Poisson and 
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Sussman, 1993). 

So the difference between sceptics and non-sceptics reduces in part to an opera­

tional one of whether certain results are sufficiently reliable to form the basis of 

further work. Sceptics would, for instance, not be so confident that the infinite 

PNE would even asymptote to an "appropriate" solution of the field equations. 

Havas, for instance, always insisted it was not clear to him that the conditions for 

an appropriate solution were included in this formalism. Ehlers was a particular 

critic of the assumption that expansion schemes employed in the problem of motion 

really approximated to genuine solutions of the field equations. 

Some analysis of the term "rigour" or "mathematical rigour," which has been 

used extensively in the quadrupole formula debate, is required. The term is a slip­

pery one, its meaning apt to change with the context in which it is employed. Some 

clues are provided by a controversial article which recently appeared in a math­

ematics journal, addressing the invasion of mathematics by theoretical physicists 

interested in topics connected with grand unification schemes such as string theory 

and quantum gravity. Jaffe and Quinn (1993) argue that these theoretical physi­

cists, cut off from much experimental input by their highly abstract interests, have 

replaced experimental physics with mathematics as the agency by which constraints 

are placed on physical theory. Instead of experiment invalidating their conjectures 

or models, "rigorous" mathematical proof can do so instead. Interestingly, Jaffe 

and Quinn give the name theoretical mathematics to this endeavour, which they 

see as being potentially more valuable to mathematics than to physics (where such 

highly abstract theorizing is traditionally viewed with suspicion). They see pure 

mathematics as "nearly characterized by the use of rigorous proofs, .. . the result 
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of literally thousands of years of refinement [which] has brought to mathematics a 

clarity and reliability unmatched by any other science." To them, rigour is, in some 

sense, the antithesis of "theory." 

The initial stages of mathematical discovery - namely, the intuitive 

and conjectural work, like theoretical work in the sciences - involves spec­

ulations on the nature of reality beyond established knowledge. Thus 

we borrow our name 'theoretical' from this use in physics. Theoretical 

work requires correction, refinement , and validation through experiment 

or proof. Thus we claim that the role of rigorous proof in mathematics is 

functionally analogous to the role of experiment in the natural sciences . ... 

Proofs serve two main purposes. First , proofs provide a way to ensure the 

reliability of mathematical claims, just as laboratory verification provides 

a check in other sciences. Second, the act of finding a proof often yields , 

as a byproduct, new insights and unexpected new data, just as does work 

in the laboratory. 

Rigour then, we are to understand from Jaffe and Quinn, is characterized by "the­

orems" and "proofs" (also an understanding shared by many of my interviewees). 

It is what characterizes much of what mathematicians do, and is made possible by 

the great depth of historical practice in that field. Theory, on the other hand, for 

which theoretical physics is the paradigmatical model, involves "speculation" and 

"intuition," and while it may employ mathematical formula and manipulations, it 

is not mathematics. A useful example of the difference between the two is given 

by Schweber (1994) , concerning Feynman. "Fermat's last theorem," actually a con­

jecture, has been for centuries the object of countless attempts to produce for it a 
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rigorous mathematical proof. Feynman's proof, described by Schweber, is to esti­

mate the probability of a counter-example to the theory occuring beyond the region 

where it is known to hold. Feynman's estimate is that there is only one chance in 

10200 that the theorem is falsified, and therefore "for my money Fermat's theorem is 

true" (Schweber, pg. 464). No further effort need be expended. Schweber adds, "of 

course it would be very satisfying to have an elegant proof of the theorem, but as 

far as he [Feynman] was concerned he 'knew' it was right even though he couldn't 

prove it rigorously." 

Certainly it might be reasonable to conclude that a mathematical physicist like 

Ehlers saw proof playing the same role as Jaffe and Quinn envisage in a subject with 

little or no experimental input. However, other theoreticians resisted this viewpoint, 

regarding radiation reaction in GR as "a messy, messy problem" in which no rigour 

(defined as the proving of theorems) is possible (Anderson, interview). But Ehlers 

and other sceptics were motivated by much more than this, and we have already seen 

how Ehlers disclaimed any intention of imposing mathematical standards of proof 

on relativistic physics. The advent of experimental data in the form of the binary 

pulsar orbital decay was greeted by both Anderson and Ehlers as a motivator to 

more securely establish the quadrupole formula as a prediction of general relativity. 

The real question was not whether the derivations of the quadrupole formula which 

had been presented were acceptable by the mores of mathematics, but whether they 

were acceptable by the mores and standards of general relativity. Ehlers, as we have 

seen, was a particular critic of attempts to import concepts from other physical 

theories without justifying them in the context of GR. Again, it was the culture of 

relativity, despite the contrary pulls of the cultures of mathematics or theoretical 
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physics, which was the primary concern of most of those involved in this subject. 

It was this unique culture which gave them some degree of cohesiveness as a group, 

and it was differing views as to the core values of that culture which contributed to 

disputes in the context of gravitational radiation reaction. 

Naturally, relativists' notions of the appropriate core values for their discipline 

were greatly influenced by the standards familiar to them from their general disci­

plinary background. Thus we find differences in outlook based on nationality, school 

and previous disciplinary experience. Damour refers, for instance, to the outlook of 

the French mathematical school (1982). Schweber (1986) and Kevles (1971) have 

both commented on the pragmatic quality of American physics, which seems re­

flected in the attitudes of many, though hardly all, American relativists. One can 

distinguish quite different outlooks between the Bergmann and Wheeler schools for 

instance, the two major American schools of relativity. 1 But in any case, each indi­

vidual internalized all of these overlapping influences, and no doubt perceived them 

as an organic whole which expressed his or her own experience of what it meant 

to do relativity. We should not be surprised to find conflict arising between these 

various personal identifications with the subject in the context of a very public con­

troversy. Whereas it is easy to view theoretical controversy as taking place within 

a monolithic culture of theory, this analysis reveals contrasting attitudes to what 

practicing theory means, which attitudes themselves shaped and amplified debate. 

Exponents of different styles and schools of physics struggled for space within which 
1 A striking number of nationalities are represented in the field of gravitational wave theory, reflecting the wide 

international standing of relativity theory. Besides the American, Polish, German, French, British and Canadian 

schools mentioned in this account, one finds contributions from Japan, Ireland, China, Vietnam and Mexico as well 

as several continental European countries. 
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to carry on their particular way of doing theory, all at the same time conscious 

of their identity within a group itself seeking disciplinary space within the larger 

body of theoretical physics. One can identify several layers of identity operating for 

each individual, to physics or mathematics, to relativity, to his own school or ped­

agogical background and so on. The need for some form of disciplinary identity as 

relativists, expressed in the proliferation of conferences, professional associations and 

journals devoted to GRG (general relativity and gravitation2
) after 1960, seems to 

have helped to prevent the fragmentation which might have otherwise have occured 

over controversies such as this, due to the contrasting backgrounds and outlooks of 

the protagonists. This hard won disciplinary identity could be easily threatened by 

subsumation into the larger body of quantum field theory, or by degeneration into 

an ancillary branch of astrophysics and cosmology. It is not surprising therefore to 

find some ambivalence attaching to a subject, such as gravitational waves, which 

managed to express both of these cross-disciplinary relations at once. 

The philosophical antipathy of the two fundamental approximations of GR, the 

Newtonian (with its analogy to universal gravitation) and linear (with its analogy 

to relativistic electrodynamics), is seen by the modern theory's deconstruction of 

the space around an isolated physical system (that is to say, the deconstruction 

of the notional "universe" in which the source exists) into a complex hierarchy of 

regions arranged in successive layers like the circles of heaven. "Strong field near 

zone," "weak field near zone," "local wave zone," "distant wave zone," "transition 

regions," and so on formalize the space around the system into domains of validity 

for different expansions and approximations, with matching techniques employed to 
2 The name itself indicates a desire to be inclusive, since it can encompass those theorists, such as Rosen, 

promoting rival (to GR) theories of gravity 
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reconcile the various schemes in operation. 

Of course the use of different expansions to cover different regions of a physical 

problem is not unique to GR. The WKB approximation of quantum mechanics is 

perhaps the best known example of the use of matched asymptotic expansions in 

physics (the concept is also commonly applied in fluid mechanics). The idea of the 

wave zone and the near zone in radiation problems arose in electromagnetic theory. 

Nevertheless , the radically different epistemological bases for the expansions used in 

different regions of the gravitational radiation problem is a striking feature of this 

field. The inadequacies of the analogies being drawn with different and somewhat 

incompatible theories were forcefully pointed out by Havas and Ehlers, and the 

shotgun marriage of the two different approximations via matching techniques did 

not fully alleviate their misgivings. 

One should not regard the "physicists" attitude to the Newtonian analogy and 

the Newtonian limit as naive, but rather as pragmatic. They also were aware of 

important differences between Newtonian and relativistic concepts, but regarded 

the use of analogy relating quantities in the two theories as vital for several reasons. 

Amongst these were the relevance of relativity to subjects such as astrophysics, 

where Newtonian rather that relativistic gravity is still routinely applied for most 

purposes, and as a guide to the application of relativity to systems whose Newtonian 

behaviour was well understood, such as binary stars. Here one sees the importance 

of analogy to the physical intuition spoken of so much in this area. Such intuition 

must be based on experience, in this case experience with another theory. From this 

standpoint , challenging the status of the operational analogies between Newtonian 

and relativistic concepts and quantities, or demanding that their use be tempered 
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with caution until their epistemological standing is clarified, is tantamount to dan­

gerously retarding the progress of research in the field, perhaps to the point where 

its survival within theoretical physics would be threatened. 

One should beware of attaching any historical significance to the use of the term 

Newtonian. In fact, modern Newtonian theory is a living 20th century theory, 

bearing little resemblance to the pre-relativity theory. For instance, the quadrupole 

formula itself is a "Newtonian" result in the language of contemporary theory, since 

it is valid in the weak-field, slow-motion limit , although it pertains to a concept 

entirely alien to 18th or 19th century gravitation theory. This body of theory is 

routinely extended by the addition of post-Newtonian corrections from the type 

of slow-motion approximations to the problem of motion which we have discussed. 

The modern theory of gravity is far from monolithic, though it is frequently stated 

t hat GR is the paradigmatic theory of our time. Instead, one has Newtonian theory, 

post-Newtonian theory, classical general relativity, semi-classical relativity, quantum 

gravity, supergravity and so on, all standing in different relations one to the other, 

all, in a manner which some might find potentially ambiguous, held to approximate 

to some ultimately true quantum field theory of gravity. 

At the present time, as they look forward hopefully to the possibilities for new 

problems and challenges, the progressive or pragmatist school can feel vindicated 

by the course of the quadrupole formula controversy. The position of exponents of 

this outlook, such as Thorne, has been fairly consistent for as long as 20 or 30 years , 

and was summed up by Thorne in 1980. 

One group of gravitation theorists, led by Jurgen Ehlers , Arnold Rosen­

blum, Joshua Goldberg, and Peter Havas (1976), believes that these radiation-



reaction results have not been derived with sufficient rigor to be fully 

trustworthy. Another group, to which I strongly adhere, believes that the 

rigor, e.g. of the Burke (1969,1971) and Chandrasekhar-Esposito (1970) 

derivations exceeds that of many analyses in mathematical physics which 

physicists firmly trust . We are happy to let our more mathematical col­

leagues polish up their derivations; but we have no doubt that in the end 

the results will remain unchanged. (Thorne, 1980) 
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It is noteworthy that this work of "polishing" stands apart , or appears to play 

at best a minor role in, the extensive research program of which Thorne outlines in 

this article. The three prongs of this program are for relativists to develop "new 

mathematical tools for the analysis of gravitational radiation," astrophysicists to 

"identify the most promising sources of gravitational waves .. . using the relativity 

theorists' mathematical tools to estimate the characteristics of the waves they emit" 

and experimentalists to design and construct "a second generation of gravitational­

wave detectors," of several different types, with the emitted wave characteristics 

predicted by the theoretical effort in mind. Since it is apparent that the quadrupole 

formula is one of the tools available for use in estimating source evolution, it would 

appear that the process of "polishing" the derivation cannot be expected a pri­

ori to advance the research program Thorne outlines. Thorne's use of the phrase 

"mathematical tools" appears to refer to useful estimates or relations such as the 

quadrupole formula which can be applied to astrophysical systems in source and 

signal estimation. The usage of mathematics is presumably quite distinct to the use 

implied in his discussion of the concerns over "rigor" expressed by "our more math­

ematical colleagues" . There is a distinction here, perhaps, between mathematics as 
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a tool and as a process. 

The view that increased mathematical precision is ancillary to, and perhaps 

largely dispensable from, the advance of science certainly appears to have raised 

concerns over their role amongst some relativists. At least the repeated assertions 

by progressives that there was no fear of new derivations overturning the less rigor­

ous results appear to have rankled with some people. The view that the "elegance" 

of rigorous proofs is largely ornamental to the practice of physics, discernible in the 

attitudes of Feynman and Thorne, must have seemed both threatening and slighting 

to those of a more mathematical bent, who may have felt their contribution under­

valued somewhat.3 At the same time, the alternative possibility apparent to the 

progressives, that they actually wait for more precise derivations before proceeding 

with applications, must have seemed just as threatening to the survival of a subject 

emerging from obscurity. 

For the progressives then, the new era promised by the great new gravitational 

wave detectors such as LIGO is one of final liberation from the confining world of 

very limited contact with experiment and observation. Just as the theory of non­

gravitational fields and fundamental particles appears to be running out of empirical 

room, with the collapse of the Superconducting Super-Collider (SSC) project, GR 

will at last have its own window onto the strong field region in which so much of 

modern field theory (including relativity) has thrived. For those interested in ex­

act results of GR theory, such as Winicour, this new horizon is one of opportunity 

also. In order to successfully extract gravitational wave signals from the noise of 

these detectors, precise theoretical templates for the signals will be required to aid 
3 Jaffe and Quinn comment on the requirement that confirmation have roughly equal status with discovery if 

theorists and mathematicians are to co-exist side by side. 
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in signal processing. Theory will thus help make signals from coalescing binary 

systems visible in the detector. However, the strong fields produced in the merger 

of two black holes invalidate all present approximation schemes before the end of 

the inspiral/merger process. As discussed earlier, a large program (known as the 

Binary Black Hole Grand Challenge Alliance, a consortium of several numerical rel­

ativity groups with NSF backing) is now underway to solve this problem exactly 

by numerical methods on large, highly parallel computers. Winicour sees the possi­

bility that such exact solutions will make concepts such as the quadrupole formula 

irrelevant, products of an earlier period in which GR was not fully understood, and 

made use of concepts borrowed from other paradigms, such as (20th century) New­

tonian gravity. One unique feature of gravitational waves from coalescing binaries 

which may be detected in the next century is the Christodoulou memory (Kennefick, 

1994). Signals from such sources were long thought not to contain a memory, which 

is a local change induced by the passage of a gravitational wave which persists af­

ter the wave is gone. A non-linear effect of this type, a "wave" produced by the 

wave itself, was predicted by the mathematical relativist Demetrios Christodoulou 

in 1991. It is a striking physical effect of wave emission, which had previously been 

entirely missed by the "intuitive" physicists. In his paper on the Christodoulou 

memory (reversing the paradigmatic order that the physics discovery precedes the 

mathematics confirmation), Thorne reinterprets Christodoulou's discovery in physi­

cal terms, and wistfully reflects on the one that got away from his physical intuition, 

to be discovered and not just rederived by the mathematician . 

The author (who is an advocate of simple physical explanation for im­

portant physical effects) has long thought he understood fully the mem-



ories of gravitational-wave bursts. It has been a salubrious experience, 

therefore, for the author to be shown by a mathematician (Christodoulou, 

who uses elegant mathematics that is far from the physics) that he (the 

author) has missed a very important physical effect. (Thorne, 1992a) 
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It is therefore still true, facing into the age of the large gravitational wave detectors, 

that the private visions of what it means to do general relativity are just as distinct 

and vibrant as they ever were. 



Appendix A: Interviews and 
Other New Sources 

James Anderson Hoboken, New Jersey 03/ 04/ 95 
Peter Bergmann New York City 03/ 04/ 95 
Luc Blanchet Meudon, France 12/ 10/ 94 
Hermann Bondi Cambridge, England 7 /11/94 
Dieter Brill College Park, Maryland 06/04/ 95 
S Chandrasekhar Chicago, Illinois 12/ 06/ 95 
Fred Cooperstock Victoria, BC, Canada 26/ 06/ 95 
Thibault Damour Bures-sur-Yvette, France 11/ 10/94 
Nathalie Deruelle Paris, France 19/10/ 94 
Jurgen Ehlers Munich, Germany 14/10/ 94 
Joshua Goldberg Syracuse, New York 10/ 04/ 95 
Peter Havas Philadelphia, Pennsylvania 05/ 04/ 95 
Richard Isaacson Arlington, Virginia 08/ 04/ 95 
Charles Misner College Park, Maryland 07/ 04/95 
Ezra T Newman Pittsburgh, Pennsylvania 11/ 04/95 
Asher Peres 

Felix Pirani London, England 25/ 10/ 94 
Jerzy Plebanski Mexico City 30/ 06/ 95 
Adrian Scheidegger 

Dennis Sciama Venice, Italy 16/10/94 
John Stachel 

Kip Thorne Pasadena, California 14/ 06/95 
Pasadena, California 17/ 07/ 95 

Andrzej Trautman Trieste, Italy 17/ 10/ 94 
Phillip Wallace Victoria, BC, Canada 26/ 06/ 95 
Joseph Weber Irvine, California 20/06/ 95 
John Wheeler Princeton, New Jersey 04/ 04/ 95 
Jeffrey Winicour Pittsburgh, Pennsylvania 11/ 04/ 95 
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Dates are given as day /month/year. Interviews which were recorded and for which a tape is 

available are indicated. Provided the interviewee is willing, access to the tapes or notes arising 

from interviews and discussions will be permitted to interested scholars. 
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