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Abstract 
 
 

Two classes of enzymes are responsible for modulation of intracellular 

phosphotyrosine levels, namely protein tyrosine kinases (PTKs) and protein tyrosine 

phosphatases (PTPs). Together these enzymes maintain the appropriate balance of 

phosphoproteins required for a variety of developmental processes including axon 

pathfinding. In Drosophila, five receptor-like protein tyrosine phosphatases (RPTPs) 

regulate axon pathfinding, but little is known about their downstream signaling pathways 

or the means by which their enzymatic activity is regulated. 

Chapter 2 of this thesis deals with experiments to test whether dimerization 

regulates the activity of these enzymes. Crystallographic data indicates that some RPTPs 

form dimers in which each monomer is precluded from binding substrate due to the 

insertion of a helix-turn-helix segment of the opposing monomer into the active site. I 

introduced “tagged” RPTP constructs into Drosophila S2 tissue culture cells and tested 

for dimer formation using immunoprecipitation and Western blotting. I did not detect 

stable dimers, however. This may suggest that dimer formation requires other protein 

components (such as the putative RPTP ligands) that are not expressed in S2 cells. 

In Chapter 3 I investigated the possibility that Roundabout (Robo), a receptor 

mediating axonal repulsion from the embryonic midline, is a substrate for RPTPs 

DPTP69D and/or DPTP10D. Previous genetic studies implicate these RPTPs in 

participating in the Robo signaling pathway. Experiments detailed here show that Robo 

can be phosphorylated on tyrosine residues in S2 cells, characteristic of an RPTP 

substrate. However, Robo did not co-immunoprecipitate with “substrate trap” mutants of 

either of these RPTPs, possibly because their interaction is dependent on co-factors not 

present in the cell culture system. 

Chapter 4 is a characterization of DPTP69D-associated proteins purified from 

embryos expressing a substrate trap version of DPTP69D. We identified one of the 

associated proteins as non-muscle myosin II heavy chain (nmm II hc). Proper regulation 

of nmm II hc is essential for axon patterning in mushroom bodies (MBs). I found that 

expression of the DPTP69D trap in MBs results in an axon retraction phenotype similar 
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to that seen when nmm II hc activity is elevated, suggesting that this protein may be a 

target for DPTP69D activity. 
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Chapter 1 

Structure and function of receptor tyrosine phosphatases 
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Introduction 
 
 
The evolutionary transition from unicellular to multicellular organisms was predicated on 

the development of a mechanism for cell-cell signaling. Transmembrane signaling events 

underlie a myriad of developmental processes including morphogenesis, pattern 

formation and differentiation. The adult multicellular organism is also dependent on cell-

cell signaling for many aspects of normal cell maintenance and functioning. A variety of 

extracellular stimuli such as cytokines, growth factors and hormones activate receptor 

protein tyrosine kinases (PTKs) leading to an increase in intracellular phosphorylation 

levels. PTKs are also activated through various types of cell-cell, cell-matrix interactions. 

The resulting phosphorylation of select intracellular target proteins triggers downstream 

signaling pathways that effect diverse responses through generation of second 

messengers and activation of other proteins, such as Ser/Thr kinases and G-proteins.  

Tyrosine phosphorylation is a viable means of manifesting cell-cell signaling only if 

the phosphorylation is reversible. In general, once a given signal has caused it to increase, 

the level of intracellular phosphotyrosine must return to a baseline in order for the cell to 

respond to subsequent signals. Equally important as PTKs, then, are the protein tyrosine 

phosphatases (PTPs) that subserve this function. Similar to PTKs, the importance of these 

enzymes is reflected in their diversity. PTPs can be grouped into two structurally distinct 

groups: receptor-like proteins that span the membrane and soluble cytosolic enzymes. 

Receptor-like protein tyrosine phosphatases (RPTPs) have the potential to transduce 

extracellular signals into changes in phosphotyrosine levels via ligand binding-induced 

activation of their catalytic domain. Instead of simply reversing phosphorylation 

mediated be kinases, RPTPs may play an active role in regulating the cellular response to 

outside signals. 

In the following sections I will review our current knowledge of the RPTPs. (1) 

Certain residues are highly conserved in the RPTP catalytic domain and known to be 

essential for catalytic activity. Our current understanding of the basic enzymatic 

mechanism for RPTPs is supported by a large body of empirical evidence. Elucidation of 

this mechanism has contributed to the development of mutant trap versions of these 
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enzymes that have been useful in identifying potential RPTP substrates. (2) RPTPs have 

well-defined preferences for substrates. It has been shown that protein tertiary structure is 

not as important as the primary sequence adjacent to the phosphotyrosine residue in 

determining the suitability of a given phosphopeptide as a substrate. (3) Interactions 

within and between RPTPs are an important means by which the activity of these 

enzymes is regulated. In particular, the “wedge” region plays a critical role in 

extinguishing enzymatic activity. (4) With few exceptions, RPTPs have two catalytic 

domains, D1 and D2. Most activity resides in D1, but the low level of activity in D2 can 

be increased to levels comparable to D2 through mutation of just two residues. 

 

1. Enzymatic mechanism 
 
 

All “classical” tyrosine phosphatases have a conserved catalytic domain of 

approximately 240 residues characterized by the PTP signature motif 

(I/V)HCXAGXXR(S/T)G. This motif contains invariant cysteine (Cys) and arganine 

(Arg) residues that are essential for catalytic activity. The role of the Arg is to assist in 

positioning the phosphotyrosine substrate (pTyr) such that its phosphorus atom is situated 

adjacent to the sulfur atom of the PTP motif’s catalytic Cys residue (Jia et al., 1995). This 

allows Cys to launch a nucleophilic attack on the phosphorus atom, the first step in the 

dephosphorylation reaction. 

The PTP motif is situated near the center of the molecule and is surrounded by four 

loops that delineate the entrance to the active site: L1, L6, L13 (or WpD) and L17. 

Binding of substrate results in a conformational change in the WpD loop from an open 

position into a catalytically competent closed position. This brings the side chain of an 

invariant, catalytically essential aspartic acid on the loop (Asp 181 in PTP1B) into 

position to act as a general acid. The closed WpD conformation is stabilized by a 

combination of hydrogen bonds and hydrophobic interactions. 

Attack of the Cys nucleophile on phosphorus results in a pentavalent transition state. 

In donating a proton to this transition state, Asp 181 helps to cleave the P-O bond 

between the phosphorus and the oxygen of the tyrosyl side chain in the substrate. The 

result is formation of a thiol-phosphate (phosphoenzyme) intermediate. 
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The final step in the dephosphorylation reaction is hydrolysis of the thiol-phosphate 

intermediate by an activated water molecule. A glycine residue in the PTP facilitates this 

step by positioning the nucleophilic water molecule adjacent to the phosphorus atom of 

the intermediate. Gln 262 participates in hydrogen bonding with the water molecule to 

give it the proper orientation. Next, the same Asp that earlier served as a proton donor 

now acts as a proton acceptor and abstracts a hydrogen from the water molecule. This 

converts it into an active nucleophile that attacks the phosphorus atom, thereby cleaving 

the cysteinyl-phosphorus bond and reconstituting the enzyme. A schematic of the PTP 

dephosphorylation reaction is shown in Figure 1. 

Several lines of evidence support this mechanism of catalysis. Site directed 

mutagenesis of the catalytic Cys results in an inactive phosphatase in an assay with 32P-

labeled substrates (Guan and Dixon, 1991). When the invariant Asp is mutagenized, there 

is a marked reduction in catalytic activity (Zhang et al., 1994b) and substrates remain 

bound to the enzyme (Flint et al., 1997). The latter finding is consistent with the proposed 

role of Asp in cleaving the pTyr P-O bond that would cause release of the 

dephosphorylated substrate. We have exploited the substrate trapping properties 

conferred by this mutation in a search for RPTP substrates (see Chapters 3 and 4). Finally, 

substitution of Gln 262 for Ala leads to accumulation of the thiol-phosphate intermediate, 

consistent with the role of this residue in catalyzing hydrolysis of the intermediate (Denu 

et al., 1996). 

 

2. Substrate binding 
 
 

Several criteria determine the suitability of a given protein as a substrate for PTPs. 

The most important is that it is phosphorylated on one or more tyrosine residues. PTPs 

display a rigid specificity for pTyr-containing substrates, and proteins phosphorylated on 

other residues are unable to be dephosphorylated by these enzymes. This distinguishes 

the PTPs from Ser/Thr phosphatases and the dual-specificity phosphatases, the latter 

being able to dephosphorylate proteins phosphorylated on Ser, Thr and Tyr residues.  

To determine the other criteria for PTP substrates, phosphorylated synthetic 

peptides are commonly used as model substrates. This approach is more practical than 
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using physiological substrates because few naturally occurring pTyr-containing substrates 

are readily available. Also, the broad specificity of kinases can be exploited to 

phosphorylate a diverse collection of artificial peptide substrates in vitro. For example, a 

series of peptides differing by just one residue can be kinased and tested with a PTP to 

determine the relative importance of each residue in the peptide for the 

dephosphorylation reaction. 

Dimensions of the catalytic site cleft are the primary determinant of the molecular 

basis for PTP substrate specificity (Dunn et al., 1996). The nucleophilic Cys is situated at 

the base of this cleft, and there is a distance of 9 Aº from it to the cleft entrance. A 

conserved KNRY sequence forms a phosphotyrosine recognition loop that contributes to 

formation of the cleft (Jia et al., 1995). The Tyr residue from this loop and other nonpolar 

residues from the WpD loop interact with the phenyl ring of the substrate peptide’s pTyr. 

These interactions cause the pTyr residue to adopt a helical conformation that inserts into 

the cleft. The importance of the cleft’s depth was documented in experiments with a 

peptide of the general form (Glu)4-NH-(CH2)n-PO3. The peptide that was most efficiently 

dephosphorylated was the one where n=7, which corresponds exactly to the length of a 

tyrosine residue. 

Studies of several PTPs have determined that pTyr site recognition depends not on 

higher orders of protein conformation but on the primary sequence surrounding pTyr, 

particularly amino acids immediately N- and C-terminal to this residue. For a particular 

pTyr-containing substrate, the rate of dephosphorylation by PTP can be easily measured 

with a continuous spectrophotometric assay due to the different absorption spectra of 

pTyr versus Tyr. Several PTPs have been examined with this assay to define precisely 

which substrate residues are important for efficient dephosphorylation. 

In the case of PTP1 and Yersinia PTPase, four residues N-terminal and one residue 

C-terminal to pTyr were found to be key determinants of substrate suitability (Zhang et 

al., 1994a). This was determined by sequentially substituting Ala for each amino acid 

within a pTyr-containing peptide substrate derived from the EGF receptor (EGFR988-998: 

DADEpYLIPQQG), and measuring the kinetics of the dephosphorylation reaction. 

The -1 position immediately N-terminal to pTyr was found to be particularly important, 

as a substitution of the Glu residue here for Ala resulted in a 126-fold decrease in enzyme 
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activity on this peptide compared to wild-type peptide. Additional experiments with 

various length substrates determined that a minimum of six amino acids is required for 

optimal binding to these PTPs, including the pTyr residue.  

In general, PTPs have a documented preference for substrates with acidic residues 

N-terminal to the pTyr due to the presence of basic residues on the PTP surface that 

interact with these residues. The presence of pTyr is necessary but not sufficient for high-

affinity binding to PTPs, as a singular pTyr residue binds only weakly, and peptides 

without pTyr do not bind at all (Barford et al., 1998). 

 

3. Modulation of activity 
 
 

 Regulation of intracellular phosphorylation levels is a fundamental mechanism 

used by cells to regulate a wide array of cellular functions including proliferation, 

differentiation and metabolism. In axon patterning, RPTP activity is required at specific 

points along the path of extending axons to keep them oriented towards their target. It is 

clear that the involvement of PTPs in these processes requires that their activity be 

specifically regulated. This is accomplished in some measure through proteins that target 

the enzymes to specific subcellular locations. Other mechanisms of regulation have yet to 

be discovered. 

PTPs are efficient catalysts, and isolated catalytic domains exhibit constitutive 

activity. The pathogenicity of the Yersinia bacteria responsible for tuberculosis and 

bubonic plague is due to disruption of signal transduction pathways resulting from 

constitutive activity of the Yop family PTPs that it injects into macrophages. Thus, 

regulation of PTP activity may come in the form of inhibition of their activity. 

Dimerization has been proposed as one means by which PTP activity may be 

inhibited. The first evidence supporting this theory comes from crystallographic studies 

of RPTPα. Like most phosphatases, RPTPα consists of two catalytic domains, D1 and 

D2, each with an active site. The crystal structure of the first catalytic domain indicates a 

region of each catalytic domain, denoted the “wedge,” inserts into the active site of the 

neighboring RPTPα molecule (Bilwes et al., 1996). These results suggest that dimer 

formation may represent a way of reversibly suspending phosphatase activity, as a 
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blocked active site would preclude substrate binding. In this scenario, RPTPs would be 

active only when they have been dissociated from dimers into monomers (Figure 2). 

The wedge of RPTPαD1 is formed from a helix-turn-helix segment in the N-

terminal segment of each monomer. The interhelical angle is ~80º, forming a wedge that 

inserts into the catalytic cleft of the opposing monomer. Hydrogen bonds and van der 

Waals interactions between the N-terminal wedge of one monomer and residues from the 

WpD loop of its dimer partner stabilize the WpD loop in the open conformation. This 

prevents the loop from moving into the catalytically competent closed position. 

Additionally, the side chains of several N-terminal wedge residues interact with residues 

Tyr 262 and Asn 264 on the L1 loop of the opposite dimer. These are the equivalent of 

residues Tyr 46 and Asp 48 in PTP1B, two residues that have been shown to form critical 

interactions with the pTyr-containing substrate. This suggests dimerized RPTPαD1’s are 

incapable of binding substrate. 

Taken together, the crystallographic data indicate that activity is proscribed in the 

dimeric form of RPTPαD1 on several levels. The catalytic site is physically occluded by 

the wedge, an Asp on the WpD loop essential for activity is kept away from the active 

site by interactions holding the loop in an open conformation, and residues that 

participate in substrate binding are otherwise engaged in interactions with the L1 loop. 

The sequences corresponding to the wedge show a high degree of conservation among 

other RPTP family members, suggesting that dimerization as a means of activity 

regulation could be a strategy common to many RPTPs. 

Additional evidence for a model of dimer formation as a means of reversibly 

suspending RPTP activity comes from studies of an EGFR/CD45 chimera (Desai et al., 

1993; Majeti et al., 1998). CD45 is an RPTP with no known ligand that is expressed on 

nucleated hematopoietic cells and is required for TCR signaling in response to 

engagement of antigen receptor. To study the effects of dimerization on CD45 activity, a 

chimeric protein was made with the extracellular and transmembrane domains of EGFR 

fused to the intracellular domain of CD45. TCR signaling is normal in cells expressing 

the chimeric protein, but addition of EGF results in an abrupt loss of signaling. Signaling 

is restored in the presence of EGF when the chimera is coexpressed with a gene encoding 

only the extracellular and transmembrane portions of EGFR. These results suggest that 
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induced dimerization extinguishes the catalytic activity of the chimeric protein. Under 

physiologic conditions, ligand may substitute for EGF in inducing dimerization of wild-

type CD45. Consistent with this, the wedge domain of CD45 is highly conserved with 

that of RPTPα, suggesting it may form dimers in a manner similar to RPTPα. 

Other studies have shown dimer interactions can be complex, with a domain from 

one RPTP inserting into the catalytic domain of a different RPTP to form cross-species 

heterodimers (Blanchetot and den Hertog, 2000; Gross et al., 2002). For example, the 

second catalytic domain (D2) of PTPδ has been shown to bind to D1 of RPTPσ, and this 

results in ~50% reduction in catalytic activity of the latter (Wallace et al., 1998). 

Evidence also exists for formation of multimers, where strings of RPTPs are 

interconnected via interactions between wedge and active site domains of neighboring 

molecules (Iversen et al., 2002). 

Strong evidence exists for a model of negative regulation of activity through 

dimerization for the RPTPs cited above, but the crystal structures of some other RPTPs 

suggests this is not a universal strategy employed by all RPTP family members. For 

example, RPTPµ does exist as a dimer in the crystal structure, but the wedge domain of 

one subunit of the dimer is not inserted into the catalytic cleft of the dyad-related 

monomer. Consequently, the active site remains in an open, uninhibited conformation 

(Hoffmann et al., 1997). In the case of RPTP LAR there is no direct evidence for a dimer, 

but other types of intramolecular interactions are thought to occur. The crystal structure 

suggests D1 of one LAR molecule may interact with D2 of a second molecule (Nam et al., 

1999). 

 

4. D1 vs. D2 
 
 

Most RPTPs have two tandem phosphatase domains denoted D1 and D2. Studies of 

human RPTP LAR indicate the tertiary structure of LAR D1 and D2 are very similar 

(Nam et al., 1999). However, as is the case with other RPTPs, a majority of the catalytic 

activity resides in the membrane-proximal D1, with membrane-distal D2 possessing little 

or no activity. This raises two questions that apply to all members of the RPTP family: 1) 

what accounts for the disparity in catalytic activity between D1 and D2, and 2) if D2 is 
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not catalytically active, what function(s) does it serve? The high degree of primary 

sequence conservation among RPTP D2 domains suggests there does exist an as yet 

undiscovered function. 

The most obvious difference between LAR D1 and D2 is the presence of four 

additional residues in D2 located in the loop between helices α1' and α2'. Alignment with 

sequences of other RPTPs shows the extra residues are shared by many D2 domains, 

suggesting the longer loop resulting from these additional residues may have biological 

significance. 

Overall similarity is observed in the active site of both domains, each comprised of 

a catalytic cleft surrounded by four loops. Closer inspection reveals a substitution of two 

amino acids with important roles in the catalytic reaction. In PTP1B, an Asp on the WpD 

loop is thought to act as a general acid when the loop assumes the catalytically competent 

closed conformation. By donating a proton to the tyrosyl oxygen, Asp 181 assists in the 

reaction by turning the soon-to-be dephosphorylated substrate into a favorable leaving 

group. In D2 of LAR, the residue equivalent to Asp 181 is replaced by Glu 1779. The 

second substitution is found in the pTyr recognition loop that has been shown to interact 

with the substrate pTyr. In PTP1B, Tyr 46 forms hydrogen bonds with the Ser residue 

immediately adjacent to the catalytically essential Cys. The LAR residue corresponding 

to Tyr 46 is Leu 1644, which does not participate in hydrogen bonding with Ser. The 

absence of this interaction causes Ser to shift slightly into the path of the catalytic cleft, 

thereby precluding potential substrates from gaining access. 

Mutational analysis was performed to determine whether these amino acid 

substitutions were responsible for the lack of phosphatase activity in D2. Individual 

substitutions of Glu 1779 for Asp or Leu 1644 for Tyr resulted in detectable 

dephosphorylation of a 32P-labeled synthetic peptide, but the level of activity was a small 

fraction of that of wild-type enzyme. When both substitutions were made together, a far 

greater impact was observed, with D2 now showing activity levels equivalent to that of 

D1. Conversely, when the Asp and Tyr residues of D1 are mutated, D1 catalytic activity 

is abolished. Thus, the difference in catalytic potential of these domains is accounted for 

in its entirety by only these two residues. 
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Amino acid substitutions that correspond to those made in LAR D2 also result in 

fully restored activity of the D2 domain of RPTPα , suggesting this is a common means 

for D2 inactivation (Lim et al., 1998). Although the D2 domain plays little or no role in 

catalysis, the high degree of sequence conservation among RPTP family members 

suggests they do have an important function. One possibility is that D2 is involved in 

regulating the substrate specificity of D1. Consistent with this, the N-terminal part of 

LAR D2 interacts with D1 via hydrogen bonds and van der Wall forces and forms a wall 

on one side of the D1 active site. Mutants missing the N-terminal part of D2 show altered 

substrate specificity, while no such effect is seen in mutants in which the C-terminal part 

is missing. A similar observation has been made in the case of CD45, where a 19 residue 

insertion between two β sheets of the D2 domain results in altered D1 specificity for 

synthetic peptides (Streuli et al., 1990). 

D2 domains may also be important for substrate binding, with evidence in support 

of this role provided by studies with insulin receptor (IR), a physiological LAR substrate 

(Tsujikawa et al., 2001). LAR constructs missing either the D1 or D2 domain were 

coexpressed with IR in COS cells. Following addition of insulin to stimulate IR 

autophosphorylation, LAR was immunoprecipitated (IPd) with an antibody against its 

extracellular domain. IR co-IPd efficiently with constructs missing the D1 domain, but 

the amount co-IPing with constructs missing the D2 domain was negligible. 
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Figure 1. Schematic of the reaction mechanism catalyzed by PTP1B. (a) Formation of 
the cysteinyl-phosphate intermediate. (b) Hydrolysis of the cysteinyl-phosphate 
intermediate. 
 
 
 
 

 
 
 
 
 
Source: Annual Review of Biophysics and Biomolecular Structure (1998) 27, 154 
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Figure 2. Stereo ribbon diagram of the RPTPαD1 dimer. The label AS placed near the 
catalytically essential Cys 433 emphasizes the active site of each monomer. 
 
 
 

 
 
 
 
Source: Nature (1996) 382, 556 
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Analysis of RPTP dimerization potential in Drosophila S2 cells 
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Abstract 

The vital role of receptor-linked tyrosine phosphatases (RPTPs) in Drosophila axon 

pathfinding has been well documented, yet little is known about how the activity of these 

enzymes is regulated. Crystallographic data suggests activity may be regulated through 

dimerization, as the “wedge” domain of one RPTP appears to insert into the active site of 

its dimer partner, thereby precluding it from binding substrate. Genetic data from our lab 

provides corroborating evidence for a model of dimer mediated regulation of activity. To 

assay for dimer formation, we expressed affinity-tagged versions of the RPTPs in the 

Drosophila S2 cell line. No evidence for stable dimers was found under the conditions 

tested, possibly because dimer formation is ligand induced. Our experimental approach 

can be used to study the role of ligands in inducing RPTP dimerization once such ligands 

are identified. 
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INTRODUCTION 

The process of axon guidance requires the maintenance of an appropriate balance of 

intracellular tyrosine phosphorylation levels, which is maintained by two classes of 

enzymes: protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). 

Each class is comprised of a large family of multidomain proteins in both cytoplasmic 

and transmembrane receptor forms. Many receptor-linked tyrosine phosphatases (RPTPs) 

resemble cell adhesion molecules in that their extracellular domains consist of fibronectin 

type III (FN III) repeats and/or immunoglobulin-like (Ig) domains. This suggests RPTPs 

may be one means by which cell recognition events are coupled to changes in 

cytoplasmic phosphorylation levels. 

In Drosophila, five RPTPs have been identified that play a role in axon pathfinding. 

DPTP69D, DPTP10D, DPTP99A, DLAR, and DPTP52F are exclusively expressed in 

CNS neurons during the period of axonogenesis, and flies with mutations in their genes 

show characteristic defects in axon guidance during embryonic development (Desai et al., 

1996; Desai et al., 1997; Krueger et al., 1996; Schindelholz et al., 2001; Sun et al., 2000; 

Sun et al., 2001). Four of the five RPTPs (DPTP69D, DPTP10D, DPTP99A and DLAR) 

are restricted to axons. An axon reaches its target by taking a series of steps past 

intermediate targets, each successive target leading it closer to its final destination. The 

intermediate targets, called choice points, are places at which the axon makes a decision 

about the trajectory it will follow in the next segment of its journey. Modulation of RPTP 

activity at these points is thought to be required for changes in growth trajectories. 

Successful navigation past a series of choice points to an end target thus depends on the 

coordinated regulation of these proteins. Despite extensive studies documenting the 

pathfinding role played by the RPTPs, little is known about how their activity is regulated. 

Crystallographic studies of mammalian RPTPs suggest that dimerization may 

regulate the activity of these enzymes (Jiang et al., 1999). Like most transmembrane 

phosphatases, RPTPα has two catalytic domains, D1 (membrane-proximal) and D2 

(membrane-distal), each with an active site. The crystal structure for this protein indicates 

that a region of each D1 catalytic domain, denoted as the “wedge,” inserts into the active 

site of the neighboring RPTPα molecule (Bilwes et al., 1996). These results suggest that 
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dimer formation may represent a way of reversibly suspending phosphatase activity, as a 

blocked active site would preclude substrate binding. In this scenario, RPTPs would be 

active only when they have been dissociated from dimers into monomers. Signals present 

in the environment traversed by the axon during extension may serve to bring RPTP 

monomers together to temporarily extinguish their activity. Similarly, other signals may 

work to cause existing dimers to dissociate into monomers, thereby switching activity on. 

A combination of these signals, at the appropriate time and place during axonogenesis, 

could play a central role in facilitating the navigation of axons to their targets. 

Several considerations make regulation of Drosophila axonal RPTPs through 

dimerization an appealing model worth testing. First, four RPTPs (DPTP10D, DPTP69D, 

DPTP99A, DLAR) have sequences similar to the wedge found in RPTPα (Figure 1). 

Second, previous work in the lab has revealed that a heteromultimer including DPTP10D 

and DPTP69D is capable of forming. Third, genetic data gathered in our lab indicates that 

DLAR suppresses the activity of DPTP99A (Desai et al., 1997). One way to explain this 

result is to invoke formation of a DLAR/DPTP99A heterodimer. Finally, a precedent for 

activity modulation through dimerization exists in RPTP counterparts, namely receptor 

tyrosine kinases (RTKs). 

We tested the dimerization model by cotransfecting epitope-tagged RPTP 

expression constructs pairwise into Drosophila S2 cells, immunoprecipitating one and 

looking for evidence that the second co-IPd. This approach was used to assay for both 

hetero- and homodimer formation. Initial experiments with constructs containing only 

cytoplasmic RPTP domains showed no evidence for dimerization. A second round of 

experiments with full-length RPTPs yielded the same result. Relatively weak expression 

in the S2 cell culture system leaves open the possibility that negative results were due to 

an inability to detect low protein levels. More likely, formation of putative dimers 

depends on one or more co-factors not present in S2 cells. 
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MATERIALS AND METHODS 

Plasmid Construction 

Epitope-tagged constructs, denoted psmyc and psha, were manufactured using the S2 

expression vector pRmHA3 as starting material. The PCRd cytoplasmic domain of each 

RPTP was subcloned into these base constructs. The salient features of the constructs 

include a metallothionein promoter for induction of expression with copper sulfate. A 

translation start consensus sequence is located immediately upstream of the initiator 

methionine for efficient expression. Immediately downstream of the initiator ATG, a Src 

myristylation sequence is present to direct the expressed protein to the inner surface of 

the cell membrane. The multiple cloning site includes five restriction sites selected to 

accommodate subcloning of RPTPs. Following the MCS is a single myc, ha or rho 

epitope tag, and finally a stop codon. 3' PCR primers were designed to ensure that the 

coding sequence of each RPTP domain is in frame with the epitope tag. 

The finished constructs were sequenced by the Caltech Sequencing Facility to 

confirm accurate amplification of the RPTP cytoplasmic domains. Full-length, untagged 

versions of DPTP10D, DPTP69D and DPTP99A were made by fellow lab member Sarah 

Fashena by subcloning cDNAs into pRmHa3. The cytoplasmic (in psmyc) and full-length 

(in pRmHA3) DLAR constructs were made by Neil Krueger at Harvard University. 

Baculovirus constructs were made by cutting full-length RPTPs out of pRmHa3 and 

dropping them into the baculovirus vector pVL393. 

DLAR mAb generation 

A portion of the DLAR extracellular domain containing three FN III repeats was PCRd 

and subcloned into pVL393, a transfer vector containing a baculovirus promoter flanked 

by baculovirus DNA derived from the polyhedron gene. This was submitted to Peter 

Snow in the Protein Expression Facility, who manufactured the recombinant virus via 

homologous recombination. Dr. Snow purified the recombinant protein, which was then 

given to Susan Ou of the Monoclonal Antibody Facility. Monoclonal antibodies (mAbs) 

generated against the recombinant protein were initially screened with ELISA. Positive 
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clones were then tested for their ability to immunoprecipitate DLAR from cell lysates, 

and to recognize DLAR on Western blots. The mAbs 8C42F5 and 9D82B3 produced the 

best results and were used in combination for these experiments. 

S2 cell transfection, induction, harvesting and lysis 

Growth medium used for S2 cells consisted of Schneider’s medium supplemented with 

10% heat inactivated fetal calf serum, penicillin (100U/ml), streptomycin (100 µg/ml) 

and amphotericin B (0.25 µg/ml). 107 cells were plated on 10 cm tissue culture plates and 

expanded overnight (25º C, atmospheric pressure). Cells were transiently transfected with 

the DNA of interest (10 µg) using the calcium phosphate method. 18 hrs later the cells 

were washed with PBS and resuspended in growth medium. 0.3 mM CuSO4 was added to 

induce the metallothionein promoter to drive expression. The cells were harvested 24 hrs 

later, washed in PBS and lysed in 450 µl of ice-cold lysis buffer (125 mM NaCl, 10 mM 

TrisCl pH 7.5, 0.2% Triton X-100, 600 µM PMSF, 2 mM Na3VO4, 25 mM NaF and 

2 µg/ml APP). The lysate was spun briefly to pellet nuclei and insoluble membrane 

components. 

Immunoprecipitations and Western blot analysis 

Lysates were incubated with primary antibody and protein G+A agarose beads for 1 hr at 

room temperature. The agarose beads with bound immune complexes were spun down 

and washed with lysis buffer twice. The pellets were boiled for 3 minutes in SDS sample 

buffer. Samples were run on 9% polyacrylamide gels and transferred to a PVDF 

membrane. Blots were blocked in 5% dry milk in TBST (25 mM TrisCl pH 7.4, 137 mM 

NaCl, 0.2% Tween 20) for 30 minutes at RT. The blots were incubated in primary 

antibody for 1 hr, washed with TBST, and incubated with an alkaline phosphatase-

conjugated goat anti-mouse secondary. After 30 minutes washing the blots were 

developed to detect phosphatase activity. 
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RESULTS 

Cytoplasmic RPTP domains insufficient for dimerization 

We tested for dimerization by transiently cotransfecting two RPTPs into S2 cells and 

inducing their expression. One RPTP was IPd, and if the other co-IPd it was taken as 

evidence in support of dimerization. Because it contains the active site and wedge domain, 

the RPTP cytoplasmic domain was considered sufficient to mediate the presumptive 

dimerization. By excluding the extracellular and transmembrane domains, the possibility 

of two RPTPs sticking together nonspecifically and being misinterpreted as a dimer is 

reduced. The cytoplasmic domain of each RPTP was PCRd and subcloned into an 

epitope-tagged S2 expression construct. A Src myristylation sequence was included in the 

construct to localize the expressed protein to the membrane. Other features of the 

construct are depicted in Figure 2. 

S2 expression constructs made for each of three different epitope tags (myc, rho and 

ha) were tested with a uniform insert to determine which tag yielded the best 

immunoprecipitation results. The efficiency of IPs was roughly equivalent with the myc 

and rho epitopes, while the ha tag was considerably weaker. Unlike ha, myc and rho IPs 

were strong enough to provide results that could be interpreted reliably. RPTP 

cytoplasmic domains were subcloned into the myc- and rho-tagged expression constructs. 

Two constructs with dissimilar epitope tags were cotransfected in each experiment. 

Following a myc IP, the rho-tagged RPTP is visualized on a Western blot with an anti-

rho antibody. The experiment is performed in a complementary manner as well, by IPing 

with a rho antibody and looking for evidence of the myc-tagged RPTP with an anti-myc 

antibody. 

One difficulty encountered early in the course of experiments was variable 

expression of the transfected RPTP constructs. For reasons unknown, some constructs 

expressed well when transfected individually, but not when coexpressed with a second 

RPTP. Under these conditions the expression levels would drop off to varying degrees. 

The calcium phosphate method calls for 10 µg of the DNA being transfected, so in 

cotransfections 10 µg of each plasmid was used for a total of 20 µg. The two plasmids 

were introduced to the cells at the same time after mixing in a transfection solution. 
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Efficiency of transfection with calcium phosphate is roughly 10-20% for S2 cells. Certain 

measures were taken to increase the efficiency when dealing with a construct whose 

expression was inconsistent in cotransfections. This included increasing the amount of 

DNA (up to 20 µg), and lengthening the cell culture incubation time between addition of 

DNA and harvesting of cells. 

Due to the variable expression of some constructs, it was important that our 

experimental design incorporate a positive control for protein expression. A result 

militating against dimerization is meaningful only when both RPTPs expressed well 

enough to be detected on a Western blot. It was also important to include a negative 

control to exclude antibody cross-reactivity as the reason for any observed co-IPs. 

Results from a typical experiment are shown in Figure 3. In this experiment, two 

differently tagged versions of DLAR were cotransfected to look for evidence of DLAR 

homodimers. Two constructs expressing the DLAR cytoplasmic domain were transfected, 

one carrying a myc tag (DLARmyc) and the other a rho tag (DLARrho). Lysate from 

transfected cells was split in two; half was IPd with anti-myc and half with anti-rho. The 

myc IP was itself split in two, and the half probed with anti-myc shows a DLARmyc 

band, confirming expressed of DLARmyc. If DLARmyc complexed with any DLARrho, 

some of the latter should have come down with it. However, when the second half of this 

IP is probed with anti-rho, no DLARrho is visible. The negative result could be 

accounted for if DLARrho failed to express, since that would preclude a 

DLARrho/DLARmyc complex from forming. This possibility is eliminated when the 

second batch of lysate is IPd with anti-rho. The IP pellet is again split in two, and half is 

probed with anti-rho. The resulting DLARrho band confirms DLARrho did express. The 

other half of the pellet is probed with anti-myc. Despite the fact that DLARmyc and 

DLARrho were expressed alongside each other, the absence of a DLARmyc band here 

once again suggests that none of it formed a complex.  

It is possible that our negative results are due to the fact that the cytoplasmic 

domain alone is insufficient to mediate dimerization. Perhaps the RPTP extracellular 

domain is necessary for the protein to assume the conformation required for forming 

dimers. This theory was tested by repeating the experiments, this time using constructs 

coding for full-length RPTPs. 
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No evidence for dimerization of full-length RPTPs 

Subcloning of full-length RPTP coding sequences into the S2 cell expression vector 

pRmHa-3 had already been done for three of the RPTPs examined in this study. That left 

the full-length sequence of DLAR, which was cloned into the same vector by Neil 

Kreuger. Since the full-length constructs lack an epitope tag, antibodies were needed for 

each of the four RPTPs. mAbs against three of the four had previously been made in our 

lab. No antibody had been made against DLAR, so it was necessary to make one. We 

subcloned a portion of the DLAR extracellular domain including three FN III repeats into 

a baculovirus transfer vector. The vector was given to Peter Snow, who made the virus 

and expressed and purified the protein fragment. Susan Ou immunized mice with the 

polypeptide and performed the cell fusion. She supplied clones that were screened via 

ELISA. Finally, the strongest contenders were tested for their ability to IP DLAR. The 

resulting mouse mAb, 9D8, has proved efficient for IPs, Westerns and embryo staining. 

The same experimental scheme used for cytoplasmic constructs (detailed above) 

was used with the full-length constructs. There was one procedural difference involving 

the method for Western blot development. The alkaline phosphatase method of detection 

that had been used previously was not sensitive enough for experiments with the full-

length constructs. There appeared to be less protein on the blots, due to several possible 

causes. Perhaps the full-length constructs did not express as robustly as their cytoplasmic 

counterparts. The IPs may have been less efficient also; it may be more difficult to IP the 

larger full-length proteins (120-200 kD) than the smaller cytoplasmic versions (30-

80 kD). Finally, this size discrepancy may also have been an issue in the transfer to the 

membrane (efficient transfer may be more difficult with larger proteins). In any case, 

switching to the more sensitive ECL detection method made the bands easier to visualize. 

This round of experiments was no more successful than the first in yielding 

evidence for RPTP dimerization. As before, cotransfections with all possible pairwise 

combinations of RPTPs were performed to assay for both hetero- and homodimers. The 

results of a typical experiment are shown in Figure 4. S2 cells were cotransfected with 

full-length DLAR and DPTP99A. Half the cell lysate was IPd with anti-DLAR and half 

with anti-DPTP99A. The anti-DLAR IP pellet was split in two, and one half was probed 

with anti-DLAR. The resulting DLAR band confirms expression. The other half was 
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probed with anti-DPTP99A, and the absence of a band suggests no DPTP99A co-IPd. To 

verify that DPTP99A expressed, one half of the DPTP99A pellet was probed with anti-

DPTP99A. The resulting band, so strong it appears as a large smear, confirms robust 

expression. Probing the second half of the pellet with anti-DLAR reveals that no DLAR 

co-IPd. 

Results from experiments with DPTP10D may have been misinterpreted as 

evidence in support of dimers were it not for the negative control. The apparent co-IPs 

that were observed in cases where DPTP10D was cotransfected with other RPTPs turned 

out to be an artifact of DPTP10D’s tendency to stick indiscriminately. In experiments 

where DPTP10D was cotransfected with a given RPTP “X,” an IP with anti-X followed 

by an anti-DPTP10D blot would show a DPTP10D band. By itself, this suggests a 

DPTP10D/RPTP X dimer. The negative control was to IP a plate of cells transfected with 

only DPTP10D and IP with anti-X. If the dimer result is real, a DPTP10D band resulting 

from an anti-X IP should be seen only when X is coexpressed with DPTP10D. Because it 

appeared when DPTP10D was expressed alone, it must be attributable to cross-reactivity. 

We observed that in addition to mAbs against all RPTPs, protein G+A beads alone were 

able to precipitate DPTP10D. This suggests that instead of cross-reactivity, the results 

were caused by a nonspecific interaction of DPTP10D with the G+A beads. 

 
 
 

DISCUSSION 

Crystallographic data suggests RPTPs form dimers 

The first evidence to suggest RPTPs form dimers similar to their RTK counterparts 

comes from crystallographic studies. In each of two independent crystal structures, 

murine RPTPα exists as a symmetrical homodimer, where the helix-turn-helix (or 

“wedge”) domain of one RPTP inserts into the active site of its dimer partner (Bilwes et 

al., 1996). The active site of both RPTPs is sterically blocked due to this interaction, 

theoretically rendering the enzymes inactive. Indeed, RPTPα studies have documented an 

inhibition of phosphatase activity upon dimerization (Jiang et al., 1999). RPTPs have a 

conserved wedge domain upstream of the first catalytic domain, denoted D1, suggesting 
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that downregulation of catalytic activity via dimerization-induced active site occlusion 

may represent a paradigm for regulation of RPTPs in general. 

Subsequent studies have shown that dimer interactions can be complex, with a domain 

from one RPTP inserting into the catalytic domain of a different RPTP to form cross-

species heterodimers (Blanchetot and den Hertog, 2000; Gross et al., 2002). For example, 

the second catalytic domain (D2) of PTPδ has been shown to bind to D1 of RPTPσ, and 

this results in an approximately 50% reduction in the catalytic activity of the latter 

(Wallace et al., 1998). Evidence also exists for formation of multimers, where strings of 

RPTPs are interconnected via interactions between wedge and active site domains of 

neighboring molecules (Iversen et al., 2002). 

Intramolecular interactions also exist, as in the case of RPTP LAR. Although direct 

evidence for a LAR homodimer is lacking, the crystal structure suggests D1 of one LAR 

molecule may interact with D2 of a second (Nam et al., 1999). However, any model of 

dimer mediated regulation presupposes that all RPTPs form dimers in which the active 

site is obstructed, and crystal structures of other RPTPs indicate at least some do not. For 

example, RPTPµ does exist as a dimer in the crystal structure, but the wedge domain of 

one subunit of the dimer is not inserted into the catalytic cleft of the dyad-related 

monomer. Consequently, the active site remains in an open, uninhibited conformation 

(Hoffmann et al., 1997). Activity regulation through dimerization may thus be a feature 

of only a subset of RPTPs, and a goal of future work will be to develop a more 

comprehensive account of which RPTPs belong in this category. 

Evidence for in vivo dimer formation 

Additional evidence for dimerization comes from recent cross-linking studies showing 

that RPTPα homodimerizes on the cell surface, suggesting that dimers form under 

normal physiological conditions (Jiang et al., 2000; Tertoolen et al., 2001). The same 

studies examined which of the RPTPα domains are necessary and/or sufficient for dimer 

formation. Remarkably, the results suggest no domain is absolutely required and that 

each is sufficient to mediate dimerization. Of all constructs tested, the ones where the 

wedge domain was included produced the most efficient dimer formation. Thus, although 
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multiple points of interaction are implicated in mediating dimerization of RPTPα, the 

wedge domain appears to play the major role. 

Homodimers still form when the wedge domain is eliminated, albeit with the 

efficiency of dimerization significantly reduced. Thus, the region implicated by 

crystallographic studies as the major mediator of dimerization appears upon closer 

inspection to be important but not essential. Homodimers still form when the 

extracellular domain (ECD) is missing, so it too is not essential for dimerization. 

However, it is sufficient for homodimerization, as determined with a fusion protein 

comprised of the ECD with a C-terminally fused GPI-linker for membrane insertion. 

Finally, even the transmembrane domain when expressed by itself forms a homodimer. 

The net result of these experiments suggests a “zipper” model wherein multiple 

interactions occur along length of the RPTP, each contributing to formation of a stable 

dimer. 

Several lines of evidence support model of dimer mediated negative regulation of 
RTPT activity 

Regulation of catalytic activity is well understood for the counterparts to the RPTPs, 

namely the RTKs. Following addition of ligand, RTKs dimerize and autophosphorylate, 

thereby switching on activity. A growing body of evidence suggests that RPTPs may 

work in the opposite manner, with dimerization inhibiting instead of promoting biological 

activity. Experiments with an EGF/CD45 chimera were the first to suggest this alternate 

theory of regulation. CD45 is an RPTP with no known ligand that is expressed on all 

nucleated hematopoietic cells and is required for TCR signaling in response to 

engagement of antigen receptor. To study the effects of dimerization on CD45 activity, a 

chimeric protein was made with the extracellular and transmembrane domain of EGF 

fused to the intracellular domain of CD45. Addition of EGF to cells expressing the 

chimera results in a loss of TCR signaling, suggesting that induced dimerization 

extinguishes the catalytic activity of CD45 (Desai et al., 1993; Majeti et al., 1998). 

The EGF/CD45 chimera data is consistent with results from another study involving 

induced dimerization. In this case, a point mutation in the extracellular domain of full-

length RPTPα causes constitutive homodimerization via a disulfide bond. The FL-137C 
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mutant was transfected into fibroblasts from RPTPα knock-out mice to assay its ability to 

dephosphorylate (and thereby activate) its c-Src substrate. Results indicate the mutant 

activates c-Src significantly more weakly than WT RPTPα. Additional point mutations in 

the wedge region of FL-137C restore c-Src activation to a level comparable to that of WT. 

Separately, the dimerization efficiency of RPTPα with the same wedge domain point 

mutations is shown to be significantly lower compared to WT RPTPα (Jiang et al., 1999). 

In addition to biochemical evidence for a physiological role for dimerization, 

genetic data from our lab can be interpreted in a manner consistent with the dimer model. 

RPTP DLAR is required for proper execution of several discrete axon guidance events 

during Drosophila nervous system development. One example is entry of the 

intersegmental nerve b (ISNb) into the ventrolateral muscle field (VLM) after 

defasciculation from the intersegmental nerve (ISN). In embryos with a DLAR null 

mutation, the ISNb fails to enter the VLM approximately 25% of the time. However, in 

embryos that are doubly mutant for both DLAR and DPTP99A, this guidance error is 

reduced to about 2% (Desai et al., 1997). Other guidance mistakes observed in DLAR 

null mutants are not affected by removal of DPTP99A, suggesting a specificity in the 

suppression of this phenotype. This result implies that in the DLAR mutant, ISNb 

continues along its original trajectory instead of turning into the VLM because of 

inappropriate DPTP99A activity. Thus, the function of DLAR at this choice point is to 

counteract or suppress DPTP99A signaling. One way it could do that is by forming a 

heterodimer that, like other dimers studied, is catalytically inactive. 

Taken together, these results support a theory of dimer mediated negative regulation 

of RPTP activity. In this model, RPTP activity would be switched on by ligands that 

dissociate dimers, or by intracellular processes such as phosphorylation that would 

transform the intracellular domains of existing dimers into an open conformation. 

No evidence for stable dimer formation in S2 cells 

Despite strong evidence that dimerization is a common means by which RPTP activity is 

modulated, we were unable to find any evidence for stable dimer formation under the 

conditions tested. If the RPTPs we studied are induced to dimerize by binding of ligands, 
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one possibility for these negative results is that these ligands are not expressed in S2 cells. 

There are currently no known ligands for the four RPTPs examined in this study, so we 

were unable to assess whether ligand binding induces dimerization. A secreted factor has 

been identified that interacts with and inhibits the activity of RPTPβ (Meng et al., 2000), 

so it is reasonable to assume that ligands for other RPTPs do exist. The RPTPs’ large 

extracellular domains resemble those of cell adhesion molecules and have a high degree 

of variability, consistent with their having unique ligand binding specificities. Once a 

ligand for these RPTPs is identified and cloned, it can be added to the cell culture system 

to determine whether it facilitates dimer formation. 

It is also possible that only a small fraction of the transiently expressed full-length 

RPTP makes it to the cell surface in our experiments. If most of the expressed protein is 

located intracellularly, it may be unable to assume the conformation necessary for 

engaging in dimer interactions. 

Finally, our experimental conditions may permit transient dimer formation, but may 

not be conducive to formation of dimers stable enough to remain intact during the 

immunoprecipitation process. It is also possible that a small fraction of dimers do remain 

intact but are below the limits of detection. 
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Figure 1. Sequence alignment of the N-terminal wedge of RPTPs’ membrane-proximal 
catalytic domains. Line one schematically illustrates the secondary structural elements 
observed in RPTPαD1. Line two gives the consensus sequence conserved across the 
large family of D1 domains. The numbering scheme refers to the short variant of murine 
RPTPα with the first residue of the signal peptide numbered as 1. The stars indicate 
residues involved in active-site-directed dimeric interactions. Residues boxed in black are 
common to at least five aligned sequences. (m is mouse, h is human, r is rat, and d is 
Drosophila). The first 14 homologous sequences contrast sharply with the lack of 
sequence conservation in the final segments. The most distinguishing feature of the RPTP 
N-terminal wedge involves a two-amino-acid insertion (Asp 227 and Asp 228) into the 
tip of the non-receptor-like PTP N-terminal segment. The second to the last line 
corresponds to the numbering scheme of human PTP1B. The final line emphasizes the 
structural elements observed in the PTP1B crystal structure. 
 
Source: Nature (1996) 382, 559
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Figure 2. psmyc schematic 
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Figure 3. DLAR homodimer experiment 
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Figure 4. DLAR/DPTP99A heterodimer experiment 
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Table 1. S2 cell transfection experiments 

 

 

Heterodimer experiments Homodimer experiments 
  
DPTP69D FL + DPTP10D cyto myc DPTP69D FL + DPTP69D cyto myc 

DPTP69D FL + DLAR FL myc DPTP99A FL + DPTP99A cyto myc 

DPTP69D FL + DLAR cyto myc DPTP10D FL + DPTP10D cyto myc 

DPTP69D FL + DPTP99A FL DLAR FL + DLAR cyto myc 

DPTP69D FL + DPTP10D FL DLAR cyto rho + DLAR cyto myc 

DPTP99A FL + DPTP69D cyto myc  

DPTP99A FL + DLAR FL myc  

DPTP99A FL + DLAR cyto myc  

DPTP10D FL + DLAR cyto myc  

  

cyto=cytoplasmic domain, FL=full-length 
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Biochemical analysis of potential interactions between RPTPs and Robo receptors 
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Abstract 

Robo is the guidance receptor for the Drosophila midline repellent Slit. Robo signaling is 

required to keep axons from inappropriately crossing the midline. Robo and receptor-

linked tyrosine phosphatases (RPTPs) are expressed in growth cones during axonogenesis 

and several genetic observations suggest that Robo signaling involves the activity of 

RPTPs DPTP10D and/or DPTP69D. We show here that Robo is phosphorylated on one 

or more tyrosine residues, a feature characteristic of phosphatase substrates. No evidence 

was seen, however, for a biochemical interaction between Robos and “substrate trap” 

versions of the RPTPs, leaving us to conclude that RPTPs’ contribution to Robo signaling 

may be downstream of Robo.  
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INTRODUCTION 

Many extracellular signals, once transduced to the cell interior, are ultimately manifest as 

a change in the tyrosine phosphorylation status of specific regulatory proteins. Two 

classes of enzymes, protein tyrosine kinases (PTKs) and protein tyrosine phosphatases 

(PTPs), work coordinately to regulate intracellular phosphotyrosine levels. Together they 

are involved in a diverse number of cellular processes including differentiation, 

proliferation and axon guidance. PTPs can be divided into two classes: receptor-like 

PTPs that span a membrane, and cytoplasmic PTPs. The receptor PTPs (RPTPs) have 

extracellular domains comprised of N-terminal immunoglobulin (Ig) domains and 

membrane-proximal fibronectin type III (FNIII) repeats. The structure of their 

ectodomain is thus similar to that of cell adhesion molecules, implicating them in 

participating in cell-cell, cell-extracellular matrix adhesive events underlying axon 

pathfinding. The intracellular domain of most RPTPs is comprised of two protein 

tyrosine phosphatase catalytic domains denoted D1 and D2. The membrane-proximal D1 

domain has most or all of the catalytic activity, while the C-terminal D2 has little or none. 

The high degree of sequence conservation in D2 among members of the RPTP family 

suggests it may have an indispensable function unrelated to catalysis. Among the 

proposed roles for D2 are binding of substrates and/or downstream regulatory factors. 

This domain may also regulate activity by inserting into the active site of dimerized 

RPTPs, thereby precluding substrates from binding. Recent findings that RPTPα 

homodimerizes in vivo are consistent with this model (Tertoolen et al., 2001), yet we 

have found no evidence for dimerization in the RPTPs controlling axon guidance in 

Drosophila (see Chapter 2). 

The role of RPTPs in axon guidance and synaptogenesis has been studied 

extensively in Drosophila. During axonogenesis, four RPTPs (DPTP69D, DPTP99A, 

DPTP10D and DLAR) are selectively expressed on CNS axons and growth cones (Tian 

et al., 1991). They interact with each other in various well-defined ways to facilitate a 

given axon’s navigation from one choice point to the next en route to a final target 

destination. In some cases they work antagonistically, while in others they collaborate to 

regulate guidance decisions (Desai et al., 1997; Sun et al., 2001). Mutations in these 



C 4 

enzymes result in characteristic axon guidance phenotypes. However, a mutation in any 

single Rptp gene usually has no effect on guidance decisions. Most axon guidance 

phenotypes are observed only under conditions where two or more Rptps are mutant. This 

suggests partial redundancy in the function of these genes. 

Ptp69D and Ptp10D provide one example of the redundant nature of the Rptp genes. 

When either gene is mutated individually, no phenotype is observed and embryos are 

both viable and fertile. However, in embryos doubly mutant for both Ptp69D and Ptp10D, 

a strong phenotype in the ventral nerve cord is observed. The nerve cord is the fly 

equivalent of the vertebrate spinal cord and is comprised of a ladder-like scaffold of 

axons. The upright parts of the ladder are formed by longitudinal axon bundles called 

connectives, while the rungs are formed by segmentally reiterated pairs of bundles called 

commissures. The decision to cross the nerve cord midline underlies the formation of 

these two bundle types: axons that choose to remain on one side of the midline form 

longitudinals, while those that make the decision to cross form commissures. In the 

Ptp69D Ptp10D double mutant, axons that normally do not cross the midline follow 

abnormal midline-crossing pathways, resulting in a highly disorganized nerve cord (Sun 

et al., 2000). 

The Ptp69D Ptp10D double mutant phenotype resembles that of embryos mutant 

for Roundabout (Robo). Robo is the receptor for a protein called Slit, which is secreted 

by midline glial cells (Brose et al., 1999). Slit, a midline repellent, mediates the repulsion 

of Robo-expressing growth cones (Kidd et al., 1999). Robo is expressed in all nerve cord 

axons, so how is it that some are able to cross the midline? The answer has to do with a 

third protein called Commissureless (Comm) which is expressed in commissural axons 

and midline glial cells. Recent findings show that the function of Comm is to sort Robo 

to endosomes, where it is degraded (Keleman et al., 2002; Myat et al., 2002). As a result 

of this sorting function, no Robo makes it to the cell surface in Comm-expressing axons. 

This makes them impervious to the repellent qualities of Slit, enabling them to cross the 

midline. Comm expression ceases after the axons have crossed, and the axons are once 

again sensitive to Slit due to Robo on their cell surface. This keeps them from 

inappropriately recrossing the midline. 
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Several lines of genetic evidence show that DPTP69D and/or DPTP10D may be 

positive regulators of Robo signaling (Sun et al., 2000). First, a Ptp69D Ptp10D double 

mutant has a midline crossing phenotype that resembles that of a robo mutant in some 

respects. Second, the same double mutation partially suppresses the phenotype of comm 

mutants. In comm- embryos, all Robo localizes to the cell surface because there is no 

Comm sorting it to endosomes. Consequently, all axons are sensitive to Slit and repelled 

from the midline. Introduction of the Rptp double mutant into this background results in 

some axons crossing the midline, suggesting that Robo’s signaling has been 

compromised. In the third line of evidence, the double mutant is introduced into a slit- 

background. When one copy of slit is removed, enough repulsive signaling remains to 

keep axons from crossing the midline inappropriately. That is no longer true when Rptps 

are removed as well, and less efficient Robo signaling is a plausible interpretation. 

No substrates have yet been identified for the RPTPs, but the above genetic data led 

us to speculate that Robo may be a substrate for DPTP69D and/or DPTP10D. Consistent 

with this, Robo has an intracellular phosphotyrosine consensus motif. If this prediction is 

correct, robust signaling through Robo may require not only Slit binding but also 

dephosphorylation by an RPTP. Lending credence to this theory, Robo appears to be 

negatively regulated by Abl tyrosine kinase signaling, and a Y-to-F mutation in this motif 

produces a gain-of-function phenotype (Bashaw et al., 2001). Additional features of Robo 

that make it suitable for consideration as an RPTP substrate include its being expressed at 

the same time (axonogenesis) and in the same place (growth cones) as RPTPs. 

Furthermore, as a surface protein it has the same subcellular localization as RPTPs. 

A prerequisite for any RPTP substrate is that it is tyrosine phosphorylated. We 

show here that Robo1 and Robo2 are phosphorylated by the tyrosine kinases Src and Abl. 

This finding encouraged us to pursue experiments to test whether Robos are RPTP 

substrates. We cotransfected S2 cells with Robo and a substrate trap version of DPTP10D 

(DPTP10D trap) or DPTP69D (DA3). The substrate traps have a point mutation that 

causes them to remain bound to substrate (Flint et al., 1997). In some cases trap proteins 

are rendered useless because phosphorylation on certain residues sterically hinders the 

binding of substrate. Our results show that RPTP traps used in this study are not 

phosphorylated, and thus not precluded from binding substrate. In spite of this, and 
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contrary to data favoring an enzyme/substrate relationship, our results show no evidence 

that Robo is a substrate for RPTPs. It is possible this is due to a requisite co-factor being 

absent from the cell culture system. However, it is equally plausible that RPTPs 

contribute to Robo signaling by dephosphorylating other proteins in the Robo pathway. 

 
 
 

RESULTS 

The approach we took to determine whether Robo is an RPTP substrate was as follows. 

First, ascertain whether Robos are phosphorylated on tyrosine residues. If they are, they 

meet a basic prerequisite for potential RPTP substrates. Provided this result is positive, 

cotransfect Robo and RPTP substrate trap constructs, immunoprecipitate the mutant 

RPTPs and look for Robo. If Robo co-IPs, it suggests there is an interaction between the 

proteins. That would be the basis for proceeding with the next set of experiments, 

designed to determine the particular type of interaction. Specifically, we are interested in 

looking for evidence of an enzyme-substrate interaction. This involves two separate 

cotransfections, one with wild type RPTP and Robo, the other with substrate trap RPTP 

and Robo. Once again, the RPTPs are immunoprecipitated and the associated Robo is 

visualized on a Western blot. If the amount of Robo that co-IPs with the RPTP trap is 

significantly greater than what copurifies with WT RPTP, this would be evidence in 

support of the enzyme-substrate interaction. However, if the amount of copurifying Robo 

is the same in both cases, it would suggest a different type of interaction. 

As experiments testing for Robo phosphorylation began, the RPTP trap plasmids 

were constructed. The nature of the trap mutation can be understood in the context of the 

dephosphorylation reaction. All phosphatases have a conserved catalytic domain of 

approximately 240 residues that is characterized by a signature motif: 

(I/V)HCXAGXXR(S/T)G. This motif contains an invariant cysteine residue that is 

essential for catalytic activity. It acts as a nucleophile and attacks a phosphorus-oxygen 

bond in the substrate, leading to formation of a thiol-phosphate intermediate. Binding of 

substrate induces a conformational change in the enzyme, causing movement of a loop 

that forms one side of the active site cleft. This results in a more closed structure around 
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the active site and brings the side chain of an invariant, catalytically essential aspartic 

acid into position to act as a general acid. The aspartic acid has an abnormal pK value, so 

that it is protonated, and can donate the proton to the oxygen of the phosphorylated 

tyrosine residue, making the bond of the phosphorus to this oxygen more labile. This 

facilitates nucleophilic attack by the cysteine residue and thus allows dephosphorylation 

to occur (Zhang et al., 1994b). 

The mutation that turns an RPTP into a trap is a single point mutation in the 

invariant aspartic acid. If this residue is replaced by one that cannot act as a proton donor, 

the phosphate-tyrosine bond cannot be efficiently hydrolyzed and the enzyme-substrate 

complex is stabilized enough such that it can be isolated. This approach has been used 

successfully in many cases, leading to the identification of a number of substrates for a 

variety of RPTPs. For example, the EGF receptor was identified as a PTP1B substrate 

and p130cas was identified as a substrate for PTP-PEST (Flint et al., 1997; Garton et al., 

1996). 

Robo1 and Robo2 are phosphorylated in vitro by Drosophila tyrosine kinases 

Phosphorylation on one or more tyrosine residues is the sina qua non of a tyrosine 

phosphatase substrate. Robo has a phosphotyrosine consensus domain, but whether it was 

actually phosphorylated was unknown. To determine whether Robo met this minimum 

requirement for consideration as an RPTP substrate, we transfected S2 cells with Robo 

and one of two Drosophila tyrosine kinases. All of the Robo constructs and Robo mAbs 

used in this study were provided by the Goodman lab at UC Berkeley. 

Three plates of S2 cells were transfected, one with Robo1 and Src kinase, one with 

Robo1 and Abl kinase, and one with Robo1 alone. A Robo1 antibody was used to IP, and 

the resulting IP pellets were split across two lanes. One set of lanes was probed with 

anti-Robo mAb to control for the amount of Robo expressed, and the other set was 

probed with an anti-phosphotyrosine mAb. The Robo blot indicates an equivalent amount 

of Robo1 was expressed in each plate. The phosphotyrosine blot shows a band that co-

migrates with Robo1 and is significantly stronger in the lanes corresponding to plates 

transfected with both Robo1 and a kinase (Figure 2). If Robo1 were not capable of being 

phosphorylated, the amount of phosphorylated Robo1 detected would be the same 
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regardless of whether a kinase was included in the transfection. Since addition of kinase 

does result in an increase in phosphorylated Robo1, it proves this protein is 

phosphorylated. 

The same experiment was performed with Robo2, only in this case the myc 

antibody was used to IP as the Robo2 construct includes a C-terminus myc tag. Once 

again, Robo2 expressed at the same level in all three plates, but the ones in which kinase 

was cotransfected had noticeable higher levels of phosphorylated Robo2 (Figure 2). 

These results establish that the consensus domain for phosphorylation in Robo1 and 

Robo2 is used, making them potential RPTP substrates. 

Substrate trap RPTPs show little or no tyrosine phosphorylation 

Although the substrate trap approach to RPTP substrate identification has proved 

effective, a sizable number of cases exist where trap proteins have failed to identify 

substrates. One of the reasons traps may not work as expected has been elucidated by the 

Tonks lab. They found that some RPTPs trap mutants become tyrosine-phosphorylated 

on another residue via transfer of phosphate from substrates. This new phosphotyrosine 

then interacts with the active site cleft of the trap in an intramolecular interaction, 

resulting in occlusion of the trap. As a result, some RPTP traps do not efficiently form 

complexes with substrates. 

To determine whether our RPTP traps were susceptible to inactivation via 

phosphorylation, we cotransfected myc-tagged cytoplasmic versions of the traps with 

both Src and Abl tyrosine kinases. Following a myc IP, the pellet was split across two 

lanes of an SDS-PAGE gel. After electrophoresis and transfer to a membrane, one set of 

lanes was probed with an anti-myc mAb to confirm expression of the RPTP trap. The 

second set of lanes was probed with an anti-phosphotyrosine mAb to detect the amount of 

phosphorylated RPTP trap. The myc blot show that DPTP10D trap expressed robustly, 

while the corresponding lane in the phosphotyrosine (pY) blot shows that none of it was 

phosphorylated. In the case of DPTP99A trap, a band can be seen in the pY blot that 

comigrates with the DPTP99A trap band in the myc blot, suggesting that some of the trap 

is phosphorylated. However, the intensity of the pY band is very weak relative to that of 

the myc band, so the fraction of trap protein that is phosphorylated is likely quite small. 
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Furthermore, the pY band resulting from cotransfection of DPTP99A trap with Src and 

Abl is no stronger in its intensity than the pY band resulting from transfection of 

DPTP99A trap alone. In light of this evidence showing the kinases cannot phosphorylate 

DPTP99A trap, it is likely that the bands in the pY blot reflect nothing more than a low 

level of background phosphorylation (Figure 3). 

Robos are not trapped by RPTP trap proteins 

To test for an interaction between Robo and RPTP trap proteins, we cotransfected them 

into S2 cells in various pairwise combinations. We IPd one and looked for evidence of 

the other using the appropriate controls: positive for protein expression and negative for 

antibody cross-reactivity. Src or Abl tyrosine kinase was included in every transfection. If 

Robo is an RPTP substrate it would need to be in its phosphorylated form to bind to the 

trap, and these kinases were shown to phosphorylate Robo in earlier experiments (see 

above). We conducted three sets of experiments, one for each Robo protein (Robo1, 

Robo2 and Robo3). While the experimental design was the same in each set of 

experiments, some parameters were altered in order to suit differences in the Robo 

constructs’ epitope tag, promoter element or expression level (see below). 

In the case of Robo1, initial experiments were hampered by low expression of the 

Robo1 construct. To overcome this problem we switched to a line of cells stably 

expressing Robo1. The high levels of endogenously expressed Robo1 in this line 

obviated the need for transfecting Robo1. Accordingly, DA3 (DPTP69D trap) and 

DPTP10D trap were transfected along with Abl into these cells. The experiment was 

performed in a complementary manner: one plate was IPd with anti-DPTP69D or anti-

DPTP10D to see if Robo1 co-IPd, while a second plate was IPd with anti-Robo to see if 

DA3 or DPTP10D trap co-IPd. Protein expression was adequate as indicated by the 

positive control lanes. However, the experimental lanes show no evidence that Robo1 

interacts with full-length trap versions of either DPTP69D or DPTP10D. Note that a 

DPTP10D trap band is visible on the anti-DPTP10D blot in the lane corresponding to the 

Robo1 IP. This suggests DPTP10D trap copurifies with Robo1, but this result is not 

corroborated when the experiment is done in the opposite direction (i.e., no Robo1 band 

is visible on the anti-Robo blot in the lane corresponding to the anti-DPTP10D trap IP). 
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We therefore conclude the result is an artifact attributable to the documented tendency of 

DPTP10D to stick indiscriminately (Figure 4). 

Testing for Robo2 interactions with DA3 and DPTP10D trap was done in an 

analogous manner, only in this case a stable Robo2 cell line was used. Src was 

substituted for Abl, but this change should have no material effect since both kinases 

phosphorylate Robo2 equally well. The data indicate Robo2 does not interact with the 

RPTPs. The Robo2 blot was overdeveloped in an effort to bring out the bands 

corresponding to the RPTP trap IPs, but no trace of Robo2 is visible (Figure 5). 

A stable Robo3 cell line was not available for the third set of experiments, so 

normal S2 cells were used instead. The Robo3 construct has a UAS promoter, so a GAL4 

plasmid was required to drive expression. The constituent components of the transfection 

included UAS-Robo3, metallothionein-GAL4, Abl, and UAS-DA3. The metallothionein 

construct was induced with copper sulfate to express GAL4, which in turn drove 

expression of Robo3 and DA3. Positive controls show strong Robo3 expression as well 

as high levels of DA3. The experimental lanes are devoid of bands that would supply 

evidence for an interaction between these two proteins (Figure 6). 

RPTP/Robo/Slit protein complex is not observed in S2 cells 

When our biochemical experiments failed to show signs of an interaction that was 

predicted by a strong body of genetic evidence, we speculated that Robo may require the 

presence of its ligand, Slit, in order to interact with RPTPs. We tested this possibility by 

performing cotransfections in a stable Slit cell line. DA3 was cotransfected with Robo1 

and Robo2 in separate experiments. In neither case did the presence of Slit facilitate an 

interaction. Results were the same as those from experiments where Slit was not included. 

We conclude that formation of the putative complex may require one or more additional 

co-factors not expressed in S2 cells. 
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DISCUSSION 

RPTPs have a multifaceted role in developing organisms, important for a variety of 

developmental processes including cell differentiation and proliferation. In the case of 

axon guidance, RPTPs are thought to transduce cues in the local environment traversed 

by the growth cone into changes in intracellular phosphotyrosine levels, inducing a 

cascade of signaling that ultimately results in restructuring of the growth cone 

cytoskeleton. This allows the growth cone to change direction and reorient itself towards 

its target. The four Rptps expressed selectively in Drosophila CNS growth cones during 

axonogenesis (DPTP69D, DPTP99A, DPTP10D and DLAR) work collaboratively and 

competitively to assist axons in making correct guidance decisions. Mutations in these 

Rptps are associated with characteristic guidance defects. One area where defects caused 

by Rptp mutations have been studied extensively is the embryonic nerve cord. 

The equivalent of the CNS in vertebrates, the nerve cord is a ladder-like structure 

located ventrally in flies. Proper wiring of the nerve cord involves the action of two 

opposing forces. Attraction to the nerve cord midline is mediated by netrin and frazzeled 

(Kolodziej et al., 1996; Mitchell et al., 1996), while repulsion away from the midline is 

mediated by slit and robo (Brose et al., 1999; Kidd et al., 1999). When repulsive 

signaling wins out, axons follow an ipsilateral pathway and form the nerve cord 

longitudinals. Conversely, when attraction wins axons cross the midline to form the two 

segmentally repeated commissures. 

In commissural axons, repulsive signaling must be established once axons have 

crossed the midline to prevent them from recrossing. The key to this is a protein called 

Commissureless (Comm). Recent evidence has shown that Comm’s main function lies in 

the sorting of Robo (Keleman et al., 2002; Myat et al., 2002). Commissural axons are 

able to cross the midline because Comm sorts all Robo synthesized by the cell to 

endosomes, where it is subsequently degraded. With no Robo reaching the cell surface, 

there is no opportunity for it to bind Slit and initiate repulsive signaling. After the axon 

has crossed the midline, Comm expression is downregulated and Robo reaches the cell 

surface instead of being sorted to endosomes. The repulsive signaling that ensues 

prevents axons from recrossing the midline. 
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With the details of this system worked out it is now possible to clearly interpret 

phenotypes that result when one of the component proteins, such as Robo, is mutated. In 

robo mutants, the receptor mediating repulsive signaling is absent so axons repeatedly 

cross the midline. The resulting axonal loops around the midline give it the appearance of 

the sort of roadway roundabouts common in European countries. 

A different phenotype is observed when slit is mutated (Rothberg et al., 1990). Slit 

is secreted by midline glial cells and repels Robo-expressing growth cones. When slit is 

mutated, there is no repulsive signaling through any of the Robo proteins. The attractive 

signal mediated by Netrin and Frazzeled thus goes unopposed, and all axons are pulled 

towards and remain at the midline, resulting in a slit-like structure. robo- and slit- 

phenotypes differ because Robo is actually a family of three related proteins. When one 

Robo is mutant, the presence of the other two means that some repulsive signaling 

remains. However, when slit is mutated all Robos are effectively silenced and repulsive 

signaling is entirely eliminated. 

Mutated comm causes yet another midline phenotype (Seeger et al., 1993). When 

Comm is absent no Robo is sorted to the endosomes and it all makes it to the cell surface. 

There it is free to bind Slit and mediate a constitutive repulsive signal, keeping all axons 

away from the midline. The result is a nerve cord lacking commissures, hence the name 

of the phenotype, “commissureless.” 

Genetic data suggests RPTPs participate in Slit/Robo signaling 

In addition to robo, slit and comm, mutations in Rptps have been found to produce 

midline phenotypes (Sun et al., 2000). Genetic experiments in which RPTP activity is 

ablated suggest the activity of these enzymes is required for the repulsive signaling 

mediated by Slit/Robo. For example, in the Ptp69D Ptp10D double mutant, axons cross 

the midline repeatedly to produce a looping phenotype that closely resembles robo-. 

A PTP mutation in a comm- background is another case suggesting RPTP activity is 

a positive regulator of the Slit/Robo signaling pathway. In comm mutants, constitutive 

repulsive signaling prevents axons from crossing the midline to form commissures. When 

an Rptp mutation is introduced into this background some commissural axons do cross 

the midline, suggesting Slit/Robo signaling has been compromised. 
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In a slit- background, an Rptp mutation provides further evidence of a shared 

signaling pathway. Embryos heterozygous for slit should have less repulsive signaling 

due to diminished expression of this Robo ligand. The fact that no phenotype is seen 

suggests enough repulsive signaling remains for the embryo to develop normally. When 

combined with an Rptp mutation that is no longer the case, as axons are observed to cross 

the midline excessively. 

Robo meets criteria for being an RPTP substrate 

Although the importance of RPTPs in axon guidance is supported by a large body of 

evidence, little is known about the ligands and substrates for this integral class of proteins. 

The above genetic evidence supports the hypothesis that Robo may be an RPTP substrate. 

Several other features of Robo are consistent with this possibility. For example, it is 

expressed at the same time and place as RPTPs, namely during axonogenesis in 

motoneuron growth cones. Also, we show here that Robo is capable of being tyrosine 

phosphorylated, meeting the most fundamental requirement for consideration as a 

potential RPTP substrate. 

The genetic data described above suggests that RPTPs interact with a repulsive 

signaling pathway mediated by Robo, Comm and Slit. In this protein trio, only Robo has 

the right subcellular localization to be considered an RPTP substrate. New evidence 

shows Comm is active intracellularly, sorting Robo to endosomes for degradation when 

the axon crosses the midline. Before and after crossing, Robo is at the cell surface where 

it would be able to interact with other cell surface proteins such as the RPTPs. 

RPTP trap data does not support RPTP/Robo enzyme/substrate model 

One way to interpret the above genetic data is to speculate that Robo activation requires 

not only Slit binding, but also dephosphorylation by RPTPs. To test whether Robos are in 

fact RPTP substrates, we used trap versions of the RPTPs to exploit their tendency to 

remain associated with a substrate once it has bound. Some traps are vulnerable to 

tyrosine phosphorylation on certain residues that precludes them from binding substrate. 

Our results suggest this issue does not apply to the RPTPs used in this study. In spite of 
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this, and separate experiments showing Robos are phosphorylated, the results of our 

cotransfection experiments testing for an RPTP/Robo interaction were negative. 

Three Robo proteins are expressed in the CNS and we tested all three for their 

ability to bind substrate trap versions of DPTP69D and DPTP10D. Several approaches 

were taken to acquire evidence for such an interaction. In most cases, the Robos were 

cotransfected with a myc-tagged RPTP trap. Normal S2 cells were used for the initial 

experiments, but poor Robo expression made it difficult to clearly interpret results. 

Switching to a stable Robo-expressing line boosted the Robo signal enough to overcome 

this problem. When results from these experiments were negative we switched to a stable 

Slit-expressing cell line for cotransfections. The presence of the Robo ligand did not 

facilitate formation of an RPTP/Robo complex. A table showing all permutations of the 

experiments is shown in Figure 6. 

RPTPs’ contribution to Slit/Robo signaling pathway may lie downstream 

Several reasons could explain the lack of evidence for an RPTP/Robo interaction. One is 

that RPTPs and Robo interact as part of a large protein complex. Formation of the 

complex may depend on the presence of each of its constituent members, some of which 

may not be expressed in S2 cells. We speculated that such a complex may be comprised 

of Robo, Slit and both RPTPs. To test this theory we cotransfected both RPTP traps into 

stable Robo cells and induced their expression with media from Slit cells. No evidence of 

complex formation was observed, suggesting additional proteins contribute to the 

putative complex. The “missing link” may be discovered upon further elucidation of the 

Robo/Slit signaling pathway. 

A different interpretation of the role of RPTPs in Robo signaling could also account 

for our negative results. A preponderance of evidence, genetic and otherwise, suggests 

DPTP69D and DPTP10D participate in a signaling pathway mediated by the Robo 

receptor. Since Robo is capable of being phosphorylated, it is natural to assume that the 

RPTPs’ role in this pathway is to dephosphorylate Robo, but it may be that one or more 

Robo effectors are the target(s) of the RPTPs. Since nothing is known about the signaling 

pathway downstream of Robo, there may exist several effectors that must be 
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dephosphorylated for efficient transduction of the Slit signal into the cytoskeletal 

rearrangement that accompanies a change in growth cone trajectory. 

 
 
 

EXPERIMENTAL PROCEDURES 

Site-directed mutagenesis 

Oligonucleotide-directed mutagenesis was performed with a Promega in vitro 

mutagenesis kit to create the desired point mutations. Oligonucleotide primers were 

synthesized by the Caltech Oligonucleotide Synthesis Facility. The following 

oligonucleotide primers were used: DPTP10D–D1488A (cytoplasmic and full-length 

constructs), 5'-CACCTGGCCGGCCTTCGGTGTTCC; DPTP99A–D712A (cytoplasmic), 

5'-CCAACTGGCCCGCCCACGGAACACC. Underlined bases are those that encode the 

mutant alanine residue. All mutations were verified by dideoxynucleotide sequencing 

performed by the Caltech DNA Sequencing Facility. The substrate trap version of 

DPTP69D, DPTP69D–D1065A, D1354A (DA3), was made by Paul Garrity at MIT. In 

this construct, alanine is substituted for the nonvariant aspartic acid in both phosphatase 

catalytic domains (D1 and D2). 

S2 cell transfection, induction, harvesting and lysis 

Growth medium used for S2 cells consisted of Schneider’s medium supplemented with 

10% heat inactivated fetal calf serum, penicillin (100 U/ml), streptomycin (100 µg/ml) 

and amphotericin B (0.25 µg/ml). 107 cells were plated on 10 cm tissue culture plates and 

expanded overnight (25º C, atmospheric pressure). Cells were transiently transfected with 

the DNA of interest (10 µg) using the calcium phosphate method. 18 hrs later the cells 

were washed with PBS and resuspended in growth medium. 0.3 mM CuSO4 was added to 

induce the metallothionein promoter to drive expression. The cells were harvested 24 hrs 

later, washed in PBS and lysed in 450 µl of ice-cold lysis buffer (125 mM NaCl, 10 mM 

TrisCl pH 7.5, 0.2% Triton X-100, 600 µM PMSF, 2 mM Na3VO4, 25 mM NaF and 
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2 µg/ml APP). The lysate was spun briefly to pellet nuclei and insoluble membrane 

components. 

Immunoprecipitations and Western blot analysis 

Lysates were incubated with primary antibody and protein G+A agarose beads for 1 hr at 

room temperature. Robo was precipitated with mAbs provided by the Goodman lab. 

Myc-tagged proteins were precipitated with mAb 9E10. Agarose beads with bound 

immune complexes were spun down and washed with lysis buffer twice. Pellets were 

boiled for 3 minutes in SDS sample buffer. Samples were run on 9% polyacrylamide gels 

and transferred to a PVDF membrane. Blots were blocked in 5% dry milk in TBST 

(25 mM TrisCl pH 7.4, 137 mM NaCl, 0.2% Tween 20) for 30 minutes at RT. The blots 

were incubated in primary antibody for 1 hr, washed with TBST, and incubated with an 

alkaline phosphatase-conjugated goat anti-mouse secondary. After 30 minutes washing, 

the blots were developed to detect phosphatase activity. For Westerns, anti-pY mAb 

4G10 (Upstate Biotechnologies), anti-myc mAb 9E10 and anti-Robo mAbs were used. 

 



C 17 

 

Figure 1. Molecular basis for substrate trap 

 
 
 

Source: Journal of American Chemical Society (1998) 120, 13535-13536
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Figure 2. Robo1 and Robo2 can be phosphorylated 
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Figure 3. RPTP traps show little or no phosphorylation 
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Figure 4. Robo1 cells transfected with DPTP10Dtrap, DA3 and Abl 
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Figure 5. Robo2 cells transfected with Src and DPTP10D trap or DA3 
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Figure 6. S2 cells transfected with DA3 and Abl, with or without Robo3 
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Table 1. Transfection experiments 
 

SS 22   cc ee ll ll ss  
UAS Robo1 + Src (or Abl) 
+ metallothionein GAL4 
plus: 

UAS Robo2myc + Src (or 
Abl) + metallothionein 
GAL4 plus: 

UAS Robo3 + Src (or Abl) 
+ metallothionein GAL4 
plus: 

   DA3 DA3 DA3 

DPTP10D trap FL myc DPTP10D trap FL myc DPTP10D trap FL myc 

DPTP10D WT FL DPTP10D WT FL  

DPTP69D WT FL DPTP69D WT FL  

DPTP99A WT cyto myc   

DPTP99A trap cyto myc   

DPTP10D WT cyto myc   

DPTP10D trap cyto myc   

   

RR oo bb oo 11   cc ee ll ll ss  

Src (or Abl) + metallothionein GAL4 plus: 

 DA3 

DPTP10D trap FL myc 

DPTP10D trap FL myc + DA3, induced with Slit cell media 

 

SS ll ii tt   cc ee ll ll ss  

UAS Robo1 + Src (or Abl) + metallo-
thionein GAL4 plus: 

UAS Robo2 myc + Src (or Abl) + metallo-
thionein GAL4 plus: 

DA3 DA3 

DPTP69D WT FL DPTP69D WT FL 
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Chapter 4 

 
 

Studies of proteins purifying with a “substrate trap” version of DPTP69D 
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Abstract 

We have purified a “substrate trap” version of DPTP69D from transgenic flies and 

isolated several proteins that copurify with it. DA3 has a point mutation in an aspartic 

acid residue that causes it to remain bound to substrate. This is likely the basis for the 

axon guidance phenotype seen in flies expressing DA3. We purified DA3 from 

transgenic embryos overexpressing the mutant protein in the CNS. Two copurifying 

proteins were identified are members the protein disulfide isomerases (PDIs) family. 

PDIs assist in protein folding, but the relationship of these proteins to DPTP69D is as yet 

unclear. Mass spectrometry techniques were used to identify a third protein of 200 kD as 

non-muscle myosin II heavy chain (nmm II hc). Encoded by the zipper gene, nmm II hc 

plays a role in several developmental processes including axon patterning, dorsal closure 

and imaginal disc development. We show here that DA3 interacts with nmm II hc and 

yields a strong axon retraction phenotype similar to that caused by upregulation of 

nmm II activity when it is expressed in mushroom bodies, suggesting that DPTP69D may 

play a role in regulating nmm II activity. 
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INTRODUCTION 

RPTPs play a pivotal role in axon guidance, the process by which a growth cones senses 

cues in its local environment and transduces them through a series of intracellular events 

into cytoskeletal changes. The dynamic restructuring of the cytoskeleton allows a 

growing axon to make trajectory changes needed to remain oriented towards its target 

destination. Four RPTPs are expressed selectively in Drosophila central nervous system 

(CNS) axons during axonogenesis (Desai et al., 1994; Tian et al., 1991), and mutations in 

these genes result in characteristic pathfinding defects (Desai et al., 1996; Krueger et al., 

1996). Although much has been learned about the functional significance and genetic 

interactions among these RPTPs, little is known about the signaling pathway lying 

downstream of these enzymes. In hopes of elucidating this pathway we have attempted to 

identify phosphatase substrates using a substrate trap version of DPTP69D. 

The RPTP phosphatase domain contains two amino acids essential for catalytic 

activity: a cysteine that acts as a nucleophile to initiate the dephosphorylation reaction, 

and an aspartic acid that acts as a proton donor to turn dephosphorylated substrate into a 

favorable leaving group (Zhang et al., 1994b). If the aspartic acid is mutated, catalysis 

terminates prematurely and the substrate remains attached to the RPTP (Flint et al., 1997). 

We exploited the trapping properties of this mutation to identify potential RPTP 

substrates. 

A version of DTP69D with a trap mutation in both catalytic domains, denoted DA3, 

yields a strong CNS and motor axon phenotype when expressed at high levels. When 

stained with an antibody recognizing axons, embryos show an irregular nerve cord and 

motor axons that stop short of their target, ending in uncharacteristic club shapes (Figure 

1). Overexpression of WT DPTP69D has no CNS phenotype and only a weak motor axon 

phenotype. The stronger phenotype in DA3 flies is likely the result of sequestration of 

one or more substrates by the trap. 

To identify potential DPTP69D substrates we overexpressed DA3 in transgenic 

flies using the UAS/GAL4 system for tissue-specific gene expression (Brand and 

Perrimon, 1993). DA3 was purified on an anti-DPTP69D mAb column, and proteins that 

copurified were divided into three categories through comparison of results from other 
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purifications. Anything that purified with a control antibody was considered irrelevant 

and the result of non-specific binding to IgG. Proteins that copurified from both WT 

DPTP69D and DA3 flies were viewed as proteins that may interact with DPTP69D, and 

those that copurified exclusively with DA3 were considered potential substrates. 

We sequenced and identified three proteins that interact with and/or are substrates 

for DPTP69D. Two are protein disulfide isomerases (PDIs) with an undetermined 

relationship to DPTP69D. A mutation in the third protein, non-muscle myosin II heavy 

chain (nmm II hc), results in a specific phenotype that is recapitulated by DA3 expression, 

suggesting nmm II hc may be a target of DPTP69D activity. 

 
 
 
RESULTS 

Females heterozygous for C155-GAL4 (driver line) were crossed to males homozygous 

for UAS DA3 (responder line, made by Paul Garrity at MIT). C155-GAL4 is an enhancer 

trap line that drives expression of GAL4 panneurally and is located near the ELAV gene. 

Stage 16 embryos from this cross were dechorionated and crushed into a powder in a 

liquid nitrogen-filled mortar. Subsequent purification of DPTP69D was done in 

collaboration with Peter Snow of the Caltech Protein Expression Center. Lysate prepared 

from the powder was applied to a concanavalin A (lectin) column to enrich for 

glycosylated surface proteins, and then split between two monoclonal antibody columns: 

3F11 (anti-DPTP69D) for purification of DA3, and FA4 (anti-Neurotactin) to act as a 

control for nonspecific antibody binding. Material eluted from the columns was run on an 

acrylamide gel and transferred to a PVDF blot. Also included in the blot is one lane 

representing WT embryo powder purified on the 3F11 column. The three lanes in the 

final Coomassie stained blot are thus WT DPTP69D-3F11, DA3-3F11, and DA3-FA4 

(Figure 2). 

A band in the DA3-3F11 column absent from the other two columns represents a 

potential DPTP69D substrate. We found two such bands, with molecular weights of 66 

and 44 kD. These PVDF-bound proteins were excised from the blot and sequenced using 

Edman degradation by Gary Hathaway of the Caltech PPMAL facility. The resulting N-
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terminal sequence data led to their identification as CG’s 9302 and 9911. A third band 

was present in both DA3 and WT 3F11 columns but absent from the FA4 column. If not 

a substrate, the specificity of the binding suggests it is at least a DPTP69D-interacting 

protein. At 200 kD this protein was too large for Edman degradation. We took an 

alternate approach that implements mass spectrometry to identify this protein as non-

muscle myosin II heavy chain. Other smaller proteins less than 40 kD were obscured by a 

large quantity of yolk proteins, making it difficult to judge whether they were absent 

from the control antibody lane. 

Two members of the PDI gene family copurify with DA3 

Two proteins copurified with the trap version of DPTP69D but not its WT counterpart, 

suggesting they are potential substrates. Edman degradation of the larger protein (66 kD) 

yielded the following N-terminal sequence data: (Met, Lys)-Ser-(Xxx, Lys)-Thr-Ser-Ala-

Val-Gln-Asp-Asp-Ile. Matching this sequence against those in the SWIS-PROT protein 

database led to identification of the protein as CG9302. The smaller protein (44 kD) was 

identified as CG9911 based on the sequence Ala-Gly-Ala-Val-Pro-Met-Thr-Ser-Asp- 

Asn-Ile-Asp-Met-Thr-Leu. 

Interestingly, both proteins fall under the same functional category, namely protein 

disulfide isomerase (PDI). Both are orthologs of specific vertebrate proteins. CG9302 is 

an ortholog of human PDI-related (PDIR), whose function is unknown (Hayano and 

Kikuchi, 1995). It has two thioredoxin domains and one proline-rich domain. CG9911 is 

an ortholog of an uncharacterized human protein and closely related to another fly gene 

(CG10029). It has one thioredoxin domain and a C-terminal KDEL sequence (Lys-Asp-

Glu-Leu). KDEL is an endoplasmic reticulum (ER) targeting sequence, which implies 

this protein permanently resides in the ER. In fact, we infer they are both ER proteins 

based on classic PDI (an ER protein). Both proteins have a signal sequence, while neither 

has a recognizable transmembrane domain. 

These are two members of the large PDI gene family, whose members are involved 

in the processing and maturation of secretory proteins in the ER (Ferrari and Soling, 

1999). They assist proteins in assuming the correct conformation by forming, isomerizing 

and reducing disulfide bonds. All PDIs contain at least one thioredoxin domain. 
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Thioredoxins are a class of small 12 kD proteins with a highly conserved active site 

containing two cysteine residues that can be reversibly oxidized to form an 

intramolecular disulfide bond. They participate in a variety of redox reactions and are 

present in all prokaryotes and eukaryotes. 

Although PDIs are well characterized, the function of the two copurifying proteins 

is unknown as they do not correspond to the biochemically characterized PDI. As 

putative DPTP69D interacting proteins, we were interested in knowing whether they have 

a role in axon pathfinding. Accordingly, we looked for pathfinding defects in 

Bloomington line 10475, which has a lethal insertion near PDI of a P element with a lac 

Z reporter. Staining with mAb 22C10, which labels neuronal cells within the CNS and 

PNS, shows no irregularities. β-gal staining indicates PDI is expressed in salivary glands 

and peripheral neurons (Figure 3). RNAi experiments may provide more insight into the 

role of these proteins and their relation to RPTPs. However, we chose to pursue another 

protein from our purification experiment, as several considerations led us to believe it had 

more potential for interacting with DPTP69D in a physiologically significant manner. 

Non-muscle myosin II heavy chain interacts with DA3 

In the PVDF blot of eluates from the mAb columns, one band was present in both DA3 

and WT lanes but absent from the control lane. This represents a protein that purifies 

specifically with DPTP69D but is not necessarily a substrate. The large size of this 

protein (200 kD) made Edman degradation impractical. Its identity was determined using 

an alternate technique that involves trypsinization of the protein and measurement of the 

resulting tryptic fragment sizes using mass spectrometry (performed by Gary Hathaway). 

The MASCOT program is then used to predict the protein’s identity by matching it to 

proteins in the database that would yield the same array of fragment sizes upon 

trypsinization. In our case there was a strong prediction that the 200 kD protein was the 

non-muscle myosin II heavy chain (nmm II hc), encoded by the zipper gene. Subsequent 

Western blots using an anti-nmm II antibody confirmed the prediction. 

In Drosophila, zipper is a single copy gene that is alternatively spliced at two sites 

(Mansfield et al., 1996). Similar to myosin II heavy chain in muscle, the nmm II hc 

protein is organized into head, neck and tail domains. The head domain includes a 
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nucleotide binding pocket and an actin binding sequence. The neck domain binds two 

light chain subunits, essential light chain (ELC) and regulatory light chain (RLC). nmm II 

is a hexamer comprised of two heavy chain subunits along with two subunits of both 

ELC and RLC. The activity of nmm II is controlled through phosphorylation of RLC, 

which in flies is encoded by the spaghetti squash gene (sqh) (Redowicz, 2001). Details of 

the zipper gene are shown in Figure 4. 

To confirm the interaction of nmm II hc with DPTP69D, the purification 

experiment was repeated to see if it was reproducible. Using a 3F11 column to purify 

DPTP69D, we found nmm II hc copurifying for a second time. We corroborated this 

result by performing the experiment in a complementary manner, i.e., by purifying 

nmm II and probing for DPTP69D. nmm II hc’s dimerize due to α-helical structures in 

the tail that associate to form a coiled-coil structure. The dimers polymerize via the tail 

domain, a characteristic that makes it possible to purify nmm II on a myosin II affinity 

column. This approach is necessary because the anti-nmm II mAb works well for 

Western blots but not for precipitations. After binding lysate from WT embryos to a 

column of myosin II-tail-coated beads (obtained from Dan Kiehart of Duke University), 

the column was washed and eluted with high salt. The eluate was run on an acrylamide 

gel and transferred to a PVDF blot. DPTP69D is visible when the blot is probed with 

3F11, further evidence for a bona fide interaction (Figure 5). 

To determine whether nmm II hc meets a primary tyrosine phosphatase substrate 

criterion, we sought evidence for phosphorylation on tyrosine residues. Lysate was 

prepared from a cross of C155-GAL4 and UAS DA3 embryos, and myosin-coated beads 

were used to precipitate nmm II. Using an anti-phosphotyrosine polyclonal (anti-pY) 

antibody, we were unable to detect an nmm II hc band in the precipitate. Probing with 

anti-myosin indicated the precipitation of nmm II hc was weak. Furthermore, only a 

small fraction of our precipitate was likely to have been neuronal nmm II, as myosin is 

prevalent in many cell types, with the vast majority in cells other than neurons. To 

address this problem we used larval CNS/imaginal disc extracts (approximately 60 larvae) 

that are greatly enriched for neurons. Probing with anti-myosin showed a solid nmm II hc 

band, but anti-pY indicated none was phosphorylated. In the event that nmm II hc was 

being dephosphorylated by a phosphatase present in the lysate, we added 1 mM sodium 
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orthovanadate to the lysis buffer to inhibit phosphatases. Repeating the experiment under 

these conditions did not affect the outcome. 

In a general assay of the effect of zipper mutations on axon pathfinding, we stained 

several zipper- lines with mAb 1D4, an anti-Fascilin II mAb that recognizes all 

motoneurons and a subset of CNS axons. The overall structure of the CNS and PNS looks 

normal in embryos from these lines (Bloomington stock numbers 2528, 4199 and 11215 

and three alleles provided by the Kiehart lab). 

DA3 expression in leading edge cells does not perturb dorsal closure 

nmm II plays an integral role in several morphogenetic processes during Drosophila 

embryonic development (Young et al., 1993). We sought to determine whether 

expression of DPTP69D trap would interfere with any of these processes. If an 

interaction does exist, the properties of the trap are such that it should sequester nmm II, 

thereby disrupting biological events that depend on its function. 

An example of one such event is dorsal closure, the process in which the epithelial 

walls of the embryo elongate and eventually meet and fuse at the dorsal midline to 

generate a continuous dorsal epidermis. A specialized group of cells in the dorsal-most 

row of the lateral epithelia on each side of the embryo, called leading edge (LE) cells, are 

required to orchestrate closure. nmm II and actin are asymmetrically localized to the 

apical side of the LE cells, where they form a contractile band. Because the LE cells are 

mechanically linked, actomyosin based contraction of this band has an effect similar to 

tightening a purse string. This in turn draws the lateral epidermis towards the dorsal 

midline to effect closure. 

In strong zipper- alleles, dorsal closure never takes place, evidence for the essential 

role of nmm II hc in mediating this process (Stronach and Perrimon, 2001). In weaker 

alleles, closure is arrested at intermediate stages or simply delayed. To test whether 

expression of DA3 would result in similar closure abnormalities, we drove expression of 

DA3 in LE cells. We crossed homozygous UAS DA3 females to heterozygous pucE69; 

pnr GAL4 males. pnr drives expression of GAL4 in a region encompassing LE cells, and 

pucE69 is a P element enhancer trap in the puckered locus that expresses lac Z in leading 

edge cells (this line was provided by the Perrimon lab at Harvard). β-gal is detectable 
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from the start of dorsal closure at stage 13 until the end of closure at stage 16, when LE 

cells have formed the dorsal midline. 

We stained appropriately staged embryos from this cross with anti-myc to confirm 

DA3 expression, and with anti-β-gal to visualize LE cells. No evidence of dorsal closure 

irregularities was observed. 

DA3 expression in mushroom body neurons yields axon retraction phenotype 

Another developmental process in which nmm II plays an essential role is mushroom 

body (MB) development. The MB is a specialized structure in the insect brain implicated 

in olfactory learning and memory. All insects have two MBs, one on each side of the 

midline. The adult MB is comprised of three types of axons: γ, α'/β' and α/β. The early 

born γ neurons project only medially, but the later born α'/β' and α/β neurons bifurcate 

anteriorly, each projecting one branch dorsally and the other medially towards the 

midline. 

nmm II’s role in MB development was elucidated recently when it was found to be 

a key component of an axon retraction pathway in this brain structure (Billuart et al., 

2001). The pathway is normally repressed by a RhoGAP called p190, but when the 

activity of p190 is suppressed a sequence of events culminating in axon retraction ensues. 

The ultimate output of this pathway is nmm II, specifically the regulatory light chain 

encoded by spaghetti squash (sqh). In embryos expressing p190 dsRNA, the dorsal 

branch of the MB is truncated to varying degrees. When a null mutation in sqh is 

introduced into this background, the phenotype is markedly suppressed. This suggests 

that the p190 mutant phenotype is due to overactivity of nmm II. Consistent with this, 

introduction of a phosphomimetic sqh mutation enhances the p190 phenotype. Taken 

together, these data suggest that nmm II activity regulates axon extension/retraction in 

MBs. 

To test if DA3 expression produces an MB axon extension/retraction phenotype 

consistent with alteration of nmm II activity, we crossed UAS DA3 flies to an MB GAL4 

source. Homozygous UAS DA3 females were crossed to males homozygous for UAS 

CD8 GFP; OK107-GAL4. The OK107 driver expresses GAL4 in all mushroom body 
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neurons, which in turn drives localized expression of DA3 and a built-in reporter. The 

reporter, green fluorescent protein (GFP), is targeted to the plasma membrane by the CD8 

receptor transmembrane sequence. This allows visualization of all axonal and dendritic 

projections of MB nerve cells. (This line was provided by the Luo lab at Stanford.) The 

temperature dependence of GAL4 expression makes it possible to assay whether a given 

phenotype is stronger in flies crossed at higher temperatures (where expression is strong) 

relative to flies crossed at lower temperatures (weaker expression). Thus, both crosses 

were performed at two different temperatures, 25º C and 29º C. To serve as a control, we 

crossed the same GAL4 driver line to UAS µ/DPTP69Dmyc flies, again at both 

temperatures. The µ/DPTP69Dmyc chimera consists of the extracellular and first 57 

amino acids of intracellular RPTPµ fused to the intracellular domain of DPTP69D, with a 

myc tag at the C terminus. 

MBs were dissected from adult flies and viewed directly or fixed and stained with 

anti-GFP. There is a strong axon retraction phenotype in the MBs of trap mutants (Figure 

6). The most striking feature of the phenotype is the absence of the dorsal branch. In flies 

raised at 25º C the dorsal branch is missing from most of the samples examined, and in 

flies raised at 29º C it is missing in all samples. Additionally, the medial branch often 

appears foreshortened or distorted. The MB calyx is a neuropil comprised of the dendritic 

arborizations of the MB neurons, known as Kenyon cells. Calyces of trap mutants often 

appear smaller than normal or exhibit an irregular morphology. A missing dorsal branch 

is sometimes observed in the cross with the RPTP chimera, suggesting that its activity 

differs from that of WT DPTP69D in a way that leads to a similar phenotype, albeit at a 

much lower frequency. This is in contrast to the driver line crossed to itself, where in all 

embryos examined the MBs are normal in every respect. The phenotype of the trap 

mutants closely resembles the p190 mutant phenotype reported by the Luo lab, 

suggesting that perturbation of nmm II activity regulation may be the basis for the DA3 

MB phenotype. 
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DISCUSSION 

The in vivo approach to isolation of potential enzyme substrates has several advantages 

over an in vitro approach, where lysate from a neuronal cell line is applied to an antibody 

column. In the embryo, a full complement of potential substrates is expressed, whereas a 

cell line expresses only an undetermined subset. Candidate substrates can be transfected 

into cells, assuming they are available in suitable expression vectors, but other issues 

make this a less than ideal solution. In embryos, all substrates are expressed at the 

appropriate stage of development and localized to the correct part of the cell. This stands 

in contrast to the cell line, where expression is induced at a chosen time point and cell 

localization is likely arbitrary in many cases. In the in vivo approach, which substrate 

residues are phosphorylated, the timing of the phosphorylation and the kinases that 

catalyze the reaction all reflect normal physiological conditions. Conversely, with a cell 

line one must transfect a kinase if it is not expressed endogenously and hope that it 

phosphorylates the appropriate substrate residues. 

The Drosophila genome sequence was completed in March of 2000, and our 

experimental design exploits the recent availability of this sequence. Putative substrates 

are isolated with a phosphatase trap, and then identified by obtaining N-terminal 

sequence data and searching the genome. For DPTP69D we have identified two 

copurifying proteins whose relationship to the phosphatase is unclear. We have also 

identified non-muscle myosin II heavy chain, which interacts with DPTP69D and is 

implicated in regulating axon branch stability in the insect mushroom body. 

PDIs are unlikely substrates for DPTP69D 

Two proteins of 44 and 66 kD that copurify with DA3 are categorized functionally as 

protein disulfide isomerases (PDIs). PDIs are small proteins that typically reside in the 

ER and are present in all prokaryotes and eukaryotes. Together with chaperones they 

regulate protein folding, a process that is not instantaneous but takes place over seconds 

or minutes. Chaperones cover sticky regions of the protein that would otherwise cause 

aggregation, while PDIs assist in forming and rearranging disulfide bonds among and 
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within polypeptides until a proper conformation is reached. The sequence of the 66 kD 

protein (CG9302) aligns very well with human PDIR (e-102), but is not very close to 

human PDI itself (e-18). The 44 kD protein (CG9911) is closely related to an 

uncharacterized human protein (e-100) and to another fly protein (CG10029). 

These PDIs are implicated as substrates for DPTP69D because they purify with a 

trap version of DPTP69D and not the WT enzyme. Since the proteins they most closely 

align with have an unknown function, it is possible to ascribe to PDIs an as yet undefined 

signaling role. However, several considerations militate against assigning this function to 

PDIs. Foremost among them, PDIs generally reside in the ER while the phosphatase 

domain of the RPTPs is in the cell cytoplasm. This disparate cellular location would 

preclude an interaction. Some PDI-related proteins have been reported to localize to the 

cell surface, but the ones we have identified have a signal sequence and no 

transmembrane or cytoplasmic domain. Indeed, CG9911 has an ER retention sequence so 

it almost certainly resides in the ER. Second, there is no evidence either of these PDIs is 

phosphorylated on tyrosine residues, a necessary prerequisite for an RPTP substrate. 

Third, an alternate explanation for the association exists that is perhaps more compelling. 

One possibility for why these proteins purify with the trap version of DPTP69D but 

not WT is that the trap mutant may be incapable of folding well. The PDIs may have 

been isolated as a by-product of their prolonged association with partially folded protein. 

If this were the case the DA3 phenotype could be attributed to the inability of misfolded 

DPTP69D to make it out to axons. To test this hypothesis, we stained DA3 embryos with 

anti-myc to visualize the distribution of trap protein. The staining indicates the trap 

mutant does make it into axons, although it remains possible the amount making it out is 

less than normal. Cell bodies are visible, but a conclusion that mutant protein is getting 

held up in cell bodies cannot be drawn. It is more likely a by-product of overexpression, 

as cell body staining is frequently seen in overexpression embryos. 

DA3 overexpression produces a strong mushroom body axon retraction phenotype 
similar to that of p190 RhoGAP mutants 

A 200 kD protein purifying with WT and trap DPTP69D but not control antibody was 

identified as non-muscle myosin II heavy chain (nmm II hc) and shown to interact with 
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DPTP69D in precipitation assays. nmm II hc, encoded in Drosophila by the single-copy 

zipper gene, plays a role in several developmental processes, including axon patterning, 

dorsal closure and imaginal disc development (Edwards and Kiehart, 1996; Zhao et al., 

1988). The UAS/GAL4 system was used to target expression of DA3 to cells that play a 

role in two such processes. Dorsal closure is effected by a row of interconnected leading 

edge (LE) cells when apically localized nmm II contracts, causing them to elongate 

upwards until they cover the dorsal surface of the embryo. We expressed DA3 in LE cells 

but saw no evidence for any obvious dorsal closure irregularities. In contrast, when DA3 

is expressed in the Kenyon cells that comprise the MB a strong axon patterning 

phenotype is observed. 

MBs are prominent structures in the insect brain that integrate information from 

several modalities (visual, mechanosensory and olfactory) to mediate learning and 

memory. Each of the two bilateral MBs is comprised of approximately 170,000 Kenyan 

cells whose axonal projections originate in the calyx and project in bundles into the 

midbrain. En route to the midbrain each axon bifurcates, projecting one branch medially 

and the other dorsally. 

A signaling pathway was recently elucidated that regulates a dynamic process of 

extension and retraction of MB axons (Billuart et al., 2001). RNAi inactivation of 

RhoGAP p190 causes an axon retraction phenotype manifested in shortened or absent 

dorsal braches. RhoA overexpression in this background enhances this phenotype, and 

expression of a constitutively active form of Drok phenocopies p190 inactivation. 

Biochemical and genetic studies suggest that a key output for Drok is MRLC, the 

regulatory light chain of nmm II encoded by the spaghetti squash (sqh) gene (Winter et 

al., 2001). These results suggest a model whereby RhoGAP inactivation leads to 

increased RhoA activity, which in turn activates the RhoA associated kinase Drok. 

Phosphorylation of MRLC causes increased actomyosin contractility resulting in axon 

branch retraction. This model is supported by the observation that the p190 inactivation 

phenotype is largely suppressed by removal of one copy of sqh. 

Our results indicate that overexpression of DA3 in MBs results in a phenotype 

similar to that seen in p190 mutants, only stronger. Dorsal branches are missing entirely 

in a majority of DA3 embryos, with none of the “weak” or “medium” phenotypes 
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observed in p190 mutants. A feature common to both mutants is the presumptive 

involvement of nmm II, leading us to speculate that the DA3 phenotype may also be due 

at least in part to misregulation of nmm II activity. In the case of p190 mutants, increased 

phosphorylation of RLC causes a corresponding increase in nmm II activity. Our 

purification experiment suggests the nmm II heavy chain is a substrate for DPTP69D. No 

examples of regulation of nmm II activity through phosphorylation of its heavy chain 

have been documented. Evidence does exist for phosphorylation of the heavy chain on 

tyrosine residues (Mishra-Gorur and Castellot, 1999). However, we were unable to detect 

tyrosine phosphorylation in the fraction of nmm II hc that copurifies with DPTP69D. 

The absence of detectable phosphorylation in nmm II hc and the observation that it 

copurifies with both trap and WT versions of DPTP69D implicate it as a protein that 

interacts with DPTP69D but is not a substrate for this enzyme. In that case, how may 

DPTP69D be involved in regulation of nmm II activity? We envision a model in which 

DPTP69D binds both nmm II and an as yet unidentified substrate that is a negative 

regulator of nmm II. In a WT embryo, the substrate would bind DPTP69D and be 

dephosphorylated, at which time it would downregulate activity of the complexed nmm II. 

In this scenario, DPTP69D has a dual function, serving to activate a putative substrate 

enzyme through dephosphorylation, and to localize the protein (nmm II) on which the 

enzyme acts. DA3 has a point mutation near the phosphatase domain active site that 

should not interfere with its nmm II binding function. The substrate activation function 

would be compromised, however, since the dephosphorylation reaction does not occur. 

With the presumptive inhibitor of nmm II inactive, abnormally high levels of nmm II 

activity would result and lead to axon retraction. This could be the basis for DA3’s other 

phenotypes as well, as the stalling and gaps observed in CNS axons and the premature 

termination of PNS axons could be the result of nmm II overactivity. 

Since the above model invokes a mystery substrate, it would be reasonable to 

wonder why such a substrate was not identified in the purification experiment. One 

possibility is that it was obscured by yolk protein. Embryo purifications are complicated 

by the high levels of yolk protein, and methods for increasing the purity of the 

preparation (such as the ConA column used in this study) are only so effective. If the 

protein in question were smaller than 40 kD, it would have been in the midst of a smear 
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of yolk proteins. We sequenced only discrete bands that were absent from the control 

antibody lane, criteria that effectively eliminated everything under 40 kD. 

In light of the fact that some substrates may have eluded isolation in our 

purification, the possibility remains that the DA3 phenotype is due to sequestration of a 

protein unrelated to the actomyosin system, and that the interaction between DPTP69D 

and nmm II hc is physiologically irrelevant. To sort this out, we intend to perform genetic 

interaction experiments. Specifically, we will remove one copy of either zipper or sqh in 

flies with MB-targeted DA3 expression to see if the associated axon retraction phenotype 

is suppressed. 

 
 

 
EXPERIMENTAL PROCEDURES 

Preparation of embryo powder 

Embryos were collected at the appropriate stage (15-16), dechorionated with 50% bleach 

for 5-10 minutes, and rinsed with di-H2O. Dechorionated embryos were ground into 

powder using a mortar and pestle partially filled with liquid NO2 (LN2). Additional LN2 

was added as needed during the grinding process to ensure the powder remained frozen at 

all times. When grinding was completed, the powder/LN2 mixture was poured into a 

conical tube on ice. The tube was transferred to a -80º C freezer with the cap loose to 

allow remaining LN2 to slowly boil away. Powder was kept at -80º C until an amount 

sufficient for the purification experiment had been collected (approximately 10 grams). 

Purification of DA3 

Peter Snow (Caltech Protein Expression Facility) prepared lysates from DA3 and 

WT DPTP69D embryo powder using a buffer comprised of 100 mM NaCl, 20 mM 

TrisCl (pH 8.0), 1% triton X 100 and 0.1% deoxycholate (DOC). The lysis buffer was 

supplemented with the following protease inhibitors: 1 mM EDTA, 1 µM Leupeptin, 

1 µM Pepstatin, 1 mM phenylmethylsulfonyl fluoride (PMSF) and 1 µg/ml aprotinin. 

Embryo powder was homogenized by douncing six times with a Teflon pestle in a 2 ml 
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dounce. Homogenized material was incubated on ice for 30 minutes, vortexing every 

5-10 minutes, then spun in a micro centrifuge for 10 minutes at 4º C to pellet nuclei and 

insoluble membrane components. 

Lysates were first applied to concanavalin A (ConA) columns to achieve a roughly 

10-20 fold enrichment in cell surface proteins. Eluate from the DA3-loaded ConA 

column was added to two mAb columns: mAb 9E10 (anti-myc, to purify myc-tagged 

DA3 and any associating proteins), and mAb FA4 (anti-Neurotactin, to control for non-

specific binding to IgG). Eluate from the WT DPTP69-loaded ConA column was added 

to a mAb 3F11 column (anti-DPTP69, to identify proteins that copurify with DPTP69D 

independent of the trap mutation and are hence not likely to be substrates). Following 

several washes bound protein was eluted from the columns and run on an SDS 

polyacrylamide gel. Protein was transferred from the gel to a PVDF filter and stained 

with Coomassie blue. 

Identification of copurifying proteins 

Coomassie blue was used to stain a PVDF filter prepared by Peter Snow containing 

DPTP69D and DA3 in separate lanes, along with their corresponding copurifying 

proteins. Bands representing potential substrates were cut directly out of the filter and 

given to Gary Hathaway (Caltech Protein/Peptide Microanalysis Facility). N-terminal 

sequence data was obtained via Edman degradation for a 66 kD protein: (Met, Lys)-Ser-

(Xxx, Lys)-Thr-Ser-Ala-Val-Gln-Asp-Asp-Ile, and a 44 kD protein: Ala-Gly-Ala-Val-

Pro-Met-Thr-Ser-Asp- Asn-Ile-Asp-Met-Thr-Leu. These proteins were identified as CGs 

9302 and 9911 through a search of the SWIS-PROT protein database. 

Because Edman degradation is less efficient with larger proteins, an alternate 

approach was taken for identification of a third protein of 200 kD. Gary Hathaway 

digested the protein with trypsin and put tryptic peptides through a mass spectrometer to 

separate them by molecular weight. Out of a total of 335 peptides, the molecular weight 

of 19 could be resolved with a high degree of accuracy. Of these, 17 match nmm II hc 

based on a prediction made by MASCOT, a program that compares the array of fragment 

sizes to a database of tryptic fragment size arrays of known proteins. This prediction was 

later confirmed by Western blot analysis using an anti-nmm mAb (GP #12). 
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Immunohistochemistry and microscopy 

Bloomington line 10475, a lethal P element insertion near PDI, was stained with mAb 

22C10, labeling postmitotic neurons within the PNS and CNS. β-gal from the P element 

was stained with the anti-β-gal mAb 40-1a to visualize expression pattern. Embryos from 

a cross of pucE69; pnr GAL4 to UAS DA3 were stained with anti-myc mAb 9E10 to 

confirm DA3 expression, and with mAb 40-1a to visualize LE cells expressing β-gal. 

Stage 16 DA3 and zipper- embryos were stained with the anti-Fasciclin II mAb 1D4, 

which labels a subset of longitudinal fascicles and all motor axons. 

Adult flies were anaesthetized with CO2 and put into 95% EtOH. Dissections were 

performed in cold PBS. Dissected fly brains were placed in Equilibration Buffer 

(Component C of Molecular Probe’s SlowFade Antifade Kit) for approximately 10 

minutes, and transferred to SlowFade Antifade reagent (Component A). The brains were 

mounted in Antifade reagent and imaged directly using a confocal microscope with a 

488 nm laser. The signal was just as strong as when using an anti-GFP mAb and a 

fluorescent secondary (AlexaFluor 488). 
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Figure 1. DA3 embryonic phenotype 

 
 
 

CNS: irregular nerve cord. Motor axons: SNb ends in club, ISN stops short.
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Figure 2. Eluate blot 
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Figure 3. Examination of Bloomington line 10475 (lethal P element insertion near PDI). 
No obvious axon pathfinding defects. 
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Figure 4. zipper schematic 

 
 
 

3

Figure 4. A schematic diagram depicts the overall genomic organization of the Drosophila non-muscle MHC gene, compares it to five other MHC gene structures that have 
been described and compares conservation of intron position throughout phylogeny. References for myosin sequences are shown in Table 1. The genes are aligned with 
respect to their methionine initiator codon; the Drosophila gene has two potential start sites as shown (ATG). Untranslated sequence is shown as open boxes, coding sequence 
as filled boxes and introns as thin lines. Alternative exons are marked with an asterisk. Intron boundaries conserved between all five genes or between zipper and another gene 
are shown with shading. Boundaries conserved between genes other than zipper are indicated with the lower case letters a through k. Boundaries were considered to be 
conserved between different myosins if the sequence immediately preceding or following a boundary was well conserved. Arrows show the N-terminal end of the tail. Numbers 
at the end of each gene represent the intron sequence as a fraction of the total sequence (transcription start to the poly(A) addition signal). Note that there is a progressive 
reduction in the number and total amount of intron in MHC genes in less complex species. Dm nm, D. melanogaster non-muscle (zipper); Rat m, rat (embryonic) skeletal muscle; 
Dm m, D. melanogaster muscle; Ce m, Caenorhabiditis elegans body wall muscle (unc-54); Ac nm, Acanthamoeba castellanii non-muscle. Detailed views of the promoter region 
and the two alternative splice sites in zipper are shown in the enlargements A to C above the genomic structure. A, Schematic representation of the promoter region in the 
Drosophila non-muscle MHC gene shows a progressive increase in GC content from -300 to transcription start and the presence of GC box-like motifs. The GC content values 
for the region -1 to -300 were calculated in a cumulative fashion beginning at -1 and proceeding upstream in bins of 20 nt. The same procedure was used for the region +40 to 
+300 beginning at +40 and proceeding downstream. B and C, Shaded boxes indicate sequence that is only present in the isoform mhc-c(1b) and mhc-c(2b), respectively. 
Hatched boxes indicate the sequences common to both classes of transcript. Pr, putative promoter region; TS, transcription start.

Source:Journal of Molecular Biology (1996) 255, 98-109

 
 



D 22 

 

Figure 5. nmm II hc purification from WT embryos 
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Figure 6. DA3 expressed in MB causes axon retraction phenotype 
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