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ABSTRACT 

In this thesis, general conditions on the coefficients of 

difference equations are obtained which insure the convergence 

of solutions of these difference equations to the solutions of 

the corresponding partial differential equations. A general 

method which is applicable to a wide variety of partial differ-

ential equations is presented her~ However, in order to 

simplify the presentation of this method and to leave out calcu-

lations which are not essential to the description of the method, 

the discussion is centered about the partial differential 

equations 

and 

The treatment of these simpler problems then serves to indicate 

the method for more general problems. 
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INTRODUCTION 

In many cases it is practically impossible to solve an 

initial value problem for a partial differential equation exactly, 

although it can be proved that the exact solution does exist and 

is uniquely determined. Therefore, the partial differential 

equation is very often replaced by a difference equation which is 

easier to solve (and which, incidentally, furnishes an approxi­

mation to the solution of the original problem). The properties 

of the differential equation are then, under certain assumptions, 

determinable if one lets the solution of the corresponding differ­

ence equation converge towards the solution of the differential 

equation by refining the width of the mesh of the under]¥1ng 

lattice. 

In the case of elliptic partial differential equations, one 

has simple and extensive convergence conditions which are inde­

pendent of the choice of the underlying lattice, but, in the case 

of the initial-value problem of hyperbolic partial differential 

equations, convergence i s , in general, present only when con­

ditions on the mesh-width of the lattice satisfy certain ine­

qualities which are determined by the location of the character­

istics of the lattice. 

Courant, Friedrichs and Lewy (1] have treated initial­

value problems of linear hyperbolic differential equations and 
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have shown that, under certain assumptions, the solution of the 

difference equation converges toward the solution of the corr&-

sponding differential equation by refining the width of the 

mesh of the urxierlying lattice. In particular, they have treated 

the wave equation 

where they take a rectangular, axially-parallel lattice as a 

basis, whose temporal mesh width is !! and whose space mesh is 

"I.. h, with ~ constant. For this equation, they then show that 

in the case il( < 11 if one allows the mesh-width h to decrease 

towards zero, the solution of the difference equation cannot in 

general converge to the solution of the differential equation. On 

the other hand, if X > 1, they show that convergence will occur. 

In other words, given any partial differential equation, it can 

be approximated by many different difference equations; however, 

as cited above and as shown by many others, on'.cy some of these 

difference expressions will work - that is, in only certain cases 

will the solution of the difference equation converge to the 

solution of the corresponding differential equation. This raises 

an interesting question which motivates the problem upon which 

this thesis is based, namely, to try to understand why some 

difference patterns work (in the sense just mentioned) and why 

others do not. 
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In this thesis, then, we would like to obtain various 

general conditions on the coefficients of these difference 

equations under which such a convergence is possible. While 

a general method will be indicated here, the discussion will 

be centered about the partial differential equations 

()u ()u 
-=c-
ay ax 

in order to simplify the presentation. The treatment of these 

simpler problems will then serve to illustrate the method for 

more general problems. In particular, the method presented here 

strongly indicates a suitable technique for the treatment of the 

homogeneous, linear partial differential equation 

a 2u ~ 2u () 2u 
A ~ + 2B ~x C1y + C ~ = 0 • 
~x oy 
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CHAPI'ER I 

STATEMENT AND DEVELOPMENT OF THE PROBLEM 

Here, in this thesis, we will consider difference equations 

of the form 

r,s 
ars u(x + rh, y-sh) = o , 

and our general problem will be to determine sufficient conditions 

on the ars under which solutions of the difference equations 

will converge to the solutions of corresponding partial differ-

ential equations. 

Now, a difference equation of the form 

(1 ) ~ a 
8 

u(x + rh, y-sh) = O r,s r 

is said to approximate a partial differential equation of the 

form 

(2) 

if 

(3) 

tends, for 

lim 
h+O 

~ ar u(x + rh, y-sh) 
r s s 
' 

u sufficiently smooth, to 
() ku 

ox1 oy3 • 
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Hence, the difference equation, Eq. 1 1 will tend to the partial 

differential equation, Eq. 21 if certain moment conditions are 

satisfied. Here, in this thesis, we are interested in the homo-

geneous, linear partial differential equations 

- =c---- and 

~u au 
Thus, for the .first differential equation, namely, - = c - 1 

()y ax 
the resulting moment conditions are 

n 
i) L: 8 rs = 0 

r;s=O 
(4) 

n n 
ii) E r a =c L: s a I o , 

r;s=O rs r;s:O rs 

() 2u o2
u while for the partial differential equation 

0 
x2 = ~ , the 

moment conditions are given by 

n 

i) Z ars = 0 
r;s=O 

n n 

ii) E r a = I: s a rs r;s=O rs r;s=O 
(5) n 

iii) L: rs a =O 
r;s=O rs 

n 
2 

n 2 iv) "L: r ars = - L: s 
r;s=O r;s=O 

=O 

ars F 0 • 
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Now, since, in this thesis, we on:cy wish to discuss initial­

value problems for our partial differential equations, and since 

we want difference patterns which will enable us to determine 

uniquely the value at any given point in terms of the values at 

poi nts situated on preceding rows, we restrict ourselves to such 

difference patterns which have but one non-zero point on the "top" 

row. In fact, since our difference pattern can always be 

nonnalized, we can then say that we will restrict our consider­

ations to those difference patterns 'such that 

i) a rs =O for { s < 0 
s > n ' 

(6) i i ) a 
00 = 1 

iii) aro =O £or r I= o. 

Moment conditions (4) and (5) are then given by 

{ 
n 

i) ~ a = -1 
r;s=1 rs 

(7) n n 

ii) r: r ars = c I: s ars F o. r;s=1 r;s=1 

and n 

f 
i) L a = -1 r;s=1 rs 

n n 

(8) ii) L: r a = 2: s ars =O r;s=1 rs r;s=1 
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n 
(8) iii) 2: rs ars =O 

r;s=1 
n 2 n 2 iv) ~ r ars = - ~ s a ! o , 

r;s•1 r;s=1 rs 

r espectively, or, when we let brs = - ars' are given by 
n 

i) 

(9) 

ii ) 

and 

i) 

ii) 

(10) 

iii) 

iv) 

respectively. 

l] b = 1 
r;s=1 rs 

n 
r; 

r;s=1 

n 
~ 

r;s=1 
n 

r: 
r;s=1 

n 
11 

r;s=1 

n 
~ 

r;s=1 

r b rs 
n 

=c B 
r;s=1 

s b ! o rs 

bra = 1 

n 
r bra = n b =O 

r;s-1 rs 

rs brs =O 

2 n 
r bra - - Z. s

2 
brs F O 

r;s•1 
• 

With these conditions on the ars' we now set up a general­

ized difference pattern whereby we extend our lattice of points 

to one consisting of continuous rows and, i nstead of speaking of 

the values of the coefficients at discrete points, we consider 

* functi ons of bounded variation defined over these rows. 

* The use of these functions of bounded variati on will simplify 
greatly the notations and computati ons to be presented here. 
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Generally speaking, we consider a sequence of functions of 

bounded variation, F
8
(x), defined over the rovrs of the lattice 

* such that 

x ~ -A 1 A constant 

(11) x ~ A · 1 c
8 

constant 

iii) F
8
(x) of bounded variation, s = 1,2, ••• ,n. 

Our moment conditions then become 

(12) 

and 

(1J) 

"" n 
i) L f dF 

8
(x) = 1 

s=1 -
n 

ii) l! 
s=1 

i) 

Cl> J x dF8 (x) 
n 

=c I: 
s=1 -

.. 
dF (x) = 1 s 

.. J s dF 
8
(x) F 0 -

.. .. 
ii) f; f x dF 

8
(x) = ~ f s dF 

8
(x) = 0 

s=1 - s=1 -
n OD 

iii) L: f sx dF s = 0 
s=1 -

iv) 

n CID 

2: [ x2 dFs(x) 
s=1 -

n .. 

= - Z J s2 
dF 

8
(x) F 01 

s=1 -• 

respecti vel.y-. 

* We could also define F 0(x) in terms of 

l 1 , r = o 

aro = 0 ' r F o, 

but, at least for the present, this would be a pure luxury. 
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In terms of these functions of bounded variation, F
8
(x), 

our difference equation (Eq. 1) is now given by 
n ., 

(14) u(x,mh) = L: f u(x + f h, mh - sh) dF
8

( f ). 
s=1 -

In general, we 110uld not be able to guarantee the existence of 

such an integral. However, in this thesis, we are interested in 

difference patterns which have a fixed finite width (See Eq. 11 ) • 

Thus, for our considerations, u(x1mh) can be expressed as 

n .A. 
(15) u(x,mh) = L: f U(X + r h 1 mh - Sh) dF 

8
( 1 ) I 

s=1 -A · 

·and, here, the existence of the integrals is insured once and f or 

all since we have fumtions of bounded variation, F 
8

(x) 1 a 

continuous function, u{ f ), and a finite range of integration, 

(-A,A). 

As initial conditions, we are given the functions vr(x) 

whi ch are continuously differentiable, r = 011, ••• ,(n-1), and 

which are gi ven in terms of u(x,mh) by 

(16 ) 

v
0
(x) = u(x,o) 

v1 (x) = k { u(x,h) - u(x,o) { 

v2(x) =; l u(x,2h) - 2u(x,h) + u(x,o) 1 
h 
• 

vn-1 (x) :: h!-i { u ( x, (n-1 )h] - fn;-
1 
Ju [ x, (n-2)h] 

+ Cn21 )u (x, (n-J)h] - ••• + 

)n-1 n-1 ) ) l + (-1 (n_1 u (x,o f • 
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That is, for 0 lS m ~ (n-1 ), our given initial conditions are: 

m 
(17) v (x) = ...!... E (-1 )r (m) u [ x,(m-r)h] • 

m hm r=o r 

In terms of these initial conditions, we can inunediately solve 

for u(x,mh), 0 s m ~ n-1, obtaining 

m 

(18) u(x,mh) = Z: (~) hr vr(x) 1 
r=o 

0 ~ m s n-1, 

or since (~) :::; 0 for r > m, 

n-1 

(19) u(x,mh) = L (m) hr vr(x), 
r=o r 

0 s m ~ (n-1 ). 

* For m (!:- n, however, our difference equation will be of the form 

n-1 .. 

(20) u(x,mh) = L f hr v (x + ~ h) dF ( f ) , m ~ n. 
r=o _ r l m,r 

where Fm,r( ~ ) is the convolution function defined by** 

OD 
n 

(21) Fm,i-( f ) ~ f F s ( f - ~ ) dF m-s, r ( 'l ) = 

* 

** 

s=1 - n OD 

= ?! J Fm-s,r( f - ~) dF s( "7 ). s=1 -
Although, in general, we would have a question regarding the 
existence of the integrals of Eq. 20, we will have no problem 
here since the v (x) are continuous functions by hypothesis, 
since hl'F'm r( ~ )r will be functions of bounded variation, and 
since the &insideration of difference patterns of finite width 
will give us a finite range of integration. 

For a discussion of the existence of convolution integrals, 
the reader is referred to such books as Cramer (Ref. 2) or 
Widder (Ref. 4), p. 83 ff. 
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Def. 1: The CONVOLUTION of F1 (x) and F2(x) is the function 

00 00 

( 22) F(x) = J F1(x-z) d.F2(z) = J F2(x-z) dF1(z) 

-- -
and is denoted by 

Now, we would like Eq. 20 to hold for all m. Hence, we rewrite 

the expression for u(x,mh), as given by Eq. 19, as 

n-1 n-1 oo 

( 24) u(x,mh) = L: (~) hr vr(x) = 'L: J hr vr(x+ f h)• (~)dI0( f) 
r=O r=O -

where 

(25) 
, r <. o 

, ~ ~ 0 
• 

Thus, comparing Eq. 20 and Eq. 24, we see that 

( 26) m = 0, 1 , ••• , ( n-1 ) 

Then, canbining the above results, we have 

n-1 oo 

c21) u(x,mh) = L: J hr vr<x + r h) d.Fm r< r >, 
r:::o - , 

where 
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, 0 ~ m s (n-1) 

( 28) n oo 

L J F s ( f - { ) dF m-s' / ~ ) ' m ~ n, 
s=1 -

or, when we make the change of variable ~ = r h and let 

{ 
Gm r( ~ ) 3 Fm r( ':5 /h) 

' ' ( 29) 

Gs( 5 - ~ ) F 5 (( ~ - t>/h) , 

we obtain 

n-1 00 

(JO) u(x,mh) = Ir J hr vr(x + f ) dG m,r( ~ ), 
r:::o -

where 

(31) 

n 00 

z 
s=1 

f Gs ( f - ~ ) dG m-s, r ( ~ ) ' -
m i: n. 

Thus, our problEm - namely, to determine conditions under 

{

m.+oo 

which u(x,mh) will tend to the proper limit as h-+ 0 is 
mh-+ y 

related to the question: when will hrG ( e ) tend to the proper 
m r l 

l m.+oo ' 

limit as h-+ 0, for r = 0,1, ••• ,(n-1). However, to answer 
mh-+ y 

that question, we will, in turn, consider the so-called character-

istic functions of the functions of bounded variation F (xh) m,r 

(and, hence, G (x)). m,r 
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Def. 2: Let F(x) denote a function of bounded variation and t 

a real variable. The function g(x) = eitx = cos(tx) + i sin (tx) 

is then integrable over (-cm, ... ) with respect to F(x), since 

I ei tx J = 1. The function of the real variable t 

(32) <\) (t) = f eitx dF(x) 

-
is called the CHARACTERISTIC FIJNCTION of the function of bounded 

variation F(x). 

The usefulness of characteristic functions lies in the fact 

that there is a one-to-one correspondence between a function of 

bounded variation and its characteristic f unction. The function 

of bounded variation, F(x), is thus always uniquely detennined by 

the corresponding characteristic function <p ( t), and the trans­

formation by which we pass from F(x) to cp Ct), or conversely, is 

always unique. 

To motivate our consideration of characteristic functions 

in this thesis, we now briefly consider the special case when the 

F (x) are distribution functions, that is, non-negative, non­s 

decreasing point functions which are everywhere continuous to the 

right and are such that F (-) = 0 and F ( ... ) = 1. s s 

Def. 3: A sequence of distributions with the distribution 

functions F1(x), F2(x), ••• converges to a distribution when and 
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only when there is a distribution function F(x) such that 

Fn(x)-+ F(x) in every continuity point of F(x). When such a 

function F(x) exists, F(x) is the distribution function corres­

ponding to the limiting distribution of the sequence, and one 

says that the sequence ( Fn(x) } converges to the distribution 

function F(x). 

The following theorem [ 2;96] * then shows that, subject 

to certain conditions, the transfonnation by which we pass from 

F(x) to <J) (t), or conversely, is continuous (as well as unique), 

so that the relations Fn(x)-+ F(x) ,and 'fn(t)-+ <p(t) are 

equivalent. 

THEOREM I: 

Given: A sequence of distributions, with the distribution · 

functions F1 (x) , F2(x), •••• , and the characteristic functions 

<P1(t), <P2<t), •••• 

Then: A necessary and sufficient condition for the con-

vergence of the sequence { Fn(x) } to a distribution function 

F(x) is that, for every t, the sequence {cpn(t) ~ converges to a 

limit q> ( t) which is continuous for the special value t = O. 

When this condition is satisfied, the limit <J) (t) is identical 

with the characteristic function of the limiting distribution 

function F(x). 

i~ The first number within the brackets refers to a numbered 
reference stated at the end of this paper, and the second 
number refers to the page nwnber of that reference. 
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The foregoing continuity theorem, while not applicable to 

our functions F (x), nevertheless motivates our consideration m,r 

of their characteristic functions. In fact, after the develop-

ment of the formal computation associated with the general theory, 

we will present new continuity theorems for these functions, 

1 F (x), for the case when -r Fm r(x) are functions of bounded m,r m , 

variation. 

Meanwhile, for our formal computations, we will need the 

following product theorem for charaqteristic functions [ 4; 203] • 

THEOREM II: 

and 

Given: 1) F(x), F1(x) and F2(x) are functions of bounded 

variation. 

2) F(x) is the convolution of F1(x) and F2(x). 

3) q> ( t), cp 1 ( t) and <V 2( t) are the characteristic 

functions of F(x) , F1(x) and F2(x) respectively. 

Then: <p (t) = <\)1 (t) • <p 2(t) • 

More generally, if 

CIO 

~ /t) = J ixt d.Fj(x), j = 0,1, ••• ,n, 

-
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then 

To continue, we now define the characteristic functions 
00 

(33) ~ J eixt dF (x) 
· m,r ' 

which, by Theorem II and Eq. 28, can then be represented as 

, 0 s m ~ (n-1) 

(34) <pm r(t) = 
' n 

L; <P s ( t) • cp ( t ) , m ?; n. 
s=1 m-s,r 

If we further define 

(35) 

then, from Eq. 29, we have 

(36) 
G oo 

<i' (t) = J eixt dF (~) = m,r m,r n 
-oo 

whence, since h = y/m, 

G 
(37) <Pm /t) = <p m r(l). 

' ' 

{ 
r = O, 1 , ••• , ( n-1 ) 

, all m. , 

00 

I ei ~ thdF (~) = cp (th)' 
m,r n m,r 

Therefore, referring to Eq. 30, we see that, in terms of 

the characteristic functions cp ( ty), our basic problem now m,r m 
r 

reads: Under what conditions will (l) Cf (ty/m) tend to the 
m m,r 

proper limit as m _. oo. 
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We now treat this problem by means of the method of gener-

ating functions, where we define 

(38) 

From Eq. 

(39) 

34 we then obtain 
n-1 

~r (z,t) = L 
m=o 

Noting that 

m • z • 

n 

~ 
oo n 

(40) = L ~ c d • zn 
k=o k n-k n=o 

and that 

(41) 

oo n oo min(m,n) 
L q> (t)•zP °2; <P (t)•z8 = L ~ Cf> (t) cp (t)zm 
p=o p,r s=1 s m=1 s=1 m-s,r s ' 

we obtain 

(42) 

oo n 

+ 2: E 
m=n s=1 

~ (t) ~ (t)•zm , m-s,r s 

whence, from Eq. 39 and Eq. 42, 

n-1 n 

(43) i (z,t) = L (~) zm + ! <z,t)• [; cp
5
(t)z8 

-
r m=o r s•1 

n-1 m 

- ~ Z <P (t)• <P (t)• zm 
1 1 m- s,r s m= s= 

, 
so that 
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or, in slightly revised form, 

n 

1 - L: <p (t)•z8 

For simplicity sake, we denote J' (z,t) 
r 

s=1 8 

by 

Ql'(z,t) 
Jr (z,t)~ (46) 

P(z,t) 

where ~(z,t) and P(z,t) are regular functions of z and t 

given by 

(47) 

~(z,t) 

n 
P(z,t) = 1 - L; ~ (t)·z8 

• 
s=1 s 

We now wish to represent f ( z, t) by a sum of partial fractions. 
r 

Hence, if we let ai (t) be the roots of P(z,t) = o, and ~i (t) 

the multiplicity of each corresponding root, then 

\) z 'ti(t) 
(48) P(z,t) = lf (1 - ~) , where 

i=1 ai' IJJ 

and 

(49) 
:J.. Q ( z, t) ~ 1l i ( t) c ij ( t) 
'1' (z,t) a r = L.J L: -

r P(z,t) i=1 j=1 (1 - a:(t»j 

\') 'li ( t) 00 

=.'E '2J c.j(t)•"' (m+j-1)( z )m 
i LJ j-1 a (t) ' 1=1 j=1 m=o i 
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so that, from Eq. JB, we have 

\) "l.i(t) 

(50) <p (t) = ~ L: 
m,r i=1 j=1 

At this point, although not necessary in the least for the 

fonnal calculations but, nevertheless, of convenience and 

simplicity with regard to subsequent notations and to the pre-

sentation in general, we make the first of three assumptions on 

P(z,t) which will be made in this thesis, namely: 

Assumption 1 : 
n 

P(z,O) a 1 - L;<Ps(t) zs has no zeros within 
s=1 

the unit circle lzl = 1. 

To make such an assumption seems reasonable since vre are trying 

to outline a general method. More important, however, is the 

fact that this assumption can be shown to be a necessary con-

dition if the method of solution by means of difference equations 

* is to work. 

Let us now consider the zeros of P(z,O), some of which will 

lie on the unit circle while the rest, by Assumption 1, will lie 

outside the unit circle. Of the finite number (n
0 

4;. n) of zeros 

of P(z,O) which lie outside l z l =1, at least one will be at a 

* For a proof of the necessity of this assumption for ttte cases 
considered in this thesis, see Lemma 8 in Appendix I. 
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minimum distance f 
0 

from the unit circle. Choose f' such that 

(51) 

Then, there will exist a value of t, say t = t
0

, such that, for 

a~l t, lt l <. t
0

, P(z,t) will have the same number of zeros in 

lz l < ! as the total number of zeros of P(z,O) which lie on the 

unit circle. (In other words, by means of lz l = f , we can 

separate the zeros of P(z,O) into those which lie on the unit 

circle and those which lie outside the unit circle, and, for all 

t , \t i<. tb, none of these zeros will cross over the di vi ding circle). 

Thus , for each t, I t I < t 
0

, we can then decompose f r ( z, t) into 

.I. ~(z,t) 
( 5 2) 'f r ( z, t) :: p ( z, t) = a_, ( z, t) + R2 ( z, t) , 

where a,Cz,t) and R2(z,t) are rational functions such that R2(z,t) 

is a regular function of z for l zl ~ f > 1 and R2(z,t) is a 

regular function of z for tz f ~ f • a, (z,t) and R2(z,t) can 

then be rocpanded into power series of the form 
00 

f 
a, (z,t) = L: bm{t)zm , 

(53) 
m=o 

00 

R2(z,t) = L: c (t)zm , 
m=o m 

so that 

~ ~(z,t) 
... 00 

(54) L: b (t) m L: cm(t) 
m 

r(z,t)::. P(z,tJ = z + z • m m=o m=o 
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Lemma 1: 

Given: 
~(z, t) 

P( z, t) = Ri ( z, t) + R2 ( z, t) , where 

1) ~ (z, t) is a regular function of z for \zl ~ ~ > 1 

such that, for each t, Ri(z,t)-+ 0 as lz l -+ oo. 

2) R2(z,t) is a regular function of z for lz l ~ f • 

3) R2(z,t) is a rational function in z which can be 

expressed by the power series 
00 

R2(z,t) = L cm(t)zm. 
m=o . 

Then: The coefficients of this power series expansion, 

cm(t), will tend uniformly to zero as m becomes infinitely large. 

Proof: 

As is easily seen, 

f~(u,t) 
P(u,t} 

er 

du 
u-z , 

where cp is the aforementioned dividing circle lz l = ! > 1 

and where z is any point interior to C 1 • In particular, if 

1 < f 1 < f , then 

for z !: f 1 and 

Now, 

' R2(z,t) I < c 

It • < t • 
0 

00 

= ~ 
m=o 
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so that 

c (t) = ~ J R2(z, t)• mdz1 • 
m ~ w :i. C z+ 

f 
Therefore, by Cauchy's inequality, 

-m 
f cm(t)I ~ c• f 1 

and the lemma is proved. 

Therefore, from Lemma 1, we see that our only concern in 

Eq. 52 will be with Hi (z,t) and its resulting contribution to 

<\>m r(t). To compute a,Cz,t) and to carry out the rest of the , 
theory we will need to lmow, in turn, the order of each pole of 

a,Cz,t), or when we let 

we will need to lmow the multiplicity of each zero of P1(z,t). 

Thus, to summarize our formal computations, and to restate 

the probl em which confronts us, we wish to determine suffi cient 

conditions such that the solution of our general difference 

equation, 
ll CIO 

u(x,mh) = E f u<x + f h, mh-sh) dF s< r > 
s=1 -
Il CIO 

= E f hr v ex + f' h) dF < r ); 
~ r ~ m,r 

s=1 -

will converge to the solution of the corresponding partial differ-
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ential equation. However, rather than treat the functions F (x) m,r 

directly, we will consider the corresponding characteristic 

functions <p ( t) defined by m,r 

and 

~ m ~(z,t) 
= Ll~m r(t)z = P(z t) = m=o , , 

n-1 

(~)+ ~ 
m=1 

1 - ~ ~ (t)z9 

s=1 8 

Then, by means of continuity theorems to be developed in the next 

chapter, we will be able to treat the F (x) and, hence, arrive m,r 

at the solution of our problem. 
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CHAPI'ER IT 

CONTINUITY THEOREMS FOR FUNCTIONS OF InUNDED VARIATION 

In this chapter, we would like to develop the two continuity 

theorems referred to in Chapter I so as to be able to treat the 

functions of bounded variation, F (x), by means of their corre­m,r 

sponding characteristic functions <P (t). m,r 

THEOREM III. 

Given: 1) A sequence of functions ~(x) such that 

a) V(Km(x)) ,L k 

b) ~(x) = o, x ~-A, A constant 

c) ~(x) = C = constant, m x =:. A. 

2) v(x) continuous ... 
3) ~ m(t) = f eixt dKm(x) -

If: 'iJ m ( t) converges to a 1imi t 'V ( t) , for every t. 

Then: 

1 ) lim '"'f 
m-+«> -

v(x) dK (x) exists. 
m 

2) '\' (t) is the characteristic function of the 

limiting function K(x) , where 

K(x) lim Km(x). 
m-+oo 

00 ... 
3) lim I v(x) dK (x) = f v(x) dK(x). m m-+ ... _.., -... 
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Proof: 

Since the Km(x) are functions of bounded variation, we 

can let 

(55) 

where Pm(x) 

Furthermore, 

K (x) = P (x) - N (x) , 
m m m 

and N (x) m are non-negative, non-decreasing functions. 

(56) 0 ~ P (x) ~ k ; m 0 !!: N ( x) ~ k. m 

Now, pick a subsequence P (x) of Pm(x) such that P (x) 
m~ mv 

converges for all x in a denumerable, everywhere dense set. Then, 

extend the definiti on of this limiting function to all x, pre-

serving its non-decreasing character, and call this limiting 

function P(x). Then, P (x) .-. P(x) at every continuity point m\,) 

of P(x), that is, at all x except possibly a denumerable set. 

Next, of that subsequence, pick a sub-subsequence such that 

N (x) .-. N(x) at evecy continuity point of N(x), that is, at 
m ~ 

all x except possibly a denumerable set. 

Then, let 

(57) K(x) = P(x) - N(x), 

whence, K(x) is of bounded variation. Now, x = :!: A can be 

assumed not to be singular points of K(x). Therefore, . 

(58) Km (x)... K(x) 
"-> 
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at all x except possibly a denumerable set. 

Now, let v1 (x) be a function which has a continuous 

derivative. Then 
A A 

(59) J v1(x) d~ (x) = v1(A)• 
-A ~ 

4' m (0) - f ~ (x)•dv1 (x). 
\) -A ~ 

Therefore, 

A 

(6o) lim r v1 (x) dJ\n (x) = v1 (A)• ~ (0) 
m_.. J ~ 

-A 
whence 

A 

lim f 
m-+oo_A 

v1 (x) dK (x) 
m v 

exists. 

Next, consider 

( 61) \Ji (t) 
m ~ 

-= I eixt dK (x) • 
m -.> -

A 

-f K(x)•dv1(x), 

-A 

Since the P (x) and N (x) are non-decreasing, non-negative functions 
m m 

which are constant outside a finite interval, and since 

P (x) -+ P(x) and N (x) -+ N(x) at every continuity point of 
m \) m ~ 

P(x) and N(x), respectively, it can be shown that the character-

istic functions 

'fl * ( t) such that 

(62) 

~ (t) tend to a characteristic function 
mv 

-
't'*(t) = f eixt dK(x). 

-
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But, by hypothesis, 'fl (t)-+ 'I' (t) for the full sequence. m 

Therefore, 

(63) ~ (t) = 
eo ixt 

~*(t) = f e dK(x), 
-oo 

so that 'I" (t) is a characteristic function. Furthermore, since 

'¥ m(t)-+ 'V(t) for the full sequence, K(x) is independent of any 

subsequence. Al.so, 

A A 

(64) lim f 
m ..+eo 

v1 (x) d~(x) = llm l v1 (A) 'V m(O) - f Km(x)dv1 (x) ~ 
fil-+oo 

. -A -A 
A 

= v1 (A) 'JI (0) - J K(x)dv1 (x) 

A -A 

= f v1 (x) dK(x) ; 
-A 

that is, 

A 

(65) llm f 
ffi-+.., -A 

A 

v1 (x) • ~(x) = f v1 (x) · dK(x) 

-A 

for the full sequence. 

Now, approximate the given continuous function, v(x) 1 by 

v1(x) 1 where v1{x) has a continuous derivative, such that 

(66) for lx l ~ A. 

Then 
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A A A 

(67) f v(x)c!Km(x) - r v(x)c!K(x) ~ f (v(x)-v1 (x)) dKm(x) -
-A -A -A 

A 

- f ( v(x)-v1 (x) } c!K(x)/ 

-A 

A A 

+/ 1 v1 (x)c!Km(x) -_j v1 (x)dK(x)/ 

A A 

~ 2 € k + f v1 (x)~(x) - J v1 (x)dK(x) • 

-A A -A A 

But, by the previous part, f v1 (x)dKm(x) -+ f v1 (x)dK(x) , 
-A -A 

hence 
A A 

(68) J v(x) dKm(x)-+ J v(x)dK(x). 

-A -A 

Finally, since the K (x) and K(x) are constant for \x l ~ A, 
m 

the range of integration can be (-...,~). 

Q. E.D. Theorem III. 

Now, Theorem III, in itself, would be sufficient to give us 

a limited set of results. However, the condition 
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which is imposed by the theorem will be too restrictive to be 

of any use in our later work. In fact, calculation will show 

that it would exclude one of the simplest of difference patterns 

for our partial differential equation, namely the pattern given 

by 

u(x :!: h,y) = -1, 

u(x,y _: h) = 1. 

Therefore, we also derive the next theorem which will broaden 

our results to include examples such as the one just cited. 

THEX>REM rv. 

Given: 1) A sequence of functions Km(x) such that 

If : 

a) K (x) is of bounded variation, each m. 
m 

b) Km(x) = o, x ~ -A, A constant. 

c) K (x) = C = constant, x ~ A. ! m 
d) f I Km( f ) l d f ~ C. 

-A 
2) v(x) continuously differentiable 

°" 
3) emct) = f eixt dKm(x). 

a) 
-

8 (t) tends to a limit, say 8{t), for every t. 
m . . 

b) 8m(O) tends to a limit, say 8(0) . 

Then: There exists a function )(. (x) of bounded variation 

such that, as m -+«>, 
°" °" J v(x)dKm(x)-+ v(A) 8(0) - f v•(x)d PC (x) • 

-oo -
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Proof: 

Define the functions 'J.l m(x) by 

(69) 'ii (x) ~ "'Lm . 

0 , x ~ -A 
x 
I ' Km ( r ) d r ' -A • x ~ A 

-A 
A 

_{ lKm( f )f d f = constant, x !! A, 

whence the J(, (x) are functions of bounded variation. 
m 

Then 
A A 

(70) J v(x)d~(x) = v(A)·~(A) - f ~(x)dv(x) 
~A -A 

A 

= v(A)•e (0) - f v•(x)•d :X, (x). 
m -A m 

( ) ixt In particular, for v x = e , we obtain 

(71) ut 0 0 (t) = e • (O) - it · 'f' (t), m m m 

where -
(72) 'lJ m(t) = f eixt d Jl m(x). 

--
Thus, if t /= 0 1 qJ m(t) tends to a limit as m...... Furthermore, 

if v(x) = ix, then 

• 
(73) 9 (0) = iA9 (0) - i 4-' (O) , m m m 

whence \\J m(O) also tends to a limit. Hence, by Theorem III, 

there exists a function )(, (x) of bounded variation such that 
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Q) Q) 

(74) J v•(x)d ~m(x)-+ J v•(x)d 1G (x) • - -
Therefore, by Eq. 70, we see that 

Q) 

(75) J v(x)d.Km(x)-+ v(A)• 9(0) - f v•(x) d ,1' (x) • 

- -Q) 

Q.E.D. Theorem IV. 

With these two continuity theorems for functions of bounded 

variation, we can now proceed in our consideration of the charac-

teristic functions cp (t) and, consequently, obtain the solution m,r 

of the underlying problem of this thesis. However, so as to 

simplify the computation and the presentati on, the general method 

of solution is first illustrated by the simple problem related to 

the partial differential equation 

and is then extended to the second order partial differential 

equation 
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CHAPTER III 

Ou (} u 
THE PARTIAL DJFFERENTIAL EQUATION ay = c (jX 1 c constant. 

Here, in. this chapter, we consider the partial differential 

equation ~; = c s~ for the case when the aforementioned 

functions Fs(x) are such that 

(76) 

i) F (-) = 01 s 
n 

ii) E F ( -+«>) = 1 
s=1 s 

s = 1, 2, ••• 1 n. 

iii) F 
8 

( x) non-decreasing, s = 1 , 21 ••• , n. 

For these functions, we will then prove the following main 

theorem: 

THEOREM V. 

Given: 

Then : 

Functions F
5

(x) satisfying Eq. 76. 

For these functions, F (x), the solution of the s 

difference equation 
n GO 

u(x,mh) = l.: f u(x + r h,mh-sh)dF s< r ) 
s:1 -OD 

will tend in the limit (as { ~:GO o ) to the solution of the corre-
mh-+Y ou ()u 

spending partial differential equation ~y = c ax • 

As shown in Chapter I (Eq. 12), our moment conditions for 

the difference equation corresponding to the given partial 



-33-

differential equation are 
n ... 

i) E J dFS(x) = + 1 
s=1 -... 

(77) n 00 n ... 

ii) E f xd.F (x) = c L: f s dFS(x) /: 0 • 
s=1 - 00 

s s=1 -oo 

The moment conditions may also be expressed in terms of the 

characteristic functions q> 
8
(t) by 

n 

i) 6 cps(O) =1 

(78) s=1 
n n 
[; 

. 
2: s <p (0) I= o, ii) <p (0) = ic 

s=1 s s s=1 

where 
. d<f (t) I 

<p s(O) :: dt t=o • 

Def. 4. A characteristic function <p (t) is called POSITIVE-

DEFINrrE if it gives rise to a non- negative, non-decreasing 

function Fs(x) by means of the relation 

00 

tp (t) = J eixt dF(x) • -
The positive-definite characteristic functions considered 

in this chapter give rise to the following lemmas: 

Lemma 2. On the unit circle, 

n 

lzl = 1, P(z,O) = 1 - b q> 
8

(0)z5 

s=1 

has at most simple zeros for the case of the equation uy = cux' 
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where the cp (t) are positive-definite characteristic functions. s 

Proof: If P(z,O) is to have at most simple zeros, say at z =a, 

then we need only show that P'(a,O) po. Now, 

n 
P(z,t) = 1 - 2: q> (t) zs ~ P•(z,O) 

s=1 
8 

n 
= - l: s <f s(O)z

5
-

1
, 

s=1 
n 

P(a,O) = O =t L: cp s(O) as = 1, 
s=1 

I n I n s 
and l a l = 1 ~ ~ <\> 

5 
( 0) as ~ ~ <P s ( 0) · I a I 

s=1 s=1 
n n n 

so that ~ 
s=1 

= L; cf 8(0) as = L 
s=1 s=1 

n 
= L' cps(O) = 1, 

s=1 

\1> (0)=1. s 

Therefore, cp ~(O) as must be real and non-negative, which, in 

turn, implies that either 

{ 
i) cp s(O) = o, or 

(79) 
a 8 (0) ii) <p 

8
(0) F O and = 1. 

Now, not only are all of the <p 
8

(0) non-negative, but there 

exists at least one <ps(O) po, namely cpn(O). (Therefore, 

n 
incidentally, a (0) = 1 ). Hence, of all the non-negative and 

real tenns of P'(a,O), there exists at least one non-vanishing 

term, namely <p (O)• an(O). Therefore, pr (a,O) p o. 
n 

Q. E. D. Lemma 2. 

The next lemma then follows immediately from the previous 

discussion. 

Lemma 3. For \t i < t
0

, P(z,t) will have at most simple zeros 
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Lemma 4. P(z,t) cannot have any zeros, z = a(t), such that 

l a(t) I < i. 

n 
Proof: Given P(z,t) = 1 - E <ps(t)•zs • 

s=1 
Therefore, for any root, z =a, of P(z,t) = o, we have 

n s 
L; <p (t)•a = 1. If we assume that there does exist a root at 
s=1 s 

z =a of P(z, t) = 0 such that lat < 1, we then arrive at the 

contradiction 1 < 1 , that is, 
n n 

\a \ < 1 ~ 1 = I G <P s ( t) as I~ ~ <p s ( t) 
s=1 s=1 

n n 

la\ s < E. Cf> (t) ~ .E c:p (0) = 1. 
s 1 s s=1 s= 

Q. E. D. Lemma 4 . 

Lemma 4 verifies for the present case, incidentally, the 

assumption that was made on P(z,O) in Chapter I. 

Now, if P(z,t) has at most simple zeros, say at z =a, and if 

~(z,t) is regular at z =a, then we know from analysis that 

(80) Residue 
~(z,t) 

P(z,t) 

= Q(a,t) 
• 

P•(a,t) 

Thus, returning to the partial fraction decomposition of 
. ~(z,t) 

~ r(z,t) = P(z,t} as given by Eq. 52 (Chapter I), we obtain 

(81) i (z,t) = t ~(aj(t),t) • -----1---
r j =1 p' (a. ( t), t) z 

J (1 - -aj ....... ( t~) )•aj ( t) 
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where 81(t), a2(t), ••• , ~(t) are those zeros of P(z,t) such 

that 1 ~ \aj(t)( < f • Therefore, 
k co 

m (82) ~r(z,t) = L ~(aj(t),t) • 
j=1 P•(aj(t),t) 

L: 
m=o 

-z ) 
(a (t))m+l + R2(z,t 

j 

and 

k 

(83) 'Pm,r(t) = L 
j=1 

where the T ( t) are given by m,r 
co 

-1 

(84) R2(z,t) = L Tm,r(t)• zm 
m=o 

, 

and, as shown in Lenma 1, are such that the T (t) tend uniformly m,r 

to zero as m becanes infinitely large. 

Now, ~(aj(t),t) is a regular function and, as previously 

proved, P•(aj(t),t) F o, so that ~(aj(t),t)/P•(aj(t),t) is 

uniformly bounded. Furthermore, \ aj(t) \ ~ 1. Therefore, 

Q> (ty/m) is uniformly bounded, so that lim (l.{ q> (~) 
m,r m -+0<> m m,r m 

exists and is equal to zero for r :!:: 1. Furthermore, this limit 

will be continuous* for the special value t = o. Therefore, 

* Since we have modified the conditions of Theorem III by using 
functions of bounded variation which are not necessarily 
constant for lx l ~ A, we must impose additional condition(s) 
if we still wish to make use of Theorem III in this chapter. 
However, it can be shown that the continuity of the limiting 
characteristic function at t = 0 is suffi cient for this 
purpose. Hence, we investigate here the continuity of 

at t = o. 

lim (l) r <p (ty; m) 
m m,r 

ID ..+co 
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r 
lim (~) . <f m re¥> exists, is equal to zero, and is continuous 
m _,."" , 
at t = 0forr = 1,2, ••• ,(n-1). 

Finally, then, we need to evaluate 

(85) ~ (~) o m 

- 1 

Now 

(86) 
n-1 m 

Q0 (aj(O),O) = 1 + E ajm(O) { 1 - L <p 
8

(0) 1 
m~ s~ 

, 

and if we first cons ider only those zeros of P(z,O) such that 

l aj(O)l = 1, aj(O) -1: 1, we can then write Q
0

(a/O),O) as 

a n (O) _ 1 n-1 n 
(87) Q

0
(aj(O),O) = a:(o) _ 1 - L ajm(O)• L <J>s(O). 

J m~ s~ 

But, from Lemma 2, we have that 

(88) and 

Hence, for this case, namely, I aj (O)t = 1, aj(O) /: 1, our 

expression for Q
0
(aj(O),o) reduces to 

n-1 m 

(89) Q
0

(aj(O),O) = - ]; aj m(O)• ~ <P
5

(0) 

n-1 n-1 

= - 'l; '9
8

(0)• ~ (a.(O) )m 
s =1 m=s J 

n-1 n ) s( ) ~ aj (0 - aj 0 
= - LA <Ps(O)• ( a (0) - 1 ) 

s=1 j 
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(90):. 
n-1 1 - a s(O) 

Q (aj(O),O) = - L ~ (O)•( (O' 1) , since a.n(O) = 1. 
o s=1 a aj - J 

However, .from Lemma 2 we also have that either <P 
8

(0) = 0 or 

s 
aj (0) = 1. 

Furthermore, P'(aj(t),t) F 0 .for all t, including t = 0 in 

particular, and aj ( t) F 0 .for all t. There.fore, the zeros of 

P(z,O) which lie on the unit circle, except possible z = 1, con-

tribute nothing to lim Cf (ty/m). mo m ~Q) ' 

Lastly, then, consider the simple zero of P(z,O) at z = 1, 

say a(O). (We know that such a simple zero exists since 
n 
'D

1 
cp (0) = 1 by one of the moment conditions). 

s= s 

Since the other zeros of P(z, t) other than at z = 1 con-

tribute nothing to \I) 
0
(ty), we have 

UJ Qo(1,0) • L " -1 
(92) T (ty) = 1m m+l 1 where a(O) = 1. 

0 
P' (1 ,o) m -+e» [a(~)] 

Now, if we consider a circle f" defined by lz-1 1 = f > 0 

such that P(z,t) is regular within and on r and does not 

Vanish On r I We then ha Ve 

(93) z pt (z,;) dz • 

( ty) P z, m 
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Now, P(z,ty/m) and pt(z,ty/m) are both regular within and on r . 
Hence a(ty/m) is regular within r and, in particular, we can 

then speak of its derivatives at t = O. Consequently, we can 

~ t ~ -(m+1) 
expand a(~) into the MacLaurin series 

m 

(94) 

and obtain 

(95) Lim 
t ] -(m+1) 

[ a(!If) = e-a(O)ty , 
m o+m 

whence 

u1 Qo(1,o) -a(o)•ty 
T (ty) = - e • 

0 pt(1,0) 
(96) 

Now, to evaluate Q
0 

( 1 , 0), we have from its definition that 

n-1 m 

Q (z,O) = 1 + 2:; zm { 1 - L <P
5

(0) f 
0 

m=1 s=1 

whence, n-1 m 

Q (1,0) = n - L m L: qi .co) I ·=1 
z 

0 m=1 s=1 

n-1 n-1 

= n - ~ (\)s(O)· E zm 
z=1 s=1 m=s 

n-1 n 

= n - L ~ ( 0) • ( n-s) = n - ~ <(> ( 0) • ( n-s) s ~ s s=1 s=1 
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n n 

(97) :. Q (1,o) = n - n · l:<P (O) + E s ~8(0) . 
o s~ s s~ 

Therefore 

n n 

(98) Q
0

(1 ,0) = L s <\) 
5
(0), since ~ <p 

9
(0) = 1. 

s~ s~ 

n 
l; s q>

9
(0) 

s=1 ----- = -1. n 
- ~ s <p

5
(0) 

s=1 

(99) :. 
Q (1,o) 

0 = P• (1 1 0) 

Furthermore, since a(t) is a root of P(z,t) = o, we have t he 

identity in t: 

n 

(100) ~ (a(t)) 8 
• cp 

8
(t) = 1. 

s=1 

Differentiating with respect to t, we obtain 

n n 

(101) I; sas-1 (t)• A (t)· <p 
9
(t) + L a9 (t)• ~ 

8
(t) = o, 

s=1 s=1 

whence 

(102) 

n s • - E a (t)!' <p 
8
(t) 

• s=1 
a(t) ::: ------- • a(t) n 

:E s <p
8
(t) 

s=1 

Therefore 

• 
(103) a(O) , since a(O) = 1, 

and, when we apply moment condition (78), this reduces to 

• 
(104) a(O) = - ic. 
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Therefore, combining our results, we get 

(105) Lim q> (ty) = 8 icty • 
m -+ai m,o m 

Thus, for all t, we have 

8
icty 

0 

Lemma 5. r = o,1, ••• (n-1). 

, r = 0 

, r /: 0 

Proof: Consider the functions <Pm r ( t) given by , 
~(z,t) ~ m 
-- = LJ cp (t)z • 
P(z,t) m=o m,r 

By hypothesis, 

... 
(107) 1 __ 1 __ =2; 

n s 
1 - E <P ct) z m=o 

s=1 8 

e (t) 
m ~--= P(z,t} 

where the functions 9 ( t) are posi ti ve-defini te characteristic 
m 

fuootions. But 
n-1 m 

(108) ~(z, t) - (~) + ~ zm { (~) - ~ cnirs) cp s(t)} 

is a polynomial in z and can be represented by 

n-1 

(109) ~(z,t) = L; bq(r,t) zq , 
q=1 

so that 
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(110) 

Now, P(z,O) has zeros of at most the first order, so that 

Therefore, 

But q> (t), as given by Eq. 109, can be written in the form m,r 

Therefore, by (product) Theorem II, we have 

(114) F m,r(x) = B0 (x) e {} m(x) + ••• + Bn-1 (x) ei{_n+1 (x), 

where Bj(x) and 19-j(x) are given by 

(115) • 
ej(t) = J eixt d ~(x). -

Now, for any convolution function F(x) given by 

• 
(116) F(x) = f F1 (x -z)dF2(~) , 

-
we have [4;85] 

(117) V(F) ~ V(F1 )•V(F2) • 
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Therefore, 

(118) V(F (x)) ~ V(B )•V( t9 ) + ••• + V(B 1 )•V( ~ n+" ). m, r o m n- m- ·• 

But, the Bj(x) are of uniformly bounded total variation, and 

vc't9-m) = lej(o)I ~ Cp whence 

Q. E.D. Lemma 5. 

By Lan.ma 5, we can now apply Theorem III to our results 

exhibited in Eq. 106, from which we obtain. 

(119) 

f 

r-
= --t ::cy ' 

0 ' 

r=O 

r f: 0 

so that, from Eq. JO, we see that 

(120) l1m u(x,mh) = v(x + cy) 
' 

{ ~~ 
mh..+y 

where v(x + cy) is the solution of the partial differential 

au au equation ay = c ax for the given initial conditions. 

Thus, we have proved Theorem V and, in so doing, have 

presented the ma.in features of the general method by which the 

a2
u a2

u partial differential equation ~ =-:::--2 will be treated in 
ax oy 

the next chapter. 
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CHAPTER IV 

a2
u - a2

u THE PARTIAL DIFFERENTIAL EQUATION ~ ~ 
ax~ - oy~ 

In t his chapter, we apply our general method of characteri stic 

functions to 

32
u o2u 

ax~ = ay2 
namely: 

the hyperbolic partial differential equation 

under the same initial conditions of Chapter III, 

( 121) 

The solution of the given partial differential equation is well 

known and, under these initial conditions, is given by 
y 

(122) u(x,y) =; \ v
0

(x-+y) + v0 (x-y) f + ~ J v1 (x + f )d f 
-y 

or, equivalently, 
x+y 

(123) u(x,y) = ~ { vo(x-ey-) + vo(x-y)I + ~ ly V1 ( r) d f 
Thus, our problem is, once again, to determine sufficient 

conditions on the coefficients, ars' of the corresponding differ­

ence equation 

(124) l: ar
8
u(x + rh, mh - sh) = o, 

r,s 

or, more generally, when the difference equation is written in 

the form 
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... 
(125) 

n 

u(x,mh) = L 
s=1 

J u(x + f h,mh-sh) dF/f ), -
to determine conditions on the functions of bounded variation, 

F s (x), such that 

(126) lim u(x,mh) = u(x,y) , 

f ~:~ mh-+Y 

where u(x,y) is the solution (Eq. 122) of the partial differ-
a2u a2u 

ential equation ~ =~ corresponding to the given initial 
ax.:: ()y.::; 

conditions. 

. a2
u a2

u For the partial differential equation ~ = -:::--2 , our 
ax CJy 

moment conditions are given by 

n 
i) E 

ii) 

(127) 
iii) 

iv) 

s=1 
n CID 

~1 1 ~ dF s( f) = o. 
n CID 

E1 1 s dF Sc f) = o 
n ... 
[; I sfdFs( f) =O 
s=1 -

n ... n .., 

v) L: f f 2 
dFS( f) = - ~ £ 

s=1 -

2 
s dF 

8
( f) I= o, 

or, in tenns of the characteristic functions f 8(t), defined by 

... 
(1 28) <p s< t) .$ I e1xt dF s(x) , 

-
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the moment conditions are 
n 

i) L <p 
6

(0) = 1 
s=1 

n 

2: . 
ii) <ps(O) =O 

s=1 
n 

(129\ii) r s 'P
6

(0) = o. 
s=1 
n 

L: • 
iv) s C\)

8
(0) = o. 

s=1 

n n 

L •• L: s
2 q> co> /: o v) <p /0) =+ 

s=1 s=1 s 

Once again, as in the previous chapter, u(x,mh) will be given 

by 

n-1 ... 

(130) u(x,mh) = I: J 
r::::o - .., 

hrv (x+ f h)dF ( j) = r J m,r 

where 

(131) G ( f ) 
m,r J _ F ( f /h) -m,r n ... 

!d1 f Gi~ - i )dGm-s,/ r ) ,m~n , -
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and our problem is, as before, to determine sufficient - but 

broad - conditions on the F (x) such that hrG ( f ) will 

tend to the proper limit ass { h ::0 • As our ::~ution of this 
mh..+y 

problem, we will prove the following main theorem. 

THEOREM VI: The solution of the difference equation 
00 

u(x,mh) = f, f u(x+ r h, mh-sh) dF s< f ) 
s=1 - m~ 

will tend in the limit (as h -+O ) to the solution of the corre-
mh -+Y 

0 
2 

0
2 

sponding partial differential equation ~ = ~ if: 
C>x oy 

1) F 
5

(x) = 0 for x ~ -A, A constant 

3) 

4) 

5) 

F (x) s 

P(z,t) 

Cs constant 

is of bounded variation for each s. 
n 

E 1 - '[; cp (t)zs is such that 
s=1 s 

a) P(z,O) has no zeros within the unit circle. 

b) P(z,O) has at most ~eros of the second order 

on the unit circle. . . " 
c) P(a,O) = P• (a,O) = 0 and P(a, 0) ~ 0 at 

each and every double zero point, z = a, on 

the unit circle. 

F (x) = o, x • -Am, and m,r 

F (x) = C , x ~ Am , m,r m,r where 
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0 ~ m ~ (n-1) 

n oo 

L f Fs(f-1,)dFm-s,r(~ ), 
s=1 -

m i: n. 

6) V(F r(x)) ~ Kmr , m, 

7) v(.f'm,o( r )) ~ lon, 

0 

r = 1 , 2, ••• , ( n-1 ) 

where 

, r ~ -Am 

-L Fm,o(x) dx 

Am 
' 

~+Am 

f Fm 0 (x) dx = c = constant, f ~ , m,o l 
-Am 

.Am • 

We would now like to consider lim !_. G ( x) by the 
m -+oo mr m,r 

methods of the previous chapter, that is, by the use of continuity 

theorems for characteristic functions. However, in contradis-

tincti on to Chapter III, we now return to the more general defi-

nition of the F (x) s * as given in Chapter I (Eq. 11), name~ 

i) F 
9
(x) = 0 for x ~ -A, A constant 

f 
( 13 2) ii) F

9
(x) = C

8 
for x ~ A, Cs constant 

* 

l 111) F (x) of bounded variation for each s. s 

It might be pointed out that our present moment conditions 
(Eq. 127) preclude the use of non-negative, non-decreasi ng 
functions and, hence, the latter are of no interest to us at 
this time. 
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Hence, we wish to consider lim ;: q> m r(t) where, as in the 
m -+°" m 1 

previous chapter, <pm r(t) is given by 

' 
, 0 ~ m ~ (n-1) 

033) 

and 

... 
( 1 34) ~ ( z, t) = L m ~ ( z' t) = 

r <p m,r(t)z = P{z,t) 
m=o 

Now, once again, we seek to represent ~r(z,t) by a partial 

fraction decomposition. To carry out that decomposition as well 

as the ensuing theory, we now make the other two (of three) 

assumptions which were referred to in Chapter I. However, for 

the sake of completeness, we repeat Assumption I at this time and 

list al l three, namely: 
n 

Assumption 1. P(z,O) :i 1 - s'di q> 8 (t)z
9 has no zeros 1'i thin 

the unit circle I z I = 1 • 

Assumption 2. P(z,O) has zeros of at most the second order on 

the unit circle. 
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• • •• 
Assumption 3. P(a,O) = P1 (a,o) = O and P(a,O) F 0 at each 

and ever,r double zero point, z = a, on the unit circle. 

The first assumption has already been discussed in Chapter r*. 

As for Assumption 21 to assume that P(z,O) has at most zeros of 

the second order on the unit circle seems reasonable since we are 

dealing with a partial differential equation of the second order. 

This is strengthened somewhat by our results of Chapter III in 

which we found that the method applied to the partial differential 

'Ou au equation of the first order 'CJy = c lri pennitted zeros of at 

most the first order. 

The third assumption stems from the behaviour of P(z,O) at 

z = 1. Here, P(z,O) has a zero of the second order and, from 

our moment conditions, we have 

P(1,o) = P'(1,o) = o; P(1,o) # o. 

Since we would like all zeros of the second order on the unit 

circle to behave alike, the third assumption, too, seems to be 

. 1 ~H} quite natura • 

* Also, see Lemma 8 in Appendix I. 

**The reasonability of Assumptions 2 and 3 becomes more pronounced 
when one considers sequences of non-negative, non-decreasing 
functions F (x) which give rise, in turn, to corresponding 
positive-def~nite characteristic functions ~ 

6
(t) such that 

P(z,t) = (1 - I:; 'I' (t)zs)(1 - E ~ (t) z6
). s s 

In this case Assumptions 2 and 3 (and, for that matter, 
Assumption 1 ) are automatically satisfied. For the verifi­
cation of this statement, see Appendix II. 
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The foregoing assumptions result in two important lemmas 

regarding the zeros of P(z,t). They are: 

Lermna 6. If 91(t) and a2(t) are two roots of P(z,t) = O 
• 

such that a1(o) = a 2(o) =a where lal = 1; if P(a,O) = P1 (a,O)=O, 

•• 
2) a, (0) = - ~2(0) = i P(a,O) .L 

F 0 • 
P11 (a, 0) 

Proof: 

By hypothesis, P(z,O) has a double zero at z =a. Hence, 

altogether we have 

P(a,O) = 0 

pt (a,O) = 0 

P(a,o) = o 

P• (a,O) = O 
•• 
P(a,o) I= o. 

P"(a,O) I= O. 

Let 91(t) and a
2
(t) be the two roots of P(z,t) = 0 such 

that 81 (0) = a2(o) = a. 

(136) Let P(z,t) = (z2 - 2 a< z + f )•P*(z,t) where 

I 2 ~ ( t) = 81 ( t) + a 2 ( t) 
(137) f (t) = 81 (t). a 2(t) • 
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-52-

2 
=a • and f3 (0) 

Now, from Cauchy's theorem of residues, we have 

1 r P•(z{t) dz 2=-
2Tii P(z, ) 

(139) 2o((t) =:!! a1 ( t) + a 2 ( t) 1 --
2TTi 

f zP'(ztt) 
P(z, ) dz 

r 

f 2 pt(z,t) dz 
z P(z,t) ' 

r 

where r is the circle \z-at = 6 > O, and where ltl c: t 
0 

so that r will contain both (and only both) zeros, ~ (t) and 

a 2(t), of P(z,t). 

Now, P(z,t) and pt(z,t) are regular within and on p • 

Hence o< (t) and, in turn, /3 (t) are regular functions of t 

within r ; in particular, we can speak of their derivatives at 

t = 0 (i.e. z = a). 

Since Eq. 139 is an identity in t, we may differentiate with 

respect to t and obtai. n 

(140) 1 

2 lTi 

f P(z1t) i>•(z1t) - P•(z1t)P(z,t) dz ,, 0 

r (P(z,t))
2 

Similarly, since o( (t) and (3Ct) are regular functions of t, 

we have · 
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• 1 f P•P' - PP 1 
2o<(t) = - z 2 

211'i p 
and dz 

(141) 

· -1 2 P• pt - PP' • f 
. . 

2f(t) = 
2

1Ti r z P2 dz+ 8 o< oc: 

Then, app~ng Eq. 140, we have 

• • 
2 .:C, (t) = ~ f (z-a) p.p1 p2 ppt dz and 

(142) 

• -1 I 2 2 P·P' - ppt • 
2 f ( t) = rn r ( z -a ) p2 dz + 8 °' .. 

Consider, then 

• • 
(143) E(z,t) P(z,t) P•(z,t) - P(z,t)P'(z,t) , 
so that 

• • 
E' = PP" - PP 11 

• • • • E" = ppm + p11p1 - p11p1 - p111p 
(144) • • • • 

E"' = ppfV + 2p1pn1 - 2P"'P' - ptv p 

E•v = 2p11f>m - 2P"' P11 

Therefore, from Eq. 135 we see that 

(145 ) E(a, 0) = E' (a,O) = E11 (a, O) = E'"(a, 0) = 0 , 

so that E(z,O) has at least a zero of the fourth order at z = a 

and, thus, E(z,o)/P2(z,O) is regular at z = a. But, if f(z) 

is regulcr in a simply connected region C, then 

f f(z) dz = 0 , 
r 
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where r denotes an arbitrary (not necessarily simple) closed 

path lying within C. Therefore, from Eq. 142, we see that 

(146) ol(O) = I (0) = 0 • 

we would now like to evaluate «Co) and is·(o). 

Differentiating Eq. 142 with respect to t, we have 

(147) 

2 :.; (t)= k J (z-a) P•P2 - ·pP'P ~ 2PcFP•- PP•) dz 

r 

•• 1 I 2 2 P•P2- "i>P•P-2P(PP•-PP•) 2f (t) = - - (z - a ) P3 dz + 
211 i r 

•• • 2 
+8o<o< +8« 

• • 
Now (z-a)P(PP• - ppt) has a zero of at least sixth order at t = 0 . . . 

(z-a)P(PP•-PP') . lt = 0 and z = a; hence P3 is regular at _ and con-
z - a •• 

tributes nothing to the expressions for ;,( (0) and fl (0) • .. 
Furthermore, P(z,o), P•(z,O) and P(z,O) can be expressed by 

the Taylor series 

(148) 

2 
P(z,O) = P11 (a,O) • (z-a) + P. (a,O) 

21 

(z-a)3 . ------- ....... 
3J 

2 
pt (z,O) = P"(a,O)• (z-a) + pm(a, O) • (z-a) 

21 .. .. .. 
P(z,O) = P(a,O) + pt (a, 0) • (z-a) + • • •• 

+ •••• 

so that, when we appzy- the cauchy residue theorem, we obtain 
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-
f 2 ~ (O) 2P1 0 ... = P11 a 0 , 

•• 2 2 .. 
(4P' _ ~ 2 ~) = '3 a P"'(a, 0)-2P•(a,O) 
P" 3 a P" P"(a,o) 

(149) 

l 2 f ( 0) = -2a( 2 ;.: ( 0)) + i + Ba Oi ( O) = 
. 

4P(a,O) + 4a~ (0) • 
P''(a,O) 

Thus, from Eq. 149, we have 

•• p ( O) i~c'0b a o<: (0) -,-iz- = - a, ) I: O. 

Returning to our original definitions of o< (t) and j3 ( t), 

name:cy-

l 
2 o(. ( t) = a, ( t) + a 2 ( t) 

1 f (t)= a, (t)• a 2(t) 

we can solve for a, (t) and a/t) in terms of c< (t) and /3 (t) 

obtaining 

(1 50) { a, (t) = ol(t) + 'J./(t) - f (t) 

a 2(t) = o<(t) - ~o<2(t) - (3 (t) 

Since o< (t) and f (t) are regular functions of t, we can 

expand them into a MacLaurin series and obtain 

(151) a, (t)= o((t)+ (o((o) + .(oJ t 1' f ~Ct) ... .. 1 - C,<•) + t;3<oJ + ~~'(oJ1 · · · ) 

whence 

(152) a, (t)= c;((t)+ 
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But, we have already shown that 

C>(2(0) = f (0) =a 2 

and that . . 
o( (0) =f (0) = o. 

Therefore, the expression for 84(t) reduces to 

(153) 8j (t) = ot'(t) + t ~ {a·o( (0) - ~)+ O(t) 

However, we have also proved that 

a ;((o) -~ /: o 

so that a1 (t) will be single-valued in the neighborhood of the 

origin. Thus, since o<(t) and f3 (t) are regular, we have that 

a1(t) will be regular in the neighborhood oft= o. Similarly, 

a
2
(t) will also be regular in the neighborhood of t = O. There­

fore, solving the two equations 

we obtain 

2 o((o) = ~ (o) + ~2(0) = o 

~ (0) a •• • • 
a·« (0) - rz- = -,c~ (0) + a2(0)) -

1 .. • • •• 
- -,(84 (O)a/O)+ 281 (O)a2(o)+ a 2(0)91 (0)) = 

•• 
_ -P(a,o) .J.o 
- P11{a,o) r 

(154) ~ (o) = _;.2Co) = 1 ~ P"t •,OJ F o • 

Q. E.D. Lanma 6. 
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Lemma 7. If P(z,t) has at most double zeros on the unit circle 

and if 1 for each double zero point z =a on the unit circle, we 
• • •• 

have P(a,O) = P•(a,O) = 0 and P(a,O) F 0 1 

Then: P(z, t) can have at most simple zeros when 0 < ltl ~ t
0 

for those zeros a~ (t) such that \a ~ (O)f = 1. 

Proof: (By contradiction). 

Suppose that P(z,t) does have a double zero for t F o, no 

matter how small ltl may be. Then, there exist roots a,(t) 

and a2(t) such that 

whence, differentiating with respect to t, we have 

In particular, then, for such a double root, we would have 

• • a1 (0) = a 2(o) • 

But, we have assumed that P(z,O) has at most a double zero 

on the unit circle. Furthermore, for such a double zero, we 

know from Lemma 6 that the roots must be such that 
• • 
a, (0) = -a2(o) = ia F o. 

• • Therefore, ~ (O) cannot be equal to a2(o), so that P(z,t) 

cannot have a double zero for the zeros under consideration when 

0 " \ti ' t
0

• Hence, P( z, t) can have at most a simple zero when 

0 < ltl ~ t
0 

for those zeros a ~(t) such that I a~ (O)I = 1. 

Q. E.D. Lemma 7 
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Having the three assumptions at our disposal (and, hence, 

Lemmas 1, 6, and 7, among others), we can once again (cf. 
Q (z,t) 

Chapters I and III) express ! r(z,t) = P(z,t) by means of the 

partial fraction decomposition 

CIO 

(155) t (z, t) = L <P (t)zm = r m,r m=o 

k 
'I\" R. (z, t) 
LA J 
j=1 p .( z, t) 

J 

where, as before, Pj(z,O) contains only those zeros of P(z,O) 

which lie on the unit circle and R2(z,O) contains the rest of 

the zeros of P(z,O), namely those which lie outside the unit 

circle. 

Now, by Lennna 7, we know that Pj(z,t) has at most simple 

zeros for t F o, so that 

k k L Rj(z,t) _ L ~(aj(t),t) • _1 1 
j=1 Pj(z,t) - j=1 pi(aj(t),t) (1 z ) W 

- aj(t) aj 

(156) 

In addition, we have already proved (Lenma. 1) that when 

R
2
(z,t) is expanded into the power series 

(157) 

... 
R2(z,t) = '1 T (t)•zm , i.J m,r 

m=o 

the coefficients, T (t), tend uniformly to zero as m becomes m,r 

infinitely large. Hence, combining the above results, we have 

(158) <Pm r(t) , 
where 

= Z Qr( aj ( t), t) • 

j=1 P•(aj(t),t) 
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T ( t) -+ 0 uniformly as m -+ °" • m,r 

At this point, since we wish to arrive at the solution of 

our problem by means of the functions cp (t), that is, since m,r 

we wish to use Theorems III and IV, we now consider 
r 

lim (~) q> m r(ty/m) , 
for the various cases of r = 0,1, ••• ,(n-1). 

Case I. r = o. 

Here, we wish to consider lim <P (~), 
m- m,o m 

where q> (t) m,o 

is given by Eq. 158, namely 

k 

(16o) ~ m,o(t) = L 
j =1 

Qo(a/t), t) • -1 + T (t) 

( Ct) t) ra,j(t)~ m+l m,o P' aj , ~ 'J 

By Eq. 47, 
n-1 m 

Q ( z 1 t) = 1 + L zm { 1 - ~ <P 
8 

( t)} 
0 m~ s~ 

n-1 n-1 n-1 

l: zm <P s(t) 
m=s 

= L zm - '[; 
s=1 m=o 

n-1 
zn_ 1 '1 cp zn - zs zn_ 1 = --::-or- - L...J ( t) = --::-or-z_ -z-1 1 s z-l ~-1 s= n 

'1 n s 
- ~1 q>s( t) \:1 ~ 

• 



1 ~ n =r::z 1-z +1 

l\. 

1 - f.i'Ps(t) z
8 

=------1 - z 
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(161) :. 

Hence, since 

~ Q (aj(t),t) 
(162) cp (t) - '-' 0 • _-1 __ 

m,o - pt(aj(t),t) a.m+l(t) 
j=1 J 

k 
\' P( aj ( t), t) + aj n( t) i cps ( t) - 1 J 

= l.J (-1) -~----------i -- + '] (t), 
j =1 (1-aj(t))P•(aj(t),t)•ajm+ (t) m,o 

since from Eq. 95 

( aj(~)l -(m+1) _. e-aj(O)•ty 

and since T (t) ... 0 uniformly as m ... 001 our primary concern m,o 

is with 

Lim 
m-+-

Qo(aj <J)' ty/m) 

P' (aj <J) 'ty/m) 

for each a.(ty/m), j = 1,2, ••• ,k. In addition, we will have to 
J 

give special attention to the singularities at z = 1 because of 

our representation of Q (z,t). In all, we will have to consider 
0 

the following possibilities: 
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A. aj(t) I: 1 

1. aj(t)7'- 1 as t-+ O. 

2. aj(t)-+ 1 as t-+ o. 

B. aj(t) = 1 for all t. 

Mote that we are considering only the zeros of Pj(z,t) 

these zeros are such that I aj ( 0 )I = 1 • 

and that 

A. aj(t) I: 1. n 

Q
0
(aj(t),t) __ P(a/t),t) + aj n(t) cE:1 <P /t) - 1) 

Here, 
P•(a . (t),t) 

J 

Now, by Lemma 7, P•(aj(t),t) I: 0 for O< t"!:t
0

• Furthermore, 

a.(t) -I= 1. 
J Q

0
(aj(t),t) 

Hence, will not have any singularities for 0 < ltl ~t0• 
P•(aj(t),t) 

1. a . (t)+1. 
J 

a) If there exists a simple zero at aj{O), then P•(aj(o),O) -/: o, 

whence 

Q
0
(aj (ty/m) , ty/m) 

pt(aj(tY/m), ty/m) 

as m-+ ""• 

n 

= P(aj(¥) ,if) + aj n(.J)· <F:1 cps(~) - 1) 
0 

(1 - aj(~)) P•(aj(¥), J) -+ 

b) If there exists a cbuble zero at aj(O), then we have 

• • 
P(aj(o),o) = P•(aj(o),O) = P(aj(o),o) = P'(aj(o),o) = o 

and 
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so that 
n 

!:l ~) E <P <ty) - 1 
Qo(aJ( m)' m 

Lim 
s =1 s m 

pt (a (~), .§z) 
= 

pt(a (!l_),ty) m -+oo j m m j m m 

.;: ~ (!:l) 

Lim 
s=1 s m 

=O = ' + P"·~ (!'z) 
• 

m-+ CID pt 
j m 

Here, at z = 1, there is definitely a double zero of P(z,t), 

since n 

{ pt (1,0) = - l: s q;i (0) = 0 
a=1 s 

n 
P 11 (1,0) = -l: s(s-1) <P (0) /:. o. 

s=1 a 

n 

But P 11 (1,0) = - l s(s-1) <p 
8

(0) 

s =1 
n n 

= - L; s 2 <V (0) = - 'IJ m (0) by our moment 
s =1 s s=1 't' 8 

conditions. 
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Furthermore, since aj(t)-+ 1, we have by Lemma 6, 
. 2 

[a/0)) = -1 . 

• • • 

B. 

. Qo(a/!f), ¥) 1 
Lim t t/ = -, • 
m.+oo P•(a.(~), Y m) 

J 

This case cannot occur since aj(t) = 1 implies 

for all t, and is, thereby, in contradiction with F.q. 

special value t = o. 

Thus, in summary, we see that 

n 

~~ 5(t) = O 
s=1 
129 for the 

(163) 
eity+ e-ity 
----- =Cos ty, 

whence 

(164) Um <pm /~) =Cos ty • 
m- ' 

case II : r = 1 • 

Here, we wish to consider lim l <P 1 (~), where 
m-+m m m, m 

<P, 1(t) is given by Eq. m, 1 58, namely: 

k 
(165) <p (t) = I; Q1(aj(t),t) • 

m,1 j=1 P•(aj(t),t) 
-1 1 + T 1 (t) , 

(aj (t) )m+ m, 
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and, in which 

Lim Tm 1 ( t) = O. 
m-+«> , 

In other words, we wish to consider 

. Q1(aj(il), ty/m) -1 
Lim l ·~-i---,-,.....-~ 

m P•( (ty) ty ) [ (ty/ )]m+1 m -+«> aj ,.- ,,- aj m 

for each a.(!:]) and thus determine, in turn, 
J • 

Lim l <p 
1 

(ty) • 
m ........ m m, m 

To discuss the contribution of each aj (~) to l1m [CJ' m 1 <if))(~}, m -+ao , 

several possibilities must again be considered, namely 

A. aj (t) I: 1 

1. aj(t).j.,.1 as t-+ O 

2. aj(t)-+ 1 as t-+ O. 

B. aj(t) = 1, for all t. 

'Where, in all cases, I a/O)I = 1. 

Before delving into the various cases, however, we note that, 

by Eq. 47, 
n-1 m 

Q1 ( z,t) = ~ zm[ m - ~ (m-s) <P s(t) l 
n-1 n-1 n-1 . 

= I] mzm - L; m~ zm. (m-s) <P 
8
(t) 

m=1 s=1 -... 
n-1 n-1 n-1 n-1 n-1 

= L mzm - ~ <P ( t) I; mzm + L: s cps ( t) ~ · zm 
m=1 s=1 8 m=s s=1 m=s 
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_ (n-1 )z0 +1 - nz0 + z 
n-1 
~ { ) n+1 s+1 n st l...J <p (t)• (n-1 z -(s-1 )z -nz + sz 

- (z-1)2 s 2 s=1 (z-1) 

n-1 

+L 
s=1 

n s 
s~(t)•z -z 

s z-1 

After further simplification and division by P'(z,t), we then 

have 

(166) ~(z,t) = lcn·H"+-•-'ll't,, (1-t<P1lt>) i i'PCt.,t.l +ltn+'-1"~ ,~ S<P5 C-t) 

pt(z,t) P•(z,t) 

Here, we have 

Hence: 

-+ O as m-+ ... 

a) If there exists a simple zero of P(z,O) at a.(O), 
J 

P•(a.(O),O)-/: 0 1 J 

from which we obtain 

o. 
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b) If there exists a double zero of P(z,t) at a.(O), 
J 

Lim (Z). 
m m .+co 

• 

• • 

{ 

P(aj(O),O) = P•(aj(O),O) = P(a/O),O) = P 1 (aj(O),O) 

.. 2 
P{aj(O),O) = (aj(O)) P11 (aj(O),o).; 0 ' 

from which we obtain 

ty ty 
Q1(a/nr),'M) 

P•(ajc!Y), ¥) 
~CQ1 + Q'1· a j )(ty) + ~ 

( P' + P11 • a . )( ty) 
J 

+ ~(aj(O),O) 
= -------- = 0 J 

since aj(O) ~ 0 by Lemma 7 and since Q1 (aj(o),O) = o. 

Here, at z = 11 there definitely is a double zero of P(z, t) 

since 
n 

P•(1,0) = - ~ s<p
5

(0) = O 
s=1 
n 

P11 (1 ,,o) = - L; s(s-1) <V (O) .; o • 
s=1 s 

:. Lim l 
m 

m -+co 

=----- • 

=O 
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Now 

n-1 n-1 
= n(n-1) _ ~ m (O) (n-s)~n-s+1) + ~ ) 6 ..- ~ s q;>

8 
( 0) • ( n-s 

2 s=1 s s=1 

n-1 n 

= ~ - ~ L: <p (O)• (n
2
-s

2
-n..a) + n'E s <P 

8
(0) -

s=1 s s-1 

n 

- I; s 2 cp (0) , 
s=1 s 

whence, upon making use of our moment conditions, we obtain 

n 

c 1 67) Q.y c 1 , o) = - ~ L; s 
2 cp < o) -F o • 

s=1 s n 

ty ty - ; Et S 
2 

CJ> B ( O) 

:. Lim ~ ~ (aj(m),-m) = ------- = - 1 = 
m_..... P'(aj(¥),~) -t·~j(O)· f s2<Ps(O) 2t(aj(O)) 

s=1 

• • 
since a1.(o) = - a 2(o) = i. 
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Just as for r = o, this case carmot occur due to our moment 

conditions. 

Therefore, for r == 1, we have 

Li 
y tn (ty)- ie-ity -ieity _Sin ty 

(168) m iii 'f m, 1 m - 2t - t • 
m~oo 

Case III: r ~ 2. 

Here, we consider 
r 

llm L. Q) (ty) , 
r m,r m 

m~m m 
r ~ 2. 

A. aj(t) /=1. 

a) If there exists a simple zero of P(z,t) at z = a.(O), 
J 

then ty ty 
r ~(aj(-), -) 

1
. y m m 

= o. im -
r ( (ty ty) m~com P' aj-)' -m m 

b) If there exists a double zero of P(z,t) at z = aj(o), 

then 

= 0 provided r ~ 2. 

B. aj( t) .= 1. 

Once again, this case is non-existent due to the moment 

concll. ti. ons. 
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Therefore, for r ~ 2, we have 

r 
Lim z... er (~) = o • 
m~ mr m,r m 

Thus far, then, we have shown that, for all t, 
eity + 

0
-ity 

2 :a cos ty , r = 0 

r t 
Lim L. m (..!.)= r 'fm,r m m ....,.,,. m ity -ity 

e - e 
2it 

0 

:. Sit ty , r = 1 

, r ?:: 2, 

Since we wish to use Theorems III and IV, we still need to 

establish the existence of 
1 • 

Lim m <p m 0 (0). 
m ....,.,,. , 

From Eq. 158, we have 

so that 
k 

= [; :~ ·(m+1) ~+2 ·•i!"l' ~ -
j=1 aj 

1 p'u~ -+Q'a)(Z)- Q ci>•+P"a)(Z) __ o __ o __ m_,.._o ____ m_ + l T (ty) 

a.m+1 (P•) m m,o m ' 
J 

k 

- 6 
j=1 
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• t 
where, because of its exponential nature, T (..!) -+ 0 as m-+ •· m,o m 

Therefore, 

k 

-L 
j=1 

• y(m+1 )- _ 
m 

P•(~ + Q
1i)- Q (~' + P"·~) • y 0 0 0 

a. m+1 ( 0) • ____ m_(_P_• _,) ...----- + Tm, o ( 0) • 

J 

Now, if there exists a simple zero of P(z 1 0) at z = aj(0) 1 then 

1 • 
Lim - • fl) (0) = O. 
m...- m T m1 0 

If there exists a double zero of P(z 1 0) at z = aj(O), then, 

splitting our limit into two parts, we have 

and 

Lim 
t -+0 

from previous results, 

+ P"•~) 

Qo(·;,_.p"~+P"~+P"'(~) 2+ pu~·)-(Qo-fQ~~)(P• +P"~) ~ • 

• • 
2P• (P 1 + P11a) 



-71-

This limit is S;ill indeterminate of the fonn g since 

P•(aj(O),O) = Q
0
(aj(o),o) = o. Applying L'Hospital•s rule once 

more would give us the non-zero denominator 

•• • • • • 2 .. • • 21 
2P• (P• + P"a + P"a + p"'a + P"a) + 2(P' + P"a) "J , 

t:::o 

that is, 

while the numerator, vanishing or not for t = O, would, neverthe-

less, remain finite • 
• 

Therefore, <p (0) approaches a definite finite limit and, m,o 

in turn, 

(173) lim 
1 • 
iii cp m o(O) = O , 

m -+co 

Having verified the existence of lim L cp (ty) and 
m ~- mr m,r m 

lim 
m .... 

(174) 

lfhere 

(175) 

and 

1 • --r 

iii q:> m, 
0 

( 0), we now apply Theorems III and IV and obtain: 

G ,o( f ) , r=O 

r 
lim L Gm,r( f ) = 0,1<~) , r = 1 r m ..... m 

0 , r ~ 2 , 

0 , r <. -y 

G ,o( f ) 1 
-y ~ f ~ = 2 , y 

1 , ~ '!. y 
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0 , r < -y 

(176) G,1C f) = ~( + y) , -y ~ r ~ y • 

y , r l y 

Therefore, app~ng these results to Eq. 1JO, we obtain 
y 

(177) lim u(x,mh) = ~ { v
0

(x+y) + v
0

(x-y) 1 + ~ 
m-+-

J v1(x+jJd f, 
h-+o -y 

mh-+y 

or equivalently, 
x+y 

+ ~ J v1 ( r )d r 
x-y 

, 

namely, the solution of the partial differential equation 
2 2 
~ = ~ for the given initial conditions. 
C):t Cly 

Thus, we have proved Theorem VI and, in so doing, have 

exhibited a general method for the treatment of other partial 

differential equations. In fact, although the discussion in the 

present chapter was centered about the partial differential 
2 

equation ~ = ~2u/a 2 , there is a strong indication that the 
ax y 

method just presented is directly applicable to the partial differ-

ential equation 

a 2 C> 2u 2 
A Cl x2 + 2B ax1)y + C : y2 = 0 

with only a slight am::>unt of additional computation. 
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APPENDIX I. 

n 
Lemma 8. The supposition that P(z,O) ;; 1 - ~ <P s(t)zs has 

s=1 
no zeros within the unit circle is necessary for the method 

of solution by difference equations. 

Proof: If the method of solution by difference equations is to 

work, then 

;;1 J°" 1 Lim l..J v( x + S/- ) r dF m r ( r ) 
m~- m ' r:::o -oo 

nru.st exist for all x and y. (In fact, the limit will be the 

solution of the given partial differential equation). In particu-

lar, since dF (x) s 0 outside the interval (-Am,Am) 1 we have mr 
' 

that 
n-1 Am 

Lim l: f 
m ..... r:::o -Am 

e v 1 
v(x + +-L) • - • dF ( f ) m r m1 r ~ 

m 

must exist for all x and y. In all of our considerations, we have 

taken v(x) to be continuously differentiable. In particular, then, 

choose v( f ) = r , r = 01 x = o, and y = 1. We then see that 

Lim 1 
Lim 
m~ 

1 • 
m Cf m o(O) 

' 
m 

m ~-

must exist. 

Now, by Eq. 161, we have 
OD 

Qo ( z 't) 1 n 
+ z • P(1 1 t) l cp (t)•Zm -- = 

P(z,t) 1-z (1-z)•P(z,t) m,r 
r~ 

' 
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so that 

• • 
(179) L, er ( t) Zm - Zn • 

m,o 1-z 

P(z,t)•P(1~t) - P(1,t)P(z1 t) 
· P (z,t) m=o 

and 

ao 

(180) L; q, (0) zm = ,:: • P(1,t) 
m=o m,o P(z,t) 

, 

since for all of the differential equations under consideration, 

P(1 10) = 0 will be one of the given moment conditions. 

Now, suppose that we are considering a first order partial 

differential equation (such as in Chapter III) which, when 

represented by a corresponding difference equation, gives rise to 

the moment condition 
n 

i>(1 ,o) 

Hence, .. 
• L <pm,o(O)zm F o. (181 ) 

m=o 

Now, since Lim ~ ~ m,
0
(0) must exist, we have that 

m..+ao 

Furthermore, the power series ~ mzm has a radius of convergence 
m=o 

of unity. Hence 
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• 
(18)) • P(1 1 0) 

P(z,O) 

must have a radius of convergence r ~ 1. Hence, P(z,O) cannot 

have any singularities within the unit circle (for a first order 

partial differential equation). 

For a second order partial dif ferential equation which gives . .. 
rise to the moment conditions P(1,0) = P(1,o) = o, P(1,0) F o, 

we repeat the procedure given above for the case when r = o, 

x = 0, y = 1 , and v( 2 r ) = f . Here, then, 

Lim~. 
m ...... m 

Am 2 

f f dFm,o< r) -
-Am 

Lim ~ ~ (0) 
~ T mo 

m .+°" m ' 

must exist. Now, from Eq. 179, further differentiation gives us 

.. .. 
6 •• m (1 ) 

(184) m (O)zm - z • p . ,o 
m=o ,.m,o - 1-z P(z,o) • 

But 

(185) 2 c•m , 
... 

so that L cp (O)zm must have a radius of convergence r ~ 1. 
m=o m,o 

Hence, here too, P(z,o) cannot have any singularities within the 

unit circle (for a second order partial differential equation). 

Q.E.D. Lemma 8 
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APPENDIX II 

We consider, here, sequences of non-negative, non-decreasing 

{ 

F (x) = O, 

F :(x) = C
9

, 

x ~-A 

Xl!:A 1 

which give rise, in turn, to corresponding positive-definite 

characteristic functions 'f ( t) such that the polynomial P( z, t) s 

can be written as 

(187) P(z,t) = (1 - ~ 'fJ (t)z8 )(1 - ~ CfJ (t) z
8
), s s 

and we wish to establish that, for this case, P(z,t) satisfies 

Assumptions 1 , 2 and 3 of Chapter IV. 

That such cases actually exist is readily verified by con-

sidering the classical difference pattern for the hyperbolic 

a2
u a2

u partial differential equation ~ = -::-2 1 namely 

.1 Clx dY 

(188) -1 -1 
• • 

·1 

Here, we have 

{ cp (t) 
-it it = 2 Cos t =e + e 

(189) 
(j>:(t) = -1, 

whence 
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n 

L (\) s(t)zs = 1 

s=1 

2 
- 2z Cost + z 

it - i t = (1 - e z)(1 - e z). 

By arguments previously presented in Lenrna 1 , we first establish 

that P(z,t) cannot have any zeros within the unit circle, namely: 

Given P(z,t) = (1 - Eo/ (t)zs)(1 - °!1 'fJ (t)zs), then, for any s s 

zero, z =a, of P(z,t) we have 

whence 

(191) { 

and 

Hence, if we asswne that there are zeros of P(z,t) at z =a such 

that lal < 1, we arrive at the contradiction 1 <. 1, namely 

lal <. 1 -"/ 1 = \I \fl (t)a8 I ~ ~\I) (t) 1a1 8< ~lµ (t) ~z~ (o) = 1. s s s s 

Q. E.D. 

We now consider jointly Assumptions 2 and J, namely: 

Assumption 2: P(z,O) has zeros of at most the second order on the 

unit circle. 
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. . -
Assumption 3: P(a,O) = P1 (a,O) = 0 and P(a,O) f 0 at each 

and every double zero point, z = a, on the unit circle. 

To establish the validity of these two conditions, we first prove 

the following lenuna: 

Lemma 9. 

Given: P(z,t) = (1 - I: 'fJ (t)zs)(1 - 'E if' (t) z8
) 1 s s 

where " s(t) are positive-definite characteristic functions, and 

where 
• • 

{ 
P(1,0) = pt (1,0) = P(1,0) = pt (1 1 0) = 0 1 

Then: 

Proof: 

1) 

2) 

.. 
P(1,0) f O; P"(1,0) f 0. 

2::: s 'I.> 
8

(0) a8 f O • 
• s 

Z! 'V 5 (0) a f 0 • 

Since ~is a zero of P(z,o), we have 

(192) 

But, a = 1 is also a (double) zero of P( z 1 0) 1 so that 

(193) 

Therefore, for I al = 1, 

whence 

(194) s 
a • 
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Therefore, 'V (O)a8 must be real and non-negative, which, in 
s 

turn, implies that either 

l 
i) 

(195) 

ii) 

'fl 
5 

( 0) = 0, or 

'f' 
8

(0) F 0 and a8 is real. 

But, 'f> 
5

(0) ~ 0 and there exists at least one 'f' 
5

(0) F O. 

Hence, if we consider the sum of non-negative and real terms 

given by 

we see that 

(196) 

Q. E. D. 1) 

Now, since we have 

then, by the arguments just presented, 

(198) 

so that either 

{ . ) (199) 

1 

ii) 

or 

as = 1. 

But, 'IJs(O) is a positive-definite function so that 
• 

(200) 

Therefore, either 
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• 

{ i) 'i' s-(0) = 0 J or 
( 201) s ii) a = 1. 

Hence, we have that 
• • 

(202) E 'tJ /0) a
8 

= 2:;'f's(O). 

But, the given moment condition P11 (1,0) # 0 implies (see Eq.205 

below) 
• 

( 20 J) t "' s ( 0) # 0 J 

so that 
• 

( 204) I: 'f.' s ( 0) a 
9 # 0 • 

Q. E.D. 2) 

Q. E. D. Lemma 9 

Returning to Assumptions 2 and 31 then, consider 

• • ~ s s 
P(a,O) = (1 -t.,'f'

9
(0)a )(-~~)a)+ 

• 
+ (1 -L;~)a8)(- E'I' 

5
(0)a

5
) • 

pt (a,O) = (1 -Z:'IJ
5
(0)as)(- I: s ~)a8-1 ) + 

+ (1 - ?! fs(O)as)(- l! s 'I' s(O)as-1) • 

P•(a,o) = (1 -2;~9(0)a9)(- Es 't'
8
.(o)a8

-
1) + 

(205) + (1 - ~'f's(o) as)(- ~ s ~ s(O)as-1) + 

• 
+ ( Z fs(O) as)(~ s 4J s(O)as-1) + 

• s s 1 
+ (~'f'8 ( 0)a )( r. s 'l's{O) a - ) • 
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•• 

.. 
s ~ill s + (1 - Z 'f's(O}a )(-L.y 

8
(0)a ) + 

. . 
+ 2( Z! 't' s(O)as)( z; 'P"""s..,..,(O~) as) • 

P"(a,O) = (1 - L. 'JI (O)as)(- Z s(s-1) iiT"7?'\')as- 2) + s Ts\V 

+ (1 -~'fs1'0')a5 )(- f] s(s-1) 'Jl
8

(0)a8
-

2
) + 

~ ) s-1 ~ ~) s-1 + 2( LJ s 'fl
8

(0 a )(Lis 'f'
8

i_v a ) • 

By the definition of the characteristic functions, 4J 
8
(t) 1 we 

know that 
co 

(206) 

\µ 8 (0) = f dF(x) = \Vs(O) 

-
~ .. (0) = i 1 xdF8 (x) = - ljl :(0) • 

-... 
Furthermore, since z =a is a double zero of P(z,O), 

P(a,o) = P•(a,O) = o; P"(a,o) F o, 

which, in turn, implies that 

{ 
E 'fJ s(O) as = 1, 

( 207) 

~ s 'f-' s(O)a
8 F 01 

1J 'J'
8
(0) as = 1, 

~ s ~)as F 0. 

Therefore, combining Lemma 9 and Eqs. 205, 206 and 2071 we see 

that, for any double zero, z =a, of P(z1 0) 1 we have 
• • 

P(a,o) = P(a,o) = P•(a,o) = P•(a,o) = O; 

•• 
P(a,O) F O; P"(~O) F o. 

Q.E.D. 


