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IV 

Abstract 

We probe string dualities by using the orientifold and F-theory, and by investigating 

world volume actions of super D-branes and super M-branes. 

We first study orientifolds in various dimensions. We construct orientifolds dual 

to M-theory compactified on the Klein bottle and on the Mobius band, respectively. 

Six-dimensional orientifolds with N=l supersymmetry are constructed. They have 

multiple tensor multiplets, which cannot be obtained by the conventional Calabi-Yau 

compactifications. We find F-theory duals for some of these models , thereby making 

manifest the phase transitions involving the tensionless strings these models can have. 

We construct orientifold and F-theory duals of the heterotic string models con­

structed by Chaudhuri, Hockney and Lykken ( CHL) and study N =2 supersymmetric 

F-theory vacua in six dimensions. 

Next, we construct the supersymmetric world volume action of the M-theory 5-

brane in a flat eleven-dimensional background. Finally, dual D-brane actions are 

obtained by carrying out a duality transformation of the world volume gauge field of 

the D-brane and their properties are studied. 
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Chapter 1 Introduction and Summary 

String duality is a recently developed part of string theory. String theory itself is over 

twenty-five years old, and has been under intensive development since 1984 as the 

leading candidate for a unified theory of particle physics and gravity. The reason that 

some of its propeties have been overlooked until now is simple : string duality is not 

manifest in the weak-coupling perturbation expansion by which the theory is usually 

studied, but it is a property of the exact theory. As a result, string duality gives 

information about the behavior of string theory at strong coupling. In a short period 

of two years, we have gone from near-complete ignorance of the behavior of strongly­

coupled strings to a rather detailed understanding of the intricate dynamics which 

occurs, at least in vacua having enough supersymmetry, and the subject continues to 

develop at a rapid pace. 

The central idea of string duality is that the strongly coupled limit of any string 

theory is equivalent to the weakly coupled limit of some other theory. All string the­

ories are connected in this way and the unique underlying theory is called 'M-theory' 

whose low energy theory is eleven-dimensional supergravity. Besides the ordinary vi­

brating strings, which are the basic quanta of string theory, various solitonic objects 

play an essential role in string dualities. Especially new types of solitonic objects, 

called D-branes, have attracted much attention, since the understanding of D-branes 

is possible within the framework of perturbative string theory! With the improved 

understanding of string dynamics it has become possible to address one of the long­

standing problems of quantum gravity- to count the number of states of certain black 

holes in a controlled way, giving, for the first time, a statistical mechanical interpre­

tation to the Bekenstein-Hawking entropy[l]. 

This dissertation is a collection of our modest attempts to understand various 

aspects of string dualities. Our approach is two-fold. One approach is to construct 

specific string vacua and to study the dual properties of those vacua. This is worth-
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while to study, since new ways of constructing string vacua have emerged along with 

the enhanced understanding of string dualities. Often such new vacua are not visible 

with the conventional ways of constructing string vacua, hence can provide useful in­

formation on the string dualities. Important examples are orientifolds and F-theory, 

which we use to probe string dualities. The other approach is to study the world vol­

ume theory of various nonperturbative objects in string theory. One category would 

be D-branes and by studying their world volume structures, we can check various 

properties expected from the web of string dualities. Since string theories are just a 

part of so-far mysterious M-theory, D-branes should have definite connections with 

solitonic objects in M-theory. Thus it is interesting to study world volume theories of 

M-branes and their connections to D-branes. One of the main obstacles was that the 

world volume action of the M-theory 5-brane was not available. Here the M-theory 

5-brane action is presented and its connections to D-branes are studied. 

In Chapter 2, we introduce basic concepts and ingredients in understanding the 

string dualities which will be used frequently in later chapters . We introduce per­

turbative string theories and their T-duality properties. D-branes are introduced via 

T-dual transformation of open strings. Orientifold and F-theory are introduced in 

simple terms, referring more technical details to later chapters. We briefly discuss 

world volume actions of super D-branes and super M-branes and emphasize the im­

portance of kappa symmetry in constructing supersymmetric world volume actions. 

In Chapter 3, we carry out the construction of a specific orientifold in six dimen­

sions with N=l supersymmetry[32] . The closed-string sector in the resulting theory 

contains nine tensor multiplets and twelve neutral hypermultiplets, in addition to the 

gravity multiplet, which is anomaly-free by itself. The open-string sector contains 

only 5-branes and gives rise to maximal gauge groups 50(16) or U(8) x U(8) at 

different points in the moduli space. The detailed tadpole calculation is presented. 

Anomalies are canceled by a generalization of the Green-Schwarz mechanism that 

involves more than one tensor multiplets. Works from Chapter 3 to Chapter 5 are in 

collaboration with Atish Dabholkar. 

In Chapter 4, we continue to construct other orientifold models and discuss their 
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duals[33]. In six dimensions we obtain models with N = 1 supersymmetry, multiple 

tensor multiplets, and different gauge groups . In nine dimensions we obtain a model 

that is dual to M-theory compactified on a Klein bottle. 

In Chapter 5, an orientifold of Type-IIB theory on a T 4 
/ Z2 orbifold is constructed 

which corresponds to F-theory compactification on a Calabi-Yau orbifold with Hodge 

numbers (51, 3)[34]. The T-dual of this model is analogous to an orbifold with discrete 

torsion in that the action of orientation reversal has an additional phase on the twisted 

sectors, and both 9-branes and 5-branes carry orthogonal gauge groups. An orientifold 

of the Z3 orbifold and its relation to F-theory is briefly discussed. 

In Chapter 6, we study orientifold and F-theory duals of CHL strings - heterotic 

string theories with maximal symmetry but with gauge groups of reduced rank[35]. 

In eight dimensions, the compact space of the dual orientifold is a Mobius strip. We 

present the six-dimensional F-theory duals of CHL strings and explain how non-simply 

laced gauge groups arise in F-theory. Other N=2 F-theory vacua in six dimensions 

are discussed. 

In Chapter 7, we present six-dimensional world-volume action that describes 

the dynamics of the M theory five-brane in a flat eleven-dimensional space-time 

background[146]. The world-volume action has global eleven-dimensional super­

Poincare invariance, as well as six-dimensional general coordinate invariance and 

kappa symmetry. Primarily, we consider a formulation in which general coordinate 

invariance is not manifest in one direction. However, we also describe briefly an al­

ternative formulation, due to Pasti, Sorokin, and Tonin, in which general coordinate 

invariance is manifest. 

Finally, in Chapter 8, dual super Dp-brane actions are constructed by carrying 

out a duality transformation of the world-volume U(l) gauge field[118]. The resulting 

world-volume actions, which contain a (p - 2)-form gauge field, are shown to have 

the expected properties. Specifically, the Dl-brane and D3-brane transform in ways 

that can be understood on the basis of the SL(2, Z) duality of Type IIB superstring 

theory. Also, the D2-brane and the D4-brane transform in ways that are expected 

on the basis of the relationship between Type IIA superstring theory and eleven-
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dimensional M-theory. Especially, the dual D4-brane action is shown to coincide with 

the double-dimensional reduction of the M5-brane action. Chapter 7 and Chapter 8 

are the result of collaborations with Mina Aganagic, Costin Popescu and John H. 

Schwarz. 

Chapter 3,4,7,8 of this thesis are a recollection of papers published in Nuclear 

Physic B and Chapter 5 is a recollection of the paper published in Physics Letter B. 

We acknowledge both publishers for the permission of inclusion of those papers in 

this thesis. 
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Chapter 2 Prologue on String Dualities 

2.1 Overview of String Dualities 

String theory is the primary candidate for the unified theory of fundamental interac­

tions including quantum gravity. In 1984-85 there was a series of discoveries[15, 5, 6] 

that convinced many theorists that string theory is a very promising approach to 

unification. Ever since then , the subject has remained as the most active area of 

theoretical physics[2]. It is known for a decade or so that there are five different 

superstring theories, which have a consistent perturbation expansion. For a consis­

tency of these theories, spacetime should have ten dimensions. The five theories are 

denoted Type I, Type IIA, Type IIB, Es x Es heterotic string theory and S0(32) 

heterotic string theory. The Type II theories have N =2 spacetime supersymmetries 

in ten dimensions and the others have N=l supersymmetry. The Type I theory is 

special in that it is based on unoriented closed strings and open strings, while the 

others are based on the closed oriented strings . 

A string's spacetime history is described by functions XIL(a, T), which map the 

string's two-dimensional world-sheet (a, T) into spacetime XIL. This two-dimensional 

quantum field theory should be conformally invariant in order to describe classical 

string dynamics . Perturbative quantum string theory can be formulated by the Feyn­

man sum-over-histories approach. For closed string theory, an n-loop string theory 

Feynman diagram corresponds to a genus n Riemann surface. A difference from the 

field theory is that there is just one Feynman diagram at each order of perturbation . 

In Type I theory, besides oriented Riemann surfaces, unoriented surfaces such as the 

Klein bottle enter into the perturbation expansion. 

Even though perturbative string theory leads to much success and can produce 

string vacua whose matter contents are close to the realistic world, it was soon clear 

that much of the important problems, such as an understanding of supersymmetry 
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breaking, is beyond the perturbative framework and needs an understanding of non­

perturbative phenomena of string theory. Initially this appeared not to be available in 

the near future. Surprisingly, another giant step was just around the corner! Around 

1994, we began to understand much of the nonperturbative aspects of string theories, 

thus we came to understand the strong couping behavior of string theories. Since 

we do not have a nonperturbative definition of string theory1 at this time, it's not 

possible to prove the dualities in the present knowledge of string theory. However 

there is mounting evidence for various duality conjectures and they form an intri­

cate web of consistent structures . One striking consequence is that what we viewed 

previously as five theories, is in fact five different perturbative expansions of a sin­

gle underlying theory about five different points. The unique theory underlying five 

superstring theories is called M-theory. One interesting fact of M-theory is that it 

is an eleven-dimensional theory and it's low energy theory is described by eleven­

dimensional supergravity. Before string dualities, eleven-dimensional supergravity 

was just a curiosity to string theoriests. But now this mysterious theory finds a way 

to fit in the whole picture of string dualities. 

Even before the advent of string dualities, we knew that some string theories are 

connected. This connection is provided by another symmetry of string theory, T­

duality, which connects one string theory with a small radius of compactification to 

another string theory with a large radius of compactification. Since the T-duality is 

a perturbative symmetry with respect to the string coupling, this symmetry was well 

understood before the era of string dualities. By T-duality, IIA theory compactified 

on a circle in a small radius limit is equivalent to IIB theory compactified on a circle 

in the large radius limit[9] . And a similar relation holds between Es x Es heterotic 

string theory and S0(32) heterotic string theory[3]. Now we are left with Type II, 

Heterotic and Type I theory. For further connections between these string theories, 

we need strong-weak coupling duality. The strong coupling limit of Heterotic S0(32) 

theory is given by the weak coupling limit of Type I theory. The strong coupling 

1There is some progress in this direction . Matrix theory is one proposal for the nonperturbative 
definition of string theory [137] 
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limit of Type IIA is described by M-theory compactified on a circle. In this case, 

the coupling of Type IIA theory A is related to the radius of compactified circle of 

M-theory by A rv R~, where R denotes the radius of the compactified circle of M­

theory. Thus the weak coupling limit A ---+ oo of Type IIA theory corresponds to the 

small radius limit of M-theory, and we can only see ten dimensions instead of the 

full eleven dimensions. Heterotic and Type I theory also have an eleven-dimensional 

origin, whose salient features will be reviewed in Chapter 6. Thus all known five 

string theories are merged into a single M-theory. 

Another interesting fact is that the strong coupling limit of Type IIB theory 

is the Type IIB theory, itself. In this case, strong-weak coupling duality can be 

seen as a discrete gauge symmetry. There is much evidence that the duality group 

of Type IIB theory is SL(2, Z). Interestingly enough, the SL(2, Z) symmetry of 

Type IIB is geometrized as a 2-torus of M-theory if we consider Type IIB theory 

on a circle[144]. Another interesting geometrization of SL(2, Z) symmetry of Type 

IIB is F-theory[46], which leads to many nonperturbative vacua of Type IIB theory 

which were not previously available. We will discuss F-theory in more detail in later 

chapters . 

One important lesson of the string dualities is that solitonic objects are on an 

equal footing with the perturbative strings . As the coupling gets larger in one string 

theory, solitonic objects become light and dominant in a low energy limit. Indeed, in 

some cases special solitonic states in one theory are mapped to the perturbative string 

states in the dual theory. One special type of soliton, called D-brane[56], has attracted 

much attention. D-branes are solitonic objects carrying special types of charges. One 

advantage of D-branes over the other solitonic objects is that we know the underlying 

conformal field theory of D-branes, which implies that we have precise understanding 

of the excitations of D-branes. A useful application of D-branes is the construction 

of string vacua with open string sectors, called the orientifold construction. This is 

one of the main themes of this thesis. 
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2.2 Worldsheet Properties of Closed String 

The action for the free bosonic string in the conformal gauge is 

(2.1) 

where a denotes the world sheet indices and µ denotes the spacetime indices. The 

string tension T is given by T = 2;cr'. There are two types of boundary conditions 

that we will have to consider, corresponding to closed strings and open strings. Closed 

strings are topologically equivalent to circles and the appropriate boundary condition 

is the periodicity of the coordinates 

(2.2) 

The equations of motion are simply wave equations and the most general solution 

compatible with the boundary condition is Xµ( a-, T) = Xk( T - a-) + Xf ( T +a-) with: 

After the usual canonical quantization 

[ 
µ VJ • 

X ,p = Z'f/µv 

we get the mass spectrum 

4 
-(N -1) 
a' 
4 -
1 (N -1), 
O:' 

(2.3) 

(2.4) 

(2.5) 

(2.6) 
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where N is the total level of the left oscillator mode excitations and N is the total 

level of the right mode excitations; -1 is the contribution from the zero point energy. 

2 There's a level matching between left-mover and right-mover. Note that the lowest 

level is the tachyon due to the zero point energy contribution. 

An interesting thing happens when we compactify on a circle, say, in the x 25-

direction with radius R, i.e., x 25 = x25 + 27rnR where n is an arbitrary integer. X 25 

has additional zero modes, 

X 25 = x 25 + 2a' PT + 2LO" + oscillators (2.7) 

with p = Jt, L = nR. The restriction to integer m is needed so that the quantum 

wave function eip·x is invariant under x 25 --+ x 25 + 27r R. The integer n is the number 

of times the string wraps around the circle (winding modes). The mode expansion 

can be decomposed into a sum of left-mover and right-mover 

Xis( T + O") 

with 

0'.25 
0 

(2.8) 

2m~' a - -+ -nR 
R 2 a' 

2m {d - f2nR. 
RV2 y-;;; (2.9) 

2 A boson with periodic boundary conditions has zero point energy - 2
1
4 , and with anti periodic 

boundary conditions it is }8 . For fermions, there is an extra minus sign. For the bosonic string in 
26 dimensions, there are 24 transverse (physical) degrees of freedom. 
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Turning to the mass spectrum, we have 

(2.10) 

Here µ runs only over the non-compact dimensions. The mass spectra of the theo­

ries at radius R and a'/ R are identical with the winding and Kaluza-Klein modes 

interchanged ( m ~ n) which takes 

,.,25 ,.,25 
'--' 0 ---+ '--' 0 

(2.11) 

The interactions are identical as well[9]. Write the radius-R theory in terms of 

(2.12) 

The energy-momentum tensor and OPE and therefore all of the correlation functions 

are invariant under this rewriting. The only change is that the zero mode spectrum 

in the new variable is that of the a'/ R theory. The T-duality is therefore an ex­

act symmetry of perturbative closed string theory. Note that it can be regarded as 

a spacetime parity transformation acting only on the right-moving degrees of free­

dom. One can further argue that T-duality is an exact symmetry of the closed string 

theory[4] . 

2.3 Open String, T-dualities and D-branes 

Now consider the open string and it's transformation properties under the T-dualities[9, 

59]. Topologically, an open string is an interval. Let O" parametrize the interval and 



11 

run from 0 to 7r. The variation of the action (2.1) becomes, after integration by parts, 

(2.13) 

where On is the derivative normal to the boundary. The only Poincare invariant 

boundary condition is the Neumann condition OnXµ = 0. The Dirichlet condition 

Xµ = constant is also consistent with the equations of motion and we will return to 

the Dirichlet boundary condition shortly. From the first term of (2.1), the equation 

of motion is given by the wave equation again . The mode expansion is given by 

(2.14) 

If we compactify on a circle in the x25-direction, the momentum modes in this direction 

are quantized, i.e ., p25 = Jl· Here the usual compactified coordinate is X 25 = Xk5 + 
X£5

• In order to understand the T-dual transformation, we rewrite the theory in 

terms of the dual variable 

X'2s = Xks - Xzs 2a' p25 
O" + oscillators 

2a' ~ O" + oscillators. (2.15) 

The oscillator terms vanish at the endpoints O" = 0, 7r. Notice that there is no de­

pendence on T in the zero modes. Therefore the endpoints of the string do not move 

in the X 25 direction. We could also see this directly, from the boundary condition 

OnX25 = OtX'25 = 0. At the ends, 

0"=0: x12s O· 
' 

X'2s 

(2.16) 
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This means that in the dual theory (with radius R' = cl/ R) the ends of the open 

strings are located for all time at position X'25 = 0. They can wind n times around 

the spacetime circle, and they are free to move in the other directions. Thus under 

the T-duality transformation, a Neumann boundary condition turns into the Dirichlet 

boundary condition and Kaluza-Klein modes are mapped to the winding modes. The 

hypersurface X'25 = 0 becomes a dynamical object and is called D-brane. It is natural 

to expect that such a hypersurface is dynamical, since closed strings can interact with 

the D-brane via open strings, therefore the hypersurface feels the effect of gravity in 

the closed string massless sector. In a later section, we will see that there are massless 

open string excitations propagating on the D-brane, the T-duals of the photons, with 

precisely the properties of the collective coordinates for the transverse fluctuations of 

the D-brane. 

2.4 Superstring 

2.4.1 Open Superstring 

We can supersymmetrize the bosonic action by adding fermionic degrees of freedom. 

Interestingly enough, world sheet supersymmetry gives spacetime supersymmetry af­

ter a truncation of the spectrum. The superstring action is given by 

(2.17) 

Here l~ is the 2-dimensional gamma matrix satisfying 

(2.18) 

As the bosonic variables Xµ are decomposed into left-mover and right-mover, so are 

the fermioni c variables. The fermionic part of the action can be written 

(2.19) 
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where 'l/J+ and 'lj;_ denote the right-mover and left-mover, respectively. In order to 

obtain Euler-Lagrangian equation under the variation, we require that the surface 

terms 'l/J+8'1/J+ - 'lj; _8'lj;_ vanish. There are two possible boundary conditions to be 

imposed. We can set 'l/;~(O, T) = 'lj;~ (0, T) without loss of generality. The possible two 

boundary conditions are 

R (2.20) 

In the NS sector, the fermionic oscillators are half-integer moded, giving a ground 

state energy of 
8 8 1 (--) + (--) = --
24 48 2 

(2.21) 

from the eight transverse coordinates and eight transverse fermions. The ground state 

is a Lorentz singlet and has odd fermion number, (-l)F = -1. The GSO projection 

onto states with even fermion number, removes the open string tachyon from the 

spectrum and makes the entire spectrum supersymmetric. Massless particle states in 

ten dimensions are classified by their 50(8) representation under Lorentz rotations 

which leave the momentum invariant. The lowest lying states in the NS sector are 

the eight transverse polarizations of the massless open string photon Aµ forming the 

vector of 50(8), Bv. 

The fermionic oscillators in the Ramond sector are integer moded. In the R sector 

the ground state energy always vanishes because the world-sheet bosons and their 

supersymmetry partners have the same moding. The Ramond vacuum is degenerate 

since 'l/Jb take ground states into ground states3 and they form a representation of 

the Clifford algebra in ten dimensions, hence they are spacetime spinors . The ground 

state is the spinor of 50(8) and the GSO projection corresponds to the chirality 

projection in this case. 50(8) has two spinor representations 8 5 and Be. Thus there 

are two possibilities for the GSO projection. The two choices are equivalent and 

3 'l/Ji:_n denotes the n-th mode of the oscillators 
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we pick up 8 5 • The ground state spectrum is then 8v EB 8 5 , a vector multiplet of 

D = 10, N = 1 spacetime supersymmetry. Including Chan-Paton factors, which will 

be discussed later, gives a U( n) gauge theory in the oriented theory and SO( n) or 

U Sp( n) in the unoriented theory. 

2.4.2 Closed Superstring 

For closed superstrings, we can impose periodic or anti-periodic boundary conditions 

for left-mover and right-mover separately. There are four distinct closed superstring 

sectors, which are called NS-NS, NS-R, R-NS, R-R sectors . For each R or NS sector, 

the spectrum would be the same as that of an open superstring. Thus we can think 

of the closed string spectrum as the tensor product of two copies of the open string 

spectrum. As in the bosonic case, there should be a level matching between left­

mover and right-mover. In the open string the two choices for the GSO projection 

were equivalent, but in the closed string there are two inequivalent choices, taking the 

same (IIB) or opposite (IIA) projections on the two sides. These lead to the massless 

sectors 

of S0(8). 

Type IIA 

Type IIB 

(8v EB 8s) 0 (8v EB 8c) 

(8v EB 8s) 0 (8v EB 8s) 

The various products are as follows : In the NS-NS sector, this is 

8v 0 8v = cf> EB Bµv EB Gµv = 1 EB 28 EB 35 . 

In the R-R sector, the IIA and IIB spectra are respectively 

[1] EB [3] = 8v EB 56t 

[OJ EB [2] EB [4]+ = 1 EB 28 EB 35+ . 

(2 .22) 

(2.23) 

(2.24) 
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Here [n] denotes then-times antisymmetrized representation of 50(8), with [4]+ being 

self-dual. Note that the representations [n] and [8 - n] are the same, being related by 

contraction with the 8-dimensional e:-tensor. In the Type IIA case, we have odd-rank 

tensors of 50(8) but even-rank tensors of 50(9, 1), the extra index being contracted 

with the momentum to form the field strength (and reversed in Type IIB). 

The NS-NS and R-R spectra together form the bosonic components of D = 10 

IIA (nonchiral) and IIB (chiral) supergravity, respectively. In the NS-Rand R-NS 

sectors are the products 

(2.25) 

The 568 ,c are gravitinos, their vertex operators having one vector and one spmor 

index. They must couple to conserved spacetime supercurrents. In the IIA theory 

the two gravitinos (and supercharges) have opposite chirality, and in the IIB then the 

same chirali ty. 

As we discussed before, T-duality is a one-sided parity transformation. For su­

perstrings, this transformation flips the relative chiralities of the left-moving and 

right-moving ground state. Thus an odd number of T-dual transformations maps 

Type IIA to Type IIB and vice versa, while an even number of the transformations 

maps Type IIA or Type IIB to themselves[9]. 

2.5 D-branes in Type II Theory 

Now consider D-branes in Type II theory. Away from the D-brane we see only closed 

string spectrum with two d=lO gravitinos. However, worldsheet boundaries reflect 

one supercharge into the other. So only one combination of the two supercharges is 

a good symmetry of the full state. In other words, in the Type II theory coupled to 

the D-brane, half of the supersymmetry of the bulk theory is broken, which implies 

that the D-brane is a BPS state[56]. BPS states must carry conserved charges. In 
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the present case there is only one set of charges with the correct Lorentz properties, 

namely the antisymmetric R-R charges. The world volume of a p-brane naturally 

couples to a (p+l)-form potential Ap+1 , which has a (p+2)-form field strength Fp+ 2 • 

Thus allowable D-branes are p-branes with p even in IIA and p odd in IIB. 

Now consider the behavior of a D-brane under the T-dual transformation. Take the 

T-dual transformation in a direction µ perpendicular to the D-brane. The Dirichlet 

condition becomes Neumann, so in dual theory this becomes a (p+l)-brane. One 

can check that the R-R potential acquires an extra index, as needed to couple to 

(p+l)-brane[59]. Similarly, if we take the T-dual in a direction m along the brane, it 

becomes a (p-1) brane and the R-R potential loses its m index. 

Once a D-brane is introduced, we can have open strings whose ends are at any 

value on the hypersurface of the D-brane. This open string describes the excitations 

of the D-brane. The quantization of the open string is isomorphic to the conventional 

quantization of an oriented open superstring. Specifically consider a D-brane located 

at Xp+l = · · · = x 9 = 0. The massless states are a vector and a spinor making up a ten­

dimensional supersymmetric Yang-Mills multiplet with gauge group U(l). As the zero 

modes of xi, j > p are eliminated by the boundary conditions, the massless particles 

are functions only of x0
, ... ,xP. The massless bosons Ai(x8

), i,s = 0, . .. p propagate 

as a U(l) gauge boson on the p-brane world-surface, while the other components 

</>i(x 8
) with j > p, s = 0, ... ,p, are scalars in the p + 1-dimensional sense. Note 

that the vectors have conventional open-string gauge boson vertex operators VA = 

I:f=o A(X8 )07 Xi, with 07 the derivative tangent to the world-sheet boundary, while 

the scalars have vertex operators of the form Vq, = Li>P </>j(X8 )0uXi with Ou the 

normal derivative to the boundary. For <Pi = constant, the boundary integral of Vq, 

is the change in the world-sheet action upon adding a constant to Xi, j > p, so the 

scalars can be interpreted as oscillations in the position of the p+ 1-brane. The theory 

on the p+ 1-dimensional world-volume is naturally thought of as the ten-dimensional 

U(l) supersymmetric gauge theory dimensionally reduced top+ 1 dimensions[133]. 

Similarly if we have coincident N D-branes, the low-energy theory is described by 

the dimensional reduction of the U(N) gauge theory in ten dimensions. The open 
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string modes connecting different branes become massless in the coincident limit and 

they provide additional massless charged states for the enhanced gauge symmetry. 

Note that the motion of the D-brane corresponds to the Wilson line of the underlying 

gauge theory. Depending on its motion, it can break or enhance the gauge symmetry. 

From the above argument, we can see that the open string has additional degrees 

of freedom in addition to the world sheet fields. These are the Chan-Paton degrees 

of freedom indicating on which D-branes open strings end. Thus one can write the 

open string state IVi, ij > where Vi is the worldsheet fields and i, j denote D-branes 

on which open strings end. This geometrization of the Chan-Paton factor in terms of 

a D-brane is quite useful, especially when one considers the string compactification 

with open strings. 

2.6 Orientifolds 

There is an additional symmetry of Type IIB theory, which is called the worldsheet 

orientation reversal symmetry. Since the left-moving modes of the Type IIB are 

isomorphic to the right-moving modes , there is a Z2 symmetry which interchanges 

the left-mover and right-mover. Using this orientation reversal symmetry, we can 

construct orientifolds which are generalizations of orbifolds. In the orbifolds only 

the discrete internal symmetries are gauged, while in orientifolds products of inter­

nal symmetry and the world-sheet parity reversal symmetry are gauged. It is easy 

to undestand the closed string sector. We just keep the closed string states which 

are invariant under the orientifold symmetry. Orientifolding introduces unoriented 

surfaces in the closed string perturbation theory. For example, the torus turns into 

the Klein-bottle under the orientation reversal. Unoriented surfaces have tadpoles in 

R-R fields in the closed string channel. The tadpoles can be canceled by including the 

right number of D-branes that couple to these R-R fields. These D-branes provide 

the Chan-Paton factors for the open string sector. In the next chapter, we will carry 

out the detailed tadpole calculations and the determination of the string spectrum 

for a specific model, but general strategy is the same. 
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It is interesting to see the T-dual picture of the world-sheet orientation reversal. 

For closed strings' the original coordinate is xm (er, T) = XR' ( T - er) + xr ( T + er) and 

the dual coordinate is X'm = XR' ( T - er) - xr ( T + er). The action of the world sheet 

parity reversal is to exchange X~ and Xf. In terms of the dual coordinates, this is 

(2.26) 

which is the product of a world-sheet and spacetime parity operation. Hence the 

T-dual action introduces a fixed plane in spacetime, which is called the orientifold 

plane. By calculating tadpoles, one can show that the orientifold plane is also a 

source for the R-R fields. But in the compact space these fields have nowhere to 

go. By introducing the right number of the D-brane, we can make the total R-R 

charge vanish in compact space. Thus the tadpole cancellation is equivalent to the 

cancellation of R-R charge cancellation in compact space. 

One typical example of the orientifold is Type I theory, which is obtained from 

Type IIB theory by gauging orientation reversal symmetry n. Projecting onto n = + 1 

interchanges left-moving and right-moving oscillators and so one linear combination 

of the R-NS and NS-R gravitinos survives, leaving D = 10, N = 1 supergravity. In 

the NS-NS sector, the dilaton and graviton are symmetric under n and survive, while 

the antisymmetric tensor is odd and is projected out. In the R-R sector, it is clear 

by counting that the 1 and 35+ are in the symmetric product of 85 ® 85 while the 

28 is in the antisymmetric. The R-R vertex operator is the product of right- and 

left-moving fermions, so there is an extra minus in the exchange and it is the 28 

that survives. The bosonic massless sector is thus 1 EB 28 EB 35, the D = 10 N = 1 

supergravity multiplet . The tadpole cancellation requires 32 9-branes and the gauge 

group is reduced to S0(32) by requiring the orientation reversal symmetry. 

Now if we compactify on a circle in the x9-direction, x 9 = x 9 + 271" and T-dualize. 

Then from the previous discussion, n is mapped to R90 where R9 is the parity 

operation in the x9-direction. The resulting theory is a Type IIA orientifold and has 

two orientifold planes at x 9 = 0 and x 9 = 7r. Again we need 32 8-branes from the 
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tadpole cancellation. If we put 16 8-branes at x 9 = 0 and the other 16 8-branes at 

x 9 = 7r, we have the gauge group S0(16) x S0(16). In this configuration, dilaton 

tadpole cancellation as well as R-R charge cancellation occurs locally, and the string 

coupling constant remains constant throughout the space. 

2.7 F-theory 

F-theory refers to a new way of compactifying Type-IIB theory in which the complex 

coupling >. of Type-IIB theory is allowed to vary over space. The coupling is given 

by >. = e + ie-<P where </> is the dilaton from the NS-NS sector and e is the R-R 

scalar. Consider an elliptically fibered Calabi-Yau manifold I< which is a fiber bundle 

over a base manifold B with a torus as a fiber whose complex structure parameter is 

T. Even though I< is a smooth manifold, there will be points in the base manifolds 

where the fiber becomes singular, and the parameter T can have a nontrivial SL(2, Z) 

monodromy around these points. An F-theory compactification on I< refers to a 

compactification of Type-IIB theory on B, where the coupling>. is identified with T. 

The nontrivial monodromy of >. around the singular points then means that there are 

7-branes at those points that are magnetically charged with respect to the scalar >.. 

Typically, the base manifold is not Ricci-flat and moreover, because>. is varying, there 

is a nonvanishing RR background. These backgrounds cannot, therefore, be described 

using conformal field theory. For special choices of the manifolds I<, however, an F­

theory compactification is equivalent to a perturbative Type-IIB orientifold. This 

follows from an observation due to Sen [40] that the element -1 of S L(2, Z) which 

is not an element of PSL(2, Z) is a perturbative symmetry of Type-IIB. It flips the 

sign of the two 2-form fields B}wN and B'J.qN, but leaves all other massless fields, 

in particular, the coupling fields >. invariant. From its action on the massless fields 

it is easy to check that this element represents the action of f2( -1 )FL where f2 is 

orientation reversal on the worldsheet and FL is the spacetime fermion number of the 

left-movers. 

Here we consider the simplest example considered by Sen[40], where I< is a K3 
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surface that is a Z2 orbifold of a four-tours; Let z1 , z2 denote the complex coordinates 

of T 4 • The Z 2 symmetry acts as z1 ---+ -z1 and z2 ---+ -z2. Here z1 parametrizes 

the elliptic fiber and z2 parametrizes the base. Since the elliptic fiber represents 

the complex coupling of Type IIB theory, in this orbifold limit the coupling remains 

constant on the base. The base is T 2 
/ Z 2 and there are four fixed points of the Z 2 

action. Around each fixed point, there is a 5 L(2, Z) monodromy -1. Thus we have 

the Type IIB compactification on T 2 /Z2 such that as we go once around each fixed 

point, the theory COmeS back to itself transformed by the symmetry ( -1 tL · n. In 

other words, the theory can be identified to Type IIB on T 2
, modded out by the 

Z2 transformation (-l)FL. n. 12 where 12 denotes the Z2 transformation Z2---+ -Z2. 

This is a T-dual of Type I theory to be discussed in Chapter 4. In this way, we 

established the duality between F-theory on I<3 and the Type I theory. Once the 

duality is established at one point of moduli space, one can argue the equivalence at 

other points of the moduli space, since we can deform both theories away from this 

specific point by turning on suitable background fields . 

In the case at hand, we are considering the F-theory with the coupling remaining 

constant throughout the base, and we expect the same nature in the corresponding 

T-dual of Type I theory. This implies that tadpole cancellation occurs locally so 

that there are no dilaton gradients on the base. There are four orientifold planes 

and we should put eight 7-branes at each orientifold plane; the resulting gauge group 

is 50(8) 4
. It is interesting to see how the corresponding gauge group arises in F­

theory. We have four singular fibers on the base. Possible singularities of elliptic 

fibers are classified by Kodaira[7]. These singularities fit into the ADE classification. 

In our example at hand, the singularity type is D 4 rv 50(8). This suggests that the 

ADE type singularities will give ADE gauge groups in F-theory. This can be further 

checked in various cases[54, 55, 71]. 

One can consider the F-theory compactification in lower dimensions. F-theory on 

elliptic threefolds provides many interesting models in six dimensions. We will see 

some aspects of F-theory in 6-dimensions in Chapters 5 and 6. 
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2.8 Super D-brane and Super M-brane 

Solitonic objects play an essential role in string dualities and a better understanding of 

string dualities comes from a better understanding of the quantum properties of those 

solitonic objects. A striking example is the D-brane. Since we know the underlying 

conformal field theory of D-branes, we can have a clearer view on the duality aspects 

related to the R-R charged objects. One way to understand a solitonic object is to 

understand its world-volume theory. In the case of strings in a fiat background, the 

world-volume theory has been quantized and used to construct the string perturbation 

expansion. In the case of p-branes with p > 1, such things have not been available. 

Still it is worthwhile to study the world-volume theory of solitonic objects and to 

extract the useful information on these. Since much of the recent development of the 

string dualities focuses on D-branes, it is interesting to study the world-volume theory 

of D-branes. It has been known for some time that D-brane world volume theory 

contains a U(l) gauge field, whose self interactions are described by the Born-Infeld­

type theory[96]. More precisely speaking, since many of D-branes in string dualities 

are supersymmetric objects, we should have the supersymmetric world-volume theory 

of D-branes. Such constructions are given in [89, 90, 91 J. 

The field content describing the world-volume theory of super D-branes consists of 

the superspace coordinates (Xm, B) in ten dimensions and an abelian vector gauge field 

Aµ whereµ runs through the world-volume indices of the D-brane. The world-volume 

theory has the global IIA or IIB super-Poincare symmetry. In addition, they have 

world-volume general covariance, which ensures that only the transverse components 

of xm are physical. One crucial ingredient of the super D-brane is additional fermionic 

symmetry, called kappa symmetry. This symmetry eliminates half of the component 

of () so that the physical degrees of freedom of bosons and fermions match. In order 

to ensure kappa invariance, we should introduce a Wess-Zumino term. The action of 

the D-brane can be written as S = S1 + S2 where 

(2.27) 
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(2.28) 

Here Gµ,v, Fµ,v are suitable supersymmetric generalizations of the induced metric and 

the gauge field on the world volume and Dp+l is a (p + 1 )-form representing the 

Wess-Zumino term. The kappa symmetry variation is given by 

(2.29) 

(2.30) 

so that 

(2.31) 

Here /(P) and T(r;) are suitable expressions involving xm, fJ and :Fµ,v· We have ( /(P)) 2 = 

1. Since ~(1 ± l(P)) are projection operators, 8/J = A:(l - /(P)) gives the desired 

symmetry. From this structure, one can see that the Wess-Zumino term is indeed 

essential in constructing kappa symmetry. We will encounter the more detailed form 

of the super D-brane action in Chapter 8. 

Now turn to the solitonic objects in M-theory. The low energy effective action of 

the M-theory is eleven-dimensional supergravity and it contains a three-form poten­

tial. Thus M-2 brane couples to the three-form potential electrically, while M-5 brane 

couples magnetically. The world volume theory of the M-2 brane was constructed in 

[86] . The world volume theory of the M-5 brane is a six-dimensional theory whose 

massless content is N =2 tensor multiplet. One difficulty in formulating M-5 brane 

world volume theory is that N =2 tensor multiplet contains a second-rank self-dual 

tensor gauge field. It has been known for a long time that there is no straightforward 

way to construct a covariant action that describes propagation of the self-dual field. 

One way to circumvent this difficulty is to consider the theory with general covariance, 

but the general covariance is not manifest. Very recently, a manifestly covariant for­

mulation involving only a finite number of auxiliary fields has been introduced[113]. 

Both approaches will be explained in due course, and the M-5 brane action will be 

presented in Chapter 7. 



23 

Chapter 3 An Orientifold of Type IIB 

Theory on K3 

Theories of unoriented strings can be viewed as orientifolds [10, 12, 9] of oriented 

closed strings. Orientifolds are a generalization of orbifolds in which the orbifold 

symmetry includes orientation reversal on the worldsheet. For example, Type-I strings 

can be viewed as an orientifold of Type-IIB strings. It is obvious that the closed-string 

sector of unoriented strings can be obtained by projecting the spectrum of oriented 

strings onto states that are invariant under the orientifold symmetry. It is more 

difficult to see how and when the open string sector might arise, and in particular 

how to obtain the Chan-Paton factors. A proper understanding of this question has 

become possible only after the remarkable recent work on D-branes[56]. 

A D-brane is a submanifold where strings are allowed to end which corresponds to 

open strings that satisfy mixed Dirichlet and Neumann boundary conditions. In Type­

II theories, D-branes represent non-perturbative extended states that are charged with 

respect to the R-R fields in the theory. D-branes provide a geometric understanding of 

how Chan-Paton factors arise: a Chan-Paton label is simply the label of the D-brane 

that an open string ends on. 

One can now understand the open-string sector of an orientifold as follows. Ori­

entifolding introduces unoriented surfaces in the closed-string perturbation theory. 

The unoriented surfaces such as the Klein bottle can have tadpoles of R-R fields in 

the closed string tree channel. The tadpoles can be canceled by including the right 

number of D-branes that couple to these R-R fields. This introduces the open string 

sector with appropriate boundary conditions and Chan-Paton factors. 

With this enhanced understanding of orientifolds, one can contemplate more gen­

eral constructions. In this paper we construct a simple orientifold of Type-IIB theory 

compactified on a K3 surface that has N = 1 supersymmetry in six dimensions. The 
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orientifold symmetry group is {1, DS} where S is a Z2 involution of I<3 and n is 

orientation reversal on the worldsheet. The resulting closed string sector contains the 

gravity multiplet, nine tensor multiplets, and twelve neutral hypermultiplets. The 

maximal gauge group arising from the open string sector is 50(16) with an adjoint 

hypermultiplet, or U(8) x U(8) with two hypermultiplets that transform as (8, 8). 

There are a number of motivations for considering this example. First, the re­

quirement of anomaly cancellation in six dimensions is fairly restrictive and provides 

useful constraints on the construction of the worldsheet theory. In fact, this work 

was motivated in part by the observation [21] that anomalies cancel in a large class of 

supersymmetric models in six dimensions. The orientifold that we consider realizes 

one of these models as a string theory. Second, we obtain a massless spectrum that 

is markedly different from the only known string compactification to six dimensions 

with N = 1 supersymmetry viz. the heterotic string theory on I<3, which has only 

one tensor multiplet. We thus have a new compactification with a moduli space that 

apparently is disconnected from the known compactifications. Finally, this orientifold 

is a useful practice case for various generalizations to different dimensions using other 

orientifold groups [33]. 

The organization of this chapter is as follows. In Section 2 we motivate the 

orientifold group from considerations of anomaly cancellation and describe the closed 

string sector. The open string sector is discussed in Section 3. Consistency requires 

inclusion of 32 Dirichlet 5-branes but no 9-branes, with additional constraints on 

the Chan-Paton factors that determine the gauge group and matter representations 

completely. 

3.1 Gravitational Anomalies and the Orientifold 

Group 

The massless representations of the N = 1 supersymmetry algebra in d = 6 are chiral; 

consequently their coupling to gravity is potentially anomalous. We would like to see 
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what constraints are placed on the massless spectrum so that these anomalies cancel. 

We shall then use this information to see how such a spectrum may follow from a 

string compactification. 

The massless states are labeled by the representations of the little group in six 

dimensions which is SO( 4) = SU(2) x SU(2). The massless N = 1 supermultiplets 

are then as follows. 

1. The gravity multiplet: 

a graviton (3, 3), a gravitino 2(2, 3), a self-dual two-form (1, 3). 

2. The vector multiplet: 

a gauge boson (2, 2), a gaugino 2(1, 2). 

3. The tensor multiplet: 

an anti-self-dual two-form (3, 1), a fermion 2(2, 1), a scalar (1, 1). 

4. The hypermultiplet: 

four scalars 4(1, 1), a fermion 2(2, 1). 

The gravitino and the gaugino are right-handed whereas the fermions in the other 

two multiplets are left-handed. Up to overall normalization the gravitational anoma­

lies are given by [19, 20] 

43 ( R2 ) 2 245 R4 -- tr +-tr 
288 360 ' 
1 2 2 1 4 

+ 288 (tr R ) + 360 tr R ' 
8 28 

--(trR2
)

2 + -trR4
. 

288 360 
(3.1) 

Here 13; 2 , 11; 2 , and IA refer to the anomalies for the gravitino, a right-handed fermion, 

and a self-dual two-form (1, 3) respectively. 

Consider nv vector multiplets, nH hypermultiplets and ny + 1 tensor multiplets. 

Then the (tr R4
) term cancels if the following con di ti on is satisfied: 

nH - nv = 244 - 29ny. (3.2) 

The (tr R2
)

2 term is in general nonzero, and needs to be canceled by the Green-
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Schwarz mechanism [15]. There are many solutions of (3.2). We would now like to 

see which can be realized as a string theory. 

There are not many possibilities for string vacua with N = 1 supersymmetry 

in six dimensions. For the heterotic string, we must compactify on a I<3 to obtain 

N = 1 supersymmetry. This leads to nr = 0 and nH = nv + 244. For Type-II 

strings, usual Calabi-Yau compactification on a I<3 leads to N = 2 supersymmetry. 

One way to reduce supersymmetry further is to take an orientifold so that only one 

combination of the left-moving and the right-moving supercharges that is preserved 

by the orientation-reversal survives. By considering different orientifold groups one 

may obtain different spectra, and in particular different number of tensor multiplets. 

The model that we consider in this chapter has ny = 8 and nH - nv = 12 which 

clearly satisfies (3.2). The special thing that happens with this matter content is that 

the entire anomaly polynomial including the (trR2
)

2 term vanishes. We thus have 

anomaly cancellation without the need for the Green-Schwarz mechanism, analogous 

to what happens in the Type-IIB theory in ten dimensions [20], or in the chiral N = 2 

theory obtained by compactifying Type-IIB theory on I<3 [51]. 

If we wish to obtain a large number of tensor multiplets, a natural starting point 

for orientifolding is the Type-IIB theory compactified on I<3, which has 21 (N = 2) 

tensor multiplets in the massless spectrum in addition to the gravity multiplet. The 

gravity multiplet contains 5 self-dual two-forms whereas the tensor multiplets contain 

one anti-self-dual two-form each. Let us recall how these two-forms arise. In ten 

dimensions the Type-IIB theory contains a two-form B"ltN from the R-R sector, a 

two-form B'fviN from the NS-NS sector and a four-form AMNPQ from the R-R sector 

with self-dual field strength. Zero modes of these fields correspond to harmonic forms 

on I<3 and give rise to massless fields in six dimensions [19] . The nonzero Betti 

numbers for I<3 are b0 = b4 = 1, bt = 3, and b?, = 19 where bt are the self-dual 

two-forms and b?, are the anti-self-dual two-forms. From the two BMN fields we get 

b0 two-forms each, which means altogether 2 self-dual and 2 anti-self-dual two-forms. 

Similarly, from the zero modes of the AMNPQ we get 3 self-dual and 19 anti-self­

dual two-forms in six dimensions after imposing self-duality of field strength in ten 
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dimensions. 

The orientifold group can now be deduced as follows. In order to obtain N = 1 

supersymmetry we need an orientation reversal n which takes(}' to Jr-(]'. A projection 

(1 + D)/2 alone would give us the spectrum identical to the closed-string sector of 

Type-I theory on I<3, eliminating AMNPQ and B'irN completely from the spectrum. 

Now consider a Z2 involution S of I<3 such that eight anti-self-dual harmonic forms 

are odd under S and all other 16 forms are even. It is clear that under the projection 

(1 + DS)/2, eight zero-modes of AMNPQ will now survive, giving us 8 anti-self-dual 

two-forms. Moreover, we shall also get eight scalars from the zero modes of B'irN 

so that we have the complete bosonic content of eight tensor multiplets. We still 

have one zero mode of B"fwN giving one self-dual and one anti-self-dual two-form. 

The self-dual two-form is needed for the gravity multiplet; the anti-self-dual two-form 

combines with the zero mode of the dilaton to form an additional tensor multiplet. 

Altogether, we obtain the nine tensor multiplets that we were after. 

Let us see if we get the rest of the spectrum right. There are no vector multiplets 

because there are no odd cycles on I<3, and starting with even forms and the metric 

in ten dimensions we can never get a one-form as a zero mode. The scalars arise 

from zero modes of the metric tensor and the B"Jw N field that are invariant under 

DS. Their zero modes can be found from the Dolbeault cohomology of I<3 [19], so 

we need to know which (p, q) forms are left invariant by S. The main point for our 

purpose will be that the eight two-forms that are eliminated by S are ( 1, 1) forms 1 . 

We are thus left with 12 (1, 1) forms and 1 each of (0, 2), (2, 0), (0, 0), (2, 2) forms. 

The zero modes of gMN give 34 scalars [19]. The number of zero modes of BkIN 

equals the number of harmonic two-forms which is 14. Altogether we have 48 scalars 

which make up 12 hypermultiplets. This construction ensures that the closed-string 

sector is anomaly free. We also get a constraint in the open-string sector that the 

number of vector multiplets must equal the number of hypermultiplets for canceling 

gravitational anomalies. 

1 For a smooth !{3 defined by a quartic polynomial in C P 3
, it is easy to construct an example of 

the involution S and verify this assertion (29]. 
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To proceed further we need to know the spectrum in the open-string sector and 

check that all tadpoles vanish. For computing the tadpoles we need a realization of the 

I<3 as an explicit worldsheet conformal field theory. Furthermore, we need to know 

how the involution S acts in this conformal field theory. This can be easily done for a 

particular I<3 represented as a T 4 
/ Z2 orbifold. Let ( z1 , z2 ) be complex coordinates on 

the torus T 4 defined by periodic identifications Z1 rv Z1+1, Z1 rv Z1 + i, and similarly 

for z2 . The two Z2 transformations of interest are generated by 

R : (z1, z2) ----+ (- z1, -z2) 

S: 
1 1 

(z1, z2) ----+ (-z1 + 2' -z2 + 2 ). (3.3) 

That S is the desired symmetry can be seen as follows. The I<3 orbifold is obtained 

by dividing the torus by Zf' = {1, R} . The Type-IIB theory on this orbifold has 

5 self-dual and 5 anti-self-dual two-forms coming from the untwisted sector. In the 

twisted sector, there are 16 anti-self-dual forms from the 16 fixed points of R. Notice 

that Sis the same as R acting on shifted coordinates (z1 - t, z2 - t). Now, S leaves 

all forms in the untwisted sector invariant, but takes 8 fixed points of R into the other 

8. Thus of the anti-self-dual two-forms coming from the twisted sector, 8 are even 

under S, and 8 are odd. This is precisely the structure we wanted. Note that S has 

16 fixed points on the torus, but on the orbifold they are identified under R leaving 

only 8 as required by the Lefschetz fixed-point theorem [17]. 

3.2 Open String Sector 

3.2.1 Tadpoles 

Tree-channel tadpoles can be evaluated by factorizing the partition function in the 

loop channel. For closed strings, the one-loop amplitude for the orientifold is obtained 

by projecting onto the closed string states of the Type-IIB theory on I<3 that are 

invariant under the symmetry ns. The partition function now receives a contribu-
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tion from the Klein bottle in addition to the torus. The torus has no closed-string 

tree channel and is modular invariant by itself, so we need to consider only the Klein 

bottle. To determine the open string sector we first require closure of operator prod­

uct expansion so that the S-matrix factorizes properly. This implies that we can 

consistently add only 5-branes and 9-branes [61]. We then have 55,99,59,95 sectors 

for open strings from strings that begin and end on the two kinds of branes. The 

one-loop partition function is given by the cylinder and the Mobius strip diagram. 

In this section we shall follow the general framework of Gimon and Polchinski 

[61] quite closely. The total projection that we wish to perform is (11R)( 1
\

115
). The 

orientifold group G is {1, R, DS, DRS} which we can write as G = G1 + DG2 with 

G1 = {1, R} and G2 = {S, RS}. An open string can begin on a D-brane labeled by 

i and end on one labeled by j. The label of the D-brane is the Chan-Pa ton factor 

at each end. Let us denote a general state in the open string sector by IVi, ij). An 

element of G1 then acts on this state as 

g: (3.4) 

for some unitary matrix /g corresponding tog. Similarly, an element of DG2 acts as 

Dh: (3.5) 

The relevant partition sums for the Klein bottle, the Mo bi us strip, and the cylinder 

are respectively J~ dt /2t times 

KB: T u+T {ns 1+R1 + (-l)F - 21rt(Lo+Lo)} 
rNSNS+RR 2 2 2 e 

MS: Tr99+55 { ns 1 + R 1 + ( -1 )F -27rtLo } 
NS-R 2 2 2 e 

C: T 99+95+59+55 { ! 1 + R 1 + ( -1 t -27rtL0 } 
rNS-R 2 2 2 e . (3.6) 

Here F is the worldsheet fermion number, and as usual i+(;i)F performs the GSO 
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projection. The Klein bottle includes contributions both from the untwisted sector 

and the sector twisted by R of the original orbifold. 

For evaluating the traces we need to know the action of various operators on the 

oscillator modes and the zero modes of the fields. Let us take xm, m = 6, 7, 8, 9 to 

be the coordinates of the torus so that 271"1 Z1 = X 6 + iX7 and 271"1 Z2 = X 8 + iX9
' 

where the radius 1 defines the overall size of the torus. Let Xi,i = 1,2,3,4 be 

the transverse coordinates in the six-dimensional Minkowski space. Let 1/Jm and 'I/Ji 

be the corresponding fermionic coordinates of the NSR string. The action of R 

on oscillator modes is obvious. For the ground states !Pm, Lm) without oscillations, 

but with quantized momentum Pm = km/ R in the compact direction and winding 

Lm = xm(27r) - xm(O), R has the action 

(3.7) 

Note that Sis U(~)RUt(~) where U(~) performs translation along both X 6 and X 8 

by 1/4. Therefore, S has the same action on the oscillators as R but for the ground 

states there is a crucial difference of phase 

(3.8) 

The action of f2 depends on the sectors; f2 takes a field </>(a) to </;( 7r - a) and has 

obvious action on the modes. 

The traces can be readily evaluated. Following [61] we define 

00 

11 ( q) = ql/12 II ( 1 _ q2n) , 
n=l 

00 

00 

f2(q) = ql/12v12 II (1 + q2n) 
n=l 

00 

h( q) = q-1124 II ( 1 + q2n-1) , f4( q) = q-1124 II ( 1 - q2n-1) , (3.9) 
n=l n=l 

which satisfy the Jacobi identity 

f ~ ( q) = 1g ( q) + J! ( q) (3.10) 



31 

and have the modular transformations 

(3.11) 

The relevant amplitudes are then given by (1 - l)iig f0
00 1f times 

KB: 

MS: 

C: 

(3.12) 

We have defined V6 = V6/(47r 2a') 3 where v6 is the (regulated) volume of the non­

compact dimensions, and p = r 2 /a'. For the cylinder amplitude, as in [61], the sum 

i,j comes from strings that begin and end at 5-branes i and j with arbitrary windings; 

the sum I is over 5-branes placed at the fixed points of R. Note that for the Klein 

bottle and the Mobius strip diagrams, in evaluating Tr(DRS) or Tr(OS), the sum 

over momenta contains a crucial factor of ( -1 r for the 6 and 8 directions, but no 

such factor for the 7 and 9 directions. 

To factorize in tree channel we use the modular transformations () and the Poisson 

resummation formula 

(3.13) 
n=-oo s=-oo 
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An important fact for our purpose will be that 

(3.14) 
n=- oo s =-oo 

Tadpoles correspond to long tubes(t ---+ 0) in the tree channel. In this limit it is 

easy to see that the total amplitude is proportional to (1 - 1) f0
00 dl times 

V6V4 { 2} V6 { 2 1 T ))2} 16 (Tr(l1,9)) + 
16

v
4 

32 - 64Tr(l0s,slos,s) + (Tr(/1,s 

v 16 

+ 
6
: L (Tr(IR,9) - 4Tr(IR,I))

2
. (3.15) 

l=l 

Here l is the length of the tube, which is inversely proportional to the loop modulus 

t ; v4 = p2 = V4/( 47r 2a') 2 with V4 the volume of the internal torus before orbifolding. 

The (1- 1) above represents the contributions of NSNS and RR exchange respec­

tively, which must vanish separately for consistency [16, 18]. Using these requirements 

we determine the spectrum in the next section. 

3.2.2 Gauge Group and Spectrum 

We see from (3.15) that to cancel the tadpole proportional to v6v4 corresponding to 

the 10-form exchange, we must have Tr(/1,9) = 0. Now Tr(/1,9) equals the number n9 

of 9-branes, so we conclude that there are no 9-branes. We are left with only the 55 

sector so from now on we drop the subscript 5 for the I matrices. Vanishing of the 

term proportional to v6 /v4 corresponding to the exchange of untwisted 6-forms gives 

ns = 32, T 
/os = Ins· (3.16) 

Finally, vanishing of the term proportional to v6 corresponding to the exchange of 

twisted sector 6-forms gives Tr(/R,I) = 0. By a unitary change of basis /OS ---+ 

U /OS UT we can take 

/OS = 1. (3 .17) 
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We have additional constraints on the algebra of the / matrices so that we obtain a 

representation of the orientifold group in the Hilbert space: 

/ORS /OS /R 

T 
lORS (3.18) 

We have the choice of taking /ORS either symmetric or antisymmetric, but it turns 

out that both choices lead to the same spectrum. 

Let us now discuss the massless bosonic spectrum coming from the NS sector. 

The states 

~~1;2IO,ij)Aji, µ = 1,2,3,4, (3.19) 

belong to the vector multiplets whereas the states 

~:11 1210, ij)>.ji, m = 6, 7, 8, 9, (3.20) 

belong to the hypermultiplets. We have to keep only the states that are invariant 

under Rand DS; this constrains the possible forms of the Chan-Paton wave functions 

The conditions for the Chan-Paton factors depend crucially on where the 5-branes 

are placed. There are a number of ways one can distribute the 32 5-branes to ob­

tain various gauge groups. We discuss only two distinct configurations that lead to 

maximal symmetry. 

1. The first choice is to take 16 five-branes to lie at a fixed point x of S and the 

remaining 16 to lie at the image of x under R. In this case, the projection under R 

simply relates the states at x to those at Rx and leads to no additional constraints 

on >.. ns = +1 implies 

\ \ T -l 
/\ = -10s /\ Iris (3.21) 

for both scalars and vectors. This can be seen as follows. ~m satisfy Dirichlet bound-
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ary conditions on both ends and have the same mode expansion as ¢µ which satisfy 

Neumann boundary conditions. Now 1/;~ 1 is odd under n as in Type-I theory in ten 
2 

dimensions. But ¢"::1 is even because of the additional phase due to the Dirichlet 
2 

boundary condition. Moreover, under S, 'lj;m is odd and ¢µ is even. Using (3.17) 

we conclude that >. = ->.T, obtaining an adjoint representation of 50(16) for both 

vectors and scalars, and the corresponding supermultiplets. 

2. We can place 16 five-branes at a fixed point y of R and 16 at the image of y 

under S. This time we only need to impose the condition R = +1 on the states. For 

the matrix /R we had two choices. Let us first choose /ORS to be symmetric. Then 

from (3.18), /R is also a symmetric matrix that squares to one and is traceless. In 

transforming /os to identity we already made a unitary change of basis, but we can 

still make an orthogonal change of basis to put /R in the form 

(3.22) 

Now R = 1 implies 

for vectors and 

for scalars. The condition for vectors means that we have a subgroup of U(16) that 

commutes with /R i.e., U(8) x U(8). The condition for scalars means that they 

transform as (8, 8) and (8, 8) under the U(8) x U(8). Another way to see this is 

to note that the Chan-Paton label transforms as (1, 8) + (8, 1) at one end and as 

the complex conjugate at the other. The projection keeps (8 x 8, 1) + (1, 8 x 8) for 

the vectors, and (8, 8) and the complex conjugate for the scalars. If we chose /ORS 

antisymmetric, we would get /R = ( O -il) instead of (3.22), but the identical 
il 0 

spectrum. 

Notice that the rank of the gauge group is different in the two cases which cor­

respond to two branches of the moduli spaces that are connected. With the group 
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S0(16) we have adjoint matter, so we cannot change the rank. We can break it to 

a U(8) or all the way to U(1) 8
. For the U(8) x U(8), the condensation of charged 

hypermultiplets can change the rank and we can also break it to the diagonal U(8), 

for example. The two branches are thus connected. 

The symmetry breaking can be seen geometrically. If we place a 5-brane away 

from the fixed points of R and S, then we need three more 5-branes at the image 

points. We can thus divide the 32 branes in four copies of 8. In this case, there 

will be no restrictions on the Chan-Paton matrices at a given point, except that they 

are hermitian. If all branes are placed at generic points and their images, we get 

U(1) 8
. When they coincide at a point other than the fixed points, we get U(8) with 

an adjoint hypermultiplet. 

3.2.3 Anomaly Cancellation 

The number of vector multiplets equals the number of hypermultiplets at all points of 

the moduli space discussed in the previous subsection, so the gravitational anomalies 

cancel. In fact, at a generic point in the moduli space where the symmetry is U(l )8 , 

or also when it is 50(16), the entire anomaly vanishes. These theories are thus 

anomaly-free without the need for the Green-Schwarz mechanism. 

Anomaly cancellation is more subtle when the gauge group is U(8) x U(8). We 

can factorize the group as SU(8) x SU(8) x U(l) x U(l). The states are neutral under 

the diagonal U(l). So we need to consider only SU(8)i x SU(8)2 x U(l) under which 

the hypermultiplets transform as (8, S)+ and (8, 8)_, where the subscript denotes the 

U ( 1) charge. Let us denote the field strengths as Fi, F2 , and f respectively. 

The U(l) factor is at first sight troublesome. The anomaly involving this factor has 

terms that are of the form J( di tr Ff+ d2 trFt) where di, d2 are constants. Such terms 

would seem problematic because they do not have the usual factorized form j2trF2 . 

However, these can be canceled by a local counterterm of the form f bTrF3 for some 

scalar b that has inhomogeneous gauge transformations. Let a be the gauge potential, 

da = f. Under the gauge transformation &a = dE, b must have the inhomogeneous 
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transformation 8b = E to cancel the anomaly. The gauge invariant combination is 

A = db - a which is nothing but the gauge-invariant form of the massive gauge boson 

associated with a. Now the kinetic term for bis of the form A2 which can be viewed 

as the mass term for the massive gauge field A. 

One is familiar with an analogous situation in four dimensions [50]. The scalar b is 

very similar to the axion in four dimensions which is the Goldstone boson of a global 

Peccei-Quinn symmetry. The fermionic current for the Peccei-Quinn symmetry is 

anomalous, but so is the axion current. Now, if we gauge this symmetry, then naively 

we would find that the gauge coupling to the fermions is anomalous. However, one can 

always define a linear combination of the fermionic current and the axionic current 

which is anomaly-free. The axion then is the would-be Goldstone boson associated 

with this anomaly-free current. The corresponding gauge-boson becomes massive 

after eating the axion. 

Because the U(l) gauge boson will always be massive, we shall discuss only the 

remaining factors SU(8)i x SU(8h. Let us denote the field strengths for the two 

groups by F1 and F2 respectively, and define Fa = trF;, a = 1, 2. The anomaly 

polynomial is then of the form 

(3.23) 

To cancel this anomaly one needs a generalization of the Green-Schwarz mechanism 

proposed by Sagnotti [22] which we now review briefly. 

If we have n tensor multiplets, then there is a natural SO(l, n) symmetry in 

the low-energy supergravity action [41]. Altogether there are n + 1 tensors Hr, r = 

0, ... , n that transform as a vector of SO(l, n ); the time-like component is self-dual 

whereas the spacelike components are anti-self-dual. The scalars coming from the 

tensor multiplets parametrize the coset space SO(l, n )/SO( n ). We take T/rs to be the 

Minkowski metric with signature ( 1, n). Let v be the time-like vector, v · v = 1, so 

that v ·His self-dual. The scalar product is with respect to the metric r;: for example, 

v·H = vrHsT/rs· Now consider the case when the gauge group has m nonabelian factors 
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with field strengths Fa, a = 1, ... , m, and denote trF:; by Fa· In this case, anomaly 

cancellation can be achieved by a generalization of the Green-Schwarz mechanism if 

the anomaly polynomial is of the general form 

X = - l)ca · Cf3):Fa:F(3, (3.24) 
a(3 

where ca, a = 1, ... , m are constant vectors of SO(l, n ). It is clear that the anomaly 

associated with X can be canceled by a local counterterm of the form 

(3.25) 

provided the fields Br have appropriate gauge transformations. If Wa are the Chern­

Simons three-forms for the various gauge groups and 8wa = dw;, then the required 

gauge transformations are fJBr = Carw;. The modified gauge-invariant field strengths 

Hr are then given by 

(3.26) 

An important fact that follows from supersymmetry is that the coefficients Car that 

enter into (3.26) and the modified Bianchi identity are related to the kinetic term 

for the gauge field Fa, which is given by v ·Ca [22]. Given an anomaly polynomial, 

the vectors Ca must be chosen such that the kinetic terms for all gauge fields are 

positive-definite. 

In our case, the gauge group has only two factors, i.e., m = 2. We have ten 

tensors (n = 9), but it turns out that only three tensors are involved in the anomaly 

cancellation. This is because when all branes are localized at a given fixed point of 

R (and its image under S), the tensors coming from the twisted sectors localized 

at other fixed points that are far away, cannot be relevant. Therefore we restrict 

ourselves to a three-dimensional subspace taking n = 2. We have one self-dual and 

one anti-self-dual tensor from the untwisted sector, and one anti-self-dual tensor from 

the twisted sector. 

For simplicity, let us pick a special point in the tensor-multiplet moduli space so 
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that v = ( cosh ¢>, sinh ¢>, 0). The anomaly polynomial (3.23) can be written in the 

form (3.24) by choosing c1 = (1, 1, 1) and c2 = (1, 1, -1). There is some freedom in 

choosing these vectors because of the 50(1, n) symmetry and the freedom in choosing 

the signs of the tensor fields. With the above choice the field ¢> can be identified with 

the dilaton so that the coefficient of the gauge kinetic term, which comes from the disk 

diagram, goes as e-<f>. Moreover, the kinetic terms are positive-definite for both the 

gauge groups because v·c1 and v·c2 are both positive-definite. Thus, the anomalies can 

be canceled by the generalized Green-Schwarz mechanism explained in the preceding 

paragraphs. 

Worldsheet considerations are consistent with this spacetime reasoning. To obtain 

a counter-term like (3.25) we would require a coupling of the kind B 2 (F1 -:F2 ), where 

B 2 is the tensor coming from the twisted sector. Such a term can be obtained by 

computing a disk diagram with two vertex operators for the gauge bosons on the 

boundary of the disk, and the vertex operator for the tensor at the center of the disk. 

The vertex operator at the center introduces a branch-cut corresponding to a twist 

by R. The twist acts on the Chan-Paton indices by the matrix /R which is +1 for F1 

but -1 for :F2 • This is in accordance with the relative minus sign between the third 

components of the two vectors c1 and c2 . By contrast, the vertex operators for the 

two tensors B0 and B 1 coming from the untwisted sector of the orbifold introduce 

no branch cuts. These tensors therefore have identical couplings to the two gauge 

groups; correspondingly, c1 and c2 are identical in the 0, 1 subspace. 

We have not worked out the detailed couplings from a worldsheet calculation, but 

our tadpole calculation assures us that anomaly must cancel in this way. If gauge 

invariance were anomalous, then the longitudinal mode of the gauge boson would not 

decouple. This would lead to a tadpole, but we have already made certain that there 

are no tadpoles. 

So far we have chosen to work at a special point in the moduli space, where 

one could ensure that the kinetic terms for both gauge groups are positive-definite. 

However, as we move around the tensor-multiplet moduli space, we eventually come 

across a boundary where the kinetic term for one of the gauge fields changes sign, 



39 

and is no longer positive-definite. For example, we can take a more general form for 

the vector v, v = (cosh</>,sinh</>cos?f,sinh</>sin?/i) where</> and 1f are the moduli. It 

is easy to see that there is a range of values for </> and 1f where either v · c1 or v · c2 

is negative. This phenomenon is similar to the one observed in [25] which is possibly 

an indication of some 'phase transition' at the boundary. 

We can also contemplate more complicated possibilities. For example, if y1 and y2 

are two fixed points of R that are not related by S, then we can place eight 5-branes at 

y1 and eight at y2 . The remaining 16 branes have to be placed at the images of these 

two points under S. In this case one would obtain U(4) x U(4) gauge group with two 

copies of ( 4, 4) from each of the fixed points. Now the anti-self-dual tensors coming 

from twisted sectors at both y1 and y2 will be needed for anomaly cancellation. 

3.3 Discussion 

We have constructed a string theory that does not seem to be connected to the known 

string vacua because we have a different number of tensor multiplets. It cannot be 

viewed as a compactification of Type-I theory because the orientifold symmetry mixes 

nontrivially with internal symmetries of the K3. We have discussed here only the 

simplest example but quite clearly there is a whole class of models one can consider 

at different points in this moduli space. Work on some of these models is in progress 

and will be reported elsewhere [32] . Models with multiple tensor multiplets have been 

considered before in [22, 23] although from a somewhat different point of view. 

By analogy with [26] one can ask if these theories are connected to other theories 

by a phase transition. In six dimensions, infrared dynamics is trivial, so it would 

seem impossible to change the number of anti-self-dual tensors because one can simply 

count the states in the infrared. Such a transition can occur only if there is non-trivial 

infrared dynamics at special points in the moduli space analogous to the situation 

considered in [65]. Perhaps the boundary in the tensor-multiplet moduli space where 

the kinetic term for the gauge fields changes sign is related to such a phase transition. 

Finally, one can ask about the duals of the theories that we have constructed. 
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A. Sen has informed us that at a generic point in the moduli space with U(1)8 gauge 

symmetry, one can obtain identical spectrum by considering an orbifold of M-theory 

compactified on K3 x 5 1 [38]. In this theory the vector multiplets arise from the 

untwisted sector whereas the tensor multiplets arise from the addition of 5-branes of 

M-theory by a reasoning similar to [68, 63]. This is complementary to our construction 

where the tensor multiplets arise from the untwisted sector (on a smooth K3) and 

the vector multiplets arise from the addition of 5-branes. In a recent paper that 

appeared after this work was completed, C. Vafa has obtained identical spectrum by 

a compactification of 'F-theory' [46]. It is plausible that these three models can be 

related to one another by duality. 
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Chapter 4 Strings on Orientifolds 

4.1 Introduction 

In this chapter we discuss string compactifications on orientifolds to six and higher 

dimensions. Orientifolds are a generalization of orbifolds [56, 9, 11, 12] in which the 

orbifold symmetry includes orientation reversal on the worldsheet (for a review see 

[59] and references therein). Orientifolding allows one to construct new perturbative 

vacua that cannot be obtained by usual Calabi-Yau compactification of string theory. 

One can thus explore different regions in the moduli space of string vacua that were 

previously not accessible. 

In six dimensions we focus on orientifolds of Type IIB theory compactified on a 

K3 orbifold to obtain six-dimensional theories with N = 1 spacetime supersymmetry. 

It has recently become clear that the dynamics of D = 6, N = 1 string theories is 

quite rich and offers many surprises. There are points in the moduli spaces of these 

theories where tensionless strings appear which makes it possible to have non-trivial 

dynamics in the infra-red [66, 63]. In particular, there can be phase transitions in 

which the number of tensor multiplets can change. It is therefore quite interesting 

to analyze different branches of the tensor-multiplet moduli space. Usual Calabi-Yau 

compactifications can give only one tensor multiplet. In [32] an orientifold was con­

structed that has nine tensor multiplets. In this paper we discuss some generalizations 

that give models with five, seven, nine, or ten tensor multiplets with different gauge 

groups. Models with multiple tensor-multiplets can also be obtained by compacti­

fications of M-theory [66, 38, 39, 77], or of F-theory [46, 54, 55]. The orientifolds 

that we construct allow one to study the duals of some of these compactifications as 

perturbative string theories. 

In nine dimensions we consider an orientifold of Type IIB theory compactified on 

a circle to obtain the dual of M-theory compactified on a Klein bottle. It is interesting 
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to note that the compactification of M-theory on a circle gives the Type IIA theory, on 

an interval the Es x Es heterotic string [67], on a Mo bi us strip a CHL string[27, 28], 

and on a torus the Type II string [21]. Thus, compactification on a Klein bottle 

completes this list of Ricci-flat compactifications to nine and ten dimensions. We also 

discuss some issues regarding the compactification of Type I theory on a torus. 

This chapter is organized as follows. In section two we first discuss some generali­

ties about orientifolds. In section three we discuss orientifolds of toroidal compactifi­

cations. In section four we discuss orientifolds of Type IIB theory compactified on K3 

orbifolds. The calculation of tadpoles and the relevant partition sums are summarized 

in the Appendix. 

4.2 Some Generalities about Orientifolds 

In general our starting point will be some ZN orbifold of toroidally compactified Type 

IIB theory. We can then take the orientifold projection (1 + fl/3) /2, where fl is the 

orientation reversal on the worldsheet and f3 is some Z2 involution of the orbifold. 

If the orbifold group ZN is generated by the element a, then the total projection 

we would like to perform is given by (1+°'+·J°'N-i) ( 1±
2
°.6) in both the twisted and 

the untwisted sectors of the orbifold. The orientifold group G can be written as 

G = G1 + flG2 such that flhflh' E G1 for h, h' E G2 • 

The closed string sector of the orientifold is obtained by projecting the spectrum 

of the original orbifold onto states that are invariant under the orientifold symmetry. 

The open-string sector of the orientifold arises as follows. Orientifolding introduces 

unoriented surfaces in the closed-string perturbation theory. The unoriented surfaces 

such as the Klein bottle can have tadpoles of R-R fields in the closed string tree 

channel. The tadpoles correspond to the fact that the equations of motion for some 

R-R fields are not satisfied because the orientifold plane acts as the source of the R-R 

fields [56]. By including the right number of D-branes which are also sources for the 

R-R fields with opposite charge, one can cancel these tadpoles. This introduces the 

open-string sector with appropriate boundary conditions and Chan-Paton factors . As 
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we shall see, sometimes the Klein bottle amplitude turns out to have no tadpoles; in 

these cases there is no need to introduce the open-string sector, and the closed-string 

sector by itself describes a consistent theory. 

An open string can begin on a D-brane labeled by i and end on one labeled by 

J. The label of the D-brane is the Chan-Paton factor at each end. Let us denote a 

general state in the open string sector by 11/J, ij). An element of G1 then acts on this 

state as 

g: ( 4.1) 

for some unitary matrix {g corresponding tog . Similarly, an element of DG2 acts as 

Dh: (4.2) 

The relevant partition sums for the Klein bottle, the Mobius strip, and the cylinder 

are respectively f0
00 dt/2t times 

KB : T 
U+T { D/3 1 +a+ ... + aN-l 1 + (-l)F -211"t(Lo+Lo)} 

rNSNS+RR 2 N 2 e 

MS : Tu {D/3l+a+ ... +aN-11+(-l)F -27rtLo } 
rNs-R 2 N 2 e 

C: T >.>.' {!l+a+ ... +aN-l 1+(-l)F -27rtLa} 
rNs-R 2 N 2 e . (4 .3) 

Here F is the worldsheet fermion number, and as usual i+(;i)F performs the GSO 

projection. The Klein bottle includes contributions both from the untwisted sector(U) 

and the twisted sectors(T) of the original orbifold. Orientation reversal n takes NS-R 

sector to R-NS sector, so these sectors do not contribute to the trace. The labels 

A and A' refer to the type of D-brane an open string ends on. For example, in a 

theory with both 5-branes and 9-branes, A and .A' are either 5 or 9; one has to include 

the sectors 55 and 99 for the Mobius strip, and the sectors 55, 99, 59, and 95 for 

the cylinder[61]. The tadpoles can be extracted by factorizing the loop-amplitude in 

the tree channel. Tadpole cancellation then determines the number of D-branes as 

well as the form of the I matrices introduced earlier, which in turn determines the 
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open string sector completely. In fact in many examples that we consider , spacetime 

supersymmetry and anomaly cancellation usually place powerful constraints which 

determine the spectrum even without knowing the full form of the/ matrices. 

Many of the details of the tadpole calculation are similar to those discussed in 

[59, 32, 61] and will not be repeated here. We give a collection of relevant partition 

sums and their factorized forms in the tree channel in the Appendix. 

4.3 Orientifolds of Toroidally Compactified Type 

IIB theory. 

4.3.1 An Example in Nine Dimensions 

Consider Type IIB theory compactified say in the X 9 direction on a circle S9 of radius 

r9 . We can take an orientifold with the group {1, SD} where S is a half-shift along 

the circle, X 9 
--t X 9 + 1rr9 . The closed-string sector of this theory is obtained by 

projecting onto states that are invariant under Sn. The massless bosonic spectrum 

of Type IIB theory in ten dimensions consists of the metric 9M N, the dilaton ¢1 , and a 

two-form B'frN from the NS-NS sector; a two-form BlIN , a scalar ¢2
, and a four-form 

AMNPQ with self-dual field strength from the R-R sector. The fields 9MN , ¢1, and 

BlIN are all even under n, whereas the fields AMNPQ, B'frN , and ¢2 are odd. If we 

were projecting only under n, we would obtain the spectrum of Type I strings; the 

superscript 1 above refers to the fields that survive this projection . 

Now, if we expand a given field W in terms of the Kaluza-Klein momentum modes 

Wm carrying quantized momentum m/ R then the modes with even mare even under 

S, whereas the modes with odd m are odd. Thus, the combined projection under ns 
eliminates all odd momentum modes of the fields 9MN, ¢1

, and BlIN, but all even 

momentum modes of AMNPQ, B'frN, and ¢2
• In particular, once we restrict ourselves 

to zero momentum modes to obtain the massless spectrum in nine dimensions, we 

obtain the closed string sector of the Type I string reduced to nine dimensions. 

Let us now look at the open-string sector. As explained in the previous section, 
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open-string sector arises from the addition of D-branes to cancel tadpoles in the Klein 

bottle amplitude. Now, because of the half-shift that accompanies D, only states 

with odd winding appear in the crosscap state and are thus massive. Another way 

to see this is to first compute the amplitude in the loop channel and then factorize 

in the tree channel. The loop channel momentum sum gives a term proportional 
-ta 1m 2 

to Lm(-l)me ~ where t is the loop-channel parameter. To see the tadpoles in 

the tree channel we use Poisson resummation formula and take the limit t ----+ 0 

corresponding to long, thin tubes; it is easy to see that in this limit the amplitude 

vanishes, and there is no tadpole. Therefore, to obtain a consistent orientifold there 

is no need to add any branes. 

To see what this theory is dual to, we compactify further on a circle Ss of radius 

rs in the direction Xs. The Type IIB theory is T-dual to Type IIA under rs ----+ 

1/rs, and moreover the operation D in IIB is dual to RsD in IIA where Rs is the 

reflection Xs ----+ -Xs [59]. Now Type IIA theory is M-theory compactified on a 

circle S 10 in the X 10 direction. The operation RsD corresponds, in M-theory, to 

taking xs ----+ -Xs, at the same time flipping the sign of the three-form potential 

CMNP of the eleven dimensional supergravity. In M-theory we can interchange the 

two circles ss and S 10 • Therefore, the combined operation SD in Type IIB theory 

corresponds, in M-theory, to X 10 ----+ -X10 , X 9 ----+ X 9 + 7rr9 which is nothing but the 

Z2 transformation that turns the torus T9 ,10 into a Klein bottle. Notice that this is 

not a purely geometric operation in M-theory but is accompanied by a simultaneous 

change of sign of the three-form potential. Under the interchange of the two circles 

S10 and Ss, the symmetry RsD in Type IIA theory is conjugate to the symmetry 

( -1 )FL, where FL is the spacetime fermion number coming from the left-movers [52]. 

All R-R fields are odd under this symmetry and all NS-NS fields are even. Thus, the 

strong coupling limit of the orbifold of Type-IIA theory under the combined operation 

(-I)FL and X 9 ----+ X 9 + 7rr9 is given by M-theory compactified on a Klein bottle. 

It is amusing that we have an example of a compactification on a non-orientable 

surface. Another example is M-theory on a Mobius strip which is dual to a CHL 

compactification [27, 28]. Recall that the Es x Es string is dual to M-theory on an 
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interval in the tenth direction: the two EB factors live at the two endpoints of the 

interval [67]. Compactifying further on a circle, we obtain M-theory on a cylinder. 

The CHL string is obtained as a Z2 orbifold of the heterotic string in nine dimensions. 

The orbifold symmetry corresponds to an interchange of the two EB factors accom­

panied by a half shift on the circle. The combined operation is again X 10 --+ - X 10 , 

X 9 --+ X 9 + 7rTg which turns the cylinder into a Mobius strip [62] . 

4.4 Type I Theory in Eight Dimensions 

Type I theory compactified in the 8 and 9 directions to eight dimensions can be viewed 

as an orientifold of the Type IIB theory on the torus TB9 . It is straightforward to find 

the massless spectrum, but there is one subtlety in taking the T-dual of this theory 

which is worth mentioning. 

Let us T-dualize first in the X 9 direction. T-duality is a one sided parity transform 

[59] which means that in the RNS formulation of the superstring, only the left-moving 

coordinate X9 and its fermionic partner W9 change sign. Thus, T-duality takes Type 

IIB theory to Type IIA theory, and takes D to R9D, where R9 is the reflection in the X 9 

direction. If we dualize again in the XB direction, we would get Type IIB theory back; 

D goes to RB9D, where RB9 reflects both XB and X 9 . This identification leads to the 

following puzzle for the orientifold with the group {1, RB9D}. Under D the four-form 

field AMNPQ is odd, therefore the modes like AMNPg and AMNPB which are 3-forms 

in eight dimensions would be even under the combined operation RB9D and would 

survive the projection. But N = 1 supersymmetry in D = 8 uniquely determines 

the massless field content and does not allow a three-form potential. Therefore, 

supersymmetry is broken by this projection. On the other hand, the orientifold with 

the group {1, RB9D} is T-dual to the one with the group {1, D}, and we cannot break 

supersymmetry by a T-duality transformation. We should really have obtained the 

T-dual of Type I strings in eight dimensions. The reason for this discrepancy is 

that Type IIB theory has an additional symmetry (-ltL under which all R-R fields 

are odd. The correct projection that gives the T-dual of Type I theory involves the 
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combined operation R89 ( -1 tL instead of just the geometric reflection. 

It is easy to see this ambiguity on the worldsheet. In the Ramond sector, the zero 

modes WM correspond to the rM matrices of the spacetime Clifford algebra. Under 

the T-duality transformation W9 ---+ -W9
, the spinors transform as 

( 4.4) 

where S and S are the right-moving and left-moving spacetime spinors respectively, 

and f as usual is the matrix that anticommutes with all fM matrices and squares 

to one. If we T-dualize further in the X 8 direction then S goes to itself, and S goes 

to f 8ff9f s = f 9f 8 S. Let us now see how the massless fields from the Ramond­

Ramond sector transform. The vertex operator for an n-form field strength HM1 ... Mn 

is proportional to Sf M
1 

... MnS where fMi ... Mn = ~! (fMi ... fMn ±permutations). It is 

easy to see that the effect of T-duality on the R-R field strengths HM1 ••• Mn and the 

corresponding potentials is to remove the 8, 9 indices if they are present and add 

them if they are not. For example, the vertex operator for H189 is proportional to 

Sf M f 8f 9S . Under T-duality, it would map onto Sf MS which is the vertex operator 

for the field strength of a scalar. Thus, BJ9 maps onto the scalar q}. However, because 

f 8f and f 9f anticommute with each other, there is a choice of sign for the action on 

the R-R fields, which corresponds precisely to the choice between R89 and R89 ( -1 )FL. 

This ambiguity is, of course, fixed by the correct choice of the orientifold symmetry. 

4.5 Orientifolds of Type IIB Theory on K3 

4.5.1 General Remarks 

Let us review some relevant facts about the I<3 surfaces which can be represented as 

ZN orbifolds of the 4-torus T 4 [78]. Let (z1 , z2 ) be the complex co-ordinates on the 
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torus, and consider the ZN transformation generated by 

(4.5) 

The ZN group must be a subgroup of SU(2) to obtain unbroken supersymmetry in 

six dimensions. The torus T 4 is obtained by identifying a lattice A of points in R4
, 

so the orbifold group must leave the lattice invariant to have a sensible action on 

the torus . This crystallographic condition allows only four possibilities: the groups 

Z 2 and Z 4 when A is the square (SU(2)4 ) lattice given by the identifications zk ,..., 

Zk + 1, ,.._, Zk + i, k = 1, 2; or Z3 and z6 when A is the hexagonal (SU(3) 2
) lattice given 

by the identifications Zk ,.._, Zk + 1, ,.._, Zk + e2ni/3
, k = 1, 2. At a fixed point of a zk 

symmetry there is a curvature singularity. A smooth I<3 can be obtained by blowing 

up the singularity by replacing a ball around the fixed point by an appropriate smooth 

non-compact Ricci-fiat surfaces Ek whose boundary at infinity is S 3 /Zk. 

In this section we consider two classes of orientifold projections ( 1 + D/3) /2 of Type 

IIB theory on these orbifolds . In the first class of models we take /3 to be identity, 

whereas in the second class we take /3 to be a specific Z2 involution S of I<3 that has 

8 fixed points . We shall give an explicit description of this involution in the following 

subsections. 

One immediate question is whether the projection leaves any supersymmetries 

unbroken. In the case of n the combination Qa + DQa of the left-moving and right­

moving supercharges will be invariant; supersymmetry will be broken by half, giving 

us N = 1 supersymmetry starting from N = 2. When we combine n with S, we do not 

want to break the supersymmetry further, so S should leave all N = 2 supersymme­

tries invariant. This is possible if the rotational part of the symmetry Sis a subgroup 

of SU(2), or equivalently if it leaves the holomorphic 2-form invariant. It is useful to 

consider the example of Z2 orbifold. In this case we have a : ( z1 , z2 ) -----t ( -z1 , - z2 ) 

which generates a discrete subgroup of the SU(2) holonomy group of a smooth I<3 , 

and therefore leaves two supercharges invariant giving us N = 2 supersymmetry. The 

symmetry Sis given by S: (z1 , z2 ) -----t (-z1 + ~' -z2 + ~) which is a combination of 
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a shift and a rotation [32]. The shift has no effect on the supercharges; the rotation 

is again a subgroup of the holonomy group SU(2) and therefore does not break any 

supersymmetries by itself. Thus the combined operation SO gives N = 1 supersym­

metry as required. Now, the Z 2 orbifold admits other involutions; for example, the 

Enriques involution E: (z1,z2)-+ (-z1 + ~,z2 +~)which does not leave the holo­

morphic 2-form invariant, and cannot be used for orientifolding if we want unbroken 

su persymmetry. 

The closed-string sector of an orientifold can be determined by index theory and 

by appropriate projection. Recall that the massless representations in D = 6 are 

labeled by the representations of the little group which is Spin( 4) rv SU(2) x SU(2). 

The massless N = 1 supermultiplets are 

1. the gravity multiplet: (3, 3) + (1, 3) + 2(2, 3), 

2. the vector multiplet: (2, 2) + 2(1, 2) 

3. the tensor multiplet: (3, 1) + (1, 1) + 2(2, 1) 

4. the hyper multiplet: 4(1, 1) + 2(2, 1). 

To determine the massless modes we need to know the Dolbeault cohomology [19], 

and how the symmetry 0/3 acts on the cohomology. For a smooth I<3, the nonzero 

Hodge numbers are h00 = h22 = h02 = h20 = 1, and h11 = 20. Among the 2-forms 

the (0, 2), (2, 0), and the Kahler (1, 1) form are self-dual, and the remaining 19 (1, 1) 

forms are anti-self-dual. The manifolds Ek have (k - 1) anti-self-dual (1, 1) harmonic 

forms, and one (0, 0) form. In the orbifold limit, each fixed point that is repaired by 

Ek contributes (k - 1) anti-self-dual (1, 1) forms which together with the (1, 1) forms 

of the original torus that are invariant under the orbifold group give the 20 (1, 1) 

forms of I<3. 

It is useful to think in terms of Type I theory compactified on a smooth I<3. 

In this case, the orientation reversal symmetry in ten dimensions, which we shall 

call no has the effect of flipping the sign of AMNPQ, </>2' and B'f..tN, leaving other 

massless fields invariant. The resulting theory has h11
( = 20) hypermultiplets which 

come from the zero modes of BltN and 9MN· There is only one tensor multiplet from 

contracting BJ.tN with the (0, 0) form. Now imagine performing a projection not with 
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n0 but with r20T where Tis some geometric symmetry under which nr (1 , 1) forms 

are odd and all others are even. In this case, by contracting AMNPQ with these (1, 1) 

forms, one can obtain ny additional tensor multiplets that are invariant under the 

combined operation r20T . At the same time, ny hyper-multiplets are now projected 

out changing their total number to (20-nr ). This reasoning gives the simple equation 

ny + nH- = 20, (4.6) 

where n'H refers to the number of hypermultiplets arising from the closed string sector, 

and ny + 1 is the total number of tensor multiplets. Moreover, no vector multiplets 

arise from the closed string sector because there are no harmonic odd forms on K3, so 

starting with even forms and the metric in ten dimensions, one cannot obtain a one­

form vector potential. We can thus read off the closed string spectrum immediately 

from the geometric data of the orientifold. 

In the orbifold limit, the orientifold symmetry n, for the purposes of counting of 

states, is really a combination of r20T where T is some geometric symmetry that has 

nontrivial action on the cohomology. This is because at each fixed point, n takes 

the sector twisted by p to the one twisted by p-1
. If we repair the singularity at the 

fixed point of a Zk symmetry by the smooth surfaces Ek then the (k -1) (1, 1)-forms 

coming from Ek correspond to the ( k - 1) twisted sectors. If we think of the orbifold 

as a limit of a smooth K 3 , then except in the case when a is a Z2 twist, we get a 

nontrivial action on the cohomology denoted by T. This information is sufficient to 

work out the spectrum of the orientifold in the closed-string sector. 

Let us now discuss the massless bosonic spectrum coming from the NS open-string 

sector. The states 

\0~112 10,ij)>.ji, µ = 1,2,3,4, 

belong to the vector multiplets whereas the states 

\b:.'1; 2 10, ij)>.ji, m = 6, 7, 8, 9, 

(4.7) 

( 4.8) 
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belong to the hypermultiplets. We have to keep only the states that are invariant 

under a and 0/3. For this purpose we need to know the form of the / matrices defined 

in (4.1) and (4.2) which are determined by the requirement of tadpole cancellation. 

The Chan-Paton wave functions Aij allowed by these projections determine the gauge 

group and the matter representations. 

There are some features of the tadpole calculation that are common to all orbifolds. 

First, by the arguments given in [61], only 5-branes and 9-branes appear. Let v6 and 

v4 be the regularized volumes of the noncompact and the compact spaces in string 

units. If we look at the the Klein bottle amplitude in the tree channel then non-zero 

tadpoles proportional to v6v4 correspond to 10-form exchange requiring addition of 9-

branes. Similarly a term proportional to v6 /v4 corresponds to the exchange of 6-forms 

from the untwisted sector, requiring addition of 5-branes, and the terms proportional 

to v6 correspond to the exchange of 6-forms from the twisted sector and must cancel 

without the addition of any branes. Now with the orientifold group G = G1 + OG2 , 

9-branes can arise only if G2 contains the identity, and 5-branes arise only if G2 

contains the element R that reflects all four internal co-ordinates. In these cases the 

determination of the 10-form and the untwisted 6-form tadpoles is identical to the 

calculation in [61] which requires 32 9-branes with /~,9 = /o,9 , and/or 32 5-branes 

with /~,5 = -10,s-

4.6 Z20rbifold 

For the Z2 orbifold, the model in the first class with the projection (1 +0)/2 has been 

discussed in [61], and the model in the second class with the projection (1 + S0)/2 

in [32]. We would now like to consider a model that is closely related to the one in 

[32]. Let us recall that in [32] the symmetry S was chosen to be such that 52 = 1. 

However, if we are on a Z2 orbifold, then the symmetry can square to the element a 

that generates the orbifold group. We choose 

(4.9) 
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Now S has 4 fixed points and not 8. However, they are also the fixed points of a 

which is a Z2 symmetry. So on the orbifold, the fixed point of S should be regarded 

as having Euler character 2 giving us the total Euler character of 8 in agreement with 

the Lefschetz number [17] . 

Obviously, the spectrum consists of the closed string sector found in [32] giving 

us nr = 8, nH = 12 and the gravity multiplet. However, because now neither R 

nor the identity are elements of G2 , there is no need to add any branes, and there 

is no open-string sector. One nontrivial check is that the tadpoles of the R-R fields 

from the twisted sector now have to cancel by themselves for the Klein bottle without 

any contribution from the open-string sector. It is easy to see using the formulae in 

the Appendix that the tadpoles from the untwisted sector cancel against those from 

the sector twisted by ! giving us a consistent theory. Gravitational anomalies cancel 

completely as expected. 

4.6.1 Z3 Orbifold 

The orbifold symmetry in this case has nine fixed points of order 3 which contribute 

two anti-self-dual (1, 1) forms each giving 18 in all. Out of the six 2-forms on the torus 

one anti-self-dual (1, 1) form and the remaining three self-dual 2-forms are invariant 

under a giving us 22 2-forms of the K3. 

Let us first consider the projection under n. As explained in Subsection 4.1, at 

each fixed point of the orbifold n interchanges the sector twisted by a to that twisted 

by 0:-1 besides flipping the sign of all R-R fields. This means that of the two tensor 

multiplets coming from each fixed point, only one will be invariant, giving us nr = 9 

from the nine fixed points , and nl-T = 11 from ( 4.6) . 

To determine the open-string sector we note that , by the general arguments men­

tioned in Subsection 4.1, there will be 32 9-branes, and we can choose /o = 1 by a 

unitary change of basis [61]. The requirement that (Da) 2 = a2 implies 

2 ( -l)T tex2 = lex = /Oex lOex · ( 4.10) 
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Using the fact the the/ matrices are unitary, and /na = /n/a, we conclude that /a is 

real. Furthermore, because/~ = 1, the only eigenvalues are cube-roots of unity. If n 

eigenvalues are e2tri/3 , then n will be e-2tri/3 , and 32 -2n will be 1. We can then write I 

in a block-diagonal form where in a 2n dimensional subspace it acts as a 27r /3 rotation 

and in 32 - 2n dimensional subspace it equals the identity matrix . This information 

and anomaly cancellation is enough to determine that n = 8. We can also verify 

this by a detailed calculation of tadpoles as discussed in the Appendix . The gauge 

group will then be given by 50(16) x U(8) with hypermultiplets in (1, 28) + (16, 8) . 

It is easy to see that the anomaly terms proportional to tr( F 4
) and tr( R4

) vanish. It 

is not necessary for the remaining anomaly to factorize because we have more than 

one tensor multiplet available, and the anomalies can be canceled by the generalized 

Green-Schwarz mechanism as in [15, 22, 32] . 

Let us now describe the action of S on the Z3 orbifold. It is given by 

( 4.11 ) 

S has 16 fixed points on the torus but on the orbifold they split into one singlet and 

five triplets of Z3 . The Euler character of the fixed point at the origin which is a singlet 

under the Z3 is 3 and that of the 5 triplets is 1 each giving 8 altogether . Now, because 

S is just a reflection of all co-ordinates, the orientifold with the projection (1 +SO) /2 

is T-dual to the one described in the previous paragraphs with the projection(l+D)/2. 

T-duality turns 9-branes into 5-branes, but the spectrum remains unchanged. 

4.6.2 Z4 Orbifold 

The Z4 orbifold has four fixed points of order 4. Each contributes three tensor mul­

tiplets out of which only one is invariant under the action n. No additional tensors 

arise from the six doublets of fixed points of order 2. Altogether nr = 4, and nH = 16. 
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In this case both 5-branes and 9-branes will be present, and we can choose 

/0,9 = 1, In 5 = J = · [
o -ii 

' i 0 
( 4.12) 

The remaining algebra is determined in terms of the matrices /a,9 and /a,5 . Tadpoles 

are canceled if Tr (la ,9 ) = Tr (la,9)2 =Tr (/a,9)3 = 0 and similarly for the matrices 

with subscript 5. This determines the / matrices completely. Moreover /a, 9 = /a, 5 , 

and their eigenvalues are such that each forth root of unity appears eight times. The 
' gauge group is U (8) x U (8) x U (8) x U (8) with hypermultiplets in (28, 1, 1, 1) + 

(1, 28, 1, 1) + (1, 1, 28, 1) + (1, 1, 1, 28) + (8, 8, 1, 1) + (1, 1, 8, 8) + (8, 1, 8, 1) + (1, 8, 1, 8). 

Once again the anomaly terms proportional to tr (F 4
) for each factor, and the coeffi­

cient of tr ( R4
) vanish. 

Let us now consider the action of the symmetry S which is given by 

S: ( 4.13) 

This form is determined by the requirement that S has to preserve the orbifold sym­

metries; in particular, it should map a fixed point of a given order to a fixed point of 

the same order. It is easy to check that eight ( 1, 1) forms are odd under S. The 16 

fixed points form four quartets under Z4 • In addition, S leaves two doublets under 

a invariant which should be regarded as fixed points on !{3 with Euler character 2. 

The total Euler character of the fixed point set adds up to 8. 

If we consider the orientifold with the projection (1 + DS), then only 32 5-branes 

are required. As in [32] we find nr = 8, nH = 12 from the closed-string sector. We 

can place 16 branes at a fixed point of a 2 which is in a doublet of a that is left 

invariant by S, and 16 at its image under a . For example, we can place 16 branes at 

the O, ~) and the remaining 16 at (~, ~). In this case the gauge group is U(8) x U (8), 

with charged hyper-multiplets in 2 (8, 8). This is exactly the spectrum of the model 

considered in [32] for the Z2 orbifold. If we place 16 branes at the fixed point of a, 

and 16 at its image under S, then the gauge group is U( 4) x U( 4) x U( 4) x U( 4) with 
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hypermultiplets in ( 4, 4, 1, 1) + ( 4, 1, 4, 1) + ( 1, 4, 1, 4) + ( 1, 1, 4, 4). 

4.6.3 Z6 Orbifold 

In this case, we get two tensors from the fixed points of order 6 and one each from the 

four fixed points of order 3 giving us nr = 6 and n'H = 14. The open-string sector has 

both 5-branes and 9-branes. The eigenvalues of the matrix /a,s = /a,9 are as follows: 

1 and -1 appear eight times each and the other sixth roots of unity appear four 

times each. The resulting gauge-group is U( 4) x U( 4) x U(8) with hypermultiplets 

in (6,1,1) + (1,6,1) + (4,1,8) + (1,4,8) from the 55 sector, and identical spectrum 

from the 99 sector. The 59 sector contributes hypermultiplets in (4, 1, 1,4, 1, 1) + 
(1, 4, 1, 1, 4, 1) + (1, 1, 8, 1, 1, 8). 

Appendix. Tadpole Calculation 

For evaluating the traces in the loop-channel we need the determinants of chiral 

bosons and fermions with twisted boundary conditions. Let us denote by DF[~] 

the fermion determinant of a chiral Dirac operator ( \7~ 1 ) which corresponds to the 
2 

path integral of a complex chiral fermion with boundary condition '!jJ(<J1 + 27r, <J2 ) = 

-e27ria'!/J(<J1 , <J2), and '!/J(<J1, <J2 + 27r) = -e27rib'!/J(<J1, <J2). It is straightforward to 

evaluate this determinant in the operator formalism[75] . Writing q = e27riT, and 

using the standard relation between the path integral and the operator formalism, it 

is equal to the trace Tr ( hb qHa ). Ha is the Hamiltonian of a chiral, twisted fermion: 
7-1. 

L
oo 1 t 1 -t - a2 1 

H = (n - - + a)d d + (n - - - a)d d + - - -. 
a 2 n n 2 n n 2 24 

n=l 

( 4.14) 

The fermionic oscillators satisfy canonical anticommutation relations { d~, dm} = 8mn 

and {J~,Jm} = 8mn, and 1i is the usual Fock space representation of these com­

mutations. The group ZN acts on this Fock space through hdh- 1 = -e-21ribd , 
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hdh- 1 = -e27ribJ. The trace equals (up to an arbitrary phase) 

2 00 

27riab .!L_..L II (l + n - l + a 27rib) (l + n-1-a -27rib) e q 2 24 q 2 e q 2 e . (4 .15) 
n=l 

Using the product representation of the theta function 19[~ ] (T) with characteristics 

[74] , we see that 

( 4.16) 

where 77( T) is the Dedekind 77 function. The chiral boson determinant is the inverse 

of the chiral fermion determinant, except for a = ! when one needs to be careful 

about the zero modes. Note that untwisted NS fermions with half-integer modings 

and antiperiodic boundary conditions for the trace corresponds to a = 0, b = O; an 

untwisted boson with periodic boundary condition along the ~2 direction corresponds 

to a = !, b = !· Using these formulae one can write down the traces by inspection . 

The tadpole calculation corresponding to the 10-form and the untwisted 6-form ex­

change are identical to the one in [61], and will not be repeated here. We shall be 

interested in the tadpole of only the 6-form from the twisted sector which corresponds 

to the boundary conditions for the determinant for internal bosons that have only 

oscillator sums but no momentum or winding sums. 

Let us first evaluate the traces in ( 4.3) for the Klein bottle. The total trace can 

be written as 

(1 - l)v6 [
00 dt '°' Z[a] 

64N Jo t4 
8 ~ b ' 

( 4.17) 

where the (1-1) refers to NSNS - RR exchange in the tree channel, v6 is %/(4?ra')3; 

b = k/N, k = 1, .. ., (N - 1) corresponding to the terms with ak in the trace. Only 

the untwisted sector and the sector twisted by ! contribute because for other twisted 

sectors D is off-diagonal; a is therefore either 0, or !· From the untwisted sector we 

get 

( 4.18) 

and from the sector twisted by ! at each fixed point that is left invariant by ak, we 
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get 

(4.19) 

where T = 2it and b = k/N. Let us now turn to the traces for the cylinder. In this 

case, in general we can have 55, 99, 59, or 95 sectors. The partition sum is given by 

(1 - l)v6 {oo dt '"""' Z[.\A']Tr ( )Tr ( -1) 
64N lo t4 >..'7:,b b /b ,>.. tb,>..' ' ( 4.20) 

where.\ and.\' take values either 5 or 9, and />..,b refers to the matrix />..,cxk for b = k/ N. 

We obtain 

( 4.21) 

with T = it. The Mobius strip amplitude is given by 

(1 - l)v6 [ 00 di .\.\ T -1 

64N lo t4 ft Z[ b ]Tr hbn,>..lbn,>..), 
, 

( 4.22) 

where only 55 and 99 sector contribute. We obtain 

with T = 2it 

To factorize in the tree channel we use the modular transformations under T ----+ 

I · [-b] (-iT)-2e-2mabr; a (-1/T) 
I 

(-iTr2 T/ (-1/T), (4.24) 
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and take the limit t ---+ 0. While writing the tadpoles we also have to take into account 

that the tree channel length l is equal to 1/4t, 1/2t, and 1/8t for the Klein bottle, 

the cylinder, and the Mobius strip respectively. The twisted-sector tadpole is then 

proportional to (l~~v6 f dl. In this common normalization, we get, 

KB: 

C: 

MS: 

(16) 2 sin2 (27rb), 

-64, 

4sin2 (7rb)Tr (rb,>.)Tr (r~l), 

-Tr(rb,s)Tr(i~J)-(9 ~ 5), 

-64sin2 (7rb)Tr (rf0 ,9 )Tr (1;0
1
,9 ), 

-64 cos2
( 7rb )Tr (r~,5 )Tr (1;0

1
,5 ), 

a= 0, b # 0, 

1 1 
a= 2, b # 0, 2; 

b # 0, >. = 5 or 9, 

b # O; 

b-1.0~ 
I '2 

1 
b # 0, 2· 

The Klein bottle contributes -64 from each sector twisted by t for each fixed point 

that is left invariant by ak. 
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A Note on Orientifold and 

Orientifolds are a generalization of orbifolds in which the orbifold symmetry is a 

combination of a spacetime symmetry and orientation reversal on the worldsheet 

[8, 56, 61, 59]. These techniques have significantly enlarged the set of string vacua 

that can be studied perturbatively. Several new string vacua can now be constructed 

as orientifolds which exhibit novel dynamical phenomena and have interesting non­

perturbative duals in M-theory, F-theory, or heterotic string theory. 

One important application of orientifolds is in the construction of models in six 

dimensions with N = 1 supersymmetry. The dynamics of these theories offers many 

surprises like the appearance of tensionless strings which can cause a phase transition 

in which the number of tensor multiplets changes [25, 66, 64], or the appearance of 

enhanced gauge symmetry when an instanton shrinks to zero scale size [65] . Orien­

tifolds are useful in understanding some aspects of these phenomena perturbatively. 

For instance, the models with multiple tensor multiplets are inaccessible using usual 

Calabi-Yau compactifications which give only a single tensor multiplet. However, one 

can easily construct orientifolds [11, 32, 36, 33, 37] with multiple tensor multiplets at 

special points in this moduli space. By turning on the moduli in the tensor multiplets 

one can move away from these special points and thus explore different regions of the 

moduli space that are separated by phase boundaries. Some of these models [32] are 

known to have M-theory duals[38, 39]. The extra tensor multiplets which arise in 

M-theory from the addition of M-theory 5-branes occur perturbatively in the dual 

orientifold. Similarly, small instantons, which cannot be described as a conformal 

field theory in heterotic compactifications, have a perturbative description in terms 

of a Dirichlet 5-brane in the dual orientifold [65, 73]. In particular, the enhanced 

Sp( k) symmetry when k small instantons coincide can be understood in terms of co-
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incident 5-branes with a specific symplectic projection in the open string sector that 

is determined by the consistency of the world-sheet theory. 

Another more recent application of orientifolds is in connection with F-theory 

[46, 54, 55]. F-theory refers to a new way of compactifying Type-IIB theory in which 

the complex coupling A of Type-IIB theory is allowed to vary over space. The coupling 

is given by A = e + ie-<P where </> is the dilaton from the NSNS sector and e is the RR 

scalar. Consider an elliptically fibered Calabi-Yau manifold]{ which is a fiber bundle 

over a base manifold B with a torus as a fiber whose complex structure parameter is 

T. Even-though ]{ is a smooth manifold, there will be points in the base manifolds 

where the fiber becomes singular, and the parameter T can have a nontrivial SL(2, Z) 

monodromy around these points. An F-theory compactification on ]{ refers to a 

compactification of Type-IIB theory on B, where the coupling A is identified with T. 

The nontrivial monodromy of A around the singular points then means that there are 

7-branes at those points that are magnetically charged with respect to the scalar A. 

Typically, the base manifold is not Ricci-flat and moreover, because A is varying, there 

is a nonvanishing RR background. These backgrounds cannot, therefore, be described 

using conformal field theory. For special choices of the manifolds ]{, however, an F­

theory compactification is equivalent to a perturbative Type-IIB orientifold. This 

follows from an observation due to Sen [40] that the element -1 of S L(2, Z) which 

is not an element of PSL(2, Z) is a perturbative symmetry of Type-IIB. It flips the 

sign of the two 2-form fields BltN and BfvIN, but leaves all other massless fields, 

in particular, the coupling fields A invariant. From its action on the massless fields 

it is easy to check that this element represents the action of n( -1 )FL where n is 

orientation reversal on the worldsheet and FL is the spacetime fermion number of the 

left-movers. In the example considered by Sen, ]{ is a ]{3 surface that is a Z2 orbifold 

of a four-tours; F-theory on this surface corresponds to a Type-IIB orientifold with 

the orientifold group { 1, n( -1 )FL (T} where (T is a specific Z2 involution of ]{3 , and is 

T-dual to Type-I theory. Such an identification of F-theory with an orientifold is very 

useful. For instance, it was used in [40] to establish the duality between F-theory on 

K3 and the heterotic string on T 2 by relating it to the duality between the Type-I 
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and the heterotic string in ten dimensions. 

In this chapter we analyze an orientifold of a I<3 orbifold which gives N = 1 

supersymmetry in six dimensions. Its T-dual has the same orientifold group as the 

Type-I orientifold analyzed by Gimon and Polchinski [61], but the orientation reversal 

symmetry n acts with an additional minus sign on the twisted sector states of the 

orbifold. One is familiar with an analogous situation in orbifold constructions. For 

a zk x zk orbifold symmetry, there are k inequivalent orbifolds which correspond 

to turning on discrete torsion[47, 53] . These different orbifolds correspond to the k 

distinct choices of phases for the action of the generator of one Zk subgroup on the 

sectors twisted by other generators . 

This model illustrates interesting new features that are relevant to all the ap­

plications mentioned earlier: the unusual action of orientation reversal gives rise to 

multiple tensor multiplets, the 5-branes at the fixed points of the orbifold have or­

thogonal projection instead of the symplectic projection of a small instanton at a 

nonsingular point, and it is perturbatively equivalent to F-theory on a Calabi-Yau 

orbifold T 6 /{Z2 x Z2} with Hodge numbers (h11 ,h21
) = (51,3) [53] . Using the for­

mulae in [54] we see that this F-theory compactification gives 17 tensor multiplets, 

four neutral hypermultiplets, 50(8)8 gauge group, and no charged hypermultiplets. 

Our aim in the following is to see how the orientifold reproduces this spectrum. 

Let us denote the complex coordinates of the six-torus by zi, z 2 , z3 with identifi­

cations z1 = z1 + 1 = z1 + i, l = 1, 2, 3. The Z2 x Z2 symmetry is generated by the 

elements a and /3 where 

/3 (5 .1) 

It is easy to work out the cohomology [48, 49, 53]. The untwisted sector contributes 

(3, 3) to (h 11
, h21 

), and the sectors twisted by a, /3, and a/3 each contribute (16, 0), 

giving (51, 3) altogether. To obtain the corresponding orientifold, we take z3 as the 

coordinate of the fiber, and consider Type-IIB compactified on a four-torus with 
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coordinates (z1, z2): Z1 = X 6 + iX7
, Zz = X 8 + iX9

. Orbifolding with the symmetry 

a gives Type-IIB on I<3 = T 4 /Z2 • The element /3 can be written as R2R3 where 

R2 is a geometric symmetry (z1 , z2 ) ---+ (z1 , -z2 ), and R3 , which reflects the fiber, is 

nothing but the element -1 of SL(2, Z) which corresponds to the operation r!(-l)FL 

as explained in the preceding paragraph. We are thus led to consider an orientifold 

of Type-IIB on I<3 with the orientifold group {1,r2(-llLR2} 1
. 

This orbifold is a special case of a large class of elliptic Calabi-Yau threefolds 

studied by Voisin [42] and Borcea [43] and discussed in [45, 55]. One can take the 

base to be a I<3 which admits an involution O' under which the holomorphic 2-form 

w is odd, and construct the Calabi-Yau as an orbifold I<3 x T2/{l,O'R3 } where R3 

is the reflection of the torus. It should be possible to generalize the considerations of 

this paper to this whole class of models. 

The projection that we wish to perform is ~(1 + n(-llL Rz)(l + R) where R = 

R1 R 2 . The projection ~(1 + R) gives us Type-IIB theory on a K3 which has 21 

tensor multiplets of N = 2 supersymmetry which is sum of a tensor multiplet and 

a hypermultiplet of N = 1 supersymmetry. Five of these multiplets come from the 

untwisted sector, and the remaining 16 come from the twisted sectors at the 16 fixed 

points of the orbifold. Now, from the arguments of [33, 40], one would have expected, 

by T-duality in the 89 directions, that the operation n( -1 )FL Rz is equivalent to the 

operation n. It seems, therefore, that we get an orientifold of T 4 with the orientifold 

group {1, R, n, r!R} which is nothing but a Type-I orientifold on K3 analyzed by 

[61]. The massless spectrum, however, is very different; for example, the closed-string 

spectrum of the model of [61] has only one tensor multiplet instead of 17, and 20 

neutral hypermultiplets instead of four. The reason for this mismatch is that, even 

though the two projections are the same in the untwisted sector, they are different in 

the twisted sectors of the orbifold. This is clear if we look at the action of n( -1 lL R2 

on the twisted sectors . The operation n that is dual to n( -1 )FL Rz corresponds 

to r20T, where n 0 is the operation considered in [61], and T is a symmetry of the 

orbifold that flips the sign of the twist fields at all fixed points. In untwisted sector 

1We would like to thank S. Mukhi for this observation which prompted this investigation [24). 
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m both theories give one tensor multiplet and four hypermultiplets. But in the 

twisted sector at each fixed point, n0 projects out the tensor multiplet and keeps the 

hypermultiplet giving the closed string spectrum of Type-I on K3 whereas n keeps 

the tensor multiplet and projects out the hypermultiplet giving 17 tensor multiplets 

and four hypermultiplets altogether, as required. 

Let us now turn to the open-string sector. We shall follow the notation of [61] in 

the T-dual picture so that we have 7-branes and 7'-branes instead of 9-branes and 

5-branes respectively. The T-dual picture turns out to be easier because then the 

symmetry breaking is given by geometric separation between branes instead of by 

Wilson lines. The orientifold group in this case is { 1, R, n( -1 )FR R1' n( -1 tL R2}. 

Note that both Rl and R2, and similarly n( -1 )FL and n( -1 )FR all square to (-1 )F 

but the elements of the orientifold group all square to 1 as they should. To simplify 

the notation, let us denote n( -1 tR Rl and n( -1 tL R2 by n1 and n2 respectively. 

To determine the open-string sector we need to determine, as in [61], the number of 

branes of each type and the eight /matrices that give the action of the four orientifold 

group elements on 7 and 7' branes. 

Before discussing the details of the calculation let us present the results. Tadpole 

cancellation requires 32 branes of each kind; the 32 7-branes are located at the four 

fixed planes of R1 in groups of eight, and the 32 7'-branes are located at the fixed 

planes of R2 in groups of eight. Moreover, by a unitary change of basis, the various 

gamma matrices are given by 

/1,1 1, 101 ,1 = 1, /R,1 = 1, 102 ,1 = l; 

/1,7 1 1, /02,7' = 1, /R,7 1 = -1, /01 ,7' = -1. (5.2) 

Now consider the massless bosonic states coming from the 77 sector at the fixed 

point where eight 7-branes are located. The vectors are given by iP~ 1 ;2 IO , ij)Aji, µ = 

1,2,3,4; R = +1 implies)..=>.., and n1 = +1 implies)..= ->..T, which means that 

the vectors are in the adjoint of S0(8) . The scalars are given by iP~ 1 ;2 IO , ij)>..ji, µ = 

6, 7, 8, 9; R = +1 implies >.. = ->.., which means that they are all projected out. 
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From four fixed planes of R1 we get 50(8)4, and similarly from the 7'7' sector we get 

another 50(8)4
. Thus, altogether we get 50(8)8 with no charged hypermultiplets . 

In the 77' sector there is a subtlety. In this case, we have to choose the oscillator 

vacuum of this sector to be odd under the action of R instead of even as in [61]. This 

is consistent with factorization because 77' and 7'7 states can turn into 77 or 7'7' 

states, but we cannot have two 77 or two 7'7' states turning into a 77' state. So one 

can choose the 77' vacuum to be odd and the 77 and 7'7' vacua to be even. We shall 

explain two paragraphs later that this choice is indeed forced upon us by consistency. 

In this sector the fermions wm have integer modings, so the ground states are given by 

a representation of Clifford algebra generated by the zero modes. The total state after 

GSO projection is 18 3 , 8 4 , ij)>.ji, 8 3 = -84 where 8 3 , 8 4 = ±~. We choose Ron these 

GSO-projected vacuum states to be -1 instead of + l. Thus, R=+ l on the total state 

implies>. = ->. which projects out the massless states completely. To summarize, we 

get 17 tensor multiplets and four hypermultiplets from the closed-string sector, and 

50(8)8 gauge group with no charged hypermultiplets from the open-string sector, 

altogether in agreement with the F-theory spectrum. 

This determination of the spectrum, however, poses the following puzzle. From 

arguments similar to those presented in [61], one would have expected that if /o1 ,7 is 

symmetric then /o 1 ,7 ' should be antisymmetric. How did we then obtain a solution 

in which both are symmetric? To see that this is a consistent choice, let us recall 

the argument of [61]. In the following we shall often switch between our model 

and its T-dual. In order to obtain a true representation (and not merely a projective 

representation) of the orientifold symmetry that we are gauging, we must have !12 = I 

in the full string Hilbert space, which is a direct product of the Fock space of string 

oscillators and the Chan-Paton index space. Now, because !12 is -1 on the oscillator 

part of the massless states, it must be compensated by choosing -1 on the Chan­

Paton part. This forces /o,5 to be antisymmetric if /o,9 is symmetric. In our case, 

however, because of our choice of R =-I on the GSO-projected vacuum states that 

we used in the previous paragraph, the massless states in the 59 are projected out . 

Moreover, it is easy to see that at the massive level, the oscillator part of the physical 
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states that are left after the GSO and the R-projection all have n2 = + 1. This is 

so because only the states at half-integer mass levels survive the projections. Now, 

n2 = -1 for the half integer oscillator modes, and moreover because n2 = -1 on the 

oscillator vacuum as noted by [61], the total oscillator state has !12 = + 1. This in 

turn implies that in the Chan-Paton space we must choose !12 = 1 which means that 

if /o,9 is symmetric then /o,5 must also be symmetric. To put it differently, of the 

whole tower of states in the 59 sector, the states that are kept after the GSO and 

the R projection, all have !12 = -1 in [61], but have !12 = +1 in this paper. Thus, 

the choice of the projection R and the sign of the eigenvalue of !12 are correlated. 

Under T-duality 59 sector corresponds to 7'7 sector and the argument above can be 

repeated there. 

Let us now show that the spectrum described above satisfies all consistency re­

quirements, and is moreover uniquely determined. Tadpole calculation in this case is 

very similar to the T-dual of [61] . The Klein-Bottle and the Mobius strip amplitudes 

are identical, and for the cylinder amplitude, the only difference is the additional 

minus sign in the 77' and 7'7 sector in calculating the trace of R. The tadpoles are 

thus given, in the notation of [61] , by 

~~~~ { 32
2 

- 64 Tr(/011, 7/~1 , 7 ) + (Tr(/1,1) )
2
} 

+ 
I 

V6V2 { 2 1 T 2} 
l6v2 32 - 64Tr(!f12,7'l02,7') + (Tr(/1,11)) 

+ ~6 { Tr( /R,7 )Tr( /R,7') + 2 t. (Tr( /R,7) )
2 

+ 2f
1 

(Tr( /R,7') )
2
} . (5.3) 

Here v6 is the regularized volume of the uncompactified dimensions, v2 and v~ is the 

the volume of the 2-tori in the 67 and in the 89 directions respectively; I and I' refer 

to the fixed points of R1 and R2 respectively. 

The chain of reasoning that determines the solution is then as follows. To cancel 
I 

the tadpoles of the 8-forms from the untwisted sector (the terms proportional to v
6

v2 

v 2 

and v~~2 ), we need 32 branes of each kind with /l,7 and /l,7' equal to I, and /0 1 ,1 

and /02,71 both symmetric, which can be chosen to be I with a unitary change of 



66 

basis of Chan-Paton indices. One can then use the argument presented in [57] which 

considers the amplitude in which a closed-string twisted state turns into open string 

states. Conservation of D1 and D2 requires that /R,7 and /R,7' both be symmetric, 

which in turn implies that /n2 ,7 and /0, 1 ,71 must also be symmetric. This can be 

consistent only if we choose vacuum states in the 77' to have R = -1 so that all 

oscillator states with D2 = -1 are projected out. Cancellation of the tadpoles of 6-

forms from the twisted sector (the terms in (5.3) proportional to v6 ) then determines 

that the branes are distributed in groups of eight at the fixed planes, with /R,7 = I 

and /R, 7' = -1. This determines the solution completely. 

The next simplest orientifold is when the I<3 is given by Z3 orbifold of a hexagonal 

lattice. In this case, z1 =z1 +1 = e27rf3zi, l = 1, 2. The element a in (5.1) is given by 

a: (z1 ,z2)----+ (e27r/3z1,e-27r/3z2 ) and /3 is the same as in (5.1). We are thus interested 

in the projection i(l +a+ a 2 )(1 + D(-l)FLR2 ) Now, because D(-ltLR2 , in this 

case interchanges the sectors twisted by a with those twisted by a 2
, one can easily 

see that this orientifold is T-dual to the Z3 orientifold with the usual D projection 

discussed in [36, 33]. This model has 10 tensor multiplets and 11 hypermultiplets, 

and 32 7-branes of one kind. If they are all located at the fixed point of R2 , that is 

also invariant under a, then the gauge group is 50(16) x U(8) with hypermultiplets 

in (1, 28) + (16, 8). 

To find a potential F-theory dual on a Voisin-Borcea orbifold, we consider the 

configuration in which there are eight 7-branes at each fixed point of R2 so that the 

tadpoles are canceled locally. One fixed point of R2 is invariant under a, and the 

remaining three form a triplet. The gauge group is 50(8) x 50(8) with one adjoint 

hypermultiplet under the first 50(8) that comes from the fixed points that form a 

triplet under a. To identify the F-theory dual we need to find an elliptic Calabi­

Yau X with the right Hodge numbers. The Hodge number can be calculated by 

compactifying further on a T 2 and computing the Type-HA spectrum as in [55]. We 

then have 

h11 (X) = r(V) + T + 2, h21 =Ho - 1 
' 

(5.4) 
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where r(V) is the rank of the gauge group , T is the number of tensor multiplets, 

and H 0 is the number of hypermultiplets that are uncharged with respect to the 

Cartan subalgebra of the gauge group. Thus, the candidate Calabi-Yau should have 

h11 = 20 and h21 = 14. Happily, there is a unique Voisin-Borcea with the above 

Hodge numbers which corresponds to (r,a,8) = (11,9,1) in the notation of [55, 43]. 

Indeed, this model has the same matter content as the orientifold configuration with 

local tadpole cancellation. 
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Chapter 6 Orientifold and F-theory 

Duals of CHL Strings 

Along with the recent development of string duality, new ways of constructing string 

vacua have appeared. These new constructions make manifest some nonperturbative 

aspects of the string theory which the previously known constructions cannot see. 

Typical examples are orientifolds and F-theory. 

An orientifold is a generalization of orbifolds m which the orbifold symmetry 

includes the orientation reversal on the world sheet[S, 56, 61, 59]. Type I theory is an 

example of an orientifold where the only symmetry gauged is the orientation reversal 

of the Type IIB theory. An important application of orientifolds is the construction of 

models in 6-dimensions with N=l supersymmetry [23, 32, 36, 33, 34]. The models with 

multiple tensor multiplets can be easily constructed using the orientifold, while this 

is not possible in the conventional Calabi-Yau compactification which gives only one 

tensor multiplet. Similarly, small instantons citeWittII, which cannot be described 

as a conformal field theory in heterotic string theory, have a perturbative description 

in terms of Dirichlet 5-branes in the dual orientifold. 

On the other hand, F-theory is a new way of compactifying Type IIB theory in 

which the complex coupling>. of Type IIB theory is allowed to vary over the compact­

ified space [46, 54, 55]. The complex coupling can be seen as the complex structure 

parameter of the elliptic fibration over the base B on which the Type IIB theory is 

compactified. The coupling can undergo non-trivial S L(2, Z) transformations as we 

move along non-trivial cycles on the base B. Since the nonperturbative SL(2, Z) sym­

metry of the Type IIB theory is realized as the SL(2, Z) transformation of the elliptic 

fibration, F-theory is quite powerful in studying nonperturbative phenomena in string 

theory such as the phase transition involving tensionless strings in 6-dimensions. 

In another interesting development, Chaudhuri, Hockney and Lykken (CHL) have 
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constructed new examples of the heterotic string compactification with maximal su­

persymmetry but with gauge groups of reduced rank [27, 28]. It turns out that all 

CHL models can be identified with toroidal compactification of the heterotic string 

theory further modded by some discrete global symmetry such as the interchange of 

the two E8 's of the heterotic string theory [58]. Some duality aspects of CHL models 

are known. The M-theory and Type IIA duals of various CHL models in 6-dimensions 

and below were investigated in detail [29, 30, 44]. 

The purpose of this chapter is to find the dual theory of a CHL model to be 

described later, using the orientifold and F-theory. Type IIA orientifold on the Mobius 

band is dual to the CHL model in 8-dimensions. In the strong coupling limit, this 

configuration is lifted to M-theory compactified on the Mobius band which gives the 

9-dimensional dual of the CHL string. We present the F-theory orbifold dual with 

non-simply laced gauge groups. The F-theory dual of the CHL model in 6-dimensions 

constitutes a part of the F-theory vacua in 6-dimensions with N=2 supersymmetry 

hitherto uninvestigated. We discuss the other N =2 F-theory vacua in 6-dimensions 

and give the orientifold duals in simple cases. 

The initial CHL models are given by the free fermionic construction[27], but 

Chaudhuri and Polchinski[28] have constructed one of these models as an asymmetric 

orbifold. They considered Z2 orbifold of the toroidally compactified heterotic string 

theory, where Z2 action interchanges the two E8 components of the momentum lattice, 

together with a half shift on a compactified circle. Under this Z2 modding, only the 

symmetric combination of E8 's survives, thereby reducing the the rank of the gauge 

group by eight. The Z2 modding is possible if the two E8 's are broken in an identical 

manner. Similar construction can be done in 50(32) heterotic string theory. Since 

50(32) and E8 x E8 heterotic string theory are equivalent upon compactification on 

a circle, the Z2 orbifolds on both sides are on the same moduli space. Since the Z2 

symmetry adopted in the orbifold construction is a freely acting Z 2 , there are no 

massless states in the twisted sector at generic points of the moduli space. We are 

mainly interested in this Z2 orbifold example. 

Since there is a duality conjecture on Type I and heterotic string theory [60], we 
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expect that the dual theory of the CHL model can be found in Type I side. The 

strategy we will take is the following: Using the duality relation between Type I and 

the heterotic theory, we can figure out the Z 2 symmetry in Type I which corresponds 

to the Z2 symmetry used in the CHL construction in the heterotic theory. If the 

Z2 action used is freely acting, the adiabatic argument [52] assures us of the duality 

between the Z2 orbifolds. 

It is more convenient to work with Type I' theory, because the Z2 action is realized 

geometrically. Since the gauge groups are realized as the Chan-Paton degrees of 

freedom of 8-branes in the Type I' theory, Z2 action should interchange the 8-branes 

and this must be accompanied by a half shift along a circle which guarantees the total 

action freely acting. This means that the total Z2 action does not produce additional 

orientifold planes which contribute to non-zero tadpole, as we will see shortly. We 

construct the 8-dimensional orientifold. Consider Type IIA theory compactified on 

the torus, say in the X 8 and X 9 directions with the identification X 8 = X 8 + 27lTs 

and X 9 - X 9 + 211T9. We take an orientifold with the projection 

(6.1) 

where T/i denotes a half shift along the i-th circle; Xi -----> Xi + 7rr\, i = 8, 9. This is 

the Type I' theory modded by the Z2 action ry8 ry9 . Note that ry9 relates an 8-brane 

located at X 9 = X 90 to an 8-brane at X 9 = X 90 + 7rr9 , and T/s is the accompanying 

shift. The action ry8 ry9 preserves all of the harmonic forms on the torus, hence the 

supersymmetry is not reduced. This model has the same supersymmetry as Type I' 

theory toroidally compactified to 8-dimensions . The action of ry8ry9 on the oscillator 

modes is trivial. For the ground states IPi, Li) without oscillations, which have the 

quantized momenta Pi = mi/ Ri with mi integer valued in the compact directions, 

and winding Li _Xi( 7r) - Xi(O) = 27rwi Ri with wi integer, ry8 ry9 has the action 

(6.2) 
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The massless modes of the closed string sector coincide with those of Type I' theory 

since ry8 ry9 acts trivially on those modes. The twisted sector of the closed string has 

half-integer winding modes in X 8
, X 9 directions with the momentum modes and the 

oscillator modes unchanged. 

We can determine the open string spectrum by calculating the tadpoles [61]. The 

open string sector arises from the addition of the D-branes to cancel the tadpole in 

the Klein bottle amplitude. The Klein bottle amplitude consists of two parts, one 

from the trace evaluation with R9D and the other from the trace with ry8 ry9 R9D. The 

loop channel amplitude of the former gives the tadpole which requires 32 8-branes for 

the tadpole cancellation as in Type I' theory. The loop channel momentum sum of the 
-7rta 1m~ 

latter is proportional to 2:ms ( -1 rs e r~ ' where t is the loop channel parameter. 

This gives vanishing tadpole in the tree channel in the t -t 0 limit, as one can see using 

the Poisson resummation formula. The Klein bottle amplitude of the twisted sector 

also vanishes , since the half winding modes in the X 8 direction are odd under R9D 

and ry8 ry9 R9D. Thus we have 32 8-branes in all. Because of the orientifold projection, 

only orthogonal gauge groups are allowed. In addition, brane configuration should 

be invariant under the action ry8 ry9 . The maximal gauge group is obtained if we put 

the 16 8-branes at X 9 = X8 and the other 16 8-branes at X 9 = X8 + 1rr9 . The 

gauge group in this case is 50(16). It is clear that we can obtain the orthogonal 

subgroups of 50(16) by locating 16 branes at different positions and locating the 

other 16 branes compatible with the action ry8 ry9 . From the initial Type I' theory, we 

obtain the model whose rank of the gauge group is reduced by eight. Thus we see 

that this orientifold construction gives the same massless spectrum as the CHL model 

of the 50(32) heterotic string theory where interchange of the momentum lattice is 

accompanied by the half-shift along the X 8 direction. 

Note that the above orientifold action (6.1) turns the compactified torus into 

the Mobius band. Hence the CHL model in 8-dimensions is dual to the Type-IIA 

orientifold compactified on the Mobius band. By considering the strong coupling 

limit we can lift this construction to M-theory compactified on the Mobius band, 

which is dual to the CHL model in 9-dimensions with the gauge group E8 . 
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It was explained in[59] how to obtain the Es x Es M-theory of Horava and Witten 

[67], starting from Type I' theory. We put 14 8-branes on each fixed point and 

place the other 4 branes in symmetric fashion with respect to the fixed points so 

that the resulting gauge group is (50(14) x U(1)) 2
. The configuration is dual to 

50(32) heterotic string theory compactified on a circle with a particular Wilson line 

where the enhanced gauge group Es x Es is achieved at a particular radius of the 

compactified circle. The dual configuration in the Type I' side is obtained by taking 

the strong coupling limit. In this limit, the other 4 branes approach the fixed points 

and additional 0-brane states become massless to form adjoint of Es x Es. In this 

limit, the radius of the compactified circle goes to infinity. The relation between the 

Type I' theory and the M-theory on 5 1 /Z2 x 5 1 is given by 

R 1/2 3/2 [' = i1i2 ' gp = /2 ' (6.3) 

where R1, and g1, are the compactified radius and the coupling constant of Type I' 

theory respectively, r 1 is the radius of 5 1 /Z2 and r 2 is the radius of 5 1 of M-theory. 

The limit we take is r 2 ---+ oo limit which corresponds to g11 , R11 ---+ oo limit. 

Since the strong coupling limit is compatible with the action X 9 ---+ X 9 + 7rr9 , we 

can take the same limit for the above Type IIA orientifold. In this limit, we obtain the 

Z2 orbifold of Es x Es M-theory where Es exchange is accompanied by the shift T/S· By 

changing the coordinate label xs to X 9
, we obtain the M-theory compactification in 

9-dimensions and the compactified space is the Mobius band. This is dual to the CHL 

model in 9-dimensions with the gauge group Es where Es exchange is accompanied by 

the shift on a circle. The duality can be directly argued using the adiabatic argument 

and the duality between the M-theory on 5 1 /Z2 and the Es x E8 string theory[62]. 

Now we turn into the F-theory dual of the CHL model in 6-dimensions. Since 

there is a conjectured duality in 8-dimensions between the F-theory on K3 and the 

heterotic string theory on T 2 [46, 40], we expect that one can construct the F-theory 

dual by madding out the Z2 symmetry which corresponds to the Z2 symmetry of 

the CHL string. Since the gauge group of the F-theory appears as singular elliptic 
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fibers[54, 55], the Z 2 symmetry interchanging the gauge group is realized as a Z 2 

involution of K3 which interchanges the singular fibers. This involution should respect 

the fiber structure. We start with the particular K3 orbifold T 4 / Z2 . F-theory on this 

particular orbifold was considered by Sen in establishing the duality between F-theory 

and the orientifold which is obtained by T-dualizing the Type I theory along the X 8 

and X 9 directions[40]. If the F-theory model has the constant coupling as in the 

T 4 
/ Z2 orbifold, the corresponding orientifold configuration should satisfy the local 

tadpole cancellation so that the resulting orientifold configuration has the constant 

coupling. Let us denote the complex coordinates of the six-torus by zi, z 2 , z3 with 

identification z1 = z1 + 1 = z1 + i, l = 1, 2, 3. We consider the Z2 x Z2 orbifold of 

F-theory with the following generators a, /3 of the orbifold action. 

(6.4) 

Here z1 denotes the coordinate of the elliptic fiber and 211-r2z2 = X 8 + iX9
, 21rr3z3 

X 6 + iX7
. Restricted to Z1' Z2 coordinates, ()'_ is the Z2 action of T 4 I Z2 orbifold. The 

torus parametrized by z2 has four fixed points of a. The singular fiber over each fixed 

point is of D 4 type1
, and we have 50(8) 4 gauge group due to the four singular fibers. 

The action /3 is a Z2 involution on K3 orbifold combined with the shift along the z3 

coordinate. Since the generator /3 preserves the holomorphic 2-form of K3 orbifold and 

the holomorphic form on the third torus, this orbifold has the same supersymmetry as 

the F-theory on T 4 /Z2 x T 2
, i.e., N=2 supersymmetry in 6-dimensions. Four singular 

D4 fibers are paired by the action /3 and the resulting gauge group is 50(8) 2
. Since 

/3 is freely acting, there are no additional massless modes. The massless spectrum 

consists of N =2 supergravity multiplet and N =2 vector multiplet with gauge group 

50(8) 2
• 

One can check that this conclusion is consistent with the known duality between 

1The possible singularities of elliptic fibers are classified by Kodaira. Those singularities fit into 
the ADE classification, which in turn give ADE gauge groups in F-theory[54, 55]. 
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the F-theory and the orientifold. If we use the duality dictionary between the F­

theory and the orientifold[40], a is mapped to !1( -1 )FL R89 and f3 is mapped to 

!1( -1 )FL R89 rJ6 rJ8 . Hence the orientifold projection corresponding to the above orb­

ifold is {l,rJ6 rJ8 ,!1(-l)FLR89 ,!1(-l)FLR89 rJ6 rJ8 }. By similar tadpole calculation as we 

did previously, we can conclude that this orientifold has the gauge group 50(8) 2 if 

the tadpole cancels locally. If we T-dualize the orientifold along the X 9 direction, the 

orientifold projection becomes {1, fJ6 rJ8 , R8!1, rJ6 rJ8 R8!1}. After some coordinate rela­

beling, we can see that this is the original orientifold model of (reforbi) compactified 

further on T 2
. Since this orientifold model is dual to the CHL model, the above 

F-theory Z2 x Z2 orbifold should be dual as well. Further evidence for the duality 

between the F-theory orbifold and the CHL model can be seen if we compactify F­

theory further on a circle. This theory is on the same moduli space as M-theory 

compactified on the above Z2 x Z2 orbifold, according to the duality between F­

theory and M-theory[46]. This M-theory orbifold is a special case of the M-theory on 

(I<3 x T2)/Z2 which is dual to the CHL model in 5-dimensions as argued in [29]. The 

Z2 action is the half-shift along the torus combined with the involution of ]{3 under 

which eight anti-self-dual 2-forms of K3 are odd and the remaining harmonic forms 

are even. This Z2 involution is realized by /3 in the Z2 x Z2 orbifold of (6.4). Thus 

we see that the duality between the M-theory on (I<3 x T2)/Z2 and the CHL model 

in 5-dimensions is lifted to the duality between the F-theory on (I<3 x T2)/Z2 and 

the CHL model in 6-dimensions. 

One can consider the models corresponding to other points of the moduli space 

of F-theory on (I<3 x T2)/Z2 . One such model is given by the orbifold generated by 

the following action. 

/3 

(z1,z2,z3)-+ (iz1,-iz2,z3), 

1 + i 1 
(z1, z2, z3)-+ (-z1, -z2 + -

2
-, Z3 + 2)· (6.5) 

Restricted to z1 , z2 coordinates, a is the Z4 action of the T 4 /Z4 orbifold. F-theory on 

T 4 /Z4 was considered by Dasgupta and Mukhi[68]. The torus parametrized by z2 has 
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four fixed points under a 2
. Two of them are fixed points of a as well, but the other 

two form a doublet under a. The singular fiber over each fixed point of a is of E7 

type. The other singular fiber over the doublet under a is of D4 type. The F-theory 

on T 4 /Z4 has the gauge group E7 x E1 x S0(8). The action /3 is a Z2 involution 

accompanied by a half-shift along the z3 -torus. Since /3 preserves the holomorphic 

2-form of the K3 orbifold and the holomorphic 1-form of the z3 torus, this orbifold 

has N =2 supersymmetry in 6-dimensions. The special feature of /3 is that it induces 

nontrivial monodromy on the D4 fiber while it interchanges two E7 fibers. 

The enhanced gauge group of the singular fiber which suffers the nontrivial mon­

odromy along a nontrivial cycle of the base manifold was considered in detail in 

[71, 72]. The enhanced gauge group is the monodromy invariant part of the appar­

ent local gauge group. The action of the monodromy on the blown-up fiber can be 

translated into an action on the Dynkin diagram of the simply-laced gauge group. 

The required group is the subgroup invariant under this outer automorphism. The 

gauge group coming from the D4 fiber with the monodromy induced by /3 is S0(7). 

The gauge group of the above model is E7 x S0(7). As explained by Dasgupta and 

Mukhi, we cannot give the perturbative orientifold description of the above F-theory 

orbifold since the orbifold action of T 4 
/ Z4 corresponds to the nonperturbative sym­

metry of Type IIB theory. But we already established the duality between F-theory 

on (I<3 x T 2 )/Z2 and the CHL model at a particular point of the moduli space, hence 

the above model is necessarily dual to the CHL model in six dimensions. 

Another model in the same moduli space is given by the orbifold generated by the 

following action when we consider the six-torus based on the hexagonal lattice i.e., 
27ri 

z1 = z1+1 = e3z1,l =1 ,2,3. 

27ri -27ri 
a (z1 ,z2,z3)-+ (e3z1 ,e_3_z2,z3), 

/3 (6.6) 

Restricted to z1, Zz coordinates , a is the Z3 action of the T 4/Z3 orbifold[68]. The 

torus parametrized by z2 has three fixed points of a. Each singular fiber over the 
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fixed point is of E6 type. F-theory on T 4 /Z3 orbifold has the gauge group E6 x E6 x E6 . 

The action j3 interchanges two E6 fibers and induces a nontrivial monodromy which 

reduces E6 to F4 . The resulting gauge group is E6 x F4 . 

In the three F-theory orbifolds considered so far, the base of each model is (P1 x 

T 2)/Z2 • But clearly one can consider more general situations. If we consider F­

theory compactified on (I<3 x T 2 )/G, the base is (P1 x T 2)/G. In order to have N=2 

supersymmetry in 6-dimensions , we should restrict G to be a finite automorphism of 

I<3 x T 2 compatible with the elliptic fibration which preserves holomorphic forms of 

]{3 and T 2 . 

As explained in [69], the sublattice of f(18•2) of the cohomology lattice of ]{3 

determines an elliptic I<3, where f(p,q) denotes a lattice of signature (p, q). The 

lattice f(18•2 ) is obtained from the cohomology lattice of I<3 , H 2 (I<3) EB H0 (I<3) EB 

H4 (1{3) ~ f(l 9,3) EB f(l,l) by splitting off the classes of the base and fiber of the 

fibration . Conversely, given an even-self-dual lattice of signature (18,2), one can 

find the corresponding elliptic K3 by the global Torelli theorem. Combined with 

additional f( 2
•
2

) lattice associated with T 2
, this gives f( 18•2) EB f( 2

•
2

) which is isomorphic 

to f( 2o,4 ) and G acts on f(2o.4 ) as a lattice isomorphism. This condition is the same 

one as we encounter in the general CHL compactification of heterotic string theory 

in six dimensions . Thus we expect that F-theory on (K3 x T 2 )/G is dual to the CHL 

compactification of the heterotic string theory on T 4 
/ G where G and G act on the 

same way on f( 2o,4). 

If G is freely acting, G must act on T 2 by translation, which implies G should be 

an abelian group with at most two generators. Again if we compactify further on a 

circle, this theory is on the same moduli space as the M-theory on (1<3 x T 2 )/G. This 

is indeed dual to other CHL constructions as investigated in [30] , where G acts on 

K3 as an abelian symplectic automorphism, i.e., an abelian automorphism preserving 

the hol~morphic 2-form of K3. But more general configurations are possible. Such 

configurations in the Type IIA side are considered in [31 J. If we compactify F-theory 

on (K3 x T 2)/G further on T 2
, this model is on the same moduli space as the Type 

IIA theory on (1<3 x T 2 )/G, which is dual to the heterotic theory on T 6 /G . On the 
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heterotic side, general G acts on f(22 •6) as an lattice isomorphism with general shifts. 

The general shifts on the heterotic side is mapped to the choice of Ramond-Ramond 

fluxes localized at the fixed points of ]{3 under the heterotic-Type IIA duality. Thus 

the general configuration in the Type IIA side is the orbifold madded by symplectic 

automorphism of ]{3 with the Ramond-Ramond field background, which is not a 

conventional superconformal field theory background. General F-theory compactifi­

cation can be thought to be the decompactifying limit of the corresponding Type IIA 

configuration when G is compatible with the elliptic structure, which implies that G 

acts nontrivially only on f( 2o,4) sublattice of f( 22 •6). 

Since we have specified some of the N=2 F-theory vacua in 6-dimensions, one 

might wonder what else can appear as N=2 vacua of F-theory. It is explained in [55] 

that allowable bases for N=2 F-theory vacua are K3, (P 1 x T 2 )/G, and hyperelliptic 

surfaces. F-theory on the base K3 is the F-theory compactified on T 2 x K3. The 

fiber structure should be trivial in order to retain the Calabi-Yau condition. This 

is just Type-IIB theory on K3. The only remaining category is F-theory having a 

hyperelliptic surface as base. A hyperelliptic surface is a complex torus modulo a 

finite group G acting freely. We can give a simple example of the F-theory which has 

a hyperelliptic surface as base. Consider the orbifold with the following Z2 symmetry. 

(6.7) 

The action a restricted to z2 , z3 coordinates produces the hyperelliptic surface where 

the freely acting group is Z2 • The holomorphic 2-form dz1 /\dz2 and 1-form dz3 survive 

under a, hence F-theory on this orbifold has N = 2 supersymmetry in 6-dimensions . 

Since a is freely acting, there are no singular elliptic fibers . Thus massless spectrum of 

this model is just non-chiral N =2 supergravity multiplet. We can find the orientifold 

dual of this model. Using the duality dictionary, we can map this orbifold into 

the orientifold with the group { 1, n( -1 lL Rs97]6}. After a similar calculation as we 

did earlier, one can check that the massless spectrum of the orientifold agrees with 
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that of the F-theory orbifold. For other hyperelliptic surfaces2
, we can perform the 

similar analysis. Since hyperelliptic surfaces are quotients of torus by freely-acting 

action, there are no singular fibers for the associated elliptic three-fold. The massless 

spectrum is again N =2 supergravity multiplet in 6-dimensions. 

2There are seven distinct classes of hyperelliptic surfaces. Those are explained in [70] . 
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Chapter 7 World Volume Theory of 

l\tI-theory Five-brane 

7 .1 Introduction 

World-volume actions of p-branes encode much information about their dynamics. In 

the case of strings (in flat backgrounds) the world-volume theory has been quantized 

and used to construct the string perturbation expansion. In the case of p-branes with 

p > 1, one does not expect that it is possible to do the same. Still, many recent 

works have shown that an understanding of p-branes, including their excitations, can 

be very useful. Much non-perturbative information has been gleaned by considering 

vacua containing various branes of infinite extension. (A good example is provided 

by the 7-branes of F-theory [46].) Also, non-perturbative excitations described by 

wrapping p-branes about various cycles have played a central role in recent studies 

of black hole entropy as well as other problems [80, 81, 82]. We suspect that a more 

detailed characterization of p-brane world-volume dynamics will enable these studies 

to go further. 

The actions for the class of supersymmetric p-branes whose only degrees of freedom 

are the superspace coordinates X and () of the ambient space-time were constructed 

during the decade of the 1980's [83, 84, 85, 86, 87]. Much more recently, the actions 

for D-branes in type II theories have been constructed [88, 89, 90, 91]. In addition to 

the X and () variables, these world-volume theories contain a U(l) gauge field with 

Born- Infeld self interactions [92, 93, 94, 95, 96, 97] . For maximally supersymmetric 

theories, the only significant p-brane action that remains to be formulated is that of 

the M theory five-brane [98, 99, 100, 101, 102]. This paper presents the solution. 

The new feature that makes the M theory five-brane example somewhat more 

challenging than the other ones is the presence of a second-rank tensor gauge field, in 
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addition to the X and () coordinates [103] . This gauge field describes a chiral boson in 

the world volume, since its field strength is self-dual in the linearized approximation. 

It has been known for a long time that there is no straightforward way to construct a 

covariant action that describes propagation of the self-dual part of this field without 

also bringing in the anti-self-dual part [104] . Various proposals for dealing with this 

problem have been suggested over the years . The main one that we adopt is based 

on a formulation in which general coordinate invariance is only manifest in five of 

the six dimensions [105, 106, 107, 108] . It is also present in the sixth direction, but 

the transformation formulas that describe the symmetry are rather complicated. The 

bosonic part of the five-brane theory, constructed by this method, has been presented 

recently [109]. Another approach to the problem of the chiral boson uses an infinite 

number of auxiliary fields [110, 111, 112]. 

Very recently, a manifestly covariant formulation involving only a finite number of 

auxiliary fields (and compensating gauge invariances) has been introduced by Pasti, 

Sorokin, and Tonin [113, 114]. Constructions using the PST formulation turn out 

to be about as complicated as those in the formulation without manifest covariance. 

In fact, one of the new gauge invariances of the PST formulation involves the same 

subtleties as those of general coordinate invariance in the non-covariant approach, 

since one can gauge fix the PST formulas to obtain the non-covariant ones and show 

that compensating gauge transformations are the origin of the complicated general 

coordinate transformation. 

Besides general coordinate invariance, the other essential symmetry of the world­

volume theory of any super p-brane is a fermionic symmetry called kappa symmetry. 

It is always needed to remove half the degrees of freedom carried by the () variables, 

leaving altogether eight propagating fermionic degrees of freedom. This is the same as 

the number of bosonic degrees of freedom, of course, as required by supersymmetry. 

The way this is achieved is by adding a suitable Wess-Zumino term to the actio.n . 

In all previous super p-brane examples, the global super-Poincare symmetry (in­

duced from an ambient fiat space-time background) is implemented separately for 

the Wess- Zumino term and the other terms . The story in the case of the M theory 
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five-brane has a surprising new feature. Namely, extending the bosonic five-brane 

theory to achieve global lld super-Poincare symmetry uniquely determines the com­

plete action, including the Wess-Zumino term. The formula obtained in this way is 

then shown to have general coordinate invariance and local kappa symmetry. In the 

covariant PST formulation one is forced to organize the terms somewhat differently, 

so in that approach the story looks somewhat more conventional. Specifically, the 

covariant action divides naturally into two pieces: one piece is the supersymmetrized 

bosonic theory and the second is a separately supersymmetric Wess-Zumino term. 

The reason these statements are not in contradiction is that the PST gauge invari­

ances, which are needed to achieve the right bosonic degrees of freedom, require that 

both terms be included. 

This chapter is organized as follows. Section 2 reviews the construction of the 

bosonic part of the M theory five-brane action in both the non-covariant and the 

PST formulations. Section 3 then describes the supersymmetrization of this theory 

and the determination of the Wess-Zumino term in the non-covariant formulation. 

The proof that the resulting theory has (non-manifest) general coordinate invariance 

is given in Section 4. Section 5 presents the proof of kappa symmetry. The veri­

fication of two crucial identities is relegated to a pair of appendices. This section 

also sketches the corresponding formulas in the PST formulation . Section 6 describes 

double dimensional reduction, which gives rise to a 4-brane in lOd space-time. The 

resulting theory gives a dual formulation of the D4-brane of type IIA theory in which 

the theory is expressed in terms of a two-form gauge field instead of the dual U ( 1) 

vector gauge field. Some concluding remarks are made in Section 7. 

7.2 Review of the Bosonic Theory 

7.2.1 Formulation Without Manifest Covariance 

Ref. [109] analyzed the problem of coupling a 6d self-dual tensor gauge field to a 

metric field so as to achieve general coordinate invariance. It presented a formulation 
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in which one direction is treated differently from the other five. At the time that work 

was done, the author knew of no straightforward way to make the general covariance 

manifest. However, shortly thereafter a paper appeared [113] that presents equivalent 

results using a manifestly covariant formulation [114], which we refer to as the PST 

formulation. The relation between the two approaches will be described in the next 

subsection. As one might expect, they entail similar complications and there does 

not appear to be much advantage to one approach over the other. Therefore, we 

will present the supersymmetric M theory 5-brane action in the formulation without 

manifest covariance. This action corresponds to a partially gauge-fixed version of the 

corresponding action in the PST formulation. 

In the present work we denote the 6d (world volume) coordinates by O"µ, = (O"µ, 0"
5 ), 

where µ = 0, 1, 2, 3, 4. (In ref. [109] they were called xµ,.) The 0"
5 direction is singled 

out as the one that will be treated differently from the other five. 1 The 6d metric G µ,r; 

contains 5d pieces Gµv, Gµ 5 , and G55 . All formulas will be written with manifest 5d 

general coordinate invariance. As in refs. [108, 109], we represent the self-dual tensor 

gauge field by a 5 x 5 antisymmetric tensor Bµv, and its 5d curl by Hµvp = 38[µBvp]· 

A useful quantity is the dual 

(7.1) 

It was shown in ref. [109] that a class of generally covariant bosonic theories could 

be represented in the form L = L 1 + L2 + L3 , where2 

(7.2) 

1This is a space-like direction, but one could also choose a time-like one. (See the discussion in 
sect. 2.2.) The reason we prefer this choice is that in section 6, where we perform a double dimension 
reduction to obtain a 4-brane in lOd, elimination of the special dimension leaves manifestly covariant 
equations . 

2The formula given in ref. [109] has been rescaled by an overall factor of -1/2. 
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The notation is as follows: G is the 6d determinant ( G = det G flv) and Gs is the 

5d determinant (Gs= det Gµ,v), while ass and asp are components of the inverse 6d 

metric Qflv. The E symbols are purely numerical with E01234 = 1 and Eµ,vp>.a = -Eµ,vp>.a· 

A useful relat ion is Gs = Gass. The z variables are defined to be 

The trace only involves 5d indices: 

tr( GiIGiI) 
2(-Gs) 

tr( GiIGiIGiIGiI) 
4(-Gs) 2 

(7.3) 

(7.4) 

The quantities z1 and z2 are scalars under 5d general coordinate transformations. 

Infinitesimal parameters of general coordinate transformations are denoted e = 

(eµ, e). Since 5d general coordinate invariance is manifest, we focus on the e trans­

formations only. The metric transforms in the standard way 

(7.5) 

The variation of Bµ,v is given by a more complicated rule, whose origin is explained 

in ref. [109]: 

where 

with 

]{(2) µ,v 

r-c -
(-Gs) (GHG)µ,v 

r-c - - -
(- Gs) 2 (GHGHGHG)µ,v 

(7.6) 

(7.7) 

(7.8) 
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and we have defined 
of 

fi=~, i=l,2. 
UZi 

(7.9) 

Assembling the results given above, ref. [109] showed that the required general 

coordinate transformation symmetry is achieved if, and only if, the function f satisfies 

the nonlinear partial differential equation [115] 

(7.10) 

As discussed in [108], this equation has many solutions, but the one of relevance to 

the M theory five-brane is 

(7.11) 

For this choice L1 can reexpressed in the Born-Infeld form 

(7.12) 

This expression is real, despite the factor of i, because it is an even function of H. 
Eliminating the factor of i would correspond to replacing z1 by - zi, which also solves 

the differential equation. However, it is essential for the five-brane application that 

the phases be chosen as shown. 

7.2.2 The PST Formulation 

In ref. [113] (using techniques developed in ref. [114]) results equivalent to those of 

the preceding subsection are described in a manifestly covariant way. To do this, the 

field Bµv is extended to Bµv with field strength Hµvf>· In addition, an auxiliary scalar 

field a is introduced. The PST formulation has new gauge symmetries (described 

below) that allow one to choose the gauge Bµ,5 = 0, a= a 5 (and hence 8µ,a = 8t). In 
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this gauge, the covariant PST formulas reduce to those of sect. 2.1. 

As will become clear, the scalar field a is really a zero-form potential with one-form 

field strength da. Only the field strength needs to be single-valued. Furthermore, for 

the action to be nonsingular, it is necessary that the 6 manifold M6 admit nowhere 

null closed one-forms and that da be restricted to the class of such one-forms. It is 

allowed to be either time-like or space-like, however. This topological restriction on 

M6 is consistent with the conclusions reached in ref. [100] 

Equation (7.12) expressed Li in terms of the determinant of the 6 x 6 matrix 

(7.13) 

In the PST approach this is extended to the manifestly covariant form 

(7.14) 

The quantity 

(7.15) 

reduces to G55 upon setting 8µ,a = 8z, and 

(7.16) 

reduces to frP>-. Thus MZ<t· replaces Mµ;; in Li. Furthermore, the expression 

(7.17) 

which transforms under general coordinate transformations as a scalar density, re­

duces to L2 + L3 upon gauge fixing. It is interesting that L2 and L3 are unified in 

this formulation. 

Let us now describe the new gauge symmetries of ref. [113). Since degrees of 

freedom a and Bµ, 5 have been added, corresponding gauge symmetries are required. 
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One of them is 

(7.18) 

where </>µ are infinitesimal parameters, and the other fields do not vary. In terms 

of differential forms, this implies 8H = d</>da. ift
0
>..v. is invariant under this transfor­

mation, since it corresponds to the dual of H da, but dada = 0. Thus the covariant 

version of L1 is invariant under this transformation. The variation of L', on the other 

hand, is a total derivative. 

The second local symmetry involves an infinitesimal scalar parameter t.p. The 

transformation rules are 8Gµ;-, = 0, 8a = t.p, and 

(7.19) 

where the quantity Vµ;-, is to be determined. This transformation is just as complicated 

as the non-manifest general coordinate transformation in the non-covariant formalism. 

Rather than derive it from scratch, let's see what is required to agree with the previous 

formulas after gauge fixing. In other words, we fix the gauge 8µ,a = 8Z and Bµs = 0, 

and figure out what the resulting e transformations are . We need 

8 a = t.p + e 05 a = t.p + e = 0' (7 .20) 

which tells us that t.p = -f Then 

(7 .21) 

Thus, comparing with eqs . (7.6) and (7.7), we need the covariant definition 

(7.22) 

to achieve agreement with our previous results. 
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To summarize, we have learned that the covariant PST formulation has new gauge 

transformations, and one of them encodes the complications that end up in general 

coordinate invariance after gauge fixing. Thus this formalism is not simpler than the 

non-covariant one. However, it is more symmetrical, and it does raise new questions, 

such as whether there are other gauge choices that are worth exploring. 

7.3 Supersymmetrization 

The super- Poincare symmetry of the fiat lld space-time background should be im­

plemented as a global symmetry of the five-brane theory. In terms of superspace 

coordinates XM and (}, the lld supersymmetry transformation is given by 

(7.23) 

Our convention is that the index M takes the values M = 0, 1, ... , 9, 11. Skipping 

M = 10 may seem a bit peculiar, but then X 11 is the 11th dimension. Also, the Dirac 

matrix f 11 = f 0f 1 ... f 9, which appears in ten dimensions as a chirality operator, is 

precisely the matrix we associate with the 11th dimension. The spinors E and (} are 

32-component Majorana spinors. The Dirac algebra is 

(7.24) 

where 'T/MN is the lld Lorentz metric with signature (- + + ... + ). 
As in other supersymmetric p-brane theories, two supersymmetric quantities are 

8µ(} and 

(7.25) 

The appropriate choice for the world-volume metric is then the supersymmetric quan­

tity 

(7.26) 
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Taking e and XM to be scalars under world-volume general coordinate transforma­

tions, Gµ;, transforms in the standard way. 

In addition, we require an appropriate supersymmetric extension of H dB, 

which we write as 

(7.27) 

or, in terms of differential forms, 7-l = H - b3 . The idea is to choose a b3 whose super­

symmetry variation is exact, so that it can be cancelled by an appropriate variation 

of B. The appropriate choice turns out to be 

b3 = ~bµvpdaµdavdaP = ~erMNdO(dXMdXN + dXMjjrNde + ~jjrMdeerNde). 
(7.28) 

Varying this, using 5ee = E and 5eXM = EfM e, one finds that 7-l is invariant for the 

choice 

(7.29) 

A useful (and standard) identity that has been used in deriving this result is 

(7.30) 

The overall normalization of b3 and 8eB could be scaled arbitrarily (including zero) 

as far as the present reasoning is concerned. The specific choice that has been made 

is the one that will be required later. We also note, for future reference, that 

(7.31) 

where we have introduced the matrix valued one-form 

(7.32) 
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With these choices for Gµr, and H, we can now write down extensions of L1 and 

L3 that have manifest lld super-Poincare symmetry: 

(7.33) 

where z1 and z2 are now formed from 1-{ instead of H . 

The next step is to construct a supersymmetric extension of L 2 . This term is the 

Wess-Zumino term, which can be represented as the integral of a closed 7-form 17 

over a region that has the 6d world volume M6 as its boundary. In other words, 

(7.34) 

where 17 = df!6 and M6 = oM7 . The appropriate expression for 17 that reproduces 

L 2 of the purely bosonic theory is 

(7.35) 

To understand this properly, there is a point that needs to be stressed. Namely, in 

adding a formal 7th dimension, the extra dimension is required to enter symmetrically 

with the first five. There continues to be one preferred direction, r7 5 , that is treated 

specially. Correspondingly, in writing M6 = 8M7 , the boundary operator should not 

act on the r75 direction. In other words, M7 should have no r75 = constant faces . It 

should also be noted that this M theory five-brane theory action has a Wess-Zumino 

term that survives even for the bosonic truncation in a flat space-time background. 

However, as we will see in the next subsection, this feature is particular to the non­

covariant formulation and is not shared by the PST formulation in which the pieces 

of the action are arranged somewhat differently. 

To complete the construction of L2 we must now supersymmetrize I~B). The term 

~ Ho5 Hdr7 5 achieves this, of course, but it is no longer closed. Additional terms should 
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be added such that d17 = 0, up to a total derivative in the O"s direction. The result 

that we find is 
1 s 1 - 2 1 - s 

]7 = -1-los 1-ldO" - -1-ldB'ljJ dB - -dB'ljJ dB 
2 2 120 ' 

(7.36) 

where 

(7.37) 

When interpreting the 4-form dB'ljJ 2dB and the 7-form dB'ljJsde it must be understood 

that one of the derivatives is required to be in the O"s direction. The proof that dh is 

a total O"s derivative is reasonably straightforward using the identity (7.30) as well as 

(7.38) 

Since 17 is manifestly supersymmetric, it is guaranteed that !16 is invariant up 

to a total derivative under a supersymmetry transformation. For most purposes an 

explicit formula for L2 is not required. Here we will simply report that 

(7.39) 

b2 -~iJrMNOsO(dXMdXN + dXMiJrNde + ~diJrMdediJrNde) 
1- M N M-N M-N 2 - M -N 

+2erMNd0(2dX OsX - OsX er dB - dX er osB - 3Br dOer OsO). 

Knowing this much of L2 is sufficient to obtain the Bµv equation of motion. 

7.4 General Coordinate Invariance 

We should now check whether the general coordinate invariance of the bosonic theory 

in sect. 2.1 continues to hold after adding terms depending on () in the way that we 

3 This expression is equal to bµv5 , where bµ, op is the covariant extension of the expression given in 
eq. (7.28) . 
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have described. As in the bosonic case, general coordinate invariance in five directions 

is manifest, so only the transformation in the a 5 direction needs to be checked. The 

coordinates X M and e transform as scalars, i.e., 

(7.40) 

which implies that Gµv transforms as in eq. (7.5). To specify the proper transforma­

tion law for Bµ 1,, we should first examine its equation of motion. Using eq. (7.39), 

this is 

(7.41) 

The formula for I<µv is as given in eqs . (7.7) and (7.8), except that now L1 and L 3 of 

the supersymmetrized theory should be used. This simply amounts to replacing H 

by H and using the supersymmetric expression for Gµv· By the reasoning explained 

in ref. [109], the B equation of motion suggests that the appropriate transformation 

formula, generalizing eq. (7.6), is 

(7.42) 

To determine De H, one first computes that 

(7.43) 

It follows that 

(7.44) 

where 

(7.45) 

This can be made manifestly supersymmetric by noting that 

(7.46) 
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The 4-form on the right-hand side of this equation is required to contain one 0"
5 

derivative. 

The important point is that the Z3 term in 8e H has no counterpart in the bosonic 

theory, so general coordinate invariance of the supersymmetric theory is not an im­

mediate consequence of the corresponding symmetry of the bosonic theory. Let us 

examine next the part of 8e(L1 + L3 ) that arises from varying H, but not G. It is 

(7.4 7) 

This is conveniently characterized by the 5-form 

(7.48) 

where rv means that a total derivative has been dropped. 

Consider now thee transformation of L2 . A portion of L2 was given in eq. (7.39). 

Representing this as a 5-form and using 

one obtains 

8eL2 -(asB - b2)d(e(I{ + b2)) + Has(eb2) + ... 

eK(asH + Z3) + ~b~de + ... 

(7.49) 

(7.50) 

where the dots are the contribution from varying the H independent terms in L 2 . 

The ... terms precisely cancel the b~ term, leaving 

(7.51) 

The demonstration that the ... terms contribute -~b~de can be made as follows. The 
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first two terms in eq. (7.36) contribute the non-H pieces 

(7.52) 

which has a non-trivial e transformation, because of the asymmetric way in which 

the a 5 direction appears. The variation is easy to compute, and can be expressed 

as the exterior derivative of - ~b~de, which implies that this contributes the required 

variation of L2 . 

Combining eq. (7.51) with eq. (7.48) leaves 

(7.53) 

This must now be combined with the terms arising from varying Gµv in L1 and L3 . 

However , at this point all terms whose structure is peculiar to the supersymmetric 

theory have cancelled. The rest of the calculation is identical to that for the bosonic 

theory given in ref. [109] and, therefore, need not be repeated here. 

7.5 Proof of Kappa Symmetry 

7.5.1 Formulation Without Manifest Covariance 

As with all other super p-branes of maximally supersymmetric theories, the world­

volume theory should have 8 bosonic and 8 fermionic physical degrees of freedom. This 

requires, in particular, the existence of a local fermionic symmetry (called kappa) that 

eliminates half of the components of B. Despite the lack of manifest general coordinate 

invariance, the analysis of kappa symmetry for the M theory five-brane is very similar 

to that of other super p-branes. As usual, we require that 

8e = 1\:(1 -1), (7.54) 
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where K:( O") is an arbitrary Majorana spinor and I is a quantity (to be determined) 

whose square is the unit matrix. This implies that k(l - 1) is a projection operator, 

and half of the components of e can be gauged away. In addition, just as for all other 

super p-branes, we require that 

(7.55) 

so that 

(7.56) 

As in our other work [89], we introduce the induced I matrix 

(7.57) 

which satisfies 

(7.58) 

In this notation, the kappa variation of the metric is 

(7.59) 

Before we can examine the symmetry of our theory, we must also specify the kappa 

variation of Bµ,v· This works in a way that is analogous to that of the world-volume 

gauge field for D-branes. Specifically, for the choice 

(7.60) 

we find that most of the terms in 8H cancel leaving 

(7.61) 
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or, equivalently, 

(7.62) 

Since we now have the complete theory and all the field transformations, it is just a 

matter of computation to check the symmetry. 

Before plunging into the details of the calculation, it is helpful to sketch the general 

strategy that will be employed. It turns out to be convenient to consider L2 and L 3 

together and to write their kappa variation in the form 

(7.63) 

The variation of L1 is represented in a similar manner: 

(7.64) 

Then, in order that 80 = A:(l -1) should be a symmetry, we require that altogether 

(7.65) 

which is achieved if 

(7.66) 

where 

(7 .67) 

This implies that 

(7.68) 

We must vary the Lagrangian to find Tµ and Uµ, and then determine p with the 

proper square and show that Uµ = pTµ . This is all straightforward, but it needs to 

be done carefully. 

Since the 0"
5 direction appears asymmetrically in the Lagrangian, the analysis of 

Uµ = pTµ is naturally split into two separate problems, corresponding to P, = 5 and 
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ft -/:- 5. The ft = 5 case is the easier of the two, so let us begin with that. We must 

examine where we can get 8 58's. The variations of Bµ,v and Gµ,v do not give any. 

Therefore, in varying L 1 , the variations of z1 and z2 do not contribute. The only 

contribution comes from 

where, of course, /µ = Gµv/v· Thus 

To determine T 5 we must vary L2 + L 3 . Using the identity 

the relevant piece of 8L3 is 

1 QTJP '8- !:i evµ,v,LJ>.u 
4Eµ,vp>.u 5 V /ryUS IL IL , 

which contributes 

T S 1 QTJP ,LJµ,v,LJ>.u 
2 = 2Eµ,vp>.u 5 fTJ IL IL 

to T 5
. (The subscript on T represents the power of H.) 

The variation of the Wess- Zumino term S2 is 

(7.69) 

(7.70) 

(7.71) 

(7.72) 

(7. 73) 

(7. 74) 

a result that is obtained by expressing 817 as a total differential. This determines 

TJ + Tf, with 

(7. 75) 

where we have introduced 

i = /012345, (7.76) 
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which satisfies (1') 2 = - G. The 1-{ linear term is 

T
s _ 

2
vµv 

1 - - IL /µv• (7. 77) 

Combining these results with 

Us 4 2 s rs =-p / =p ' (7 . 78) 

we infer that rs = - 4p/s' where 

(7. 79) 

To obtain the 7-{2 term we have used the identity 

(7.80) 

from which it follows that 

G
'T/<l S <JS 
s /,,,/ =I · (7.81) 

If our reasoning is correct, this expression for p should have the square given in eq. 

(7.68) . This fact is verified in Appendix A. 

To complete the proof of kappa symmetry, we must find Uµ and Tµ and show that 

Uµ = pTµ. Separating powers of 1-l, as above, the variation of L2 contributes to Tlf 

and Ti while the variation of L 3 contributes to Ti and T,f. Altogether, we find that 

Ti 2 (GSµ,]Jvp + 2,-LJµv S) 
- QSS IL /vp IL /v/ 

1 vvp,-LJ>.(J(GSµG'T/( + Gµ'f/ s) 
2QSS Erivp>.<J IL IL S /( S / . (7 .82) 

The variation of L1 determines Uµ = I:!=o Uf:, where 

u;; (7.83) 
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Uf 

Uf 

u: 
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1 µvp>.t7 (G,uG) - G55 E {>.t7 IL vp 

4 - - 2 55 - -
- G55 !v(HGH)µv - (G55 ) 2 G µI tr(GHGH) 

G( ~55 ) 2 Eµvp>.t7 f>.t7 (~( GHG)vptr( GHGH) - ( GHGHGHG)vp) 

G( ~55)2 Iv (~(HGH)µvtr( GHGH) - (HGHGHGH)µv) 

2 ( µ5 5 1 55 µ) ( 1 ( ( - - ))2 ( ) + G(G55 ) 2 G I - 2G I 2 tr GHGH - tr GHGHGHGH) . 

The demonstration that Uµ = pTµ is presented in Appendix B. 

In conclusion, we have shown that the theory specified by L 1 + L2 + L 3 has all 

the desired symmetries: global lld super-Poincare symmetry, general coordinate 

invariance, and local kappa symmetry. 

7 .5.2 Supersymmetric Theory in the PST Formulation 

The supersymmetric theory that we have just presented can be recast in a manifestly 

general covariant form, using the PST formalism, just as we did for the bosonic theory 

in sect. 2.2. In order to keep the notation from being too cumbersome, in this section 

(and only in this section) indicesµ, v, etc., take six values, (i.e., we drop the hats 

used until now). Also the label "cov." is dropped. Thus, upon supersymmetrization, 

eq. (7.14), for example, becomes 

where 

M v = G v + i GµpGv>. flP>-
µ µ J-G(oa) 2 ' 

VPA _ ~,,pAµVt7T 'Lf ~ a 
IL -

6
._ ILµvqU7 • 

(7.84) 

(7.85) 

Also, Gµv is constructed as in eqs. (7.25) and (7.26), and H = H -b3 is extended to six 

dimensions. In this notation the supersymmetric theory is given by L = L1 + L' + Lw z, 

where 
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L' 1 ,Uµv'l.J QPA f:l 
4(8a)211,, ILµvp u;,.a (7.86) 

Swz J 05. 

L 1 can again be recast in the form 

(7.87) 

where now z1 and z2 are the obvious covariant counterparts of those in eq. (7.3). The 

Wess- Zumino term is again characterized by a seven-form 17 = dD,6 , where now 

1 - 2 1 - 5 
17 = --Hdfh/J d() - -dB'lj; dB. 

4 120 
(7.88) 

It is easy to check that d17 = 0 using eqs. (7.30) and (7.38). Global E supersymmetry 

and local reparametrization symmetry are manifest in these formulas. Note that 

neither the metric Gµv nor the scalar field a occur in Lwz. 

When one chooses the gauge a = 0"
5 and Bµ 5 = 0, the Lagrangian given above 

reduces to the one in sect. 3. The way this happens is somewhat non-trivial. The 

point is that L' reduces to L3 and a portion of the non-covariant Wess-Zumino term 

L 2 . Specifically, in the gauge-fixed theory the sum over the index p in the formula 

for L' can be separated into p = 5 and p -/:- 5 terms. The p -/:- 5 term accounts for L3 

of the gauge-fixed theory, while the p = 5 term accounts for the H 2 piece of L 2 and a 

portion of the H piece. In particular, this accounts for why the coefficient of the H 

linear term in eq. (7.88) differs from that in eq. (7.36). 

The proof of kappa symmetry in the PST formulation works as before (with 8a = 

0), so we will not repeat the argument.4 The covariant extension of eq. (7.79) is 

(7.89) 

The demonstration that p2 = -det Mµv is essentially the same as in Appendix A. 

4 Also, D. Sorokin informs us that it will appear soon in a paper by him and collaborators. 
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The covariant formula for Tµ = Tl: + Tf + Tf' is given by 

(7.90) 

In the Bµ 5 = 0, a = 0"
5 gauge, these expressions reduce to the formulas T 5 and Tµ 

given in eqs. (7.73), (7.75), (7.77), and (7.82). The proof of kappa symmetry works 

essentially the same as before. 

7.6 Double-Dimensional Reduction 

As is now well-known, when one of the ten spatial dimensions of M theory is a 

small circle of radius R, the theory can be reinterpreted as Type IIA string theory 

in ten dimensions with string coupling constant proportional to R312 [116, 117]. The 

five-brane of M theory can then give rise to either a five-brane or a four-brane of 

Type IIA string theory depending on whether or not it wraps around the circular 

dimension. Here we wish to focus on the case that it does wrap (once) so that one 

obtains a four-brane. This case is called "double-dimensional reduction," because 

the dimension of the brane and the dimension of the ambient space-time have been 

reduced by one at the same time. (The first example of this type to be studied was 

the double-dimensional reduction of the M theory two-brane, which gives the Type 

IIA fundamental string [87].) The known 4-brane of Type IIA string theory is, in 

fact, a D-brane, which implies that its world-volume theory contains an abelian vec­

tor gauge field. However, the five-brane theory that we have constructed contains 

an antisymmetric tensor gauge field, which remains one even after the reduction. 

However, as we will show elsewhere [118], the D4-brane action and the 4-brane with 

antisymmetric tensor gauge field obtained below, are related by a world-volume dual-
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ity transformation. This is analogous to the relationship between the M2-brane and 

the D2-brane [119, 120, 121]. 

The covariant action for the dual D4-brane in ten dimensions can be obtained 

from the M theory five-brane action by setting 

xn = 0"5 (7.91) 

and then dropping all dependence on 0"
5

, i.e., extracting the zeroth Fourier mode. 

Doing this gives 

'I/; -+ 'I/;+ Cf11 

where 

is the part of I1~1 that survives. c and 

(7.92) 

(7.93) 

(7.94) 

(7.95) 

(7.96) 

enter in the D4-brane Wess-Zumino term. In these formulae quantities on the left 

(right) of the arrow have target space indices summed on 11 (10) values (e.g., 'I/; = 

I'MITM on the L.H.S., 'I/; = r mllm on the R.H.S., where m = 0, 1, ... , 9 and M = 

(m, 11)). Also, 

G = <let Gµ,r; -+ G = <let Gµv 

(7.97) 

where 

(7.98) 
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One can analyze the double-dimensional reduction of the action. A straightfor­

ward calculation shows that 

(7.99) 

with 
Y. _ . Gµ,p fip>-c>. 

µ, = i j-G(l + C 2)' 
(7.100) 

which gives the double-dimensionally reduced version of L1 . For L 3 the answer is: 

(7.101) 

The Wess-Zumino term is given by the reduction 

(7.102) 

Under double-dimensional reduction 

l-2 l-2 -
d1i = - -dB'ljJ dB ----+ - -dB'ljJ d() + d()f 11 'lj;dBC, 

2 2 
(7.103) 

whose supersymmetry variation is 

(7.104) 

From this one can infer that 

(7.105) 

It is an interesting fact that, after the double-dimensional reduction, 1i is no longer 

invariant under supersymmetry. We will show below that the formula has a simple 

interpretation, which ensures that the reduced theory is supersymmetric. The kappa 

variations of the doubly dimensionally reduced theory can be analyzed in a similar 
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manner. One finds that 

(7.106) 

In order to preserve the gauge choice (7.91), both the supersymmetry and the 

K, variations of the 4-brane fields must include compensating o- 5 general coordinate 

transformations: 

0 8eX11 + ef oµX11 = ET11 B + ee 

=? ee = -E"f11 B 

0 8X11 + e~oµX11 = -80f11 B + eK 

=? eK = 8Br11 B. (7.107) 

Upon double-dimensional reduction the induced general coordinate transformation 

parameter e only appears in the quantities (see eqs. (7.44) and (7.45)) 

(7.108) 

and 

(7.109) 

The supersymmetry variations of C and H are entirely given by the induced o-5 gen­

eral coordinate transformation. Therefore supersymmetry of the theory after double 

dimensional reduction is a consequence of both the supersymmetry and the general 

coordinate invariance of the original 6d theory. As a consistency check, one can show 

that eq. (7.108) withe = ee reproduces eq. (7.105). Kappa symmetry works similarly: 

(7.110) 

where the second term is the remnant of the K, variation of Gµ, 5 . Looking at 8(dH) 
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we can compute 

81-{ = -8iJ'lj; 2d() + 28iJI'11 '1j;d()C - (8iJI' 11 ())diJI' 11 '1j;d() +total derivative, (7.111) 

which is reproduced by combining eqs. (7.106) and (7.108) fore = e,,,. 

7. 7 Discussion 

This paper has presented the world-volume action of the M theory five-brane in a flat 

1 ld background. The required global and local symmetries have been verified in detail 

using a formulation in which one world-volume direction is treated differently from 

the others. The corresponding results in the manifestly covariant PST formulation 

have also been presented. Although we have not done it, we expect that it would be 

reasonably straightforward to extend the results to an arbitrary background, as has 

been done for D-branes in refs. [90, 91]. All the considerations in this paper have 

been classical, but there are undoubtedly various quantum implications. In fact, it 

has been suggested recently that certain supersymmetric 6d theories can have non­

trivial renormalization group fixed points [122]. Perhaps our five-brane action is of 

this type. 

The five-brane world-volume theory has a solitonic solution [108] that describes 

a finite-tension self-dual string of the type discussed in [123]. We think that it will 

be very interesting to study this string and its excitation spectrum, which could then 

be compared to the spectrum conjectured in [124]. It is curious that the five-brane, 

which itself arises as a soliton of the lld theory, has its own solitons. Upon double 

dimensional reduction to the IIA 4-brane, as discussed in sect . 6, the self-dual string 

can either wrap or not wrap. This reflects the fact that the D4-brane has both point­

like and string-like solitons, which are electric-magnetic duals of one another. The 

point-like solitons can also be viewed as describing bound states of D4-branes and DO­

branes with the DO-brane charge representing momentum in the compact dimension. 

The string-like solitons do not appear to have an analogous interpretation. 
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Another direction that we think deserves to be explored is how the M5-brane 

should be described in the background that describes the E8 x Es theory [67]. The 

5-brane in such a background will have half as much supersymmetry as we have 

described, corresponding to N = 1 in lOd. More significantly, it should have a soliton 

solution that describes a "heterotic" self-dual string. The gauge group, whose currents 

would appear as left-movers, should be Es [125, 126]. It would also be interesting 

to explore how wrapping M5-branes on suitable 2-cycles gives rise to Seiberg-Witten 

theories in the unwrapped dimensions [127]. 
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Appendix A - Evaluation of p2 

This appendix will show that p2 = -G(l + z1 + !zi - z2 ), where 

It is convenient to rewrite p2 (the subscript refers to the order in H) as 

where we have used 

(7.112) 

(7.113) 

(7.114) 

The matrix i anticommutes with all /µ's, so {p0 , pi} = 0 and [p0 , p2] = 0. Further-

more, 

(7.115) 

as the commutator is antisymmetric over six 5-valued indices. Thus, 

2 2 2 2 2 
P = Po+ P1 + PoP2 + P2· (7.116) 

1 - -We know already that P6 = -G and PoP2 = - sass 1iµv 1ipu /µvpu. So we need 

P21 1 f{µv f{PtJ - 1 f{µv f{PtJ ( 2G Q ) 
4Q55 /µv/pu - 4Q55 /µvpu - µp vu 

4~55 [Hµv'fl pu /µvpu + 2tr (H2
)], 

where tr(H2
) represents tr(GHGH). Thus, Pi+ 2p0 p2 = -Gz1 . Finally, 
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In the multiplication of gamma matricess one can argue that the only terms that 

contribute after contraction with the H's are effectively 

and thus 

(7.117) 

Collecting all the terms, we obtain the desired relation: 

(7.118) 

Appendix B - Evaluation of pTµ 

We wish to demonstrate that pTµ = Uµ, where p, Tµ, and Uµ are given by eqs. (7.79), 

(7.82), and (7.83), respectively. The calculation is somewhat messy, so we proceed 

order by order in H. 

To zeroth order, Po = i and Trf = -411µ give poTcf = 4a1µ = ug . The linear 

order contribution comes from (pTµ)i = p1Tcf + p0 T.f, where 

T µ - 2 VVP(asµ + 2aµ s) 
1 - - ass IL lvp vi p . 

Since 

2 - 2 -
T.µ_ 'LJVP S- µ,_ 'LJVP-( Sµ+asµ +2aµ S) P1 0 - - ass IL lvp II - a ss IL I lvp lvP vlp ' 

5 A useful generalization of the relation /µ 1 . . µm /µ = /µ 1 . . µmµ + m/[µ 1 .. µm-i Gµm]µ is 

min(m,n) 

L cr:m1µ1 ... µ m-kV1 ... Vn -kGµm-k+1Vn-k+1 .. . Gµ mVn ) 

k=O 

(7.119) 

(7.120) 

where c;:in = (-1 )kn+ 2 k! k k . The terms m the sum are antisymmetnzed over all µ 's and ~ (m) (n) . . . 

v 's separately. 
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we obtain 

(7.121) 

where eq. (7.114) has been used in obtaining the second equality. Thus, (pTµ)i = Uf. 

The higher-order calculations somewhat simplify if one rewrites p2 as 

(7.122) 

and Tf as 

(7.123) 

(7.124) 

using eqs. (7.80) and (7.81). In quadratic order, 

(pTµh = paTf + p1Tf + p2T/). (7.125) 

If we factor out (ifvpif>.a) as a common factor in all terms, 

PoTf 
1 2asµ 

rv - 2ass ( /vp>.aµ - ass /vp,\a S) 

,...., 1 s[asµ + 2aµ s] -(ass)2lvP />.a >./a -

(a!s) 2[aSµ(tvp,\aS - 2a;..vaap,5) - 2assaµ>.(tvpa + 2/vaap)] 

1 - - µ_ 1 µ µ 
p2T6 ,...., - 2as !/vp>.a/I - 2ass (tvp>.a + 4/vp>.aa ). 

Combining these contributions and reinstating (ifvpif>.a) gives 

1 - - asµ 
ass Hvp1{>.a[2 ass a;..vaap/s + 4aµ>./vaap] = (7.126) 

2 asµ - 2 s - 2 µv 
- ass [ass tr (H )t + 2(H ) 1v] 

Ut. (7.127) 
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At cubic order in H, 

(7.128) 

(7.129) 

we get 

µ 1 - µ 5 
p1T2 "-' 4Q55Q5 //cxf3/vpA<7 I 

"-' Q5;G51'(-/vpAGCY.<78~ + l/vpµGCY.<7G/3>. -1v>.µGCY.<7G13p)'y5. 

The second term in eq. (7.128) can also be simplified: 

p2Ti "-' - 4G515G5 1'/vp>.<7( Gµ5/cxf3 + 2Gµ /3/cx/5) 

Q5;G5 ;y[Gµ
5
(-l/vpGcx>.G13(7 + /v>.GcxpG/3<7) - /vpAGCY.<78~1 5 ]. 

Thus, 

2 _[ µ 5 Gµ5 ][1,Uvpt (--02) (v3)vp] Q55Q5 / /vp I - /vp 2' L r IL - IL 

1 cx/3vpµ [ 1 ,-LJ (,-LJ2) --03] 
Q55Q5 E /cx/3 2'Ltr /L - IL vp 

Uf. (7.130) 

Finally, in the quartic order, 

(7.131) 

The relevant contribution of i's in this case is 
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It follows that 

== Uf. (7.132) 

This completes the proof. 
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Chapter 8 Dual D-brane Action 

8.1 Introduction 

Several groups have recently constructed supersymmetric D-brane actions with lo­

cal kappa symmetry [88, 89, 91]. These supersymmetric actions are a good starting 

point for studying various properties of D-branes. For example, since D-branes play 

a reasonably well understood role in the web of string dualities, there are definite 

expectations for how each D-brane action should transform under a duality transfor­

mation of its world-volume gauge field . These reflect the 5L(2, Z) S duality of the 

type IIB superstring theory [138] and the relationship between type IIA superstring 

theory at strong coupling and lld M theory compactified on a circle [139, 140]. Pre­

vious studies of these duality transformations have been carried out in the context 

of the bosonic truncation of the D-brane action [121, 141] . Since the super D-branes 

are BPS objects, it is appropriate to study their duality properties including the 

fermionic degrees of freedom . Such an investigation, which is possible now that the 

super D-brane actions are known, is the purpose of this chapter. 

In ref. [89] we only considered super D-branes in a flat background. Here, as a 

modest extension of this, we include a constant dilaton background for the type IIA 

D-branes and constant dilaton and axion backgrounds for the type IIB D-branes. 

Starting with the Dl-brane, we show that one can obtain the expected SL(2, Z) 

multiplet of type IIB strings [144, 145], with the correct tensions, by performing du­

ality transformations. In the case of the D2-brane, we show that the dual action 

describes the M2-brane with one target space dimension compactified. (The relation­

ship between the D2-brane and the M2-brane has been discussed previously [120], so 

this part is mostly review.) In particular, we verify that the dilaton dependence of 

the D2-brane correctly reproduces the relation between the string metric of the IIA 

theory and the lld metric of the M theory. This implies that the type IIA string 



112 

coupling constant is correctly related to the radius of the 11th dimension [140]. Next 

we show that the D3-brane action is mapped into an equivalent D3-brane action by 

the duality transformation, thereby verifying the expected SL(2, Z) invariance of the 

D3-brane. Another correspondence suggested by the duality between M theory and 

type IIA superstring theory is that the double-dimensional reduction of the M5-brane 

action should coincide with the duality transformed D4-brane action. This could not 

be checked previously, since we did not have a suitable supersymmetric M5-brane 

action. However this action has been constructed recently [146], so we are now in a 

position to verify that the dual D4-brane action is identical to the double-dimensional 

reduction of the M5-brane action as expected. (The M5-brane has also been discussed 

recently in refs. [114, 14 7].) Finally, we indicate how duality transformations relate 

specific gauge choices for the gauge-fixed D-brane actions. 

The calculation of the duality transformations of supersymmetric D-brane actions 

is quite similar to that of the bosonic actions described previously in refs. [121, 141, 

142, 143]. Since the behavior of the fermionic degrees of freedom under the duality 

transformation is the new ingredient, this is the part of the analysis that is empha­

sized. Unless otherwise stated, the conventions used here are the same as those of 

ref. [89]. 

8.2 Dual Born-Infeld Actions 

The essential steps involved in world-volume duality transformations of D-brane ac­

tions can be described for the simpler problem of Born- Infeld theory. Subsequent 

sections will discuss the extensions that are required for various supersymmetric D­

brane actions. Born- Infeld theory in n = p + 1 dimensions is given by 

S = - j dn<JJ-det('l]µv + Fµv), (8.1) 

where '/]µv is the Minkowski metric and Fµv = OµAv - OvAµ is the Maxwell field 

strength. The basic idea is to recast the theory in terms of a dual (p - 2)-form 
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8S - 1 , ___ = Hµv = EµV"PI ... pp-2 f} B 
8Fµv (p- 2)! >. Pl·· ·Pp-2" (8.2) 

The Bianchi identity for the B field is the field equation for the Maxwell field. 

Also, the Bianchi identity of the Maxwell field provides the field equation for the B 

field. To make the latter equation explicit one needs to solve eq. (8.2) for Fµv· Then 

one can construct an action that gives the field equation. Equivalently, one can add 

a Lagrange multiplier term !ifµv(Fµv - 28µAv) to eq. (8.1) and eliminate F. 

To solve eq. (8.2) for Fµv, it is convenient to use Lorentz invariance to bring Fµv 

to the canonical form 

0 h 
-h 0 

Then eq. (8.2) implies that flµv has the same structure 

In this notation, eq. (8.2) becomes1 

(8.3) 

(8.4) 

(8.5) 

1This is the formula for Euclidean signature. The extension to Lorentzian signature is 
straightforward. 
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For p ~ 4 there are at most two f's and this equation can be inverted. The result for 

this case is 

(8.6) 

Unfortunately, for p > 4, when there are three or more f's, we are unable to carry 

out the inversion. With three f's we find a quintic equation. The coefficients of the 

quintic are not completely generic, so a closed form solution might exist, but we have 

not found one. 

Having found the field equation of the B field in a special frame, it is easy to pass 

to a general frame and write an action that gives the desired equation . The result is 

(the subscript D stands for "dual") 

(8.7) 

We emphasize, once again, that this result is only correct for p ~ 4 or n ~ 5. 

Now consider the more general Born- Infeld action 

(8.8) 

where Gµv is a symmetric tensor field and :Fµv = Fµv - bµv is an antisymmetric tensor 

field. Repeating the analysis described above in this more general setting gives (for 

p ~ 4) 

(8.9) 

where 

(8.10) 

The H /\ b2 term in SD will be identified as part of the Wess- Zumino term of the dual 

D-brane. 

The analysis described here is not the whole story for super D-branes, since they 

also contain Wess-Zumino terms that are polynomial functions of Fµv· Specifically, 

they are linear in F for p = 2, 3, quadratic in F for p = 4, 5, and so forth. The 
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extension of the analysis given here to include these terms will be described on a 

case-by-case basis in the sections that follow. 

8.3 The Dl-brane 

Let us consider the Dl-brane (i.e., the type IIB D-string) first. If we include the 

dependence on a constant dilaton </>, the action of the super Dl-brane with kappa 

symmetry is given by 

(8.11) 

Here Gµv = 17mnII;:1II~, where II;:1 = fJµXm -ermaµe. Also, xm and e are coordinates 

of type IIB superspace and 17mn is the lOd Minkowski metric . The induced world 

volume metric Gµv is the supersymmetrized pullback of the lOd string metric 17mn· 

Also, :F = F - b2 with b2 = -BT3 I' mdB(dXm + ~ermde). Lwz denotes the Wess­

Zumino term, which can be represented by a 2-form on the world volume of the 

D 1-brane. Specifically, 

(8 .12) 

where C2 = BT1I' mdB(dXm + ~ermde) and dC2 = dBT1I' mderrm with rrm = dXm + 
ermde. Note that eq. (8.11) is the Dl-brane action of ref. [89] rescaled by the string 

coupling constant . One can also add a total derivative term (analogous to the e term 

of QCD) to the Wess-Zumino term in eq. (8.12): 

(8.13) 

where Co is a constant "axion" background field. Since C0 F is a total derivative, it 

does not affect the classical equations of motion. A constant shift of C0 is a trivial 

classical symmetry of the action (8.11). In the quantum theory it is replaced by a 

quantized shift, just as in QCD. This reflects the breaking of the classical SL(2, R) 
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symmetry to the quantum SL(2, Z) symmetry. 

Now let us perform the duality transformation. Following ref. [1 41], one introduces 

a Lagrange multiplier field fIµv = -flvµ as follows 

S' = j d2(}(-e-<t>J-det (Gµv + Fµv)+~fIµv(Fµv-28µAv)+~e-<f>EµvCµv-~CoEµv Fµv) 

(8.14) 

and considers Fµv to be an independent field. Varying Av gives 8µfiw = 0, which 

implies that fIµv = Eµv A with A constant. This gives S' = S1 + S2 , where 

(8.15) 

(8.16) 

Our convention is that whenever an integral appears without a dn(J it is an integral 

of a differential form. It can be easily converted to a usual integral. For example, 

J F = J d2(JtEµv Fµv· The basic strategy, described in the preceding section, is to use 

the equation of motion for F to rewrite the action in terms of A instead of F. The 

duality transformation of S1 is the same as the bosonic case, if we replace F by F. 

Thus the dual of S1 is 

(8 .17) 

while S2 is unaffected by the duality transformation. 

In eq. (8.16), we have 

(8.18) 

Since the eigenvalues of e - <l>T1 - (A - C0 )T3 are ±) e-2
<1> +(A - C0 ) 2 we can redefine 

(8 .19) 
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Then the total action can be written as 

(8.20) 

with b; = -BT~f mdB /\ (dXm + ~ermde). This is nothing but the kappa-symmetric 

superstring action with the modified tension 

T' = ) e- 2¢ +(A - Co)2. (8.21) 

This agrees with the tension formula derived in ref. [144] for the SL(2, Z) covariant 

spectrum of strings provided that one identifies the integer value A = m as corre­

sponding to the ( m, 1) string in a background with constant dilaton </> and axion C0 . 

An equivalent interpretation is that eq. (8.20) describes the fundamental (1, 0) string 

with an S L(2, Z) transformed metric, dilaton and axion. (The canonical Einstein 

metric is invariant, but the string metric is not.) The relevant SL(2, Z) transfor­

mations maps C0 + ie-<f> to -( C0 - A+ ie-<f>t 1 • Thus the coupling constant of the 

fundamental string after the duality transformation is given by eJ = e- <f> + e<f>(A -C0 ) 2 . 

8.4 The D2-brane 

The D2-brane action was the first of the super D-brane actions to be worked out. 

The method that was used was to start from the known M2-brane action [91] and 

to perform a duality transformation of a world volume scalar field corresponding to 

a circular target-space coordinate [120]. The dual of a scalar in 3d is a U(l) gauge 

field, of course. Here we reverse the argument, starting from the D2-brane action to 

get the M2-brane action. Consider the super D2-brane action in the string metric 

S = j d30"( - e- <f>j-det (Gµ,v + Fµ,v) + ~Hµ,v(Fµ,v - 28µ,Av)) - j e-<f>(C3 + C1 /\ F). 

(8.22) 
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Here the Av equation of motion implies that f!µv = Eµv>.f);..B for a scalar field B. C3 

and C1 are determined by the condition 

(8.23) 

with 'ljJ = rmrrm. Wedge products are implicit on the RHS of this equation and all 

similar subsequent equations. Comparing the :F independent terms in eq. (8.23), we 

conclude that 

(8.24) 

Eliminating the U(l) gauge field in favor of the dual scalar B, one finds that the dual 

of the action in eq. (8.22) is 

(8.25) 

where 

(8.26) 

and Cµ -Of 118µ8. If we identify B as the coordinate of a compact extra dimen­

sion, the expression appearing in the Born-Infeld part of the action is the standard 

expression for the induced metric of the M2-brane. The Wess-Zumino term also has 

the appropriate structure for this identification, since if we set X 11 = -e<P B, then 

II11 = -e<i>dB + C1 = dX 11 + C1 and 

~e-<Pder mnrrmrrnde + e-<Pder mf 11l1ml111 de (8.27) 

~e-<PderMNITMITN de, (8.28) 

where M, N denote lld indices and m, n denote lOd indices. Thus eq. (8.25) can be 

rewritten as 

(8.29) 
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where G~l/ and nD denote 11d quantities. In order to obtain the standard M2-brane 

action, we should remove the dilaton factor. The dilaton dependence can be absorbed 

by the rescaling 

(8.30) 

After this scaling, eq. (8.29) becomes 

(8.31) 

with G~~ = IT;;1IT;;117MN and dD 11 = -~dBfMNITMITN dB. This is the standard M2-

brane action [85]. Thus, as expected, we identify the M2-brane action (with a circular 

11th dimension) as the dual of the D2-brane action. 

Let us check that the scaling that was required gives the usual relation between 

the IIA string theory and M theory. Comparing Gµv appearing in eq. (8.25) and G~~ 

of eq. (8.31), we obtain 

(8.32) 

This correctly reproduces the relation between the 11d metric and the string metric 

in lOd [140]. In particular, the coefficient in front of (8B) 2 gives the standard relation 

R11 = e~rf>, where R11 is the radius of the compactified circle in the 11th direction. 

8.5 The D3-brane 

The D3-brane should be self dual , i.e., invariant under an SL(2, Z) transformation. 

For the bosonic case, the self-duality of the D3-brane was shown in [141]. So we wish 

to extend the argument to the supersymmetric D3-brane action. 

Consider first the D3-brane with e-ef> = 1. The D3-brane action presented in [89] 

IS 

(8.33) 
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where C4 and C2 are determined by the condition 

(8.34) 

This condition gives the useful identity 

(8.35) 

The Co term in eq. (8.33) is absent in [89], but it is a total derivative term (or boundary 

term) that can be added to the action without changing the classical equations of 

motion. As in the case of the Dl-brane, a constant shift of C0 is a trivial classical 

symmetry of the action. 

Introducing a Lagrange multiplier as before and rewriting the boundary term in 

terms of :F instead of F, the action becomes 

S' (8.36) 

This time the Av equation of motion is solved by fJµv = Eµv>..a EJ>..Ba. Again, the 

duality transformation is similar to the bosonic case and we obtain 

(8.37) 

where F =dB and nD is given by 

(8.38) 

To prove that nD has the same form as n, we apply the following rotation of the 
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Pauli matrices: 

T; = -( T3 + CoT1)/ j1 +CJ 

T~ (T1 - CoT3)/Vl +CJ. (8.39) 

Then 
1 - - -j (F + C2 + Cob2) = F' - b; = F' , 

1 +CJ 
(8.40) 

where F' = F / j1 +CJ. From eq. (8.38) 

df!n = dC4 -C2 /\db2-b2/\ (dC2 + Cadb2-)1 + CJdF') + ( j1 + CJdb2-CodF') AF'. 

(8.41) 

Using eq. (8.39) one sees that the first parenthetical factor of the above equation 

vanishes, while the second one gives dOT{'ljJdB. Using eq. (8.35) and the fact that 

(8.42) 

which corresponds to eq. (8.34). Thus the dual action can be rewritten as 

(8.43) 

This action can be interpreted as a D3-brane in the presence of both constant dilaton 

and axion backgrounds. However, to make this identification, we must present the 

general formula with such backgrounds. 

In the string metric, the action including arbitrary constant dilaton and axion 

backgrounds is 

(8.44) 

In order to get to the Einstein metric, which is invariant under S L(2, R) transforma-
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tions, we rescale 

(8.45) 

The action becomes 

We now add a Lagrange multiplier term tfIµv(Fµv - 28µAv) and a boundary term 
2 - 2 - . 

tc0 F /\ F. If we define F' = e-2 F, H' = e2 H, and C~ = e<PC0 , the act10n expressed 

in terms of primed quantities is just (8.36), so we can read off the dual action from 

eqs. (8.37) and (8.38). The resulting action is 

where 

The kappa symmetry of this action follows from that of eq. (8.37). Also, we can 

check the transformation of the dilaton and the axion under the duality transforma­

tion. From the coefficient of F in the Born-Infeld part of eq. (8.4 7), we obtain the 

transformation 
e<P 1 

e- ¢ -+ ----
1 + e2<PC6 e<P + e-<PC6' 

and from the coefficient of F /\ F we have 

e2¢Co 
Co-+-----

1 + e2<PC6 

(8.49) 

(8.50) 

Thus, the dilaton and the axion undergo the expected SL(2, Z) transformation. Com­

bining this symmetry with the symmetry under a constant shift of C0 , one deduces 
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that the D3-brane action has SL(2, R) symmetry classically. Of course, this is reduced 

to SL(2, Z) by quantum effects. 

8.6 The D4-brane 

The D4-brane action plus a Lagrange multiplier term is given by 

(8.51) 

The Av equation of motion implies that fIµv = ~Eµv>.ar H>.cn with H = dB. Also 

C1 = iJr11 dB and 

1- - 1- -
2Br mi m

2 
dB( dXm 1 dXm2 + Brm1 dBdXm 2 + 

3
Brm1 dBBrm2 dB) (8.52) 

1 - - 2 -+2Br11 r mi dBBf11 dB(dXm 1 + 3erm1 d8), (8.53) 

while Cs is determined by 

1 - 11 4 
dCs = 

24 
dBr ¢ dB + db2 /\ C3 . (8.54) 

The action S can be written in two parts S = 51 + 52 , where 

S2 - j n = j (-Cs+ H /\ b2), (8.56) 

and 1i = H - C3 . The appendix shows that after the duality transformation one 

obtains the dual action SD = Sw + S2, where 

S Z1 Eµv>.ar IL IL 
Sw = - d <J ~ ·, + Z1 + 2- z, + 8(1 +en . J ( v 2 cw-L.1v>.var ) 

(8.57) 



Here 
_ tr( 6il6il) 

Zi = 2(-G)(l +en 
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and 
_ tr( 6il6il6il6il) 

Z2 = 4(-G)2(1 + C{)2 ' (8.58) 

h G- - G + C C d Vµv - 1 µv>.uT'LJ Th d l"t t f . 1 w ere µv = µv µ v an / i - 6E 1 i>.uT· e ua 1 y rans ormat10n eaves 

52 unchanged. The Wess- Zumino term n is given by 

1 - 11 4 -
dn = dCs + db2 /\ H = -

24 
der 1/; d() - d()f 11 7/J d{) /\ 1i. (8.59) 

This dual action D4-brane action is identical to the action obtained by double­

dimensional reduction of the M5-brane, which was given in sect. 6 of ref. [146] . 

In that work, the radius of the compact dimension was set equal to one, which corre­

sponds to setting the IIA dilaton equal to zero, as done here. 

Let us now consider how the analysis described above generalizes when a constant 

dilaton background field is included. In this case, the D4-brane action is 

The action after the duality transformation is 

Here z1 and z2 are defined as before, but now 

(8.62) 

and r!' is determined by the equation 

(8 .63) 

It now remains to show that this action agrees with the one obtained by double­

dimensional reduction of the M5-brane, when the analysis of ref. [146] is generalized 
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to include the radius of the compact dimension and one identifies that radius with 

exp(2</>/3). This means that it should coincide with the double-dimensional reduction 

of the M5-brane using the lld metric G~~ introduced in eq. (8.32) in connection with 

the D2-brane. In eq. (8.32) 

11 _3.1!_ I _3.1!_ M N 
G 1u1 =e 3G1w = e 3 ITµITv 1JMN, (8.64) 

where II11 = dX 11 + C1 = - e<l>dB + C1 . In ref. [146], G~~ is the pullback of the lld 

flat metric. In order to compare the M5-brane action with the dual 4-brane action, 

in which the string metric is the usual flat metric, we need to rescale the variables 

appropriately. The required scaling is 

(8.65) 

This is just the inverse of the transformation in eq. (8.30), which was used to convert 

to the lld canonical flat metric from the string metric. Since X 11 is defined to be 

-e<P B in eq. (8.32), after this scaling it becomes X 11 = - et¢ B. Carrying out the 

double-dimensional reduction by setting B = -0"
5 in eq. (8.32) 2 and dropping the 0"

5 

dependence of the other variables, we obtain 

e-~<PG + e-~<Pc C et<Pc µv µ v µ 

a11 = (8.66) 

Hereµ, f; run from 0 to 5 andµ, v run from 0 to 4 and Gµv = rr;rr~'l7mn· The rescaling 

also gives C3 -+ e-¢C3 , which implies that the quantity H that is used in the double­

dimensional reduction of M5-brane is the same as in eq. (8.62). Thus we can conclude 

that the double-dimensional reduction of the M5-brane with these rescaled variables 

gives the same action as the dual 4-brane action with a constant dilaton in eq. (8.61). 

2The circular 11th dimension has circumference 271" Ru, and B runs between 0 and 271", so Ru ~ 
exp(2¢> /3). 
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8. 7 Duality Transformations of Gauge-Fixed The-

. 
or1es 

The analysis can be repeated for the gauge-fixed D-branes of [89]. As shown there, 

one can go to a static gauge by imposing Xµ = O"µ for µ = 0, ... , p and setting B2 = 0 

(B1 = 0) for IIA (IIB), respectively. If we do not include any background fields, the 

Wess-Zumino term vanishes in this gauge. Denoting the component of the spinor 

that survives by >. and the transverse components of Xµ by <Pi with i = p + 1, ... , 9, 

we get the action [89] 

(8.67) 

with 

(8.68) 

(8.69) 

Since the Wess- Zumino term vanishes in this gauge, the dual actions have the same 

form as in eq. (8.9). 

The IIA cases are straightforward in this picture: the dual action corresponds to 

the dual theory in the same kind of static gauge (Xµ = O"µ, ()2 = 0). Indeed, for p = 2 

(8 . 70) 

This is precisely the action (8.25) in the static gauge, because for B2 = 0 both C1 and 

C3 vanish. Similarly, for p = 4 

(8. 71) 

where the z's are similar to the bosonic ones, involving only G and if . This corre-
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sponds to eqs. (8.56) and (8.57) for C1 = C3 = Cs = 0. 

The IIB duals are a bit puzzling at first sight. For p = 1 

(8.72) 

and for p = 3 

(8. 73) 

The 3-brane is supposed to be self-dual, yet the dual theory looks different: it has 

F instead of :F under the square root and nonvanishing Wess-Zumino term. Also, 

the two terms in the dual 1-brane have different coefficients, unlike the fundamental 

string. The explanation is that in the IIB case the dual theories correspond to the 

8~ = 0 gauge, where the prime means that We first undo the rotation in T space 

(see eq. (8.39)) and then impose 81 = 0. For the 3-brane, this amounts to imposing 

the gauge 81 = 82 = >../ y'2 . In this gauge b; vanishes, but the Wess-Zumino term 

contributes. In fact, the above formulas agree with eqs. (8.20) and (8.43) in the 8~ = 0 

gauge. 

8.8 Discussion 

We have explored the duality transformation properties of super Dp-branes for p = 

1, 2, 3, 4. In each case, the results agreed with the expectations suggested by standard 

dualities. For the D5-brane and higher-dimensional objects, we have not yet been able 

to carry out the analysis. As explained in sect. 2, it is much more difficult to write the 

Born- lnfeld action in terms of the dual gauge field for p 2: 5 even in the bosonic case. 

For example, the dual D5-brane, which ought to correspond to the solitonic 5-brane 

of the IIB theory, would be expressed in term of a world-volume 3-form potential. 

Perhaps a more powerful approach is required to make this problem tractable. 

For the most part, our analysis has been classical and limited to flat backgrounds. 
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The results should not depend on these restrictions , however. 
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Appendix - Duality Transformation of D4-brane 

The following D4-brane action appeared in sect. 6 

(8. 74) 

Because of the Wess-Zumino term, the duality transformation is considerably more 

complicated in this case than for the bosonic truncation. Because of the general 

covariance, it is sufficient to consider the flat limit Gµv = 'r/µv· The G dependence is 

easily reinstated in the answer. Also, we can use the Lorentz invariance of this flat 

limit to choose a special basis where the only nonzero components of :Fµv and Cµ are 

(8. 75) 

(8. 76) 

where we use lower case e's, because numerical subscripts on C's denote differential 

forms. From the equations of motion following from eq. (8 .74), we then obtain the 

following nonzero components of Hµv 

(8.77) 

1 +Ji 
1 +ff !1 + coh, (8.78) 

f{34 = - f{43 = (8.79) 

It is useful to define yv = Cµflµv, whose nonzero components are 

y2 = (8.80) 

If H02 = H04 = 0, or equivalently yµ = 0, the analysis would be very similar to 
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the D3-brane with nonzero C0 . The dual action of eq. (8.74) in this case is 

J ( 
ii2 (ii2 )2 - 2ii4 E cwfiv>.ii(l'r) 

Sw = - d
5

0" ~ 1 + 2(-G)(l +en + 8(-G)2(1 + cn 2 + µv>.;(1 +en ' 
(8.81) 

where ii2 tr( GiiGii) and similarly for ii4
. When yµ is nonzero, the analysis 

becomes more complicated. One could try to rewrite the action (8.74) in terms of 

ii using the Lorentz invariant quantities made out of iiµv and yµ, and using the 

relation between :F and ii obtained from the equations of motion. Instead of doing 

that, we will take advantage of the fact that we already know the answer (from 

double-dimensional reduction of the M5-brane action). Defining Gµv = T/µv + CµCv 
and 

tr( 6ii6ii) iiµviivµ - 2yµy µ 
Zi = 2(-G)(l +en = 2(1 +en 

_ tr( GiiGiiGiiGii) 
z2 

= 4(-G)2(1 + cn 2 

we consider the expression 

ii4 - 4yµiiwx iia>.Y>. + 2(yµyµ) 2 

4(1 + cn 2 

It is a matter of calculation to show that this is equal to 

(8 .82) 

(8 .83) 

(8.84) 

(8 .85) 

using the form of iiµv and yv of eqs. (8. 77) and (8.80) in the special basis.3 Now 

3 For example , one can check 

1 - ff Ji + ci ( 1 + Ji) + c§ ( 1 + Jf) 
(1 + c2)V(l + Jf)(l +Ji) 

c6(1 + Jf)(l +Ji)+ 2cofihV(l + J?)(l +Ji) 
(1 + C2))(1 + Jf)(l +Ji) 
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putting back the metric dependence, we conclude that in the general case 

5 Zl EµvAaT IL IL J ( v 2 cµ/LJVAVaT ) 
Sw = - d a ~1 + z1 + 2- Zz + S(l +Cf) ' (8.86) 

where z1 and z2 are defined as in eqs. (8.82) and (8.83) with Gµv = Gµv + CµCv . 
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