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Abstract

Effective field theory techniques are used to describe the interaction of heavy hadrons
in a model independent way. Predictability is obtained by exploiting the symmetries
of QCD. Heavy hadron chiral perturbation theory is reviewed and used to describe
D* decays. The phenomenologically important D* D7 coupling is extracted from data
working to first order in the chiral and heavy quark symmetry breaking parameters.
A method is described for determining |V,;| from exclusive semileptonic B and D
decays with 10% uncertainty. An effective field theory for two-nucleon systems is
then discussed. The large S-wave scattering lengths necessitate expanding around a
non-trivial fixed point. A detailed discussion of the interplay between renormalization
and the power counting is given. In power counting pion interactions with nucleons
it is useful to consider three classes of pion: potential, radiation, and soft. A power
counting for massive radiation is developed. Finally, it is shown that the leading terms
in the effective theory for nucleon-nucleon interactions are invariant under Wigner’s

SU(4) spin-isospin symmetry in the infinite scattering length limit.
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Chapter 1 Introduction

The minimal standard model is an appealing theory which describes the strong, weak,
and electromagnetic interactions in terms of 19 input parameters. This renormaliz-
able quantum field theory gives quite an accurate description of nature, as shown
through precision tests of QED [8, 9], the Electro-Weak sector [10, 11], and to a lesser
extent QCD [12, 13, 14]. These tests examine observables for which a perturbative
treatment of the couplings is applicable. For QCD, this is a valid approach for high
energy processes due to asymptotic freedom [15, 16]. However, at low energy or large
distance the coupling becomes strong and the quarks and gluons are confined into the
observed mesons and baryons. At these energies a non-perturbative approach, such
as lattice gauge theory, is necessary. Since lattice calculations are still fairly crude,
it is reasonable to ask if the non-perturbative nature of QCD can be handled in an-
other model independent fashion. In certain situations the answer is yes, because the
symmetries and dynamics of QCD provide other expansion parameters besides the
strong coupling. Expanding about a symmetry limit provides us with a means for
describing non-perturbative effects by a series of low energy parameters (matrix ele-
ments or effective couplings) which can be determined from experimental data. This
approach is predicative since there are typically several observables that depend on
a given parameter. In many ways this is complimentary to lattice QCD calculations,
which can then concentrate on calculating these parameters.

Effective field theory is a useful tool for implementing these ideas. We begin by
writing down fields for the relevant degrees of freedom, and constructing an effective
Lagrangian. The Lagrangian includes all possible terms that transform correctly
under the symmetries, and is typically non-renormalizable with an infinite number
of terms. These terms are organized in importance by power counting in a small
parameter. Identifying a small expansion parameter usually depends on having scales

which are widely separated. The low energy Lagrangian is a sum of terms of the
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form £ ~ C(p)O(u). The coeflicients C'(u) and operators O(u) encode short and

long distance physics respectively, and the renormalization point u separates the
two regimes. This is essentially a Wilsonian operator product expansion [17]. The
effective field theory approach is important for several reasons. In an effective field
theory different scales in the problem are separated, so that one can concentrate on the
most interesting physics at a particular scale. Furthermore, the power counting gives
us a way to estimate the uncertainty in working at a given order. Finally, calculations
are often much simpler in the effective theory. Depending on the situation, effective
field theories are used in two somewhat distinct ways, either from the top down or
from the bottom up.

In a top down approach the high energy theory is understood, but we find it
useful or necessary to use a simpler theory at lower energies. Since the high energy
theory is known, the C'(i) couplings can be calculated by performing a perturbative
matching at the high scale. The theory is then run down to the desired low energy
scale using the renormalization group. Solving the renormalization group equations
for the running of the coefficients, we sum potentially large logarithms between the
two scales. At the low scale, matrix elements of the operators are natural in size.
A standard example is the calculation of QCD corrections to weak processes at mo-
menta p < 90 GeV (see Ref. [18] for a review). Here integrating out the W and
7 leaves four-fermion interactions and an expansion in p?/m%,. A second example
is non-relativistic QED (NRQED) [19], which is used in describing the electromag-
netic interactions of non-relativistic leptons. NRQED is especially useful in describing
Coulombic bound states such as positronium, where a pure coupling constant expan-
sion is inappropriate. Instead, a dual expansion is performed in the electromagnetic
coupling and the velocity of the non-relativistic leptons. This effective theory is es-
pecially tractable since both the coefficients and matrix elements can be calculated.
In QCD the quark masses are such that Aqecp < mep = mg. In the limit mg — oo,
QCD exhibits additional flavor and spin symmetries, called heavy quark symmetry
(HQS) [20, 21]. Heavy Quark Effective Theory (HQET) uses these symmetries and

an expansion in Aqep/mg to make predictions for processes involving hadrons con-



3

taining one heavy quark. At high energies this effective field theory is matched onto
QCD. In this case the matrix elements are typically not calculable, but are still re-
lated by HQS. For systems with two heavy quarks, the appropriate effective theory
is called non-relativistic QCD (NRQCD) [22].

A second approach to effective field theory is from the bottom up. In this case
the high energy theory is either unknown or not calculable. A well known example
is SU(3) chiral perturbation theory, which exploits the pattern of dynamical chiral
symmetry breaking observed in QCD. In the limit m, — 0, QCD has additional
chiral symmetries, giving enhanced predictive power. Approximate chiral symmetry
is a result of the small light quark masses, m; = my 45 < Aqgcp. Phenomenologically,
this approach is valid for energy and momenta < A where A ~ 1.2 GeV is the chiral
symmetry breaking scale. The relevant degrees of freedom here are the pions, kaons,
and eta which are the pseudo-Goldstone bosons of the SU(3)r, x SU(3)r — SU(3)v
breaking. At low energy, matching onto QCD is not possible, so the couplings C'(y) in
this low energy theory must be determined from experimental data. However, because
our fields correspond to the asymptotically observed particles, the matrix elements
are calculable. Processes involving a single heavy hadron can also be incorporated
in this approach by combining the power counting in HQET and chiral perturbation
theory into heavy hadron chiral perturbation theory [23, 24, 25, 26]. The effective
field theory approach has also been extended to processes with two or more heavy
particles, such as nucleon-nucleon interactions [27, 28, 29, 30, 31, 6, 32]. The latter
theory will be discussed in some detail.

In the modern view, the standard model itself is a low energy effective theory.
As an effective field theory it includes the usual Lagrangian as well as operators of
dimension five and higher built out of standard model fields. Such operators are
suppressed by powers of a scale A, where A is a measure of the energy at which the
new physics becomes relevant. At energies ~ A the standard model effective field
theory must be replaced by something more fundamental. The fact that the standard
model is renormalizable is significant since it implies that the scale A is not generated

by standard model interactions, and is therefore, in principal, unconstrained. Large
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values of A then explain several of the beautiful features of the standard model, such
as baryon and lepton number conservation and the absence of flavor changing neutral
currents.

In this thesis several applications of effective field theory are discussed. The focus
will be on using chiral perturbation theory for processes with heavy particles. Much
of this material has now been published [33, 34, 35, 36, 37, 38], but unpublished
material appears in sections 2.3.2 and chapter 8. Chapter 2 reviews the necessary
theoretical tools and establishes notation. In chapter 3, D* decays are investigated.
The D*°, D**, and D? branching fractions are used to extract the D* Dr and D* D~y
couplings working to first order in the symmetry breaking parameters, m, and 1/m..
Important effects due to the heavy meson mass splittings and unknown order m,
couplings are included. Predictions for the D* and B* widths are given. Chapter 4
discusses a method for determining |V,;| from exclusive B semileptonic decay. The
calculable deviation from unity of the double ratio of form factors (f(B=#)/ f(B=K"))/
(fP=) [ fID=E")Y i5 determined using chiral perturbation theory and is found to be
small. It is shown that combining experimental data from B — p£7,, B — K*{{ and
D — p[ v can lead to a model independent determination of |V,;| with an uncertainty
from theory of about 10%.

In chapter 5 an effective field theory for nucleon-nucleon interactions is discussed.
The power counting in this theory is controlled by the presence of a non-trivial ultra-
violet fixed point or, equivalently, a bound state near threshold. Two renormalization
schemes which have manifest power counting are discussed in detail, the Power Diver-
gence Subtraction scheme (PDS)[31] and an off-shell momentum subtraction scheme
which we call the OS scheme. Comparing results in these schemes gives us a method
for determining if a statement about the behavior of the theory is scheme depen-
dent. The effect of low energy poles on the organization of the perturbation series is
explained. Comments are also made regarding the constraints that ultraviolet diver-
gences make on the power counting. Theoretical and empirical arguments are then
given about the range of this theory.

In chapter 6, radiative pion effects are discussed. It is shown that for the purpose of
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power counting the pion interactions should be divided into three classes: potential,
radiation, and soft. A power counting is introduced for systematically including
radiation pion effects. The leading order radiation pion graphs for nucleon-nucleon
scattering are evaluated. The power counting for soft pions is also discussed.
Chapter 7 discusses the symmetries of the lowest order nucleon effective field
theory. It is shown that in the limit where the NN 'S, and 35, scattering lengths,
a’%) and a5, go to infinity, the leading terms in the effective field theory for
strong NN interactions are invariant under Wigner’s SU(4) spin-isospin symmetry.
This explains why the leading effects of radiation pions on the S-wave NN scattering

() go to infinity. Implications of this symmetry

amplitudes vanish as a('50) and «
are also discussed for NN — NN axion and vd — n p.

A brief discussion of predictions for the 3S; —2 D; mixing parameter ¢; is given
in chapter 8. Working in the theory with pions at NNLO gives a one parameter
prediction for €;(p). The accuracy of this prediction is compared to results in the

theory without pions.

Chapter 9 contains concluding remarks.



Chapter 2 Theoretical Background

This chapter introduces the chiral perturbation theory formalism for theories with

zero, one or two heavy particles. We begin with the QCD Lagrangian,
1 . =
Lqcp = —ZG’;}VGAW +q(1) —my)g+ QEP — mg)Q + g.f. + c.t., {2.1)

where ny is the field strength for the gluon field Af}, D# = 0* + igAfTA is the color
covariant derivative, g.f. stands for gauge-fixing and ghost terms, and c.t. stands
for counterterms. The field ¢ includes the three light quark fields w, d, s with masses
Mg = My 4, while () includes the three heavy quarks ¢, b,t with masses mg = m. ;.
The quark-gluon interaction is flavor blind so in QCD only the masses distinguish the
quarks. The Lagrangian in Eq. (2.1) is renormalizable, Lorentz invariant, and is also

invariant under parity, charge conjugation, and time reversall. The quantum theory

of QCD depends on another dynamically generated scale, Aqcp ~ 250 MeV, where

g(p)? Am

aulp) = ar Bo ID(MQ/A?QCD) T 22)

Here p is the renormalization point, and Gy = 11N,/3 — 2n;/3 is the lowest order
coefficient of the QCD beta function for n; flavors and N.(= 3) colors. QCD is
asymptotically free [15, 16], as(u — o0) — 0, making perturbation theory valid at
large energies. At low energy a,(u) becomes large, and the quarks and gluons become
confined. Confinement is a non-perturbative phenomenum and a direct proof from
QCD has not been given.

In the limit m, — 0 the light quark term in Eq. (2.1) is invariant under the chiral

Motivated by instanton configurations, a term of the form 6/(647?) Gﬁyé“"“’ can be added to
Lgcp. This term violates parity and time-reversal invariance. In nature @ is tiny, limits on the
neutron electric dipole moment [39] give 6 < 107°. The occurrence of this unnaturally small value
is known as the strong CP problem.



symmetry transformation
qr — Lq,, qgr — Rqgr, WhereLESU(3)L andRESU(?))R. (2.3)

Since my; < Aqcp this is an approximate symmetry of QCD. This symmetry is
spontaneously broken, SU(3)r x SU(3)r — SU(3)v, by the vacuum expectation

value
(0] G5 g2 10) = v &*®, where v ~ Adqp - (2.4)

The breaking of chiral symmetry is another non-perturbative effect, and occurs at a
scale A, ~ 1GeV. The up and down quarks are much lighter than the strange quark,
so SU(2)r, x SU(2)g is an even better symmetry. In this case the unbroken SU(2)y
subgroup is isospin. Chiral symmetry has important implications for the interaction
of pions, kaons, and the eta with each other as well as with the heavier hadrons.

In the limit mg — oo the heavy quark sector in Eq. (2.1) also exhibits additional
symmetries. Consider a heavy quark with momentum p = mgv which interacts
with a gluon with momentum k, so that the final momentum of the heavy quark is
p' = mgv + k. For k ~ Aqgep the velocity v of the heavy quark is conserved up to
small terms of order Aqcp/mg and becomes a useful label for the heavy quark field.

To construct a Lagrangian with a good mg — oo limit we set
Qz) = e ™%, (z) + ..., (2.5)

where %(1 + $) hy = h, and v? = 1. Momenta of order Agcp cannot produce a heavy
anti-quark, so in the heavy quark sector the anti-particles can be integrated out as
indicated by the ellipsis in Eq. (2.5). The number of heavy quarks is then conserved
in the effective theory. After some straightforward algebra, the Lagrangian for heavy

quarks with velocity v becomes[40]

L, =hyiv-Dh, +0O(1/mg). (2.6)
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At leading order this Lagrangian is independent of the spin and flavor of the heavy
quark. For N heavy quarks we have an SU(2N), symmetry, known as heavy quark
symmetry[20, 21]. This symmetry has important implications for exclusive and inclu-
sive decays involving hadrons with a heavy quark, such as the D, D*, B, B*, A;, A,
etc. For a more detailed discussion of the implications of heavy quark symmetry see
Ref. [41].

The next few sections explain the implication of these symmetries in the formula-
tion of the low energy effective field theories for interaction of the light pseudoscalars
7, K,n, with heavy hadrons including the charm and bottom mesons D, D*, B, B*,
vector mesons p, K*, ¢,w, and nucleons N = p,n. For reviews of the formalism for
zero and one heavy particle see [41, 42, 43]. For effective field theory with two heavy
particles see [22, 6, 44, 45, 46, 29].

2.1 Chiral symmetry and chiral perturbation the-
ory

In this section SU(3) chiral perturbation theory is reviewed. The formalism for the
more accurate but less predictive SU(2) chiral perturbation theory follows in a sim-
ilar manner. The eight pseudo-Goldstone bosons 7 that arise from the breaking
SUB3)r, x SU(B)r — SU(3)y are identified with the observed light pseudoscalar
mesons, 7F, 7% K%, K° K°, and 5. These will be encoded in the exponential repre-

sentation

Y =& =exp <2“;:)\2> , (2.7)

where 1Y = £7¢ = 1 and the X are 3 x 3 matrices such that
/2 +n/V6 nt K+

II=nri\ = = —m°/\V2+n/vV6  K° : (2.8)
K- K° —2n/v/6
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In Eq. (2.7) f ~ fr = 131 MeV, where f, is the pion decay constant,

(0l y"ys d|m=(p)) = —ifxp". (2.9)

Note that II transforms as an octet under the unbroken SU(3)y. The ¢ field in
Eq. (2.7) will become useful when we add heavy matter fields in section 2.2.1. Under
an SU(3)r x SU(3)gr transformation

¥ —+ LER',
¢ — LEUY=UERY,  where U = VS RIWVRSILT. (2.10)

The non-zero quark masses m, = diag(m,mq, ms) break the chiral symmetry.
To include m, in our low energy Lagrangian we need to write a term that transforms
in the same way as the light quark mass term in Lgcp in Eq. (2.1). To do this we
pretend that m, — Lm,R" under a SU(3)L, x SU(3)g transformation, and then form
invariants with m,. The Lagrangian with the fewest derivatives and powers of m,
that satisfies the symmetry constraints is

2
7By, + my 5, (2.11)

f2
EFY = ST 8,2" +

where f2By/4 = v in Eq. (2.4). Note that expanding the X fields in terms of II gives a
canonically normalized kinetic term for II plus an infinite number of interaction terms
with determined coeflicients. In the interaction terms the pseudo-scalar fields are
derivatively coupled, which is a general feature of chirally invariant couplings involving
II. This follows from the fact that constant goldstone boson fields ; are a rotation of
¥, and correspond to an equivalent vacuum for the spontaneous symmetry breaking.
When neglecting isospin violation it is conventional to define rh = (m, + mg4)/2. In

this case the meson masses are

m2 = 2By, mik = By(h+m,), m:="(2m,+h). (2.12)



10

Therefore, one power of a quark mass corresponds to two powers of a meson mass.
This is the most general leading order behavior, given that these squared masses have
a Taylor series in m,, and that a constant term is forbidden by the fact that in the
limit my, — 0 the mesons are massless Goldstone bosons.

The Lagrangian in Eq. (2.11) is not the most general one that is invariant under
the desired symmetries. In particular, we can add an operator with dimension m
that involves more derivatives or powers of m, and a coupling of dimension 4 — m.
After using the equations of motion? there are 10 linearly independent terms with

dimension 0 coefficients[50, 51, 52|. For example,
LY = o [Tro*2 8,51 +... . (2.13)

Couplings like a; encode information about the short distance physics which was
integrated out, so their scale is set by short distance scales like the chiral symmetry

breaking scale A,. If p is a typical momentum, then higher dimension operators

2

5, and m%\»/Ai This is the chiral power

are suppressed by powers of pz/Ai, m2 /A
counting. It is convenient to consider p?> ~ m2 ~ mJ ~ m, and then call Eq. (2.11)
the O(p?) Lagrangian. Since the particles in £, are relativistic, £ = p* + m?, and
counting powers of the energy and powers of momenta are equivalent here.

Along with higher dimension operators we must also consider loop corrections.
These corrections are necessary, for instance, to restore unitarity to the S-matrix.
The chiral power counting can also be applied to loop diagrams. Consider a graph

with L loops, and n,, vertices that are O(p™). Weinberg [53] proved that this diagram
is O(p”) where

D=2L+1)+)» (m—2n, > 2. (2.14)

Each additional loop adds two powers of p. Instead of remembering the formula

in Eq. (2.14) we can power count an arbitrary loop graph by assigning appropriate

?Note that after using the equations of motion the remaining Lagrangian can also be used in loop
calculations [47, 48, 49].
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powers of p to the vertices, a p* for each loop integration, and factors of 1/p? for
each propagator. If loop integrals are regulated in a mass independent way, then
this counting is not affected by the divergences. It is convenient to use dimensional
regularization where we continue the dimension of space time to d = 4 — 2¢. At
O(p*) we must include the O(p*) vertices at tree level and the O(p?) vertices at
one loop. Because of renormalization, these two contributions can not be separately
specified in a unique manner. A logarithmic divergence in a loop integral induces a
1/e+In(u?/p*) dependence in the result. The 1/¢ pole is subtracted or absorbed into
a O(p?) coefficient, so in this sense these couplings act as counterterms. The fact
that divergences are polynomial in the mass or momentum squared [54] along with
the chiral power counting implies that divergences can always be absorbed in this
way. This theory is said to be renormalizable order-by-order in the power counting.
The finite (€ independent) part of the O(p?*) coupling depends on u in such a way
that it cancels the p dependence from the loop. Changing u changes the value of the
loop with a compensating change in the value of the O(p?*) coupling. It might seem
strange that the u dependence exactly cancels (which is different than the situation
in perturbative QCD where the p dependence only cancels to a given order in a,(p)).
However, this is nothing more than the statement that if we could calculate the full
amplitude then it would be independent of the renormalization point. Therefore,
expanding this amplitude in a power series in p? and m, gives coeflicients which are
termwise independent of p.

The p dependence of the loops and counterterms gives us a method for determining
the size of A,, called naive dimensional analysis [55]. Consider the graphs for mn
scattering at O(p*). For simplicity we use SU(2) chiral perturbation theory. Setting

constants of order unity equal to 1, the amplitude takes the form

2 4 2 4

7+ e 0 (G2) + K] + reat+ oo -

where K is a number and p is the center of mass momentum. At tree level the first

term in Eq. (2.11) gives an order p* contribution which is the first term in Eq. (2.15).
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The second term is the contribution from the loop graphs, and the factor of 1/(4m)?
arises from the loop integration. The third term in Eq. (2.15) is the contribution
of the operator in Eq. (2.13). For simplicity, terms with m, dependence have been
left out as indicated by the ellipses. If the value of p is changed then the second
and third terms change in size while the sum stays the same. If there is no fine-
tuning of parameters, then a;(x) must be at least as large as the change to the loop
graph induced by rescaling p by an amount of order 1 [55]. Thus, naive dimensional
analysis implies that the second and third terms will be roughly the same size, and
ay(u) ~ 1/(4m)* ~ 0.006. It also implies that a natural size for the chiral symmetry
breaking scale is® A, ~ 47 f. When the O(p*) couplings are fit to data, they are found
to be ~ 1072 with 4 = m,, which agrees with the dimensional analysis argument.
The choice of p reflects the fact that oy(u) knows only about short distance scales

and in particular is independent of m,) so
p

2

. Y (471T)2 {m (%) + K'] , (2.16)

where K’ is a constant and A ~ m, or A,. To avoid large logarithms in the coeflicients
we pick 4 ~ A. This leaves potentially large logarithms in the matrix elements,
In (1*/m?2). However since the theory is finite in the chiral limit m, — 0 these come
multiplied by a power of m?2, so although they are enhanced relative to other O(m?2)

terms, they are not particularly large.

2.2 Dynamics with one heavy particle

2.2.1 The D™ and B® and heavy quark symmetry

The use of heavy quark symmetry[20, 21] results in a dramatic improvement in our
understanding of the spectroscopy of hadrons containing a single heavy quark. In

the limit where the heavy quark mass goes to infinity, mg — oo, such hadrons are

3Some authors use Fy = 93 MeV rather than f ~ 131 MeV, so Ay = 4w F. Dimensional analysis
. can not tell the difference.
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classified not only by their total spin J, but also by the spin of their light degrees
of freedom (i.e., light quarks and gluons), s; [56]. In this limit, hadrons containing
a single heavy quark come in degenerate doublets with total spin, Jx = s; £ Z,
coming from combining the spin of the light degrees of freedom with the spin of
the heavy quark, sg = —;— (An exception occurs for baryons with s; = 0, where
there is only a single state with J = %) The ground state mesons with @) g flavor
quantum numbers contain light degrees of freedom with spin-parity s/* = %_, yielding
a doublet containing a spin zero and spin one meson. For () = ¢ these mesons are
the D and D*, while Q) = b gives the B and B* mesons. The observed doublets are
indeed very close in mass, mp = 1.867 GeV, mp+ = 2.008 GeV, mp = 5.279 GeV,
and mpx = 5.325 GeV[57]. The heavy quark flavor symmetry gives further relations
between the D™*) and B®).

The heavy mesons come in triplets under the SU(3)y symmetry, (D°, D, D),
(D*°, D**, D), (B~, B° B;), and (B*~, B*°, B*). We will use the dimension
3/2 HQET velocity dependent fields P,fQ)(v) and P;(Q)“(v) (a=1,2,3), where P{)(v)
destroys a D with velocity v, etc. It is convenient to include P, and P} in a 4 x 4

matrix

H@ = % P@uy _ p@.] (2.17)

H? transforms linearly under both a heavy quark spin transformation D(R), and

under a heavy quark flavor transformation U € SU(2) [41],
H® — D(R)H®,  H®) - U,;HO) (2.18)

and satisfies pH, = H, = —H,%. The conjugate field is defined as H, = v°H]~°. It

is also convenient to define vector and axial vector currents,
| :
Ve sl eonet),  and A= (o -coreh),  (219)

which contain an even and odd number of II fields respectively. Under a SU(3); x
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SU(3)r transformation
H, - HUL,  VFSUVAEUT4iU#UT, and A% — UAMUT.  (2.20)

The lowest order Lagrangian invariant under these symmetries is

ES) = —TrH,iv- Dy Hy + gTr I;[aHbfypfysAg‘a , (2.21)
where the chiral covariant derivative is D!, = 6, 0* — VJ;. The H, propagator

derived from the kinetic term in Eq. (2.21) is often referred to as static, since in the
rest frame v = (1, 6) the equations of motion give zero energy for an onshell particle.
(Recall that analagous to Eq. (2.5), the v dependent fields already have a factor of
mp subtracted from their energy.) Like £, in Eq. (2.11), Ly is organized by an
expansion in derivatives and powers of m,. Ly also involves an expansion in powers
of 1/mg, where terms at order 1/mg break heavy quark symmetry.

Since D* ~ A* ~ p the Lagrangian in Eq. (2.21) is O(p). It contains one coupling
g for P@=P@II and P@*P@~II. This coupling will be discussed in greater detail

in Chapter 3. The propagators for the heavy pseudo-scalar and vector mesons,

Z.(Sab —1 5ab (guu - v/.LUl/)
— d
2(v-k+ie)’ o 20w -k +ie)

(2.22)

are O(1/p). When power counting graphs, the meson propagators give 1/p® and the
loop measure gives a p* as before. Because of the form of the heavy propagators and
couplings, the power counting involves powers of p and m,. Higher order corrections

to the Lagrangian in Eq. (2.21) are discussed in chapter 3.

2.2.2 The heavy-vector meson chiral Lagrangian

In this section we extend the heavy matter formalism to the vector mesons, p*, p°,
b, w, K** K*° and K*°, following the presentation in Ref. [58]. One might ask if

these mesons should be treated relativistically; the lightest has mass m, = 770 MeV
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which is starting to approach the low momentum regime of interest. However, if these
particles are not treated as heavy then predictive power is lost. Unlike the pion, the
vector mesons are not pseudo-Goldstone bosons, so they do not have to be derivatively
coupled and their self-interactions are not constrained by chiral symmetry. When
they are treated as heavy, the interaction terms in the Lagrangian can be expanded
in derivatives giving an expansion in powers of p/m,.

The vector meson fields are introduced as a 3 x 3 octet matrix and a singlet

PIVZ+ ¢ V6 ot Kt
O, = ¢X = I -2+ P VE KR |
Kx- K0 —26 /6
S, = ¢, (2.23)

where v+ O = v -5 = 0. The dependence of these fields on the fixed four-velocity v
has been suppressed. Under SU(3)y, x SU(3)r the fields in Eq. (2.23) transform as

O, — U0, U, S,—S,. (2.24)
The O(p) Lagrangian is [58]

Ly = —Sliv-95*—TrO}w- DO (2.25)
+ig1 S}: Tr(O,A)) v, € 4+ h.c. + igs Tr({(’)L, O,}Ay) V€M

where the chiral covariant derivative is DYO* = §"O* 4+ [V¥, O*] and A* and V* are
given in Eq. (2.19). The octet and singlet originally have masses po and ps. When
the velocity dependent fields are constructed we rescale both O* and S* by a common
factor, v/2ug e##¥V"*. This leaves a term involving the mass difference, Ay = po — pg <
200 MeV which may be treated as order m,. Corrections to Eq. (2.25) involving the

quark mass matrix m, induce mass differences between the vector mesons. The mass
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eigenstates of the ¢(¥) — $(® mass matrix are
|6) = sin 8 |¢V) — cos0¢p®),  |w) =cosf|pV) +sin0]6®),  (2.26)

where the SU(3)y prediction for the mixing angle is tan § ~ 40.76.
Further predictive power can be obtained by considering the limit of large N, [58].
In this limit Ag = 0, tan# = 1/4/2 and the octet and singlet mesons can be combined

into a single nonet matrix

. P%/V2 + w[V2 pt EE
N, = O, + 7§5M = i —pg/\/—Q_+wu/\/§ [{;0 s 1227)
K~ K b,

At leading order in N, the Lagrangian in Eq. (2.25) becomes
Ly = —TtNliv-DN* +1ig, Tr({N], N,}A)) v,e**7 . (2.28)

Chiral and heavy quark symmetries can be used to relate the form factors describ-
ing the semileptonic decays: D — K*fvy, D — plvy, B — K*{{, and B — p{i.
In chapter 4 the heavy vector meson formalism described in this section will be used
to estimate symmetry breaking corrections to the heavy quark and chiral symmetry

relations between these form factors.

2.3 Dynamics with two heavy particles

2.3.1 Two nucleon effective field theory

This section considers an effective field theory for two heavy particles. The application
in chapter 5 involves nucleon-nucleon scattering, so the particles are taken to be
nucleons. For processes with one nucleon a formalism similar to that in Section 2.2.1
may be used. For simplicity, pion-nucleon interactions will not be considered in this

section, but will be considered in chapter 5. This simplification will allow us to
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emphasize the qualitatively new features of the two-nucleon theory. Without pions
the effective field theory is a valid description of nucleon interactions for momenta
p <L My.

Below the scale m,, the pion can be integrated out, leaving a theory of non-
relativistic nucleons interacting via contact interactions. The nucleon field N is a

doublet under isospin. The full Lagrangian in the two nucleon sector is given by:

oo

P Kb [@'at LV eM) + .. .]N ~Y Y cod ..., (2.29)

s m=0

where M is the nucleon mass, and the ellipsis refers to relativistic corrections. The
transformation to non-relativistic fields is analogous to Eq. (2.5) where here it is
convenient to choose v = (1,6). In Eq. (2.29), Ogj}z is an operator with 2m spatial
derivatives and four-nucleon fields. We will work in a basis in which these operators
mediate transitions between ingoing and outgoing two-nucleon states of definite total
angular momentum. The superscript s will give the angular momentum quantum
numbers of these states in the standard spectroscopic notation, ?*!L;. States with

S+L odd are isosinglets. If

(—1)5*L even are isospin triplets, while those with (—1)
we denote the incoming and outgoing orbital angular momentum by L and L', then
any operator mediating a transition between these states must contain at least L+ L’
derivatives. For states with S = 0, |L — L’| = 0, while for states with S = 1,
|L —L'|=0or2.

In this section only S-wave transitions (L = L’ = 0) will be discussed. For s =15,

or 35; the first two terms in the series are

3 cilol (2.30)

C’(s) —
= CPNTPONY(NTPON) — 2 | (NTPON(NTPD V2 N) 4 he.| + ...,
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where the matrices Pi(s) project onto the correct spin and isospin states

(o) _ 1 es) _ 1

2 7 (102) (i12mi) B 7 (1020;) (iTe) - (2.31)

—
The Galilean invariant derivative in Eq. (2.30) is V2 = VoV .V 4+ ﬁz, and the
ellipsis denote contributions with more derivatives. The normalization in Eq. (2.30)

implies that between S-wave states the Feynman rules are

_ ice, (2.32)

1 Cz 3 .02

2><4 = —ig [(p1 — p2)? + (p3 — ps)?] = —i C2 p?,

where the last equality is true when the nucleons are onshell in the center of mass
frame, and p is the magnitude of the center of mass momentum.

In a theory with two heavy particles using a static propagator is problematic. The
loop graph

Co Co

d%q 7 7
- 2
><>< = (=iCo) / (2m)4 go + te —qo + 1€ (2:33)

has a pinch-singularity in the qo integration at small go. This infrared singularity

indicates that the static propagator is missing some essential physics. In theories
with two heavy particles the kinetic energy term in Eq. (2.29) becomes a relevant
operator of the same order as the J; term. Including this term removes the singularity.
The equations of motion for external nucleons are then py = p?/(2M), so for power
counting, the nucleon energies and momentum are not equal in size. In dimensional
regularization the loop graph in Eq. (2.33) is finite

Co Co

d%q 7 7
= (-ico? [ _ _
><>< (QW)d%‘-l-qo—%-i-ZéE—QO*%—l—ze

2

d#-tg M
4 2
¢ (Co) / @r)* T §2— ME —ic (2:34)
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Here E = p?/M is the center of mass energy. In the second line of Eq. (2.34) the go
integration was done by contour integration. To power count this graph note that
g ~ p*/M, ¢ ~ p, so d*q ~ p°/M, and each of the nucleon propagators gives an
M/p*. The graph is therefore order p in agreement with Eq. (2.34).

The result in Eq. (2.34) has a factor of the nucleon mass M in the numerator. Since
each loop with two nucleons gives an additional factor of M one might worry that these
large factors will spoil the power counting. The reason for using a non-relativistic
expansion in the first place was that each graph scales as a definite power of M, so we
can keep track of these large factors®. From Eq. (2.29) the coupling Cj has dimension
—2. To count factors of M we must determine how the Cs,, couplings scale® with M.
To determine this, rescale all energies, ¢° — ¢°/M, and time coordinates, t — M1,
so that dimensionful quantities have the same size (ie., are measured in units of p).
If we demand that the action is independent of M, then since the measure d*z ~ M,
the Lagrange density £ ~ 1/M. The kinetic term determines that our nucleon fields
scale as N(z) ~ M°, so from Eq. (2.29) the coupling

With the M scaling for the couplings determined, the scaling of any Feynman graph
can be found. A nucleon propagator gives one power of M, and each momentum
space loop integration gives a 1/M. For bubble graphs that have insertions of the
four-nucleon operators, Np = Ny + Ny — 1, where Np, Ni, Ny are the number of

propagators, loops and vertices. Thus, when relativistic corrections are neglected any

4“What we are keeping track of is the ezplicit M dependence in the Lagrangian. The Lagrangian
does have further implicit M dependence since M is a function of Aqcp and the scales that appear
in the short distance couplings depend on Agcp as well. For this reason saying we know the M
dependence of an amplitude is not as strong a statement as saying we know the m, dependence.

°If the contact interactions were replaced with Coulombic photon exchange then the interaction
would not involve any powers of M. In this case the graph in Eq. (2.34) would scale as o2 M /p> ~
a?/(p?v) where o = e?/4r is the fine structure constant. This is a factor of a/v times a single
photon exchange. For a Coulombic bound state a/v ~ 1. Summing the most singular «/v terms is
equivalent to solving the Schroedinger equation in a Coulomb potential.
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graph built out of the interactions in Eq. (2.29) scales as M ~! since Np — N, — Ny =
—1. Therefore, the 2 — 2 scattering amplitude A ~ 1/M. With the definition of
A used here, this scaling gives a finite cross-section in the M — oo limit which is
physically sensible. (Note that there is a limit of QCD where M — oo but Agcp is
finite, namely large N. with N.c; held fixed [59].) Since all graphs scale the same
way with M, M is irrelevant to the power counting. Relativistic corrections are
included perturbatively[5], and are generally suppressed by p?/M? relative to the
leading contribution to an observable.

Applying dimensional analysis to the short distance coupling constants now gives

1 1 1

Cy ~ —— CQmNW,

SR (2.36)

where A denotes the scale of short distance physics that was not included explicitly
(and we are assuming A < M). Treating the Cs,, couplings perturbatively gives an
expansion in p/A. In the current case we expect that A ~ m,.

In nature, however, the dimensional analysis in Eq. (2.36) fails. This is because the
nucleon-nucleon system is fine tuned to have bound states near threshold[27, 60, 61].
In the 35; channel this bound state is the deuteron with binding energy B = 2.22454+
0.0002 MeV. This energy corresponds to the momentum v = VMB = 45.7MeV <
Aqep. This bound state gives a pole in the two-to-two scattering amplitude which
can not be reproduced perturbatively and therefore limits the range of the momentum
expansion to p < 7. In the 1.5y channel the situation is even worse. In this case there
is a pseudo-bound state sitting 8 MeV above threshold which limits the momentum
expansion to p < 8 MeV. These bound states are related to the occurrence of unnat-
urally large scattering lengths. Recall that low energy scattering can be described by

an effective range expansion

S 1 1 S
pcotd()z—a(s)-|-§r(())p2-l-..., (2.37)

where 6(*) is the phase shift, a(*) is the scattering length and r((,s) is the effective range.
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In quantum mechanics, with a well-behaved potential, it can be shown that T(()s) is of
order the range of the interaction, ro ~ 1/A, but a(®) can differ from A by orders of

magnitude[62]. From the formula for the amplitudes®

4 1
L
A M pcot §(9) —ip’ k535

it is straightforward to show that large negative or positive scattering lengths corre-

spond to bound states just above or below threshold. Experimentally[63],
al'™ = 23714 +40.013fm, and  aC5) =5.425+0.001fm, (2.39)

or 1/a'%) = —8.3MeV and 1/a*5!) = 36 MeV. These values of 1/a are small relative
to m, and Agcep.-

If the scale for the bound states or scattering lengths were set by A then the
scaling in Eq. (2.36) would be correct. The next section will discuss how the Cy,

coeflicients scale for a theory with large scattering lengths. This power counting was

worked out by Kaplan, Savage, and Wise [31, 6] (KSW).

2.3.2 Power counting and ultraviolet fixed points

In this section we will examine how unnaturally large scattering lengths affect the
importance of four-nucleon operators. We also explain how linear ultraviolet diver-
gences play a role in determining the KSW power counting, and why it is useful to
recast this in the framework of the renormalization group.

Treating the effective range term and higher powers of p? in Eq. (2.37) as pertur-

bations, the amplitude is

47 1

() — "~ -
A M 1/al®) +ip’

(2.40)

6Strictly speaking Eq. (2.38) only holds in the 1Sy channel. The 35; channel is more complicated
because of 3S; —3 D; mixing, but this mixing is a small effect which we will ignore for the time
being, but discuss in Chapter 8.
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Co Co Co Co Co Co

Figure 2.1: The leading order contribution to the NN scattering amplitude.

and has a good a — oo limit. The pole at p = i/a’5)) corresponds to the deuteron
bound state. The amplitude in Eq. (2.40) is reproduced in the effective field theory
by summing the loop graphs in Fig. 2.1 using the result in Eq. (2.34)

' L oo s MC’ - _. é

id=—iCy (E=22) = —22 (2.41)

47 _1—|—%MC’_0'

m=0

Matching onto the effective range expansion then gives the values

(s 47ral®)
G = 7;\‘; . (2.42)

Thus, the Cpy coupling must be fine tuned to a large value to reproduce the observed
scattering length[28]. This result depends on our definition for the renormalized
coupling constant Cjy, or in other words our choice of renormalization scheme (which
is distinct from choosing a regularization method). The bars in Egs. (2.41) and
(2.42) indicate that only divergent terms have been subtracted, which is the Minimal
Subtraction (MS) scheme. The sum in Eq. (2.41) only converges for p < 1/a. Each
loop graph in the sum grows with p, and the radius of convergenceis 1/a. For p > 1/a
we analytically continue and use the result on the right hand side of Eq. (2.41).
Looking back at Eq. (2.34), this one-loop graph is linearly divergent with d = 4,
however in dimensional regularization this power divergence is not present. If we had

calculated this loop graph with a finite momentum cutoff L then we would have

Co Co

L d3q M i M(Cy)? 2E
I 2 . .
>©< =1(Co) /0 (27)3 G2 — p? —de 4w (zp—l— T +“')’ (2.43)

where the ellipses denote terms that vanish as I — oo. Defining a counterterm

to cancel the term proportional to L, and taking L — oo gives back the result
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in Eq. (2.34). Note that the limit p — oo and the integral over ¢ do not commute
because the integral is divergent. The growth of Eq. (2.43) with p is tied to this linear
ultraviolet divergence. It is useful to use our freedom in defining the renormalization
scheme to keep track of this. In the power divergence subtraction scheme (PDS)[31]
additional finite subtractions are made in one-to-one correspondence with the linear
divergences. In this scheme the coupling constants depend on the renormalization

point ug and the value of the loop in Eq. (2.43) becomes”

Co Co

X = Z—A: [Colur))? (ip+ ir) - (2.44)

In fact, the same result is obtained in a more physical scheme where the renormalized
coupling is defined to be the value of the four point function evaluated at p = iup
[27, 64, 35, 36]. These renormalization schemes will be discussed in greater detail in
Chapter 5.

In PDS, the renormalized coupling is [31, 6]

(s) 4 1

Co ' (pr) = M= 1/a® (2.45)

In this scheme the fine tuning as a — oo, is that Co(ur) gets closer to its up — oo

value. Co(up) has the beta function

0 M
o = ﬂR%CO(#R) = JR Co(ur)* - (2.46)

The renormalization group scaling gives us information about the behavior of the
theory at the scale up. For ur ~ p < 1/a, Co(ur) behaves like a constant and
pCo(ur) can be treated perturbatively. For pp ~ p > 1/a, pCo(ur) ~ 1 and the sum
in Eq. (2.41) must be done. The factors of g make each term in the sum roughly the
same size which is good from the point of view of power counting. For pgp ~ p > 1/a

the summation of Cy bubble graphs is always necessary and should be considered to

"The notation pp is used for the renormalization point in this section to agree with the notation
used in chapter 5.
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be infrared physics that has been built into the theory. In Ref. [65] it was shown that
the scaling in Eq. (2.45) is also reproduced with a Wilsonian renormalization group
approach.
The significance of the beta function in Eq. (2.46) is shown more clearly in
Fig. 2.2%. To make the beta function dimensionless it has been rescaled by MA/(4r),

5 MA a [LR

Bo = e Bo = aA A aun)” (2.47)

The prefactor aA can be safely ignored. The important dependence is in a ug since
this factor measures the scale of interest relative to the scattering length. To study
values of a g from —oo to 0o, a variable z is defined to map this range onto a compact

interval,

™

apr = tan (—2—) (2.48)

The dependence of B(Co) on z is plotted in Fig. 2.2. Consider fixing the value
of ur > 0 and varying the value of a. The points a = —o0,0, and oo are fixed
points of the beta function. Classically this makes sense since the scattering length
is a measure of the interaction size. For a ~ 0 or +oo the size is so small or big
that the interaction looks the same at all scales. In fact @ = 0 is a trivial non-
interacting fixed point, whereas a = 400 are non-trivial interacting fixed points
where the theory is scale invariant at lowest order. Another feature in Fig. 2.2 is that
B — oo for ug = 1/a > 0. This corresponds to the deuteron bound state. Performing
perturbation theory about ¢ = 0 we can never describe this bound state, so we are
limited to describing the region ur < 1/a. If perturbation theory is performed near
a = 0o, then the deuteron is a physical state in the spectrum of the theory. If we are
interested in physics at ur ~ m, then the observed 'Sy and 35, scattering lengths
place us at the location of the stars in Fig. 2.2. Looking at the distance along the z

axis we are much closer to the ¢ = Fo0 fixed points than to a = 0.

8This figure was inspired by a similar plot shown by David B. Kaplan in a physics colloquium.
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For p > 1/a powers QQ ~ p ~ ugr are counted instead of just powers of momenta.
The graphs in Fig. (2.1) are leading order and all scale as 1/Q. In the PDS renor-
malization scheme this power counting is manifest. By solving the beta functions for

the coeflicients of operators with more derivatives it can be shown that [6]

" A p2m Q(m—l)
CZm(:u’R) p2 ~ _M—Am/,tz-l_l ~ MAm ’ (2'49)

for p ~ up > 1/a. Since insertions of these operators scale with non-negative pow-
ers of (), they may be treated perturbatively. This renormalization group scaling is
also important in determining the power counting of operators that involve four nu-
cleon fields and fields like the photon[32, 66] and pion. Note that since the deuteron
corresponds to the pole in our scattering amplitude, deuteron properties can be sys-
tematically calculated in this field theory[32].

When pion interactions are included they enter at order Q°, which is one higher
order than insertions of C. Therefore, the discussion in this section is also relevant to
the leading order theory with pions. In the theory with pions the physics encoded in
the scale A in Eq. (2.2) changes. However, the power counting for the Cs,, coeflicients
remains the same because pion effects are subleading corrections to the running of
these operators. Pion interactions in the two-nucleon theory will be discussed in more

detail in chapter 5.
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Figure 2.2: Fixed point structure of the beta function for Co(pr) in the PDS renor-
malization scheme.
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Chapter 3 Extraction of the D*Dr

coupling from D* decays

Combining chiral perturbation theory with heavy quark effective theory (HQET)
gives a good description of the low energy strong interactions between the pseudo-
Goldstone bosons and mesons containing a single heavy quark. In this chapter we
extend the formalism in Chapter 2 to describe D* and B* decays at subleading order.
Due to heavy quark symmetry there is one coupling, g, for D*Dn, D*D*n, B*Bm,
and B*B*m, and one coupling, 8, for D*D~, D*D*y, B*B~y, and B*B*y at leading
order!. The value of the coupling g is important, since it appears in the expressions
for many measurable quantities at low energy. These include the rate B — D™ iy,
[67, 68, 69, 70, 71], form factors for weak transitions between heavy and light pseudo-
scalars [23, 24, 25, 72, 73, 74, 75, 76, 77], decay constants for the heavy mesons
[78, 79, 80, 81, 82], weak transitions to vector mesons [83], form factors for B —
D™, [84, 85, 86], and heavy meson mass splittings [87, 88, 89] (for a review see [90]).
However, the value of ¢ has remained somewhat elusive, with values in the literature
ranging from ~ 0.2 to 1.0. Recently, a CLEO measurement [91] of D*t — D%~y
brought the experimental uncertainties down to a level where a model independent
extraction of ¢ is possible from D* decays.

As a consequence of HQS, the mass splitting between D* and D mesons is small
(of order A?QCD /m¢), leaving only a small amount of phase space for D* decays. In
the dominant modes, D* — Dx, and D* — D+, the outgoing pion and photon are
soft, making the chiral expansion a valid framework. The branching ratios for D**
decay are D° 7+ (67.6%), DT 7° (30.7%) and D v (1.7%) [91]. A D*° can only decay
into D°7° (61.9%) and D%y (38.1%) [57] since there is not enough phase space for

'Where it is meaningful we use 7 to denote any member of the pseudo-Goldstone boson SU(3)
octet, and D* and D for any member of the triplets (D*°, D**+, D?) and (D, D*, D,) with a similar
notation for B* and B.



28
Dt n~. The D decays predominantly to Ds;v (94.2%) with a small amount going
into the isospin violating mode D, 7° (5.8%) [57]. Since a measurement of the widths
of the D* mesons has not yet been made, it is only possible to compare the ratios of

branching fractions with theoretical predictions. The ratio
RF = B(D** — D°z*)/B(D*t — D*=°) (3.1)

is fixed by isospin to be RF = 2|k.+[|3/|kn|® = 2.199 £ 0.064 [91] (where kp+o are
three momenta for the outgoing pions in the D* rest frame). This constraint is often
used in experimental extractions of the branching ratios to reduce systematic errors.

It is interesting to note that the quark model predictions[92, 93] for D*® and D**+
decays agree qualitatively with the data. One can understand, for instance, why the
branching ratio B(D** — D%«) is small compared to B(D*® — D%y). In the quark
model the photon couples to the meson with a strength proportional to the sum of the
magnetic moments of the two quarks, us = 2/(3m.) —1/(3my) for D** — D%+ and
p1=2/(3m.)+2/(3m,) for D** — D%y. The rate for the former is then suppressed
by a factor

2 (mq/m. — 1/2)*

Ko m mdz
a| =l e 1

H1

~0.04, (3.2)

where mass ratios appropriate for constituent quarks have been used, m,/mg ~ 1,
mg/m. ~ m,/m. ~ 1/4. This suppression results from the opposite signs in y; and
2, which in turn follow from the (quark) charge assignments and spin wavefunctions
for the heavy mesons.

In the quark model ¢ = 1 and 8 ~ 3GeV ™!, while for the chiral quark model
g = 0.75 [55]. Relativistic quark models tend to give smaller values, g ~ 0.4 [94, 95],
as do QCD sum rules, g ~ 0.2 — 0.4 [96, 97, 98].

Our purpose here is to use heavy meson chiral perturbation theory at one-loop to
extract the couplings g and § from D* decays. In other words, we wish to examine

the sensitivity of a model independent extraction of g and 8 to higher order correc-
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tions. For D* — D+, analyses beyond leading order have included the heavy quark’s
magnetic moment which arises at 1/m. [99, 100], and the leading non-analytic effects
from chiral loops proportional to ,/my [99]. |/my terms proportional to both my and
m, were found to be important. These effects do not introduce any new unknown
quantities into the calculation of the decay rates. For D* — Dy and the isospin
conserving D* — Dm decays the effect of chiral logarithms, m,In (1z/m,), have also
been considered [101]. These are formally enhanced over other m, corrections in the
chiral limit, m, — 0, however, the choice of the scale x4 leads to some ambiguity in
their contribution. (This scale dependence is cancelled by unknown couplings which
arise at order m, in the chiral Lagrangian.) The isospin violating decay D¥ — D,7°

° mixing[102).

has only been considered at leading order, where it occurs through n—=

Here the investigation of all D* decays is extended to one-loop, including symmetry
breaking corrections to order m, and 1/m.. Further 1/m, and m, contributions
considered here include the effect of nonzero D*~D and D,~D° mass splittings, and
the exact kinematics corresponding to nonzero outgoing pion or photon energy in the
loop diagrams. (Their inclusion is motivated numerically since my o ~ mps — mp ~
mp,—mp, and the decay D* — D7 only occurs if mp«—mp > m,0.) To simplify the
organization of the calculation these splittings will be included as residual mass terms
in our heavy meson propagators. This gives new non-analytic contributions to the
D* — D7° and D* — D~ decay rates. (To treat the mass splittings as perturbations
one can simply expand these non-analytic functions.) At order m, there are also
analytic contributions due to new unknown couplings which are discussed. These
new couplings can, in principle, be fixed using other observables. We estimate the
effect these unknown couplings have on the extraction of ¢ and (.

The calculation of the decay rates to order m, and 1/m, is taken up in sec-
tions 3.1 and 3.2. In section 3.3 we compare the theoretical partial rates with the
data to extract the D* D7 and D* D~ couplings and discuss the uncertainty involved.

Predictions for the widths of the D* and B* mesons are also given. Conclusions can

be found in section 3.4.



30
3.1 D;— D, 7 decays

In this section we construct the effective chiral Lagrangian that describes the decays
D* — D to first order in the symmetry breaking parameters m, and 1/m.. Going
beyond leading order also involves including loops with the pseudo-Goldstone bosons.
From Chapter 2 section 2 recall that the lowest order Lagrangian is

f*Bo

4
—Tr Hyiv - Dy Hy + g Tr Hy Hyy,vs AL (3.3)

2
Ly = —é—Tr oY 0,51 + Tr(m,% + m 3"

The last term in Eq. (3.3) couples P* Pm and P* P*m with strength g (where P = D, B)
and determines the decay rate D* — D at lowest order. At order m, ~ 1/m, the

following mass correction terms appear

ﬁm - )\2 TI‘ Ha,O-MDHaO-#V + QAITI. gaHbmga + 2A/1Tr H—G»Hamgba (3.4)

4mQ

where m* = L(émg€l + £'my€). The A| term can be absorbed into the definition
of my by a phase redefinition of H. The A, term is responsible for the D*-D mass
splitting at this order,

A =mps —mp = —2Xy/m, . (3.5)

The term involving A; splits the mass of the triplets of D and D* states. Ignoring

isospin violation this splitting is characterized by
5:mD; — Mmp* :mDs—mD:2)\1(ms—m) (36)

where m = m, = my. For the purpose of our power counting 6 ~ my ~ 1/m, ~ A.
The effect of these mass splitting terms can be taken into account by including a
residual mass term in each heavy meson propagator. Since we are interested in decay

rates we choose the phase redefinition for our heavy fields to scale out the decaying
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particle’s mass. For D*® and D*t decays the denominator of our propagators are:
2v-k for D*° and D*t, 2(v-k—§) for D%, 2(v-k+A) for D° and D*, and 2(v-k+A—§)
for D,. For the D} decays the denominators are the above factors plus 24. (If we had
scaled out a different mass then the calculation in the rest frame of the initial particle
would involve a residual ‘momentum’ for the initial particle, but would yield the same
results.) This results in additional non-analytic contributions from one-loop diagrams

which are functions of the quantities A/m,, and §/m,,, where m,, € {m,, mg,m,}.

Formally, m2, ~ m, ~ A ~ § and one can expand these contributions to get back the
result of treating the terms in Eq. (3.4) as perturbative mass insertions.
Another type of 1/m, corrections are those whose coefficients are fixed by velocity

reparameterization invariance [103, 82]

§Ly = ——Tr HuG D)L Hy + 2-Te (D" - Apa — iv- Ae D™ ) Hyys
2mg mq

(3.7)

The first term here is analogous to the HQET kinetic operator, Oy, = ﬁﬁu (25)2 -
but written in terms of the interpolating fields P, and P;*. In Eq. (3.7) the derivatives
give powers of the heavy meson’s momentum. There are also contributions from Oyin
that break the flavor symmetry where the derivatives are order Aqep. In conjunction
with the HQET chromomagnetic operator, Omas = ﬁfzv = 04sG? h,, these contri-
butions to the Lagrangian modify the dynamics of the heavy meson states. They
give Aqep/mg corrections in the form of time ordered products with the leading
order current [104], which induce spin and flavor symmetry violating corrections to
the form of the D* D coupling. We account for these corrections by introducing the
couplings ¢; and g, in Eq. (3.8) below. The last term in Eq. (3.7) contributes at
higher order in our power counting since it is suppressed by both a derivative and a

power of 1/m..

Further terms that correct the Lagrangian in Eq. (3.3) at order m, ~ 1/m, include
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[82]?
B K, B
i, = 9’1 OTr H, Hyy,ys Al m, + 2220y F, Hyyuysmb A~
X 2
gr3 Bo = gks B
+ Ai Tr HaHb7M75AgLam§c /ig OT H H07M75Abcmb
&9 ~ . - O3
- A—Tr H, Hyy 1580 - Dy Ay, + A—TrH HyyuvsiDypv - Aca
X
+ ngl—lTr H,Hyy,vs AL, + P21y Hoy s Hy AL + ..., (3.8)
Q mg

where Dg AP = 8°‘Afa + [V, AP]y, and A, = 4rf. The ellipses here denote terms
linear in mé = ({mq{r ¢'m,€) which contribute to processes with more than one
pion, as well as terms with (:v - D) acting on an H. For processes with at most one
pion and H on-shell the latter terms can be eliminated at this order, regardless of
their chiral indices, by using the equations of motion for H. The «; coefficients contain
infinite and scale dependent pieces which cancel the corresponding contributions from
the one-loop D* — Dn diagrams. For the x; and s} terms only the combination
k1 = k1 + k| will enter in an isospin conserving manner here. (The combination
k1 — k4 will contribute an isospin violating correction to R}.) At a given scale y, the
finite part of k3 can be absorbed into the definition of g. The decays D* — Dm have
analytic contributions from &, and x5 at order m,.

For mg = m, the term in Eq. (3.8) involving g; can be absorbed into g (this term
only enters into a comparison with B* decays). The term g, breaks the equality of
the D*Dm and D*D*r couplings. Since we only need the coupling D*D*m in loops
we can also absorb gy into the definition of g. Thus, our g is defined as the D*Dn
coupling with 1/mg corrections arising in relating it to the couplings for D*D*m and
B B*r.

The terms in Eq. (3.8) involving 8, and 5 contribute to D* — D7, entering in a
fixed linear combination with the tree level coupling g of the form g— (924 d3)v-k/A,.
These are ~ 10% corrections for the decays D* — Dn. The energy of the outgoing
pion is roughly the same for all three decays, v - k ~ .144GeV. Therefore, it is

2The «) term was not present in [82]. The factor Bo/ Ai is introduced here for later convenience.
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impossible to disentangle the contribution of d; 3 from that of g for these decays, and
the extraction of g presented here will implicitly include their contribution. For other
processes involving pions with different v - k& these counterterms can give a different
contribution. This should be kept in mind when this value of ¢ is used in a different
context.

Techniques for one-loop calculations in heavy hadron chiral perturbation theory
are well known and will not be discussed here. Dimensional regularization is used
and the renormalized counterterms are defined by subtracting the pole terms 1/¢ —

v + log (47). In doing this type of one-loop calculation an important integral is

g p —ib [1 u? m
/(27‘[’)4_25 (q2_m2+35)2(q’1)—b+26) - (471')2 l:g+1n(m)+2—2F(—g) 5
(3.9)

where 1/€ = 1/e — v + log (4m). F is needed for both positive and negative b, so

_Vi=a? {—725 — tan™! (\/1"@_7)] |z} €1

1
0 - B
z —gg—;—_—lln(x—l— 22 —1) lz| > 1

(3.10)

For b > 0 the function F was derived in [105, 77] and agrees with the above formula®.
For z = b/m < —1 the logarithm in Eq. (3.10) has an imaginary part. This corre-
sponds to the physical intermediate state where a heavy meson of mass mg produces
particles of mass my + b and m. For the calculation here the imaginary part only
contributes from F'(m,/(do — A)), and was found to always be numerically insignifi-
cant. Note that the real part of  F'(1/z) is continuous everywhere, and differentiable
everywhere except z = —1. Also F(1) = F(—1) =0.

The decays D*® — D°x® and D** — D* 7% and D? — D,n° have decay rates I'},

3Eq. (3.10) for F disagrees with [82] for < 0. Their F(1/z) is even under £ — —z making
Eq. (3.9) discontinuous at A = 0. Furthermore, their F' has no imaginary part corresponding to the
physical intermediate state.
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a) b) c)

Figure 3.1: D and D* wavefunction renormalization graphs. The dashed line repre-
sents a pseudo-Goldstone boson.

I'2, and I given by

2 2
r: = 2

T 127 f2

a
wi

s

k23 (3.11)

™

Here 127? is the three momentum of the outgoing pion, Z2 contains the vertex correc-
tions, and ZZ%; = \/Z.Z3, contains the wavefunction renormalization for the D* and
D. When the ratio of I'? to the D* — Dy rate is taken Z2; will cancel out. However,
7% does contribute to our predictions for the D* widths, where the ratio Z2;/Z% will

be kept to order g%. The graphs in Fig. 3.1 give

2 . 2
Zh = 1t A {Bmf — 6(A + do)llog (75) + 3 Galmi, A+ do)
2

2
a g i \? M
25 = 1+ ab/\bz){[?)m?—éldg—2(dO—A)2] log (1) + 2 Ga(rmi, do)

+ Gi(mg, do — A)} , (3.12)

where m; is the mass of 7, dy = 6°3§ for D*® and D** decays and do = (6" — 1)§
for D* decays. The notation in Eq. (3.12) assumes that we sum over b6 = 1,2,3 and
i=1,...,8. The logarithms agree with [101], except that we have kept terms of order
A? ~ d2 in the prefactor since these terms are enhanced for m, — 0. Analytic terms

of order A% ~ d2 are neglected since they are higher order in our power counting.

The function G1(a,b) in Eq. (3.12) has mass dimension 2,

Gi(a,b) = gaz + (46* — %aZ)F(a/b) + g(a2 - 62)%F’(a/b) : (3.13)



35

a) P b) PN 9 ,’\ % ,’\
4 \ / \ ) )
1 1 1 1 \ Y
T T ‘ll — v s B T o
D* D, D*¥ D D* D*, D¥ D D#* 1 D
10 (P 170

Figure 3.2: Nonzero one-loop vertex corrections for the decays D*® — D°z° and
D**t — D*x° (a,b,c) and the pseudo-Goldstone boson wave function renormalization

graph (d).

It contains an analytic part proportional to @?, and a non-analytic part which is
a function of the ratio b/a. In the limit A — 0 Eq. (3.12) gives Zp = Zp- in
agreement with HQS. To obtain HQS in the finite part of the dimensionally regularized
calculation of the graphs in Fig. 3.1 it was necessary to continue the D* fields to d =
4 — 2¢ dimensions (so the D* polarization vector 5 = (1 — £)&, where ) €3é* = —3).

For a = 1,2 the decay proceeds directly so that at tree level Zvlv’fQ/Z;*2 =1. At
one loop we have non-zero vertex corrections from the graphs in Fig. 3.2a,b,c. As
noted in [101], the two one-loop graphs that contain a D®) D*mr vertex (not shown)
vanish, and the graph in Fig. 3.2c cancels with the m° wavefunction renormalization

in Fig. 3.2d (this is also true for D** — D°z* and Di — Dyn®). For a = 1,2 the

vertex corrections are

I g /\ibAgbA;l ,U2 2, 2 2 2 2
75 = U e {m + (= + dy dy + & — 241 do zdo)}
+2 Fl(mi7 d17d2) —4 F1(mz'7d17 do)} + Q?r('%b 55) ’ (3~14)

where here dy = 638, dy = k-v+dy, dy = —A +dp, and k is the outgoing momentum
of the 0. The coefficient of the m?log (u?/m?) term agrees with [101]. The function
Fi in Eq. (3.14) has mass dimension 2 and contains both analytic and non-analytic

parts. %, contains the dependence of the rate on the (renormalized) counterterms

Fr(p) and r5(p).

Fi(a,b,c) = —=a®+ [b(a® — b*)F(a/b) — c(a® — *)F(a/c)] ,
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Figure 3.3: Nonzero vertex corrections for the decay D — D,m° which involve 7°—n
mixing. The cross denotes leading order mixing while the triangle denotes mixing at
next to leading order.

= gy Bl (3.15)

We have ignored isospin violating counterterm corrections in g}?. In this case o}? do
not depend on «3, and furthermore are proportional to m?2/(4m f)?, so these countert-
erms are small.

The decay D — D,m° is isospin violating, and the leading contribution occurs
through n — 7° mixing[102]. To first order in the isospin violation the decay is sup-

pressed at tree level by the mixing angle § = (1.00 & 0.05) x 1072 [50]

1 _(mu-m) 2, 1 3.16
73 2(m.—m) 3 o 870 15

® mixing angle parameterized by

Beyond tree level we have corrections to the n — «
Smiz = 0.11 [52] (Fig. 3.3a), loop corrections to the n—n° mixing graph (Figs. 3.3b,c,d),
as well as loop graphs with decay directly to 7° that occur in an isospin violating
combination (Figs. 3.2a,b). The contribution of Fig. 3.3d is again cancelled by the
pseudo-Goldstone boson wave function renormalization graph (Fig. 3.2d). Note that
the decay D — D;n° cannot occur via a single virtual photon in the effective theory.
In the quark model, decay to the spin and color singlet 7° can occur if the single

photon is accompanied by at least two gluons (with suppression a/7 ~ 1/430 [102]).
We will neglect the possibility of such a single photon mediated transition here. Thus,

L (mu—md) Al W2, 2, ,
Z3  2(m, — ) L+ dmiz + 4rf)E X%, log (m?) [mz + 3(*031 +di dy + d
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—2d; do — 2d3 ] + 2 Fy(my, dy,dy) — 4F1(mi,d1,d0)}]

g AébAébAzg
(4rf)? (1/v2)
+Q?r(/~€1, K5) , (3.17)

2
¥ [~2log<—2)+zﬂ<m,,d1,d2) 4F1(mi,d1,do)]

where for D7 decay dy = (6** — 1)8, d; = k- v + do, and dy = —A + dy. The tilde on
the mass, m;, indicates that isospin violation is taken into account. Also note that
V2 Doin )\gb)\},b/\éiﬂ)ﬁz? = mjs — Mio. In Eq. (3.17), the function o2 depends on &4

and ks, and at leading order in the isospin violation is

m2 (mks — M)
(mie = 55+ (ml = mi) s + i s

(3.18)

3 1 (my—my)
o T @nf)? 2(m, — )

In deriving this equation use has been made of m2 = 2Bym, = 2Bymg = 2Bgrh,

2 2 2
m% —m2/2 = Bom,, and m%. — m3, = (mu — maq)Bo.

3.2 D} — D, v decays

To describe D* — D+, electromagnetic effects must be included, so the Lagrangian
in Eq. (3.3) is gauged with a U(1) photon field B*. With octet and singlet charges,
Q = diag(2,—%,—%) and Q' = 2 (for the ¢), the covariant derivative D, is [106]

D¢ = 0.6+ ieB,[Q,¢], (3.19)
D,H = 0,H+ ieB,L(Q'H - HQ)-V,H,

where the vector and axial vector currents are now

Ve = FEDuE+eDEN, (3:20)

Ay = LEDE- DL,
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However, this procedure does not induce a coupling between D*, D and B, without
additional pions. Gauge invariant contact terms should also be included, and it is

one of these that gives rise to the D* D~y coupling (and a D*D*v coupling)
/3 € v
Ls="F"TrH,Ho"F,,Q5. (3.21)

Here 3 has mass dimension —1, Q¢ = $(£1Q¢ 4 €Q¢1), and F,, = 8,B, — 9, B,,. The
terms which correct this Lagrangian at order m, ~ 1/m, have a similar form to those

in Eq. (3.8)

B B
6Cs = alAf%TfH Hy o™ By Qo + A2O%TrH Hyo ™ Fiom Q5

(0% Boﬂe ¢ 5 (873 BO

+ “—Tr H,Hyo" v @me + ———TrH H.o" F UQ
AZ 4 g AX 4 ’
T 6 = v 3

+ 45\2 Tr H, Hyo" Q5,10 - DeqFiy + T A2 BTy H, Hyo™ Q5 DX 0  Fyy
/81 1wy /82 uy

+ TrH Hyo FWQ -l-——"TI'H a" Hy #VQba
mQ Q

B m@ TrH O'M H Fl“/ + (322)

The ellipses denote terms that do not contribute for processes without additional pions
and/or can be eliminated using the equations of motion for H. For our purposes Q¢
and m?® in Eq. (3.22) are diagonal so only & = a3+« contributes. The finite part of a3
will be absorbed into the definition of 8. For mg = m,, the 8; term can be absorbed,
and we absorb the part of the (3, term that contributes to D* D~ since D*D*~ only
contributes in loops for us. Thus, § is defined to be the D*Dy coupling at order
1/m.. The last term in Eq. (3.22) is the contribution from the photon coupling to
the ¢ quark and has a coefficient which is fixed by heavy quark symmetry [100, 99].
This term is numerically important. However, here the leading order contribution to
D* — D, is taken to be the mg — oo, my, — 0 effect from Eq. (3.21), so this 1/m,
term is part of the first order corrections. The 7 5 terms are similar to the d2 3 terms
in Eq. (3.8), and appear with £ in the combination 8 — (71 + 72)v-k/AZ. Here 1y + 7,

will have an infinite part necessary for the one-loop renormalization. Again it is not
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a) b) c) d)

Figure 3.4: Nonzero vertex corrections for the decays D* — D-.

possible to isolate the finite part of the (71 + 72) contribution from that of 3, so the
extraction at this order includes the renormalized 7 2 with v -k ~ 0.137 GeV.
The decays D*® — D%y, D** — D%*~, and D; — D,y have decay rates I'}, I'2,

and I given by

s = 2l 2P, o =232 (9 %; +2), e
where a ~ 1/137, Eﬂj is the three momentum of the outgoing photon, and the wave-
function renormalization, Z%, is given by Eq. (3.12). To predict the D* widths,
Z3:/Z% is kept to order g* and we take Z2¢ x 1/m. = 1/m,.. The vertex correction
factor Z3 has nonzero contributions from the graphs in Fig. 3.4. Note that the two
one-loop graphs that contain a D*) D*my vertex (not shown) do not contribute [101].
Furthermore, the graph in Fig. 3.4b has no contribution from the D*D*y coupling
which arises from gauging the lowest order Lagrangian in Eq. (3.3). Thus

=

1 g ALQuA! )
= 1+ log (£5)]

2
Z3 @1/ Qua m; + =(—di + di1dy + d5 — 2d; do ng)J

* 38

(2

12 Fy(mi, dy, do) — 4F1(mi,d1,do)}

1 QM [m2 Il 2]
(47Tf)2 2Qus ’

19 (Niph) d i koo
+Qz(&17a5)7 (324)

where ¢ is the charge of meson 7¢, k is now the outgoing photon momentum, and
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the d; are as above (again they differ depending on whether it is D¥ or one of D*°,
D** that is decaying). The coefficients of the m? log (u2?/m?) terms agree with [101].

The new function F, has mass dimension 1,

2a? [0+ p(t)

FQ(aab7C) = —26—6—7 A dt 73
2q2 1 2 z=a/(b+c)
- _gpog— 2 | L _Flup Sl (3.25)
¢ |4x2 2 a2 4 (22 -1) -

It contains an analytic part proportional to 2dy 4+ v - k, and a non-analytic part which
is a function of §/m; and v - k/m;. In Eq. (3.24) ¢% contains the dependence of the
rate on the (renormalized) counterterms é&;(p) and os(p). Assuming isospin to be

conserved we have

wmz _ MR (mk—m})as
By 2(A7f)2  3Que (Anf)?
_(@2mEk —m2) & (mk —m2)as
1 A 2 s

By examining Egs. (3.12), (3.14), (3.17), and (3.24) we can get an idea of the
size of the various one-loop corrections to I'; and I'?. With our power counting

A~ ~v-k~my~m?so we can consider expanding in A/m;, §/m;, and v - k/m;

m? 6mb  16b?
Gl(mi,b) = 3 [1 — - + mf -+ ] .
m? m(b+c) 16(b* 4 bc + c?)
Fl(mi,b, C) = —7 I:l — - + 9m3 o T T
d% + 3dok - k-v)?
FZ(mthak'v) = —Tmy I:l_ ’ 0+3 06m?)2+( U) +:| (327)

The leading terms in Gy and F} are m, corrections to the rates. The second terms are
order mg’/ ? and \/Tg/mc, and can be kept since they are unambiguously determined at
the order we are working. The third and remaining terms in G; and Fj are subleading
in our power counting. The term —mm; in Fj is the formally enhanced contribution

discovered in [99]. Note that there are no contributions to F; proportional to ¢ or
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k-v. The second term in F3 in Eq. (3.27) has contributions of order m?ﬂ, Mgk - v,
and (k-v)?/ /g which again can be kept since they are unambiguously determined.

The above power counting is sensible when m; is mg or m,. We know that
numerically m, ~ A ~ § ~ k- v, so for m; = m, the series in Eq. (3.27) are not
sensible. In [99] the term —7m, in F; was found to be important, so we want to keep
corrections with m, dependence. Therefore, instead of expanding the non-analytic
functions we choose to keep them in the non-analytic forms given in the Appendix.
Numerically the one-loop corrections to I' and I'2Z are very small; with g = 1 they are
of order ~ 2%. For I, §,,:; is a 11% correction to the tree level result in Eq. (3.16).
Individually the terms proportional to g* F; and ¢*log (u/m,) in Eq. (3.17) are ~ 10%

0

corrections for g = 1. However, the loops graphs with n — #° mixing tend to cancel

those without n — 7°

mixing leaving a ~ 2% correction. The one-loop corrections to
'S are larger, for instance the graph in Fig. 3.4c gives sizeable corrections that are
not suppressed by g?. Corrections to the coefficient of the leading g%/ term range
from ~ 3% for D¥ and ~ 20% for D*° decay, to ~ 50% for the D**. (The latter
percentage is large because the only contribution for this decay comes from a charged

pion in the loop of Fig. 3.4d.) Corrections proportional to g are only sizeable for

D¥ — D,v where they are ~ 10% for g = 1.

3.3 Extraction of the couplings ¢ and [

Using the calculation of the decay rates from the previous section, the couplings g
and 3 can be extracted from a fit to the experimental data. Input parameters include
m. = 1.4 GeV [107, 108], the meson masses from [57], A = mp. — mp = 0.142GeV,
4 = My —Mpe) = 0.100 GeV, and v -k which is determined from the masses. When
isospin is assumed we use mg = 0.4957 GeV and m, = 0.1373 GeV. f is extracted
from 7~ decays. At tree level we use f = f, = 0.131 GeV [57], while when loop
contributions are included we use the one-loop relation between f and fr [52] to get

f = 0.120GeV. The ratio of the decay rates I} and I'; are fit to the experimental
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numbers

B(D*® — D%)/B(D*® — D°r°) = 0.616 £ 0.076 [57],
B(D** — D*v)/B(D** — D*x%) = 0.055+0.017 [91],

B(D; — D% /B(D: — D,y) = 0.062 £ 0.029 [57], (3.28)

where the errors combine both statistical and systematic. Using the masses mpso,
mps+, mps, and mass splittings mp« — mpo, mps+ — mp+, mp: —mp, from [57]

gives the momentum ratios that appear in I'S /I';:

|EL P B2 B3P
Y = 32.65 + 0.44, Y =452+ 1.0, Y —=2444+15.  (3.29)
|ELp3 B2 3 533

The errors here are clearly dominated by those in Eq. (3.28). Equating the numbers in
Eq. (3.28) to the ratio of rates from Eqgs. (3.11) and (3.23) gives a set of three nonlinear
equations for g and [ (where we ignore for the moment the unknown counterterms).
In general any pair of these equations will have several possible solutions. To find
the best solution we take the error from Eq. (3.28) and minimize the x? for the fit to
the three measurements. We will restrict ourselves to the interesting range of values,
0 <g<1and0< f <6, discarding any solutions that lie outside this range. (The
sign of g will not be determined here since it only appears quadratically in I'? and
Irs.)

To test the consistency of the chiral expansion we will first check how the ex-
traction of g and (8 differs at various orders. The results are given in Table 3.1. At
tree level only the ratio 3/g is determined, and the x? is rather large. We might
next consider adding the contribution from the chiral loop corrections to D* — D~
which go as ,/m,. However, this does not lead to a consistent solution between the
three data points unless 3 is negative. This signals the importance of the Q'/m. con-
tribution in Eq. (3.23) corresponding to a nonzero heavy quark magnetic moment.
Adding this contribution gives the results in the second row of Table 3.1, where there

are now two solutions with similar x? in the region of interest. Adding the chiral
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Order g B X g B X
tree level B/g=3.6 30.
+@Q'/m. + one-loop with ,/my, 0.23 0.89 4.3 045 2.8 3.7
+ chiral logs 0.25 0.78 4.1 0.56 3.2 14

one-loop with nonzero A,d,v - k, 0.25 0.86 3.9 0.83 6.0 25

without analytic m, terms
order my ~ 1/m, with 0.265 0.85 3.0 0.756 4.9 3.9

f’%1:f£5:&1:a’520

Table 3.1: Solutions for g and B(GeV~!) which minimize the x? associated with a fit
to the three ratios in Eq. (3.28). There are two solutions in the region of interest.

logarithms, m,log (u/my), at scale 4 = 1 GeV gives the solutions in the third row.
Taking nonzero ¢, A, and v - k£ in the non-analytic functions Fj and F3 gives the
solutions in the fourth row of Table 3.1, where the value of g in the second solution
has increased by ~ 50%. For these two solutions only the analytic m? dependence
has been neglected. Finally, the solutions in row five include the analytic m? depen-
dence with the counterterms set to zero (at ¢ = 1 GeV). The uncertainty associated
with these counterterms will be investigated below. It is interesting to note that the
extracted value of ¢ in the second column of Table 3.1 changes very little with the
addition of the various corrections.

One can see more clearly how these solutions are determined by looking at Fig. 3.5.
The central value for each ratio of decay rates in Eq. (3.28) gives a possible contour in
the g-3 plane, as shown by the solid (D*?), dashed (D**), and dotted (D7) lines. An
exact solution for two of the ratios occurs at the intersection of two of these contour
lines. However, a good solution for all three ratios requires a point that is close to all
three lines. The solutions in the fifth row of Table 3.1 are indicated by stars in Fig. 3.5.
The size of the experimental uncertainties can be seen in the 68% confidence level
ellipses which are shown as shaded regions in the figure (for two degrees of freedom
they correspond to x* < x2., + 2.3). These regions are centered on the solid line

since the D*° ratio has the smallest experimental error. The errors in Eq. (3.28) give
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B (GeV™)

Figure 3.5: Solution contours in the g-8 plane for the situation in row 5 of Table 3.1.
The solid, dashed, and dotted lines correspond to solution lines for the D*°, D**, and
D decay rate ratios respectively. The stars correspond to the minimal x? solutions
and the shaded regions correspond to the 68% confidence level of experimental error in
the fit. The hatched region is excluded by the experimental limit I'(D**) < 0.13 MeV

[1].

the following one sigma errors on the two solutions

g = 0265733 B=085T7GeV ',

g = 0.75615°28 B =4.90"2 GeV™'. (3.30)

Both solutions fit the first two ratios in Eq. (3.28), but do not do as well for the
third. Minimizing the x? has biased against the third ratio as a result of its large
experimental error. For this ratio the g = 0.265 and g = 0.76 solutions give values
which are 4 and 13 times too small respectively. For the first solution it is possible to
improve the fit to the third ratio with reasonably sized counterterms. For instance,
simply taking &; = 2 gives B(D? — D,n%)/B(D: — Dyy) = 0.036. As we will see
below, a large g solution with x* <1 is only possible if ¢ increases to ~ 0.9 and £

increases to ~ 6.0 GeV~! (c.f. Fig. 3.6).
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The experimental limit I'(D**) < 0.13 MeV [1] translates into an upper bound on
the value of g. Since B(D** — D%+~) is small, this bound is almost 8 independent

and to a good approximation is

g < 0.52 \/\/1 +3.0lz—1 z = [(D*T)imit/(0.13 MeV) . (3.31)

For the situation in row five of Table 3.1 this excludes the hatched region in Fig. 3.5.
The limit on I'(D**) therefore eliminates the g ~ 0.76 solution at the two sigma level.
Since this limit has not been confirmed by other groups it would be useful to have
further experimental evidence that could exclude this solution.

The central values in Eq. (3.30) have uncertainty associated with the parameter
me. Taking m, = 1.4 + 0.1 GeV gives 0.25 < g < 0.28 and 0.79GeV™! < § <
0.93 GeV~! for the first solution, and 0.72 < g < 0.80 and 4.6 GeV ™! < 3 < 5.3GeV ™!
for the second solution (in both cases the x? changes very little). There is also
ambiguity in the solution in Eq. (3.30) due to the choice of scale p (ie., the value
of the counterterms ay, as, k1 and k5). Increasing p to 1.3 GeV gives solutions
(g =0.28,8=091GeV~1 x2 =1.4) and (g =0.78,8 = 5.0GeV!, x* = 4.1), while
decreasing p to 0.7 GeV gives solutions (¢ = 0.25,3 = 0.83GeV~!,x? = 3.7) and
(g =0.72,8 = 4.7GeV~!, x* = 3.1). Note that the x? of the second solution remains
large, while the x? of the first solution is reduced significantly by an increased scale.

Another method of testing the effect of the unknown counterterms &, as, ki
and s is to take their values at u = 1 GeV to be randomly distributed within some
reasonable range of values. We take —1 < &y,k5 < 1 and —2 < &;, 05 < 2, with the
motivation that the counterterms change the tree level value of Z7 and Z3 by less
than 30%, and give corrections that are not much bigger than those from the one-loop
graphs. Near each of the two solutions 5000 values of g and 3 were then generated
by minimizing the x?. This gives the distributions in Fig. 3.6. The solution with
g = 0.265 and 3 = 0.85GeV ™! has fairly small uncertainty from the counterterms.
The g = 0.76, 8 = 4.9GeV~! solution has much larger uncertainty because the

corresponding contour lines in Fig. 3.5 are almost parallel. For this solution the upper
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Figure 3.6: Effect of the order m, counterterms (%1, x5, &1, and as) on the solutions
in Eq. (3.30). The counterterms are taken to be randomly distributed with —1 <
Ri,k5 < 1, =2 < ay, a5 < 2. For each set of counterterms ¢g and § were determined
at the new minimal x?. 5000 sets were generated near each of the two solutions.

bounds are determined by the limits of a few MeV [57] on the D* widths. From this
analysis we estimate the theoretical uncertainty of the solutions in Eq. (3.30) to be

roughly

g = 02657505 B=0.8517GeV",

g = 0.7613% B =4972GevV !, 3.39)

at this order in chiral perturbation theory. The errors on g and [ are positively
correlated since the values of g and (8 are constrained in one direction by the small
error on the D*° rate ratio in Eq. (3.28).

From Eq. (3.31) and Fig. 3.6, we see that if the error in

B(D: — D,n°)
B(D: — Dyv)

(3.33)

can be decreased by a factor of two, in conjunction with a limit of I'(D**) < 0.6 MeV

then this could provide strong evidence that the g = 0.76 solution is excluded. On the



47

other hand if the central values of the second and third ratios in Eq. (3.28) decrease,
then a width measurement or stronger limit on I'(D**) will be needed to distinguish
the two solutions.

Using the extracted values of g and [ gives the widths shown in Table 3.2. The
couplings were extracted at one-loop and order m, ~ 1/m, so the predictions for the
D* widths are made at this order. The experimental uncertainty in the D* widths
is estimated by setting g and [ to the extremal values in Eq. (3.30), which gives the
range shown in the second and fourth rows of the Table. The uncertainty from the
unknown counterterms in the third and fifth rows is estimated in the same way using
the uncertainties from Eq. (3.32). Note that for the g = 0.265 solution the D¥ width
is small due to a delicate cancellation in p3 resulting from setting Z%; x 1/m, = 1/m..
Keeping Z%;/m. to order m, gives a D} width of 0.28keV with a range of 0.1—0.4keV
for both the experimental and the counterterm uncertainties.

Making use of HQS allows us to predict the width of the B* mesons from their
dominant mode B* — B~. Eq. (3.23) gives the rate for B* —+ By with ' = —1/3
and m, — my. Since the couplings ; and [, are unknown these rates can not be
determined at order 1/m.;, but we can include the order m, corrections. The B meson
masses are taken from [57] and we use m; = 4.8 GeV [107]. We set § = 0.047 GeV
and A = k-v = 0, but since the contribution Q'/m; in Eq. (3.23) is numerically
important it is kept in our estimate. For comparison the widths obtained with the
g =0.76 and 3 = 4.9 GeV ! solution are also shown.

As a final comment, we note that heavy meson chiral perturbation theory can also
be used to examine excited D®*) mesons, such as the p-wave states, D, Df, Dy, and
D3 [109, 110, 111, 90]. To do so, explicit fields for these particles may be added to the
Lagrangian giving a new effective theory. For interactions without external excited
mesons (such as the ones considered here) these new particles can then contribute as
virtual particles. However, since we have not included these heavier particles they
are assumed to be ‘integrated out’, whereby such contributions are absorbed into the

definitions of our couplings.
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Widths (keV) I D+ D B B B

g = 0.265, 18 26 0.06 ~ 0.06 ~0.03 ~ 0.04
B =0.85GeV~!

uncertainty from 16 - 24 23-35 0.01-0.13 — — —
experiment

uncertainty from 16 - 27 22-39 0.04-0.13 — — —
counterterms

g = (.76, 323 448 103 ~21 ~20 ~1.6
B=4.9GeV!

uncertainty from 285 - 367 396 - 508 83 - 128 — — —
experiment

uncertainty from 215 - 1318 281 - 1157 53 - 1078 = — —
counterterms

Table 3.2: Predicted widths in keV for the D* and B* mesons. The experimental and
counterterm ranges are determined by the extremal values of g and 8 in Egs. (3.30)
and (3.32). For g = 0.265 the D} width is small due to a delicate cancellation in ps
as explained in the text. The uncertainty in the B* widths is large due to unknown
1/m.; corrections.

3.4 Summary

For the D*°, D** and D7, the decays D* — Dm and D* — D~ are well described by
heavy meson chiral perturbation theory. Using the recent measurement of B(D** —
DF+) [91], the ratios of the Dy and D7° branching fractions were used to extract the
couplings g and (. Here g and 8 are the D*Dm and D* D~ couplings since order m,
and 1/mg corrections have been absorbed into their definitions. Two solutions were

found

g = 02657575 B=085T1%]GeV™!

g = 076T03+2 3-49t3+30GevV!, (3.34)

The first error here is the one sigma error associated with a minimized x? fit to the
three experimental branching fraction ratios (see Fig. 3.5). The second error is our
estimate of the uncertainty in the extraction due to four unknown counterterms é;,

as, k1 and k5 that arise at order m, (see Fig. 3.6).
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It is possible that the uncertainty from these counterterms can be reduced by
determining them from other processes. For these corrections to contribute at low
enough order in the chiral expansion we need processes with outgoing photons or
pseudo-Goldstone bosons, such as semileptonic D decays to K, n, or w. Here there are
also SU(3) corrections to the left handed current which involve an unknown parameter
no [82]. Information on k; and k] can be determined from the pole part of the
Ds; — Klyp form factor [82]. In a similar manner D, — nfy, can constrain &,
and ks, and a comparison of the form factors for Dt — K%y, and D, — nluv,
gives information on k] and k5. These investigations were beyond the scope of this
study. In principle, information about the constants &;, and a5 could be obtained
from a measurement of B — ~fv;. The CLEO experimental bound on B — fu,
(£ = e,u)[112] is roughly two orders of magnitude above the theoretical prediction,
but due to the helicity suppression for B — fv, the branching ratio for B — ~/v,
may be up to an order of magnitude bigger[113, 114].

Another possible approach would be to use large N, scaling for the counterterms
in 6L, and 6Lp. Terms that have two chiral traces are suppressed by a power of IV,
compared to those with only one trace. In the large IV, limit the counterterms £; and
&, would dominate, and k5 and as could be neglected, thus reducing the theoretical
uncertainty.

The smaller solution for g in Eq. (3.34) is fairly insensitive to the addition of
the one-loop corrections (see Table 3.1). However, corrections at order m, ~ 1/m.,
including the heavy meson mass splittings, were important in determining the solution
with larger g. The limit I'(D*t) < 0.13 MeV [1] gives an upper bound on the coupling
g (see Eq. (3.31) and Fig. 3.5), and eliminates the g = 0.76, 8 = 4.9 GeV~! solution.
Experimental confirmation of this limit is therefore desirable. Note that the largest
experimental uncertainty in our extraction comes from the measurement of B(D} —
D,7m%), and dominates the theoretical uncertainty due to decay via single photon
exchange. A better measurement of B(D: — Dn°)/B(D: — Dsv) along with a
limit I'(D**) < 0.6 MeV could provide further evidence that the g = 0.76 solution is

excluded. However, if the central values of the second and third ratios in Eq. (3.28)
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decrease then a width measurement or stronger limit on I'(D**) will be needed to
distinguish the two solutions. An improved measurement of B(D: — Dsn°) may
also give valuable information on the unknown couplings &1, ks, &1, and as.

The extraction of ¢ has important consequences for other physical quantities [2-
11]. For example?, for the B — n/i, form factors with E, < 2m,, analyticity bounds
combined with chiral perturbation theory give g fg < 50 MeV [115]. The solution
g = 0.265 gives fg < 190MeV for the B decay constant. However, for ¢ = 0.76
we have fp < 66 MeV, which is roughly a factor of three smaller than lattice QCD

values, fz ~ 160 — 205 [116, 117, 118, 119, 120, 121, 122].

4Glenn Boyd and Ben Grinstein, private communication.
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Chapter 4 V,;, from Exclusive
Semileptonic B and D Decays

The next generation of B decay experiments will test the flavor sector of the standard
model at high precision. The basic approach is to determine the elements of the CKM
matrix using different methods and then check for the consistency of these results. At
the present time C'P non-conservation has only been observed in kaon decay arising
from K° — K° mixing. Many extensions of the minimal standard model (e.g., models
with several Higgs doublets or low energy supersymmetry) have new particles with
weak scale masses that contribute to flavor changing neutral current processes like
K° — K° mixing, B° — B° mixing, B — K*v, etc., at a level comparable to the
standard model.

At the present time, the magnitude of the b — v CKM matrix element is deter-
mined by comparing experimental results on the inclusive electron spectrum in the
endpoint region with phenomenological models [123], or by comparing experimental
results on B — pf iy, and B — 7 £ Dy with phenomenological models and lattice QCD
results [124]. These two approaches yield remarkably consistent determinations of
|Vis|, but have large uncertainties.

In this chapter we discuss the proposal to determine |V,;] [125, 126] using a com-
bination of heavy quark symmetry [20, 21] and SU(3) flavor symmetry. The basic
idea is to compare D — K* £, with the Cabibbo suppressed decay D — p£v;. Using
heavy quark symmetry the SU(3) violations in the form factors that occur in these
decays are related to those that occur in a comparison of B — K*{Z (or B — K* v, %)
with B — pli. Therefore, experimental data on B — K*{{ in conjunction with
data on D — pfv; and D — K*£fv, can be used to determine |V,|. This proposal
is complementary to other approaches for determining |V,;|, since it relies on the

standard model correctly describing the rare flavor changing neutral current process
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B — K*(4.

In this chapter we compute corrections to these form factor relations which vio-
late both chiral and heavy quark symmetry, and are non-analytic in the symmetry
breaking parameters. We also reconsider the influence of long distance effects on the
extraction of the B — K* form factors from B — K*{ /.

We denote the form factors relevant for semileptonic transitions between a pseu-

doscalar meson P(?), containing a heavy quark @, and a member of the lowest lying

H—->V)’ f(H—+V EI:H_)V)

multiplet of vector mesons, V, by ¢ ) and a , where

V@, 9la7.QIH®P) = id"eue” (p+1) (p—p),
Vo) anms QIHP) = FE e+ (e p)(p+ )

+a"Y) (e - p) (p — p')., (4.1)

0123 — _eg193 = 1. We view the form factors g, f and a4 as functions of the

and €
dimensionless variable y = v - v’, where p = myv, p' = my v/, and ¢* = (p— p')? =
m?2, +m? — 2my my y. (Although we are using the variable v -v’, we are not treating
the quarks in V' as heavy.) The experimental values for the D — K* £ v, form factors

assuming nearest pole dominance for the ¢> dependences are [127]

(1.9 £0.1) GeV

(D—K*)
/ W = TToesy-1

] (0.18 £ 0.03) GeV~?
ay (y) = == _ )

1+0.63(y —1)
~1

ok _ (049 £0.04) GeV s

I () 1+096(y—1) 7]

The shapes of these form factors are beginning to be probed experimentally [127]. The
form factor a_ is not measured because its contribution to the D — K* £ v, decay am-
plitude is suppressed by the lepton mass. The minimal value of y is unity (correspond-
ing to the zero recoil point) and the maximum value of y is (m% +m%.)/(2mp mg+) =~
1.3 (corresponding to ¢? = 0). Note that f(y) changes by less than 20% over the whole

kinematic range 1 < y < 1.3. In the following analysis we will extrapolate the mea-
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sured form factors to the larger region 1 < y < 1.5. The full kinematic region for
B—pliisl <y<3.5.
The differential decay rate for semileptonic B decay (neglecting the lepton mass,

and not summing over the lepton type £) is

dT(B = ply)  G%|Vi|?
( dyp ve) _ Zs|7r3b| mpm? SE(y) (4.3)

Here SH=V)(y) is the function

SENy) = V1 [[fVE)] @4y~ bur 4 5) (44
+4Re o (y) fH y) | mr (y =)y — 1)
+ 4\a(f”v)(y) 'Qmi‘q r’(y* —1)°
48[ )|y (14— 24m) (7~ 1)

= V=T )| @4y by 437 L+ 55Ty,

with » = my/mg. The function §#~") depends on the ratios of form factors
aS_H_)V)/f(H_*V) and gH#=V) [ fH=V) - G(B=0)(y) can be estimated using combinations
of SU(3) flavor symmetry and heavy quark symmetry. SU(3) symmetry implies that
the B® — p* form factors are equal to the B — K* form factors and the B~ — p°
form factors are equal to 1/y/2 times the B — K* form factors. Heavy quark sym-

metry implies the relations [125]

FEENy) = (%)1/2 ZEZ? T poam )

oy o (m) " [ ooy

) = (22) " 2] o). w3
The second relation is obtained using aPE) = —aS_D_)K*), valid in the large m.

limit.
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Using Eq. (4.5) and SU(3) to get B® — p* £, form factors (in the region 1 <
y < 1.5) from those for D — K*{v, given in Eq. (4.2) yields SB=?)(y) plotted in
Fig. 4.1 of Ref. [126]. The numerical values in Eq. (4.2) differ slightly from those used
in Ref. [126]. This makes only a small difference in S~ but changes §(8~#) more
significantly. In the region 1 < y < 1.5, |§B=#)(y)| defined in Eq. (4.4) is less than
0.06, indicating that aiB_)p) and g(®~?) make a small contribution to the differential
rate in this region.

This prediction for S (B=0) can be used to determine |Vip| from a measurement of
the B — pfi, semileptonic decay rate in the region 1 < y < 1.5. This method is
model independent, but cannot be expected to yield a very accurate value of |V,;].
Typical SU(3) violations are at the 10 —20% level and one expects similar violations
of heavy quark symmetry.

Ref. [126] proposed a method for getting a value of SB#)(y) with small theoretical

uncertainty. They noted that the “Grinstein-type” [81] double ratio

R(y) = [/E7()/ fE K y)| /|12 )/ P25 (w)| (4.6)

is unity in the limit of SU(3) symmetry or in the limit of heavy quark symmetry.
Corrections to the prediction R(y) = 1 are suppressed by ms/mey (myq <€ my)

instead of m;s/Aqep or Aqep/mep. Since R(y) is very close to unity, the relation

2

§B=0)(y) = SEET) () ' f{;D:;))(E/;)‘ (n:;B__n::’)Q (4.7)

together with measurements of | f(P=K")| | f(P=)| and SB7E") will determine SB=7)

with small theoretical uncertainty. The last term on the right-hand-side makes

Eq. (4.7) equivalent to Eq. (4.6) in the y — 1 limit. The ratio of the (2 4+ y* —

6yr + 3r2) [1 + 6B=Y)(y)] terms makes only a small and almost y-independent con-

tribution to S(F)/S(B=K") in the range 1 < y < 1.5. Therefore, corrections to
Eq. (4.7) are at most a few percent larger than those to R(y) = 1.

|fP=E)| has already been determined. |f(P?)| may be obtainable in the fu-
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ture, for example from experiments at B factories, where improvements in particle
identification help reduce the background from the Cabibbo allowed decay. The mea-
surement B(D — p°Z1,)/B(D — K*°fv,) = 0.047 + 0.013 [128] already suggests
that | f(P=0)/ f(D=EK7)

is close to unity. Assuming SU(3) symmetry for the form fac-
tors, but keeping the explicit my-dependence in S(°*Y)(y) and in the limits of the
y integration, the measured form factors in Eq. (4.2) imply B(D — p°Zv,)/B(D —
R’*OZI/Z) = 0.044." SB=K") ig obtainable from experimental data on B — K* v, iy
or B — K*£{. While the former process is very clean theoretically, it is very difficult
experimentally. A more realistic goal is to use B — K*£{, since CDF expects to
observe 400 — 1100 events in the Tevatron run II (if the branching ratio is in the stan-
dard model range) [129]. There are some uncertainties associated with long distance
nonperturbative strong interaction physics in this extraction of SE=>K")(y). To use
the kinematic region 1 < y < 1.5, the form factor ratio f(P=#)/f(P=K") in Eq. (4.7)
must be extrapolated to a greater region than what can be probed experimentally.
For this ratio, the uncertainty related to this extrapolation is likely to be small.

The main purpose of this study is to examine the deviation of R from unity
using chiral perturbation theory. We find that it is at the few percent level. The
uncertainty from long distance physics in the extraction of S(B=K") is also reviewed.
On average, in the region 1 < y < 1.5, this is probably less than a 10% effect on
the B — K*{{ decay rate. Consequently, a determination of |V,;| from experimental
data on D — K*{vs, D — plvy, B — K*({ and B — p{, with an uncertainty

from theory of about 10% is feasible.

4.1 Chiral perturbation theory for the form factor
ratio

The leading deviation of R from unity can be calculated using a combination of

heavy hadron chiral perturbation theory for the mesons containing a heavy quark

1This prediction would be |V.4/Ves|?/2 ~ 0.026 with m, = mg+. Phase space enhances D — p
compared to D — K* to yield the quoted prediction.
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(section 2.2.1) and for the lowest lying vector mesons (section 2.2.2). We adopt the
notations and conventions of Refs. [79, 58]. The weak current transforms as (3z, 1r),
and at the zero recoil kinematic point there are two operators that are relevant for
P@) — V transition matrix elements (where P(®) = B, P() = D, and V is one of
the lowest lying vector mesons p,w, K*,¢). Demanding that the Zweig suppressed

Dy — w v, process vanishes relates the two operators, yielding [83]

Gavu(1 —75) Q = BT 7u(1 — ) HD¢, ], (4.8)

where N is given in Eq. (2.27). Here repeated SU(3) indices are summed and the
trace is over Lorentz indices. H(?) contains the ground state heavy meson doublet, N
is the nonet vector meson matrix [58], and (3 is a constant. The leading contribution to
R(1) —1 arises from the Feynman diagrams in Fig. 4.1. Diagrams with a virtual kaon
cancel in the double ratio R. Neglecting the vector meson widths,? these diagrams
yield

R()~1 =~ |Glme, AO) = Glomy, AV) = Glomy, AD) 4G, A)] , (4.9)
(s

where A®) = mp. — mpg, A = mp« —mp, and for m > A,

G(m,A) = (4.10)

mm®  (m?— A2)3/2 vVm? — A? .
A T A arctan (T) —A%lnm.
Here g, is the pw 7 coupling, g is the DD*m coupling, and f ~ 131 MeV is the pion
decay constant. In the nonrelativistic constituent quark model g = g, = 1 [79], while
in the chiral quark model [55] g = g2 = 0.75. Experimental data on 7 — wm v, in
the region of low wm invariant mass gives go ~ 0.6 [130]. In chapter 3 we saw that
the measured branching ratios for D* decays give g = 0.27 or g = 0.76.

For small A, Eq. (4.9) for £(1) — 1 has a non-analytic ,/m, dependence on the

light quark masses. This cannot arise from corrections to the current in Eq. (4.8) or

2The only significant width is that of the p meson. Since it occurs in the loop graph involving an
7, neglecting the p width amounts to treating I',/2m, < 1, which is a reasonable approximation.
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Figure 4.1: Feynman diagram that gives the leading contribution to R(1) — 1. The
dashed line is a 7 or an 1. The black square indicates insertion of the weak current.

to the chiral Lagrangian, and must come from 1-loop diagrams involving the pseudo-
Goldstone bosons 7, K, n. Using the measured values of the pion and eta masses,
Egs. (4.9) and (4.10) imply R(1) = 1 — 0.035¢ go. There may be significant cor-
rections from analytic terms of order m;/m. ~ 1/10 or from higher orders in chiral
perturbation theory. However, the smallness of our result lends support to the expec-
tation that R(1) — 1 is very close to zero. There is no reason to expect any different

conclusion over the kinematic range 1 < y < 1.5.

4.2 Long distance effects and extracting S(F—K7)

The decay rate for B — K* v, could determine SB=K") free of theoretical un-
certainties. However, experimental study of this decay is very challenging. A more
practical approach to extracting this quantity is to use B — K*¢£. The differential

decay rate is

dlI'(B — K*¢/¢ GL|ViVi|? 1 a2 =
( s ) o Gellel (o (1o + 1Ciol?] 1+ AGw)

x SEE(y) [1 +d(y)]. (4.11)

This and Eq. (4.7) allow us to rewrite Eq. (4.3) as

dF(B — ,05174) _ l%b|2 87?2 1 1 1 mf,
dy VisVal* o Iég(y)|2 + |C1ol? 1+ A(y) 1 +d(y) mk.

mp —m, \?
X
mp — Mk~

fP9(y) | AV PR o g

FE=E(y) dy
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which can be directly used to extract |Vy;|. Unitarity of the CKM matrix implies that
|VitVip| =~ |V2 V| with less than a 3% uncertainty. The fine structure constant, o =
1/129, is evaluated at the W-boson mass. d(y) parameterizes long distance effects,
and will be discussed below. A(y) takes into account the contribution of the magnetic
moment operator, O7 = (e/16m2) my (31 0, br) F** (a factor of —4GrV,:Viy/+/2 has
been extracted out in the definition of operator coefficients). Ref. [126] (see also
Ref. [131]) found using heavy quark symmetry that A(y) ~ —0.14 — 0.08(y — 1) in
the region 1 < y < 1.5. Corrections to this are expected to be small since there are
no 1/m. corrections to A(1). Cigo is the Wilson coefficient of the operator O19 =
(€2/1672) (517, b )(£v*vs £). Co(y) takes into account the contribution of the four-
quark operators, O; — Os, and the operator Oy = (€2/16m?) (517,bz) (£4*£). In
perturbation theory using the next-to-leading logarithmic approximation [132, 133]

- 1
Cg(y) = Cg + h(z, y) (301 -+ CQ —+ 303 + 04 + 305 s 06) = 5 h((), y) (03 + 304)

1 2

where z = m./my. Here

1+vVl—2 .
8 8§ 4 2 In ——r—x= —m;
huy)=—glhut =+ 52— 52+2)V[l <l Vieifl=m
2arctan(l/v/z —1); z>1,

(4.14)

LA |

where 2 = 4u?m?/(m% + mi. — 2mpmg»y). Using m; = 175GeV, mp = 4.8GeV,
m. = 1.4GeV, as(mw) = 0.12, and as;(ms) = 0.22, the numerical values of the
Wilson coeflicients are C; = —0.26, Cy = 1.11, C5 = 0.01, C4y = —0.03, C5 = 0.008,
Cs = —0.03, C7 = —0.32, Cg = 4.26, and C1p = —4.62. Of these, Cy and (o are
sensitive to m; (quadratically for m; > mw).

In Eq. (4.13) the second term on the right-hand-side, proportional to A(z,y) comes
from charm quark loops. Since the kinematic region we are interested in is close to
q¢*> = 4m?, a perturbative calculation of the ¢¢ loop cannot be trusted. Threshold

effects which spoil local duality are important. It is these long distance effects that
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give rise to the major theoretical uncertainty in the extraction of |V;| from the
B — K*{1 differential decay rate using Eq. (4.12).® The influence of this long distance
physics on the differential decay rate is parameterized by d(y) in Eq. (4.11), where
setting d(y) = 0 gives the perturbative result.

For the part of the ¢ ¢ loop where the charm quarks are not far off-shell, a model for
h(z,y) which sums over 17~ ¢¢ resonances is more appropriate than the perturbative
calculation. Consequently, we model the part of h(z,y) with explicit g>-dependence
in Eq. (4.14) with a sum over resonances [134, 135, 136, 137] calculated using factor-

ization

Fw(n) B(lb(”) — ff_)
g¥ — Mi(n))/M¢(n) + 1y '

h(z,4) = —olnz 4+ o — 375 3 ; (4.15)

9 27 o
The resonances (™ have masses 3.097 GeV, 3.686 GeV, 3.770 GeV, 4.040 GeV,
4.160 GeV, and 4.415 GeV, respectively, and their widths I' ) and leptonic branching
ratios B(y™ — £f) are known [57]. The factor x = 2.3 takes into account the
deviation of the factorization model [138] parameter a; from its perturbative value.
Denoting the value of 59(y) in this model by éé(y), its influence on the differential
decay rate is given by d(y) defined as

ICy(y)? + [Crol* = (|Co(y)* + [Crol®) [1 + d(y)]. (4.16)

d(y) is plotted in Fig. 4.2 (solid curve). The physical interpretation of the 177 res-
onances above 4 GeV is not completely clear. It might be m<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>