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Abstract 

Various realizations of gauge theories in string theory allow an identification of their 

spaces of vacua with gravitational instantons. Also, they provide a correspondence of 

vacua of gauge theories with nonabelian monopole configurations and solutions of a 

system of integrable equations called Nahm equations. These identifications make it 

possible to apply powerful techniques of differential and algebraic geometry to solve 

the gauge theories in question. In other words, it becomes possible to find the exact 

metrics on their moduli spaces of vacua with all quantum corrections included. As 

another outcome we obtain for the first time the description of a series of all Dk-type 

gravitational instantons. 
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Chapter 1 Introduction 

This work provides yet another example of how string theory unites seemingly distant 

physical problems. The central object of our studies is supersymmetric gauge theories 

in three dimensions. In particular, we shall be interested in their vacuum structure. 

The other three problems that turn out to be closely related to these gauge theories 

are: 

• Nonabelian monopoles of Prasad and Sommerfield, which are solutions of the 

Bogomolny equation 

(where F is the field-strength of a nonabelian connection A = A 1 dx 1 + A 2dx 2 + 
A3 dx3 and <I> is a nonabelian Higgs field). 

• An integrable system of equations named after Nahm 

for Ti(s) E u(n). These generalize Euler equations for a rotating top. 

• Solutions of the Euclideanized vacuum Einstein equation called self-dual grav­

itational instantons, are four-dimensional manifolds with self-dual curvature 

tensor 

Various string and M theory realizations of the gauge theories make the relations 

between them and these problems manifest. This is schematically represented on the 

map on page vm. 

The relations mentioned allow us to establish the correspondence between particu­

lar configurations of monopoles, certain Nahm data and gauge theories. Interpretation 
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in terms of monopoles as well as Nahm data is very convenient, since it allows us to 

apply (after appropriate modification) well developed methods of modern geometry 

to describe their moduli spaces completely. Thus these two give us methods and 

tools. We study these monopoles and Nahm data and use them as two different ways 

of solving the gauge theories in question. 

This also allows us to find the twistor description of two infinite series of grav­

itational instantons together with their Kahler potentials. One of these was known 

previously, and the other one is new. This describes all infinite series of self-dual grav­

itational instantons and, perhaps, ends the classification of them (as the existence of 

the exceptional ALF inst an tons is in doubt). 

We have to use some geometric constructions in our computations. Among the 

notions used are twistor and minitwistor spaces, hyperkiihler quotients, holomorphic 

vector bundles, and Ward correspondence. These notions are defined in the text and, 

for the convenience of the reader, we provide a glossary with short definitions and 

references at the end. 

1.1 Three-Dimensional Gauge Theories with N==4 

Supersymmetry 

1.1.1 The Theory 

N = 4 gauge theories we are interested in can be obtained as reductions to three di­

mensions of six-dimensional gauge theories with minimal supersymmetry. Reduction 

of a vector multiplet in six dimensions gives a vector multiplet in three dimensions. 

The vector multiplet of these three-dimensional theories contains a vector Aµ, two 

two-component Dirac spinors A and x, and three real scalars </>i, i = 1, 2, 3. The 

scalars can be organized into one real </> 1 and one complex </> = </>2 + i</>3 . The action 

for the vector multiplet is given by 

( 1.1) 
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+2i5..JfJ>. + 2ixlfJx + 2>..[¢1, >.] + 2x_[¢1, xl + 2i[¢, xJ>. + 2i5..[¢, xl 

+l[¢, ¢+]2 + [¢1, ¢+][¢i, ¢]). 

As usual, Fµv = OµAv - OvAµ + g[Aµ, Av], Dµ = Oµ + gAµ and ¢+ is the Hermitian 

conjugate of the field ¢ in the adjoint representation. The square of the coupling 

constant has dimensions of mass. The matter hypermultiplet (which can also be 

obtained by reduction of a hypermultiplet in six dimensions) in the fundamental 

representation of the gauge group consists of two complex scalars q1 and q2 and two 

Dirac spinors 'lj;1 and 'lj;2 with the action 

27f J 3 + . - /;; . ( + - - ) -SH 92 d x(Dµq; Dµq; + i'l/J;f/¥i + v2i qi >.'lj;; - 'lj;;>.q; + 7/J;</>17/Ji (1.2) 

-qt <f>iq; - ~ ( qiTaq1 - q2Taqi) 
2 

- ~ ( <P2xq1 + q2x'l/J1) + 2~7/J2¢7/J1 + h.c. 

-1l ¢q1 ll 2 - llq2¢ll 2 - 2llq2q1ll 2 + lqt[¢+,¢]q1 -lqt[¢+,¢]q2), 

where Ta form basis of the algebra of the gauge group. 

In order to introduce a mass m = (m1, m2, m3), one has to add another term to 

the action 

27f J 3 - - - 2 
Sm 92 d x( -m'l/J17/J2 - m7/J17/J2 - m17/Ji'l/Ji + llmll q;qt (1.3) 

-qt ( m1x + hm2q1 + v'2m3q2) qi - q2 ( m1x + hm2q1 + v'2m3q2) qi), 

where m = m2 + im3 and llmll 2 =mi+ m~ + m~. 

1.1.2 Symmetries and Spaces of Vacua 

Recall that R-symmetries are global symmetries that rotate the supercharges. Let us 

describe R-symmetries of these gauge theories. There is an SU(2)R which is already 

present as an R-symmetry in six dimensions. Reducing three of the six dimensions, 

we are left with the S0(3) rotations of these directions as a new R-symmetry. Let 

SU(2)N denote the double cover of this S0(3) group. Thus the R-symmetry group 
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of the three-dimensional theories is SU(2)R x SU(2)N · The fields </>i as well as the 

masses mi are in the ( 1, 3) representation, the fermions ,\ and x of the vector multiplets 

together form a (2, 2), the bosons q1 and q2 of the hypermultiplet are each in (2, 1) 

and the fermions ¢ 1 and ¢ 2 of the hypermultiplet are each in (1, 2) representations 

of the R-symmetry group. 

The part of the space of vacua in which scalar fields of the vector supermultiplet 

acquire vevs is called the "Coulomb branch" of the moduli space. (The part in which 

the hypermultiplet scalars get vevs is referred to as a "Higgs branch.") The last two 

terms in the vector multiplet action Sv of Eq. (1.1) are the classical potential. We 

conclude that, classically, for the energy to vanish, all fields </>i should commute with 

each other, and these directions are fl.at directions of the classical potential. The 

general solution is to take each of them to belong to the same Cartan subalgebra. 

Thus we have 3r parameters (where r denotes the rank of the gauge group) on the 

Coulomb branch corresponding to the vevs of the fields <l>i· Classically, at a generic 

point on the Coulomb branch with nonzero vacuum expectation values of the scalar 

fields </>i, the gauge group is broken to U(ly, and we haver massless abelian photons 

in three dimensions. In three dimensions a vector is dual to a compact scalar, so 

we can describe these photons by r dual scalar fields. Their vevs define another r 

coordinates of the moduli space, so the Coulomb branch is 4r-dimensional with r of 

the coordinates being periodic. 

1.2 Spaces of Vacua and Gravitational Instantons 

Supersymmetry constrains both the Higgs and Coulomb branches of the moduli spaces 

of the three-dimensional theories to be hyperkahler. As the two branches locally have 

quaternionic structure and are mathematically very similar, often a three-dimensional 

gauge theory has a dual description in terms of another gauge theory for which the 

dual Higgs and Coulomb branches are interchanged. This is called mirror symmetry 

in gauge theory. 

In the absence of a Higgs branch, the Coulomb branch is a smooth hyperkahler 
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manifold. If its dimension is four, it provides an example of a self-dual gravitational 

instanton - a nontrivial solution of the vacuum Einstein equations with Euclidean 

signature. We shall use this correspondence in order to explicitly describe new grav­

itational instantons. 

1.2.1 Definition 

A gravitational instanton is a smooth four-dimensional manifold with a Riemannian 

metric satisfying the vacuum Einstein equations. A particularly interesting class of 

gravitational instantons are self-dual gravitational instantons. They have zero action. 

These are manifolds with self-dual curvature tensor, 

(1.4) 

where Eo:f3µv is an antisymmetric tensor. Self-dual gravitational instantons are hy­

perkahler, i.e., they are manifolds with holonomy group contained in SU(2). A 

hyperkahler manifold can be alternatively characterized as a Riemannian manifold 

admitting three covariantly constant complex structures I, J, f{ satisfying the quater­

nion relations 

IJ =-JI= K,etc., (1.5) 

such that the metric is Hermitian with respect to I, J, and f{ separately. Covari­

ant constancy of I,J,K implies that three 2-forms w1 = g(I·,·),w2 = g(J.,·),w3 = 

g(I( ·, ·) are closed. If we pick one of the complex structures, say I, we may regard 

a hyperkahler manifold as a complex manifold equipped with Kahler metric (with 

Kahler form w1 ) and a complex symplectic form w = w2 + iw3 . 

Hyperkahler four-manifolds arise in several physical problems. For example, com­

pacti:fication of string and M theory on hyperkahler four-manifolds preserves one half 

of the supersymmetries and provides exact solutions of string theory. Also, M theory 

compacti:fication on a gravitational instanton describes a nonperturbative object from 

the point of view of string theory. For example, Taub-NUT gives a D6-brane of type 
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IIA string theory. 

1.2.2 Classification 

The only compact hyperkahler four-manifolds are T 4 and K3, but the K3 metric 

is not known explicitly. In the noncompact case there are several possibilities to 

consider. There are no nontrivial hyperkahler metrics asymptotically approaching 

that of R4, but the situation becomes more interesting if one asks that the metric 

be only Asymptotically Locally Euclidean (ALE), i.e., that the metric looks like 

the quotient of R 4 by a finite group of isometries. All such metrics fit into the ADE 

classification of Kronheimer, which we now briefly explain. Let r be a finite subgroup 

of SU(2). There is a natural correspondence (known as the McKay correspondence 

[1]) between such f's and ADE Dynkin diagrams: an Ak diagram corresponds to 

the cyclic group Zk+1 , a Dk diagram corresponds to the dihedral group Dk_2 of 

order 4k - 8, and the E6 , E7 and E8 diagrams correspond to the symmetry groups 

of tetrahedron, cube, and icosahedron, respectively. Since SU(2) acts on C 2 by the 

fundamental representation, we may consider quotients C 2 /f (these quotient spaces 

are known as Kleinian singularities). Kronheimer showed that resolutions of Kleinian 

singularities admit ALE hyperkahler metrics, and that all such metrics arise in this 

way [2, 3] . In the Ak case the metric has been known explicitly for some time: it is 

the Gibbons-Hawking metric with k + 1 centers [4]. Kronheimer provided an implicit 

construction of Dk and Ek ALE gravitational instantons as hyperkahler quotients [2]. 

We shall present a different solution for the Dk case. 

Another interesting class of noncom pact gravitational instantons is that of Asymp­

totically Locally Flat (ALF) manifolds. This means that the metric asymptotically 

approaches a metric on (S1 x R 3)/r, where r is some finite group . Namely, at infinity 

the metric on these spaces approaches 

(1.6) 

where CTj are left-invariant one-forms on S3 /f for the corresponding finite subgroup 
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r of 5U(2). 

The only known hyperkahler metric of this sort is the multi-Taub-NUT metric. 

As a complex manifold the ( k + 1 )-center multi-Taub-NUT space is isomorphic to the 

resolution of C 2 /Zk+1 , so we shall call it the Ak-type ALF gravitational instanton. 

It should be mentioned that in the limit of infinite radius of the circle at asymptotic 

infinity in the definition of the ALF space, the ALF space becomes the corresponding 

ALE space. Kronheimer in [2] studied the topological properties of ALE spaces and 

showed that the intersections of the two-cycles of the ALE space are given by the 

corresponding Dynkin diagram. As this is a topological property and, as mentioned 

above, any ALF space can be continuously deformed to an ALE space, we expect to 

have the same result for the intersection of the ALF two-cycles. As a matter of fact, 

the analysis of the twistor spaces of Dk ALF spaces, which we shall present later, 

verifies this result. 

1.2.3 Twistor Spaces 

The central object in the calculation that follows is the twistor space. Let us recall 

what it is. As we have mentioned, every hyperkahler manifold has three complex 

structures: I, J and K. Given three complex structures, there is a whole sphere (52
) 

of them, since for any unit three-vector 11, the combination In, = n 11 + n 2 J + n 3 K 

is also a complex structure. Now consider a manifold which is constructed as a 

hyperkahler manifold M with the sphere of complex structures attached at every 

point. This is the twist or space Z of M, so Z = 5 2 x M. Two-sphere 5 2 has a 

complex structure, say 10 , and can be thought of as a complex projective line P 1 

parametrized by one complex coordinate (. Then the twistor space Z is a complex 

manifold with the complex structure given by (10 , Ic) at a point ( (, x) E P 1 x M. 

One can think of the twistor space Z in two ways. As described above it is an 5 2 

fibration over M with r: Z -t M. Since this is a product space, one can also think 

of M fibered over 5 2 = P 1 with holomorphic projection p : Z -t P 1
. With respect 

to this projection, the two sphere ,-i ( x) above a point in x E M is a holomorphic 
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section of the bundle p : Z -+ P 1
. More than that, there is an antipodal map on 

every sphere r- 1 ( x) which defines a real structure T on the twistor space Z. This T 

is an antiholomorphic involution on Z (given by ( -+ 1/() . 

The last essential piece of data is a holomorphic two-form won Z. As mentioned 

in Section 1.2.1 , M has three covariantly constant closed two-forms W1, w2 and W3. 

For a complex structure on M given by some point ( E 5 2
, the form 

(1. 7) 

is holomorphic with respect to the complex structure le. Thus w is a holomorphic 

closed two-form on every fiber of p : Z -+ P 1
. 

Since we are considering holomorphic bundles over P 1
, let us recall that any line 

bundle (i.e., linear bundle with fiber C) over P 1 is characterized by one integer n, 

denoted O(n) and has transition function 1/(n. 

The important theorem we shall make extensive use of (see [5]), states that the 

holomorphic data of Z determine M as a differential manifold. Namely, if Z is a 

complex manifold of dimension 2l + 1 such that 

1. Z admits a holomorphic fibration p : Z -+ P 1
, 

2. Z as a bundle has a family of holomorphic sections each with normal bundle 

being EB10(1 ), 

3. there is a holomorphic two-form won the fibers which has coefficients in 0(2), 

4. Z has a real structure that respects conditions 1, 2 and 3 and acts on the base 

P 1 as an antipodal map, 

then the space of real (i.e., invariant with respect to the real structure T) holomorphic 

sections of Z is a hyperkahler manifold M of real dimension 4l for which Z is the 

twistor space. This correspondence between M as a differential manifold and its 

twistor space Z is a particular case of Ward correspondence. 
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1.3 String Theory Realizations 

Realizing supersymmetric gauge theories as theories on D-branes is very useful for 

identifying their excitations and spaces of vacua. In certain cases this approach al­

lows one to show that the Coulomb branch of the space of vacua is the same as 

the moduli space of some self-dual Yang-Mills configurations in an auxiliary gauge 

theory. For example, as described in Ref. [6], the Coulomb branch of N = 4 su­

persymmetric SU(n) Yang-Mills theory in three dimensions is the (centered) moduli 

space of n SU(2) monopoles. There are powerful mathematical methods, such as 

twistor methods and the ADHM-Nahm construction, developed to describe solutions 

of the Yang-Mills self-duality equation, 

(1.8) 

Using these methods one can compute the metric on the space of vacua. In addition, 

realizing the same theory by different D-brane configurations clarifies the connection 

between different mathematical constructions and yields nontrivial predictions about 

the geometry of the space of vacua. 

1.3.1 Nahm Equations 

In particular, realizing gauge theories as a low energy theory on D3-branes of type 

IIB string theory finitely stretched between NS5-branes (see Section 2.4) gives inter­

pretation of the theories in Section 1.1.1 as nontrivial reductions of four-dimensional 

theories on a finite interval. Namely, in this reduction four-dimensional fields have 

nontrivial dependence on the coordinate of finite length. Requiring that this reduction 

breaks one half of the supersymmetry determines this dependence. String theory con­

siderations allow us to describe this reduction precisely in terms of Nahm equations, 

as will be explained in Section 2.2. 
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1.3.2 Monopoles on Multi-Taub-NUT Space 

Analyzing the T-dual description of the above mentioned configuration (Section 2.3), 

we obtain the description of the Coulomb branch of the three-dimensional theory in 

question as a moduli space of monopoles on multi-Taub-NUT space, by which we 

mean self-dual connections on multi-Taub-NUT which are invariant with respect to 

the triholomorphic U(l) isometry of the multi-Taub-NUT metric in some gauge. 

1.3.3 Singular Monopoles 

There is yet another way of analyzing the type IIB configuration described in Sec­

tion 2.4. By looking at the theory on the NS5-branes, we can describe the Coulomb 

branch of the gauge theory as a moduli space of monopoles with singularities. These 

can be thought of as a superposition of 't Hooft- Polyakov and Dirac monopoles. 

Thus we have various descriptions of the vacua of the three-dimensional gauge 

theories: via Nahm equations, as monopoles on multi-Taub-NUT and as singular 

monopoles. Of course all these descriptions are equivalent and give the same moduli 

space as an answer (which is a rather nontrivial mathematical statement). 

The main part of this work is to make use of the correspondences described in order 

to find the spaces of vacua of U(n) and SU(n) three-dimensional gauge theories with 

N = 4 supersymmetry and k matter multiplets in the fundamental representation. A 

description in terms of Nahm equations allows for an explicit solution in the case of 

SU(2) with k :::; 4 matter multiplets. This construction is presented in Chapter 3. It 

gives the corresponding Coulomb branches as hyperkiihler quotients (see Appendix A) 

of well-known manifolds. 

For general k the solutions of the Nahm equations are unknown, so we have 

to use other methods. Namely, we find the twistor spaces (Section 1.2.3) of the 

Coulomb branches first. This is done by two different methods in Chapters 4 and 5. 

In order to recover the metric on the Coulomb branch, we either go through the Ward 

correspondence explicitly, as in Section 6.1, or make use of the Generalized Legendre 

Transformation (see Appendix B) as in the rest of Chapter 6. 
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Our final results are twistor spaces of the Coulomb branches of SU(n) N = 4 

three-dimensional theories with fundamental matter. As an example we work out 

the Kahler potentials on the Coulomb branch of the U( l) theory with k electrons, 

which is an Ak ALF gravitational instanton. We also derive the Kahler potential on 

the Coulomb branch of the SU(2) theory with k fundamentals, which is a Dk ALF 

gravitational instanton. 

Using the same techniques one can find the Kahler potentials in all cases. It is 

also straightforward to use the same methods to study the SO and Sp gauge groups. 

1.4 M Theory Realization 

1.4.1 U(l) with Charged Matter -+ M Theory on Ak ALF 

Space 

Since we are interested in three-dimensional theories , it is natural to try to realize 

them as theories on a collection of three-dimensional (including the time dimension) 

branes, namely D2-branes of type IIA string theory. A D2-brane has a U ( 1) theory 

in its worldvolume, which at low energies is described by the Maxwell lagrangian. 

The gauge field corresponds to the ground state of an open string with both ends on 

the D2-brane. Putting n D2-branes together enhances the gauge group to U(n) with 

new gauge fields coming from strings ending on different D2-branes . This theory has 

N = 8 supersymmetry (16 supercharges). 

In order to add matter multiplets to the U(l) theory, we can consider a D2-brane 

in the background of parallel D6-branes. The presence of the D6-branes breaks half 

of the supersymmetry. Matter multiplets correspond to ground states of open strings 

with one end on the D2-brane and another on one of the D6-branes. Since such a 

multiplet carries one index of the gauge group, it is in the fundamental representation. 

Now when the gauge theory is realized in type IIA string theory, we can analyze 

it from the point of view of M theory. M theory is eleven-dimensional and after the 

reduction on a circle gives the type IIA string theory. If the circle (say direction x 10 ) 
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is fibered over three (say x1 , x2
, x3 ) of the other ten coordinates of M theory in such a 

way that these three coordinates and the circle form a Taub-NUT space, then in the 

resulting type IIA string theory, this will correspond to a D6-brane positioned at a 

point in (x1, x2 , x3 ) where the center of the Taub-NUT is and extending in the other 

( 4 5 9) d. t • x , x , ... , x irec 10ns. 

M theory has two solitonic objects: M2-brane and M5-brane. The D2-brane of 

type IIA string theory comes from the reduction of the M2-brane, so that the position 

of the M2-brane on the hidden circle of M theory ( x10
) is the dual photon of the theory 

on the D2-brane. 

At this point we are in the position to interpret the moduli space of vacua of the 

U(l) theory with k charged hypermultiplets. It is realized as a theory on a D2-brane 

parallel to k D6-branes . The vacua are parametrized by vacuum expectation values of 

the Higgs fields and that of the dual photon. In the M theory picture, the expectation 

values of the Higgs fields are positions on the M2-brane in the three space transverse 

to the D6-branes and the vev of the dual photon is its position on the circle. Thus 

the Coulomb branch of the gauge theory in question is the multi-Taub-NUT space 

describing this compactification of M theory. 

1.4.2 SU(2) with Fundamental Matter --+ M Theory on Dk 

ALF Space 

If we consider type IIA string theory in ten-dimensional space, then it has a 2 2 

symmetry generated by (-1 )FL ·f'l·I3 , where (-1 )FL changes the sign of all the Ramond 

states in the left sector, n changes the world-sheet parity and I 3 flips the orientation of 

three of the space-like directions of the target space. The seven-dimensional space left 

invariant by this transformation constitutes the world-volume of the 05- orientifold. 

In order to realize an SU(2) gauge theory, we consider a D2-brane probe next 

to an orientifold 06- of type IIA string theory. In M theory the 06- is an Atiyah­

Hitchin space (which was first studied as a moduli space of two centered 1 SU(2) 

1 with the fixed center of mass and common U(l) phase 
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monopoles in [7]). In order to have k matter multiplets , we introduce k D6-branes 

parallel to the orientifold. As demonstrated by Sen in [8], M theory compactified on 

the resulting space has intersections of its two-cycles given by a Dk Dynkin diagram. 

Thus, interpreting the moduli space of the gauge theory as in the previous section, 

we obtain the Dk ALF space as the Coulomb branch of this SU(2) gauge theory. 



Chapter 2 

Realization 

14 

Type IIB String Theory 

2.1 Gauge Theories on D3-branes 

Following Ref. [6] we consider configurations of D3, D5 and NS5-branes in IIB string 

theory, which leave eight supersymmetries unbroken. Let two parallel NS5-branes 

be some distance d apart in the x 6 direction with world volumes parallel to x 0
, x 1

, 

x 2 , x3 , x4, xs. Let n D3-branes stretch between them in the x6 direction, with other 

directions of D3's being parallel to x 0
, x 1

, x 2
. This configuration of branes is illustrated 

in Figure 2.l(a). The theory on the D3-branes reduces to D = 3, N = 4 U(n) Yang­

Mills theory in the infrared limit. Every such configuration of branes corresponds to a 

particular vacuum of the Yang-Mills theory. As described in Ref. [6], D3-branes look 

like SU(2) monopoles in the x3 , x4, xs directions in the theory on the NS5-branes. 

Vacua of the U ( n) Yang-Mills theory on D3-branes are in one-to-one correspondence 

with charge n monopoles on the NS5-branes. In order to describe the SU(n) Yang­

Mills theory (rather than U(n)), we should fix the center of mass of the D3-branes. 

Thus vacua of this theory are given by "centered" monopoles. 

Now let us add k D5-branes stretching along x 0
, x 1

, x 2
, x 7 , x8

, x 9 and positioned 

outside the NS5-branes at points Pcx in the (x3
, x4, xs) plane (see Figure 2.l(b)). Let 

each D5-brane be connected by one D3-brane to the NS5-brane closest to it. We shall 

call these D3-branes external, to distinguish them from those connecting the two NS5-

branes, which we shall call internal. From the point of view of the internal D3-branes, 

the low-energy theory is a U( n) gauge theory with k matter hypermultiplets in the 

fundamental representation. Matter comes from the fundamental strings connecting 

the internal and external D3-branes. The question is what this configuration looks 

like in the SU(2) theory on the NS5-branes. 
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(a) (b) 

Figure 2.1: (a) Parallel NS5-branes (vertical lines) with D3-branes (horizontal lines) 
suspended between them. The horizontal direction corresponds to x 6

, while the verti­
cal direction corresponds to x3

, x4
, and x 5 collectively. (b) The same, with additional 

D5-branes (crosses) connected by D3-branes to NS5-branes. 

To answer the question we perform S and T duality transformations. First we go 

to the S dual picture thus exchanging D5 and NS5-branes and leaving the D3-branes 

unchanged. Then we T dualize along the x 6 direction (after making it periodic) 

thus turning IIB string theory into IIA string theory, D5-branes into D6-branes, and 

NS5-branes into an Ak-l type ALF space (as explained in Appendix C) . Tracing the 

dualities we have the Ak-l ALF metric in (x 3 ,x4,x5 ,x6
), with x6 being the compact 

direction. Four of the directions of the D6-branes are wrapped on this space. 

What do the D3-branes turn into after the dualities? If any of the D3-branes were 

wrapped around x 6
, it would turn into a D2-brane located at a point on the Ak-l 

ALF space. As explained in Ref. [9], this D2-brane would look like an instanton in the 

U(2) theory on the D6-branes. To be more precise, it would be a self-dual U(2) gauge 

connection on the Ak-l ALF space, somewhat resembling Nahm's calorons [10]. Note 

that the U(2) gauge group is broken down to U(l) x U(l) by a nontrivial Wilson line 

at infinity (in the original picture this corresponds to the nonzero distance between 

the NS5-branes.) Therefore, there may be states in the theory carrying nonzero 

magnetic charge. The instanton does not have magnetic charge, and neither does the 

D3-brane wrapped around the x6 direction in the T-dual description. On the other 

hand, the internal D3-brane does have a magnetic charge, and therefore corresponds 
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to the monopole solution, by which we mean a self-dual connection carrying magnetic 

charge. 

If there were no D5-branes in the original brane configuration, we would be dealing 

with self-dual connections on R 3 x S1 rather than on the Ak-l ALF space. Then the 

internal D3-branes would correspond to 't Hooft-Polyakov monopoles localized in 

R 3 , i.e., the four-dimensional self-dual configuration would not depend on the circle 

coordinate [11]. It is highly plausible that this remains true when D5 branes are 

present. Indeed, the well-known maxim "Winding is momentum" implies in this case 

that in the IIA picture nothing depends on the 5: 6 direction, since nothing is wound 

around the T-dual direction in the IIB picture. In the next section we confirm this 

by exhibiting monopole solutions on the Ak-l ALF space which do not depend on 

the circle coordinate. 

2.2 Reduction from D = 4 

Now we explain how the Nahm equations appear in the context of the string vacuum 

described above. A set of parallel three-branes has an N = 4 gauge theory on its 

world volume. Consider the world-volume to be in the x 0
, x 1

, x2 and x 6 directions . 

Introduction of a 5-brane that D3-branes end on imposes boundary conditions that 

break one half of the supersymmetry. The four-dimensional gauge field Aµ, µ = 

0, 1, 2, 6 decomposes into a three-dimensional Aj, j = 0, 1, 2 and a scalar A6 . The 

Higgs fields X A with A = 3, 4, 5, 7, 8, 9 that parametrize the positions of the D3-branes 

in the transverse directions can be separated into Ti = Xi+2 and Bi = Xi+6 with 

i = 1, 2, 3. With respect to the N = 2, four-dimensional supersymmetry that survives 

the N = 4 supermultiplet decomposes into a vector supermultiplet with bosonic fields 

Ti and Aj and a hypermultiplet with bosonic fields Bi and A6 . As explained in [6] 

Neumann boundary conditions (which are the case for the configuration described 

above) imply A6 = 0, Bi = 0 at the boundary which makes these fields massive 

(while Dirichlet boundary conditions would imply Aj = 0 at the boundary). 
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From [1 2] or [1 3] the supersymmetry transformations for the gaugino are 

&x (}" µvFµv E - i1 · D ( aiTi + /3iBii/s ) E 

+~ic:ijkak g[T j, Tk]E + ~ic:ijk f3kg [Bj , Bk]E + ai /3j g[Ti, BjhsE, (2.1) 

with {ai,aj} = {/3i,/3j } = -2[;i], and [ai ,,Bj] = 0. All other supersymmetry trans­

formations are proportional to fermionic fields and therefore vanish automatically for 

a purely bosonic background. Neglecting the Bi and A6 fields (as they are massive 

and therefore cannot have vevs), Aj fields (not to break the three-dimensional Lorentz 

symmetry) and requiring that the gaugino variation be zero for half of supersymmetry 

transformations implies 

(2.2) 

which is precisely the Nahm equation. 

Thus giving the Higgs fields (corresponding to the directions along the NS5-branes) 

vacuum expectation values satisfying the Nahm equations leaves half of the super­

symmetry unbroken; and considering perturbations near this background that respect 

this supersymmetry gives the N = 4 gauge theory in three dimensions described in 

Section 1.1.1. 

2.3 Monopoles on Multi-Taub-NUT Space 

Let us describe precisely what we mean by a monopole on the Ak-l ALF space. In 

coordinates x1, x 2
, x 3

, B the Ak-i ALF metric is 

(2.3) 

where B has period 47r and is T-dual to x 6
, and 

k 1 
V = 1 + L Ix _ ___, I' grad V = curl w. 

a =l Pa 
(2.4) 
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Note that w = widxi is not a globally defined 1-form; rather it is a connection on a 

nontrivial U ( 1) bundle and can only be defined patch wise. 

A U(2) monopole on this space is a smooth self-dual connection1 A= A0dB+Ajdxj 
on a U(2) vector bundle with a nontrivial holonomy (Wilson line) at infinity and 

nonzero magnetic charge, whose field strength is independent of e in some local gauge. 

That is , away from the centers x = Pr.x there is a local gauge transformation g(x, B), 

such that Ao = 9 - 1 A.09 - i9 - 1a09 and Aj = 9 - 1 A.j9 - i9 - 1 aj9 are independent of e. 

As A is smooth and the norm of ;0 vanishes when x -t f r.x, one necessarily has 

A0 (fr.x) = 0. g(x, B) approaches a circle action with integer weights fr.x,f,~ near the 

centers Pr.x . That is in some basis 

( 

eiBf.o./2 

g(x,B) -t 
0 

(2.5) 

as x -t p7:, . Then we easily see that after the above-mentioned gauge transformation 

the eigenvalues of A0 approach fa/2,£~/2 as x-t Pr.x · 

Since in the new gauge A does not depend on e, one may define new fields on R 3 

<I> = v Ao, - -A= A-wiAo. (2.6) 

Kronheimer noticed [14] that these fields satisfy the Bogomolny equation if and only 

if the initial A is a self-dual connection on the ALF space. Here <I> is the Higgs 

field and Ai is the gauge potential on R 3 . From Eq. (2.4) it is easy to see that <I> 

has singularities at x = Pr.x · Thus monopoles on Ak-l ALF space are in one-to-one 

correspondence with monopoles on R 3 with singular Higgs field 

(2 .7) 

near x = Pr.x in some gauge. The asymptotic behavior at infinity is the same as for 

1 By this we mean that it has a self-dual curvature F = dA +A/\ A 
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ordinary monopoles, 

<I> ---+ diag (l _ n - L Rex , - l + n + LR~) . 
2r 2r 

(2.8) 

We shall call such solutions singular U(2) monopoles. 

What is the meaning of n in Eq. (2.8)? The rank 2 U(2) bundle decomposes 

into the sum of eigenspaces of <I>, E = M EB M', where M and M' are line bundles. 

It follows from Eq. (2. 7) and Bogomolny equations that upon restriction to a small 

sphere around x = Pex, the degrees of M and M' are -Rex and -R~. In other words, 

there is a point-like Dirac monopole with charges - Rex, -R~ at x = Pex embedded in the 

diagonal subgroup of U(2). Similarly, the total magnetic charges of the configuration 

(the degrees of Mand M' restricted to a very large sphere) are n-l:Rex and -n-l: R~. 

Let us now focus on the SU(2) subgroup of U(2) . Then the total magnetic charge in 

the SU(2) is n - l:(Rex - R~)/2, while the charge carried by the ath Dirac monopole is 

-(Rex -R~)/ 2. Therefore, n is naturally interpreted as the number of smooth nonabelian 

monopoles in the configuration. (Kronheimer [14] calls it nonabelian charge.) One 

expects that n 2: 0, and it can be shown [1 4] that this is indeed the case. 

The Dirac monopole with R = 1, R' = 0 is in fact the reincarnation of the right 

external D3-brane in the initial brane configuration. This becomes quite obvious if 

one recalls that the NS5-branes in Figure 2.1 (b) correspond to the two U ( 1) factors 

in the diagonal subgroup of U(2), and that the end of the D3 brane ending on the 

NS5-brane from the left (right) carries magnetic charge + 1 (-1) in the corresponding 

U(l). Similarly, the left external D3-brane maps under T-duality to a Dirac monopole 

with R = O,R' = -1. 

To summarize, the configuration of n internal and k external D3-branes corre­

sponds to a solution of U(2) Bogomolny equations with nonabelian charge n and 

with Higgs field having k singularities as in Eq. (2.7) . Depending on whether the ath 

D3-brane is right or left, we have Rex= 1,R~ = 0 or Rex= O,R~ = -1. 
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x 

(a) (b) 

Figure 2.2: Starting with configuration (a) and moving the D5-brane to the right, 
one gets configuration (b). In both configurations the low-energy gauge theory on the 
D3-brane has one hypermultiplet. 

2.4 Singular Monopoles 

2.4.1 Are There Phase Transitions? 

The brane configurations in Figures 2.2( a) and 2.3( a) correspond to U(l) gauge the­

ories with one and no charged hypermultiplets, respectively. It was noted in Ref. [6] 

that the position of the D5-brane in the x 6 direction does not appear as a parameter 

in the gauge theory. Therefore, one could think that there is a phase transition in the 

gauge theory when D5 and NS5-branes cross. In fact, as explained in Ref. [6], there is 

no phase transition because a D3-brane is created when D5 crosses NS5. In the case 

of the configuration in Figure 2.2(a), moving D5-brane to the right creates a config­

uration in Figure 2.2(b ). The latter corresponds to a U(l) gauge theory with one 

hypermultiplet, as there are fundamental strings connecting the external and internal 

D3-branes. 

The picture with singular monopoles described in Section 2.3 refers to Figure 2.2(b) 

on page 20 . Figure 2.2(a), however, presents a puzzle: there are no D3-branes connect­

ing D5 with NS5, so the reasoning of Section 2.3 seems to imply that the configuration 

corresponds to a U(2) monopole on the Ao ALF space (i.e., the Taub-NUT space) 

with n = 1, f = f ' = 0. It was explained in Section 2.3 that such a monopole is equiv­

alent to a nonsingular monopole on R3 , whose moduli space is R3 x S1 . This is clearly 

false, since the moduli space of a U(l) gauge theory with one charged hypermultiplet 
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x 

(a) (b) (c) 

Figure 2.3: Starting with configuration (a) and moving the D5-brane to the left one 
gets configurations (b) and ( c). 

is known to be the Taub-NUT space [15, 16], not R 3 x S1
. The resolution is that Fig­

ure 2.2(a) corresponds to a monopole with C = 1,£' = 0, just as in Figure 2.2(b) , but 

in a singular gauge. As explained in the next section, there is a singular B-dependent 

gauge transformation which eliminates the singularity at x = p but reintroduces one 

at the monopole core (the singularity is reflected in the "hedgehog" behavior of the 

Higgs field near the core). In this new gauge the fields are nonsingular at x = p, 
as expected in a situation like Figure 2(a), with no semi-infinite D3-branes ending 

on the NS5-branes. Such a "shaggy monopole" has the same moduli space as the 

normal monopole on the Taub-NUT with C = 1, C' = 0, which in turn is equivalent 

to a monopole on R 3 with Higgs field diverging near the point x = pas in Eq. (2.7). 

The moduli space of the latter is indeed the Taub-NUT space [14]. 

What happens if one starts with Figure 2.3( a) and moves the D5-brane inside? 

According to Ref. [6] the final configuration must be that in Figure 2.3(b). One might 

expect a charged hypermultiplet from strings connecting the internal D3-brane with 

the newly created one. This again would imply a phase transition when the D5-brane 

crosses the NS5-brane. Moreover, if we move the D5-brane farther to the left, there 

will be another D3-brane created (see Figure 2.3( c)) and one might think that two 

hypermultiplets appear! Is there a phase transition in this case? 
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2.4.2 Phase Transition and "Shaggy Monopoles" 

The interpretation in terms of monopoles on Taub-NUT space helps us to under­

stand what happens to the moduli spaces and to see that there is no phase transi­

tion. Namely, Figure 2.3(b) corresponds to a "shaggy monopole" with an additional 

f = -1,.e' = 0 singularity at the center of the Taub-NUT space x = ji. The singu­

larities at the monopole core and at x = ji can both be simultaneously eliminated by 

a gauge transformation (see Section 2.4.2), and we are back to the normal monopole 

with f = 0, .e' = 0. The latter is equivalent to a nonsingular n = 1 monopole on R 3 , 

and therefore the moduli space is R 3 x 51
, the same as that of the configuration in Fig­

ure 2.3(a). In Figure 2.3(c) the D3-branes connecting the D5 with NS5's correspond 

to a Dirac monopole embedded in the subgroup U(l)cm C U(2) = U(l)cm x SU(2); 

therefore, they do not influence the SU(2) monopole at all. (The component of the 

Higgs field in U(l)cm corresponds to the center-of-mass motion of the five-brane.) 

Thus the moduli space is still R3 x 51
. 

Apparently, the naive counting of string modes fails in situations like those in 

Figures 2.3(b) and 2.3( c): in these cases there are no stable fundamental string states 

connecting the internal D3-branes with the D3-branes stretched between the D5 and 

NS5-branes. 

Similar arguments apply when there is more than one D3 and/or D5-brane. 

In order to define "shaggy monopoles" and give their interpretation in terms of 

D-branes, first let us look at self-dual U(2) connections on R3 x 5 1
. We can think of 

these connections as living on the world-volume of two coincident D6-branes wrapped 

around R 3 x 5 1 . Let RA be the radius of 5 1 , and let e be the coordinate along it. We 

consider the connections with fixed second Chern class and fixed conjugacy class of 

holonomy around 51 at infinity. If the asymptotic eigenvalues of A0 (the B-component 

of the gauge field) are µ1 and µ 2 , the holonomy at infinity is conjugate to 

(2.9) 
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Let's assume that µ 1 > µ 2 , for definiteness. After one T-dualizes along thee direction, 

27r µ1 and 27r µ 2 are interpreted as the x 6 positions of the D5-branes (we set the string 

scale a' to 1). Now with two D5-branes at points x 6 = 27rµ 1 and x 6 = 27rµ 2 , there 

are two ways to stretch a D3-brane between them. After T-duality in the x 6 both 

types of stretched D3-branes turn into U(2) monopoles on R 3 x S1, but with different 

asymptotic eigenvalues of A0 . Namely, the eigenvalues are µ1 , µ 2 in one case and 

µ 2 + 1 /RA, µ1 in the other [11]. Both configurations are in fact 't Hooft-Polyakov 

monopoles, with A0 playing the role of the Higgs field; consequently, they are B­

independent. 

Of course the eigenvalues of A0 can be changed by a B-dependent gauge transfor­

mation. For example, to change the eigenvalues from µ2+1/ RA, µ 1 to µ1 , µ2 , one has 

to use the following gauge transformation: 

( 
iB [ Ao - ~trAo l) g - exp -- -1 

- 2RA llAo - ~trAoll ' (2.10) 

where we defined II <P ll 2 = ~tref>2 . Simultaneously this transformation makes A B­

dependent and singular at every point q where the traceless part of Ao vanishes. One 

can think of such a point as the center of the monopole (there is just one such point for 

a single smooth 't Hooft-Polyakov monopole). The gauge transformation Eq. (2. 10) 

creates a "hedgehog" at the monopole center, in the sense that the eigenvalues of the 

Higgs field approach 1/ RA, 0 as x---+ q, but the direction of the Higgs field in the u(2) 

algebra depends on the direction of approach. This singular and B-dependent U(2) 

connection on R 3 x S1 is what we call a "shaggy monopole." Naturally, the moduli 

space of a "shaggy monopole" is the same as the moduli space of a regular monopole 

from which it was obtained by a gauge transformation. 

We would like to stress that if only D3-branes of one type are present, one can al­

ways use the gauge in which the corresponding gauge configuration is B-independent. 

But if D3-branes stretched both ways are present, then B-dependence cannot be 

removed by a gauge transformation. In particular, the "Wilson-line instanton" of 

Ref. [11] is B-dependent . 
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Now we consider a monopole of magnetic charge 1 on the Ak-l ALF space. Let 

the asymptotic radius of the compact direction be RA· As in the case of R 3 x S1, 

we want to fix the holonomy at infinity. Monopoles on the Ak-l ALF space can 

be obtained from smooth BPS monopoles on R 3 with asymptotic eigenvalues of the 

Higgs field at infinity either µ 1 , µ 2 or µ 2 + 1/ RA, µ 1 , the holonomy being the same. 

Let us choose the latter possibility. Performing the change of variables as in Eq. (2.6) 

we get a e-independent connection A on the Ak-l ALF space. Since v-1 (Pa) = 0 for 

all a, the traceless part of A0 vanishes not only at the monopole center, but also at 

the k centers of the Ak-l ALF space. Now suppose we want to change the asymptotic 

eigenvalues of Ao to µ1 , µ 2 . To this end we perform the gauge transformation as in 

Eq. (2.10). The new connection will be singular at the monopole center, as well as 

at x ='flex, a= 1, ... , k. Thus a smooth monopole on the Ak-l ALF space with all Ra 

equal to zero is gauge-equivalent to a "shaggy monopole" which has singularities at 

the monopole core and at the centers of the Ak-l ALF space. 

On the other hand we can start with a e-independent monopole on the Ak-l ALF 

space which has Ra= l,R~ = 0, a= 1, .. . , k .. After the gauge transformation inverse 

to that in Eq. (2.10), it turns into a connection which has Ao(Pa) = 0, a = 1, . .. , k, 

and a "hedgehog" in the monopole center. Thus we can trade the singularities at the 

centers of the Ak-l ALF space for a similar singularity at the monopole center by 

means of a singular gauge transformation. 
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Chapter 3 Solving Gauge Theories by 

Solving Nahm Equations (Dk, k < 4) 

3.1 Moduli Spaces of Singular Monopoles 

There are several approaches to finding metrics on monopole moduli spaces. The 

most direct one is to use the Nahm transform [10]. In principle, this should yield 

an isometry between the monopole moduli space and the space of solutions of Nahm 

equations. So far the details have been worked out only for nonsingular SU(2) mo­

nopoles [17]. The idea of the minitwistor approach [1 8, 19] is to encode the monopole 

data in terms of an algebraic curve in TP 1 (the tangent bundle of P 1
). This curve is 

then reinterpreted as a spectral curve of Nahm equations, in the spirit of Refs. [20, 19]. 

This program has been realized for nonsingular monopoles of all classical groups in 

Ref. [21]. This approach only allows one to prove that the moduli spaces of mono­

poles and Nahm data are diffeomorphic. There is a natural hyperkahler metric on the 

space of Nahm data, so it is very plausible that these manifolds are in fact isometric. 

Here we adopt a less rigorous approach, regarding singular U(2) monopoles as a limit 

of nonsingular SU(3) monopoles. Therefore, we can construct the moduli spaces in 

question by considering a certain limit of Nahm equations for SU(3) monopoles . 

Let us recall what Nahm equations for SU(3) monopoles look like according to 

Ref. [21]. In the case of maximal breaking to U(l) x U(l) , which is all we need, 

SU(3) monopoles are labeled by a pair of nonnegative integers (n, k) . The two cases 

of n > k and n < k are very similar. Only in the matching conditions (iii) one 

should interchange the superscripts 1 and 2. For n < k the Nahm data consist of two 

quadruplets 

(3 .1) 
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with the first quadruplet defined for s E (0, 1), and the second one defined for s E 

(1, µ). T/1) and T/2l, i = 0, . .. , 3 take values in u(n) and u(k) , respectively. It is very 

convenient to combine the functions T/>'), i = 0, .. . , 3, >. = 1, 2, into two quaternions 

(3.2) 

with ei being the quaternion units . (In what follows we shall denote the real (To) 

and imaginary (T - T0 ) parts of quaternions by the symbols Re and Im respectively, 

and think of the purely imaginary quaternions as three-component vectors.) Thus 

one can think of T( 1
) and T( 2

) as two functions T(1l(s) : (0, 1) ---+ u(n) ® H and 

T(2l(s): (1,µ)---+ u(k) ® H . They must satisfy a number of constraints [21 ]: 

(i) Both functions satisfy Nahm equations 

dTi [,..,, T ] - 1 ijk [T T ] . - 1 2 3 ds + 10, i - 2c j, k ' i - ' ' . (3 .3) 

(ii) Re T(ll(s) and Re T(2l(s) extend smoothly to [0,1] and [1,µ], respectively. 

Im T(ll( s) has a simple pole at s = 0. The residue is an n-dimensional irreducible 

representation of su(2) . Im T(2l(s) has a simple pole at s =µwith a residue which 

is a k-dimensional irreducible representation of su(2) . 

(iii) Im T(1l(s) extends smoothly to (0, l ]. In the neighborhood of s = 1 Im T(2l(s) 

has the following form 

(2 ) ( pif (s - 1) + 0(1) 
Ti (s) = 

0 ( ( S _ 1 )(k-n-1)/2) 

0 ((s _ l)(k- n-1)/2) ) ' 

T/1)(1) + O(s - 1) 

i = 1, 2, 3. (3.4) 

Here Pi = p( icri/2), i = 1, 2, 3, where p is a ( k - n) x ( k - n) irreducible representation 

of su(2) and cri are Pauli matrices. 

The set of all Nahm data satisfying conditions (i)-(iii) is invariant with respect to 

gauge transformations which act in a more-or-less obvious manner: the gauge group 

is U(n) on the interval [O, l] and U(k) on the interval [O,µ ]. To preserve the condition 
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(iii) and the residues of T(l), T(2
) one must also require that at s = 0 and s = µ the 

gauge transformations reduce to identity, and at s = 1 the "right" gauge group U( k) 

reduces to the "left" U ( n). 

For n > k the constraints are the same, with the roles of T(l) and T( 2
) interchanged. 

For n = k the Nahm data include, in addition, a quaternionic vector a E Hn, and the 

con di ti on (iii) is replaced by the following one: 

(iii') Im T(l) and Im T( 2
) extend smoothly to (0, 1] and [1, µ),respectively, so that 

(The parentheses and brackets denote symmetrization and antisymmetrization, re­

spectively.) 

In this case the gauge group U(n) acts also on a from the right, aA-------+ aB g(l)BA, 

where g( s) is a gauge transformation. 

The space of all Nahm data modulo gauge transformations is diffeomorphic to the 

space of all ( n, k) monopoles [21]. There is a natural hyperkiihler metric on the space 

of Nahm data, and therefore it is expected that the two spaces are isometric. 

To see the metric on the equivalence classes of Nahm data, notice that the gauge 

group acts triholomorphically on the fl.at infinite-dimensional hyperkiihler manifold 

consisting of all pairs (r(1l, T(2l) satisfying (ii) and (iii), except that now the lower 

right corner of Im T(2l(l) need not be equal to Im T(1l(1). (For n = k one must 

consider instead the space of all triplets ( T(l), T( 2
), a) such that T(l) and T( 2

) satisfy 

(ii) and extend smoothly to s = 1, and a E Hn.) The Nahm equations can be 

interpreted as moment map equations for gauge transformations which are identity 

at s = 1. The boundary conditions for Nahm data at s = 1 can be interpreted as 

moment map equations for the action of the residual gauge group, which is the group 

of all gauge transformations modulo those which are the identity at s = 1. (This 

group is U(min(n,k)).) Thus one can use the hyperkiihler quotient construction of 

Hitchin et al. [5] to construct a hyperkiihler metric on the space of Nahm data modulo 

gauge transformations . 
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: n · k 

Figure 3.1: The brane configuration corresponding to singular U (2) monopoles can 
be obtained as a limit of that corresponding to regular SU(3) monopoles. 

To obtain U(2) n-monopoles with k singularities of the type R = 1,R' = 0 one 

should take the limitµ---+ oo of (n, k) SU(3) monopoles, fixing the positions of k of 

them which become infinitely heavy. In this limit SU(3) is broken down to U(2) at 

a very high scale, so that (0, 1) monopoles become point-like Dirac monopoles, while 

(1, 0) monopoles remain smooth. It is easy to see that the magnetic charges carried 

by Dirac monopoles also come out right. The corresponding brane configuration 

is shown in Figure 3.1. From the above description it is clear that in this limit 

T( 2
) becomes a function defined on (1,+oo) and satisfying (i) and (iii) (or (iii') if 

n = k). A natural boundary condition at +oo is to require that lims-++oo T(2l(s) 

exists in some gauge, and that Re T(2l( +oo) = 0. Then the Nahm equations imply 

that the matrices T/2)( +oo ), i = 1, 2, 3, commute and can be reduced to a diagonal 

form Im T( 2
) ( +oo) = diag(p1 , ... , Pk) for some Pa E R 3 . It remains to understand 

what the positions of infinitely heavy monopoles are. The Nahm data just described 

depend on k vectors Pa, a = 1, ... , k. It is therefore tempting to identify them as the 

positions of k infinitely heavy monopoles, i.e., singularities of the Higgs field. This 

identification can be justified by recalling the physical meaning of Nahm data [22] . 

The variable s is interpreted as the coordinate x 6 along the horizontal direction in 

Figure 3.1. The matrices T/2) describe the transverse coordinates of semi-infinite 

D3-branes. For generic values of s, the three matrices T/2) do not commute, so the 
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notion of the transverse position of a given D3-brane is not defined. However, at 

s = +oo the matrices do commute, and their eigenvalues Po: have the meaning of 

the D3-branes ' asymptotic coordinates in the (x 3 ,x4,x5
) plane. From Section 2.1 we 

know that these asymptotic coordinates are precisely the positions of the singularities 

of the Higgs field. 

3.2 Examples 

In this section we illustrate the above construction by the examples of U(l) and SU(2) 

gauge theories with k massive fundamentals. In what follows Po:, a = 1, ... , k are 

hypermultiplet masses. Let us also recall that n = 1 (one monopole) corresponds to 

a U(l) gauge theory, and n = 2 (two monopoles) corresponds to a U(2) or SU(2) 

gauge theory. 

3.2.1 n = 1, k Arbitrary 

The Nahm data consist of an H-valued function T(1l(s) on [O , 1] and a u(k) 0 H­

valued function T(z) ( s) on ( 1, +oo). T(z) has a simple pole at s = 1, and the matching 

condition (iii) of Section 3.1 is satisfied. The boundary conditions at s = +oo are 

Re T(2l(+oo) = 0, Im T(2l(+oo) = diag(p1, ... ,pk) · 

In this case we expect, from field theory, that the moduli space is the Ak-l ALF 

space [1 5]. To obtain this result in our setup we would have to solve k x k Nahm 

equations on a half-line. Alas, we do not know how to do it directly. Fortunately, 

there is a way to find the moduli space of Nahm equations without actually solving 

them [23]. First one splits the three Nahm equations into one complex and one real 

equation. This amounts to picking a complex structure out of a P 1 of available com­

plex structures. The complex equation is invariant under the complexification of the 

gauge group Ge. Donaldson proved that the space of solutions of the complex equa­

tion modulo Ge is the same as the space of solutions of all three equations modulo G. 

Thus it suffices to solve the complex equation to determine the moduli space of Nahm 

equations as a complex manifold. (This is similar to how one computes the moduli 
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space of supersymmetric gauge theories: instead of solving both D and F-flatness 

conditions, one solves only the F-flatness conditions modulo the complexification of 

the gauge group.) Solving the complex equation is easy since it is locally trivial. We 

refer the reader to Ref. [23] for details , and to Refs. [24, 25, 26] for some applica­

tions of this technique. In our case the moduli space turns out to be isomorphic to a 

hypersurface in C 3 specified by the equation 

k 

xy = IJ (z - Pa), (3.6) 
a=l 

where Pa is the "complex" part of Pa, Pa =Pal + ipaz· This is the complex structure 

of the resolution of Ak-1 singularity. 

To find the metric one needs to know all three complex structures, however. To 

this end one has to vary the arbitrary complex structure we picked in the beginning 

and see how variables in Eq. (3.6) change [26]. The result is rather simple to describe: 

Pa are fixed real sections of 0(2), z is the coordinate in the fiber of the line bundle 

TP 1 = 0(2) over the P 1 of complex structures, while x and y take values in the 

line bundles L( k) and L- 1 ( k) over TP1, respectively. (In the notation of Ref. [19] 

Lx(k) is a line bundle over TP 1 with a transition function (-kex1J/C, where ( is the 

coordinate on P 1 and rt is the coordinate in the tangent space at (, d(( rt) = 1.) With 

such identification Eq. (3.6) describes the twistor space of the Ak-l ALF space [27]. 

3.2.2 n=2 k=l 
' 

The Nahm data consist of a u(2) ® H-valued function T(l)(s) on (0, 1] and a u(l) ®H­

valued function T(2l(s) on [1,+oo). T(l) has a simple pole at s = 0 with residue 

e1p1 + e2p2 + e3p3, where Pi = iai/2, i = 1, 2, 3. The boundary conditions at s = +oo 

are Re T(2
)( +oo) = 0, Im T(2

)( +oo) = fl. At s = 1 the matching condition (iii) is 

satisfied. 

It proves convenient to perform the hyperkahler quotient in two steps. First we 

take the quotient with respect to gauge transformations which are the identity at 

s = 1. This amounts to solving Nahm equations on two intervals separately and 
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finding their moduli spaces of solutions. Fors E (1, +CXJ) Nahm equations just tell 

us that Im T(2 ) is independent of s and equal to p, i.e. , the moduli space is just a 

point. Solving Nahm equations for 2 x 2 matrices on (0, 1) is also elementary, since the 

equations can be reduced to those of the Euler top. In fact, for s E (0, 1] the moduli 

space of solutions with boundary behavior as described above has been investigated 

by Dancer [25] . It turns out that the moduli space is a 12-dimensional hyperkahler 

manifold M12 of the form R 3 x 5 1 x Ms, where Ms is also hyperkahler and irreducible. 

Ms admits a triholomorphic action of SU(2). 

Second, we take the quotient with respect to the U(l) group "living" at s = 1. 

This U(l) is a subgroup of U(2) which is the group of all gauge transformations 

modulo those which reduce to identity at s = 1. More concretely, the U(l) acts on 

R 3 x 5 1 x Ms as follows: it rotates the 5 1 , and it acts on Ms as a maximal torus 

of the triholomorphic 5U(2) mentioned in the end of the previous paragraph. The 

boundary condition (iii) implies that the level of the quotient is 2fi. The net result 

is an 8-dimensional hyperkahler manifold depending on fi as a parameter. It is the 

moduli space of two monopoles with a fixed singularity at x = fi and corresponds to 

the U(2) gauge theory with one massive fundamental hypermultiplet. 

If one wishes to obtain the Coulomb branch of the 5U(2) theory with the same 

matter content, one should perform a further U( l) hyperkahler quotient (i.e. , pass 

to the centered monopole moduli space). This U(l) is easily identified : it acts on 

R 3 x 5 1 by rotating the 5 1 . The level of the quotient is simply the position of the 

monopoles' center of mass. It can always be absorbed into p, so we can set it (i.e., the 

level) to zero. Performing this U(l) quotient rids the M 12 of the R 3 x 5 1 factor. Thus 

we conclude that the moduli space of the SU(2) gauge theory with one fundamental 

is the hyperkahler quotient of Ms by U(l) at the level 2fi. This is exactly the four­

dimensional manifold constructed by Dancer in Ref. [25] and proposed in Ref. [16] as 

a candidate for the Coulomb branch. Moreover, we showed above that fi should be 

identified as the mass of the hypermultiplet. This agrees with Ref. [1 6] where it was 

suggested that the level of the quotient should be twice the mass of the fundamental. 
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3.2.3 n = 2, k = 2. 

In this case the Nahm data consist of a u(2) 0 H-valued function T(ll(s) on (0, l], 

a u(2) 0 H-valued function T( 2)(s) on [l, +oo), and a quaternionic vector a E H 2 . 

Both functions satisfy Nahm equations. T(1) has a simple pole at s = 0 with residue 

e1p1 + e2p2 + e3p3, where p; = iiJ;/2, i = 1, 2, 3. The boundary conditions at s = +oo 

are Re T(2
)( +oo) = 0, Im T(2

)( +oo) = diag(pi, p2 ). Ats = 1 the matching condition 

(iii ') is satisfied. 

Again we split the calculation in two steps. The solution of Nahm equations for 

s E (0, 1) is the same as before. To solve the equations on (1, +oo), we split T(2
) 

into a part proportional to the identity matrix and a traceless matrix. The equations 

for the "identity" part simply say that Tr (rm T( 2
)) is independent of s and equal 

to p1 + p2 . The equations for the traceless part can be solved in terms of hyperbolic 

functions. After one performs the quotient with respect to the U(2) gauge group 

which degenerates to the identity at s = 1 and to U(l) x U(l) at s = +oo , one gets 

a four-dimensional moduli space MEH· Its metric can be computed to be the two­

center Gibbons-Hawking (or Eguchi-Hanson) metric with IPi - p2 I being the distance 

between the centers . Actually, this is a particular case of Kronheimer's construction of 

hyperkiihler metrics on the coadjoint orbits of a complex group G [24]. Kronheimer's 

construction also uses Nahm equations, and for G = SL(2, C) coincides with ours. 

(The coadjoint orbit here happens to be isomorphic to TP1 as a complex manifold.) 

The Eguchi-Hanson metric admits a triholomorphic action of SU(2). 

The second step is to take the hyperkiihler quotient of 

M 12 x H2 x MEH (3.7) 

with respect to U(2). This residual U(2) is the quotient of all gauge transformations 

by those which reduce to the identity at s = 1. The subgroup U(l) C U(2) = 

U(l) x SU(2) acts on M 12 = R3 x S1 x M 8 by rotating S1, and on a E H2 by 

right multiplication by exp(e1q)). The matching condition (iii ') means that the U(l) 

quotient should be performed at level p1 + p2 • The SU(2) subgroup acts on the M 8 
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part of M 12 and on the Eguchi-Hanson space MEH. It also acts on a by the right 

multiplication a ----+ a l. 
The quotient manifold is an 8-dimensional hyperkiihler manifold depending on 

p1 and p2 as parameters. It is the moduli space of two monopoles with two fixed 

singularities at p1 and p2 and corresponds to the U(2) gauge theory with two massive 

fundamental hypermultiplets. 

To obtain the Coulomb branch of the SU(2) theory we must "center" the mo­

nopoles, as in the previous example. The position of the center of mass can be set 

to zero without loss of generality. As earlier, "centering" monopoles is achieved by 

taking a U(l) quotient. This procedure eliminates the R3 x S1 factor of M 12
. Then 

we need to compute the hyperkiihler quotient of 

(3.8) 

by U(2) = U(l) x SU(2), where U(l) acts only on H 2 by right multiplication, and 

SU(2) acts on all three factors. The level of the quotient is p1 + p2 . Since U(l) 

acts so simply, we can perform the quotient with respect to it explicitly (see, e.g., 

Ref [28]). The final result is that the Coulomb branch of the SU(2) theory with two 

fundamentals is the hyperkiihler quotient of M 8 x M'eH x MEH with respect to SU(2). 

Both M'eH and MEH are the two-center Gibbons-Hawking (Eguchi-Hanson) spaces 

with distances between the centers P1 + P2 and p1 - P2 respectively. 

3.2.4 n=2 k=3 
' 

It is convenient to slightly change our point of view and regard two U(2) monopoles 

with three singularities as a limit of SU(4) (1, 2, 2) monopoles, rather than the limit of 

SU(3) (2, 3) monopoles. The limit is such that (1, , ) and ( , , 2) monopoles become 

infinitely heavy. The corresponding brane construction is shown in Figure 3.2. The 

Nahm data consist of three functions T(o) : (-oo, 0] ----+ u(l) ® H, T(l) : [O, 1] ----+ 

u(2)®H, T(2
): [1, +oo)----+ u(2)®H and a quaternionic vector a E H2

. The boundary 

conditions at s = ±oo are Re T(o)(-oo) = Re T(2)( +oo) = 0, Im T(0l(-oo) = 
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Figure 3.2: A U(2) 2-monopole with three singularities is a limit of a regular (1, 2, 2) 
SU ( 4) monopole. 

p1 , Im T( 2l( +oo) = diag(p2 , p3 ). Here Po: are the positions of the singularities of the 

Higgs field. The matching condition at s = 0 is 

(3.9) 

The matching condition at s = 1 is 

(3 .10) 

The advantage of this point of view is that we already know what the moduli spaces 

of solutions of Nahm equations look like for s E (-oo, 0) ands E (1, +oo ): in the first 

instance it is a point, and in the second instance it is a Eguchi-Hanson space MEH 

with distance between the centers IP2 - P31· For s E (0, 1) we now have to analyze 

the space of solutions of 2 x 2 Nahm equations with nonsingular boundary behavior. 

Luckily, this has been done by Dancer [29]. The moduli space is a 16-dimensional 

hyperkahler manifold N 16 which has the form R 3 x S1 x N 12
. N 12 is hyperkahler and 

irreducible. It admits a triholomorphic SU(2)L x SU(2)R action. (We call these two 

SU(2)'s SU(2)L and SU(2)R because they originate from the action of the residual 

gauge group at s = 0 and s = 1.) 

If we perform the hyperkahler quotient in two steps, as before, on the first step 
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we get N 16 x H 2 x MEH. On the second step we take the hyperkahler quotient 

with respect to U(l) x U(2) . U(l) acts on the N 12 part of N 16 by a maximal torus 

of SU(2)L, and the level of this quotient is 2p1 . U(2) = U(l) x SU(2) acts as 

follows: its U(l) subgroup acts only on H 2 by right multiplication by exp(e1 </>), 

while its SU(2) subgroup acts on all three factors, the action on N 16 being that of 

SU(2)R · The resulting manifold is the Coulomb branch of the U(2) gauge theory with 

three hypermultiplets . "Centering" the monopole moduli space we get the following 

description of the Coulomb branch of the SU(2) theory with three hypermultiplets: 

it is a hyperkahler quotient of 

(3.11) 

with respect to U(l) x SU(2), where M'eH and MEH are Eguchi-Hanson spaces with 

distances between the centers lff2 + p3 I and lff2 - p3 I, respectively. Here U ( 1) acts only 

on N 12 by a maximal torus of SU(2)L, and the level is 2p1 . SU(2) acts on all three 

factors, the action on N 12 being that of SU(2)R· 

3.2.5 n=2 k=4 
' 

Similarly to the previous example, we regard two monopoles with four singularities 

as a limit of SU( 4) (2, 2, 2) monopoles. The limit is such that (2, , ) and ( , , 2) 

monopoles become infinitely heavy. The corresponding brane configuration is shown 

in Figure 3.3. 

We do not spell out in detail the manipulations with hyperkahler quotients, since 

they are almost the same as in the previous example. We just give the result for the 

Coulomb branch of the SU(2) gauge theory with four fundamental hypermultiplets: 

it is a hyperkahler quotient of 

(3.12) 

with respect to SU(2)L x SU(2)R, where, as the names suggest , SU(2)L acts on 
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Figure 3.3: A U(2) 2-monopole with four singularities is a limit of a regular (2, 2, 2) 
SU( 4) monopole. 

MEH, l\1f;H , N 12
, and SU(2)R acts on N 12

, M'Em M'£H· The spaces MEH, Mf;H , M'£H, 

and M'E~ are Eguchi-Hanson spaces with distances between the centers lf1 +f21, lf1 -

P2I, IP3 + p4I, and IP3 - z341. Arguments from M theory [15] or field theory [16] show 

that this space is an ALF gravitational instanton of type D4 . Thus we have a rather 

simple construction of such a space. 

3.3 Comparison of Complex Structures of Three 

and Four-Dimensional Theories 

Our description of the metrics on the Coulomb branches is implicit. This is hardly a 

drawback, since an explicit formula would be horribly complicated (see, e.g., Ref. [25] 

where the metric corresponding to n = 2, k = 1 is discussed). The only exception 

is the case of U(l) gauge theories where the moduli space is of the multi-Taub-NUT 

form. For general n it is possible to give an explicit description of the Coulomb 

branches as complex manifolds. We recall that hyperkiihler manifolds have three 

different complex structures I , J, I<, but we shall concentrate on just one of them, 

say J. We shall limit the discussion of the complex structures to the cases studied in 

the previous section. 

Computing the complex structures allows us to perform some checks of the met-
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ncs. It follows both from M theory [15] and field theory [16] considerations that 

the Coulomb branch of SU(2) gauge theory with k fundamentals is an ALF grav­

itational instanton of type Dk· We shall be able to see that indeed our manifolds 

are resolutions of Dk singularities, at least for k ::; 4. A more detailed check can 

be performed by comparison with the Seiberg-Witten solutions of the corresponding 

N = 2 SU(2) gauge theories in four dimensions. Recall that in four dimensions the 

description of the Coulomb branch of an N = 2 SU(2) gauge theory involves a com­

plex torus fibered over a complex plane [30]. The plane is the moduli space of the 

theory, while the torus is an auxiliary object whose T-parameter is the low-energy 

gauge coupling. Upon compactification to three dimensions the total space of this 

fibration becomes the moduli space of the corresponding three-dimensional N = 4 

theory [16]. Moreover, it was argued [1 6] that the complex structure remains the 

same as in four dimensions (of course, after compactification the moduli space grows 

another two complex structures which we disregard in this section.) We shall see this 

quite explicitly below. 

To compute the complex structure on the moduli space of Nahm equations, we 

followed the approach of Donaldson [23] (see Section 3.2.1). Above we described the 

moduli spaces of some SU(2) gauge theories as hyperkiihler quotients of known mani­

folds. By first finding the complex structures of these manifolds and then performing 

the quotient, we find the complex structures on the Coulomb branches presented 

below. 

3.3.1 SU(2) Theory with One Fundamental Hypermultiplet 

The complex structure is given by 

y 2 = x 2 z + 2px + 1, (3.13) 
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where pis the "complex" part of the hypermultiplet mass parameter ff. The Seiberg­

Witten solution [30] of this theory gives the complex structure on the moduli space: 

y 2 = x2 (x - u) + 2mx + 1, (3.14) 

where m is the hypermultiplet mass in four dimensions. Obviously, the two complex 

structures agree after on sets z = x - u, p = m in Eq. (3.13). 

3.3.2 SU(2) Theory with Two Hypermultiplets 

The complex structure is given by 

The Seiberg-Witten solution (see [30]) is 

Eq. (3.15) agrees with Eq. (3.16) if one sets z = x - u, p1 = m1 , P2 = m 2 . 

3.3.3 SU(2) Theory with Three Hypermultiplets 

The complex structure is given by 

2 2 2 ( 2 2 2) 2 ( 2 2 2 2 2 2) Y = x z - z - z P1 + P2 + p3 + XP1P2P3 - P1P2 + P1P3 + P2P3 · 

The Seiberg-Witten solution (as in [30]) is 

y
2 x2 (x - u) - (x - u) 2 - (x - u)(mi + m~ + mD + 2xm1m2m3 

-( mim~ + m~m~ + mimD. 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

Eqs. (3.17) and (3.18) agree if one sets z = x - u, P1 = m1, P2 = m2, p3 = m3. 
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3.3.4 SU(2) Theory with Four Hypermultiplets 

The complex structure is given by 

where Se is an elementary symmetric polynomial in p1 , ... ,p4 of degree f, i.e., S1 = 

P1 + P2 + p3 + p4, ... , 54 = P1P2p3p4. One immediately sees that this is indeed a 

resolution of D4 singularity. To compare with the Seiberg-Witten solution in D = 4, 

it is best to think of SU(2) theory with four flavors as a special case of Sp(2n) theory 

with 2n + 2 flavors. Specializing the formula for the Sp(2n) curve given in Ref. [31] 

to n = 1, we get the following hyperelliptic curve: 

(3.20) 

Eqs. (3.19) and (3 .20) agree if in Eq. (3.20) one sets mz = ipzf Vfg, l = 1, ... ,4, and 

makes the following substitution: 

y 
y ---t vg' (3.21) 

x ---t I_ (x _ z + S2 _ s;) 
2g 2 4 ' 

~ ( x + 3z - ~ + ~;) + 
2

1

9 
( x _ z + ~2 

_ ~;) . 

The above quoted results for the complex structures of the elliptic fibrations which 

give the solutions to Seiberg-Witten theories were derived by methods completely 

different from ours. Thus the above comparisons provide a nontrivial check of our 

descriptions of the moduli spaces. 
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Chapter 4 Twistor Description of the 

Coulomb Branch using Nahm Equations 

4.1 Nahm Equations 

As explained in Section 2.2 (see also [22] and [32]) the configuration of Figure 3.1 can 

be described by the following Nahm data satisfying the Nahm equations. 

Our Nahm data will be a set of four functions T0 , Tj, j = 1, 2, 3 of real coordinate 

s E [-d,oo) taking values in u(2) for s < 0 and in u(k) for s > 0. The matching 

condition at s = 0 is 

8 (k-3)/2pj + O(s(k-1)/2) ) 

Tj(O-) + O(s) 
( 4.1) 

where pj are k - 2 dimensional representations of Pauli sigma matrices CTj, pj are 

(k - 2) x 2 matrices. At s = -d we require Tj(s) = -t-fti + O(s + d), and at 

s -----+ oo Tj -----+ diag( xij), x~j), ... , x~)). The parameter d is the distance between the 

NS5-branes of Figure 3.1 and its inverse will give the radius of the circle at asymptotic 

infinity of the ALF space. 

There is a natural action of a group G of gauge transformations on these Nahm 

data. G is parametrized by functions g(s) valued in U(2) for s E [-d,O] and in U(k) 

for s > 0 and satisfying g = 1 at s = -d, g -----+ 1 as s -----+ oo, and 

g(O+) = ( 1 0 ) . 
0 g(O-) 

(4.2) 
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We subject the Nahm data to the Nahm equations 

( 4.3) 

The moduli space of such Nahm data modulo gauge transformations is the hy­

perkahler manifold M we are interested in. 

As a matter of fact, if we consider all quadruplets To, T1 , Tz, T3 valued in u(2) on 

[- d, 0) and in u( k) on [O, oo) we can define the norm as 

( 4.4) 

The metric corresponding to this norm is hyperkahler. This becomes obvious if we 

think of a quadruplet T0 , . .. , T3 as a matrix of quaternions 

Then the Nahm equations are moment maps for the action of G 

(4.5) 

We construct M in the following way. Let us first consider the quotient of the 

Nahm data on the interval [O, oo) modulo the gauge transformations with g(O) = 1 

and call the resulting manifold M+. Then consider the quotient of the Nahm data 

on [-d, O] modulo the gauge transformations with g(O) = g(-d) = 1 and call this 

manifold D 12
. We can ease the g( - d) = 1 condition and consider the gauge transfor­

mations with SU(2) part of g( - d) equal to the identity. This gives a triholomorphic 

action of a U(l) on D 12 of U(l) gauge transformations "localized" at s = -d. The 

group of all gauge transformations modulo those with g(O) = 1 is U(2) . This U(2) 

can be thought of as "localized" at s = 0. It acts triholomorphically on both M+ and 

D 12
. The manifold M is the hyperkahler quotient of M+ x D12 by the U(l) x U(2) 

action. 
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4.2 The Complex Structure of M 

Following Donaldson [23] we define 

(4.6) 

Then the Nahm equations can be written as a pair of equations. We shall need only 

one of them called the "complex" equation: 

d(3 
ds + 2[a, (3] = 0. (4.7) 

One can show that the space of Nahm data satisfying Nahm equations modulo the 

group G of gauge transformations is the same as the space of solutions of the complex 

equation Eq. (4.7) modulo the complexified group of gauge transformations cc. This 

will allow us to describe M as a complex manifold . 

First let us look at M+. Let a= sa, b = s(3, s = e\ then 

db 
dt + 2[a,b] = b (4.8) 

is equivalent to the complex equation Eq. (4.7). Fixing the gauge at t--+ - oo so that 

a is independent oft we have the solution of Eq.( 4.8) 

with the matrix b independent of t. Comparing with the boundary conditions at 

t--+ -oo following from Eq. (4.1), we find 

a = ,(3 = 
( 

- 4
1

5 P1 0 ) ( - 4is (p2 + ip3) +A 
0 0 (- 2is)(k- 3 )!2 q_ 

(4.10) 

with [P1, A] = 0, P1P = ( k - 3)p, qp1 = - ( k - 3)q. It follows that A is a diagonal 
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(k - 2) x (k - 2) matrix (in the basis in which p1 is diagonal). We call its eigenvalues 

A1 , .•• , Ak_2 . Now recall that p and q are (k-2) x 2 and 2 x (k-2) matrices. Letting 

a vector v be the highest weight of the representation p (that is p1 v = ( k - 3)v) with 

lvl = 1, we see that the two columns of pare p1v and p2v where p1 ,p2 E C. Sop 

is parametrized by a vector p E C 2 with components (p1 ,p2 ). Similarly, q can be 

parametrized by a vector q E C 2
. 

Boundary conditions at s ---+ +oo restrict the eigenvalues of /3 to be Za = ( x~2 ) + 

ix~3l)/2. Thus det(/3 - z) = 0 has roots Za· The computation of the determinant 

yields 

det(/3 - z) = det(B - z) ( det(A - z) - pT(B - z)-1q). ( 4.11) 

Turning our attention to D 12
, the solutions of Nahm equations on s E [-d, OJ 

modulo gauge transformations with precisely the right boundary conditions were de­

scribed by Dancer [26]. As a complex manifold D 12 is a set of pairs (B, w) with B 

being a 2 x 2 matrix and w E C 2
, such that w and Bw are linearly independent. 

So far we described the solutions of the complex equation Eq. ( 4. 7) modulo com­

plexified gauge transformations g( s) which are the identity at s = 0. Every such 

solution is given by a set (A , B,p, q, w) where A is a diagonal matrix with eigenvalues 

A1 , ... , Ak_2 , B is a 2 x 2 matrix, and p, q, w E C 2
. Now we have to take a quotient 

by the complexified groups U(l)c = C* and U(2) = C* x SL(2, C). The moment 

map of the U(l)c is TrB, so we put TrB = 0. 

An element g of the SL(2, C) acts on these data as 

and two C * actions of c; and c: can be represented by 

B ---+ B) w---+ w, PT ---+PT >,-1 , q ---+ Aq ' 

B ---+ B ' w ---+ K,W' PT ---+ PT' q ---+ q. 

(4.12) 

(4 .13) 

( 4.14) 
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The c: action and the fact that w and Bw are linearly independent allows to put 

wT ( Q l ) Bw = 1. 
-1 0 

Now we can define SL(2, C) invariants xi, x2, Yi, and Y2 by 

T ( Q 1) TT T p = Xi w B + X2W ' 
-1 0 

(4.15) 

(4.16) 

Xi, x 2 , Yi, y2 , det B and Ai, ... , Ak-2 form the full set of invariants with respect to 

SL(2, C). 

An element >. of the residual C* acts by B -+ B, Xi -+ >.-i Xi, Yi -+ AYi. Thus the 

invariants of C* x G L(2, C) are given by 

T/2 -detB 

\II i X2Y2 

\II 2 Xi Yi 

\II 3 XiY2 

\II 4 X2Yi, ( 4.17) 

and Ab, b = 1, . .. , k - 2 with relations 

( 4.18) 

k-2 

(z~ - ry2) IT (Ab - Za) + z (\Il3 - \Il4) +\Iii - \Il2T/2 = 0 (4.19) 
b=i 

for a = 1, ... , k. 

Let us denote symmetric polynomials of order m by Sm. For example Si( z ) 
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z1 + z2 + ... + Zk, and Sk_2(A) = A1A2 • . • Ak-2· One can rewrite Eqs. ( 4.18,4.19) as 

S1(A) 

S2(A) - 'T/2 

S3(A) - 772S1(A) 

Sk-2(A) - 772Sk-4(A) 

'T/2 \II 2 + F ( 'T/2) 

\113 + G( 'T/2) 

where polynomials F(772) and G(772) are given by 

G(772) sk-1(z) + sk-3(z)772 + .. . + sk-1-21(z)77~ + .... 

( 4.20) 

(4.21) 

The above equations define our complex manifold M as a subvariety in Ck+3
. From 

Eqs. ( 4.20,4.21) one can see that M develops a Dk-type singularity when all Za = 0. 

4.3 The Twistor Space of M 

In the previous section we described M as a complex variety after picking a particular 

complex structure on the Nahm data. In reality there is a whole sphere of such 

complex structures. Thus to obtain the twistor space of M we need to trace the 

dependence on the choice of complex structure. 
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Parametrizing the sphere of complex structures by ( we define 

1 2 (To+ iT1 + ( (T3 - iT2)), 

{JO ~ (T3 + iT2 + 2i(T1 + (2 (T3 - iT2)) ( 4.22) 

for ( =f- oo and 

l ( To - iT1 - z (T3 + iT2)) , 

l ( T2 + iT3 - 2zT1 + : 2 (- T2 + iT3) ) (4.23) 

for ( =f- 0. Both pairs (a, fJ) satisfy the complex Nahm equation 

dfJ 
ds + 2[a, fJ] = 0. ( 4.24) 

The relation between them is given by 

(4.25) 

Following the same steps as in the Section 4.2 and fixing the gauge so that sa is 

constant, we obtain 

ao ( ,
1
, (p1 ~ 2(p+) ~ ) ' ( 4.26) 

{JO 
( ;, (p_ + (p1 - ( 2 p+) + e-(e+ A0(()e('+ 5( k-3)/'e- <'+ po ( () ) 

3(k- 3)/2q0(() Bo(() 

and 

a1 ( - .1, (P1

0 

+ ZP-) ~ ) ' ( 4.27) 
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/31 ( _2is (P+ - zp1 -k~:P-) +P~-P-f(Al(()eP-/( s(k-3)/2pl(()). 

s-2 q1 (()e < B 1(() 

[A0
((), P1] = 0, [A1((), P1] = 0 

P1Po(() = -(k - 3)po((), qo(()p1 = (k - 3)qo(() 

P1P1(() = (k - 3)po((), q1(()p1 = -(k - 3)q1((). 

( 4.28) 

( 4.29) 

( 4.30) 

Equation (4.25) relates (a0 ,;3°) and (a1,/31
), but in a gauge different from that in 

Eqs. ( 4.26,4.27). Namely the gauge transformation that makes sa1 = s ( a 0 + z/3°) 
independent of s is 

(4.31) 

Comparing the two expressions for /31 we can find the transition functions between 

(A0
, p0

, q0
, B 0

) and (A1 ,p1, q1, B 1 ). If we let 

( 4.32) 

then 

1 0 -1 1 1 0 1 0 -1 1 1 0 
A ( () = RA R , p = ( 2 Rp , q1 = ( 2 q R , B = ( 2 B . ( 4.33) 

Thus we conclude that the variables in Eq. ( 4.12) are sections of the following bundles: 

B E M at(2) @ 0(2) , Ab E 0(2) , 

p E O(k - 1) x O(k - 1), q E O(k - 1) x O(k - 1). (4.34) 

Above M at(2) denotes the space of 2 x 2 matrices and 0( n) is the line bundle on P 1 

with the transition function (-n. Furthermore, from Dancer's analysis it follows that 

w1 = (e 2idB
0
fCw 0 . From the above one can find the dependence of W1 , ... , W4 on (. 

This completely determines the twistor space Z of M. 

It turns out that the W i are not taking values in any nice fibrations, but one can 
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define combinations of them that do. Let 'T/ = ..;=ry:;,, and define 

µ '111 + ry 2W2 - iry(W3 - '114), 

v '111 + ry2W2 + iry(W3 - W4), 

p '11 1 - ry 2'112 + iry(W3 + W4), 

(4.35) 

These are two-valued functions of (as ry(() = j-ry2((), but they have simple trans­

formation laws: 

µ ;- -2k - ;--2k ., µ, I/ = ., v, 

p ;- -2k e2d7J/( ., p, 

Then from equations ( 4.20) 

k 

µ II (za(() + iry), 
a=l 

k 

I/ II (za(() - iry), 
a=l 

and 
k 

pe= II (z~(() +ry2). 
a=l 

( 4.36) 

( 4.37) 

( 4.38) 

( 4.39) 

( 4.40) 

(4.41) 

From this description of Z one can see that it is exactly the twistor space of the 

centered moduli space of two monopoles with k singularities described in Ref. [33]. In 

the direct image sheaf construction of Ref. [33] pofo, P1ei, Poe1, and P1fo correspond 

to '11 1, '11 2, '11 3, and '11 4. This establishes the isometry between the moduli space M 

and the centered moduli space of singular monopoles of nonabelian charge two. 

The twistor space Z is nothing but P 1 x M , so the fiber of Z over ( is our 

manifold M with the complex structure determined by(. In order to recover M as a 

Riemannian manifold we need to pick two complex coordinates on A1 that depend on 
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( holomorphically. For example, locally we can pick ( T/ , p) or ( T/, 0 as such coordinates. 

There is a natural two-form w = 2dry A def e = -2dry A dp/ p on Z. It is degenerate 

along the ( direction and satisfies w = (- 2w. Let us rewrite it as 

w = dry A d log {. 
p 

Then we can introduce a new coordinate 

( 4.42) 

( 4.43) 

which does not depend on the choice of the branch of the square root in T/ = .J=TF2. 
In terms of ry 2 and x, w = dry 2 A dx. Now we have to find x as a function on (. 
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Chapter 5 Twistor Description of the 

Coulomb Branch using Monopoles 

5.1 Regular Monopoles 

To describe a monopole with singularities, we shall use the minitwistor space approach 

of Hitchin (see [1 8]) modified in [34] . Our main objects of interest will be the space 

T of lines in R3
, the spectral curve S, and holomorphic bundles over T and over 

s. Every line I in a three-dimensional space is { x I x = ut + iJ} where u is a unit 

vector and iJ is orthogonal to u and t is a real coordinate along the line. So the space 

of oriented lines T is the tangent space (with the tangent space parametrized by iJ) 

to a unit sphere (parametrized by u). We can introduce complex coordinates ((, ry) 

on T. ( is the complex coordinate on the sphere and T/ ;, is a holomorphic tangent 

vector. Now the set of lines passing through any given point (x1 , x2 , x3 ) is given by 

t he section 

(5.1) 

of the bundle T. Inversion of orientation of all lines maps T onto itself and gives a 

real structure on T. Every holomorphic section of T is given by a(2 + 2b( + c for 

some complex numbers a, b and c. Let us recall that the real structure T acts by 

(( , ry)-+ (-1 /(, -ry), so the section is real (i.e., it is mapped into itself by the action 

of T) when it is of the form (5 .1). So we can think of points in R3 as real sections of 

T. 

Now we describe a bundle E over T that encodes all the information about the 

monopole configuration. For every line I the equation 

\;' iJS - i<f>s = 0, (5.2) 
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with the covariant derivative \7 a = u · D along the line, has two solutions. This 

space of solutions is the fiber E'"Y of the bundle E. The condition for this bundle to 

be holomorphic is equivalent to the Bogomolny equation for the connection A; and 

Higgs field <I>. 

There are natural subbundles L+ and L- in E. L+ consists of solutions to equation 

(5.2) that decay as t --+ +oo, and L- of those decaying as t <- -oo. The points ( (, TJ) 

of T above which Lt,TJ) = L(c,TJ) form the spectral curve S. In other words the points 

of the spectral curve Sare lines in R3 for which equation (5.2) has a solution decaying 

at large ltl . 
The spectral curve corresponding to a monopole of charge N is given by equation 

F(ry, () = TJN + a1(()TJN-l + ... + aN(() = 0 and is real in T. The spectral curve 

determines the monopole solution up to gauge transformations. 

For future use let us define another bundle L over T . It has a one-dimensional 

fiber given by solutions of Oas - is = 0. In terms of L, L + and L- are isomorphic 

to L( -N) (that is the bundle L twisted by 0( -N)) and L *( -N) (bundle L * twisted 

by 0(-N)). 

5.2 Singular Monopoles 

To construct the moduli space of singular U(2) monopoles, we shall use a version of 

Ward correspondence due to Hitchin [18]. The set of all oriented straight lines T 

in R 3 has a natural complex structure, as it is the tangent bundle of the projective 

line. T can be covered by two patches V0 ( ( -=J:. oo) and Vi ( ( -=J:. 0) with coordinates 

( TJ , () and ( TJ 1
, (') = ( TJ / (2, 1 / (). For any point x E R 3 the set of all oriented straight 

lines through x sweeps out a projective line Px E T; thus there is a holomorphic map 

Px : P 1 
--+ T. The reversal of the orientation of lines in R 3 is an antiholomorphic 

map T : T --+ T satisfying T
2 = id. It is called the real structure of T. For any x it 

acts on Px as the antipodal map. Thus Px is a real holomorphic section of T. 
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For any straight line in R 3 

{ _,I_, __, __, __, __, 1 __, __, O} / = xx= ut + v , u · u = , u · v = 

let 

{xix = ut + v, t > R} , (5.3) 

, _ {xlx=i1t+v,t<-R}, 

where Risa positive number greater than any I.Pal· Now we define two complex rank 

2 vector bundles E+ and E - over T: 

{s E r(l+,E) ID"ls = i<I>s}' (5.4) 

From Bogomolny equations it follows, as in Ref. [18] , that these bundles are holo­

morphic. The real structure T on T can be lifted to an antilinear antiholomorphic 

map 

Thus every solution of U(2) Bogomolny equations maps to a pair of holomorphic rank 

two bundles on T interchanged by the real structure. 

Let Px denote the real section corresponding to x, and Pa the real section corre­

sponding to Pa· Let P be the union of all Pa. If/ does not pass through any Pa, any 

solution s can be continued from I+ to /-. This defines a natural identification of 

the fibers E~ and E:;. This identification is determined everywhere on Tbf P (i.e., 

on the minitwistor space T excluding P). Therefore, we have an isomorphism 

(5.5) 

where BT\P denotes restriction of the bundle B to its part above the points of the 
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base T that do not belong to P. 

For nonsingular monopoles h extends to an isomorphism over the whole T; there­

fore, the Ward correspondence maps a nonsingular monopole to a holomorphic bundle 

over T . In the present case h or h-1 may have singularities at P , and the Ward corre­

spondence maps a singular monopole into a triplet (E+, E-, h ). This triplet satisfies 

a certain triviality constraint which we now proceed to formulate . 

For any x distinct from all POI' the intersection Px n p consists of an even number 

of points. For a generic x the cardinality of Qx = Px n P is 2k. For any x we can 

arbitrari ly split Q into two sets of equal cardinality Qt and Q; and construct a vector 

bundle Ex over Px by gluing together E+ restricted to Px \Qt and E- restricted to 

Px \ Q;, with the transition function h. (Of course, Ex depends on the splitting.) The 

triviality constraint is that for any x there is a splitting Qx = Qt U Q; continuous in 

x such that Ex is trivial. 

Now we state the Ward correspondence between singular U(2) monopoles and 

twistor data. There is a bijection1 between singular monopoles modulo gauge trans­

formations and pairs (E+, E-) of holomorphic rank 2 bundles over T equipped with 

an isomorphism Eq. (5.5) satisfying the following conditions: 

(a) For any x -::J POI there is a splitting Qx =Qt U Q; such that Ex is trivial. 

(b) In the vicinity of each point of P, there exist trivializations of E+ and E ­

such that h takes the form 

h= ( ~ )· (5.6) 

so that h extends across P to a morphism E+ ---t E-. 

( c) The real structure T on T lifts to an antilinear antiholomorphic map CJ : E+ ---t 

Let us explain where (a) and (b) come from. The condition (b) arises from study­

ing the behavior of the solutions of the equation D-ys = i<I>s as I approaches pOI . 

1The inj ectivity of the Ward correspondence can be shown by a straightforward modification of 
the argument in Ref. [1 8]. We conjecture surjectivity by analogy with the nonsingular case. 
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Details can be found in Ref. [14]. (There the SU(2) case was analyzed , but the ex­

tension to U (2) is straightforward.) To demonstrate (a) it is sufficient to exhibit a 

holomorphic trivialization of Ex· Take any x =/=- Pen a = 1, ... , k and recall that Px 

consists of all straight lines / passing through x. To obtain a holomorphic section of 

Ex, pick a vector v1 in the fiber of B over x and take it as an initial condition for the 

equation D,s = i<I>s at t = 0. Integrating it forward and backward in t and varying 

I yields sections of E+ and E- related by h. It is easy to check that they are holo­

morphic and thereby combine into a holomorphic section s1 of Ex. To get a section 

s2 of Ex linearly independent from s1 , just pick a vector v2 linearly independent from 

v1 and repeat the procedure. (This argument has to be modified if there is a straight 

line / passing through x and a, f3 E { 1, ... , k} such that Pa and Pf3 lie on / and x 
separates them. In this case one of the vectors V1, V2 has to be varied, V; rv c-l, as 

one varies /.) 

We now want to encode the twistor data in an algebraic curve SC T, in the spirit 

of Ref. [1 8]. We denote by Lx(m) a line bundle over T with the transition function 

c-me-XTJ/( from Vo to Vi. Let Lt be a line subbundle of E+ which consists of solutions 

of D,s = i<I>s bounded by canst· exp( -µ 1t)tn as t -t +oo. Similarly, a line bundle 

L]" CE- consists of solutions bounded by canst· exp(-µ 2t)t-n'. The line bundles 

Lt and L:; are defined by 

As in Ref. [18] the asymptotic conditions on the Higgs field can be used to show that 

Lt2 and L"1,2 are holomorphic line bundles, and that the following isomorphisms hold: 

Consider a composite map 
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where the first arrow is an inclusion, the second arrow is h, and the third arrow 

is a natural projection. We may regard 'ljJ as an element of H 0 (T ,0(2n)). Let us 

define the spectral curve S to be the zero level of 'ljJ. S is in the linear system 0(2n). 

Arguments identical to those in Ref. [18] can be used to prove that S is compact and 

real (i.e. , T(S) = S). 

Consider now a map </> : det £ + ___, det E- induced by h. By virtue of Eq. (5.6) 

the zero level of ¢ is precisely P. We shall assume in what follows that S does not 

contain any of Pa as components. Physically this corresponds to the requirement that 

none of the nonabelian monopoles was located at x =Pa· For simplicity we shall also 

assume that s n p consists of 2nk points (this is a generic situation). 

The construction here bears a close resemblance to that in Ref. [21], where nonsin­

gular monopoles for all classical groups were constructed . According to Ref. [21], the 

spectral data for nonsingular SU(3) monopoles with magnetic charge (k, n) include 

a pair of spectral curves 51 , 52 in the linear systems 0(2n), 0(2k). Our Sand Pare 

analogs of 5 1 and 52 . The condition that S n P consists of 2nk points is analogous 

to the requirement in Ref. [21 J that monopoles be generic. (This resemblance is not a 

coincidence: if we consider an SU(3) gauge theory broken down to SU(2) x U(l) by 

a large vev of an adjoint Higgs field, the (k , n) monopoles of SU(3) reduce to singular 

monopoles of SU(2) x U(l) with nonabelian charge n and abelian charge k. In this 

limit the spectral data of Ref. [21] must reduce to ours .) 

Since Lils = ker 'l/J ls, we have a well-defined holomorphic map p : Li Is ___, L2 ls 
induced by h. There is also a holomorphic map e: Lils ___, L1ls induced by h. Thus 

we have natural elements p E H0 (S,L'J,(k)) and e E H0 (S,L - µ(k)) . It also easily 

follows from the definition that p @ e = <Pis, and therefore the divisors of both p and 

e are subsets of S n P. p and e are interchanged by real structure, and therefore the 

same is true about their divisors. It follows that the divisors of p and e are disjoint 

and have equal cardinality. Thus we can define the spectral data for a generic singular 

monopole to consist of 

(i) A spectral curve S, which is a real compact curve in the linear system 0(2n) 

such that s n p consists of 2nk disjoint points. 
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(ii) A splittings n p = Q+ u Q- into sets of equal cardinality interchanged by T. 

(iii) A section p of D.l(k)[s with divisor Q+ and a section e of L-µ(k)[s with divisor 

Q-. p and e are interchanged by real structure. 

The condition (iii) is a constraint on S. It implies that p and e satisfy 

(5.7) 

For nonsingular monopoles it reduces to the requirement that Lµ ls be trivial, as in 

Ref. [18]. As a consequence of (iii), L 2µ[s [Q_ - Q+] is trivial. 

Recall that the spectral data for nonsingular SU(2) monopoles satisfy an addi­

tional constraint, the "vanishing theorem" of Ref. [19]. It says that Uµ(n - 2) is 

nontrivial for z E (0, 1) . A natural guess for the analogue of this condition in our case 

IS 

(iv) Lzµ(n - 2) [-Q+] is nontrivial for z E (0, 1). 

We already mentioned a close connection of the spectral data for singular U(2) 

monopoles and those for nonsingular SU(3) monopoles [21] with the largest Higgs 

vev set to +oo. Consequently, one can obtain the condition (iv) from the "vanishing 

theorem" of Ref. [21] by taking the appropriate limit. A direct derivation of (iv) 

should also be possible. 

Arguments very similar to those in Ref. [18] show that the spectral data determine 

the singular monopole uniquely. A natural question is if there is a one-to-one corre-

spondence between singular U(2) monopoles and spectral data defined by (i-iv). The 

answer was positive for nonsingular SU(2) monopoles [19], so it is highly plausible 

that the same is true in the present case. Presumably a proper proof of this can be 

achieved by converting the spectral data into solutions of Nahm equations, and then 

reconstructing singular monopoles by an inverse Nahm transform. We leave this as a 

problem for the future . 
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5.3 Twistor Space for Singular Monopoles 

Having established the correspondence between singular U(2) monopoles and alge­

braic data on T , we now proceed to construct the twistor space (in the sense of 

Penrose) for the monopole moduli space. We follow the method of Ref. [7]. For fixed 

( = ( 0 every point in Zn yields a spectral curve S which intersects the fiber of T over 

( 0 at n points. Thus we have a projection 

Concretely, if S is given by ryn + ry 1 ryn-l + · · · + 'r/n = 0, the corresponding point in Yn 

is (ry1 , .. . , rJn)· Now consider an n-fold cover of Yn 

There are two natural projections 7f1 : Xn --* T and 7f2 : Xn --* Yn. Using these pro­

jections, we get a rank n bundle v+ over Yn as a direct image sheaf v+ = 7r 2*7r;Lµ(k). 

Similarly, we get a rank n bundle v- = 7r 2*7r;L-µ(k). For any point in Zn we have a 

section p of Lµ(k)ls and a section~ of L-µ(k)ls. Therefore, there is an inclusion Zn C 

v+ EB v-. To describe this inclusion more concretely, we must rewrite the condition 

(iii) in terms of sections of v±. The result is as follows. Let Ube a 2n + 1-dimensional 

subvariety in c 3
n +i with coordinates ((,ry1, ... ,rJn,Po, ... ,pn-1,fo, ... ,~n-i) defined 

by 

mod 'r/ n + 'r/l'r/n-l + ... + 'r/n = o. (5.8) 

Take two copies of U and glue them together over ( -/:- 0, oo by 

(5.9) 

ii
1
· = 1 - 2i'l')

1
·, J. 1 n 'I '> 'I = , ... , l 
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Po+ Pi"l + ... + Pn-l'r/n-l = e- µ:ry/(Ck(Po + P1"7 + ... + Pn-l'r/n-l), 

[o + [1"7 + ... + tn-l'r/n-l = eµT//(,-k(fo + 6"7 + ... + ~n-l'r/n-l), 

all modulo ryn + ry1ryn-l + · · · + "ln = 0. The resulting 2n + 1-dimensional variety is 

Zn, the twistor space of singular monopoles with nonabelian charge n. 

To reconstruct the hyperkiihler metric from the twistor space, one has to find a 

holomorphic section of A 2T;. ® 0(2), where r;. is the cotangent bundle of the fiber of 

Zn. Upon restriction to any fiber of Zn, this section must be closed and nondegenerate. 

An obvious choice (the same as in Ref. [7]) is 

(5.10) 

where {3j are roots of 'T]n + 'T]1'T]n-l + · · · + "ln = 0. 
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Chapter 6 Coulomb Branch Metric from 

its Twistor Space 

6.1 Explicit Construction for U(l) Theories 

In this section we shall concentrate on the case of one monopole with k singularities. 

As explained in Section 2.1, in the IIB picture this corresponds to having one internal 

and k external D3-branes. The spectral curve is therefore a sphere. In the notation 

of Section 1.3.3, sections p and e map it into the space 

Z = { (x, y) E L(k) E9 L*(k) I xy = fI (17 - Pa)}· 

Also the image of the spectral curve under this map S is real with respect to the real 

structure induced by the change of orientation of lines in R3 described in Section 5.1. 

Thus our spectral data consist of a real section of Z. In the rest of this section we 

show that Z is the twistor space of an Ak-l ALF space with V = 2 + :Z::::~=l l/ra 

following Hitchin [35], concluding that the moduli space is the above-mentioned ALF 

space. 

We need to find solutions to 

k 

xy= fI (11-Pa)· (6.1) 
a=l 

As the spectral curve is real, 17( () = a(2 + 2b( - 7i. For Pa(() = aa(2 + 2ba( - aa let 

Ua and Va be the roots of 17 ( () - Pa ( (). Then 

(6.2) 
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where 

(6.3) 

Then the solutions of equation ( 6.1), valued in appropriate bundles, are 

k k 
x = Ae-b- a( II (( - ua), y = Beb +a( II (( - Va) (6.4) 

with AB = TI (a - aa)· From the reality condition 

AA = II ( b - ba + 6a) · (6.5) 

Tangent vectors to the space of all holomorphic sections (not only real ones) are 

(at , bt, d, At) with 77 ( () = a(2 + 2b( + c. Two sections are null separated if they 

intersect. Thus the vector is null if there is a ( such that 

(6.6) 

(6.7) 

Relating the variation u~ of the root Ua to at and bt, we find from (6.6) and (6.7) 

(
2At t t " Ua) ( " 1 ) ( - + 2b - a L., - + 2 + L., - = 0. 
A 6a 6a 

(6.8) 

Defining 

(6.9) 

and substituting (found from (6.8) into (6.6), we obtain the condition for the vector 

to be null 

(2~' + (2 - V) b' - 6a')' + V2 
( a'c' - ( b') ') = 0. (6.10) 

This defines the conformal structure on the space of sections. 
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It follows from condition (6.5) that for a real section 

(6 .11) 

So the conformal structure on real sections is given by 

(6.12) 

To fix the conformal factor of the metric , we compare the volume given by the metric 

with the volume form w = dy A dr; Ady A dry"f lyl 2 inherited from C 3
. We obtain 

(ds)
2 

= V ( a'a' + ( b')') + v-1 (Im (2~' -Da')) 
2 

(6.13) 

Recalling the interpretation (5.1) of real sections of T , we have 

( ds )2 = v dx. dx + v-1 
( dT + w. dx) 2

, (6.14) 

where V = 2+I:1/lx - Pal and grad V =curl w. 
Thus Z is indeed the twistor space of Ak-I ALF space with metric (6.14). An 

alternative way to see this is by following the construction of Gibbons and Rychenkova 

[28] as in section 3.6 of [36] tracing the dependence on the choice of complex structure. 
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6.2 Kahler Potential via Generalized Legendre Trans-

form 

6.2.l Moduli Space M1 of then= 1 Monopole (U(l) Theories 

Revisited) 

Specializing the formulas of Chapters 4 and 5 to n = 1, we get that the twistor space 

Z1 is a hypersurface in the total space of Lµ ( k) EB L -µ ( k) 

k 

Pofo = II (77 - Pa(()), (6.15) 
a =l 

where Po E Lµ(k),fo E L-µ(k), and 17 E 0(2). Let us recall that µ was the value 

of the monopole Higgs field at infinity. Obviously, for fixed ( this is a resolution of 

C 2 / Zk, so the corresponding hyperkahler metric is an Ak-l gravitational instanton. 

In fact, it is well known what the metric is: it is the multi-Taub-NUT metric with k 

centers . In the remainder of this section we rederive this result using the Legendre 

transform method of Refs. [5 , 37]. This will serve as a warm-up for the discussion of 

Dk ALF metrics in the next section. 

First we find the real sections of the twistor space Z1 . This amounts to solving 

Eq. (6.15) with p0 , fo, and 17 now regarded as holomorphic sections of the appropriate 

bundles. Recalling that 17 = a(2 + b( - a and Pa(() = aa(2 + 2ba( - aa with ba E R , 

one gets in the patch Vo 

k 

Po Ae-b - a( II ( ( - Ua), 
a =l 

k 

fo Beb+a(II((-va), 
a=l 

with AB= TI (a - aa) · Here 

-(b - ba) + 6.a 
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-(b - b0 ) - Lla 

Since the real structure must interchange p0 and fo, we get 

AA = fI ( b - ba + Lla) . (6.16) 

Thus we have a family of solutions to Eq. (6.15) parametrized by Re a, Im a, b, and 

Arg A. 

Having found the real sections, we compute the Kahler potential. The twistor 

space Z1 is fibered over P 1 with an intermediate projection 

Z1 -+ 0(2) -+ P 1
. (6.17) 

In the above ( and ry are coordinates on the base and the fiber of 0(2), respectively. 

The holomorphic 2-form w E A2T* ® 0(2) is given by 

dp 
w = 2dry /\ -

p 
(6.18) 

in the ( #- oo patch. For ( #- oo we can choose ry( () and x = log z as two coordinates 

on the moduli space M1 holomorphic with respect to the complex structure defined 

by (, and for ( #- 0 the corresponding coordinates are denoted by ry' ( () and x'. The 

coordinates in the two patches are related by 

ry' = ry/(2 ,x' = x- 2µry/(. 

The second equation here follows from p0 and fo being sections of Lµ(k) and L-µ(k). 

That is 

I _ ;--k -µ'fl/( ti _ ;--k µ'fl/(/: Po - '> e Po, r.,,o - <, e r.,,o. (6.19) 

In terms of these coordinates 

w = dry/\ dx = (2dry' /\ dx'. (6.20) 
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Figure 6.1: The contour r Ci enclosing Ua and Va· 

Following [37] we define an auxiliary function J and a contour C by the equation 

1 d( A 1 d( i d( / ( 1 i ) d( 1 d( 
Jc (j f = Jo (j X + co (j X = Jo+ co (j X - 2µ Jco (j+1 'f/ (6.21) 

for any integer j. Here and in what follows the integrals §0 and fco are taken along 

small positively oriented contours around the respective points. This implies in the 

first of the integrals that the contour runs counterclockwise, while in the second one 

it runs clockwise. Substituting an explicit expression for x, we find 

1 d( A 1 d( 1 d( 
Jc (j f = ~ Jro (j log (ry(() - Pa(())+ 2µ Jo ( j +l ry. (6.22) 

Here r Ct is a figure-eight-shaped contour enclosing Ua and Va (see Figure 6.1). 

We define a function G( 'f/, () by 8G / O'f/ = J. According to Ref. [37] the Legendre 

transform of the Kahler potential is given by 

1 1 d( 
F(a, b) = 27fi Jc (iG(ry, (). (6.23) 

Using Eq. (6.22) we find 

µ id( 2 k 1 i d( F(a,b)=-
2

. 
13

ry +L.::-
2

. --n-(ry-Pa)log(ry-Pa)· 
7fZ 0 '> et=l 7fZ f 0 '> 

(6.24) 

The Kahler potential ]{ is the Legendre transform of F: 

]{ (a, a, t , [) = F - b ( t + [) , ~~ = t + t. (6.25) 
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It is a well known fact that the metric corresponding to Eq. (6.24) is the multi­

Taub-NUT metric with k centers [37, 5]. This is in agreement with string theory 

predictions [38] . 

6.2.2 Moduli Space of the Centered n = 2 Monopole (SU(2) 

Gauge Theories) 

Twistor space zg of centered n = 2 monopole 

For n = 2 the moduli space M2 is eight-dimensional and admits a triholomorphic U(l) 

action. We define the centered moduli space M~ to be the hyperkahler quotient of M 2 

with respect to this U(l) (at zero level). The U(l) action on M2 lifts to a C* action 

on Z2. It acts by Pj ----t Apj, ej ----t >-.- 1ej. The corresponding moment map is r;1 , as can 

be easily seen from the expression for w. Thus zg, the twistor space of M~, is the C* 

quotient of the subvariety r;1 = 0 = ih in Z2 . We first investigate one coordinate patch 

of zg. Let us denote 'l/J1 = Pofo, 'l/J2 = P1e1, 'l/J3 = !(Poe1 + P1fo), 'l/J4 = !(Poe1 - P1fo). 

The variables 'I/Ji are invariant with respect to C* action and satisfy 

(6.26) 

These equations define a three-dimensional subvariety U0 in C 6 with coordinates 

((, r;2, 'l/J1, ... , 'l/J4). Geometric invariant theory tells us that zg can be obtained by 

gluing together two copies of U0 over ( # 0, oo. The transition functions can be 

computed from Eq. (5.9): 

(6.27) 
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where/= 2µ-Jfii,/(. 

From this explicit description of zg, one can see that for any ( the fiber of zg is a 

resolution of the Dk singularity. Indeed, combining Eqs. (6.26) we see that the fiber 

of U0 over ( is a hypersurface in C 3 given by 

where Q(172), R(172) are polynomials in 172 defined by 

2Q( 172) 

4yCr};,R( 172) 

IJ(yCr};,-Pa(()) + IJ(-yCr};,- Pa(()), 
a a 

IJ(yCr};,- Pa(()) - IJ(-y1=7h - Pa(()). 

(6.28) 

Furthermore, these formulas imply that if all points p1 , ... , Pk are distinct, the man­

ifold Mg is a smooth complex manifold in any of its complex structures. Since the 

2-form w is smooth as well, we conclude that Mg is a smooth hyperkiihler manifold. 

The smoothness of Mf is also in agreement with string theory predictions. Indeed, 

as explained in Ref. [38], the space Mg is the Coulomb branch of N = 4, D = 3 

SU(2) gauge theory with k fundamental hypermultiplets, with Pa being hypermulti­

plet masses. When Pa are all distinct, the theory has no Higgs branch, and therefore 

the Coulomb branch is smooth everywhere. When some masses become equal, the 

Higgs branch emerges, and the Coulomb branch develops an orbifold singularity at 

the point where it meets the Higgs branch. Thus we expect that when some of Pa 
coincide, or equivalently, when some of Ra are bigger than 1, the manifold Mf has 

orbifold singularities. 

In Ref. [33] the same manifold zg arose as the twistor space of the moduli space 

of a system of ordinary differential equations (so called Nahm equations). This is of 
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course a consequence of a general correspondence between solutions of Bogomolny 

equations and Nahm equations [19, 21]. 

Real holomorphic sections of zg 

The discussion of Section 5.2 implies that a real holomorphic section of the uncentered 

twistor space Z2 is a triplet (S, p, 0, where S is the spectral curve in T given by 

TJ 2 + 'T/1 TJ + 'T/2 = 0' p and e are holomorphic sections of Lµ ( k) Is and L -µ ( k) Is satisfying 

the condition (iii) of Section 5.2 . Then, as explained in Section 5.3, the real sections 

of zg are obtained by setting TJ1 = 0 and mod ding by the C* action p -----+ >..p, e -----+ >..- 1 e. 
In this subsection we find the explicit form of the real holomorphic sections of zg. 

The curve TJ 2 + TJ 2 = 0 is either elliptic or a union of two CPi,s. The former case 

is generic, while the latter occurs at a submanifold of the moduli space. Intuitively 

the latter case corresponds to the situation when the two nonabelian monopoles are 

on top of each other. It suffices to consider the elliptic case. 

By an S0(3) rotation 

( = a(_+ b , 
-b( +a TJ= (-b(+a) 2 ' 

la l2 + lbl 2 
= 1, 

we can always bring the elliptic curve TJ 2 = -TJ2 ( () to the form 

(6.29) 

(6.30) 

It follows that the discriminant 6. > 0, and therefore the lattice defined by the curve 

S is rectangular. We denote this lattice 20 and its real and imaginary periods by 2w 

and 2w' , respectively. 

We parametrized S by five real parameters: the Euler angles of the S0(3) rotation 

and a pair of real numbers k1 and k2 . We shall see in a moment that the condition 

(iii) imposes one real constraint on them, so we shall obtain a four-parameter family 

of real sections, as required. 

To write explicitly a section of Lµ( k) Is, we shall use the standard "flat" parameter 
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on the elliptic curve u defined modulo 20, in terms of which ft = k1 P'( u ), ( = P( u) + 

k2 • Here P( u) is the Weierstrass elliptic function. In terms of u the real structure 

acts by u -t -u+w +w'. 

A section of L'-L ( k) Is can be thought of as a pair of functions on S f 1 , h such that 

f 1 is holomorphic everywhere except ( = oo, h is holomorphic everywhere except 

( = 0, and for(-# O,oo h(() = (-kexp(-µry/()f1((). The point ( = oo corresponds 

to two points ucx,, -u00 on S defined by P(u00 ) + k2 = a/b. Furthermore, condition 

(iii) implies that the divisor of Ji is Q+. Let us recall that Q+ U Q_ = Ua Q°', where 

Q°' =Sn P°', a= 1, ... , k. Thus Q°' consists of solutions of a system of two equations 

17 = Pa((), 77 2 = -772 ( (). Obviously, this defines four points on the elliptic curve S. 

Because of real structure, these four points split into two pairs whose members are 

interchanged by T . Q+ includes one point from each pair (for all a), Q_ includes the 

rest. 1 Let us denote the "flat" coordinates of points in Q+ by u°', u~, a= 1, ... , k, and 

those in Q_ by Va, v~, a= 1, .. . , k. By definition, v°' = -u°' + w + w'(mod 20), v~ = 

-u~ + w + w'(mod 20). We fix the mod20 ambiguity by requiring that u°', u~, Va, v~ 

be in the fundamental rectangle of 20. In this notation a section of L'-'( k) Is is given 

by 

Here ( w ( u) and O"( u) are Weierstrass quasielliptic functions (we denote Weierstrass (­

function by (w(u) to avoid confusion with the affine coordinate (on the P 1 of complex 

structures), and C is a constant. Similarly, a section of L-µ(k)ls with the divisor Q_ 

is represented by a pair of functions 91, 92 related by 92 ( () = (-k exp(µry / ()91 ( (). 

Explicitly 91 is given by 

where D is another constant. In general f 1 and 91 are quasiperiodic with periods 2w 

10f course, there is a 4m_fold ambiguity involved in the splitting Q = Q+ LJ Q_. It can be fixed, 
in principle, by the comparison with the known asymptotic behavior of the metric. 
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and 2w'. The condition (iii) is equivalent to asking that f 1 and 91 be doubly periodic. 

One can see that the latter can be achieved by adjusting C and D if and only if 

(6 .33) 

Recalling that k1 is real and positive, we conclude that there exist integers m, m', p, p' 

and a real number x E (0, 2w] such that l":Cl'(u CI' + u~) = -x + 2mw + 2m'w', l:Cl' (v CI' + 
v~) = x + 2pw + 2p'w'. Then Eqs. (6.33) together with the condition (iv) imply 

2µk1 = x . 

Then for j 1 and 91 to be doubly periodic, one has to set 

C = 2m(w(w) + 2m'(w(w'), D = 2p(w(w) + 2p'(w(w'). 

Let us notice for future use that 

log f 1 ( u + w) - log f i ( u) = - 27ri m', 

log f 1 ( u + w') - log f 1 ( u) = 27rim, 

log91 (u + w) - log91 (u) = -27rip', 

log91 (u + w') - log91 (u) = 27rip. 

(6.34) 

(6.35) 

Eq. (6.34) is a transcendental equation on ki, k2 , and the S0(3) rotation required 

to bring S to the standard form Eq. (6.30). It reduces the number of real parameters 

in the equation of the curve from 5 to 4. Thus we have a four-parameter family of 

real sections of zg. 
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The Kahler potential of the centered n = 2 moduli space 

Having found a four-parameter family of real holomorphic sections of zg, we now 

would like to compute the corresponding hyperkiihler metric. Since zg has an inter­

mediate holomorphic projection on 0(4), we can use the method of Ref. [37] to write 

down the Legendre transform of the Kahler potential. The existence of the projection 

is equivalent to saying that ry 2 is a holomorphic coordinate on zg. The holomorphic 

2-form w in the patch ( =/:- oo can be written as 

"'"""' 1 Ji w = dry2 /\ d D - log - dry2 /\ dx. 
branches 'fl 91 

Here f 1 and T/ = ~are regarded as double-valued functions of ( E P 1 
\ { oo} (i.e., 

( =/:- oo ), and the sum is over the two branches of the cover S---+ P 1
. Similarly, in the 

patch ( =/:- 0 we can write 

I d I d I w = T/2 /\ x. 

On the overlap we have the relations 

I (-2 w = w, (6.36) 

Following Ref. [37], we would like to find a (multi-valued) function }(ry, () and a 

contour C on the double cover S ---+ P 1 such that 

1 d( ' ( 1 d( 1 d( ') Ir (j J(ry, () = L Jo (j-2 x + 100 (j x 
C branches 

for any integer j. Here the contours of integration on the RHS are small positively 

oriented loops around ( = 0 and ( = oo. To find f we substitute the explicit 

expressions for x and x' and rewrite the integral on the RHS as an integral in the 

u-plane. Then the RHS becomes 

(6.37) 
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U
I 

. 0 

. uo A' 
a 

C·u~ 
< 

. u' 
00 

Figure 6.2: Integration contours in Eq. (6.38). Only one of the contours Aa and one 
of the contours A~ are shown. 

where the contour in the first integral consists of four small positively oriented loops 

around four preimages of the points ( = 0 and ( = oo in the fundamental rectangle 

of the lattice 2D. We denote these points u0 , u~ = 2(w + w') - u0 , u00 , u~ = 2(w + 
w') - u00 • Besides these four points the only other branch points of log f 1 ( u) / g1 ( u) 

in the fundamental rectangle are Ua, u~, Va, v~, a = 1, ... , k. As for (( u), it is elliptic. 

Then we can rewrite Eq. (6.37) as 

where the contour in the first integral runs along the boundary of the fundamental 

rectangle, while Aa and A~ enclose the pairs of points ua, Va and u~, v~, respectively 

(see Figure 6.2). Using Eqs. (6.35) the integral over the boundary can be simplified 

to 

i du . 
-27ri - ((ut1+2, 

(m-p,m'-p') k1 

where the contour ( m - p, m' - p') winds m - p times around the real cycle and m' - p' 
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. u' 0 

. uo B' 
Ct 

Figure 6.3: The contours Ba and B~. 

. u' 
00 

times around the imaginary cycle. Recalling the explicit form of f 1 ( u) and g1 , we can 

rewrite the integral over Aa +A~ as 

(6.39) 

where the contours Ba and B~ are figure-eight-shaped contours shown in Figure 6.3 . 

On the other hand, it can be easily seen that 

Since neither u00 nor u~ are enclosed by the contour Ba + B~ , the integral Eq. (6.39) 

is equal to 

i du . 
-k ((utJ+2 log(77(u) - Pa (((u))) . 

B a +B'o Al 
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Collecting all of this together, we get 

2 . i d( ;--j+2 - 7fZ - ., 
(m - p,m'-p') TJ 

+ L J d( (-j+2 log(ry - Pa(())+ 4µ i ;-~~l. 
a Jca+C~ TJ O ':, 

(6.40) 

Here all the functions are regarded as functions on the double cover of the ( -plane, 

and the contours Ca, C~ are the images of Ba, B~ under the map u 1-t (. We now 

define a function G(ry, ()by 8G/8ry = - 2ry(- 2 j. According to Ref. [37] the Legendre 

transform of the Kahler potential is given by 

Hence we can read off F : 

F _ _ 1_ 1 d(4µry2 + 1 d(2ry 
27fi Jo (3 l{m-p ,m'-p') ( 2 

(6.41) 

1 i d( - 2::-
2 

. n:2(ry - Pa(()) log(ry - Pa(()). 
a 7fZ Ca+C~ '> 

F may be regarded as a funct ion of the coefficients of ry 2 ( () = z + v( + w(2 - v(3 + z(4
. 

Since w is real, F depends on 5 real parameters . These parameters are subject to 

one transcendental constraint expressed by Eq. (6 .34). (Alternatively one can rewrite 

this constraint as ~~ = 0.) Thus we may think of w as an implicit function of z and 

v. The Kahler potential I<(z,z,u,u) is the Legendre transform of F: 

I<( z,z, u,u) = F(z,z,v,v,w) - uv- uv, 
8F 8F 
ov = u, ov = u. 

Eq. (6.41) agrees with a conjecture by Chalmers [39]. 

We already saw in Section 6.2.2 that M~ is a resolution of Dk singularity. Now 

we can check that it is ALF. To this end we take the limit k1 --+ +oo. Eq. (6.34) 

implies that in this limit w --+ oo, while w' stays finite . Thus the curve S degenerates: 

ry2 (() --+ -(P(()) 2
, where P(() is a real section of T. It is easy to see that in this 
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limit F reduces to the Taub-NUT form (see Section 6.2.1): 

F "-' _1 1 d( (- 4µP2 f{p log p) 
27ri Jo (3 + (2 ' 

(6.42) 

where ]( is an integer depending on the limiting behavior of Ucxi u~, Vo:, v~. Therefore, 

asymptotically the metric on M~ has the Taub-NUT form. With some more work it 

should be possible to compute the integer I< as well. 

Note also that if we set µ = 0, then the metric becomes ALE. Kronheimer 

proved [3] that the Dk ALE metric is essentially unique. Thus we have obtained 

the Legendre transform of the Kahler potential for the Dk metrics of Ref. [2]. It 

would be interesting to obtain a similar representation for the Ek ALE metrics. 
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Chapter 7 Conclusions 

We have studied N = 4 supersymmetric U(n) and SU(n) gauge theories in three di­

mensions with matter in the fundamental representation. Realizing some of these 

gauge theories as theories on D2-branes of type IIA string theory, we saw their 

Coulomb branches to be gravitational instantons. On the other hand realization 

of these theories in type IIB string theory uncovered the relation with monopoles 

and Nahm equations. By identifying their Coulomb branches with moduli spaces of 

monopoles, we have found the twistor spaces of the Coulomb branches. Considering 

the moduli space of solutions of Nahm equations provided an independent way of 

constructing these twistor spaces. We verified in the known cases that the resulting 

distinguished complex structures of the Coulomb branches coincide with those of four­

dimensional N = 2 theories. This provided a nontrivial check of the correspondences 

used. 

From the twistor data one can extract the Kahler potentials. For the cases of 

U(l) and SU(2) gauge theories, we worked out the Kahler potentials on the Coulomb 

branches. These two spaces provide examples of Ak and Dk gravitational instantons 

as predicted by the type IIA string theory picture. This describes all infinite series 

of gravitational instantons. The existence of exceptional (E6 , E7 and E8 ) ALF spaces 

is still an open question. It remains to be seen whether the methods presented here 

can shed some light on whether they exist. Note, that if E-type ALF spaces do exist, 

then M theory compactification on them would give new nonperturbative objects of 

type IIA string theory for which there is no other evidence. 

We would like to note that using the same method one can obtain the Kahler po­

tential for all Coulomb branches of U( n) and SU( n) gauge theories with fundamental 

matter. Our results are easily generalized to the gauge group being a product of 

SU groups with matter multiplets in bifundamental representation as well as to the 

cases of SO and Sp gauge groups. The case of an SU gauge theory with one adjoint 
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multiplet should also be included in the above list. 

N = 4 three-dimensional gauge theories can be thought of as limits of N = 2 

four-dimensional theories on R 3 x 5 1 with the radius of the 5 1 sent to zero. We 

have found the three-dimensional theories to be related to the integrable system of 

Nahm equations. These are differential equations in one real parameter. Analogous 

methods allow one to relate theories on R 3 x 5 1 to systems of integrable equations on 

a torus, which are generalizations of the Hitchin system. This illuminates the relation 

between the Seiberg-Witten solutions of gauge theories and integrable systems. 

Applying the methods described here one can find the moduli spaces of the four­

dimensional gauge theories, which will give examples of hyperkahler manifolds with 

two compact directions. 
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Chapter 8 Glossary 

ADHM-Nahm construction A construction of subbundle of a trivial bundle such 

that the induced connection has self-dual curvature and is valued in an appro­

priate group. See [40] and [41]. 

ADE classification Simply-laced semisimple Lie algebras, Kleinian singularities, 

finite subgroups of SU(2) as well as self-dual gravitational instantons fall into 

Ak, Dk and £ 6 , E7 , E8 types. See [1] for the former three of these and [2] for 

the latter. 

Algebraic curve A Riemann surface, a complex manifold of one complex dimension. 

ALE space A four-dimensional Riemannian manifold with the self-dual curvature 

which is asymptotically R 4 /f, with r E SU(2). 

ALF space A four-dimensional Riemannian manifold with the self-dual curvature 

which is asymptotically R 3 x 5 1 /f, with r E SU(2). 

Atiyah-Hitchin space A moduli space of SU(2) monopoles of charge two with the 

fixed center of mass. See [7]. 

BPS monopole A pair of a gauge connection A and an adjoint scalar Higgs field <I> 

in three dimensions satisfying the Bogomolny equation 

where F is the field strength of A, D is a covariant differential, and * denotes 

the Hodge dual. 

Bogomolny equation see BPS monopole. 
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Centered moduli space of monopoles A moduli space of monopoles with the 

fixed center of mass and common U( l) phase. Defined as a hyperkahler quo­

tient of the total monopole moduli space with respect to the action of the U(l) 

changing the common phase. 

Chern class A topological invariant of a bundle. T he total Chern class c( F) is 

defined by 
·p 

c( F) = det ( 1 + ;Jr) , 
where F is the curvature of the bundle. 

Coadjoint orbit There is a natural adjoint action of a group of its algebra. It 

induces an action of the group on the space dual to the algebra. This action is 

called coadjoint . See, e.g., [42]. 

Complex structure An automorphism of the tangent bundle which is linear on the 

fibers and squares to -1 . 

Coulomb branch A branch of the space of vacua with broken gauge symmetry. 

D and F flatness conditions See [43]. 

Dirac monopole A U(l) valued solut ion of the Bogomolny equation defined every­

where except for one point (the center of the Dirac monopole). 

D-pbrane A manifold of space-like dimension pin the target space of a string theory 

which serves as a Dirichlet boundary condition for the world-sheet embedding. 

Dynkin diagram A diagram encoding the Cartan matrix of a simple Lie algebra. 

See, e.g., [l]. 

Dk-type singularity A singularity of the form x 2 + y 2 z + zk- 1. 

Eguchi-Hanson space An nontrivial example of an ALE gravitational instanton. 

This is a space with the metric 

ds2 = v-1 (de +w. dx) 2 + Vdx2
, 
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where V = 1/llxll and gradV = curlw. See [44]. 

Gravitational Instanton A four-dimensional Riemannian manifold with the Ricci 

tensor proportional to the metric. 

Higgs branch A branch of the moduli space of vacua on which scalar fields of a 

hypermultiplet acquire vevs. 

Higgs field A scalar field in some (usually the adjoint) representation of the gauge 

group. 

Holonomy To every closed path on a Riemannian manifold we can assign a linear 

map of the tangent space at its original point which takes a vector to its parallel 

transport along the path. This is the holonomy corresponding to the path. A 

set of all holonomies has a natural group structure. 

Hyperkahler manifold A manifold with three complex structures I, J and K re­

lated by I J = K. 

Hyperkahler quotient A modification of symplectic quotient. See Appendix A. 

Hypermultiplet A supermultiplet containing matter fields. See, e.g., [45]. 

Kahler form For a manifold with a metric g and a complex structure I, the kahler 

form is w = g(I·, · ). 

Kahler manifold A Riemannian manifold with a covariantly constant complex struc­

ture. 

Kahler potential A function I< on a Kahler manifold such that the Kahler form 

w = ddK. 

K3 manifold A compact four-dimensional hyperkahler manifold which is not a T 4
. 

Level of a quotient The value of the moment map on the subspace to be divided 

by the symmetry group. See Appendix A. 
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Line bundle A linear bundle with one-dimensional fibers. 

M theory An unknown eleven-dimensional quantum theory which is a supergravity 

in the low energy limit and type IIA string theory when compactified on a circle. 

See, e.g. , [46], [47]. 

Maximal torus A maximal abelian subgroup of a group. 

Moduli space A space of solutions of some equations or of some theory. It often 

automatically carries some extra structure. 

Moment map For a group G (with an algebra g) of symmetries of a symplectic 

manifold M, it is a functionµ: M --+ g* such that 

(µ(y),X) = Hx(y), 

where XE g is a vector field on M, dHx = w(X, ·),and y is a point of M. See 

Appendix A. 

Nahm equations 

and permutations of the indices (1,2,3). See [10]. 

Nahm data Solution of Nahm equation satisfying certain boundary conditions. See, 

e.g., Chapter 4. 

NS5-brane A solitonic brane of string theory carrying a Neveau-Schwarz charge. 

Orientifold plane A subspace of the target space left fixed by the action of the 

target-space part Z2 of the ( -1 )FL . n . Z2 gauged symmetry. Z2 reverses the 

orientation of three of the target space coordinates, and n reverses the parity 

of the world-sheet. 

Quasiperiodic function A function on a complex plane which changes by an ad­

ditive piece when acted on by a particular Z 2 EC. See, e.g., [48]. 
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R-symmetry A symmetry acting on fermions. See [43]. 

Real structure An antiholomorphic involution. See Section 1.2.3. 

Real section A section which is mapped onto itself by the real structure. 

S duality A duality exchanging the strong and weak coupling limits. 

Self-dual connection A connection with the self-dual curvature. 

Shaggy monopole See Section 2.4.2. 

Spectral curve A set in the minitwistor space consisting of lines on which the scat­

tering problem has a bound state. 

Spectral data All data necessary in the minitwistor formulation in order to describe 

a monopole. See Section 5.1. 

Symplectic structure A closed non-degenerate two-form. 

't Hooft-Polyakov monopole An SU(2) valued one monopole solution of the Bo­

gomolny equation. 

Twisted bundle A tensor product of a bundle with some other standard bundle. 

Taub-NUT space A nontrivial example an ALF gravitational instanton. This is a 

space with the metric 

ds 2 = v-1 (de+ w. dx) 2 + Vdx2
, 

where V = 1+1/ ll xll and gradV = curlw. 

Triholomorphic Holomorphic with respect to three complex structures. 

Twistor Space The space of all complex structures as a complex manifold. See 

Section 1.2.3. 
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Type IIA string theory A superstring theory with two supercharges of opposite 

chiralities on the world-sheet. It is nonchiral. See [49]. 

Type IIB string theory A superstring theory with two supercharges of the same 

chirality on the world-sheet. It is chiral. See [49]. 

Vector multiplet A supermultiplet containing a vector field . 

Ward correspondence A correspondence between differential and holomorphic data. 

Wilson loop 
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Appendix A Hyperkahler Quotient 

Here we review the hyperkiihler quotient construction. For a good introduction to 

the subject see [50] and [51]. 

Let us first define symplectic quotient. Having a symplectic manifold ( M, w) (that 

is an even-dimensional manifold with a closed non-degenerate two-form w), for every 

vector field X that preserves the symplectic structure 

.Cxw = 0 (A.l) 

(where .Cx is a Lie derivative along the field X), there is a generating function Hx. 

That is 

w(X, ·) = dHx. 

Then for any continuous group of symmetries G acting on M in such a way that G 

preserves w, there is a function µ on M valued in g* the dual of the algebra g of G. 

Namely for every vector field X E g 

(µ(y),X) = Hx(y) (A.2) 

for every point y E M . This map µ : M ---+ g* is called a moment map. If we 

restrict our attention to the submanifold µ- 1(A) of M (where A E g* is invariant 

with respect to the coadjoint action of G), we find that G is a symmetry of µ- 1 (A) 

and the restriction of the symplectic form w to µ- 1 (A) is G-invariant and degenerate 

(see [50] for the proof) on the orbits of G. Thus µ- 1 (A)/G is a symplectic manifold 

called the symplectic quotient of M with respect to the group G. 

For example, for a mechanical system reduction to the center of mass coordinates 

can be thought of as a symplectic reduction of the total phase space of the system 

with respect to the group of translations. In this case w = L i qi /\Pi (where qi are 
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coordinates and Pi are conjugate momenta),µ = Li Pi and A = 0. 

In the case of a hyperkahler manifold , there are three different symplectic struc­

tures, thus for any group G that respects the hyperkahler structure we have three 

moment maps that can be united in one three-component moment map 

Now a hyperkahler manifold µ- 1 (A)/G is called a hyperkahler quotient, where A E 

g* ® R 3 is G-invariant. A is called the level of the quotient. 
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Appendix B Legendre Transform 

We briefly outline here the Generalized Legendre Transformation of [5] closely fol­

lowing [37] . Consider a twistor space Z with an intermediate projection p : Z -----+ 

0(2n) -----+ P 1. (The cases we are particularly interested in are n = 1 and n = 2 corre­

sponding to the U(l) and SU(2) theories.) We can consider P 1 to be covered by two 

open charts U and V, one containing ( = 0 and the other ( = oo . The projection p 

defines a coordinate ry E 0(2n) on the fiber. Suppose we can find another coordinate 

on the fiber x such that the two-form w described in Eq.(1.7) is given by 

(B.1) 

(recall that, as explained in Section 1.2.3, the form w has coefficients in 0(2)) where 

the indices 1 and 2 denote the two charts of P 1. We can trivialize the twistor space 

Z considered as a bundle over the P 1 in each chart. Say 

'r/1(() z + v( + w2(2 + ... + W2n-2(2n-2 + (-1r-1v(2n-1 + (-1 rz(2n(B .2) 

Xi(() u +t( +0((2
) (B.3) 

and 

(B.4) 

ry2 is given by ( - 2nry1 . Then (z, u) define the trivialization near ( = 0. Expanding the 

form w in powers of ( and comparing to Eq. 1. 7 we find the Kahler form 

w1 = dz /\ dt + dv /\ du. (B .5) 
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Now if we define a function f and a contour C such that 

(B.6) 

and a function G( ry1 , () such that aG / ary1 = ( 2 - 2
n j, we can construct yet another 

function F of coefficients of ry1 by 

(B.7) 

It is easy to verify that from these definitions it follows that 

(B.8) 

for 2 :::; a :::; 2n - 2 and that 

(B.9) 

So that w1 =dz /\ d (~~) + dv /\du . 

Now performing a Legendre transformation on F with respect to the coordinates 

v and v we obtain the function 

I<(z, z, u, u) = F( z , z, v, v, Wa) - UV - UV. (B.10) 

Then using 

aI< = aF dv = -d (aI<) 
a z a z ' au 

(B.11) 

we find the Kahler form 

(a]{) (a]{) 
W1 = dz /\ d az - d au /\ du (B.12) 
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and see that the function I< is the Kahler potential. As 

fJ2 ]{ 82 ]{ 82 ]{ 82 ]{ 

W1 = 8z8zdz /\dz+ 8Z 8Udz /\du+ 8U 8Zdu /\dz+ 8U 8Udu /\du. (B.13) 
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Appendix C T Duality and NS5-brane 

We would like to establish that an NS5-brane of type IIB string theory becomes a 

Taub-NUT space when T duality is performed in one of the directions orthogonal to 

its world-volume. Let us consider M theory on a space with two periodic coordinates 

(say x 9 and x 10
) forming circles s; and Sh such that s; is fibered over three other 

directions (say x 1
, x2 and x 3

) forming a Taub-NUT space, while the Sh is fibered 

trivially. s; x Sh is a torus and M theory on a torus is known to reproduce type IIB 

string theory with the T-parameter of the torus giving the string coupling constant (see 

[4 7]) . More than that, the S L(2, Z) duality symmetries of type IIB theory corresponds 

to the S L(2, Z) modular transformations of the torus s; x Sh as explained in [4 7]. 

NS5 and D5-branes are interchanged by S duality of type IIB string theory, which 

(i .e., S duality) corresponds to T--+ -1/T element of the SL(2, Z). Now consider the 

s; to be the M theory circle and shrink the sizes of both circles S! and S~ to zero. 

In this case shrinking the size of the S! we obtain type IIA theory compactified on a 

circle Sh . The now hidden s; being fibered nontrivially gives Ramond-Ramond fields 

corresponding to the off-diagonal terms in the eleven-dimensional metric. Via Kaluza­

Klein reduction we find these fields having a source positioned in the ( x 1 , x2
, x 3 ) space 

where the center of the Taub-NUT was. This source is the D6-brane in type IIA string 

theory. Its world-volume is along the other directions one of which is the circle Sh . If 

we shrink S~, type IIB theory T dual (with duality along the x 10 ) description emerges. 

In the T dual picture the D6-brane of type IIA theory turns into a D5-brane of type 

IIB theory. 

S duality interchanges the D5 and NS5-branes on one hand and corresponds to 

interchanging the S! and Sh circles on the other hand. Thus after S duality S~ is the 

circle of M theory, so we have type IIA string theory compactified on a Taub-NUT 

space. Shrinking the circle of the Taub-NUT takes us to the dual type IIB picture in 

which this is an NS5-brane as stated in the beginning of this paragraph. Therefore, we 
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find that T dual of an NS5-brane is a Taub-NUT space (with duality in the direction 

orthogonal to the NS5-brane world volume). 
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Appendix D Dancer Manifold 

The hyperkahler manifolds M 12 and Ms studied by Dancer in [25] and [26] are defined 

as follows. 

Consider four u(2) valued functions T0 , Tj, j = 1, 2, 3 of a real variables E [O, 1] 

such that T0 is analytic on [O, 1], T1 analytic on (0, 1] and 

(D. 1) 

where a1 are Pauli matrices, subject to the Nahm equations 

(D.2) 

modulo the gauge group Go of analytic U(2)-valued gauge transformations which are 

the identity at s = 0, 1. This defines the hyperkahler manifold J\lt 12
. The fact that it 

is 12-dimensional can be easi ly seen from the Dancer description reviewed below. 

If we denote the group of analytic U(2) gauge transformations which are the 

identity at s = 0 by G, then the manifold M 12 has a triholomorphic action of U(2) = 

G/G0 .The manifold Ms is a hyperkahler quotient of M 12 by the U(l) which is the 

center of this U(2) group. 

As described by Dancer in [26] M 12 as a complex manifold is given by a pair 

(B, w) of complex 2 x 2 matrix and a two-vector such that w and Bw are linearly 

independent. An element g of the U(2) group acts by 

w---+ gw. (D.3) 

Let ( be a parameter on the projective line P 1
. Then the twistor space of M 12 is 

described by functions of ( (B0
, w 0

) holomorphic in the neighborhood of ( = 0 and 
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(B1, w 1 ) holomorphic in the neighborhood of ( = oo with 

w1 

(D.4) 

(D.5) 

We can pick new local coordinates 11,12,p1,p2,q1,q2 on M 12, where /1,/2 are 

eigenvalues of B, 

( :: ) = Bw - ,,w, ( :: ) = Bw-,,w 

These have transition functions 

In terms of these coordinates the two-form w E A 2T* ® 0(2) is given by 

where B1 and B2 are 

e
1 

= q1dP2 - p1dq2 
P1 q2 - p2q1 

e
2 

= p2dq1 - q2dP1 
P1 q2 - p2q1 

(D.6) 

(D.7) 

(D.8) 

(D.9) 

(D.10) 

(D.11) 

(D.12) 

Now since M 8 is a hyperkahler quotient of M 12 , the twistor space of M 8 is 

a symplectic quotient of the twistor space of M 12 by the action of the complexified 

group U(l)c = C *. An element>. EC* acts by Pi---+ Api, qi---+ >.qi . The corresponding 
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moment map is /l + / 2 . So we put Tr B = /l + 12 = 0 (picking the zero level of 

the moment map) and p1q2 - p2q1 = 11 (fixing the C* gauge). Then in terms of 

/ = 11,p2,qi,q2, the two-form won the twistor space of Ms is the restriction of w12 

and is given by 
P1 P1P2 

w = 2d1 A log - + d(q1p2) A dlog - . 
q2 qiq2 

(D .13) 

Let us introduce 772 = 1 2 = - det B, 771 = q1p2 , x 2 = ~ log Pl, and X1 =log E!.121. 
v T72 q2 q1 q2 

as local coordinates on the twistor space of Ms. Then the transition functions are 

given by 

1 
(D.14) 'T/2 (4 'T/2 

1 
(D .15) T/1 (2 'T/1 

X2 ( 2x2 + 4( (D.16) 

X1 X1· (D .17) 

Now we are in a position to use the generalized Legendre transform method of 

[52] (also see [37]). The auxiliary functions fi, f2 are given by 

(D.18) 

(D .19) 

where the contours r 1, r 2 surround the two pairs of roots of p1 and q2 (these are 

solutions of 2~ + 771 = 0), and f 1 also surrounding the roots of p2 and q1 (these are 

solutions of 771 = 0). Recalling the definitions of x1 , x 2 and the relations 

2y'ri2 + 'T/1 

'T/1 

(D.20) 

(D.21) 
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we rewrite eqs . (D.18), (D.19) as 

(Jc+ fr) ~~ (log(2772 + 771) +log 771) (D.22) 

i d( - 1- log(2J77;" + 771) - 4 1 d( -
c (J-2 fo2 Jo (J-1 

(D.23) 

27fik 1 d( _1_ 
heal period (J- 2 yfii2 

with the figure-eight shaped contour C surrounding pairs of conjugate roots of 2772 +171 

and figure-eight shaped contour r surrounding the two roots of 771. 

We can think of 772 as defining an elliptic curve S : t2 = 772( () covering the P 1 

parametrized by (twice. Thanks to eqs. (D.9),(D.10) functions p1 ,p2 define a section 

of L-2 ls and functions q2, q1 define a section of L 2 ls- This picture is very close to 

the one in [33] and leads us to the same conclusion that log El. picks up 47ri when we 
q2 

move around the imaginary cycle of S. This gives k = 2 in the above formula. 

Now we define function G(771,772,() such that 8G/fJ17j = fj/(deg 771-2. And for the 

Legendre transform of the Kahler potential F = 2~i f Zf G( 771, 772, () we find 

F = 1 i d( 
2

7fi c (2 (2J77;" + 771 )(log (2J77;" + 771) - 1) -

1 j 4772 1 1 d( 
27fi Jo (3d( + 27fi Jr (2771 (log 771 - 1) - (D.24) 

i d( 
2 2V7h· 

realperiod ( 
(D.25) 
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