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Abstract 

Color-singlet production of quarkonia has failed to correctly predict the cross section 

of 'I/J's produced at the Tevatron. Gluon fragmentation has been identified the dom­

inant source of high energy prompt quarkonia at hadron colliders. Fragmentation 

approximations break down, however , when a quarkonium's transverse momentum 

becomes comparable to its mass. We review the NRQCD formalism, which is an 

effective field that improves upon the color-singlet calculations. As an example of 

color-singlet calculation, we calculate in closed form the complete 0( a;) color-singlet 

differential cross section for e+ e- ----+ 1* ----+ 'l/JQ + X scattering. The cross section re­

duces at high energies to a heavy quark fragmentation form . We find that the energy 

scale at which the approximate fragmentation result becomes reliable exceeds the 'l/JQ 

mass by more than an order of magnitude. We also discuss the color-singlet model's 

predictions for direct J /'If; angular and energy distributions at CLEO. For production 

at a pp collider, we identify a large class of color-octet diagrams that mediate quarko­

nia production at all energies and reduce to the dominant set of gluon fragmentation 

graphs in the high Pl.. limit. They contribute to quarkonia differential cross sections at 

the same order as color-singlet diagrams and bring theoretical predictions for Y and 'If; 

production at the Tevatron into agreement with experimental measurements. Using 

recent CDF data, we extract numerical values for bottomonia and charmonia color­

octet matrix elements which are consistent with NRQCD scaling rules. We calculated 

the polarization of 'If; ' due to pp ----+ QQ[25+1 L~8)]X ----+ 'lj;(>.) X color-octet quarkonia 

production at order a; which could be used as a test of NRQCD. We find that at 

low transverse momenta the 'If;' is unpolarized due to the contributions proportional 

to the L = S = 0 and L = S = 1 color-octet matrix elements. As Pl.. increases, 

the 'If;' mesons become 100% polarized, as predicted by fragmentation calculations. 

Polarization due to lowest order color-singlet production is also considered, which 

qualitatively has a similar shape to the color-octet production. 
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Chapter 1 Introduction 

It has been more than 20 years since the discovery of the J / 'ljJ [1 , 2]. Since that 

initial discovery, many new and exciting developments have happened in theoretical 

and experimental particle physics. The study of quarkonia, the bound state of a 

heavy quark and antiquark, has yielded valuable insight into the nature of the strong 

interaction. Even though it has been quite a few years, there are many aspects in 

charm physics that have yet to be fully tested. Similarly, it has been over 20 years 

since there was conclusive evidence for the Y [3] and even more of the bottom sector 

is unexplored. Even though many aspects of heavy flavor physics have yet to be 

accurately tested or measured, it is very rare that order of magnitude discrepancies 

are uncovered. With the addition of the silicon vertex detector at the CDF detector 

at Fermilab's Tevatron, such a discrepancy occurred, the so-called "'l/J' anomaly." 

The 'l/J' anomaly was a gross underestimate of the number of prompt charmonia 

produced in pp collisions. The silicon vertex detector allowed the separation of 'ljJ 's 

produced from B decays from those produced at the primary vertex. The calcula­

tions that underestimated the production rate were developed shortly after the initial 

discovery of the J /'l/J, and had been fairly, but not completely, successful in describing 

quarkonia production and decay for over two decades. Thus the anomaly was very 

surpnsmg. 

In the standard picture of quarkonia production, called the Color-Singlet Model 

(CSM), the heavy quark and antiquark are produced in a hard collision with the same 

quantum numbers of the final physical state. The model is very predictive since the 

process of producing the heavy quark-antiquark pair can be calculated in perturbation 

theory. The bound state is described by the nonrelativistic wavefunction, which can 

be calculated in a potential model or extracted from data. Since everything can be 

calculated this model is very powerful. 

But what if the heavy quark-antiquark pair is not produced with the same quan-
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tum numbers of the final state in the hard collision? In hadron collisions there are 

lots of soft gluons, which could change the quantum numbers of the initial quark­

antiquark pair. Since this is a nonperturbative effect, due to the assumption of soft 

gluons, this will not be described in the CSM as described above. An effective field 

theory which can accommodate such soft gluon effects has been proposed. This ef­

fective field theory is called Nonrelativistic Quantum Chromodynamics (NRQCD) 

[4]. 

Since both the quark and antiquark in quarkonia have a mass much larger than 

the QCD scale, MQ ~ AqcD, the relative velocity v between the two is small. Thus 

the physics is inherently nonrelativistic. This small velocity creates a hierarchy of 

energy scales, the most important being the mass MQ, momentum MQv and kinetic 

energy MQv 2 of the heavy quark and antiquark. As part of the formalism, NRQCD 

keeps track of this hierarchy, separating effects of different energy scales . Being an 

effective field theory, NRQCD is made equivalent to full QCD by the addition of 

nonrenormalizable terms in the Lagrangian. In this thesis we hope to show how 

NRQCD can be used to calculate quarkonia production and to show that it can help 

improve predictions of quarkonia production at the Tevatron. The thesis is organized 

as follows. 

In Chapter 2 we begin with the formalism relevant to NRQCD. After showing that 

Heavy Quark Effective Theory cannot accommodate the relevant physics of quarkonia, 

we review the NRQCD Lagrangian. Since we have an effective field theory, which is 

nonrenormalizable, there are an infinite number of terms which could be included 

in any calculation. Counting rules, which enable this series to be terminated, are 

discussed. The production and decay of quarkonia is included in the formalism by 

the addition of four-fermion operators, which is introduced next. As an example 

of how to calculate in this formalism, an explicit calculation of 'l/JQ production at a 

hadron collider at lowest order is done. Finally, fragmentation, which is relevant to 

quarkonia production at large energies independent of NRQCD, is reviewed. 

In Chapter 3 color-singlet production is discussed. Color-singlet production is 

often the most important effect in many processes. As an example of this, the direct 
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J / 'ljJ production at an e+ e- collider is calculated, and some of the consequences are 

discussed. 

In Chapter 4 we are concerned with color-octet production at a pp collider. It 

turns out that, for kinematic reasons, the color-octet channels dominate over the 

color-singlet channels at such an experiment. This is a potential solution for the 'lj; ' 

anomaly. We begin this chapter by calculating the relevant cross sections to order 

a;. Since these cross sections reduce in the large energy limit to the fragmentation 

calculation, we can use this as a cross check on our results. In the fragmentation 

formalism, it is possible to include leading log QCD corrections by using the Altarelli­

Parisi equation. It is possible to include these effects into the color-octet calculation 

by interpolating between the two extremes. This is done for the cross sections in this 

chapter. Then we compare the results to data. Finally, we discuss tests of NRQCD. 

Conclusions are discussed in Chapter 5. There are a few appendices. In Ap­

pendix A, we present the squared amplitudes for unpolarized, color-octet quarkonia 

production at order a; and a;. In Appendix B, we present functions which are 

relevant to the color-singlet e+ e- cross section. Appendix C discusses the angular 

distributions in electron-positron collisions. Finally in Appendix D, we present func­

tions which are relevant to the polarized, color-octet production at order a;. 
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Chapter 2 Formalism 

Heavy Quark Effective Theory (HQET) is very successful in describing physics of 

hadrons containing a single heavy quark [5, 6] . The physics of quarkonia, however, 

cannot be described by HQET. A system containing a heavy quark and antiquark 

form a Coulomb bound state as the mass of the heavy quark, MQ goes to infinity 

MQ -----+ oo. If there is no kinetic energy to stabilize the energy, as is the case in 

HQET, the quarks fall deeper into the potential well as the mass of the quarks tend 

toward infinity and divergences arise . Another way of seeing this is by looking at 

the behavior of the Feynman diagram [7] pictured in Fig. 2.1. Evaluating the box 

Figure 2.1: QQ scattering at one loop. The resulting cross section is proportional to 
MQ/ lq1 = 1/lvl, where if and v are the three-momentum and velocity of the heavy 
quarks. 

diagram in full QCD yields terms of order MQ/ 1'11 = 1/lvl, where if and v are the 

three-momentum and velocity of the heavy quarks. The HQET Lagrangian is 

(2.1) 

where Q annihilates a heavy quark. In this Lagrangian, the kinetic energy of the 

heavy quark is higher order in the 1/MQ expansion. In HQET the box diagram is of 

the form 

J d4 1 1 
q qO + if_ -qO + iE. (2.2) 

The q0 integral has the pinch singularity shown in Fig. 2.2 and diverges as E -----+ 0. If 
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Figure 2.2: Poles in the q0 plane for loop diagram in HQET. The poles result in a 
pinch singularity as E -> 0. 

we add the kinetic energy to the Lagrangian in Eq. (2.1) 

(2.3) 

the form of the loop integral becomes 

(2.4) 

Now the poles are separated (Fig. 2.3) and the integral can be calculated giving the 

correct form of Mq / q. Thus, the physics of quarkonia must treat the two operators in 

Eq. (2.3) as the same order, even though one is suppressed by l/Mq. A new effective 

. ----- • 

Figure 2.3: Poles in the q0 plane for loop diagram in NRQCD. The addition of the 
kinetic energy has separated the poles, resulting in a finite integral as E -> 0. 
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field theory must be introduced in order to accommodate this fact. 

2.1 Nonrelativistic Quantum Chromodynamics 

Quarkonia bound states are qualitatively different from most other hadrons since they 

are inherently nonrelativistic. The physics of quarkonia consequently involves several 

energy scales which are separated by the small velocity v of the heavy constituents 

inside QQ bound states. The most important scales are set by the mass MQ, mo­

mentum MQv, and kinetic energy MQv 2 of the heavy quark and antiquark. In order 

to keep track of this scale hierarchy, an effective field theory called Nonrelativistic 

Quantum Chromodynamics (NRQCD) has been established [4] . This effective theory 

for QQ bound states shares several similarities with the HQET which describes the 

low energy QCD structure of heavy-light Qq mesons. For example, NRQCD is based 

upon a double power series expansion in the strong interaction fine structure constant 

as = g; / 47r and the velocity parameter v ,..._, 1/ log MQ which is similar to the HQET's 

double expansion in as and 1 / MQ. Both theories also incorporate approximate spin 

symmetry relations which constrain various multiplet structures and transition rates. 

But most importantly, NRQCD systematizes one's understanding of charmonia and 

bottomonia just as the HQET methodically organizes the physics of D and B mesons . 

Before the development of NRQCD, quarkonia were generally treated as nonrel­

ativistic bound states of a heavy quark and antiquark in a static gluon field that 

sets up an instantaneous confining potential [8]. Although this picture has enjoyed 

a remarkable degree of phenomenological success, it fails to take into account gluons 

inside a quarkonium with wavelengths much greater than the bound state's charac­

teristic size. The presence of such low energy gluons implies that the heavy quark 

and antiquark cannot always be regarded as residing in a color-singlet configuration. 

This shortcoming of the potential model approach is rectified in NRQCD. Dynam­

ical gluons enter into Fock state decompositions of physical quarkonium states. For 

example, wavefunctions for S-wave orthoquarkonia schematically appear in Coulomb 

gauge as 
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17/iQ) = O(l)IQQ[3SP)D + O(v)IQQ[3Pj8)]g) (2.5) 

The spin, orbital and total angular momentum quantum numbers of the QQ pairs in 

each Fock component are indicated within the square brackets in spectroscopic nota­

tion, while the pairs' color assignments are specified by singlet or octet superscripts. 

The order in the velocity expansion at which each of these Fock states participates in 

1/iQ annihilation or creation processes is governed by simple NRQCD counting rules 

[9] . For instance, suppose a heavy quark and antiquark are produced almost on­

shell with nearly parallel 3-momenta in some high energy reaction. The low energy 

hadronization of this pair into a physical 1/iQ bound state takes place at 0( v3
) if it 

has the same angular momentum and color quantum numbers as those displayed in 

the first Fock component of Eq. (2.5) . The long distance evolution of all other QQ 

pairs generated at short distance scales into 1/iQ mesons occurs at higher orders in the 

velocity expansion. 

If the relative importance of various quarkonia production channels depended 

solely upon the order in v at which pairs hadronize into physical bound states, those 

modes which proceed through the leading Fock components in quarkonia wavefunc­

tion decompositions would generally be dominant. This assumption coincides with 

the basic tenet of the so-called color-singlet model (CSM) [10, 11, 12, 13 , 14, 15, 16] . 

Quarkonium production is presumed in this model to be mediated by parton reactions 

that generate colorless heavy quark-antiquark pairs with the same quantum numbers 

as the mesons into which they nonperturbatively evolve. Transverse momentum dis­

tributions calculated within this picture badly underestimate experimental observa­

tions for pi_ ~ 2MQ. The breakdown of the color-singlet model stems from its neglect 

of all high energy processes that create QQ pairs with quantum numbers different 

from those of the final state meson. In particular, it overlooks short distance con­

tributions to quarkonia cross sections from intermediate color-octet states which can 

be orders of magnitude larger than those from color-singlet pairs . Even if the long 

distance hadronization of the former is suppressed by several powers of v compared 
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to the latter, the color-octet components of quarkonia distributions can dominate 

overall. 

As a simple example of the importance of higher Fock state components, consider 

the P-wave Fock state expansion 

(2.6) 

Contributions to XQJ formation which involve the first color-singlet Fock component 

are proportional to the squared derivative of the P-wave bound state's wavefunction at 

the origin. This quantity counts as 0( v 5 ) in the NRQCD velocity expansion. On the 

other hand, short distance creation of the S-wave color-octet QQ pair in the second 

Fock state of Eq. (2.6) takes place at 0( v3
). The subsequent long distance evolution 

of the QQ[3 5~8)] pair into a colorless XQJ hadron via the emission or absorption of a 

soft gluon costs an additional power of v in the amplitude and v2 in the rate. So XQJ 

production proceeds at 0( v 5 ) in both the color-singlet and color-octet mechanisms 

[17]. 

It is useful to draw a picture which clarifies the difference between these two 

quarkonium production mechanisms. In Fig. 2.4, we illustrate a typical color-singlet 

Feynman graph that creates a XQJ. The 0( a~) hard scattering forms a colorless 

QQ[3 pj1l] pair at a short distance scale. The heavy quark and antiquark fly out from 

the initial collision point in nearly parallel directions and almost on mass shell. After 

exchanging many soft gluons, the color-singlet QQ pair eventually hadronizes at a 

long distance into a XQJ bound state. In Fig. 2.5, the 0( a~) high energy collision 

creates a QQ pair in a color-octet configuration. Far away from the collision point, 

the QQ[3S~8)] pair emits a long wavelength gluon which bleeds off its color but carries 

away virtually no energy or momentum. The heavy pair thus transforms into a 

colorless XQJ quarkonium state. 
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XQJ 

Figure 2.4: Typical Feynman diagram which contributes to XQJ production at 0( a~) 
through the color-singlet mechanism. The short-distance scattering collision creates 
a QQ pair in a 3 pj1) configuration. The QQ pair hadronizes at long distances into a 
XQJ bound state. 

2 .1.1 Lagrangian 

To obtain the NRQCD Lagrangian we begin with full QCD and introduce an ul­

traviolet cutoff A rv MQ. Effects which are removed by introduction of this cutoff 

are re-introduced as local interactions in the Lagrangian. Next a Foldy-Wouthuysen 

transformation [18, 19] is used to decouple the heavy-quark and antiquark degrees of 

freedom. This allows the Dirac spinor fields to be replace by two Pauli spinors for 

the heavy quark and antiquark. The resulting Lagrangian is the NRQCD Lagrangian 

[20, 4] 

(2.7) 

The light quarks and gluons are described by 

(2.8) 
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XQJ 

Figure 2.5: Typical Feynman diagram which contributes to XQJ production at 0( a;) 
through the color-octet mechanism. The short-distance scattering collision creates a 
QQ pair in a 3 Si8

) configuration. The long wavelength gluon represents the hadroniza­
tion process by which color is removed from the color-octet state. Essentially no en­
ergy nor momentum is transferred to the QQ pair during the hadronization into the 
final state XQJ· 

where Fµv is the gluon field strength tensor, and D is the usual covariant derivative. 

The sum in Eq. (2.8) is over the n1 light quarks. The heavy quarks are described by 

(2.9) 

where 'ljJ is the Pauli spinor that annihilates a heavy quark and X is the Pauli spinor 

that creates a heavy antiquark. The relativistic corrections are included in the term 

8£: 

8£ = 8~3 ['!/J t(152)2'!/J - x\z52)2x] 

+ 
8
:-2 ['!/J\D · gE - gE · D)'l/J + xt(fJ · gE - 9£. D)x] 

+ 8~2 ['!/J t(ifJ x 9£ - 9£ x iD). O-'l/J + xt( iD x 9£ - 9£ x iD). ax] 

+ 2~ ['l/J t(gB · 5-)'l/J - xt(gB · 5-)x] + · · ·. (2 .10) 

Here, Ei = F 0i and Bi = ~Eijk Fjk are the chromo-electric and magnetic fields. The 

operators are renormalized and the coefficients Ci depend upon A such that the depen­

dence on the cutoff is canceled from the Lagrangian. The coefficients are determined 
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Operator Scaling Description 
O'.s v quark-gluon coupling constant 

iP (Mv)3f2 heavy quark field 
Do Mv2 gauge-covariant time derivative 
jj Mv gauge-covariant spatial derivative 

..... 
gE M2v3 chromoelectric field 

..... 
M2v4 chromomagnetic field gB 

g</> Mv2 scalar potential 

gA Mv3 vector potential 

Table 2.1: Velocity scaling rules for various NRQCD operators in the Coulomb gauge. 

by matching scattering amplitudes in NRQCD to the corresponding amplitudes in 

full QCD, and are Ci = 1 + 0( as) [20, 9]. 

Since we have integrated out quarks and gluons with energy of the order of MQ , 

we cannot annihilate or create heavy quarks in our Lagrangian. Thus we have no 

mixed terms with both ijJ and x t. To include such effects, four-fermion operators are 

added as described in section 2.1.3. 

2. 1.2 Velocity counting rules 

Effective field theories, while being nonrenormalizable, are a powerful tool. This 

power comes from the fact that it is possible to terminate the number of contributions 

to any given process by using some simple counting rules . For example, in HQET the 

expansion is in one over the mass of the heavy quark, 1 / MQ. In chiral perturbation 

theory, it is in powers of the momentum. Without counting rules, there would be no 

systematic way to terminate the expansion . 

The power counting in NRQCD is in terms of the small relative three-velocity v 

between the heavy quarks. This intuitively makes sense, since it is a nonrelativistic 

expansion. Working in the Coulomb gauge at tree level, the naive counting rules are 

quite simple and are summarized in Table 2.1 [21 ]. 

At one loop, however, the counting rules are not as straight forward as for other 

effective field theories. The problem is that loops can be proportional to l/v, so 

that adding extra loops may make certain graphs more important than lower order 
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processes. There has been much work on trying to make the counting rules manifest 

for NRQCD [22, 7, 23, 24], but so far no solution seems completely satisfying. All the 

work presented here was done at tree level, so no problem in power counting arises. 

For the rest of this work, we will assume that some power counting scheme is possible 

at all orders, and that NRQCD is a true effective field theory. 

2.1.3 Quarkonia annihilation 

Annihilation of a heavy QQ state occurs at energy scales of the order of MQ, or 

alternatively distance scales of the order 1/MQ. This process creates light quarks 

and gluons with large energy which cannot be treated accurately in NRQCD. While 

the amplitude cannot be calculated, the annihilation rate, which is the square of the 

amplitude, can be accounted for in NRQCD. Since the annihilation rate of a QQ pair 

is localized, the annihilation contribution to the process QQ ---+ QQ can be reproduced 

by the addition of four-fermion operators to the NRQCD Lagrangian. The optical 

theory can then be used to related the imaginary part of the scattering amplitude to 

the annihilation of the QQ pair . 

We add to the NRQCD Lagrangian [4] 

(2.11) 

where On are four-fermion operators and dn is the naive scaling dimension of the 

operator On. The scaling dimension can be calculated by counting powers of MQ 

using Table 2.1. The dimensionless coefficients fn depend on the ultraviolet cutoff 

since the operators On need to be regularized. 

The four-fermion operators start at dimension 6 and are 

(2.12) 

where 
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01(150) = 1/}xxt1/; , 

01(351) = 1/;tax · xta1f;, 

Os(15o) = 'lj; tTaxxtTa'lj;, 

Os(351) = 'lj; tarax · xtara'lj; . 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

The spectroscopic notation refers to the quantum numbers of the QQ pair. Dimension 

8 operators include insertions of covariant derivatives such as 

01(1Pi)= 1/;t(-~ Dj)xxt(-~ DJ)'ij;, (2.17) 

01(3 Po)= ~1/;t(-~ Dj aj)xxt(-~ Dk ak)'lj;, (2.18) 

01(3 P1) = ~EijkEilm'lj;t(-~ Dj ak)xxt(-~ j)1 am)'lj;, (2.19) 

01(3 P1) = 1/; t(-~ j]u akl)xxt(-~ j]u akl) 'lj;, (2.20) 

and similar terms with insertions of a color matrix ra. Here x t D 'lj; = x t ( D'lj;) -

(Dxt)'lj;, and T(ij) = (Ti)+ Tji)/2 - Tkk5ij /3. 

Using the optical theorem, it is straightforward to show that the annihilation rate 

of a quarkonium state H into light hadrons is 

I'(H -+light hadrons) = 2 Im (Hl8£4-fermionlH) (2.21) 

= L 2 1;L~~) (HIOn(A)IH). 
n Q 

Calculations of the annihilation rate depend upon the NRQCD matrix elements 

(HIOn(A)IH). By using heavy quark spin symmetry it is possible to reduce the 

number of independent matrix elements, and the color-singlet matrix elements can 

be related to the quarkonia wave function (or derivatives of the wave function) at the 

origin. These matrix elements can either be calculated on the lattice, or, for those 

related to wave functions, from a potential model. Alternatively, the value of the 

matrix elements can be extracted from experiment. 

2.1.4 Quarkonia production 

The production of a QQ state takes place at distance scales on the order of 1/ MQ or 

less , since the momentum transfer is of the order M~. The formation of the hadron H 
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involves exchange of soft gluons over a distance the size of the final state, 1 / ( MQ v). 

Thus, in NRQCD the production of the QQ state occurs at a spacetime point. This 

pair propagates to the asymptotic future evolving into the physical quarkonium and 

perhaps other final particles. The production rate is proportional to the square of 

this process, and thus can be described in terms of vacuum matrix elements of four­

fermion operators. Unlike the annihilation matrix elements, the production matrix 

elements have a projection operator inserted to ensure the inclusion of the final state 

quarkonium in the asymptotic future. The general form of the production operator 

is [4] 

o;: = xtI<n1/J ( ;;= IH + X)(H +xi) 1/JtI<~x 
:= Xtf(n1/J (akaH) 1/Jtf(~X, (2.22) 

where the sum is over all other final state particles and the factors Kn and J(~ are 

products of color matrices, spin matrices, polynomials in the covariant derivative 

operator and other fields. Note that the insertion of the final state projection means 

that these objects are not truly local. 

The dimension 6 production operators are 

Of(1So) = x t1/J (akaH) 1/Jtx, 

Of(3S1) = xtc/'lj; (akaH) 'lj;tO"iX, 

Of (1So) = xtTa'ljJ (akaH) 1/JtTax, 

Of (351) = XtO"iTa'ljJ (akaH) 'lj; tO"iTax, 

while some of the dimension 8 operators are 

of (1 P1) = xt( -~ Dj)'lj; ( akaH) 'lj;t( -~ Dj)x, 
1 "+--+ "+--+ 

Of(3 Po) = 3xt(-~ DJ O"j)'lj; (akaH) 1/Jt(-~ Dk O"k)x, 

of(3P1) = ~EijkEilmxt(-~ Dj (}"k)'lj; (akaH) 'lj;t( -~ j)1 (}"m)x, 
• +-+ • +-+ 

Of(3P1) = Xt(-~ D(j O"k))'lj; (akaH) 1/Jt( -~ D(j O"k))x. 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2 .30) 
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Color-octet dimension 8 operators are similar, with the insertion of Ta matrices. As 

for quarkonia annihilation, the color-singlet matrix elements can be related to the 

nonrelativistic wavefunction. For example [4] , 

(OIOfQ(3S1)IO) = NclR(O)l2[1 + O(v4
)], 

27r 

(OIO~QJ(3 P1)IO) = 
3
Nc(2J + l)IR'(O)l 2 [1 + O(v2

)]. 
27r 

The general form of the production cross section in NRQCD is 

(2.31) 

(2.32) 

(2.33) 

The coefficients Fn(A) can be calculated in a perturbative series in 0'. 8 • They represent 

the short distance physics for the production of the QQ pair, but include no knowledge 

of the hadronization to the final state H, and are thus independent of the final state 

particle. In this way the cross section is factorized into a short distance part and a 

long distance part. 

The factorization may be destroyed by soft gluon effects. The QQ pair can in 

general be a colored object, and thus will couple to any quarks or gluons that are 

around, including perhaps spectator quarks in a hadron collision. For a hadron col­

lider one can prove that the factorized form hold through next-to-leading order in an 

expansion in inverse powers of the large momentum transfer Q2 [25, 26]. Beyond this 

order, the factorization can be shown to fail [27]. While this is a potential problem, 

we will assume violations of the factorization are small. 

2.2 Calculating Cross Sections 

2.2.1 7/JQ production in 2 ---+ 1 collisions 

Color-octet quarkonia production starts at 0( a;) with the scattering processes q + 
ij ---+ Q + Q and g + g ---+ Q + Q. The Feynman diagrams which mediate these 

reactions are illustrated in Figs. 2.6 and 2.7. In the first quark scattering channel, 

the heavy quark-antiquark pair appearing in the final state must share the same 
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p 
--q 
2 

Figure 2.6: Lowest order Feynman graph which mediates q + q --+ Q + Q scattering. 

quantum numbers as its intermediate virtual gluon progenitor. Angular momentum, 

parity and charge conjugation conservation restrict the spin, orbital and total angular 

momentum quantum numbers of the QQ pair to L = 0 or 2, S = 1 and J = 1. In the 

second gluon scattering process, the allowed values for L, S and J are not so tightly 

prescribed. 

To begin, we write down the on-shell scattering amplitude 

that corresponds to the sum of the three graphs displayed in Fig. 2. 7. The reduced 

amplitude which describes the creation of a QQ pair in a particular angular momen­

tum and color configuration is obtained from this expression by applying a series of 

projection operations [28]: 1 

1There are many ways to project out the correct state from the above amplitude. The method 
described here works for low orders in the velocity expansion , and is easi ly extendable to include 
more particles in the final state. For another projection method , see [29, 30]. 
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p 
p -+ q 

2 
P1 - - -+q P1-2 

+ 
p 

P2- - --q P2- p 2 - -q 
2 

P1~ 

+ 

7 
P2 p 

- - q 
2 

Figure 2. 7: Lowest order Feynman graphs which mediate g + g -----+ Q + Q scattering. 

A (ga(P1)gb(P2)-----+ QQ [28+ 1 L~1 '8c)](P)) = (2.35) 

L L "L, j (
2
:;3q2 0 8(q0 

- ~ )YiLz(q)(~s1; ~s2[SSz)(LLz; SSz [J Jz) 
Lz,Szs1,s2 i,J q 

X (3i; 3j [1, 8c)A (ga(P1)gb(P2) -----+ Qi(~ + q; s1)Qj( ~ - q; s2)) . 

Several points about this projection formula should be noted . Firstly, a QQ pair has 

negligible overlap with a nonrelativistic quarkonium bound state unless the relative 

momentum q between the heavy quark and antiquark is small compared to their com­

bined momentum P. We have therefore incorporated a delta function into Eq. (2 .35) 

which restricts the triple integral over q to the two-dimensional surface defined by 

[<fl= VAf(/5 where q0 
'.'.:::'. Mv 2 ~ M _ 2MQ . The squared invariant mass of the QQ 

pair thus equals P 2 = M 2 up to small relativistic corrections, where M is the mass 

of the quarkonium. Inclusion of the delta function also properly converts the mass 

dimension of the 2 -----+ 2 scattering amplitude into that for a 2 -----+ 1 reaction. Secondly, 
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the angular integration over the spherical harmonic projects out the pair's specified 

partial wave. The sums over the Clebsch-Gordan coefficients similarly project out 

the spin and total angular momentum of the QQ object. It is possible to combine 

the sum over the spin Clebsh-Gordan coefficient and the heavy quark spinors into a 

spin projection operator as 2 

This 4 x 4 matrix reduces to the covariant expressions 

up to O(q2
) corrections. Finally, the sum over the SU(3) coefficients 

(3i; 3jll) = 8fl/Nc 

(3i; 3j l8c) = V2(Tc)i 

(2.36) 

(2.37) 

(2.38) 

combines together the color quantum numbers of the quark and antiquark into either 

a singlet or octet configuration. 

Inserting the gluon scattering amplitude Eq. (2.34) into the projection formula 

in Eq. (2.35), we can readily calculate the reduced amplitude for two gluons to fuse 

into an arbitrary color-octet combination. We list below the formation amplitudes for 

QQ[3Si8
)], QQ[1 S~8)] and QQ[3PJ8

)] pairs which all hadronize into 'l/JQ bound states 

at O(v7
) in the velocity expansion [31, 28]: 

A( ( ) ( ) QQ- [3S(8)] ig;JabcJ41rM µ( ) 11 ( ) <7(S)* 
9a P1 9b P2 - 1 c = 4(27r ) 3 ---;;_o-c P1 c P2 c z 

Pi+ P~ 
x 2 + 2 M 2 [(P2 - P1 )<79µv + 2(P1119µ<7 - P2µ9v<7 )] 

P1 P2 -
(2.39a) 

2Spin projection matrices were originally introduced in Refs. [14, 15]. The ii and v spinors in 
our definition of Pss, correspond to an outgoing QQ pair . They differ from the v and u spinors 
appearing in these earlier articles' spin projection operators. Our ( +, - , - , - ) metric signature 
convention is also opposite to that of Ref. [1 5]. 



As required by gauge invariance, these expressions vanish when Pi = p~ = 0 and 

c:µ(P1) ~ pj_ or c:v(P2) ~ p~. The general P-wave result listed in Eq. (2.39c) may be 

further reduced3 by employing the Clebsch-Gordan identities [15] 

L (lLz; 1Szl1Jz)c:a(Lz)*c:f3(Sz)* = - ~ ta/3'Yo P'Y Eo(Jz)* 
Lz,Sz v2M 

(2.40) 

L (lLz; 1Szl2Jz)c:a(Lz)*c:f3(Sz)* = c;af3(Jz)* . 
Lz,Sz 

We then find that gg ~ QQ[3 P1(
8

)] as well as gg ~ QQ[3 5~8)] scattering vanishes 

when both incident gluons go on-shell [31, 32]. 

The projection formula in Eq. (2.35) can obviously be generalized to other parton 

channels besides gg ~ QQ[25+1 L}1
'
8

)]. We may insert any QCD amplitude which 

has a heavy quark and antiquark appearing in the final state and project out a 

reduced color-singlet or color-octet expression. Applying this general technique to 

the qq ~ QQ scattering process pictured in Fig. 2.6, we find [31, 28] 

(2.41) 

The squares of 2 ~ 1 amplitudes enter into the differential cross section for heavy 

pair production 

3This reduction is not valid when calculating polarized cross sections. See Sec. 4.5. 
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= 1 LIA( ab--+ QQ[2s+i L}1,8)])12 
4p1 · P2 

d<I>1 (p1 + p2; P) (2.42) 

where the barred summation symbol indicates that initial (final) spins and colors are 

averaged (summed) and d<I> 1 denotes a one-body phase space factor. High and low 

energy effects are intertwined in this expression. In order to disentangle it, we follow 

Ref. [4] and match the integrated cross section onto the product of a short distance 

coefficient and a long distance NRQCD matrix element: 

(J (ab-+ QQ[2s+1L}1,8)l) = ~~'.'._1": x (OI0~~(2s+1LJ)IO). 
Q 

(2.43) 

The general structure of the operator whose vacuum-to-vacuum matrix element ap­

pears on the right hand side of this matching condition looks like 

(2.44) 

where the matrix]{ denotes a product of color, spin and covariant derivative factors. 

The intermediate quark-antiquark state sandwiched in the middle 

IQQ[2s+1 L}1,s)J) = L LL j 2:33~ o8(qo - ~) (2.45) 
Lz,Szs1,s2i,j ( ) q 

x YiLz ( q)( ~s1; ~s2 IS Sz) (LLz; S SzlJ Jz) (3i; 3j I 1, 8) I Qi( q; s1)Qj( -q; s2)) 

is defined in the NRQCD effective theory in the same way as in full QCD. As a 

result, any arbitrariness in the definitions of the heavy pair production cross section 

and NRQCD matrix element cancels out of their ratio. The short distance coefficient 

appearing on the right hand side of Eq. (2.43) is convention independent. 

All information related to the hard scattering process which creates the QQ pair 

is encoded within Cshort· This same coefficient enters into the physical quarkonium 

production cross section 

(J (ab--+ QQ- [2s+1 L(1,s)]--+ "'' + x) = Cshort x (OIO"'Q(2s+1 L )IO) 
J 'flQ M(d+1)-4 1,8 J · 

Q 

(2.46) 
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On the other hand, the accompanying long distance matrix element which specifies the 

probability that a QQ[25+1 L}1
'
8

)] pair hadronizes into a 'l/JQ bound state is completely 

different from its counterpart in Eq. (2.43). The operator 

ot.~(25+1 LJ) = xtI<'l/J (2=2=1'1/JQ +x)('l/JQ +xi) 'l/JtI<x 
mJ X 

(2.4 7) 

has one unit greater mass dimension than Of~ (25+1 LJ) as can be verified by compar­

ing the dimensions of heavy intermediate pair and nonrelativistically normalized 'l/JQ 

states. The inverse powers of MQ in cross section Eqs. (2.43) and (2.46) consequently 

differ by unity. The nonperturbative matrix element (OIOf.~ (25+1 LJ) IO) also can­

not readily be calculated within NRQCD unlike its perturbative (OIOf~ (25 +1 LJ) IO) 

counterpart. Simple multiplicity relations such as 

(2.48) 

are obeyed exactly by the latter and approximately by the former. But the color­

factor relation 

(2.49) 

which holds for H = QQ certainly does not apply when H = 'l/JQ · Numerical values 

for (OIOf.~ (25+1 LJ) IO) matrix elements must be extracted from experimental data. 

2.2.2 Explicit matching calculation 

In order to clarify the meaning of these NRQCD matching ideas, we explicitly evaluate 

the matching conditions specified in Eqns. (2.43) and (2.46) for one simple example 

[28]. We consider the gluon fusion formation of an T/Q pseudoscalar meson through an 

intermediate QQ[1 S~1 ) ] pair. A straightforward computation yields the color-singlet 

cross section4 

( 
- 1 (1)J) _ a~ M ( M

2
) 

(J gg _, QQ[ So - 3847r2 qos 8 1 - T (2.50) 

4 In this work, a hat over a Mandelstam variable means the variable is defined in the center of 
momentum frame of the partons. 
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and matrix element 

We derived this last result within the NRQCD effective theory by decomposing the 

Pauli fields 

(2.52) 

in terms of two-component spinors normalized according to 

2 2 

L ~a (P, S) ~b(P, S) = L T/a(P, S) T/b(P, S) = 8a(J (2 .53) 
s=l s=l 

and single fermion creation and annihilation operators which satisfy the nonrelativis­

tic anticommutation relations 

Taking the ratio of (2.50) and (2.51), we deduce the short distance coefficient in 

matching condition (2.43) 

(2.55) 

and the gluon fusion cross section in matching condition (2.46): 

If we recall the relation between the NRQCD matrix element and squared T/Q wave­

function at the origin (2.31) 

(2.57) 
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we see that our result is consistent with the O(a;) cross section 

(2.58) 

previously reported in the literature [16]. 

Working in a similar fashion, we can decompose any color-singlet or color-octet 

cross section into products of short and long distance factors. We tabulate in Ap­

pendix A all 0( a;) short distance squared amplitudes for 2 ~ 1 color-octet reactions 

which yield 'l/JQ bound states at 0( v 7 ) in the NRQCD velocity expansion. The cor­

responding long distance factors are simply given by appropriate NRQCD matrix 

elements for specific production channels . For example, the total squared amplitude 

for gg ~ QQ[1S61l] ~ 'l/JQ scattering equals the product of the process-independent 

high energy expression listed in Eq. ( A.2a) and the process-specific low energy matrix 

element (OIOtQ (1 So) IO): 

(2.59) 

Color-octet pair production in 2 ~ 1 collisions could represent an important 

source of quarkonia in fixed target experiments, and its impact has been studied 

[33, 30]. But before definite predictions can be made, numerical values for color-octet 

matrix elements must be known. Therefore, it will be important to consider quarkonia 

production at hadron colliders where we can use experimental data to determine these 

matrix element values. 

2.3 Fragmentation 

It is sometimes possible that higher order perturbative corrections can dominate given 

processes. Such is the case with quarkonia production at large transverse momen­

tum. As an example, the lowest order diagram which contributes to color-singlet T/Q 

production through the process gg ~ QQg is shown in Fig. 2.8. This diagram con­

tributes at order a~ . Note that the quark propagator is far off-shell, of the order pJ_ . 
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Figure 2.8: Typical Feynman diagram for producing 'r/Q at order a;. 

Figure 2.9: Fragmentation diagram for color-singlet 'r/Q production at order a;. This 
diagram will dominate at high P1- relative to the lower order diagram pictured in 
Fig. 2.8. 

At order a; there are diagrams such as the one shown in Fig. 2.9. In most of phase 

space the gluons are off-shell also by an amount of the order of P1-· Thus the diagram 

in Fig. 2.9 is suppressed relative to the diagram in Fig. 2.8 by as(P1-)· However, there 

are regions in phase space where the virtual gluon creating the QQ pair is almost 

on-shell, of the order Mq. This means the second diagram is enhanced by an amount 

Pi/ M~. For large enough transverse momenta, this enhancement can compensate for 

the extra power of a 8 , and this diagram will dominate the cross section. This is the 

basic idea behind fragmentation [34, 35]. 

The fragmentation cross section can be written in a factorized form. First there is 

some process which creates a nearly on-shell parton, which is going to fragment into 

the final particle of interest. For the example above, this would be gg ----+ gg*, where 

the virtual gluon g* has a low invariant mass q2 relative to the transverse momentum, 
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1.e. q2 ~ pi_. The second factor is the propagator for this parton, 1/ q2
. The final 

factor is the fragmentation function, which is the probability for the parton to create 

the final state particle, g* -+ 7JQ9 · Thus we write the cross section as [35] 

(2 .60) 

where d0-9 is the differential cross section for producing an on shell gluon. Implicit 

in the cross section is that first a gluon of energy E / z is produced, which splits into 

an 7JQ carrying a fraction z of the initial energy. Note that all the energy dependence 

is contained in the cross section dO-, while all dependence on the mass of the heavy 

quarks is contained in the fragmentation function D g--+TJQ ( z, MQ). 

It is possible that the parton that splits into the quarkonia originally split from 

a higher energy parton. This process will give rise to large logarithms of the order 

E / MQ. To keep the factorization of the energy and mass dependence, a factorization 

scale µ is introduced. Thus to all orders in 0'. 8 , we can write the fragmentat ion cross 

section for producing a quarkonia state H with energy E as [35] 

dCJH(E) = L fo1 

dz dO-i(E/z, µ)Di--+H(z,µ), 
i 

(2.61) 

where the sum is over all parton types i. 

The power of the fragmentation formalism is that it is possible to calculate 

Di--+H(z, µ) at the scaleµ = MQ . Then the fragmentation functions can be evolved 

to an arbitrary scale µ by 

f) 11 dy 
µ-f) Di--+H(z,µ) = L -Pi--+j(z/y,µ)Dj--+H(y,µ), 

µ j z y 
(2.62) 

where the function Pi--+j(x, µ) is the Altarelli-Parisi function [36] for the splitting of 

parton i into parton j with momentum fraction x. Thus, we can do a perturbative 

calculation in a 8 (MQ) to calculate the fragmentation function at a scale MQ, and 

then we can evolve this to the correct scale of the process of interest. 
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Chapter 3 Color-singlet Production 

During the past few years, there has been renewed interest in the study of heavy 

quarkonium systems. Much of the recent work on this subject has been stimulated 

by large discrepancies between old predictions and new observations of 'I/; and Y 

production at several experimental facilities . Orders of magnitude disagreements be­

tween theory and data have seriously undermined the conventional CSM picture of 

quarkonia formation [12, 13, 14, 15, 16]. In this model , charmonia and bottomonia 

mesons are presumed to exclusively originate from short distance processes that cre­

ate heavy quark-antiquark pairs in colorless configurations . The quantum numbers of 

pairs produced in high energy collisions on time scales short compared to AQcD are 

required to precisely match those of the final state hadrons into which they nonper­

turbatively evolve. Although this CSM picture is simple, it does not explain several 

gross features of recent charmonia and bottomonia data collected at the Fermilab 

Tevatron [37, 38, 39]. It consequently must be abandoned as a complete theory. 

Even though the CSM cannot be considered the correct description of quarkonia 

in all cases, it is often true that the dominant contributions to a given process are 

those that can be calculated in this model alone. Also, it is important to understand 

how calculations in the past are related to those of NRQCD. One of the advantages 

of NRQCD is that it reduces to the CSM as v -+ 0. In this section, as an example 

of the CSM, we calculate quarkonia production at an e+ e- collider. Then we discuss 

color-singlet quarkonia production in hadron collision. 
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3.1 An Example: Quarkonia production at e+e-

collider 

Braaten and Chen have suggested that a clean signature of the color-octet mechanism 

may be observable in 7/JQ production at electron-positron colliders [40] . These authors 

have noted that the angular distribution of colored QQ pairs near the endpoint region 

may qualitatively differ from that of their colorless counterparts. If this effect could be 

observed, it would support the color-octet production picture. It might also permit 

an independent determination of the numerical values for certain NRQCD matrix 

elements. 

Before the search for color-octet quarkonia production in e+e- annihilation can be­

gin, one must first know the precise CSM prediction. Within the NRQCD framework, 

the color-singlet cross section is also expected to be quite accurate for all energies ex­

cept near the endpoint region [40]. In this section, we therefore build upon previous 

studies reported in the literature [41, 42 , 43, 44] and calculate the complete 0( a;) 

color-singlet cross section for e+ e- -* 7/JQ + X scattering. We examine the contribu­

tion to 7/Jq production from the short distance modes e+e--* QQ[3 Si1l] + g + g and 

e+e--* QQ[3Si1l]+Q+Q,1 and we derive a closed form expression for the differential 

cross section. We then discuss the implications of the CSM result for direct J / 'l/J ob­

servations at CLEO. Finally, we compare heavy quark fragmentation predictions with 

the color-singlet cross section and determine the energy scale at which fragmentation 

approximations become reliable. 

3.1.1 Color-singlet 'l/JQ production 

The simplest parton level process which mediates color-singlet production of ]PC = 

1-- quarkonia is given by e+e- -* QQ[3 Si1)J + g + g. Color, parity and charge 

conjugation conservation require two gluons to appear in the final state along with 

the colorless QQ[3 si1
l] pair. This channel consequently contributes to the 7/JQ cross 

1 We indicate the angular momentum and color-singlet quantum numbers of the QQ pair which 
hadronizes into the final state '!/!Q meson inside square brackets. 
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section starting at O(a;). Color singlet production also proceeds at the same order in 

perturbative QCD through the mode e+e---* QQ[3 Si1
)] + Q + Q. These two distinct 

reactions have been considered separately in the literature [41, 42, 43, 44]. We will 

reexamine their joint impact upon 'lj; and Y production and derive a closed form 

analytic expression for d2a / dE3 d cos83 . We can then compare the relative magnitudes 

of the gluon and quark processes as a function of center-of-mass energy .JS. 
The leading order diagrams which mediate e+(p1 ) e-(p2 )--* QQ[3 Si1)](p3 )+g(p4 )+ 

g(p5 ) and e+(p1 ) e-(p2 )--* QQ[3 Si1)](p3 ) + Q(p4 ) + Q(p5 ) scattering are illustrated in 

Figs. 3.1 and 3.2. The hard collisions pictured in the figures form on short time scales a 

heavy quark and antiquark which fly out from the primary interaction point in nearly 

parallel directions and almost on-shell. The QQ pair then evolves over a much longer 

time interval into a physical 'l/;0 bound state. Working within the NRQCD framework 

and using computational methods discussed in Sec. 2.2 and Refs. [15, 31 , 28], one can 

straightforwardly calculate the amplitudes for these processes. Their squares factorize 

into products of short distance coefficient functions and long distance NRQCD matrix 

elements . 

QcJ[3sf1l](p3) 

"' 

g(ps) 

1/JQ 

5 
+ permutations 

Figure 3.1: Leading order Feynman graphs which mediate e+e---* 1*--* QQ[3 Si1
)] + 

g + g --* 'l/;Q + X scattering. 

Integrating the squared amplitudes over the three particle phase space factor 

(3.1) 
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QQ[3 sl 1lJ(p3) 

~ 

Q(ps) + 2 flipped 
graphs 

Figure 3.2: Leading order Feynman graphs which mediate e+ e- ---t 1* ---t QQ[3 si1)J + 
Q + Q ---t 'l/JQ + X scattering. 

is somewhat involved. As a simplifying measure, we rescale all dimensionful quantities 

relative to the beam energy E and work with the dimensionless variables Zi = Eif E, 

iii = pif E) Xi = cos ei and 8 = 2Mq IE. The phase space factor for the reaction 

with gluons in the final state can then be reduced to the form [45] 

where 

d 
(211" )-4 

2 dz3 dx3 dz_ dw 
<l>3 = -- E 

8 j(l - !(2)(1 - x§) - w2 

1<1-1 = V4 - 4z3 + 82 + z~ 
1~1 = )z'#,-82 

]{ = z_(2 - Z3) 
1<1-11~1 

(3.2) 

(3.3a) 

(3.3b) 

(3.3c) 

(3.3d) 
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w = x_ + I<x3. (3.3e) 

We can use the same result for the quark process with the simple alteration l<f-1 = 

yf 4 - 4z3 + z~ . 

The available phase space volume clearly depends upon the masses of the final 

state bodies. For the e+ e- -----+ QQ[3 sPll + g + g channel, the limits of integration for 

the remaining energy and angular variables in eq. (3.2) are given by 

52 
8:::; z3S 1 + 4 

- 1 :::; X3S 1 

-Jzj - 82 S z_S Jzj - 82 

-v(l -I<2)(1 - x§) :::; w:::; yf (1 - ]{2)(1 - x§). 

The corresponding limits for the e+e- -----+ QQ[3Si1
)] + Q + Q mode 

-1:::; X3S 1 

( 4 - 4z3)(zj - 82 ) ( 4 - 4z3)(zj - 82 ) ---'------ < z_ < 
4 - 4z3 + 82 - - 4 - 4z3 + 82 

-v(l -I<2)(1 - x§) s w s J(1 - ]{2)(1 _ x§) 

(3.4a) 

(3.4b) 

(3.4c) 

(3.4d) 

(3.5a) 

(3.5b) 

(3.5c) 

(3.5d) 

are more tight due to the additional heavy quark and antiquark in the final state. 

After inserting the averaged squared amplitudes and reduced phase space factors 

into the formula 

(3.6) 

we can analytically integrate over w and z _ and obtain differential expressions of the 

form 

We display the resulting S(z3 ) and a(z3 ) functions for the e+e- -----+ QQ[3 Si1)J + g+ g 

and e+ e- -----+ QQ[3 sFll + Q + Q processes in Appendix B. As a check, one can 
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verify that lagluonl and laquarkl do not exceed unity within their allowed Z3 ranges 

as required by the general constraints discussed in Appendix C. The total 0( a;) 

angular coefficient function 

Sgluon O'.g!uon + Squark O'.quark 
O'.total = ~-~~------

Sgluon + Squark 

also respects the bound -1 ::; O'.total ::; 1. 

(3 .8) 

Another important check can be performed by considering the high energy be­

havior of the S(z3 ) and a(z3 ) functions . In the z3 ~ 8 limit, the color-singlet cross 

section reduces to [45] 

(3.9) 

where Qq is the charge of the quark in units of the electron charge. After integrating 

over cos03 and recalling the relation (OIOfQ( 3 S1 )IO) = 9IR(O)l 2 /27r between the 

color-singlet NRQCD matrix element and the 'l/;q wavefunction at the origin [4], we 

can write the 'l/;q energy distribution as 

(3.10) 

where 'Dq_, ,pQ (z3 ) denotes the heavy quark fragmentation function originally calcu­

lated in Ref. [34]. The complete 0( a;) color-singlet cross section thus correctly re­

produces known fragmentation results at high energies . 

3.1.2 Direct J /'l/J production at CLEO 

Jj'lj; production is currently under study at CLE0[46, 47]. Charmonia observed at 

this e+ e- facility mainly come from B meson decays . However, a clean sample of 

'!j;'s originating from continuum production can be obtained by imposing a lower mo­

mentum cut on their dilepton decay products. Various characteristics of the resulting 

direct J / 'I/; data sample can then be compared with predictions based upon color-
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singlet and color-octet production mechanisms. Such experimental investigations are 

underway. 

The angular distribution of direct J /'!f; mesons represents one observable which 

can be measured at CLEO. In Fig. 3.3, we plot the CSM prediction for the angular 

coefficient function a. The results displayed in the figure are based upon the input 

parameter values E = 5.29 GeV, me = 1.48 GeV, a 5 (2mc) = 0.28, aEM(2mc) = 

0.0075, Q c = 2/3 and (OIO{N( 3S1)IO) = 1.2 GeV 3
. The dashed curve illustrates the 

function agluon associated with e+ e- ~ cc[3 si1
l] + g + g scattering. The shape of this 
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Figure 3.3: Angular coefficient functions O'.gJuon (dashed line), O'.quark (dotted line) and 
O'.total (solid line) plotted against dimensionless energy variable z3 . 

curve agrees with numerical results of Driesen et al. reported in Ref. [43]. The dotted 

line in Fig. 3.3 depicts the function aquark originating from thee+ e- ~ cc[3 si1l] + c+ c 

mode. The shape of O'.quark is clearly quite different than that of O'.g!uon · But since Squark 



33 

is substantially smaller than Sgluon at CLEO energies, it has only a small impact upon 

the total color-singlet function CTtotal which is represented by the solid curve in Fig. 3.3. 

It is important to note that CTtotal is predicted within the CSM to be negative at the 

largest allowed values for z3 • On the other hand, color-octet effects may render CTtotal 

positive in the endpoint region [40]. The angular distribution of the most energetic 

J /'!/J's at CLEO can therefore provide a valuable test of the color-octet mechanism. 

The energy distribution of direct J / '!/J's is another quantity which can be used to 

probe theories of quarkonia production. In Fig. 3.4, we display the separate contribu­

tions to da-j dz3 from thee+ e- ----+ cc[3 si1
)] + g + g and e+ e- ----+ cc[3 si1

)] + c+ c channels 

along with the total CSM prediction. The sensitivity of this energy observable to the 

2 

1.8 

1.6 

1.4 

,........, 
1.2 ~ 

0.. ........., 
('<) 1 N 

"'O ........ 
l:) 

0.8 "'O 

0.6 

0.4 

0.2 ...... ......... 

...... 
............................ 

0 0.6 0.7 

........................... 
......................................... 

0.8 0.9 1 

Figure 3.4: Contributions to da / dz3 from the gluon (dashed line) and quark (dotted 
line) modes plotted against z3 . The CSM prediction for the total direct J / '!jJ energy 
distribution is represented by the solid curve. 

charm mode is more pronounced than that of the angular coefficient function. The 
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areas underneath the dashed, dotted and solid curves respectively equal 0.74 pb, 0.07 

pb and 0.81 pb. The quark process thus contributes at the 10% level to direct J/ 'l/J 

production at CLEO. 

Thee+ e- -----t cc[3 Si1l] +c+c mode is significantly phase space suppressed compared 

to e+ e- -----t cc[3 si1l] + g + g at CLEO energies. As a result , its impact upon charmonia 

observables is minor. However, it is interesting to examine the relative importance 

of these two color-singlet channels as a function of center-of-mass energy. We plot 

in Fig. 3.5 the modes' separate contributions to the integrated J /'l/J cross section 

along with their sum versus VS = 2E. We also display the integral of the charm 

quark fragmentation approximation (3.9). At low energies, the charm quark mode 

is negligible compared to its gluon counterpart. At larger values of VS, it becomes 

relatively more important. Finally, in the charm fragmentation limit VS ~ m e, the 

quark mode dominates. 

As can be seen in Fig. 3.5, the charm quark fragmentation curve rapidly asymp­

totes to the e+ e- -----t cc[3 si1lJ + c + c cross section. But it is important to note that 

the crossover point at which the rates for the charm and gluon modes become equal 

occurs around VS ~ 50 GeV. Consequently, the fragmentation approximation does 

not accurately reflect the total color-singlet cross section until VS exceeds 2mc by 

more than an order of magnitude. This result for J / 'l/J production at lepton collid­

ers is quite different than that for hadron accelerators. Previous investigations have 

found that fragmentation approximations are reasonably trustworthy for production 

of 'I/J's at the Tevatron with Pl..~ 10 GeV [31, 28]. The moral we thus draw from this 

study of charmonia at CLEO is that the validity of fragmentation predictions must 

be carefully checked on a case-by-case basis. 
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Figure 3.5: Integrated cross sections for the gluon (dashed line) and charm quark 
(dotted line) modes plotted as a function of VS. The sum of the two is shown by the 
solid curve. The approximate charm quark fragmentation cross section is depicted by 
the dot-dashed curve. 

3.2 Color-singlet quarkonia production for hadro-

production 

The cross sections for producing color-singlet quarkonia are well known [16, 48] . Non­

perturbative physics is factorized into the wavefunction, or derivatives of the wave­

function, evaluated at the origin. This wavefunction can be related to the color-singlet 

matrix elements appearing in NRQCD. In this section, We will give a general overview 

on how to calculate a reaction in the color-singlet model. 
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The amplitude for some process can be written as [16] 

J 
d4q 

A(P) = (
2

7r )4 Tr[O(P, q)<,f>(P, q)], (3.11) 

where P is the momentum of the outgoing quarkonium, O(P, q) is the perturbative 

part of the amplitude and <,f>(P, q) is the Bethe-Salpeter wavefunction, which includes 

the heavy quark spinors. The quarkonia is pictured as a nonrelativistic bound state, 

with relative momentum q. The Bethe-Salpeter wavefunction can be decomposed into 

a state with spin S, orbital angular momentum L and total angular momentum J as 

[16] 

( 
11]12 ) </>(P,q) = 27r5 q0

-
2
M L 1/JLLz(ii)Pssz(P,q)(LLz;SSzlJJz), 

Q Lz,Sz 
(3 .12) 

where Pssz is the same as in Eq. (2.36), and 1/JLLz(ij) is the nonrelativistic wavefunc-

ti on. 

Since the wavefunction has little support for 11]1 ~ Mq, it is possible to expand in 

powers of 11]1 and to keep only the first nonvanishing piece. For L = 0 states we can 

set liJl = 0. Plugging Eq. (3.12) into Eq. (3.11) leads to, 

1 
A(P) = ~R(O)Tr[O(P, O)Pssz (P, O)], 

y47r 
(3.13) 

where we have introduced the radial wavefunction evaluated as the origin. This 

wavefunction appears from integrating the total bound state wavefunction 1/JLLz (if) 

over q, 

1 J d3
q J4;R(O) = (27r) 3 1/Joo(ij'). (3.14) 

If the interesting state has nonvanishing L, higher order in ij is required. Plugging 

in the correct form of the spin projection Pssz into Eq. (3.13), and taking the trace, 

results in the color-singlet amplitude for the given process. 

The lowest order process in a 8 which can produce a color-singlet quarkonia would 

be gg --+ QQ[25+1 L~1 )], which then hadronizes into a final state particle with the 
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Figure 3.6: Feynman diagram for lowest order color-singlet 1/JQ production. There are 
five more diagrams where the gluon legs are permuted. 

same angular quantum numbers as the intermediate QQ pair. At this order, only 15 0 

and 3 P0 ,2 quantum numbers are possible. Thus, we are able to produce T/Q and XQo, 2 

at O(a;). These particles are produced with small transverse momenta and are, in 

general, lost down the beam pipe at a collider facility, but can be important at fixed 

target experiments. 

It is first possible to produce a color-singlet 'ljJ or Y at order a;. This process takes 

place through the box-like diagram of Fig. 3.6. The cross section for this process is 

[16] 

d lo 2 3M A2( A Af2)2 tA2(tA Af2)2 A 2( A Af2)2 
~(35)= 1f0'.s (OIO"'Q(35)IO)s s- + A - +u u-
dt 

1 sis2 1 1 (.s - M 2 ) 2 (t - M 2 ) 2 (u - M 2 ) 2 

(3.15) 

The relation between NRQCD matrix elements and the radial wave function given in 

Eq. (2.31) has been used to write this cross section. 
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Chapter 4 Color-octet Production 

Color-singlet quarkonium production has been studied for years. Leading order color­

singlet differential cross sections were calculated a decade ago [16 , 48, 49], and some 

total cross section formulae have been evaluated at next-to-leading order as well [50]. 

In contrast, color-octet contributions to quarkonium processes have only recently 

begun to be considered. While the latter mechanism may be less familiar than the 

former, it is certainly not less important. As we saw in Sec. 2.1 color-singlet and 

color-octet graphs arise at the same order in as and in v. Moreover , the color-octet 

diagrams dominate at high energies. So a complete analysis of quarkonium production 

at hadron colliders must include both mechanisms. In this section we continue the 

discussion in Sec. 2.2 to order a;, which is relevant to a pp collider. We then proceed 

to compare our theoretical cross sections to data from the Tevatron. To normalize 

our cross section, we need to have the NRQCD production matrix elements. Since 

the values of these matrix elements are not known, we extract their values from the 

data. Finally we discuss polarization of 'I/J's as a potential test of NRQCD. 

4.1 Cross sections to Order a~ 

In order to be experimentally detectable, quarkonia must be created at collider fa­

cilities with nonvanishing transverse momenta so that they are not lost down the 

beampipe. Hadrons resulting from 2 --t 1 scattering processes typically have small P.L 

comparable to the QCD scale. The production of quarkonia with nonnegligible trans­

verse momenta therefore mainly proceeds through 2 --t 2 collisions. Such reactions 

start at 0( a;) via the parton channels qq --t QQ[25+1 L~1 ·8 l]9 , 9q --t QQ[2S+1 L~1 · 8)]q 

and 99 --t QQ[2s+1 LY·B)]9. 

The Feynman diagrams which mediate quarkonia production in these color-octet 

channels are illustrated in Figs. 4.1, 4.2, and 4.3. The shaded circles appearing in the 
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q 'l/JQ 

.. t: + 
• 

q g 

+ ~ 
Figure 4.1: Color-octet diagrams which mediate qq -t 'l/JQ9· The shaded circles 
appearing in these graphs represent the qq -t 'l/JQ and gg -t 'l/JQ amplitudes pictured 
in Figs . 2.6 and 2. 7. 

figure represent the gg -t QQ [1 S~1 )], gg -t QQ[3 Si1l] and gg -t QQ[3 P)8l] amplitudes 

in Eq. (2 .39) . The qq -t 'l/JQg and gq -t 'l/JQq diagrams pictured in Figs. 4.1 and 4.2 

can readily be squared using standard spinor summation techniques . On the other 

hand, conventional evaluation of the gluon channel graphs in Fig. 4.3 represents a 

formidable computational task. It is therefore advisable to find a more tractable 

method for calculating the color-octet contributions to gg -t 'l/JQg scattering. 

We adopt a simple helicity amplitude technique [28] to sum and square the gluon 

graphs in Fig. 4.3. We first choose the following explicit representations for the gluon 

momenta and polarization vectors shown in the figure: 

V1 
PI = 2(1, 0, 0, 1), 

V1 
P2 = 2 ( 1, 0, 0, -1), ( 4.1) 

s-M2 

p4 = 
2
V1 (1,0,sinB,-cosB), 

+ - - - 1 (0 . ) c: 1 -c:2 -- J2" ,1,i,O 

-_ +_ 1( . ) 
C:1 - C:2 - J2" 0, 1, -i, 0 (4.2) 
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g 

q q 

+:}( 
Figure 4.2: Color-octet diagrams which mediate gq ---* 1/JQq. The shaded circles 
appearing in these graphs represent the qq ---* 1/JQ and gg ---* 1/JQ amplitudes pictured 
in Figs. 2.6 and 2.7. 

(c:)* = ~(O, ±1 , i cos 8, i sin 8). 

We next boost the the heavy pair's four-momentum from its primed rest frame to the 

unprimed parton center-of-momentum frame: 

( 
s + M 2 s - M 2 s - M 2 

) 
p~=(M,O,O,O)--tp3 = 

2
v's ,0,-

2
v's sinB, 

2
v's cosB . 

We also Lorentz transform the rest frame polarization vectors 

( 
I (h=O))* _ 

€3 -

0 

0 

0 

1 

0 

1 

-i 

0 

(4.3) 

( 4.4) 
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Figure 4.3: Color-octet diagrams which mediate gg ---t 'l/JQ9· The shaded circles 
appearing in these graphs represent the gg ---t 'l/JQ amplitude pictured in Fig. 2.7. 

0 

(c~ (h=- 1))* = If 1 

0 

and tensors 

0 0 0 0 

(c~ (h= O))* = ff 0 1 0 0 2 

0 0 _l 0 2 

0 0 0 1 

0 0 0 0 

(c~ (h=±l))* = =f ~ 0 0 0 1 
( 4.5) 

2 0 0 0 =f i 

0 1 =f i 0 
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0 0 0 0 

(c~ (h=± 2))* = ~ 0 1 =t=i 0 

2 0 =t=i -1 0 

0 0 0 0 

of J = 1 and J = 2 QQ pairs. Given these explicit representations, it is easy 

to work out all possible scalar contractions and express the answers in terms of the 

Mandelstam invariants .5, i = - (.5 - M2 )(1-cos 8)/2 and u = -(.5-M2 )(1+cos8)/2. 

The gluon channel amplitudes are functions of these Lorentz invariant dot products. 

Using the high energy physics package FEYNCALC [51], we calculated each 

individual helicity amplitude for gg ---+ QQ [1 S~8 ) ] g, gg ---+ QQ[3Si8)]g and gg ---+ 

QQ[3 P)8)]g scattering. Parity and crossing symmetry relations between different he­

licity amplitudes provided valuable checks on our Mathematica code. Since separate 

helicity amplitudes do not interfere, the total squared amplitude simply equals the 

sum of the squared helicity amplitudes . The final results are displayed in Appendix A. 

The products of short distance color-octet squared amplitudes and long distance 

NRQCD matrix elements enter into the partonic cross section 

(4.6) 

After folding in distribution functions faJA(xa) and fb/B(xb) that specify the probabil­

ities of finding partons a and b inside hadrons A and B carrying momentum fractions 

Xa and Xb, we obtain the hadronic cross section 

which is a function of the ¢Q and recoiling jet rapidities, y3 and y4 , and their common 

transverse momentum P1-. With this hadronic distribution in hand, we can determine 

color-octet contributions to ¢Q production in any hadronic process. We apply it to 

the study of charmonia and bottomonia at Fermilab in Sec. 4.3 . 
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4.2 "Including" Altarelli-Parisi evolution 

It is instructive to examine the high energy limit of color-octet quarkonia production. 

As the partonic Mandelstam invariants grow to infinity, the cross section in Eq. ( 4.6) 

reduces to 

dO" 
- , (ab--+ 'l/JQc)octet 
dt 

(4.8) 

This asymptotic expression has a simple gluon fragmentation interpretation. The 

first factor represents the differential cross section for producing a high energy virtual 

gluon. The second term comes from the square of the gluon's propagator. The last 

factor equals the square of the amplitude for a gluon to split into a QQ pair times 

(O l08 [
3S1 ]IO) and determines the virtual gluon's probability to hadronize into a 'l/JQ 

bound state. The gluon fragmentation picture for heavy quarkonium production is 

thus precisely recovered in the high energy limit [35] . 

Gluon fragmentation via the color-octet mechanism represents the dominant source 

of large P1- quarkonia at hadron colliders [17 , 52, 53] . The total cross section for 'l/JQ 

production reduces at high energies to the fragmentation form 

d3 (]" 11 d3 (}' p J_ 

d d d (AB--+ 'l/JQX) rrag = dz d d d (AB--+ g( - )X,µ)D9 ----t ,µq(z,µ). 
Y3 Y4 P1- o Y3 Y4 P1- z 

(4.9) 

The gluon fragmentation function evaluated at the factorization scaleµ = Mis readily 

identified from Eq. (4.8) and agrees with the result previously obtained in Ref. [54]: 

(4.10) 

Leading log QCD corrections to this result may be summed up using the Altarelli­

Parisi equation 

dDg---->1/JQ a 5 (µ) 11 dy Z 
µ d (z,µ) = -- -P99 (y)D9 ----t,µQ( - ,µ) 

µ 7r z y y 
( 4.11) 
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where 

[ 
y 1 - y 33 - 2n f ] 

Pgg(y) = 6 (1 - Y)+ + -y- + y(l - y) + 36 8(1- y) ( 4.12) 

denotes the gluon splitting function for n 1 active quark flavors. At high energies, 

the fragmentation approximation in Eq. (4.9) incorporates sizable O(log(E2/M2
)) 

renormalization effects, and its intrinsic O(M2 / E 2
) errors are negligible. In contrast, 

the color-octet formula in Eq. ( 4. 7) does not include any QCD corrections which are 

small at low P1-, but it retains full dependence upon all O(M2 
/ E 2

) terms. These two 

forms for the 7/JQ differential cross section are thus complementary. 

We may exercise our perturbative freedom to supplement the 0( a;) color-octet 

cross section with the leading logarithms from the gluon fragmentation approach. We 

implement this choice as follows [31]: 

d (AB---+. !. X). = d (AB---+ ·'· X) x dO"(AB---+ 'lj;qX)frag with QCD running 
O" 'f/Q mterp O" 'f/Q octet dO"(AB ---+ . t. X) · 

'f/Q frag without QCD running 

(4.13) 

The ratio on the right-hand side of this hybrid expression reduces to unity at low 

energy, whereas the first factor over the denominator approaches unity at high en­

ergy. Eq. ( 4.13) therefore smoothly interpolates between the two asymptotic limits in 

Eqs. (4.7) and (4.9). We will use this final color-octet formula to study bottomonia 

and charmonia production at the Tevatron in the following section. 

4.3 'ljJ and Y production at the Tevatron 

After the installation of the vertex detector in CDF, it has been possible to differenti­

ate between prompt quarkonia and quarkonia produced in B decays. This led to the 

surprising discovery that the theoretical prediction for prompt 'lj; production, based 

on the color-singlet model, was far less than the experimental measurement. 

These orders of magnitude discrepancies between cross section computations and 

observations are significantly reduced when gluon and charm color-singlet fragmen­

tation processes are taken into account. The predicted prompt J / 'lj; rate then quali-
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tatively agrees with recent CDF data [37]. In the case of 'l/J ' production, the fragmen­

tation results substantially improve upon earlier differential cross section predictions. 

But they still underestimate the number of 'l/J"s observed at the Tevatron by more 

than a factor of 30. This large discrepancy between theory and experiment indicates 

that some important production mechanism beyond the simplest g ---+ 'l/J' and c ---+ 'l/J' 

fragmentation processes needs to be included. We shall see that the fully consistent 

0( v 7 ) set of color-octet differential cross sections yields substantially improved fits to 

the data. 

4.3.1 Color-octet contribution 

We first plot in Fig. 4.4 the ratio 

( 4.14) 

where we have temporarily set (OtQ(3P0 )) = M~(OtQ(1S0 )) for companson pur­

poses.1 The solid curve's nearly constant value R(pi_)-::: 3 for pi_ ,2: 5 GeV indicates 

that the shapes of the cc[1 Sa8
)] and cc[3 Pj8

)] differential cross sections are practi­

cally identical in the charmonia sector. As a result, all fits for the NRQCD matrix 

elements in these color-octet channels become degenerate when performed over the 

transverse momentum range 5 Ge V :::; pi_ :::; 20 Ge V where J / 'ljJ and 'l/J ' differential 

cross sections have been measured. We consequently can only extract the linear 

combination (OIOt(3Po)IO)/M; + (OIOt(1So)I0)/3 along with (OIOt(3S1)IO) from the 

CDF data. In the bottomonia sector, the shapes of the bb[1 Sa8
)] and bb[3 PJ8

)] distri­

butions are not exactly the same throughout the 0:::; pi_ :::; 15 GeV interval where Y 

data exists. As indicated by the dot-dashed curve in Fig. 4.4, R(pi_) varies around 

5 over this transverse momentum range. Yet the differences in shape between the 

1The differential cross sections which enter into results displayed in Fig. 4.4 and all subsequent 
figures were calculated using the MRSDO parton distribution functions evaluated at the renormal­
ization scale µ = \/pl + M 2 . 
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Figure 4.4: Ratio R(p1-) of the total QQ[3 Pj8l] and QC';;>[15~8)] contributions to the '1/JQ 
transverse momentum differential cross section in the limit where the long distance 
NRQCD matrix element (OIOtQ(3Po)IO) equals M~(OIOtQ(150 )IO). The solid and 
dotted curves illustrate R(p1-) for the charmonia and bottomonia sectors respectively. 

bb[3 Pj8l] and bb[1 5~8) ] contributions to the total T differential cross section are not 

sufficiently great so that a full three-parameter color-octet matrix element fit can be 

reliably performed. So we will simply determine estimates for the linear combination 

Our fits to prompt charmonia production at the Tevatron within the pseudora­

pidity interval 1771 :S 0.6 are illustrated in Figs. 4.5 and 4.6. All contributions from 

B meson decay have been removed from the data sets displayed in these figures, and 

radiative XcJ decay feeddown to the J /'1/J differential cross section has been separated 
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out as well. The dashed curves depict the direct color-singlet production predictions 

based upon the charm quark mass value Mc = 1.48 Ge V and the Buchmiiller-Tye 

charmonium wave functions at the origin tabulated in Ref. [55]. The dot-dashed 

and dotted curves illustrate the best fits for the cc[3 si8
)] and combined cc[3 Pj8

)] plus 

cc[1 S68
)] channels. The solid curves show the sums of the color-singlet and color-octet 

components and represent the total predicted differential cross sections. 
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Figure 4.5: Theoretical transverse momentum differential cross section for prompt 'I/;' 
production at the Tevatron in the pseudorapidity interval 1171 ~ 0.6 compared against 
preliminary CDF data. The dashed curve depicts the direct color-singlet contribution 
to 'I/;' production. The dot-dashed curve illustrates the cc[3 Si8

)] cross section, and the 

dotted curve denotes the combined cc[3 Pj8
)] and cc[1 S68

)] distributions. The solid 
curve equals the sum of the color-singlet and color-octet contributions and represents 
the total theoretical prediction for the 7/J' differential cross section. All curves are 
multiplied by the muon branching fraction Br('lj;'-+ µ+µ-). 
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Figure 4.6: Theoretical transverse momentum differential cross section for prompt 
J/7.f; production at the Tevatron in the pseudorapidity interval 1171 :::; 0.6 compared 
against preliminary CDF data. The curves in this figure are labeled in the same 
way as those in Fig. 4.5. All curves are multiplied by the muon branching fraction 
Br(J/7./J-+ µ+µ-). 

Following the interpolation procedure described in 4.2, we have included lead­

ing log corrections into the cc[3 Si8
)] differential cross sections so that they approach 

Altarelli-Parisi improved gluon fragmentation distributions for P.l ~ Mc. In the large 

transverse momentum limit, gluon fragmentation represents the dominant source of 

prompt charmonia [35, 17, 52, 56, 57, 54]. This asymptotic behavior can be seen in the 

dotdashed cc[3Si8
)] curves of Figs. 4.5 and 4.6 . But throughout the 0 :::; P.l :::; 20 GeV 

region, they are not overwhelmingly larger than the combined cc[3 Pj8l] and cc[1 S68
)] 

components whose contributions to prompt charmonia production are sizable. Inclu­

sion of the latter color-octet channels into the total differential cross sections yields 
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Figure 4. 7: Theoretical transverse momentum differential cross section for J /¢ pro­
duction at the Tevatron in the pseudorapidity interval hi ~ 0.6 resulting from radia­
tive XcJ decay compared against preliminary CDF data. The dashed curve depicts 
the color-singlet contribution, the dot-dashed curve illustrates the cc[3 Si8

)] cross sec­
tion and the solid curve represents their sum. All curves are multiplied by the muon 
branching fraction Br(J/¢ --+ µ+µ-). 

theoretical ¢' and J /¢ distributions which fit the data quite well. Their respective 

x2 /NDOF = 0.5 and x2 /NDOF = 0.9 figures-of-merit are nice and small. 

In Fig. 4.7, we plot the transverse momentum distribution of J /¢ mesons which 

result from radiative XcJ decay. The dashed curve in the figure shows the color-singlet 

XcJ differential cross section multiplied by Br(XcJ--+ J/¢+1) and summed over J = 0, 

1 and 2. The dot-dashed curve illustrates the cc[3 Si8l] channel contribution. The solid 

curve corresponds to their sum and represents the total 0( v 5
) cross section prediction. 

As indicated by its poor x2 /NDOF = 2.3 value, this solid line does not fit the data 
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well. We believe that a better match could be achieved if subleading color-octet 

contributions were included. The first sub dominant corrections enter at 0( v9
) in the 

NRQCD velocity expansion from the long distance evolution of QQ[3 Pj8l], QQ[3 D}8l] 

and QQ[1 P1(
8

) ] pairs into XQJ bound states. Since short distance production cross 

sections for the latter two pairs have not been yet calculated, we cannot include into 

Fig. 4. 7 subleading contributions from the first pair which we have computed. 
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Figure 4.8: Theoretical transverse momentum differential cross section for T(lS) 
production at the Tevatron in the rapidity interval IY I ~ 0.4 compared against pre­
liminary CDF data. The dashed curve depicts the color-singlet contribution which 
includes direct T(lS) production as well as radiative feeddown from XbJ(lP) and 
XbJ(2P) states. The dot-dashed curve illustrates the bb[3 Si8

)] cross section, and the 
dotted curve denotes the combined bb[3 Pj8l] and bb[1 S~8l] distributions. The solid 
curve equals the sum of the color-singlet and color-octet contributions and represents 
the total theoretical prediction for the T(lS) differential cross section. All curves are 
multiplied by the muon branching fraction Br(T(lS) --t µ+ µ-) . 
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Figure 4.9: Theoretical transverse momentum differential cross section for T(2S) 
production at the Tevatron in the rapidity interval IY I S 0.4 compared against 
preliminary CDF data. The curves in this figure are labeled the same as those in 
Fig. 4.8. The dashed color-singlet cross section includes T(2S) production and ra­
diative feeddown from XbJ(2P). All curves are multiplied by the muon branching 
fraction Br(T(2S) -t µ+ µ-). 

We turn now to the bottomonium sector and consider T production at the Teva-

tron within the rapidity interval IYI S 0.4. Our new fit s to CDF T(lS) and T(2S) 

data are displayed in Figs . 4.8 and 4.9. No separation between prompt and delayed T 

sources has been experimentally performed. The dashed curves in the figures therefore 

include both direct T production and radiative feeddown from XbJ states . These color­

singlet distributions are based upon the bottom quark mass value Mb = 4.88 GeV 

and the Buchmiiller-Tye bottomonia wavefunctions at the origin tabulated in Ref [55]. 

The dot-dashed and dotted curves illustrate the bb[3 S~8) ] and combined bb[3 Pj8
)] plus 
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bb[1 5~8)] fits . The solid curves equal the sums of the color-singlet and color-octet 

contributions and represent the total Y differential cross sections. At very small P.L, 

the color-singlet and color-octet cross sections are corrupted by collinear divergences 

which should be factored into incident parton distribution functions and the intrinsic 

motion of incident partons inside colliding hadrons becomes important. Soft gluon 

effects also need to be resummed before the cross section turnover, which is evident in 

Fig. 4.8, can be described correctly. Since we have not incorporated these effects, our 

cross section predictions are not trustworthy at low p .L. We therefore exclude points 

in Figs . 4.8 and 4.9 with P.L ::;: 3.5 GeV from our fits . We then find x2 /NDOF = 0.3 

and x2 /NDOF = 0.9 for the remaining points in these figures. 

4.4 Extraction of NRQCD matrix elements 

We have seen that heavy quarkonia production involves short and long distance 

physics. The high energy creation of color-singlet and color-octet QQ pairs is per­

turbatively computable within the NRQCD effective theory. The subsequent low 

energy hadronization of these pairs into physical bound states is described in terms 

of nonrenormalizable operator matrix elements. NRQCD scaling rules determine the 

relative importance of different long distance matrix elements and yield relations 

among them. We will use these rules to check the consistency of the fitted 'ljJ and Y 

amplitude values which we obtained in the preceding section. 

We first recall the relations (2.31), 

(O IOfQ (3 51) IO) = 1:; IR(O) 1

2 = O(M~v~), 

(O IO;QJ(3P1) IO) = 
3~c(2J + l)IR'(O) l2 = O(M~v~), 

( 4.15) 

( 4.16) 

between quarkonia radial wavefunctions at the origin and matrix elements of certain 

color-singlet four-quark operators in the NRQCD Lagrangian [4] . The details of these 

operators' definitions are discussed in Sec. 2.1.4, but they are not important to us 

here . Instead, we are only interested in their scaling dependence upon the heavy 

quark mass MQ and velocity VQ. 
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Using the Buchmiiller-Tye wavefunction information tabulated in Ref. [55] , we list 

the numerical values of color-singlet matrix elements that are relevant for Y and 'I/; 

production in Table 4.1. The entries in this table are consistent with the NRQCD 

power counting rules . In the VQ -> 0 limit, the long distance quarkonia matrix 

elements would be independent of the radial quantum number n . In actuality, the 

n dependence of the bb sector entries is generally smaller than that of the cc values . 

This trend simply indicates that the NRQCD velocity expansion works better for 

bottomonia with vf '.:::::'. 0.08 than for charmonia with v~ '.:::::'. 0.23. 

Color-Singlet 
Matrix Element 

(OIO{N (3 S1)IO) 

(OIO~c1 (3 P1)IO) 

(OIOf (3S1) IO) 

(OIO{(lS) (3 S1) IO) 

(o I o~bl (lP) (3P1)1 0) 

(01o;(zS) (3 S1) IO) 

(OIO~bi(zP)(3 P1) IO) 

(Ol0{(3S) (3 S1) IO) 

Numerical 
Value 

1.2 GeV3 

3.2 x 10-1 GeV5 

7.6 x 10-1 GeV3 

9.3 GeV3 

6.1 GeV5 

4.6 GeV3 

7.1 GeV5 

3.5 GeV3 

NRQCD 
Scaling Order 

M 3v3 
c c 

l\!lsvs 
c c 

M3v 3 
c c 

M 3v3 
b b 

Ms vs 
b b 

M 3v3 
b b 

Mtvt 

M3v3 
b b 

Table 4.1: Color-singlet matrix elements values obtained from Buchmiiller-Tye wave­
functions obtained from Ref. [55]. 

We list in Tables 4.2 and 4.3 the numerical values for color-octet matrix ele-

ments which we extracted from the data along with their scaling dependence upon 

the heavy quark mass MQ and velocity VQ. The values for all the charmonia matrix 

elements were derived directly from the CDF J /'I/; and 'I/; ' data. On the other hand, in-
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sufficient experimental information exists to independently extract (O IOi(nS) (3 51) IO) 

and (OIO~bi(nP)(351 )IO) in the bottomonia sector. We therefore determined the lat­

ter from the Y data after having scaled up the former from the corresponding 'I/; 

color-octet matrix elements using NRQCD power counting rules. The remaining 

(OIOi(nS)(3Po) IO)/M; + (O IOi(nS)(15o) I0)/5 linear combinations were obtained di­

rectly from the bottomonia cross section data. 

Color-Octet 
Matrix Element 

(01o:N (351)10) 

(OIO~cl (3 P1) IO) 

(OIOt' (351)10) 

(o I oi(ls) (3 51) 10) 

(OIO~bi(lP)(3 Pi) IO) 

(O IOi(2S) (3 51) IO) 

(O I O~bi(2P)(3 P1)IO) 

Numerical 
Value (GeV3

) 

(6 .6 ± 2.1) x 10- 3 

(9 .8 ± 1.3) x 10- 3 

( 4.6 ± 1.0) x 10- 3 

(5 .9 ± 1.9) x 10- 3 

( 4.2 ± 1.3) x 10- 1 

( 4.1 ± 0.9) x 10- 3 

(3.2 ± 1.9) x 10- 1 

NRQCD 
Scaling Order 

M3v1 
c c 

Ms vs 
c c 

M3v1 
c c 

M3v1 
b b 

Mtvt 

M3v1 
b b 

Ms vs 
b b 

Table 4.2: Color-octet matrix elements values extracted from CDF data [28]. The 
errors are purely statistical. 

The error bars listed in Tables 4.2 and 4.3 are statistical and do not reflect system­

atic uncertainties in heavy quark masses, color-singlet radial wavefunctions, parton 

distribution functions and next-to-leading order corrections . The magnitudes of all 

these different sources of uncertainty can be estimated. For example, the different 

charm and bottom quark mass values which enter into the power law, logarithmic, 

Coulomb plus linear and QCD motivated Buchmiiller-Tye potentials tabulated in 

Ref. [55] span the ranges 1.48 Ge V ::; Mc ::; 1.84 Ge V and 4.88 Ge V ::; mb ::::; 

5.18 GeV. These intervals may be regarded as setting reasonable bounds for the 
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Linear Combination 
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Numerical 
Value (GeV3

) 

(2.2 ± 0.5) x 10-2 

(5.9 ± 1.9) x 10-3 

(7.9 ± 10.0) x 10-2 

(9.1 ± 7.2) x 10-2 

NRQCD 
Scaling Order 

Table 4.3: Linear combination of color-octet matrix elements values extracted from 
CDF data [28]. The errors are purely statistical. 

heavy quark mass parameters. The spread in values for radial wavefunctions at the 

origin calculated in these four different potential models similarly provides an ap­

proximate indication of color-singlet matrix element uncertainties. Systematic errors 

which arise from parton distribution functions and higher order QCD corrections can 

also be assessed by performing several fits with different choices of distribution func­

tions and renormalization scale [58]. We have not attempted to carry out a detailed 

analysis of the combined impact of all these systematic uncertainties. Our color-octet 

matrix element values therefore represent reasonable estimates rather than precise 

predictions. 

Observe that the NRQCD counting rules are more faithfully followed by some 

matrix elements than others. For instance, the magnitudes of the matrix elements 

(OJO~N (3 Si) JO), (O J Of (3 S1) JO ) and (O J Of (3 Po) JO )/ M,? + (O J Of (1 So) JO ) /3 are all mu­

tually consistent with their common scaling rule. On the other hand, (OJO~c1(3S1 )JO) 

is somewhat low while (OJO~N(3 P0 )JO)/M,?+(OJOf (1S0 )J0)/3 is somewhat high. Since 

v~ '.::::::'. 0.23 is not very small, none of the charmonia NRQCD order-of-magnitude es-
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timates should be overly interpreted. We view the general consistency of the fitted 

matrix elements with the power counting rules as an encouraging indication that the 

color-octet quarkonia production picture is sound. 

4.5 Tests of NRQCD 

The best test of NRQCD would be to extract the NRQCD matrix elements from one 

experimental situation and use them to make predictions for a different experiment, 

or to compare the extracted matrix elements from different experiments. So far the 

extractions are not accurate enough to make a meaningful comparison [28, 58, 59, 60]. 

Furthermore, it is not clear whether it is even possible to use the matrix elements for 

different reactions [ 61]. 

Another potential test is the polarization of the quarkonia state produced in some 

collision. Like Heavy Quark Effective Theory, NRQCD incorporates an approximate 

Heavy Quark Spin Symmetry, which can be used to calculate the polarization. At 

large transverse momenta, quarkonia are primarily produced by gluon fragmentation 

[35, 17, 52 , 56, 57, 54]. The gluon is nearly real and transverse in the high Pl.. limit, 

and the resulting QQ[3Si8
)] pair inherits this spin alignment. The long distance 

hadronization into a colorless 'I/; preserves all angular momentum information, due to 

the NRQCD approximate spin symmetry. Thus, 'I/; mesons produced at large Pl.. are 

100% transversely aligned [62]. Higher order a 8 corrections to the polarization of 'ljJ 

from gluon fragmentation have been calculated, and occur at the few percent level 

[63]. 

Gluon fragmentation is, however, only valid in the Pl.. ~ MQ limit. At low 

transverse momentum, large numbers of 'l/; 's are produced via color-octet states with 

L = S = 0 and L = S = 1 [31, 28]. Corrections to the fragmentation limit are 

not constrained to preserve the polarization of the 'ljJ. Therefore, to use quarkonia 

polarization as a test of the color-octet mechanism, we need to investigate the spin 

alignment due to these states. In this section, we will only consider the polarization of 

'I/; ' mesons. A similar analysis for other charmonia and bottomonia states is possible, 
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but these mesons are complicated by feeddown from higher level states. 

The methods used in calculating the amplitudes are similar to those described in 

Sec. 2.2, and the discussion will not be repeated here. The only difference is that we 

projected the amplitude onto states of definite L 2 and 52 , squared, and then summed 

over L 2 , leaving the 52 polarization arbitrary. The polarization vector t:(>.) of the 

quarkonium state then explicitly enters the differential cross section, Eq. ( 4.6), as 

[58] 

d' (>.)[ l 
-

17

--"-'~~i n--:.. = Aab[n] + Bab[n](t:(>.) · P1) 2 + Cab[n](t:(>.) · P2)2 + Dab[n](t:(>.) · P1)(t:(>.) · P2), 

( 4.17) 

where p1 and p2 are the momenta of the initial state partons a and b. The coefficients 

A, ... , Dare shown in Appendix D. 

The ratio of longitudinal differential cross section to the unpolarized differential 

cross section, 

( 4.18) 

can be measured in 'lj.; ' --t £+ e- decay. The leptons are distributed in angle according 

to 
dr( 'lf;' --7 f + e-) 2 

d e ex 1 + a cos e' cos 
( 4.19) 

where 

a= ( 4.20) 

and e denotes the angle between the lepton momentum in the 'lj.; ' rest frame and the 

'lj;' momentum in the lab frame. In Fig. 4.10, we plot a for prompt 'lj.;' production at 

the Tevatron. 2 Since there is only a value for the linear combination of (O IOt' (150 ) IO) 

and (OIOf (3 Po)IO), we cannot give a definite prediction for a. Instead, the solid 

curve represents a when (OIOt' (3 P0 ) IO) = 0. The dashed curve illustrates a when 

the contribution from (OIOf (15o) IO) is set to zero. The shaded region illustrates the 

effect of the uncertainties in the matrix elements in Table 4.3. 
21n this section, MRSDO parton distribution functions evaluated at the renormalization scale 

µ = VPl + 4M'[ were used , with Mc= 1.48 GeV. A pseudorapidity cut of 1771 :=; 0.6 was imposed . 
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Figure 4.10: Coefficient a which governs the lepton angular distribution in 1/J' ---+ f + e­
decay plotted as a function of pi_. The solid and dashed curves illustrate a for 
1/J' production at the Tevatron when (OJ Of (3 P0 )JO) and (OJOf (1S0 )JO ) respectively 
vanish. The shaded region shows the effect of the uncertainty in the extraction of 
the matrix elements. The dotted line corresponds to the lowest order, color-singlet 
production. 

The angular distribution approaches the transverse form 1 + cos2 e at high pi_ as 

predicted by gluon fragmentation computations [62]. At low transverse momentum, 

the 'lj;' is essentially unpolarized due to L = S = 0 and L = S = 1 color-octet states. 

Since the two curves are similar in shape, the true value for the angular coefficient 

should be close to the curves shown. The effect of uncertainties in the matrix elements 

and higher order corrections can be qualitatively described by slight displacements of 

the curves in Fig. 4.10, without changing the asymptotic behaviors. Higher order as 

corrections, however, can change the asymptotic high pi_ behavior, but it should be 

a small effect [ 63]. 

Also plotted in Fig. 4.10 is the polarization due to the lowest order, color-singlet 
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production, gg -t cc[ 3 si1l]g. As can be seen, the qualitative shape of the color­

singlet curve is similar to the color-octet curves. While higher order color-singlet 

corrections will modify this shape, it is clear that by just observing the qualitative 

shape presented in Fig. 4.10 of the prompt 'lj;' polarization at the Tevatron will not 

be a clear signature for color-octet production. 
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Chapter 5 Conclusion 

Nonrelativistic Quantum Chromodynamics has been proposed as the proper way of 

calculating quarkonia production and decay. We have reviewed the implications of this 

effective field theory in this thesis . NRQCD makes a variety of predictions which are 

relevant in many experimental situations. We have examined color-octet production 

of heavy quarkonia at hadron colliders. Color-octet diagrams arise at the same order 

in perturbative QCD as their color-singlet analogues and reduce to the dominant 

set of gluon fragmentation graphs in the high energy limit . They must therefore be 

included in bottomonia and charmonia production computations. 

Even though the color-octet mechanism is very important at the Tevatron, it is not 

the whole picture. Color-singlet production is often the most important contribution 

to quarkonia production. In particular, for quarkonia production at an e+ e- collider 

there is no kinematic reason for the color-singlet channel to be suppressed relative to 

the color-octet channel for most of phase space. As such, as an example we calculated 

the color-singlet production of prompt 'I/J's at CLEO in closed form. 

As we have seen, color-octet contributions to Y and 'ljJ differential cross sections 

eliminate large disparities between earlier predictions and recent measurements. The 

long distance matrix element values needed to bring theory into line with experiment 

are consistent with NRQCD scaling rules. The 'ljJ is predicted to be 100% polarized in 

the fragmentation limit. Inclusion of the full 0( v 7
) calculation reduces the predicted 

polarization in the low P1- region. These measurements are currently being pursued, 

and it will be interesting to see whether they are consistent with the predictions of 

NRQCD. 

Many of the results in this paper can be applied to a range of other interesting 

problems in quarkonium phenomenology. For example, the velocity scaling rules 

for NRQCD are not obvious in all calculations. Deriving them in a systematic, 

gauge-independent way would be very interesting. It may be possible to relate the 
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NRQCD matrix elements extracted from different experimental settings, with per­

haps some model dependence. If so, it would be an interesting test of the formalism. 

At low transverse momentum, the quarkonia distributions should vanish rather than 

diverge. In order to compute the cross section turnover, it will be necessary to fac­

torize collinear singularities in both the color-singlet and color-octet channels into 

incident parton distribution functions. This factorization also needs to be performed 

before differential quarkonia distributions can be integrated. The NRQCD matrix 

elements can also be applied to the study of quarkonia production at lepton collid­

ers. Gluon fragmentation has been shown to represent the largest source of prompt 

'ljJ and 1' vector mesons at LEP [64, 53] . Its incorporation into Z ----+ J / 'ljJ, Z ----+ 7/J' 

and Z ----+ 1' branching fractions reduces sizable differences between predictions based 

upon color-singlet heavy quark fragmentation and recent LEP measurements. The 

color-octet mechanism may eliminate disagreements between theory and experiment 

in fixed target settings. Finally, all the results in this thesis can be applied to the 

study of quarkonia production at the next generation of hadron colliders. We look 

forward to further surprises in quarkonium physics coming from machines like the 

LHC well into the next century. 
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Appendix A Squared amplitudes for 

unpolarized quarkonia production 

We list below short distance squared amplitudes for 2 --t 1 and 2 --t 2 scattering 

processes which mediate color-octet quarkonia production. These expressions are av­

eraged over initial and summed over final spins and colors of the appropriate particles. 

The total squared amplitudes for creating specific quarkonia states are obtained by 

multiplying these process-independent short distance expressions with appropriate 

long distance NRQCD matrix elements [28]. 

qq --t QQ[25+1 L~8)] channel: 

2]A( qq--* QQ[3 5~8)])12 = ( ~~~2 

gg --* QQ[25+1 L~8)] channel: 

~]A(gg--* QQ[15~8)])12 = 5i~~~2 

L:IA(gg --* QQ[3pJ8l])12 = 5~~7f;~)2 

(A.l) 

(A.2a) 

(A.2b) 

(A.2c) 

(A.2d) 
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qq- ---+ QQ- [2S+1L(8)] h l J g c anne: 

"l:IA(qq---+ QQ[3Sis)]g)j2 = 2(47ras)3 i2 + u2 + 2M2s A2 A2 A 
81M3 iu(s _ Af2)2 [4(t + u ) - tu] (A.3b) 

"l:IA(qq---+ QQ[3Pds)]g)[2 = 20(47ras)
3 

(s - 3M2)2(£2 + u2) 
81M3 s(s _ Af2)4 (A.3c) 

"l:IA(qq---+ QQ[3p
1
(s)Jg)[ 2 = 40(47ras)

3 
s(i2 + u2) + 4M2iu 

81M3 (s - Af2)4 (A.3d) 

"l:IA(qq---+ QQ[3PJs)Jg)j2 = 8(47ras)
3 

(5
2 

+ 6M4)(i2+u2)+ 12M2siu 
81M3 s(s _ Af2)4 (A.3e) 

5(47ras)3 52 + u2 
72M i(i - M2)2 

(A.4a) 

"l:IA(gq---+ QQ[3Sis)]q)[2 = - (47ras)3 52 + u2 + 2M2i A2 A2 AA 
108M3 su(i -M2 )2 [4(s +u)- su] (A.4b) 

"l:IA(gq---+ QQ[3PJsl ]q)[2 = _ 5(47ras)
3 
(i- 3M2)2(52 + u2) 

54M3 i(i _ Af2)4 (A.4c) 

"l:IA(gq ---+ QQ[3P1(8) Jq)12 = - 5( 47ras)3 i( 52 + u2) + 4M2 SU 
27 Af3 (i _ Af2)4 (A.4d) 

"l:IA(gq---+ QQ[3PJsl]q)j2 = _ (47ras)3 (£2 + 6M4)(s2+u2)+12M2sfo 
27M3 i(i-M2)4 (A.4e) 
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gg---+ QQ[25+1 L}8
)]g channel: 1 

'"'IA( ---+ QQ_[3S(8l] )l 2 = _ (47ras)
3 

27(.Si + i? +us) -19M
4 

~ gg 1 g 72M3 [(s - M 2 )(t - M 2 )(u - M 2 )J 2 

x [(i2 + iu + u2)2 - M 2 (i + u)(2i2 + iu + 2-u2) + M 4 (i2 + iu + u2)] (A.5b) 

2:1A(gg---+ QQ[3PJ8l]g)l2 = (~;:;t 
x{.5224(82 - 22)4 + M2sz2(s2 - 22)2(382 - 222)(284 -682£2 + 3£4) 

+ M 4 [9.512 - 84.510 22 + 265.58 z4 
- 382.56 26 + 276.54 z8 

- 8882 210 + 9212] 

-M6s[54s10 - 35788£2 + 84486£4 - 89884 26 + 4398228 - 81£10] 

+M8[153s10 - 79888£2 + 141586£4 - 104184£6 + 30182£8 -18£10
] 

-M10.s[210.s8 - 1089.56£2 + 136584£4 - 616.5226 + 87£8] 

+M12 [32488 - 9518622 + 7698 4 24 
- 1898226 + 9£8] 

-9M14 s(6s2 
- 22)(5.54 - 9.s222 + 3£4) 

+3M16s2(5184 - 59.5222 +12£4) - 21M18s3(2.s2 - 22) + 9M20s4} 

/[sz2(s - M2)4 (sM2 + £2
)

4
] (A.5c) 

(A.5d) 

1 We have introduced the variable z = vlfii to simplify some of the coefficients. 
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l::IA(gg---+ QQ[3 pJ8l]g)l2 = (~7r;~)3 
x {.52 24(.52 _ 22)4 + M2 822(s2 _ 22)2(6.56 _ 228422 _ 98224 _ 626) 

+M4[6.512 - 5531022 + 175.58 24 - 127.5626 + 42.5428 - 2532210 + 5212] 

-M6 s[36s 10 
- 2438822 + 433.5624 - 2718426 + 115.5228 - 39210] 

+ M8[102s10 - 49288 22 + 665.56 24 - 381.54 26 + 133.52 28 
- 12210] 

-M10 s[l80s8 
- 65186 22 + 69684 24 - 310.52 26 + 6328] 

+M12 [216s8 - 5918622 + 4638424 - 1298226 + 628] 

-3M14 s[60s6 
- 1188422 + 558224 - 626] 

+3M16s2(34s4 - 413222 + 824) - 18M18s3 (2s2 - 22) + 6M20s4} 

/[.522(8 - M 2
)
4 (sM 2 + 22)4] (A.5e) 
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Appendix B Color-singlet functions in 

e+e- cross section 

We list here the color-singlet functions S and a which enter into the differential cross 

section (3.7) at leading order in both the perturbative QCD and NRQCD velocity 

expansions [45]. Recall the definitions{;= 2MQ/ E and Zi = E;/ E. 

e+ e- ---+ QQ[3 si1
)] + g + g mode: 

7r (asaEMQQ) 2 (01otQ( 3 S1)IO) 
Sgluon = 216 {;ES (z3 - 2) 2 (2z3 - D2 ) 3 (zj - D2 ) 

x { 4 [-fJ2
( 4 + fJ 2

)( 48 + 48{;2 + 13{;4
) + 32{;2

( 4 + fJ 2
)( 4 + 3fJ2 )z3 

+ 8(32 - 56{;2 
- 24{;4 + f;6 )z~ - 16(32 + 4{;2 + 3f;4 )zJ 

+ 112( 4 + fJ 2 )zj - 128z~] (2z3 - fJ 2)V zj - {;2 (B.la) 

+ [fJ4 (4 - D2 )(48 + 96{;2 + 13fJ4
) - 32{;4 (28 - 3{;2 

- 3D4 )z3 

+ 8{;2 (16 - 40{;2 
- 27{;4 + f;6 )z~ + 16{;2 (56 + 14{;2 

- 3f;4 )zJ 

2z3 - D2 + 2J~z2---f;-2 } 
-16(4 - D2 )(4 + M2 )zj] (4z3 - 4 - D2

) ln . I 
3 

2z3 - {;2 - 2y zj - {;2 

7r (as0'.EMQQ) 2 (01ofQ( 3 S1)IO) 1 

O'.gluon(z3) = 216 {;ES (z3 - 2) 2 (2z3 - D2 ) 3 (zj - D2 ) Sgluon(z3) 

x { 4 [fJ2 (64 + 80{;2 + 76{;4 + 7fJ6
) - 96fJ4 (4 + fJ 2 )z3 

- 8(32 - 40{;2 
- 44{;4 

- f;6 )z~ - 16{;2 (28 + 3f;2 )zJ 

+ 16(20 + 7fJ2 )zj - 128z~ ] (2z3 - f;
2 )jzj - {;2 (B.lb) 

- [{;
4 (4 - {;2 )(4 + fJ 2 )(4 + 7{;2

) - 32fJ4 (1 - fJ 2 )(4 + 3fJ2 )z3 

- 8{;2 (16 + 40{;2 + 57{;4 + f;6 )z~ + 16{;2 (8 + 58{;2 + 3f;4 )zJ 

2z3 - 82 + 2J~z2 ___ 5_2 } 

+ 16(16 - 3282 
- M4 )zj] ( 4z3 - 4 - 82

) ln 
3 

2z3 - 82 - 2J zj - 82 
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7r (asaEMQQ) 2 (01otQ( 3 51)IO) 
Squark(z3) = 3888 83 E5 z~ (z3 - 2) 6 (zj - 82) 

x {4z3 (l - 23)(zj -
82

) [-3284 ( 4 + 82)( 48 + 2282 + 384 ) 

4 + 82 - 4z3 

+ 3284 (768 + 40082 + 6654 + 386 )z3 

- 1652(384 + 192082 + 55654 + 2956 
- 288 )z~ 

+ 882(1792 + 12882 - 56884 
- 8086 

- 88 )zi 

+ 2(2048 - 1100882 + 1075284 + 317656 + 9888 + 3810)zj 

- 4( 4096 - 780882 + 342484 + 60086 + 17 88 )z~ 

+ (38912 - 2060882 + 454484 + 50886 
- 388 )z~ 

- 4(13312 - 80082 + 12084 
- 386)z~ + 8( 4512 - 2082 - 1584 ) z~ 

- 32(336 - 82 )z~ + 1280z~0 ] 

- [884 (48 + 2282 + 384
) - 3284 (24 + 582 )z3 

- 282( 448 + 1682 + 884 
- 386 )z~ + 1682(56 - 1082 - 554 )z~ 

+ 82(1152 + 27282 - 384 )zj + 8(32 - 9282 + 554 )z~ 

- 56(16 + 82 ) z~ + 512z~] 

2 2 4 Z3 J4 + 82 
- 4z3 + 2)(1 - z3)(zj - 82)} 

x8(z3 -2) ln~~~~~~----'--=========== 
z3 J4 + 82 - 4z3 - 2)(1- z3)(zj - 82) 

(B.2a) 
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7r (asaEMQQ) 2 (01otQ (3S1) IO) 1 
aquark(z3) = 3888 83 E 5 z~ (z3 - 2)6 (zj - 02) Squark(z3 ) 

x { 4z3 (l - z3)(zj -
82

) [3284 ( 4 + 82)(16 + 282 + 384 ) 

4 + 82 - 4z3 

- 3284 (256 + 4882 + 2284 + 386 )z3 

+ 1682(1152 + 102482 
- 14084 

- 5386 
- 288 ) z~ 

- 882 (5376 + 12882 
- 157684 

- 24086 
- 88 ) z~ 

+ 2(2048 - 76882 
- 1996884 

- 696886 
- 35088 

- 3810)zj 

- 4( 4096 - 2009682 
- 1116884 

- 120886 
- 4368 ) z~ 

+ (38912 - 7539282 
- 1696084 

- 99686 
- 388 ) z~ 

- 4(13312 - 630482 
- 87284 

- 386 ) z~ + 8( 4512 - 50082 
- 1584 ) z~ 

- 32(336 - 82 ) z~ + 1280z~0 ] (B.2b) 

+ [884 (16 + 262 + 364
) - 3284 (8 - 82 )z3 

- 262 (320 - 27282 + 6484 
- 386 )zi + 1682

( 40 - 5482 
- 584 )z~ 

- (1024 - 72084 
- 386 )zj + 8(96 - 3682 - 584 ) z~ 

+ 8(80 + 782 ) z~ - 512z~ ] 

2 2 4 z3 J4 + 82 
- 4z3 + 2J(l - z3)( zj - 82

) } 
x8(z3 - 2) ln~~~~~~~--;========== 

Z3 J4 + 82 - 4z3 - 2J(l - z3)(zj - 82 ) 
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Appendix C Inclusive angular 

distributions in electron-positron collisions 

It is useful to note some general features of inclusive, unpolarized 'l/JQ production 

in e+e- annihilation [45]. Unitarity, parity and angular momentum considerations 

restrict the form of the differential cross section expression 

In particular, the allowed range for the angular coefficient function is constrained to 

lie within the interval -1 :'.S a(E3 ) :'.S 1. We sketch a derivation of this result below. 

It is instructive to consider the subprocess 1*(P) --t 'l/;q(p3 ) + X(P - p3 ) where 

the intermediate photon is either longitudinally or transversely aligned. The squared 

amplitude for this decay 

IAl 2 = L Eµ(P; A)Ev(P; >.)* pµv (C.2) 
>. 

involves a form factor pµv which can be decomposed in terms of tensors that respect 

parity and gauge invariance: 

pµv = _ F ( µv _ pµ pv) + F2 ( µ _ p · P3 pµ) ( 11 _ P · P 3 pv) 
1 g p2 p2 p3 p2 p3 p2 . (C.3) 

Working in the 1* rest frame where the 'l/JQ four-momentum looks like p3 = (E3 ,ji3 ) = 
( £3, lfi3 I sin() cos</>, lfi3 I sin() sin</>, lfi3I cos B), we find that the squared decay amplitude 

for a longitudinally polarized virtual photon reduces to 

(C.4) 
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with 

(C.5) 

For a transverse 1*, the squared amplitude takes the form 

(C.6) 

where 

(C.7) 

Since both !Ali and IAI} are nonnegative, Eqs. (C.4) and (C.7) imply aL ~ -1 and 

-1 S CiT S 1. 

Helicity conservation requires the intermediate photon in e+ e- --+ 1* --+ 'l/JQ + X 

to be transversely aligned relative to the beam axis in the m e = 0 limit. The 'l/JQ 

meson's angular distribution is therefore significantly restricted by simple symmetry 

considerations. In fact, the inclusive angular distribution of any unpolarized particle 

which is produced in electron-positron colliders operating well below the Z-pole goes 

as 1 + aT cos2 ()with -1 S aT S 1. So while observation of a pure sin2 ()distribution 

for a lepton or hadron at a collider like CLEO is possible, a pure cos2 () distribution 

is not. 
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Appendix D Functions entering 

polarized quarkonia production cross 

section 

Functions entering into polarized cross sections [65] : 

qq ---t 'ljJ(>-)g: 

A 3 (8) - 4a;7r2 ( 4(£2 + -u2) - iu) (.52 - 2iu + M4) 
qq[ 51 ] - 81Af3s2 tu(s - M2)2 ' 

( 
A2 2 A ) 

3 (8) l6a;7r2 4(t +u)-tu 
Bqq[ 51 l = ____ A ___ _ 

s1M.s2 t-u(s - Af2)2 ' 

( 
A2 2 A ) 

3 (8) _ l6a;7r2 4(t + u ) - tu 
Cqq [ 

51 l - - s1M.s2 iu(s - M 2)2 ' 

D [3 5(8 ) ] - 0 
qq 1 - ' 

80 3 2 A2 2tAA 3M4 
A [3p(8)] = as7r s - u + 

qq J 21 M 3s2 s(s - M 2 ) 2 ' 

640 3 2 tAA AM2 M4 
B [3 p(8)] = _ as 7r U + U -

qq J 27Ms2 52 (5 - Af2)3 ' 
3 2 AA A 2 4 

C [3p(8)] = _ 640as7r tu+ tM - M 
qq J 27 M.52 52(8 - Af2)3 ' 

640 3 2 A2 AM2 2tAA 
D [3 p(8)] = as 7r S + S - U 

qq J 27 Af .52 ,52(.5 - Af2)3 ' 

5 3 2 A2 A 2 
A [15(8)] = - asJT s + u 

gq 
0 54Ms2 i(i - M 1 2)2' 

(D.la) 

(D.lb) 

(D.lc) 
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Bgq [1 568
)] = C9q[1 568 l] = D9q[1 568

)] = o, 

A [3
5

(8)
1 
__ a~7r 2 (4(s2+u2)-su)(i2- 2su+M4

) 

gq 1 - 54M3S2 su(i - M2)2 ' 

2 3 2 (4(A2 A2) AA) B [35(8) ] - as7r S + U - SU 

gq 1 - 21 Ms2 su(i - M 2 ) 2 ' 

4 3 2 (4(A2 A2) AA) C [35(8) ] - as7r S + U - SU 

gq 1 
- 21Ms2 su(i - M 2 ) 2 ' 

4 3 2 (4(A2 A2) AA) 
[35(8)

1 
_ as7r S + U - SU 

Dgq 1 - 21 Ms2 su(i - M 2 ) 2 ' 

10 3 2 tA2 2 A A 3M4 
A [3 p(8)] _ _ as 7r - su + 

gq J - 9M3 s2 i(i - M 2 ) 2 ' 

80 3 2 A A A Af 2 Af4 
[
3 p(8)] _ as 7r su + u -

Bgq J - 9Ms2 £2(£ - Af2)3 ' 
3 2 A 2 

3 (8) _ 80as 7r t + M 
Cgq[ PJ ] - 9Ms2 £2(£ - Af2)2' 

3 2 A2 2 A A 
D [3 p(8)] _ 8 0 as7r t - M (2s + t) 

gq J - 9Ms2 £2(£ - Af2)3 , 

5 3 2 

Agg [1561)l = 12i:.s2 [.s2(S - M2)2 + siu(M2 - 2.5) + (iu)2] 

(s 2 
- M 2s + M4)2 - iu(2£2 + 3iu + 2u2) 

x siu(s - Af2)2(£ - Af2)2(u - Af2)2 , 

B [15(1)] - C [15(1)] - D [15(1)] - 0 u 0 - u 0 - u 0 - ' 

1 We have introduced the variable z = v1ffi to simplify some of the coefficients. 

(D.2a) 

(D.2b) 

(D .2c) 

(D .3a) 

(D .3b) 



73 

A 35(8 ) _ a;7r2 [27(82-tu-M2s)+l9M4
] 

gg[ 1 l - 36M3 s2 (s - M 2)2(i - M 2)2(u - M 2 ) 2 

x [.s 2 (.s - M2
)

2 + iu (si + iu +us - .s 2
)], 

B 3 (8) __ a;7f2 [27(82 
- iu - M 2s) + 19M4

) (8 2 + £2
) 

gg[ 51 l - 1sM.s2 (s - M2)2(i - M 2)2(u - M2 ) 2 ' 
(D.3c) 

C 3 (8) __ a;7f 2 [27(s2-tu-M2s)+l9M4 ](s2+u2) 
99

[ 
51 l - 1sM.s2 (s - M2)2(i- M 2)2(u - M2 ) 2 ' 

D 3 (8 ) __ a;7r2 [27(8 2 
- iu - M 2s) + 19M4

) 82 

gg[ 51 ]- 9Ms2 (s-M2)2(t-M2)2(u-M2)2 ' 
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5a37r2 { 
Agg[3PJ8

)] = M;s2 M2s3(s - M2)3(s4 
- 2M2s3 + 7M4 s2 - 6M6 s + 3M8

) 

+s2.z2(s - M 2)(s6 
- SM2s5 + 23M4 s4 

- 50M6 s3 + 56M8 s2 

-31M10 s + 6M12 ) 

-sz4 (4s 6 
- 9M2s5 + 3IM4 s4 

- 7IM6 s3 + 77M8 s2 - 34M10s 

+6M12) 

+z6 (6s 5 + 4M2s4 + 20M4 s3 - 33M6 s2 + 22M8s - 3M10
) 

-2z8(2s3 + 2M2 s2 + 5M4 s - 3M6
) 

+z10 (s - M 2
)} / (sz2(s - M 2)3(M2s + z2

)
3
), 

B [3p(8)] = _ 5a;7r
2

{4 's(M2 _ ')7 gg J Ms2 u u 

-iu3(M2 - u) 4 (M8 
- 1M6 u+42M4 u2 - s2M2u3 + 24u4) 

+i2u2(M2 - u)3(2M10 - M 8 u - 39M6 u2 + I52M4 u3 

-166M2u4 + 68u5
) 

-i3u(M2 - u)2(M12 + 9M10u + 2M8u2 - I34M6 u3 + 36IM4 u4 

-339M2u5 + 116u6
) 

+i4u(M2 - u)(11M12 + 9M10u + l6M8 u2 - 274M6 u3 

+589M4 u4 
- 471M2u5 + i2su6

) 

+i5 (M2 - u)(4M12 - 5lM10u + 2M8u2 - 36M6 u3 + 282M4u4 

-329M2u5 + sou6
) 

-i6 (20M12 - 129M10 u + 94M8u2 - l2M6 u3 + l50M4 u4 

-147 M 2u5 + Su6
) 

+si7 (5M10 - I9M8 u + 6M6 u2 + 6M4u3 - 3M2u4 + 5u5
) 

-8i8 (5M8 
- llM6 u - 2M4 u2 + 1 M2u3 - 5u4

) 

+20-i9(M2 - u) 2(M2 + u) 

-4i10(M4 - u2)} / (s2i2u2(s - M2)3(i- M2)3(u - M2)3), 

C99 [
3 PJ8

)] = B99 [
3 P)8 l]1£.__.,,, (D.3d) 
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D [3 p(s)] = 10a~7r2 {4M2 '6(8 - M2)s 
gg J M82 s 

-M2 84 22(8 - M 2)2(2283 
- 38M282 + l9M4 8 - 4M6

) 

- 28324 (8 5 
- 22M2 84 + 62M4 83 

- 62M6 82 + 27 M 8 8 - 4M10
) 

+8226 (284 
- l7M2 83 + 66M4 82 

- 3lM68 + 8M8
) 

+2828 (383 
- 6M2 82 - 3M4 8 + 2M6

) 

- 28210 (58 - 3M2) + 4212 } / (8 224 (8 - M 2)3(M28 + 22)3
). 
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