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Abstract 

This thesis examines several situations in which effective field theories may be 

used to generate perturbative predictions for nonperturbative phenomena. The de­

cay mode K1 -t 7r+7r-e+e- is analyzed in great detail using chiral perturbation 

theory, and the form factors for the decay are determined, along with the sizes of var­

ious CP violating observables. One of these variables turns out to be quite sizeable, 

approaching 20% for appropriate cuts on the lepton pair invariant mass. Fragmenta­

tion of a c quark to the excited charmed baryon doublet A~ is also studied within the 

framework of a chiral theory, and various decay distributions are expressed in terms 

of nonperturbative fragmentation parameters. A perturbative calculation of related 

fragmentation parameters is also briefly discussed. 
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Chapter 1 

Introduction 

It has long been known (iJ that our most promising candidate for a theory of the 

strong interactions, Quantum Chromodynamics (QCD), displays an energy dependent 

coupling of quark and gluon fields that decreases with increasing energy. Specifically, 

in the leading logarithm approximation, the dependence of the QCD coupling a 8 on 

h t .f • • b [2] t e momen um trans1er q is given y 

2 l27r 
O'.s ( q ) = 2 ' 

(33- 2Nt)ln(xf-) 
QC D 

(1) 

where Nt is the number of quark flavors having mass less than #, and AQcD is 

an empirically determined quantity, on the order of a few hundred MeV. Although 

(1) has become a very bad approximation by the time q2 has fallen to AbcD' it is 

sufficient to indicate that the QCD coupling will have become of order one at this 

point, rendering a perturbative treatment of such low energy processes impossible. 

Unfortunately, this is precisely the energy range we find ourselves faced with if 

we hope to describe interactions of the low-lying mesons and hadrons as interactions 

of quark bound states. To avoid summing an infinite number of contributions to any 

physical process, one therefore employs an effective theory, which incorporates all of 

the symmetries of the full theory, but extends only to a given order in some small 

parameter. The challenge in constructing any such effective theory, of course, lies in 

finding that small parameter. 

One child of such a prescription, Chiral Perturbation Theory, will be used to study 

CP violation in the decay J{L -+ 7r+7r-e+e- in Chapter 2. Here, the relevant small 

parameters are the ratios of various pseudoscalar momenta to the chiral symmetry 

breaking scale, Ax. An extension of Chiral Perturbation Theory to include heavy 

hadron fields, called Heavy Hadron Chiral Perturbation Theory, is then employed in 



2 

Chapter 3 to study the fragmentation of a heavy c quark into heavy baryons such as 

Ac, ~c, ~~, Aci, and A~1 . This effective theory utilizes, in addition to the systematic 

expansion of ordinary Chiral Perturbation Theory, an expansion in the inverse mass 

of the heavy fields. The final section of this work will outline a purely perturbative 

QCD calculation that could possibly illuminate various parameters appearing in the 

fragmentation discussion of the previous chapter. 
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Chapter 2 

In this chapter, we apply the techniques of chiral perturbation theory to the study 

of the weak decay l<L-+ 7r+7r-e+e- . All of the form factors for the dominant one­

photon contribution to the decay, in which the e+ e- pair is produced by a single 

virtual photon, are calculated at leading order in Chiral Perturbation Theory. These 

factors depend on one unknown linear combination of coefficients in the chiral La­

grangian, and the unknown parameter may be fixed by a careful experimental study 

of the differential decay distributions. The magnitudes of two CP violating observ­

ables are also calculated, one of which receives significant contributions from direct 

CP violation, an effect heretofore unobserved experimentally. 

1 INTRODUCTION 

Although the experimental data set for the decay l<L -+ 7r+7r-e+e- is fairly 

meager, the E731 fixed target experiment at Fermilab has already observed 10 such 

events[
1
J, and its successor, E832, whose primary goal is to look for a nonzero value 

of E
1 
/ E, will reconstruct on the order of 1000 events in this rare mode [

2
J. The ]{ L -+ 

7r+7r-e+e- weak decay amplitude is dominated by the process, f{L -+ 7r+7r-/* -+ 

7r+7r- e+ e-, wherein a single virtual photon creates the e+ e- pair. This one photon 

contribution to the decay amplitude has the form 

M (11') . s1Gpa [·a µ>..pa F µ F µ J -(k ) (k ) = z 47r f q2 z c P+>.. P-p qa + +P+ + -P- · u - /µV + ' (1) 

where G F is Fermi's constant, a is the electromagnetic fine structure constant, s1 '.::::'. 

0.22 is the sine of the Cabibbo angle and f '.::::'. 132 MeV is the pion decay constant . 

The 7r+ and 7r- four-momenta are denoted by P+ and P-, while the e+ and e- four­

momenta are denoted k+ and k_. The sum of the electron and positron four-momenta 
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is defined to be q = k_ + k+. The Lorentz scalar form factors G and F ± depend on the 

scalar products of the four-momenta q,p+ and P-· Neglecting CP nonconservation, 

interchange of the pion four-momenta 

P+ --+ P- and P- --+ P+, (2) 

transforms the form factors as follows: 

F+ --+ F_ , F_--+ F+ (3) 

In the following sections, we compute the CP conserving contribution to the form 

factors G, F± using chiral perturbation theory at one-loop order. This is necessary, as 

the tree level amplitude vanishes. The coefficients of some of the local operators ap­

pearing at the same order in the chiral expansion are determined by the experimental 

value of the pion charge radius and the measured]{+--+ 7r+e+e- and ]{L--+ 7r+7r-/ 

decay rates and spectra. 

In addition, we compute an important tree level contribution to the form factors 

F± that arises from the small CP even component of the ]{L state. This contribution 

to the F± form factors, arising from indirect CP nonconservation, has symmetry prop­

erties under interchange of the pion momenta opposite to those of the CP conserving 

contribution. If 

P+ --+ P- and P- --+ P+' (4) 

then the CP violating one-photon form factors transform as 

F+--+ -F_ F_--+ -F+ (5) 

The expression that results from squaring the invariant matrix element in eq. (1) 

and summing over e+ and e- spins is symmetric under interchange of e+ and e- mo-
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menta. Physical variables that are antisymmetric under such interchange arise from 

the interference of the short distance Z-penguin and W-box diagram contributions 

and the two photon piece with the one photon amplitude given in eq. (1). 

In the minimal standard model, the coupling of the quarks to the W-bosons has 

the form 

r. - 92 - ) Vjkdk Wµ H 
,t._,znt - - y'2° UL/µ L + .c. (6) 

Repeated generation indices j, k are summed over 1,2,3 and 92 is the weak SU(2) 

gauge coupling. V is the 3 x 3 unitary Cabibbo-Kobayashi-Maskawa matrix that 

arises from diagonalization of the quark mass matrices. By redefining phases of the 

quark fields, it is possible to write V in terms of the four angles fh, f)z, 83 and 8. The 

Bj are analogous to the Euler angles and 8 is a phase that, in the minimal standard 

model, is responsible for the observed CP violation. Explicitly, 

i8 c1c2c3 - s2s3e 

'8 
cis2c3 + c2s3e1 

(7) 

where Ci = cos ei and Si = sin ei. It is possible to choose the Bj to lie in the first 

quadrant. If this is done, the quadrant of 8 has physical significance and cannot be 

chosen by a phase convention for the quark fields. A value of 8 other than 0 or 7r 

gives rise to CP violation. 

The short distance W-box and Z-penguin Feynman diagrams depend on the vts 
element of the Cabibbo-Kobayashi- Maskawa matrix, and it is very important to 

be able to determine this coupling experimentally. In this chapter we calculate the 

contribution to the J(L --+ 7r+7r-e+e- decay amplitude arising from the Z-penguin 

and W-box diagrams; this can be determined using chiral perturbation theory since 

the left-handed current S/µ(l - 1s)d is related to a generator of the chiral symmetry. 
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The J(L --+ 7r+7r-e+e- mode is also fertile ground for constructing CP violat­

ing observables. At the present time, all observed CP nonconservation has its ori­

gin in K 0 
- R0 mass mixing, also known as indirect CP violation. In the decay 

J( L --+ 7r + 7r- e + e- , however , we may construct a CP violating variable that gets an 

important contribution from direct CP nonconservation in the Z-penguin and W-box 

diagrams. In the J{L rest frame, this variable, 

(ff- x ff+). (k_ - k+) 
Ac p = < _, _, > , 

l(ff- x ff+)· (k_ - k+)I 
(8) 

is even under charge conjugation and odd under parity. It is also odd under inter­

change of k+ and k_. The real and imaginary parts of vts are comparable, and hence 

the CP conserving and CP violating parts of the Z-penguin and W-box diagrams 

are of roughly equal importance. Acp, arising as it does from interference between 

the penguin and box diagrams and the one-photon pieces, therefore gets a significant 

contribution from this direct source of CP nonconservation. In the following sections, 

we calculate Acp in the minimal standard model, but unfortunately find it to be 

small; IAcpl ~ 10-4 . 

The decay J{L --+ 7r+7r-e+e- has been studied previously by Sehgal and Wan-

. r31 d b H ·1· d S h lr41 nmger an y e1 iger an e ga . These authors adopted a phenomenolog-

ical approach, relating the J{L --+ 7r+7r- e+ e- decay amplitude to the measured 

I<L --+ 7r+7r-/ decay amplitude. In the systematic expansion of chiral perturba­

tion theory, we find that there may be important additional contributions to the 

J(L --+ 7r+7r-e+e- decay amplitude for q2 = (k_ + k+) 2 ~ 4m~ that were not 

included in this previous work. It was pointed out in Refs . 3 and 4 that indirect 

CP nonconservation from J(O - R0 mixing gives an important contribution to the 

]{L --+ 7r+7r - e+ e- decay rate, producing a CP violating observable, Bcp, that is 

quite large. We reexamine Bcp using the form factors determined in the following 

sections of this chapter. 
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2 CHIRAL PERTURBATION THEORY 

Chiral perturbation theory provides a systematic approach to understanding the 

one-photon part of the KL --+ 7r+7r-e+e- decay amplitude. It uses an effective 

field theory that incorporates the SU(3)L x SU(3)R chiral symmetry of QCD and an 

expansion in powers of momentum to reduce the number of operators that occur. The 

formal parameter of expansion is (p2 /A~), where Ax is on the order of 1 GeV, and p 

is the momentum of any of the pseudo-Goldstone bosons. In the chiral Lagrangian, 

the 7r's, K's and T/ are incorporated into a 3 x 3 special unitary matrix~: 

(2'M) ~=exp T (9) 

where 

a ( 7ro / y'2 ~ ry / y'6 
M = 7r >..a/h = 7r 

](-

(10) 

The Aa are the Gell-Mann matrices for SU(3), and 7r1 =i= i7r2 = y'27r±, 7r4 =i= i7r5 

y'2J(±,7r6-i7r7 = y'2J(0 ,7r6+i7r7 = y'2R0 ,7r3 = 7r 0 ,and7r8 = T/· In order to construct 

our chiral Lagrangian, we must know how~ transforms under an SU(3)Lx SU(3)R 

transformation. The general formalism for such transformations in the presence of 

spontaneously broken global symmetries has been worked out by Callan, Coleman, 

Wess, and Zumino151
, and we outline it briefly below. 

In the limit of massless u, d, and s quarks, the QCD Lagrangian is symmetric 

under global transformations of the group G =SU(3)L x SU(3)R, under which the left 

and right-handed quark fields transform independently: 

(11) 

This symmetry is spontaneously broken to the vector subgroup, H=SU(3)v, by the 
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< {J'lj; > condensate. The Goldstone bosons are a result of this spontaneous symmetry 

breaking, and are local parameters for transformations in the coset space G / H 

SU(3) . The CCWZ formalism instructs us that if we consider a quantity 

(12) 

where X is a set of broken generators, then :=: transforms under an element g of G in 

the fashion 

:=:(x) -t g:=:(x)h- 1(g,:=:(x)), (13) 

with g E G and h E H. Note that h is a local transformation, since it depends on 

the space-time coordinate implicitly through its dependence on :=:( x ). Working in the 

chiral representation, g takes the explicit form 

g= [~ ~] (14) 

where L and R are the SU(3)L and SU(3)R transformations, respectively. The un­

broken transformations, on the other hand, have the above form with L and R set 

equal: 

(15) 

If we choose as the broken generators the SU(3)L-SU(3)R generators, 

Xa=[Aa/(Ovl2,f) Q l 
-Aa/(vl2,f) 

(16) 

then we find that 
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=( )- iXaira_[e(x) O] 
~x - e - , 

o et ( x) 
(17) 

with e2 = 'E. Eq. (13) then immediately tells us that 

[
e(x) o ] [L o] ['(x) o l [u-1 o l 

0 et(x) ----t 0 R 0 et(x) 0 u-1 
(18) 

which implies that, under SU(3)L x SU(3)R transformations the 'E field transforms as 

'E( x) ----t L'E( x )Rt (19) 

We now construct our chiral Lagrangian. Terms not proportional to the quark 

masses must be invariant under the transformation of eq. (19), while those propor­

tional to the quark masses must transform in the same way as do the quark mass 

terms in the QCD Lagrangian, that is, like (3L, 3R) + (3L , 3R)· At leading order , 

O(p2 ), the strong and electromagnetic interactions of the pseudo-Goldstone bosons 

are described by the chiral Lagrange density 

(20) 

where v is a parameter with dimensions of mass to the third power and mq is the 

quark mass matrix: 

mq = (~u ~d ~ ) 

0 0 ms 

(21) 

The coefficient in front of the derivative term is chosen so as to give the conventional 

normalization for the kinetic energy. In this paper we neglect isospin violation in the 
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quark mass matrix and set mu = md = mz . The first term on the right-hand side of 

eq. (20) is clearly an O(p2 ) term; it may at first seem strange, however, that we treat 

the second term in eq. (20) as an O(p2 ) term as well, being proportional to mq as it 

is. A quick calculation, however , shows that eq. (20) induces the pion, kaon, and eta 

masses: 

2 8vmz 
m7r = [2 

2 _ 8v (ms + mz) 
mK - J2 2 

2 = 8v(2ms+mz) 
mT/ J2 3 ' (22) 

which lead immediately to the Gell-Mann- Okubo mass relation 

3 2 2 2 m 71 - 4m K + m7r = 0 (23) 

Thus, we see that the two terms in eq. (20) are manifestly of the same order; one 

factor of quark mass counts as two factors of psuedoscalar boson mass, as far as power 

counting is concerned. 

We may also determine the constant fat this point by considering the left-handed 

currents that arise from eq. (20) and from the QCD Lagraagian. Keeping the part of 

the current that involves Jr-, for instance, one finds: 

U/µ(l -1s)d = - f0µ7r- +Terms with more powers of Jr. (24) 

Recalling the definition of the pion decay constant, 
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(25) 

we see immediately that f = f7C" ~ 132 MeV at leading order in chiral perturbation 

theory. Note also that, because of the symmetry of the first term on the right-hand 

side of eq. (20) with respect to 7r and I<, the pion and kaon decay constants are 

identical at this order. 

The effective Lagrangian for b.S = 1 weak nonleptonic decays transforms as 

(8L, lR) + (27 L, lR) under SU(3)L0 SU(3)R· The (8L, lR) amplitudes are much larger 

than the (27 L, lR) amplitudes and so we will neglect the (27 L, lR) part of the effective 

Lagrangian. The effective Lagrangian for weak radiative kaon decay is obtained by 

gauging the effective Lagrangian for weak nonleptonic decays with respect to the 

U(l)Q of electromagnetism. At leading order in chiral perturbation theory, the b.S = 

1 transitions are described by 

(26) 

The matrix T in (26) projects out the correct flavour structure of the octet: 

(

0 0 0) 
T = 0 0 0 

0 1 0 

(27) 

and gg is a constant determined by the measured I<s --+ 7r+7r- decay rate, with 

magnitude lgs I ~ 5.1. In (20) and (26) Dµ represents a covariant derivative: 

(28) 

where 



(

2/3 

Q = 0 

0 

13 

0 

-1/3 

0 

is the electromagnetic charge matrix for the three lightest quarks, u, d and s. 

3 POWER COUNTING IN CHIRAL PERTURBATION THEORY 

(29) 

We have already mentioned that chiral perturbation theory is a systematic ex­

pansion in powers of momentum. In this section we provide a brief derivation of the 

order of an arbitrary Feynman graph that arises in this theory. The complete chiral 

Lagrangian will contain terms with arbitrary even powers of derivatives, arbitrary 

integer powers of the quark mass matrix , mq, and arbitrary combinations of the two. 

Let us denote by Nn the number of vertices in a given graph arising from a term in 

the chiral Lagrangian whose total derivative and quark mass matrix mass dimension 

is n, that is, from a term in the O(pn) sector of the Lagrangian. Now, because the 

pseudo-Goldstone boson fields appear in the Lagrangian only within the dimension­

less ~' the coupling in front of an O(pn) term must have mass dimension 4 - n . The 

contribution of couplings to the mass dimension of a given graph is therefore 

[couplings ] = L Nn(4 - n) . (30) 
n 

Furthermore, in light of the expansion of~ in terms of component fields, each boson 

field is accompanied by a factor (1/ !), so that if we have NE external and N1 internal 

boson lines, we will pick up a factor (1/ J) 2Ni+NE. Using the relation 

N1 =NL+ Nv -1 =NL + LNn -1 (31) 
n 

where NL is the number of loops in the graph and Nv the number of vertices, we find 

that the f factors contribute 
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[!factors]= 2 - NE - 2NL - 2 L Nn (32) 
n 

to the mass dimension of a graph. Finally, because our boson states have mass 

dimension 1, we gain an additional factor of mass for each external boson line. 

The only other quantities with mass dimension in the graph are the external 

particle momenta, which we shall denote generically by p. Let us say that a given 

graph depends on these momenta like pD. Then, combining the results from eqs. 

(30), (31), and (32), we find that the total mass dimension of the interaction, M, is 

(33) 
n 

But this is just a new effective interaction in the Lagrangian, and so must have mass 

dimension 4. This restriction immediately determines D: 

D = 2 + L N n ( n - 2) + 2N L (34) 
n 

Eq. (34) shows us that O(p2 ) terms in the Lagrangian used at tree level give us the 

leading O(p2) contributions to a physical process, as we expect. More importantly, 

O(p4 ) contributions arise both from O(p4 ) terms in the Lagrangian used at tree level, 

and from O(p2 ) terms used at one loop level. It is important to keep terms from both 

sources in order to have a consistent expansion. 

The reason for taking Ax ".::::'. 1 GeV should now be apparent. In going from tree 

level to one loop level, we gain an f 2 in the denominator, a p2 in the numerator, and 

a factor of (1/l67r2 ) from the loop integration. Higher dimension local terms in the 

chiral Lagrangian must be suppressed by some relatively large mass scale, which is 

what we call Ax. We require the infinite parts of the loop integrations, however, to be 

canceled by corresponding pieces of such higher dimension local terms and, for this 
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reason, can argue that their coefficients be approximately equal. We therefore expect 

Ax '.:::: )167r2 J2 = 47r f '.:::: 1 GeV. 

4 THE ONE PHOTON AMPLITUDE 

The I< L state 

(35) 

is mostly the CP odd state 

(36) 

with small admixture of the CP even state 

(37) 

The parameter E characterizes CP nonconservation in J< 0 - J?O mixing. At leading 

order in chiral perturbation theory, the I<L ----* 7r+7r-/* ----* ?r+?r-e+e- decay ampli­

tude arises via the CP even component of I<L . Writing the form factors contributing 

to J{L----* ?r+?r-/* as a power series in the chiral expansion, 

(1) (2) 
F± = F± + F± + ... , a= a(1) + a(2) + ... (38) 

we find that the Feynman diagrams in Fig. 1 give 



16 

Q(l) = 0 

p(l) __ 32gsf2 (mJ< - m;.)7r2
E 

+ - [ q2 + 2q . P+] (39) 

p(l) = + 32gsf2(mk - m;.)7r
2

E 

- [ q2 + 2q . P-] 

The subscripts denote the order of chiral perturbation theory at which each term 

arises, i.e., Fim) and Q(m) give a contribution of order p2m-l to the square brackets of 

eq. (1 ). Q(l) vanishes simply because G is accompanied by three factors of momentum 

in eq. ( 1), and is therefore at most an 0 (p3 ) effect. 

Despite the fact that E ~ 0.0023 ei
440 (in a phase convention where the I<0 ---+ 

7r7r(J = 0) decay amplitude is real) is small, it is important to keep this part of the 

decay amplitude. Other contributions not proportional to E occur only at higher order 

in chiral perturbation theory. We neglect direct sources of CP nonconservation in the 

one-photon part of the decay amplitude. Experimental information on E
1 suggests 

that they are small. 

Fig. 1. Feynman diagrams contributing to Fi1) . 
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Proceeding to next order in the chiral expansion, the form factors G(2), Fi2) arise 

both from O(p4 ) local operators and from one-loop Feynman diagrams involving 

vertices from the leading Lagrange densities in (20) and (26). The form factor G(2), 

however, arises solely from local operators, as the one loop Feynman diagrams and 

tree graphs involving the Wess- Zumino term [BJ[?J do not contribute. The contribution 

of the O(p4 ) local operators to G(2) is fixed by the measured J{L ---t 7r+7r-/ decay 

t [8] [9] t b ra e o e 

( 40) 

The experimentally observed f{L ---t 7r+7r-/ Dalitz plot suggests that the form factor 

G has significant momentum dependence, indicating that G(3) is not negligible, and 

that our extraction of G(2) from the rate is not completely justified [ioJ . 

The form-factors Fl2
) get contributions both from local operators of O(p4 )(uJ and 

from one-loop diagrams involving vertices from the leading Lagrange densities in (20) 

and (26) . For f{L ---t 7r+7r-e+ e- the local operators that contribute are 

_e,(2) = - ieAcr(µ) pµvTr [Q(D ED y:,t + D y:,t D E)] s 1671"2 µ v µ v ( 41) 

and 

cW = i G:;,ief
2
g8 

[ a1(µ)FµvTr[QT(EDµEt)(EDvEt)] 
2 1671"2 

+a2(µ )FµvTr[ Q(EDµEt)T(EDvEt)] 

+a3(µ)FµvTr[T[Q , E]DµEtEDvEt - T DµEDvEtE[Et, Q]] 

+a4(µ)FµvTr[TEDµEt[Q, E]DvEt] ] + H.c. 

( 42) 

The coefficients Acr, ai, a2, a3 and a4 depend on the renormalization procedure used, 

and we employ dimensional regularization with MS subtraction. The dependence 



18 

of the coefficients Acr, ai ,2,3,4 on the subtraction point µ cancels that coming from 

the one-loop diagrams. Note that the basis of operators in eq. ( 42) is slightly dif­

ferent than that used in Ref. 11. With this basis of operators, the combination of 

counterterms 

( 43) 

is independent of the subtraction point µ at one loop. 

The value of Acr is fixed by the measured 71"+ charge radius; < r; >= 0.44 ± 

0.02 fm2
. The one-loop diagrams in Fig. 2 give, using MS, 

(
271"

2
) 2 2 Acr (µ) = - 3 f < r 7r > 

Fig. 2. Feynman diagrams contributing to the 7r± charge 
radius, < r; >, at leading order in chiral perturbation theory. 

which implies that at the subtraction point µ = 1 Ge V, 

( 44) 
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Acr(lGe V ) = -0.91 ± 0.06 (45) 

A linear combination of ai and a2 is fixed by the measured J<+ -t ?r+e+e- decay 

amplitude. It is fortunately the same combination of ai and a2 that enters into the 

KL -t 7r+7r- e+e- decay amplitude. The one-photon part of the J<+ -t ?r+e+e­

decay amplitude can be written in terms of a single form factor J(q2): 

The one-loop diagrams in Fig. 3 and the operators in ( 41) and ( 42) combine to give 

( 4 7) 

where 

( 48) 

This relation defines the µ independent constant w+ 
11 21

, which has been experi-
• [1 3] 

mentally determmed to be 

w - o s9+0.24 + - . -0.14 ( 49) 
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~:+ Jr+ 
K+ 7t+ 

~+ ~:+ ~+ 
1t 

KV 
7t 

K 1t+ K 7t+ 

ro+ K+ 1t+ 
K+ 7t+ K+ 7t+ 

K~.OT K~PT i a~.+ K+ + 
' 1t 

(a) (b) 

1t+ 

K+ 

(c) (d) 

Fig 3. Feynman diagrams contributing to the amplitude for J<+ ---+ 7r+/* at leading 
order in chiral perturbation theory. The solid square denotes a vertex from the gauged 
weak Lagrangian (26), and the solid circle denotes a vertex from the gauged strong 
Lagrangian in (20). (a) involves only weak and electromagnetic vertices, while (b) 
also has a strong vertex. ( c) is the contribution from the kaon and pion charge radii 
(including both loop graphs and the tree level counterterm). (d) is the contribution 
of the weak counterterm as given by (42) . We have not shown the wavefunction 
renormalization of the tree graphs for the process as the sum of these graphs vanishes. 
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Using the central values of Acr(lGeV) and w+, we find that 

a1(lGeV) + 2a2(lGeV) = -6.0 , (50) 

with an associated error around 10%; this error is correlated with the uncertainty in 

Acr(lGeV). Throughout the remainder of this work we will use the central values 

of Acr(lGe V) and a1 (lGe V) + 2a2(1Ge V) , suppressing the associated uncertainties. 

Note that the contributions Acr(lGe V) and ( ai + 2a2)(1Ge V) to J( q2) are separately 

quite large but nearly cancel against each other. 

At O(p4 ), the form factors Fi2) for KL ---+ 7r+7r-e+ e- decay follow from the 

Feynman diagrams in Fig. 4 and tree level matrix elements of the operators in ( 41) 

and ( 42). We find, using MS subtraction, that 

F~2) = 98 (-~q2 [a1(µ) + 2a2(µ) + 6a3(µ) - 6a4(µ)] - 4q2 Acr(µ) + ~q2 + <f>KTJ + <f>Krr 

1 

-4 j d+2x(l -x)fn ( m;- q:~(l -x)) - m;en ( 1 - q'x~~ x) )] 
0 

+2q
2 C2 + ;qk ~:! P-)) (¢K(q

2
) - \b.(q

2
) +~en (;:i)) ) 

(51) 

where 
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( 

1 1-y 
1 2 2 (q2x(l - x) + 2q · p_xy) 

+-3 ( m K - m7r) 2 j dy j dxf n ( 1 - 2 ( ) 2 2 ( ) ) 
m K 1 - y + mT/y - m'l["y 1 - y 

0 0 

1 1-y 

+3 J dy J dxfn (i - (q2x(l - x) + 2q. P+XY) ) 
m}((l - y) + m~y - miy(l - y) 

0 0 

1 1-y 

+ j dyy j dx : 2 [(q(l - x ) + P-Y) · (4q + 6p+ + 4p_) - 2mk - 2p+ · (q + P-)l 
0 0 

1 

1 

J d ( 
(x - 1)(3mJ< - 2m;)) 0 ( x(l - x)(q2 + 2q · P-) ) + x 1 + x + · {,n 1 - -----------

q2 + 2p_ · q m}<(l - x) + m~x - mix(l - x) 
0 

(52) 

with 

µi = m1"(1- y) + m~y - m;y(l -y) - q2x(l - x) - 2q · p_xy (53) 

The remaining function is 
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A. = ( 2 - 2) (fl d fl-yd n (1 - (q2x(l - x) + 2q. P-XY)) 
'f'K7r mK m'lr Y X-tn 2 2( )2 mKy + m7r 1 - y 

0 0 

1 1- y 

+ f dy f dxfn (1 - q2x(l - x) + 2q . P+XY) 
m2 y + m~(l - y)2 

O O K 
1 1-y 

+2f dyy J dx (P++P-+q) · (q~~ - x)+YP- -P+) 
0 0 

f
ld ( mJ<(x-l))n ( x(l- x)(q

2
+2q·p-))) + x 1 + x + -tn 1 - --------

q2+2q · p_ m~(l-x)2+mkx 
0 

(54) 

with 

µ~ = mky + m;(1 - y) 2 
- q2x(l - x) - 2q · p_xy (55) 

The Gell-Mann- Okubo mass formula (23) has been used to simplify some of 

the dependence on the pseudoscalar masses in (52) and (54). F.?) is obtained from 

(51) by taking P+ -t P- and P- -t P+· Notice that the terms (a1 + 2a2) and Acr 

that appear in the expression for Fi2) have a relative sign difference as compared 

to their appearance in the expression for f ( s) given in eq. ( 4 7), and will therefore 

reinforce each other, as opposed to the cancellation we observed previously. The 

uncertainty in Acr(lGeV) and w+ gives rise to an uncertainty of approximately 10% 

in the combination of counterterms that appears in (51). The one photon part of the 

I<L -t 7r+7r-e+e- decay amplitude is the largest and dominates the rate. In the next 

section, we use the form factors calculated here to obtain df(KL -t 7r+7r-e+e-)/dq2 . 

One scale independent linear combination of counterterms, WL = a3 - a4, remains 



(a) 

(m,111) = (K-. ,o) , (K~ ~) 
<•-·Kol . <.-.Ko> 

(c) 

(e) 
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(b) 

-4,+ ~-:K+ 
Kr K~ 1t' 

+ 

rC 1C 

K'____j_······ Ko--~ L----v7 L----VK+ 
re 1c 

(d) 

(f) 

Fig 4. Feynman diagrams contributing to the CP-conserving amplitude for J(L --+ 
71"+71"-/* at leading order in chiral perturbation theory. The notation is the same as 
in Fig. 3, and we have not shown the wavefunction renormalization of the tree graphs 
for the process as the sum of these graphs vanishes . 
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undetermined by the present experimental data, and for this reason, we cannot predict 

the rate for KL--+ 7!"+7!"-e+e- . This is the only undetermined constant, however, and 

the entire function df(I<L--+ 7!"+7l"- e+e- )/dq2 is experimentally accessible. 

5 THE DIFFERENTIAL DECAY RATE 

The KL --+ 7!"+7!"- e+ e- decay rate is obtained by squaring the invariant matrix 

element in eq. (1), summing over the e+ and e- spins, and integrating over the 

phase space. Since the e+ and e- four momenta occur only in the lepton trace, 

Tr [~-/v~+ /µ ] , the phase space integrations over k_ and k+ produce a factor 

(56) 

The remaining phase space integrations can be taken to be over q2 and the sum 

and difference of the pion energies in the KL rest frame, Es = p~ + pD_, En = p~ - pD_. 

The contribution of the form factors F ± and G to df / dq2 do not interfere. We may 

therefore write 

with 

dfp 

dq2 
(57) 
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dfc G}a
2
si J J 2 

dq2 = mKf226(27r)73q2 dEs dEDJGI 

[m!q2-m!(P- · q) 2 
- m!(P+ · q) 2 + 2(p+ · P-)(q · P+)(q · P-) - q2(P+ · P-)'] 

df p G}a
2
si J J [ 2 

dq2 =mKJ226(27r)73q4 dEs dED JF+q · p++F_q·p-J 

- q
2 (IF+l'm; +IF-I'm!+ 2Re(F+F~)P+ · P-)] 

(58) 

In eq. (58), the difference of pion energies is integrated over the region 

E (max) < E < E(max) h . - D D D , w ere 

E
(max) _ 
D - (59) 

while the sum of pion energies is integrated over the region E1min) < Es < E1max) 

with boundaries 

E1max) = mK - /qi­

E(min) _ mk - q
2 + 4m;. 

S - 2mK 

(60) 

The scalar products appearing in the expression for the rates are easily expressed 

in terms of Es, ED and q2 : 

(61) 

The form factors Fi1
) and Fi2) have the opposite property under interchange of 
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pion momenta, as indicated in eqs. (3) and (5), and consequently do not interfere in 

df / dq2. Neglecting terms in the chiral expansion of O(p6 ) and higher, the different ial 

decay rate given in (57) becomes 

dr ( T/ ---+ + _ + _) _ dr c<2) dr F(l) dr F(2) 

dq2 1'l.. L 7r 7r e e - dq2 + dq2 + dq2 (62) 

In Fig. 5 we have graphed 

(63) 

for each of the three terms on the right-hand side of (62), where y = H /(mK-2m;or ), 

f KL is the total width of the f{L, and we have set WL = 0. 

35 

' 30 • 1 ctr 
' f dy 

25 

' 
20 ' 

-Total 

' 15 
\ 

JO 

5 

0 0.2 0.4 0.6 0.8 
y 

Fig. 5. The differential decay spectrum as a funct ion of y, the invariant mass of the 
lepton pair normalized to mK - 2m;or. The dot-dashed curve is the contribut ion from 

Fll), the dotted curve, the contribution from Fl2
) with w L=O, and the dashed curve, 

the contribution from G(2) . The total differential decay rate for w L= O is given by 
the solid curve. 

Integrating the three terms on the right-hand side of (62) over the invariant mass 

interval q2 > (30MeV) 2 (corresponding toy> 0.13), we find that for WL = 0 
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3.8 + 0.78 + 3.4 8.0 . (64) 

The branching fraction over this range of e+ e- invariant mass is dominated by the 

region of low q2 and, for typical values of w L, it receives comparable contributions 

from the form factors G and F(2). In the region of high q2 , however, the branching 

fraction is likely to be dominated by the Fi2) form factor. For q2 > (SOM e V) 2 , which 

corresponds to y > 0.36, and WL = 0, the three terms on the right-hand side of eq. 

(62) contribute 

0.61 + 0.07 + 1.9 2.6 . (65) 

A summary of our results for the rate can be found in Table 1. We have displayed 

the contribution to the branching ratio (in units of 10-8 ) from the three form factors 

G, p(l) and F( 2) for different values of the minimum lepton pair invariant mass q~in. 

Since the loop contribution to the form factor Fi2
) is small, it will be difficult to 

extract a unique value for WL from df / dq 2 data alone; a two-fold ambiguity in the 

value of w L will persist. The contributions to the rate from G and p(l) are numerically 

similar to those computed in Refs. 3 and 4, differing only because we have retained 

the q2 dependence in p(l). For w L=2, the contribution of Fi2) to the rate is small, 

and our results are similar to those quoted in the above references. 
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Lower cut q!in Br(10-8 )a Br(10- 8 )p<1) Br(l0-8 )p<2) 

(10MeV) 2 8.8 3.3 3.6 - 3.4w L + 0.8w1 

(20MeV) 2 5.6 1.5 3.5 - 3.3w L + 0.8w1 

(30MeV) 2 3.8 0.8 3.4 - 3.2w L + 0.8w1 

(40MeV) 2 2.7 0.5 3.1 - 3.0WL + 0.7w1 

(60MeV) 2 1.3 0.2 2.6 - 2.4w L + 0.6w1 

(80MeV) 2 0.6 0.07 1.9 - l.8w L + 0.4w1 

(100MeV) 2 0.3 0.03 1.3 - l.2w L + 0.3w1 

(120MeV) 2 0.1 0.01 0.74 - 0.68WL + 0.16wi 

(180MeV) 2 0.00072 0.0001 0.027 - 0.025w L + 0.006w1 

Table 1: Contributions to the Branching Ratio (10- 8 ) for a range of q!in 

6 THE Z-PENGUIN AND W - BOX AMPLITUDE 

The short distance W-box and Z-penguin diagrams give rise to the effective La­

grange density 

(66) 

Here we keep only the part that contains the lepton axial current; it is the axial 

current that gives rise to observables that are antisymmetric under interchange of e+ 

and e- four momenta, k+ t--+ k_. 

In (66), the quantity e receives significant contributions from both top and charm 

quark loops and is given by 

(67) 

where 
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(68) 

is the sum of the contributions of the Z-penguin and W-box diagrams. It is conve­

nient to express the combination of Cabibbo-Kobayashi-Maskawa matrix elements 

appearing in~ in terms of IV::bl and the standard coordinates p + i'T] of the unitarity 

triangle 

(69) 

A value of JVcb l '.:::::'. 0.04 is obtained from inclusive B---+ Xceiie decay and from exclusive 

B ---+ D* eiie decay. Although the values of p and T/ are not determined by present 

data, they are expected to be of order unity. 

The quantities [c and [t have been calculated including perturbative QCD cor-
. h 1 d. 1 . h . 1 1[14l [lsJ Th . . . · h rect1ons at t e next to ea mg ogant m1c eve . ere is some sens1t1v1ty tot e 

values of AQcD , me, and mt, but [c is of order 10-4 and [t is of order unity. 

The quark level Lagrange density in eq. (66) can be converted into a Lagrange 

density involving the 7r, I< and TJ hadrons by utilizing the Noether procedure. Equat­

ing the QCD chiral currents with those obtained from chiral variations of the effective 

lagrangian in eq. (20) leads to 

.Csn = _t iG ~1 f 2Tr(8µ'5:S)T) e"'µ"'s e + H.c. ':, 2 2 I I 
(70) 

Expanding L; in terms of the meson fields M, we find that the Lagrange density (70) 

produces a short distance contribution to the I< L ---+ 7r+ 7r- e+ e- decay amplitude 

from the W-box and Z-penguin diagrams given by 

(71) 
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7 THE ASYMMETRY Acp 

It is the interference of M(SD) m eq. (71) with Af(h) in eq. (1) that produces 

the asymmetry Acp defined in (8). In calculating Acp, it is convenient to use the 

phase space variables defined by Pais and Treiman [iGJ for I<tA decay, rather than those 

used for the total rate in Section 3. They are: q2 = ( k+ + k_ )2 ; s = (P+ + p_ )2 ; ()'Tr , 

the angle formed by the 7r+ three momentum and the ](L three-momentum in the 

7r+7r- rest frame; ()p_, the angle between the e- three momentum and the I<L three 

momentum in the e+ e- rest frame; </>, the angle between the normals to the planes 

defined in the I<L rest frame by the 7r+7r- pair and the e+e- pair. In terms of these 

variables 

(fJ- x fJ+) · (k_ - k+) . ( . ..1-.) 
__, __, = sign sin <r 

I (fJ- x fJ+) · ( k_ - k+) I 
(72) 

and the asymmetry is 

Acp = ---
1
---,,---- (/

2

7r d</> sign( sin</>)) J dc'lr deeds dq2/3 X Re (M(SD)* M(l-r))) , 
27 (27r ) 6m~T KL 

(73) 

where c7r = cos ()'Tr, Ce cos ()e · The other kinematic functions appearing in this 

expression are 

/3 = [1 - 4m;/ s] 112 

x = [ (mk - 2s - q')' -sq'r' (74) 

In order to evaluate the contributing form factors , the following scalar products 

of four vectors are required: 
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1 2 2 1 
q · P+ = 4 ( m K - s - q ) - 2 (3 X cos 0 7r 

1 2 2 1 
q · P- = 4(mK - s - q ) + 2,(3X cos 07r 

1 2 
P+ · P- = -(s - 2m7r) 

2 

a f3 ku kp - 1 f3X ~ · e · e · ),. Ea(JupP+P- + _ - - 4 y sq- sm e sm 7r sm '+' 

(75) 

If the variables s and q2 are not integrated over the complete phase space, then it is 

understood that the same is to be done for the J{L width I'Ki in the denominator of 

eq. (73). 

The form factor G does not enter into Re ( M(SD)* Af(I1)) (a sum over e+ and e­

spins is understood). Integrating over cos Be and </>, we find that 

02 s2a2 J 
Acp = 8 ( ){ 2

1 
3 dc'lr ds dq

2 sin e'lr 
2 27r j mKf Ki 

(J' X 2 ~[Jm(O (Re(F+) + Re(F-)) + Re(O (Im(F+) - lm(F-)) l 
(76) 

The integration over cos e'lr implies that, at leading non-trivial order of chiral 

perturbation theory, Im(F+) - Im(F-) --+ Im(Fr)) - Jm(F~1 )), reflecting indirect 

CP violation from E, and Re(F+) + Re(F-)--+ Re(Fi2)) + Re(F~2)). 

Using eqs. (67) and (69), we can write the CP violating asymmetry in terms of 

the real and imaginary parts of the CKM elements 

(77) 

where Ai arises from indirect CP nonconservation and A2 arises from direct CP 

nonconservation. We predict only IAcp l since the sign of 98 is not known. Our 

expressions for Fi1
) and Fi2) with WL = 0 give, up to an overall sign, 



33 

A1 = 2.7 x 10-2 A2 = 3.9 x 10-2 (78) 

for q2 2:: (30M e V) 2 and 

(79) 

for q2 :'.::: (SOM e V) 2 . In Table 2 we present A 1 and A2 for a range of values of the 

minimum lepton pair invariant mass, q~in, normalized to the branching ratios given 

in Table 1 assuming w L = 0. 

Lower cut q~in A1 A2 

(10MeV) 2 2.0 x 10-2 2.0 x 10-2 

(20MeV) 2 2.5 x 10-2 3.0 x 10-2 

(30MeV) 2 2.7 x 10-2 3.9 x 10-2 

(40MeV) 2 2.8 x 10-2 4.8 x 10-2 

(60MeV) 2 2.7 x 10-2 6.8 x 10-2 

(80MeV) 2 2.4 x 10-2 8.4 x 10-2 

(100MeV) 2 2.1 x 10-2 9.8 x 10-2 

(120MeV) 2 1.8 x 10-2 0.11 

(180MeV) 2 1.3 x 10-2 0.13 

Table 2: The CP violating quantities Ai, A2 with WL = 0 for different values of q~in 

We find that direct and indirect sources of CP nonconservation give comparable 

contributions to Acp. In our computation we have neglected final state 7r+7r- inter­

actions which are formally higher order in chiral perturbation theory. With the values 

of A1 and A2 given in Table 2, I Ac pl is only of order 10-4 , and further refinements 

of our calculation do not seem warranted. 
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8 THE ASYMMETRY Bcp 

Because the CP violating contribution to the I<L-----+ 7r+7r- e+e- decay amplitude 

occurs at a lower order of chiral perturbation theory than does the CP conserving 

contribution, one might anticipate the existence of a large CP violating observable 

with its origin in indirect CP violation. The observable Bcp, which, in terms of the 

kinematic variables of the previous section takes the form 

Bcp =< sign(sin<i>cos</>) > (80) 

is just such an observable. Neglecting M(SD) we find, after integrating over <i> and 

cosBe, that 

(81) 

If the variables s and q2 are not integrated over the entire phase space, then it is 

understood that the same is to be done for the f{L width f Ki in the denominator of 

(81) . The form factor G is real at leading order in chiral perturbation theory, and the 

imaginary part arises from the phase in F+ - F_ induced by I<0 - K mixing. The 

integration over cos e7r implies that F+ - F_ -----+ Fi1) - F~1 ) in eq. (81) . Using our 

expressions for Fi1) and the value of IG(2) I, we find that, with WL = 0, IBcp l '.::::'. 6.3% 

for q2 > (30 MeV) 2 and IBcpl c::: 2.4% for q2 > (80 MeV) 2• The asymmetries for 

a range of values of q!in are shown in Table 3. 
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Lower cut q!in IBcp · Br(l0- 8 )1 (%) 

(10MeV) 2 134 

(20MeV) 2 78 

(30MeV) 2 50 

(40MeV) 2 33 

(60MeV) 2 14 

(80MeV) 2 6.3 

(100MeV) 2 2.5 

(120MeV) 2 0.92 

(180MeV) 2 0.0086 

Table 3: The CP violating observable IBcp · Br(l0-8 )1 for a range of values of q!in 

Note that, in Table 3, Br(l0-8 ) denotes the J(L ---t 7r+7r-e+e- branching ratio in 

units of 10-8 with the same cut on q2 imposed. 

We may refine our calculation somewhat by studying the effect of final state 

interactions on Bcp. To do so, we calculate the absorptive parts of G and (F+ - F-) 

using chiral perturbation theory. The effect of final state interactions on Bcp was 

studied previously in Refs. 3 and 4. Our approach includes both 7r7r ---t 7r+7r- and 

7r7r ---t 7r+7r- /* rescattering, whereas previous efforts used the measured pion phase 

shifts and neglected 7r7r ---t 7r+7r-/* . 

The influence of such final state interactions on Bcp is accounted for by setting 

in (81 ), where DispG(3), AbsG(3), DispFi2) , and AbsFi2) are real quantities , aside 

from their dependence on E, defined by G(3) = DispG(3) + iAbsG(3) and Fi2) = 
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DispF!±_2) + iAbsF!±_2). The first of the three terms on the right-hand side of eq. (82) 

was examined above and the last two represent the effects of final state interactions. 

The Feynman graph shown in Fig. 6 gives 

AbsG(3) = -- ~ 1 - mrr 
Q(2) ( ) ( 4 2 ) 3/2 

487r J2 s 
(83) 

Unfortunately, the dispersive part of Q(3) is not calculable, as it receives a contri­

bution not only from the loop graph in Fig. 6, but also from loop graphs involving the 

Wess-Zumino term and from new order p6 local operators in the chiral Lagrangian 

for weak radiative kaon decay. 

The absorptive parts of F± first arise at second order in chiral perturbation theory 

from the Feynman diagrams in Fig. 7. These give 

Ab F (2) _ ( 2 2 ) {(4mi-2m;)Pf/;4m~ s - -gs mK - m 7rE - --
+ rr q2 + 2q . P+ m k 

e- e+ 
-4[! Y+dy - J y_dx] 

0 0 

e+ €-
- 8q . (P+ - P-) [ J xy_ dx + J xy+ dx] } . 

s (Y+ - Y-) (Y+ - Y-) 
(84) 

0 0 
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Fig. 6. Feynman diagram contributing to AbsG(3 ) at leading order. In this figure 
and those that follow, a solid circle denotes a vertex arising from the leading order 
strong and electromagnetic chiral Lagrangian. The other vertex in this figure arises 
from an O(p4

) counterterm in the chiral Lagrangian. 

AbsF~2) is obtained from eq. (84) by interchanging P+ with P- using the symmetry 

property in eq. (5). The limits of integration in eq. (84) are given by 

(85) 

while the variables Y± are defined by 

(1 - x)s + x(mk - q2
) ± V((l - x)s + x(mk - q2)) 2 - 4s(mi - q2 x(l - x)) 

Y± = 2s . 

(86) 
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7r+ 

7r- , no 7r 

Fig. 7. Feynman diagrams contributing to AbsF~2) at leading order. A solid square 
denotes a vertex arising from the 65 = 1 part ot the leading order gauged weak 
chiral Lagrangian. A solid triangle vertex arises from the piece of the leading order 
strong chiral Lagrangian proportional to the quark masses. 
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We find that final state interactions increase Bcp by about 45% over that pre­

sented above. The first term in eq. (84), and consequently the third term in eq. (82), 

is the dominant contribution from final state interactions, and it enhances Bcp by 

the factor 

R 7r 1 - __ 7r '.::::'. 0.45 (4m2
- - 2m2)Pi:m2 

327rj2 mk (87) 

over the leading order result obtained above. The trend that final state interactions 

increase Bcp is in agreement with Refs. 3 and 4. The rate r KL in the denominator 

of eq. (81) depends on the collection of counterterms defined as w L above. Setting 

WL to zero, we find that IBcpl c::: 14% with the cut q2 > (10MeV) 2 imposed and 

IBcpl c::: 4% with the cut q2 > (80MeV) 2 imposed. With WL = 2, the asymmetry is 

even larger. We find in this case that IBcpl c::: 18% for each of the cuts listed above. 

Table 4 gives the predicted values for the magnitude of Bcp times the branching 

ratio for I<1---+ 7!"+7!"-e+e-(in units of 10-8 ) for various cuts on the minimum lepton 

pair invariant mass squared, q?nin. In this table, w L has been set to zero. 

Lower cut q?nin I Bcp(%) I ·Br(l0-8
) 

( 10MeV)2 208 

( 20MeV)2 122 

( 30MeV)2 76 

( 40M eV) 2 50 

(60MeV) 2 22 

(80MeV) 2 9.7 

(100MeV) 2 3.9 

(120MeV) 2 1.4 

(180MeV) 2 0.013 

Table 4: The CP violating observable IBcpj · Br(l0-8 ) 

for a range of values of q?nin, including final state interactions 
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We have calculated the leading absorptive parts of the form factors G and F± 

using chiral perturbation theory and included, using eq. (82), their influence on Bcp. 

This is not a completely systematic approach, however, because Im[DispG(3)(Fj_l) -

F~1 ))*] and Jm[GC2)(DispFj_2
) -DispF~2))*] in eq. (82) were neglected, despite being 

the same order in the momentum expansion as the terms that were retained. This 

notwithstanding, including only the absorptive parts may be a good approximation 

as they are enhanced by a factor of 7l'. 

Finally we note that the absorptive parts of the form factors calculated here are 

also important for direct CP nonconservation in KL-> 7!'+7!'-e+e-. For example, the 

variable 

Dcp =< sign( cos Be) > (88) 

is a CP violating observable that arises from interference of the one-photon ampli­

tude in eq. (1) with the short distance contribution to the J(L -> 7!'+7!'-e+e- decay 

amplitude, eq. (71). In the kaon rest frame, the electron-positron energy difference 

is proportional to cos Be; Dcp is therefore a measure of this e+e- energy asymmetry. 

After integrating over </>and cos Be, we find that 

(89) 

At leading order in chiral perturbation theory ImG = AbsG(3). Unfortunately, 

we find that Dcp is around 10-7 , and is therefore too small to be measured in the 

next generation of kaon decay experiments. We do not provide more detailed data on 

Dcp since the CP violating variable Acp discussed above is also a measure of direct 

CP violation, and has a much larger magnitude of'"'"' 10-4 . 

It is important to note that, although we have estimated the final state inter­

actions at leading order in the chiral expansion for strong interactions, higher order 

contributions which we have not computed may modify our results. Indeed, in the 
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• [17] l=J=l channel, the p plays an important role , and one might expect such modi-

fications . 

9 CONCLUSIONS 

In this chapter, we have calculated the one-photon contribution to the KL -+ 

7r+7r- e+ e- decay rate, and have used chiral perturbation theory to determine the 

form factors appearing in the decay amplitude. For e+ e- pairs with high invariant 

mass ( q2 > > 4m;), we have found important new contributions that were not in­

cluded in previous work[3
J[

4
J • The amplitude for I<L-+ 7r+7r-e+e- depends on the 

undetermined (renormalization scale independent) combination of counterterms w L. 

For q2 = ( k+ + k_ )2 > (30 Me V) 2 the branching ratio for I<L -+ 7r+7r- e+ e- is 

approximately (8.0 - 3.2wL + 0.8wlJ x 10-3 and for q2 > (80 Me V) 2 the branching 

ratio is approximately (2.6 - l.8w L + 0.4wl,) x 10-3
. 

One interesting aspect of this decay mode is that the CP even component of 

the f{L state contributes at a lower order in chiral perturbation theory than the 

CP odd component. This enhances CP violating effects in f{L -+ 7r+7r-e+e- decay. 

For example, the CP violating observable Bcp, which is augmented by final state 

interactions by nearly 50%, is about 14% for q2 > (10MeV) 2 if WL = 0. The CP 

violating observables Acp and Dcp, which arise from the interference of W-box and 

Z-penguin amplitudes with the one-photon part of the decay amplitude, have also 

been calculated. Unfortunately, we find that Acp is of order 10-4 , and hence most 

likely unmeasurable in the near future. Dcp , at 10-7 , is even less accessible. 

Chiral Perturbation theory has been extensively applied to nonleptonic, semilep­

tonic and radiative kaon decays. The study of f{L -+ 7r+7r-e+e- offers an opportunity 

to determine the linear combination of coefficients in the O(p4 ) chiral lagrangian that 

we call WL and to test the applicability of O(p4 ) chiral perturbation theory for kaon 

decay. 
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Chapter 3 

Fragmentation to Excited Charmed Baryons 

In this chapter, we employ heavy hadron chiral perturbation theory in studying 

the production of the excited charmed baryon doublet A~ via fragmentation. The 

flavor of this effective field theory is very similar to that in the previous chapter, with 

the exception that there is now an additional large mass scale present , the mass mQ of 

a heavy quark. An expansion in inverse powers of this mass is irresistable. An analysis 

of the hadronic decays of the A~ doublet produces expressions for both the angular 

distribution of the decay products and the polarization of the final state heavy baryon 

in terms of various nonperturbative fragmentation parameters. Future experimental 

investigation of this system will determine these parameters. In addition, recent 

experimental results are shown to fix one of the parameters in the heavy hadron 

chiral Lagrangian. 

1 INTRODUCTION 

The production of a heavy quark at high energy via some hard process is a 

relatively well understood phenomenon, as we may bring the full apparatus of per­

turbative QCD to bear on the problem. Less well understood is the subsequent 

fragmentation of the heavy quark to form heavy mesons and baryons. It is the dy­

namics of this process that we propose to address in this chapter. We imagine that 

a heavy quark with mass mQ ~ AQcD is produced on very short time scales in a 

hard reaction. It then travels out along the axis of fragmentation and hadronizes on 

a much longer time scale, at distances of order 1/ AQCD· The fractional change in 

the heavy quark's velocity is therefore of order (AQcn/mQ), and vanishes at leading 

order in the heavy quark limit. Likewise, the heavy quark spin couples to the light 

degrees of freedom via the color magnetic moment operator 

(1) 
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which again vanishes in the heavy limit. We may therefore view the initial fragmenta­

tion process as leaving the heavy quark velocity and spin unchanged. Notice that, in 

this limit, the dynamics are also blind to the mass of the heavy quark, which therefore 

acts as a static color source in its interactions with the light degrees of freedom. 

This simple result may not apply to the ultimate products of the strong frag­

mentation process, however , as was pointed out by Falk and Peskin r11
• Specifically, 

the polarization of the final state heavy baryons and mesons may not be determined 

solely by the heavy quark spin, but may depend in addition on the spin of the light 

degrees of freedom involved in the fragmentation process. This is the case when the 

initial fragmentation products decay to lower energy heavy baryons and mesons on a 

time scale long enough to allow interaction between the heavy quark spin and that 

of the light degrees of freedom. We will find that this is indeed the case in the A~ 

system. 

In this situation, one must know something about the spin of the light degrees of 

freedom in order to proceed further. The parity invariance of the strong interactions, 

coupled with heavy quark spin symmetry, demands that formation of light degrees 

of freedom with spin j depends only on the magnitude of the projection of j onto 

the axis of fragmentation, and not on its sign. That is, transverse may be preferred 

to longitudinal, but forward may not be preferred to back. Further, the light system 

may prefer to invest its angular momentum in orbital channels as opposed to spin 

channels. These preferences are catalogued by a set of fragmentation parameters: A 

and w1, defined in Ref. 1, and B and w1, defined in the following section. 

Let us consider a fragmentation process in which light degrees of freedom of spin j 

are produced. They then associate with the heavy quark spin s = ! to form a doublet 

of total spin J = j ± !· Two paths now lie open. The doublet (the two members of 

which have the same decay rate in the heavy quark limit) may decay rapidly enough 

that heavy quark spin flip processes have no time to occur. Then the doublet states 

decay coherently, the heavy quark retains its initial polarization in the final states, 

and the process begins anew with the decay products. On the other hand, heavy 

quark spin flip processes may have time to occur, in which case the doublet states 
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decay incoherently, and the heavy quark polarization is altered. The two parameters 

responsible for determining which regime we are in are the total decay rate out of 

the doublet, r, and the mass splitting between the doublet states, 6. The splitting 

6 vanishes in the heavy quark limit , and is of the order of the rate for heavy quark 

spin flip processes within the doublet. We therefore expect that the situation r ~ 6 

produces overlapping resonances which decay coherently out of the multiplet, and 

that the opposite extreme r ~ 6 allows for incoherent decays and the influence of 

the spin of the light degrees of freedom. 

2 THE CHARMED BARYON SYSTEM 

In the charmed baryon system, the ground state is obtained by putting the light 

di quark in an antisymmetric I = S = 0 state with spin-parity j P = o+. This yields 

the JP= ! + baryon At, with mass 2285 MeV. Alternatively, the light quarks may 

form a symmetric I = S = 1 state with spin-parity j P = 1 +. The light spin then 

couples to that of the heavy quark to produce the symmetric JP=(!+,!+) doublet 

(E~(o,+ ,++) , E~o,+,++)) with mass (2530 Me V, 2453 Me V). Fragmentation through the 

E~*) system has already been considered in Ref. 1; we concern ourselves here with the 

JP = ( !-, ! -) doublet ( A~1 , Ac1) that results when the light di quark is an I = S = 0 

state with a single unit of orbital angular momentum. Allowing the light quarks 

to have both spin and orbital angular momentum produces a tremendous number 

of states, none of which have been observed to date. We ignore such states in the 

analysis that follows. 

The fragmentation parameters A, B, w1, and w1 may now be defined. A is taken 

to be the relative probability of producing any of the nine I= S = 1, jp = 1 + diquark 

states during fragmentation relative to that of producing the I = S = 0, jp = o+ 
ground state. B is similarly the probability for producing any of the three I = S = 0, 

jP = 1- diquark states relative to ground state production. The parameters w1 and 

w1, on the other hand, encode the orientation of the light di quark angular momentum. 

The various helicity states of the spin-parity 1 + and 1- diquarks are populated with 

the probabilities 
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P[l] = P[-1] =~I ; P[O] = 1 - wI for jp = 1+ (2) 

and 

WI p P[l]=P[-1]= 2 ; P[O]= l -wI for j =l- (3) 

The analysis of the excited D system in Ref. 1 has already indicated that w3; 2 , the 

analog of WI for the light degrees of freedom in the meson sector, is likely close to 

zero. One might also anticipate, therefore, that WI would be close to zero. We will 

concentrate on WI most heavily in what follows. 

AqcD The masses of the A~1 and Ac1 are naively expected to be split by ,...., me 

30M e V, in fortuitously close agreement with the recently measured values MA:
1 

2625 MeV and MAci = 2593 MeVr
2
l. Decay of the A~I to Acl via pion emission 

is thus kinematically forbidden, and the corresponding electromagnetic transition is 

very slow compared with strong decays out of the doublet. Indeed, the dominant 

decay mode of both A~I and AcI is to Ac via pion emission. As both ( A~I' Acl) 

and Ac are I = 0 states, single pion emission is forbidden by isospin conservation, 

and the dominant modes are A~I ~ Ac7r7r and Acl ~ Ac7r7r. The mass differences 

(MA:
1 

- MAJ =340 MeV and (MAci - MAJ =308 MeV are very close to threshold, 

and the pions produced will be soft . We therefore expect the decays to be accurately 

described by heavy hadron chiral perturbation theory. 

The CLEO collaboration recently measured the Acl width to be r Aci 

3.9~~ :i~i : ~ MeV, and placed a new upper bound on the A~I width: r A:
1 

< 1.9 MeVr
2
i . 

It is an interesting breakdown of the naive heavy quark approximation that these 

rates are significantly different. The explanation is that, at leading order in the 

heavy hadron chiral Lagrangian, A~I is connected to Ac only via an intermediate E~, 

whereas AcI is connected via an intermediate Ee. Kinematics allows the Ee, but not 

the E~ , to go on-shell. The Acl thus enjoys a resonant amplification of its decay rate. 

We also note that the rates above place us securely in the regime r <t: Ll , so that 
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we anticipate interaction of the heavy quark spin with the light degrees of freedom 

in decays to the Ac . This will allow us to shed some light on the parameter WI. In 

the following section, we provide a brief review of heavy hadron chiral perturbation 

theory before tackling the ( A~I ' Acl) decays . 

3 HEAVY HADRON CHIRAL PERTURBATION THEORY 

Heavy hadron chiral perturbation theory incorporates aspects of both ordinary 

chiral perturbation theory and the heavy quark effective theory, and describes the low 

energy interactions between hadrons containing a heavy quark and the light pseudo­

Goldstone bosons. It has been discussed previously in a number of papersr
31

• 

For definiteness we consider the charmed baryon system. Members of the ground 

state JP=~+ antitriplet are destroyed by the velocity dependent Dirac fields 'Ii(v), 

where 

,, ~o 
.LI= .::,c (4) 

The symmetric JP = ~ + states are destroyed by the Dirac fields Sij ( v) with com po­

nents 

(5) 

and their symmetric JP = !+ counterparts by the corresponding Rarita-Schwinger 

fields s;i1 (v). Finally, we define Dirac and Rarita-Schwinger fields Ri(v) and R~i(v) 

to annihilate the JP = ~ - and JP = !- excited antitriplet states respectively. In 

our analysis the components of interest will be R3 = AcI and R~3 = A~I,µ-
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As the heavy quark mass goes to infinity, the J = ~ and J = ~ members of 

the sextet and excited antitriplet multiplets become degenerate. It is then useful to 

combine them to form the superfields Rµi and S;l, defined by 

(6) 

(7) 

If we are to discuss decay by 7l' emission, we must also incorporate the pseudo­

Goldstone boson octet into our Lagrangian. The Goldstone bosons are a product 

of the spontaneous breakdown of the chiral flavor symmetry SU(3)L x SU(3)R to 

SU(3)v, its diagonal subgroup. They appear in the octet 

-7!'0 /V'i + ry/-/6 
J{O 

(8) 

and are conveniently incorporated into the Lagrangian via the dimensionless fields 
2iM i M 

I: = e-J- and ~ = e T , where f = f']f =93 MeV, the pion decay constant, at lowest 

order in chiral perturbation theory. 

The goal is to combine these fields to produce a Lorentz invariant, parity even, 

heavy quark spin symmetric, and light chiral invariant Lagrangian. To this end, we 

now assemble various transformation properties of the fields. Under parity, P, the 

superfields transform as 

(9) 

(10) 
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PT(r, t)P- 1 = 10T(-r, t) (11 ) 

They also obey the constraints 

(12) 

The Rarita-Schwinger components obey the additional constraints 

(13) 

We are also interested in how the various fields transform under chiral SU(3). 

The I: and ~ fields obey 

(14) 

(15) 

where L and R are global SU(3) matrices, and U( x) is a local member of SU(3)v. If 

we further define the vector and axial vector fields 

(16) 

(17) 

we find that, under chiral SU(3), 
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(18) 

(19) 

The only constraint imposed on the heavy fields is that they transform according 

to the appropriate sextet or antitriplet representation under transformations of the 

SU(3)v subgroup. 

There remains one final symmetry to aid us in constructing our Lagrangian, 

and that is symmetry under reparameterization of the heavy field velocity. The 

momentum of a heavy hadron is written p = Mv + k, where k is termed the residual 

momentum of the hadron. If we make the following shifts in v and k 

v-+v+c/M; k-+k-E (20) 

with v · E = 0, then p -+ p and v2 -+ v2 + 0(1/ M 2 ). Therefore, if we are working 

only to leading order in the (1/M) expansion, we demand that our Lagrangian be 

invariant under such a transformation. The corresponding shifts induced in the fields 
[4] 

are 

oT = _¢_7 
2M 

(21) 

(22) 

(23) 

Invariance of the Lagrangian under these shifts further restricts the terms that 
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may appear, and leaves us with the following form for the most general Lorentz invari­

ant , parity even, heavy quark spin symmetric, and light chiral invariant Lagrangian: 

£~0 ) = {R~(-iv . v + 6.Mn)nr + Sfj(-iv · v + 6.Ms)sy 

+Tiiv · 'D1i + ig1t:µvo->.S~vv(Ao-)~(S>.)jk 

+. ,-r:,µi v(Ao-)i(-n>.) · 
zg2Eµvo->. '~ v j 1~ J 

h [ . . T-i(Aµ)jskl + ijks-µ (A )I"-] + 1 EzJk i µ E kl µ j 1 i 

h [ -nµi A1skz + ijks-µ Az-n ·J} + 2 tijk I~ V · l µ E klV · j l~µi 1 

(24) 

where 6.Mn = Mn - My is the mass splitting between the excited and ground state 

antitriplets, and 6.Ms =Ms - My is the corresponding splitting between the sextet 

and the ground state antitriplet. 

In defining the velocity dependent heavy fields which appear above, a common 

mass must be scaled out of all heavy fields 

H _ -iMv·xH - e v (25) 

despite the different masses of the various heavy baryons. In the above analysis we 

have chosen M = MAc · 

It is also instructive at this point to examine the term proportional to h2, which 

allows single 7r transitions between the excited antitriplet and sextet states. This term 

induces only S-wave transitions, although naive angular momentum and parity argu­

ments would allow D-wave transitions as well. The D-wave transitions are induced 

by a higher dimension operator which is therefore suppressed by further powers of M 

and does not appear at leading order in the heavy hadron Lagrangian. This absence 

of D-wave transitions simplifies the way in which the 7r distributions depend on w1 in 

the A~~) decay process. Finally, we comment quickly on the errors induced by keeping 

only leading order terms. The relevant expansion parameter in our analyses is ( )J), 

so that we expect our results to be valid to ""' (200/2285) '.::::' 10%. 
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4 THE PARAMETER h2 

The term proportional to h2 in the leading order Lagrangian is responsible for 

the tree-level decay Aci --+ 2:c7r, the rate for which is easily calculated to be 

as was done previously in 4. The 2:c may then decay to Ac7r through the term propor­

tional to h1, producing a decay rate f( Ac1 --+ Ac7r7r) that scales like the combination 

lh11 2lh21 2. A quick calculation allows us to express lh11 2 in terms of the partial width 

f(2:c --+ Ac7r ), 

(27) 

which is by far the dominant contribution to r2::c· We may therefore view f(Aci --+ 

Ac7r1l") as a function of h2 and r2::c. This decay is dominated by the pole region 

where 2:c is close to being on-shell, and its rate coincides with that for Aci --+ 2:c7r as 

f I;c --+ 0. In this narrow width approximation, we obtain 

(28) 

The result is modified slightly if we allow the 2:c to have a finite width. The 2:c is 

not expected to have a width greater than a few MeV. Setting fI;c = 2 MeV, we find 

(29) 

Comparison with the CLEO measurement [21 
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f(A -->A 7r+7r- ) = 3.9+i.4+2·0 MeV cl c -1.2-1.0 (30) 

then yields a central value of lh2I '.:::::'. 0.9 in the narrow width approximation, or 

lh2I '.:::::'. 1.0 with rL:c = 2 MeV. 

5 PRODUCTION AND DECAY OF Acl A ND A~1 

The probabilities for fragmentation to the Acl and A~1 states of various helicities 

may be expressed in terms of the parameters w1 and B once the initial polarization 

of the heavy quark is given. For simplicity, we assume that the initial charm quark 

is completely left-hand polarized in the analysis that follows. With this assumption, 

the relative populations of the A~1 and Acl states are 

[A* ] B [w1 2 ( _ ) w1 ] 
p cl = 1 + A + B 2' 3 l - wi ' 6' O (31) 

(32) 

where the helicity states for A~1 read - !, -!, !, ! from left to right, and those for 

Acl read -!, !· 
We now wish to calculate the double-pion distributions in the decays of these 

states to the ground state Ac. The differential decay rate may be written 

where fh and !12 contain the angular variables for the two pions and E1 and E2 are 

their energies. A glance at the expression above indicates that we are conserving 

three momentum, but not energy. The explanation is simply that in the infinite mass 
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limit, the charm baryon recoils to conserve momentum, but carries off a negligible 

amount of energy in the process. 

Let us first address the case of A~1 and Acl decay to Ac7ro7ro . The relevant 

Feynman diagrams which arise from the Lagrangian (24) are shown in Fig. 1. 

\ (•) 
i cl 

Fig. 1. Feynman diagrams contributing to A~1 ---t Acl 7r7r at leading order in the heavy 
hadron chiral Lagrangian. 

In calculating the decays between A~1 and Acl states of definite helicity, we find 

two distinct angular patterns, depending only on the change in the component of spin 

along the fragmentation axis, ~Sz , between the initial and final state heavy hadrons: 

where 81 and 82 are the angles between the two pion momenta and the fragmentation 

axis, and ¢1 and ¢2 are the azimuthal angles of the pion momenta about this axis. 
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These angles are defined in the rest frame of the decaying A~;) . The number a arises 

from interference between the two graphs depicted in Fig. 1, and is defined in eq. 

(36) below. Its dependence on the width fI:6 is plotted in Fig. 2. To the order we 

are working, a=l.3 for any reasonable value of rI:6 . 

MA• -MAc 
cl 

a1 = J dE1 J dE28(MA~1 - MAc - E1 - E2) 

m" 

alpha 

l. 375 

1. 35 

l. 325 

1. 3 

1.25 

1.225 

~---~10--1~5 -~20--2~5 -~30 Width of Sigma• (MeV) 

Fig. 2. The variation of the coefficient a as a function of the width of ~~. 

(36) 
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The normalized differential rates j, d0~~02 for the various decays are then given in 

terms of F1 and F2 by 

~dn~~n2 {[A~1 (+~)-Ac(+~)],[A~1 (+~)-Ac(-~)], 
[A~1(-~)-Ac(+~)] ,[A~1(-~) -Ac(-~)]} = F2(01,02) 

(37) 

(38) 

The decays A~1 ( ± ~) - Ac( =f ~) are forbidden. A similar calculation for Acl decays 

yields 

where 

3 [ 2 2 G1 = --2 cos fh +cos 82 + (3 cos 81cos82] 
327f 

( 41) 

( 42) 

The ratio (3 is defined analogously to a in (36), but with the substitutions MA· -
cl 

MAci, Mr:,~ - Mr:,c, and fr:, ~ - fr:, c, that is, by removing all stars in (36). Its 
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dependence on fI: c is shown in Fig. 3. That f3 is much smaller than a is easily 

understood. Both a and f3 arise from the interference between Feynman graphs, 

but in the case of Acl decay, the intermediate ~c may go on shell, and in fact, the 

rate is dominated by this region of phase space. The Acl decay is thus essentially a 

two-step process, and interference effects are therefore relatively unimportant. The 

steep dependence of f3 on the intermediate state width does not significantly limit our 

predictions since it is numerically small. 

beta 

0.08 

0 . 06 

0.04 

0.02 

--f<----0~.5---~---1~. ,,-5 ---7-2 Width of Sigma (MeV) 

Fig. 3. The variation of the coefficient f3 as a function of the width of ~c· 

We now take into account the initial populations of the various helicity states, as 

displayed in (31) and (32), and allow them to decay incoherently in light of the relation 

r A(•) ~ (MA~l - MAc1)· This produces, after summing final state helicities, the 
cl 

following double pion distributions for decay through A~1 and Acl states separately: 
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1 df(A~1 only) 3 1 1 2 2 2a r dD.1dD.2 =-32_7r_2 {[3 + 2(cos 81 +cos 82) + 3 cos 81cos82 

+ ~ V,.-( 1---co_s_2-81_)_(1---co_s_2 -82-) cos( <h - ¢1)] 

1 3 2 2 a 
+ WI [ 2 - 4 (cos 81 + cos 82) - 2 cos 81 cos 82 

( 43) 

+: J(l -cos2 81)(1- cos2 82) cos(¢2 - ¢1)]} , 

1 df(Ac1 only) 1 V 
- =--2 {2 + ;'.J[(l - cos2 81)(1 - cos2 82) cos(¢2 - ¢1) +cos 81cos82]} r dD.1 dD.2 327r 

(44) 

Combining both A~1 and Acl decays incoherently yields 

1 df( combined) 1 4 2 2 4a /) 
- = --2 { [ - + cos 81 + cos 82 + (- + - ) cos 81 cos 82 r dD.1dn2 327r 3 3 3 

+ (: + ~) V(l - cos2 81)(1 - cos2 82) cos( ¢2 - ¢1)] 

+ w1 [1 - ~( cos2 81 + cos2 82) - a cos 81cos82 

( 45) 

+ ~ V(l - cos2 81)(1 - cos2 82) cos( ¢2 - ¢1 )]} 

Note from Fig. 3 that ;'.J approaches zero as the width fBc vanishes. This means 

that the double pion distribution ( 44) resulting from Acl decay becomes isotropic in 

this limit. This is easily understood as follows. As fBc approaches zero, Ac1 decay 

is entirely dominated by production of a real intermediate I:c as discussed above, 

a process which may occur only via S-wave pion emission. The subsequent single 

pion decay of the I:c is also isotropic if Ac helicities are summed over, as previously 

observed in Ref. 1. 

Integration of the combined distribution over azimuthal angles produces 



59 

1 df( combined) 1 4 2 2 4a /3 -r d 
0 

d 
0 

= - { [ - + cos 01 + cos 02 + ( -
3 

+ -
3 

) cos 01 cos 02 
cos 1 cos 2 8 3 

+ w1[l - ~(cos 2 01 +cos2 02) - a cos 01cos02]} ' 

(46) 

which is plotted for a variety of w1 values in Figs. 4 - 6. 

0.6 

rate 

Cos ( theta2) 

Cos(thetal) 

Fig. 4. Normalized differential decay rate for the case a= 1.3, /3 = 0.08, and w1 = 0. 
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rate 

Fig. 5. Normalized differential decay rate for the case a = 1.3, (3 = 0.08, and 
WI= 0.7. 

rate 

Fig. 6. Normalized differential decay rate for the case a= 1.3, (3 = 0.08, and w1 1. 



61 

Alternatively, we may prefer to integrate over pion angles and observe instead the 

polarization of the final Ac. We then find the population ratios 

Ac(+!) 
Ac(-!) 

for fragmentation through A~1 alone, 

Ac(+!) 

Ac(-!) 

for fragmentation through Aci alone, and 

Ac(+!) 
Ac(-!) 

( 47) 

( 48) 

( 49) 

for the incoherent combination of the two. To be consistent, however, we must include 

also the effects of initial fragmentation to (~~, ~c) and Ac. This analysis was already 

carried out in Ref. 1, and including such effects leaves us with 

Ac(+!) _ 2A(2 - w1) + 2B(2 - w1) 
Ac(-!) A(5 + 2w1) + B(5 + 2w1) + 9 

(50) 

We may define the polarization of the final state Ac in terms of the relative production 

probabilities for Ac(+!) and Ac(-!) as: 

p _ _ P_ro_b_[ A_c(_-_!_) ]_-_P_r_o_b[_A_c(_+_!_)] 
- Prob[Ac(-!)J +Prob[ Ac( +!)J 

For the case of a completely left-handed initial heavy quark, we find 

(51) 
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P = A(l + 4w1) + B(l + 4w1) + 9 
9(A+B+l) 

(52) 

This function may never fall below !, so that the initial polarization information may 

never be entirely obliterated by the fragmentation process. As a first guess as to 

what polarization we may actually expect to measure, we may use the value w1 =0, 

suggested by experimental study of the charmed meson system 1, and A =0.45, 

the default Lund value[51
• If we further assume that the light degrees of freedom 

fragment to j P = 1 + and j P = 1- states indiscriminately so that A=B, we find 

that P ranges from 0.58 to 0. 79 as w1 ranges from 0 to 1. For a heavy quark with 

initial polarization P, the above results for P are simply multiplied by P. It is not 

unreasonable, therefore, to expect a significant fraction of the initial heavy quark's 

polarization to be observable in the final state Ac. 

The parameters A and B are also of phenomenological interest. Accurate associ­

ation of Ac with final state pions should measure the number of zero, one, and two 

pion events in the ratio: 

1 AB. (53) 

Information on A and B may also be obtained by measuring the relative number 

of fragmentation events containing I;c as opposed to those containing I;~. Direct 

fragmentation to (I;~, I;c) produces them in the ratio I;~ : I;c = 2 : 1. This ratio will 

be diminished, however, by Aci that decay to real I;c on their way to Ac. The decays 

of A~1 are kinematically forbidden from producing such an enhancement in the I;~ 

population. In the narrow width approximation for I;c, we find 

ev ents with I;~ 

events with I;c 

2 

[1 + ~] 
(54) 

An accurate measurement of such departure from naive spin counting could provide 
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information on this interesting ratio, ( B /A), and would be especially useful for check­

ing the predictions of various fragmentation models . 

A few remarks are in order concerning the decays to Ac7r+ 7r-. This case is slightly 

more complicated than the 7ro7ro case because the propagator connecting A~I to Ac 

may be either E~*)O or E~*)++. This fact, coupled with the different Ee masses 

M[E~+] =2453.1±0.6 MeV , 

M[E~] = 2453.8 ± 0.9 MeV , 

M[E~] = 2452.4 ± 0.7 MeV , 

(55) 

produces distributions in Acl decay that are not symmetric with respect to the 7r+ 

and 7r- momenta. Indeed, if we boldly accepted the central values of the sigma masses 

above, we would proceed to calculate an enhancement in the coefficient of cos2 B7r­

by approximately 10% with respect to that of cos2 B7r+ in (34) above, and a similar 

enhancement for the coefficient of sin2 B7r- relative to that of sin2 B7r+ in (35). In light 

of the errors listed in (55) and the order to which we are working, however, such a 

conclusion would be inappropriate. The 7r+7r- distributions are, within the accuracy 

of this calculation, indistinguishable from those of the neutral pions. 

6 CONCLUDING REMARKS 

In this chapter, we have studied fragmentation through the ( A~I' Ac I) system, 

and have calculated the resultant double pion decay distributions in the well satisfied 

limit f(A~~)) ~ (MA~1 - MAci ). In so doing, we have introduced the new fragmen­

tation parameters WI and B, and have shown how WI may be extracted from pion 

angular data. We have also found that the final state Ac particles produced in the 

fragmentation process should retain a significant fraction of the initial heavy quark's 

polarization, allowing a test of the Standard Model's predictions for heavy quark 

polarization in such hard processes. 

Experimental determinations of the w parameters are extremely important in 

testing various ideas about fragmentation. Chen and Wise[
6

J have estimated w3; 2 
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using the mc/mb ~ 0 limit of a perturbative QCD calculation of b ~ B~* done by 

Chen [71
, and have found that w3; 2 = 29/114. That this admittedly oversimplified 

approach gives reasonable agreement with the experimentally suggested w3; 2 <0.24 [iJ 

is of significant interest . Yuan [sJ has augmented this analysis with a calculation of 

the dependence of w3; 2 on the longitudinal and transverse momentum fractions of the 

meson. Furthermore, fragmentation models such as the Lund model make predictions 

for parameters related to A [sJ [
9
J. Similar predictions will be possible for the remaining 

fragmentation parameters discussed in this paper, in either a limiting case of QCD, 

or in a model such as Lund, and the experimental extraction of these parameters will 

therefore provide non-trivial constraints on such methods. Determination of w1 may 

in fact soon be possible at CLE0[101
• 
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Concluding Remarks and Outlook 

As we have seen throughout this work, incorporating the symmetries of some 

complete theory into an effective theory that applies in a specific kinematic regime is 

a useful means for getting perturbative tools to do nonperturbative work. There are 

some quantities, however, notably WI of the previous chapter, that simply cannot be 

calculated in a perturbative setting. In such situations, the best that we can do, in the 

absence of a full nonperturbative calculation, is to search for a similar quantity that 

can be determined perturbatively, and pray that the two are not completely unrelated. 

Such a quantity is available in the study of WI, and we spend the remainder of this 

work briefly sketching a procedure for its calculation. 

Ideally, we would like to know how a heavy quark such as b fragments into a 

heavy baryon such as Ab or Eb. Consider instead the fragmentation of a b quark to a 

baryon composed of (bee), where the two c quarks are placed in a relatives= 1, l = 0 

statej there is also vanishing orbital angular momentum between the (cc) pair and 

the b quark. Fragmentation to this baryon, which we shall call Ebcc' is perturbatively 

calculable, since mb and me are both large compared to AQcDi a typical Feynman 

diagram contributing to the process is shown in Fig. 1. Moreover, the calculation is 

analogous to calculations already carried out for c quark fragmentation to quarkonia [11
• 

Note that graphs involving the three gluon vertex do not contribute to b -+ EbccCC 

fragmentation. The reason is that the three gluon vertex is proportional to the 

antisymmetric structure constants rbc. Because both the final state c quark pair 

and the final state c quark pair have to be in antisymmetric color states, the three 

gluon vertex graphs cannot contribute. This reduction in graphs makes the calculation 

much more tractable. 
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c c 

c 

c 

b b b 

Fig. 1. One of twelve Feynman graphs contributing to b -----+ ~bcccc. 

All nonperturbative information relating to the formation of the bound baryon 

state may be assembled into the radial wavefunction at the origin, R(O), for the non­

relativistic bee bound state. Spin information therefore remains in the perturbative 

part of the calulation, and we may calculate the analogue of w1 for fragmentation to 

this triply heavy baryon. The function thus obtained will depend on the ratio ( ~). 

One might expect that , making an expansion in this small parameter and keeping 

only the leading non-trivial term, we could arrive at a quantity that might naively 

approximate w1. We hope to carry out such a calculation in a future publication. 
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