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Abstract 

We study aspects of the geometry and physics of type II string theory compactifi­

cation on Calabi-Yau manifolds. The emphasis is on non-perturbative phenomena 

which arise when the compactification manifold develops singularities, and the impli­

cations on quantum geometry of the Calabi-Yau spaces. We use both the methods of 

low energy supergravity and the complementary approach via D brane probes. Ap­

plications to the study of four-dimensional N = 1 and N = 2 supersymmetric gauge 

theories are considered as well. 
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Chapter 1 Introduction 

The successes of string theory, that have been highly acclaimed, can be summarized 

as follows: 

• String theory is the only known solution to the problem at the core of modern 

physics - the incompatibility of quantum field theory and general relativity. 

The singularities of spacetime are incurable in any theory of gravity based on 

gravitating point particles . 

• It predicts the most important physical principles - general relativity, gauge 

theory and supersymmetry*1 • 

• It is a realization of a very old idea that physics should be determined by 

mathematical principles alone, with no arbitrary dimensionless parameters. 

It is the main purpose of this work to study geometry as it appears in string the­

ory. Since string theory is a theory of quantum gravity, the subject is quantum 

geometry. The only known formulation of string theory is that of a first quantized 

theory of relativistic strings, and consequentially string theory is necessarily back­

ground dependent. A framework for addressing issues of quantum geometry is study 

of compactifications of string theory. 

We consider string theory on spacetimes of the form l\!In x X 10-n, where Mn is 

n-dimensional flat Minkowski space, and X is a compact manifold which will be our 

laboratory. In picking X we are governed by two considerations: to be worthy of 

discussion, this background must solve string equations of motion, and second the 

classical geometry of X must be both complicated enough to be interesting, and 

simple enough to be tractable. The first requirement is satisfied if X is a Calabi-Yau 

* 1 Supersymmetry is believed to be the necessary ingredient for physics beyond the Standard 
Model. 
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manifold, and the second if its complex dimension is three *2 • 

What is quantum geometry? 

String theory has two expansion parameters, the string coupling constant gs and 

the string tension 1 / c/, and, consequentially, there are two sources of quantum fluc­

tuations. Quantum mechanics in the conventional sense of the word is governed by gs 

which counts the contribution of string loops to scattering amplitudes - expansion in 

powers of gs is an expansion in the genus of the Riemann surface which is the string 

worldsheet. At a given genus, the theory is described by a two-dimensional CFT on 

the Riemman surface, with a dimensionful coupling constant a', the inverse string 

tension. 

String theory compactifications with gs = 0, described by CFT at genus zero, give 

rise to classical stringy geometry. The question of how geometry is effected by replac­

ing point particles by strings has been extensively studied in the early '90s. While we 

will review some of the key results below, let me state them briefly here. The effective 

coupling constant of the CFT compactification is a'/ R2
, where R is some characteris­

tic size in the Calabi-Yau. The correlation functions in the theory will be power series 

expansions in a'/ R2
, so the leading order can be extracted by setting a' = 0. This is 

classical geometry, since in the infinite tension limit string reduces to a point particle, 

but , the classical quantities will be corrected order by order in stringy fluctuations. 

This result seems fairly tame, but one finds that some topological quantities on X 

are not invariants of classical string theory, but are modified by quantum effects. By 

far the most remarkable result, however is mirror symmetry. Mirror symmetry is an 

essentially trivial symmetry of the CFT. Its implications on geometry are nothing 

short of spectacular. It states that there exist pairs of Calabi-Yau manifolds ( X, Y) 

of different topology - their classical geometry is entirely different, which nevertheless 

yield the same conformal field theory - in stringy geometry they are the same. 

Quantum geometry, our subject, is the problem at gs -::J 0. We study geometry and 

physics which emerge at the point where stringy geometry and quantum mechanics 

*2 It is the case that state-of-the-art of modern mathematics, algebraic geometry, cannot count 
beyond three. 
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meet. 

When the coupling is small but non-zero, the perturbation expansion as the sum 

over surfaces exists, however the series diverges with 9s faster than in field theory. 

In the lack of microscopic formulation of string theory at arbitrary value of gs, many 

aspects of quantum geometry can be studied using effective field theory methods. In 

this approach the quantum geometry, properties of the compactification manifold X, 

are determined by the study of the low energy Lagrangian. The Lagrangian describes 

physics of massless string modes, where the tower of massive string states is integrated 

out. To the zeroth order in cl, the coupling constants of the theory and the masses 

of BPS states are determined by classical geometry of X. The scalar fields in the 

Lagrangian are coordinates on the configuration space of the possible choices of X, 

and their kinetic terms are the metric on the configuration space. The a' and 9s 

dependence of string theory correct the coupling constants of the low energy theory, 

and are the quantum gravity corrections to the geometry of X. 

It is by now well-known that non-perturbative string theory contains states which 

do not appear at any order of string perturbation theory, most notably solitons called 

Dirichlet (D) branes. On one level, compactification of string theory on Calabi-Yau 

manifolds shows that inclusion of these states is necessary for consistency of string 

theory. On the other, consequences of including these states on classical and stringy 

geometry are fairly dramatic: the most basic topological invariants of Calabi-Yau 

manifolds are not invariants of quantum geometry. 

Inclusion of D branes in the theory provides one with new tools to study geometry 

in string theory. D branes can be used as probes of geometry, so in this way they 

define quantum geometry : The remarkable fact that D branes have a perturbative 

string description *3 allows one to ask what geometry D branes see. As of now, it is 

not entirely clear how this sort of geometry meshes with quantum string geometry of 

the type discussed above. 

On a different level, particle physics has had beautiful and fruitful connections 

with geometry - most notable is the relation of YM theory and general relativity to 

*3 Although they are not perturbative string states. 
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differential geometry. A prominent part of this work is to exploit the essential link 

between geometry and physics that string theory provides. Mirror symmetry was 

certainly one great contribution of string theory to mathematics. We will run the 

arrow in the other direction. 

The plan of the work is as follows. In the second chapter we review some ba­

sics of the classical geometry of Calabi-Yau manifolds . We discuss N = 2 SCFT 

describing propagation of type II strings on Calabi-Yau manifolds since, in our view, 

understanding classical string geometry is a prerequisite for the quantum geometry. 

The aim of the chapter is to serve as an extended introduction for the ones to follow. 

The key result is mirror symmetry of Calabi-Yau manifolds. In the third chapter we 

leave the realm of perturbative string theory and discuss Calabi-Yau manifolds from 

the point of view of effective field theory of string compactification. Singularities in 

the moduli spaces force one to face the failure of the CFT, but also to find its cure. 

This leads us to an application which describes work in [l]: we are able to learn 

about moduli spaces of N = 2 supersymmetric Yang Mills theories from geometry of 

Calabi-Yau manifolds. In the fourth chapter we study Calabi-Yau orbifolds, spaces 

of the form C3 /Z m x Zn both from the point of view of closed and open string (D 

brane) conformal field theory. The closed string CFT was introduced in [2, 3], and 

we develop the open string description [4] . In both cases quantum geometry does not 

have a classical limit. In the last chapter, we discuss implications of non-perturbative 

physics on mirror symmetry - the quantum mirror symmetry [5]. Taking the quan­

tum mirror symmetry conjecture seriously, we "derive" mirror pairs of manifolds in a 

new way. Finally, we resolve some issues in constructions of chiral JV = 1 theories in 

type II string theory using branes constructions ala Hanany-Witten. The last chapter 

is based on [ 6] . 
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Chapter 2 Geometry and Physics of 

Calabi-Yau Manifolds: the view from the 

worldsheet 

2.1 Why Calabi Yau Manifolds? 

Consider type II string theory compactified on a spacetime of the form M 4 x X, 

where M 4 is flat four-dimensional Minkowski spacetime, and X is a compact six­

dimensional manifold. In a theory with dynamical gravity, such as string theory, 

compactification on M 4 x X means a choice of vacuum of the theory of the above 

form. 

Perturbative string theory in this background is given in terms of maps </> : 2:: --+ 

M 4 x X , where 2:: is the worldsheet of the string. The string action is given by a 

product of a free theory describing string propagating on M 4 and a nonlinear sigma 

model associated with X : 

Sx =ti d2
z [gijOz</>ifJz<Pj + igiji/J~Dzi/J~ 

• 0 /, i D 0 /.J 1 R o/,i ot,} o/,k o/, / ] + zgij'f' _ Z'f/ - + 2 ijkl'f'+ 'f'+ 'f' - 'f' _ " (2 .1 ) 

Above, t = 1/47ra' is the coupling constant, z, z are coordinates on 2::, <Pi are coordi­

nates on X , so that <Pi(z, z) describe the local embedding of 2:: into spacetime. i/J _ , i/J+ 

are vectors on X (sections of the tangent bundle TX) and from the worldsheet point 

of view they are left and right moving Majorana-vVeyl fermions: 

D o/,i - ~ . 1,i ~ j r i nf,k 
z'f'+ - Uz'f'+ + UzX jk'f'+ ' 
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and similarly for 1/J- . This action has ( 1, 1) supersymmetry: there is a left and a right 

moving worldsheet supersymmetry generated by 

r i . of, i . ol. i 
ox = zc:_'I-'+ + it:+'l-'-l 

r o/,i i . oi.J ri o/,k 
U'f'+ = -E_X - ZE+'I-' - jk'i-'+' 

fo /,i i . o/,i ri o/,k 
U'f'_ = -E+X - ZE-'1-' + jk'I-'-· 

Consistency of string perturbation theory requires the action to be conformaly invari­

ant. In a conformally invariant theory beta function /Ji,j(g) must vanish and at the 

one loop level, the condition is that X admits a metric whose Ricci tensor vanishes: 

which is just the Einstein equation in the vacuum. Generically, there are corrections at 

all orders in ~~ so the solutions are known only in some special cases , for example when 

the metric g appearing in the action is exactly flat Rijkl = 0* 1
, so and consequentially, 

no generic solutions to the equations of motion are known. 

In cases with more worldsheet supersymmetry the situation improves signifi­

cantly*2. A general structure of second possible supersymmetry is 

r o/,i - J( )i j . oi.J ri o/,k 
UJ'f'+ - -C:_ X jX - ZE+'I-'- jk'I-'+' 

r . /,i - J( ·)i j . . 1,i ri . 1,k 
Uf'f'- - -C:+ X jX - zt: _ 'I-' + jk 'I-' - ' 

where f is a real tensor on X* 3 • In order for this to define a supersymmetry trans-

* 1 Together with compactness of X this implies X = T 6
. 

* 2 Ultimately this will imply more space-time supersymmetry as well. 
*3 The left-right symmetric theory in which n such tensors exist has (n, n) supersymmetry on the 

worldsheet. Often, we will say that such a theory has N = n supersymmetry. 
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formation f has to satisfy the requirement that [7]: 

(2.2) 

The first condition defines f to be a complex structure, because the existence of f 

makes X into a complex manifold. Basically, such a tensor always exists if X is a 

complex manifold *4 • The more interesting question is whether a given real manifold 

X is also a complex manifold , that is if one can find a globally defined complex 

structure f on X. This can be rephrased as a certain topological constraint on X *5 • 

The last condition in eq.(2.2) is a condition on the metric g to be Hermitian: 

in the above choice of complex structure the only non-vanishing components of the 

metric are 9i}i which together with the fact that the metric is real implies that it is 

Hermitian in the usual sense. If in addition to being a complex manifold X has a 

complex structure which is covariantly constant, which is the second condition, X is 

called a Kahler manifold*6 • It is common to consider a another quantity built out of 

g and f,: 

which is closed since g and f are covariantly constant, dJ = fJ;Jjkdxi /\ dxj /\ dxk = 

D;Jjkdxi /\ dxJ /\ dxk = 0. The form J is called the Kahler form and being closed J 

defines a Kahler class 

[J] E H 1
•
1 (X), 

which is non trivial since ~J /\ J /\ J is the volume element on X, and thus J cannot 

be exact. The fact that the X is Kahler constrains the topology on X - in the given 

complex structure H 1
•
1(X) -/= 0. 

*•That is, if X is a complex manifold, it can be covered by patches { U;} each of which is the same 
as c3 where this identification proves local coordinates on U;, and such that on all the nonempty 
overlaps U; n Uj, i -:j:. j there are exist holomorphic changes of coordinates the gluing U; 's together . 
Now, if one _picks a patch with coordinates zi, :zi = z7 we can take f to be equal i if acting on zi 
and -i on zi and that in this case f is preserved under holomorphic changes of coordinates, so it is 
defined globally. 

*5 The constraint is vanishing of Nijenhuis tensor built out off and its first and second derivatives, 
and it is topological in the sense that it does not depend on the metric on X. 

*6 It is equivalent to existence of a local fun ction J( on X such that g = ()[JJ{. 
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In order for the action eq. (2.2), to be in addit ion conformally invariant X needs 

to be Ricci. For a Kahler manifold this can be rephrased in an invariant manner: 

since the only components of the Ricci tensor which are non-zero are R{3 = -R-3i, the 

Ricci tensor defines a two form 

R = R ·dzi /\ dzj 
lJ ' 

which is closed, dR = 0. The cohomology class of the Ricci form in H 1•1(X) is called 

the first Chern class c1 (X) = [R] E H 1
•
1

, and Ricci flatness is the statement of its 

triviality, 

Def. 1. A Calabi- Yau manifold is a Kahler manifold with vanishing first Chern class. 

An important consequence of the Calabi-Yau condition is that the holonomy group 

of the manifold is at most SU(3). On a generic 2d real dimensional manifold the 

holonomy group is S0(2d): upon parallel transport around a closed loop vectors 

undergo an S0(2d) rotation 5vi = [D1, Dk]vi = (Rjk)~vP, with R1k E S0(2d). On 

a Kahler manifold, the holonomy is restricted to U(d), since the complex structure 

is covariantly constant . The trace part of the holonomy, ( Rij )~, is the Ricci tensor 

and vanishing of this implies that holonomy group is contained in SU(d) . Thus, 

Ricci flatness is equivalent to the statement that the manifold has at most SU(d) 

holonomy. The holonomy provides classification of threefolds which are Calabi-Yau. 

Trivial holonomy implies that the manifold is flat - a six torus T 6
, and SU(2) C SU(3) 

that it is a product of K3 manifold, the unique Calabi-Yau two-fold which is not flat, 

and T 2 . The Calabi-Yau con di ti on severely constrains the topology of X . The fact 

that the holonomy group is exactly SU(3) implies h1
•
0 = 0 = h2

•
0

, and that h3
•
0 = 1. 

The unique holomorphic three-form of n E H 3
•
0(X), plays an important role, as we 

will shortly see. Furthermore, if X is connected h0
•
0 = 1 = h3

•
3

. The values of h1
•
1 

and h2
•1 are the crudest topological classification of Calabi-Yau threefolds. All in all, 

after acounting for the usual relations hp,q = hq,p = h3- p,3- q, the Hodge diamond of a 

Calabi-Yau manifold is: 



9 

ho,o 1 

hl,O hO,l 0 0 

h2,0 hl,l h0,2 0 hl ,l 0 

h3,0 h2,l hl ,2 h0,3 1 h2 ,l h2 ,l 1 

h 3, l h2,2 hl ,3 0 hl,l 0 

h3,2 h2,3 0 0 

h 3,3 1 

We should worry that higher loop stringy corrections could render the equation 

Rr3 = 0 physically meaningless. The fact that this is not the case [7] is a consequence 

of a non-renormalization theorem, and a beautiful theorem due to Yau. The non­

renormalization theorem states that starting with a Ricci flat Kahler metric on X, 

stringy corrections will not change the complex structure on X, nor the Kahler class 

of the metric . One can furthermore show, that the renormalization does not spoil 

Ricci-flatness of the metric . S.T.Yau's theorem provides both the existence, and the 

uniqueness of the metric: 

Thm. 1. If X is a Kahler manifold with a vanishing first Chern class there exists, 

for a given choice of complex structure on X 1 a unique Ricci-flat metric. 

2.2 N = 2 Superconformal Field Theories 

On a Calabi-Yau manifold, the non-linear sigma model action eq.(2.1) is (super)conformally 

invariant and can be rewritten as: 

S = 2t ~ d2 z [~(gi]Oz</>i B.zql + {RjOz</>"{ Bz¢j) + igi)7/J~Dz7/J~ 

+igi37/J~ Dz7/J~ + Ri)tk7/J~ 7/J~ 7/J ~ 7/J~ ] - (2 .3) 

In general , there are few results in the theory that are explicitly calculable. The 

problem is evident from the very fact that the coupling functions g{] ( ¢) - the Calabi­

Yau metrics - are not explicitly known. However, N = 2 supersymmetry coupled with 
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conformal invariance is quite constraining, and much of the structure of the theory can 

be inferred from the underlying N = 2 superconformal algebra. This is what we turn 

to next. We will review some basic features of N = 2 superconformal field theories , 

for more details see for example [8, 9]. The standard (left moving) superstring algebra 

with N = 1 supersymmetry is generated by the energy momentum tensor, and its 

worldsheet superpartner G(z ). The N = 2 supersymmetry implies the existance of a 

second supercurrent , and we will denote the two currents G±. In addition, the left 

moving theory has a U(l) symmetry under which 1/J~----+ eia'l/J~, and 1/;~----+ eia'l/;~ with 

an associated conserved U(l) current J = i 'lj; ~igi"3'1/J~ *1
. 

A generic left moving operator on the world sheet has an expansion 

00 

n=- oo 

where s is the left moving conformal weight of the field . Ifs is half integer, the sum 

over n could run over integers or half integers, and this leads to two sub-sectors of the 

theory: the Neveu-Schwarz sector for n E Z + ~' and the Ramond sector for n E Z . 

The boundary conditions on 'ljJ are 1/;( e27ri z) = e- 27ris 'l/; ( z), so insertions of fields in 

the Ramond sector must be accompanied by cuts on the world sheet . The Ramond 

fields are conserved modulo two, and give fermions in space-time, while the Neveu­

Schwarz sector fields yield bosons. The energy momentum tensor has spin two, and 

its harmonics are commonly denoted by Lm, the G± have spin ~' and J has spin 1 

* 7 The N = 1 theory has the same U(l) symmetry at the classical level , however if X is not Ricci 
flat the symmetry is spoiled by an anomaly. 
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*8 In terms of the modes the N = 2 algebra is 

[Lm,Ln] 

[Jm,Jn] 

[Lm,Jn] 

[Lm,G;J 

c 2 
= (m - n)Lm+n + 

12
m(m - l)Om+n,o, 

c 
= 3mOm+n,o, 

= -nlm+n, 

m ± = ( 2 - r)Gri 

[Jm, c;] = ±G!+r' 

{G;,Gt} = 2Lr+s -(r - s)lr+s + ~(r2 
- ~)Or+s,o, 

(2.4) 

where the (anti)commutators we have not written down vanish. The algebra has a 

very important property. There exists a sequence of one parameter deformations Ue 

called spectral flows, which act by isomorphism on the algebra, and therefore on 

representations as well, 

UeLnUi 1 

UelnUg 1 

Uec;u0-
1 

and Ue : 1-lo ---+ 1-le. It is possible to find an implicit expression for operator Ue in 

terms of the generators of the algebra, but we will not need it here. For e = ~' this 

maps the NS sector to the R sector of the theory *9 • Note that Ue maps In and Ln to 

affine linear combinations of each other, and thus has essentially trivial action, but it 

changes the boundary conditions on the supercurrents. 

Now let's consider the representations of the algebra eq. (2.4). From above, [Lo, 10 ] = 

0, so we will work in the basis of their eigenvectors lh, g, * >,where his the L0 eigen-

*•Spin is the same as the left conformal dimension. 
*9 Actually, this is somewhat subtle. One must require that the operator Ue must be local with 

respect to the fields in the theory. More precisely, it is already semi local since it is a spin ~ field in 
the original theory, but its OPE with other fields must introduce no additional non-locality. This 
turns out to be a constraint on the original theory to contain only integer U(l) charges in the NS 
sector - this is in fact an additional constraint on the theory we must impose in order to have N = 2 
supersymmetry. 
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value, the conformal dimension, and the charge q is the eigenvalue of J0 • Commutation 

relations imply that if the spectrum of L0 is bounded below, there exists a state l<P > 

which is annihilated by all Lm, Jm, form> 0 since they act as lowering operators. In 

the NS sector, it is easy to show that this implies that Gm>ol<P >= 0 as well, so the 

NS sector has in fact a unique vacuum. In the Ramond sector the story is different, 

since there are also zero modes of the supercurrents Gt, so Ramond ground states 

are those which in addition satisfy 

Gt l<P >= 0, C-0 l<P >= 0. 

It is conventional to call the ground states primary states, since all other states can 

be built by raising operators acting on them. 

Let us return to the NS sector for a moment. It proves worthwhile to constrain 

the notion of a primary state to chiral primary states which are those that satisfy: 

The second equation is trivial for a primary state, but the reason for writing the 

condition in this way is that it is manifest that the chiral primary states are images 

of the Ramond ground states under the spectral flow by 0 = - ~. Similarly, one can 

define anti-chiral primaries which are annihilated by G=
112

, and related to Ramond 

ground states by 0 = ~· The Fock space of the theory is a product of the left 

and right moving Fock spaces. We will see in the next section that one is able to 

compute the ( R, R) ground states of the Calabi-Yau conformal field theory, since the 

only information needed is the topology of the space. The remainder of the massless 

spectrum can be obtained from the ( R, R) ground states by spectral flows. 

The chiral operators of the N = 2 conformal field theory form a ring, because the 

the operator product of any two chiral operators is a chiral operator. To see this, 

note that for any state j>. > 
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and since G~ = G=r t, the left-hand side is positive semi-definite, so h>. 2 q>./2, for 

any operator >.. Chiral operators satisfy G~1 ; 2 i>. >= 0 and saturate the inequality 

*10 • Thus, they correspond to states with lh = q/2, q, * >. Now consider the product 

of two chiral operators <P(z ), x(z ). On dimensional grounds, the operator product 

must have the form 

By charge conservation, Q>. = qr/>+ qx, but then h>. 2 ~(qr/>+ qx) = hr/>+ hx· Thus we 

learn that the operator product 

(<Px)(z) = lim <P(z)x(w), 
w-+z 

is either a chiral primary, or zero. 

vVe will soon be able to show that the number of chiral primaries is finite. Thus, 

chiral primaries form a finite ring, and the ring is known as the chiral ring. Similar 

considerations apply to anti-chiral ring as well. Finally, there is identical structure 

for the right movers as well. The full theory is the direct product of the left and right 

moving fields, so there are four rings ( c, c), (a, c), ( c, a), (a , a) , however the third and 

the fourth ones are just charge conjugates of the first two. The spectral flows U±1; 2 

relate the ( c, c), ( c, a) rings to ( R, R) ground-states of the theory, and as we will see in 

the next section, this provides an identification of these rings with cohomology rings 

of X. 

2.2.1 Non-linear Sigma Model 

There is a very beautiful adiabatic argument due to Witten [11] that allows one to 

compute the ( R, R) ground states on any complex manifold, and its specialization 

applies here as well. 

We want to compute the ground states of (2.3). First, observe that the algebra 

*10 We haven 't shown the converse, but the proof is given in [10]. 
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(2.4) contains the usual N = 2 algebra as its sub-sector. By identifying G~ = Q±, 

2Lo - tz = H, one obtains for the right movers 

and an identical algebra for the left movers. Consequently, the ground states, as­

suming supersymmetry is not dynamically broken, are zero energy configurations on 

the world sheet. Classically, any state of non-zero momentum will have non zero 

energy, so we can limit ourselves to constant configurations on the worldsheet and 

the action (2.4) reduces to supersymmetric quantum mechanics on X. The canonical 

anti-commutation relations of the fermions are 

{ 7/;~, 7/;~} = { 7/;~, 7/;~} = 0, { 7/;~, 7/;~} = /3' (2.5) 

and similarly for 7/J_. After canonical quantization the right-supersymmetry charges 

are 

Q+ _ 0 /,i + 
R - 'fl+Pi ' Q- 0 /,i + 

R = 'fl +Pz ' 

where Pi is the momentum conjugate to </>i(z) . 

(2.6) 

The algebra (2.5) is the usual algebra of fermionic creation and annihilation op­

erators. We may take 7/;~, 7/J~ to be the operators annihilating the vacuum IO >: 

7/J~ 10 >= 0, 7/J~ 10 >= 0, 

so that states of the theory can be built by acting successively with 7/;~, 7/J~ on the 

vacuum. The resulting wave functions are classified by their U(l)L x U(l)R charges, 

and the state with charge (r, -s) is of the form: 

(2.7) 
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This expression has several remarkable properties. Due to anti-commutation relations 

of the 1f; 's the amplitude bi
1 

••• ir)i .. .Js is antisymmetric under the interchange of any two 

i, and any two J indices, but apriori, it can have an arbitrary dependence on </> E X, 

the bosonic zero-mode. This implies that,effectively, the wave function is an (r, s) 

differential form on X, br,s E nr,s(X). In order for (2.7) to be the ground state of 

HR it must be annihilated by the supercharges Q~, QR_. Let's consider the action of 

the QR, operator in some more detail. It acts on bi
1 

.. . ir)i .. .Js by taking a derivative 

with respect to J and it adds a fermion 1/;~ if the wavefunction does not contain one 

already. This action is exactly the same as that of 8 = dzi 8~; on nr,s(X). 

Similarly Q~ is the same as the Hermitian conjugate 8t of 8 * 11 since it takes: 

Q~ : nr,s --+ nr,s-1. 

The forms in nr,s(X) which are annihilated by both 8t, and 8 form a cohomology 

group H 0 ·s(X, NT*) , of 8-harmonic forms with coefficients in NT*. 

We must still ask for these states to be annihilated by the left moving supercharges, 

since in order to be ground-states of the theory they must be ground-states of the 

left-moving Hamiltonian as well. By repeating the exercise one finds that the pair 

of right moving supercharges corresponds to o, and at operators on X. Now, it is 

a basic result that the o,8 and the de-Rham operator cohomologies are isomorphic, 

in particular their harmonic forms are the same*12
• The right-moving Hamiltonian 

HR = { Q~, QR,} is isomorphic to the Laplacian 63 = 88t + 3t 8. It is a matter of 

algebra to show 63 = 6 8 = ~6d. Thus, we have shown in fact that the Ramond­

Ramond ground states correspond to harmonic forms on X, the elements of H*(X). 

Before we leave this subsection, let us note one important fact. Above we have cho­

sen to call 1/;~ and 1/;~ creation operators and 1/;~, 'lj;~ annihilation operators. ·whether 

*11 It is the Hermitian conjugate with respect to the natural inner product < w, 7] >= fx w /\ *7/· 
*12 H~ is a refinement of H':t , since d = 8 + 8, so for example one has H;J = Ln=r+s Hrt(. 
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we call ¢~ or ¢~ a creation operator is clearly arbitrary. However, once this choice 

is made the choice between ¢~, and ¢~ as the second creation operator is of content. 

So consider instead requiring that 

¢~ 10 >= 0, ¢~10 >= 0, 

so that a state of charge ( -r, -s) looks like 

bi, ... ir(,,/-,) 0 / , 0 / , of.JI n/)slO> 
~ ~ 'f' 'f'i1- · · · 'f'ir - 'f'+ · · · 'f'+ · JI ···Js 

where 'l/;;_ = gi]¢J_. Following the arguments made above, one finds that there is 

a ground-state for every generator of H~'5 (X, /\rT), where NT is the r-th exterior 

power of the tangent bundle of X. It is useful to note that on a Calabi-Yau cl-manifold 

one can use the fact that there is a unique holomorphic d-form n, so that the map 

n: NT---+ /\d-rT* is an isomorphism of the cohomology groups, 

From the conformal field theory point of view the two choices in computing the 

( R, R) ground-states differ by the overall sign of the left moving U ( 1) charge. However 

in the underying geometric interpretation, the sign flip results in two completely 

different cohomology groups, H~'5 (X, NT*) and H~'5 (X, /\d-rT*), and the exchange 

of the two will not be a symmetry of a generic Calabi-Yau manifold X. 

Rather than picking one assignment as a physical one in the confirmal field the­

ory of X, the authors of [10, 12] conjectured that there exist pairs of manifolds X 

and X which yield the same conformal field theory, but such that the geometrical 

interpretation of the conformal field theory operators is different in the two compact­

ifications. In particular a given ( R, R) ground state that is associated to an generator 

of H~'5 (X, NT*) in one interpretation corresponds to a generator of H~'5 (X, /\d-rT*) 
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in the other. This requires that X, X satisfy 

This symmetry of the conformal field theory under the exchange of X and X is known 

as mirror symmetry. 

2.3 Moduli Spaces 

2.3.1 Families of Calabi-Yau Manifolds 

Yau's theor gives the existance of a unique Ricci flat metric on X, provided a choice 

of complex structure and the Kahler class of the metric. The question we would like 

to address here is whether the Ricci-flat metric on X is unique. Generically, this is 

far from being the case. The most general metric deformation g --t g + 6g is: 

(2.8) 

requiring that [R(g + 6g)] vanishes provides constraints on the 6g;-3 and 6gijdz, and 

we consider them in turn. 

For the mixed index deformation 6gi) one finds that the resulting metric is Ricci 

flat provided that 6J = 6gi;dzi /\ dz) is closed, so the inequivalent deformations of 

this type are classified by the choice of representative 

[6J] E H 1
•
1(X). 

This deformation is commonly referred to as the deformation of the Kahler structure 

on X, and space of all possible choices of [ J] is called the moduli space of Kahler 

structures. We can put coordinates on the moduli space by writing J = l:i Jiei, 

where ei forms a basis of H 1•1 . There is a constraint on J which comes from the 

relationship of J to the metric and the requirement that all the volumes in X are 
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non-negative. It is a basic result of complex differential geometry that for analytic 

submanifolds Ek E H2k(X, Z) 

1 1 k Vol(Ek) = k' /\ J, 
· Ek 

so we must have JEk /\k J ~ 0, for all holomorphic complex k cycles. The space 

of allowed J;s, the classical Kahler structure moduli space, forms a cone called the 

Kahler cone. The boundaries of the Kahler cone are places where classically some of 

the Ek 's shrink to zero volume. 

Deformations with pure metric indices are somewhat more complicated, but one 

can show that one still obtains a Ricci flat metric provided that 

The pure index deformation results in a metric which is no longer Hermitian. There 

always exists a change of variables which will make the metric Hermitian, however 

such a change of variables cannot be holomorphic, and thus it necessarily changes the 

complex structure on X * 13 . 

There is also a natural way to parametrize possible choices of complex structures. 

We can pick a basis of homology three-cycles, A;, Bi E H3 (X, Z), where i = 0, ... h2•1 , 

* 13 A somewhat impractical, but easy to visualize way to describe deformations of complex structure 
is the following. One way to describe a compact complex d = 3 manifold is as a holomorphic 
hypersurface in projective space X C !P's, 

s 
X: f( z ) = 0 =La; IT z;n;, 

i =l 

where z; are coordinates on !P's, z; "" >.z; , >. E ([.'* = C - {O}. In order for X to be well defined 
in !P's, the equation must be homogenous of degree n: f(>.z) = >.n f(z) , and in order for X to be a 
Calabi-Yau manifold one must haven= 5 [1 3]. We can use coordinates of the embedding space to 
provide (local) complex coordinates for X, thus defning a choice of complex structure on X. Smooth 
variations of coefficients a;'s in the defining equation will define a family of manifolds with the same 
topology as X, however generically there will be no holomorphic change of variables that will map 
one member of the fami ly to the other. 
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and the dual basis of H 3 (X) consisting of three-forms ai, /Ji, so that 

where all other integrals vanish . The holomorphic three-form D can be written in this 

basis as 

so that 

Above, O'. i and /Ji are really electric magnetic duals of each other, so that ¢i can be 

thought of as coordinates on the complex structure moduli space, and F's become 

functions of ¢ 's. One can show that this is in fact a complete characterization of the 

complex structure moduli space: the first-order variation of the holomorphic three­

form D by definition changes the complex structure, and so produces an H 2
'
1 form: 

where 8i = 8/8¢i . The 1 + h2 ' 1 partial derivatives of n give a basis of H 3 ,o EB H 2
' 1 . 

This can be used to show that there must exist a function F( ¢), the prepotential, 

such that 

which contains all the information about the moduli space of complex structures on 

x. 
We thus obtain a family of Calabi-Yau manifolds which are equivalent to X as 

topological manifolds, but differ as complex manifolds and by the choice of Kahler 

class. The classical moduli space of Ricci-fiat metrics on X is at least locally 

Mcalabi Yau(X) = Mx: X Mc . 
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2.3.2 Families of CFT's 

For every point g(X) in the space of metrics on X there exists a conformaly invariant 

non-linear sigma model which describes string theory on X. Since the space of Calabi­

Yau metrics is connected the family of associated CFT's is connected as well. Under 

a metric deformation g--+ g + og, the CFT is deformed by 

Sz:,--+ Sz:, + - 1
- f x*(og) + .... 

87T'a' }z:, 

If og preserves the Calabi-Yau conditions, the operator x*( og) preserves N = 2 super­

conformal symmetry- it is exactly marginal. The space of CFTs one can build in this 

way need not be the same as the space of possible deformations of the metric, because 

the CFT may have marginal operators that do not have a geometric interpretation. 

Most importantly, the NS sector contains a two form B which couples to the 

worldsheet as the pullback of a two form in space-time J x*(B) = J d2 ziBijOzXi0-zXj 

* 14
• Such a coupling preserves conformal invariance provided that B is closed, and 

furthermore any exact part is irrelevant since the worldsheet is closed, thus all the 

CFT sees of B is its cohomology class [BJ E H~' 1 (X). One should really be a little 

more careful. Under B --+ B + A, string path integral picks up a phase e2
ni IE x* (A), 

so a transformation with A in H 1•1(X, Z) leaves the theory invariant. The space of 

physical B fields is H~,i(X, C)/ H~ ' 1 (X, Z). 

The full CFT moduli space of Kahler and B field deformations takes a simple 

form. First , notice that in the presence of the B field we can rewrite the sigma model 

as 

+ t fz:, </>*(J + iB). (2.9) 

* 1 4 We shall see that string theory contains moduli from the Ramond sector as well, however these 
couple to the world-sheet in a fairly roundabout manner. In the NS sector, there is also the dilaton 
<f> which is universal for any compactification . which enters the string action via a topological term 
-2?T J d2 z</>R~ so counts the Euler characteristic of the worldsheet. String equations of motion are 
solved if the dilaton is constant , so we will neglect it here. 
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The natural quantity in the CFT are therefore not the Kahler class J and the 

B-field separately, but their complex combination J + iB. Given a basis { ei} of H 1
•
1

, 

the moduli space of complexified Kahler forms can be parametrized as 

The moduli space of conformal field theories on X is the enlarged moduli space 

of Calabi-Yau manifolds, 

Mc.;rT(X) = A1x:c x Mc. 

Now, let us look at the Kahler structure moduli space in some more detail. 

2.4 Stringy Geometry 

The theory can be analyzed exactly in the weak coupling limit of the conformal field 

theory ~~ -----? 0. In this limit the path integral is dominated by the classical solutions, 

and since the term JE J + iB is topological in the sense that on a closed worldsheet 

all of its smooth variations vanish, classical solutions are those that minimize the first 

line in (2.9) . We only need its bosonic piece which is JE gi"3 8z¢>i!Jq) = JE Jaz<t>i J
2

, so 

the solutions to the equations of motion are holomorphic maps 

Consider now the string path integral at genus zero. It can be written as a sum over 

the homotopy types of maps from the worldsheet, which is a sphere I; ~ JP> 1 into X, 

<P : JP> 1 -----? X* 15 • Such maps are, up to homotopy, classified by their winding number 

m = 0, 1, . .. where we take m = 0 to correspond to constant maps, mapping the 

* 15 Topologically, the projective space I!D 1 is an sphere S 2 , hoverer it is the holomorphic version. 
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worldsheet to a point in X . The topological piece of the action is therefore 

where mi are integers determining the homology class of ¢(2:) . In terms of single -

valued coordinates on the moduli space 

q. _ e-2nt(J;+iB;) 
i- ' 

. 1 hl 1 z = '.. . '' 

the contribution of a holomorphic map with winding numbers mi to the string path 

integral is 

In the limit t -t oo the term that dominates comes from constant maps mi= 0, with 

exponentially suppressed contributions from higher homotopy classes. Contributions 

to the action of holomorphic maps are called world sheet instantons . 

vVe have seen that the ( c, c) and (a, c) rings of the conformal field theory become 

associated to the cohomology rings of X, in the sense that there is one to one corre­

spondence of chiral primary fields and the harmonic forms on X . A natural question 

to ask is whether the map extends beyond just the spectrum to the full ring isomor­

phism. 

For example, one can pick three elements wi,wj,Wk E H 1
•
1 (X) and ask to evaluate 

r Wi /\ Wj /\ Wk. ix 

In conformal field theory the question is to compute a three-point function < </>i</>j</>k > 

of observables associated to wi. On general grounds one can show that the result must 

have the form [14] 
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where cf" = f1 1 q/1
, and the sum is over all homotopy types of maps </> : IP' 1 --+ X. We 

have singled out the classical piece, mi = 0, Vi, from the instanton sum, which is just 

the value expected from classical geometry. There is however an infinite instanton 

sum, which because of the denominator in (2.10), starts to dominate as any of the 

qi = e-27rt(Ji+ iB ; ) --+ 1. Thus, while in classical geometry singularities occur at real 

codimension one in the moduli space, in quantum theory strong quantum fluctuations 

occur at codimension two in the moduli space: at least in the case of holomorphic 

curves we have seen that one must take not only Ji --+ 0 but also Bi --+ 0 for the 

singularities to occur. However, at Bi = 0 = Ji the conformal field theory stops 

making sense[l5]. 

From the preceding analysis it is clear that world-sheet instanton effects cannot cor­

rect the complex structure moduli space, basically because holomorphic maps cannot 

affect the odd-dimension cycles. Therefore, as far as conformal field theory goes the 

complex structure moduli space is exact at the tree level. In principle, this only 

means that stringy corrections are absent, but leaves one to worry about possible 

loop corrections. However , this will be the subject of the next chapter. 

2.5 Mirror Symmetry 

We have seen above that a trivial symmetry of the conformal field theory implies the 

existence of mirror pairs of Calabi-Yau manifolds with X , X satisfying dimH;'8 (X) = 

dimH~- r,s (X) , so ford= 3 this implies 

(h1,i(X), h2 ,1(X)) = (h2,1(X) , h1 ,1(X)). 

The claim is in fact much deeper, since because X and X yield exactly the same 

conformal field theory, all correlation functions computed from X and X must be 

the same. Needless to say, this requires miracles to happen from the point of view of 

geometry. The statement is thus that the moduli space of complex structures on X, 

which is exact at classical level is exactly the same as the quantum-corrected moduli 
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space of Kahler structures on X, and vice versa. Worldsheet ins tan tons come as a 

relief, of course, giving hope for the sanity of the theory. 

We can easily see one immediate prediction of mirror symmetry. We have argued 

above for the general form of correlation functions of operators </>i, </>J, </>k, (2.10) using 

their correspondence to elements H 1
•
1(X). In order to compute them one must sum an 

infinite number of instanton corrections, in particular one must be able to enumerate 

all possible embeddings of a IP' 1 into X - counting of "rational curves" is a hard and 

well known problem in mathematics. Mirror symmetry predicts that </>'s can just 

as well be interpreted in terms of geometry of the mirror manifold to correspond to 

elements wi,wj,Wk E H 2
•
1(X), and therefore: 

(2 .11) 

where n is the holomorphic three form *16
• Mirror symmetry predicts that the two 

expressions, (2.10) and (2.11) are identical. 

More generally, mirror symmetry is a map A1x::(X) --+ Mc(X), such that any 

correlation function on Mx::(X) is a pullback of a correlation function on J\ltc(X) 

under the map. 

\Nhen we discussed the moduli space of complex structures on a Calabi-Yau man­

ifold, we saw that there exists a choice of symplectic coordinates on Mc(X), such 

that: i) the moduli space is parametrised by the periods 

i = 1, . . . , h2
•
1(X) 

of the holomorphic three-form, and ii) all the correlation functions in H 3(X) are 

determined entirely by the knowledge of the classical prepotential function :F(z). 

With this choice of parametrization of the complex structure moduli space, the 

*16 In components , (w; /\wj /\wk)· 0. = (wd /\ (wj )J /\ (wk)k0.ijk, where w; is the image of w E H 2 •1 (X) 
in H 1 (X ) T) ) wi "' 0_i jkWjkpdzP under the isomorphism 0, : H 2•1 (X) -+ H 1 (X ) T) 
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mirror map is given by 

where /i, /o are elements of H3 (X) appropriately chosen: we know that in the "large 

radius limit" 

Ji ---+ oo, Vi, 

the correlation functions on MK(X) reduce to their classical values. For an appro­

priate choice of i's there exists a limit in the complex structure moduli space such 

that the classical correlation functions on Mx::(X) agree with those in Mc(X) [16] . 

In general, though, the correlation functions are a power series in the z/s, whose 

coefficients are integers that count rational curves on X . Of course, the same holds 

with X and X exchanged. 
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Chapter 3 N on-Perturbative Phenomena 

in Calabi-Yau Compactifications 

We have seen in the previous chapter that singularities of the conformal field theory 

are milder, in a sense, than in classical geometry, because they occur only at a real 

codimension two locus Vs in the parameter space M cFT, so that one has to tune 

two parameters rather than one to encounter the singularity - we can always pick 

a path in the moduli space so as to avoid meeting Vs . In this chapter we wish to 

discuss what happens when we choose not to avoid the singularity. There is nothing 

wrong with the fact that at a sub-locus Vs of its parameter space conformal field 

theory stops making sense - one can simply make a judicious choice not to consider 

such CFT's. One must, however, face the fact that A1c:FT is also the moduli space 

of vacua of string theory* 1
• For every marginal operator in the conformal field theory 

of X which moves one in the space of conformal field theories , there exists a modulus 

in the low-energy theory parametrizing the corresponding motion among the string 

vacua, and long wavelength fluctuations of scalar fields will ultimately explore all the 

vacua of the theory. In this chapter we will leave the microscopic realm to explore 

the nature of string vacua near Vs. 

3.1 View From Low Energies 

3.1.1 Massless Fields and Constraints from Supersymmetry 

We turn now to some properties of type IIA and type IIB compactification on Calabi­

Yau manifolds, partly supplementing the previous section. Consider a vacuum of the 

theory in which some fraction of the supersymmetry of the Lagrangian is preserved . 

*1 More precisely it is one subset of the string moduli space, as explained earlier , and as we will 
review below. 
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In a supersymmetric vacuum, supersymmetry variations of all the fields vanish. Since 

supersymmetry generators exchange bosonic and fermionic fields, the only nontrivial 

equations are those requiring that fermions be annihilated by surviving supersymme-

tries. 

In d = 10 type IIA and type IIB theory are distinguished by the kind of supersym­

metry they have*2 • Type IIA theory has non-chiral ( 1, 1) supersymmetry generated 

by two ten-dimensional Majorana-Weyl spinors of opposite chirality, denoted by 16 

and 16', and type IIB theory has chiral (2, 0) supersymmetry The spinors of type 

II theories are two Majorana-Weyl gravitinos, denoted 'lj;~, i = 1, 2, and a pair of 

j spinors >.i, where i labels different chiralities in the type IIA case. Now consider 

supersymmetry transformations of the fields. 

Since <5>.i ex H = dB, variation of >.i vanishes using the equations of motion for 

Calabi-Yau backgrounds we are interested in. The gravitino variation takes the form 

(3 .1) 

here JV! is an index labeling a ten-dimensional vector. The number of supersymmetries 

unbroken by the background is thus the number of solutions to t5'1j;~ = 0. 

Take the ten-dimensional spacetime to be J\11 4 x X, with X a Calabi-Yau manifold. 

The equation says that 'r/i must be constant along J\11 4 , and covariantly constant 

along X. Upon parallel transport along a closed curve on X a spinor field on X 

is transformed by an element of the holonomy group of X . A spinor on X is a 

representation of 50(6) = SU(4) and the positive and negative chirality spmors 

belong to 4 and 4, respectively. It is a consequence of the Ricci flatness that the 

holonomy group of Xis an SU(3) subgroup of SU(4). Since each 4 and 4 contain 

precisely one SU(3) singlet, they each give rise to precisely one covariantly constant 

spinor on X . Elementary group theory can then be used to show that each of 16 and 

16' contribute a Dirac spinor on M 4 . All in all, in compactification of type IIA and 

type IIB theories on a Calabi-Yau manifold the effective four-dimensional theory has 

*>The conformal field theory of IIA and IIB theory is the same, but they differ by the choice of 
GSO projection which determines the space-time supersymmetry of the theory. 
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N = 2 supersymmetry. 

Moduli of the compactification are necessarily massless fields on M 4 . There are 

two equivalent approaches to computing the massless sector. We can take the micro­

scopic point of view and consider the product of the free CFT of M 4 with an internal 

N = (2, 2) non-linear sigma model and use the results of the previous chapter to 

compute the massless spectrum. *3 Alternatively, we can take the viewpoint that at 

the end of the day we are considering compactification of type II string theory so that 

all the states in four-dimensions have their origin in ten *4
• 

The massless bosonic spectrum of type II theories in ten-dimensions comes from 

the (NS, NS) and ( R, R) sectors. The (NS, NS) sector fields are the same in both 

theories, and contains the graviton , gMN, the antisymmetric two-form BMN, and the 

dilaton </> . The ( R, R) sector contains antisymmetric p + 1 form fields AP+l, where p 

is even in type IIA, p = 0, 2, and odd in type IIB, p = -1 , 1, 3. In addition , as we 

discussed above there are massless fermions from the ( R, NS) and (NS, R) sectors. 

These fields form a minimal massless multiplet of the (1, 1) or(2, 0) supersymmetry 

in ten-dimensions. 

As we discussed above, upon compactification on X the marginal operators of 

the CFT, the zero modes of the metric g and the two-form B give scalars on M 4 . 

These are the h 1•1 (X) complex scalars from deformations of the complexified Kahler 

form J + iB, and another h2
•
1(X) complex scalars from deformations of the complex 

structure on X. 

Now consider compactification of a p + 1 form field AP+1
. The equation of motion 

of a massless form A is 

~A=O 

where ~ is the Laplacian on M 4 x X, ~ = dd* + d* d = fjMfjM *s. Every one of the 

* 3 To obtain the final answer one must perform the GSO projection, which we have not discussed 
there. 

*•In some cases this point can be very subtle, in particular , for quotient (orbifold) theories. In 
any event, all claims made here can be checked by explicit CFT computation. 

* 5 This is a Lorentz-gauge fixed form, and really the argument is as follows. The equation of 
motions are dt dA = 0. On a compact manifold , or for field configurations with sufficiently rapid 
fall-off at infinity, this is equivalent to the first-order equation dA = 0. Under the same conditions , 
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p + 1 indices on A(P+l) lies either in M 4 or in X, so we can write 

n 

where jlP+l-n is a differential form on M 4 , ,AP+l-n E f2P+l-n(M 4 ). Now, due to the 

product structure M 4 x X the Laplacian 6 is the sum of the operators on M 4 and 

x, 
L}. = L}.M +b.x. 

Thus, A p+l-n is a massless form on M 4 if and only if b.x annihilates wn, i.e., if and 

only if Wn is harmonic. Harmonic n-forms on X are unique representatives of classes 

We have, by a different method, come to the result of the previous chapter that 

massless Ramond-Ramond states correspond to harmonic forms on X. 

There are also fields that do not depend on which Calabi-Yau is chosen. The metric 

on J\11 4 is free to fluctuate, as is the four- dimensional two form (whose magnetic dual 

in four-dimensions is a scalar, the axion), and the dilaton. 

The only way all these fields can be arranged in multiplets of JV = 2 supersym-

metry in four dimensions is as follows: 

Compactification of type IIA theory on a Calabi-Yau manifold X gives: 

• The universal N = 2 supergravity multiplet. 

• The h1
•
1(X) vector multiplets. 

• The h2
•
1(X) + 1 hyper multiplets, one of which contains the dilaton-axion*6

• 

the all solutions are of the form A =Ao+ dA 1 , where Ao is harmonic, from which the result follows. 
*6 The gravity multiplet contains the four-dimensional graviton and graviphoton A 1 plus the super­

partners, and it is the generic multiplet in any compactification. The four scalars of the dilaton-axion 
hypermultiplet are , in addition to the dilaton and the axion the two universal RR scalars coming 
from the three-form potential on the two universal three-cycles dual to holomorphic and the anti­
holomorphic three-forms n, D. The h1•1 vectors come from the RR three-form A 3 in ten-dimensions , 
the multiplet being completed with the two scalars from the NS sector. The h2

•
1 hypermultiplets 

contain the 2 NS scalars each, and 2 RR scalars from the three-form. 
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The moduli space of vector multiplets Mv is therefore an h1
•
1 complex dimensional 

manifold, and in fact it is the moduli space of complexified Kahler structures. The 

hyper multiplet moduli space MH, on the other hand, is a quaternionic manifold 

whose "one half" includes the complex structure moduli of the CFT. It is an important 

consequence of a non-renormalization theorem in N = 2 supersymmetric theories that 

MH and Mv are decoupled, the metric on the moduli space of vector multiplets is 

independent of the scalars in hypermultiplets and vice versa [17]. This in particular 

means that A1 v, although corrected by worldsheet instantons, has no corrections, 

perturbative or not, from the dilaton, because the dilaton sits in a hypermultiplet, 

The moduli space of hypermultiplets, on the other hand receives dilaton corrections, 

and is essentially beyond any computational reach at the moment, and we will have 

really nothing to say about this problem. 

Repeating the exercise for type IIB theory on X we find: 

• The universal N = 2 supergravity multiplet . 

• The h1.l(X) + 1 hyper multiplets, one of which contains the dilaton-axion . 

• The h2
•
1(X) vector multiplets.*7 

We see that, just as in type IIA theory, the moduli space of vector multiplets of type 

IIB is uncorrected by string loops as well. However, since M v is associated to choices 

of complex structures on X, it cannot receive c/ corrections either - the classical 

geometry answer is the complete story. 

3.1.2 Mirror Symmetry in Type II String Theory 

Now, in the previous chapter we have found that there are mirror pairs of manifolds 

(X, X) which yield isomorphic internal conformal field theories, differing by the overall 

sign of the left moving U(l)L charge only. The natural question is what this sign flip 

does to the spacetime theory. From the microscopic point of view, one can show that 

*1 Here, the two complex scalars in vector multiplet must come from the (NS, NS) sector , while 
the hypermultiplet scalars have contributions both from the (R , R) and the (NS, NS) states. 
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flipping the sign of the U ( 1) charge at the same time exchanges type IIA and type 

IIB theory. From the low energy point of view we can argue as follows. It is clear that 

we have two possibilities. Either I I A( I I B) on X is the same as I I A( I I B) on X, or 

it is identical to I I B(I I A) on X. Since mirror symmetry requires h1•1(X) = h2
•
1 (X) 

and h2
•
1(X) = h1

,
1(X), for otherwise generic values of Hodge numbers the first case 

would require identification of moduli spaces of different dimensions, which is clearly 

nonsense*8
• Therefore, given a mirror pair of Calabi-Yau manifolds (X, X) type 

IIA theory compactified on X is the same as type IIB theory compactified on X. 
Actually, this statement is a bit premature. Really all we have shown thus far is 

that mirror symmetry is a symmetry of perturbative string theory. The fact that the 

moduli spaces align appropriately, together with perturbative equivalence is certainly 

a neccesary condition for mirror symmetry to hold non-perturbatively. We will come 

back to this issue in Chapter 4. 

3.1.3 Effective Action and Singularities of Calabi-Yau Man­

ifolds 

We now turn to the study of moduli spaces in some more detail. We will consider 

the vector multiplet moduli space in type IIB theory, as we will have the additional 

benefit of the result being exact . The vector multiplet moduli M v space in type IIB 

compactification on a Calabi-Yau X is given by the complex structure moduli space 

of X 

J\.1v =Mc. (3.2) 

We can make this correspondence more precise as follows *9
• 

There are h2,1(X) abelian vector multiplets of low energy N = 2 supersymmetry 

*•This argument clearly depends on the fact that we are considering compactification on a Calabi­
Yau threefold. In general, in even complex dimension type IIA is mapped to type IIA, and in odd 
dimension to type IIB. 

*9 The theory is really coupled to gravity, so we are not studying pure gauge theory. However all 
the moduli come from the scalars in vector multiplets. 
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on M 4 . The complex scalars <f/, I= 1, ... h2
•
1(X) in the vector multiplets come from 

deformations of the metric on X that preserve Ricci-flatness but change the complex 

structure on X. At any point in Mc *10 , with a metric gi] such a deformation takes 

the form nijkgkf5i5gi5T = (wi)ijTiS<f>i, where <f) are coordinates on the complex structure 

moduli space. In hindsight, <f>i will be identified with vector multiplet scalars. One 

very important thing to keep in mind is that the <f>i are really h2•1 + 1 homogeneous 

coordinates on the moduli space out of which the h2
•
1 physical ones are identified with 

<f>1, and therefrom the difference in notation. The distinction makes all the difference 

in the world between local and global supersymmetry in d = 4. However in this 

section we will be sloppy about this since nothing essential to us will be affected by 

the distinction. 

A Calabi-Yau manifold Xis a solution to (super )Einstein equations of ten-dimensional 

type IIB supergravity. The ten-dimensional action expanded in fluctuations g ---+ 

g + i5g about the Ricci-flat solution is quadratic in i5g to the leading order. The 

kinetic term for these fluctuations derived in this way is the Weil-Peterson metric: 

(3.3) 

where Dex is the covariant derivative in four-dimensions. This induces a Kahler metric 

on the space of iS<f>i's which, utilizing the special Kahler structure of Mc, can be 

written as : 

G· ~ = 8-&:.K i,J i J 

where K is given by K = - fx n /\ D = Im(1j;i8iF), and Fis the prepotential on 

Mc. This structure is familiar from study of low energy effective actions in four­

dimensional gauge theories with N = 2 supersymmetry. The most general form of 

the effective action in N = 1 superspace is: 

(3.4) 

*1°Kiihler structure is fixed. 
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where <I>i is an N = 1 chiral multiplet in the N = 2 vector multiplet whose scalar 

component is qf We see that the gauge theory prepotential must be identified with 

the prepotential of the Calabi-Yau complex structure moduli space *11 , from which 

assertion (3.2) follows. 

Let us now turn to singularities in the moduli spaces . The Calabi-Yau manifold 

develops a singularity via degeneration of complex structure when a particular cycle 

I E H3(X, Z) shrinks 

<Pc = l n ---+ 0. 

Unlike the Kahler deformation case, the geometric meaning of a "shrinking three­

cycle" is not so clear. However, one can pick particular homology representatives, 

the so called "supersymmetric" cycles whose volume is determined by the choice of 

complex structure, i.e., for which Vol(C) = I fc n1. 
The singularities in complex-codimension one imply that there is monodromy in 

circling around the singular locus in the moduli space <Pc ---+ e21ri <Pc - every cycle 

D E H3 (X) undergoes a transformation 

D ---+ D + ( C n D)D. 

This implies that in the neighbourhood of <Pc = 0, 

1 n = ~ (C n D) <Pc ln <Pc+ regular, 
D 27ri 

in order to transform correctly. In particular, using the special geometry definitions, 

this implies that the gauge coupling behaves as 

1 . . 
Tij = O;Oj:F = -. ( c n Bi)( c n B3 ) <Pc ln <Pc+ regular . 

27fi 

This form of running of the gauge coupling is precisely that which results from inte­

grationg out a hypermultiplet of mass l<Pc l, whose charge under i'th U(l) is C n Bi. 

*11 One must keep in mind that the theory is coupled to gravity. 
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When the singularity in the moduli space can be understood as resulting from inte­

grating out massless particles it is not dangerous - since including those states in the 

theory cures the ails. If this also is to be the case in type IIB theory on X, we must 

find the appropriate particles in the theory. 

In our case, the low-energy gauge fields are somewhat peculiar, since they derive 

from a higher form field, in this case the ( R, R) four-form potential reduced on three­

cycles in H3 (X), in particular we have 

so that the object we are looking for is really charged under A ( 4 ) - it is the D 3-brane 

wrapping C *12 • The D 3-brane is in fact a BPS particle: the mass of the particle is 

up to a constant proportional to its charge 

One can arrange configurations when there are more cycles Ck, k = 1, ... , nH which 

vanish , thus more massless hypermultiplets, than there are U(l) factors under which 

they are charged - nH - nv > 0. From the point of view of geometry this means 

that nH three-cycles obey nH - nv homology relations. From the point of view of 

field theory this allows for another branch of the theory to open up where nv vector 

multiplets are massive, having "eaten" nH scalar's, and which is parametrized by the 

remaining nH - nv massless hypermultiplets. This is simply Higgs mechanism. 

Let us now try to interpret the result from the point of view of Calabi-Yau ge­

ometry. Before the transition we had h2
•
1(X) vector multiplets, and h1

•
1 (X) neutral, 

decoupled hypermultiplets. After the transition the numbers must change: 

*12 The reader might complain we have singled out Bi - this is not the case since J A; A(4) is the 

magnetic dual of A]1l. 
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h2
'
1X---+ h2 ,i(Xt) = h2

'
1 (X) - nv, 

the topology of X has changed. Quantum geometry allows for completely smooth 

topology change. This processis called a conifold transition - and we will study it in 

some detail in chapter 4. 

3.2 Application: Geometry for Physics of N 

SUSY Gauge Theories 

2 

We have seen that singularities in conformal field theory on Calabi-Yau manifolds 

are cured once non-perturbative effects are taken into account. In the particular 

example we have treated in the previous section, it was a charged hyper-multiplet 

which became massless . Is this the only type of singularity that can occur, or can 

one find massless vector multiplets as well? 

If so, there is a clear application that comes to mind. 'vVe have seen that the vector 

multiplet moduli space in a type IIB compactification on a Calabi-Yau manifold is 

exact at the classical level. Unfortunately, this is not particularly interesting since 

the gauge group is abelian - U ( 1) gauge theories are not asymptotically free - so the 

theory really needs gravity, or string theory, in order to be defined. Massless vector 

multiplets could, in an appropriate setup, mean that at certain singularities type 

IIB theory develops enhanced gauge symmetry. In an asymptoticaly free theory one 

would be able to decouple gravity, and thus obtain exact information about JV = 2 

supersymmetric gauge theories even in the strong coupling regime. 

In fact, the answer is positive. 

This is very satisfying from the point of view of a string theorist. The reason is 

as follows. The fact that one can obtain exact results about the vacuum structure 

of N = 2 supersymmetric theories is not in itself new, it was pioneered in the work 

of Seiberg and Witten [18, 19], using field theory arguments. What they observed 

is that the moduli space of the gauge theory is isomorphic to the moduli space of 

complex structures on an auxiliary complex curve. This space is highly constrained, 
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and it is governed by a prepotential, a holomorphic function of the moduli of the 

curve. In particular, the moduli space has the special-geometry structure we have 

found for the space of complex structures for Calabi-Yau manifolds, and furthermore 

masses of BPS particles in the theory are given by the periods of the curve, while the 

period matrix gives the gauge couplings . 

The unsatisfactory part of that analysis was that the curve was auxiliary, and 

surprises of the kind, however pleasant are unsatisfying. Another problem is that 

no systematic ways of deriving the curves were found for general gauge groups with 

arbitrary matter content. Although many gauge groups with fundamental matter 

were analyzed in this [20 , 21, 22, 23, 24, 25 , 26, 27], it turned out to be rather difficult 

to generalize these results to theories with matter in any other representation because 

in these cases the curves encoding the gauge coupling are usually not hyperelliptic, 

and general Riemann surfaces have more parameters than can be fixed by studying 

various limits of the gauge theory. 

Calabi-Yau manifolds on the other hand provide both the geometric intuition for 

the work of Seiberg and Witten , and a powerful tool for finding solutions to any gauge 

theory with essentially any matter content. The complex structure moduli space of the 

Calabi-Yau manifold, in the limit in which gravity decouples is the moduli space of the 

gauge theory. The fact that in some cases one obtains a curve is in fact an accident . 

A more important thing is that the Calabi-Yau moduli space has a local special 

geometry, associated to local supersymmetry, while the limit Mp -t oo produces the 

rigid special geometry of Seiberg and Witten [28]. This geometric approach to solving 

N = 2 supersymmetric gauge theories was pioneered in [29], and fully developed in 

[30]. In this application, we will use type IIB string theory compactification on Calabi­

Yau manifolds to provide solutions for SO( N) gauge theories with matter in spinor 

and fundamental representations . 



37 

3.2.1 Enhanced Gauge Symmetry in Type II String Theory 

In this section, we want to construct ("geometrically engineer", [30]) Calabi - Yau 

manifolds for type IIB compactification which will give us desired four-dimensional 

physics. 

The problem is as follows. For all of the exactness of complex structure moduli 

space it is hard, in all but the simplest cases, to develop an intuition for it. Further­

more, the context in which symmetry enhancement is best understood, in compacti­

fications on K3, is the one in which type IIB theory is understood the least. We are 

set on a windy road of string dualities. 

Enhanced Gauge Symmetry 

As noted above, type IIA obtains enhanced gauge symmetry on K3. K3 is two 

complex dimensional Calabi-Yau manifold, and the resulting theory has two s1x­

dimensional supersymmetries*13 • The singularities K3 can develop are extremely 

constrained. The only non-trivial information about a singularity (apart from some 

global data), is the intersection form of two-cycles which shrink to zero size at the 

singularity. These, as it turns out , are in one to one correspondence with ADE classi­

fication of Lie algebras - the Cartan matrix of the algebra is (minus) the intersection 

form of the singularity. Now, we expect to obtain massless BPS saturated particles 

by wrapping D-branes about two cycles. In type IIA theory, there is a D 2-brane 

which can wrap a vanishing 5 2
, to obtain a particle in 6 dimensions*14

• In type IIB, 

on the other hand the "smallest" brane that can wrap is a D 3-brane, which leaves a 

nearly tensionless string in six-dimensions. 

What kind of a particle have we obtained m type IIA theory? It is charged 

under the six-dimensional gauge field obtained from reducing the Ramond-Ramond 

*13 The reason J(3 carries a special name, is that topologically, it is the only Calabi-Yau two-fold 
which is not a four torus T 4

, in particular it has h1
•
1 = 20, and as, the top holomorphic and 

antiholomorphic forms are unique, h2
•
0 = 1 = h0

•
2 

* 14 To be more precise, in order to obtain a BPS saturated particle the 5 2 must be a holomorphic 
curve, I!D 1 in the J(3. The constraint that it is an 5 2 , as opposed to any other Riemman surface 
comes from the fact that 5 2 is the only curve which can shrink to zero size, while preserving Ricci 
flatness. 
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three form A(3
) on the 5 2

• Since the theory has N = (1, 1) supersymmetry in six 

dimensions, the only BPS multiplets supersymmetry allows are massive vector bosons. 

Furthermore, the charges determined by the intersection matrix imply that the gauge 

group (or at least its Lie algebra) is of the associated A, D or E type. The type IIB 

on K3 has chiral (2, 0) supersymmetry, with tensor multiplets and tensionless strings 

about which essentially nothing is known. vVe will have more to say about the precise 

identification of the gauge group later . 

The reason this is useful for us is that there exist Calabi-Yau manifolds which are 

K3 fibrations. In compactifying type IIA theory on such a Calabi-Yau manifold X, 

one obtains N = 2 supersymmetric gauge theory with the gauge group given by the 

type of singularity K3 develops, but where the matter content is, at least in principle, 

determined by how the K3 is fibred. Mirror symmetry can be used to sum up the 

instanton corrections - compactification of type IIB theory on the mirror manifold Y 

provides an identical theory, but with the benefit that the result is exact at the tree 

level - it is given by classical geometry of Mc(Y). 

In the following, we will first review the construction of a class of Calabi- Yau 

threefolds which, when used in type IIA compactification, give rise to d = 4, N = 

2 50(10) and 50(12) gauge theories with specific numbers of fundamentals and 

spinors. We use the toric description of these manifolds to find explicit expressions 

for the mirror manifolds. A local approximation to the mirror manifolds in the form 

of ALE fibrations provides the exact solutions for these theories. We also propose 

generalizations to arbitrary numbers of massive vectors and spinors and perform 

several consistency checks on our results. The non-simply laced cases 50(7) , 50(9) 

and 50(11) are the subject of the next three subsections. In these cases we slightly 

modify the conventional method of finding the mirror to obtain the exact solutions 

in the most convenient form. These modifications are explained in Subsec. 3.3.3 . We 

summarize our results in Subsec. 3.4. 
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3.2.2 Solving Gauge Theories via Geometry 

Type IIA string theory, compactified on a Calabi- Yau threefold that is both an elliptic 

and a K3 fibration, gives rise to an N = 2 gauge theory in four dimensions. Such a 

manifold, locally of the form T 2 x lP1 x lP 1
, is given by 

(3.5) 

Above x, y parameterize T 2 (locally) in form of a double cover of a complex plane 

branched over three points - the roots of the polynomial x3 +xf(z1 , z2 )+g(z1 , z2 ) = 0, 

and f and g are functions of the base coordinates z1 , z2 . For this equation to define 

a Calabi- Yau, the functions f and g must be of the form 

I 

L z~-i fs+n( 4-i) ( Zz) 

J 

'""" 12-jf ( ) L...,; Z1 12+n(4-j) Zz , (3.6) 
j=O 

where the subscript on the polynomials f and g in the sums indicates their degree in 

Zz. I and J are the maximum values of i and j such that the degree is not negative. 

We can view this threefold as an elliptic fibration over the Hirzebruch surface Fn or 

as a K3 fibration over a sphere parameterized by z2 . 

vVe noted above that there is a subtlety in identification of the gauge group in type 

IIA compactification on I<3. Historically, the way gauge symmetry enhancement in 

I<3 compactifications has been noticed, and which ultimately removes the ambiguity, 

is that there is a duality to heterotic string compactification on T4, 

I I A/ I<3 = Het/T4
. 

Type IIA string theory on a I<3 fibered Calabi-Yau can be related to a heterotic 

string compactification by extending the six dimensional duality fibrewise: IIA string 

theory compactified on Calabi-Yau (3.5) is conjectured to be dual to heterotic Es x Es 
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string compactified on K3 x T 2 with 12 - n and 12 + n instantons embedded in the 

first and second Es [29 , 31, 32] and all Wilson lines switched off. The coefficients of 

the monomials in (3.5) that are proportional to xzi and zr correspond to the moduli 

of the K3 and the other terms specify the Es x Es gauge bundle. The coefficients of 

terms with lower powers of z1 define the embedding of 12 - n instantons in the first 

Es and the remaining terms do the same for the 12 + n instantons in the second Es 

[31, 32]. 

For generic choices of the polynomials f and g, the manifold (3.5) is completely 

smooth, and correspondingly, the instantons break the Es x Es gauge group of het­

erotic strings as far as possible. The Es with 12 + n instantons is broken completely 

(for n ?: 0) while the other is broken to some terminal group without matter. This is 

the case that was studied in [29, 33, 34, 35] for various instanton embeddings. 

Here we consider more restrictive instanton embeddings, which result in larger 

unbroken subgroups of the Es with 12 - n instantons. On the type IIA side such 

instanton embeddings correspond to choosing Calabi-Yau threefolds that have a more 

severe singularity in their K3 fiber than one would get from the generic choice of 

polynomials. For example, we can consider the Calabi- Yau defined by setting 

fs-2n hLn 

912-3n h~-n 

(3.7) 

and choosing the coefficients of lower powers of z 1 to vanish. Above, h4 _n and Q6-n 

are polynomials in z2 of the degree indicated by the subscripts. One can use Kodaira 's 

classification to determine the singularity type of the K3 fiber. The definitions above 

ensure that the fiber has a split D5 singularity [36]. We can make this manifold 

smooth by blowing up a collection of spheres in the base of the K3, i.e., by modifying 

its Kahler structure. The intersection forms of these spheres give the entries in the 

Cartan matrix of the corresponding gauge group (50(10) for D5 ). Compactifying 

type IIA on a Calabi-Yau with this blown-up K3 as a fiber results in ad= 4 50(10) 
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gauge theory, where the 50(10) is broken to its Cartan sub-algebra. This happens 

in the following manner. As stated above, type IIA D 2-branes can wrap around the 

blow-up spheres in the I<3 to give rise to a pair of w± bosons depending on the 

orientation of wrapping. Now, from the field theory point of view we expect the mass 

of the W to be proportional to the vev of the Higgs field. In string theory, this vev 

is identified with the Kahler structure parameter, 

{ J + iB. 
ls• 

On the other hand, a D 2-brane which wraps the cycle Si contains exactly such a 

term in the world-volume action. Taking f5 ; J + iB -t 0 corresponds to unhiggsing 

an SU(2) factor, and the D 2-brane becomes massless. Since the blow-up spheres 

have intersection forms determined by the singularity type, the corresponding SU(2) 

factors link up to make the gauge group indicated by the singularity type. Thus it is 

clear that the Kahler structure moduli are related to the coordinates on the Coulomb 

branch of the d = 4 gauge theories in the type IIA picture. On the heterotic side, 

these blow- ups correspond to switching on Wilson lines to break the gauge group. 

However, there are world sheet instanton corrections to the Kahler moduli space, 

which are related to gauge theory instantons via the duality to heterotic strings [30]. 

Mirror symmetry provides a way to sum up these corrections. 

3.2.3 Mirror Manifolds via Torie Geometry 

To find the mirror manifold of the type IIA Calabi-Yau it is convenient to encode 

its salient properties using toric geometry [37, 38, 39, 40, 41] . Torie variety is a gen­

eralization of a weighted projective space to include more coordinates and more CC* 

actions. Recall: the only compact Calabi-Yau manifold written as a hypersurface in 

CC4 is a point, thus a global description of a compact Calabi-Yau manifold requires 

hypersurfaces in (weighted) projective spaces, and toric varieties serve to add "va­

riety" *15
• A four-dimensional toric variety V is described by 4 + N homogeneous 

* 15 This is a pun. 



42 

coordinates xi, which are made "homogeneous" by N CC* actions 

i \q(a) i 
x '"'-'/\' x, >. E CC*, a = 1, ... N. 

A Calabi-Yau three-fold X can be described as a hypersurfaces in a toric variety, 

given by polynomial equations 

XcV: J(x)=O. 

In order for the equation to be well defined, f ( x) has to scale homogeneously under 

the CC* actions, and in order for the equation to define a Calabi-Yau manifold, the 

weight off must be the sum of the charges of x's, 

. (a) . "'""' ( ) xi--t,,\qi xi: J(x)--t>.Lqaif(x). 

Thus, to specify a Calabi-Yau manifold X, we must give: 

• CC* actions on xi's, 

• Monomials appearing in f(x). 

The CC* actions are encoded in the following way. To every coordinate xi, associate a 

vector vi E Z 4
• There are N + 4 vectors in 4 dimensional space, giving N relations 

between them which are taken to be 

(3.8) 

Provided that degenerate solutions are eliminated (solutions which satisfy more con­

straints than we wish to impose) this determines vi essentially uniquely as the gen­

erators of solutions to (3.8) (the solutions are really rays in Z 4
). The resulting set of 

vectors forms a polyhedron, '\j in Z 4. For some perverse reason a glimpse of which 

we will catch in a moment, the polyhedron has been named the "dual" polyhedron. 
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To characterize the particular Calabi-Yau manifold X, the second item on the list, 

we proceed as follows. One basically constructs a most generic Calabi-Yau manifold 

that can be written down in such a toric variety. It is easy to see that such a space 

can be written as 

f = ~ . rr <vl,v;>+I La, x3 , 

v; E.6 vJ E'V 

where Vi are vectors forming a polyhedron v E Z 4
• In order for f to be holomorphic, 

we need < vj, Vi >'2= -1, which in turn implies that 6. and v are dual to each other 

- the normals to faces of one are vertices of the other. The dual of the "dual" polyhe­

dron is called the "Newton" polyhedron. It is clear that this is a unique completely 

generic Calabi-Yau manifold that can be written in the toric variety determined by 

v, essentially because it is the only polynomial which scales properly. Furthermore, 

varying the coefficients in the defining equation one obtains a whole family of Calabi­

Yau manifolds, that is the coefficients ai are coordinates on the space of complex 

structures on X. 

• 6. encodes the complex structure of X and v encodes the Kahler structure on 

X which is inherited from that of the toric variety. 

Mirror symmetry, if it holds, must exchange the complex and Kahler moduli, and 

therefore it must exchange the role of the two polyhedra [41]. That is 

• In the mirror manifold Y of X, 6. that encodes the Kahler structure of Y and 

v encodes the complex structure on Y which is inherited from that of the toric 

variety. 

The manifolds we have written down in the previous section in a local form can be 

encoded in toric terms, and thus we obtain the "dual" and the "Newton" polyhedron 

for type IIA compactification. The vertices of the dual polyhedron that encode the 

Kahler structure of the blow- ups on the type IIA side determine the complex structure 

of the mirror type IIB manifold. 

On the type IIB side, the complex structure moduli are vector multiplets and 

the Kahler structure moduli and the dilaton are hypermultiplets. As on the type 
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IIA side, the vector moduli space is not corrected by perturbative string effects but 

on the type IIB side the world sheet instanton corrections are absent as well [30]. 

Thus the classical description of the complex structure moduli space of the type IIB 

Calabi-Yau is exact. Since these moduli encode the behavior of the gauge theory, we 

can read off the exact solutions from the IIB manifold. 

Below, we discuss a series of Calabi-Yau manifolds that give rise to 50(10),50(12) 

and 50(7),50(9) and 50(11) gauge groups with spinors and fundamentals. For the 

cases we are considering here the relevant manifolds and polyhedra were worked out 

in [36 , 42], so we will only summarize the results. In the first two cases we find exact 

solutions using Batyrev's construction of the mirror [41] . For the non-simply laced 

cases we slightly modify the construction to simplify the resulting curves. These 

modifications are explained in Sec. 3.3.3. 

3.3 Exact Solutions from Mirror Symmetry 

3.3.1 50(10) with (4 - n)16 + (6 - n)lO 

The dual polyhedron for the Calabi- Yau that gives rise to an 50(10) gauge theory 

with 4 - n spinors and 6 - n vectors was constructed in [36]* 16 • The derivation there 

uses Tate's algorithm and a more general form of the defining equation, 3.5, that 

makes it easier to encode the split or nonsplit property of the singularity. The same 

polyhedron was also found in [42], using toric arguments only. Using the basis of [42], 

the dual polyhedron, v, is given by the vertices 

v1 = (-1,0,2,3) v2 = (1, -n , 2, 3) v3 = (0,-1,2,3) 

v4 = (0,0,-1,0) v5 = (0,0,0,-1) v6 = (0, 0, 0, 0) 

v1 = (0, 0, 2, 3) vs = ( 0, 1, 2, 3) v9 = (0, -2, 2, 3) (3.9) 

v10 = (0, -2, 1, 2) v11 = (0, -1, 1, 1) 012 = (0,-1,0,1) 

v13 = (0,-1,0,0). 

* 16 Note that in Refs. [36 , 42] the unhiggsing of the Es with 12 + n instantons was studied while 
we are unhiggsing the Es with 12 - n instantons. 
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This list of vertices includes all points that do not lie on codimension one facets of the 

dual polyhedron, i.e., this polyhedron encodes a fully blown-up type IIA manifold. 

The vertices 61 , ... , v8 define the toric variety in which the type IIA manifold is 

embedded and the remaining vertices correspond to the blow-up spheres needed to 

repair the D5 singularity. The vertices of the corresponding Newton polyhedron are 

V1=(2,1, -1, 1) Vz = (3, 1, 1,0) V3 = ( 0, 0, 1, -1) 

V4 = (6,1,1,1) V5 = (0,0,-2,1) V5 = (6,-6,1,1) 

v1=(-6-6n,-6,l,l) v8 =(n-6,1,1,1) v9 =(n-3,1,1,0) 

V10 = (n - 2, 1, -1, 1). 

(3.10) 

Note that for n = 4 the vertices v1 and v10 become identical which allows us to drop 

one of them. 

We can use the information encoded in the dual pair of polyhedra, 6, v, to 

construct the mirror manifold of our initial Calabi- Yau. Batyrev's construction of 

the mirror [41] requires that we switch the roles of the two polyhedra. An embedding 

polynomial defining the mirror manifold is given by 

w = 2= aj II <;·iij+l = o, 
J 

(3.11) 

where the Xi are coordinates in a weighted projective space (or more generally in 

a toric variety). In the cases we consider here there are nine or ten vertices in the 

Newton polyhedron, corresponding to the same number of coordinates in the hyper­

surface constraint, Eq. (3.11). We can eliminate some of these coordinates using the 

CC* actions that define the identifications of coordinates in the embedding space. Sets 

of weights for the CC* actions can be found by looking for sets of five vertices in 6 

such that 

(3.12) 

where the coefficients satisfy ki # 0. One can use these CC* actions to set all but five 
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of the coordinates in Eq. (3.11) to one. This gives a description of the Calabi- Yau in 

some local coordinate patch with one remaining C* action. For our purposes it is most 

convenient to retain x1 , x 2 , x 3 , x 6 , x 7 and set the remaining coordinates to one. This 

amounts to choosing a patch in which the relevant properties of the Calabi- Yau are 

described most easily. Using these coordinates we find the following defining equation 

for the mirror manifold 

(3.13) 

This Calabi- Yau is a K3 fibration. We can make this explicit by defining x0 = x 6 x 7 

and ( = (x7f x 6 )6+3n. Using the freedom to rescale x 1 , x 2 and x 3 to eliminate three of 

the coefficients ai we obtain 

HI 

(3.14) 

The first term in this equation describes the base sphere and the remaining terms 

define a K3. Approximating the K3 locally as an ALE space, we can bring this 

expression into a form that is equivalent to a Seiberg-Witten curve. In order to 

do this, we set x0 = 1 and observe that the first three terms in the K3 part give 

a three-coordinate form of a D 5 singularity located at the origin. The terms with 

coefficients a 5 and a6 are irrelevant near the singularity and can be neglected for our 

present purposes. The remaining terms are the deformations of the D5 singularity. 
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The following chain of substitutions brings the singularity into the standard form: 

(3.15) 

Neglecting an irrelevant term proportional to xix2 we obtain the standard form of 

the D5 singularity after shifting 

(3.16) 

and defining z = x 2 : 

( 
X4-nz6-n) 

W = ( + ao 
1 

( 

(3.17) 

where Eq. (3.16) should be substituted for x1 . The ellipsis denotes contributions from 

terms that are irrelevant close to the singularity. Neglecting these terms amounts to 

switching off gravity or conversely taking the field theory limit [33, 34]. The strange 

choice for the redefinition of a 11 will become clear below. 

This expression is equivalent to a Seiberg-Witten curve for 50(10) with 6 - n 

fundamentals and 4 - n spinors. The coefficients c0 , ... , c4 are the gauge invariant 

coordinates on the moduli space and a0 can be interpreted as the strong coupling 

scale of the gauge theory, a0 = A2f3°. The beta function for this 50(10) theory is 

given by f3o = 8 - N1 - 2Ns. 

The general method for converting Dn type ALE fibrations into Seiberg-vVitten 

curves was first introduced in [26] to find the curves for 50(2N) gauge groups without 
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matter. Using the same approach we integrate out y from Eq. (3.17) and multiply by 

z. Absorbing a factor of z into ( gives 

(3.18) 

where P(z) is given by 

(3.19) 

For n = 4, x appears only quadratically and can be integrated out trivially. The 

substitutions ( = y - P(z) and z---+ z2 result in a double cover version of the curve 

for 50(10) with two fundamentals 

(3.20) 

Note that for the asymptotically free cases, n = 2, 3, 4, both x and y appear at most 

quadratically and can be integrated out. In the cases with one or two spinors of 

50(10), n = 2, 3, we still obtain a curve but it is no longer hyperelliptic. The U(l) 

gauge couplings on the Coulomb branch are encoded in the normalized period matrix 

of this curve. The Seiberg-Witten 1-form needed to evaluate the period matrix, can 

be derived from the unique holomorphic 3-form, n, of the original Calabi-Yau [34]. 

It is very tempting to modify Eq. (3.17) to allow an arbitrary number of massive 

spinors and vectors. This can probably be achieved by replacing the fibration over 

the sphere in Eq. (3.17) according to 

JV, !Vt 

I 1 4 n 6 n I 1 rr· ( 4) IT( 2) ':, + aozx 1 - Z - ---+ ':, + aoz i=l X1 - mi j=l Z - mj , (3.21) 

where the mi are the masses of the Ns spinors and the m1 are the masses of the N1 
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vectors. Using Eq. (3.21) and substituting ( = y- P(z), z 0 z2 in Eq. (3.18), we get 

Ns Nt 

yz = xz (y - P(zz)) + pz(zz) -A2!3o z4 IT(x1 - m[) IT(zz - mj). (3.22) 
i=l j=l 

The normalized period matrix of this surface encodes the gauge couplings on the 

Coulomb branch. Here, there is no natural 2-form inherited from D, because Eq. (3.22) 

is generally not a parametrization of a local approximation to a Calabi- Yau. To 

compute the gauge couplings from this surface, one needs to identify the 2-cycles and 

construct a suitable 2-form directly. 

Our proposal, Eq. (3.21), ensures plausible behavior when either a spinor or a 

vector is integrated out. Integrating out a vector and a spinor at the same time, 

we can flow between the theories we obtained from mirror symmetry. To check our 

solution further, we consider breaking the 50(10) gauge group to 50(8) x U(l) 

by giving a large VEV, NI, to one component of the 50(10) adjoint. Under this 

breaking the fundamentals decompose into fundamentals of 50(8) and singlets with 

U(l) charge. The spinors decompose as 16 0 8~ EB 8_;- 1
, where the superscripts denote 

the U(l) charge [43]. Both the singlets and the two spinor representations of 50(8) 

acquire a large mass and should drop out from our solution. Taking M to infinity, 

the piece proportional to c~ :::::::: M 4 will dominate Eq. (3.16). Replacing x 1 by M 4 , 

rescaling Eq. (3.18) by appropriate powers of M and integrating out x reduces it to 

the 50(8) curve with vector matter only. 

3.3.2 S0(12) with ~32 + ( 4-~-r)32' + (8 - n)12 

The analysis of the previous subsection can be repeated for 50(12) with r half hyper­

multiplets in the 32, ( 4-n-r) half hypermultiplets in the 32' and 8-n fundamentals. 

The restrictions on the polynomials f and g in Eq. (3.6) are more complicated for 

50(12) than for 50(10) [36], partly because one has the freedom to trade matter 

fields in the 32 for fields in the 32' representation. However, the curve of the 50(12) 

theories depends only on the total number of fields in the 32 and 32', so we will drop 
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this distinction here. Using the vertices of the dual polyhedron given in [42], 

i)i = (-1,0,2,3) v2 = (1, -n, 2, 3) v3 = (0, -1, 2, 3) 

v4 = (0,0,-1,0) v5 = (0, 0, 0, -1) v5 = (0, 0, 0, 0) 

v1 = (0, 0, 2, 3) iis = (0,1,2,3) v9 = (0, -2, 2, 3) 

v10 = (0, -2, 1, 2) ii11 = (0,-2,0,1) ii12 = (0, -1, 1, 1) 

ii13 = (0,-1,0,0) ii14 = (0, -1, -1, 0), 

we find for the Newton polyhedron 

V2 = (4,1,0,1) V3 = ( 0, 0, 1, -1) V1=(2,1, -1, 1) 

V4 = (0, 0, -2, 1) 

V7 = ( -6, 6, 1, 1) 

V5 = (-6,0,1,1) V5 = (6,0,1,1) 

Vs = ( -6 - 6n, -6, 1, 1) v 9 = ( n - 2, 1, -1, 1) 

V10 = (n - 4, 1,0, 1). 

(3.23) 

(3.24) 

In terms of x 1,x2,x3,x7 and xs the hypersurface defining the Calabi- Yau, Eq. (3.11), 

is given by 

where we defined x0 = x7xs and ( = ( xs/ x7 )6+3
n and rescaled the coordinates to 

eliminate the coefficients of the first three terms defining the fiber. The terms with 

coefficients a5 and a6 are again irrelevant near the singularity. Making the substitu-

tions 

1 
x - 2 ( a11 + a10x2 + a4x1x2) 

y - ~ ( a11a4 + a10a4X2 + 4xD (3.26) 
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and neglecting an irrelevant piece proportional to xix~ brings Eq. (3.25) into the form 

( 
xf-nz8-n) 

W = ( + ao ( 

In this expression, x1 is given by 

+ x2 + z 5 - y2 z + 2( co)1f2y + C5Z4 

+ C4Z
3 + C3Z

2 + C2Z + C1 + · · · · (3.27) 

(3.28) 

We can identify a0 with the strong coupling scale of the 50(12) gauge theory: a0 = 

A 2 f3o. The ,B-function for this theory is given by ,80 = 10 - N1 - 2Ns, where Ns counts 

the number of half hypermultiplets in the spinor representation of 50(12). One can 

check that for n = 4 Eq. (3.27) reduces to the known curve for 50(12) with four 

fundamentals [25, 26] . In the asymptotically free cases, n = 2, 3, 4, this expression 

reduces to a curve, because both x and y appear at most quadratically. 

Again we conjecture that Eq. (3.27) can be modified to accommodate Ns spinors 

with masses mi and N1 vectors with masses mj by the following substitution 

N s N1 

( + ao~xf-nzS-n---+ ( + ao~ IT(x1 - mt) IT(z - mD. 
i=l J=l 

(3.29) 

As in the 50(10) case, this results in an expression that shows the expected behavior 

under adjoint breaking of the 50(12) to 50(10). The substitution above also ensures 

that spinors and vectors can be integrated out consistently. 

3.3.3 S0(7) with (3 - n)7 + (8 - 2n)8 

The 50(7) theory with 3 - n fundamentals and 8 - 2n spmors differs from the 

theories we considered above in several respects. It is our first example of a non-

simply laced group. Unlike in the previous cases, the K3 part of the Calabi- Yau 

cannot have a singularity of a type that corresponds to the gauge group, since a 

K3 can only have ADE type singularities. Thus we should expect some mixture 
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of fiber and base coordinates even if there is no matter in the theory. The second 

difference is that the 50(7) theory makes sense only for n = 2, 3. For n = 4, the 

fiber of the type IIA manifold cannot have a semisplit D4 singularity [36], which 

would give rise to an 50(7) gauge theory. Thus we cannot consider the case without 

spinors to compare to known results. Apart from that, it will turn out that the 

most convenient representation of the 50(7) curve requires a slight modification of 

Batyrev's construction of the mirror. 

The polar polyhedron giving rise to the 50(7) gauge theory is defined by the 

vertices 

v1 = (-1,0,2,3) v2 = (1, -n, 2, 3) v3 = (0, -1, 2, 3) 

v4 = (0,0,-1,0) v5 = (0, 0, 0, -1) v5 = (0, 0, 0, 0) 

v1 = (0,0,2,3) vs = ( 0, 1, 2, 3) v9 = (0, -2, 2, 3) 

v10 = (0, -1, 1, 1) vu= (0, -1 , 0, 1) 

and the corresponding Newton polyhedron is given by 

V1 = ( 4, 2, 0, 1) 

V4 = (6,2,1,1) 

Vz = (0,0, -2, 1) 

V5 = (6, -6, 1, 1) 

V7 = (2n - 6, 2, 1, 1) Vs= (2n - 4, 2, 0, 1). 

V3 = ( 0, 0, 1, -1) 

V5 = (-6 - 6n, -6, 1, 1) 

(3.30) 

(3.31) 

Using Eq. (3.11) and setting x 4 = x 7 = x 8 = 1, we find the defining equation of the 

Calabi-Yau 

w 

The K3 part of this expression can be transformed into the standard form of the 

classical piece of the 50(7) curve using coordinate redefinitions as in the previous 
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subsections. This results in an expression of the form 

X1 2 2 6 4 2 
( 

8-2n) 
w = ( + ao-,- + x + y + z + C3Z + C2Z + C1 + ... ' (3.33) 

where x 1 is some function of x, z and the Casimirs c;. In this format there is no obvious 

way to identify the powers of the fiber coordinates that multiply the coordinate of 

the lower sphere with the number of matter fields. 

This problem can be circumvented by replacing the Calabi-Yau, Eq. (3.32), with 

another Calabi- Yau that encodes the same field theory information. Recall that on 

the IIB side, the field theory information is encoded in the complex structure moduli, 

which in turn determine the period integrals over the three cycles of the Calabi-Yau. 

The Kahler structure moduli determine the integrals over two cycles but do not affect 

the integrals over the three cycles. Thus we can modify the Kahler structure of our 

manifold without changing the information about the gauge theory. 

One way of seeing that the information encoded in the complex structure is in­

variant under changes of the Kahler structure is provided by the v-hypergeometric 

system of partial differential equations (see, e.g., [44] for details). The period integral 

over the three cycles of the Calabi-Yau is given by 

ITk(a) = 1 1 IT dxp' 
'Yk W(a,x) Xp . p 

(3.34) 

where W( a, x) is a hypersurface constraint such as Eq. (3.32), Xp are the coordinates 

of the embedding space and a denotes the set of complex structure moduli. The 

period integrals satisfy a set of differential equations 

(3.35) 
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where the differential operators are given by 

( 
a ) z; ( a ) -z; 

Dz = II oa. - II oa. ' 
l;>O i l;<O i 

(3.36) 

Here, Vi,a denotes the a component of the i-th vector in the dual polyhedron and the 

vectors l define relations between the vertices Vi 

L Viii = 0, L Li = o. (3.37) 

One can check that the hypersurface constraints obtained by Batyrev's construction 

satisfy these relations. 

However, this does not exhaust the list of hypersurface constraints that satisfy 

Eq. (3.35). One can find many additional manifolds by solving these equations di­

rectly. In this approach, one does not need the information encoded in the Newton 

polyhedron. This reflects the fact that all of the information on the behavior of the 

gauge theory is contained in the dual polyhedron. Different solutions to Eqs. (3 .35) 

will describe different Calabi- Yau manifolds but they will all have the same period 

integrals over the three cycles and therefore they encode the same gauge theory. 

We can easily find other hypersurface constraints which satisfy Eqs. (3.35) by 

adding points to the Newton polyhedron that lie in its convex hull. Using the co­

ordinates corresponding to these points to parametrize the hypersurface constraint 

guarantees that the resulting Calabi-Yau has the same period integrals as Eq. (3.32). 

Adding the vector v9 = ( n - 2, 1, -1, 1) to the Newton polyhedron and using the 

coordinates associated to v8 , v9 , v3 , v5 and v6 we find the hypersurface constraint 

w 
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Setting Xo = 1, neglecting the terms with coefficients a 5 and a 6, and substituting 

1 
X3 x - 2 (as+ a 4 x 8 x 9 ) 

1 
(3.39) Xs y + Xg - 4a4as 

Xg z 

we find after redefining the complex structure parameters 

Xs Z 2 3 2 2 ( 
8-2n 4-n) 

w = ( + ao ( + x + z - y z + C2Z + C1Z +Co+ ... ' (3.40) 

where x 8 = y + z + c2f2. We can identify a0 with A 2/Jo and the c; with the Casimirs 

of 50(7). Since we cannot choose n to eliminate all spinors, we cannot compare this 

curve directly to known results. However, higgsing 50(7) to 50(5) as in Sec. 3.3.1, 

we obtain the expected curve for 50(5) with 3 - n fundamentals. If we modify 

Eq. (3.40) to allow arbitrary numbers of spinors and vectors with arbitrary masses 

by replacing 

(3.41) 

we can integrate out all spinors in Eq. (3.40). Then x and y can be integrated out 

trivially and substituting z ---+ z 2
, we find the double cover version of the 50(7) curve 

with 3-n fundamentals [25, 27]. Unlike in the previous cases, we can write Eq. (3.40) 

as a curve only for n = 3. 

3.3.4 S0(9) with ( 4 - n)16 + (5 - n)9 

In this section we repeat the analysis of the previous sections for a class for Calabi­

Yau manifolds that lead to an 50(9) gauge theory with 5 - n vectors and 4 - n 
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spmors. The toric description of these manifolds is given by the vertices 

i)i = (-1,0,2,3) v2 = (1, -n , 2, 3) v3 = ( 0, -1, 2, 3) 

v4 = (0,0,-1,0) V5 = (0,0,0,-1) v6 = (0, 0, 0, 0) 

v1 = (0,0,2,3) vs= (0, 1,2,3) v9 = (0, -2, 2, 3) 

v10 = (0, -2, 1, 2) vu= (0, -1, 1, 1) v12 = (0, -1 , 0, 1) 

of the dual polyhedron. The Newton polyhedron consists of the vertices 

V1 = (2, 1, -1, 1) 

V4 = (6, -6, 1, 1) 

V2=(6,2,1, 1) 

V5 = (0, 0, -2, 1) 

v7 = ( 2n - 6, 2, 1, 1) Vs = ( n - 2, 1, -1 , 1). 

V3 = (0, 0, 1, -1) 

V5 = (-6-6n,-6,1,1) 

(3.42) 

(3.43) 

Using these vectors and Eq. (3.11), we can write down the mirror. It is convenient to 

use the <C* actions to set all coordinates except x1 , x2 , x 3, x 4 and x 6 to one. Defining 

Xo = X4X5 and ( = (x4/x5)6+3
n we get 

w 

(3.44) 

For 50(9), Batyrev's construction gives a description of the mirror in which the 

matter content of the theory is visible in the fibration over the lower sphere. The terms 

with coefficients a 5 and a6 are irrelevant near the singularity. We can transform the 

fiber into the standard form for an 50(9) theory by making the following substitutions 

(3.45) 

X2 Z. 
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Neglecting an irrelevant term of the form xix~ and renaming the coefficients, we find 

W /" 2 2 2 4 
( 

X4
1
-nzl2-2n) 

= -, + ao ( + x - y + c0 + c1 z + c2 z 

+ C3Z
6 + z8 + · · · , (3.46) 

where 

1 ( 2 2 4) X1 = y + 8 4c2 - c3 + 4c3 z + 8z . (3.47) 

It is straightforward to check that for n = 4 this curve agrees with the curves in [25, 

27], once one identifies the Ci with the gauge invariant polynomials that parametrize 

the Coulomb branch and sets a0 = A Z/3o. 

Again, the substitution 

(3.48) 

presumably results in a solution of the theory with arbitrary numbers of massive 

vectors and spinors. Repeating the checks as in Sec. 3.3.1, we find consistent behavior. 

3.3.5 SO(ll) with (42n)32 + (7 - n)ll 

For 50(11) with 4 - n half hypermultiplets in the spinor representation and 7 -

n vectors we can repeat the steps that provided the curve for 50(7). The polar 

polyhedron is given by the vertices 

v1 = (-1,0,2,3) Vz = (1, -n, 2, 3) v3 = (0, -1, 2, 3) 

v4 = (0, 0, -1, 0) vs= (0,0,0,-1) v6 = (o, o, o, o) 

v7 = (0,0,2,3) vs = ( 0, 1, 2, 3) v9 = (0, -2, 2, 3) (3.49) 

v10 = (0, -2, 1, 2) vu= (0,-2,0,1) v12 = (0, -1, 1, 1) 

v13= (0,-1,0,0) 
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and the corresponding Newton polyhedron is defined by 

V1 = (2, 1, -1, 1) 

V4 = (0,0,-2,1) 

Vz = ( 6, 1, 1, 1) 

V5 = (6, -6, 1, 1) 

v1 = ( n - 6, 1, 1, 1) v8 = ( n - 2, 1, -1 , 1). 

V3 = (0, 0, 1, -1) 

V5 = (-6 - 6n, -6, 1, 1) (3.50) 

Using these polyhedra, we can write down the mirror Calabi- Yau but as in the 50(7) 

case there is no choice of coordinates in which the fibration over the lower sphere 

has a simple interpretation in terms of the number of fundamentals and spinors . 

However, we can add the vector v9 = (n - 4, 1, 0, 1) to the Newton polyhedron and 

use xs, X9, X3, x5, X5 with Xo = x 5x5 and ( = ( x5/ x5)6+3
n to parametrize the Calabi­

Yau 

w 

Near the singularity we can neglect the terms with coefficients a 5,6 . Substituting 

1 
x - 2 (au + a10x9 + a4xsx9) 

Xs y - ~ (au a4 + a10a4X9 - 4x~) (3.52) 

X9 Z 

into the defining equation of the Calabi-Yau gives 

W= ( x~-n ZS-n ) 2 5 2 4 3 2 ( + ao ( + x + z - zy + C5Z + C4Z + C3Z + CzZ + C1 + ... ' 

(3.53) 

where 

1 ( 2 2) Xs = y - - c5 - 4c4 - 4c5 z - 8z . 
8 

(3.54) 
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For n = 4 we can integrate out y trivially. Substituting z--+ z2
, Eq. (3.53) reduces to 

the double cover version of the curve for 50(11) with three fundamentals [25, 27]. In 

the other two asymptotically free cases n = 2, 3, we also obtain a curve but it is not 

hyperelliptic. Presumably we can obtain an exact solution for any number of massive 

vectors and spinors by substituting 

(3.55) 

Again, our solution passes the tests given in Sec. 3.3.1. 

3.4 Summary and Concluding Remarks 

We have obtained exact solutions to JV= 2 supersymmetric SO(N) gauge theories for 

N = 10, 12 and N = 7, 9, 11 with massless matter in the spinor and the fundamental 

representation. We gave a description of the Coulomb branch of these theories in 

terms of ALE spaces fibered over a sphere. 

These solutions were obtained by compactifying type IIA string theory on Calabi­

Yau threefolds with singular K3 fibers. The singularity type of the K3 determines 

the gauge group of the d = 4 gauge theory and the duality to heterotic strings 

compactified on K3 x T 2 can be used to determine the charged matter content of 

the theory. Mirror symmetry relates the Calabi- Yau for type IIA compactification to 

a different Calabi- Yau that gives rise to the same field theory when type IIB string 

theory is compactified on it. The exact solutions can be extracted from this mirror 

Calabi- Yau. 

This approach provides exact solutions for the gauge theories listed above with spe­

cific matter contents. 'vVe proposed some generalizations of these results to arbitrary 

numbers of massive spinors and vectors and verified that our solutions are consistent 

under adjoint breaking and integrating out matter fields. Unfortunately, the list of 

asymptotically free SO( N) theories with spinors is not exhausted by the cases we have 

studied. For 50(8) there is no toric description of the corresponding type IIA and IIB 
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Calabi-Yau manifolds and the higher rank groups SO(N), N = 13, 14, 15, 16 cannot 

be obtained from compactifying type IIA on a Calabi- Yau threefold or conversely 

from breaking the adjoint of E8 on the heterotic side. 

The results presented may ultimately provide some insights into how to construct 

matter representations other than fundamentals and two index tensors from branes. 

In principle it should be possible to find a brane configuration corresponding to the 

theories we analyzed here by studying an M-theory 5-brane wrapped on R4 x I; where 

I; is the curve encoding the gauge couplings on the Coulomb branch. 

Since our solutions agree with known field theory results, in the cases where these 

are available, one can view the results of this paper as further confirmation of mirror 

symmetry and the duality between type IIA and heterotic strings. 
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Chapter 4 CFT's of C3 /7lm X 7ln Orbifolds 

4.1 Calabi-Yau via D Brane Probes 

In the first three chapters we have studied exclusively closed string theory on Calabi­

Yau manifolds. This is not the only possible approach to study string theory on 

Calabi-Yau manifolds. Type II string theory contains, in addition to "fundamental" 

strings in terms of which string perturbation theory is formulated, extended objects 

of various sorts which carry charges under the ( R, R) and (NS, NS) gauge potentials. 

These solitons must be included for consistency of the theory, and furthermore various 

string dualities - or simply conifold transitions of Chapter 2, in the case of ( R, R) 

solitons - exchange the fundamental string states with the non-perturbative states. 

Because of this , it has been clear for some time now that strings themselves are not 

the fundamental objects in the theory, and that the concept of fundamental degrees of 

freedom of a theory is itself ill-defined in string theory at strong string or sigma-model 

coupling. 

The one advantage of "fundamental" strings is that they provide tools for com­

putations. However, even that is true only in a limited sense. The reason is that 

( R, R) solitons are D branes, so they do have a perturbative string description at 

weak string coupling: in terms of CFT with Dirichlet boundary conditions - open 

string CFT for short. Because of that it makes sense to ask for a description of 

Calabi-Yau compactification in terms of D branes. 

There are several things to keep in mind. Since open string CFT does not contain 

gravity, the question of D brane geometry is formulated in the background of type 

II string compactification on a Calabi-Yau X. Second, since D branes are extended 

objects, D brane configurations on X are classified by H*(X, Z), in other words, D 

branes must wrap cycles in X. The geometry a D brane sees will depend on which 

element in H*(X, Z) it wraps - the geometry is the space of all D brane configurations 
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m the same homotopy class. The D brane configuration that naturally probes the 

geometry of X is a single D brane which is pointlike in X - corresponding to the 

generator of H0 (X, Z), since its classical moduli space is all of X, and it is this 

configuration we will concentrate on in this Chapter. 

It is an important question what the relationship between the open and closed 

string theory approaches is. Open string CFT is complementary to the closed string 

theory in the sense that short distances in one theory corresponds to long distances 

in the other*1
• In the cases studied thus far, the two descriptions seem to match 

smoothly onto each other *2
, although there have been few studies that go beyond 

just looking at the topological properties of M. 

What we turn next to is a study of open string theory CFT on a certain class of 

Calabi-Yau spaces where closed string theory is known to exhibit some peculiar and 

little understood features. 

4.2 Introduction to Orbifolds (with Discrete Tor-

sion) 

There exists a special class of Calabi-Yau manifolds, called orbifolds, whose CFTs 

are exactly solvable - this is a marked exception in the Calabi-Yau world. The price 

to pay for the simplicity of the CFT is that the spaces themselves are singular, so 

in this sense they are only cousins of Calabi-Yau manifolds. One is in for a surprise, 

however, since the conformal field theory on orbifolds turns out to be perfectly well 

behaved, and furthermore the spectrum of the theory happens to be exactly the same 

as that on the blowup of the orbifold *3 • What is surprising about this is that from 

* 1 This is a direct consequence of the fact that a loop of open string stretched between two D-branes 
can be interpreted as a closed string, tree level interaction . 

*2 The firm ground on this issue is really established only on Calabi-Yau two-folds, in the ALE limit 
[45]. On Calabi-Yau threefold it also seems to be the case, modulo some important technicalities 
which are beyond the scope of this work. For more detail consult [46] 

*3 Blowing up is a means of resolving singularities of manifolds by cutting the singularity out and 
replacing the singular locus by a holomorphic cycle of appropriate dimension. One "adds" a cycle of 
codimension one in the space transverse to the singular locus, which is a natural way to repair the 
singularity if the complex structure is not to be disturbed. The allowed singularities must be such 
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the standpoint of classical geometry, an orbifold is too singular to be a manifold and 

consequently it is hard to even define what one means by cohomology of the space. So, 

somehow string theory "knows" that the space can be resolved, and the CFT orbifold 

is simply a special point in the moduli space of CFTs associated to the resolved space 

where the CFT becomes solvable and the geometry singular. Once this is accepted 

it does not come as a surprise, in the view of stringy Kahler geometry, that singular 

geometry may not imply singularity of the conformal field theory. We have seen that 

a CFT has non-geometric parameters, the B fields, and turning on these moduli is 

sufficient to remove the singularity from the conformal field theory. 

This seems to be a nice and consistent picture which entails the assumption that 

non-linear sigma models are ultimately based on classical geometry, and that in the 

point particle limit stringy geometry will agree with classical geometry. As noted 

above, this picture seems to be supported by D-brane probes as well. 

However, in the work of Vafa and Witten from 1994 [3], counter- examples to 

this notion have been constructed in the language of closed string CFT, and they are 

known as orbifolds with discrete torsion. Basically it turns out that apart from the 

"conventional" orbifold CFT discussed above, there exist other CFT's which can be 

associated to the same geometric space, and they are labeled by the choice of discrete 

torsion. The theories with torsion do not share the nice properties of "conventional" 

orbifold CFT we talked about above, in that they contain singularities which cannot 

be resolved, but remain as regions in which stringy effects are always large. This is 

particularly puzzling since, at least from the classical geometry, one would expect the 

theory to probe the smooth neighboring vacua, but the CFT simply fails to see them. 

It is an interesting question , therefore, whether similar ambiguities in defining 

orbifold theory CFT arise for D-brane probes as well. The answer to this turns out 

to be positive, and furthermore D brane geometry agrees perfectly with that of closed 

string CFT, but not with classical geometry. 

that one can repair them by keeping the first chern class trivial. Another way to say this , is that 
such a singularity can be obtained by deforming Kahler structure of a smooth Calabi-Yau manifold. 
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4.3 Closed String CFT on Orbifolds 

An orbifold is a quotient of a smooth manifold M by a discrete isometry group r. 
The quotient is taken in the usual sense of identifying the points on the orbits of the 

f action, a point x E M being identified with gx E M. If the r action has fixed sets, 

the quotient space will have singularities. The reason is as follows. The action of r 
on M lifts to an action of the tangent bundle of M, denoted by TM. It does so in 

such a way that 

for every x in M and every gin r. If, however, x is fixed under g, so that x = gx, 

then g maps Tx to itself. This map must be a rotation of the vectors in Tx, since r 
acts as an isometry and so its action must be norm-preserving. Because r is discrete, 

the quotient singularities produced by the identifications are conical, deficit angle 

singularities. 

The singular set of M / r is a union of spaces S g = { x lgx = x} fixed by elements 

g E r *4
• Another fact that will be important to us is that the quotient space is 

Calabi-Yau. One will recall that M is Calabi-Yau manifold if and only if it is a 

Kahler manifold with a unique nowhere vanishing holomorphic d-form Dd,o_ Then, 

M/f is Calabi-Yau as well provided the action of r preserves D. 

4.3.1 Generalities of "Ordinary" Orbifolds 

Field theory on M/f is simply defined in terms of truncation of the theory on M to 

r invariant states. In string theory however quotient theory will have states which 

do not come from M. Since open and closed string theories behave quite differently 

in this respect, (although, as we will see shortly the difference is only at a superficial 

level), we will concentrate on the closed string theory first. 

In closed string theory the new states go under the name "twisted" string states. 

The name derives from the fact that those states come from quantization of strings 

*•It is not necessary that M be smooth, but in this section we will assume so, since we consider 
quotient singularities only. 
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which are closed on M only up to the r action, and thus are created by fields with 

twisted boundary conditions 

8(0" + 27r) =go 8(0"), g E f. 

Classically, the massless string states are constant configurations on the world-sheet 

so the above equation implies that twisted strings of zero mass must propagate only 

on the fixed set 59 . 

Now, the problem of computing the massless spectrum of superstring theory 

on smooth, compact complex manifolds has a well-known solution - the Ramond­

Ramond ground states are determined by topological data only, their number is given 

by the dimension of H*(X). Since 59 is smooth for every g in r , the twisted string 

states are in one to one correspondence with the generators of H* ( 59 ) *5 • More 

precisely, the correspondence is given by the following formula 

The shift in the Hodge numbers comes about because the assignment of the cohomol­

ogy groups Hp,q to (R, R) states comes via the (p, q) charge of the Ramond- Ramond 

fields acting on the vacuum under the left and the right-moving U(l) current on the 

world sheet. In the orbifold, however, the vacuum itself carries non-zero U(l) charge 

which is computed in [47] (in fact most of the introduction follows this paper), with 

the result that g : z0 -+ e27rieo z0
, where 0 :::; () 0 < 1, then 

( 4.1) 

It should be clear that the twisted states too must be projected to those that are r 
invariant, so 

*sOne can in fact show that 59 is a Kahler submanifold (basically the Kahler form on 59 is given 
by the pullback of the Kahler form on on M, and such is preserved by action of r [47]) . 
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4.3.2 A Z 2 x Z 2 Example 

The simplest Calabi-Yau threefold which has an orbifold singularity is a space which is 

(locally) C3 /'ll2 x 'll2. If we take Zen a = 1, 2, 3 to be the choice of complex coordinates 

on C3 than r = 'll2 x 'll2 acts by: 

The fixed set of r consists of Sg = (z1' 0, 0), sh = (0, Z2, 0), and Sgh = (0, 0, z3) . 

These are three curves of singularities, in the neighborhood of each of which M /f 

looks like <C x <C2 /'ll 2, and which intersect over a point (0, 0, 0). The complex manifold 

C3 has a unique holomorphic three form, D3
•
0 = dz1 /\ dz2 /\ dz3 which survives the 

quotient since r flips the sign of coordinates pairwise. Now let us consider the string 

spectrum *6
• The fixed set of g is just a copy of S9 = <C parametrized by z1 . The 

total cohomology of <C is generated by 

which belong to H0
•
0

, H 1
•
0

, H 0
•
1 and H 1

•
1 respectively. Since h : z1 ---+ - z1 , only 1 

and dz1 /\ dz1 are invariant under r, so the contribution to the stringy cohomology of 

the orbifold of g-twisted states is h1
•
1 = 1 = h2

•
2

, and zero otherwise. There are two 

more elements similar to g, so we find that 

hl,l = 3, h2 ,l = 0, 

on the orbifold in string theory. This is a remarkable result. The point is that 

*5 For our methods, as outlined above, we really need to consider compact spaces. It suffices to 
think about C3 / Z 2 x '1!,, 2 as a piece of a compact manifold, T 6 / '1!,, 2 x '1!,, 2.This space has 64 fixed points, 
the neighborhood of each of which looks like our space. Alternatively, one can consider compactly 
supported cohomology on 59 in order to obtain normalizable ground states. We will be loose about 
this point. 
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defining cohomology of a singular space is ordinarily fairly hard , and to get something 

reasonable, one has to do so using "simplicial" rather than de-Rham cohomology. 

What we find here is that string theory anticipates the cohomology of the resolved 

orbifold since the Hodge numbers the CFT computes correspond precisely to what 

one would have obtained by blowing up the orbifold. This seems to be a generic 

behavior of string theory on orbifolds. 

4.4 Discrete Torsion 

It turns out that the orbifold CFT of C3 /Z 2 x Z 2 is not unique but admits a gen­

eralization by turning on discrete torsion which really means adding certain dis­

crete phases to the string path integral. The non-trivial phases can be introduced 

if H2 (r, U(l)) -:J 0, equivalently when there exist maps r x r ---+ Z which are an­

tisymmetric and whose image is not trivial. For r = Zm x Zn, H2(r, U(l)) = Zr, 

where r = gcd( m, n ), so there are r possible choices of torsion . We briefly describe 

how this is done, following [3] closely. Consider strings propagating on a patch of 

some (possibly compact) manifold , biholomorphic to C3 /r, r = Zm x Zn . The CFT 

is constructed in terms of maps ~ ---+ C3 /r, where ~ denotes a world-sheet of closed 

string. Alternatively, one considers maps to C3, and those which are closed up to r 
action can be described in terms of world-sheets twisted by elements of r. At genus 

one for example, let ~be a quotient of the 0"1 - 0"2 plane by 0"1 ---+ 0"1 +1, 0"2 ---+ 0"2+1. 

Twisted maps will include twists both along the 0"1 and 0"2 directions. 

The inclusion of discrete torsion can then be described as follows. Pick an integer 

p = 0, .. . , r - 1, and let ( = e2rri/r. The contribution to the one-loop path integral 

of the world-sheet twisted by ga hb along 0"1 , and ga' hb' along 0"2 is weighted by an 

additional phase 

(4.2) 

It was shown in [2] that for every choice of p, there exists a unique generalization of 
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this to higher genus surfaces. The effect of torsion is to change the transformation 

law of the ga'hb' twisted states under gahb, by addition of the phase (4.2), and this 

changes the notion of r invariance in the orbifold. 

"Ordinary" orbifold CFT corresponds to no torsion, p = 0, but there are r - 1 

closed string theories with torsion one can define. As we will see, while an orbifold 

theory without torsion has a "good" geometric interpretation, an orbifold theory with 

torsion does not. 

4.4.1 Z2 x Z2 Theory with Torsion 

Before we go on to do the general case, let us return to the Z 2 x Z 2 example. 

We recall that g-twisted states corresponded to 1, dz1 , dz1 , dz1 /\ dz1 . Now, 

so that r invariant states are those transforming as ( -1) under h. These are precisely 

dz1 and dz1 , so that this time it is H 1
•
0(59 ) and H 0

•
1(59 ) that survive the quotient. 

Taking into the account the other two elements of r and the shifts in the cohomology 

labels, the H 1
•
0

( 59 ) orbifold with torsion has 

hl,1 = 0, h2,1 = 3. 

Generators of H2
•
1(M/f) correspond to deformations of complex structure of the 

orbifold. Complex structure of C3 /f is given in terms of r invariant monomials on 

C3, modulo any relations between them. Here, r invariant monomials are Xi = z[, 

i = 1, 2, 3, and y = z1z2 z3 , which satisfy one relation: 

By projecting onto Xi = const, the space contains three curves of singularities of the 
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form 

2 y CX XiXj. 

The three elements of H2
,
1(M/f) can be thought of as deforming each curve of singu­

larities (from the orbifold point of view, this seems as a natural interpretation, since 

the twisted states which give rise to the deformations are supported there. However, 

one should be cautious since the concept of locality when it comes to deformations of 

the complex structure is obscure.) Such a deformation could for example look like 

This resolves each curve of singularities, however, one clearly has a conifold singularity 

left at the origin: upon adding the deformations the x 1x 2 x 3 term becomes irrelevant 

and can be neglected. What is left over is an equation of the conifold. So upon 

turning on the deformations present in string theory, we have found that we cannot 

completely resolve the singularities. From the mathematical standpoint there is no 

obstruction to deforming the conifold away via 

however in string theory this deformation is absent, leaving a stable conifold singu­

larity. This singularity is not a singularity in the CFT, unlike the conifold treated 

in [48], but is simply a region where stringy effects are large due to concentrated 

curvature. The conifold theory obtained above is smooth: it is a deformation of the 

orbifold CFT which does not have singularities, and the deformations we employed 

are not expected to introduce singularities. This manifests itself here precisely by the 

impossibility of turning on the offending deformation c. One final note: in the case of 

an orbifold without torsion, the spectrum we computed corresponded to the blowup 

of the orbifold. There, unlike in this case, no additional singularity at the intersection 

was found - basically the reason is that for a Z 2 x Z 2 orbifold, resolving singularities 

in codimension two automatically resolves the singularities at codimension three, as 
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can be easily seen torically. 

4.4.2 General Zm x Zn Case 

Take the orbifold group r = Zm x Zn to act as 

g: (z1,z2,z3)---+ (z1,e2;izz,e_2;;z3), 

h: (z1,z2,z3)-+ (e2~iz1,zze_2~iz3). 

Torsion depends only on the ratio of p and r in the eq.(4.2), so let q = gcd(p, r). 

Using the formula ( 4.2), 

for all a, a', b, b'. Let us denote 

m =rs, n =rt, gcd(s, t) = 1, 

and put g = g~ and Ti= h~. From above, we see that a subgroup 

generated by g, and h is completely unaffected by torsion. Thus in a spectrum of the 

r orbifold with p units of torsion, we will find a complete twisted sector of a C3 /f 

orbifold. 

This contribution is as follows. In the "ordinary" orbifold, the CFT spectrum agrees 

with the spectrum on the blowup of the orbifold. The cohomology of this orbifold 

can be computed by toric methods, with the following result: 

• The C3 /f orbifold has three curves of Zqs, Zqt, and Zq singularities. Blowing 

them up contributes qs - 1, qt - 1 and q - 1 to h1
•
1

. (Roughly, each singularity 

is of the form <C x C2 /Z*. Blowing up replaces the singular curve by a chain 

of S 2 's fibered over C, which contributes to h4 , and by the dual-of-the-dual to 

h 1,1 _) 
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- b 2rria 2rrib _.l.!c!...(qta+qsb) 
• Since fl h : ( z1, z2, z3 ) ----+ ( e -q;- z1, e ---qt z2, e q

2 
st z3 ), the origin is fixed by 

elements of the form flhb, where 

0 <a, 0 < b, 

qta + qsb < q2 st, 

a simple counting shows that there are H q2 st - qs - qt - q + 2) such elements, 

and they contribute to h1
•
1

: the fixed set is a point whose cohomology con­

sists of constant functions contributing to H 0
•
0 and this assignment gets shifted 

by 1 following (4.1). Poincare duality requires the same contribution to h2•2 , 

which comes from the remainder of elements (a, b) fixing the origin which satisfy 

instead: 

q2 st < qta + qsb < 2q2 st. 

It is easy to see that no other elements of r can contribute to the H 1
•
1 cohomology 

of the <C3 /f orbifold. For, curves of singularities contribute to H 1
•
1 and H 2

•
2 via 1 

and dz /\ dz, and these are always invariant under all other elements of r, so either 

torsion is non-trivial, p # 0 mod r, and they are projected out, or torsion is trivial 

and they have already been accounted for. Thus, 

1 
h 1

•
1 = -(q2st + qs +qt+ q - 4). 

2 

Let us now turn to H 2
•1 • The contribution to these group elements can only come 

from the curves of singularities, from sectors twisted by ga, ha or gash-at, and so 

elements generating them are always of the form dz and dz. Consider, for example 

ga twisted states, which propagate along 59 = (z1 , 0, 0). According to the above 

discussion, we are instructed to keep states that transform as cap under h, which is 

only possible if n =rand ap = ±1 mod r. The second equation is the statement that 

q = gcd(p, r) = 1, and if in addition n = r then, for every choice of sign, there is only 

one solution for a in Zn. The choice of sign in effect picks out one of the dz or dz's 
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as the "invariant" element of the fixed set cohomology group. Similar considerations 

for other elements can be used to show: 

•If m = n = r where r = gcd(m,n), that is if r =Zr x Zn and if in addition 

q = gcd(r,p) = 1, then h2
•
1 = 3 = h1

•
2

. 

• In all other cases, h2
•
1 = O = h1

•
2

. 

4.5 Interpretation of the Moduli 

We have computed above the massless twisted sector states of the r = Zm x Zn 

orbifold CFT with p units of torsion. The twisted sector states are associated to 

exactly marginal operators which can be used to deform the orbifold CFT to a nearby 

CFT describing string propagation of a (partially) smoothed out space. In the Z 2 x Z 2 

example, we have seen that, turning on or off torsion has an interpretation of picking 

a smoothing of the singularities in target space, but that the theory with torsion can 

achieve this only partially. We can now try to repeat the exercise for more general 

orbifolds. 

We have seen that the C3 /f orbifold contains as a sub-sector the fields needed 

to resolve the C3 /f' orbifold. A reasonable interpretation of this, as is easy to see 

torically is that the partial resolution of the orbifold using these states produces a 

space containing N = qs · qt orbifold singularities all of the type H = Z.r x Z.r, not 
q q 

all of which are independent, and which cannot be blown up any further in string 

theory. Another way to say this is that the space is a quotient of C3 /f' by H. The 

above calculation shows further that , if in fact N > 1, there are no additional states 

preventing resolution of singularities. It is important to note that, in that case, the 

singularities are not isolated. 

If, on the other hand N = 1, which corresponds to m = n = r, and q = 1, string 

theory provides exclusively a resolution via deformation of the complex structure, 

with a single element resolving each curve of singularities. In this case, we may argue 
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as follows. The complex structure of a Zr x Zr orbifold is given by 

(4.3) 

as before, we can expect on the basis of stringy derivation of the spectrum one element 

of h2
'
1 resolving each curve of singularities, and leaving isolated singularities. The 

curves are of the form 

and, without disturbing the rest of the space, one can argue that the resolution takes 

the form 

This leaves a conifold singularity at the origin, a singularity that requires r - 1 

parameters to be resolved, which would replace yr -t IT~=0 (y - a0 ) . And which in 

this case are missing. We could also ask what happens in the case of our partial 

resolutions . 

We will see in the next section that similar phase ambiguities arise in the open 

string sector as well. 

4.6 Open Strings on Orbifolds 

In string theory there is a complementary way to study singular spaces, and that 

is by using D-brane probes. In the language of D-branes, the spacetime itself arises 

indirectly, as the moduli space of the gauge theory living on the D-brane world volume. 

To describe a Calabi-Yau threefold, it is necessary to use D p-brane probes with p :::; 3. 

For concretness we will henceforth set p = 3, the other cases being related to it via 

dimensional reduction. The world volume theory must have N = 1 supersymmetry 

and the singularities in the moduli spaces are resolved by turning on Flayet-Iliopoulos 

parameters or by deformations of the superpotential. 

For a general X there is no known prescription of how to determine precisely the 
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world volume gauge theory, with the only requirement really being that the moduli 

space of a single D-brane on X should in fact be X itself. With this requirement alone 

we can say very few things. First, N D branes at a smooth point in the Calabi-Yau 

space will neccesarily be described, at energies E « :, , R' by U(N) gauge theory 

on the world volume, with effective N = 4 supersymmetry. When the curvatures 

are large and substringy there must exist an effective gauge theory description of the 

"compactification" manifold, as long as the probe itself is small enough to be a "good" 

probe of geometry. Beyond this one must aproach the problem on a case by case basis. 

Exceptions to this are orbifolds X ~ C3 /f*7
, where a simplification occurs because the 

theory on C3 /f is a quotient of the theory on 03*8
• Studies of CC2 /Zm, and C3 /Zm 

showed that in both cases . the stringy constructions provide a physical realization 

of such concepts as Hyper-Kahler quotients and symplectic quotient constructions 

respectively. It is then interesting to ask if the same phenomena we have found in 

the closed string theory on C3 /Zm x Zn will persist in the open string theory as well. 

First, let us briefly review the general construction of D-branes probing orbifolds. 

Throughout we will mostly keep the discussion at the level of low-every effective 

field theory on the world volume. The theory of D 3-branes on C3 /f is defined as a 

truncation of the theory on C3, where only r invariant configurations are kept in the 

quotient. 

What does r invariance mean? Forgetting for the moment the non-Abelian nature 

of the theory (or more properly, thinking about open string CFT with boundary 

conditions), we can associate a Chan-Paton factor i to a D-brane at z(i) E C3, then 

the r action on C3 translates into 

go z(i) = z'(J(g)i), Vg E f. 

*7ln general c3 can be replaced with some other Ricci-fiat three-dimensional manifold M admit­
ting a symmetry r which is useful if the probe theory on M is known. Recently, this was done for 
the case when M is a conifold , [49]. 

*s It is true in fact that the knowledge of the c3 /r theory allows one to describe all other sin­
gualrities which are toric[50]. The unsolved problem is what to do for Calabi-Yau hypersurface 
singularities. 
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A r invariant configuration of D branes must then consist of orbits of r action on <C3, 

a generic orbit in this case consisting of If I points on <C3. 

Thus, to describe N D 3-branes on <C3 /f we must start with a d = 4, N = 4 

supersymmetric U(Nlfl) gauge theory, as an effective open string theory of Nlfl 

branes on the covering space. The action of r on the open string CFT induces the 

action on the effective bosonic degrees of freedom of the form 

g A ---+ 1(g)A1(g)-1, 

zi ---+ i(g) (go zi) i(gt1, 

( 4.4) 

(4.5) 

where zi are the scalar fields whose diagonal pieces parametrize the position of the 

D-branes on the covering space, and 1(f) is an embedding of the orbifold group 

/: f---+ U(Nlfl). 

At the end of the day, if r is a subgroup of SU(3)*9 as in the case we are interested 

in, the quotient theory will have N = 1 supersymmetry in d = 4. 

Let's now take r = Zm x Zn, so that r is generated by two elements g , and h, 

satisfying gm = 1, hn = 1, gh = hg. <C3 /f is then a quotient of <C3 by 

g : 
1 2 3 2rri 1 2 - 2rri 3 (z,z , z)-+(emz , z,e mz) 

h: 1 2 3 1 2rri 2 - 2rri 3 (z,z,z)-+(z,enz,e nz). 

Orbits of r are generated by g, h, so a D-brane at a generic point in <C3 /Zm x Zn 

must have mn preimages on <C3. It is convenient to label D-branes with a biindex 

(i, a) where i, a naturally label points on the orbits generated by g, h respectively, 

so that i E {O, ... ,m-1} and a E {O ... ,n-1} *10
• 

*9 f is the holonomy group of the orbifold. If r E SU(3) upon resolution of singularities in the 
orbifold the holonomy becomes (at most) SU(3). 

* 10 There are also N-valued indices labeling distinct physical branes, but since we will consider here 
only the generic orbits of r , whatever goes through for a single brane holds for any number of them. 
We will thus set N = 1 for clarity of the text. 
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The orbifold fixes the action of r on the single open string states, which is inherited 

from r action on C3, but we must still pick an action on the Chan-Paton factors. 

There is a natural "geometric" choice of action which can be described as follows. 

Since a generic orbit of r is just a copy of f* 11 , action of r on its orbit is an action of 

r on itself which gives, by definition, the regular representation, 1(g )icx,jf3 = gioi,joa,f3, 

and 1(h)icx,jf3 = oi,jhcxocx,f3· With this definition of the r projection, N D branes on 

the orbifold are described by a quiver It,cx U(N)i,cx gauge theory with chiral matter 

in bifundamental representations, and a superpotential which is a reduction of the 

N = 4 superpotential W = Tr Z 1 
[ Z 2

, Z3
]. 

4. 7 Open String Orbifolds with Torsion 

What we described above is not the only way to define the theory. As was argued in 

[45] to obtain a consistent theory it is necessary that the group relations are satisfied 

up to phase factors only, which means that 1(f) need not be a representation of r. 
However, since the action of 1(f) on the fields is in the adjoint, it will nevertheless 

be well defined. This requirement in our case states that 

1(g)m ex id, 

1(ht ex id, 

1(g)J(h) c(g; h)J(h)J(g), 

must hold in order to satisfy the group relations. 

The overall phases can always be removed by rescaling of the i's, but the phase Eis 

interesting. It follows from the first two relations above that c(g; hr = 1 = c(g; hr' 

and if we denote by r the greatest common divisor of m and n, then E must be an 

r-th root of unity. So if we let ( = exp(27ri/r), then 

c(g; h) = (P, p = 0, ... , r - 1. 

* 11 There are also smaller orbits, the origin for example. This is not a generic orbit. 
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This is the same cocycle appearing in the closed string theory. 

The choice of p determines a "representation" of r but with 

(4.6) 

The "conventional orbifold" corresponds to p = 0, but, as was the case in the closed 

string sector, there are r-1 other choices we can make, and they will result in different 

theories on C3 /Zm x Zn. 

It is now simple to find /p(g), /p(h) that will provide us with representation of 

the algebra ( 4.6). To describe the action of r on a generic orbit, i.e. forbidding any 

additional constraints other than what is implied by group relations, one should ask 

that forgetting about the Zn action, /p(g) is a copy of the regular representation of Zm 

and that the analogous statement holds for /p(h). With this requirement, the solution 

is unique. We can always pick a basis in which, for example, 1(g) is diagonal, so let's 

take /p(g)ia,j/3 = giiSi,jba,/3, this is just the regular representation of Zm. Then the 

action of h will include a twist action on g representations, /p(h)ia,j/3 = iSi,j+sphaiSa,/3· 

It is now easy to compute the states surviving the projection. Let's work out the 

gauge group on the quotient first. As the gauge fields live on space transverse to the 

orbifold, an element gAhB E r acts as 

Aµ-+ /p(gAhB)Aµ/p(gAhBt1' i.e., 

gA hB : (Aµ);~,J·/3 ----'- gA(i-j) hB(a-/3) (A )(. B) (. B)/3 
·~ --., µ i-sp a, J-sp · (4.7) 

First note that since (''19 = 1, g = g~ and h h ~ generate an ordinary algebra 

corresponding to f' = Z 9s x Zqt· To take this into account, it is convenient to set 

i = I + Iqs, a = A + aqt 

0 :s; I :s; sq- l, 0 :s; A :s; tq- l, - - r 0 :s; i, a :s; - - 1, 
q 

in terms of which the invariant fields of the r subgroup of rare of the form A1,Aia;], /J. 
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For the ease of notation we have written, for example AI;I = AI. The projection by 

g requires only fields with z = J to be kept in the quotient. Finally, projection by h 

sets 

IA ' - /3- IA?-£ A_' _,i = io:- A_'_' q. 
o:;/3 ., o:;/3 (4.8) 

It may be helpful to collect the results obtained thus far: Given a <C3 /Zm x Zn orbifold 

with r = gcd( m, n), there are r sectors of discrete torsion labeled by p, 0 ::;; p ::;; r - 1. 

If we denote the greatest common divisor of p and r by q, the gauge group on the 

world-volume of a single D 3-brane on the orbifold (to be precise the gauge group 

when the D brane is sitting at the point of maximal symmetry, the origin), is 

sq-1 tq-1 

IT IT 
I=O A=O 

r 
U(-)I,A, 

q 
( 4.9) 

where m = rs, n = rt. It is just as straightforward to work out what happens to 

scalars in the N = 4 vector multiplet. Since r acts on <C3 by (with an obvious abuse 

of notation) 

gAhB( 1 2 3) = (hB 1 gA 2 g-Ah-B 3) z ,z ,z z' z' z ' 

the Higgs fields surviving the quotient must satisfy 

Consider Z 1 first, Projecting with r c r, (Z 1 )AI ,_A ,_ are kept with the under-
,io:; +1,J O: 

standing that the index A is now Zqt -valued. Finally, g sets z = J, and projection by 

h requires: 

(4.10) 
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where 17(A) = 6A,qt-l· For Z 2 we find 

(z2)A- _ _ = (°'-fl(z2)A- _ _ 
l ,i,a;l+l ,i+t,.B l,i- ~ ,a; I+ 1,i+t(I)- ~ ,,e' ( 4.11) 

c_(I) = 61,qs-1, and for Z 3
: 

(Z3) , -. , _ = (a-f3-11(A)(Z3) , r. -. , r. _ 
l+l,A+l ,z+t,a,I,A,z,,B l+l,A+l ,z+t(I) - q ,a,I,A,z- q ,,B ( 4.12) 

with 17, E as defined above. 

The fields coming zi's live in fundamental representation of the gauge group whose 

index they carry. For example, (Z 1 )Al,i_·A .B- transforms in (D,D) under UU·) 1 Ai x ,a, +I, q ' ' 

U( !:. ) 1 A+l i however, all the gauge groups for fixed I, A are identified in the quotient, as q , , 

described above, up to a gauge transformation. We can solve the constraint equations 

(4.8),(4.10), (4.11),(4.12) by putting: 

( A )1,~,i = ((a-f3)iv(A )1,~ 
µ a;.B µ a;.B' 

(Z2)A _ ((a-,B)iv(z2)l,A 
l,i,a;r+l,i+t(I),{J = a;,B' 

(Z3) , _ , _ = ((a-f3-11(A))iv(z3)1,~ 
l + l ,A+ 1,z+t(I) ,a;l ,A,z ,,B c, ;,B' 

where v is a number defined by q = ur + vp, which of course, is not unique but is 

defined only up to !:., as it should be. 
q 

The theory contains a superpotential which is a reduction 

W --t Wr, 

of the N = 4 superpotential W = Tr( Z 1 
[ Z 2

, Z 3
]) to the f-invariant fields. We can 

compute Wr in terms of the reduced fields to find 

Wr = '°"' '°"' (z1):·~[(Z2)~'~+i(z3)~·-~ _ C(a-f3+11)t(Z3)~--1,A(z2)!:-_1,A]. 
~ ~ a;,B ,B;i 1,a ,B;i 1,a 
l ,A,i a,{J,:y 
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It seems natural at this point to redefine 

and 

After the redefinition, the superpotential is 

Wr = '.:_ 2..: Tr{(ZI )I,A[(Z2)I,A+I(z3)1,A - c7J(AHI-I)(Z3)I-I,A(z2)1-I,A]}, 
q I,A 

where the factor of ?:. out front comes from the sum over ~- It is easy to show that 
q 

the redefinitions not only simplify the superpotential,but are necessary in order for 

the matter fields to have canonical kinetic terms. 

4.8 Moduli Spaces 

We have computed above the open string theory description of orbifolds with discrete 

torsion. vVe have found that, just like in the closed string theory, there are ambiguities 

present in defining the theory on Zm x Zn orbifolds. More precisely, we have found 

that there are exactly r = gcd( m, n) orbifold gauge theories one can define, differing 

by either the matter content or the choice of the superpotential. The basic physical 

requirement that all the theories must satisfy is that the vacuum moduli space be an 

Zm x Zn orbifold. Thus, if we have made no mistakes, all the above gauge theories, 

for any choice of torsion, should have exactly the same vacuum moduli space. We 

will now check that this is so. 

The vacuum moduli space is the space of solution of F and D flatness conditions, 
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modulo gauge transformations. F-flatness conditions are 6Wr/6(Zi)I,A = O so: 

6Wr 
6(Zl)A,I 

6Wr 
6(Z2)AJ 

6Wr 
6( Z3)A,I 

And vanishing of D-terms requires Dr= Li[zi, zit]r = 0, that is: 

(4.13) 

D1,A = 0 (Zl)J,A(zlt)J,A - (z1t)J,A-1(z1)J,A-l + (Z2)J,A(z2t)J,A 

(z2t)J-l,A(z2)J-l,A + (Z3)J-l,A-l(z3t)J-l,A-l - (z3tl,A(z3)I,A_ 

We can solve the equations by putting 

Above, as before E = t:(I) = 61,qs-1, and TJ = TJ(A) = 6A,qt-l· There is unbroken 

diagonal U(l) gauge symmetry, under which all the mater-fields are neutral. In 

addition, there can be unbroken discrete gauge symmetries. What this means is that 

there can be identifications on the space of solutions to ( 4.13),( 4.14) which are induced 

by the gauge redundancies. In this case, the group of discrete gauge transformations 

which respect the equations ( 4.13,4.14) is generated by: 

( ) !,A -1(-a 6 
/g a,/3 = g a,,6+1, ( )

!,A h-A .r 
/h - i'I = Uai'l+l' O' '/J ,,..., 

which acts on the zi's precisely as the orbifold group does, for example 

and similarly for the others. Since the D- and F- flatness conditions are invariant un­

der this action, so are their solutions. The moduli space is thus precisely the orbifold 
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C3 /Zm x Zn, as anticipated. At the generic, smooth point in the moduli space, the 

effective gauge theory is a U(l) gauge theory with N = 4 supersymmetry. The singu­

larities in the classical moduli spaces correspond to points of partial gauge symmetry 

restoration, the most singular point being the origin where the full symmetry ( 4.9) is 

recovered. 

4.8.1 Resolution of Singularities in the Moduli Spaces 

The singularities of manifolds can be resolved by deformations of the complex struc­

ture or blow-ups, as we have seen when we discussed the closed string theory descrip­

tion of the C3 /Zm x Zn orbifold . The open string counterpart of this is the possibility 

of smoothing the singularities in the moduli spaces via deformations of the super­

potential, or by turning on FI parameters. The deformations of the superpotential 

have the effect of changing the complex structure of the moduli space. The reason 

is that the space of solutions to F- and D-fiatness conditions modulo gauge trans­

formations is precisely equivalent, as shown in [51], to setting F terms to zero and 

dividing by the complexified gauge group. This in turn produces the description of 

the moduli space as a variety parameterized by gauge invariant polynomials modulo 

relations with additional constraints from the vanishing of the F-terms. Deforming 

the F terms will then modify the relations between gauge invariant monomials. The 

D-fiatness conditions, on the other hand represent the moduli space in terms of a 

symplectic quotient, and this is directly related to the blowing up procedure, as we 

will see shortly. There are two separate cases to consider, one in which only deforma­

tions of the complex structure of the moduli space are allowed, and the other when 

singularities can only be blown up. 

4.8. l.a. Case qst = 1. 

When qs = qt = 1, there are deformations of the theory via W -t W + ~W which 

preserve supersymmetry and resolve singularities of the moduli space. The unique 
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gauge invariant deformation of the superpotential is given by 

This deformation preserves the U ( 1 )3 R -symmetry under which the superpotential 

has charge one, provided that Cs are assigned appropriate charges. As shown in [52], 

the moduli space is a deformation of the Zr x Zr orbifold, (for qs = qt = 1, this is 

the same as m = n = r), 

to 
r-2 

yr+ L aiyi = X1X2X3 - b1x1 - b2x2 - b3X3 + 2bo, 
i=O 

where y = TrZ 1Z 2 Z 3
, xi= Tr(ziy. Above, b0 = 2(b1b2b3 )

1l 2
, and all the coefficients 

are suitable functions of 6, 6, 6, computed in [52]. It is easy to show that the 

space has n - 1 conifold singularities located at Xi = j¥f, and r - 1 roots of 

Pr(Y) =yr+ 2-.:~~g aiyi = 0, and OyPr = 0 (for this to be so the polynomial P must 

clearly be very special, and one can in fact show that there are roots of the form 

y = cos rrrk , k = 1, . . . , r - 1, in agreement with closed string theory. 

4.8.1.b. Case qst #- 1. 

When the number of gauge groups, qs x qt #- 1, there is a possibility of turning on 

Fayet-Iliopoulos parameters. We can deform the D-flatness conditions (4.14) for the 

(I, A)-th gauge group via: 

D - t I,A - <,,J ,A, ( 4.14) 

0 ~ I~ qs - 1, 0 ~A~ qt - 1. 

This will, as we are about to show, resolve the singularities of the moduli space 

C3 /Zrs x Zrt albeit only partially when torsion, p #- 0, is turned on. To solve the 

vacuum constraints eq.(4.13),(4.14), it is instructive to note that upon projection 
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U(r / q)I,A to the center U(l )I,A for all I, A, the F and D flatness conditions reduce 

to that appropriate for an ordinary f' = Zqs x Zqt orbifold. We can take advantage 

of this by putting: 

( z1 )~'; 

( z2)~'; 
(Z3)~'; 

(zl) l,A (-?J(A)v& c) __ 
':> a,(3' ( 4.15) 

( 4.16) 

( 4.17) 

Using this ansatz, when eq.( 4.13),( 4.14) are written in terms of the C-valued variables 

( zi)I,A, they reduce to the D and F flatness conditions appropriate for the resolution 

of C3 /f' orbifold, where the blowup parameters of the orbifold are related to the ~I,A 's. 

This of course cannot be all, since with or without torsion we have set out to study 

f = Zrs x Zrt orbifold. 

There is an additional quotient we must take into account, and it derives from the 

fact that the identifications we have made in eq.(4.15) are not unique, but there is 

an additional action of the unbroken discrete subgroup of the diagonal U(r/q) on the 

space of solutions to eq.(4.13),(4.14) which is equivalent to taking a quotient by H = 

Zr/q x Zr/q· The discrete gauge symmetry group is generated by 1(g) = c5&,,6+l' and 

1(h) = (-& 6&,,6' and since gauge symmetries reflects redundancy of description,1(§) 

and 1(h) act via identifications on the fields: 

g: ((zl)l,A
1
(z2)l,A

1
(z3)l,A) rv ((zl/,A,(?1(A)(z2)l,A,(-?J(A)(z3)l,A), 

h: ((zl)I,A,(z2)I ,A
1
(z3)l,A)'"" (C(I)(zl)l,A

1
(z2)I,A

1
(-E(Il(z3)l,A) . (4.18) 

The moduli space is thus a quotient M/ H, with ;0/ a generic blowup of C3 /f' by the 

group H = Zr/q X Zr/q· 
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Moduli spaces for qs x qt> 1 as toric varieties 

There is an explicit and efficient way to describe the moduli space with arbitrary FI 

parameters and it is as follows* 12 • 

Let us first aim for a description of M, which is the solution of the "reduced" F­

and D- flatness conditions of the blowup of C3 /f'. The F-flatness conditions are given 

by: 

0 (4.19) 

Not all of the equations (4.19) are independent, but one can show that they can be 

boiled down to 2lfl-2 equations of the type monomial= monomial in 3lf I variables 

(zi)I ,A, where lf'I = qs ·qt. 

The space of solutions to ( 4.19) form what is called an affine toric variety. In 

algebraic geometry it is well known that all the information about a variety M is 

encoded in the space of functions which are well defined on M, that is all rational 

functions without poles on M. These functions form a ring, R(A1) , and a way to 

describe R(M) is as follows. Since M is a variety, by definition, there exists a set of 

polynomials Fi in en' such that A1 is given by equations of the form Fi( Z1' ... 'Zn) = 

0. Then any polynomial g E R( <en) restricts to a polynomial on A1, by regarding 

g as a function of points in M, and this map is a ring homomorphism. The kernel 

of this homomorphism consists of polynomials that vanish over all points in M, so 

R(M) = R(en )/IM . The ideal IM is generated by Fi. In our case, the ideal IM 

is generated by relations between monomials in en' with n = 3It1, and it is in this 

special case when the variety is given in terms of monomial relations that one obtains 

an "affine toric variety." The virtue of affine toric variety, is that one has the ability 

to take the quotient directly. The efficient way to describe the quotient is as follows. 

* 12 This section is fairly technical and serves to support in detail the very intuitive picture above. 
There are no new physical results, so the reader uninterested in detail may just skip this section. 
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Let us assign a vector ;;,i to each variable Zm;, i = 1, ... n, where the vector space 

structure is inherited from z~z~, mapping to am+ {Jn:,,'. The equations (4.19) can 

then be written as 2lfl-2 linear relations among 3lfl vectors. Explicitly, we can pick 

a basis for the space of solutions consisting of lfl + 2 vectors (monomials) and we will 

denote them as f?, a= 1, ... , lf'I + 2. All m's can be expanded in terms of the basis 

vectors as mi = ~a m~e°', with coefficients ma determined via the relations (4.13). 

The ring of polynomials well defined on the space of solutions to F-flatness conditions 

is generated by monomials (Ula zzi~}) where i = 1, ... , 3lfl, and a runs over the 

basis vectors, a = 1, ... , lfl + 2. The toric geometry encodes the ring structure in 

the following manner. Let M,....., zn+2 be a lattice generated by { f?}. The collection 

of n = 3lf I vectors mi belong to M, and define a cone M+ E M consisting of all 

the vectors which can be written as linear combinations of the vectors ;;,i with non-

negative integral coefficients. The result that we need here is that all the coefficients 

m~ are in fact integral* 13 • The utility of the lattice construction lies in part in the fact 

that there is a one-to-one correspondence between monomials in R(M) and vectors 

in lVf+, with the algebra of the functions on M encoded in the geometry of M+. 

To obtain the vacuum moduli space we must, in addition to F flatnes constraints 

eq.(4.19), satisfy D flatness conditions, eq.(4.14), modulo gauge equivalence. It is 

well known that, instead of setting F and D-terms to zero and dividing by the gauge 

group, we can set F terms to zero and divide by the complexified gauge group. 

Dividing by the complexified gauge group is accomplished by working with invariant 

monomials and in terms of the toric construction this amounts to picking out a 

sub-fan M+ C M+ .of monomials defined on the space of solutions to F flatness 

conditions that are invariant under the complexified gauge transformations. Following 

the original argument, generators of M+ form a basis of the algebra of functions of 

the underlying moduli space, and from it we can reconstruct the variety M itself: 

simply, the relations among the generators of M+ determine the ideal I(M). 

The shortcoming of the above approach is that only the complex structure of M is 
* 13 The coefficients can in fact take values of 0, ±1 only. To see this, consider any given point on 

the space of solutions. Under rescaling (zi)I,A -t t(zif ,A, of one of the coordinates of the point, the 
others must be rescaled by one of the t 0 , t±l in order to still solve the F-flatness conditions. 



87 

explicitly determined, and we loose any reference to the Fayet-Illiopolous parameters. 

The affine toric varieties have the property that the complex structure of the variety 

determines the space of possible Kahler structures on it. The way to describe the 

Kahler structure of the affine toric variety is to write it as a symplectic quotient, and 

this is what we will do next. 

Consider the dual lattice N of M, in the sense that N = H om(M, Z ). The collection 

of vectors v E N such that 

< m,n >2: o,vm EM, 

form a dual cone N+ of iVl+, and let its generators be denoted if, i = 1, ... q. Since 

the dual lattice is n dimensional, there will be q - n relations between the vi's, 

L Qia)~ = 0, a= 1, ... , q - n. 

The toric variety is described as a solution to q - n equations: 

( 4.20) 

modulo q - n U(l) actions Xi---+ eiQfOaxi, ea E IR. It is both striking and natural that 

the equations take the form of D-:flatness conditions of an Abelian gauge theory. It 

requires a little bit of thought to see that the cone M+ we constructed above contains 

gauge invariant monomials (more precisely, the monomials that are invariant under 

the complexified gauge group) of this auxiliary gauge theory: any monomial of the 

form Il x;11;,m>' with m E M+ is invariant under the complexified gauge group, and 

the association Z 0 f-t ec' induces a "change of basis" to the old variables: 

IT <iI' ec"> 
Za = Xi , . 

The above gives an equivalent description of the variety built from NI+ but we 

still need to take into account the physical D-:flatness conditions (4.14). This can be 
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accomplished as follows: The za's carry charges under Jf'J - 1 physical U(l)'s, where 

we have factored out the center of mass U(l ), so that Za ,....., eiq~eA Za· If we let ijA 

have an expansion ijA =Li qfil, this induces an action Xi,....., eiqfeAxi, and therefore 

an additional set of D-flatness conditions on the x's: 

and this of course induces additional relations Li qIA) iJi = 0, A = 1, ... , k - 1. 

We should really note that only ~A are physical parameters determined by FI terms, 

while 7Ji do not arise from the parameters in the Lagrangian, and therefore the only 

natural values they can take are zero. The vacuum moduli space is thus given as a set 

of solutions to eq.(4.20,4.21), with all 7Ji = 0, modulo the enlarged gauge equivalence 

as defined above. 

Let us now get back to the problem at hand. We considered a r = Zrs x Zrt 

orbifold with p units of torsion such that qs V qt-=/:- 1, with q = gcd(p,r). We found 

that the D-brane probe theory admits a "projection" to an ordinary f' = Zqs x Zqt 

orbifold without torsion and its resolution, but with additional identifications under 

H = Zr/q x Zr/q· The construction of the resolution of singularities in the ordi­

nary orbifold theory was reviewed above, and the question is what does the ad­

ditional H action mean geometrically. Since the H action is non-trivial only on 

z},A, I= qs - 1, A= qt - 1, i = 1, 2, 3, it is natural to pick these to correspond to 

three of the basis elements ea of M. The quotient picks out a sub-lattice MH of H­

invariant monomials in M, and thereby the dual lattice NH of MH, which always 

satisfies N C NH. What this means is the following. It is the usual practice in toric 

geometry to use fans in N lattices as visualization aids. Replacing a lattice N by 

a finer lattice in which it is contained, the fan N+ in N maps to a fan in NH, and 

viewed in NH, N + has some points "missing." In the spirit of orbifolding it is clear 

that this should not only signal singularities, but also the possibility of resolution of 

singularities by adding the missing points back in. This clearly adds more vectors if 

to N + H, and thereby more equations of the type ( 4.21), and more FI parameters. 
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However, it can happen that physically there is no possibility of altering anything -

this really amounts to frozen orbifold singularities, and this is exactly what happens 

here. To see how this works, let us take the simplest non-trivial example - a Z 2 x Z 4 

orbifold with p = 1 units of torsion. 

Example: C3 /Z 2 x Z4 orbifold with p = 1. 

From above, for r = Z 2 x Z 4 and p = 1, we find r = Z 2 , and H = Z 2 x Z 2 . The 

gauge theory associated to an ordinary C3 /Z 2 orbifold is U(l) x U(l), with matter 

fields whose charges are: x 0 ,zI in (+1,-1), xI,zo in (-1,+1), and two gauge singlets 

y0 , YI *14
• The theory has a superpotential W = XoYIZo - XoZoYo + XIYoZI - XIZIYI, 

which reproduces the F- flatness conditions, application of ( 4.19) to f' = Z 2 , 

Yo= YI· 

We can "solve" this via monomial vectors mi E M 

Xo rv iii0 = (1, 0, -1 , 1) , Yo rv iii2 =(0,1, 0, 0) , Zo rv iii4 = (0, 0, 1, 0) , 

XI rv iii I = (1, 0, 0, 0) , YI rv m3 = (0, 1, 0, 0) , Z I rv m5 = (0, 0, 0, 1 ), 

from which the gauge invariant monimials correspond to a subfan M+ of the fan M+ 

spanned by iiii, which is generated by: 

XoXI rv ~O = (2, 0, -1 , 1), 

XIZ I rv ~2 = (1,0,0,1), 

ZoZI rv ~I = (0, 0, 1, 1), 

YI rv ~3 = (0, 1, 0, 0). 

* 14 To make contact with the notation above, put m = 2, n = 4, xo = ZJ 1 , X1 = Z{ 0 , Yo = Z6 0 , Y1 = 
Z 2 z - z3 z - z 3 ' ' ' 
1,1,0- 1,0,1- 0,1· 
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Note that mi's acctually span only three-dimensional space. We can now find the 

dual cone N+ E N to consist of: 

no= (0, 0, 0, 1), 

n3 = (o, 1, o, o) , 

n1 = (o, o, -1, 1), n2 = (o, o, 1, 1), 

.... (1 1 1) 
n4 = 2' 0' 2' - 2 . 

The first four vectors generate the toric diagram of CC x CC2 /Z 2, and the fourth plays 

no role*15 • Now, H acts on this via (4.18): 

which implies that the lattice M must be reduced to the H invariant lattice MH, 

by picking only those vectors m E M which have integer inner product with h1 = 

(0, ~' 0, ~) and h2 = O, 0, 0, ~). This in terms of the N lattice this precisely means 

that we must add h1 , h2 to the lattice, thereby obtaining NH. The additional vectors 

that exist in NH , but not in N+ are are: 

The effect of this is twofold: 

• The fact that they exist m NH but not m N+ states that the toric variety 

associated to N+ C NH is singular. 

• The toric variety of N + is a quotient by H of the blowup of CC3 /f', and it differs 

from the blowup of CC3 /r precisely by the absence of blowup modes coming from 

{nH}. 

*>s More precisely, the fourth vector is an anomaly due to the fact we are describing a space which 
is really a hyper-Kahler quotient , <C x <C2 / '11.. 2 via a symplectic quotient, and will be absent in more 
complicated examples, with either q > 1, or s , t > 1. The sole purpose of n4 is to state that M+ 
lives in three dimensional space orthogonal to n4. 
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0 

Fig.4.1. Torie diagram of the Z 2 x Z 4 orbifold with one unit of torsion. The 
"empty" dots correspond to missing blowup modes. 

4.9 Discussion 

We have seen that orbifolds with torsion can be defined in both the open and closed 

string CFT, and furthermore in both theories precisely the same stable singularities 

appear. The fact that topologically distinct resolutions of orbifolds exist, correspond­

ing to whether qst = 1, or not, is not in itself surprising. Recently it has been shown 

in classical geometry[53] that C3 /Zm x Zn orbifolds do admit topologically distinct 

resolutions. In the Z 2 x Z 2 example worked out there, one does find both the Kahler 

and complex structure deformations of the orbifold, much like we found for the two 

Z 2 x Z 2 orbifold CFTs. However, from the point of view of classical geometry, in the 

case of complex structure deformed orbifold no obstruction to deforming the singu­

larity at the origin, and this is unlike what we found in string theory. We have shown 

above that, in a generic case, one has in fact whole curves of stable singularities, which 

are resolvable classicaly but not in the C FT. The reason for stable singularities in 

string theory is not known. This is connected to the fact that, for different reasons, we 

do not really understand the meaning of orbifolds in the theory. Even more puzzling 

is an aspect which we have not discussed thus far in the text. Namely, D brane probes 

of orbifolds carry information about the behavior of M theory on orbifolds - rather 

their smooth counterparts in M theory. The reason they have to be smooth is well 

understood - there are no B fields in M theory on Calabi-Yau manifolds. However, 
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the of torsion, as defined here, is a thoroughly stringy effect . What is its meaning 

in M theory? The only certain thing is that singularities of the geometry cannot be 

singularities in M theory, simply because they are not singularities of type II string 

theory either. 

Finally, [53] also shows that there are still other resolutions of orbifolds which we 

have not found in CFT. This is not so puzzling, since it is plausible that these spaces 

are resolutions of geometric orbifolds, but are not in any way connected to any string 

CFT orbifold. This is probably true, but it would be nice to understand precisely 

what the distinction is . 

The work on this topic is in progress and we hope to report the results elsewhere. 
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Chapter 5 Mirror Symmetry, Brane 

Configurations and Branes at Singularities 

5.1 Background: Quantum Mirror Symmetry 

Mirror symmetry was originally proposed as a symmetry of the conformal field theory : 

there exist pairs of Calabi-Yau manifolds ( M , W) such that the conformal field theory 

of M is identical to the conformal field theory of W [1 2, 54] . A natural question is 

whether mirror symmetry extends beyond CFT to a symmetry of the full string 

t heory. On a different level, one would like to have an explicit way of identifying 

mirror pairs, as opposed to the implicit proposition given above. Recently, under 

the assumption that mirror symmetry holds non-perturbatively- that mirror pairs 

(M, W) satisfy the stronger property, "quantum mirror symmetry"- the authors of 

[5] provided an explicit geometric interpretation of the mirror map . 

The argument goes as follows. If mirror symmetry is a quantum symmetry it 

must be respected by BPS states of the theory. In compactifying type II theory on 

a Calabi-Yau space M one has to include among other things D p-branes wrapping 

homology cycles in Alf. There exist special cycles in Calabi-Yau manifolds, called 

supersymmetric cycles, which have the property that a D brane wrapping such a 

cycle preserves some fraction of supersymmetry - it is BPS. In the special case when 

the number of spatial dimensions of a D brane coincides with the dimension of a 

supersymmetric cycle the brane wraps, one obtains a particle in the four-dimensional 

theory. Supersymmetric cycles [CJ E H*(M) generally admit deformations to nearby 

supersymmetric cycles, so one is dealing with moduli spaces Mc of such obj ects . In 

addition, a D brane of type II theory carries a U( l) gauge-field on its world volume, so 

Mc must be enlarged by moduli coming from the deformation of the U( l) bundle on 

C. We will call the enlarged moduli space Mc. BPS states themselves are obtained 
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by computing the ground states of the supersymmetric quantum mechanics on Mc. 
The quantum mirror symmetry, as explained in [5], implies not only that the BPS 

spectra of type IIA theory on M and type IIB theory on the mirror W, are equal, 

but that equality of the full theories including interactions requires the equality of 

the moduli spaces of these objects as well. 

The application of this idea leads to the following [5, 55]. Type IIA theory contains 

D p-branes for p even, so in particular it contains D 0-branes. The brane has no spatial 

extent , so the moduli space of a D 0-brane on A1 is A1 itself. What is the mirror 

object in type IIB theory on W? Since type IIB theory contains only p-odd branes, 

the only brane that can wrap anything in a Calabi-Yau manifold to give a particle 

is a D 3-brane. In order for it to be supersymmetric it must wrap a supersymmetric 

cycle C in W of real dimension three, and such cycles in a Calabi-Yau manifold are 

called special Lagrangian . Thus, quantum mirror symmetry implies 

M=Mc. 

There is a theorem in mathematics [55] which says that the dimension of the moduli 

space Mc of a special Lagrangian cycle C is b1 ( C). As the moduli space of flat 

bundles on C has dimension b1 ( C) as well, we find that the complex dimension of Mc 
is b1 ( C) , so that it must be b1 ( C) = 3. 

Now fixing a point C in Mc and varying the bundle one obtains a real torus 

Tbi(C) = T 3 , which itself turns out to be a supersymmetric cycle on Mc = M . We 

learn therefore that M is a fibration by special Lagrangian tori T 3 over the base 

B=Mc, 

Exchanging the roles of M and W, that is wrapping D 3-branes on fibers of M one 

concludes that W is a T 3 fibration by special Lagrangian cycles as well, but that 

fibers of W are the T-dual tori T3 *1
• Finally the bases of the two fibrations must be 

* 1 The moduli space of flat connections on a torus is a dual torus which has the inverse metric of 
the original one. The operation T-duality. 
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equal as well, since the moduli space of all fibers of a fibration is just the base of the 

fibration. Reversing the roles of M and W, it follows that 

Note that we must allow for the possibility of fibers degenerating in some locus in the 

base space*2 , and this is what we turn next to. 

In the rest of the Chapter we discuss T-duality and mirror symmetry for type II 

string theory on a particular class of Calabi-Yau spaces following [ 6]. In our point of 

view, the geometry will mainly serve as a background, and we will study the gauge 

theories living on D-branes that probe or wrap cycles in the manifolds, along the 

lines of the general discussion above. Perhaps, before we go on, it wouldbe helpful to 

summarize our results. In the course of the discussion we show how using T-duality 

alone given a manifold M, in the cases we study, one can explicitly derive its mirror 

W, and furthermore that the result agrees with what one obtains using conventional 

tools of toric geometry. To be precise, we really do a variant of mirror symmetry 

called local mirror symmetry, but this makes our results no less general. Finally, 

we apply our results to correct string theory constructions of N = 1 field theories 

from brane configurations [56, 57, 58]. We also obtain a brane-based realization of 

non-abelian conifold transitions, along the lines of [59]. 

5.2 Introduction to Mirror Symmetry, Brane Con­

figurations and Branes on Singularities 

Consider a D3 brane probing a Calabi-Yau manifold M. At a smooth point in M 

the tangent space is IR.6 and the D3 brane will have N = 4 supersymmetry on its 

world volume. To get something more interesting, we have to consider Calabi-Yau 

manifolds with singularities. Since we are only interested in the local physics near 

the singularity, the manifold is a singular, non-compact Calabi-Yau space which can, 

*2 To our knowledge this has not been studied in the literature. 
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if one desires, be viewed as having a completion to a compact Calabi-Yau. 

The Calabi Yau manifolds we will study the most have hyperquotient singularities 

that can be obtained as orbifolds of the well-known conifold singularity C, and so are 

of the form C/r, where r is a discrete symmetry group a conifold admits. One of the 

reasons we are interested in these types of spaces is that the theory on the probe is 

known. Recently the gauge theory of D3 brane at a conifold singularity was derived 

in [49]. The theory of a D3 brane on C /f is then defined as a quotient of the theory 

on C by f* 3 . 

We actually need to be a little bit more precise about the meaning of singular­

ities in string theory. The Calabi-Yau singularities often have topologically distinct 

resolutions, so the singularity can be obtained via degenerations of spaces of different 

topology, the conifold singularity C being the simplest example of the phenomenon. 

In the case of the conifold, we could either deform the complex structure of the space 

or its Kahler structure to obtain a smooth manifold. Now, in string theory, defor­

mations of the Kahler structure are complexified by addition of parameters that are 

not geometric, the B-field fluxes, so that even when discussing a geometry which is 

singular, the conifold for example, we have to specify the means of its smoothing. The 

D3 brane theory constructed in [49] is the theory on the Kahler side of the conifold. 

Taking a quotient of this theory by r the resulting theories have the same property. 

Locally, complex and Kahler structure moduli spaces decouple. Thus, if we are 

interested in a neighborhood in M that develops a singularity through degeneration 

of its Kahler structure, we can take the complex structure to be smooth, and there­

fore trivial. Canonically, mirror symmetry acts by exchange of complex and Kahler 

structure. If (M, W) form a mirror pair, it is the complex structure of W that will 

*3 The discussion of a D3 branes on 6-dimensional singularities is very closely related to the by 
now famous AdS/CFT correspondence. Superconformal N = 2 or N = 1 (and also N = 0) gauge 
theories can be constructed as the duals of supergravity on AdS5 x X 5 , where X 5 is a certain 
five-dimensional (Einstein) manifold. First , for the case of D3 branes on six-dimensional orbifold 
singularities 0 = ffi. 6 ;r, where r is a discrete group, X 5 is given by 5 5 ;r' as discussed in [60, 61]. 
The corresponding orbifold gauge theory can be calculated using string perturbation theory. The 
conifold singularities were later obtained in [49], where for the simplest conifold the corresponding 
Einstein space X 5 is the homogeneous space T 1•1 = (SU(2) x SU(2))/U(I). Further conifold type 
of singularities were recently discussed in [62] . 
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be interesting. 

The mirror geometries of the singularities will be constructed precisely in the 

spirit of [5], namely by performing T-duality transformations around three isometric 

directions of the geometric singularity. The singularities we are interested in have a 

toric description so we can equivalently [63] apply the local mirror map in the toric 

language [64] . The first point of view will be more useful for us , since it will allow 

us to follow the action of mirror symmetry on D-branes. Since the mirror symmetry 

acts in the space transverse to the D3 branes, the IIB gauge theory of D3 branes 

probing the space M will be mirror to an identical gauge theory but now due to IIA 

D6 branes wrapping a 3-cycles in W. The "mirror" of the D3 brane at a smooth 

point will be a D6 brane wrapping T 3
• What will be the mirror of a D3 brane at the 

singular point? The mirror D6 brane will wrap a three cycle which is still a special 

Lagrangian, but is now a degenerate three cycle which is homologous to the fiber at 

a generic point. 

As is known for some time [65, 66], the geometric orbifold or conifold singularities 

are T-dual to a certain number of Neveu-Schwarz (NS) 5-branes. This T-duality can 

be used [67, 58, 68 , 62, 69, 70] to transform the D3 branes probing a singularity into 

a pure brane configuration of intersecting NS branes and D branes of the Hanany­

Witten type [71, 56]. It is this fact that we will systematically explore here. 

In our case manifold J\lt has three isometries on which T-d uali ty T mirror can be 

performed to obtain W. We can write the mirror transform Tmirror as a composition 

of two dualities Tu and Tv, such that starting with a singularity M and acting 

with Tmirror on that space, we will first dualize to a certain brane configuration and 

subsequently further to the mirror geometry W. From the brane point of view (taking 

NS5 branes to have x0
•
1

•
2

•
3 as common directions and extend along x4

•
5 and x8

•
9

) so 

we will call Tu = T6 and Tv = T48 . From these two differently oriented NS branes we 

can build boxes or intervals, respectively, each giving rise to a pair of (Tu, Tv) dual 

mirror geometries. As is well known [72], one can suspend D4 branes on the intervals, 

and D5 branes on the boxes to obtain four-dimensional gauge theories on the D brane 

world volumes. T-duality will map these either to probe D3 branes or the D6 branes 
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wrapping three-cycles of the mirror geometry. The resulting field theory should be 

the same in all the T-d ual realizations. 

Using these relations we can derive the rules that govern which gauge theory is 

encoded in a given brane setup. 

The chapter is organized as follows. In the next section we will introduce the 

relevant geometries, namely the conifold singularities and the orbifold singularities 

and their generalizations. In the fourth section we will discuss the gauge theories 

that appear on the D3 brane probes. In section five we will introduce the T-dual 

brane setups - T-duality by Tu or Tv respectively - and will discuss the T-duality 

without the probe. Putting together the two T-duality transformations we will see 

the mirror geometries emerging. In section six we than incorporate the D3 brane 

probes. We will find that the brane box is the natural dual of the blowup of the 

orbifolded conifold and of the deformed generalized conifold. In order to incorporate 

this result we have to modify the brane box rules of Hanany and Zaffaroni [56]. Their 

gauge theories reappear in a special corner of moduli space. Our new construction 

makes some aspects of the box rules more transparent. In section seven we will wrap 

up by considering some related issues. vVe will show that by the same transformation 

T 468 mirror symmetry can be defined for brane setups as well, turning 2-cycles into 

3-cycles. We will show how to put both, the box and the interval together in one 

picture. This way we obtain a domain wall in an N = 1 4d gauge theory that lifts to 

M-theory via a G2 3-cycle as in [73] . 

5.3 The Geometries 

5.3.1 Conifold 

The simplest isolated singularity that a three-dimensional Calabi-Yau manifold can 

develop is the conifold: 

C: xy - UV= 0 (5.1) 
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r<O 

Fig.5.1. Two small resolutions of the conifold are related by a flop. 

The singularity is located at x = y = u = v = 0 where the manifold fails to be 

transverse: f = xy - UV = 0, od = 0 have a common solution there. There are two 

ways of smoothing the singularity, resulting in topologically distinct spaces. 

• The so called small resolution - replacing the singular point by a ClfD 1
, thereby 

changing the Kahler structure. The resulting space has h1
•
1 = 1, h2

•
1 = 0. 

• By deformation of the defining equation, thereby changing the complex struc­

ture. After the deformation, h1
•
1 = 0, h2

•
1 = 1. 

a. Small Resolution 

There are many ways in which one can exhibit the small resolution of the conifold. 

The one particularly well suited for our purposes is as follows. One can solve equation 

(5.1) by simply putting 

(5.2) 

where Ai, Bj E CC4. There clearly is a redundancy in this identification, since for any 

>. E CC*, taking A --+ >.Ai, Bj --+ >.- 1 Bj maps to the same point of the conifold. We 

can remedy this as follows. We will think about C* as IR+ x S 1
, that is we will put 

>. = Reie, with R > 0. Take a quotient by IR+ first, by picking R to set 

(5.3) 
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To obtain a space isomorphic to the conifold we started with we must still divide by 

the 5 1 = U(l). 

One can obtain a more physical interpretation of what we have done, which stems 

from observation that the description of the conifold we have come up with above is 

precisely that of a Higgs branch of a particular linear sigma model. It corresponds 

to a theory with four real supercharges, gauge group U(l) with four matter fields 

A, Bj with charges + 1 and -1, respectively, and no superpotential. The D-flatness 

conditions are then given by equation (5.3). This is of course not a new construction 

[74, 49]. 

Turning on the FI parameter r will modify the D-flatness conditions to 

(5.4) 

We have three cases to consider here. 

a.) For r = 0 we have a singular manifold the conifold. 

b.) For r > 0, the origin Ai = 0 = Bj of the conifold is replaced by a sphere of 

size jA1 1
2 + jA2 j2 = r*4

• From the point of view of geometry, turning on the FI 

parameter [74] is naturally interpreted as blowing up a sphere of sizer. 

c.) For r < 0, from the point of view of b) the Kahler class is negative. We do still 

have a smooth manifold, because now the origin is replaced by jB1 j2 + IB2 j2 = r. 

The manifolds in b.) and c.) are topologically distinct - they are related by a flop 

transition (see Fig.5.1). 

b. Deformation 

In addition to the smoothings we discussed above, conifold singularity can be smoothed 

out by keeping the Kahler structure fixed but modifying the defining equation. For 

*•This is an 53 which quotiented by the U(l) produces the two sphere which replaces the origin. 
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this it suffices to change the complex structure to: 

xy - UV= E. 

As long as E -=/=- 0, the conifold singularity has been removed. By examining the 

equation in detail , one can show that the origin was replaced by an 53 • 

5.3.2 More General Singularities 

We are now more or less in place to introduce toric geometry, as a tool for treating 

more complicated singularities. 

We will use the language of linear sigma models to put the discussion on a more 

physical basis [7 4, 75]. We are constructing a linear sigma model whose moduli space 

will be a Calabi-Yau manifold M. First, the number of independent FI parameters, 

or equivalently the number of U(l) factors, will equal h1
•
1(M) (unless stated other­

wise, by M we mean the manifold obtained by smoothing out the singularity). It is 

this number, and the charges of various matter multiplets that toric geometry must 

encode. 

A toric diagram consists of d + n vectors {vi} in a lattice N = 'lld. Every vector 

Vi corresponds to a matter multiplet in our sigma model which we will call Xi. To 

describe a toric variety homeomorphic to other than flat space we need n > 0. Since 

N is cl-dimensional, there are n relations between the d + n vectors which we will 

write in the form 

d+n 

L:Qfvi 0, a=l, ... ,n. (5.5) 
i=l 

It is clear that the Q's should be interpreted as the charges of the matter fields under 

then U(l)'s. As a consequence, the D-flatness conditions will read 

d+n 

I: Qflxi12 ra, a=l, ... ,n. (5.6) 
i=l 
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J\/t is a space of solutions to (5.6), up to the identifications imposed by gauge sym­

metry. Or, instead of setting D-terms to zero and dividing by the gauge group, we 

could have taken a quotient by the complexified gauge group Xi--+ )..Q i Xi, a= 1, .. . , n, 

where >.. E C*, and express the moduli space as the space of gauge invariant polyno­

mials in x's, modulo any relations between them. This is the language of eq.(5.1). 

There is one slight simplification t hat occurs when M is a (non-compact) Calabi­

Yau manifold. Namely, J\/t is a Calabi-Yau if and only if there exists a vector h E M , 

where M is the dual lattice of N, such that 

i.e. if and only if all the vectors Vi li ve on a hyperplane a unit distance away from 

the origin of N. Therefore in all of our examples toric singularit ies can be described 

by planar diagrams, only. 

Hyperquotient Singularities 

As is well known , one can obtain more complicated geometries by taking a quotient 

of the simpler ones by a properly chosen group action. Dividing C1' by a di screte 

symmetry group r we obtain orbifolds with quotient singularities. Hyperquotient 

singularities are quotients of a hypersurface singularities, C for example. Both can 

be treated easily in the language of toric geometry. First however, we must find an 

appropriate symmetry group of our manifold. Clearly, any action Xi --+ AiXi, i>..I = 1 

leaves the manifold (5.6) invari ant. There are n + d coordinates Xi, and so a U(l r +d 

acts on them. The symmetry group, however, is U(lt+d /U(lt = exp(27riZd), be­

cause the gauge symmetry group is U (1 t. There is a natural way to encode the 

action of U(l) d = Td on the toric variety as follows. To any element ii E zd, we can 

associate an element of U(l )d via Xi --+ einie Xi, where ii= '2: niiJi. The coefficients ni 

are defined up to '2: Qfvi = 0, since Xi ,......, eiOQi Xi for a = 1, .. . n - d. 

So far, our lattice was integral. Now suppose we refine the lattice by adding a 

vector in Qd, for example ij = ~ ( a 1 , .. . , ad). As long as the latt ice was integral the 
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torus action was well defined. With the addition of q, it will be so only after we 

induce additional identifications on the x/s. Namely, if we write q as q = 2..: ~vi, 
(mod 2..: Qi'vi), the identification we need is: 

Another way to express the action of the quotient is in terms of gauge invariant 

monomials. For an N an integral lattice, any CC* invariant monomial is of the form 

m IT <v;,m> x = xi , 

so the space of CC* invariant monomials is just the dual lattice M of N. Actually we 

want a bit less, since a) only the positive powers should appear, so we only want those 

m's that satisfy < n1, vi > 2: 0, Vi, and b) we only want the independent ones, which 

are the generators of the group of invariant monomials. 

By adding a vector q to the lattice N and thereby generating a finer lattice N, only 

a subset of monomials in M will be kept in ML The monomials in M are precisely 

those m E M, for which < q, m >E Z. Alternatively, M is produced from M via 

identification induced on the monomials in M by 

In any event, we should now be ready to produce new spaces. We are up to producing 

orbifolds of the conifold , C/f. Let us take r = Zk x Z 1• So, start with our conifold 

C, defined by four vectors v1,2,3 ,4 E N as before, but refine the lattice to N' by adding 

two vectors, ek = ( t' 0, 0), and e1 = (0, f, 0). The resulting toric diagram (cf. Fig.5.2) 

"looks" the same as that for the conifold C, except for the fact that it lives in a finer 

lattice. This, as explained above, results in the following identifications: 
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we find that the quotient acts by 

and similarly for e1, 

the quotient is by 

Equivalently on xy = UV' we identify x rv x' y rv y ' u rv e-
2

Zi u, v rv e 
2
Zi v' and x rv 

e-
2
7i x, y '"'"' e 

2
7i y, u '"'"' u, v '"'"' v. In terms of r invariant coordinates x' = x 1, y' = y1, z = 

xy, u' = uk, v' = vk, w = uv , the defining equation of the conifold becomes simply 

z = w. Taking into account that not all the invariant monomials are independent, 

the r = '!l,k x Z1 orbifolded conifold, after obvious renaming of variables becomes: 

(5.7) 

(0,0 , 1) (0,1 , I ) 
• . 
• • • 

• • 

• • • • 

• • • • • • • 

• • • • • • 
(k,O, I) 

F ig .5.2. (Blowup of) orbifolded conifold C k,l · 

a. B lowing Up 

Torie geometry has equipped us with a means of blowing up the singularity. First let's 

look at the orbifold Ck/ · There are still only four vectors defining the diagram which 

were inherited from the conifold . There is a single relation between them, and thus a 
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single Kahler class but this is insufficient to smooth out Ck,l· However, due to the fact 

that the lattice is finer, there exist lattice points within the rectangle, these are all 

the points Vi,j = (i,j, 1), 0::; i::; k, 0::; j::; l. We can add these points to the toric 

diagram. In the language of linear sigma models, the effect is to add more matter 

fields, but also more U(l) factors , and thus more FI parameters. Clearly, the resolved 

manifold will have h 1•
1 (Ck,/) = ( k + 1) ( l + 1) - 3, which is the total number of linearly 

dependent vectors within the diagram. (Points outside the diagram can be added as 

well. However they will not contribute to the resolution of the singularity, but only 

modify it by irrelevant pieces.) We will not try to specify the precise region in the 

Kahler structure moduli space where the resolution lives, which would correspond to 

picking a triangulation of the toric diagram, because we will not need this piece of 

information. It is clear there will be very many different such regions, and they are 

all related by flops. 

Finally, starting from the orbifolded conifold Ck,/, with k, l sufficiently large, by 

performing partial resolutions we can obtain essentially any other toric singularity*5 • 

The basic fact to note is that adding or subtracting one of the boundary points of the 

diagram changes h1
•
1 -+ h1

•
1-l. The right interpretation of this is that we are probing 

the region of the Kahler structure moduli space where the four cycle associated to this 

point in the toric diagram becomes large enough that it in fact becomes irrelevant to 

the local physics - the associated vectors can be dropped altogether. 

We will provide some more examples of the spaces we will explicitly use and 

introduce some terminology. 

Starting from an orbifold of C by Zk, 

k xy = Z , UV= z, (5.8) 

or equivalently xy = (uv)k, which has h 1
•
1 (Ck) = 2k -1, by partial resolution we can 

*5 These singularities have been introduced in the physics literature for the description of gauge 
theories in [76). 
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obtain the generalization of a conifold, 

(5.9) 

with only k + l - 1 Kahler structure deformations. Clearly, in this notation Ck = gkk· 

(0,0) (O,k) 
• • • • • • • • 

• • • • • 
(1 ,1) 

Fig.5.3. (Blowup of) generalized 

conifold 9 kl. 

(O,k) 

• 
• • • 

(I ,Q) 

Fig.5.4. Torie diagram of 

the 'llk x 'll1 orbifold Okt· 

The conventional orbifold Okt <C3 /'llk x 'll1 can be found in the Kahler structure 

moduli space of the orbifolded conifold Ckt, the toric diagram of the orbifold being 

contained in that of the orbifolded conifold. One way to see that the Fig.5.4 is a toric 

diagram of <C3 /'llk x 'll1 is to use the fact that it can be obtained starting from a toric 

diagram containing just three vectors iJ1 = (0,0,1),iJ2 = (1,0, 1),iJ3 = (0,1,1) in an 

integral lattice N, which gives a toric variety homeomorphic to fiat space, and then 

refine the lattice to N', as in Fig.5.4. The map from the toric variety in N to the one 

living in N' is one-to-one provided one includes discrete identifications on the three 

matter fields A,i = 1,2,3, 

and 

As before, the number of Kahler structure deformations is just the number of 

independent points in the toric diagram, and this number will clearly depend on 

whether (k, l) are coprime or not, since the number of points on the diagonal is 

gcd(k,l) + 1. 
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b. Deformations 

• The orbifolded conifold Ck1 : xy = zk, uv = z 1 can be deformed to a smooth 

space by modifying the defining equation as: 

l 

xy UV IJ (z - wj). (5.10) 
j =l 

One of these parameters can be set to 1 by shifting z, so we are left with k + l -1 

parameters. This gives h2
'
1 (Ck1) = k + l - 1. 

• The generalized conifold gkl : xy = ukvl can be deformed into 

k,l 

x y = L m;juivj. 

i,j=O 

( 5.11) 

This time we see h2
,
1
(Qk1) = (k + l)(l + 1) - 3 complex structure deformations 

m;j : by shifting u, v, we can eliminate two of the parameters, and another one 

by rescaling the defining equation . 

Mirror Symmetry 

Torie geometry is well adopted to discussing mirror symmetry as well. vVe will review 

it here very briefly, only. Mirror symmetry exchanges the Kahler structure parameters 

with the complex structure parameters. Now , to understand the mirror map, we first 

need to know something about the complex structure moduli space. How is the 

complex structure encoded in the equation of the manifold? The answer is as follows: 

the coefficients of the monomials appearing in the defining equation are coordinates 

on the complex structure moduli space. What they parameterize are the "sizes" of 

various three-cycles (i.e., the periods of the holomorphic three form) and the metric 

on the moduli space. The periods, (and therefore the metric - the moduli space 

has special geometry structure) can be derived directly as a solution to a system of 
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differential equations. The main point is that the differential equations depend solely 

on the relationships between the monomials in the defining equation and nothing else. 

Given the toric manifold, relations between the vectors in the toric diagram of 

M (we are assuming a completely smooth space here, with all the possible blowups 

performed), 
n+d 

LQiaVi, a= l , ... n 
i=l 

map to relationships between the monomials in the defining equation of W, the mirror 

of M, given by 

(5.12) 

where ai are coefficients, and mi monomials, the monomials must satisfy 

n+d 

II m Q't = 1 1 , , a= , .. . n. (5.13) 
i=l 

Any solution to these equations (and in general there are more than one) will 

represent the same complex structure (by decoupling of complex and Kahler moduli 

spaces). Note that there are n+d monomials with n relations between them. Together 

with the hypersurface equation, this gives a d - 1 dimensional manifold, but the 

homogeneity of the monomial relations will allow us to remove one more. The mirror 

will naively have d - 2 dimensions. This is not a problem, rather an artifact of the 

fact that local mirror symmetry is encoding all the information about the complex 

structure of the mirror, and nothing but. One can fix the "dimensionality" of the local 

mirror by adding quadratic pieces, as this will not influence the complex structure 

moduli space. 

Let us briefly show how this works for the two examples we are gomg to be 

concerned with in this work *6 , ~ht and Ckt· Consider first the blowup of Ckt· We 

want to interpret the same diagram Fig.5.2 as defining the complex structure of the 

*6 These examples and many more along these lines have been recently analyzed in great detail in 
[77]. 
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mlfror. Assigning the vector (i,j, 1) to a monomial uivi, eq.(5.13) is satisfied for all 

the relations. The defining equation for the mirror of Ckt hence becomes according to 

eq.(5.12): 
k,l 

L mijuivj = 0 
i,j =O 

or after adding the irrelevant quadratic piece xy 

which is nothing but the deformation of Ykl· 

Having established that the deformation of Ykt is mirror to the blowup of Ckt we 

can find another dual pair by following our geometries through a conifold transition. 

We should find that the blowup of Ykt is the mirror of the deformation of Ckt. Let us 

see how this works. As above we read off the mirror to be 

k I 

IT(z -wi) + t IT( z -wj) = 0. 
i=l j= l 

Because t appears only linearly this encodes the same complex structure as 

k I 

IT( z - wi) = uv, IT(z - wj) = xy 
i=l j=l 

which is indeed the deformation of ckl as presented in eq.(5.10). 

5.4 The Gauge Theories 

Having introduced the geometric background spaces, we will now discuss the corre­

sponding gauge theories if one adds M D3 branes with world volume transverse to the 

non-compact manifolds. The corresponding gauge group for the orbifolded conifold 

Ck1, eq.(5.7), is given by the following N = 1 supersymmetric gauge theory: 

SU(M)k1 x SU(M)k1 (5.14) 
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with matter fields (A1)i+1,j+1;J,J, (A2)i,j;J,J, (B1)i,j;I,J+i, (B2)i,j;I+1,J+1· We label the 

gauge groups with i, I = 1 ... k and j, J = 1 ... l. All the matter fields are bifunda­

mental under the gauge groups indicated by the indices. The '!l,k orbifolded conifold 

arises as the special case l = 1. In addition there will be a quartic superpotential 

i,j 

L ( A1 )i+l,j+l;I,J( B1 )i,j;I+1,J( A2)i+l,j;I+1,J( B2)i+l,j;I+1,J+l · 

i,j 

The other singularity, the generalized conifold in eq.(5.9), corresponds to 

(5.15) 

with bifundamental matter according to Uranga's rules [62] and quartic superpoten­

tials. 

Finally consider NI D3 branes on a transversal orbifold singularity Okt· They give 

rise to an 

SU(M)k1 (5.16) 

gauge theory with 3 types of chiral bifundamental multiplets Hi,j;i+I,j, Vi,j;i,j+I 

and D;+i,j+I;i,j in each gauge group and a cubic superpotential 

W - "H· ·E .. · D· i · i · · -- L 1,J;1+1 ,J 1+1,J;i+1,J+1 i+ ,J + ,i.J (5.17) 
i,j 

"11; · · · H · · - D· · · · L 1,J;1,J +1 1,J+1;1+1 ,J+1 1+1,1+1;1,1 · 

i,j 

This way the orbifold gauge theories will have 3Nl matter fields per gauge group 

and cubic superpotentials, leaving us with a finite N = 1 theory. The conifold gauge 

theories have 2M matter fields per gauge group and quartic superpotentials. These 

theories are non-finite but flow to a fixed line parameterized by a marginal operator 
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in the IR. 

5.5 The T-dual Brane Setups and Mirror Symme­

try 

In this section we would like to discuss the brane configurations that are T-dual to the 

singularities introduced in section 5.3. Specifically, we are interested in two different 

T-duality transformations: the first duality, which we will reffer to as Tu duality, 

was recently discussed by Uranga [62] and by Dasgupta and Mukhi [69]. The dual 

brane picture consists of NS and rotated NS' 5-branes. The D3 branes probing the 

singularities, which we study in the next section become D4 branes after the Tu = T6 

duality transformation which live on the compact interval in x 6
• 

Second we perform a T-duality along the compact directions x4 and x8
, T48 = T4T8 . 

This maps the singularities again to NS and NS' branes, where now the D3 probes 

become D5 branes which fill the compact brane box in the x 4 
- x8 spatial directions. 

This T-duality was first introduced in [66] and for a special point in moduli space 

used by [58] to study D3 branes on orbifold singularities . We will henceforth refer to 

it as Tv. 

These T-dualities are very useful in the sense that they allow us to read off the 

gauge groups on the D3 brane world volume according to some very intuitive graphic 

rules encoded in the brane configuration. While for the orbifold a perturbative string 

calculation is also available to get the gauge group, for the more general singularities 

discussed here, one would have to rely on a technique in [49]. 

Combining the two, that is doing T468 , we actually perform a local mirror symme­

try transformation. We will see explicitly, that T mirror takes a geometry W into its 

mirror geometry A1. The gauge theory of a D3 brane probing W has to be identical 

to that on a D6 brane wrapping a 3-cycle in M. 

This should correspond to the mirror transformations for Calabi-Yau spaces, which 

are the compact counterparts of our non-compact singularities. These compact CY's 
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are assumed T 3-fibrations (with T 3 a special Lagrangian submanifold of the CY) 

and the mirror transformations acts as the inversion of the volume of the T 3
• Obvi­

ously, this T 3 corresponds to our three directions x 4
, x 6 and x 8

, on which the mirror 

symmetry acts. 

5.5.1 The Brane Setup 

Before we embark on the discussion let us briefly recall the basic brane setup. There 

are two configurations we are going to consider. One is the standard HW [71, 78] 

type of brane setup, where D4 branes are stretched in between NS and NS' branes, 

with the former living along 012345 and the latter along 012389, the rotation being 

necessary in order to break SUSY from 8 to 4 supercharges . In order to obtain a 

supersymmetric theory from D4 branes on the interval all the NS and NS' branes have 

to be at the same position in the 7 direction . Separations along the 7 direction would 

be interpreted as FI terms or baryonic branches in the gauge theory and effectively 

leads to a breaking of the gauge group. Similarly, we should require all the NS branes 

to have the same position in 89 and all the NS' branes to have the same position in 45 

space. They are separated along the 6 direction building the intervals, along which 

the D4 branes (living in 01236) stretch. 

The second kind of brane setup we are going to consider are the so-called brane 

boxes [56], which are a straightforward generalization of the interval theories. The 

brane box is a rectangle bounded by NS and NS' branes with a D5 brane suspended 

on it. This can be achieved by the same NS and NS' branes as above but now all 

branes have to be located at the same 67 position, closing the intervals. We can 

open up the boxes by separating the NS and NS' branes along their 48 directions 

(unfortunately this way we differ from the notation in [56], where the boxes were 

taken to live in the 46 space. This is necessary, since it is crucial for us, that box 

and interval can be realized by the same set of NS and NS' branes). We still want to 

keep the 5 and 9 positions equal in order to preserve supersymmetry of the suspended 

probes. Deformations along these directions are again FI terms in the gauge theory, 
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which are reinterpreted as baryonic branches after freezing out the diagonal U(l)s. 

5.5.2 Deformations and Blowups 

As mentioned above, it is important to distinguish whether we want to study the 

deformation or the blowup of the singularity under investigation. The corresponding 

parameters should have an interpretation in the brane picture as well. If the dual is 

'pure brane', i.e., consists only of branes in fiat space, this interpretation will be solely 

in terms of NS brane positions and, as will be established later, on brane shapes. 

Otherwise some of the parameters encode blowups of the non-trivial background 

geometry. Even though the latter description of the probe may still be useful, e.g., 

in order to read off the gauge group and matter content, we would like to focus 

in the rest of our discussion on the case in which the dual is 'pure brane'. Let us 

forget for a moment about the D brane probes altogether. That is, we want to study 

the map of the singular geometry into a configuration of NS branes, as pioneered in 

[66]. Actually, it turns out to be easier to start with the NS brane configurations, 

where it is clear what we mean by the 4, 6 and 8 directions. Performing T48 and T6 , 

respectively,we will find two different geometries , which have to be the local mirrors 

of each other. By construction , these are precisely the geometries that have a pure 

brane dual (we started out with a pure brane setup!). We will find the following 

relations, as indicated in Fig.5.8 in the summary at the end of this paper: 

• The blowup of the generalized conifolcl is Tu dual to NS branes separated along 

67 (the interval). These are in turn Tv dual to the mirror , the deformation of 

the orbifoldecl conifold . 

• Similarly the blowup of the orbifolcled conifold will Tv dualize into a box and 

then Tu clualize in the mirror, the deformation of the generalized conifold. 

Indeed these two transformations are related by a conifold transition, that is bringing 

together the NS branes on the interval and then separating them along 4589 instead 

corresponds to blowing clown the 2-cycles and opening up the 3-cycles of the deformed 

conifolcl (and vice versa for the orbifolclecl conifolcl). 
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5.5.3 The Brane Box, Blowup of the Orbifolded and Defor-

mation of the Generalized Conifold 

Let mi= (x 8 ,x9
), mj = (x4,x 5

) positions of the k NS and l NS' branes respectively 

in x4
,5 ,s,9 , and Wi = (x6 , x7

), wj = (x 6
, x7

) the positions in the other two directions. 

Let us start with a "brane box", that is we set all the Wi and wj to zero. T-dualizing 

the brane box along x 4
'
8 we obtain a manifold we call J\lt and T-dualizing along x 6 

we obtain W. The resulting geometries are related by T468 = Tmirro1· · 

• Tv = T48 : The T-dual space M is a 'll.,k x Z1 orbifolded conifold 

l k xy = Z , UV= Z 

as in (5.7) , where k, l are numbers of NS and NS' branes. This is a double C* 

fibration over the z plane, that is the space has 2 U (1) isometries used in T 

duality. The x4, x8 separations of the branes must map into B-fiuxes through 

2-cycles of the T-dual space. We must therefore identify m i, mj as deformations 

of the Kahler structure. Deformations of the Kahler structure cannot change 

the complex structure, so the mi and mj will not be visible in the defining 

equations. Having identified mi, mj as the Kahler structure parameters , W i and 

wj are identified as complex structure parameters. But they are frozen, since 

turning them on would destroy the box structure. 

For definiteness take IIB theory on Ckz· Tv duality takes us back to type IIB 

with NS branes. In this case Kahler structure parameters, that is the 2-sphere 

sizes , sit in hypermultiplets. The other 3 scalars in this multiplet are the NS-NS 

B-fiux the RR B-fiux and the RR 4-form-fiux through the sphere. The latter is 

a 2-form in 4d, which can be dualized into a scalar. The 2-sphere size and the 

NS-NS B-fiux are the complexified Kahler parameter, which map to mi and mj 

under Tv. In the brane box the two other scalars come from Wilson lines of the 

NS-world volume gauge fields in 45 and 89, which pair up in hypermultiplets 

with mi and mj respectively. 
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Note, however, that we have a puzzle. The orbifolded conifold Ckz has, as we 

have found from the toric description, 

( k + 1) ( l + 1) - 3 = kl + k + l - 2 

Kahler structure parameters m;j, which can be turned on to smooth out Ckl· 

Only k + l - 2 have been realized in terms of the (relative) brane positions m; 

So where are the kl hypermultiplets in the brane box skeleton? They sit at the 

kl intersections! Strings stretching from NS to NS ' give rise to precisely these 

hypermultiplets *7 • 

Turning on vevs for the two scalars corresponding to 2-sphere sizes and NS-NS 

fluxes resolves the intersection of the NS and NS' into a smooth object, a little 

'diamond'. For non-zero B-fields this diamond will open up in the 48 plane, for 

2-sphere sizes in the 59 plane. This interpretation will become more suggestive 

after discussing Tu on this configuration and once we start discussing the D3 

brane probes. 

In the geometry the 2-spheres give rise to strings from wrappmg D3 branes 

around them. How do we see them in the NS5 box skeleton? The D3 branes on 

the k + l - 2 spheres from the curves of singularities correspond to (fractional) 

D3 branes living in the boxes (or better in whole stripes) . The additional kl 

strings must now correspond to D3 branes in the diamonds. We will indeed see 

that the diamonds allow for such a configuration. 

Of course the same story can be repeated in type IIA. Here the diamonds will 

correspond to matter on the intersection of type IIA NS5 branes, this time 

sitting in a vector multiplet. Again the 2 scalars correspond to the kl sizes and 

B-fluxes of the corresponding 2-spheres. Instead of the two additional scalars 

in the hypermultiplet this time we see a vector from the RR 3-form on the 

*7 They are Strominger 's D3 brane on the vanishing 3-sphere in the geometry (remember that we 
only consider blowups , so the 3-spheres are fixed at zero size) . 



116 

sphere. In the brane language the Wilson lines of the NS5 gauge field have 

to be substituted by Wilson lines of the (2,0) 2-form field, again giving rise to 

vectors. 

• Tu = T 6 , T-duality to W . What happens now is as follows. Since we did a T6 

duality, x 6 separations will become the B-fields. Thus, now the Wi (which had 

to be put to zero since we are discussing a box) parameters are Kahler structure 

deformations, while the non-zero mij now should show up as complex structure 

deformations. 

The dual geometry should be a single <C* fibration. This will be described by 

an equation whose parameters, the complex structure deformations, must be 

mij· Let us first study the situation where the vevs of the hypers living at 

the intersections are zero. In this case the <C* fibration must degenerate over 

the NS and NS' positions mi, mj, but in an independent way, since the branes 

are orthogonal - it must contain two curves of singularities Am_ 1 , and An-l 

corresponding to NS and NS' branes. There is one such equation for generic 

values of mi's 
k l 

W: uv = IT( z - mi) IT(w - mj). 
i=l j=l 

The curve contains kl conifold singularities located at z = mi and w = mj 

corresponding to the fact that all the hypermultiplets at the intersections were 

turned off. 

Let us jump ahead and realize W directly as the mirror of M. Performing the 

local mirror map we obtain: 

k 

w: UV= LL mij ZiWj. 

i =O j=O 

By now the T-dual interpretation of this more general space should be clear. It 

describes a single NS brane wrapping a curve 
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k l 

~: O=LLmijZi wi. 
i=O j=O 

The smoothing out of the intersections corresponds to the diamonds. For ex­

ample one intersecting NS and NS' brane is described by zw = 0. Turning on 

the hypermultiplet corresponds to smoothing this out to zw = m 00 e.g., as dis­

cussed in [79] for the related case of intersecting D7 branes. Indeed the resulting 

smooth curve has a non-vanishing circle of radius ( m 00 )
112 as can be seen by 

writing it as x2 + y 2 = m 00 and restrict oneself to the real section thereof, for 

example*8 • This is precisely what we need: we can suspend a D3 brane as a soap 

bubble on the NS skeleton, its boundary being given by the circle. The tension 

of the resulting string is given by the area of the disk and hence is proportional 

to m 00 as expected from the dual geometry M (where the size of the 2-sphere 

was also proportional to m). In W the same string will be given by a D4 brane 

on the vanishing 3-sphere. 

In the same way we can T-dualize any singularity that can be represented as 

a toric variety into a generalized box of NS branes, with a certain amount of 

diamonds frozen. 

5.5.4 Going to the Interval: the Conifold Transition 

We can derive a second T-dual triple of geometry, T-dual brane setup and mnTor 

geometry, by studying Tu and Tv on the interval theory. Note that the interval 

theory can be directly obtained from the box by brane motions. First we move all 

the NS and NS' branes on top of each other , setting all mij to zero, closing all the 

boxes and diamonds. This is the conifold point. Now we see that we have the choice 

to open up the intervals, by turning on the Wi and wj . 

We can follow this transition in the geometry as well. Let us see what it does to 

M. For one we have shrunk all the 2-spheres to zero size, putting us at the most 

singular point of the geometry. In addition we have put all the B-fields to zero. So 

*•We are very grateful to M. Bershadsky for very helpful discussions on this point. 
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we are really sitting at the real codimension 2 locus of Kahler moduli space, where 

the closed string CFT description goes bad [74]. This is once more the conifold point. 

From there we can deform the singularity by turning on 3-spheres to obtain Mr and 

this is precisely what corresponds to turning on the Wi and wj in the brane picture. 

This is a (non-abelian) conifold transition [59]. We went from the blowup of the 

orbifolded conifold Ck1 to its deformation. Let us see that Tv still works. The wi, w~ 

must now be identified with complex structure deformations. The geometry has to 

have a C* x C* fibration which degenerates over those points. This leads us to 

k 

xy = IT( z - wi) 
i=l 

I 

uv = IT( z - w~) 
j =l 

as the T-dual geometry. 

Last but not least we can study the effect on W. In going to Wr, the mirror of 

A1r, we this time send all the 3-spheres to zero size and then turn on blowup modes, 

taking us from the deformed generalized conifold g kl to its blowup. 

5.6 Probing the Mirror Geometries 

5.6.1 Introducing the Probe: Elliptical Models 

As a next step we want to introduce M D3 brane probes on top of our geometry. 

This way we break the supersymmetry down to 4 supercharges and get interesting 

N = 1 4d gauge theories. The deformation parameters of the singularity appear as 

parameters in the gauge theory, the moduli space of the gauge theory describes the 

motion of M D3 branes on the singular space. These probe theories have received a 

lot of attention recently. They give rise to conformal field theories and have a dual 

AdS description. 

In principle we could take any of the four geometries we introduced, compactify 
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type IIB on it and then put a D3 brane probe on top of the singularity. The two 

situations we are going to study are M D3 branes on the blowup of the generalized 

conifold Ykl (on Wr) and M D3 branes on the blowup of the orbifolded conifold Ck1 

(on J\lt). 

Performing our two T-dualities Tu and Tv we will find two different realizations 

of each of the probe theories. The background geometry will transform precisely as 

we discussed in the last section. This way 

• M D3 brane probes of the blowup of the generalized conifold Wr are Tu dual 

to D4 branes on an interval defined by w; and wj and T mirror to D6 branes 

wrapping 3-cycles in MT 

• M D3 brane probes of the blowup of the orbifolded conifold M are Tv dual to 

D5 branes on a box defined by m;j and T mirror to D6 branes wrapping 3-cycles 

in W . 

We will have to deal with what is usually referred to as elliptical models in the 

literature [80, 58]. That is the 6 direction of the interval or the 48 direction of the box 

are actually compact, leaving no room for semi-infinite branes. All D-brane groups 

will then be gauged. 

5.6.2 The Generalized Conifold and the Interval 

First we would like to consider the gauge theory on the world volume of M D3 brane 

probes on the blowup of a generalized conifold singularity*9 • This gauge theory is 

given e.g., in [62] and can be read off most easily in the dual brane setup we are 

about to describe. In the last section we showed that this geometry is Tu dual to 

NS and NS' branes on a circle, forming intervals with 67 separations given by w; and 

wj, all the m;1 being zero. As utilized in [62, 69] this means that the M D3 brane 

probes turn into an elliptical model with M D4 branes wrapping the circle. It is 

straightforward to read off the gauge theory from this according to the standard HW 

*9 Similar setups have been discussed recently in (81]. 
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rules. Of course it agrees perfectly with the one obtained from applying a standard 

orbifold procedure directly on the conifold gauge theory of [49]. 

There is yet another realization of the same gauge theory. Performing the whole 

Tmirror = T 46s we can turn Wr , the blowup of the generalized conifold on which 

we originally put the D3 brane probes, into Mr, the deformation of the orbifolded 

conifold. The theory with which we have to compare is that on the mirror of the 

D3 probe, that is a D6 brane wrapping SUSY 3-cycles in Mr. But this is precisely 

the situation discussed in [82] . The parameters Wi and w~ in Mr , given by (5.10) 

determine the loci in the z plane where the C* x C* fibration degenerates . As found 

in [82] in order to have a BPS state the Wi and w~ have to align along a line in the 

z plane. Since the 51 x 51 fibration degenerates over Wi and w~, we can regard this 

fibration over the interval between neighboring Wi and w: as a 3-cycle. In [82] it 

was shown that this 3-cycle is 5 3 and 5 2 x 5 1 respectively, depending on whether 

neighboring points are a w, w' pair or both w (both w'). In the former case one 

obtains a quartic superpotential, in the latter case an N = 2 like setup. Obviously 

this yields the same gauge theory as the D3 probe on Wr and the D4 brane on the 

interval. 

5.6.3 D5 Branes on the Box: the Modified Box Rules 

The second theory we would like to consider are M D3 branes on an Zk x Z1 orbifolded 

conifold. As shown above, the geometry dualizes under Tv into brane boxes where the 
kl . . 

NS5 brane skeleton wraps the curve I::i,J=O mijZiwJ. k + l - 2 of the mij parameters 

can be associated to brane positions, while the other kl parameters correspond to 

diamonds, that is the hypermultiplets sitting at the NS NS' intersections , whose vev 

smoothes out the singular intersections. 

The probe D3 branes turn into D5 branes living on these boxes and diamonds. 

Again this should in principle be a very useful duality in the sense that we can 

read off the associated gauge theories by using some analogue of the HW rules . In 

addition some information about the corresponding quantum gauge theory should be 
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obtainable by lifting the setup to M-theory. 

In order to understand our rules it is best to start with the easiest example, the 

conifold C, eq.(5.1), itself. The dual description just is that of a single NS and 

NS' brane on a square torus, as depicted in the upper left corner of Fig.5.5. The 

--------- -
' 
' 

' •---------

---------. 
' 
' 

' 
B2 

Fig.5.5. Upper left : the box with generic B-value; 
Upper right: maximal B-value; 
Lower left : Taking B to 0 sending one 

gauge coupling to infinity. 

conifold has one blowup parameter, corresponding to the one diamond sitting at the 

intersection. As long as we keep the size of the 2-sphere zero, the B-flux through 

the sphere will correspond to the size of the diamond. As we have argued in the 

last section, the curve describing the diamond actually supports a non-trivial 5 1 

on which the D5 brane can end , so the gauge theory will have two group factors, 

SU(M) x SU(M). The inverse gauge couplings are proportional to the area of the 

corresponding faces . There is a special point, when the diamond has the same area 

as the other gauge group, that is the diamond occupies half of the torus. In this case 

we know that we have to recover the standard conifold gauge theory of [49]. This can 

easily be implemented using the simple brane rules specified in the upper right corner. 

vVe have to demand, that half of the matter multiplets we would naively expect are 

projected out. The orientation of the arrows seems quite arbitrary. Indeed we will 
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Fig.5.6. The diamond rules at the point of maximal B-fields. 

see that the orientation can be changed and that this corresponds to performing flop 

transitions in the dual geometry. Indeed one can easily establish that these rules 

also are capable of realizing more complicated setups . Generically, the gauge theory 

on the Zk x Z 1 orbifolded conifold has a SU(M)k1 x SU(NI)k1 gauge group. In our 

picture the gauge group factors will correspond to the kl diamonds and the kl boxes 

respectively. Again it is easiest to compare at the point , where all gauge couplings are 

equal. In this case, both the diamonds as well as the boxes degenerate to rhombes, as 

pictured in Fig.5.6, where we denoted them as filled and unfilled boxes. Generalizing 

our A and B fields from above we will find that the matter fields transform as (where 

the two sets of kl gauge groups are indexed by small and capital letters respectively) 

(A1)i+1,j+i;l ,J (D+1 ,j+1 , 01,1) 

(A2)i,j;I,J (Q,J,01,1) 

( B1 )!,J ;i,j+1 

(B2)1,J;i+i,j 

(Di,j+1 , 01,1) 

(Di+1,j, 01,1) 

which are exactly the rules expected [62]. This proposal can also easily deal with the 

situation of non-trivial identifications on the torus as discussed in [58]. In addition 
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there will be quartic superpotential for every closed rectangle, the relative sign being 

given by the orientation 

W 2...) Ai)i+1 ,j+1;1,J( B1 )I,J;i,]+1 ( A2)i,j+l;l,J+1 ( B2)I,J+1 ;i+i ,j+1 -
i,j 

We do not expect that this picture changes when we take the sizes of box and 

diamond to differ. We will still see the A and B fields. Only the relative couplings 

will change and no new fields or interactions appear, since they certainly don't in 

the dual geometry. The singular conifold points correspond to the situations where 

diamonds close. From the field theory point of view this just means that we take the 

corresponding gauge coupling to infinity. As in the standard HW situation with only 

parallel NS branes this corresponds to a strong coupling fixed point with possibly 

enhanced global symmetry if several NS branes coincide. 

Another interesting question to consider is to ask ourselves what happens when 

we blow up the spheres to finite size. This now should correspond to some mode of 

the diamond that "rotates" it away out of the 48 plane into the 59 plane. According 

to common lore this should correspond to a FI term in the gauge theory. We will no 

longer be able to support a D5 brane stretched inside the diamonds in a supersym­

metric fashion, independent of their size (that is the B-field)*10 • Since we expect that 

the center of mass U(l) 's are frozen out as in [80], the FI term will be reinterpreted 

as usual as a baryonic branch. Especially there should exist a baryonic branch along 

which we reduce to the orbifold gauge theory. 

Indeed as shown in [62] the gauge theories we described here do have such a 

baryonic branch. Giving a vev to (say) all the A2 fields will break each SU(M)ij x 

* 10 This is very similar to what happens on the interval : blowing up a sphere corresponds to moving 
off an NS brane in the 7 direction. Since in order to preserve supersymmetry branes are only allowed 
to stretch along the 6 direction this effectively reduces the number of gauge groups (the number of 
intervals) by one. The 6 position of the brane we moved away (the B-field on the blown up sphere) 
does not affect the massless matter content anymore. 
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SU(M)JJ pair down to its diagonal SU(M)ab subgroup. The remaining massless 

fields after the Higgs mechanism are 

Da+l,b+l;a,b (A1)a+l,b+l;A,B (Da+1 ,b+1, Da ,b) 

H a,b;a,b+ l (B1)A,B;a,b+l (DA,B1 Da,b+i) 

Va,b;a+l,b (B2)A,B;a+1,b (DA,B, Da+1 ,b ) 

with the remaining superpotential: 

W ,....., L D a+l,b+l;a,bHa,b;a,b+ l Va,b+l;a+l,b+l -

a,b 

L Da+l,b+l ;a ,b Va ,b;a+l,j, Ha+l ,b;a+l ,b+ l 

a,b 

which are precisely the box rules of [56], as claimed. Note that the diagonal D fields 

are not special at all , they arise just from the fundamental A, B degrees of freedom 

of the generalized box . 

A small complication arises once we consider situations that are more involved 
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[ _______ _ jl _________ : 

:~:----,---; -----,--;~ 

: : 
~ - - -- --- -- -- -- ---_: 
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Fig.5.7. Diamonds do have an orientation. 
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than the conifold. For simplicity let us study the case of the Z 2 orbifolded conifold. 

Since this can as well be thought of as the 922 generalized conifold, it has an interval 

dual as well as a box dual. Both of them are displayed in Fig.5. 7 for various values 

of the B-fields. The gauge group is SU(M) 4
. We should see 3 B-fields governing the 

relative sizes of the gauge couplings. According to our scenario this will correspond 

to one relative brane position B and the sizes of two diamonds b1 and b2 . In the 

interval picture b1 ,2 will be the distance between NS 1,2 and NS' 1,2 while B is the 

distance between the center of masses of the two NS NS' pairs, denoted as circles in 

Fig.5. 7. Take the circle to have circumference 2 and the torus to have sides 2 and 

1. Since B-fields (=inverse gauge couplings) are length on the interval and areas on 

the torus, in these units the area of a given gauge group on the torus should have 

the same numerical value as the corresponding length on the circle (total area= total 

length=2). The third picture in Fig.5.7 shows B = 1 b1 = b2 = 1/2. Both sides have 

4 gauge groups of size 1/2. 

It is easy to identify in both theories the point where all gauge couplings are 

equal, the point where all B-fields are zero (the most singular point) and the point 

where the setup looks like two separated conifolds. Similarly, for all positive values 

of the b; and of B we can read off the gauge theory from the diamonds, just using the 

standard A and B fields, representing the diamonds as rhombes of area b;. However 

from the interval it is clear, that we can also pass an NS' brane through an NS 

brane, performing Seiberg duality on the gauge theory and simultaneously changing 

the sign of one of the b; fields [62, 83]. If we set b1 = b2 = -1/2 the picture looks 

the same as for b1 = b2 = 1/2. The overall sign does not matter. However the sixth 

picture of Fig.5. 7 shows a setup where the signs of the b; differ. We should assign our 

diamonds an orientation in order to be able to address this issue. This orientation 

assigns whether the A or the B fields point outward or inward, the other doing the 

opposite. The rules we have introduced are valid for the case that all orientations 

are equal. The situation with opposite orientations is slightly more complicated. The 

rules can be determined by comparing with the interval. Whenever the arrows point 

around the closed rectangle we write down a quartic superpotential. If diamonds 
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with different orientation touch, we will have to introduce additional 'meson' fields 

with cubic superpotential (see the 6th picture in Fig.5.7). Since this inversion of 

orientation should correspond to Seiberg duality in the field theory, we basically 

found this way a realization of N = 1 dualities in the box and diamond picture! It 

would be clearly interesting to pursue this point further, for example by studying 

theories with orientifolds. This may give us a hint of a brane realization of Pouliot 

like dualities [84] and spinors, since it is easy to realize the magnetic side of these 

theories in the box and diamond picture using orientifolds. 

Last but not least we should be able to see the same gauge groups in the third T­

dual realization as well, that is from D6 branes wrapping the 3-cycles of the deformed 

generalized conifold geometry ( 5.11) 

k,l 

xy = L mijuivj 

i,j=l 

in the same spirit as above following [82]. It would be interesting to work this out and 

see if some properties of the gauge theory can be better understood in this language. 

5.7 Mirror Branes and Domain Walls 

5. 7.1 The Mirror Branes 

The D3 brane probe we have been considering so far maps to a D4 brane on the 

interval and a D5 brane in the box respectively. We identified the corresponding 

gauge theories above. For a special subclass of models we were considering we can 

actually perform both. These geometries are those whose toric diagram is given by 

two rows of k points. Viewing them as Zk orbifolded conifolds Ck, they (or better 

their blowup) turn into a box with 1 NS' and k NS under Tv. We can as well describe 

them as a Ykk generalized conifold and hence Tu dualize them into an interval with 

k NS and k NS' branes. According to our philosophy these two ways of realizing the 

gauge theory should actually be mirror to each other! We turned one HW setup into 
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its 'mirror branes'. 

Now we can try to solve these gauge theories via the lift to M-theory. Interestingly 

enough, the intervals lift via SUSY 2-cycles in IR 6 while the boxes lift via SUSY 3-

cycles [85] in IR 6
• So for every 3-cycle we should find a dual 2-cycle encoding the same 

information and vice versa. 

Putting Together Intervals and Boxes 

Above we obtained an N = 1 d = 4 gauge theory from intervals in type IIA and 

boxes in type IIB setups respectively. Of course we can as well build a box in type 

IIA or an interval in type IIB in order to obtain odd dimensional gauge theories 

with 4 supercharges. The singular point should correspond to having all NS branes 

coinciding. 

We can do both together, that is put branes on the box and the interval simulta­

neously, provided we put in enough NS branes so that we can open up both a box and 

an interval. From the dual geometry point of view this corresponds to considering 

manifolds with both complex and Kahler deformations turned on simultaneously. An 

interesting example is type IIA with NS 012345 , NS ' 012389, D4 01236 , D4 01248. 

It is easy to convince oneself that this now lifts to M-theory via a SUSY 3-cycle in 

G2 * 11
• That is, we now break another half of the SUSY, leaving us with 2 unbroken 

supercharges, or N = 1 in d = 3. Note that this gauge theory actually only lives on 

the boxes, since the interval theory is 4d while the box theory is 3d. Things become 

more interesting if we compactify the x 3 direction. In this case both the interval and 

the box give 3d gauge theories. 

These brane setups fit nicely into the framework of brane cubes. These also lead 

to 2 supercharges. They lift via G2 and S'U(4) 4-cycle respectively and are dual to 

probes on SU(4) and G2 orbifolds. Now we have a 3rd kind of brane setup in this 

league, which lifts via G2 3-cycle and should probably also be dual to probes on a G2 

singularity. 

Note that from the point of view of the four-dimensional theory on the D4 branes 

*"This is a supersymmetric cycle in JR 7 which is calibrated using a G 2 invariant three-form . 
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on the interval, the D4 branes on the box look like domain walls (they are localized in 

x 3
). This is nice, since Witten argued [73] before that domain walls in d = 4, N = 1 

gauge theory should be associated to M5 branes on G2 3-cycles. 

5.8 Summary 

Let us briefly summarize the main results of the chapter. For two classes of non­

compact (complex 3-dimensional) Calabi-Yau spaces we constructed the T-dual NS 

brane configurations. Specifically blowups (resp. deformations) of orbifolded conifold 

singularities, denoted by Ck1, are Tv dual to boxes (resp. intervals) of NS branes, 

whereas blowups (resp . deformations) of generalized conifold singularities, called g kl, 

are Tu dual to intervals (resp. boxes) of NS branes. Since the composition of Tu and 

Tv corresponds to a T-duality with respect to three isometrical U(l) directions of 

M (resp. W), it should not come as a surprise that Ck1 and Ykl are actually mirror 

pairs. The Kahler (resp. complex structure) parameters of the geometric singularities 

correspond to positions of the NS branes in the dual brane picture. Moreover the 

conifold transition for the non-compact Calabi-Yau spaces Ck1 or Yki via shrinking 

2-cycles and blowing up 3-cycles precisely corresponds to the transition between the 

box and interval theory or vice versa, by first moving all NS branes on top of each 

other and then removing them into different directions. All this is summarized in 

Fig.5.8 below. 

Constructing gauge theories from branes , the geometric singularities as well as the 

NS brane configurations serve as backgrounds, which are probed by a certain number 

of D branes. We have seen that the "mirror map" does not change the corresponding 

gauge theories. At the conifold point some of the gauge couplings go to infinity. 

In order to establish the duality between conifold singularities and brane boxes we 

had to generalize the concept of brane boxes by also including brane diamonds. We 

formulate rules for deriving the matter content of the gauge theories living on boxes 

and diamonds. Along a baryonic branch of the gauge theory, which corresponds to 

partially resolving the conifolds Ck1 to the orbifold singularities Oki, we recovered the 
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Fig.5.8. The proposed picture. 

orbifold gauge theories from our general rules. 

Blowups (or deformations) of certain geometries, namely C1k = Qkk, allow both 

for a dual brane box as well as for a dual interval description. It follows that the 

corresponding gauge theory on the interval and on the brane box are mirror to each 

other. This observation could be useful for the investigation of the non-perturbative 

quantum dynamics of these kind of N = 1 gauge theories: namely for every super­

symmetric 2-cycle which describes the dynamics of the interval theory embedded in 

M-theory, there should exist a mirror supersymmetric 3-cycle for the brane box the­

ory also embedded in M-theory. It would be interesting to work out this mirror map 

between 2- and 3-cycles explicitly. Moreover one could expect that due to quantum 

corrections the physics of the gauge theories at the conifold point is not as singular 

as in the classical description we have discussed. Finally, it would be also interesting 

to relate the brane constructions of N = 1 supersymmetric gauge theories, consid­

ered here, to the geometric engineering approach, where various branes are wrapped 

around non-trivial cycles of Calabi-Yau 4-folds or manifolds of G2 holonomy. 
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