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ABSTRACT

In the search for new alloys with a great strength-to-weight ratio, magnesium has
emerged at the forefront. With a strength rivaling that of steel and aluminum alloys
— materials which are deployed widely in real world applications today — but only a
fraction of the density, magnesium holds great promise in a variety of next-generation
applications. Unfortunately, the widespread adoption of magnesium is hindered
by the fact that it fails in a brittle fashion, which is undesirable when it comes to
plastic deformation mechanisms. Consequently, one must design magnesium alloys

to navigate around this shortcoming and fail in a more ductile fashion.

However, such designs are not possible without a thorough understanding of the
underlying mechanisms of deformation in magnesium, which is somewhat contested
at the moment. In addition to slip, which is one of the dominant mechanisms
in metallic alloys, a mechanism known as twinning is also present, especially in
hexagonal close-packed (HCP) materials such as magnesium. Twinning involves
the reorientation of the material lattice about a planar discontinuity and has been
shown as one of the preferred mechanisms by which magnesium accommodates out-
of-plane deformation. Unfortunately, twinning is not particularly well-understood
in magnesium, and needs to be addressed before progress can be made in materials
design. In particular, though two specific modes of twinning have been acknowledged,
various works in the literature have identified a host of additional modes, many of

which have been cast aside as "anomalous" observations.

To this end, we introduce a new framework for predicting the modes by which
a material can twin, for any given material. Focusing on magnesium, we begin
our investigation by introducing a kinematic framework that predicts novel twin
configurations, cataloging these twins modes by their planar normal and twinning
shear. We then subject the predicted twin modes to a series of atomistic simulations,
primarily in molecular statics but with supplementary calculations using density
functional theory, giving us insight on both the energy of the twin interface and
barriers to formation. We then perform a stress analysis and identify the twin modes
which are most likely to be activated, thus finding the ones most likely to affect the

yield surface of magnesium.

Over the course of our investigation, we show that many different modes actually

participate on the yield surface of magnesium; the two classical modes which are



vii
accepted by the community are confirmed, but many additional modes — some of
which are close to modes which have been previously regarded as anomalies — are
also observed. We also perform some extensional work, showing the flexibility of
our framework in predicting twins in other materials and in other environments and

highlighting the complicated nature of twinning, especially in HCP materials.
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n1.  classical twinning element capturing the twinning shear.

n2.  classical twinning element capturing direction which remains undistorted.
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identity matrix.

normal vector to the twin plane.
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0. stress tensor.
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€. strain tensor.

C.  right Cauchy-Green deformation tensor.
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OVITO. Open Visualization Tool.
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Chapter 1

INTRODUCTION AND MOTIVATION

1.1 The Initiative of Materials Design

From a broader perspective, our goal as engineers is to improve society; but in the

scope of materials design, what exactly does improvement entail? While there are

undoubtedly many aspects that can be changed in order to attain some notion of

improvement, the one that we will concern ourselves with — for the duration of

this work, at least — is the notion of maintaining or increasing a material’s strength

and ability to resist failure in extreme environments while decreasing its weight.

Reference any Ashby plot (such as the one on [!] or Figure 1.1 below), and the goal

in designing new materials will be to push the envelope up and to the left, increasing

strength while reducing density.
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Figure 1.1: General Ashby plot of strength against density for a variety of materials

from [7].
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Metals and their alloys have been shown time and again to possess some of the highest
strengths amongst all known materials, and this is reflected in Figure 1.1 by the fact
that metals sit very high up on the vertical axis. Unfortunately, this has come at the
cost of significant weight, denoted by the fact also that metals and their alloys are

almost the farthest to the right in Figure 1.1.

To counteract this, contemporary materials engineering efforts have sought to combine
materials together through alloying; this has resulted in the properties of the alloyed
material exceed those of any of the individual constituents. Consequently, it has been
tasked upon us to identify new candidate materials that can be alloyed in order to

further improve upon material strength while further reducing the overall weight.

1.2 The Particular Interest in Magnesium

One of the new, lightweight materials that is seeing selected but increasing application
is magnesium. Magnesium alloys have started appearing in instances which see the
need for a lightweight yet resilient material due to its high strength-to-weight ratio [*].
For instance, modern professional camera bodies are built around a magnesium alloy
chassis encased in a hardened plastic shell for ease of handling. In this application,
magnesium alloys were chosen out of interest to design a camera body with low

weight but high strength in order to be able to protect the optics and electronics

The integration of magnesium alloys into camera bodies is but one of what is hoped
to eventually be a plethora of areas where magnesium alloys can improve society;
the driving force behind this investigation is the broad interest to incorporate mag-
nesium as the basis for the design of the next generation of alloys. Imagine the
integration of magnesium alloys into automobiles and aircraft, which would allow for
more lightweight vehicles and, thus, greater fuel efficiency. Envision a society with
magnesium alloy bone implants. Wherever there is a need for lightweight, strong
materials, it is hoped that magnesium alloys will eventually see deployment. As seen
in Figure 1.2, magnesium is a promising alternative to the steel- and aluminum-based
alloys widely in use throughout the industry today due to the fact that, although it
retains comparable strength to these aforementioned materials, magnesium only has

a fraction of the weight.

Although already seen in some applications, some barriers exist between a more
widespread adoption of magnesium alloys. The first and foremost issue is that, com-
pared to most other metals which see considerable industrial use today, magnesium by

itself displays a very poor ductility, or ability to elongate without breaking. A visual
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Figure 1.2: Ashby plot of strength against density focusing on metals and metallic
alloys from [4].

representation of this is shown in Figure 1.3. As seen in Lu et al. [, 0], the ductility
of magnesium limits their ability to be integrated widely at the present. Efforts have
been made in the past few years to improve upon their ductility without sacrificing

strength through various alloying, which will be discussed more in Section 1.7

We’ve seen time and again that, for deformations too severe for a material to remain
elastic, we observe irreversible, plastic deformation. This can be seen, for instance,
when you distort a paper clip; if you tug on it gently, the paper clip might deform
slightly, but it will return to its initial configuration. Pull it too far and it will remain
in a permanently-deformed configuration. Pull far enough and eventually the clip will

break entirely.

When magnesium exceeds its elasticity, its failure is very brittle in fashion; elongating
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magnesium will reach failure quickly and without much warning. A schematic
illustration of the stress-strain plot is shown in Figure 1.4; in this case, magnesium by

itself would follow the red curve and fail without much warning.

As such, before we can fully integrate magnesium as a basis for alloys, we need to
be able to design alloys that overcome this failure and fail in a more graceful, ductile
fashion, i.e. a failure path similar to that following the green trajectory of Figure 1.4.
Part of the reason why we aren’t able to do this at the moment is because our overall
understanding of the mechanisms by which magnesium accommodates deformation
is very poor, and significant debate over these mechanisms is still ongoing. Conse-
quently, our first task is to develop a better understanding of these mechanisms in

magnesium.

1.3 An Introduction to Defects in Materials

From a macroscopic standpoint, we can see failure mechanisms in terms of plastic
deformation; at the atomistic scale, plastic deformation manifests from the formation
of defects in a material. In the scope of metals, an ideal sample will have nothing but
a perfect, repeating crystal lattice. Of course, no real world samples can achieve such
perfection, and all materials will have some kind of defects within them, such as a

dislocation illustrated in Figure 1.5.

In this work, we choose to concentrate on a particular type of planar discontinuity
known as a twin. First identified in the 1950s [ /-"], twinning is the reorientation of a
material’s lattice about a discontinuity plane, as represented in Figure 1.6. Generally
speaking, twinning has been accepted as one of the potential avenues by which a
material can accommodate deformation. Although twinning is present in virtually
all of the common crystallographic material classes, such as body-centered cubic
(BCC) and face-centered cubic (FCC) materials (and others) [ | ()—21], it appears to be
reasonably well-understood in those materials due to the limited number of systems

that can arise from the relatively highly-symmetric cubic crystal classes.

On the other hand, twinning is not nearly as well understood in HCP materials. The
reason for the complicated picture of twinning (and, more generally, deformations)
in HCP materials originates from asymmetry in the lattice structure. Consequently,
we have easy slip in the basal planes. However, slip in the other directions — known
as the prismatic and pyramidal directions — is difficult; it is because of this barrier
to slip in the non-basal directions that twinning arises as a competitive means for

deformation accommodation. A schematic summary of the slip modes and some



examples of twins are shown in Figure 1.7.

Though not as prevalent as slip when examining the plastic deformation of metallic
alloys, twinning nevertheless remains an important mechanism due to the general
difficulty in activating prismatic and pyramidal slip relative to basal slip. This leaves a
great possibility for HCP materials to activate twinning as a means for accommodating
out-of-plane deformations, which basal slip would not resolve, and is where we will

begin our investigation.

1.4 Twinning and Identification of Twinning Modes

A central objective when it comes to studying twinning in materials is the identification
of the orientations of planes about which a material can undergo twinning. Attempts
to identify twins started in the 1950s, with work by Kiho [?7, 77] and later Jaswon
and Dove [24-20]; these early efforts were reviewed by Mahajan and Williams [~ 7].
The later review article by Christian and Mahajan [2¢] provides a very comprehensive
summary of all of the efforts that have been made to identify these twin modes from
both a geometric and experimental point of view; techniques such as high resolution
transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) have helped
researchers in this task. Despite these advances, resolving all of the possible twin
modes in a material is still a great challenge, especially when it comes to resolving
some of the more discreet twin modes. For instance, difficulties in orienting a
sample for such imaging technique still make it difficult for researchers to discern
the existence of planes which may have irrational crystallographic indices. Likewise,
though various works throughout the past few decades have identified potential modes
of twinning by matching lattices on both sides of the twin plane in order to identify all
of the possible configurations by which twinning is possible, only a handful of modes
have been confirmed to exist; these modes are tabulated in Table 1.1. In particular,
Christian and Mahajan [”¢] have postulated the existence of a significantly greater
number of twin modes, but many of these additional modes have not been explicitly

confirmed in additional works of literature.

The contemporary, contested area of twinning are which planes can actually exist
as twin planes. An enormous volume of works have been dedicated to the study
of the {1012} (1011) tension twin system, with some concluding that it is the only
feasible mode of twinning that can be activated. The other twin mode which has
been studied significantly is the {1011} (1012) compression twin, although there have
been debates as to whether or not this mode is feasible due to its allegedly high
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activation stress. Several other prominent twin modes have appeared in literature
over the years, although the observation of such modes has, quite often, been written
off as anomalous observations. A brief summary of these literature results is shown

in Table 1.1 and also visualized in Figure 1.8.

n (Indices) s (Indices) Material Citations
{1012} (1011) All [28]; Ti:[29, 30]; Co:[31]; Zr:[22]; Zn:[29,
]; Be:[29] Mg:[29, 34-53], and many

additional contemporary works

{1011} (1012) Mg, Ti [28]; Ti:[32, 54]; Mg:[34, 36, 37,

9

, 45,49, 51,53, 55-5¢], and many addi-

tional contemporary works

{1122} (1123) Mg, Ti, Zr [28]; Tiz[29, 30, 32, 37, 44, 541; Zr:[32]
{1121} (1126) Mg, Re, Ti, Zr, Co [28]; Re:[59]; Ti:[29, 37, 44, 601; Zr:[01],
[62-064]; Co:[21]
{1013} (3032) Mg [28, 36, 40, 57, 58, 65]
Unidentified - Mg [40, 42, 45, 52, 66]

Table 1.1: Table of previously-identified twin modes in various HCP materials.

Over time, research efforts have shifted more towards tasks such as the precise
construction of the compression and tension twins and away from attempting to
identify additional modes which might exist in magnesium. For instance, El Kadiri et
al. [42]and Liand Ma [ ]) have worked to provide accurate atomistic reconstructions
of twins. A variety of other works have sought to understand the mechanisms by which
these two twins might form. However, we still cannot quite ignore the fact that rows
other than the tension and compression twin exist in Table 1.1 and Figure 1.8; are

they merely anomalous observations?

Electron Backscatter Diffraction

The technique of electron backscatter diffraction, which is shortened to EBSD, is one
of the common experimental techniques for identifying orientations within a crystal.
A polished sample is placed at an orientation in a scanning electron microscope
chamber which is equipped with a backscatter detector. Electrons are then fired at the

sample, some of which consequently backscatter and then exit at the Bragg condition,



represented in Equation (1.1) and Figure 1.9
2d sin[f] = nA, (1.1)

where A is the wavelength of the incident wave and n is a positive integer. The
angle 6 then gives the orientations at which the constructive interference patterns are

strongest.

The diffraction patterns end up forming Kikuchi bands; these bands provide orienta-
tion information, including the orientation of the lattice with respect to a reference
crystal lattice orientation. Different regions of a sample will have different orienta-
tions; it is then possible to examine the orientation of different regions with respect
to each other and then deduce the orientation of any interfaces that lie in between the

two oriented regions. Additional details on EBSD can be found in Schwartz et al.

[67].

(High Resolution) Transmission Electron Microscopy

With transmission electron microscopy, also abbreviated as TEM, a beam of electrons
are transmitted through a very thin sample. Diffraction patterns are obtained from
these images, following which orientations can be back-computed as before. Because
of the fact that they use electrons instead of standard optical visualization techniques,
the detail resolved from these images is high enough to usually capture details at the
atomic scale. As a higher resolution is sought, samples need to be thinner and the
energy of the input electron beam needs to be increased; the thinness of the sample
and these additional constraints pose limitations for what can be visualized, as the
sample needs to be prepared and oriented cleverly in order to resolve sought-after
details. Additional details on HRTEM can be found in Spence [6%] and Fultz and
Howe [69].

1.5 The Kinematic Approach

Rather than geometrically describe the location of each of the atoms in a particular
twin, a more general description of the material requiring very few adjustments
between the various twinned states is sought. Attempts at such kinematic descriptions
of twinning began as early as the 1950s. However, a major step forward in kinematic
descriptions of twinning came in the 1960s, with works by Bilby and Crocker [ /0]
and also Bevis and Crocker [71, 77]; here, twins were treated as affine deformations
and treatments of shears and shuffles an integral part of the theory, and these were the

first works that were fairly rigorous in their descriptions of the kinematics.
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Subsequent formulations of twins began to introduce certain elements that would
eventually become the basis of this work. The introduction of a lattice equivalence
metric in the 1960s and 1970s [/3—75] (more details in Subsection 2.2) allowed for
an even richer lattice description of the material. In the 1970s and 1980s Ericksen
began to formulate additional lattice-based approaches for understanding crystalline
materials and their phase transitions, with a particular interest in attempting to link
concepts up to a continuum scale from the lattice [/6—21]; Ericksen’s furthering of
this theory was then applied to twinning by James [%”]. Pitteri, [2, %], whose 1985
work will become a leading benchmark for our upcoming investigation of twinning,
then used the lattice-based twinning approach to describe previously-observed twin
modes. Ball and James then developed further theorems to calculate the particular
aspects — such as the orientations of planes — in these lattices[©5, 0]. Work on

these lattices was then continued by Zanzotto [ 7/—29] and Ericksen [©0-973].

Though work on the kinematic description of twinning still continues to this day,
the focus has consistently been on establishing twins as two-fold rotations which
would be consistent with the classical notion that twinned configurations involved the
symmetric reorientation of the crystal lattice across the twin plane. As we will see,
the immediate restriction to two-fold rotations does limit the predictive capabilities
of many earlier works, and our approach to use kinematics to predict new twin modes

will take on a slightly different approach.

1.6 Challenges Leading to this Investigation

In Table 1.1, the last few rows pique the most interest. Why exactly are these
additional modes observed in the literature of these HCP materials, but not widely
acknowledged? What exactly are these unidentified twin modes, and do they play a
role in governing the behavior of, in this case, magnesium? Why have Christian and
Mahajan predicted so many additional twin modes which haven’t been followed up
upon? These so-called anomalous modes, though rare, must still be addressed; some
of these modes have been postulated to occur around non-crystallographic, irrational

planes.

Part of the reason why, up to now, this has been an unanswered question, lies with
the complex nature of HCP lattices. Since HCP is not a Bravais lattice, constructing
the material involves consideration of shuffles — effective atomic displacements in
addition to the usual notion of lattice vectors, which are necessary to give the correct

configuration. As such, describing twinning in those materials is a difficult task,
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since there are endless ways that one could go about using different combinations of
lattice vectors and shuffles to produce the twinned configuration. When it comes to
quantifying what these unidentified twin modes are, it becomes necessary to use a
different technique than what has been mentioned here, since that set of unidentified
twins could very well number into the thousands or more and a more-efficient method

of cataloging and describing these twins needs to be used.

1.7 Alloying Effects

Even though the deformation mechanisms in magnesium are not fully understood yet,
research efforts have always kept an eye on the potential effects of alloys, since we
are ultimately pursuing the design of alloys — materials with multiple constituent
elements — and not just bulk magnesium. Consequently, research efforts have been
looking into hardening and other mechanical effects of solute atoms for decades;
only more recently have numerical techniques caught up and provided us reasonably
accurate insight on systems whose behavior would not accurately be captured by

analytic theories alone.

One such example of an early investigation came from Fleischer in 1962 [©+], in which
he drew on concepts from earlier works [©5-"7] to examine flow- and velocity-stress
properties of dislocations in LiF with 80 parts-per-million magnesium, confirming
that hardening was tetragonal, with elasticity arising from ionic attraction as had
been shown in previous works; this provided a glimpse at the ability to calculate
dislocation mobility and flow stress variation with the temperature. In 1963 [V%],
Fleischer used concepts from [Y9—107] in order to examined the effects of copper
alloyed with a variety of other elements, finding that the hardening by substitutional
impurities arises due to the interactions of solute atoms with screw dislocations that
are generated in the matrix copper. In 1967 [102], Fleischer then also looked into BCC
materials, using concepts from Peierls [/ (/] and a new-at-the-time theory developed
by Dorn and Rajnak [105] to find that, for iron alloyed with carbon and niobium
alloyed with nitrogen that lattice/Peierls-Nabarro hardening is not the dominant source
of low temperature strength, with interstitial impurities contributing to the major
portion of the hardening, requiring further modeling considerations. Some forays
into magnesium alloys have been made, such as in Clark [/06] and Nussbaum et
al. [107], which have looked at the addition of zinc into Mg-Al systems, examining

effects such as precipitates.

Studies of alloys have greatly intensified since the turn of this century. For instance,
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in Rzychoni and Kielbus [10%] considered the addition of rare earth elements into
Mg-Al systems, finding that certain additions of these rare earth elements led to
a heaver appearance of secondary phases with Al(RE), but didn’t quite find a
generalizable trend. Yang [109] considered some more complicated Mg-Al systems
with zinc and other solutes. Many other examples of attempts to improve ductility
in magnesium alloys without sacrificing strength exist; a few such examples include
[l 10=113]. Computational efforts, such as those by Leyson et al. [! 1] and Shang et
al. [115] have attempted to quantitatively predict solute strengthening and effects on

the stacking fault energy, but only for dilute systems.

In terms of twinning, one particular driving force for us here is the fact that works
such as Fitzner et al. [|10] report that, above roughly 7% by weight of aluminum,
twinning activity in these alloys is allegedly suppressed. Even though precipitates
and general understanding of microstructural effects of solute atoms are still not fully
understood, we will ultimately need to also develop a twin framework that can also

capture behavior for alloys.

1.8 Plan of Action

In order to address the questions of what all possible and likely twin modes in a
material are, we adopt the lattice-based approaches described in Section 1.5. Conse-
quently, we are going to build on the precedent set in these works, using them to try
and predict new twin modes in materials (as opposed to the immediate restrictions to
two-fold rotations and earlier interests in describing observed modes). In this thesis,
we will develop a novel framework that first kinematically predicts the possible twin
modes in a given material. We will then examine the energetics of these twins from
an atomistic scale and then work our way towards the construction of a new yield
surface that identifies the twin modes which are likely to affect yield behavior in
magnesium. Through this work, we will show that there are, indeed, a significant
number of additional twin modes affecting yield behavior in magnesium that others

have yet to fully consider.
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Figure 1.3: Ashby plot of strength against elongation focusing on the metals and
metallic alloys from [4].
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Figure 1.6: Example illustration of a twin.
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Figure 1.9: Schematic illustration of the Bragg condition.
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Chapter 2

TWIN KINEMATICS

2.1 Goals of the Twin Kinematic Framework

The first step in explaining twins is to predict, for any given material, what are the
kinematically allowable modes by which a material may twin. Consequently, in
this chapter, we explore the fundamental concepts behind this framework. We first
introduce essential background concepts and terminology for lattices. We then review
the mathematics that led to the development of the framework. Finally, we discuss
our implementation of this framework as a tool for predicting twin modes rather that

would not have been previously considered.

2.2 Lattices

Let us consider a crystalline material for the time being. The crystalline nature of
the material ensures that there is some degree of periodicity; this allows for the
description of the material by what are known as lattice vectors. We suppose that,
in its initial state, we can describe the material of interest by a set of lattice vectors
e;, withi = 1,2, 3. As the material is assumed to be free of defects, this description
of the material by the lattice vectors is almost complete; for a Bravais lattice £, a
defect-free material can be completely described by the lattice vectors e; through the

relationship
3

Lp =3x 1 x = Zniei,ni integers ;. 2.1)

i=1
Examples of Bravais lattices include body-centered cubic,i.e. BCC, and face-centered
cubic, i.e. FCC materials. A schematic example of Bravais lattices is shown in Figure

2.1, and some examples of cubic lattices are shown in Figure 2.2.

The wrinkle with this is when one has to also consider a non-Bravais lattice; in
particular, we focus on the notion of a multilattice, where the material is described by
the union of a finite number of Bravais lattices . In such a case, a full description of

the lattice &£, would require

K—-1

3
Lap =X 1 x = Zniei + Z Nk Pk, N integers 2.2)
i=1 k=1
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Figure 2.2: Schematic examples of cubic lattices.

with pj being known as shifts and K being the number of atoms in the unit cell.
Examples of multilattices are shown in Figure 2.3, where we can see that two lattices
have been merged to create the material. Unfortunately for us, hexagonal close-
packed (HCP) materials fall into this domain of multilattices, with K = 2 in typical
descriptions. For visualization, a schematic of the typical HCP lattice is shown in
Figure 2.4. Furthermore, by choosing a larger unit cell, we can change the periodicity
and the value of K, further complicating the lattice description. We shall see later

that the introduction of the larger unit cell can actually be useful.

Deformation Gradient

From continuum mechanics, the deformation gradient gives the measure of distortion
of a material between two different configurations of interest. For a material that is
described in its initial reference state by some set of coordinates Xy, with J =1, 2, 3,

and then in a second, current configuration by some set of coordinates x;, with
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Figure 2.4: Schematic of the hexagonal close packed lattice.

i = 1,2, 3, then the deformation gradient is defined by

. Bx,-
Xy

We will see shortly that the deformation gradient will play a key role in describing

Fiy (2.3)

our lattice deformations such that we may obtain a twin.

Reciprocal Lattices

Since the problem of twinning is crystallographic, a mathematical notion of a recip-
rocal lattice can be conveniently be applied. In a very loose sense, the reciprocal
lattice exists in reciprocal space, and can be thought of as the Fourier transform of an

original, reference lattice. Examples of reciprocal lattices are shown in Figure 2.5.
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Starting with the parent crystal lattice vectors e);, a reciprocal basis e’ can be defined
by
ol = Gk 2.4)
e;-(e; xeg)
with 7, j, and k permuting. The notion of a reciprocal lattice will be especially
important later when identifying the indices of the twin planes. However, it also has
its immediate importance, since it allows for the definition of a deformation gradient

associated with a discontinuity,
F=g Qe (2.5)

The concept of reciprocal lattices will not only factor into the procedure for calculating
kinematically-allowable twin modes, but will also be used for indexing the normals

to planes and also directions, as described in Appendix A.1.

The Lattice Equivalence Metric
We will follow the notions of a lattice equivalence metric introduced by Friedel,
Santoro, and Mighell [73-75]. A class of equivalent lattices can be reproduced by
introducing a metric /L,’ € GL[3,Z], i.e. thatitis a 3 x 3 array of integers, with
det[,u{ ] = £1. In full form, for some matrix M being the matrix of scalar products
of the material lattice vectors,

uMp" ~ M. (2.6)
As summarized by Bhattacharya [ | | 7], with two sets of lattice vectors e; and f; with

the same orientation, the same lattice is generated if, and only if,

fi=nle. 2.7)
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The properties of ,ulj are important because the unit determinant means that there will
not be any artificial distortion of the lattice introduced merely by this crystallographic
definition of the lattice, and the material identity does not change simply because of
the existence of a twin plane in the crystal. Consequently, we can use ;L{ from here
forth as a means of generating lattices equivalent to the original. This will play a

crucial role when we discuss the twin kinematic framework formulation.

2.3 Twinning

With the notion of lattice vectors in place, we now introduce the twin as a defect
on the crystal. Consider a crystal with two distinct lattices separated by a planar
discontinuity. Following the notions of [ 1%, ], a twin is a special situation
where the lattice on one side of the discontinuity plane may be obtained as both a (i)
rotation) and (ii) a simple shear of the lattice on the other side. A schematic of this is

represented in Figure 2.6.

Figure 2.6: Schematic illustration of a lattice that has undergone twinning, with lattice
vectors and twinning elements labeled.

As can be seen in Figure 2.6, we have the following items of interest:
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e The twin plane (the plane of discontinuity), is described by a normal 7 which is
presumed to have a unit magnitude since we only need it to indicate direction.

In classical literature, this is also denoted by K.

— In classical theory, if K, is rational, then the particular twin is said to be
a type I twin.

e In constructing the twin through the simple shear, we note that the shear vector
is represented by s, which also shows up as 1, in classical works. This is known

as the twinning shear.

e Conjugate to these the twin plane and shear direction, K, represents a plane
which remains undistorted over the course of the twin deformation. An associ-
ated direction which remains undistorted is denoted 1,. These two quantities
often show up in classical literature, but are not explicitly calculated in our

formulation.

— In classical theory, if K is rational, then the particular twin is said to be
a type Il twin.

— For the case of both K; and K, being rational, the twin is said to be a

compound twin.

e We refer to the lattice vectors e; as describing the perfect crystal, i.e. the
reference material prior to twinning. Once the twin is introduced, we refer to

the lattice described by f; and g; as the twinned crystal.
Now, let us develop some mathematical formalism to describe this phenomenon.

2.4 Twin Kinematic Framework

Since the goal of this investigation is to predict the relevant twin modes, the first task
necessary is to identify all of the possible twin modes. This means that an exhaustive
search for all of the possible twin configurations given a material’s description is
necessary. To surmount the challenges of describing what could (and will be shown
to) be many thousands of twin modes, the aforementioned lattice-based approach, but
with some variations, shall be used. Instead of the immediate assumption of two-fold
rotations, this work will take the lattice vectors of a material of interest and then make
use of the principles of Pitteri [© 7] by testing all of the possible lattice configurations
on the opposing side of the planar discontinuity in order to find the ones that satisfy

the twin definition by invoking calculations completed in Ball and James [25, 26].
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The result of this step is the cataloging of the set of all possible twins in a material,
as given by the twin normal and an effective twinning shear which reproduces the

twinned configuration.

Let us follow Figure 2.6; let e;, withi = 1,2, 3, be the lattice vectors of the reference
crystal, while f; and g; be the lattice vectors of the twinned crystal. Since the twin
can be constructed by rotating one side of the lattice to achieve the other, we suppose
that f; may be related to the original set of lattice vectors through a rotation Q, i.e.
the rotation matrix satisfies the conditions that det{Q] = £1and QTQ = Q Q" = §.
This allows us to then write

fi = Qe;. (2.8)

However, one of the central arguments is that we can also construct the twinned crystal
by applying a simple shear to the atoms; thus, we require g; to be related to e; through
a simple shear,

g = (6 +s®@ne, (2.9)

where § is the identity matrix. Since g; and f; both represent the twinned side of the
crystal, they must reproduce the exact same lattice, and thus must satisfy some notion
of equivalence through the equivalent metric ;L{ (see 2.2). As such, following Pitteri

[23], we can say that f; and g; are related through

g = fj. (2.10)
Thus, combining Equations (2.8)-(2.10) gives us the twinning equation,

u{er =6 +s®n)e;. (2.11)

Equation (2.11) admits a vast (countably infinite) space of solutions. In order to
identify these solutions, we index our problem by the array ;L{ and rearrange things
such that we first fix the value of /Ll] and then solve Equation (2.11) for s and n; we

then repeat this procedure for a different ,u{ .

For any given ,u{ , we may define a tensor H
H=ple,®e (2.12)

with e’ being the reciprocal lattice defined in Equation (2.4). Consequently, the

twinning relationship given in Equation (2.11) can be rewritten as

F=0H=8+sQ®h. (2.13)
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An associated notion of deformation is the right Cauchy-Green deformation tensor,

which maintains its definition from continuum mechanics, i.e.

C =F"F. (2.14)

Since the right Cauchy-Green tensor measures actual distortion of the lattice (as
opposed to the deformation gradient, which can also account for rotations), it becomes
the primary quantity of interest for defining a twin. Because the twin is achieved when
the lattice g; is within a rotation of a simple shear of the lattice of the parent crystal
lattice e;, a special form can be written for C. Following Ball and James [¢5, £0],
necessary and sufficient conditions for C to be written in a form consistent with
simple shear!,
C=0+n®s)8+sQn),

are that the shear s and the (unit) normal 7 satisfy particular conditions. Taking an
eigendecomposition of C to result in sorted eigenvalues A{[C] < A,[C] < A5[C],
with corresponding eigenvectors &;, &,, and &3, the simple shear condition may be

satisfied by requiring that C # §2 and that the eigenvalues satisfy
0 < [C] = A,[C] =1 < A5[C], (2.15)

which enforces the condition that C > 0 and that there is no stretch in one of the

principal directions, which is consistent with the notion of simple shear.

With the restriction taken, the solutions for the twin normal and twinning shear are

given to be

_ [ [BC0=MCh  MICI0sICT -1
=p (\/ A13[C] — M[C] &1 +K\/ 731C] = 1 [C] 53) (2.16a)

A 1 A C - A, C A A
P V(S S Ve CVT=Ta[CE + kyIalCT = 163) ). (2.16b)
P\ VAs[CI—A4(C]

Here, p # 0 is a normalization constant in order to ensure that the twin normal 7
maintains a unit magnitude, and é ; are the normalized eigenvectors of C correspond-

ing to the i™ eigenvalue A;[C], withi = 1,2,3, and x = 1 determines a pair of

IThe original statement focused on necessary and sufficient conditions for HTH, but since
F = QH, this is equivalent here.

2Examining Equation (2.15), it becomes apparent that one of the values of C that would satisfy
this condition would be identity, i.e. C = §. This branch of solutions, however, yields a set of
stacking fault solutions, which are not desired since this investigation is interested in looking at twins.
Consequently, the restriction of C # § is taken.
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conjugate solutions for twins in order to be consistent with the classical notion of twin

systems existing in conjugate pairs.

Looking back at Equation (2.11), it is now possible to construct the rotation matrix

explicitly based on the twin elements. Reorganizing, we have
0 =((u) "G +s®@A)e)®e’. (2.17)

It can be seen that the rotation matrix will satisfy the usual properties of SO[3], i.e.
det[Q] = 1 and QT Q = §. Moreover, with the rotation matrix Q now defined, we

can extract the usual angle of rotation through the relation
tr[@] = 1 + 2cos[6)]. (2.18)

Equation (2.18) then becomes important for compactly visualizing the results of the

kinematic framework analysis.

Remark on Shuffling
We conclude by extending the discussion to non-Bravais lattices. We require that
the skeletal lattice described by the unit vectors satisfy the same relations above.

However, the shifts are unrestricted; this is known as shuffling.

2.5 Implementation: Kinematic Framework

We now quickly review the implementation of the twin kinematic framework and
outline its implementation in Algorithm 2.1. Upon completion, we have all of the
information that we need in order to catalog twin modes for a given material, and
are able to kinematically reconstruct the atomic configurations of these twins upon

demand.

Remark on the Implementation

Note that, in our discussion of the twin kinematic framework (Section 2.4), we made
specific mention that the twinning equation (Equation (2.11)) had an infinite number
of solutions, i.e. twin modes. This arises because of the fact that /,Llj is not technically
bounded by the values that its indices may take on, as long as the condition on
det[,u{ ] = %1 is satisfied. The infinitude of the solution space also arises from the
unit cells; since there are no limits on the unit cells that could be taken to describe a
material — especially in the case of HCP materials — each choice leads to an infinite

set of solutions!

Since this is a computationally-intractable task, our implementation seeks to find

twinning solutions within a large, finite space by respecting hardware limitations (e.g.
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Algorithm 2.1 Procedure for identifying possible and relevant twin modes in a given
material of interest.
1: function IpENTIFY PossiBLE Twins(a, ¢, ;) > Identify all possible twin
configurations. .
Identify an admissible range of .
Compute the twinned lattice vectors g;.
Compute deformation gradient F and right Cauchy-Green tensor C.
for all 1] forming C satisfying Equation (2.15) do
Compute the twinning shear s using Equation (2.16a).
Compute the twinning normal 7 using Equation (2.16b).
Compute the associated rotation matrix Q using Equation (2.17).
end for
10: Store: 5,7, g;.
11: end function

R Al

memory). Consequently, truly finding all twin modes for a given material is presently
intractable, but our work seeks to change the paradigm and show how diverse the

space of twinning solutions for HCP materials is within this finite space.

2.6 Summary

In this chapter, we have developed a kinematic framework grounded on lattice theory
that generates kinematically-admissible twin modes. Unlike previous works, we can
now use this kinematic framework in a predictive fashion, using it to find many novel
twin modes in any material of interest, as long as we are able to conjure up a set
of lattice vectors to describe that material. We are now ready to implement this

kinematic framework and demonstrate its potential.
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Chapter 3

RESULTS: TWIN KINEMATICS

3.1 Goals of this Chapter

We now implement the techniques of Chapter 2. We start by showing the application
of the implementation to several, simpler examples, including the classes of cubic
materials, showing that we recover some classically-known results. We then move
on and demonstrate the application of our implementation to magnesium, using two
common lattice vector descriptions of it. From the resulting list of potential twin
modes in magnesium, we highlight the ability of the implementation to capture
classically-verified twin modes. We also demonstrate how the kinematic framework
predicts a significantly larger set of possible twins than what classical literature
suggests. At the end of the chapter, we also demonstrate the flexibility of this twin

kinematic framework and apply it to a variety of different materials.

3.2 Examples
Before presenting the bulk results on magnesium, we illustrate the application of the

kinematic framework to several, simpler examples with well-known results.

Square Lattice

Let us consider a square lattice, which can be described by inputting the lattice vectors
e = [1 y 0]
€r, = [O, 1] .

3.1

In the case of a two-dimensional material like this, the eigenvalue conditions of
Equation (2.15) still hold, but since the resultant dimensionality leads to a vanishing

third eigenvalue, we now have the modification that
MIC]l < 1UA[C] > 1.

Let’s consider the particular case the metric

- [-10
] —

We see that det[u{ ] = —1 and it is an array of integers, which means that we have

the conditions that we need.
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From this, we form the test deformed lattice vectors g/ = ,u{ e;. Using the particular

,ulj we have in this example, we see that we have
gy =mpie; =[-1.-1]
g, = pye; =[0,1].

The test vectors allow us to then construct the deformation gradient,

The right Cauchy-Green tensor is then

The eigenvalues of this right Cauchy-Green tensor are
1
M€= 56— V35) <1
1
Aa[Cl =23+ V5) > 1,

and this is a good result because it means that we have worked out everything correctly,
and the ,ulj proposed is, indeed, consistent with our notion of a twin. With this, we
can now use Equations (2.16a) and (2.16b), noting that A5 and &5 are now replaced
with the second eigenvalue and second eigenvector, respectively. The eigenvectors

arc

£ = E(ﬁ— m}
& = [—%(1 + ﬁ),l],

and the consequent twinning elements are

i L
n—ﬁ[l, 2]
1
s = —[2,1].

NG

The results of this example are shown in Figure 3.1
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® Parent
Twin

O Twin Original Locations

—==- Twin Plane

Figure 3.1: Atomic visualization for the square lattice example, with blue points
representing the perfect lattice, and solid points representing the final, twinned con-
figuration.

The Pitteri Example of Body-Centered Cubic Materials
We can make sure that our formulation also works appropriately for three-dimensional
materials by validating against Pitteri’s example of a body-centered cubic material

[22]. In this case, we are given that the lattice vectors to test are

e =[d,0,0] (3.2a)
e; =10,d,0] (3.2b)
1
e; = E[d,d,d] (3.2¢)
and we have a metric
1 0 O
wl=10 1 0
-1 -1 -1
from [©3]. Our goal is to show that, if implemented correctly, the twin normal has
indices
n~ (112)
and the twin shear has indices
s ~ [111]

We start off by making sure that ;L{ satisfy the appropriate properties. Here, det[,u{ =

—1, which satisfies the conditions that we need. Thus, we then begin the task of
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computing the test deformed vectors g;, giving us that

d
—[1,-1,1
Sl —-1.1]

gy =ule; =
: d
g, = e = S -]
d
gy = 1he; = _5[1, 1, 1].

We also note that we need the reciprocal lattices in this case, which are

1 e, X €é3 1
= 1,0, —
¢ e - (e xe3) d[ 1
5 e3 X e 1
= 1,—1
¢ 81'(82><e3) d[ ]
3 e X ey 2
= 0,0,1
e = Z[0.0.1].

B e - (exxes)

The deformation gradient is then

. 1 -1 -2
F=gl{®e’=§ -1 1 =2,
-1 -1 0
leading to a right Cauchy-Green tensor of
. 3 -1 0
C=F"F = 1 -1 3 0
0 O
Consequently, the eigenvalues of C are
1
M[C) = 3 <1
A [C] =1
A[Cl=2>1,

which means that we have the possibility of writing out this as a twin as we would

like. The corresponding (non-normalized) eigenvectors in this case are
gl = [1’ 19 0]

§2 = [_1’ 1?0]
& =10,0,1].
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Substituting this into Equations (2.16a) and (2.16b) with k = —1 gives us

? Loy
n—=——11,
NG

1
s = —[1,1,—1].

V6

The shear magnitude of 1/+/2 also matches expectation for BCC. We note that the
result for 7 gives us the identical plane to the original proposition, i.e. that our plane
is symmetry-related to (112). Since we have a cubic material, we are allowed to make
direct comparisons between the indices that we have obtained in Cartesian coordinates
in this case with the indices that were proposed in Pitteri. Note that, for a non-cubic
crystal system, the raw Cartesian coordinates that we have produced here would not
be sufficient, and one would need to take additional steps before comparisons to the

proposed indices in literature could be made.

The Pitteri Example of Face-Centered Cubic Materials
The example of face-centered cubic materials demonstrates how fickle these calcula-

tions can be. We will take the prescribed u{ from [£2]1,

I 1 1
;=10 1 0
0 -1 -1

However, we will take an alternative approach from what is suggested in the work,
since 