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ABSTRACT 

  

As part of an ongoing synthetic effort directed towards biologically active ent-

kauranoid natural products, the preparation of two structurally unique natural products, (–

)-trichorabdal A and (–)-longikaurin E, is presented.  The syntheses intercept an early 

intermediate from the synthetic route towards the rearranged natural product (–)-

maoecrystal Z, and thus, represents a unified synthetic strategy to access structurally 

unique ent-kauranoids.  Specifically, the syntheses are enabled by a palladium-mediated 

oxidative cyclization of a silyl ketene acetal to install a key quaternary center within the 

bicyclo[3.2.1]octane unit, as well as a reductive cyclization of an aldehyde-lactone to 

construct the oxabicyclo[2.2.2]octane motif of (–)-longikaurin E.  

A synthetic strategy to access C19-diterpenoid alkaloids, specifically of the 

aconitine type, is presented. These highly bridged polycyclic natural products are 

generally characterized by a substituted piperidyl ring bridging a hydrindane framework 

that is further attached to a bicyclo[3.2.1]octane. The synthetic strategy relies on the 

enantioselective synthesis of two bicyclic fragments, which are coupled in a convergent 

fashion through a 1,2-addition/semipinacol rearrangement sequence to forge a sterically 

hindered quaternary center.  Efficient access to late stage intermediates has enabled the 

synthesis of the aconitine carbocyclic core, with appropriate functionality for 

advancement to a selective voltage-gated K+ channel blocker, talatisamine. Additionally, 

the synthetic strategy described herein is well applicable to the synthesis of related 

denudatine and napelline type C20-diterpenoid alkaloids.  
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