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ABSTRACT 

We study the interface between the standard six-quark mode:l and the 

observed low- energy weak phenomena. The main processes discussed are weak 

decays of kaons and hyperons . We study first the low-energy et!ective weak 

Hamiltonian at the quark level. This is derived using the renormalization group 

in leading logarithmic approximation. 

Then some properties of this etrective weak Hamiltonian that can be 

derived using chiral perturbation theory are studied. A review of chiral pertur­

bation theory is included. 

This formalism is used to study the relation between KJ K° mi.Y.ing and a 

AJ=3/ 2 decay. We find that the logarithmic corrections to this relation are 

large, making it unreliable. The same formalism is used to discuss a relation 

between K1m, K1T and K-vacuum. matrix elements used in most attempts to 

compute the K1T1T matrix element relevant for the AI=l/ 2 rule . The domain of 

validity of this relation is determined. 

A review of inclusion of baryons in chiral perturbation theory is given and 

one-loop corrections to the Gell-Mann-Okubo relation: semileptonic hyperon 

decays and nonleptonic S and P wave decays are calculated. All corrections are 

small except the nonleptonic P wave decays and one S wave decay. The correc­

tions to the Lee-Su.gawara relation are large as a consequence of the latter. 

Some predictions beyond chiral perturbation theory can be made within 

the soliton model of baryons. Fl D ratios are predicted for hyperor, magnetic 

moments , semileptonic decays and nonleptonic S wave decays in this model. 
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I. INTRODUCTION. 

In t:tiis work we study the interface between the standard model that 

describes leptons and quarks and the observed low-energy phenomena 

involving leptons, mesons and baryons . The approach we '11 take is to 

. use the standard model to determine which four fermion operators are 

important at the weak scale (µ.=M,,) . We then use renormalization group 

equations to determine the operator structure at low energies 

(µ.i:::tl Ge V) . This is done in Chapter II. 

The next problem is to connect this known operator structure to 

experiment. We do this by using the symmetries of this operator struc­

ture and reproducing these symmetry properties in an effective theory 

involving mesons and baryons . This method is known (for this case) as 

chiral perturbation theory and is described in Chapter III for a purely 

mesonic theory. Incorporation of baryons is discussed in Chapter VI. In 

Chapter N we use chiral perturbation theory to study some predictions 

in CP violating phenomena in the K°-i?J system including one-loop non­

analytic corrections to the B parameter. 

The next Chapter uses the same techniques to examine the validity 

of a relation between Krm, K1T and K-vacuum amplitudes that is often 

used in attempts to explain the ~I=* rule using lattice QCD Monte Carlo 

methods . 

The last two Chapters deal with processes involving baryons . In 

Chapter VI we _describe the conventional approach to include baryons in 

the chiral Lagrangian. We rederive some classic current algebra results 

now, including the leading nonanalytic corrections to estimate their 

theoretical accuracy. 
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The last Chapter shows how the soliton model for baryons allows 

some predictions beyond those of the previous Chapter. 
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II. THE EFFECTIVE WEAK HAMILTONIANf 1• 

1. At the weak scale. 

In the standard six-quark model [ 1,2] the weak current is given by 

(2 .1) 

with 

(2 .2) 

and U a 3x3 unitary matrix that arises from the diagonalization of the 

quark-mass matrix . Redefining phases of quark fields allows U to be put 

in the form [2] 

(2 .3) 

In (2.3) ci=cos&i and si=sin&i· &1,2,3 are angles in the first quadrant. 

The CP violating phase o cannot be removed unless one of the angles is 

zero . 

Weak decays are mediated by the graphs of Fig. (1). We will work 

here to lowest order in electromagnetic and weak interactions and to 

leading logarithmic order in heavy masses in strong interactions (QCD) . 

Because the quark current appearing in semileptonic decays is partially 

/l This Chapter follows [3] closely. Inclusion of electromagnetic effects 
has been published in [5]. The principle of an effective weak theory has 
been discussed in [6]. 
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conserved by the strong interactions the four fermion operators 

describing this don't scale. We will, therefore, concentrate on purely 

hadronic processes in this Chapter. 

The effects of one W exchange to leading order in the W mass are 

. reproduced by the effective Hamiltonian (only strangeness changing 

part) for a subtraction point µ=Mw.12 

(2.4) 

In eq. (2.4) 

(2.5a) 

(2 .5b) 

and 

(2.6) 

12 (qaqa)L(qpqp}R in eq. (2.6) means fa11Jl-y5}qa fp7l'-(l+75)qp; a and f3 
are color indices and are summed over . 



- 5 -

2 . Between Mw and mt . 

The effective Hamiltonian can be written as 

J4g="£Cdµ)Oi, (2 .7) 
i 

where the Wilson coefficients q(µ) satisfy the renormalization group 

equation (in a mass-independent subtraction scheme) 

(2.8) 

The coefficients 1ii are defined by the relation between bare opera­

tors Of and renormalized operators O; via 

(2.9a) 

and 

(2.9b) 

The eigenvectors of "YT correspond to multiplicatively renormalized 

operalors . At one loop and with six quarks these are precisely Lhe 

operators oJ.:J. The penguin diagrams from Fig. (2) don't cause mixing 

with other operators because of GIM cancellations. In Landau gauge we 

have from the diagrams like Fig.(3) 

2 

7++= ~ 
2 

1-=-~. 
21T 

(2 .10a) 

(2.10b) 

Solving the renormalization group equation in the standard way 

gives the effective Hamiltonian at µ=mt : 
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H,g=- 2 ~[[ : ~::r 
7 

[Ac of•!+ A, of• H: ~:~ra [A, of-!+ A, of-~) 
(2 .11) 

a(µ) here is the running structure constant in the six-quark theory . 
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3 . Below mt. 

We now treat the top quark as heavy and remove it from the theory. 

The diagram in Fig. (2) now causes mixing because GIM cancellation no 

longer functions. 

Using the QED and QCD equations of motion, Fig. (2) contributes to 

the mixing of four fermion operators. Operators 0 7 and 0 8 are intro­

duced via a photon in Fig. (2) . For the other operators electromagnetic 

effects are negligible, since as>>a • . 

The operators needed are 

03=(sadaJL[ (ufJu.fJJL+(dfJdfJ)L +(s11s p)L +(c11c fJ)L +{bpb p)L]. 

04=(sadp)L[ (u~aJL+(dpdaJL +(sps rJL+(cpc aJL +{b-pb aJL]. 

Of)= (sadaJL[ (iipu.p)e+ {dfJdp)e+ (s,s p)e+ (cpc p)R+ {b-pb fJ)~. 

Oa =(sad fJJL[ (u ~aJe+ (dpdaJe+ (sfJs rJe+ (cpc rJe+ {b-pb rJ~. 

(2.12a) 

(2.12b) 

(2.12c) 

(2 .12d) 

(2.12e) 

(2.12f) 

01= ;,: (scidaJL[ (u""'p)L-*(dfJdp}L+(cfJc fJ)L-*(s,s 11JL-*{b-11b pJL]. (2.12g) 

0 8= ;.: (sadfJJL[ (u""'aJe-*(dpdrJR+(ctJC rJe-*(sps aJe-*{bpb aJ~. 

(2 .12h) 

In 0 7,8 we introduced e 2 /g'2 to make all coefficients in the 

anomalous dimension matrix of the same order in g'2 /3. 

1 3A similar situation occurred in Ref. [?]. 
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g' is the running coupling constant for QCD with 5 quarks . 

The anomalous dimension matrix is given by 

r-1 3 0 0 0 0 8/9 0 
3 -1 -1/9 1/3 -1/9 1/3 8/27 0 
0 0 -11 /9 11 /3 -2/9 2/3 4/27 0 

•2 0 0 22/9 2/3 -5/9 5/3 -20/27 0 
1' ··= JL::.. 0 0 0 0 1 -3 4/9 0 .(2 .13) 

iJ 87T2 
0 0 -5/9 5/3 -5/9 -19/3 4/27 0 
0 0 0 0 0 0 -20/3 -3 
0 0 0 0 0 0 0 - 47/3 

We now diagonalize 1T and run the renormalization group down to 

µ=m,, numerically. The values of q(mt) are chosen so that matrix ele· 

ments of H.g not involving a top quark are continuous across µ=mt to 

lowest order in inverse powers of mt. At µ=m0 we introduce a new set of 

operators Qi. .. . , Q6 identical to Oi •.. . , 0 6 except that all b quark 

fields have been removed and in Q7,8 g'2 is replaced by g"2 , the running 

coupling constant in the four-quark model. 

The anomalous dimension matrix for Qi • ... , Q8 is given by 

r-1 3 0 0 0 0 8/9 0 
3 -1 -119 1/3 -1/9 1/3 8/27 0 
0 0 -1119 11/3 -2/9 2/3 16/27 0 

112 0 0 23/9 1/3 -419 4/3 -16/27 0 
7" . . - IL:::. 

0 0 0 0 1 -3 8/9 0 .(2 .14) v- 87T2 
0 0 -4/9 4/3 -4/9 -20/3 8.127 0 
0 0 0 0 0 0 -22/3 -3 
0 0 0 0 0 0 0 -47/3 

Then we run the renormalization group to µ=me . At this scale we 

remove the charm quark and introduce operators Pi. ... , P 6 , P'1 and 

P'a (with c fields omitted from Qi, ... , Q6 and g"2 replaced by g'"2). 

Now, P4 is a linear combination of Plo P2 and P3. The anomalous 
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dimension matrix for the Pi without P4 is 

r -1 3 0 0 8/9 0 
8/3 -2/3 2/9 -1/9 8/27 0 

1112 -11/3 11 /3 22/9 -2/9 -8/27 0 

1"\;=~ 0 0 0 1 0 0 (2 .15) 
-1 1 2/3 -1/3 0 0 
0 0 0 0 -8 -3 
0 0 0 0 0 -17 

We then run the renormalization group to a scaleµ where as(µ,)= 1. 

Defining P 7, Pa by g'" 2 /e 2 x P'1 , P'8, the effective Hamiltonian for 

strangeness changing weak decays can be written as 

(2 .16) 

8 
where 2:' means the sum with P4 omitted. Values for the 

i=l 

coefficients q using Mw=BO GeV, mt=30GeV,1741=4.5 GeV, mc=l.5 GeV, 

a8 (µ,)=1 and A."2=0.01 Gev2 and 0.1 Gev2 are given in Table 1. 
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4. The b.S=2 e1fective Hamiltonian. 

This has been derived in [ 4] using similar methods . The result 

(which we will need later) is 

(2 .17) 

where :ryi is given by 

(2.18a) 

(2.18b) 

(2 .18c) 

For the same parameters as used in the previous section the 

coefficients 1] 1, 1J2, T]3 are listed in Table 2. 
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ID. CHIRAL PERTURBATION THEORY. 

1. The Lagrangian to lowest order. 

The previous chapters contained quarks but the observed strongly 

·interacting particles are mesons and baryons. Since at present no fun­

damental derivation of the structure of baryons and mesons from QCD 

exists, we will use the approximate symmetries present in the QCD 

Lagrangian to make predictions about the low-energy states. The sym­

metry we will use is chiral SUtJ)LxSU(S}RxU(l)v (U(l)A is broken by 

anomalies). The U(l)v plays no role in the rest of this work except to 

conserve baryon number. 

Chiral symmetry is broken by vacuum expectation values fl 

(3 .1) 

v is a scalar with the dimension of mass . i,j are flavor indices. The 

3x3 matrix I: describes the different vacua connected by SU f.3)LxSU f.3)£? 

transformations . . Under an SU{.3)LxSU{.3)R transformation 

q' u.=L/.q4 

q'ia=R[q~. 

From (3 .1) we then see that 

"'i:.'=Lf.R'. 

/l For a review of chiral symmetry, see [8]. 

(3.2a) 

(3.2b) 

(3.3) 
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Since ~ describes the orientation of the vacuum it should contain 

the Goldstone boson degrees of freedom. It is parameterized via 

2i (3.4) I;=exp-M 
I 

and 

7To .2L 
7T+ J(f" -+ 

V2 -vl6 
M= 7T - - 7To +_!L K° (3.5) 

-v2 Ve 
f?J -[~r~ 

We now use ~ to construct a Lagrangian describing the Goldstone 

bosons; that is, SU(3)ixSU(3)a symmetric 12 . 

(3.6a) 

to lowest order in derivatives. Terms with more derivatives are 
2 

suppressed by Xj . q 2 is a typical mass or momentum squared and Ac is 

the chiral symmetry-breaking scale . Ac is expected to be of order 4rr/ rr 

[1 O]. 

Chiral symmetry is also broken by the "bare" quark masses. We also 

expand in this breaking (an expansion in 'Z ). The first term in this 

expansion is 

L,,,. 1 = v tr(m~+m~1) (3.6b) 

12 Different nonlinear realizations of a symmetry are equivalent in the 
loop expansion [9]. 
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with m the quark mass matrix . 

(3 .?) 

f is measured via the pion decay constant J w and v via the meson 

masses . Expanding !: to quadratic order and identifying terms in the 

Lagrangian gives 

(3 .8) 

In (3.8) we have set mu=mct. Throughout the rest of this work we will 

keep this and hence have isospin as a good symmetry. 

From (3 .8) we see that one power of a quark mass is equivalent to 

two powers of a Goldstone boson mass or two derivatives in our expan-

sion of the chiral Lagrangian. 

To determine f we derive the left-handed current from (3.6) 

(3.9) 

and in 'Tl'+ decay we define f n to be 

(3.10) 

where 

r1tt•=[! ~ ~l (3 .11) 

Expanding (3.10) then gives 

J=J 1f• (3 .12) 



- 14 -

2. Weak nonleptonic decays to leading order. 

The strangeness changing effective Hamiltonian contains octet and 

27 operators . The lowest-dimension operator constructed using ~ that 

transforms as (BL, ln) under SU(3)LxSU(3)n is 

(3.13) 

and the operator that transforms as (27L,1n) is 

(3.14) 

For /;l.S= 1 nonleptonic decays we have 

o o ol 
TL= 0 0 0 

0 1 0 
(3 .15) 

and the only nonzero elements of 7f,/ are 

Tli = T~~ = T~~ = Til = -T~ = -T~~ = ~· (3 .16) 

The term proportional to b doesn't contribute to on-shell processes 

because it is a total derivative for TL given in (3.15) if ma>i'm5 !3. 

The variation of the Lagrangian (3.6) under an infinitesimal left­

handed transformation 1-iTL is given by 

(3 .19) 

and from Noether's theorem 

(3 .20) 

! 3 I thank H. Sonoda for this observation. 
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Expanding (3 .13), (3 .19) and (3 .20) in powers of M then shows that the 

2nd term in (3 .13) can be written as a total divergence . 

The effective Hamiltonian also contains parts that transform as 

(8£,Bn). The lowest-dimension operator that transforms this way is 

TL is given by (3.15) and Tn is 

[

2 0 
Ta= O -1 

0 0 

(3 .21) 

~ l· -1 
(3.22) 

Since (3 .21) contains no derivatives its matrix elements are 

expected to be ~ 4:;,(]<" I 0) larger than those of (3 .13) and (3 .14). 

This is why the electromagnetic effects, corresponding to operators 

P1 , Pa in Chapter II, can contribute significantly to t'I cl4 . 

Apart from order of magnitude estimates between matrix elements 

of operators transforming in different representations under 

SU(3)ixSU(3)n. more accurate relations can be established between 

matrix elements of operators in the same SU(3)ixSU(3)n representa-

tion. In this case the unknown numerical constant in front of the opera­

tors doesn't matter. 

As an example we rederive a relation between a K~2rr and a K~37T 

matrix element[l 1]. We start with expanding oCB) (for on-shell matrix 

elements and mct=mu=O) . 

/ 4 This parameter is defined in the next Chapter. 
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(3.23) 

<7To7Tol oC8)!J<°> gets contributions from Fig .(4) . A dark square in 

Figs .(4,5) is an insertion of oC8>. The result is 

(3 .24) 

<7To7To7Toj oC8)!Jr'> gets contributions from the diagrams in Figs .(5) . A 

dark circle is an insertion of the lowest-order strong interaction 

Lagrangian (3.6) . The contributions from Figs.(5b.c) vanish and Fig .(5a) 

gives 

+ cycl . perm. in (1,2,3) 

=2'1a.mf. 
I 

(3.25) 

Notice that this satisfies the classic current algebra relation 

(11,13]. 
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3. Beyond lowest order. 

The chiral Lagrangian method can be used to go beyond lowest 

order[12,13]. This is also possible within the framework of current alge­

bra but the calculations are less transparent [14-17]. 
2 

Since we include all terms up to a given order in ~ in the Lagran-

gian and the operators, we can absorb all infinities into redefinitions of 

the bare parameters[12]. In this way the parameters become renormali­

zation point dependent in such a way that physical quantities do not 

depend on it. 

Higher-order terms coming directly from higher-dimension opera-
2 m2 

tors will always depend analytically on !j and At . The nonanalytic 

dependence on Goldstone boson masses and momenta has to come from 

diagrams with loops and insertions of lower-dimension operators . These 

parts of higher-order terms can thus be extracted uniquely from loop 

diagrams involving vertices from the lower dimension operators[12,15]. 

As an example of this we will calculate in this section the leading 

nonanalytic correction for mx,1f,'f'/ and f 1f· We will only encounter loga­

riihmic nonanalyticities in this section. 

Formulas in the remainder of this chapter are correct in two cases, 

~=mct~ms and mu=mct=O, m5 ~0 . In this case we don't have to distin­

guish between logariihms with different arguments . All logarithms will be 

written as log m! whereµ is the renormalization point. 
µ 

In all these cases the logarithm would dornina te the next order 

correction ii it was large (which would be the case ii the meson masses 

were really small) . In practice for logarithms involving a kaon mass this 
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logarithm is a bout 4, so there is no reason to expect this piece to dom­

inate the correction. The attitude we take is that if the logarithmic part 

is small we believe the total correction to be small and we will use the 

lowest-order result with confidence. II the logarithmic part is large, we 

probably also have a large correction from the higher-order terms and 

we will not use the lowest-order result to make predictions. 

The field renormalizationf5 comes from the diagram in Fig.(6). Only 

an insertion of (3.6a) with the derivatives acting on the outside legs con­

tributes to Z. 

For ZK the relevant terms in Lo are 

(3 .26) 

and the loop integral (see App. B) is 

J~ i m 2 m 2 

(21T )4 p-2_-m-2 = -16_1T_z log -µ-2 . (3.27) 

This leads to 

1 r 1 2 m: 2-1 ml 1 2 m~l Zc-1+ _2 2 l-2 m"log2 +mgiog2 + -2 m,,log 2 16Tr'f µ µ µ 

1 r 1 2 5 ~ mk 
=1+ 2 zl-3m" + -3m log2 . 161T 'f µ 

(3.28) 

Similarly, the relevant term in Lo for Z" is 

(3.29) 

leading to 

15 For a definition of Z see Appendix A. 
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(3.30) 

In the same way we derive 

(3 .31) 

and 

1 ml z,,,=1 + 2 22mRlog 2 . 
167T 1 µ 

(3.32) 

In all these formulas we used the Gell-Mann-Okubo relation[28] 

(3 .33) 

This follows from (3.8). 

Notice that for 11Lu=mct=ms SU(3)v symmetry is restored in the Z's . 

At this level the relations (3 .12) and (3.8) are no longer valid. 

Evaluating the correction to the matrix element in (3 .10) due to field 

renormalization and from the diagram in Fig.(7) we get (the relevant 

integral here is also (3.27)) · 

L1 ·2 i r 1 2- 2 mil <Oli}' +i ITT+>=--2p,,}'f ll + 2 2 (-mr-2m11')log2. 
167T 1 µ 

(3.34) 

Using the definition (3.10) off" this means 

r 1 2 ml] /=! rrll + 7r2 2 (mf+2mw)log 2 . 
16 'J rr µ 

(3.35) 

The equations (3.28-35) depend on the renormalization scale µ, but 

this dependence cancels against the µ dependence of the coefficients of 

the higher-dimension operators so that physical quantities do not 

depend on it. 
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To caiculate the correction to (3.8) we have to evaluate the diagram 

in Fig .(6) with the circle an insertion (3 .6) with no derivatives acting on 

the outside legs. 

Using App . A to evaluate the mass corrections and using (3 .8) in the 

·correction terms we get/6 

(3 .36a) 

(3 .36c) 

Notice that here we also have SU(3)v restored when all the quark 

masses are equal. 

Using this, the Gell-Mann-Okubo relation becomes 

The corrections calculated in this section are all small, around 15% 

or smaller, indicating that chiral perturbation theory is valid in all these 

cases . 

JS This disagrees with the results of Ref. [16]. The numerical result how­
ever agrees since we differ only in the (small) m~ dependence . 
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N. CHIRAL PERTURBATION THEORY AND K°-j(J MIXING. 

1. Parameters of CP viola lion. 

An overview of the phenomenology has been given in [19] and refer­

ences therein. All CF violation observed so far has been in the neutral 

kaon system. Searches for an electric dipole moment of the neutron and 

CP violation in charged kaon decays have only produced upper bounds . 

We describe the neutral kaon system by a two-state wave function 

(4 .1) 

and a Hamiltonian 

H=M-i.f . (4 .2) 

In (4 .2) Mand fare Hermitian 2X2 matrices. 

The mass eigenstates of this system are 

(4.3) 

c describes the deviation of the mass eigenstates from the CF eigen­

states K°±f<O. 

Defining ms. mL and I's. fL to be the eigenvalues of Mand f we have 

that 

ilrr.iI'12--IrnAl12 
E: = ---------

(f .s-fL)/ 2+i(m.s-mL) · 
(4 .4) 

In the phase convention where 

Ao=<(mr)1=ol Hwea1e I K°> (4 .5) 
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is real we have that 

(4 .8) 

assuming that f 12 comes mainly from the lightest intermediate state 

{the 'Tf'TI' intermediate state) . 

Using then 

(4.?) 

and the experimental result 

(4.8) 

£reduces to 

1 ImM12 i~ &=- e 
vzms-mL 

(4.9) 

In (4 .9) we used (4 .?) instead of the short-distance prediction for ReM12 

because the long-distance contribution to ReM12 is probably not small 

while a small improvement on the experimental limil on &' (see further) 
t 

makes the 'Tf'Tf intermediate-state contribution to ImM12 small so that 

probably a short-distance evaluation of Im.M12 is sufficient. 

We define 

(4.10) 

Using this we can define c' 

t'= _i_ e i(cle-clo)Irn[ A2l· vz Ao 
(4 .11) 
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In (4 .11) o0 , 02 are the phase shifts in isospin 2, 0 1T1T scattering . 

Roughly speaking, c describes CF violation in 6.S=2 transitions and 

e' in 6.S= 1 transitions. 

e' A2 
Experimentally c, - and are small. To leading order in these 

t Ao 
·quantities we have[20] 

(4 .12) 

and 

(4.13) 

Both 11+- and 1700 are measured to be nonzero and are the only place 

where CF violation has been observed so far. 

Experimentally we have [19] 

t' i:=(-4.6±5.3±2.4)x10-3 . 
c 

(4 .14) 

(4 .15) 

In the minimal standard model this observed CF violation has to 

come from the phase 6 in (2 .3). The stringent limit on the electric dipole 

moment of the neutron[21] makes the fT parameter in the QCD Lagran-

gian far too small to account for the CF violation in the kaon system. 

From (4.9) and (2.17) we then get 

sfBG1'J,,mbnfs2s3s4f ml mr ] i~ 
ti:= - y;_ l-7]1+773log-2+112-2(s~+s2s3c4) e . 

1 S 27T2(m.s-mL) m, m, 

(4.16) 
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The dimensionless parameter Bis defined as 

where 

0C27>:(sa.da.) L(Spdp) L· 

I 

The prediction for !. is (using the experimental value of e) 
e 

t:' = 

(4 .1 7) 

(4 .18) 

(4 .19) 

where the dependence on the mixing angles has been made explicit via 

(4.20) 

and C 7, Ca contain CXcm· 

The mixing angles are constrained via data from {J decays, hyperon 

decays and B meson lifetime and branching ratios experiments [19]. 

(4 .21) 

(4 .22) 
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(4 .23) 
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2. B parameter to lowest order. 

This analysis was first done in [22] . 

The operator (4 .17) and the AI=~ part of the AS= 1 effective Hamil­

tonian both transform as (27L·1R) under chiral symmetry. The AS=2 

·operator corresponds to (3.14) with the only nonzero element of T 

Tii=l (4.24) 

while the A/=3/2 part has the nonzero elements given in (3.16). 

Since these are both (27L·1R) operators, chiral perturbation theory 

relates matrix elements of these two operators. The coefficient c in 

(3 .14) is the same in both cases. 

and 

Expanding (3 .14) for two matrix elements gives 

8cmi <ir'I oc21>1K°>=-~ 
J 

From (4 .17) we then get that 

Be 
B=- Jsmx. 

(4 .25) 

(4 .26) 

(4 .27) 

We picked the decay in (4.26) because it is pure AJ=3/ 2. Extracting 

the A/=3/ 2 part from (2 .17) leads to 

IP.j,=312:- Gp sic 1c3C 0(27) 

2v2 
(4 .28) 
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with 

CF::!0.4. (4.29) 

The invariant matrix element for _K+ ... 1To1T+ decay is 

(4.30) 

Using the measured value of this decay width Bis determined to be 

!B!F::10.4. (4.31) 

This procedure doesn't determine the sign .of B because only its 

square enters into the decay width. 
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3. The B parameter to one loop. 

The results of this section were published in [23]. This section is 

concerned only with physical matrix elements and for these setting 

Tnu=mct=O is a good approximation. We then redo the analysis of the 

previous section but we calculate the matrix elements (4 .25) and (4.26) 

to one loop order in chiral perturbation theory. 

The correction to <7To7T+I 0<21>1r> is small. indicating that chiral 

perturbation theory is valid. Unfortunately, the correction to 

<KOi 0<21>1K°> is very large. indicating that chiral perturbation theory is 

not valid for evaluations of this matrix element. 

This means that the value of B derived in the previous section is 

unreliable and should not be used to constrain significantly the parame­

ters of the standard six-quark model[ 19]. 

(4.25) gets correct.ions from field renormalization and the diagrams 

in Fig.(8). The black square is an insertion of 0<27> and the dot is an 

insertion of the strong interaction (3 .6). 

Fig.(Ba) contributes 

and Fig.(Bb) contributes 

14 Bcml ml 
3 y 16rr2/2 

resulting in a matrix element 

(4.32) 

(4.33) 

(4 .34) 



- 29 -

The correction term here is as large as the leading term for 

µ Rj 1 Ge V, mK Rj 500Me V and J ~ 130Me V. 

Similarly, (4 .26) gets corrections from the diagrams in Fig.(9) and 

field renormalization. The diagram in Fig.(9)(a,b,c ,d) contributes 

_ 12icml(_.!1 _1 22) 
~13 3 'l, 9' 9 

(4.35) 

so that the total matrix element becomes 

(4.36) 

Including in this the relation between f and f w the matrix elements 

become 

::A'\ (2 ) 8cm} r 41 sup 2 mil <~-10 7 IK°>=--- ll - -mx log-
!~ 3 161T2f; µ.2 ' 

(4.37) 

12icmi r 9 m} mil <1T+7Tol o(27)1x+>=- ll - - log- . - r- 3 2 167T2f 2 µ.2 
V 2J rr rr 

(4 .38) 

The corrected value of B can then be obtained from 

The size of the correction in (4.39) indicates that this formula should 

not be used to determine a value for B. 



V. CHIRAL PERTURBATION THEORY AND THE ~I=* RULE. 

1. Introduction. 

The enhancement of the /J.J = * amplitude in hadronic weak decays 

is a longstanding puzzle . Including large logarithms using perturbative 

QCD and the renormalization group gives an enhancement of the octet 

(which is pure /J.J = *) part of the effective Hamiltonian compared to the 

27 part (which contains /J.J = ~) (3,24]. However, a significant enhance­

ment in the matrix elements of the four-quark operators is still needed 

to explain the experimental enhancement. 

An attempt has been made within chiral perturbation theory to 

explain this extra enhancement using the renormalization group. It is, 

however, only qualitatively useful[lB]. 

One approach is direct calculation of the matrix elements using lat­

tice Monte Carlo methods. Attempts to do this are in progress [25]. In 

the mesonic sector one needs to calculate matrix elements like 

<1T01T0 i o(B),(27> I K°> with o(B),(i7) a four-quark operator. o<B) and 0<27> are 

defined in [24]. However, it is easier, using present Monte Carlo tech­

niques, to measure <1T I o(B),(27> I K> and < o I o(B) I K> with < o I the 

vacuum. Chiral perturbation provides a relation between these matrix 

elements and <1T1T I o(B),(27> I K>. 

In the next two sections we study this relation further and in the 

last section we describe a method to test how close to the chiral limit a 

given lattice calculation is . 
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2. The lowest order relation. 

In [26] a relation between KTTTT matrix _ elements and some matrix 

elements involving a lower number of mesons was derived. In this sec­

tion we rederive this relation in such a way that inclusion of the one-

loop results is easy to do. 

The weak effective Hamiltonian to lowest order in momenta and 

quark masses for llS = 1 decays is given by oCB) and o<27) . o(B) 

transforms like (8£, 1R) and 0<27> like (27£, 1R) under SU(3)L x SU(3)R 

where 

A= [ ~ 
0 
0 
1 

0 
0 
0 

and the only nonzero elements of Tare 

1 13 _ r31 _ r13 _ r31 _ -r23 _ -r32 _ u 
12 - 12 - 21 - 21 - 22 - 22 - Tl . 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

The coefficients a., b ,c are constants independent of the meson masses. 

The second term in (5.1) is the divergence of a left-handed current for 

m.ci #-ms and doesn't contribute to physical, on-shell, matrix elements 

(see Chapter III). 

The <7ml oC8>,o<27)1K°> matrix elements are needed for the physical 

value of the meson masses and for these setting 1'11.u = ma. = 0 is a good 
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approximation . Expanding (5.1) and (5 .2) to lowest order gives 

<TT0 TT0 I 0<5> I K» = ~i: m'R: 

<TroTTo I Q(27) I K°> = Bi~ m'R: . 
J 

(5 .5) 

(5 .6) 

And having 6.J =~enhancement corresponds to having a large ratio 

<TT0TT01a<a>1.K°> = ~ 
<TToTTol Q(27) I K'> 2c . 

(5.7) 

The <TT0 10CB),0C27> I Ir» and <o IO I K°> matrix elements don't con­

serve mpmentum and get contributions from the second term in (5.1). 

Since the coefficients a., b and c are independent of the meson masses, 

we can calculate every matrix element with different masses. Here we 

have mu =met ¢. 0 because in lattice calculations all meson masses are 

nonzero . In lowest order, expanding (5 .1) and (5.2) results in 

(5 .8) 

(5 .9) 

(5.10) 

To obtain !!' we need only values for three independent matrix elements, 
c 

so measuring these on the lattice is sufficient. 

The 6.1 = * enhancement in meson decays (5 .7) can thus also be 

measured via 

<TT0 10<8>1.l(<» - <TT0 10<8>iK°> +%<o 10<8>JK°> 
<TTo I ac21) I K°> - Y <TTo I o<21> I K°> (5.11) 

with 
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i m's +m'd i m'i 
:z;--- ---- ..JZJ m"s - m''ct - VzJ m"i- m"~ 

m"'J(l'n'"'ll' 
y = m'J(l'n'w . 

(5.12) 

(5 .13) 

This agrees with the result obtained in [.26] . We have used eq. (3.8) to 

obtain the second relation in (5 .12). 
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3. The relation to one loop. 

In this section we calculate the matrix elements of the previous sec­

tion to one loop and use this to determine the range of validity of (5.11). 

The results of this and the next section have been published in [27]. 

Corrections to the matrix elements (5.5) and (5 .6) come from the 

diagrams in Fig. ( 10) and from field renormalization of the meson fields. 

A dot is an insertion of the strong interaction Lagrangian (3.6) and a 

square is an insertion of oC8l, resp. o<27>. Adding the different contribu-

tions gives 

<71'o71'ojoCB)jK°> = 4a.im}(l _ 97 ··ml ln ml~ 
13 27 161T2/2 µ2 , 

(5 .14) 

and using isospin and the result for <7To1T+joC27)J..r<+> calculated in the 

previous chapter we have 

(5 .15) 

so that (5.7) becomes 

(5 .16) 

µ,in (5.14), (5.15) and (5.16) is the subtraction point. The subtraction 

point dependence of amplitudes is canceled by the subtraction point 

dependence of the contributions of operators that are higher order in 

derivatives and quark masses [12,15]. That contributio;i is not 

enhanced by a "large" logarithm and is hence less important. For 

/~135MeV; m~494MeV and µ~1 GeV the correction in (5.14) and (5 .15) 

is of 0(403) or less, indicating that chiral perturbation theory is valid 

for these matrix elements . The correction is about 253 in (5.16). So the 
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correction to the l.h.s. of (5.12) is small. 

Corrections to (5.10) come from the diagram in Fig. ( 11) and field 

renormalization and gives 

(5.17) 

For meson masses of 0(500 MeV'), µ~1 G-eV, /~150MeV and for quark 

masses such that%~]. the second term is 0(10%) of the lowest order­

terrn of <7T0 I o(B) I K°> proportional to a in (5.8) and the correction to 

the first term is of 0(30%), indicating that chiral perturbation theory is 

valid for these parameters for this matrix element. 

Corrections to (5.8) and (5.9) come from the diagrams in Fig. (12) 

and field renormalization. Assuming that all logarithms are of O(ln m!) 
µ 

the results are 

-2Vza.m' m' m'i 
<7To I ocs> I K°> = " Kit + 1 ln -

. /2 16n2 /2 µ2 

x[-17 m'.i - lm•2 + 29m'"""'' _ lm.'2]1 
9 m',, 6 K 9 A"- 11' 2 11' > 

Vzb I I 1 m'i 
+ - 2- (m • + m d) ~ 1 + 2 2 ln - 2 I 167T I µ 

x[-l! m'2 + 3m' m' - .1... m'2]~ 18 K " K 18 11' 
(5.18) 

-v'?2 1 m"'i <7Tol oc21>1K°> = -4/2 c m'"xm'""~l - ln--
167T2/2 µ2 
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x[ll m'"2 + 2m"'rA'TI"' + ~ m"' 21 1 2 K .n.··· "' 2 "'J> . (5 .19) 

For the values mentioned earlier the corrections in (5.18) are 0(5%) for 

the a term and 0{20%) for the b term, indicating the validity of chiral 

perturbation theory. However, the corrections in (5 .19) are large. To 

get a correction of 0(30%) compared to tree level for JF:::j150Me V, 

µr:.= 1 Ge V we need to use meson masses of O( 150 Me V) to calculate 

<rr0
1 O' I K°>. Including one-loop corrections, eq. (5 .12) is still valid with 

the following expressions for x and yf1: 

. , + , .2 
_ 'L m s m ct 1 m x 11 ,2 , , 7 ,2 

: - - r ,, ,, ll + 2 2ln-2 [-18mK+3mwmx- 18m,,] 
v 2f m s - m d. 16 7T f µ 

+ 1 ln m"~ [ 13 m"2 + 29 m"2]~ (5 .20) 
16rr2/ 2 µ 2 18 "' 18 K 

m"' m"' 1 m2 113 
_ "' K~l In K 2 

y - m'.,,m'x - 16rr2j 2 µ 2 54 mx 

+ 1 · ln m'~ [ 17m'i+1m•2_ 29m' , + .!.m,2] 
16rr2f2 µ 2 9 m'.,, 6 K 9 J(TT1.,, 2 "' 

1 m"2 
m' 17 13 ---In--K _K[-m"2 + -m"2] 

16 rr2f 2 µ 2 m '.,, 9 K 9 "' 

1 m"'2 11 · 9 + ln __ K [-- m"'2 - 2m"'.,.,.,..,·'" - - m"'2]' 
16rr2f2 µ,2 2 K .n. ... tr 2 "'· > , 

(5.21) 

which for the values mentioned earlier is a 0(40%) correction to x and a 

0(50%) correction toy (with m'"x- 100MeV), but the corrections to y 

depend crucially on using a small value for m'"K,1f· 

The values of J used in (5.14-21) also have to be determined. We 

can do this in the standard way: measuring < 0 I jf1 
+i2 

J rr+> where it4 is 

/l In relation (5.20) we cannot use eq. (3.8) but we have to use the one­
loop expressions to convert the quark mass ratios to meson mass ra­
tions from (3.36). We can however use it to get (5.21). 



- 37 -

the left-handed current derived from the Lagrangian (3.6). 

jf':-~tr(7"a"J:l:f) andT'+i•:[ ! ~ ~ (5.22) 

We define J 11' via 

(5.23) 

Expanding (5 .22) gives in lowest order J = J ,,., but ii we include the con­

tribution from Fig. (13), with the square in Fig. (13) an insertion of 

if1
+i

2
, and field renormalization we getf2: 

(5 .24) 

So the relation (5.11) can be used for determining AI=* enhance­

ment provided we use meson masses of 0(500MeV) for <rr0 ! o<8>i I<°> and 

<o joC8>!K°> but use a smaller mass of O(lOOMeV) to measure 

<rr0 joC27>jK°> . Then (5.11) will give the ratio 
2
: to ab~ut 40 ,..,, 50% 

depending on the value measured for <o I oCB) I I<°> . The value of the 

AI=* part can be deterrn.lned to within 40%, using meson masses of 

0(500MeV) by eliminating a. and b from eq. (5.14), (5.17) and (5.18) 

because it doesn't depend on the value of <rr0 ! oC27>] I<°>. 

12 See also Chapter III. 
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4. A test of the chiral limit on the lattice. 

There exists another way to measure J on the lattice besides 

measuring (5 .23). We can measure two matrix elements on the lattice of 

the operator 

O" = S(l - 75)d . (5 .25) 

This is a divergence of a left-handed current for ms '#-met [26] and 

corresponds in chiral perturbation theory to the (3i. 3R) operator 

O" = dtr A~ , 

with A given by (5.3). 

At tree level O" has matrix elements 

<1T0
1 O" I K°> = "1d 

J 

< o I o" I K° > = 
27/ . 

(5 .26) 

(5 .27) 

(5 .28) 

Or at this order in chiral perturbation theory we can also determine f 

via the ratio 

<o IO" I K°> = ..J2iJ . 
<1T

0 IO" I K°> 
(5.29) 

Corrections to (5.27) come from the graphs in Figs . (12) and field renor­

malization; (5 .28) gets corrections from Fig . ( 11) and field renormaliza­

tion leading tof3 

13 We could again use different meson masses for the various matrix ele­
ments. 
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(5 .30) 

2 

< 0 I 0,, I TAl > = 2id < 1 _ 1 ln m K [ 2 9 2 13 2 J 1 ./\.- J c 2 2 ·2 18 mK + -18 m'll' > . 161T 1 µ. 
(5 .31) 

Both corrections are 0(25%) or less for the values of the parameters 

used earlier and lead to 

(5.32) 

So measuring f via f 7f or via f' should differ by 

2 

£... = 1 - _1...,,....- ln m K [3 m "'""· 5 m 2 J 
J 2 2 Z A ... '11' - -3 'II' • 

7f 167Tf µ 
(5 .33) 

Or they differ by 0(12%) using the same parameters as before. This 

relation provides excellent means to determine the accuracy of chiral 

perturbation theory on the lattice since it has small corrections . 

Present lattice calculations, however, seem to be quite far from this 

point [26] . 
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VI. CHIRAL PERTURBATION THEORY AND HYPERON 

DECAYS. 

1. Introduction 

The results of this chapter can be found in [30]. In this chapter we 

have mu=mct=Owhich is a good approximation for real particles . 

Lowest-order chiral perturbation theory makes predictions for the weak 

nonleptonic decays of hyperons. Experimentally, the predictions of 

lowest-order chiral perturbation theory work well for the s-wave 

hyperon decay amplitudes but fail badly for the P-wave hyperon decay 

amplitudes. In this chapter the leading corrections to lowest-order 

ehiral perturbation theory for nonleptonic hyperon decays are com­

puted. These corrections arise from one-loop contributions to hyperon 

decay amplitudes . For the P-wave amplitudes we find that the correc­

tions to lowest-order chiral perturbation theory are large, indicating a 

breakdown of chiral perturbation theory for these amplitudes . This is 

consistent with the experimental failure of the predictions of lowest­

order chiral perturbation theory for the P-wave amplitudes. Unfor­

tunately, we find that some of the S-wave hyperon decay amplitudes 

also get large corrections. In particular, the Lee-Sugawara relation [32] 

gets a large correction indicating a breakdown of chiral perturbation 

theory for this relation. 

In Section 2 the chiral Lagrangian for the strong interactions of the 

baryons and the pseudo-Goldstone bosons is given. The determination 

of the parameters in this Lagrangian, to lowest-order in chiral pertur­

bation theory, is reviewed. The leading corrections to the predictions of 
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lowest-order chiral perturbation theory for these parameters are com­

puted. 

Section 3 contains a discussion of weak nonleptonic hyperon 

decays . The predictions of lowest-order chiral perturbation theory are 

·reviewed and the leading corrections to these predictions are com­

puted. 
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2 . Chiral perturbation theory for baryon-meson strong interactions 

The strong interact.ions of the pseudo-Goldstone bosons at low 

momentum are described by an effective field theory that transforms 

correctly under chiral SU(3)L x SU(3)R symmetry and is invariant under 

parity and charge conjugation. The pseudo-Goldstone boson fields are 

incorporated in a 3x3 special unitary matrix 

where 

r 

M= 

2iM 
I:= exp f, 

1 0 1 
-Tr +-11 
V2 v6 

Under an SU(3)L x SU(3)R transformation 

(6 .1) 

(6 .2) 

(6.3) 

with LtSU(3)L and RtSU(3)R· We are interested in the interactions of 

the pseudo-Goldstone bosons with baryons . The baryon fields are incor­

porated in the 3X3 matrix 

r 
_1_ I:o + _1_ A 
V2 v6 

B = I:-

-­.... 

I:+ p 

1 0 1 (6.4) - -I: +-A n 
V2 v6 

':'0 -[~]!A .... 
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Under an SU(3)LxSU(3)e transformation 

B .... UBUi . (8.5) 

Here U is a 3 x 3 unitary matrix defhed .by the transformation proper­

ties of 

"M - r.;: ~=exp~= V2:. 
J 

(6.6) 

Under an SU(3)LxSU(3)R transformation 

(6.7) 

where L~SU(3)L and R~SU(3)9. Note that U is a nonlinear function of 

L,R and M. Therefore, U depends on space-time coordinates. 

In lowest-order chiral perturbation theory the strong interactions 

of the pseudo-Goldstone bosons and baryons are described by the 

effective Lagrangian density 

L =Lo+ Li. 

The Lagrangian density 

Lo= f Troµ2:~2:t +Tr Bil B- MTr BB 

+ ~ TrB-yµ[~aµ~t + ~taµ~.B] 

iD -
+ 2 Tr B-y"'75f~oµ~t - ~taµ~. BJ 

+ ~Tr B-f"15[~aµ~t - ~taµ.tBJ, 

(6.8) 

(6.9) 

is invariant under SU(3)LxSU(3)n. The Lagrangian density L 1 is 
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proportional to the quark-mass matrix. Neglecting up and down quark 

masses the mass matrix is 

ro o a 

m = 0 0 0 (6 .10) 

The Lagrangian density L1 transforms like (3,3) + (3,3) under 

SU(3)LxSU(3)e and is given by fl 

(6 .11) 

The left-handed current can be derived from L using the Noether 

procedure. For this purpose it is convenient to express C1e chiral 

Lagrangian in terms of the baryon fields 

(6.12a) 

(6 .12b) 

since they transform in the simple manner, 

- f f - t t 
fl The terms Tr_815(~m~-~m~)8 and Tr8158(~m~-~m~) are 
suppressed because 8-y58 vanishes for baryons at rest. 
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under SV(3)LxSV(3)R. Using this technique we find that the left-handed 

current is 

1 - 1 -
~ = - 2 1T B7µ.[ ~t 1"'~.B] + 2D1T B/'µ.1'5 !~t l"'tB ! 

+ ~F1TB1µ.1'5[~tJ't'tB]- ~ 7T(dµ.E)Etri . (6.14) 

Matrix elements of .J!+i
5 between baryon states are measured in 

semileptonic hyperon decays. The matrix element of J~ +i2 between the 

neutron and proton is measured in neutron beta decay. In the leading 

order of chiral perturbation theory these matrix elements folkiw from a 

tree level evaluation of matrix elements of the current in eq. (6.14). 

Explicitly, 12 

<p 1Jt+i2 1n> = ~ u;, !-/'µ. + (D+F)1.u1d'U.n. 

<AIJA+i2 IE-> = .JeuA!01.u + D7µ.75!u.~, 

<p IJ'!+i5!A> = _1r- u;,!31µ.- (D+3F)7µ.75lu.A, 
2V6 

<Al Jt+i5 1 z-> = _ 1 r- uAf-31.u - (D-3F)1.u15!u.r, 
2V6 

<nlJt+i5 jE-> = ~ ~b·...,. + (D-F)7...,.75!u.~, 

~o I J4 +i51-- 1 - t (D F) i <"" .u ::.. > = _ r- U.r,o<-7,u. + + 7µ.75>U.-z- . 
2v2 

(6.15a) 

(6.15b) 

(6 .15c) 

(6 .15d) 

(6 .15e) 

(6 .15f) 

A fit to semileptonic hyperon decays gives F = 0.44 and D=0.81 [29]. 

Evaluating the tree level matrix element of the left-handed current 

JA +i2 in eq. (6.14) between a TT+ and the vacuum gives that 

12 In (6 .15) u.e denotes a spinor for baryon B and ue=u.11° . 
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f = f rr ~ 134 MeV. (6 .16) 

Evaluating the masses of the mesons and baryons at tree level, we 

find 

(6 .17) 

(6 .1 Ba) 

(6.18b) 

(6.18c) 

(6.18d) 

These equations determine the values of the parameters 

M,a 1ms, b 1ms and b2ms to leading order in chiral perturbation theory. 

Combining baryon masses to eliminate b 1 and b2 gives the Gell-Mann­

Okubo relation for the baryon masses [28] 

3 1 1 4 M1i. + 4 Mr. - z (MN + M'E.) = 0. (6 .19) 

The leading corrections to the current matrix elements in eqs. 

(6 .15) are of order ms ln ms. These arise from a one-loop evaluation of 

the matrix elements of the left-handed current in eq. (6.14) . This 

correction dominates over the corrections of order ms because of the 

"large" logarithm. The corrections of order ms are not computable 

since they can arise from a tree level evaluation of matrix elements of 

higher-derivative operators in the left-handed current. Only the axial 

part of the left-handed current, A:. defined by .!; = ~ - A:. gets 
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corrections of order ms ln ms . The Feynman diagrams which give 

nonzero corrections of this order to the axial current are shown in Fig . 

(13). Parameterizing these corrections in the form 

(6 .20) 

we find that 

a 1 +i2 - _g D3 + _g D2 F + _g D~ - 2Ji6 - .1 D ·- .1 F 
pn - 9 9 3 2 2 (6 .21 a) 

a1t!2 = - 1
- I 11 D3 

- D~ - DJ (6.21 b) 
~9 

a 4!i5 = -· 1- 1~ D3 - 2 D2F-1 D~ + ~ F6 + § D + 1§ F16 .2 t c) 
]J ~ 18 2 2 2 4 4 I' 

a4~5 =-1-1~ D3 + ~ D2F- 1 D~ - ~ F6 + ~ D- 1§ F16 21d) 
KE. ~ 18 2 2 2 4 4 I' . 
4 +i5 = .1.. D3 - _!l D2F + 1 D~ + .1 F6 - § D + § F (6.21e) cxn~ 1 a 1 a 6 2 4 4 

a~t.!:-5 = _1_ I .1.. D3 + ..!l D2 F + 1 D~ - .1 F6 - § D - ~ Fl . .::. vl2 18 18 6 2 4 4 

(6.2 lf) 

These corrections are quite small. For a subtraction point µ. = 1 

GeV, none of these corrections exceeds 30% of the leading cont1'.'ibution. 

The leading and next-to-leading corrections to the baryon :nass for­

mulae in eqs. (6 .18) are of order m;12 [16] and mi ln ms. respectively. 

They arise from the one-loop Feynman diagram in Fig . (15a), which con­

tributes directly to the mass, and from the one-loop Feynmar• diagram 

in Fig. (15b), which contributes directly to the mass and indirectly 

through wave-function renormalization of the baryon fields . 

Parameterizing these corrections to the baryon masses in the form 
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f;,M = 11ami + 1ambns 1 ( a; 2) 
B 8rrf2 (4rr/)2 n m~ µ . (6 .22) 

we have 

and 

nN = -[[ ~ + 
4~]n2 -[ 2 + B~l DF + [ 3 + 

4
-;'3] pel· (6 .23a) 

nE = -([2 + 
162~] D2 + 2pe} (6.23b) 

nA = -[[ ~ + 
1 ~~] D2 +ape} (6.23c) 

n~=-[[~ + 
4~]n2+[2+ 8~]DF+[3+ 4-;'3]pe). (6.23d) 

?'N = [ 2b 1 + 
6
9
8 

b2+b2[ 
2
3
8

D2-16DF+12pe]-b 1[ ~ D2+4DF+spe]} 

(6 .24a) 

n = [2b 1 + 2b2 - 6b2 (D-F)2 - 6b 1 (D + F)2} (6.24b) 

'YA= [ 
1
2
5
7
4 

(b 1 +b2) +bz [ ~ D2-12DF+spe]+b 1[ ~ D2+ 12DF+spe]J. 

(8.24c) 

?'~ = [ 69
8 

b 1 +2bz-bz[ ~ D2-4DF+spe] + b 1 [ 
2
3
8 

D2+ 16DF+ 12pe]l 

(6.24d) 

The corrections 178 were calculated previously in Ref. [16]. Our 

results disagree with those in Ref. [16]13 . The corrections in eqs. (6.23) 

f3 We also calculated 118 from the divergence of the vector current. This 
was the method used in Ref. [16]. 
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and (6.24) change the Gell-Mann-Okubo relation to : 

3 1 1 4 MA + 4 Mt - z (MN + M~) 

= ml [ 1 - _g_ l (D2 - 3~) - 4D2(Mr. - MJ mi 1n [ mi]. 
12rr/2 v3 (4rrf )2 µ.2 

(6 .25) 

The first term on the left-hand side of eq. (6 .25) is extremely small 

and the second term on the left-hand side of eq. (6 .25) is about 26 MeV 

for a subtraction point µ=1 GeV. Experimentally, 

3/ 4MA + 1/ 4Mt - 1/ 2 (MN+ M-s.) Ri 6.5 MeV. 

Finally, we note that there is a one-loop correction to the matrix 

element of the left-handed current J~+i2 between arr+ and the vacuum 

which gives [16] 

[ mi mil J=fw 1+ (4rrf)2ln µ2 · (6.26) 
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3. Chiral perturbation theory for weak nonleptonic byperon decays 

The Hamiltonian for weak nonleptonic hyperon decays transforms 

like (8L,la) + (27L,1R) under chiral SU(3)LxSU(3)R. Experiments indi­

cate that the (BL, la) part of the effective Hamiltonian dominates the 

decay amplitudes . In the leading order of chiral perturbaticn theory 

the (BL, 1R) effective Hamiltonian density for / ASI = 1 weak no:ileptonic 

decays is 

where 

0 0 0 

h=001, 

0 0 0 

(6.27) 

(6 .28) 

projects out the correct component of the octet. The invariant matrix 

elements for nonleptonic hyperon decays have the form 

M(B; .. 8111) =Us, (A(S) (B; .. 8111) + ')'5 A(P) (B; .. 8111i)i•a · (6 .29) 

The parameters ACS)(~ -+ B1rr) and A(P)(~ -+ B1rr) specify the S-wave and 

P-wave amplitudes, respectively. Isospin symmetry of the strong 

interactions implies that 

M(A-+ prr-) + Vz M(A-+ nrr0) = 0, 

M('E.- -+Arr-) + Vz M('E.0 -+ Arr0) = 0, 

Vz M(l::+-+ prr0) + M(l::--+ nrr-) -M(l::+-+ nrr+) = 0 . 

(6.30a) 

(6 .30b) 

(6 .30c) 
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The isosp1n relations (6 .30) hold for both the S-wave and P-wave decay 

amplitudes . 

are not related by isospin. Evaluating tree level matrix elements of the 

effective Hamiltonian density (6 .27) gives the leading predictions of 

chiral perturbation theory for these amplitudes . Explicitly for the S­

wave amplitudes [31] 

(6 .31a) 

(6.31b) 

(6 .31c) 

(6.31d) 

A least-squares fit to the seven measured S-wave amplitudes gives a 

= 0.56 and b = - 1.42 in units of Gym~+ f 11 .. For the P-wave amplitudes 

the pole diagrams in Fig. (16) give [31] 

A(P)(:E+ _. n1T+) = 2MN !D(a-b) + D(a/3+b)I· 
I . Mt-MN MA-MN 

(6 .32a) 

A(P)(:E- _. n1T-) = 2MN ! F(a-b) + D(a./ 3 +b) ]. 
I Mt-MN MA-MN 

(6.32b) 

A(P)(A _. p1T-) = ZMN ! (-a-3b )(D+ F) + 2(b -a)DJ. 
..J6J MA-MN Mt-MN 

A(P)(;=:- _. A7r-) = ZMA ! (a.-3b) (D-F) + 2D(a + b) I· 
..JBJ M:. .,... MA M:. - Mt 

(6.32c) 

(6.32d) 

The parameters A(P) have differences of baryon masses in the denomi­

nator because they arise from pole diagrams. Although the parameters 

A(P) are proportional to 1/ms, in the leading order of chiral 
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perturbation theory, the P-wave decay amplitudes (like the S-wave 

decay amplitudes) are independent of the strange quark mass because 

Us/!5UJJi. is proportional to ms . 

Note that the expressions for the parameters A(S,P) (A-+ p TT-) can 

be deduced from those for A(S,P) c=:--+ ATT-) by the change of variables: 

Mz -+MN. b -+ - b and F-+ - F. This occurs because the Lagrangians for 

the strong interactions in eqs . (6 .9) and (6.11) and the Hamiltonian for 

weak interactions in eq. (6 .27) are invariant under/4 

(6 .33) 

provided we flip the sign of F, interchange b 1 and b 2 and flip the sign of 

b. Since eq. (6.33) interchanges p with:=:-, and TT+ with TT-, crossing sym­

metry implies the relation between A(S,P) (A-+ p1T-) and A(S,P) (:=:--+ ATT-). 

The S-wave amplitudes in eqs . (6.31) can be combined to eliminate a 

and b . This yields the Lee-Sugawara relation [32] 

1 

A(SJ (A~ p1T-) + 2 ACS) (;:::-- ~ A1T-) + [~]'A (SJ (l:- ~ n?T-) = 0. (6.34) 

The leading corrections to lowest-order chiral perturbation theory 

for hyperon decay amplitudes are of order mslnms. These arise from a 

one-loop evaluation of the matrix elements of the eff~ctive Hamiltonian 

in eq. (6.27) . The corrections of order mslnms dominate over those of 

order ms because of the "large" logarithm. The corrections of order ms 

! 4 This "symmetry" can also be seen in the matrix elements of the 
currents and the baryon masses. The "symmetry" generalizes to higher 
derivative operators . 
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are not computable since they can arise from subleading operators in 

the effective Hamiltonian for j~Sj = 1 weak nonleptonic decays that 

involve a derivative or a factor of the quark mass matrix . 

The one-loop Feynman diagrams which give a nonzero contribution 

of order mslnms to the S-wave decay amplitudes are shown in Fig. 

( 17)15 . In Fig . ( 1 7) a shaded square denotes a vertex from the weak 

interaction Hamiltonian )€q . (6.27), while a shaded circle denotes a 

strong interaction vertex from eq. (6.9). Writing the corrections to the 

s-wave amplitudes in the form 

(S) mi a 2 
~A (~ -+ B1 rr) = 'P8'Bi (

4
rrf)2 ln(mKI µ, ). (6 .35) 

we find that 

(6.36a) 

,,,T'- = ~ [- ~ _ 1 D2+6DF+3pe]- ~ [- ~ + ~ D2 + 10DF+3pel 
.,,._ n f 2 3 J 2 3 ' 

(6 .36b) 

'PAp = __ a_ [- ~ + 19 D2-22DF+9pe]-~1-~ +1 D2-10DF+9pel· "'61 2 3 YsJ 2 3 

(6.36c) 

'Po;;-A = - .Jal [- ~ + l: D
2
+22DF+9F"j+ ~f [- ~ + ~ D2

+ 10DF+9F"l 

(6.36d) 

! 5 There is also a correction from pion wave function renormalization. 
Baryon wave function renormalization does not contribute at order 
m,logm5 • 
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The dependence of the corrections (6 .35) on the subtraction pointµ 

is canceled by the contribution of operators with one insertion of the 

quark-mass matrix [12]. However, none of the subleading operators 

with a single insertion of the quark mas~ matrix contribute to 2:+ -. n1T+ . 

This explains the vanishing of Y'i:+n. Note, however, that this does not 

mean that there are no contributions to A(S) (~+ ... n1T+) of order ms . 

There are subleading operators with a derivative that give such a 

contribution16 . 

For a subtraction point µ, = 1 GeV table 3 gives the corrections to 

the S-wave amplitudes. The ~--+ n1T- and A-+ p1T- corrections are about 

30% of the leading contribution. However, the correction to the S-wave 

amplitude for :=:- -+ A1T- is large, indicating a breakdown of chiral pertur­

bation theory for this S-wave amplitude . The corrections (6 .3f1) change 

the Lee-Sugawara relation to 

1 

A (S) (A ~ p rr-) + 2 A CSl(;;:- ~ Arr-) + [ ~ ]" A (Sl(i;- ~ n rr-) 

=- Jal mil~4<;_;~; 1"
2

) (a. (26D" + 4 DF + l 8F") +b ( -2D2 - 60DF - l BF")} 

(6.3?) 

The large discrepancy between eqs. (6 .37) and (6 .34) indicates that 

chiral perturbation theory for the Lee-Sugawara relation has broken 

down. 

The Feynman diagrams which give a nonzero contribution of order 

mslnm5 to the P-wave decay amplitudes are shown in Figs . (18)17 . 
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Again, a shaded square denotes a weak interaction vertex from (6 .27) 

and a shaded circle denotes a strong interaction vertex from eq. (6 .9). 

Writing the correction of order m 5 lnm5 in the form 

(P) mf 2 2 
.iA (~ -+ Birr) = GJBi.Bi (

4
rr/)2 ln(mK/ µ ). (6 .38) 

we find that 

- ZMN 11 5 1 7 3 19 2 13 ,r.{2 r.<'ll 
GJt•n - J(Mr.-MN) a. - ZD-9 D + 3D F+ 3 Dr--3r-

-b [- 2 D + ~ D3 + ~ D2 F + 11, D~ - 3F3]) 
2 9 3 3 

+ ZMN 1~ [- ~D + 74 D3-zzD2F+ 8DJi€] 
f(Mti.-MN) 3 2 9 

+ b [-~ D + 
3
9
8 D3 

- 10D2F + 8DF"]) (6 .39a) 

"'i:-n = J (:tM__~Nl I a. [- ~ F - 290 n•F + 6DF" + 2F"] 

-b [- ~ F .+ 
1
9
6 

D2F + lODF" + 2F"]) 

+ 2MN 1~1-2D+ 74IJ3-22D2F+8DJi€] 
f (M1t.-MN) 3 2 9 

+ b [- ~ n + 
3
9
8 D3 

- 1on2F + 8DF"]) (6 .39b) 

GJ!q; = 2MN !-a.[-2 (D+F)+ 61D3-137 D2F- 35 Ji€D+ 5F3] 
vf6J(Mti.-MN) 2 9 9 3 

/ 7 There is also a correction from pion field renormalization. Baryon 
field renormalization does not contribute at this order . 
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- 3b [- ~ (D+F) + 25 D3 -
65 

D2F + l FZD + 5p<3]] 
2 9 9 3 

+ ZMN I- 2a. [- ~ D - i D3 + 6D2F + 2DFZ] 
VaJ(Mr.-MN) 2 g 

+ 2b [- ~ D + 
3
9
2 

D3 + !OD"F + 2DF"ll (6 .39c) 

2Mti I [ 5 61 137 35 l c,,;-:-A = a - - (D-F) +-D3 + -D2F- -DFZ-5F3 
- Vaj(M:.-MtJ 2 9 9 3 

- 3b [- ~ (D-F) + 25 
D3 + 65 

D2F + 1. DFZ - 5;<3]] 
2 9 9 3 

+ ZM1i. j2a [- ~ D - 1 D3 - 6D2F + 2nrz] 
VBJ (M:.- Mr.) 2 9 

+ 2b [- ~ D + 3
9
2 

D3 
- !OD2F + 4DF"]} (6.39d) 

As shown in Table 3, for a subtraction pointµ= 1 GeV, these corrections 

are large, indicating a breakdown of chiral perturbation theory for the 

P-wave amplitudesf8 . It appears that the puzzling feature of nonlep­

tonic hyperon decays is not the failure of the predictions of lowest­

order chiral perturbation theory for the P-wave amplitudesf9 but 

rather the success of the Lee-Sugawara relation for S-wave amplitudes. 

JB The leading order P-wave results (6.32) and the corrections (6 .39) 
are very sensitive to the values of F,D,a. and b. However, for any reason­
able values of these parameters the corrections are large. 
19 For an explanation of the failure of chiral perturbation theory for the 
P-wave amplitudes in the chiral quark model see [10,13]. 



VII. THE SOLITON MODEL OF BARYONS. 

1. Introduction. 

The results of this Chapter are published in [ 40]. The strong 

· interaction chiral Lagrangian (3.6a), in general, possesses stn.tic solu­

tions to its equations of motion. Due to the presence of higher deriva­

tive terms these solutions of the equations of motion can be s+.able[33]. 

The Wess-Zumino term, which is added to the action to include the 

effects of anomalies[34], implies that these solitons are baryon:.3[35]. 

· These solutions still include the effects of the SU(3)LxSU(3)a sym­

metry. All the results of the previous Chapter are thus still valid in the 

soliton model. The soliton model allows, however, for some predictions 

beyond those of the previous Chapter. 

In the rest of this Section we will briefly describe the soliton model. 

In the next Section we derive Fl D for nonleptonic hyperon S-wave 

decays, in Section 3 FI D for semileptonic hyperon decays and in Sec­

tion 4 Fl D for hyperon magnetic moments. 

The soliton solutions have the form 

!:(:z:) =A!:o(:z: )A', (7.1) 

where A is a 3x3 special unitary matrix and 

[
exp(-iF( r ); · u) 01 

I:o(x)= 0 1. (7 .2) 
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with F(0)=7T and F( 00)=0. In the serniclassical approximation the soliton 

is treated as having a large mass but a fixed size . Then the higher-order 

time derivatives in the strong Lagrangian are suppressed. Note, how­

ever, that for baryons there is no sense· in which the higher-order spa­

tial derivatives are negligible . This serniclassical picture for baryons 

coincides with the large Ne limit where baryons are heavy because they 

contain a large number of quarks, but their size is fixed by the 

confinement scale[36]. 

The effective Lagrangian in (3.6a) thus describes the strong interac­

tions of the Goldstone bosons and baryons at low momenta . Quantiza­

tion about the soliton solution is achieved by treating the collective 

coordinate A as a dynamical variable . The wave functions for the 

baryons take the form[37] 

t(A)=L;L;c~>n~>(A) , (7.3) 
nab 

where D~>(A) is the unitary matrix for the representation (n) of the 

SU(3) transformation A. Each subscript is determined by a set of three 

numbers : a.=(a.i. a.2 , a. 3) and b =(b 1, b 2, b3) . The index a. determines the 

hypercharge and isospin quantum numbers 

(7 .4) 

while the index b determines the spin quantum numbers 

(7.5) 

The Wess-Zurnino term fixes b 1, since right multiplication of A by 

U( 1) transformations generated by >-.6 do not alter the soliton 
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solution[37]. 
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2. Fl D for nonleptonic hyperon decays. 

The effective weak Hamiltonian for weak nonleptonic hyperon and 

kaon decays (see Chapter II) transforms as (BL. le)+(27 L· 1 e) under 

chiral SU(3)LxSU(3)9. The octet part of the Hamiltonian dominates the 

rate for hyperon and kaon decays fl 

In terms of the field ~(:r) the (BL. 1 e) piece of the effective Hamil-

tonian for weak nonleptonic kaon and hyperon decays is given by 

(7.6) 

where the ellipses represent terms with more than two derivatives, a. is 

a constant and 0 is the matrix 

o o ol 
O= 0 0 1. 

0 0 0 
(7 .7) 

Chiral perturbation theory relates the S-wave hyperon decay ampli­

tudes to matrix elements of the effective Hamiltonian (7 .6) between 

baryon states at zero momentum. These are determined by the two 

reduced matrix elements 

<Bf1~=1 1&> = D tr(B}l&.on - Ftr(B}[&.OJ), (7 .8) 

using SU(3)v symmetry. Here B is the baryon matrix (6 .4) of two com-

ponent nonrelativistic spinors. 

fl In the semiclassical approximation the 61=* rule for kaons does not 
necessarily imply one for hyperons. Higher derivative operators in the 
(27 L· lR) that are suppressed for kaon decays are not restricted to be 
negligible for hyperon decays. 
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Using the semiclassical approximation the Fl D ratio can be 

predicted. In this approximation time derivatives in the effective Hamil­

tonian are neglected and 

(7 .9) 

with l:0 defined in (7 .2) . The spatial derivatives acting on l:0 give 3X3 

ma trices with zeros everywhere except in the upper 2x2 block. Any 2x2 

matrix can be written as a linear combination of the identity and the 

Pauli matrices. Therefore, after integrating over space we obtain 

(7 .10) 

Here we have expressed the 2x2 identity matrix as a linear combination 

of >..8 and the 3x3 identity matrix and used the tracelessness of A
1
0A. 

Note that this form for the effective action depends only on neglecting 

time derivatives and is valid to all orders in spatial derivatives . 

Using the wave functions for the baryon octet we therefore have 

(7.11a) 

where 

a = (1.~J~). (7 .11 b) 

b = (0,0,0). (? .11 c) 

This integral over group space can be expressed as a sum over 

products of Clebsch-Gordan coefficients [38] : 
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(7 .12) 

In the sum over representations n, only the the two octets contrib-

ute . Using (7 .12) we find that 

F 
D = 5 

3· (7 .13) 

This agrees, at the 20% level, with the experimental data on S-wave 

decays. The prediction in (7 .13) gets corrections from operators in the 

effective Hamiltonian with one-time derivative. 
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3. FI D for semileptonic hyperon decays. 

The semileptonic hyperon decays and neutron {3 decay are deter­

mined by matrix elements of the axial current between baryon states at. 

rest. SU(3)v symmetry implies that these matrix elements are 

parameterized by two quantities which we again denote by F and D. 

The relevant component for weak semileptonic hyperon decays is 

a = 4+i5 since 

0 0 1 
1'.4+i5 = 0 0 0 

0 0 0 

corresponds to changing a strange quark to an up quark. 

(7 .15) 

In the semiclassical approximation the same techniques that were 

used in the previous Section give 

(7 .16) 

and so, for example, 

(7.17a) 

where 

a= (1J~.*), (7 .17b) 

b = (0,1,0). (7 .17c) 
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Expressing the integral over group space in (7.17a) as a sum over 

products of Clebsch-Gordan coefficients we find that 

(7 .18) 

This agrees extremely well with the experimental value Fl D = 0.54 

[27]. The nonrelativistic quark model with static SV(6) wave functions 

predicts Fl D = 2/3. 

Our semiclassical prediction for Fl D gets corrections from opera-

tors in the axial current with a single ti.me derivative. 
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4 . F / D for hyperon magnetic moments. 

The magnetic moments of hyperons and nucleons are determined 

from matrix elements of the magnetic moment operator 

(1 .19) 

The electromagnetic current transforms like an octet under SU(3)v. 

Therefore, matrix elements of µ; between hyperons and nucleons are 

parameterized by two quantities which we again denote by F and D. 

(? .20) 

Here Q is the quark-charge generator 

2 
0 0 

3 

Q= 0 1 
0 (7 .21) 

3 

0 0 1 
3 

The magnetic moment operator is the integral of an axial current 

over space and in the semiclassical approximation 

(7 .22) 

This gives 

(7 .23) 

just as in the case of the axial current couplings relevant for sem.ilep-

tonic hyperon decays . Our predictions for magnetic moments agree with 

experiments at the 50% level. However, pure SV(3)y predictions for 
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magnetic moments are not much better. One-loop corrections for mag­

netic moments are rather large[ 17]. 

Predictions for magnetic moments including operators with one­

time derivative can be found in [39]. 



-67-

VIII. CONCLUSION. 

In this work we derived the low-energy effective weak Hamiltonian 

for ~S=l decays expressed in quark fields . We reviewed chiral perturba­

tion theory to lowest-order and explained how parts of the higher-order 

corrections can be uniquely determined from loop diagrams involving 

only the lowest-order operators. 

Using chiral perturbation theory, we calculated those higher-order 

corrections for a variety of processes. We found that the application of 

chiral perturbation theory to K°KJ mixing is unreliable. This had conse­

quences for a number of predictions made in the literature using chiral 

perturbation theory in the K° f?J system [ 19]. 

It was also found that Krm matrix elements can be reliably obtained 

from Krr and K-vacuum matrix elements . This allows to verify ~/=1/ 2 

enhancement in lattice calculations of the latter matrix elements. 

Some applications of chiral perturbation theory to hyperon proper­

ties were reviewed and the next-to-leading corrections were calculated. 

We found that the lowest-order relations for masses and semileptonic 

decays didn't receive large corrections. However, the corrections to 

nonleptonic P-wave decays and to one S-wave decay were large. The 

vanishing of A(S)(l:+ -+nrr+) remained true in the next-to-leading order, 

but the large correction to A(S)(~ -+Arr-) invalidated the Lee-Sugawara 

relation. The large corrections to the P-wave decays explain the 

discrepancy between experiments and the lowest-order predictions. 

In the soliton model for baryons, we derived some relations that are 

independent of the specific model for mesons used. These predictions 
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provided a test for the serniclassical expansion used in the soliton 

model. For the predictions we calculated, the agreement with experi­

ments was at about the same level as the pure SU(3)v predictions. 



-69-

AppendiX A : Definition of Z and D.m 2 . 

The definition of field renormalization and mass renormalization is 

given here for a real scalar field, but we use the generalization to com-

plex scalars and fermions in the text. 

The quadratic part of the bare Lagrangian is given by 

(A.1) 

and for p 2 near the physical mass the propagator is given by 

·c iZ 
"' o= 2 2 p -mp1i 

(A.2) 

where mph is the physical particle mass. 

The propagator calculated using perturbation theory to one-loop is, 

with iap 2+i{J the one-loop contribution without external propagators, 

"G i i (. 2 • R) i i o= 2 2 + 2 2 iap +i,... 2 2 · 
p -ma p -me p -me 

(A.3) 

Treating a, fJ and Z-1 as. small, this leads to 

(A.4) 

So at this level of perturbation theory we have 

Z= 1-a (A.5) 

(A.6) 
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Appendix B : Integrals. 

To evaluate the integrals needed we use dimensional regularization. 

Since we know [12] that all infinite contributions cancel against contri-

butions from higher-dimension operatdrs we are interested only in 

-finite parts . Of these finite parts the parts depending analytically on the 

mass parameters (m 2• q 2) are undetermined, too, because they can get 

contributions from higher-dimension operators. 

As an example of the extraction of a nonanalytic part we evaluate 

(3.27). 

d4-Cp 1 -if(-1+~) 1-! J _ = (m2) 2 
(2n)4-r: p 2-m2 2-! 

(4n) 2 

(B.1) 

The only nonanalytic dependence on masses here is in m-r:. Using 

the expansion of the r function and 

(B.2) 

we get 

(B.3) 

Including the µ, dependence of vertic.es leads then to 

J d 4
Tl 1 -i m 2 

-=...L- = -- log -
(2n)4 p 2-m2 16n2 µ,2 · 

(B.4) 
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[jst of Tables 

1. Coefficients of the !::i.S= 1 effective Hamiltonian. 

2. Coefficients of the !::i.S=2 effective Hamiltonian. 

3 . Lowest order and prediction and leading nonanalytic correction to 

Sand P-wave nonleptonic hyperon decays. 
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Table 1 

Coefficients of the llS= 1 Hamiltonian. Tis given b.1 

table 1 : 

Coefficients of the llS=l Hamiltonian 

A"2 0.01 Gev2 0.1 Gev2 

Ci -0 .99 +0 .0337" -0.93 +0.0497' 

C2 1.60 -0.033-r 1.55 -0 .049T 

C3 -0.033-0.0067' -0.022-0.014T 

C5 0.018+0.0047" 0.011 +0.009T 

Ca -0.099-0.0997' -0.048-0.01 T 

C1 (0.037-0.0671)a8 m (0.025-0.0481)a:11m 

Ca (0 .008-0.11 T)0:8 m (0.004-0 .06 T)0:8 m 
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Table 2 

Coefficients of the flS=2 Hamiltonian. 

table 2 . 

Coefficients of flS=2 Hamiltonian 

A"2 0.01 GeV2 0 .1 GeV2 

171 0.69 0.99 

T/2 0.59 0.60 

'1]3 0.41 0.40 

Table 3 

The hyperon decay amplitudes A(Si, A(P) measured in the unit of 

Gpm 2+ . D = .81, F = .44, a = .56Grm!+f w• b = -1.42 Grm!+f Tr•µ= 1 Ge V Tr . 

are used for calculation. 

mode ~- 4S) ~~ ~~- e) ~~P) 

(6.31) (6.35) (6 .32) (6 .38) 

l:+ -+nTT+ .06 ± .01 0 0 19 .07 ± .07 1.3 -4.8 

l:--+nTT- 1.93±.01 2.0 -.6 -.65± .07 -4.2 -3.1 

A-+pTT- 1.47±.01 1.5 .3 9.98± .24 10.4 9.0 

'E.- -+ATT- -2 .04±.01 -2.0 1.5 7.49±.28 -1.8 -9 .7 
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Figure Captions 

1. Weak decays mediated by one W exchange . 

2 . Penguin Diagram. 

3 . lPI one-loop diagrams for four fermion operators . 

4. Diagram for the decay K°-+rr0rr0 . 

5. Diagrams for the decay K°-+rrorrorro. 

6 . Diagram for meson field renormalization and meson mass renor-

malization. 

7 . One-loop diagram for evaluation off w· 

8. One-loop diagrams for <ROI 0C27>JK°>. 

9 . One-loop diagrams for <rr+rr0 1 oC27>1K°>. 

10 . One-loop diagrams for <rr0rr0J 0<8>,0<21>1K°>. 

11. One-loop diagram for <o I o<8>,a· IK°>. 

12. One-loop diagram for <rr0J oC8),o<27),a• JK°>. 

13. One-loop diagramfor <o li~l+i2 1rr+> . 

14. Feynman diagrams that give contributions of order m 5 lnm5 to the 

ma trbc elements of the axial current. Here a circled "x" is an 

insertion of the axial current and a darkened circle is a strong 

interaction vertex from the Lagrangian density in eq. (6 .9) . 

15. Feynman diagrams that give contributions of order m;12 and 

mflnms to the baryon masses . Here a shaded triangle is a strong 

interaction vertex from the Lagrangian density in eq. (6 .11) and a 

shaded circle is a strong interaction vertex from the Lagrangian 

density in eq. (6 .9). Fig. (15a) contributes directly to baryon 
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masses while Fig. (15b) contributes directly to baryon masses and 

indirectly through wave function renormalization. 

16 . Pole diagrams responsible for leading contribution to P-wave 

hyperon decay amplitudes . In Fig. (16) a shaded square is a weak 

interaction vertex from (6 .27) and a shaded circle is a strong 

interaction vertex from (6.9) . 

17 . One-loop Feynman diagrams that give a nonzero contribution of 

order m 5 lnm5 to the S-wave nonleptonic hyperon decay ampli­

tudes . Here a shaded square is a weak interaction vertex from 

(6 .27) and a shaded circle is a strong interaction vertex from 

(6 .9) . 

18 . One-loop Feynman diagrams that give a nonzero contribution of 

order m 5 lnm5 to the P-wave nonleptonic hyperon decay ampli­

tudes. In Figs. (18) a shaded square is a weak interaction vertex 

from (6 .27) and a shaded circle is a strong interaction vertex 

from (6.9) . 
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Figure (3) 
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Figure (4) 
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Figure (5) 
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Figure (6) 

Figure (7) 

(a) (b) 

Figure (B) 
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Figure (9) 
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Figure (10) 
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Figure (11) 
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Figure (13) 
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Figure (18) 

Figure (17) 
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Figure (18) 
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