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ABSTRACT 

We discuss some problems that arise when one tries to quantize a theory that 

possesses gauge degrees of freedom. First, we identify the Gribov problem that is 

encountered when the Faddeev-Popov procedure of fixing the gauge is employed to 

define a perturbation expansion. We propose a modification of the procedure that 

takes this problem into account. We then apply this method to two-dimensional gauge 

theories where the exact answer is known. Second, we try to build chiral theories that 

are consistent in the presence of anomalies, without making use of additional degrees 

of freedom. vVe are able to solve the model exactly in two dimensions , arriving at a 

gauge-invariant theory. We discuss the four-dimensional case and also the application 

of this method to string theory. In the latter, we obtain a model that lives in arbitrary 

dimensions. However, we do not compute the spectrum of the model. Third, we 

investigate the possibility of compactifying the unwanted dimensions of superstings 

on a group manifold. We give a complete list of conformally invariant models. We 

also discuss one-loop modular invariance. We consider both type-II and heterotic 

superstring theories. Fourth, we discuss quantization of string field theory. We start 

by presenting the lagrangian approach, to demonstrate the non-uniqueness of the 

measure in the path-integral. It is fixed by demanding unitarity, which manifests 

itself in the hamiltonian formulation, studied next. 
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1. Introduction 

0 0:v{}pw7ro<:; <ptHT€L TOV €LOivat opi/€TCiL. 

ApL<TTOTiATJ<:; 

Man, by nature, yearns to know. 

Aristotle 

The first quantum theory with a gauge symmetry was quantum electrodynamics 

(QED), based on the simplest gauge group, U(l). Its beauty lies in the fact that 

interactions are mediated by the photon, whose introduction is necessary so that the 

theory possesses a local symmetry. The profound successes of QED in explaining 

experimental data led people to propose [1] that an extension of the idea of "gauge 

symmetry" to more complicated Lie groups could explain other interactions in nature. 

Thus, quantum chromodynamics (QCD) was developed, based on the group 

SU(3), that was designed to explain the strong interactions. Being a non-abelian 

theory, however, meant that extraction of numbers that could be compared with ex­

perimental data would be much more cumbersome. In fact, no such numbers have 

yet been calculated. The main obstacle is the strong coupling that does not allow the 

straightforward use of perturbation theory. 

The gauge principle was more successful with weak interactions, where it was 

combined with the idea of "symmetry breaking" through Higgs particles! However, 

the attempt to extend these ideas to build a theory of all known forces except gravity 

(grand unified theories) [3) has for all intents and purposes failed. 

When QCD was at its infancy, another approach seemed promising for strong 

interaction physics: dual resonance models [4]. It was soon discovered that they were 

t For a review and references, see ref.[2]. 
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equivalent to postulating that elementary particles be the modes of vibrating strings 

[4], and therefore have a certain intrinsic extent. Although computationally much 

simpler than QCD, this theory had serious shortcomings: it contained a particle with 

imaginary mass (tachyon) and could only exist in the unworldly 26 dimensions [5]. 

Strings were set aside by QCD after the discovery of asymptotic freedom [6]. 

Another crucial development in gauge theories was the discovery of "anomalies.'' 

This term was invented to describe the breakdown of classical symmetries due to 

quantum effects. They were first discovered by Steinberger (7] but they started to 

attract attention much later [8). It was then realized [9] that they imposed strong 

constraints on the particle content of gauge theories. Anomalies also resurrected 

string theories, which were no longer viewed as theories of strong interactions, but as 

theories of everything [10]. They were combined with a gauge principle and anoma­

lies led to an almost unique choice by restricting the gauge groups [11). However, 

the task of extracting any numbers became formidable, because string theories were 

computationally even more complex than QCD. 

More recently, anomalies were investigated from a different point of view: not as a 

plague, but as a challenge to build a consistent theory in their presence (12]. They are 

also very useful in that they constitute a probe to the structure of the space of gauge 

potentials, which is largely unexplored. Another probe is the study of the Gribov 

ambiguity [13), which is also a consequence of the topology of gauge space. These 

two problems (the Gribov ambiguity and the construction of consistent anomalous 

theories) are discussed in the next two chapters. The general motivation for this work 

is the belief that a better understanding of gauge space is vital for the development of 

QCD or any other theory with a gauge freedom, that will include more interactions. 

It is interesting to note that if any program of circumventing anomalies succeeds, 

it will strip string theories, that are meant to describe all interactions, of their beauty: 

their uniqueness. However, this by no means implies that the study of string theo­

ries is useless. On the contrary, they possess a rich mathematical structure, whose 

study will certainly lead to a better understanding of field theory. We believe that 
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if they fail to explain everything, strings will still succeed in a more modest, yet ex­

tremely important task: to help extract numbers that will explain some experimental 

data in strong interactions, which was the original motivation for investigating them. 

However, a lot more work is needed before this goal is achieved. 

Two aspects of string theories are discussed here. One is the compactification of 

the extra dimensions that are necessary for the consistency of the theory (Chapter 

4). The other is the quantization of string field theory (Chapter 5). 

In more detail, the organization of this work is as follows. In Chapter 2, we discuss 

the Gribov ambiguity. First, we identify the two problems that arise in the Faddeev­

Popov procedure of fixing the gauge. We also exhibit their topological origin. We then 

proceed to solve these problems. We give a heuristic solution for the first problem. 

For the second problem, we derive an expression for the path integral that takes it 

into account. We find that this problem has an effect in two-dimensional perturbation 

theory. We show that the nai've expansion disagrees with the exact result, whereas 

correct results are obtained when the second Gribov problem is properly accounted 

for. It is possible to follow the same steps in four dimensions, however no surprises 

are expected there. It would also be interesting to find the equivalent modification 

of perturbation theory for lattice gauge theories, where the perturbation expansion 

is also in error. However, we have not succeeded in formulating the Gribov problem 

there. 

Chapter 3 is devoted to the subject of anomalies. We introduce two regulariza­

tion procedures that lead to the consistent and the covariant forms of the anomaly, 

respectively. It should be noted that this result is not in contradiction with the fact 

that the covariant anomaly is not related to the consistent one by the addition of 

counterterms in the effective action, because, as we show, the two models we obtain 

satisfy different Dyson-Schwinger equations. We also introduce a gauge-invariant reg­

ulator, which we apply to three different cases: (a) two-dimensional chiral Schwinger 

model, (b) four-dimensional chiral gauge theories, ( c) conformal anomalies in bosonic 

strings. In case (a), we solve the model exactly, thus showing explicitly that it is pos-
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sible to construct gauge-invariant anomalous theories. In case (b ), we limit ourselves 

to computing the divergence of the gauge current and the commutator of generators 

of gauge transformations. The results indicate that the model is gauge-invariant. 

However, more work is needed in order to prove the unitarity of the theory. In case 

( c ) , we obtain a consistent theory in arbitrary space-time dimensions. However, we 

did not succeed in computing the spectrum of the model. It should be noted that in 

all cases we do not make use of extra degrees of freedom. 

+ 
Chapter 4 deals with compactification of strings on group manifolds.+ The ad-

vantage of group manifolds over other means of compactification (e.g., Calabi-Yau 

spaces) lies in the fact that the theory is exactly solvable in the former case. We 

study all Lie groups and identify the spectrum in each case. We consider both type-II 

and heterotic string models. Some models contain fermionic multiplets that realize 

the supersymmetry independently. When the model contains bosons that cannot be 

fermionized, we show that it is necessary to twist their boundary conditions, in order 

to obtain a realistic theory. We discuss the complications that arise concerning the 

proof of modular invariance in this case. 

Finally, in Chapter 5, we discuss the quantization of string field theory. We first 

present the lagrangian formulation following the program proposed by Fradkin et al. 

[14]. Our starting point is the action proposed by Witten [15]. Unfortunately, we do 

not obtain a unique measure for the path integral. It is fixed by requiring unitarity 

of the quantum theory, which can be achieved in the hamiltonian formalism. We 

therefore define the path integral using the hamiltonian formalism and do an explicit 

calculation to demonstrate agreement with the lagrangian formalism at tree level. It 

will be interesting to calculate a loop diagram and see whether closed string poles 

appear in open strings. 

:j: This work was done in collaboration with E. B. Kiritsis. 
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2. The Gribov ambiguity 

2.1 The Faddeev-Popov procedure 

An indispensable tool in the quantization of gauge theories is the Faddeev-Popov 

procedure [1]. We shall briefly illustrate it in the case of Yang-Mills theories. For 

definiteness, we shall be working in the adjoint representation of SU(N). 

The lagrangian density for a pure Yang-Mills theory is 

(2.1.1) 

where Fa = [) Aa - [) Aa + ifabc Ab Ac is the field strength fabc are the structure µv µ v v µ µ v ' 

constants of the gauge group G = SU(N) ([Ta, Tb] = fabcyc, where ya are the 

generators of the Lie algebra of G, normalized by trTaTb = ~5ab), and A~ is the 

vector potential (µ = 0, ... , 3). The momenta are defined by 

(2.1.2) 

It is clear that P0 = 0, so the transformation to the hamiltonian picture is singular. 

The hamiltonian density is 

(2.1.3) 

(i = 1 2 3) where B· = le ·kFa is the "magnetic" field and Dab = 8 5ab - ijabc Ac 
l , l 2 ZJ Jk ' µ µ µ" 

The time component of the vector potential, A0 plays the role of a Lagrange multiplier 

enforcing the constraint (Gauss's law) 

(2.1.4) 

This is also the generator of time-independent gauge transformations, 5Af = -Dfbci , 
5pia = -ifabc Plac and 5A0 = 0, which leave the hamiltonian invariant. 
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A quantum theory is defined through the generating functional 

(2.1.5) 

where J~ is an external current that the system is coupled to. We do not introduce 

dynamical fermions, as they add nothing to our discussion. 

Next, we fix the gauge using the Faddeev-Popov procedure. For simplicity, we 

choose a linear gauge, MA = 0, where NI is a linear operator independent of A~ and 

Pt. This class of gauges includes the Coulomb gauge ( OiAi = 0) and the axial gauge 

( A3 = 0). Inserting 

(2.1.6) 

in the path-integral, performing a gauge transformation and integrating over A0, we 

obtain 

eiW[J] = J DADP Ll[A]8[M A]8[Dib Pt+ g2 J0]ei f g
12 

PtooA't-Ho , (2.1. 7) 

where Ho = 2!2 Pt Pt + ,/gr Bf Bf. Ll is the Faddeev-Popov determinant which is 

easily computed using eq.(2.1.6): 

Ll[A] = det MD . (2.1.8) 

Now let P = P + M ¢and A= A+ A', where MP= MA= 0. The gauge-fixing 

condition MA= 0 becomes A' = 0. Thus, Gauss's law becomes an equation in ¢: 

(2.1.9) 

where pa = g2 Jg - irbc A.~P{ is the total "color" density (g2 Jg and irbc A.~P{ can be 

thought of as the "quark" and "gluon" contributions, respectively). Integration over 
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¢gives a factor of det(M D)-1 = t:..- 1, which cancels the Faddeev-Popov determinant 

(eq.(2.1.8)). The final result is 

(2.1.10) 

where 'Ho= $(P2 +(M¢)2 +B2), and <Pis given by eq.(2.1.9). Thus, the generating 

functional has been expressed in terms of only physical degrees of freedom. This 

serves as the starting point for perturbative calculations. 

It should be noted that the whole analysis can be carried out at the classical level. 

The path-integral is then defined in the standard way, once the independent degrees 

of freedom have been identified. 

2.2 The problem(s) 

The procedure that we described in the previous section only works under certain 

assumptions that we shall now discuss. For g(A) to be a good gauge-fixing condition, 

it has to intersect each gauge orbit exactly once. If there are two or more points of 

intersection! then we count gauge equivalent potentials twice or more times, respec­

tively. These extra potentials are called Gribov copies, after Gribov who discovered 

them (2], and seem to be commonplace in Yang-Mills theories. 

Singer showed that if the boundary conditions at infinity amount to working in 
+ 

a space that has the topology of a sphere; then it is impossible to choose a gauge so 

as to avoid Gribov copies (3]. The argument goes as follows. 

Suppose that there exists a gauge-fixing surface :E = {Aµ : g(A) = O} that crosses 

each orbit exactly once. Then, :E, together with a fixed orbit, define a good coordinate 

system in the space of all vector potentials, A. Indeed, let Aµ E A be an arbitrary 

vector potential. There exists a unique potential A_µ E :E that is gauge equivalent to 

t We do not discuss the case of zero points of intersection, because it does not arise. 
t This is normally the case, because one considers only gauge transformations that become the 

identity at spatial infinity. 
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(2.2.1) 

for some A E Q, where g is the group of all three-dimensional maps from S3 (the 

three-dimensional sphere) to the gauge group G. It is clear that we can associate a 

pair (Aµ, A) with each potential Aµ in a unique fashion, where A_µ E L: and A E Q. 

Since each orbit is a copy of g, it follows that the space of all potentials is the direct 

product of L: and g: 

(2.2.2) 

Now, A is topologically trivial, therefore so is Q. However, this is not true, because 

for any Lie group G, there exists at least one homotopy group 7rj(9) = 7rj+3(G) that 

is not trivial [3] . Thus, we reached a contradiction, which shows that a continuous 

surface L: crossing each orbit only once does not exist. Hence, Gribov copies are 

inevitable. A (heuristic) solution to this problem will be presented in the next section. 

As an illustration, consider the space A = R 3 , in which the orbits are the 

paraboloids L::c = {(x,y,z) : z = x2 + y2 + c}. Each L::c is topologically trivial, 

since 7rj(L::c) is trivial, Vj. Therefore, we expect to be able to find a continuous line 

that crosses each orbit exactly once. Indeed, such a line exists; it is the z-axis. 

Now suppose that the orbits are coaxial cylinders: L::c = {(x,y,z): x2 +y2 = c}. 

In this case 7r1 (L::c) is not trivial and one cannot find a line that crosses each orbit 

only once. The same is true if the orbits are concentric spheres: {L::c = {(x, y, z) : 

x 2 + y2 + z 2 = c}, where 7rz(L::c) is not trivial. 

There is also the degenerate case in which the gauge-fixing surface g(A) = 0 is 
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tangent to an orbit. This is true for the Coulomb gauge,§ 

g(A) = oiAi(x) = 0 , (2.2.3) 

as was first shown by GribovQ (2). In this case, the Faddeev-Popov determinant 

(eq.(2.1.8)) vanishes. Consequently, the physical degrees of freedom are ambiguously 

defined, because, as can be seen from eq.(2.1.9), the operator MD has zero modes 

and is therefore not invertible. This would not have been an obstacle, if the vector 

potentials for which MD has zero modes formed a set of measure zero. However, it 

has been shown [4] that this is not the case. 

To show that the Faddeev-Popov determinant vanishes, it suffices to show that 

the operator MD OiOi8ab - ijllbc Af oi has a zero mode. Thus, we have to find a 

<j;ll ( x) satisfying 

(2.2.4) 

Consider the equation 

(2.2.5) 

This is like a Schrodinger equation with an attractive potential [3]. Therefore, for 

large enough Ai there exist bound states, i.e., solutions of (2.2.5) with E < 0. It 

follows that for intermediate magnitudes of Ai, there exist zero-energy solutions, i.e., 

solutions of eq.(2.2.4). Such solutions were first discovered by Gribov [2] and have 

been further investigated [5]. 

§ Another way of defining the Coulomb gauge is as the gauge minimizing the expression 

Singer [3] has given a proof for a generalized version of the Coulomb gauge, in which the surface 
g(A) is orthogonal to the orbit at some fixed potential A~o). (For the ordinary Coulomb gauge 
A(o) = 0.) The proof follows the same lines. 
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In section 2.4, we shall show that a careful implementation of the Faddeev-Popov 

procedure leads to an expression free of this second Gribov problem [6]. 

2.3 Solution to the first problem 

We shall argue that the first problem is not a real handicap of the Faddeev-Popov 

procedure. For clarity, we shall make use of a simple illustrative example. Consider 

the integral 

Z = J dxdye-S(x-y1f3) ' (2.3.1) 

where the number of variables has been reduced to two! Of course, Z diverges, but if 

one is interested in expressions of the form 

(X) = ~ j dxdyX(x - y 113 )e-S(x-y
113

) , (2.3.2) 

it makes sense to interpret Z as Z = J due-S(u), because the (infinite) factor J dy 

cancels between the numerator and the denominator. The "action" S is invariant 

under the transformation ox = c, oy = 3y213 c. This transformation generates a flow 

along the lines (orbits) x - y113 =canst. So, fixing the gauge means choosing a line 

that intersects each orbit exactly once. Let us impose the gauge y = a. This is 

implemented by introducing the factor 

1 = .6.1(y) j dco(y + 2y213c - a) , (2.3.3) 

inside the integral ( eq.(2.3.1) ). Changing the order of integration and performing the 

appropriate "gauge" transformation, we obtain 

Z"' j dxdyo(y - a).6.1(y)e-S(x-y
1
'

3

) 

"' J dxe-S(x-alf3) 

"' j due-S(u) , 

(2.3.4) 

where we have ignored overall normalization constants. Thus, we obtain the desired 

result. 



12 

Now, consider the gauge-fixing line y = x, which crosses some of the orbits more 

than once. Defining ..6.2(x, y) by 

1 = ..6..2(x,y) J dc5(y + 2y213c - x - c) , (2.3.5) 

and arguing as before, we obtain 

00 

Z,....., J dxl2x2/3 - l le-S(x-x1f3) (2.3.6) 

-00 

To change variables to u = x - x113, we split the integral in three parts. Thus, we 

write 
-.A +.A +oo 

Z"' J dxf(x) - J dxf(x) + J dxf(x) , (2.3.7) 

-00 -.A +.A 

where f(x) = (1-2x213)e-S(x-x
113

) and>.= 3-3/2. In terms of u, eq.(2.3.7) becomes 

+u +u +oo 

Z ,....., J du e-S(u) - J du e-S(u) + J du e-S(u) 

-00 -0' -0' 
(2 .3.8) 

+oo 

= J du e-S(u) , 

-00 

where a = 3-1/ 2 - 3-3/2. Therefore, we obtain the right result. The reason is that 

the "determinant" ..6..2 is the absolute value of an expression (..6..2 = l2x213 - 11), so 

the integrals between points of intersection cancel. Were ..6..2 = 2x213 - 1, instead, 

the middle integral in eq.(2.3.8) would have had a plus sign leading to an incorrect 

express10n. 

Thus, the procedure works even if there are more than one points where the 

gauge-fixing line intersects the gauge orbits. Yang-Mills theories work in a similar 

way. 
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From the example we just discussed, we can also see how the second problem may 

arise. Indeed, suppose we choose the gauge-fixing line y = 0, which is tangent to all 

orbits. Then the resulting expression (eq.(2.3.4) with a = 0) is meaningless, owing 

to the fact that 6.1(0) = 0. Thus, the second problem invalidates the Faddeev-Popov 

procedure, and therefore requires more care. 

2.4 Solution to the second problem 

The second Gribov problem arises whenever the operator MD (with indices sup­

pressed) has zero modes. Let us call K, the space of all the zero modes of this operator. 

Whenever o:a is in iC, M Do: = 0 and so in the expression for the Faddeev-Popov de­

terminant, 

6.-1 = J Va8[M Do:] , (2.4.1) 

which is valid for the vector potentials lying on the gauge-fixing surface lvl A = 0, we 

get a 8(0) factor. It is these factors that produce the unwanted infinity. To eliminate 

them, we replace 6. -l by (6] 

ji-1 = J Va JV>.. exp { i J d4 x>..a[Mijb A;+ (M Dtb ab]} , 
!R 

(2.4.2) 

where the integration over >..a is restricted in the space~ of the functions orthogonal 

to the zero modes of MD. Inserting the factor 

l=Zi j Va j V>..exp{ij d4 x>..a[MijbA;+(MDtbab]} , 

!R 

(2.4.3) 

in expression (2.1.5) for the path-integral, we interchange the order of integration and 

make an infinitesimal gauge transformation to obtain 

eiW[J] = J VPiVAiVAoii J V>.eif >.aM;"/AjeiS , 

!R 

where the (infinite) constant J Va has been erased. 

(2.4.4) 
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Integration over >.produces a 8-function that says that the gauge-fixing condition 

MA = 0 has to be imposed, as the range of integration for >. has been restricted 

appropriately so that this information has not been lost. To clarify this statement, 

we cite a simple N-dimensional example. Let M be the N x N matrix 

M = diag(rn1, ... ,rnk,O, ... ,0) , (2.4.5) 

with N - k zeros along the diagonal. Consider the expression 

(2.4.6) 

where x, y, h are N-vectors and h is orthogonal to the zero modes of M. If the 

integration is over all directions, then we get a string of N - k 8(0)'s under the 

integral sign. To avoid them, we restrict the integration over those x's that are of the 

form 

(2.4. 7) 

(N - k zeros), which form the range of M. Thus, we replace D by 

(2.4.8) 

with x given by eq.(2.4.7). A simple manipulation yields 

(2.4.9) 

Hence, by doing this, we have retained all the "meaningful" o's, having only dropped 

the 8(0)'s. One can also see from eq.(2.4.9) how the determinant det' M, where the 

zero modes are excluded, will arise upon integration over the y's, since 

det' M = rn 1 · · · rn k . (2.4.10) 

Coming back to our discussion of the path-integral (eq.(2.4.4)), the next step 

according to our discussion in section 2.1 is to split the vector potential and the fields 
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into A = A+ A' and P = P + P', respectively. Since MP = 0, and P' is orthogonal 

to P, we have P' = M </>, for some </>. Since D has no zero modes, in order for </> to 

have the same number of degrees of freedom as P', it has to be orthogonal to the zero 

* modes of MD. 

Proceeding as in section 2.1, we arrive at 

(2.4.11) 

The modified Faddeev-Popov determinant is 

- 1 I 
6. = Vx: det MD , (2.4 .12) 

where Vx: is the (infinite) volume of the space of zero modes JC. However, integration 

over A0 produces a factor Vx:, because the integrand does not depend on the projection 

of A0 onto the space JC. These two factors cancel and the final result is a finite 

expression, that is the same as eq.(2.1.10), with no ambiguity in the choice of </>, 

because out of all possible solutions of eq.(2.1.9) we have to choose the one that is 

orthogonal to the zero modes of the operator MD. 

To illustrate the above results, we shall now consider the example of the Coulomb 

gauge [7], 

(2.4.13) 

The operator M is thus M = \l. The vector potential is split into its transverse and 

longitudinal components: A= Ar+ AL· Eq.(2.4.13) implies AL= 0. The momentum 

is split similarly: P = Pr +PL, and we write PL = \l </> (which is possible, because 

\l X PL = 0), where </> is the solution of Gauss's law: '72</>a + ijllbc A~ . \l </>c = pa, 

which is orthogonal to the zero modes of the operator \l2oac + ijllbc A~ · \l. The 

hamiltonian is 1{0 = r}gr(Pj + (\l </>) 2 + B 2 ). We shall use these results in section 2.6, 

* Notice the error in ref.(6], where c/> was not restricted . We are indebted to A. P. Polychronakos 
for pointing this out to us. 
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where the vacuum expectation value of a Wilson loop in two dimensions is computed 

explicitly. 

2.5 Lattice gauge theories 

While the Faddeev-Popov procedure is necessary for perturbation theory, vacuum 

expectation values of gauge-invariant operators X[A, P]: 

(X} = f 'DA'DP X[A, P]e-s 
- f 'DA'DPe-5 ' 

(2.5 .1) 

can be defined by placing the system on a lattice. In this case, no gauge-fixing is 

needed and direct numerical calculations are sufficient to extract numbers. However, 

since no powerful enough computers have yet been developed, analytical techniques 

are still useful. As we now have two definitions of gauge theories (perturbation theory 

a la Faddeev-Popov and lattices), it is important to check that they are identical. This 

is easily done in two dimensions, because two-dimensional pure Yang-Mills theories 

are exactly solvable models [8]. As we shall see, the two definitions do not agree with 

each other. In this section, we derive the exact solution on a lattice and compare 

it to perturbation theory on a lattice. In the next section, we shall do the same 

calculations using continuum perturbation theory. In that case, we will be able to 

trace the cause of the discrepancy in the second Gribov problem. 

The partition function for a pure Yang-Mills theory on a lattice is 

(2.5.2) 

where N is the number of plaquettes and Uab is the Wilson factor along the link 

joining the points a and b: Uab = Pei I: Aµdxµ. The points 1, 2, 3, 4 in the exponent 

( eq.(2.5.2)) lie on a single plaquette, and the sum is over all plaquettes. We start by 
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integrating out one edge link. The relevant piece is 

(2.5.3) 

where U is the Wilson factor along the edge link and V traces the other three sides 

of the plaquette. I is independent of V, as can be seen by the change of variables 

U-* UV, because dU-* dU. It follows that 

ZN(g) = l(g)ZN-1(g) , (2.5.4) 

which is a recursion relation whose solution is 

(2.5.5) 

We shall now calculate the vacuum expectation value of a Wilson loop, X = flzoop U. 

Since 

(2.5.6) 

by integrating over links that are outside the loop, we get factors of I(g) in both 

the numerator and the denominator that cancel. Therefore, if there are A plaquettes 

inside the loop, eq.(2.5.6) becomes 

(2.5.7) 

where we only integrate over the plaquettes inside the loop. To integrate over an edge 
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link, we observe that the relevant piece is 

J(g) = j dU U exp {:2 tr(UVt + vut)} 

Evidently, 

d 
J(g) = -Vg4 dg2l(g) 

Repeating the integration until we exhaust all plaquettes, we obtain 

(X) = (-g4 dlnl)A 
dg2 

Using eq.(2.5.3), we find [9] (setting V =I) 

4 d ln I _ N 2 - 1 2 N 2 - 1 2 2 
-g dg 2 - 1 - 4N2 (Ng ) + 32N4 (N 9 ) + ... ' 

(2.5.8) 

(2.5.9) 

(2.5.10) 

(2.5.11) 

for an SU(N) gauge theory. Notice that the series terminates in the large-N limit 

[10]. 

Let us now use perturbation theory. For simplicity, take two plaquettes. After 

we integrate over an edge link, we find . 

(2.5.12) 

To do perturbation theory, we expand U1 and U2 around the identity: 

U iu · 1 2 t ya = e = 1 + iu - -u + · · · , u = u , u = Ua . 
2 

(2.5.13) 

The measure is 

(2.5.14) 
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where the matrices n,b are in the adjoint representation of SU(N). We obtain [11] 

_ 4 dlnI = l- N
2
-l(N 2) (N

2
- l)(N

2 
-2)(N 2)2 ... 

g dg 2 4N2 g + 64N4 g + ' (2.5.15) 

which disagrees with eq. (2.5.11) to second order in N g2 . The discrepancy is 

(N2 - l)(N2 - 4)(N 2)2 
64N4 g ' (2.5.16) 

and it does not vanish in the large-N limit. 

This result does not change if more plaquettes are considered, as a study of the 

SU(2) case indicates [12]. The source of the error in perturbation theory can be traced 

to its severe infrared divergences. Remarkably enough, the introduction of an infrared 

regulator leads to finite expressions for all gauge-invariant Green functions, when the 

regulator is removed. Unfortunately, as we have just discussed, those expressions are 

incorrect [11,12,13]. We do not have a satisfactory solution for this problem. In the 

next section, we shall see that the same problem arises in the continuum theory. The 

problem can be solved in that case. As the source of the error is the same (infrared 

divergences), it should be possible to find a solution along the same lines in the case 

of a lattice. 

2.6 Two dimensions 

In this section, we show that there is an error in continuum perturbation theory 

in two dimensions, and that the error can be traced to the fact that the second Gribov 

problem [2] has not been taken into account [14]. 

In general, the Gribov problem does not affect perturbation theory, because it 

is usually possible to expand around the zero configuration (Aµ = 0). We shall see 

that in our two-dimensional model this is not the case. Thus, the nai"ve perturbation 

expansion is incorrect, although still possible, because there is no ambiguity right at 

the zero potential. 
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We shall modify the na!ve procedure in the manner described in section 2.4 [6]. 

This amounts to correctly treating the zero modes of the Faddeev-Popov determinant 

(eq.(2.1.8)). We work in the Coulomb gauge employing the hamiltonian formalism. 

As an infrared regulator, we enclose the system in a box of size 2L ( - L :::; xo, x1 :::; L), 

imposing vanishing boundary conditions. Ultraviolet divergences are regulated by a 

one-dimensional Pauli-Villars regulator, as we shall explain. Specifically, we shall 

calculate the expectation value of a square Wilson loop of size 1 / M, where NI is the 

ultraviolet cutoff: 

(2.6.1) 

where F = 80A1 - 81Ao + [A1, Ao] is the only non-vanishing component of the field 

strength. As was explained in the previous section, W can be calculated exactly, 

if we put the system on a two-dimensional lattice. The exact answer is given by 

eq.(2.5.11). We can also find the ,B-function of the theory by considering the Callan­

Symanzik equation for the string tension O' = -~ ln W . We obtain 

_ da N 2 - 2 2 3 
,B( a) = a da = 2a + 4N 2 a + o( a ) , (2.6.2) 

where a= Ng2 . 

We now proceed to derive an expression for the Wilson loop in continuum per­

turbation theory. The generators of the gauge group SU(N) obey the algebra 

and are normalized by trTaTb = !oab . The generating functional is 

where S = J d2 x(~Pf 8oA]_ - h) and his the hamiltonian density 

h = -;.Pf Pf+ A]_ Jf - i-A0(D]_c P{ - g2 J0) . 
2g g 

(2.6.3) 

(2.6.4) 

(2.6.5) 
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. t d . . Q covanan envat1ve. 

We fix the gauge by imposing the Coulomb gauge (cf. eq.(2.4.13)) 

(2.6.6) 

Notice that in two-dimensions this condition implies that A1 is independent of the 

spatial coordinate x1. The Faddeev-Popov determinant is (cf. eq.(2.1.8)) 

(2.6.7) 

Integrating over A0 in the generating functional we obtain Gauss's law as a constraint, 

(2.6.8) 

Splitting Pf in its transverse and longitudinal components, Pf = Pf}+ Pf, where 

f)iP!} = 0 and Pf, = 81 </>a for some </>a , Gauss's law becomes 

(2.6.9) 

where pa = g2 J0 - ifabc A~ Pf is the total color charge density. In the measure we 

have 

(2.6.10) 

where we have omitted the jacobian det 81 , which is a constant and can therefore be 

absorbed into the overall normalization of the path integral. The hamiltonian density 

becomes 

(2.6.11) 

Integration over </>a produces a factor ~ -l , because of the constraint ( eq.(2.6.9)) 

in the path integral, which exactly cancels the Faddeev-Popov determinant. Thus, 

q The coupling constant now has the dimensions of mass. A dimensionless coupling constant can 
be defined by a = N g2 / M 2 , where M is a large momentum cutoff. 



22 

the Gribov problem consists in choosing the correct </>a out of all the solutions of 

eq.(2.6.9). This ambiguity only exists when the operator c)iD1 has zero modes, i.e. , 

when/::;..= 0. 

Disregarding the problem for the moment, we can formally solve eq.(2.6.9) for </>a. 

We obtain 

,+,a 1 a · 1 !::i 1 JabcAb c 1 ~ 1 ~ 1 JabcAbJcdeAd e '// = 32 P - i 32 u1 32 1 P + fJ2 u1 fJ2 u1 fJ2 1 1 P + ... 
1 1 1 1 1 1 

(2.6.12) 

Since we have imposed vanishing boundary conditions, the Green function for the 

operator Of is 

1 1 1 
Go(x,y) = 2L - 2lx -yJ -

2
L xy , (2.6.13) 

satisfying 8fGo(x,y) = -o(x - y). We regulate Go(x,y) by introducing a Pauli­

Villars field of mass M. The explicit form of the regulated propagator is 

G~eg(x,y) = Go(x,y)- M .
1 

ML[cosNI(L-lx-yl)-cosM(L+x+y)] . (2.6.14) 
4 sm 

Henceforth, we shall omit the superscript 'reg' for simplicity. Eq.(2.6.12) reads 

L 

</>a(x) = j dyGo(x,y)pa(y) 

-L 
L L 

- j dyG1(x,y)irbcA~l(y) + j dyG2(x,y)rbcA~rdeAfl(Y) + · · · 

where 

-L -L 

L 

G1(x,y) = j dzGo(x,z)81Go(z,y) , 

-L 
L 

G2(x,y) = j dzGo(x,z)81G1(z,y) 

-L 

(2.6.15) 

(2.6.16) 

(2.6.17) 
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Therefore, the contribution to the hamiltonian coming from the longitudinal part of 

the field strength is 

L 

h' = - ~ j dx1</>a8i<f>a - 2 
-L 

=~ j dxdyGo(x,y)pa(x)pa(y)- j dxdyG1(x,y)fabcA~pb(x)pc(y) (2.6.18) 

+~ j dxdyG2(x,y)rbcrdeA~pc(x)Afl(y) + ··· 

where we have rescaled fields by g . This is the part of the hamiltonian describing 

the interactions. The rest contains a kinematical quadratic in Py piece. To find the 

propagator for A1 , we diagonalize the quadratic part of the lagrangian by completing 

the square. By shifting Pr -+ Py + 80A1 , we obtain the gaussian piece 

(2.6.19) 

Having eliminated all the unphysical degrees of freedom, we are now in a position 

to calculate correlation functions perturbatively. We shall calculate a square Wilson 

loop, of side l/M, which, as an expansion in the dimensionless coupling constant 

o: = N g2 
/ M 2

, is 

(2.6.20) 

We are interested in the limit of an infinite box. Thus, we shall drop all terms that 

vanish in the limit L -+ oo. To first order in the coupling constant we have 

(2.6.21) 
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Taking the limit ML --+ oo , we obtain 

N 2 -1 
W1 = - 4N2 (2.6.22) 

To second order in a , there are two contributions. One comes from the a 2 piece 

of (trF4 ), the other one comes from (trF2 ) (cf eq.(2.6.l) ). There is a potential 

contribution from (trF3 ) , but it is seen to vanish in the infinite-ML limit. So 

(2.6.23) 

where 

(2.6.24) 

and 

(2.6.25) 

A short computation shows that 

vV(l) _ -~ N 2 
- 1 1 N 2 

- 1 
2 - 48 N 2 + 32 N 4 

(2.6.26) 

vVe also find that all the infinities cancel between the various terms in wJ2
) and the 

result is 

Therefore, 

W(2) _ I_ N 2 
- 1 

2 - 96 N 2 

1 N 2 -1 1 N 2 - 1 
W2 = - 96 N 2 + 32 N 4 

Because of eqs.(2.6.22) and (2.6.28), eq.(2.6.20) becomes 

-1 1 N -l 1 N -l 2 3 N 2 ( ( 2 ) 2 ) . 

V\( = 1 - 4N2 a+ - 48 N2 + 32 N4 a + o(a ) ' 

(2.6.27) 

(2.6.28) 

(2.6.29) 

which disagrees with the correct expression (eq.(2.5.11)) for the Wilson loop in second 

order in a . We also obtain a different ,8-function. Following the same procedure as 
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before, we obtain 

(2 .6.30) 

Notice that the extra term does not vanish in the large-N limit. As we saw in the 

previous section, one encounters the same problem on the lattice, even if it consists 

of only two plaquettes [11]. In that case it can be seen that the problem is due to the 

possibility of performing a global unitary transformation on the Wilson loops on all 

plaquettes. In our formulation, we shall see that the problem is due to the ambiguity 

in choosing the right <Pa in eq.(2.6.9). 

According to the modification of the Faddeev-Popov procedure discussed in sec­

tion 2.4, in order to account for the Gribov problem, we have to choose the solution 

of eq.(2.6.9) that is orthogonal to the zero modes. A word of caution is in order here. 

81 ¢>represents the longitudinal component of P1 , which is by construction orthogonal 

to the transverse component, Pr , in the sense that J!L dxtrfh ¢>Pr = 0. Therefore, 

strictly speaking, the longitudinal component is -8r ¢> ' where 8I is the adjoint of 

81. We did not have to be careful above, because with our choice of¢> (eq.(2.6.15)), 

8I ¢> = -8i ¢> , but in general, 8{ =/:- -81 . Also the Faddeev-Popov determinant should 

be det( -8I Di) instead of det 8iDi ( eq.(2.6. 7) ). The zero modes of the operator 8{ Di 

are the solutions of the equation 

(2.6.31) 

This equation has N 2 - 1 linearly independent solutions, which we shall call U(k) ( k = 

1, ... , N 2 - 1). Suppose that the 8{u(k) form an orthonormal set, the inner product 

being (wi, w2) = J~L dxtrwi(x)w2(x) , for the vectors wi and w2 . Then, in the 

hamiltonian, 8i ¢>has to be replaced by 8iw , where 

N2-i L 

8iw = 81¢> - L 8{u(k) J dx8{u(k)8i¢> 
k=i -L 

(2.6.32) 

is the projection of 8i ¢>orthogonal to the zero modes. This implies that the interaction 



26 

hamiltonian h' (eq.(2.6.18)) acquires an extra piece h, where 

(2.6.33) 

which describes new interactions. It represents a non-trivial correction to ordi­

nary perturbation theory. To write down the explicit form of h , we have to solve 

eq.(2.6.31). To this end, it is convenient to define a matrix v by u = 81v, where vis 

such that oi v = -81 v . Then, eq.(2.6.31) reads 

(2.6.34) 

We can solve eq.(2.6.34) perturbatively. We find N 2 - 1 solutions, 

(2.6.35) 

where Qo(x) = k(x2 - L 2
), and Qn(x) = J~1 dyGo(x,y)81Qn-1, for n ~ 1. We 

can check that o{v(k) = -81v(k) , which justifies our replacing of 8{ by -81. We can 

also see that { afv(k)} is an orthonormal set: f~L dxtroiv(k)afv(l) = 5kl . Therefore, 

eq.(2.6.33) becomes 

Using eqs.(2.6.15) and (2.6.35), we obtain the perturbation expansion of h , 

h = j dxdyGa(x,y)pa(x)pa(y) + j dxdyG1(x,y)JabcAJ.pb(x)l(y) 

+ j dxdyG2(x,y)rbcrdeA~pc(x)Afl(y)+··· , 

where 

Go(x,y) = 81Qo(x)81Qo(y) , 

(2.6.36) 

(2.6.37) 

(2.6.38a) 
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G1(x,y) = 81Qo(x)[chQ1(y) + Qo(y)] - (x +--+ y) , (2.6.38b) 

G2(x,y) = i!iQo(x) { 81Q2(Y) + Q1(y) - aQo(y) l dz81Go(y,z)} + (x <-+ y) 

+ [81Q1(x) + Qo(x)][81Q1(Y) + Qo(y)] . (2.6.38c) 

Coming back to the calculation of the Wilson loop, we easily see that W1 does not 

change, nor does wP) . However, wP) gets an additional contribution vvP) from 

the new interactions. Again, all infinities cancel and the result is 

- (2) 1 N 2 - 1 
W2 = 96 N2 (2.6.39) 

Therefore, to second order in the coupling constant, we obtain (using eqs.(2.6.26), 

(2.6.27) and (2.6.39) ) 

1 N 2 -1 
W2 = 32 N4 ' (2.6.40) 

in agreement with the exact result (eq.(2.5.11)). 

The above analysis can be generalized to four dimensions. Clearly, a lot more 

work is needed to see if the Gribov ambiguity has perturbative effects there, as cal­

culations in four dimensions are a lot more involved. It would also be interesting 

to investigate the possibility of carrying out a similar analysis on the lattice using 

the gauge-invariant Wilson action. Unfortunately, we have not been able to find a 

procedure that solves the Gribov problem in this case. 
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3. Chiral and conformal anomalies 

3.1 The geometrical connection 

It was first observed by Steinberger, then rediscovered by Schwinger and again 

later by Adler, Bell and Jackiw [1] that the divergence of the axial current in a gauge 

theory does not vanish, due to quantum effects. These effects have come to be known 

as "anomalies." In chiral gauge theories, they seem to be unwanted, because the 

effective action ceases to be gauge-invariant in their presence [2]. 

To study the effect, consider a Yang-Mills theory with gauge group G coupled to 

a doublet of left-handed fermions. The partition function is 

(3.1.1) 

where 

eiW1[Aµ] = J D~LD{;Leif if;iPP-1/J ' (3.1.2) 

iDµ = ioµ + eAµ, and P± = ~(1±15 ) are projection operators onto the right(left)-

handed fermions. In general, under a gauge transformation, we have 

(3.1.3) 

If Q does not vanish, gauge-invariance is broken. Thus, Q is the anomaly. In terms 

of the generators of gauge transformations, 

xa = -8 _8_ - jabc Ab _8_ 
µ 8Aa µ 8Ac ' 

µ µ 
(3.1.4) 

eq.(3.1.3) reads xaw1 = Qa. Since the xa's satisfy 

(3.1.5) 

the anomaly has to satisfy 

(3.1.6) 

These are the celebrated Wess-Zumino consistency conditions [3). To put them in a 
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more geometrical form, define an operation 8 by t 

>:A D c,..,,a = -~Jabc,..,,b,..,,c U µ = - µO'. , Uu. 
2 

u. u. , (3.1.7) 

where a is considered to be an anti-commuting variable. Then eq.(3.1.6) can be 

written as 

(3.1.8) 

Since 82 = 0, this equation has an obvious solution: J aaQa = 8X, where X is 

any functional of Aµ. However, these solutions are trivial in the sense that they can 

be canceled by the addition of counterterms in the effective action. Our problem is 

therefore to see whether the anomaly is a non-trivial solution of eq.(3.1.8). 

We can now see the connection with topology. The operator 8 defines a cohomol­

ogy. The anomaly belongs to a non-trivial cohomology class of 8. We are therefore 

naturally led to a study of the structure of orbits of gauge transformations. Each 

orbit is a replica of the group g of all maps from the four-dimensional sphere S4 

+ 
to the gauge group G"!" To see this more explicitly, consider a closed path in 9: 

{A(B) : e E [O, 1]}, A(O) = A(l) =identity. Let A~ = A-1 AµA + A- 1oµA. The set 

{AA(B) : BE [O, 1]} is a path in the orbit that goes through Aµ. Now imagine carrying 

eiW[A] along this path, from e = 0 to e = 1. As it goes from point e to e + dB' it 

picks up a factor eid</> where the phase is def> = f 54 traQ, and a = A -l ~~dB is the in­

finitesimal gauge transformation along the path at e. The total phase is J:::01 
def> and 

has to be a multiple of 27r. If we can continuously contract this path to a point, the 

total phase must vanish. In this case, there is no anomaly. Therefore, the anomaly 

is associated with the existence of a non-contractable path in 9. Such a path exists 

whenever the first homotopy group 7r1(9) = 7r5(G) is non-trivial~ It follows that an 

t 8 is generally known as the BRS operator [4]. 
t Note the difference with section 2.3, where we considered time-independent gauge transforma­

tions, and therefore the maps were from S3 to G. 
§ Comparing with the results of section 2.3, we see that anomalies have the same geometrical 

origin as the Gribov problem. This connection is yet to be explored [5]. 
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anomaly exists only if the group 9 is topologically non-trivial. However, this makes 

it hard to obtain any results on differential geometry by working in an orbit, because 

orbits are replicas of 9. It is therefore imperative that we consider the space A of all 

vector potentials, which is topologically trivial (cf. section 2.3). 

The space A is endowed with a connection 

(3.1.9) 

On the other hand, Aµ itself is a connection in the fiber bundle B over 5 4 with group 

G. Therefore, the connection in the space B x A is A+ w. Using the language of 

forms~ we can define the curvature in the space B x A by 

:F = ( d + 5) (A + w) + (A + w) 2 
, (3.1.10) 

where d is the ordinary derivative in 5 4 and 5 is the derivative in A. 

Atiyah and Singer have derived a powerful result (the Family Index Theorem, 

[6]) that relates the curvature F to differential geometry, via the Dirac operator, 

D _ = I/JP_. They define a space I (the "Index" of D _) endowed with a connection 

The Family Index Theorem establishes a connection between w and w'. For our 

purposes, it is sufficient to consider the result* 

ch1(I) = j chs(B x A) , (3.1.12) 

S4 

where the Chern-Simons form is defined by chj(B x A) = (Z~)J tr Fi, and similarly for 

I. 

A one-form is A = Aµdxµ, where the dxµ anti-commute. The field strength is the two-form 
F::: Fµ 11 dxµdx 11 = dA + A 2 . 

* The Family Index Theorem is a series of equations relating Chem-Simons forms to all orders. 
Eq.(3 .1.12) is one of these relations. As we discussed above, it is related to the non-triviality 
of ?r5 (G) . The other equations are related to higher homotopy groups (7rzj+ 1 (G) , j > 2) (6) . 
However, their physical implications are yet to be seen. 
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By defining :Ft = t:F + (t - t 2)w2 , it is easy to see that 

1 

tr:Fi = ( d + 8)j j dttr( w:F/-1) . 

0 

Thus, the right-hand side of eq.(3.1.12) becomes fs 4 chs(B x A) = 8Q where 

Also, the left-hand side of eq.(3.1.12) is 

Therefore, 

1 I 
ch1(I) = 8-trw 

271" 

trw' = 27rQ + 8h . 

(3.1.13) 

(3.1.14) 

(3.1.15) 

(3.1.16) 

We were able to obtain eq.(3.1.16), because the space A is topologically trivial (8v = 0 

implies v = 8h, for some form h). We can now restrict ourselves to a specific orbit. 

The vectors tangent to an orbit are of the form 8A = -Da. Therefore, the connection 

is w = n-18A = - a. Also, 8a = -a2 . It follows that, when restricted to an orbit, 8 

coincides with the BRS operator that we discussed above. 

A straightforward calculation shows that in an orbit, 

1 J 1 trw' = -
2 2 

trad(AdA + -A3
) + 8h 

471" 3 
(3.1.17) 

S4 

Also, trw' = trD= 18D_ = 8tr ln D_ = 8 <let D_ and <let D_ = eiW. Therefore, the 

right-hand side of eq.(3.1.17) is the anomaly. Comparing with eq.(3.1.3), we obtain 

J traQ = ~ j trad(AdA + ~A3 ) 
2471" 3 

(3.1.18) 

54 

Having established that the anomaly exists for a wide class of theories, it is 

natural to ask whether it is still possible to find viable theories when anomalies are 
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present. The remainder of this chapter is devoted to this task. We shall first discuss 

a proposal by Faddeev and Shatashvili (7] to circumvent the problem by adding a 

degree of freedom. In the other sections of this chapter, we investigate approaches 

that do not make use of additional fields. 

Faddeev and Shatashvili's suggestion consists in changing the definition of the 

par ti ti on function ( eq. ( 3 .1.1)) to 

(3.1.19) 

where A~ = A -l AµA + A-1 OµA. This theory possesses a gauge invariance: 

(3.1.20) 

In a U(l) theory, the effect of the new field A is to enforce the additional constraint 

µvpup F 0 c µv pu = , (3.1.21) 

i.e., that the anomaly vanish. Unfortunately, it has not yet been possible to define a 

perturbation theory. 

The procedure is also applicable to conformal anomalies. As an example, consider 

strings. The classical action is 

(3.1.22) 

where gab(O") is the metric on the world-sheet and xµ(O") are coordinates in space-time. 

It is a geometrical fact that every metric on a two-dimensional surface can be brought 

to the form gab = e<I> 5ab . (We assume that the surface has euclidean signature.) Hence, 

(3.1.22) becomes 

(3.1.23) 

and therefore the action is independent of the conformal factor, <P( O"). However, in 

the quantum theory, this factor does not decouple, due to the conformal anomaly 
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[8]. Instead, one has to integrate over it. Thus, 1> plays the role of A in eq.(3.1.19). 

It follows that Faddeev and Shatashvili's ansatz [7] coincides with Polyakov's [8] in 

this case. As with chiral theories, however, it is hard to develop perturbation theory, 

because the action for 1> is hard to work with, being a Liouville action. 

3.2 New chiral theories 

In this section, we describe regulators that lead to inequivalent chiral gauge theo­

ries. There are two ways of regulating the jacobian of gauge transformations coming 

from the measure D'!j;D{; in the path-integral. This has led to a controversy [9], 

because the two methods lead to different forms of the anomaly. One of them sat­

isfies the Wess-Zumino conditions [3] and is therefore named the consistent anomaly 

( eq.(3.1.18) ). The other one does not satisfy these conditions, and, therefore, it can­

not be related to the consistent anomaly by the addition of a counterterm in the 

effective action. It can be expressed in terms of the field strength Fµ,v, hence it is 

called the covariant anomaly. Inasmuch as the Wess-Zumino conditions are funda­

mental, the latter anomaly is rejected as not representing the variation of the path 

integral. We shall show explicitly that the covariant anomaly can be derived using the 

path-integral formalism. This peculiar fact cannot be attributed to the inconsistency 

of a theory with anomalies, because the two methods produce conflicting results even 

in anomaly-free theories. In particular, they disagree on the divergence of the U(l) 

current [3]. We shall argue that the two forms of the anomaly belong to two distinct 

theories satisfying different Dyson-Schwinger equations. 

For pedagogical reasons, we start by discussing _the axial anomaly in a gauge 

theory with only vector couplings [10]. We obtain Ward identities by studying the 

transformation properties of the measure 

1 - ·s 
Dµ = -D'lj;D'lj;e1 

, z (3.2.1) 

where Z = J eiS , S = J 1/;il/J'lf; is the action, and iDµ, = ioµ, + eAµ, , under the action 
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of a chiral transformation, 

'ljJ(x) ~ 'l/J(x) + ie,sa(x)'l/J(x) , '¢(x) ~ '¢(x) + ie'¢(x)tsa(x) (3.2.2) 

Our regularization procedure consists of two steps. In the first step we define the 

regularized lagrangian as the limit lim<-+O £< , where 

(3.2.3) 

g ( x) f ( x) = 1 , and f is a function satisfying f ( 0) = 1 and f ( x) ~ 0 sufficiently fast, 

as x ~ oo . In the second step we define perturbation theory by requiring that all 

operators be expanded in powers of E , before evaluating diagrams. In essence, this 

means that, at each vertex, the factor g( cp2 ) , where pµ is the momentum, will have 

to be expanded, before any loop integrations are performed. Notice that the inverse 

propagator in the regularized lagrangian £< contains a factor of g( cp2) , rendering all 

diagrams finite. 

For convenience, we introduce the basis { ef>n} , which consists of the eigenfunctions 

of the Dirac operator, 

(3.2.4) 

Expressing 'ljJ and '¢ in terms of the basis { <Pn} , 

(3.2.5) 
n n 

we obtain the current corresponding to a chiral transformation of £< , 

(3.2.6) 

According to our prescription, this operator is defined by its formal expansion in 
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powers of E . The divergence of the current is 

( ~ -µ) _ ~ g(e)(o)" t ( ,2)e ( 2) 
UµJ5f. - 6 f! 6 <f>n /5 EAn J EAn <f>n 

f=O n 

By switching to a plane-wave basis, we can write this as 

00 (£) ( ) 4 . 

( 
o:"l .µ) _ "g 0 J d k -ikx h ( (D Dµ Z [ ] µv)) ikx uµJsc-6 f! (27r)4e tqseE µ +2/µ,/vF e , 

f=O 

(3.2. 7) 

(3.2.8) 

where he( x) = xe J( x) . It is a consequence of the properties of 1-matrices that the 

divergent part of the right-hand side of eq.(2.8) vanishes. The finite part is obtained 

by expanding he about ED µDµ . It is straightforward to see that it is proportional to 

00 00 00 

f(f; l) j te-1 f(t)dt + f j lf'(t)dt + ~ j te+1 J"(t)dt . (3.2.9) 

0 0 0 

Integrating by parts as many times as needed, we see that this is zero for f > 0 . It 

follows that only the f = 0 term contributes to the series in eq.(2.7). Therefore, only 

the lowest order contribution to the current is significant! It is now straightforward 

[11] to show that 

2 
o:"l ·µ - e pµvppu UµJs - ~6 2 cµvputr 

1 7f 
(3.2 .10) 

It is interesting to note that we could have obtained the same result if we had expressed 

the fermionic fields in terms of a plane-wave basis from the beginning. This would 

have meant that we were using perturbation theory with a regulated propagator 

.p-1 J( ep2 ) . This fact demonstrates the equivalence of the two bases. 

Since the terms of higher-order in E in the expansion of the current jrf. vanish, we 

could have defined the axial current by its zeroth-order contribution jr = ;/;1µ1s'l/J , 

without altering the results. It will be seen later that keeping higher-order terms in 

the expression for the current alters chiral theories. 

t This justifies Fujikawa's method [11] of only regulating the jacobian of the chiral transforma­
tion, coming from the measure V'lj/Dlfa. 
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We shall now apply the same regularization procedure to chiral gauge theories. 

For simplicity, we will concentrate on a theory of left-handed fermions only, defined 

by the measure 

(3.2.11) 

where S = J {;iD'lj; , iD = if/J + eif,.P_ and P± = ~(1±1s). We shall describe two 

methods that lead to two theories that satisfy different Dyson-Schwinger equations. 

Method A yields a theory whose current has an anomalous divergence that obeys 

the Wess-Zumino consistency conditions. Method B leads to a different form of the 

anomaly that is expressed solely in terms of the field strength pµv, called the covariant 

anomaly, [12]. 

METHOD A. 

We define the lagrangian as the limit lim<_.O [,< , where 

(3.2.12) 

The operator iD is not hermitian. Its eigenvalue problem is 

iDef>n = AnrPn , iiJt Xn = A~Xn · (3.2.13) 

We expand 'If; and {; in terms of ef>n and Xn respectively, 

(3.2.14) 
n n 

Since ef>n is orthogonal to Xm , V'lf;V{; ITn dandbn [13], and the action can be 

written as S< = L.:n Ang( c>.~)anbn . Under a gauge transformation, D'Aµ = Dµa , iD 

transforms as 

iD -"* (1 + ieaP + )iD(l - ieaP _) (3 .2.15) 

This can be compensated for by a change in the fermionic fields, 8'lj; = ieaP _ 'lj; and 
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8;jJ = -ie;jJaP + . One then obtains 

(3.2.16) 

which is the consistent form of the anomaly (cf. eq.(3.1.18) ). Notice that this vanishes 

in a theory that obeys the anomaly-free condition, tr{ Ta, {Tb, re}} = 0. However, 

even in that case, the theory is not necessarily gauge-invariant. The reason is that 

the regulated action is not invariant under the combined transformation of the gauge 

potential and the fermionic fields. To see this, we transform 

F = g
1(0) I>-A!anbn . (3.2.17) 

n 

This is the first-order in E contribution to the regulated action s • . We find 

8F = g'(O) L ambnEAmAn(An - Am) j X~/5Ci.</>m · 
m,n 

(3.2.18) 

If we are only interested in det iD = J eiS , we need (8F) , which is zero, because 

integration over an and bn contracts m and n . The same argument applies to higher 

order contributions to the regulated action s. . Thus we see that det i.b is gauge­

invariant under infinitesimal gauge transformations in an anomaly-free theory. This is 

also true for all Green functions [14], but it may fail in the case of composite operators. 

We conjecture that this non-invariance of the action has two consequences. One is the 

existence of higher-order anomalies found by Atiyah and Singer [6]. The other one is 

the non-perturbative SU(2) anomaly [15]. Notice that theses anomalies are present 

even when the anomaly cancellation condition. tr{ Ta, {Tb, re}} = 0 is satisfied. 

METHOD B. 

This time let us define the lagrangian as the limit limc--+O £. , where 

(3.2.19) 

The operators -.bt.b and -fJfJt are hermitian. Let -fJtfJ</>n = .A;</>n, and define 

Xn = >..ln iD</>n . Then -.b.btxn = A;Xn . Expanding 'ljJ and ;jJ in terms of </>n and Xn 
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respectively, 

(3.2.20) 
n n 

the action becomes Sf. = 2=n Ang( t:A~)anbn , and [9] 

(3.2.21) 
n 

where <Pn(x) denotes a matrix whose columns and rows are labeled by n and x , 

and similarly for x t ( x) . The determinants arise because we make a transformation 

from the basis formed by the eigenfunctions of position to the one formed by the 

eigenfunctions of -D t fJ and -fJ fJt . Thus, we originally define the fermionic measure 

by 'Di//D;/J = Ilx dV;(x)d;/;(x) . 

Therefore, the fermionic determinant is 

det iD = det x~ ( x) II Ang( EA;) <let <Pn( x) (3.2.22) 
n 

Under a gauge transformation, the eigenvalues of iD do not change and the eigen­

functions change as follows 

<Pn---+ (1 + ieaP_)</Jn , Xn---+ (1 - ieaP_)Xn . (3.2.23) 

Therefore, 

(3.2.24) 

According to the second step of our prescription, we have to expand the change in 
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the determinant in powers of E • Thus, eq.(3.2.24) becomes 

or 

(3 .2.25) 

An explicit calculation shows that [9] 

(3 .2.26) 

which is the covariant form of the anomaly. This anomaly does not satisfy the 'vVess­

Zumino conditions, which means that det iD is not a functional of Aµ. One normally 

concludes that the theory is inconsistent. However, the fermionic determinant is only 

a sum of vacuum graphs and, therefore, strictly speaking, not a physical quantity. To 

find the physical content of the theory, one has to compute the Green functions. Since 

method B is a prescription that regulates all Green functions, the resulting theory is 

consistent, even though the fermionic determinant is not defined as a functional of 

Aµ. 

If the jacobian of the gauge transformation vanishes, this regularization produces a 

gauge-invariant theory, which contains no higher-order or non-perturbative anomalies. 

This can only be true if the theory is different from the one we obtained using method 

A. This conclusion is supported by the fact that the two methods are not related by 

counterterms, as the covariant anomaly does not satisfy the Wess-Zumino conditions. 

Indeed, we shall now show that method B obeys different Dyson-Schwinger equations 

[10]. 

Using method B, one can obtain the divergence of the U(l) current Jµ = -lf;1µ P_'ljJ, 
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[9] 
2 

~ Jµ e t FµvFpG' uµ = 32?rzcµvp0' r (3.2.27) 

The argument is similar to that leading to eq.(3.2.10). If the Dyson-Schwinger equa­

tions are obeyed, eq.(3.2.27) to second order in Aµ reads 

2 

(oµJµ(x)j~(y)j~(z)) = -
8
:

2
c:µvp0'8ab8µ8 4(x -y)8(]'84(x- z) , (3.2 .28) 

where j~ = lJa . We obtain eq.(3.2.28) by functionally differentiating both sides 
µ 

of eq.(3.2.27) twice with respect to Aµ. Taking fourier transforms of both sides, we 

obtain 

(3.2 .29) 

where 84 ( ki + kz + k3)G~~( ki, kz, k3) is the fourier transform of (8µ Jµ ( x )ji(y )j~( z )) . 

An explicit computation of the three-point function (oµJµ(x)ji(y)j~(z)) , making 

use of the regulated propagator 1-1 J( cp2 ) , which is obtained from the regularized 

lagrangian (eq.(3.2.19)), gives 

2 

Gab (k k k ) - _e_ cabkµk(]' vp I, 2 , 3 - - 2 C:µvpG'U 1 2 
24?r 

(3.2.30) 

This disagrees with eq.(3.2.27) by a factor of ~ . It follows that the resulting theory 

does not satisfy the Dyson-Schwinger equations and is therefore not equivalent to the 

one obtained using method A. The remarkable fact is that this is true even in the 

case where all anomalies cancel , e.g. , in an SU(2) gauge theory [9]. Nevertheless, it 

may still be interesting to investigate the physical content of this theory. 

3.3 A chiral Schwinger model 

We shall now discuss a procedure that leads to gauge-invariant chiral theories 

[10]. We start by applying the procedure to a two-dimensional abelian theory (chiral 

Schwinger model), where we can compute the exact form of the generating functional 

[16]. In the following sections (3.4 and 3.5) we discuss the four-dimensional case and 

bosonic strings. 
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Our regularization procedure is as follows. First, we integrate over the fermionic 

degrees of freedom, and then over the gauge potential. Thus initially, we have to 

work with a theory of fermions in a background gauge field. We regularize the action 

by splitting points in such a way as to preserve gauge invariance. In a theory with 

vector couplings, chiral symmetry is also preserved. For definiteness, we choose to 

work with a gauge field coupled only to left-handed fermions. The regularized action 

for the fermions is 

(3.3.1) 

where iD µ = ioµ + eAµ . This is a symmetric point-splitting, in the sense that, in 

the end, we have to average over directions of €µ. The effect of the regulator is to 

add new vertices that are formally of order€. Moreover, both the propagator and the 

vertices contain a factor of eit:·p . These factors cancel in a diagram and so diagrams 

are still not finite. To remedy this, we supplement our procedure with an additional 

step. Before we perform any loop integrations, we expand all factors that depend 

on the external momenta in powers of cµ , and then truncate the series after the 

first-order term ( eit:·p is replaced by 1 + ic · p , where pµ is an external momentum) . 

The factors eit:·q , where qµ is the loop momentum, are not expanded, thus regulating 

the diagram. To make sense, this truncation has to be done consistently. To this end, 

we write the integrand as a sum of terms, each of which is a function of qµ with only 

one pole. Then in each term we shift the integration variable qµ so as to move the 

pole to zero. Finally, we expand the factors that involve the external momenta and 

not qµ , in the manner described above, before performing any loop integrations. It 

should be noted that this procedure leads to a redefinition of Feynman diagrams and 

is not merely the addition of counterterms in the action. We therefore obtain a new 

theory, satisfying different Dyson-Schwinger equations, as we shall demonstrate. We 

shall show that this new theory is consistent. 

The interaction lagrangian is 

(3.3.2) 
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The higher-order terms in Eµ are irrelevant because we truncate all operators after 

the first-order term. 

We now restrict ourselves to two dimensions, where we can compute all the Green 

functions exactly. We are interested in Green functions that contain insertions of the 

gauge-invariant operator jµ = '¢1µ P _ 'lj; . It should be pointed out that the gauge 

potential couples to the current 

(3.3.3) 

However, we are not considering the operator jf , because Green functions containing 

insertions of this operator are trivial. As we shall show, (jf) = 0 , in the presence 

of an external gauge field Aµ . Thus, we introduce sources Bµ and ]µ coupled to jµ 

and Aµ , respectively. We wish to calculate the generating functional 

(3.3.4) 

vVL[J, B] describes a theory that does not obey the naive Dyson-Schwinger equations, 

if jµ is defined to be the electromagnetic current. For convenience, we introduce light­

cone coordinates X± = 72(xo±x1). It is easy to see that h±)2 = 0 and P_ = !1+/-· 

Notice that jµ is actually a one-component object U+ = 0 , because 1+P- = 0 ). 

Therefore, the external source Bµ also has only one component, namely B+ . 

We first integrate over the fermions. Let ZJ be the fermionic contribution, 

(3.3.5) 

where SJ= f[{;(x+ !c)if/J'l/;(x-!E)+£int] is the fermionic action. We have multiplied 

the generating functional by a constant, J 'D'l/JR'D'¢Rei f 1/i(x+t<)i$P+'¢>(x-te-), to define a 

propagator for the fermions. The propagator is .6.(x) = J (g:)2 eipx e;•. Differentiating 
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Z f with respect to the coupling constant e , we obtain 

;
1 
°:: = i j d2x{Aµ(x)U:(x)) + Bµ(x)(jµ(x ))} 

= i j d2x{ [Aµ(x) + Bµ(x)](jµ(x)) + 2iee.v Aµ(x)Av(x)(jµ(x)) (3.3.6) 

1 - } - 2Aµ(x)(~(x)(cµ/v + Ev/µ)ovP-1/J(x)) . 

Using perturbation theory, we see that only the bilinear terms in Aµ and Bµ survive. 

Thus, eq.(3.3.6) reads 

;! O~f = -e j d2xd2y{ (Aµ(x) + Bµ(x))(Av(Y) + Bv(Y))(jµ(x)J"v(y))o 

+ 2cv Aµ(x)Av(y)(jµ(x)) 082 (x - y) (3.3.7) 

-Aµ(x)(Av(Y) + Bv(Y))(~(x)(cµ/' + E>../µ)E» .. P-1/J(x)jv(y))o} , 

where (8)0 denotes the expectation value of the operator e with vanishing back­

ground gauge fields (Aµ= Bµ = 0). To calculate olnZtfoe, we have to compute 

the following Green functions, 

cW(p) = j d2xe-ipxUµ(x)jv(o))o , 

G~2J(p) = j d2xe-ipx2Ev(jµ(x))o8 2(x) , 

G~3J(p) = j d2xe-ipxEµ(~(x)tPBpP-1/J(x)jv(O))o , 

cW(p) = j d2xe-ipxc>..(~(x)tµB>..P-1/J(x)jv(O))o 

With these definitions, eq.(3.3.7) can be written as 

;ta:: = -e j (~?i2 { (Aµ(p) + _Bµ(p))(Av(-p) + _Bv(-p))GW(p) 

(3.3.Sa) 

(3.3.8b) 

(3.3.Sc) 

(3.3.Sd) 

+ Aµ(p)Av(-p)GW(P) (3.3.9) 

-Aµ(p)(Av(-p) + _Bv(-p))(G~3J + G~4J(p))} ' 

where Aµ(Bµ) is the fourier transform of Aµ(Bµ) . cW is the ordinary two-point 
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function and we easily find G~l = G~~ = c0l = 0 and 

G(l) = __ z_p_ 
-- 41!"2 P+ ' 

(3.3.10) 

which shows that the current jµ has an anomalous divergence (p+G0~ = -~P-) . 
However, this does not imply the breakdown of gauge invariance, because Oµjµ does 

not represent the variation of the fermionic part of the path integral. 

It is easy to show that G~l = G~~ = G~l = 0 and 

G(2) ___ z_ 
+- - 47r2 . (3.3.11) 

The calculation of G~3J is also straightforward. We find G~l = G~l = 0 . Also, 

G(3) - J d2q iqc (p + q)_ (p - q)_ 
+- - c+ (27r )2 e q_ (p + q)2 + iry (p - q)2 + iry ' (3 .3.12) 

where the limit 71 --+ 0 is implied. vVe write 

(3.3.13) 

Shifting the integration variable to move the poles to zero, we obtain 

(3.3.14) 

According to our procedure, the next step is to drop the factor ~( e-ipc + eipc) , which 

depends on the external momentum pµ . It should be noted, however, that this does 

not modify the definition of the Green function, because the integrand has only a 

simple pole in qµ . The final answer is 

(3.3 .15) 

Similarly, we obtain G~~ = 0 . 
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Finally, we have to compute G~~ . Plainly, G~l = G~l = G~~ = 0. Now, 

(3.3.16) 

As before, we separate the poles, obtaining 

(3.3.17) 

The right-hand side consists of two terms. The first term is 

I ,\ J d2q iq< 1 (p + q)_ 
1=-c (27r)2e q,\2p-(p+q)2+i17' (3.3.18a) 

or 

_ ,\ 1 J d2 
q iq< -ip< q_ ( ) 

Ii - -c 2p_ (27r)2 e e q2 + i17 q,\ - p,\ ' (3.3.18b) 

where we shifted the integration variable to derive eq.(3.3.18b). We now drop the 

factor e-ip< . Unlike before, however, this modification changes the Green function, 

because the integrand has a second-order pole. After discarding e-ip< , it can be seen 

that only a simple pole remains and so gauge invariance is retained, as we shall see 

shortly. Integration over qµ gives 

i P-
fi = -s 2 - + R, 

7r P+ 
(3.3.19) 

where R vanishes after averaging over directions of cµ . The second term in eq.(3.3.17) 

is computed similarly and the final result is 

(3.3 .20) 

Because of eqs. (3.3.10,11,15,20), eq. (3.3.7) becomes 

1 8 Z f . J d2
p { 1 P- - - 1 - - P- - } --- = ie -- --B+(p)B+(-p) + -B+(P)(A_(-p) - -A+(P)) 

ZJ oe (27r)2 1rP+ 7r P+ 
(3.3.21) 



47 

Integrating, we obtain 

(3.3.22) 

which is manifestly gauge-invariant (under the transformation 8Aµ = pµa, 8Bµ = 0). 

It is interesting to note that when Bµ = 0 , Zt = 1 , which shows that the fermion 

determinant has no dependence on the gauge potential Aµ . In particular, there is no 

quadratic piece in the effective action that could give a mass to Aµ . It also follows 

that un = o , because ur) = 0 ~~z, I . 
µ Bµ=O 

Now only integrating over the gauge field remains. To do so, we have to fix 

the gauge. A convenient choice is the axial gauge A+ = 0 . The Faddeev-Popov 

determinant does not depend on Aµ , so we can integrate over A_ by completing the 

square in the exponential in eq.(3.3.4). Our final result is 

1 J d2
p {m2 

- -WL[J, BJ = 2 (27r ) 2 pi l+(P )l+(-p) 

2 2 3 } 2 2m- - m- -
+(m - p )-2 B+(p)B+(-p) + - 2-l+(p)B+(-p) , 

P+ P+ 

(3.3.23) 

where m = e/ ft . This is an uninteresting theory except for the fact that it exists. 

The only pole with non-vanishing residue appears in the term that is quadratic in 

B+. We therefore conclude that the model described by WL contains just a massless 

mode that does not couple to the gauge field , but only couples to the electromagnetic 

current. 

To extend our results to the vector case, we have to add an interaction between 

the vector potential and the right-handed current. This just adds the right-handed 

generating functional vV R, which is computed similarly, to WL. which is computed 

similarly. The resulting generating functional for the vector theory is 

(3.3.24) 
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( ) 
PµPv 

1rµv P = 9µv - -2-
p 

(3.3.25) 

is a projection operator. The current Jµ is conserved: pµJµ = 0 . The theory 

described by W (eq.(3.3.24)) does not contain a massive state, in disagreement with 

Schwinger's result [l]. We can obtain the Schwinger model by performing a non-local 

transformation whose effect is to multiply lµ and Bµ by a factor that depends on 

momentum. Thus, we see that the two models are related by non-local counter terms, 

yet they are both unitary. This comes about in a trivial way in two dimensions, 

because there is no physical state coupled to the gauge field. However, in higher 

dimensions this method may provide a way of canceling the anomaly by adding non­

local counter terms, yet retaining unitarity and locality. The factor needed to multiply 

the sources lµ and Bµ is uniquely determined, if we require that the na"ive Dyson­

Schwinger equations be satisfied. This implies that the factor is aµv (p) = gµv ~' 
p2-m2 

as we shall now demonstrate. 

The Dyson-Schwinger equations are generalizations of the equations of motion, 

aµFµv = ejv + eJv. A straightforward calculation shows that in momentum space, 

1 2 µv 8W 8W 1- ( ) 
-p 7r + - + e µ p = 0 . 
e 8]v(P) 8Bµ(P) 

(3.3.26) 

Using eq.(3.3.24) with Jµ and Bµ replaced by aµvjv and aµvBv , respectively, we 

can evaluate aµv . An easy way to obtain aµv is by first differentiating eq.(3.3.20) 

with respect to Bp . A direct computation yields 

(3.3.27) 

as promised. Therefore, W becomes 

which shows the existence of a massive state of mass m = e/-Ji , in agreement with 

Schwinger's result. Notice that we cannot satisfy the Dyson-Schwinger equations 



49 

when we only have left-handed fermions, because the current ]µ is not conserved. 

(Whereas lµ is conserved and OµOvFµv = 0 identically.) This is the price we have to 

pay if we insist on maintaining gauge invariance. 

The above method is readily applicable to non-abelian groups. However, in this 

case, we cannot solve the model exactly. The model fails to satisfy the nai've Dyson­

Schwinger equations, as can be seen by making use of the Maxwell equations to express 

the current in terms of the gauge field and then compute, e.g., the expectation value 

of the product of two currents, 

(3.3.29) 

The procedure is the same as in the abelian case. By computing G~~ perturbatively, 

we can deduce the existence of a massless mode that does not couple to the gauge 

field. However, non-perturbative effects may give rise to a massive state. More work 

is also needed to establish the unitarity of the theory to all orders in the coupling 

constant. 

At first glance, our results seem to be in conflict with the recent solution of the 

chiral Schwinger model [17] that gave rise to massive states. In that model the mass 

depends on a parameter a that is the coefficient of a term in the action that explicitly 

breaks gauge invariance. Effectively, if a < 1, an extra field is added of opposite 

statistics to the fermions. In particular, when a = 0 (i.e., when the gauge field is 

massless), negative norm states are obtained [17]. However, in our case, although 

we obtain a massless physical state, the theory is unitary, owing to the fact that we 

have not introduced additional degrees of freedom. This leads to a consistent theory, 

because there is no physical state coupled to the gauge field. 

Finally, it should be noted that the method is applicable to a higher number of 

dimensions. This is the subject of the next section. 

3.4 Four dimensions 

We now turn to a discussion of a four-dimensional chiral gauge theory [10]. Unfor­

tunately, explicit results are hard to obtain in this case. The reason is that separating 
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the poles in a four-dimensional integral is not a straightforward process. We shall only 

be able to check for the absence of an anomalous divergence of the current and of an 

anomalous term in the commutator of the generators of gauge transformations. A lot 

more work seems to be needed for the study of the physical spectrum. Also, questions 

regarding unitarity will remain unanswered. Again for simplicity, we assume that the 

theory only contains left-handed fermions . We define£ as the limit lim(_,.0 £< , where 

and 

(3.4.1) 

j~a = ,//J(x) (Ta/µ - ~Ta( lv /µ + tµ/v) Bv + ~iecv {Ta, Av(x )}1µ) P _'lj;(x) 

(3.4.2) 

In analogy with the two-dimensional case, the current is expected to have vanishing 

divergence: 

D ·µa 0 µ]( = . (3.4.3) 

To see how this comes about, let us define the current jµa as the zeroth order term 

in jfa. By making repeated use of the Dirac equation, we deduce that 

D ]·µa= D ]·µa - iec "/,"" p pµv"'' µ f µ V'f/ l/l - 'f/ (3.4.4) 

It is easy to show that 

2 

( ·a) - ("/, yap "'') - e µ)..pr;p Jµ = 'f//µ -'f/ - -2l)..6 pr; ' 
811" 

(3.4.5) 

where we neglect higher-order terms in c. Therefore, eq.(3.4.3) holds, provided 

2 
D J·µa = _e_c trTa pµv ppr; 

µ 3211"2 µvpr; (3.4.6) 

Notice that this result agrees with the second method of Section 3.2. It disagrees 
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with the result 

(3.4. 7) 

which is obtained in conventional perturbation theory, or by using the first method of 

Section 3.2. Although this way we do not obtain the consistent anomaly, the Wess­

Zumino conditions are still satisfied by the Noether current of the theory, j~< = o~f. Sc, 

which has no anomaly, i.e., Dµjfa = 0 . Eq.(3.4.6) can be proven by a straightforward 

computation of diagrams. This shows that the theory is gauge-invariant. 

It is interesting to compare this calculation to the conventional one which parallels 

Bardeen [18] . Let the S-matrix be S = Tei f d4

xeA~Jµa , where 

(3.4.8) 

is the N oether current of the theory. We have introduced extra terms in the lagrangian 

that are formally of order c , to avoid having to introduce counterterms at the end. 

The difference with the previous method is that in calculating Green functions we do 

not expand the fermionic fields in powers of c . Also the propagator is now p instead 

of peitp . Following Bardeen, we can show that Jµa satisfies eq.(3.4. 7). Comparing 

the two methods, it is obvious that the discrepancy arises from the difference in the 

expansion in c , before taking the limit c -+ 0 . 

We can also see how the above procedure modifies the Maxwell equations, so as 

not to reproduce any inconsistencies. The argument showing the inconsistency of 

theories with anomalies is as follows [2]. The equations of motion for a dynamical 

gauge field are DµFµv = ejY . Now DµDvFµv = 0 , identically and so Dµjµ = 0 . 

But Dµjµ '/:- 0 , by eq.(3.4.7). Hence the inconsistency. 

However, after regularizing, using our gauge invariant procedure, the equations 

of motion become 

D Fµv = eJ·v 
µ t ' 

(3.4.9) 

where jf is the Noether current of the theory, given by eq.(3.4.2). Since Dµjf = 0 

(cf eq.(3.4.3)) , there is no inconsistency. 
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As our procedure gives the covariant anomaly like method B of Section 3.2, the 

resulting theory satisfies different Dyson-Schwinger equations. Unlike that method, 

however, the anomaly we find using our gauge invariant procedure does not break 

gauge invariance, because it is not associated with the Noether current of the theory. 

Therefore, this procedure produces a theory that is not equivalent to the theory that 

resulted from method B of Section 3.2. 

Next we ask the question whether Gauss's law can be implemented as a first­

order constraint. Using cohomology, Faddeev [19] showed that this is not the case 

for theories with anomalies. Specifically, he showed that there is an anomalous term 

contributing to the commutator of two generators of the gauge group. Subsequently, 

various methods were employed for the explicit evaluation of the anomalous term, 

with conflicting results [20]. Since our regularization is gauge invariant, there are 

no such terms. In fact the generators vanish by virtue of the equations of motion. 

Yet, it might be of interest to investigate the possibility that the time component of 

j~ = ;/;(x)!µP_Ta'l/;(x) is a generator of gauge transformations. We shall see that this 

is true, although in conventional perturbation theory there is an anomalous term in 

the commutator of two currents. 

We therefore wish to compute the equal-time commutator of the time components 

of two currents j0(x) and jg(o) , where j~ = ;/;1µP _Ta'lj;. We define a quantity cab(x) 

by 

(3.4.10) 

If one uses the method of Section 3.2 which produces the consistent anomaly, or 

cohomology [19], one finds that 

(3.4.11) 

Therefore j 0 cannot be a generator of infinitesimal gauge transformations. 



53 

We shall use gauge-invariant point-splitting regularization to show that C = 0 , 

as nai"vely expected. The Fourier transform of C is 

(3.4.12) 

The BJL theorem [21] gives 

J d3xeip·x[j0(x, O),jg(O)] = Jim p0 j d4 xeipxTj0(x)jg(o) 
p -+()() 

(3.4.13) 

We shall calculate 

(3.4 .14) 

to first order in Aµ . Only connected diagrams contribute and, to use the BJL 

theorem, we have to drop all polynomials in p0 
. Because of (3.4.12) and (3.4.13) , 

eq.(3.4.14) becomes 

(3.4 .15) 

We observe that, on the right-hand side of eq.(3.4.15), the second term serves to 

remove the part of the first term that does not depend on p . Let Fi, F2 be the p­

dependent parts of the diagrams that contribute to (Tjoj0 ) and contain the vertices 

that come from the first and second terms contributing to the current jfa (eq.(3.4.2)), 

respectively. Then 

(3.4 .16) 

An explicit calculation shows that 

F 1 J d4q t Ta{Tb Tc} ijk A-c( ) 
i = 1271"2 (27r )4 r ' c Piqj k q ' (3.4.17) 

where Aµ is the Fourier transform of Aµ . It is easy to see that F2 = -Fi . Therefore, 

eq.(3.4.16) becomes 

O" = 0 ' (3.4.18) 

as advertised. 
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It is interesting to compare this calculation with the one that makes use of the 

current defined in eq.(3.4.8). We can follow the same steps as above to compute 

o-ab(p) .. We see that the second vertex does not contain the second term that is 

proportional to Eµ/v . Thus, we find that in this case Fz = -~F1 . It follows that 

a-= !F1 , or 

b 1 J d4q b . 'k -a-a (p) = -- --trTa{T Tc}c: 11 p·q ·Ac (q) 
2471'2 (27r)4 ' t J k ' 

(3.4.19) 

proving the existence of an anomalous term in the commutator of two currents. 

It is interesting to observe that we obtained two conflicting results by considering 

essentially the same diagrams. The only difference between the two regularization 

procedures was in the expansion in powers of E • 

3.5 Bosonic strings 

We shall now apply the same method to bosonic strings. We shall find that it is 

possible to obtain a unitary theory in an arbitrary number of space-time dimensions. 

However, we shall not be able to construct vertex operators explicitly. To this end, 

we may have to consider the ghost coordinates as well. 
+ 

We start with the action+ 

(3.5.1) 

where gab and xµ are independent degrees of freedom, (gab is the world-sheet metric 

and xµ are the coordinates (µ = 1, ... , d, d being the dimension of space-time)) and 

o! is an arbitrary constant that can be identified with the string tension. Define a 

regulated action sf by symmetrically splitting points [22]: 

(3.5 .2) 

where xµ(±) = xµ(o- ± ~E) and Ea is a fixed two-vector. This is a symmetric point­

splitting in the sense that, before taking the limit E -+ 0, we have to average over the 

t For a comprehensive introduction to string theory and references on the subject, see ref.[24] . 
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directions of Ea. 

To work with perturbation theory, we set 

9ab =Dab+ c/hab , (3.5.3) 

where hab is small . The linearized action is 

S l J (!::I µ(+)!::I (-) 'h T ) d2 
< = 2 UaX UaXµ + O'. ab ab a , (3.5.4) 

where Tab= OaXµ(+)fJbx~-) - !8ab0cXµ(+)fJcx~-) and we have rescaled xµ--+ Hxµ. 

The zeroth-order action is 

(3.5.5) 

giving a propagator 8( a) = J (g:)2 eiPCT eip< ~ , whose short-distance behavior is 8( a) ,....., 

-lna2 . 

We can now describe how we will be calculating correlation functions. If the 

correlator involves an operator that depends on the regularization parameter Ea, we 

expand the operator in Ea, keeping only the terms in the series that are of order at 

most 2 in Ea. Thus, e.g., the stress tensor becomes 

(3.5.6) 

It should be noted that this step does not modify the usual regularization procedure, 

because the contribution to the stress tensor that is formally of order 2 in Ea is just 

a local counterterm in the action. What is not equivalent to a local counterterm and 

therefore modifies the standard perturbation expansion is an additional step which we 

shall now describe. Before we perform any loop integrations, we write the integrand 

as a sum of terms, each of which has only one pole in the external momenta. Then 

in each term we shift the loop momenta, so as to move the pole to zero. Finally, we 
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expand the factors that involve the external momenta in powers of Ea keeping only 

the terms of order at most 2 in Ea. The shifting of the integration variables typically 

gives rise to factors of the form eip<, where pa is an external momentum. As we just 

described, we have to replace eip< by 1 + ip · E - ~(p · E )
2

• This expansion of factors 

is not the same for all the terms in which we split the Feynman diagram. This is the 

reason why the procedure we just presented results in a theory that is not related to 

the standard theory via local counterterms. 

We now proceed to compute the partition function: 

e-W = j Vxµe-S , 

as a functional of the metric hab· Differentiating with respect to a', we find 

Now, 

so 

aw 1 'f d
2
p aa = 4a (27r) 2 hab(p)ha 1b1 (-p)Gaba'b'(P) , 

(3.5. 7) 

(3.5.8) 

(3.5.9) 

(3.5.10) 

where Gaba'b'(P) = F.T.{Tab(cr)Ta'b'(O))o is the two-point function. It gets contribu­

tions from the various vertices (eq.(3.5.6)). The first term contributing is 

(1) ( ) J d2 
k i(2k+p)< ( ) ( ) 1 1 

Gaba'b' p = d (27r) 2 e kakb' p + k b p + k a' k2 (p + k)2 (3.5.11) 

Working with light-cone coordinates, er±= )z(cr0 ± icr1 ), it is easy to show that all 

indices have to be equal. Thus, only G~~++ and G~~-- survive. We have 

cU) =di_!_!:___ i(2k+p)<k ( + k) 2_: (k+ _ (p+ k)+) 
++++ (27r)2 e + p + P- k2 (p + k)z 

d J d2 
k 2ikc [ ( . 1 ( )2) k2 ( k) 1 ( a a)] = P- (27r )2 e 1 + ip . E - 2 p . E + p + + k2 - p ---+ -p 

where we expanded the factor eip< and kept the terms up to order two in la . We 
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easily find 

(1) d 1 [ ( . 1 2) ( 1) o2 
( i o ) 2 

G ++++(P) = 47r P- 1 + ip · c - 2(p · c) -4 oc2_ -2 oc + P+ ln c 

-(pa~ -pa) ] 

=~Pt +R , 
l67r P-

(3.5.12) 

where R vanishes after averaging over directions of ca. Similarly, we obtain 

c(1) - ~P~ ____ (p) - 16 
7r P+ 

(3.5.13) 

The second term contributing to G is 

We find 

G(Z) (p) = - ~cccdN2_ [!:_~ (-!:_~ + P+) }___ (-i_!__ +Pd) lnc2 

++++ l67r P- 8 oc2_ 2 oc Occ ocd 

--- _.:__ + P+ _.:__ - Pc -i- - Pd lnc2 1 02 ( . 0 ) ( . 8 ) ( 0 ) ] 
4 8c2_ 2 OL 2 Of.c Old 

(3.5.15) 

where we replaced eip< by 1, because the Green function is already formally of order 

2 in ca . After some algebra, we find that 

(2) d P+ 1 
G++++(P) = --16 -PcPdlcld2 

7r P- c_ 
(3.5.16) 

Averaging gives 

c(2) ( ) = _ _!!:__ p3-
____ p l67r P+ (3.5.17) 
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Similarly, we obtain 

a(2) (p) - -~P~ 
++++ - 1671" P-

(3.5.18) 

Therefore Q(2) cancels Q(l) and so ' ) 

G++++(P) = G ____ (p) = 0 (3.5.19) 

It follows from eq.(3.5.10) that the partition function does not depend on the string 

tension and is therefore also independent of the metric. Using similar arguments, 

one can show that the Faddeev-Popov determinant does not depend on the metric 

either. The reason is that it involves a conformally covariant operator, and so the 

above procedure is readily reproducible. It follows that the ghost degrees of freedom 

completely decouple and we shall therefore ignore them. Using the BJL theorem [21], 

J diJ1eiP
1

""
1 [T++(O, ()1), T++(O, O)] = lim po J d2iJeiP""T(T++(iJ)T++(O)) , 

p0->00 

(3 .5.20) 

where the polynomial terms in p0 have to be dropped on the right-hand side, it is 

straightforward to show that eq.(3.5.19) implies 

(Ol[T++(O, iJ1), T++(O, O)]IO) = 0 , (21) 

to be compared with the result of the standard theory, 

(Ol[T++(O, iJ1), T++(O, O)JIO) = 
4

:7!" 8111 (()1) (3.5 .22) 

Equivalently, we can write the following operator-product expansion (OPE): 

T++(iJ)T++(iJ'),...., ( 
2 

') 2 T++((}) + ( 
1 

') o+T++(iJ) +. ·. , (}-(} + (}-(} + 
(3.5.23) 

and similarly for T __ ( iJ). This shows that the central extension term vanishes and 

therefore Tab ( iJ) contains the effects of the ghosts in the standard theory. 
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Physical states are annihilated by Ln (n > 0) and Lo - c, where c = (Lo) is the 

intercept. To compute the intercept, we use the definition of Ln: 

7l' 

Ln = ~ J[e-2inu1y __ + e2inu1T++]da-i . 
211" 

0 

(3.5 .24) 

One has to be a little careful and take into account the fact that the range of a-1 

is finite ( 0 :::; a-1 :::; 7r). The calculation is straightforward and we find c = d242 . It 

is useful to express Lo in terms of creation and annihilation operators. These are 

defined as the fourier components of the position operator, 

(3.5.25) 

where ( a~)t = a':._n , (a~)t = a':._n , satisfying commutation relations [a~ , a~] 
µvc [-µ -v] _ µvc [pµ v] _ · µv Th mTJ um+n , am, an - mTJ um+n , , q - -ZTJ . us, 

1 00 . 1 00 . 

L = P2 + - ~aµ a e-2mt_ + - ~aµ a e2mt+ 
0 2 L.., -n nµ 2 L.., -n nµ 

n=l n=l 

(3.5.26) 

Next, we turn to a study of loops . A one-loop diagram with no external lines is 

related to the partition function 

(3.5.27) 

where Lo(L) = ~p2 + ! L a':._nanµ is the hamiltonian for the left-moving sector. The 

partition function has to be modular invariant, ~hich is equivalent to Z ( T + 1) = 

Z ( - ~) = Z ( T). A straightforward computation that makes use of coherent states 

shows that the E-dependent terms do not contribute and the answer is 

(3.5.28) 

where j( T) = rr~=l (1 - e27l'irn)-l, which is modular invariant, due to the transfor­

mation properties of the function f [23]. 
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To compute the spectrum of the theory, one has to find vertex operators that 

create the physical states. The standard choice for the lowest-lying (tachyonic) state 

is the operator vk(O"o) = J01r d0"1eikx(u) . However, this will not work in our case, 

because 

(3.5.29) 

Therefore, we have to modify Vk to eliminate the central term. We have not been able 

to find the appropriate modification of Vk ( O"Q). However, the fact that the intercept 

is c = dU_2 indicates that the mass of a tachyon is m2 = - dU_2 .t 

In the case of open strings, one can also argue that a one-loop diagram with N 

external lines possesses no cuts. Thus, a source of violation of unitarity is absent in 

our formalism. To see how this works, consider 

(3 .5.30) 

where n is the twist operator (n-1xµ(0,0"1)n = xµ(7r,0"1)), and lo is the hamilto­

nian for open strings. In the standard theory, c = 1, so using the identity -L-
1 = 

o-C 

J0
00 dre-r(lo-c) we can rewrite eq.(3.5.30) as follows: 

N oo 

An.p.(k1, · · ·, kN) = IJ j drjTr{ vk1 (r1) · · · Vk;(r1 + · · · + Ti)Dvk,+1(r1 + · · · + Ti+1) 
1=1 0 

x ... x VkN(T1 + ... + TN)ne-(r1+ .. +rN)(lo-l)} ' 

(3.5.31) 

where we used the fact that e-rlovk(O)erlo = vk(r) is the vertex operator at imagi-

t Notice that if d = 26, then m 2 = -1, in agreement with the standard theory. 
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nary time O"Q = ir. Making use of coherent states, we obtain [23] 

1 

An.p.(k1, ... 'kN) = J dqq (lnq)(d-26)/24g(q) 

0 

(3.5.32) 

The behavior of the function g for small q is g(q),....., q-s-2 , wheres= (k1 +· · ·+ki)2 is 

a Mandelstam variable. Therefore, the poles are the same as for the Koba-Nielsen tree 

amplitude ( eq.(3.5.33) ). Also the diagram has a cut if (ln q)(d-26 )124 does not equal 1. 

This is the case for all d -=f. 26. The factor (ln q)(d-26 )124 contains a contribution (ln q) 1 

from the factor involving the integration variables ec(ri +··+rN) (cf. eq. (3 .5.31) ), where 

c = 1. Using our method, eq.(3.5.31) is modified to 

N oo 

An.p.(k1, · · ·, kN) =IT j drjTr[vk1 (r1) · · · Vk;(r1 + · · · + ri)Dvk;+1(r1 + · · · + Ti+1)x 
J=lo 

x ... x VkN( r1 + ... +TN )De-(r1 +· ·+rN)(Lo-d~2)] . 

(3.5.33) 

Therefore instead of eri+·+rN we obtain a factor of e(ri+ ··+rN)(d-2)124 which leads 
' l l 

to a factor (ln q)0 = 1, for all dimensions d. Thus, no cuts exist in any number of 

dimensions and the theory appears to be unitary. 

Finally, let us mention that space-time Lorentz invariance can also be demon­

strated by computing vacuum expectation values of the commutators of the gener­

ators of the Lorentz group. One can follow the steps leading to eq.(3.5.21) to show 

that they all vanish, if our method is employed. 
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4. Strings on group manifolds 

After the discovery of anomaly cancellation in string theories by Green and 

Schwarz [1], strings have recently emerged as the prime candidate for a theory that 

would explain all fundamental interactions. A remarkable property of string theo­

ries is that they are consistent only in certain critical dimensions, which are 26 for 

the bosonic string and 10 for the superstring. Since these are apparently unworldly 

dimensions, if we want strings to describe our perceived four-dimensional world , we 

must compactify the redundant dimensions to an internal space K~ Unfortunately, 

most choices of K lead to models from which it is hard to extract any predictions. 

However, if K is a group manifold, the model is exactly solvable, as has been discussed 

by Knizhnik and Zamolodchikov [3] and Gepner and Witten [4]. In this Chapter, we 

shall first review their construction of consistent models in th~ bosonic case, and then 

implement similar ideas on superstrings. 

4.1 Bosonic strings 

We shall quantize a two-dimensional sigma model with group G, of dimension D , 

whose action is of the Wess-Zumino form [5]: 

where g E G. The second integral is over a three-dimensional surface whose boundary 

is the two-dimensional integration region of the first integral. This term is defined 

modulo 27r [6], which requires k to be an integer, so that the factor eiS in the path 

integral be well-defined and independent of the three-dimensional surface chosen. 

We will be interested in the propagation of closed strings, and therefore we impose 

the boundary conditions g(CT1 = 0) = g(CT1 = 27r). For convenience, we define new 

coordinates z and z defined as z = e""0 +i""1 and z = e""0 -i""1 • Henceforth, we shall be 

working with z and z, instead of CTQ and 0"1. 

Q For a review and references on the issue of compactification to four dimensions see ref. [2]. 
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At the critical point, a = 1!7r, the theory is invariant under the transformations 

generated by the currents: 

(4.l.2a) 

( 4.l.2b) 

where the Ta's are the generators of the Lie algebra of G ([Ta, Tb] 

trTa Tb = coab, c being the second Casimir of a certain representation of G). The 

components of J(z) in .a Laurent expansion, J(z) = L lnz-n-I, generate a Kac­

Moody algebra,t 

(4.1.3) 

and similarly for J. From now on, we concentrate on the left-moving sector. The 

discussion of the right-moving sector follows the same lines. 

The energy-momentum tensor takes the Sugawara form: 

1 
T(z) = : r(z)Ja(z): . 

2k +CA 
( 4.1.4) 

Its coefficients in the Laurent expansion, T( z) = L Lnz-n-2 obey the Virasoro alge­

bra, 

( 4.1.5) 

where the central charge is given by 

2kD 
c-

- 2k +CA ' 
(4.1.6) 

CA being the second Casimir of the adjoint representation of G. The physical states 

are annihilated by Ln and Ln ( n > 0). We define highest-weight vectors (primary 

t This is to be compared with the algebra of the coefficients a~ of the coordinates xµ ( eq.(3.5.25)) , 
which is obtained from eq.(4 .1.3) for G = U(l)d. 
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states) as eigenstates of the zero modes Lo and J0: 

Lo IR, i) = 6IR, i) , J0 IR, i) = (T_R)ij IR, j) , (4.1.7) 

where R denotes an irreducible representation of the group G. These states are 

physical states provided 

6 
_ CR 

- 2k +CA ' 
(4.1.8) 

where CR is the second Casimir of the representation R (trT_RT_R = CROab). 

By acting with the raising operators J':..n (n > 0) on the primary states, we obtain 

all physical states. Each primary state is created from the in-vacuum by a field <Pf(z) 

(primary field): 

IR, i) = <Pf (0) IO) . ( 4.1.9) 

Since all physical states can be created from the primary fields, the correlators of 

primary fields contain enough information to determine all Green functions. To cal­

culate them, we shall make use of the existence of null vectors, in analogy with the 

solution of critical systems by Belavin et al.[7]. 

A representation of the semi-direct product of a Kac-Moody and a conformal 

algebra is said to be degenerate if there is a secondary state in it (i.e., a state generated 

from the highest-weight vector by the action of lowering operators), which has the 

properties of a highest-weight vector, i.e., it is annihilated by all the raising operators 

of the algebra. This state is said ' to be null, and the corresponding primary field is 

said to be degenerate. It is easy to check that the following state is null: 

Ix) = { ( k + c;) L_1 +ya Jc:_ 1 } IR, i) . ( 4.1.10) 

Its inner product with any other state in the representation generated by the initial 

primary field, <P(z), vanishes identically. Thus, the sub-representation generated by 
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the null vector, x(z), can be consistently set to zero. In particular, its correlation 

functions with all the other primary fields vanish: 

(4.1.11) 

Since (L-1, <Pl= Oz<P and (J~ 1 , <Pl= z-lya<P, eq.(4.1.11) can be written as: 

( 4.1.12) 

This is a set of differential equations that can in principle determine all correlators. 

One can obtain an additional null vector by considering the Kac-Moody algebra of 

the theory ( eq.( 4.1.3) ). It is thus possible to extract extra algebraic matrix equations 

that are satisfied by correlators of primary fields. These equations imply that primary 

fields corresponding to non-integrable representations of G vanish identically~ On the 

other hand, each integrable representation appears exactly once. 

We now couple the Wess-Zumino model (eq.(4.1.1)) to a sigma model defined on 

a Minkowski space of dimension d (eq.(3.5.1)). Let a~ be the fourier components of 

the coordinates xµ (µ = 1, ... , d). The mass formula for this system is 

2 2 CR+ CR_ - -
m = -p = -2 + 2k + N + N + M + M , 

+cA 
( 4.1.13) 

Where N 1 " · ]a Ja · n11 
-

1 " · aµ a ·. ar·e the number = 2k+cA 6mj0 · -m m ., m - 2 6mj0 · -m µm 

operators for the left-moving sector in the group and Minkowski space, respectively. 

N and NI are the corresponding operators in the right-moving sector. It is clear that 

the spectrum includes a tachyon (m2 = -2) that transforms as a singlet under some 

representation R. Since there is no preferred point on a closed string, the physical 

t An integrable representation is defined as the one satisfying k 2: 2(.A, B), where>. is the highest 
weight of the representation and B is the highest root of the Lie algebra of the group G [8]. 
For SU(N), e.g., 2(>., B) is the length of the first row of the Young tableau. 



58 

states must be invariant under translations in the 0-1 direction. These are generated 

by Lo - Lo. It follows that 

N + M + 2k ~CA = N + M + 2k c_: CA ( 4.1.14) 

The theory is also seen to be modular-invariant at the critical dimension: d + c = 

26 , i.e., 

2kD 
d + 2k = 26 

+CA 
( 4.1.15) 

4.2 The N=l super Wess-Zumino model 

The main drawbacks of the model we have just described are the absence of 

space-time fermions and the existence of a tachyonic mode (cf. eq.(4.1.13)). One 

expects this mode to disappear if supersymmetry is incorporated into the model, in 

a manner similar to the case of fiat space. We therefore proceed to study the N=l 

supersymmetric extension of this model. 

Recently, there has been a lot of interest in Kac-Moody algebras from both the 

mathematical and the physical points of view [6]. In particular, Kac-Moody algebras 

are seen to play an important role in conformally invariant two-dimensional models 

with continuous symmetries [3,9], as well as in string theories [4,10,11]. 

The Wess-Zumino models on group manifolds, describing string propagation in 

the group manifold, are typical models realizing such an algebra. Their supersymmet­

ric version has been studied recently [12], and a new structure, that of a (N=l) super 

Kac-Moody algebra, has emerged. This algebra is essential in describing superstring 

propagation in a group manifold.§ 

In this section, we derive the transformation properties of the fields under a 

super Kac-Moody algebra, and we solve the projective Ward identities for the 2-

and 3-point functions . VVe focus our attention on the degenerate representations of 

§ A phenomenological study of these models will be presented in the next section. 
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the algebra that appear in the super Wess-Zumino model, and we derive the linear 

differential equations for the correlation functions of the degenerate fields. We solve 

these equations for the 3-point function, obtaining constraints on the dimensions of 

the fields that may exist in the theory. We thus show that the operator algebra of 

the degenerate fields closes in the same way as in the ordinary Wess-Zumino model. 

We also solve these equations to determine the 4-point function, which is the first 

non-trivial Green function. Some implications are also discussed. 

The super Kac-Moody algebra is generated by the current superfield Ja - ?jia(z)+ 

()Ja(z). In terms of the fourier modes of the supercurrent, this algebra is 

[J~, J~] = irbc l~+n + k8abmOm+n,O 

[J~,¢~] = -irbc?f':n+r , {¢~,¢~} = 5ab5r+s,D , 
(4.2.1) 

where fabc are the structure constants of a semisimple Lie group G . We also have 

( J~) t = JC:...m and (Vi:) t = 1/iC:...r . One distinguishes between two sectors, the NS 

sector, where ?fa(z) is anti-periodic on the cylinder, and the R sector, where ?fa(z ) 

is periodic on the cylinder. In this section, we shall only consider the NS sector. 

It is convenient to pass from the cylinder to the plane through the super-analytic 

transformation (ln z, z- 112e) --+ ( o-0 + io-1 , e). Then in the NS sector fermionic fields 

are single-valued whereas in the R sector the fermionic fields are double-valued on 

the plane. 

A theory invariant under the algebra (4.2.1) also has an N=l superconformal 

invariance. The generators of the superconformal algebra can be constructed from 

those of the super Kac-Moody algebra (in the Sugawara form), 

( 4.2.2a) 

G 1 ~ of.a -a 1 ·1abc 
T = - n L : 'f/r-mjm: + ni 

vk 6vk 
mEZ mEZ,r'EZ+t 

J-a = ja _ '!_fabc ~ , 0 /,b 0 /,C , 
m - m 2 L · 'f/m-r 'Pr · ' 

rEZ+t 

( 4.2.2c) 
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where J::n is the "bosonic" current. It can easily be seen that 

[J!, ?/i~] = 0 ' 

[J-a J-b] ·Jabc;-c (k CA) cab i: m' n = i m+n + - 2 u mum+n,O 

( 4.2.3a) 

( 4.2.36) 

Demanding unitarity on the bosonic part, we obtain k ~ cA/2. The Fock in-vacuum 

IO) is defined as the state annihilated by the generators J~(n 2". 0) and ?/i~(r > 0). We 

end up with the semidirect product of the N=l superconformal algebra and the super 

Kac-Moody algebra defined by the commutation relations (4.2.1) together with: 

[Lm, Ln] = (m - n)Lm+n + ~(m3 
- m)8m+n,O , 

[Lm,Gr] = (; -r) Gm+r , [Lm,J~] = -nJ!+n, 

[Lm, ?/i~ ] = - (; + r) ?/i~+n , {Gr, Gs} = 2Lr+s + ~ (r2 
- ~) br+s,O , 

[Gr ,J!] =Vkm?/i~+r, {Gr,?/i~}=- ~J:+s, 
vk 

(4.2.4) 

where c = ( 1 - U-) D , D being the dimension of the group G. We will focus on the 

left sector of the theory, the full theory being the direct product of the left and right 

sectors. The highest-weight vectors of this algebra (primary states) are labeled by 

the eigenvalues of the zero modes Lo , J0: 

Lo IR, i) = 6IR, i) , Jg IR, i) = (T_R)ij IR, j) , ( 4.2.5) 

where R denotes an irreducible representation of the group G. We also have LnlR) = 

J~IR) = GrlR) = ?/i~IR) = 0, for n, r > 0. These states are generated by the action 

of superfield operators, called primary superfields, on the in-vacuum, 

( 4.2.6a) 

where 

<r?f(z, B) = </>f(z) + B?/if(z) . ( 4.2.66) 
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The algebra acts on the primary superfields as follows: 

[Lm , <I>f(z, B)] = zm+Iaz<I>f(z, B) + (m + l)zm ( .6. + ~B :a) <I>f(z, B), (4.2.7a) 

[ R J r+l ( f) 0 ) R Gr, <J>i (z, B) = z 2 aB - B oz <J>i (z, B) 

- 2.6. (r + ~) zr-t B<I>f(z, B) , 

[J~, <I>f (z, B)] = zm(TR,)ij<I>f (z, B) , 

[Vi~,<I>f(z,B) ] = ~zm-t(TJl)ijB<I>j(z,B) 

(4.2.7b) 

(4.2.7c) 

(4.2.7d) 

Here .6. is the conformal weight of the superfield CJ>, defined in equation ( 4.2.5). The 

algebra above follows from the transformation of the superfield under the supercon­

formal group and the Jacobi identities. 

The theory is invariant under the global superconformal group, OSP(2Jl), which 

is generated by the operators G±1;2 , L±1, Lo, due to the fact that the vacuum is also 

OSP(2ll) invariant. We can derive appropriate Ward identities for the correlation 

functions reflecting the invariance mentioned above. The procedure is to insert a 

generator of OSP(2ll) in a correlation function acting on the in-vacuum and move 

it to -the left using the commutation relations ( 4.2. 7). Let us consider the 2-point 

function, whose form is fixed by the Ward identities from global superconformal 

invariance [13], 

(4.2.8) 

The vacuum is also invariant under global G-transformations, that is, the zero 

mode J0 annihilates the vacuum. The Ward identity for the zero mode of Ja( z) 

implies 

(4.2.9) 
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with a solution 

( 4.2.10) 

which is the Clebsch-Gordan coefficient of the projection of R 1 x R2 on the singlet 

representation. 

The 3-point function is constrained by the superconformal invariance to have the 

form [13] 

(4.2.11) 

where 

( 4.2.12) 

is the only combination of the coordinates that is invariant under the global supercon­

formal group OSP(2jl) squaring to zero. Thus a is an extra undetermined Grassmann 

parameter. 

The current ·ward identity is in this case: 

( 4.2.13) 

with the solution, 

( 4.2.14) 

being the appropriate Clebsch-Gordan coefficient. The condition for the 3-point func­

tion to be non-zero is that the primary superfield <1?3 be contained in the operator 

product of <1?1, and <1?2. Then the z-independent part of the 3-point function is the op­

erator product coefficient multiplying <1?3 in the expansion of the product <1?1 x <1?2. Let 

us remark that, unlike the non-supersymmetric case, there are two operator-product 

coefficients to be determined here, one corresponding to the overall normalization, 

the other corresponding to the free parameter multiplying ft. 
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To proceed further, we shall make use of the existence of null states in the theory. 

The Sugawara form of the superconformal generators implies that the following state 

is null: 

Ix) = [ VkG -1/2 + TR_¢a__1/2] IR) . ( 4.2.15) 

It is easy to verify that Ix) is annihilated by all the raising operators, provided that 
•t d• • . A f.R i s imens1on is, u. = 2k. 

As we discussed in the previous section, the existence of degenerate represen­

tations in a theory is of prime importance, because in such a case the correlation 

functions of a degenerate superfield satisfy additional linear (super )differential equa­

tions which allow one to determine them completely. 

To illustrate the above statement, consider the 3-point function with one of the 

fields, <I>f3 say, being degenerate . Taking advantage of the invariance of the cor­

relation functions under global superconformal transformations, we can perform a 

translation and a supersymmetry transformation, to bring it into the form 

where 

Zl = Zl - Z3 - 81 83 , 81 = 81 - 83 , 

z2 = z2 - z3 - 8283 , 82 = 82 - 83 

( 4.2.16) 

( 4.2.17) 

Using the fact that the field <I>degi corresponding to the null state Ix), has vanishing 

correlation functions with all other fields, we obtain 

Commuting the generator of the algebra through to the left using eq.( 4.2. 7), we arrive 

at the following super-equation for the 3-point function (we drop the tildes from now 
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on): 

2 

k"" (;::;of) - fJi ;::;a ) Fijk + f)i (TR_3)km(TR_Ji1F1jm + ()2 (TR_3)km(T1RJi1Fi1m = 0 
6 u · uz· z1 z2 i=l l l 

( 4.2.19) 

Eq.(4.2.19) implies that the odd part of the correlation function is zero (a= 0) , and 

also 

k.6.13Aijk + (TR.3 hm(TJt )i1A1jm = 0 ' 

k.6.23Aijk + (TR_Jkm(TR_Ji1A1jm = 0 

(4.2.20a) 

( 4.2.20b) 

Using the current Ward identities (eq.(4.2.13)), it is easy to show that eqs.(4.2.20a) 

and (4.2.20b) are equivalent. We therefore only consider eq.(4.2.20b). After some 

straightforward algebra, it follows from eq.( 4.2.13) that 

( 4.2.21) 

Consequently, if the fields <I> R2 and <I> R3 belong to degenerate representations, i.e., if 

.6.2 = c2~ and .6.3 = ¥f- , then .6.1 = T,;- . This proves the closure under operator­

product expansion of the degenerate representations of the semi-direct product of 

the superconformal and the super Kac-Moody algebras. Since any 3-point function 

of secondary fields is related, via the superconformal and G-Ward identities, to the 

3-point function of the corresponding primary superfields, our results apply to any 

3-point function. This fact is important for the construction of a superstring theory 

on a group manifold, since it implies that the corresponding vertex operators form a 

closed algebra and the amplitudes factorize onto physical intermediate states [14]. 

When CA = 2k, the representations of the super Kac-Moody algebra possess 

additional null states that are constructed out of the modes Jr:._n ,1/;1:..r (n, r > 0). 

In this case, the central charge of the "bosonic" Kac-Moody algebra ( eq.( 4.2.3b)) 

vanishes, so we are left with only the free fermions that realize the supersymmetry 

non-linearly. 



75 

The states that remain to be considered are the proper null highest-weight vectors 

of the Kac-Moody algebra. These are obtained by the action of lowering operators 

of the Kac-Moody algebra on primary states. The operator algebra of those repre­

sentations has been discussed in the previous section (4]~ Combining the results of 

ref. (3] with ours, we have complete knowledge of the minimal system of representa­

tions of the super Wess-Zumino theory. In fact, the theory is exactly solvable in the 

sense that all the correlation functions satisfy a super-equation of the form (4.2.19) 

and are therefore computable in principle. Below, we present an explicit evaluation 

of the 4-point function, which contains non-trivial information on the non-vanishing 

operator-product coefficients of the operator algebra. OSP(2jl) invariance implies 

that the 4-point function is of the form 

Fijkl = (Ol<I>f1 (z1, B1)<I>f2 (z2, B2)<I>f3 (z3, 83)<I>f4 (z4, 84)jO} 

= A~kl IT (zIJ)111 (JK(x) + Y9K(x)] , 
I<J 

( 4.2 .22) 

where x, y are the two independent commuting combinations of the coordinates in­

variant under OSP(2ll), 

and 

z12z34 
x=--

z13z24 
Z14Z23 2 

y=x+---1, y =0, 
Z13Z24 

/IJ =/JI ' L /IJ = -2/::,.J . 
f=IJ 

( 4.2.23a) 

(4.2.23b) 

Using the current Ward identities for the 4-point function, we can compute the group 

coefficient: 

R,R',m,m' 
( 4.2.24) 

where the index J{ labels the singlets in the product. The equation satisfied by the 

4-point function can be derived in the same way as eq.( 4.2.19) (The variables here 

q The selection rules derived in this case state .that all non-integrable representations decouple . 
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are the tilded ones (cf. eq.(4.2.17)): 

( 4.2.25) 

We shall present the solution to this equation for the simplest non-trivial case, namely 

G = SU(2) and Ri, R2, R3, R4 all being the fundamental representation of SU(2). 

Other cases do not require new techniques but considerably more labor. There are 

two singlets in the product above, so we can write: 

( 4.2.26) 

In this case, eq.( 4.2.25) is a 2 x 2 matrix equation. Using the identity 

( 4.2.27) 

we can reduce (4.2.25) to two independent equations in F1 and F2, respectively, which 

are of the hypergeometric type. Their solutions, to lowest order in Bi, are: 

(l-x) 1
/

4
k (1 1 1 ) 

Fi(x) = ~ F 2k'-2k'l - k'x ' ( 4.2.28a) 

- - l/4k (1- ~ ~ ) F2(x)-[x(l x)] F 4k, 4k,l+ k'x · (4.2.28b) 

It is straightforward to uncover the B-dependence of the 4-point amplitude and nor­

malize it correctly by factorizing it on 3-point functions. 

The equation above has a very simple power-law solution in the special case where 

there is only one singlet contained in the product. Then, 

(4.2.29) 

and similarly for the products of TR4 with TR2 and TR3 , where we introduce constants 

ai4, a24 and a34 . Using the Ward identity ( 4.2.13), we can show that ai4 + a24 + a34 
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= -:r- = -26.4 . Apart from the trivial solution, eq.( 4.2.25) has two other solutions 

/14 = al4 ' g(x) = 0 ' f(x) = cxa34-734 ' 

/14 = al4 - 1 ' f(x) = 0 ' g(x) = cxa34 -"t34 -l ' 

( 4.2.30a) 

( 4.2.30b) 

We can always eliminate /12 by absorbing it into a redefinition of the function f or 

g. Then, in the first case, eq.(4.2.30a), the exponents are determined to be: 

/14 = al4 , /13 = -26.1 - al4 , /34 = 6.1 + 6.2 - 6.3 - 6.4 , 

/24 = 6.3 - 6.2 - 6.4 - al4 , /23 = 6.1 + 6.4 - 6.2 - 6.3 + al4 
(4 .2.31) 

In the second case, eq.(4.2.30b), they are given by eq.(4.2.31) if we make the sub­

stitution a14 --+ al4 - 1 . The constants a1 J can be determined using group theory 

for each specific case. The evaluation of higher correlation functions proceeds in a 

similar manner. 

Ordinary Wess-Zumino models at their critical point describe the critical behavior 

of quantum statistical chains with an arbitrary spin and continuous internal symmetry 

[9). It would be interesting to see if some of these models are in fact supersymmet­

ric, or if there are other critical systems that realize the semidirect product of the 

superconformal and the super Kac-Moody algebra. 

4.3 Model building 

Having studied the N =1 super Wess-Zumino model, we now turn to a discussion 

of how to build phenomenologically relevant models. As is well known, superstrings 

can only exist in ten space-time dimensions. In order to make contact with our four­

dimensional world , the extra six dimensions have to be compactified to an internal 

space K. So far, the most promising candidates for such a space Kare the Calabi-Yau 

manifolds. Unfortunately, they are very hard to work with, as very little is known 

about their structure. Other promising candidates are the orbifolds [15] and torus 

compactification [16]. 
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Another scheme of compactification is the one in which K, is a group manifold. As 

we discussed in section 4.1, the interesting feature of this approach is that the model 

can be solved exactly, in a manner analogous to the treatment of critical systems by 

Belavin et al. [7]. In this section, we discuss the possibility of obtaining a consistent 

phenomenologically relevant model , by incorporating world-sheet supersymmetry. We 

study all possible Lie groups, and give a list of all the groups that can lead to consistent 

string theories. We also discuss the conditions that are needed for modular invariance. 

Unfortunately, simple GSO projections do not give rise to modular-invariant theories 

that possess a non-trivial massless spectrum in space-time dimension d ~ 4. In fact, 

world-sheet supersymmetry is broken in the Ramond sector of the group manifold, 

since there is no ground state of the Lorentz Kac-Moody algebra with the appropriate 

dimension. This leads to a breaking of space-time supersymmetry. We therefore 

discuss generalized GSO projections that may give rise to a massless sector. However, 

one then has to change the boundary conditions of the bosonic fields , making it more 

difficult to check modular invariance. 

The models studied describe propagation of closed superstrings in Md x G, where 

Md is a d-dimensional Minkowski space and G is a D-dimensional semi-simple Lie 

group. vVe consider both type-II and heterotic string models! Our discussion includes 

models containing fermions that realize the supersymmetry non-linearly among them­

selves. 

I. Type-II strings 

The action of the models we are about to study is a sum of two terms. The first 

term describes propagation of closed superstrings in ad-dimensional Minkowski space. 

The second term describes an N = 1 supersymmetric Wess-Zumino model [18]. The 

world sheet is a compact surface. The degrees of freedom are bosonic coordinates 

xµ(o-) (µ = 1, .. . ,d,o- = (0-0,0-1)) and their fermionic super-partners '!j;µ(o-). The 

bosonic field g take values on a certain semi-simple Lie group G of dimension D. 

t A partial study of type-II models has been done by E. Bergshoeff et al.[17] . Here, we generalize 
their discussion. 



79 

Their supersyrnrnetric partners are free fermions , xa(o-) (a= 1, .. . , D). The operators 

in the N = 1 super Wess-Zumino model realize the super Kac-Moody algebra based 

on G. It is a minimal model in the sense that it contains a finite number of primary 

superfields transforming under a representation R of the Kac-Moody algebra with 

dimension 6.R = ~- The operator algebra closes properly, as discussed in the previous 

section [4,19]. 

The full theory is a direct product of a left- and a right-moving sector. We 

shall concentrate on the left-moving sector. The right-moving sector can be treated 

similarly. (Quantities in that sector will be denoted by a bar.) The theory is invariant 

under an N = 1 superconformal transformation generated by the operators 

G - "'""" . • !,µ a . 1 "'""" . xa J-a . r - - L · '1-'r-m µm · - /1 L · r-m m · 
m vk m 

1 ·jabc "'""" a b c + 
6
.jkz L : Xr-mXm-sXs : ' 

m,s 

(4.3.la) 

(4.3.lb) 

where J::n, = J:/:n, - ~rbc l:s : X~-sX~ : is the "bosonic" current. The modes a~ , J:/:n,, 

7/J~ and x~ are the fourier components of xµ, Ja, 1/;µ and xa, respectively. The current 

J has been defined in eq.( 4.1.2). The indices rands are half-integers when we are in 

the Neveu-Schwarz (NS) sector and they are integers if we are in the Ramond (R) 

sector. 

These operators satisfy the following commutation relations: 

( 4.3.2a) 

( 4.3 .2b) 

( 4.3.2c) 
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where c = d + ~ (2k~~A)D + ~ D. For a conformally invariant theory, we need to have 

c = 10. When G is a product of Lie groups Gi (G = G1 x · · · x Gp), of dimensions 

Di, respectively, then there is an integer ki ( i = 1, ... , p) corresponding to each one 

of them. Thus, in general, the condition c = 10 becomes 

(4.3.3) 

This is a constraint on the dimensionality of space-time and the group manifold. 

In Table 1 we list all possible groups that are solutions of eq.(4.3.3) in space-time 

dimension d = 4. We have omitted groups that only contain factors of SU(2), because 

they cannot give phenomenologically relevant models. 

Table 1 Conformally invariant type-II superstring models in Md x G, where Md is a d-dimensional 

Minkowski space and G is a semi-simple Lie group. k = k- T is the level of the Kac-Moody algebra 

(cf. eq.(4.2.3b)). We have bose-fermi equivalence whenever k = 0. An SU(2) factor of level k = 0 

can be replaced by a U(l). 

G k 

S0(5) 2 

SU(2) x SU(2) x 5U(3) 4,0,0 

SU(2) x SU(2) x SU(3) 1, 1,0 

5U(2) x SU(2) x 5U(3) 0,0,1 

5U(3) 5 

SU(3) x 50(5) 0,0 

5U(2) x SU( 4) 0,0 

SU(2) x 50(5) 0,1 

SU(2) x 5U(2) x 50(5) 0, 1,0 

SU(2) x 5U(3) 2,1 

In order to find the groups that lead to consistent theories, one has to construct a 

modular-invariant partition function. Modular invariance is an important ingredient 

in string theories. In the Polyakov formalism, it corresponds to invariance of the the­

ory under the modular (mapping-class) group of the respective Riemann surface. The 
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modular transformations are globally non-trivial transformations leaving the confor­

mal structure fixed. From the operator point of view, another reason for insisting on 

modular invariance is that it ensures locality in a superconformal theory when one 

combines the Neveu-Schwarz and Ramond sectors [20]. We will examine the models 

discussed above and determine the constraints coming from modular invariance on 

the torus. The discussion is easier in the light-cone gauge [21 J. The partition function 

of a system defined on the torus is the product of the bosonic partition function and 

a linear combination of products of fermionic partition functions. The bosonic part is 

modular invariant by itself, through the same line of arguments developed in ref.[4]. 

Therefore, we only have to worry about the fermionic degrees of freedom. 

The modular group of the torus is generated by the transformations r ~ r + 1 

and T ~ - ~ , where T is the modular parameter of the torus. For a Majorana-Weyl 

fermion there are four distinct partition functions on the torus: 

( 4.3.4a) 

( 4.3.4b) 

( 4.3.4c) 

( 4.3.4d) 

The insertion of the fermion number operator (-)F changes the boundary conditions 

for the fermions in the time direction from antiperiodic to periodic. In the path­

integral formalism, the four different partition functions ( eq. ( 4.3 .4)) correspond to 

the four different spin structures (boundary conditions in the o-o and 0-1 directions) 

of a Majorana-Weyl fermion on the torus. 

Let us focus our attention on the left-moving sector. Considering the modular 

transformation properties of the 0-functions, we easily see that a group of N fermions 

with the same spin structure can only have a modular-invariant partition function if 
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N is a multiple of eight. In this case, the partition function is given by the standard 

GSO projection. More generally, we can define quantities: 

F( T) = Tr0e211'ir:Lo: , (4.3.5) 

where we have inserted a modular-invariant operator 0. Then, in an obvious notation, 

the following expression is modular-invariant (up to a phase, which is canceled by the 

contribution of the right-moving sector): 

(4.3 .6) 

where N = 8n, n being an integer. The coefficient a can be 0 or ±1. Factorization 

and modular invariance at two loops excludes the value a= 0 [21]. These quantities , 

F( T), contribute to a multi-loop expansion of correlation functions of vertex operators. 

The factor a is relevant only when we have split the fermions in two or more 

groups. In that case, it differentiates between type-IIA and type-IIB theories. If 

each group contains Ni fermions, so that l:i Ni = N, then we can obtain a modular­

invariant partition function by performing a GSO projection in each group separately. 

Then, eq.( 4.3.6) can be replaced by a more general expression: 

(4.3 .7) 

where Ni = 8ni , ni being an integer. Thus, in order to implement these projections, 

it is necessary that the number of fermions in both the left- and right-moving sectors 

be a multiple of 8. 

We can relax this condition by considering modular-invariant partition functions 

that do not correspond to a product of independent GSO projections. · They are 

linear combinations of products of partition functions in both the left- and right­

moving sectors. Thus, a multitude of different possibilities emerge. It is not clear 

whether one can derive general constraints by considering the most general form of 

the partition function. Therefore, each case has to be studied separately. 
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When n is odd, the corresponding partition functions z __ and Z-+ represent 

space-time bosons and Z+- and Z++ space-time fermions, whereas when n is even, 

they all represent space-time bosons. In general, a set of N fermions generates 

highest-weight irreducible representations of the SO(N) affine algebra. By split­

ting the fermions in groups and choosing independent spin structures, the SO(N) 

symmetry gets broken down to ITi SO(Ni). 

To compute the spectrum of these theories, one first has to define the mass oper­

ator. We easily find that [17] 

(4.3.8) 

where Ei ( i = 1, 2) is 0(1) if the Ni fermions are in the NS (R) sector. The ground 

states form representations of the Kac-Moody algebra of G with dimension 6. = 

6. = ~- It can be seen that under a standard GSO projection (i.e., if the first 

(second) group consists of the left (right) movers only), we cannot obtain a non-trivial 

massless sector. However, in any other case, we have to redefine the supersymmetry 

generators Gr (eq.(4.3.lb)), because not all fermionic modes can contribute. If we 

want the Gr's to obey the same commutation relations (eqs.(4.3.2b,c)), we have to 

twist the boundary conditions of the bosonic fields. This can be done consistently, 

provided that we can divide the group G by a subgroup H so that G/ His a symmetric 

space. Indeed, suppose that yA are the generators of H (A= 1, ... , dim(H)) and T 1 

(I= dim(H) + 1, ... , D) are the rest of the generators. Then, j 11K = j 1AB = 0, and 

we can define a new supersymmetry generator whose modes will be: 

G - ~ . . !,µ, a . 1 ~. (xA 1-A +XI 1-1) . 
r - - ~ · 'f/r-m µ,m · - Vk ~ · r-m m Tm m · 

m m 

1 ~ . (JABC A B C JAI J A I J) + 
6
Vk ~ · Xr-mXm-sXs + Xr-mXm-sXs 

m,s 

(4.3.9) 

where we now allow twisted boundary conditions for the Jfls, so that the Gr's obey 

unambiguous boundary conditions. 
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The generators of conformal symmetry (eq.(4.3 .la)) remain the same. However, 

the mass operator changes, owing to the fact that the bosons obeying anti-periodic 

boundary conditions contribute to the intercept an additional -l4 . Thus, eq.( 4.3.8) 

is modified accordingly (in the sector where the ] 1 's obey anti-periodic boundary 

conditions, the additional contribution is ( 2k;~k)D', where D' = D - dim(H)). 

The question of modular invariance has now become more involved, because the 

partition function for bosons obeying twisted boundary conditions is different. There­

fore, the arguments of ref.[4] are not readily applicable. However, in the case where 

the bosons are equivalent to fermions (i.e., k = k - T = 0), one only has to consider 

the fermionic partition function. This has been done [12,23] and consistent theo­

ries have been obtained. Unfortunately, these models do not contain the standard 

SU(3) x SU(2) x U(l) model. In fact, as Dixon et al. have argued [11], it is impossible 

to obtain the standard model with type-II strings. Twisting the boundary conditions 

for the bosonic fields offers a possibility of bypassing their argument. 

In the case where the left and right sectors are treated in the same way, the models 

are trivially anomaly-free, since they are non-chiral. Even though the Ramond ground 

state transforms as a Weyl spinor, upon reduction to d-dimensions, both chiralities 

arise, a problem already encountered with Kaluza-Klein scenarios. A method of 

obtaining chiral fermions, by making use of asymmetric orbifolds, has been proposed 

in ref.[11]. An application of this method to models with k # 0, may lead to theories 

that will contain the standard model. 

We finally note that it is possible to enlarge the list of Lie groups (Table 1) if we 

allow part of the internal degrees of freedom to form a Virasoro algebra with central 

charge c < 1. All of these models have been classified and completely solved [24]. It 

can be shown that the only possible values of c are: 

2-1-
8 

- m(m + 2) ' 
( 4.3.10) 

where mis an integer (m 2: 4). This approach has been studied by Dixon, et al.[11] . 

They were able to obtain consistent models with gauge groups G2, SU(3) x SU(3) 
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and proper subgroups of the groups listed in Table 1. 

II. Heterotic strings 

+ 
We now turn to a discussion of heterotic strings on group manifolds.+ The left-

moving sector consists of superstrings propagating in Md x G. We shall write Gas the 

product of two Lie groups: G = G1 x G2, of dimensions D1 and D2, respectively (D1 + 
D2 = D). The components of G1 have non-vanishing levels, whereas G2 corresponds 

to level k = 0. The right-moving sector consists of bosonic strings propagating in 

NJd+d x G1, where the extra d dimensions curl up to form an internal space through 

toroidal compactification. We shall use the equivalence of bosons and fermions in two 

dimensions to replace the extra d bosonic fields by 2d fermions. 

Thus, the left-moving sector is identical to the one described for the type-II 

strings. In the right-moving sector, however, the fourier components of the energy­

momentum tensor are 

- - 1 ~ . -/.L - • 1 ~ . -a -a . 1 ~ ( 1) . - I - I . 
Ln - 2 L..t · an-maµ,m · + 2k L..t · Jn-mjm · +2 L..t 8 + 2 · ,\n-s,\s · ' 

m m s 

( 4.3.11) 

where .\i (I = 1, ... , 2d) are the fourier components of the 2d Majorana fermions 

corresponding to the curled-up dimensions, and a = 1, . . . , D1. These operators 

satisfy the commutation relations 

( 4.3.12) 

where c = d + d + (2k-;;)D1
• Since the right-moving sector contains only bosonic 

strings, the condition for conformal invariance is c = 26, i.e., 

( 4.3.13) 

For conformal invariance of the total theory, both eq.( 4.3.3) and eq.( 4.3.13) have to 

:j: Sezgin has studied heterotic strings on group manifolds [22], and found Lie groups that lead 
to conformally invariant models. Here, we extend his analysis by studying modular invariance 
of these models . 
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be satisfied7 Using these two equations, we find 

2d = d + D + 22 ( 4.3.14) 

A complete list of groups that lead to conformally invariant theories is given in Table 

2. 

Table 2 Conformally invariant heterotic string models in which the left-movers propagate in Md x 
G1 x G2, Md being a d-dimensional Minkowski space and G1, G2 groups of vanishing and non­

vanishing level, respectively. The fourth column shows the rank of the group K, formed by the 

compactified dimensions in the right-moving sector. 

G1 G2 rank(K) 

S0(5) - 18 

SU(2) SU(2) x SU(3) 20 

SU(2) x SU(2) SU(3) 20 

SU(3) SU(2) x SU(2) 20 

SU(3) - 17 

- SU(3) x S0(5) 22 

- SU(2) x SU(4) 22 

SU(2) x U(l) S0(5) 20 

SU(2) S0(5) x SU(2) 21 

SU(2) x U(l) SU(3) 19 

SU(3) x U(l) SU(2) 19 

SU(3) x U(l) x U(l) - 18 

U(l) SU(4) 21 

Using the GSO projections (eq.(4.3.7)), we see that a necessary condition for 

modular invariance is that the total number of fermions in both the left- and right­

moving sectors be a multiple of 8. Unfortunately, it is impossible to find a theory with 

* When the group G1 is a product of semi-simple Lie groups, then the last term on the right­
hand side of eq.( 4.3 .13) has to be replaced by a sum of similar terms over the components (cf. 
eq.(4.3.3)). 
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a non-trivial massless spectrum if this additional constraint is satisfied. We therefore 

have to consider projections that mix the two sectors. 

The extra coordinates in the right-moving sector are compactified to a manifold 

f{ (see Table 2). One has to choose appropriate boundary conditions for the fermions 

comprising K, to obtain a modular-invariant model. Certain groups have been studied 

by Kawai et al.[16], and consistent theories have emerged. They only studied level 

k = 0 cases. In the other cases, the complications we encountered in type-II strings 

(having to twist the boundary conditions of the bosonic fields) will arise. 

In all the models, vertex operators can be constructed in the standard way. Tree 

and loop amplitudes can easily be computed in the operator formalism. We can also 

construct open string models. (It is possible to construct the Wess-Zumino term even 

with open string boundary conditions. )Q In order to obtain gauge fields, though, one 

has to introduce Chan-Paton factors. 

q We are indebted to A. P. Polychronakos for enlightening us on this point. 
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5. String field theory 

5.1 Interactions of strings 

There are two ways to describe interactions of strings. The first is by considering 

Riemann surfaces of arbitrary genus as world-sheets [l]. The total partition function 

is then a sum over all Riemann surfaces, 

where 

Z = L c(g) J Vgab'Dxµe-Sa[xµ ,gab] ' 

g g 

Sa[x µ,gab] = j d20'../-detgabgab0aXµObXµ , 

2::9 

(5.1.1) 

(5 .1.2) 

and we integrate over surfaces ~g (representing the world-sheet) that are topologically 

equivalent (of the same genus g). We then have to sum over all topologies, weighed 

by coefficients c(g) that depend on the genus.t 

The second approach is by formulating a string field theory. The central problem 

there is to find a suitable interaction term in the action. Such a term was first proposed 

by Kaku and Kikkawa, and Cremmer and Gervais [3]. However, they worked in the 

light-cone gauge in which the required symmetries of the theory were not manifest. 

A covariant approach has been advocated by Witten [4] for the case of open bosonic 

strings. This section is devoted to a description of his method. 

Before building a field theory, it is necessary to develop a satisfactory :first­

quantized formalism. We start with a list of definitions to fix our notation. We expand 

the coordinates xµ(O'), the ghost c(O') and the anti-ghost b(O') (µ = 0,1, ... ,25 , 0' E 

[0,7r]) in modes a~ , Cn and bn, respectively, satisfying (anti-)commutation relations 

[ µ v] r µv an, am = num+n,OT/ , (5.l.3a) 

t It has recently been shown (2] that if c(g) = e-x(g), where x(g) = 4~ fr;. J- <let gab R is the 

Euler characteristic ( R is the curvature of the surface E9 ), then the theory is unitary. 
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(5.l.3b) 

with all other (anti- )commutators vanishing. ab is related to the center-of-mass mo­

mentum by ab = -/2pµ. Thus, if qµ is the position of the center of mass, then 

[qµ,pv] = iTJµv. The vacuum is defined as an eigenstate of ab: ablP) = -/2pµlp) . 

Modes with positive (negative) indices are creation (annihilation) operators. It is 

convenient to separate the zero modes of the ghost (co) and anti-ghost ( bo) from the 

rest of the string modes. They act on a two-dimensional space spanned by the kets 

I+) and 1-), where bol+) = 1-), col-) = I+), bol-) =col+) = 0. We also define 

bras (+I and (-1 that are annihilated by negative-index modes. An inner-product 

is defined by (+I-) = (-I+) = 1, (+I+) = (-!-) = 0. Thus, a general state IA) 

can be written as IA) = IA+)+ IA-), where IA+) (IA-)) is constructed from the 

I+) (I-)) vacuum. We can also define a functional A[z(a)], where z = (xµ,b,c), by 

A[z(a)] = (zlA). A Z2 grading is imposed on the string fields by assigning a number 

(- )IAI to each functional A, where GA = (IA! - ~)A, G being the ghost-number 

. operator: 

(5.1.4) 

Instead of the fermion ghost fields , b(a) and c(a), one can introduce a single bosonic 

field ¢(a). The connection with the fermionic fields is 

(5.1.5) 

The action for ¢(a) is [4] 

(5.1.6) 

where R is the curvature of the world-sheet (cf. eq.(5.1.2) for the coordinates xµ). 
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Next , we introduce the BRS operator 

( 5.1. 7) 

where Lm is the fourier component of the stress-energy tensor (cf. eq.(3.5.24)) . Q 

can also be written as Q = J07r d1Jjo, where ja is a conserved current [4]: 

(5.1.8) 

Physical states obey the condition Q IA) = 0 and we identify states that differ by 

QIB), for some state IE). We also require that they have ghost number G = -~ 

(therefore, they are bosons under our Z2 grading). This is a consistent formalism, 

provided that Q2 = 0. As Kato and Ogawa [5] found, 

2 D - 26 '"""' 3 Q = 
24 

L.)m -m): CmC-m: (5.1.9) 

Therefore, a necessary consistency condition is D = 26, as expected. 

Passing to Second Quantization, we observe that the equation QIA) = 0 can be 

viewed as an equation of motion coming from the action 

So = (AIQ.IA) . (5 .1.10) 

We wish to write this as the integral of some quantity B. Consider a surface .E 

bounded by line elements S1 and S2, perpendicular to each other. Assume further 

that .E is fiat near S1 and S2.§ On S1 we choose free-string boundary conditions. On 

S2 we choose data specified by z( 1J), where z = ( xµ, <P). We then define J A by 

j A= j '.DzA[z] j '.Dz' e-S[z'] , 

E 

(5 .1.11) 

where S[z] = Sa[xµ] + Sb[<P] (cf. eqs.(5.1.2) and (5.1.6)). It is easy to check that 

§ An example of such a surface is a quarter-sphere bounded by semi-circles S 1 and S2 . 
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J QA= 0, by using eq.(5.1.8) . It follows that 

j 'DzA[z] j Vz'e-S[z'] j d2C5Daja = 0 (5.1.12) 

B B 

Using Stoke's theorem, we can write JB Daja as a line integral of j 0 along the bound­

ary (since the time direction is perpendicular to S1 and S2, which form the boundary) . 

Therefore, JB Daja can be replaced by Q = J01r dCfjo in eq.(5.1.12). It then follows 

from eq.(5.1.12) that 

j 'DzQA[z] j Vz'e-S[z'] j d2C5Daja = 0 (5.1.13) 

B B 

But the left-hand side of eq.(5.1.13) is just J QA. Therefore, 

(5.1.14) 

Notice that the above arguments did not depend on the shape of the surface L:. The 

only requirement was that S1 and S2 intersect at right angles and that L: be flat 

near S1 and S2. It will be necessary, however, to choose a specific metric on L:. We 

shall choose a metric that is flat everywhere apart from a singular point, where all 

the curvature is concentrated. Furthermore, we shall only be interested in the limit 

where the length of S1 goes to zero. In that limit, L: degenerates to S2, where the 

left half of S2 is identified with its right half. The singular point is then its mid-point 

and eq.(5.1.11) reduces to 

25 7r /2 j A= j VxµV¢e-~i<P(f) II II 8(xµ(7r-cr)-xµ(C5))8(¢(7r-Cf)-¢(C5)) . (5.1.15) 
µ=Ou=O 

The factor e-~i¢(f) comes from the term e-;: f R</! in the ghost action (eq.(5.1.6)). 

The curvature is a 8-function at the singular point proportional to the deficit angle, 

which in this case is 7r. 
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In terms of oscillators, J A= (JIA}, where the "identity" state II} is [6] 

(5.1.16) 

where b± = ~(±irbn. The factor b+L is just the fernlionic form of the insertion 

e~i<P(T) in eq.(5.1.15). We can check that QII} = 0, which confirms that J QA= 0. 

Since Q acts as a derivation as far as integration is concerned, it is natural to try 

to find a multiplication operation between states that will obey Leibnitz's rule: 

(5.1.17) 

The * operation is defined as follows. Consider a surface I: bounded by a hexagon 

with sides 51, . . . , 56 that are straight lines. We also require that adjacent sides be 

perpendicular and that I: be fiat near the sides. On 52, 54 and 56, we choose free­

string boundary conditions. On Si, 53 and Ss, we choose data specified by z1(0'), 

z2(0') and z(O"), respectively. Then, 

(A* B)[z( O')] = j '.Dz1A[z1] j '.Dz2B[z2] j '.Dz' e-S[z'] 

L; 

To prove Leibnitz' rule, we work as before. Using eq.(5.1.8), we obtain 

j '.Dz1A[z1] j '.Dz2B[z2] j '.Dz' e-S[z'] j d20' Daja = 0 

L; L; 

(5.1.18) 

(5.1.19) 

The last integral can be converted to a surface integral of j 0 . The sides 52 and 54 give 

the first and second terms on the right-hand side of (5.1.17), respectively, whereas 56 

gives the left-hand side of (5.1.17). Thus, eq.(5.1.19) is equivalent to (5.1.17). 

To proceed further, a particular choice of metric has to be made for I:. As before, 

we choose a metric that is fiat everywhere, except at singular points. We then shrink 
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the sides S2, S4 and S6 to zero length. The resulting degenerate surface has the shape 

of a Y, where the left half of a side has been identified with the right half of the next 

side that survived. The singular point is then the common mid-point of the three 

sides. Thus, we find 

(A* B)[z(a)] = j 'Dz1 'Dz2A[z1]B[z2]e~i<P(f) 
7r /2 

x IT 5(z1(7r - a) - z2(a))5(z2(7r - a) - z(a))5(z(?r - a) - z1(a)) 
u=O 

(5.1.20) 

Notice that this time we have an insertion of e ~i<P( f), because the deficit angle for the 

hexagon is -?r (cf. the case of a quarter sphere (eq.(5.1.15), where the deficit angle 

is 7r). 

In this singular limit, we can prove the following two extra properties: b 

J A*B = J B*A, 

(A * B) * C = A* ( B * C) 

(5.l.2la) 

(5.l.21b) 

In terms of oscillators, IA* B) = (Al (BjV3) , where the three-string vertex 
1 1 2 123 

is given by 

(5.1.22) 

The explicit form of the Neumann coefficients N;,:n and N;,:n can be found in ref.[6]. 

Making this singular choice for the metric is a necessary ingredient in the proof of eqs.(5.l.2la) 
and (5.l.2lb ). However, the proof is still not free of criticism (7] . One can of course try to build 
a theory without making use of these equations. We shall not do this here, as things becomes 
considerably more complicated, without an apparent reward. Instead, we shall proceed by 
assuming the validity of these equations. 
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It is useful to define a two-string vertex by IV2) = (IJVi) . Explicitly, 
12 3 123 

IV,)12 = j d26 p1d26 p28(p1 + p2)exp {~ (;n al"~al";} 
X exp {~(-t(b:nc~n + b~nc:n)} (lp1, +) IP2, -) + IP1, -) IP2, +) ) ~ 1 2 1 2 

n=l 
(5 .1.23) 

It also follows that J A* B = (Al (BIV2) . Because of the special form of the 
1 2 12 

vacuum in 1112) (eq.(5.1.23)), we have J A+* B+ = J A_* B_ = 0. 
12 

Having assembled all the necessary ingredients, it is now possible to define an 

action that will describe interactions among strings. The action is a Chern-Simons 

form [4]: 

(5.1.24) 

and is invariant under the transformation 

(5.1.25) 

The remainder of this chapter is devoted to the quantization of this action. 

5. 2 Lagrangian quantization 

In this section we describe how to quantize Witten's string field theory using 

the lagrangian formalism and point out the shortcomings of the method. The ideal 

approach appears to be a generalization of the Faddeev-Popov procedure introduced 

by Fradkin et al. [8]. We shall first discuss the procedure in general, and then apply 

it to Yang-Mills theories and strings. In the following section we shall apply the 

Faddeev-Popov procedure that we discussed in section 2.1 to string field theory. 

Suppose we are given a set of bosonic and fermionic fields <I>A, where A can be 

both a discrete and a continuous index. Let <I>A be a new set of fields of opposite 
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statistics . In the phase space of <I> and <I>* we define "anti-brackets" of functions 

F(<I>,<I>*) and G(<I>,<I>*) by 

8F 8G 8F 8G 
(F, G) = o<I>A o<I>* - o<I>* a<r>A 

A A 
(5.2.1) 

The properties of anti-brackets do not coincide with those of Poisson brackets. The 

most bothersome property is that under an infinitesimal canonical transformation, 

(5.2.2) 

the volume element of phase space changes by 26.f a, where 

(5.2.3) 

and E( <I>A) = +( -) if <I>A is a boson (fermion). We define dynamics through an action 

vV (<I>, <I>*) that satisfies 

(W, W) = 0 . (5.2.4) 

This is called the "master equation." Once W is found, one can proceed to define 

the quantum theory. This is done as follows. We introduce an action vV (to be 

specified later) and we choose an arbitrary fermionic function w(<I>). We then define 

a path-integral by 

(5.2.5) 

Under the BRS transformation: 

o<I> =(<I>, W)I ·a , 
,.,._8'11 
"'-8<1> 

(5.2.6) 

where a is a fermionic variable, we have 'D<I> -t 'D<I>(1+2i6.Wa), because of eq.(5.2.3), 

and 8W = (W, W)a. Therefore, Zw is invariant under a BRS transformation, pro-
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vided 

1 - - -
2"(W, W) = i~W . (5.2.7) 

Also, by choosing a= i8'1! (gauge transformation), eq.(5.2.7) implies that Zw is inde­

pendent of W. If the measure is chosen to be BRS invariant, then eq.(5.2.7) reduces 

to eq.(5.2.4) and therefore we can set W = W. Otherwise, W has to be expanded as 

a series in 1i (which we have suppressed) and eq.(5.2.7) becomes a recursion relation 

to determine the terms in the expansion of liV. 

One way to find the appropriate measure is by using the hamiltonian formalism, 

in which case the volume of phase space is invariant under canonical transformations. 

This can easily be done for gauge theories. The case of strings will be the subject 

of the next section, where an alternate approach avoiding this ambiguity will be 

discussed. For the remainder of this section, we shall ignore this problem. Thus, we 

assume that liV = W. 

We want W to correspond to a classical system described by an action S(A), a 

function of the fields Ai (i = 1, ... , n). Suppose that there are m constraints among 

these fields. We introduce ghosts T/a (a = 1, . .. , m), and we let the set of <:PA's be 
. + . 

the set {A 2 , T/a}: Then W is a function of A 2 , T/a, A£ and T/~. However, this liV is not 

unique. vVe can add extra fields >J and r/ and their partners -Aj and i]j. The action 

then becomes 

W I W(Ai a A* *) \I * = ,TJ j i,Tfa +A T/J 

It is easily seen that W' satisfies (W', W') = 0. 

(5.2.8) 

As an example, consider a Yang-Mills theory with group G. Let jllbc be the 

t It can be shown that this is the minimal choice of coordinates. Notice that there are n - m 
degrees of freedom in the classical system. The system of cf?A 's appears to have n + m degrees 
of freedom. However, this is not true, because the ghosts are effectively negative degrees of 
freedom. Thus, by introducing m of them, we reduce the number of degrees of freedom from 
n ton - m . 
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structure constants of G. We define W by 

(5.2.9) 

where, as usual, Fµ,v = 8µ,Av - OvAµ, + i[Aµ,, Av]· The transformation (5.2.6) is the 

ordinary BRS transformation: 

(5.2 .10) 

Let us now make the following choice: 

(5.2.11) 

Th A* - ow - ~- * - ow - 0 -* - ow - ~ · A· d th f en, - IT - UT/, TJ - Tri - , 'T/ - 011 - ui 1 , an ere ore 

(5.2 .12) 

which is the Yang-Mills action in the Coulomb gauge. T) and ft are the ordinary 

Faddeev-Popov ghosts and..\ is a Lagrange multiplier enforcing the constraint OiAi = 

0. 

In string theory, we let <I> be any Grassman odd string state and <i>* its partner. 

We also introduce Lagrange multipliers ..\ and additional fields ft and ij*. We postulate 

the action [9] [10] 

(5.2.13) 

where <:I>= <I>+ <i>*. W reduces to Witten's action (eq.(5.1.16)) if <i>* = ij* = 0 and 

<I> is restricted to ghost number -1/2. To check that (W, W) = 0, we can ignore the 
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last term, because it has been designed to satisfy this condition. Also , -¥f = :~ = 
Q<I> + <I>* <I>. Thus, 

(W, vV) = j (Q<I> +<I>* <I>)* (Q<I> +<I>* <I>) 

= J ( ~Q<I> * Q<I> + Q<I> *<I>* <I> + ~<I>* <I>* <I>* <I>) 
(5.2 .14) 

The first term vanishes because Q2 = 0 (eq.(5.1.3)) . The second term can be written 

as t J Q(<I>*<I>*<I>) and therefore vanishes because of eq.(5.1.7). By using eq.(5.l.13a) 

and the fact that both <I> and <I>* <I>* <I> are fermions, we see that the third term also 

vanishes. Therefore, W satisfies eq.(5.2.4). By choosing 

(5.2.15) 

we have <f>* = ~% = boij, which is equivalent to bo<I>* = 0 (since ij does not appear in 

the action). Also, ij* = ~~ = bo <I>. Therefore, the action becomes 

(5.2 .16) 

which can serve as the starting point of perturbation theory. The last term simply 

enforces the constraint bo<I> = 0, which is known as the Siegel gauge. An explicit 

calculation in four-tachyon scattering will be presented at the end of the next section. 

5.3 Hamiltonian formalism 

We now turn to a discussion of the quantization of Witten's sting field theory 

[4) via the hamiltonian formalism [11). The action is S = J £,where the lagrangian 

density £ is defined by [4) 

(5 .3.1) 

This is different from the usual density in space-time; it is defined in the space of string 

modes. To obtain the momenta that are conjugate to the "coordinates" A[z( O")], we 
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define the center-of-mass time-coordinate q0 = J01r dax 0(a) as the time of the system. 

Then the momenta are given by 

p = 8.C 
- 8(a~A) 

(5.3.2) 

Although !Vi) (eq.(5.1.14)) contains arbitrarily high orders of the time derivative, 
123 

a~, the interaction term in the action, Sint = k J A* A* A, This can be seen by 

writing Sint in terms of functionals: 

(5.3.3) 

where Vi[zi, z2, z3] = (zl (zl (zlVi ) represents an interaction potential that has 
1 2 3 123 

absorbed all possible derivative terms~ 

It is convenient to expand the BRS charge Q in the zero modes bo, co, and the 

time derivative a~. vVe obtain 

(5.3.4) 

The operators K, l.., T+, and Q (anti-)commute with each other by virtue of the 

nilpotency of Qin 26 dimensions. Also, {K,K} = ~T+, and Q2 + l..T+ = 0. An­

other important property. of these operators is their "hermiticity,'' i.e., J A* J( B = 

( - ) IAI J KA* B, and similarly for ~ and Q. They follow from the properties of Q as 

a derivation, eq.(5.1.10) and J QA= 0. 

A straightforward computation gives 

- 8.C 0 
p_ = bo c( 0 ) = a0A- + 2boKA+ , 

u a0A_ 
(5.3.5a) 

* Notice that, with our choice of time, Vs[z1 , z2, zs] is non-local in both space and time. For 
locality, we have to choose the coordinates of the mid-point of the string as the space-time 
coordinates [12) . However, for explicit calculations, it is necessary that we express the vertex 
(eq.(5.1.22)) in terms of a more convenient basis. Henceforth, we shall ignore the problem of 
non-locality, hoping to resolve it in the future. 
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(5.3.5b) 

The factors bo and co have been introduced for convenience. In deriving these two 

equations we have discarded surface terms. We have also made use of the 'hermiticity' 

of the operators J(, ii and Q. Thus, the phase space is endowed with a symplectic 

structure described by the two-form 

(5.3.6) 

where :Bo is the hypersurface t = 0. 8(2::0) is a 8-function which vanishes unless the 

center of mass of the string lies on the surface :Bo. Notice that this is different from 

the one adopted by Witten [12] . The difference lies in the choice of time. w is obtained 

by choosing the center-of-mass time-coordinate as the time of the system, whereas 

Witten's choice corresponds to time being the time coordinate of the mid-point of 

the string, i.e., x0 (~). 

Since P+ vanishes, it follows that A+ is similar to A0 in Yang-Mills theories . It 

plays the role of a Lagrange multiplier, as can be seen by constructing the hamiltonian 

density, 

H = P - * coa~ A_ - £ = Ho + A+ * f - , 

where 

1 1 - 1 
Ho= 2P- * coP- + 2A- * co~A- - 3A- *A_* A_ 

f _ = 2KP_ +QA_ - boco(A-*A-) . 

(5.3.7) 

(5.3.8) 

(5.3.9) 

The operator boco acts as a projection onto the space generated from the 1-) vacuum. 

To derive the above equation, we used the fact that X = A+* A+ = 0. To prove 

this, we have to make use of the explicit form of the three-string vertex (eq.(5.1.14)). 
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Since IX) = (A+I (A+IV3) and (+I+)= (-1-) = 0, separating the zero modes 
1 2 3 123 

of the ghosts in the vertex, we obtain 

(5.3.10) 

where Nb = L a~:nN;,:na~~ ' N1 = L bT_mN;,:nnc8_n and er = L N'Q~nc8_n (m > 0). 

Since the Cn 's anti-commute, we have { C2 ' C 3 } = 0 and therefore IX) = 0, which 
1 

shows that only terms linear in A+ can appear in the hamiltonian. In this formulation, 

there is no sense in setting A+ = 0, because we lose the constraint r _ = 0. Thus 

we see that the gauge A+ = 0 (known as the Siegel gauge) is similar to the Ao = 0 

gauge in Yang-Mills theories. However, unlike in gauge theories, r _ generates a 

transformation 

5A_ = 2Kc 

5P_ = -QE- + bo[A_, c] , 

(5.3.lla) 

(5.3.llb) 

where [A, B] = A* B - (-)ABB* A, which does not leave the hamiltonian invariant. 

(The gauge parameter c is of course independent of time (a~c = 0), and b'A+ = 0. 

Also, ( - )l<I = -1.) We therefore have to impose an additional constraint, f''.... 
{r-, Ho}= 0, where {A , B} is the Poisson bracket of A and B. We easily find 

generating the transformation 

oA_ = Qc'_ + boco[A-, c'_] , 

oP_ = Kl.c'_ + bo[P_ , c'_] -2boK[A-,c'_] 

No further constraints need to be imposed, because 

{r'_, Ho}= Ar_+ B(Qr _ + 2Kr'_) , 

(5.3.12) 

(5.3.13a) 

(5.3.13b) 

(5.3.14) 

where B = L /3-nbn and the coefficients /3-n ( n > 0) solve the system of equations: 

Ln ffJ~n/3-n = 1 and Ln N!,,,~n/3-n = 0 (m > 0). These constraints are first class 



104 

constraints and they form a closed algebra, because 

{r _, r~} = r _ . (5.3.15) 

To quantize the theory, we couple the system to an external current l+, by adding 

a term l+*A- to the lagrangian. Thus, the second constraint (eq.(5.3.12)) becomes 

r~ = f'~ + 2 bo ]{ J + = o . (5.3 .16) 

We define the generating functional by 

To compute Green functions, we have to fix the gauge. Exploiting the invariance under 

the transformation generated by r _,we impose the condition]{ A_ = 0. Notice that 

this implies T+A- = 4]{2 A_ = 0, and GA_ = 0, where G is the ghost number 

operator. This gauge (T+A- = GA_ = 0) was introduced by Siegel and Zwiebach 

[13], in the case of a free theory. The inclusion of interactions does not change things , 

because the transformation properties of A_ (eq.(5.3 .lla)) are not affected by the 

interactions. To eliminate the second gauge invariance ( eq.(5.3.13) ), we impose the 

constraint QA_ = 0. These two constraints are implemented by the Faddeev-Popov 

procedure. Inserting the two factors 

1 = L 1 [A_] J Dc8[K(A_ + 2J{c)] , ( 5.3.18a) 

1 = L2[A-] j DL8[Q(A- + (Q + boco[A-, · ])<L)] , (5.3.18b) 

into the path-integral (eq.(5 .3.17)), and performing two gauge transformations, we 
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obtain 

e-W[l+] = J 'DA_'DP_'D.A+'D-A~i0.1[A-]i0.2[A-]8[J<A_J8[QA_J 
x exp {-JP_* coa~A- - Ho+ -A+* r _+.A~* f'._ + l+ *A_} 

(5.3.19) 

The Faddeev-Popov determinants are 6.1 = det' I<2 and 6.2 = det' Q(Q+boco[A_, ·]) , 

where the prime denotes omission of the zero modes of the operators f{ and Q. 

Integration over the lagrange multipliers, A+ and .A~ in eq.(5.3.19) produces two 

8-functionals that enforce the constraints r _ = 0 and r~ = 0, respectively. We can 

use these two constraints to integrate over the redundant degrees of freedom. Splitting 

the momentum P_ as p_ = II_+ II~+ II'..'.., where QII_ = J<IT_ = KIT~ = 0, the 

constraints (eqs.(5.3.9) and (5.3.16)) become 

f _ 2KII~ + boco(A- *A_)= 0 , (5.3.20a) 

f'._ (Q + boco[A_, ·])(II_+ II~) 

+ boco[II'._, A_] - 2I<(bo(A_ *A_)+ l+) = 0 (5.3.20b) 

Using eqs.(5.3.20a) and (5.3.20b), we can express II~ and II'..'.. in terms of II_. Ex­

plicitly, 

I 1 1 ( ) II_ = 2 ]{- boco A_ *A_ 

+ (Q + boco[A-, · ])-1bo([II_, A_]+ 2I<((A- *A_)+ l+)) 

II~= -~K-1 boco(A- *A-) 

, (5 .3.2la) 

(5.3.21b) 

Therefore, integration over II~ and II'..'.. gives rise to two factors, (<let' K)- 1 and 

(det'(Q + boco[A-, · ]))-1 . These two factors, together with the two Faddeev-Popov 

determinants, give a factor of det'(I<Q) which is a constant, and can therefore be 

absorbed into the overall normalization of the generating functional. Hence, the final 
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form of the generating functional (eq.(5.3.19)) is 

(5.3.22) 

where A_ and IL are annihilated by both Kand Q. The hamiltonian Ho is a function 

of A_ , its conjugate momentum IL and the external current l+: 

- 1 1, I 1,, II 
Ho = 211_ *coll-+ 211_ *coll_+ 2rr_ *coll_ 

1 - 1 ' + 2A_ * co.6.A_ - 3A_ *A_* A_+ l+ *A_ 

(5.3.23) 

where IT~ and IT~ are given by eqs.(5.3.2la) and (5.3 .2lb). 

This form of the hamiltonian agrees with the minimal form of ref. [13], if inter­

actions are ignored. To demonstrate this, consider the generating functional for the 

free theory, 

e-Wo[l+] = VA_VIT_e- II-*CoaoA--2II-*coIL+2l+*bo6 l+-2A-*Co6A-+l+*A-J J 0 1 1 - -1 1 -

(5.3.24) 

To derive this, we used IT~ = 2b0Q-1 J{ l+, IT~ = 0, which follow from eqs.(5.3.2la) 

and (5.3 .2lb), respectively, when the interactions are switched off. Integrating over 

rr_ by completing the square in the exponent, we obtain 

(5 .3.25) 

where .6. - a~a~+Zi =I:: a~na~: -1+ L:n: c_nbn :. Thus , ~ J A_*co.6.A_ is the 

free gauge-fixed action, in agreement with the results of ref.[13]. The free propagator 

is therefore .6. -l. The first few eigenstates of .6. are IP,-) (with eigenvalue p2 - 1) , 

a~ 1 Ip,-) (with eigenvalue p2 ), a~ 1 a~ 1 Ip, -) , a-2 IP,-), c_1 L1 IP,-) (with eigenvalue 

p2 + 1), etc. Expanding a general state IA-) in terms of these states, we obtain 

IA-)= J d26p (J(p) + Aµ(p)a~l 

+Bµv(p)a~ 1 a~l + Cµ(p)a~2 + ;/;(p)c-1L1 +···)IP,-) 

(5.3.26) 

The constraint J{ A_ = 0 implies Ao = Boµ = Co = 'l/; = 0. It is also easily seen that 



107 

the second constraint, QA_ = 0 implies OiA = OiBij = OiCi = 0 (i,j = 1, ... , 25) . 

Notice that for the massless gauge field Aµ, the second constraint is the Coulomb 

gauge. 

We shall now compute the contribution of the lowest modes of jA_) to the four­

tachyon scattering amplitude. Our discussion will follow closely the discussion in 

ref.[10]. Consider on-shell tachyons, jp1, -), jp2, -), jp3 1 -) and jp4 1 -), where Pi = 

p~ = p§ = p~ = 1. Define the Mandelstam variables s = -(p1 + p2)2, t = -(p2 + p3)2 

and u = -(p1 + p3)2. We shall concentrate on the s - t dual diagram. The amplitude 

lS 

S = S-1 + So + · · · , (5.3.27) 

where S-1, So, ... are the contributions of an intermediate virtual tachyon, massless 

field, etc., respectively. The propagator for the tachyon is just 

D -1 (p, p') = (p, - j .6 - 1 IP', - ) = 2 

1 

1 
8 (p + p') 

p -
(5.3 .28) 

It is a little harder to find the propagator D{;v (p, p') for a massless field. Writing 

(5.3.29) 

after a little algebra we obtain 

ng0 = - 1
-8(p + p') , ngi = o , 

Pi Pi 

D ij 1 (' PiPj) '( ') 0 = ? Uij - -- U p + p . 
V Pi Pi 

(5 .3.30) 

This is just the propagator of a photon in the Coulomb gauge. The other ingredi­

ents that are needed are the tachyon-tachyon-tachyon and tachyon-tachyon-photon 

interaction vertices. A straightforward calculation gives 
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(5.3.31) 

) (5.3.32) 

where we used N00 = ~ln(16/27)ors and NfJ =-NU= (4/27) 112 , Nfg = 0. Thus , 

using eqs.(5.3.28) and (5 .3.31), we obtain 

S_1 = V_1(p1,p2,p)D-1(p)V-1(p3,p4,p) 

e< c~) -•-l s ~ I (5.3.33) 

Similarly, eqs.(5.3.30) and (5.3.32) give 

(5.3 .34) 

Therefore, the ratio of the residues of the poles at s = 0 ands= -1is2+t. It is equal 

to the ratio of the residues of the corresponding poles in the function B( -s -1, -t-1) 

[10] . This provides an indication that our results agree with the results of the dual 

theory at tree level. 

It would be interesting to extend these calculations by computing the poles of a 

loop diagram. This will allow a better understanding of how closed strings arise in 

an open-string field theory, and will resolve questions of unitarity. 
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