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ABSTRACT 

The subject of this thesis is the description of the Very Early 

Universe, from the Big Bang to the beginning of the radiation-dominated 

Friedmann- Robertson-Walker era. We examine a pure gravity infla­

tionary model for the Universe which is based on adding an ER 2 term to 

the usual gravitational Lagrangian ("improved Starobinsky model"). We 

find the classical inflationary solution essentially independent of initial 

conditions. The model has only one free parameter, which is bounded 

from above by observational constraints on scalar and tensorial pertur­

bations and from below by both the need for standard baryogenesis and 

the need for galaxy formation. This requires 1011 GeV<E- 112 <10 13GeV. 

The model is interpreted as a Chaotic Inflationary model, with initial 

conditions for classical evolution being generated by the quantum fluc­

tuations in metric and curvature in Very Early Universe. We discuss those 

fluctuations using a particular solution of the Wheeler-De Witt equation 

and find that the inflationary phase is a highly typical event. 
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INTRODUCTION 

The inflationary universe model, 1•2 in which the universe has under­

gone a long period of exponential expansion, has successfully explained 

many problems in the standard Friedmann cosmology. A particularly 

attractive feature is that the model provides a mechanism to generate 

the small-scale density fluctuations in the universe which are needed as 

seed for galaxy formation. 3 •4 They are the zero-point fluctuations of the 

quantum fields which get pushed into the classical regime by the large 

expansion. 

In the standard picture of inflation this exponential expansion of the 

universe is driven by the false vacuum energy density of a Higgs field 

which acts like an effective cosmological constant in the Einstein equa­

tions. Many different underlying particle physics theories have been 

proposed. The most popular of these are the Coleman-Weinberg model, 5 

Witten's model with a logarithmic potential, 6 and the N=l supegravity 

version of Nanopoulos et al., and Linde. 7 

These proposals, though, are not without their problems. First, one 

has to typically introduce a scalar "inflaton" field which is postulated 

especially for the purpose. This makes the whole scenario less plausible 

in that it is less natural. Second, to achieve a large enough inflation, 

suitable reheating after the inflation, and to make the material 
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fluctuations small enough to be consistent with observation, relevant 

couplings or masses in the suggested models all have to be fine-tuned in 

one way or another. An even more serious problem has been pointed out 

by Mazenko, Unruh and Wald 8 . A quantum field which is violently fluc­

tuating in its high-temperature symmetric state may not settle into the 

false vacuum state as the universe cools. This then may invalidate the 

whole picture of vacuum-energy driven inflation. Although the problem 

might be circumvented again by fine-tuning the parameters involved, 9 it 

is reasonable to assert that the idea of inflation is very attractive while 

the "standard" models which generate the inflationary phase by a 

false-vacuum energy density are less satisfying. 

Is it possible to inflate the universe by a different mechanism? 

Linde10 has proposed in his chaotic inflation scenario that the inflation 

may be a direct result of large fluctuations of quantum fields in the very 

hot primordial universe. In the Planck regime, a scalar field ¢ will tend 

to be excited to large values so that its energy density inside some 

domain will be of order Planck. If¢ has a very flat potential, i.e., a small 

"restoring force," it will remain roughly at the fluctuated value for a 

comparatively long time and hence drive an essentially exponential 

expansion. Linde has shown that in a A.¢4 theory, there will be a classi­

cally tractable sufficient inflation when A.< 10-2 (for more details see 

Linde, Ref. [2]). However, two new questions immediately appear which a 
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cosmology based on chaotic inflation must answer: what is the underly-

ing particle model and what determines the initial fluctuations? Without 

these one has neither a complete nor a realistic model of chaotic infla-

tion. This is one thread leading to the present work. 

A second thread leads from the fact that within different frameworks 

one is repeatedly led to consider an action containing terms of quadratic 

or higher order in the curvature tensor. We will discuss this point more 

fully in Section 6. It is anyway important to understand the implication 

of these higher derivative terms on the evolution of the early universe. 

In this work we will restrict our attention to terms which are quadratic. 

They can be written as cx(Riemann )2 +(3(Ricci )2 +7R 2 = 

ER 2+((Weyl)2+17(Euler ). When we consider a Robertson-Walker metric 

(homogeneous and isotropic universe), 11 

( 1.1) 

(here ;c=+l,-1, or 0, although, unless otherwise indicated, we will be 

studying the case K = 0). This metric is conformally flat so that the Weyl 

tensor term vanishes. The effective gravitational Lagrangian density 

yielding the evolution of the universe is then given by 

( 1.2) 
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The evolution equation for R determined by (1.2) can be written as 

R +3HR + 6
1
G R =0, ( 1.3) 

where the dot denotes a coordinate time derivative ( = d /dt) and H is the 

Hubble parameter (H = a/a). 

Thus R behaves like a damped harmonic oscillator with the restoring 

force given by 1/6t:. If E is large, the potential is flat and R takes up the 

role of the inflation-driving field. The aim of this paper is to study the 

cosmology based on this model. We show the range of initial data and the 

allowed value of E so that inflation can be realized in this curvature-

squared model in a manner consistent with observational constraints. 

We consider now the generic evolution of the universe to be divided into 

four regimes: (i) There may be a quantum phase in which the universe 

begins its Lorentzian life, as described in the wave function picture15 , 

with some expectation values for the initial conditions but continues 

with strong fluctuations for some time. The classical evolution only 

becomes meaningful after fluctuations around the average trajectory 

have become small. Whether this subsequent classical evolution is 

applicable to the universe as a whole or just an homogeneous "bubble" 

part of it (as in Linde's chaotic inflation picture), we expect to be 

answered by a proper quantum treatment at very early times; (ii) At the 

start of the classical evolution there will quite generally be an 
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inflationary phase of superluminal expansion in which the Hubble 

parameter decays linearly in time with small slope; (iii) When the Hubble 

parameter hits zero and bounces back, the universe goes into an oscilla­

tion phase in which it is reheated as material fields are excited by the 

oscillating geometry; and (iv) There will be a final Friedmann phase in 

which our now matter-content-dominated model is joined to standard 

cosmology. We will exhibit and explain the inflationary solution, discuss 

reheating of the Friedmann universe, and the generation and evolution 

of scalar and tensor perturbations. These considerations all place con­

straints on the parameters of the model. 

The effect of higher derivative terms on the evolution of the early 

universe has been studied by many authors. Zeldovich and Pitaevskii12 

have discussed the possibility of avoiding the initial singularity by 

including the higher order term. Starobinsky13 has shown that the 

quantum corrections for a conformally invariant free field will modify 

the Einstein equations with higher-order terms such that an unstable de 

Sitter solution will result. Whitt14 points out that the evolution equation 

for an R +ER 2 Lagrangian admits primordial inflation. Hawking and Lut­

tre1115 have also shown that the wave function of the universe for this 

Lagrangian is peaked about classical trajectories which exhibit an 

exponential expansion. In fact, the initial motivation for our work 

comes from the desire to understand and · investigate in detail the 
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inflationary phase displayed in the numerical solution of Hawking and 

Luttrell's wave function. 

Parallel to conducting our discussion directly in the physical space-

time we will make use of the fact that this theory can be rewritten as 

pure Einstein gravity plus matter in a conformal spacetime. Whitt14 has 

shown that by a transformation, [Jµv=(1+26R)gµv, we can discuss the 

theory as Einstein gravity described by [Jµv plus a scalar field, R (which is 

the scalar curvature in the physical space), with minimal coupling to 

gravity by means of the equation 

( 1.4a) 

where 

( 1.4b) 

Here, the scalar field, R, can be given an action 

( 1.5) 

In this conformal picture, as we are working with standard Einstein grav-

ity, we already have some known tools which provide for us both insight 

and a good check on the less familiar behaviour of the full fourth-order 

model. We will appreciate its full power in evaluating scalar and tensor 
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perturbations. 

In Section 2 we consider the classical evolution of a flat (K = 0) 

Robertson-Walker universe under the influence of an R 2 term in the 

effective Lagrangian. In Section 3 we then treat in greater detail the exit 

from the inflationary phase, the reheating of the universe, and the sub­

sequent joining to Friedmann behaviour. Next, in Sections 4 and 5, we 

estimate the generation of gravitational waves and scalar perturbations 

in the model. In Section 6 we display some present constraints on and 

possible origins for c;. Finally, conclusions are presented in Section 7. 

Throughout this work we use units in which h = c =kB = 1. We 

measure all quantities in Planck units so that the gravitational constant, 

G, is equal to 1 lpl 2 (where lpl denotes the Planck length). 
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11. 

CLASSICAL EVOLUTION 

We begin discussion of the universe and its evolution at the time 

when it emerges from the Planck era. The universe would then be filled 

with relativistic particles of violently fluctuating energy density and its 

space-time geometry, too, would be violently fluctuating. However, a 

region not too big compared to the Planck size could be approximately 

isotropic and homogeneous and could then be described by the 

Robertson-Walker metric (1.1). For simplicity we consider only the case 

IC = 0. We follow the evolution of this small region with the classical 

equations of motion derived from the Lagrangian density ( 1.2). 

It is straightforward to write down the field equation for the effective 

gravitational Lagrangian density (1.2) with a cosmological constant term 

and matter field terms added:14,15 

R µ,v- ~ g µ,vR +Ag µ,v+2G[R (R µ,v- ! g µ,vR )+R ;K"A(g t<:"Ag µ,v-of;f>t )] (2.1) 

=BrrGT µ,v 

For the most part in this work we will set A = 0 and we will always use a 
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perfect cosmological fluid expression for T µv 

(2.2) 

where p = p/3 (a relativistic equation of state) and u =a/at (comoving 

4-velocity). It is simple to verify that the left-hand side of (2.2) is 

divergence -free so that energy-momentum conservation is still given by 

(2.3a) 

which implies 

(2.3b) 

as in the standard Einstein cosmology. 

There are only two nonvacuous field equations. The t-t component 

of (2.1) can be written as 

(2.4) 

and the contraction of (2.1) gives 

k +3HR + 
6
1
t: R =0. (2.5) 

The relations of R and H to the scale factor a( t) are given by 

R =6H +12H 2 (2.6) 
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and 

H=<i/a. (2. 7) 

Equations (2.4), (2.5), (2.6), and (2.7) are then a complete set for 

describing the classical evolution of the universe. 

Next we notice that with p given by (2.3b), Eq. (2.4) is the first 

integral of (2.5 ). Therefore the system we have left is equivalent to a 

third order differential equation in the scale factor a( t). We set the time 

coordinate origin so that our analysis begins at t = 0, which is the time 

the classical evolution begins to make sense. A complete set of initial 

conditions for the system is then given by Pi• ai, Hi, and Ri (the subscript 

i will be used to denote quantities at t = 0). We first assume for simplicity 

the matter term on the right-hand side of Eq (2.4) to be negligible (that 

is, Pi~ 0 ); we shall insert its contribution at a latter point. Now the initial 

size, ai, of the small homogeneous domain does not enter the dynamical 

equations and it relates coordinate length to physically measured length 

at t = 0 (the equation for a(t) is trivially integrated in terms of H(t)). We 

will take E: to be a free parameter since before appeal to a higher theory it 

can be regarded as a new fundamental constant subject to experimental 

verification. So, one way to phrase the question that this paper 

addresses is: what are the allowed ranges of£ and the initial data, Hi and 

R i• so that the non-Einstein term will produce a sensible inflation, give 
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sufficient expansion to solve the horizon and flatness problems, com-

mand an exit from the inflationary phase, yield a reheating temperature 

high enough not to thwart standard baryogenesis but low enough to avoid 

the GUT phase transition and its associated monopole problem, and 

finally deliver the correct material and gravitational perturbation spec-

trum and magnitude? 

We study first the classical evolution by means of equations (2.4)-

(2. 7). To ensure the classical validity of the evolution we will think of Hi 

and Rias being both less than or of order of the Planck scale. We may 

combine equations (2.4) and (2.6) to derive a master equation for the 

classical evolution with zero matter content: 

ii _l_l_if 2 +3HH +-1-H =0. 
2 H 12E 

(2.8) 

The remaining dependence on the parameters Hi• R i• and E can then be 

discussed as follows: 

(A) E > 0, R i > 0, and Hi > 0. 

We will show that this is the only case that will be of interest; there-

fore we will consider it in detail : 

(i) First, we look at the case where R starts at roughly its maximum 

value, thatisR(t=O) = 0 . Then Eq. (2.4) relatesRiandHi by 

Ri=6Hl,1+- ~1-V ~' 6EHi2 
(2.9) 
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The typical behaviour of H( t) for this case is shown in Fig. 1. There is a 

long phase in which H decreases linearly in time with a small slope . This 

slope may be estimated from Eq. (2.8). For£~ 1 and H ~ 1/6~ we have 

. 1 
Hr:::J- 36£. (2.10) 

Hence the total expansion in the scale factor of the universe after this 

linear near-de Sitter phase is given by 

(2.11) 

To obtain a cosmol9gically significant expansion, say a factor of e 75 (cf. 

Linde, Ref 2 . ), we see that we need only to have £H l ~ 4.2, a perfectly 

natural value in our picture. This explicitly is the sought-for inflation 

in the model. When H finally gets small, as shown in Fig. 1, it switches 

from the linearly decaying phase into a damped oscillation. This oscilla-

tion will be seen to reheat the universe . 

(ii) What if Ri>>6Hi2(1+y1+(1/6£Hl))? From equations (2.4) and (2.6) it 

is clear that both R and H will increase rapidly: 

R 2 Rr:::J_l ___ i_t 
12 Hi 

(2.12a) 

and 

R2 
Hr:::Jl_J R dtr:::J_l ___ i t2 . 

6 144 Hi 
(2.12b) 
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Therefore 12H 2 will catch up with R at tm: 

I 1

1 
H· 3 

tm~5.2 Ri~ 

and 

(2.13) 

(2.14) 

Then by Eq. (2 .6), iI will change sign and then go into the linear decaying 

phase of the previous case (i). The total expansion accumulated during 

the initial rapidly rising period is negligible : 

We can thus perfectly well regard H( tm) and R ( tm) as the initial values 

from which the linear phase begins. 

(iii) If Ri<<6Hl(1+y1+(1/6£Hl)), then 

. H 
R~--

2£ 

and 

fl~-2H 2 . 

(2.15a) 

(2.15b) 

Both H and R will fall rapidly. For a typical value of H there will not be 



- 14 -

sufficient inflation before it bounces at zero. The universe will go into 

the oscillation phase without having been inflated. 

(B)Hi < 0. 

From Eq. (2.8) we can see that as H ~o. if must also go to zero so that 

H 2 /H is finite. Therefore, ii is negative if H approaches zero on the 

negative side. Thus when H hits zero it will bounce back and remain 

negative (on the other hand, a positive H will remain positive for the 

same reason). For the case H i<O the domain in consideration will always 

be contracting until it collapses back to the Planck regime. 

(C) Ri < 0, Hi> 0. 

From Eq. (2.6) H will be decreasing rapidly as long as R is negative. 

Since H has to remain positive as argued in case (B), R will have to cross 

zero and become positive. Again, typically the total expansion in the ini-

tial period will be negligible and we arrive back at case (A). 

(D)G<O . 

From Eq. (2.5) we see that when G is negative we have an anti-

restoring force. Indeed, it is easy to see that when Hi is positive, the 

solution will go into a linearly increasing form asymptotic to a slope 

which is physically unacceptable. When Hi is negative H( t) will be 
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decreasing and will not be interesting as described under case (B). 

We conclude that (i) E has to be positive to give a finite period of inf-

lation (note that tachyonic solutions would also exist if E were nega-

tive 16 ); (ii) to study the inflation we only have to study the case with 

positive Hi· The inflation occurs during a period when H decreases 

linearly with a slope -1/36E. The total expansion factor in this phase is 

given by Eq. (2.11) (with Hi replaced by Hm in the case of (Aii) or (Aiii)); 

(iii) the linearly decaying H( t) will bounce into an oscillation phase when 

it approaches zero. These descriptions of the evolution have been veri-

fied numerically. 

Now we return to consider the contribution of the material term 

which we neglected in Eq. (2.4). By Eq. (2.3b) the energy density p of the 

relativistic particles evolves inversely proportional to a 4 • It is then clear 

that once the inflationary era begins p will be quickly red-shifted away. 

Thus by Eq. (2.4) the effect of p on the evolution is just to give R an initial 

kick. That is, if Pi is large while Hi and R i are of order 1, then R will 

quickly rise to 

I 167T It -E-pi 

in a short time. The subsequent evolution is then given by case (Aii). 
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It is nice to see the inflationary solution also by considering the 

conformal picture. In the conformal picture the classical background 

consists of gravity described by a scale factor a.(t) and a spatially homo-

geneous scalar field R (t). They evolve according to 

(2.16) 

and 

(2.17) 

where dt = ( 1 +2E:R )112 dt. It is easy to see that there is a consistent solu-

ti on for E:R >> 1: 

(2.18) 

and 

(2.19) 

Transfarming back we find a linearly decreasing Hubble parameter as 

discussed above. The fact that in the conformal picture one has a solu-

tion as nice as de Sitter makes the prospect for further analysis very 

promising. 
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From now on we consider only the case (A) above since the other 

cases either lead back to it or are uninteresting and we will refer to the 

inflated region as "the universe." In the linear phase, we have by com-

paring terms in Eq. (2.8) 

(2.20) 

As H decreases and becomes small the inequality sign will eventually flip 

and we will go over to the oscillatory phase. Equation (2 .8) then becomes 

.. 1 1 . 2 1 . 
H - --H +--H=-3HH~O 

2 H 12£ . (2.21) 

If one neglects the 3HH term in Eq. (2.21 ), the solution is given easily by 

H(t)=Const. x cos2CJt, (2.22) 

where 

1 
w= V24E · 

To do better in approximation and in particular to obtain the damping 

for the amplitude we have to include the presently neglected term. We do 

this by substituting a form for H(t) which is H =f(t)cos2wt and then 

finding J( t) in the approximation that the damping is slow j 2/f ~ 0, Jj ~ 0. 

The initial value off is determined by matching on to the linear phase-
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that is, requiring the two terms in (2.20) to be equal at t = t 0 s, the time 

the oscillation phase begins . When this has been accomplished we deter-

mine the following approximate analytic form for the whole classical 

evolution of the universe in the abscence of matter fields: 

H(t)R:3 

1 m-
36

E (t-tm) tm<t;;,.tos 

[ ~ + ~ ( t- to,)+ a: sin2UJ(t- to,) r cos2UJ( t- toJ 
(2.23) 

simple approximate solution for a( t) in the oscillatory phase can be 

obtained by integrating the H averaged over a few cycles: 

t t2 

Hm(t-tm)+~(2t-tm)--a e 72E: 72E: 
m 

a(t)R:3 [ w(t-tos) 12/3 
aos 1+ 4 

(2.24) 

In the oscillation phase R is essentially 6H (cf. Eq. (2.6)) so that we have 
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Notice that a(t) and H(t) are matched at t = t 0 s whereas R(t) is not; 

otherwise we would have had an exact solution. It is important that the 

oscillatory phase depends only on the parameter E: for size and shape; the 

oscillatory solution has no dependence on the initial conditions except in 

the time the phase begins (at t 0 s :::::J 36E:Hm). Eq. (2.24) shows that the 

scale factor expands like a matter-dominated universe: a( t) oc t 213 , as in 

the post-inflationary phase of the Starobinsky model 13 where it is 

known as the "scalaron" phase. 
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III. 

REHEATING OF THE UNIVERSE DURING THE INFLATION/FRIEDMANN INTERPHASE 

These oscillations will excite the material fields and reheat the 

universe. To estimate the reheating, we consider the simple case of a 

scalar field¢ satisfying 

(3.1) 

The energy density of the scalar particles produced can be easily deter-

mined. Let 

(3.2a) 

and 

( t) 1 1 Xk ( t) eik x, 
Uk X, = (21T)3/2 a (3.2b) 

where ak and ak + are the usual annihilation and creation operators. In 

terms of the conformal time 7J = J
0

t a- 1dt, Xk satisfies17 

(3.3a) 
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where 

(3.3b) 

As we shall see, the typical wavenumber k which enters our calcula-

tion is much bigger than one, whereas V is of order one at early times 

(77 "'0). Therefore, the wave is essentially living on a flat background at 

early times and the positive frequency mode is then given by 

(3.4) 

Now we follow Zeldovich and Starobinsky18 and rewrite (3.3) as an integral 

equation: 

(3.5) 

For a first-order iteration, we substitute Xk (i) in the integrand of (3.5) for 

Xk(17 1
). At asymptotically late times the universe will be flat again and the 

positive frequency mode function is again given by (3.4). Hence the 

Bogoliubov coefficient describing the particle production is given by 

-i r 00 
( I) -2ik 1 I (3kk'=Okk' 2kJo V17 e 71 d17, (3.6) 

and the coordinate energy density p·(o/077) (where p = momentum per 

unit co moving volume) is given by 
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(3.7) 

Note that prior to the inflation V=(1/6)a2R is many orders of magnitude 

less than its value during the oscillating phase. Also V becomes small 

after the universe goes into the radiation-dominated Friedmann phase 

(cf. Eq. (3.17) below). Thus we can drop the surface terms in evaluating 

(3.7) and arrive at 

(3.8) 

We restrict attention to a case where V(77) = F(77)sin(k 177) and the ampli-

tude F(77) for the oscillation is only slowly varying in time, which is the 

case for our present model. Then with k 117 >> 1 Eq.(3.8) gives approxi-

mately the energy production rate 

(3.9) 

(3.10) 

Here R denotes the scalar curvature (2.25) with a 7T/2 phase shift in the 

oscillating factor and the scale factor a( t) is given by (2.24). The proper 

energy density, p = --1s-p·(a/at), is determined by 
a 

d -z 
-1£_=-4 H +-1---1!.!L=-4 H + wR 
dt p a5 d17 p 11527T' 

(3.11) 
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where c.v = k '/a = 1/v24E' is the angular frequency of the oscillation in 

proper time and is given by (2.23). 

When the final term in (3.11) vanishes at late times we have d(pa4 )/dt = O 

as radiation, having an equation of state p = (1/3)p should give. When 

the R 2 term is nonzero the equation of state is modified. The pressure of 

the particles is determined by equations (2.3a) and (3.11) to be 

(3.12) 

The complete field equations with the back reaction of the particle gen-

eration included can be estimated by putting this p and p (Eq. (3.11) and 

(3.12)) back into the field equations. 19 The t -t part of Eq. (2.1) becomes 

(3.13) 

= 8
3
1T G Pmatter( t)' 

and the trace of Eq. (2.1) gives 

41TGN [ c.vR
2 I 

E' 11521TH ' 
(3.14) 

where we have inserted a factor N which denotes the number of fields 

that can be excited by the cosmological oscillation (since massless con-

formal fields will not be excited, this N will be less than the total number 
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of particles in the theory). 

The right-hand side of Eq. (3.13), 8rrGN Pmatter/3, can be estimated using 

(2.24) and (2.25). Not too long after the universe has come into the oscil-

lation phase, say at t-t0 s,....., 10/cu r::::J 10v'246, we have p r::::J 6x10-7N /62 , which 

corresponds to a reheating temperature of 

(3.15) 

If 6 is not too much bigger than G this particle production timescale may 

be shorter than the thermalization of the particle content. Still, the 

reheating temperature, Tr, is a useful characterization of the reheating 

energy (we will, however, show that 6 must be indeed large). If this tern-

perature were higher than the GUT phase transition temperature, we 

would be left with the monopole problem. If this temperature were too 

cool then baryogenesis may no longer go through. We will return to this 

point shortly. 

When t-t0 s >> 1/cu, the time dependence of Pmatter is given by 

3 32 N cu3 

Pmatter(t) r::::J 5 1152rr ( t-tos) . 

If we now neglect the back-reaction, H 2 at late times is given by (2.23) to 

be 

Hz ,....., 4 1 
9 (t-tos)2. 

(3.16) 
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Hence at (t-t05 ) ~ 1200 6 312/GN the term on the right-hand side of (3.11) 

will be comparable with H 2 and the matter produced will begin to have a 

significant dynamic effect on the evolution of the universe. The solution 

of Eq. (3.13) gradually goes over to a radiation-dominated Friedmann 

expansion with 

Hoc_!_ R=O aoct 112 andpocl/t2 
2t ' ' ' . (3.17) 

However, the transition from the oscillation phase to the radiation-

dominated phase will be slow even after 87TCPmatter/3 is comparable to H 2 , 

as a numerical integration of Eq. (3.13) shows. We estimate the time it 

takes for the Friedmann phase to begin by taking roughly 10 times this 

value, so that the time the Friedmann phase begins is given by 

tF ~ t 05 +l2000 E312/GN. The energy density will then be 

(3.18) 

And the Friedmann Universe thus begins with the temperature 

I 1

-3/4 

TF ~ lx10 17 GeV 6 
2 

N 114 . 
1 lpl 

(3.19) 

Notice that the ways Tr and TF depend on E are different. It is clear that 

any constraint on TF will not be significant. There are important con-

strain ts on Tr, however. It must be higher than 1010 - 12 GeV so that gauge 
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and Higgs bosons can be created and baryogenesis can proceed in the 

usual way, but lower than any GUT phase transition temperature 

,..., 10 16 GeV so that the monopole problem can be avoided. 2 Eq. (3.15) then 

requires E to be in the range 

(3.20) 

These bounds will be tightened when we consider perturbations generated 

in the inflationary phase. We summarize the classical evolution of the 

universe as follows: 

(i) A homogeneous and isotropic region near the Planck time with a 

Hubble parameter Hm will expand with a linearly decreasing H for a 

total expansion factor ,..., exp( 18EHm 2 ). 

(ii) Particles will be created during the oscillation phase. The total 

expansion factor during this time will be 

3/2 I 

1

2/3 
exp [l:ostos+12000E /GN H dt) >:::! 70 ;G 

(iii) The universe will then go over to a radiation-dominated Friedmann 

phase with the temperature given by Eq. (3.19). To red-shift this to 

the present value of 3 °K we must have an expansion factor 

3 

5x1029 ( .f_) 4 N 1/4 
E 
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Therefore, the total expansion since the Planck era is obtained by multi-

plying the expansion factors under (i), (ii), and (iii) and it should be 

greater than the present horizon size, where 1/H 0 ,...., 1055 ZPl· This 

requires in terms of the expansion factor 

(3.21) 

(the dependence on N is very weak, so we have set N ~ 100 as a typical 

value). The expansion factor is depends very sensitively on E:H~, so that 

unless the initial parameter, Hm, is fine-tuned, the left-hand side of Eq. 

(3.21) is very likely to be very much bigger than 1025 • We thus expect to 

have much more inflation than is necessary. 
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IV. 

GRAVITATIONAL WAVE GENERATION 

It is crucial to study the generation of gravitational waves in the 

model since it is well known that inflation close to the Planck time tends 

to yield excessive gravitational wave generation. 20 In the transverse-

traceless gauge, a gravitational wave can be expressed in terms of a 

scalar amplitude h. For a wave with wavenumber k the metric can be 

written as 

( 4.1) 

where i ,j =1,2,3 and eij is the polarization tensor satisfying both the 

transverse condition eijk J = 0 and the traceless condition ef=O. The 

field equation (2.1) then reduces to 

·· 1 E:R 2 · 1 2 _ 
h+[3H+ 6 (l+2E:R)H]h- a2 8ih-O. ( 4.2) 

The second term in the bracket is due to the presence of the E:R 2 term in 

the gravitat,ional Lagrangian. Other than this term h( t) satisfies the 

same equation as an ordinary scalar field in a Robertson-Walker back-

ground. Since Eq. ( 4.2) is second order in the spacetime derivatives, the 
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quantization can proceed in the usual way. We construct S from which 

(4 .2) can be derived: 

( 4.3a) 

where 

(4.3b) 

(here we use the background metric of equation ( 1.1) (with tc = 0) to 

compute the quantities ~, gµv• and R ). The quantization condition is 

then 

BL _ . o3(x-y) [h( t,x ),-. ( t,y )]-iG 
3 

. 
Bh a 

(4.4) 

For L given by Eq. (4.3b) we have 

[ 
. ]- . o3( x-y) h(t,x),h(t,y) -iG 3 ( ) 

a 1+2cR 
( 4.5) 

(note that the additional factor of 1/ ( 1 +2cR) in the normalization enters 

because of the cR 2 term). It is straightforward to check that the evolu-

tion equation preserves this commutation relation . 

If his composed of modes of more than one wave vector, it is written 

a s 

( 4.6) 



- 30 -

with the creation and annihilation operators satisfying the usual rela-

tions: 

( 4.7) 

Then equations (4.4) and (4.5) determine the normalization for (4.6): 

( 4.8) 

The evolution equation for hk is then 

(4.9) 

Now we consider a wave with wave-length equal to or smaller than the 

present horizon size, 1/H 0 . If the expansion factor in the linear phase is 

much greater than the minimum requirement (3.21) (cf. also text fol-

lowing (3.21)), the wave number k of these waves will be much greater 

than 1. On the other hand, the term inside the brackets in equation (4.9) 

is of order 1 as i--"O and is thus negligible compared to k /a. Once again we 

are considering a wave evolving on essentially a flat background. Thus, 

the initial mode function can be chosen as 

(4.10a) 

And the normalization hk(i) is determined by Eq. (4.5) to be 
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I h (i) I= vc 
k -J2k (27T )312 a( 1 +26R )112 . 

In the linear phase a( t) is rapidly increasing so that the wave is soon well 

outside the horizon (i.e . , k <<aH) and the third term in Eq. (4.9) becomes 

negligible so that hk approaches a constant. This constant can be 

estimated by extrapolating (4.10) to the horizon crossing time. hk then 

remains at this value until it finally reenters the horizon in the Fried-

mann phase. This "freezing out" of the gravitational waves often goes by 

the name of amplification21 since it is amplification above the adiabatic 

behaviour (Eq. (4.10)). The amplitude of the gravitational wave of wave 

number k at reentry is thus given by 

Ak =( 21Tk )312 I hk (the) I (4.11) 

where the denotes the initial horizon crossing time in the linear phase. At 

that time if"' -1/366, so we have 

(4.12) 

We assume waves which reenter the horizon at late times have left the 

horizon during the inflationary epoch so that 26R (the) >> 1 and 

(4.13) 

Notice that the spectrum is flat. Comparing to the !:.T / T limit for the 
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microwave anisotropy20 we have 

(4.14) 

or 

(4.15) 

which tightens up the bound (3.20) somewhat. Unlike usual inflationary 

models, it turns out that the microwave measurements constrain not the 

value of H( the) but rather the value of E. This is due to the fact that the 

quantization condition (4.5) is modified by the curvature-squared cou­

pling. 

In the conformal picture we arrive at the result quite easily due to 

the fact that the background is de Sitter. Note that the conformal 

transformation maps backgrounds, but leaves the perturbations 

unchanged: A =A, so we have by conventional means 

(4.16) 

which leads to E > 7x106 lpl 2 , agreeing with the above limit (4.15) to the 

order of approximation we are using. 

Note that in this picture one matches the amplitude at afl = k, while 

the true perturbation crosses the physical horizon at aH = k. However, 

the difference between the two is 0 (R /R) so that with the same accuracy 
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that one has obtained the de Sitter solution one can safely evaluate the 

perturbation at aB = k. 

A comparison between the two pictures sheds more light in under-

standing why the final result does not depend on H he as in the usual case. 

In the standard calculation one can estimate the amplitude of the wave 

by requiring that the expectation value of the total energy of waves 

within the horizon equals the zero point energy of quantum fluctuations 

21, E = (1/2)w = (1/2)(k /a): 

1 
H3 <p>=E. (4.17) 

The amplitude of the wave at the horizon crossing is obtained by extra-

po la ting this relation to the, which gives A oc Hhe. Now in conformal space 

where the gravity is pure Einstein and the stress tensor for gravitational 

waves has the usual form, one imposes 

1 - -~<p>=E. 
H 

(4 .18) 

However, this relation is not conformally covariant as 11 ~ o-112H, 

E =o- 112E, and p = 0,- 1p (here CJ is the conformal factor= ( 1 +2ER )). So, in 

terms of the physical H and R this relation reads 

( 4.19) 
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Since 0 = ( 1 +2ER) ~ 24EH hc 2 the Hubble parameter drops from the final 

answer. 



- 35 -

v. 

SCALAR PERTURBATIONS 

As is usual in inflationary models, rather stringent constraints on 

the model parameters arise from present observational limits on scalar 

perturbations. In our model scalar perturbations are generated by quan-

tum fluctuations in the scalar curvature around background values. A 

major obstacle to evaluating these fluctuations is that we are dealing 

with a fourth-order gravity in which the quantization is not easy. We 

thus avoid the problem by working in the conformal picture. In the con-

formal picture there is a neat separation of the degrees of freedom and 

the background is de Sitter, so that our result is easily obtained. From 

action (1.5) we obtain a field equation which is full of nonlinearities. 

However, we may make use of the fact that during the inflationary epoch 

E:R is large and the field equation reduces to 

d2(oR) +3Hd(oR) a,-Z(afoR)=O. 
dt2 dt 

(5.1) 

That is, oR evolves like a minimally coupled scalar field. However, it 

really is not one, as can be seen by its stress tensor. We may use the 

stress-energy tensor given by Eq. (1.4b) to find the background energy 
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density and pressure during this expansion phase (when the matter con-

tent is negligible): 

--r - 1 
p- u- 647TCE 

and 

1 

_ 'l' xx -1 1 

1+6E11_ d!}-12 
R dt 

p=~= 647TCE C1T 
l1+2ERJ 

1
1 dR 1

2 

1-6E R dt 

(5.2a) 

(5.2b) 

For a scalar wave perturbation of wavenumber k, we can find the 

linear and quadratic corrections to the energy density: 

(5 .3a) 

where, in particular, to leading order in E~ we have 

0-(2)= 3 l!s_ 121 oR 12 
p 167TC a R 

(5.3b) 

Now we proceed in determining the mean square quantum fluctuations 

of oR (i.e., for waves much shorter than the horizon) from the fact that 

their energy is just the zero-point energy. That is, 

(5.4) 
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We evaluate Eq. (5.4) using (5.3) for scales much shorter than the hor-

izon. The expectation value <orP» is zero and we obtain 

(5.5) 

Finally, we extrapolate this to the horizon crossing of the fluctuation, 

where it is physically matched to the classical post-horizon-crossing 

amplitude by I oRhe 12 = 2<oR 2 >, so 

1 2 G 1/2 2 G 1/2 
I aR I ~-(_II_) R ~4(_!I__) H 2 . he 3 E; he E; he (5.6) 

Now we may determine the metric potential, A, due to a classical 

wave of amplitude I oRhe I using the "time-lag" method of Guth and Pi: 3 

.A"' o( ~
2

) =2££ ot=2B I df! I -
1

IoRhe1. 
a dt 

(5. 7) 

If we now plug (5.6) into (5.7) we obtain 

(5.8) 

We stress that this is the asymptotic value of the metric perturbation at 

the end of the inflationary phase and therefore gives the magnitude of 

the inhomogeneities in the subsequent Friedmann evolution. 
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Alternatively, we proceed more cautiously using the gauge-invariant 

formalism of Brandenberger and Kahn. 4 We neglect the effect of sources 

outside the horizon so that we may use a quantity, (, as a conserved 

gauge-invariant expression between horizon crossings: 

1 + ~ __!s,__ 1 I 1

2 

9 aE (l+p/,o) ' 
(5.9) 

where <PH is now a gauge-invariant metric potential given by 

(5.10) 

Here v-2 is the inverse Laplacian and 'f p,fl(l) is the first-order perturba-

tion in the stress-energy. We may calculate from (1.4b) to leading order 

in - 1- (that is, during the inflationary epoch after the horizon crossing 
ER 

so that the wave is fully classical) 

'f n(1)=op-(1)~ 1 1 oR 
ii 647TGE ER R . 

(5.lla) 

And from the stress-energy ( 1.4b) we find, again to leading order (this 

term is the same order as the first, contrary to Brandenberger and 

Kahn4 ) 

'ff }!)~ '!!:__ 121 dR loR. 
l ·1 a dt 

(5.llb) 



- 39 -

We have then at the horizon crossing of Eq. (5.9) 

2f!-1 dop( 1) 

20 op(1) + dt + 3op(1) 

3 (p+p) (p+p) /5 
(5.12) 

where 015(l) is now calculated in (5.1 la) from the classical amplitude 

I oRhc I in Eq. (5.6). And we may find 1:hc by putting (5 . lla,b) into (5.12): 

(5.13) 

This fixes 1; at the initial horizon crossing , which quantity is roughly 

conserved until reentry. At the reentry of the scale of interest, the 

universe will be in a matter-dominated Friedmann phase (p = 0) and we 

may use the Friedmann equation at reentry, H 2 = (8/3)7TGj5, to find 

- (- )- 3 015( 1
) 

<PH lreentry -2 /5 · (5.14) 

We may now drop the tildes at reentry since during this late phase the 

conformal factor is ~1. We have 

(5.15) 

And finally the metric potential after reentry is 

(5.16) 
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We see that <I>H(treentry) "'A (here.A is given by Eq. (5.8)) to within numeri-

cal factors. In the Hhc 2 factor we have some weak-scale dependence in 

the perturbation spectrum. In fact, the spectrum is scale-invariant up 

to a logarithmic term as in the case of standard inflation. We calculate 

this dependence in the following way - at both the initial and final hor-

izon crossings we have in the physical space 

(5.17) 

We plug into this our evolution law (2.23)-(2.24), assuming, of course, 

that the initial horizon crossing occurs during the linear inflationary 

phase of the model, and we obtain 

(5.18) 

where H 0 is the Hubble parameter today (we use H 0 = 50 km/sec 

Mpc- 1 = 9x10-56 Zpl- 1 and k 0 is the scale which crosses the horizon today). 

From this equation we may directly exhibit the logarithmic scale depen-

dence of the perturbations: 

_1_8_E:_~_h_c_2 In I-~-: I (5.19) 

We note that Eq. (5.18) for a given scale of observational interest com-

pletely fixes the horizon-crossing Hubble parameter in terms of the 
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model parameter E. That is, the metric potential, A, given by Eq. (5.8), 

again for a given scale, is only dependent on E. Scales which are inside 

the horizon today are bounded by the microwave anisotropy limit20 so 

that A ~ V7x10-4 and k reentry/k o = 1. We have 

(5.20) 

If we want this primordial spectrum of density fluctuations to be a suc­

cessful seed for galaxy formation and we use a standard value for the 

scalar perturbation amplitude of ,....., 10-4 , then essentially our bound in 

(5.20) would change into an equality. If, however, we choose a different 

scenario22 that is less constraining in which A > 10-6 for scales 

k reentry/k o ~ 150, we have 

(5.21) 

The bound (5.20) tightens up (3.20) considerably, although this number 

is only to be taken as very rough. Notice also that 18E(Hhc(k 0) )2 ~ 52 so 

that the early evolution for H(t) > Hhc(k 0 ),....., 5x10-6 Zpl- 1 is irrelevant to 

all present observation. Putting it another way, with initial conditions of 

order Planck our model predicts that the universe has been expanded 

something like 2x10 12 e-foldings so that the observable part of the 

universe will be the same for many future generations. 
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The scales which cross the horizon at Hhc > H b = 1/(12V27TGG) have 

perturbations bigger than 1 today. From Eq. (5.20), 

H ::::10-3 l -l b- Pl · 

If Hm > H b• it simply means that one has, at scales much larger than the 

present horizon, fluctuations which cannot be treated in linear theory. 

Of course, Hm can as well be less than H b• it is bounded below only by 

Hh0 (k 0 ). The requirement that the perturbations are small at the initial 

horizon crossing so that the use of perturbation theory is justified leads 

to only a very weak constraint on t:, well within our other bounds. 

Interestingly, all these numbers tell us that there is one charac-

teristic mass scale present in the theory as Hh0 (k 0 ),....., t:- 1/ 2 "' 10-6 lpt- 1 . 

Perturbations in an inflationary model with a massive scalar inflaton 

have been considered by Halliwell and Hawking, 23 using the full wave 

function formalism. They found that compatability with observation 

restricts this mass to be less than 1014 GeV. As we have seen, the scalar 

curvature does obey an equation for a massive scalar field of mass 

,....., 1/-Y°&. So we see that despite the unusual self-couplings present in 

the t:R 2 theory, the physical analogy works remarkably well. 

Finally, from equations (4.13) and (5.8) the neat result follows that 

the contribution to the microwave anisotropy of the scalar fluctuations 

overpowers that from gravitational waves by a factor 18t:(Hh0 (k 0))2 ,.....,52. 
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This is the reason that the bound £ is much tighter from considering 

scalar perturbations. 
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VI. 

PRESENT BOUNDS ON 6 AND POSSIBLE ORIGINS 

It may seem that the condition E > 10 11 lpl 2 places a very large unna-

tural limit on 6, which in terms of Planck units it does. We would like to 

point out that in terms of any presently measured curvature this is really 

quite small. 

We can manipulate the field equation (2.1) in the usual way to get 

( 6.1) 

where 

36 ( R 2 · 2) Ps=--- ---RH-RH 
47TC 12 

( 6.2a) 

and 

G .. . R 2 2 RK 
Ps=---(R +2RH +--RH --). 

47TC 12 a2 
( 6.2b) 

This is the usual equation which is used to set a limit on the cosmological 

constant A in terms of the presently observed H 0 (the Hubble parameter), 

a 0 (density parameter), and q0 (deceleration parameter). If we assume 
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A = 0 we thus obtain a cosmological limit on t:: 

(6.3) 

Similarly one can consider a limit on£ by asserting that t:R is small in all 

horizon-exterior curvatures encountered presently in our universe. We 

may use for R typically M /r 3 and go to the gravitational radius of a black 

hole . Then t:R << 1 requires only 

(6.4) 

This, of course, is a bit of a swindle because a black hole is also a solution 

of t:R 2 gravity14 so that R = 0 and £ will have no effect. We conclude, 

though, that£= 1011 lpl 2 in terms of any presently encounterable curva-

lure is very small. 

We have not as yet addressed the question of the origin of the £term. 

Basically, there are three ways that one might imagine it arising. First, it 

may be that the full fourth-order theory should be postulated as funda-

mental. Such a form is naturally suggested if one thinks about gravity as 

the gauge theory of the Poincare group. 24 Furthermore, the t:R 2 terms in 

the field equations violate the strong energy condition so that the initial 

singularity might be avoided .12 It has also been shown that such a theory 

is renormalizable. 24 And the long-standing objection that it is nonuni-

tary might not be true. 25 Secondly, it may be a remnant from some more 
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fundamental theory. For instance, in superstring theory the Lagrangian 

of the point-particle limit of the 10-dimensional full string theory con-

tains the following terms26 : 

where a and bare some constants. After compactification this leads to 

(6.5) 

where V 6 is the compactified volume of the six "other" dimensions and ¢ 

is the vacuum expectation value of a scalar field known as the dilaton. We 

see that this might directly give us an [;R 2 behaviour even classically in 

the Lagrangian with a completely determined[;. However, the highly pre-

ferred values27 for a and b are a= -4, b = 1 and then [; = 0 at the classi-

cal level and there is no R 2 term in superstring theory. 

Nevertheless, [; should also be expected to arise in a third way as a 

quantum effective action correction to the bare theory. Here, the specific 

fields will contribute to its value. Indeed, this is the approach of Staro-

binsky. 13 As a quantum correction term[; would be given by 

[;"-'G ln( A highcutoff ) 

A1owcutoff 
(6.7) 

and we would again be forced to consider a more complete theory to fix[;. 
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VII. 

CONCLUSION 

We thus conclude that at a classical level a cosmology based on the 

R +ER 2 Lagrangian generically has an inflationary phase with a linearly 

decreasing Hubble parameter. The total number of expansion e-foldings 

during this phase is"' 18EHm2 (if Ri = 0, then ti= 0 = tm). After the linear 

decaying phase H( t) bounces off zero and the universe goes into an 

oscillatory phase. The total expansion is sufficient to solve the horizon 

and flatness problems if 18EHm 2 > 75. At the classical level this is a 

natural and consistent model that relies solely on a modified gravity for 

its dynamics. Here, the quadratic correction to the Hilbert-Einstein 

action would be expected to be present somewhat independently of the 

specific form of the matter Lagrangian (although a value for E must 

necessarily come from a higher theory) . 

The post-inflation oscillatory phase yields a maximal reheating 

temperature which is small: 

I 1

-1 / 2 

Tr f:::j 1.2 x 10 12 GeV 1~ 2 
, 

10 lpl 

in any case very much below any expected GUT phase transition, so that 
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the monopole pro bl em is avoided by the ER 2 -driven expansion. Standard 

baryogenesis still may go through at this temperature but the details of 

this on the non-standard background will require further attention. 

Finally, there is a joining to a Friedmann phase at a temperature 

TF ~ 6x108 GeV _£_ N1/4 

I 1

-3/4 

10 11 ' 

when the evolution goes over to a radiation-dominated expansion. 

Gravitational waves and scalar perturbations both yield bounds on 

the parameters of the model when we must set them small so as not to 

disturb the isotropy of the microwave background. The bound from 

gravitational waves is £ > 106 lpl 2 with no restriction on Hhc as would 

occur for the standard inflationary scenario. This spectrum of gravita-

tional waves is scale-invariant. However, the scalar perturbations give 

the much tighter bound of£~ 1011 lpl 2 , and this in turn implies that the 

perturbation scale which reenters the horizon today must cross the hor-

izon at Hhc(k 0 ),...., 10-6 lpl- 1 , that is, at a late stage of the extremely long 

linear phase. The spectrum of scalar perturbations has only logarithmic 

dependence on the scale. If one wants baryogenesis to proceed in the 

usual way there is an upper bound £ < 1015 lpl 2 • A similar bound follows 

from a comparison between galaxy formation and the microwave aniso-

tropy in models of galaxy formation with cold dark matter.22 However, 

these considerations both carry their own difficulties so that we place 
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somewhat less emphasis here on the upper bound. Our condition of suf-

ficient inflation requires that Hm > 10-5 zPl- 1 ; that is, we find that our 

model would work for essentially all reasonable initial conditions. We 

thus conclude that the ER 2 model satisfies all requirements for a realis-

tic inflationary model as long as Eis large enough. 

To investigate the very early phase we have attempted a preliminary 

wave function calculation by solving the Wheeler-de Witt equation to WKB 

approximation subject to a tunneling boundary condition in the manner 

of Vilenkin. 28 We thus obtain peak values for the wave function assuming 

a closed (te = + 1) universe of <a> ,...., .056 lpl, <R > ,...., 3800 lpt- 2 , and 

<H > ,....., 18 lpt- 1 independent of E (the details of that calculation will be 

reported in subsequent work). We interpret these as typical of the tun-

neling values for the universe into the Lorentzian/ classically allowed 

regime. Also, the peak is not very strong so that these numbers end up 

only as bounds. That is, we might say 

a. ,...., . 0 6 lpl [ R i i-1/2 

. 4000 lpl - 2 ' 

and 

Hi,...., 20 lpl- 1 [ Ri ]
112 

4000 lpl-2 ' 
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(and ti= tm = 0). These numbers are sufficiently distant from the hor­

izon crossing of interesting perturbations that the wave function offers 

no conflict with our lower bound on Hm. We thus find the classical evolu­

tion to be generally independent of initial conditions. The one remaining 

question is whether or not there will be a long quantum gap separating 

the tunneling point from the onset of the classical model. That is, are 

quantum fluctuations large for an extended period during early times? 

This of course must be answered by the wave function itself. Also, after 

doing this further calculation we can determine whether the inflated 

portion of our present universe is the whole universe or only a fluctuated 

bubble part of it as in Linde's chaotic inflation picture. We note now only 

that the initial parameters preferred above indicate that the tunneled 

universe is strongly quantum. 

The complete analysis of the initial conditions for the classical evo­

lution (within the spatially homogeneous model), will be presented else ­

where. It is sufficient to say here that the classical inflationary phase 

appears as a typical phase in the very early universe, right after the Big 

Bang. 

At the end we should mention the original Starobinsky model 13 , 

whose quantum cosmology has been studied recently 28 • In this model 

there is a trace anomaly induced term in the Lagrangian, in addition to 

Eq.( 1 ). This term dominates the very early evolution of the universe. 
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Consequently, the behavior of the quantum fluctuations in metric and 

curvature is rather different. However, at later times, the extra term can 

be neglected and it is during that phase that scales within the presently 

observable universe leave the inflationary horizon. The correct expres­

sions for the scalar and tensorial perturbations, which agree with ours, 

were given by Starobinsky 29•30 . Regretfully, we were not familiar with 

this work when we started our investigation. Our analysis of the scalar 

and tensorial perturbations is explicit and fully gauge-invariant. We 

have also shown that the reheating phase can be characterized with two 

very different temperatures, which invites some interesting speculations 

about the dynamics of reheating, baryon number production and possi­

ble production of the extended structures. 

A recent review of the relationship between the original Starobinsky 

model and the R +R 2 model is given in Ref. 31, where the later one has 

been named the "improved Starobinsky model". In addition to these 

arguments we would like to add two more. It is still not completely clear 

what to do with the infinities that occur in computing quantum correc­

tions in curved space time. The trace anomaly term that is present in 

the original Starobinsky model has an open cut-off whose interpretation 

precludes straightforward use of this Lagrangian. Further, no matter 

how we look at the quantum gravity, the R 2 term appears to be present. 

It is this possibility, to be able to say something about the E: from some 
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fundamental theory like superstrings, that makes this model especially 

promising. 
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Figure Caption 

FIG. 1. A model cosmology for c; = 1, Hi= l lpz- 1 , and Ri = 0 (correspond­

ing to the case (Ai) of the text so that Ri f:::J 12.5 lpz-2 ), showing typical 

behaviour of the Hubble parameter (H ( t )/1 lpz- 1 ), the normalized scalar 

curvature (R ( t )/ R i), and the inflation-normalized number of expansion 

e-foldings (ln a( t )/ l8c;H i 2 ). This plot has been generated from a numeri­

cal integration of the field equations (2.4)-(2.7) with zero initial matter 

content. The Hubble parameter displays a clean separation between the 

linear inflationary phase and the subsequent oscillation phase at 

t05 = 36c;Hm - (1 / (2w)) f:::J 33.6 lpz (cf. Eq. (2.23)). The slight initial rise in 

H(t) is real since at the start iI = (1/6)(R-12H 2 ) > 0. For models with a 

much higher value of the parameter c; (we are observationally con­

strained to c; > 1011 lpz 2 ) the linear phase is stretched out to a shallow 

slope and the subsequent oscillations are correspondingly reduced in 

both amplitude and frequency. 
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