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Abstract 
DNA-mediated charge transport (DNA CT) is well established in both ground and 

excited state systems. Although theoretical models are still being developed, it is clear 

that the integrity of the extended π-stack of the aromatic heterocycles, the nucleic acid 

bases, plays a critical role. Electron donors and acceptors must be electronically well 

coupled into the π-stack, typically via intercalation. Perturbations that distort the π-stack, 

such as single-base mismatches, abasic sites, base lesions, and protein binding that kinks 

the double helix, attenuate DNA CT dramatically.  

This thesis encompasses work that first aims to understand how DNA duplex 

structure informs characteristics of DNA CT and then continues to develop an 

understanding of the role these structural features play in biological systems. To 

contextualize these advancements, this first chapter outlines foundational work that has 

shown ways that DNA structure influences its ability to conduct charge.  

Next, experiments were conducted on magnetized DNA-modified electrodes to 

explore spin-selective electron transport through hydrated duplex DNA. These results 

show that the two spins migrate through duplex DNA with a different yield and that spin 

selectivity requires charge transport through the DNA duplex. Significantly, shifting the 

same duplex DNA between right-handed B- and left-handed Z-forms leads to a diode-like 

switch in spin selectivity; which spin moves more efficiently through the duplex depends 

upon the DNA helicity. With DNA, the supramolecular organization of chiral moieties, 

rather than the chirality of the individual monomers, determines the selectivity in spin, 

and thus a conformational change can switch the spin selectivity. 
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This exquisite spin selectivity begged the question: how might biology take 

advantage of such a spin filter? Photolyase and cryptochromes both have been shown to 

exhibit magnetosensitive chemistry nearby a DNA binding pocket, and photolyase had 

previously been shown capable of DNA CT. Thus, electrochemical studies were 

conducted to monitor the repair of cyclobutane pyrimidine dimer lesions by E coli 

photolyase and truncated A Thaliana Cryptochrome 1 with an applied magnetic field. We 

find that the yield of dimer repair is dependent on the strength and angle of the applied 

magnetic field even when using magnetic fields weaker than 1 Gauss, though spin 

selective DNA CT is not involved. These data illustrate how cyclobutane dimer repair 

could be used in a biological compass that is informed by the angles of Earth’s magnetic 

field. 

Next DNA-mediated electrochemistry and atomic force microscopy studies were 

used to describe a role for redox active 4Fe-4S clusters in DNA-mediated charge 

transport signaling. DNA-modified electrochemistry shows that the 4Fe-4S cluster of 

DNA-bound DinG, an ATP-dependent helicase that repairs R-loops, is redox-active at 

cellular potentials and ATP hydrolysis increases DNA-mediated redox signaling.  Atomic 

force microscopy experiments demonstrate that DinG and Endonuclease III, a base 

excision repair enzyme, cooperate at long range using DNA charge transport to 

redistribute to regions of DNA damage. These data are then described using an 

equilibrium model which elucidates fundamental characteristics of this redox chemistry 

that allow DNA CT to coordinate the activities of DNA repair enzymes across the 

genome. 
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The importance of the oxidation state of the redox-active [4Fe4S] cluster in the 

DNA damage detection process is then further explored using a mixture of 

electrochemistry and atomic force microscopy. DNA-modified electrodes were utilized to 

generate repair proteins with [4Fe4S] clusters in the 2+ and 3+ states by bulk electrolysis 

under an O2-free atmosphere. Anaerobic microscale thermophoresis results indicate that 

proteins carrying [4Fe4S]3+ clusters bind to DNA 550 times more tightly than those with 

[4Fe4S]2+ clusters. The measured increase in DNA-binding affinity matches the 

calculated affinity change associated with the redox potential shift observed for [4Fe4S] 

cluster proteins upon binding to DNA. An electrostatic model was developed that shows 

this change in DNA-binding affinity of these proteins can be fully explained by the 

differences in electrostatic interactions between DNA and the [4Fe4S] cluster in the 

reduced versus oxidized state. Atomic force microscopy demonstrates that the redox state 

of the [4Fe4S] clusters regulates the ability of two DNA repair proteins, Endonuclease III 

and DinG, to bind preferentially to DNA duplexes containing a single base mismatch 

which inhibits DNA charge transport. Together, these results show that the reduction and 

oxidation of [4Fe4S] clusters through DNA-mediated charge transport facilitates long-

range signaling between [4Fe4S] repair proteins. The redox-modulated change in DNA-

binding affinity regulates the ability of [4Fe4S] repair proteins to collaborate in the lesion 

detection process. 
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Introduction 

DNA-mediated charge transport (CT) is fascinating chemistry that relies on the π-

stacked structure present in some DNA conformations. Under the right conditions DNA 

CT can occur over extraordinarily long distances with shallow distance dependence. 

Many characteristics of DNA CT are strongly dependent on the structure and dynamics 

of the DNA that is used as well as the assembly that is used to initiate and measure DNA 

CT. Understanding the role that all of these components play is essential to developing 

DNA CT for use in nanoelectronics or characterizing DNA CT’s role in biological 

systems. 

 This thesis encompasses work that first aims to understand how DNA duplex 

structure informs characteristics of DNA CT and then continues to develop an 

understanding of the role these structural features play in biological systems. To 

contextualize these advancements, this first chapter outlines foundational work that has 

shown ways that DNA structure influences its ability to conduct charge. Specific focus is 

given to macromolecular structure and its associated characteristics that can vary with 

sequence or by exposing DNA to different environments. Additionally, the local 

structural changes, including those induced by mismatches, abasic sites, and lesions, are 

discussed. 

Complexities of DNA Structure 

The structure of deoxyribonucleic acid (DNA) is best described by considering 

the many pieces that can fit together in different ways. The basic building block of DNA 

are nucleotides, which consist of three molecular pieces: a sugar, a heterocyclic base, and 
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a phosphate. The sugar, deoxyribose (or ribose in RNA), is cyclic and connected via a β-

glycosyl linkage to a heterocyclic base. Though many natural and unnatural 

modifications are possible, typical DNA will have access to four different bases: adenine, 

guanine, cytosine, and thymine. Either the 3’- or 5’- hydroxyl group of the sugar is 

phosphorylated, which can then form phosphodiester bonds to link with adjacent 

nucleotides to become an oligonucleotide. (1) 

In most of the known oligonucleotide crystal structures two complementary 

strands are observed associating in double-helical arrangements termed DNA duplexes. 

In a well-matched duplex complementary bases, one from each strand, hydrogen bond 

with one another to form adenine-thymine (AT) or guanine-cytosine (GC) pairs. 

Perpendicular to each pairing are adjacent nucleotides whose heterocycles’ π-orbitals 

overlap, creating a path for charge to transport down the helical axis. 

Sometimes oligonucleotides can crystallize with other conformations; nonhelical 

entities are observed with looped configurations. (1) The different crystal structures 

indicate the conformational flexibility that is afforded to DNA which, despite being most 

often considered as a B-form, right-handed helix, allows for many relevant 

polymorphisms. Depending on the nucleotide sequence, modifications, and its exposure 

to different environments, DNA can adopt A, B, C, D, and Z duplexes among other 

forms. (1-6) Some of the structural parameters of different DNA duplexes are outlined in 

table 1.1. 
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Table 1.1. Duplex structure types and helical parameters of DNA observed by X-ray 
diffraction. Partially adapted from (1). 

Structure 
Type 

Pitch 
(Å) 

Helical 
Symmetry* 

Axial rise 
per 
nucleotide 
(Å) 

Axial turn 
angle per 
nucleotide 
(degrees) 

Minor 
groove 
width 
(Å) 

Major 
groove 
width 
(Å) 

Minor 
groove 
depth 
(Å) 

Major 
groove 
depth 
(Å) 

A 28.2 11 2.56 32.7 11.0 2.7 2.8 13.5 
B 33.8 10 3.38 36.0 5.7 11.7 7.5 8.5 
C 31 9.33 3.32 38.6 4.8 10.5 7.9 7.5 
D 24.3 8 3.04 45 1.3 8.9 6.7 5.8 
Z 45 6** 3.7 -30.0 8.8 2.0 3.7 13.8 

 

*number of residues per one turn after which repeat structure is observed 

**for dinucleotide as repeating unit 
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Measurements of DNA-mediated charge transport 

 There are many different techniques that have been used to measure DNA-

mediated charge transport. The majority of experiments testing DNA CT have been 

performed in solution and tend to involve a photoexcited charge donor that transfers 

charge to an acceptor through a DNA bridge. (7) A wide variety of donors and acceptors 

have been used, ranging from transition metal complexes to purely organic molecules, 

base analogs, and proteins. (8, 9, 10) Experiments have been conducted on electrodes, 

typically gold or graphite, that are covered by a self-assembled monolayer of DNA. 

(11,12) DNA duplexes are linked to the surface by a covalent modification on the 

phosphate backbone (thiols for gold or pyrene for graphite) that allows for them to stand 

upright. Redox molecules, either noncovalently or covalently attached to the DNA, can 

then be reduced or oxidized by applying a potential across the electrode surface. (13) 

 Other experimental setups have allowed for measurements of DNA conductivity. 

Conductive atomic force microscopy has been used to create metal-DNA-metal junctions 

that can be used as a circuit to measure the current-voltage characteristics of DNA. (14) 

Scanning tunneling microscopy break junction technique measures the conductivity as 

the tip is pushed towards and retracted away from the surface, apparently hybridizing and 

de-hybridizing the duplex. (15) The current is measured as a function of the distance of 

the tip from the surface with the assumption that the stretch of separation where the 

current is constant represents the conductivity of a DNA duplex bridge. Single DNA 

molecule circuits have also been made that tether DNA between a nanotube gap and 

measure the change in current that passes through the circuit. (16) 
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Figure 1.1 Platforms for the study of DNA CT. (Top) donor and acceptor molecules are 
incorporated into a DNA duplex. Photoexcitation initiates charge transported through the 
DNA bridge and is measured using spectroscopy or other means generally probing the 
donor or acceptor. (Middle) DNA is covalently tethered to an electrode surface with a 
redox active probe at the distal end away from the surface. A potential is applied that 
results in charge being transported through the DNA either to or from the electrode, 
which can be measured as a change in the current during a potential sweep. (Bottom) 
DNA is attached across a carbon nanotube gap to make a circuit which can probe 
fundamental questions of DNA conductivity. Reprinted with permission from 50. 
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Structural features essential for DNA-mediated charge transport 

The ability for DNA to mediate charge transport correlates with the extent of base 

stacking. The different base pair stacking of A-, B-, and Z-form DNA leads to different 

conductivities through these structures. (17) These duplex polymorphisms are illustrated 

in figure 1.2. The A-form duplex has the largest overlap of adjacent bases as well as the 

most efficient DNA CT. The B-form follows next, with the second best overlap. The Z-

form is a significantly worse charge transport path than either of these, and also has the 

worst π-stacking of typical duplex structures. And single stranded DNA, if present in an 

unstacked conformation which does not have an ordered π-stacked structure, does not 

facilitate efficient charge transport. This has been confirmed with electrochemical, 

photooxidation, and direct conductivity studies. (16,17,18) 

The sequence of DNA can have a significant role in the macromolecular structure 

that is being tested. The complementary pairings of (dA-dT)n with (dA-dT)n and (dG-

dC)n with (dG-dC)n have the same purine-pyrimidine alternating sequence but they have 

access to different polymorphisms, with only the (dG-dC)n able to transition from B-form 

to Z-form under high salt conditions. (5,6) Even DNA with the same nucleotide 

composition in a different order can lead to significant changes in the accessible 

structures. Aqueous solutions of (dG)n with annealed with (dC)n results in A-form duplex 

but annealing (dG-dC)n with (dG-dC)n result in a B-form duplex. (20,21) Careful 

consideration of the annealing process should be taken when annealing different 

sequences of DNA, because the melting temperature of sequences will change as well as  
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Figure 1.2. Illustration of A-, B-, and Z-form DNA duplexes tethered to electrode 
surfaces. Also shown are views looking directly towards the helical axis. Note the 
significantly different organization of nucleotides, which changes the overlap of π-
orbitals from adjacent heterocycles. Reprinted with permission from 17.  
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the favorability of non-duplex structures such as hairpins. To minimize structural 

differences caused by annealing, and to maximize the formation of duplex DNA, 

complementary DNA strands should be heated to well above the expected duplex melting 

temperature and then decreased slowly to a temperature where the duplex form is stable 

and other structures are not. 

Disruption of the π-stacking will diminish the efficiency of DNA CT through that 

region. The presence of mismatches lowers the rate and yield of DNA CT in a way that 

correlates with base pair lifetime. (22) This disruption occurs even though mismatched 

base pairs do not cause major structural changes. (23) Abasic sites and destabilizing 

lesions, such as 8-oxoguanine, diminish DNA CT. (24,25) Significant kinks to DNA 

caused by protein binding, such as the TATA-binding protein, or chemical interactions 

with molecules such as cisplatin, will also disrupt DNA CT. (26,27) 

Not all modifications to DNA structure diminish DNA CT. A dephosphorylation 

of the backbone does not have a measurable effect on yield or efficiency. (28,29). Some 

mismatches, such as G containing mismatches that are fairly stable, do not have a 

significant effect on DNA CT. (25) Some changes in structure, such as methylation to 

generate 5-methylcytosine, do not significantly influence DNA CT. (25) 

The importance of the π-orbitals’ overlap is also essential for charge to move to 

and from acceptor and donor molecules that are associated with a duplex. Intercalative 

redox probes such as methylene blue that are able to insert themselves into the π-orbital 

stack undergo efficient DNA-mediated charge transport. (30) Other molecules, like the 

positively charged ruthenium hexammine, associate electrostatically to the phosphate 
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backbone and are unable to access DNA-mediated charge transport. (31) In some cases, 

like with methylene blue, different DNA binding modes are available. At low 

concentrations methylene blue primarily intercalates into DNA where it can undergo 

efficient DNA CT, but at higher concentrations it can bind electrostatically where it 

cannot utilize DNA CT. (30) Screening these electrostatic interactions with increased salt 

concentrations will promote primarily intercalative binding. 

The DNA environment can change the duplex structure 

DNA’s access to different conformations can be taken advantage of by 

experiments, but unknown conformational changes can also confound the interpretation 

of results.  The ability for DNA to change between conformations with different charge 

transport properties makes structural confirmation of duplexes essential for comparisons 

to be made between measurements of DNA CT in different systems. Various 

measurements have been performed since the discovery that DNA conducted charge that 

have shown all sorts of conflicting properties. (32) In some cases, DNA is said to be 

insulating or nonconductive and in others it is said to be superconductive. DNA 

conductivity is reported to be dependent on the sequence, hydration, length, temperature, 

and hybridization in some experiments but not in others. These differences can be largely 

reconciled by assessing the preparation of samples and methodology used, because small 

changes in DNA’s handling can enhance, eliminate, or disrupt the internal π-stacked 

structure and have dramatic effects on its ability to conduct charge. (32) 

 Dehydration or exposure to nonaqueous solvents can eliminate efficient DNA-

mediated charge transport. DNA is stabilized by a variety of hydrophobic and hydrophilic 
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interactions; changing these interactions can significantly change the resulting structure. 

(1) The precise structural changes caused by dehydration or exposure to most nonaqueous 

solvents are not very well characterized, but it is clear that the equilibrium conformation 

of DNA is changed. (1,32,33) Many solvents that dissolve DNA do not retain the duplex 

structure and it is not clear that returning to an aqueous environment restores the duplex. 

(34) For example, drying duplex DNA then redissolving it in aqueous solution results in 

the generation of single stranded hairpin structures and other changes. (35) The influence 

of hydration is so important that changing the humidity of DNA can also significantly 

change the structure of DNA with the same sequence. Poly(dA-dT) duplexes exist 

exclusively in the B form above 70% relative humidity, but at lower humidity transform 

into a metastable A form which disproportionates into a triple-stranded complex with A-

type conformation. (36) These data show that the dehydration or exposure to nonaqueous 

solvents can eliminate the π-stacked duplex structure, which is why they impede efficient 

DNA CT, but in most cases it is unclear what the structure of DNA actually is after 

exposure to nonaqueous conditions. 

Some experiments conducted under nonaqueous conditions show efficient DNA 

CT or conductivity. Scanning tunneling microscope studies describing DNA conductivity 

are generally performed under vacuum to intentionally remove water that can make such 

experiments difficult, (37) though some scanning tunneling microscope studies have been 

conducted in humid environments with different results. (38) Other measurements, 

including many conductive atomic force microscopy experiments, have shown varying 

degrees of conductivity after rehydrating DNA that was deposited in vacuum or washed 

with apolar solvents. (32,39) Chemistry mediated by DNA CT in hydrated ionic liquids 
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has also been reported with careful consideration of the influence this environment has on 

the duplex structure. (40) In these extreme conditions the structure of DNA is unclear so 

it is difficult to make claims regarding DNA-mediated charge transport that are clearly 

deconvolved from other aspects of the experiment. For example, ionic conduction 

through water may be what is measured instead of DNA-mediated CT. (32,41,32) So, to 

properly understand the structure that is being tested it is essential to keep DNA hydrated 

during all steps of preparation and experiment, characterize the DNA after procedures 

that may change the structure, and verify that the charge transport is DNA-mediated. 

Verification of DNA-mediated charge transport 

 There are many different ways to verify that charge transport is DNA-mediated. 

Ideally, controls will disrupt DNA CT in a way that is recoverable or in a way that 

minimizes other differences in the experiment. The significant influence that small 

structural changes have on the yield of DNA CT allows for the design of experiments that 

can verify charge transport is mediated by the DNA. Larger scale structural changes such 

as dehybridization or melting of the duplex may provide necessary confirmation in some 

context. Careful use of multiple redox probes, including some that are able to undergo 

DNA CT and others that are unable to undergo DNA CT, can also be used to confirm a 

DNA-mediated signal. 

 One of the strongest confirmations that charge transport is DNA by the inclusion 

of a single base mismatch or abasic site that will disrupt the π-stacking, illustrated in 

figure 1.3. (32) The main benefit of this method is that it changes very little about the 

DNA structure that may influence other parts of the experiment, but should have a  
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Figure 1.3 Electrochemistry of a 100 base pair duplex with and without a single base 
mismatch. a, The multiplexed electrode and layout of DNA-modified electrodes used to 
compare DNA duplex monolayers formed under similar conditions. The duplex with the 
mismatch only differs from the other duplex in that a C was substituted for a T to 
generate a CA mismatch 69 bases from the electrode surface. b, Each duplex was 
modified with a Nile Blue redox probe that showed greatly diminished charge transport 
yield for the duplex containing the CA mismatch. Reprinted with permission from 48. 
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dramatic effect on charge transport that is mediated by the π-stack of the duplex.  

Incorporation of a particularly ruinous mismatch, such as CC or CA, will result in a 

significant decrease in the yield of DNA CT. (25) G-containing mismatches tend to be 

poor choices for this confirmation because they don’t have attenuate CT as dramatically. 

(25) An abasic site will have a more significant effect, but it is also a larger structural 

change. If the experiments are run at relatively high temperatures an abasic site is a better 

choice than a mismatch, because increasing the temperature decreases the attenuation 

caused by a mismatch and potentiates the attenuation caused by an abasic site. (43,44)  

 In hydrated experiments it is possible to take advantage of more dramatic 

structural changes to verify that charge transport is DNA-mediated.  Enzymatic cleavage 

by proteins can be used to release a region of DNA with a bound redox reporter, 

effectively eliminating the DNA-mediated path. (45) Protein binding to their specific 

binding substrate, whether it is a particular sequence or structure (such as single stranded 

regions, overhangs, etc.), can also be used to verify the structure. (46) Solution conditions 

can be used to induce changes, such as switching from B-to-Z form DNA, that will 

reversibly change the charge transport properties. (47) It may also be useful to 

dehybridize duplexes in solution followed by rehybridizing DNA with or without lesions 

(16). 

 Careful selection of redox active molecules can also be used to confirm DNA-

mediated charge transport. DNA-mediated charge transport will only occur efficiently 

with redox active molecules that couple to the π-stack. Probing the same DNA construct 

with molecules that do and do not couple to the π-stack should show a significant 
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difference in yield, if the charge transport is DNA-mediated. (47) Using covalently 

tethered probes can also allow for specific selection of a region that the redox probe is 

attached to, which can then be removed through enzymatic digestion. (48) It is also 

possible to use redox probes that selectively target mismatches or abasic sites, which 

should only show a DNA-mediated signal if that mismatch or abasic site is present in a 

duplex form. (49) 

It is more complicated to verify charge transport is mediated by the DNA π-stack 

in dried samples and DNA in other conditions that do not have known structures. Ideally 

the use of sequences that vary by containing a mismatch can be used to see whether the 

measured conduction is only caused by charge transport mediated by the π-stack. The 

access to conformational changes is severely limited, and it is unclear what structures are 

often tested, which makes data measuring charge transport through dried samples 

susceptible to misinterpretation. 

Summary 

 DNA-mediated charge transport is fascinating chemistry that relies on the π-

stacked structure present in some DNA conformations. Disrupting the π-stack inhibits 

efficient charge transport. Thus, it is important that measurements of DNA CT have an 

understanding of the DNA structures that are being measured. Making small changes to 

the structure of a DNA duplex can have dramatic inhibition of CT yield. Thus, 

experiments that measure DNA CT must pay careful attention to the structure, keep DNA 

hydrated during all steps of preparation and experiment, characterize the DNA after 
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procedures that may change the structure, and verify that the charge transport is DNA-

mediated. 
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Chapter 2 

 

Helix-Dependent Spin Filtering  

through the DNA Duplex 

 

 

 

 

 

 

 

 

Adapted from Zwang, T.J., Hurlimann, S., Hill, M.G., and Barton, J.K. J. Am. Chem. 
Soc., 2016, 138 (48), 15551-15554 
 
T.J. Zwang prepared and characterized DNA, assembled electrodes, and performed 
electrochemistry experiments. S. Hurlimann assisted with electrochemistry experiments. 
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Introduction 

DNA-mediated charge transport (DNA CT) is well established in both ground and 

excited state systems (1). Although theoretical models are still being developed, it is clear 

that the integrity of the extended π-stack of the aromatic heterocycles, the nucleic acid 

bases, plays a critical role:(2-4) electron donors and acceptors must be electronically well 

coupled into the π-stack, typically via intercalation, and perturbations that distort the π-

stack, such as single-base mismatches, abasic sites, base lesions, and protein binding that 

kinks the double helix, attenuate DNA CT dramatically. This latter characteristic has 

found practical use in electronic devices and biosensors (5-7). 

Recent experimental work in the field of spintronics has raised the intriguing 

possibility that DNA CT is affected by the inherent spin of the electrons passing through 

it. The first experiments to show that double stranded DNA (dsDNA) could function as a 

spin filter were conducted under vacuum, where photoelectrons ejected from a gold 

surface became spin-polarized after passing through an adsorbed dsDNA monolayer 

(8). Subsequent conductive AFM measurements showed that the resistance of spin-

polarized currents traveling through a thin film of air-dry dsDNA depended on the ratio 

of spin up versus spin down electrons injected into the film (9). These observations 

mirror similar experiments that feature other chiral organic molecules within a thin film 

(10). Because organic molecules display small spin–orbit coupling that would otherwise 

preclude them from exhibiting spin-selective transport properties, this work has spawned 

much interest in chirality-induced spin selectivity (CISS) (11-13). Several theories have 
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been offered to account for this effect (14-17). One question of particular interest is 

whether CISS depends more on the isolated molecular chiral centers or the large-scale 

macromolecular structures within the films (15). 

Owing to its ability to undergo macromolecular conformational changes that 

affect the helical structure but not the local chirality of the sugar backbone, dsDNA in its 

native, hydrated state presents a unique opportunity to differentiate between the 

monomeric and macromolecular parameters of CISS. Of particular interest is the 

conformational switching between right-handed B-DNA and left-handed Z-DNA. At high 

salt concentrations, CG-repeat sequences in the right-handed B-form can flip into a left-

handed zigzag Z-form helix (18). Notably, both B-DNA and Z-DNA support efficient 

DNA CT (19). 

We have developed an electrochemical assay to investigate dsDNA-promoted 

CISS under fluid conditions. Following work by others (20), our study employs a nickel 

working electrode capped with a thin (∼10 nm) layer of gold (21). Thiol-modified DNA 

duplexes are then self-assembled onto these electrodes, and DNA-binding redox-active 

probes are added to the electrolyte solution. Magnetizing the nickel surface with a 

permanent neodymium magnet (0.66 T) generates a spin-polarized current when the 

potential is poised negative of the formal reduction potential of the DNA-bound probe 

molecules. The sign of the polarization can be switched by changing the direction of the 

magnetic field, but its magnitude remains the same. Integrating the Faradaic response of 

probe-molecule reduction using cyclic voltammetry gives the total number of redox 
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probes reduced, which can be used to quantify the yield of DNA CT under different 

experimental conditions. Importantly, the redox potentials of all of the probes lie well 

negative of the potential of zero charge of the working electrode (22). As a result, 

duplexes within the DNA film line up approximately normal to the gold surface with the 

magnetic field lines essentially collinear with the helical axes. 

Materials and Methods 

DNA Synthesis and purification. All materials for DNA synthesis were purchased from 

Glen Research. Oligonucleotides were synthesized on an Applied Biosystems 3400 DNA 

synthesizer using phosphoramidite chemistry on a controlled-pore glass support. The two 

strands of a duplex were synthesized separately, purified, stored frozen, and then 

annealed prior to electrochemical experiments. The 5’- end of one strand was modified 

with a C6 S-S phosphoramidite that is later reduced before use. The 5’- end of the 

complementary strand is either unmodified or modified with an NHS-Carboxy-dT 

phosphoramidite for later coupling with Nile blue. High performance liquid 

chromatography (HPLC) was performed using a reverse-phase PLRP-S column (Agilent) 

using a gradient of acetonitrile and 50 mM ammonium acetate (5-35% acetonitrile over 

30 minutes). 

Unmodified DNA. DNA was synthesized using standard phosphoramidites (dA-CE, dT-

CE, dC-CE, dG-CE) starting from phosphoramidites attached to a solid support (3’-dA-

CPG, 3’-dT-CPG, 3’-dC-CPG, 3’-dG-CPG). After synthesis, the DNA was lyophilized 

overnight. It was then cleaved from the solid support by incubation at 60o C with 
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concentrated (28-30%) NH4OH for 12 hours, filtered using CoStar columns, and then 

dried. The dried DNA film was resuspended in phosphate buffer (5 mM phosphate, pH 7, 

50 mM NaCl) and HPLC-purified. The DMT (4,4’-dimethoxytrityl) group protecting the 

5’- end was then removed by incubation with 80% acetic acid for 45 minutes. The 

reaction mixture was dried and resuspended in phosphate buffer. The DNA was isolated 

using HPLC. The purified oligonucleotide was desalted using ethanol precipitation, dried, 

and the mass confirmed with Matrix-assisted laser desorption/ionization- time of flight 

mass spectrometry (MALDI-TOF). Unmodified oligonucleotides were then stored at        

-20oC in phosphate buffer until annealing with their complementary strand. 

Thiolated DNA. DNA was synthesized using standard phosphoramidites (dA-CE, dT-CE, 

dC-CE, dG-CE) and reagents, with the exception of a C6 S-S phosphoramidite that was 

attached to the 5’- end. After synthesis, the DNA was lyophilized overnight. It was then 

cleaved from the solid support by incubation at 60o C with concentrated (28-30%) 

NH4OH for 12 hours, filtered using CoStar columns, then dried. The dried DNA film was 

resuspended in phosphate buffer (5 mM phosphate, pH 7, 50 mM NaCl) and HPLC-

purified. The DMT (4,4’-dimethoxytrityl) group protecting the 5’- end was then removed 

by incubation with 80% acetic acid for 45 minutes. The reaction mixture was dried and 

resuspended in phosphate buffer. The DNA was isolated using HPLC. The purified 

oligonuceotide was desalted using ethanol precipitation, dried, and the mass was 

confirmed with Matrix-assisted laser desorption/ionization- time of flight mass 

spectrometry (MALDI-TOF). Within one week of annealing, the dithiolated DNA was 

reduced by resuspending in 50 mM Tris-HCl, pH 8.4, 50 mM NaCl, 100 mM 
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dithiothreitol (Sigma) for 2 hours. The reduced thiol-modified DNA was then purified by 

size exclusion chromatography (Nap5 Sephadex, G-25, GE Healthcare) with phosphate 

buffer as the eluent and subsequently purified using HPLC.   

Covalent Coupling of Nile Blue to DNA. DNA was synthesized using ultramild 

procedures from Glen Research, which mainly involve using different phosphoramidites, 

Cap A, and bead cleavage reagents to prevent degradation of the NHS-Deoxy-dT 

phosphoramidite (24). Phophoramidites compatible with ultramild synthesis (dT-CE, 

Pac-dA-CE, Ac-dC-CE, and iPr-Pac-dG-CE phosphoramidites) were used as well as 

ultramild Cap A (5% phenoxyacetic anhydride in THF/Pyridine). An NHS-Deoxy-dT 

phosphoramidite was attached to the 5’- end. After synthesis, the DNA was dried 

overnight in a lyophilizer. Nile blue perchlorate (Sigma) was then dissolved (15 mg/ml) 

in anhydrous N,N-dimethylformamide and activated with 10% v/v DIEA (N,N-

Diisopropylethylamine). This Nile blue solution was then incubated with the DNA 

overnight with gentle shaking. At least 18 hours later, the DNA solid support beads were 

rinsed with N,N-dimethylformamide and then dichloromethane. The DNA was then 

cleaved from the solid support by incubating with 0.05 M potassium carbonate in 

methanol for 4 hours at ambient temperature. The DNA was then dried, resuspended in 

phosphate buffer, and the oligonucleotide isolated with HPLC. The purified 

oligonucleotide was desalted using ethanol precipitation, dried, and the mass confirmed 

with MALDI-TOF. Nile blue-modified strands were then stored in the dark at -20oC in 

phosphate buffer until annealing with their complementary strand. 
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Synthesis of 3’-Dabcyl-DNA. DNA was synthesized using standard phosphoramidites and 

reagents, with the exception of 3’-Dabcyl modified controlled pore glass (CPG) beads. 

After synthesis, the DNA was lyophilized overnight. It was then cleaved from the solid 

support by incubation at ambient temperature with concentrated (28-30%) NH4OH for 2 

hours, spin filtered to remove the solid support beads, and then dried. The oligonucleotide 

was resuspended in phosphate buffer and HPLC-purified. The DMT (4,4’-

dimethoxytrityl) group protecting the 5’- end was then removed by incubation with 80% 

acetic acid for 45 minutes, dried, resuspended in phosphate buffer, and re-purified using 

HPLC. The purified strand was desalted using ethanol precipitation, dried, and the mass 

was confirmed with MALDI-TOF. 

Annealing Duplex DNA. Duplex DNA for electrochemistry was prepared by first 

quantifying the complementary strands with UV-Visible spectroscopy, and then mixing 

equimolar (50 µM) complementary strands in 200 µl phosphate buffer. The DNA 

solution was then deoxygenated by bubbling argon for at least 5 minutes per ml. Duplex 

DNA was then annealed on a thermocycler (Beckman Instruments) by initial heating to 

90oC followed by slow cooling over 90 minutes.  

  



27 

 

 

DNA Sequences: 

CG-repeat 
3’-GCG CGC GCG CGC GCG C-5’ 
     HS-C6- 5’-CGC GCG CGC GCG CGC G-3’ 
 
CmG-repeat 
3’-GCmG CmGCm GCmG CmGCm GCmG Cm 
     HS-C6- 5’-CmGCm GCmG CmGCm GCmG CmGCm G-3’ 
 
16bp DNA   
3’- TGC AGA GTT GAG TGC A-5’ 
     HS-C6- 5’-ACG TCT CAA CTC ACG T-3’ 
  
30bp DNA (well-matched)   
3’-AGA GTT CTT AGC CGT AAT CGA GTT GAC AGT-5’ 
    HS- C6- 5’- TCT CAA GAA TCG GCA TTA GCT CAA CTG TCA-3’ 
 
30bp DNA (C:A mismatch)   
3’-AGA GTC CTT AGC CGT AAT CGA GTT GAC AGT-5’ 
    HS- C6- 5’- TCT CAA GAA TCG GCA TTA GCT CAA CTG TCA-3’ 
 
17 bp NB (Well matched) 
3’-CGA GTC ATG CTG CAG CT-5’-NB  
      HS-C6-5’-GCT CAG TAC GAC GTC GA-3’ 
 
17 bp NB (C:A mismatch) 
3’-CGA GTC ATG CTG CAG CT-5’-NB  
      HS-C6-5’-GCT CAA TAC GAC GTC GA-3’ 
 
29 bp NB 
3’-CAC CGT CCA  GTC AGT ACA TAT GAC GTG AT-5’-NB 
      HS-C6-5’-GTG GCA GGT CAG TCA TGT ATA CTG CAC TA-3’ 
 
43 bp NB  
3’-CGT CAT CCA  CTT  AGC ACC GTC CAG TCA GTA CAT ATG ACT TGA T-5’-NB 
      HS-C6-5’-GCA GTA GGT GAA TCG TGG CAG GTC AGT CAT GTA TAC TGA ACT A-3’ 
  
60 bp NB 
3’-CAA GTA CTG TAT GCA TGC GTC ATC CAC  TTA GCA CCG TCC AGT  CAG TAC ATA TGA 
CTT GAT-5’-NB 
      HS-C6-5’-GTT CAT GAC ATA CGT ACG CAG TAG GTG AAT CGT GGC AGG TCA GTC ATG 
TAT ACT GAA CTA-3’ 
 
29 bp Dabcyl 
        DAB-3’-CAC CGT CCA  GTC AGT ACA TAT GAC GTG AT-5’ 
     HS-C6-5’-GTG GCA GGT  CAG TCA TGT ATA CTG CAC TA-3’ 
 
The above sequences use the following abbreviations for modifications:  
DAB = Dabcyl; NB = Nile Blue; HS-C6 = hexanethiol linker; Cm = 5-methyl-cytosine 
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Electrode Fabrication 

Single electrode surface fabrication was carried out at UCLA and received as a gift from 

Paul Weiss and John Abendroth following the general protocol of R. Naaman et al (20). 

P-type oxidized silicon wafers were coated with 25 nm titanium as an adhesive layer, 

following deposition with 200 nm nickel then 10 nm gold. The surfaces were then 

cleaved into 1 cm x 1.5 cm rectangles and used following the preparation below (for a 

total 1 cm2 exposed surface area for experiments following device assembly).  

Multiplexed electrode surfaces were fabricated following a modified version of a 

published protocol (24) using the gold-capped nickel as the electrode material. In brief, 

one millimeter thick Si wafers with a 10 000 Å thick oxide layer were purchased from 

Silicon Quest. First, wafers were cleaned thoroughly in 1165 Remover (Microchem) and 

vapor primed with hexamethyldisilizane (HMDS). SPR 220 3.0 photoresist (Microchem) 

was spin-cast at 4000 rpm and baked. The photoresist was patterned with a Karl Suss 

MA6 contact aligner and a chrome photomask. Following postexposure baking, wafers 

were developed in AZ 300 MIF developer for 1 min and rinsed thoroughly with 

deionized water. A 15 Å Ti adhesion layer, a 1000 Å Ni layer, and a 100 Å  Au layer 

were deposited on the chips with a CHA Mark 50 electron beam evaporator. Wafers were 

then immersed in 1165 Remover overnight and sonicated as needed to complete metal 

lift-off. Subsequently, the wafers were thoroughly baked and cleaned by UV ozone 

treatment. SU-8 2002 (Microchem) was spin-cast at 3000 rpm, baked, and photopatterned 

as above. Wafers were developed in SU-8 Developer (Microchem) for 1 min and baked 
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for a permanent set of the photoresist. The wafers were subsequently diced into 1-in. by 

1-in. chips and used for electrochemistry experiments. 

DNA-modified electrode preparation 

Gold-capped nickel surfaces or multiplexed chips are gently cleaned by rinsing with 

ultrapure water, acetone, isopropanol, and finally a second rinse with ultrapure water 

before drying with argon. They are then cleaned with a UVO Cleaner Model 42 (Jelight 

Co.) for 20 minutes. Immediately after cleaning the surface, a plastic clamp and rubber 

(BunaN) gasket were affixed to the surface to create a well for liquid and either 50 μM 

duplex DNA, single stranded DNA, or no DNA in phosphate buffer (pH 7, 5 mM 

phosphate, 50 mM NaCl, 100 mM MgCl2) to make densely packed films.  The DNA was 

incubated on the surface for 18-24 hours. Once the DNA is on the surface, it cannot be 

dried without compromising the structure and therefore the measured properties of the 

film. The solution was then exchanged 5x with 1 μM mercaptohexanol in phosphate 

buffer (pH 7, 5 mM phosphate, 50 mM NaCl, 5% glycerol) and incubated for 45 minutes. 

Lastly the surface was rinsed at least 5x with either phosphate buffer (pH 7, 5 mM 

phosphate, 50 mM NaCl) for most experiments or tris buffer (pH 7.6, 10 mM Tris, 100 

mM KCl, 2.5 mM MgCl2, 1 mM CaCl2) for experiments using dabcyl, and 

electrochemical experiments were performed immediately afterwards. 
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Electrochemical measurements 

The central well around the electrode surface created by the clamp was filled with one of 

three buffers prior to electrochemical measurements: a phosphate buffer with MgCl2 (pH 

7, 5 mM phosphate, 50 mM NaCl, 10 mM MgCl2), a phosphate buffer without MgCl2 

(pH 7, 5 mM phosphate, 50 mM NaCl), and a tris buffer (pH 7.6, 10 mM Tris, 100 mM 

KCl, 2.5 mM MgCl2, 1 mM CaCl2). The phosphate buffer was used for all experiments, 

except those containing dabcyl. The phosphate buffer without MgCl2 was only used to 

collect data with experiments comparing methylated and unmethylated dsDNA. The tris 

buffer is necessary for both the reduction and oxidation of dabcyl to occur within the 

potential range that we can scan. Our experiments did not show a statistically significant 

difference in the magnitude of spin selectivity when comparing DNA sequences of the 

same length in the different buffers, except in the cases where the increased ionic strength 

helped prevent electrostatic binding of MB to the phosphate backbone. An AgCl/Ag 

reference electrode (Cypress) was coated with a solidified mixture of 1% agarose and 3M 

NaCl in water inside a long, thin pipette tip. The tip was cut so that the salt bridge could 

connect the electrode to the buffer from the top of the well. A platinum wire used as an 

auxiliary electrode was also submerged in the buffer from the top of the well. The 

working electrode contacted a dry part of unmodified gold surface. A grounding wire was 

connected to the metallic base of a ring stand. A CH1620D Electrochemical Analyzer 

(CH Instruments) was used to control the electrochemical experiments.  
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Magnetic field experiments were conducted using a 6619 Guass surface strength 

magnetic field neodymium magnet (K&J Magnetics). Alligator clips were replaced with 

nonmagnetic stainless steel to minimize magnetic interference. All other parts of the 

assembly were created using plastic to prevent extraneous objects the magnetic field 

could influence. Additionally, the strong magnet was waved near the potentiostat during 

operation, with no obvious change in signal that was apparent, to ensure that the magnet 

was not interfering with the operation of the potentiostat. Each experiment that was 

conducted for magnetic field pointing up vs down were done by comparing the same 

surface in the same solution under these varying field directions in order to minimize 

variability caused by other factors. 

Noncovalent Methylene Blue. Solutions of 1μM or 10μM methylene blue were made in 

phosphate buffer (pH 7, 5 mM phosphate, 50 mM NaCl, 10 mM MgCl2). Cyclic 

voltammograms were collected using a scan rate of 0.1, 0.5, 1, 5, 10, and 20 V/s, which 

scanned from 0V to -0.55V (vs AgCl/Ag) then back to 0V at least 6 times consecutively 

for each experiment. The magnetic field direction was then switched, scanned, and 

switched again multiple times.  The first reductive and oxidative sweeps were compared 

because subsequent scans see a diminishing effect. This attenuation is restored upon 

waiting for approximately 30 seconds between scans. 

Ruthenium Hexammine. A concentration of 10 μM Ru(NH3)6 3+ was added to the 

phosphate buffer. Cyclic voltammograms were collected at a scan rate of 0.1 V/s, which 

scanned from 0V to -0.4V (vs AgCl/Ag) and then back to 0V at least 6 times 
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consecutively for each experiment. The magnetic field direction was then switched, 

scanned, and switched again multiple times. The first reductive and oxidative sweeps 

were compared. 

B-to-Z DNA Experiments. Experiments were conducted with solutions of 1 μM 

methylene blue in phosphate buffer with and without 10 mM MgCl2. Cyclic 

voltammograms were collected at a scan rate of 0.1 V/s, which scanned from 0V to -0.4V 

(vs AgCl/Ag) then back to 0V at least 6 times consecutively for each experiment. The 

magnetic field direction was then switched, scanned, and switched again at least 4 times. 

Following these scans, phosphate buffer with 10 mM MgCl2 was placed in the well by 

exchanging the solution 5 times. The surfaces were scanned in a similar manner as 

before, and then the solution was again exchanged 5 times to replace it with a phosphate 

buffer without magnesium. It was then scanned similarly. 

Covalent Nile Blue. Experiments were conducted in phosphate buffer with 4 different 

lengths of DNA, each with Nile blue covalently tethered at the 5’- end away from the 

surface. Cyclic voltammograms were collected using a scan rate of 0.1, 0.5, 1, 5, 10, and 

20 V/s, which scanned from 0V to -0.55V then back to 0V 20 times consecutively for 

each experiment. The magnetic field direction was then switched, scanned, and switched 

again multiple times.  The first reductive and oxidative sweeps were compared. 

3’-Dabcyl. Experiments were conducted in tris buffer (pH 7.6, 10 mM Tris, 100 mM 

KCl, 2.5 mM MgCl2, 1 mM CaCl2) with 1μM methylene blue. Due to the relatively slow 

rate of redox chemistry with azobenzene, cyclic voltammograms were collected using a 
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scan rate of 10 mV/s so the peak splitting allowed for both the reductive and oxidative 

peaks to lie within the measurable potential range. The experiments scanned from 0V to -

0.6V (vs AgCl/Ag) then to 0.5V and repeated scanning between 0.5V and -0.6V 20 times 

consecutively for each experiment. The magnetic field direction was then switched, 

scanned, and switched again multiple times.  The first reductive and oxidative sweeps 

were compared. 

Calculating the surface concentration of DNA 

Surface concentration of DNA was quantified based on the total area of the reductive 

signal generated from a cyclic voltammogram of electrostatic binding of Ru(NH3)6 3+ to 

the phosphate backbone of dsDNA. This was done under saturation conditions (10 μM 

Ru(NH3)6 3+). The following equation was used to relate the reductive signal (QRu) to the 

surface concentration of DNA (ΓDNA): 

 

In this equation, A is the electrode area in cm2, F is the Faraday constant, n is the number 

of electrons per reduction event, z is the charge on the Ru(NH3)6 3+, and m is the number 

of base pairs in the duplex DNA. The surface concentration of dilute DNA films was 8±1 

pm/cm2 and dense DNA films was 40±3 pm/cm2.  
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Circular Dichroism Spectroscopy 

An Aviv 62A DS spectropolarimeter was used to collect circular dichroism (CD) spectra. 

Data were obtained from samples containing 3 μM d(mCG)8 or 3 μM d(CG)8 dsDNA in 

phosphate buffer (5 mM phosphate, 50 mM NaCl, pH7) using a 1.0 mm path length cell 

(Figure 2.1). Scans were conducted with samples that were incubated in the presence or 

absence of 10 mM MgCl2. Data presented in figures represent the average of three scans. 

The B-Z transformation is very clearly seen in the CD spectra of the methylated DNA. 

Upon addition of magnesium ion, there is a large decrease in magnitude of ellipticity at 

254 nm and 293 nm with isochromism at 277 nm, which is characteristic of the B-Z 

transformation. The unmethylated DNA does not show any change in CD spectrum for 

conditions with and without magnesium ion, which confirms that it remains in the B-

form. 



35 

 

 

 

 

Figure 2.1 Circular dichroism spectra of d(CG)8 DNA. [A] unmethylated d(CG)8 and [B] 
methylated d(mCG)8 in phosphate buffer with [blue] and without [red] MgCl2. 
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Spin Polarization Calculations 

The spin polarization (S) is defined as: 

         (1.1) 

in which I+ and I- are the intensities of the signals corresponding to the spin oriented 

parallel and antiparallel to the electrons’ velocity (12). The spin polarization for electrons 

travelling through dsDNA is calculated assuming that the injected spin polarization is 

23% which, using equation 1.1, results in the total amount of each spin injected assumed 

to be 0.615 and 0.385, with the majority spin depending on the magnetization direction 

(20). The amount of charge transferred to the probe (Q), which is determined by 

integrating the current under the reductive or oxidative peak in the cyclic 

voltammograms, can be related to the injected spin polarization by the following 

equation:  

        (1.2) 

where η+ and η- are the yield for the amount of injected spin oriented parallel and 

antiparallel, respectively, to the velocity of the electrons that reduce the probe compared 

to the total amount injected. Therefore the amount of probe reduced can be related as Q = 

0.615 (YieldUp) + 0.385 (YieldDown) for one magnetization and Q = 0.615 (YieldDown) + 

0.385 (YieldUp) for the other. 
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Modifying equation 1.1 to solve for the spin polarization through dsDNA gives equation 

1.3. 

         (1.3) 

Solving for η+ and η- and placing them into equation 1.3 gives the spin polarization of 

electrons moving through dsDNA (SDNA).  

Results 

Figure 2.2 shows the results obtained at a densely packed dsDNA film (16 bp 

duplexes, ∼40 pmol/cm2) using methylene blue (MB) as the redox probe. We have 

previously shown that MB binds reversibly to DNA monolayers and undergoes a proton-

coupled, DNA-mediated 2e–reduction to leucomethylene blue (LB) at −220 mV versus 

AgCl/Ag.(23) As can be seen in Figure 2.2, the yield of MB undergoing electrochemical 

reduction varies regularly with the orientation of the underlying magnetic field, “up” 

versus “down”. The change in yield measured by cyclic voltammetry is not large, but it is 

highly reproducible. This effect is fully reversible and can be switched repeatedly by 

simply flipping over the permanent magnet beneath the nickel surface. The ratio of the 

integrated reduction peaks of MB varies by 10.9% ± 0.6% upon switching the magnetic 

field direction (up/down). Increasing the length of the individual DNA helices in these 

films to 30 bp consistently results in a larger ratio, 15 ± 1%.  
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Figure 2.2 Cyclic voltammetry of electrodes modified with 16 bp dsDNA. A. Illustration of the 
dsDNA modified electrodes with 1 μM MB (left) or 10 μM Ru(NH3)6

3+ (right). MB intercalates 
into dsDNA and CT is through the helix, while Ru(NH3)6

3+ binds electrostatically to the phosphate 
backbone and electron transfer is directly from the surface. B. For intercalated MB (above) and 
electrostatically bound Ru(NH3)6

3+ (below) reduction yield in aqeuous buffer (pH 7, 5 mM 
phosphate, 50 mM NaCl, and 10 mM MgCl2) upon switching the magnetic field direction. The 
change in yield is highly reproducible for at least 10 changes in magnetic field direction with the 
same surface. Data were normalized to the first scan with the magnetic field pointing up. The 
experiment was repeated 3 times with independently created surfaces and the standard error is 
plotted. C. Representative cyclic voltammograms scanning methylene blue (above) or Ru(NH3)6

3+ 
(below) with the magnet up (red, solid) and magnet down (blue, dotted). D. Difference plot for the 
reduction of methylene blue (above) or Ru(NH3)6

3+ (below) showing the current when the magnetic 
field is pointing up minus the current when the magnetic field pointing down. The Ru(NH3)6

3+ 
experiments were typically done following MB experiments on the same surface. 
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Importantly, the difference in reduction yield is observed regardless of which direction 

the nickel is magnetized initially, and the difference persists even when taking multiple 

scans. There is also no discernible change in the magnetic field effect upon varying the 

scan rate between 10 mV/s and 20 V/s (21). 

The magnetic field dependence of DNA CT was also examined using Nile blue 

(NB) as a redox probe. NB is covalently bound to DNA, and conjugated through a DNA 

base, and has been used extensively as a covalent redox reporter (Figure 2.3) (24-

26). Self-assembled monolayers of 17 bp thiolated dsDNA with tethered NB (∼40 

pmol/cm2) show a change in the integrated reduction peaks of 7 ± 1% upon switching the 

magnetic field direction. The magnitude of this effect increases with increasing length of 

dsDNA to 12 ± 2% for 29bp, 16 ± 4% for 43bp, and 29 ± 6% for 60bp oligomers (Figure 

2.4). These data with NB reveal a clear dependence of the yield of DNA CT on magnetic 

field orientation. 

There is no measurable effect on the charge-transfer rates with a change in 

magnetic field direction. To test for effects of the magnetic field on the CT rate, we 

varied the scan rate from 50 mV/s to 20 V/s (Figure 2.5); we see no difference in the 

cathodic/anodic peak splittings when the magnetic field direction is switched, suggesting 

that there is no measurable effect on the charge transfer rates with a change in magnetic 

field direction. We stress, however, that previous work has shown that in these 

electrochemical experiments the DNA CT rates are limited by tunneling through the 

alkanethiol linker, not transport through the DNA, so small changes in the inherent  
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Figure 2.3 Representative cyclic voltammetry data for various assemblies of DNA-modified 
electrodes. 29 bp dsDNA was tethered to a gold-capped nickel surface with an alkanethiol linker. 
In all cases the data were obtained at 100 mV/s scan rate in phosphate buffer (5 mM NaH2PO4, 50 
mM NaCl, pH 7.0). A permanent neodymium magnet with surface field strength of 0.66T was 
placed 2 mm underneath the surface and flipped to give a magnetic field pointing towards (up, red) 
or away from (down, blue) the surface. Shown (center) are cyclic voltammograms for 1 μM MB 
with dsDNA linked to a 10 nm thick gold cap (top left), covalent NB conjugated to dsDNA linked 
to a 10 nm thick gold cap (top right), 1 μM MB in contact with single stranded DNA adsorbed to a 
10 nm thick gold cap (center left), 10 μM MB in contact with a 10 nm thick gold cap without DNA 
(center right),  1 μM MB with dsDNA linked to a 35 nm thick gold cap (bottom left), 10 μM 
Ru(NH3)6

3+ with dsDNA linked to a 10 nm thick gold cap (bottom right). Insets display the full 
cyclic voltammogram, while the larger plot displayed is centered around the reduction peak of the 
redox probe. Each experiment was conducted a minimum of 3 times per assembly, with at least 3 
completely independent assemblies. Below are illustrations of the alkanethiol linker, the MB redox 
probe, and the NB redox probe. 
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Figure 2.4 Plot of the magnetic field effect observed for DNA with covalently tethered Nile blue 
at different lengths scanned at 20 V/s in phosphate buffer. Each error bar represents the standard 
error from at least 3 separate surfaces. ANOVA shows a statistically significant difference for the 
effect being length dependent with p = 0.017. 
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Figure 2.5 Scan Rate dependence of covalently tethered Nile blue reduction through 
duplex DNA. 
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tunneling efficiencies of oppositely polarized currents through the π-stack would not be 

accessible electrochemically (27).   

Our data lead to the calculation that electrons traveling through a densely packed 

monolayer of 16 bp dsDNA to MB must be at least 22.5±1.2% spin polarized at ambient 

temperature. Charge transport through 60 bp dsDNA to a covalently tethered NB probe 

must be at least 55±10% spin polarized. It should be evident that decreasing the initial 

spin polarization will increase the calculated spin polarization through dsDNA; therefore, 

these calculated values can be considered lower estimates. If the nickel injected 13% spin 

polarized electrons, then the electrons passing through 60bp dsDNA would be 100% spin 

polarized, which could be treated as a theoretical maximum. 

Given the range of possible etiologies for the observed magnetic field effect on 

the electrochemistry of MB and NB, we carried out a series of control experiments 

(Figure 2.3). Monolayers in which MB is adsorbed directly onto the gold-capped nickel 

electrodes in the absence of DNA show no differences in the reduction yield of MB upon 

switching the orientation of the magnetic field. Similarly, there is no magnetic field effect 

on the reduction of MB bound electrostatically to surfaces coated with single stranded 

DNA. Moreover, capping the nickel electrodes with a thicker (35 nm) gold layer 

eliminates the magnetic field effects, even for electrodes modified with dsDNA. 

Nonintercalative redox probes were also examined for comparison. 

Ru(NH3)63+ binds electrostatically to the phosphate backbone of DNA and undergoes 

rapid electrochemical reduction to Ru(NH3)62+ at dsDNA-modified electrodes 
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(28). Significantly, we find no magnetic field dependence of the Ru(NH3)63+/2+ couple, 

despite its proximity to the chiral macromolecule and likely helical path (Figure 2.2). We 

also prepared dsDNA with a covalently bound diazobenzene probe (dabcyl) tethered to 

the 3′-phosphate near the electrode surface. This arrangement allowed us to monitor 

simultaneously the direct electrode reduction of dabcyl, which contacts the electrode 

surface, and the DNA-mediated reduction of MB. There is a significant difference in the 

up/down yield of MB reduction, but no measurable difference for the dabcyl signal 

(Figure 2.6). 

We examined the effect of an intervening single base mismatch in the film 

(Figure 2.7). A mismatch incorporated into dsDNA between the surface and the redox 

probe decreases the yield of CT to either MB or NB, which shows that the DNA duplex 

mediates the CT (24); charge migrates through the DNA base pair stack. Interestingly, 

the spin selectivity measured through a mismatch mirrors the magnitude of the effect 

seen in well-matched duplexes of similar length. This result suggests that when charge is 

successfully transported through dsDNA with a mismatch, it travels through the entire 

dsDNA to the probe; the attenuation in CT yield with a mismatch leads to an interruption 

of some of that CT, but has no effect on spin selectivity. 

Combined, these results indicate that (i) spin polarized currents induced by the 

underlying magnetic field are needed for spin selectivity in the DNA electrochemistry, 

(ii) spin selectivity requires double stranded DNA, and (iii) the magnetic field effects are 

observed only with probes that undergo CT reactions mediated by the DNA duplex. 



45 

 

 

 

Figure 2.6. Cyclic voltammetry of 29bp dsDNA with covalently tethered dabcyl and noncovalently 
intercalated MB. (Left) Cartoon representing the DNA tethered to the surface and the paths the 
electrons take from the surface to their respective redox probes. (Center Left) Illustration of dabcyl 
molecule. (Center Right) Representative cyclic voltammogram of DNA with 1 μM MB with the 
magnetic field pointing towards the surface (red, up) or away from the surface (blue, down). The 
insets show the dabcyl oxidation (green border) and methylene blue reduction (blue border). The 
signal centered around -0.5V corresponds to the reduction of dabcyl, while its oxidation appears at 
0.3 V.  Note that scans were carried out at 10 mV/s given the slow proton-coupled redox reaction. 
(Right) The difference in cyclic voltammetry data for the reduction of MB (blue), and the oxidation 
of dabcyl (green) between the two magnetic field directions. 
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Figure 2.7. Summary of cyclic voltammetry data for 17bp duplex DNA with a C:A mismatch 6 
nucleotides from the surface. A, A mismatch (red) has decreased total yield of NB reduction 
when compared to a well-matched duplex (blue) . B, The spin selectivity for probe reduction is 
the same for DNA with (blue) and without (red) a C:A mismatch. 
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If the helical structure of dsDNA is responsible for the apparent CISS behavior in 

these films, it follows that reversing the chirality of the helices would switch the sense of 

the magnetic field effect. Indeed, this is precisely what we find. Both methylated and 

unmethylated monolayers of 16bp duplexes featuring d(CG)8 repeats were self-assembled 

onto gold-capped nickel. Circular dichroism confirms that DNA oligomers containing 5-

methylcytosine, d(mCG)8, undergo a B-to-Z transition in the presence of 10 mM MgCl2, 

while the unmethylated analog, d(CG)8, remains in B-form (Figure 2.1); methylated Z-

DNA reverts back to B-DNA upon rinsing away the MgCl2 (18, 29, 30). Previous work 

has shown that MB intercalates into both B- and Z-DNA and undergoes DNA-mediated 

reduction in the presence of 10 mM MgCl2 (19). 

We carried out the electrochemistry to examine B- and Z-form helices on a 

multiplexed chip (24) consisting of 16 separate gold-capped nickel regions that allowed 

for the simultaneous comparison of four distinct monolayers under the identical magnetic 

field (Figure 2.8). In the absence of MgCl2, both methylated and unmethylated DNA 

films show the same favored magnetization direction for a higher yield of MB reduction 

(up/down ratio = 18 ± 3%). Upon addition of 10 mM MgCl2, the unmethylated films 

show no change in behavior, but the methylated films switch which magnetic field 

direction promotes the higher yield of MB reduction (up/down ratio = −9 ± 2%). 

Replacing the buffer with one that lacks MgCl2 reverts the structure from Z- to B-form 

and restores the original characteristics, yielding again an up/down ratio of 18 ± 2% for 

both films. 
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Figure 2.8 Switching of methylated and unmethylated dsDNA measured on a single multiplexed 
chip. A. A chip with 16 separate gold-capped nickel regions allowed for the comparison of four 
distinct monolayers made from 16 and 30 bp methylated d(mCG)15 and unmethylated d(CG)15 
dsDNA. The data were obtained at 100 mV/s scan rate with 1 μM MB in phosphate buffer (5 mM 
NaH2PO4, 50 mM NaCl, pH 7.0). B. Summary of cyclic voltammetry data for the two 
magnetizations were collected for all four quadrants with no MgCl2, then with 10 mM MgCl2, then 
once washing away the MgCl2. Each bar represents a minimum of 4 separate electrode surfaces 
with at least 36 separate scans. The standard error is used to represent deviations from the mean. 
C. Representative example of 30 bp (top) methylated d(mCG)15 and (bottom) unmethylated d(CG)15 
DNA either with 10 mM MgCl2 (right) or with no MgCl2 (left) from two electrodes on the same 
surface. Data are plotted as the difference in current for a reductive sweep when the magnetic field 
is pointing up minus the current when the magnetic field pointing down. 
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Table 2.1 Summary of all spin polarization data. Data shown are the average amount of charge 
up/down and its corresponding standard error (SE), the calculated spin polarization and its 
corresponding SE, and the number of independent sets of scans, N. Data were collected using 
cyclic voltammetry as described above. Spin polarization calculations were performed using 
equations 1.1-1.3 described above. 
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In addition to functioning as a magnetic field diode, switching between B- and Z-

form dsDNA gives a difference in the magnitude of DNA CISS; normalized to the yield 

of electrochemically active MB and with the assumption that 10 mM MgCl2 results in 

complete conversion of surface-bound DNA to Z-form, B-DNA appears to have an 

approximately 50% larger spin selectivity than Z-DNA. This change in magnitude of spin 

selectivity correlates well with the change in pitch between B-DNA and Z-DNA (3.32 

and 4.56 nm respectively) but may result from other differences between the two forms 

(such as the greater π-stacking in the B- versus Z-form) (18, 29, 30). These data suggest 

that the charge is moving through the duplex along a helical path, because a charge 

moving in a fully delocalized π-stacked column would not be able to interact with the 

handedness of the macromolecule; helical transport among delocalized domains of a few 

base pairs is possible. 

The CISS measured in these experiments is significantly larger than expected for 

molecules that lack large spin–orbit coupling. Calculating the energy difference between 

the two electron spins at the surface of fully magnetized nickel (∼0.6 T) yields a gap 

(μBgB ≈ 1 cm–1) far lower than kbT at ambient temperature. Several theoretical models 

have been proffered to rationalize the large CISS exhibited by chiral organic films (16, 

17, 31-35). Aspects of each of these models can be used to understand our data. In 

addition, it is worthwhile to consider other factors not currently included in these models 

that are important in the context of DNA CT, such as the large polarizability of the π-

stack in dsDNA(36) or the delocalization of domains across multiple adjacent 

nucleotides(37, 38). 
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Summary and Conclusions 

Our experiments thus demonstrate that magnetic fields can affect the flow of 

electrons through native, hydrated dsDNA. Significantly, our data show that 

electrochemically generated DNA CISS is observed only at films containing duplex DNA 

and with redox probes intercalated into the π-stack that undergo DNA-mediated CT. 

Magnetic field effects are not observed with redox reporters bound electrostatically to the 

DNA duplex nor with tethered reporters that contact the surface directly. It is not simply 

the electrostatic helical field that is responsible for the spin selectivity. Nor is it simply 

the chiral centers on the DNA; redox reporters bound to single stranded DNA do not 

show magnetic field effects. As with DNA CT, the extended π-stack appears to play a 

crucial role: reversing the handedness of the helix in the films generates a diode-like spin-

filtering response. It is interesting to consider how conformational changes such as that 

between B- and Z-DNA might be utilized as a diode in organic spintronics, indeed, how 

this spin filtering might be applied in practical devices. Finally, it is intriguing to consider 

whether Nature exploits this helix-dependent spin selectivity of DNA in some context. 
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Chapter 3 

 

 

A Compass at weak Magnetic Fields using Thymine 
Dimer Repair by Photolyase 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

T.J. Zwang designed and performed all experiments except for protein purification and 

SQUID measurements. 
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Introduction 

Migratory birds and other animals can detect Earth’s magnetic field as a sensor 

for navigation, though the mechanisms underlying this magnetic sensing are unclear (1). 

The two mechanisms proposed to explain the phenomenon of avian magnetoreception are 

not mutually exclusive and involve sensing using (i) magnetically sensitive radical pairs 

or (ii) magnetic iron-containing nanoparticles (2), but neither have been demonstrated. 

Photolyases are enzymes that repair UV-induced lesions and contain a highly conserved 

core structure that could be involved in such magnetosensitive radical pair chemistry. The 

conserved photolyase homology region contains a redox-active flavin adenine 

dinucleotide cofactor (FAD), which absorbs blue light, that can access lesions via a 

cavity in the center of a positively charged groove where DNA binds (3). Photoreduction 

of FAD to FADH- is mediated by three consecutive electron transfers along a conserved 

triad of tryptophan residues to give a flavosemiquinone radical (FAD•-) and a radical 

(TrpH*+) that has been shown through transient absorption spectroscopy to be sensitive 

to weak applied magnetic fields (in the range of 30-390 Gauss) that are still much 

stronger than the earth’s magnetic field (0.25-0.65 Gauss) (4). 

Here we explore how a magnetic field affects DNA repair by photolyase. We 

employ DNA-modified electrodes immersed in aqueous buffer to monitor photolyase 

from Escherichia coli with respect to binding and repair of its substrate, a cyclobutane 

pyrimidine dimer (CPD). CPD repair can be monitored electrically since the CPD lesion 

within a DNA duplex disrupts the internal stacking of the duplex DNA, thereby inhibiting 

efficient charge transfer through the DNA duplex between the electrode and the flavin 

cofactor (5). DNA-mediated charge transport (DNA CT) relies on charge moving through 
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the internal base pair stack of the DNA duplex (6). In this chemistry, the efficiency of 

DNA CT is extremely sensitive to disruptions in base stacking such as arise with an 

abasic site or lesion. CPD lesions form as a result of a photoinduced [2+2] cycloaddition 

between two adjacent pyrimidines, typically thymines, on the same DNA strand and 

significantly kink duplex DNA (5). E. coli photolyase repairs CPD lesions in a reductive 

catalytic cycle upon irradiation of the fully reduced flavin cofactor (FADH-) with blue 

light (7). Upon repair of the CPD by photolyase, DNA regains its well stacked structure 

and is able to support efficient DNA CT to the flavin cofactor (5). As a result, the repair 

of CPD lesions by photolyase is monitored as an increase in electrochemical response, 

because the repair directly improves the yield of DNA-mediated CT between the 

electrode and flavin.  

 

Materials and Methods 

DNA Synthesis 

All materials for DNA synthesis were purchased from Glen Research. Oligonucleotides 

were synthesized on an Applied Biosystems 3400 DNA synthesizer using 

phosphoramidite chemistry on a controlled-pore glass support. The two strands of a 

duplex are synthesized separately, purified, stored frozen, and then annealed prior to 

electrochemical experiments. The 5’- end of one strand is modified with a C6 S-S 

phosphoramidite that is later reduced before use. The 5’- end of the complementary 

strand is either unmodified or modified with an NHS-Carboxy-dT phosphoramidite for 

later coupling with Nile blue. High pressure liquid chromatography (HPLC) was 



58 

 

 

performed using a reverse-phase PLRP-S column (Agilent) using a gradient of 

acetonitrile and 50 mM ammonium acetate (5-15% ammonium acetate over 35 minutes). 

Unmodified DNA. DNA was synthesized using standard phosphoramidites and 

reagents. After synthesis, the DNA was lyophilized overnight. It was then cleaved from 

the solid support by incubation at 60o C with concentrated (28-30%) NH4OH for 12 

hours, filtered using CoStar columns, and then dried. The dried DNA film was 

resuspended in phosphate buffer (5 mM phosphate, pH 7, 50 mM NaCl) and HPLC-

purified. The DMT (4,4’-dimethoxytrityl) group protecting the 5’- end was then removed 

by incubation with 80% acetic acid for 45 minutes. The reaction mixture was dried and 

resuspended in phosphate buffer. The DNA was isolated using HPLC. The purified 

oligonucleotide was desalted using ethanol precipitation, dried, and the mass confirmed 

with Matrix-assisted laser desorption/ionization- time of flight mass spectrometry 

(MALDI-TOF). Unmodified oligonucleotides were then stored at -20oC in phosphate 

buffer until annealing with their complementary strand. 

Cyclobutane pyrimidine dimer generation. Single stranded DNA (1 ml of 100-200 

µM ) with a single TT, UU, TU, or UT was suspended in aqueous buffer containing 1 

mM acetophenone, 5 mM NaH2PO4, 50 mM NaCl, pH 7.5 and degassed with argon in a 

glass container. The container was sealed and irradiated with a solar simulator (Oriel 

instruments) or 302 nm UV light (spectroline transilluminator model TR-302) for 10 

minutes. Following irradiation the DNA was purified using high performance liquid 

chromatography (HPLC) using a reverse-phase PLRP-S column (Agilent) using a 

gradient of acetonitrile and 20 mM ammonium acetate (2-3% acetonitrile over 10 
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minutes, then 3-4% over the next 30 minutes) at 80oC and a flow rate of 0.8 ml/min to 

separate the CPD from undimerized ssDNA. Both 16 and 29 bp ssDNA show a 

separation with CPD compared to without a CPD of approximately 4 minutes with the 

CPD containing strand eluting first. 

Thiolated DNA. DNA was synthesized using standard phosphoramidites and 

reagents, with the exception of a C6 S-S phosphoramidite that was attached to the 5’- 

end. After synthesis, the DNA was lyophilized overnight. It was then cleaved from the 

solid support by incubation at 60o C with concentrated (28-30%) NH4OH for 12 hours, 

filtered using CoStar columns, then dried. The dried DNA film was resuspended in 

phosphate buffer (5 mM phosphate, pH 7, 50 mM NaCl) and HPLC-purified. The DMT 

(4,4’-dimethoxytrityl) group protecting the 5’- end was then removed by incubation with 

80% acetic acid for 45 minutes. The reaction mixture was dried and resuspended in 

phosphate buffer. The DNA was isolated using HPLC as described above. The purified 

oligonuceotide was desalted using ethanol precipitation, dried, and the mass confirmed 

with Matrix-assisted laser desorption/ionization- time of flight mass spectrometry 

(MALDI-TOF). Within one week of annealing, the dithiolated DNA was reduced by 

resuspending in 50 mM Tris-HCl, pH 8.4, 50 mM NaCl, 100 mM dithiothreitol (Sigma) 

for 2 hours. The reduced thiol-modified DNA was then purified by size exclusion 

chromatography (Nap5 Sephadex, G-25, GE Healthcare) with phosphate buffer as the 

eluent and subsequently purified using HPLC.   

Annealing Duplex DNA. Duplex DNA for electrochemistry was prepared by first 

quantifying the complementary strands with UV-Visible spectroscopy, and then mixing 



60 

 

 

equimolar (50 µM) complementary strands in 200 µl phosphate buffer. The DNA 

solution was then deoxygenated by bubbling argon for at least 5 minutes per ml. Duplex 

DNA was then annealed on a thermocycler (Beckman Instruments) by initial heating to 

90oC followed by slow cooling over 90 minutes.  

DNA Sequences: 

 

16 bp DNA (with or without UV generated dimer) 

 5’-ACG TGA GTT GAG ACG T-3’ 

 3’-TGC ACT CAA CTC TGC A-5’ - SH  

Thymine Dimer with CA mismatch near surface 

 5’-ACG TGA GTT GAA ACG T-3’ 

 3’-TGC ACT CAA CTC TGC A-5’ - SH  

 

29 bp DNA (with or without UV generated dimer) 

3’-ATC ACG TCA TAT GAA CTG ACT GGA CGG TG- 5’ -SH 

5’-TAG TGC AGT ATA CTT GAC TGA CCT GCC AC-3’ 

 

The above sequences use the following abbreviations for modifications:  

HS-C6 = hexanethiol linker; TT = Pyrimidine Dimer 

Photolyase Preparation 

 Escherichia coli photolyase (ecPL) wild type and mutants N378C, M345A, 

E274A, as well as truncated Arabidopsis Thaliana cryptochrome 1 (atCRY1ΔC) without 

its C-terminal domain were provided by Prof. Donging Zhong (Ohio State University). 

Proteins were received at 180-300 µM in a buffer containing 100 nM NaCl, 50 mM Tris-
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HCl at pH 7.5, 1 mM EDTA and 50% (v/v) glycerol. It is essential that these buffers do 

not contain dithiothretol or other sulfur compounds that are typically used to keep the 

proteins’ flavin reduced because they may disrupt thiolated monolayers used in 

electrochemistry. Due of this, the proteins were generally received with a partially or 

fully oxidized flavin that needed to be photoreduced for enzymatic activity.  

E. coli photolyase without the antenna cofactor was prepared as described 

previously (10, 17). The mutant plasmids were constructed using QuikChange II XL kit 

(Stratagene) based on the plasmid of wild-type enzyme. All mutated plasmids were 

sequenced to confirm the mutations. 

The preparation of MBP-tag fused AtCry1 with depletion of the C-terminal tail 

(AtCRY1-DC) was as described elsewhere with some modifications (18). The AtCRY1-

DC gene was cloned into the pMal-c2 vector (New England Biolabs) to obtain a construct 

that expresses AtCRY1-DC fused to the C-terminus of maltose binding protein (MBP). 

The MBP-tagged AtCRY1-DC was expressed in E. coli UNC523 and purified by affinity 

chromatography on amylose resin. 

All proteins were obtained with stoichiometric flavin cofactor after purification 

and exchanged to a buffer containing 50 mM Tris at pH 7.5, 100 mM NaCl,1 mM EDTA, 

and 50% (v/v) glycerol for further use. 

Before experiments 50 uM ecPL or atCRY1ΔC were placed in tris buffer (50 mM 

Tris-HCl, 50 mM KCl, 1 mM EDTA, 10% glycerol, pH 7.5) and irradiated with blue 

light (405 +/- 10 nm, <30 mW) from a diode laser pointer (Tmart) in an anaerobic 

chamber to photoreduce the flavin to its active form (Figure 3.1). All solutions containing 
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photolyase were degassed to remove oxygen and kept in an anaerobic chamber (95% N2, 

5% H2, <1 ppm O2) to prevent oxidation of the flavin. During experiments with 

photolyase the protein was kept under constant blue light irradiation. If the flavin was not 

fully photoreduced, or if oxygen was able to access the flavin and oxidize it, the oxidized 

flavin peak would appear in cyclic voltammetry experiments centered around -420 mV vs 

AgCl/Ag. Further irradiation with blue light in anaerobic conditions remove this peak. 

The presence of this peak did not appear to have a significant effect on measurements of 

total charge transferred at later time points when it was removed by reduction of the 

flavin with blue light. 
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Figure 3.1 Typical photoreduction measurement of WT photolyase by blue light blue 
light (405 +/- 10 nm, <30 mW) from a diode laser pointer. Photoreduction was carried 
out anaerobically and then transferred to a UV/Vis spectrophotometer in an air-tight 
cuvette. 
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Electrode Fabrication 

Multiplexed electrode surfaces were fabricated following the protocol outlined in 

chapter 2 except here the top of the electrode had a 1000 Å thick gold layer and there was 

no nickel layer (8). 

 

DNA-modified electrode preparation 

Multiplexed chips are gently cleaned by sonicating with acetone and then 

isopropanol before drying with argon. They are then cleaned with UV/Ozone for 20 

minutes. Immediately after cleaning the surface, a plastic clamp and rubber (BunaN) 

gasket are affixed to the surface to create a well for liquid and 50 μM duplex DNA in 

phosphate buffer (pH 7, 5 mM phosphate, 50 mM NaCl to make dsDNA films.  The 

dsDNA was incubated on the surface for 18-24 hours. Once the dsDNA is on the surface, 

it cannot be dried without compromising the structure and therefore the measured 

properties of the film. The solution was then exchanged 5x with 1 mM mercaptohexanol 

in phosphate buffer (pH 7, 5 mM phosphate, 50 mM NaCl, 5% glycerol) and incubated 

for 45 minutes. Lastly the surface was rinsed at least 5x with tris buffer (50 mM Tris-

HCl, 50 mM KCl, 1 mM EDTA, 10% glycerol, pH 7.5). 

 

Electrochemical measurements 

The central well around the electrode surface created by the clamp was filled with 

aqueous buffer containing 50 mM Tris-HCl, 50 mM KCl, 1 mM EDTA, 10% glycerol, 

pH 7.5. An AgCl/Ag reference electrode (Cypress) was coated with a solidified mixture 

of 1% agarose and 3M NaCl in water inside a long, thin pipette tip. The tip was cut so 
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that the salt bridge could connect the electrode to the buffer from the top of the well. A 

platinum wire used as an auxiliary electrode was also submerged in the buffer from the 

top of the well. The working electrode contacted a dry part of unmodified gold surface. A 

CH1620D Electrochemical Analyzer (CH Instruments) was used to control the 

electrochemical experiments.  

Magnetic field measurements 

Magnetic field experiments were conducted using 462 Gauss,  918 Gauss, 1803 

Gauss, and 6619 Guass surface strength magnetic field neodymium magnet (K&J 

Magnetics). Alligator clips were replaced with nonmagnetic stainless steel to minimize 

magnetic interference. All other parts of the assembly were created using plastic to 

prevent extraneous objects the magnetic field could influence. Additionally, the strong 

magnet was waved near the potentiostat during operation, with no obvious change in 

signal that was apparent, to ensure that the magnet was not interfering with the operation 

of the potentiostat. Each experiment that was conducted using a magnetic field was 

compared to a similar quadrant on the same chip that was not tested under a magnetic 

field and when compared to other experiments was normalized using this data. Generally 

there was little variation seen when using the same dsDNA on different surfaces; 

however, using dsDNA made at different times could result in different maximum values 

for repair, possibly due to slight differences in surface packing, purity, or efficiency of 

thymine dimer generation. Background magnetic field strength and applied magnetic 

field strength were tested by measuring the x,y,z coordinates of the magnetic field at the 

surface of the electrode using a gauss meter (F.W. Bell, 5100 series). 
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SQUID measurements 

SQUID measurements were performed by Jennifer Buz in Joseph Kirschvink’s laboratory 

using a 2G Enterprise SQUID magnetometer. Electrode surface was incubated with DNA 

and protein then dried. A strong magnet (6619 Gauss) was waved near the surface, and 

then the surface was scanned with maximum sensitivity to detect magnetite or other 

dipoles present on the surface. Some contamination was observed on sample edges, but 

no magnetite was present on the electrode surfaces. 

Results and Discussion 

Figure 3.2 illustrates this electrical monitoring of repair through the cyclic 

voltammogram (CV) taken from one set of gold electrodes modified with duplex DNA 

containing a CPD, bound by photolyase and irradiated. When bound to the CPD, the 

redox-active flavin is apparent at -80 mV versus NHE. The signal, however, is small 

owing to the presence of the intervening CPD. Upon irradiation, the signal increases, as 

photolyase repairs the intervening CPD. 

Multiplexed chips consisting of 16 separate DNA-modified gold electrodes allow 

for the simultaneous or sequential comparison of four distinct monolayers created under 

identical conditions with four-fold redundancy. This platform is essential for accurate 

comparisons of similar monolayers under conditions where the only variable is the 

magnetic field strength and/or direction. Figure 3.3 shows representative data from a 

single multiplexed chip where the two quadrants were incubated with the same thiolated 

duplex DNA containing a thymine dimer, one quadrant contains duplex DNA with a C:A 

mismatch intervening between the thymine dimer and the gold surface, and the last 
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quadrant contains duplex DNA with no dimer or mismatches. When photolyase is added 

to a monolayer of duplex DNA, each containing a TT dimer (29 bp duplexes, ~8 pmol/ 

cm2) in the absence of an applied magnetic field, irradiation with blue light leads to the 

increase in current for the FAD redox couple, as illustrated above. Shining light on an 

identical monolayer in the presence of an applied magnetic field, however, leads to a 

significant reduction in the yield of charge transferred over the same period of time. The 

lack of signal on the electrode modified with DNA but without the thymine dimer shows 

that the photolyase is binding only to its substrate CPD lesion. Furthermore, 

incorporating a single mismatch significantly decreases the yield of charge transferred to 

the flavin, indicating that the flavin is reduced and oxidized by charge transferred through 

the DNA duplex; perturbations to the base stack as occurs with a mismatch are sufficient 

to decrease DNA CT.  
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Figure 3.2 Cyclic voltammetry of photolyase on multiplexed chip electrodes modified 
with 29 bp dsDNA and backfilled with mercaptohexanol. (Left) Monolayer of duplex 
DNA, each with a single thymine dimer (T□T). (Middle) Addition of E coli photolyase 
shows a small flavin redox peak centered around -100 mV vs AgCl/Ag, which is 
consistent with the fully reduced flavin. (Right) Irradiation with blue light repairs the 
thymine dimer over time and increases the yield of charge transferred through the DNA 
duplex to and from the flavin. After subtracting the background current (dotted line) the 
area under the reductive peak can be integrated to give the total charge transferred to the 
flavin. 
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Figure 3.3 Integrated cyclic voltammetry measurements of photolyase on a 
representative multiplexed chip over time. (Top) Representation of the multiplexed chip 
and the different duplex DNA monolayers and experimental conditions that were tested. 
(Bottom) Plot of the area under the reductive peak was integrated to give the total charge 
transferred to the flavin. In each case 50 µM photolyase was added and irradiated with 
blue light at t=0. In the green quadrant the 29 bp dsDNA contained no thymine dimer. In 
the red quadrant the 29 bp dsDNA contained a thymine dimer and a C:A mismatch 
between the dimer and the electrode surface. In the black quadrant the 29 bp dsDNA 
contained a thymine dimer. In the blue quadrant the same 29 bp dsDNA containing a 
thymine dimer was used as was tested in the black quadrant, but the entire experiment 
was conducted with a 560 Gauss magnetic field pointing perpendicularly up, intersecting 
the plane of the electrode. 
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Control experiments show that the protein is still active after multiple hours of 

incubation and that the protein is able to access CPD-containing duplex DNA added to 

the solution above the electrode surface (Figure 3.4). There is also no distinguishable 

difference when adding this CPD-containing duplex DNA in the presence or absence of a 

magnetic field, suggesting that the magnetic field does not cause a significant change in 

photolyase affinity for CPD.  Experiments with a SQUID magnetometer show that there 

is no magnetite on the surface that is influencing this chemistry (Figure 3.5). 

The magnetic field influence on yield of DNA CT depends upon when the 

magnetic field is applied during the reaction. The presence or absence of an externally 

applied magnetic field during photoreduction, before the incubation of the protein with 

the duplex DNA substrate, does not influence the signal during repair (Figure 3.6). 

Importantly, removing the magnetic field during repair restores the yield of charge 

transfer as though the magnetic field were never present (Figure 3.7). After repair has 

been completed, adding a magnetic field has no influence on the yield of charge 

transferred. Together, these data indicate that the presence of the magnetic field directly 

influences the efficiency of repair. 
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Figure 3.4 Plot of the reductive peak area from cyclic voltammetry of photolyase before 
and after the addition of competitor DNA. The addition of competitor dsDNA with a 
thymine dimer to a surface that has saturated the photolyase repair signal results in a 
significant decrease in signal indicative of the photolyase dissociating from the surface 
and binding the competitor dsDNA in solution. There is no observable difference with or 
without a magnetic field for the signal decrease. 
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Figure 3.5 Measurement of multiplexed chip sample using SQUID magnetometer. 
Surface was incubated with dsDNA and photolyase as would be used in an experiment, 
then dried to make compatible with SQUID measurement. The surface was then 
magnetized by placing near a 6619 Gauss surface neodymium magnet to align any 
dipoles. The magnet did not come into contact with the surface for fear of contamination. 
Note that this is the only experiment with dried DNA because the duplex structure is 
unimportant here. The y-axis is in volts and the color scale represents 3 nT/V. This shows 
that there is no magnetite present on the multiplexed chip either due to the substrate or 
biological samples. A small contamination was observed on the edge of the chip likely 
due to mishandling of the sample, but even if these were assumed to be present in 
experiments the dipoles present are still too small to influence the experiments at the field 
strengths we used.  
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Figure 3.6 Plot of the reductive peak area from cyclic voltammetry of photolyase on a 29 
bp T□T dsDNA modified electrode under different magnetic field conditions. The 
presence of absence of an applied field during the reduction of photolyase did not have 
any measurable effect on the amount of charge transferred at later time points. The 
presence or absence of a magnetic field when the photolyase is incubated with the 
dsDNA surface is what determines the magnitude of the yield. 
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Figure 3.7 Total amount of charge transferred over time with varying magnetic field 
conditions. First, 50  µM photolyase was added to a monolayer of 29 bp dsDNA with 
T□T and irradiated with blue light (t=0) in the absence (black) or presence (blue) of a 30 
Gauss magnetic field applied perpendicularly up intersecting the plane of the electrode. 
At the time indicated by the dotted line the magnetic field was either applied (black) or 
removed (blue) to switch the magnetic field conditions in a given experiment. The time 
was plotted differently on the two x-axis so this switch is visually aligned for the two 
experiments. 
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Figure 3.8 illustrates how the repair efficiency varies with magnetic field strength 

and angle. Significantly, at low magnetic fields, the magnetic field strength plays an 

important role in the efficiency of dimer repair. The background magnetic field during 

our experiments was measured to be 0.4 G and resulted in the highest yield of repair. 

However, applying an additional magnetic field perpendicular to the surface as weak as 

0.2 G results in diminished yield. Increasing the field strength further decreases the yield 

but eventually the effect is saturated; applied fields of 30 G and 6000 G fields result in 

the same magnitude decrease in yield. 

Moreover, the angle of the magnetic field relative to the plane of the electrode 

significantly influences the yield. A magnetic field perpendicular to the plane of the 

electrode exhibits the largest effect. Changing the angle of inclination to 45 degrees 

diminishes the effect, as does applying a field parallel to the plane of the surface. 

Interestingly, there is no difference in yield observed for a magnetic field pointing 

perpendicularly up versus perpendicularly down (Figure 3.9), which suggests that only 

the angle of the field and not the polarity direction of the field is important. The redox 

potential of the flavin lies negative of the potential of zero charge of the working 

electrode. At this potential the duplexes line up approximately normal to the electrode 

surface, meaning that the thymine dimers are approximately parallel to the surface (16). 

The largest magnetic field effect occurs when the field intersects the dimer perpendicular 

to the plane of the bases and the weakest effect occurs when the field is parallel to the 

plane of the bases. 

These results clearly illustrate that the CPD reaction is sensitive to low magnetic 

fields and field direction.  These results are reminiscent of experiments carried out by  
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Figure 3.8 Total amount of charge transferred over time with varying magnetic field strengths 
(top) and angles (bottom) with photolyase bound to DNA-modified electrodes and irradiated with 
blue light. 50 µM photolyase was added to a monolayer of 29 bp dsDNA with T□T and irradiated 
with blue light (t=0). (Top) The background magnetic field with none applied was 0.4 Gauss, and 
the applied field was added to this to give the total field strength listed to the right of the plot. The 
magnetic field was applied perpendicularly up intersecting the plane of the electrode surface. The 
magnetic field angle was varied by applying a 30 Gauss field (middle) or 0.4 Gauss field (bottom) 
at either a 0o, 45o, or 90o angle relative to the plane of the electrode surface.  
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Figure 3.9 Effect of a magnetic field intersecting the electrode surface with the same 
angle and opposite polar direction. (Top) Cartoon showing the magnetic field that is 
applied perpendicular to the electrode surface and how it is expected to intersect the 
thymine dimer. (Bottom) Applying a magnetic field of 30 Gauss perpendicularly up (red) 
or down (blue) intersecting the plane of the electrode did not have a measurable 
difference from one another. In both cases the magnetic field decreased the signal 
compared to a control with no applied field (black).  
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N.J. Turro, who established conditions critical for observation of striking effects in the 

presence of weak magnetic fields. What is required is a competition between two 

processes: one that is magnetic field-dependent, the other is magnetic field-independent 

(9). Figure 3.10 illustrates the CPD repair reaction carried out by photolyase. Here there 

are magnetic field-independent and dependent pathways in competition in photolyase 

repair of CPDs, which allows a magnetic field to change how much of CPD is repaired or 

left intact. 

To examine this competition in more detail, we tested mutants of photolyase that 

perturb internal electron transfer pathways. In particular, we would expect steps that 

affect the lifetime of the CPD radical pair, which should be highly sensitive to the 

presence of a magnetic field, to be most perturbed. Multiple photolyase active site 

mutants were previously characterized using ultrafast spectroscopy to determine the rates 

of electron transfer and bond breaking steps in CPD repair in the absence of a magnetic 

field (10). The mutant N378C interacts with the flavin and displays slow forward electron 

transfer from the flavin to the dimer and only slightly reduced electron return from the 

thymine radical to the flavin. M345A interacts with both the dimer and the flavin and 

shows increased rates for forward electron transfer and electron return. E274A also 

interacts with both the flavin and the dimer and has faster electron return but slower 

forward electron transfer. Shown in Figure 3.11, we find that both of the mutations near 

the dimer eliminate magnetosensitivity. In contrast, the N378C mutant retains 

magnetosensitivity despite having a destabilized flavin radical, which has its redox 

potential shifted -100 mV relative to WT (Figure 3.12). The magnetosensitivity of these  
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Figure 3.10 Radical repair scheme for cyclobutane pyrimidine dimers (CPD). Forward 
electron transfer from the fully reduced flavin results in a radical residing on the CPD. 
First the C5-C5’ bond splits, followed by either C6-C6’ bond splitting or futile back 
electron transfer to the CPD state. Following bond splitting the radical residing on the 
pyrimidine can either undergo electron return to the flavin, resulting in the completion of 
the repair process, or the radical can facilitate CPD formation and undergo futile back 
electron transfer. 
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Figure 3.11 Effect of structural perturbations on magnetosensitivity of photolyase. (Top) Cartoon 
showing placement of thymine dimer relative to flavin cofactor and three active site residues in  
photolyase. (Middle) Comparison of the yield of charge transferred to different active site 
mutants with and without 30 Gauss magnetic field perpendicularly intersecting the plane of the 
electrode surface after 60 minutes of irradiation with blue light. (Bottom) Comparison of the yield 
of charge transferred to different cyclobutane pyrimidine dimers with and without 30 Gauss 
magnetic field perpendicularly intersecting the plane of the electrode surface after 60 minutes of 
irradiation with blue light. For these dimers U=uracil, T=thymine, and the 5’ position is listed 
first with the 3’ position second. These data suggest that the lifetime of the thymine dimer radical 
is tuned to be properly influenced by a magnetic field and that the lifetime is not too long like the 
UT, or too short like with TU and UU. Lifetimes of mutant radicals were obtained from (10) and 
dimer radical lifetimes were obtained from (11) 
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Figure 3.12 Ultraviolet/visible wavelength spectra and cyclic voltammetry of photolyase 
upon oxidation. Small amounts of oxygen resulted in oxidation of the flavin in the 
photolyase. (Top left) This oxidation could be measured by observing the change in 
UV/Vis spectra. (Top right) The oxidized, deprotonated flavin also had a corresponding 
redox peak associated with it that formed centered around -420 mV vs AgCl/Ag. All 
photolyase mutants had similar redox potentials as the WT protein except for N378C 
(bottom left), which had a negatively shifted fully reduced state centered around -220 
mV, and a slightly positively shifted deprotonated state. 
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mutants correlates with slower electron return and does not correlate with forward 

electron transfer or quantum yield of CPD repair.  

Repair of uracil-containing dimers further reveal the underlying cause of 

magnetosensitivity. In these experiments the repair of T□T, U□T, T□U, and U□U dimers 

were monitored with and without an applied magnetic field and are presented in figure 

3.11. The U□U dimer has diminished but significant magnetosensitivity. Both the U□T 

and T□U dimers show no observable magnetosensitivity, despite the T□U having a 

radical life time on par with the U□U and the U□T having a longer radical lifetime than  

any of the other CPD. Together these data argue that perturbation in the uracil/thymine 

radical pairs most affect the magnetosensitivity of CPD repair. 

These data thus allow us to pinpoint the likely source of magnetosensitivity in 

photolyase repair: the pyrimidine dimer. Active site mutations near the CPD as well as 

changes in the CPD structure eliminate magnetosensitivity, but the N378C mutation near 

the flavin and away from the CPD retains magnetosensitivity. The crucial condition for 

observation of magnetic field effects is a competition between two processes, and the 

magnetic field changes their relative favorability (9). Illustrated in Figure 3.10, our data 

show the competition to either maintain or repair the CPD that is shifted towards 

maintenance with an externally applied magnetic field. The magnetosensitive chemistry 

likely occurs after the C5-C5’ splitting, because there is a competition between C6-C6’ 

splitting that results in repaired CPD and futile back electron transfer that maintains the 

CPD (10). Rapid singlet-triplet interconversion, as has been observed in biradical species, 

could change the favorability of bond cleavage versus reformation and lead to a magnetic 

field maintaining the CPD (11b). A second competition occurs after the C6-C6’ splitting 
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because the radical resides on one of the pyrimidines long enough that it may recreate the 

dimer before it safely returns to the flavin (10,12). However, the limited influence of the 

N378C mutant on magnetosensitivity suggests this second process is unlikely to be the 

relevant source of competition. 

The extraordinary magnetosensitivity of CPD repair by photolyase has intriguing 

relevance to magnetoreception by cryptochromes, which are viewed as candidates for 

radical-pair magnetoreceptors, and are structurally quite similar to photolyase (1,13). 

Many features of the photolyase homology region (PHR) are conserved in both 

photolyase and cryptochrome; however cryptochromes are generally classified by their 

inability to repair CPD lesions (13). Explanations for this discrepancy range from 

structural differences in the domains to the possibility that their inability to repair CPD is 

reliant on special conditions (13). In cryptochromes, the presence of C-terminal 

extensions block the DNA binding pocket and could prevent observation of CPD repair 

except under conditions where they are released (14). No crystal structure of 

cryptochromes that are involved in magnetosensitive behavior exist; however both a 

crystal structure of Arabidopsis CRY1 PHR domain and a model of Arabidopsis CRY2 

PHR show partial conservation of the positively charged groove of photolyase that could 

allow for DNA to associate with the active site if the C-terminal extension were released 

from this region (15). It is important to note also that Arabidopsis CRY2-GFP fusion 

proteins bind to chromosomes within mitotic cells (10).  

Truncated Arabidopsis thaliana cryptochrome 1 without the C-terminal extension 

(atCRY1ΔC) was tested for DNA binding and CPD repair in the presence and absence of 

an applied magnetic field. First atCRY1ΔC was incubated with dsDNA containing T□T 
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and irradiated with blue light in aqueous solution. HPLC of the DNA before and after 

incubation show that atCRY1ΔC repairs T□T similar to ecPL (Figure 3.13).  When the 

cryptochrome is added to a monolayer of duplex DNA, each containing a TT dimer in the 

absence of an applied magnetic field, irradiation with blue light leads to the increase in 

current for the FAD redox couple (Figure 3.14). Shining light on an identical monolayer 

in the presence of an applied magnetic field, however, leads to a significant reduction in 

the yield of charge transferred over the same period of time, consistent with the change 

observed for photolyase. The diminished signal on the electrode modified with DNA 

without thymine dimers shows that atCRY1ΔC is preferentially binding to the CPD 

lesion. Consistent with the experiments on photolyase, the angle of the magnetic field 

relative to the plane of the electrode significantly influences the yield of repair by 

cryptochrome (Figure 3.15). A magnetic field perpendicular to the plane of the electrode 

exhibits the largest effect. Changing the angle of inclination to 45 degrees diminishes the 

effect, as does applying a field parallel to the plane of the surface. 

These experiments illustrate how nature can design a magnetic field compass that 

functions at weak field strengths. Weak magnetic fields significantly affect the repair of 

CPD lesions by E. coli photolyase and A Thaliana cryptochrome. This magnetosensitivity 

is dependent on the magnetic field strength and direction. Experiments with photolyase 

active site mutants and uracil-containing lesions show that the chemistry involved in the 

repair of CPD is the likely source of magnetosensitivity that we observe.  
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Figure 3.13 High pressure liquid chromatography traces of duplex DNA eluted at high 

temperature. Three different samples were eluted:  duplex DNA containing a thymine 

dimer before (top) and after incubation with cryptochrome (mid) and photolyase 

(bottom). The column was kept at 80oC to dehybridize the two strands. The strand 

containing the thymine dimer , T□T, elutes at 17 minutes. The strand with the repaired 

dimer as well as the complementary strand elute at 27-28 minutes. Irradiating 50 µM 

cryptochrome or 50 µM photolyase for 1 hour with 35 µM duplex DNA leads to a 

complete loss of the peak with the thymine dimer as well as the presence of a new peak 

that co-elutes with the complement, together indicating that the thymine dimer is being 

repaired. 
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Figure 3.14 Cyclic voltammogram of cryptochrome incubated in a duplex DNA-

modified electrode. 50 µM cryptochrome was incubated on a duplex DNA-modified 

electrode with (blue) and without (red) a single thymine dimer. In both cases the 

cryptochrome was irradiated with blue light (405 +/- 10 nm, <30 mW) from a diode laser 

pointer for one hour before addition to a 29 bp dsDNA monolayer. The above cyclic 

voltammogram was taken after 90 minutes’ incubation of cryptochrome on the DNA-

modified electrode with constant blue light irradiation. 
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Figure 3.15 Total amount of charge transferred to the flavin of cryptochrome over time 

with varying magnetic field angles. 50 µM cryptochrome was added to a monolayer of 29 

bp dsDNA with T□T and irradiated with blue light (t=0). An increase in total amount of 

charge transferred indicates the repair of the T□T, which allows for more efficient charge 

transport to the cryptochrome flavin. The background magnetic field with none applied 

was 0.4 Gauss, and the applied field was added to this to give the total field strength of 30 

Gauss. The magnetic field angle was varied by applying the magnetic field at either a 0o, 

45o, or 90o angle relative to the plane of the electrode surface. 
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These data suggest that the PHR active site is able to facilitate a delicately balanced 

competition between two reaction pathways that can be influenced by weak magnetic 

fields. It is intriguing to consider how this chemistry may be used in vivo to inform 

magnetoreceptive behavior. 
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Chapter 4 

 

 

 

DNA-mediated signaling by proteins with 4Fe-4S 
clusters studied by electrochemistry and atomic force 

microscopy 
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Chem. Soc. 2014, 136 (17), 6470-6478 

M.A. Grodick isolated DinG and EndoIII and performed electrochemistry experiments. 
T.J. Zwang performed atomic force microscopy experiments, modeling, and analysis. 
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Introduction 

Iron-sulfur clusters are increasingly being found in proteins that are tasked with 

maintaining the fidelity of the genome (1-3).  These clusters were first observed in DNA-

binding proteins in the base excision repair (BER) glycosylase, Endonuclease III 

(EndoIII) (4).  More recently, 4Fe-4S clusters have been found in a range of DNA repair 

and DNA-processing enzymes including helicases, DNA polymerases, RNA 

polymerases, DNA helicase-nucleases, and DNA primases from across the phylogeny (2, 

4-13). Many of the enzymes that have been shown to contain these clusters are 

genetically linked to human diseases, such as early onset breast cancer and Fanconi’s 

anemia, yet the proteins perform immensely different functions.  The clusters do not 

participate in catalysis in these proteins (2,3,5), though DNA binding may be affected by 

perturbing the cluster (14).  Recently, studies focusing on the biogenesis of iron-sulfur 

clusters have revealed that disruption of iron-sulfur cluster assembly proteins in 

eukaryotic cells leads to nuclear genomic instability and defects in DNA metabolism, 

replication, and repair (15-17).  The ubiquity of these complex cofactors suggests an 

essential and shared role for their presence in DNA processing enzymes.  

We have considered that the 4Fe-4S clusters in DNA repair enzymes may serve as 

redox cofactors, much as 4Fe-4S clusters do in other enzymes within the cell (1,18). Most 

of our work has focused on EndoIII from Escherichia coli, where the 4Fe-4S cluster was 

first found.  Although a redox role for the cluster was considered (4), the 4Fe-4S cluster 

in EndoIII is redox-inactive at typical cellular potentials.  We showed, however, that 

DNA binding shifts the redox potential of the cluster -200 mV to 80 mV vs. the normal 

hydrogen electrode (NHE), moving the 3+/2+ redox couple into the physiological regime 



92 

 

 

(19).  Strikingly, we have now seen that 4Fe-4S clusters in other repair proteins share this 

DNA-bound potential of ~80 mV versus NHE (20, 21). We have proposed that these 

clusters are utilized for DNA-mediated charge transport (CT) chemistry as a first step in 

the search for DNA lesions to repair (18, 22). Indeed we have explored how EndoIII and 

another BER glycosylase with a 4Fe-4S cluster, MutY, may use DNA CT cooperatively 

as a first step in repair (22).  Here we explore how DNA CT may be utilized more 

generally in E. coli for inter-protein signaling between repair pathways to maintain the 

integrity of the genome.  

The chemistry of DNA CT offers a powerful tool to probe the integrity of duplex 

DNA.  It has now been well documented that DNA can conduct charge through the π-

stacked base pairs within the helix (23). Subtle perturbations to the DNA base stack, 

including the presence of base pair mismatches, abasic sites, or even DNA lesions, such 

as those that are substrates for DNA glycosylases, attenuate DNA CT (18,24). Protein 

binding can also interrupt DNA CT if it disrupts base stacking, as seen with enzymes that 

flip DNA bases out of the helix (25).  This CT chemistry has been used to develop 

electrochemical sensors that detect base lesions, mismatches, and DNA-binding proteins 

on DNA-modified electrodes (18, 25-27). Charge can be transported through DNA over 

long molecular distances, and the distance dependence of CT is quite shallow (23). In 

fact, charge can be efficiently transported through at least 100 base pairs, and over this 

distance the rate is still limited by transport through the linker rather than the DNA base 

stack (28,29). Given that DNA CT can occur over long molecular distances and can be 

modulated by DNA-binding proteins, does DNA-mediated CT play a general role within 

the cell?    
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Recently DinG, a DNA damage response helicase from E. coli, was shown to 

contain a 4Fe-4S cluster (30). DinG is part of the SOS response, which is activated by 

DNA damaging agents and cellular stressors.  DinG shares homology with the nucleotide 

excision repair protein XPD as well as with a host of Superfamily 2 helicases from 

archaea and eukaryotes that are linked to human disease and share a conserved 4Fe-4S 

domain (5). DinG unwinds DNA that has single-stranded overhangs with a 5′ to 3′ 

polarity (31). DNA-RNA hybrid duplexes that form within a DNA bubble, termed R-

loops, represent a unique substrate that DinG has been shown to unwind in vitro (32). 

Importantly, DinG is required to unwind R-loops in vivo in order to resolve stalled 

replication forks and thus to maintain the integrity of the genome (33). Here we examine 

the DNA-bound redox properties of DinG and explore more generally crosstalk among 

redox-active DNA-processing enzymes in E. coli via 4Fe-4S clusters. 

 

Materials and methods 

Expression and Purification of DinG. The dinG gene was amplified from E. coli 

and was inserted into a pET-28 b (+) vector (Novagen) as described previously (30). 

After the vector was isolated, the cloned dinG gene was sequenced (Laragen) using the 

primers listed in Table 4.1.  An aliquot of BL21(DE3) competent cells (Invitrogen) was 

then transformed with the pET28b-dinG vector.  The constructed pET28b-dinG vector 

encodes for DinG with a C-terminal hexahistidine affinity tag.  

To express DinG, six liters of LB, which had been inoculated with an overnight 

culture of BL21(DE3) cells harboring the pET28b-dinG vector, were shaken at  37 °C.  

After the cultures reached an O.D. of ~0.6-0.8, enough IPTG (Research Products 
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International Corp.) was added to bring the concentration of IPTG in each flask to 150 

µM.  The flasks were then returned to the incubator, which had been cooled to ~22 ° C.  

After ~16 hours of IPTG induction at ~22° C, the cells were collected by centrifugation at 

5,500 rpm for 15 minutes.  The cell pellets were frozen at -80 ºC.  

To purify DinG, the cell pellets were resuspended in 300 mL buffer A (20 mM 

Tris-HCl, 8.0 pH at 4 ºC, 0.5 M NaCl, and 20% glycerol) with added DNaseI from 

bovine pancreas (10 kU, Sigma) and Complete Protease Inhibitor Cocktail Tablets 

(Roche).  The cells were lysed using microfluidization.  The lysate was centrifuged at 

12,000 rpm for 45 minutes, and the supernatant from the cell lysate was filtered and 

loaded onto a 5 mL Histrap HP (GE healthcare) nickel-affinity column that had been 

equilibrated with buffer A.  The column was then connected to an ÄKTA FPLC (fast 

protein liquid chromatography, GE healthcare) and was washed with 3-5 column volumes 

(CV) of buffer A.  The protein was eluted using a linear gradient from 0-20% buffer B 

(20 mM Tris-HCl, 8.0 pH at 4 ºC, 0.5 M NaCl, 500 mM imidazole, and 20% glycerol) 

over 10 CV, followed by a linear gradient from 20-30% buffer B over 10 CV.  Fractions 

containing the desired protein, which were yellow and eluted at ~150 mM imidazole, 

were desalted into buffer C using a Hiprep 26/10 desalting column (GE healthcare).  The 

collected protein was then concentrated down to 10-13 mL using an Amicon Ultra-15 

centrifigual filter unit (Millipore) and was loaded onto a Hiload Superdex 200 26/600 pg 

(GE healthcare) that had been equilibrated with buffer C.  The protein eluted after ~180 

mL of buffer C (20 mM Tris-HCl, 8.0 pH at 25 ºC, 0.5 M NaCl, and 20% glycerol) had 

passed over the column.  The purity of the protein was confirmed using SDS-PAGE 
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(Figure 4.1).  A helicase activity assay for DinG, modified from previously published 

procedures, was used to show that the protein is active after purification (30,32).  

DNA-modified DinG Electrochemistry. The DNA substrate used for the 

electrochemical characterization of DinG was either a well-matched 20-mer DNA 

oligomer with a 15-mer 5′ to 3′ single-stranded overhang or the same substrate with the 

exception of an abasic site being placed on the complementary strand four base pairs 

from the bottom of the duplex (Table 4.1). A 20-mer strand of DNA with a terminal thiol 

and 6-carbon linker at the 5′ end of the strand was annealed to a 35-mer unmodified 

strand of DNA to yield the electrochemical substrate. The electrochemical substrate was 

designed to be competent to unwind by DinG in a helicase reaction.  Single-stranded 

DNA stimulates the ATPase activity of DinG, which requires at least a 15-mer single-

stranded 5′ to 3′ overhang in order to unwind DNA substrates in vitro (32). In the 

electrochemical cell, the DNA substrate is covalently tethered to the gold surface via a 

gold-thiol bond.   

The thiol-modified strand was synthesized on a 3400 Applied Biosystems DNA 

synthesizer using standard phosphoramidite chemistry.  The complementary strands were 

purchased from IDT.  All phosphoramidites, including the terminal phosphoramidite 

containing a 6-carbon disulfide linker were purchased from Glen Research.  The thiol-

modified and complementary strands were purified by HPLC using an analytical C-18 

column (Agilent).  DNA strands were characterized by MALDI mass-spectroscopy.  The 

DNA was quantified by UV-Visible absorbance and equimolar amounts were annealed, 

yielding the duplex substrate. 
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Figure 4.1 SDS-PAGE gel for purification of DinG. Lanes are referred to as 1 to 8 from 

left to right.  The lanes contain an SDS-PAGE weight standard-low range (Biorad) (Lane 

1), the supernatant from the cell lysate (lane 2), the pellet from the cell lysate (lane 3), the 

filtered cell lysate (lane 4), the the Histrap HP column flow-through (lane 5), the 

collected fractions from the Histrap HP column (lane 6), the collected fractions from the 

Superdex 200 column (lane 7), and a 10x dilution of the stored protein after thawing (lane 

8).  Corresponding molecular weights for each of the six bands in the weight standard 

lane are designated to the left of the image.  

  

kDa 
 
103.0 
80.7 
 
49.5 
 
36.5 
28.8  
19.6 
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Table 4.1 Oligonucleotides for electrochemistry substrates, gene replacements, 
sequencing or colony PCR, and site-directed mutagenesis  

 
Note: All oligonucleotides except for the modified strand for electrochemistry were purchased from IDT 

Designation and use  Sequence (5’ to 3’) (bases highlighted in red yield the 
point mutation after SDM) 
 

Primer for cloning dinG forward GGTTTTCCCATGGCATTAACCGCC 

Primer for cloning dinG reverse CATCATTAAAGCTTCCGACGGCGT 

pET28b-dinG insert sequencing forward 1 T7 promoter primer 

pET28b-dinG insert sequencing forward 2 
(within gene) 

ACTGACGCCGAACAATCAGGA 

pET28b-dinG insert sequencing reverse 1 T7 terminator primer 

pET28b-dinG insert sequencing reverse 2 
(within gene) 

TTCGGCAAATGACTGTAAGCCCAC 

Substrate for electrochemistry – 20-mer 
thiolated modified strand  

HS-C6-GTGCTGCAACGTGTCTGCGC (annealed 
with either the well-matched complement or abasic 
complement to yield the substrate used in experiments) 

Substrate for electrochemistry – 35- mer 
complementary strand for well-matched 
substrate 

AGACTGCAGACGAGAGCGCAGACACGTTGCAG
CAC  

Substrate for electrochemistry – 35- mer 
complementary strand for abasic substrate 

AGACTGCAGACGAGAGCGCAGACACGTTGCA-
_CAC (“_” represents an abasic site) 

AFM substrates 3.8 kb long strands and 1.6 or 2.2 kb shorts strands 
were prepared as described previously (22, 35) 

ΔdinG::cmR, forward primer CCGAAAAATGCCACAATATTGGCTGTTTATACA
GTATTTCAGGTTTTCTCGTGTAGGCTGGAGCTG
CTTC  

ΔdinG::cmR, reverse primer CCGAAAAATGCCACAATATTGGCTGTTTATACA
GTATTTCAGGTTTTCTCGTGTAGGCTGGAGCTG
CTTC  

ΔdinG::cmR, sequencing forward  GATGGTGTCTTGCATGACGTG  

ΔdinG::cmR, sequencing reverse TCAATACGCCGCCCAACTCA  

SDM  reverse primer for generation of 
pBBR1-MCS4 nth Y82A  

CGATTGGGCTTGCTAACAGCAAAGCAGAAAAT
ATCATCAAAACCTGC  

pBBR1MCS-4-nth sequencing forward  GGTGCTGATGCCGCTGGCGATTCAG  

pBBR1MCS-4-nth sequencing reverse  TGTGCTGCAAGGCGATTAAGTTGG  

Genomic nth region check forward 1 GAGATCCGCATTCCCATTTA 

Genomic nth region check reverse 1 GGCTTAACGGCGATATGTTC 

 



98 

 

 

Table 4.2: Plasmids used in this study  

Plasmid 
Designation 

Description Source, reference, or method 
to construct 

pBBR1MCS-4 or 
p(empty) 

pBBR1MCS-4, a vector for 
the constitutive expression 
of genes placed in the MCS 
(multiple cloning site) 

(22) 

pBBR1MCS-4-nth 
or p(WT EndoIII) 

pBBR1MCS-4  carrying the 
nth gene in the MCS, 
constitutively expresses WT 
EndoIII  

(22) 

pBBR1MCS-4-nth 
D138A or p(EndoIII 
D138A) 

pBBR1-MCS4 carrying the 
nth D138A gene in the 
MCS, constitutively 
expresses EndoIII D138A 

Site-directed mutagenesis of 
pBBR1MCS-4-nth  

pBBR1MCS-4-nth 
Y82A or p(EndoIII 
Y82A) 

pBBR322-MCS4 carrying 
the nth Y82A gene in the 
MCS, constitutively 
expresses EndoIII Y82A 

Site-directed mutagenesis of 
pBBR1MCS-4-nth using Y82A 
forward and reverse primers 

pET-28b-dinG  Overexpresses DinG in 
presence of IPTG 

Insertion of dinG amplicon into 
pET-28b(+) (Novagen) as 
described above (30) 
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To prepare DNA-modified single electrodes, a 50 µM solution of the DNA 

substrate was incubated overnight at ambient temperature on a bare gold on mica surface 

(Agilent) in an electrochemical cell with a capacity of 50 µL.  Following incubation with 

the DNA solution, the surface was rinsed and backfilled by incubating the electrode with 

1 mM 6-mercapto-1-hexanol for 45 minutes at room temperature.  Multiplex chip 

electrodes were prepared as described previously (29, 34). The well-matched 

electrochemistry substrate was used for all single electrode experiments.  For experiments 

with multiplex chip electrodes, the well-matched and abasic-site substrates were laid 

down side-by-side in separate quadrants on a single chip (29, 34).   

After backfilling, the DNA-modified electrodes were rinsed with the 

electrochemistry buffer (4 mM spermidine, 4 mM MgCl2, 0.25 mM EDTA, 20% 

glycerol, 250 mM NaCl, 20 mM tris-HCl, pH ~8.5).  Protein concentration was measured 

by UV-Visible absorbance using an extinction coefficient at 410 nm of 17,000 M-1 cm-1 

(22). An aliquot of 20 µM DinG was flash-thawed by incubating it in a room temperature 

water-bath.  The protein’s buffer was exchanged for the electrochemistry buffer by 

diluting the protein 2-fold into 2x spermidine buffer (8 mM spermidine, 8 mM MgCl2, 1 

mM EDTA, 20 mM tris-HCl, pH ~9.0).  

Electrochemical measurements were made using a CHI620D Electrochemical 

Analyzer.  For cyclic voltammetry, sweeps within a window from -0.4 V vs. Ag/AgCl to 

0.1 or 0.2 V were carried out at a scan rate of 50 mV/s for several hours.  For 

electrochemistry measurements on single electrodes with ATP, 1 mM ATP or 1 mM 

ATPγS (Sigma) was added after the electrochemical signal grew in to an appreciable size 

(>20 nA).  Cyclic voltammetry was then used to scan the electrode over several hours.  
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Atomic Force Microscopy Redistribution (AFM) Assay. AFM experiments 

were performed using a protocol similar to that reported previously with the following 

modifications (22, 35). The long and short strands of DNA have an identical sequence as 

they were both amplified off of the pUC19 plasmid with primers containing a 2′ O-

methyl residue to generate 1.8 and 2.2 kb strands of DNA with 14-mer single-stranded 

overhangs, so that the two could be subsequently ligated. For well-matched long strands 

of DNA, the two PCR products were annealed with complementary 14 bp overhangs. For 

the mismatched long strands of DNA, the strands were annealed in the same way except 

one of the PCR products contained a 14 bp overhang with a single base changed to yield 

a C:A mismatch upon the annealing of the 2 strands.  Prior to deposition, the protein and 

DNA solution was incubated at 4 °C for 2 hours.  The sample was then deposited (5–10 

μL) onto a freshly cleaved mica surface for 2 min, rinsed with 2 mL of water, and dried 

under argon.  The concentration of DinG was 60 nM for AFM experiments with DinG.  

For AFM experiments with mixtures of DinG and EndoIII or DinG and EndoIII Y82A, 

the concentration of each protein was 30 nM.  

Images of protein and DNA mixtures that had been deposited on dry mica 

surfaces were gathered using a Bruker Dimension Icon AFM (Beckman Institute 

MMRC).  Images were captured in air with scan areas of 2 × 2 μm2 or 3 × 3 μm2 in soft 

tapping mode, and a scan rate of 3.00 Hz. RFESPA silicon AFM probes with reflective 

aluminum backing (Bruker), with a spring constant of 3 N∕m and a resonance frequency 

of 69-81 kHz, were used for gathering images.  

Bruker nanoscope analysis software was used to measure general DNA contour 

lengths and height profiles of the proteins.  For each dataset, images from at least three 
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independently prepared surfaces were analyzed.  At least 50 images were analyzed for 

both the mismatched DNA-protein samples and the well-matched samples.  The binding 

density ratio, r, is defined as the ratio of the density of proteins bound on the long strands 

of DNA divided by the density of proteins bound on the short strands of DNA.  The 

density of proteins on each strand is found by dividing the number of proteins by the 

length of the DNA strands, 3.8 kb pairs for the long strand and 1.9 kb pairs, which is the 

average length of the short strands, for short strands.  Error represents SEM (n ≥ 3) for 

each experiment.  Distinguishable strands and bound proteins were counted by hand.  In 

order to control for bias, for each experiment, images were randomly assigned 

identification numbers.  The images were then scored blindly.  The number of long 

strands, proteins on long strands, short strands, and proteins on short strands was 

collected for each image.  This was then converted to a binding density ratio for each 

image.  

Binding density ratios can also be calculated for each individual image, which are 

treated as replicates, to obtain the average binding density ratio for each sample.   The 

binding density ratios were plotted as a histogram (Figure 4.2), which show that the 

binding density ratios for the two sets of data follow a normal distribution around the 

mean, allowing for statistical analysis with a two-tailed t-test.  

All mutant EndoIII plasmids, which were derived from pBBR1MCS-4 (37) were 

generated using a QuikChange II Site Directed Mutagenesis kit (Agilent).  The 

pBBR1MCS-4, pBBR1MCS-4-nth, The pBBR1MCS-4-nth D138A, and pBBR1MCS-4-

nth Y82A plasmids encode and constitutively express no protein, WT EndoIII, EndoIII 

D138A, and EndoIII Y82A respectively.  The pBBR1MCS-4 derived plasmids are  
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Figure 4.2 Statistical data for the AFM experiments. Histograms showing the distribution 

of binding density ratios within the population of sample images.  The value on the x-axis 

is the upper range of a .25 unit wide separation, meaning that the column plotted above 

“1” is the number of images with a binding density ratio between 0.75 and 1.  
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referred to as p(empty), p(WT EndoIII), p(EndoIII D138A), and p(EndoIII Y82A) 

respectively throughout the text as indicated in Table 4.2.  The p(WT EndoIII) plasmid 

that was used as the template for the site-directed mutagenesis reactions was previously 

constructed in our laboratory (35). The primers outlined in Table 4.1 were used to make 

the p(EndoIII Y82A) and p(EndoIII D138A) mutant plasmids.  The isolated plasmids 

were sequenced (Laragen) using the forward and reverse pBBR1MCS-4-nth sequencing 

primers (Table 4.1) to verify that the desired mutation had been made in the nth gene. 

Results 

DNA binding activates DinG towards reduction and oxidation at cellular 

redox potentials.  DNA-modified electrodes were utilized to explore the DNA-bound 

redox chemistry of DinG.  Cyclic voltammetry of the protein on gold electrodes modified 

with a 20-mer duplexed DNA oligomer appended with a 15-base 5′ single-stranded 

overhang displays a reversible redox potential for DinG of 80 mV vs. NHE (Figure 4.3).  

This DNA-bound potential differs from the midpoint redox potential of ~ -390 mV vs. 

NHE assigned to the [4Fe-4S]2+/1+ couple of the cluster observed in the absence of DNA 

as measured by titrations with redox mediators (30). Cyclic voltammetry of DinG on 

multiplexed electrodes reveals that a single abasic site placed in the DNA duplex 

attenuates the current by 12 ± 3%, consistent with the signal being DNA-mediated (23, 

34). Moreover, upon addition of ATP to DinG bound to DNA-modified electrodes, the 

reductive and oxidative peak currents markedly increase; ATPγS, which is poorly 

hydrolyzed, does not yield a significant increase in current (Figure 4.3).  Thus, it appears 

that the ATPase activity of DinG can be monitored electrically, even though ATP 

hydrolysis is a redox-independent process. Similar results were seen earlier with S.  
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Figure 4.3 Electrochemistry of DinG on DNA-modified electrodes. (A) Cyclic 
voltammogram of 10 μM DinG (red), DinG after the addition of 5 mM ATP (blue), and 
buffer only (black) after incubation for three hours. Inset: Cartoon representation of a 
protein bound to DNA on a DNA-modified electrode. (B) Percent change in current after 
the addition of 1 mM ATP (blue) or 1 mM ATPγs (black). Percent change in current is 
the percent increase in the measured current compared to the predicted current, based on 
the linear growth of the signal with respect to time for the incubation of DinG before the 
addition of ATP.  
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acidocaldarius XPD (SaXPD), also an ATP-dependent helicase (21). It is interesting to 

consider that this electronic signaling of activity may be used within a biological context.  

EndoIII and DinG use DNA CT to redistribute to sites of DNA damage.  

Given that DinG displays a DNA-bound potential similar to that of EndoIII of ~ 80 mV 

vs. NHE, we sought to test whether EndoIII and DinG can signal to one another via DNA 

CT in vitro to aid one another in finding lesions that disrupt CT. It is noteworthy that both 

repair proteins are involved in finding lesions that interrupt DNA CT. Using atomic force 

microscopy (AFM), we examined whether the DinG helicase would redistribute onto 3.8 

kilobase (kb) DNA strands containing a single base mismatch, which interrupts DNA CT, 

rather than remaining bound to well-matched DNA strands.  Our model for how repair 

proteins utilize DNA CT predicts such a redistribution as a first step in repair (vide infra), 

and this assay provides direct support for the model. If proteins of similar potential carry 

out DNA CT on well matched DNA strands and dissociate from DNA upon reduction, 

they should preferentially redistribute onto DNA strands where DNA CT is inhibited by 

an intervening mismatch. Note that, while a single base mismatch inhibits DNA CT, it is 

not a substrate for either DinG or EndoIII binding. We have utilized this AFM assay 

previously to test EndoIII redistribution as a first step in finding damage (22). We have 

also utilized this assay to test CT signaling between EndoIII and SaXPD, which also 

contains a 4Fe-4S cluster with a DNA-bound potential of ~ 80 mV vs. NHE,  in locating 

DNA damage (21, 35); these proteins are present in completely distinct organisms, but 

based on their shared DNA-bound potential are able to signal one another using DNA 

CT.  
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In this AFM assay, DNA-protein mixtures are deposited onto a dry mica surface on 

which single molecules of both free and protein-bound DNA can be visualized (22, 35).  

Duplexes of DNA that contain a single C:A mismatch located in the middle of the strand 

are mixed with fully matched DNA.  These strands can be distinguished in the AFM by 

their difference in length: the mismatched strands are ~3.8 kb pairs long while the 

matched strands on average contain ~1.9 kb pairs (Figure 4.4). They share DNA 

sequence since the 3.8 kb strands are prepared by ligation of the two shorter strands (22, 

35). For mixtures of mismatched long strands and well-matched short strands that are 

incubated with DinG alone, we find an average of 2.60 ± 0.22 proteins bound per 

mismatched strand compared to 0.90 ± 0.17 proteins per well-matched strand.  We 

calculate the  binding density on the mismatched and matched strands for each  

independent  trial  (n ≥ 3 for each experiment) by normalizing the number of proteins 

bound by the strand length, to obtain a  binding  density  ratio  of  1.44 ± 0.08 favoring 

the mismatched  strand.  Thus, even though DinG does not bind preferentially to a 

mismatch, DNA CT by DinG favors its redistribution onto the strand containing the 

single base mismatch. 

Signaling between EndoIII and DinG was also tested by AFM.  In 1:1 mixtures of 

DinG and wild-type (WT) EndoIII, a binding density ratio of 1.32 ± 0.04 favoring the 

mismatched strand is observed (Figure 4.4).  But does this redistribution depend upon 

DNA CT? 
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Figure 4.4 AFM redistribution assay. (A) A flattened image (Bruker nanoscope analysis 
software) for tapping-mode AFM topography of DinG-bound DNA adsorbed on mica. 
(B) Schematic representation of the redistribution assay.  At equilibrium, repair proteins 
(blue) are preferentially localized on strands of DNA (black) with a C:A mismatch (red 
X). (C) 3-dimensional rendering of the blue-bordered region of the AFM image in A that 
shows a strand of DNA bound by two DinG proteins. (D) Measured binding density 
ratios, the density of proteins on long strands divided by the density of proteins on short 
strands, for proteins bound to mixtures of long and short strands of DNA with and 
without a mismatch (C:A) in the middle of the long strand.  Three separate mixtures of 
protein and DNA were deposited onto individual surfaces and at least fifty images were 
analyzed for each DinG (blue), a mixture of DinG and EndoIII (red), and a mixture of 
DinG and a CT-deficient mutant, Y82A EndoIII (green). ± SEM using a single image as 
a data point.  
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In 1:1 mixtures of DinG and EndoIII Y82A, a mutant protein that is defective in DNA-

mediated CT (22, 35), a binding density ratio of 0.90 ± 0.03 is found (Figure 4.4); there is 

no preference for the mismatched strand, note that EndoIII does not bind preferentially to 

a mismatch (22).This binding density ratio is comparable to what is observed for DinG 

alone when both strands are fully matched (Figure 4.4); when the proteins cannot carry 

out DNA CT, they cannot redistribute onto the strand containing the lesion. Since DinG 

can redistribute in the absence of EndoIII, and DinG and EndoIII can redistribute when 

mixed only if EndoIII is effective in signaling by DNA CT, these observations support 

the need for effective signaling between EndoIII and DinG in finding the damaged strand. 

We have seen comparable results earlier in mixtures of SaXPD and EndoIII (35).  

An alternative way to calculate the binding density ratio is to treat each individual 

image as a sample, to plot them as a histogram (Figure 4.2) and to find the mean of the 

normal distribution. Using this methodology, instead of treating each surface as an 

individual experiment, a binding density ratio of 1.61 ± 0.08 is found for DinG with 

mismatched DNA. A binding density ratio of 1.40 ± 0.05 is found for DinG mixed with 

EndoIII and mismatched DNA. Finally a binding density ratio of 0.91 ± 0.04 is found for 

DinG mixed with EndoIII Y82A.  

  Because the AFM images are snapshots of the system near equilibrium, the 

number of bound proteins on strands reflects the apparent non-specific binding affinity of 

the proteins for DNA. As such, another way to analyze the data would be to analyze the 

apparent binding affinity of each protein in the different experiments by visualizing the 

occupancy of the DNA, i.e., the percent of DNA with a minimum of 1, 2, 3, or 4 proteins 

on a strand of DNA. Since DNA-binding proteins with 4Fe-4S clusters have a lower 
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DNA binding affinity when the cluster in the reduced vs. oxidized (19), in a collection of 

proteins, some reduced and some oxidized, CT between proteins should affect the overall 

effective binding affinity for DNA. Conversely, if only one protein is bound to DNA, its 

affinity would not be affected by DNA CT. This was observed for mixtures of DNA and 

DinG (Figure 4.5), which also indicates that DinG does not preferentially bind a 

mismatch. The same was observed for mixtures of DinG with WT EndoIII, or with 

EndoIII Y82A; the percent of long, well-matched strands with one protein bound is the 

same for DinG/EndoIII and DinG/Y82A mixtures (Figure 4.6). If more than one protein 

is bound to a given strand, however, each subsequent protein that binds has a probability 

to transport charge through the DNA and promote another protein’s dissociation, in a way 

that parallels anti-cooperative binding. If a mismatch is present, which attenuates CT, 

however, this anti-cooperative effect would be lessened as it would if EndoIII Y82A is 

substituted for EndoIII, decreasing the concentration of signaling partners.  

This is precisely what is observed (Figures 4.5 and 4.6). The percentage of long 

strands with a minimum of 2, 3, or 4 bound DinG proteins is lower for DinG when there 

is no mismatch, then when there is a mismatch. When DinG is mixed with EndoIII 

compared to EndoIII Y82A, an anti-cooperative effect is once again observed. There is a 

decreased percentage of long strands of DNA bound with a minimum of 2, 3, or 4 

proteins for DinG and EndoIII compared to DinG and EndoIII Y82A.  This observation, 

especially when considered in conjunction with their similar population of single-bound-

protein-DNA complexes, further supports the ability of DinG and EndoIII to cooperate 

using DNA-mediated CT. 
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Figure 4.5 Occupancy of DinG on long strands of DNA. The percent of long strands of 

either well-matched (red) or mismatched (green) DNA is plotted against the minimum 

number of proteins bound to a strand.  
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Figure 4.6 Occupancy of either EndoIII and DinG or EndoIII Y82A and DinG on long 

strands of well-matched DNA. The percent of well-matched long strands of either 

EndoIII and DinG (green) or EndoIII Y82A (red) DNA is plotted against the minimum 

number of proteins bound to a strand. 
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It should be noted that protein loadings on the 3.8 kb strands are on the order of 

two proteins per strand under these experimental conditions.  Therefore assuming that 

DinG and EndoIII are signaling one another, for approximately half of the strands, 

signaling must occur between DinG and EndoIII rather than just between DinG partners 

or between EndoIII partners.  Moreover, given a loading of about two proteins per strand, 

these results are consistent with DNA CT occurring over kilobase distances. The AFM 

experiments described here could not distinguish the proteins from one another, due to 

the compressibility of the proteins making their heights indistinguishable. It is also 

important to note that these proteins show no evidence of co-localizing at DNA sites by 

AFM.  Overall, these data demonstrate that DinG and EndoIII can use DNA-mediated CT 

at long range to cooperate with one another to localize to regions of damage.  

 

Modeling the influence of DNA CT on protein affinity to DNA 

An equilibrium model was made to better understand the data collected by atomic 

force microscopy. As shown in figure 4.7, there are few observable macrostates for 

proteins bound to DNA. It is possible to count the number of proteins that are bound to 

each duplex, and assume that each protein-bound state has its own equilibrium. These 

equilibria will be influenced by factors that change the protein’s effective affinity to 

DNA such as the redox identity of the [4Fe4S] cluster and the likelihood that the protein 

will dissociate from DNA via DNA-mediated CT.  These factors are not inherently 

observable and thus may be described as microstates, with all of the possible variations in 

these characteristics having their own predicted affinity (Figure 4.8). Combining all of 
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the microstate affinities with the probability of those microstate being observed gives the 

effective affinity of the macrostate. 

For a single protein, the equation describing the combination of microstates, 

shown below, is fairly simple: 

       (1) 

Here K1 is the effective affinity describing a single protein bound to a DNA duplex. This 

protein can be either in the reduced (R) or oxidized (O) state, each of which has its own 

affinity for the DNA duplex. The likelihood of a state being in the reduced or oxidized 

form must also be considered. Combining these give the terms k1R (and k1O) which are the 

percent reduced (and oxidized) protein multiplied by the single base pair affinity of a 

protein in that oxidation state. The term N1 is a proportionality term that divides the sum 

of each microstate by the total number of microstates to get an average affinity for all 

microstates together. For a single protein there is no possibility for DNA-mediated CT so 

it does not contribute to the affinity.  

Incorporating a second protein becomes significantly more complicated, because 

now there are combinations of proteins that may have different affinities depending on 

their location relative to one another as well as their redox identity (Figure 4.8).  
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Figure 4.7 Representation of the different macrostates that are observable by atomic 
force microscopy. These can be described as DNA with no proteins bound, with a single 
protein bound, with two proteins bound, and with three proteins bound. 
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Figure 4.8 Representation of different microstates, in which proteins with reduced (R) or 
oxidized (O) [4Fe4S] clusters are bound to a DNA duplex. In all cases where only 
reduced or only oxidized proteins are bound the affinity is expected to be the same 
regardless of where the proteins bind. However, if a reduced and oxidized protein bind to 
the same duplex the effective affinity will change depending on whether the two proteins 
are close enough to exchange an electron via DNA mediated charge transport. 
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In particular, if two proteins of differing redox state are within DNA-mediated CT 

distance they will have a decreased effective affinity for the duplex (Figure 4.9). 

However, the distance that DNA-mediated CT may travel between proteins is unknown. 

Additionally, the decrease in affinity due to DNA-mediated CT is unknown. Unlike other 

constants that may be experimentally tested directly, these unknowns present an 

interesting application of this model in that they may be determined with enough data and 

fitting to this model. The two protein equation is as follows: 

 

  (2) 

with all of the terms having similar definitions as in the first equation. The terms k1R (and 

k1O) are the percent reduced (and oxidized) protein multiplied by the single base pair 

affinity of a protein in that oxidation state. The terms k2R and k2O represent the affinity of 

the second protein that binds, though the first and second protein are indistinguishable. 

The terms k1RO and k2RO represent the affinity of the state in which two proteins are within 

CT distance, which gives them a different effective affinity compared to the case in 

which the two proteins are not within CT distance. In this equation the three 

proportionality terms N2,1 , N2,2 , and N2,3 combine to give an average affinity for all 

microstates together, but the relative weight for N2,2 , and N2,3 change depending on the 

length of DNA and the length that DNA CT can occur.  
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Figure 4.9. The population of 4950 bp linearized plasmid DNA with a given number of 
proteins for wild type EndoIII, a charge transport deficient mutant Y82A, and a 
prediction for the number of bound proteins if there were no influence of DNA mediated 
CT on the affinity. There is no difference in affinity for WT and Y82A with a single 
protein binding, where DNA CT cannot occur. There is a significant decrease in affinity 
for WT that is not present for Y82A as the number of proteins increases that correlates to 
an increased probability of DNA CT upon protein binding. These data strongly support a 
model where DNA-mediated CT is decreasing the effective affinity of EndoIII. 
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 Finally, the three protein equation becomes significantly more complicated by the 

many possible identities for proteins as well as the presence of states where three proteins 

may be able to undergo DNA-mediated CT, or two proteins are able to and one is not. 

The equation can be described as follows: 

 

 

 

 

   (3) 

The terms k1R (and k1O) are the percent reduced (and oxidized) protein multiplied 

by the single base pair affinity of a protein in that oxidation state. The terms k2R and k2O 

represent the affinity of the second protein that binds. The terms k3R and k3O represent the 

affinity of the third protein that binds, though all three proteins are indistinguishable. The 

terms k1RO and k2RO represent the affinity of the state in which two proteins are within CT 

distance, which gives them a different effective affinity compared to the case in which 

the two proteins are not within CT distance. Similarly, the terms knROO and knRRO  

represent the affinity of the state in which three proteins are simultaneously within CT 

distance. In this equation the proportionality term N3,1 is independent of DNA CT length. 

The terms  N3,2 , N3,3  , N3,4  , and N3,5  will vary significantly with the length of DNA and 

the length that DNA CT occurs over.  
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The proportionality constants were determined either using calculus for the one 

and two protein cases or with the aid of simulations conducted by Zachery Nicolaou 

(Caltech graduate student in physics) for the three protein case with the assumption that 

the length of DNA is greater than the length of CT. The simulations involved the 

generation of solutions which were then fit in Mathematica to give an approximate 

solution for N3,1-5. These methods give the values as follows: 

N1 = n 
N2,1 = ½ (n-1)*n 
N2,2 = ½ (n-c-1)*(n-c) 
N2,3 = -½ c*(1+c)+c*n 
N3,1 = (1/6)* (n-2)*(n-1)*n 
N3,2 = (1/6)* (n-2-2c)*(n-1-2c)*(n-2c) 
N3,3 = (1/3)*c*(2+7c2-9c*(n-1)+(3n-6)*n) 
N3,4 = (1/3)*(c-1)*c*(1+c)+(c/2)*(1+c)*(n-2c) 
N3,5 = (1/6)*(c-1)*c*(-2c-2+3n) 
 

In these equations n represents the total number of base pairs in the length of the duplex 

and c represents the maximum charge transport distance in base pairs. 

These equations do not accurately describe the proportionality constants in all 

conditions. As the length of DNA CT approaches zero, N2,2 approaches its maximum 

value and N2,3 approaches zero. As the length of DNA CT approaches the length of the 

DNA duplex, N2,2 approaches zero and N2,3 approaches its maximum value. For all cases 

where the length of DNA CT is greater than the length of the DNA duplex N2,2 is zero. In 

all cases N2,1 is insensitive to the length of DNA CT. Similar claims can be made about 

the N3 proportionality terms, but for the sake of simplicity the N2 terms will be described.  

Experimental evidence (Figure 4.9) shows that DNA CT decreases the effective 

affinity of proteins for DNA, which means that when the length of CT is equal to or 
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greater than the length of the DNA duplex the macrostate affinity value K2 is its weakest. 

The effective macrostate affinity will increase as the length of DNA increases beyond the 

length that DNA CT can traverse. The maximum affinity will occur when the length of 

DNA CT is so much smaller than the length of DNA that it is effectively zero. 

Therefore, for two or more proteins that undergo DNA-mediated CT, a plot of 

macrostate affinity versus the length of DNA is described by piecewise functions. The 

affinity calculated by the subfunction on either side of the limit where DNA length equals 

the length of DNA CT will vary differently with the length of DNA. The macrostate 

affinity per base pair will remain constant with increasing DNA length when the length of 

DNA is shorter than the effective length of DNA CT. The macrostate affinity per base 

pair will increase when the length of DNA is extended longer than the effective length of 

DNA CT. These interesting characteristics can be used to determine the effective length 

of DNA CT and its influence on affinity, if data are collected using enough varied lengths 

of DNA that the data set includes lengths longer and shorter than the effective DNA CT 

length. 

To emphasize the capability of these data to determine the effective DNA CT 

length, the calculated affinity of the two protein bound DNA state was plotted against 

DNA length for arbitrary values (Figure 4.10). The affinity for every DNA length 1 to 

1000 base pairs long was calculated using arbitrary values for the length of DNA CT, the 

affinity of a reduced protein, the affinity of an oxidized protein, the affinity change 

caused by DNA CT, and the proportion of reduced and oxidized protein entered into the 

equations above in an excel spreadsheet. Due to the lack of direct evidence showing the 

exact affinity of [4Fe4S] cluster containing proteins in their reduced or oxidized states the 
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oxidized protein was assumed to have an affinity value of 1 and the reduced protein has 

an affinity 1000 times weaker, because there is electrochemical evidence of a difference 

in affinity of approximately three orders of magnitude (19). The effective DNA CT 

length was set to either 200 base pairs or 400 base pairs. The amount of oxidized protein 

in the sample was assumed to be 0.1% and reduced protein was assumed to be 99.9%. 

DNA CT was assumed to either reduce the affinity to 1/10 or 1/100 the value that would 

be observed without CT. 

Additional simulated values were plotted in Figure 4.11 to determine how this 

plot changed with different amounts of oxidized protein. Having no oxidized or reduced 

protein prevents CT and keeps the affinity per base pair constant for different DNA 

lengths. Having a small amount of oxidation results in the largest difference between the 

minimum affinity where DNA CT < DNA length and the maximum affinity where DNA 

length >> DNA CT length. Increasing the amount of oxidation decreases this difference 

until it is barely noticeable at extremely large amounts of oxidation. 

 These simulated plots suggest that the DNA CT length can be determined by 

measuring the effective affinity of [4Fe4S] containing proteins with different DNA 

lengths. If enough data were collected for DNA lengths below and above the length of 

DNA CT a plot should show a length of DNA that corresponds to a sudden increase in 

the effective affinity of the protein for the duplex. This length of DNA will correspond to 

the effective DNA CT distance between proteins. 
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Figure 4.10 Plots of the effective affinity for two proteins bound to DNA under 
simulated conditions. In each case it was assumed that the reduced protein has 1000x 
weaker affinity for DNA when compared to the oxidized protein. The degree to which 
DNA CT decreases affinity manifests as a significant change for lengths near and below 
that distance, but becomes less noticeable at lengths significantly larger. A significant 
change in slope for a plot of the effective affinity vs DNA length should be observable 
when comparing lengths shorter than and longer than the DNA CT distance. 
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Figure 4.11 Plots of the effective affinity for two proteins bound to DNA under 
simulated conditions with varying proportion of oxidized protein. In each case it was 
assumed that the reduced protein has 1000x weaker affinity for DNA when compared to 
the oxidized protein. The length of DNA CT was assumed to be 400 bp. DNA CT was 
assumed to decrease the affinity of the two protein case to 1/100 its value without DNA 
CT. 
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Determining the effective DNA CT length will also allow for precise 

determination of the proportion of microstates where proteins can or cannot undergo 

DNA CT. Knowing the macrostate affinity, the proportion of microstates that can or 

cannot undergo DNA CT, the length of DNA used, and the DNA CT length, will allow 

for rough determination of the affinity change caused by DNA CT. Additional 

experiments could be performed to determine the proportion of reduced and oxidized 

proteins as well as their affinities, which will allow for more exact determination of the 

affinity change caused by DNA CT. Simply testing a single DNA length will not be able 

to determine these constants unless it is understood what side of the piecewise function 

the data lie on and they are modified accordingly.  

 

DISCUSSION 

Our model for how DNA repair proteins with 4Fe-4S clusters use DNA-mediated CT as a 

first step in locating lesions to repair is depicted in Figure 4.12.  Critical to the model is 

the fact that the DNA binding affinity of a protein that has a 4Fe-4S cluster is dependent 

on the oxidation state of the cluster.  For these proteins, the shift in reduction potential 

upon DNA binding necessitates a lower DNA binding affinity of two-to-three orders of 

magnitude for a 200 mV shift when in the reduced form (2+) compared to the oxidized 

form (3+) (19).  Figure 1 shows that the DNA-bound potential is significantly shifted 

from that reported in the absence of DNA (30). Therefore, as illustrated in Figure 4.12, 

4Fe-4S clusters in these proteins when they are freely diffusing are expected to be in the 

2+ state.  Upon binding to DNA, however, the proteins are activated towards oxidation.   
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Figure 4.12 Scheme depicting how repair proteins may use DNA-mediated signaling to 
search for damage. The model describes how DNA CT can drive the redistribution of the 
repair proteins into the vicinity of damage. [1] A protein with a reduced (orange-yellow) 
iron-sulfur cluster binds to DNA. [2] This protein’s iron-sulfur cluster is oxidized 
(purple-brown) by another DNA-bound redox-active protein. This oxidation can occur 
over long distances and through other DNA-bound proteins (grey) so long as the π-orbital 
stacking of bases between the reductant and oxidant is unperturbed. [3] Reduction 
promotes the repair protein’s dissociation from DNA. [4] The repair protein binds to an 
alternate DNA site where it is oxidized either by a guanine radical or another protein. [5] 
DNA lesions between proteins inhibit electron transport, so protein dissociation is not 
promoted. [6] Proteins that are now in close proximity to the lesion are able to move 
processively towards the damage for repair. 
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A given protein already bound to DNA in the oxidized form, perhaps oxidized from a 

distance by a guanine radical generated under oxidative stress (44), could thus be reduced 

in a DNA-mediated fashion by another distinct redox-active protein that binds within CT 

distance of the first protein.  Reducing this second protein would promote its dissociation 

from DNA.  This inter-protein signaling requires an undamaged path between the two 

proteins; intervening DNA damage prevents the protein from receiving reducing 

equivalents so that its dissociation is not promoted.  Effectively, this electron transfer 

event signals the repair protein to dissociate from undamaged regions and search for 

damage elsewhere in the genome.  If there is an intervening damage product that blocks 

CT, however, then the repair protein stays bound in the vicinity of damage, and the 

protein can move on a slower timescale to the local site in need of repair.  This process 

would lead to the redistribution of repair proteins in the vicinity of damage through an 

efficient scanning of the genome by proteins of similar redox potential.   

In essence, these proteins inform one another about the integrity of DNA by using 

DNA as a medium through which they transmit electronically encoded information.  

Because this signaling occurs over long distances, this mechanism would significantly 

reduce the time required to scan the genome, allowing for enzymes to repair the genome 

on biological timescales. Indeed, even when CT distances of only 100 bases, that which 

we have documented, are permitted in our model, a significant reduction in search time to 

scan the E. coli genome can be predicted (22). Importantly, other models have been 

investigated for how BER enzymes similar to EndoIII can scan the genome and locate 

their substrates. For example, it has been shown that one-dimensional sliding along DNA 

can be fast enough for glycosylases to come into contact with bases in the genome on the 
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order of seconds (45-47). Models for one-dimensional sliding do not, however, take into 

account protein traffic along the genome. It is important to note that DNA-mediated CT 

is not interrupted by intervening bound proteins as long as the proteins do not perturb the 

base pair stack. Thus sliding, hopping, and DNA CT models taken together offer an 

appealing means to explain how the search process may be optimized under the realistic 

conditions of the cell.  

Data from DNA-modified electrochemistry experiments show that the DNA-

bound reduction potential of DinG is remarkably similar to that for EndoIII, MutY, and 

SaXPD (19-21). As such, DinG is competent to shuttle electrons through DNA to or from 

EndoIII or MutY via its 4Fe-4S cluster, as would be required by the model proposed for 

the redistribution of these proteins to sites of damage.  As with EndoIII and MutY, we 

consider the redox potential of DinG to correspond to the [4Fe-4S]3+/2+ couple that is now 

accessible due to the negative potential shift associated with binding to the DNA 

polyanion (19). The ATP-dependent increase in current intensity observed for DinG on 

electrodes is consistent with previous results for SaXPD, except that the signal increase is 

nearly an order of magnitude higher than that observed for the thermophilic SaXPD (21).  

This substantial difference in signal increase is understandable based upon the 

significantly lower rate of ATP hydrolysis of SaXPD versus DinG at ambient 

temperature.  It is interesting to consider that the increase in signal intensity could be a 

general characteristic of these DNA enzymes that contain redox-active clusters, where 

they signal not only their presence, but also their activity.  For DinG, there could be 

signaling to upstream proteins that DinG is in the process of unwinding its substrate.  
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The atomic force microscopy experiments, moreover, support signaling between 

EndoIII and DinG in vitro.  Based on the model, we expect the redistribution of proteins 

that use DNA-mediated CT signaling onto strands containing a single base mismatch and 

away from fully matched duplex DNA, which is the observed result.  Proteins that are 

defective in DNA CT, furthermore, do not relocate to the mismatched strand, as predicted 

by our model. 

These data are not able to determine the effective DNA CT length nor a 

quantitative measurement of how much DNA CT reduces the effective affinity of 

proteins for DNA. The most adequate way to determine the effective DNA CT length 

may be to collect AFM data for proteins bound to DNA with different lengths.  Plotting 

the effective affinities for different lengths of DNA under identical conditions and 

determine the effective CT distance by looking for the length at which the piecewise 

function changes. These data could accurately determine CT distance and the effective 

change in affinity caused by DNA-mediated CT.  

Overall these results provide substantial evidence that E. coli enzymes from 

distinct repair pathways signal one another from a distance through DNA as long as the 

proteins remain competent to carry out DNA-mediated CT, as measured 

electrochemically.  The AFM experiments show that a single base mismatch in a 3.8 kb 

duplex is sufficient to promote the redistribution of the 4Fe-4S proteins to damaged 

DNA, driven by long range signaling.   Signaling through DNA CT is fast (ps) (48), can 

occur over long molecular distances, and allows for the binding of many intervening 

proteins, as long as their distortion of the DNA duplex is minimal.  As such, DNA CT 

provides a mechanism for efficient signal transduction on biological timescales, as the 
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cell requires.  Our proposed redistribution model is one way in which proteins may use 

DNA CT to efficiently scan the genome as a first step in finding lesions to repair and to 

prepare the genome for replication.  The utilization of DNA CT by enzymes to maintain 

cellular viability and genomic integrity represents a novel role for 4Fe-4S clusters in 

DNA-processing enzymes.  A growing body of evidence is emerging that highlights the 

importance of iron-sulfur clusters in enzymes that are involved in nearly every aspect of 

DNA metabolism.  The results here provide a basis for understanding the ubiquity of 

4Fe-4S clusters in proteins that maintain the integrity of the genome throughout the 

phylogeny. 
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Redox-active [4Fe4S] Clusters  

Modulate the DNA-Binding Affinity of 

DNA Repair Proteins 
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Introduction 

Exogenous and endogenous damage to deoxyribonucleic acid (DNA), originating 

from sources such as reactive oxygen species, UV irradiation, and environmental 

mutagens, causes lesions, mismatches, and base pair modifications in the genome of 

organisms on the order of millions per cell per day (1,2). Many repair mechanisms have 

evolved to uphold genome integrity by repairing DNA damage caused by oxidative stress 

(3,4). DNA repair systems utilize diverse teams of proteins to respond, search, and repair 

DNA damage in a timely fashion (5,6). An increasing number of DNA-processing 

enzymes, including many that are involved in the repair of DNA damage, have been 

found in archaea, bacteria, and eukaryotes to contain [4Fe4S] clusters (7-10). Elucidating 

the role of these clusters remains an active area of investigation (11-14). Initially, these 

clusters were proposed to serve primarily a role in maintaining protein structural 

integrity. However, recent experiments demonstrate that the presence of the [4Fe4S] 

cluster is not essential for the overall protein structure and thermal stability of a DNA 

repair enzyme, even though the cluster contributes significantly to DNA binding and 

enzymatic activity (15). Other studies detailing processes loading iron-sulfur clusters into 

repair proteins indicate that these multistep assembling procedures are resource-intensive 

and suggest that these clusters may have other roles (16-20). 

Calculations have been performed to estimate the time needed for these [4Fe4S] repair 

proteins to search for DNA damage, and the results indicate that 3D random collisions, 

2D sliding and hopping, and facilitated diffusion are not fast enough to explain the quick 

action of these proteins (21). Given the low copy number of unique DNA-processing 

[4Fe4S] enzymes, ranging from 500 to as low as 10 per cell (22,23), and the vast number 
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of DNA lesions, we have proposed that these proteins aid one another through signaling 

using DNA-mediated charge transport (CT) between their [4Fe4S] clusters to search for 

and locate DNA damage sites more efficiently (21,24,25). 

The highly ordered π-stacking structure of aromatic bases enables efficient CT through 

double-stranded DNA (dsDNA) (26-28). One single base pair mismatch, lesion, or abasic 

site that disrupts �-stacking can attenuate DNA-mediated CT significantly. (29-31) 

Ground state CT mediated by dsDNA has been measured over 100 base pairs of length, 

and, given a very shallow distance dependence, there is no clear indication for the 

maximum distance that charge can move through dsDNA (32). 

Experiments with DNA repair proteins in the native 2+ oxidation state for the cluster 

show that CT-active proteins containing [4Fe4S] clusters localize in the vicinity of 

damage (24,25,33). The DNA-mediated redox properties of [4Fe4S] proteins have been 

established in vitro using biochemical assays and DNA-modified electrodes. These 

experiments show that the [4Fe4S] cluster within a protein can be reduced to the 2+ state 

or oxidized to the 3+ state by CT through a DNA duplex. The efficiency of this process is 

diminished when the DNA contains a mismatch or abasic site located between the protein 

and the electrode (29-31). Furthermore these experiments have found that binding to 

DNA shifts the [4Fe4S]2+/3+ couple negative by about 200 mV to ca. +80 mV vs. NHE 

(34,35). This shift thermodynamically should increase the DNA-binding affinity of 

proteins with an oxidized [4Fe4S] cluster by at least two orders of magnitude when 

compared to the reduced protein. 

In this report, we systematically vary the oxidation state of the [4Fe4S] cluster and 

measure how the redox state of the metallocofactor modulates DNA binding and, in turn, 
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controls DNA damage detection activity of repair proteins. We specifically interrogate 

how oxidative stress influences the ability of [4Fe4S]-containing DNA repair proteins, 

Endonuclease III (EndoIII) and DinG, to bind preferentially to a 3 kilobase pairs (kbp) 

DNA duplex with a single-base mismatch in vitro. EndoIII is a base excision repair 

(BER) glycosylase that repairs oxidized pyrimidines in Escherichia coli (E. coli) (9). 

DinG is a DNA helicase that unwinds R-loops caused by invasion of DNA duplexes by 

nascent mRNA strands at transcription bubbles in E. coli (36). Both proteins have been 

identified to contain high-potential [4Fe4S] clusters (HiPIPs), which cycle between the 

[4Fe4S]3+ and [4Fe4S]2+ states at physiological potentials when bound to dsDNA. 

Previous reports have demonstrated that EndoIII and DinG can interact with each other in 

a synergistic fashion by localizing on mismatch-containing DNA strands in vitro and 

rescuing E. coli growth in vivo (33,37). Neither protein binds preferentially to a mismatch 

site, so the preference for binding the mismatch-containing strand is attributed instead to 

the ability of the mismatch to inhibit DNA CT (21,25,38). Here, we selectively oxidize 

and reduce the [4Fe4S] metallocofactors in EndoIII and DinG using electrochemical 

methods instead of adding chemical reagents, which could damage the proteins and DNA 

strands (39). We then utilize atomic force microscopy (AFM) to examine the DNA-

protein interactions with varying amounts of [4Fe4S] cluster oxidation. We further 

develop an electrostatic model based upon the electrostatic interactions between DNA 

and [4Fe4S] cluster proteins to understand the change in protein binding with oxidation 

state. 
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Materials and methods 

 General Procedures. Chemicals were obtained from commercial sources (Sigma 

Aldrich, Fisher Scientific, VWR, and New England Biolabs) and used without further 

purification unless otherwise specified. Protein buffer (pH 7.5, 20 mM NaH2PO4, 100 

mM NaCl, 5% glycerol, 1 mM EDTA) and DNA buffer (pH 7.0, 5 mM NaH2PO4, 50 mM 

NaCl) were prepared using Milli-Q water (>18 MΩ cm). Solutions were degassed and 

sparged with Ar overnight prior to conducting electrochemical experiments and preparing 

AFM samples inside an anaerobic chamber (Coy Lab Products). Experiments performed 

were replicated at least three times using different samples, and data presented are from 

representative trials. 

 Preparation of DNA-modified Electrodes for Electrochemical Studies. DNA 

sequences were prepared using phosphoramidites (Glen Research) on a DNA Synthesizer 

(Applied Biosystems 3400) or purchased from Integrated DNA Technologies and then 

purified by high performance liquid chromatorgraphy (HPLC, HP 1100, Agilent). 

Thiolated DNA was prepared according to established methods by modifying the 5' end 

using a C6 S–S phosphoramidite (32). Deprotection, purification, quantification, matrix-

assisted laser desorption ionization (MALDI) characterization using a Autoflex MALDI 

TOF/TOF (Bruker), annealing of DNA, fabrication of Au electrodes, and preparation of 

the DNA-modified Au electrodes were performed as described previously (32,40,41). The 

Au electrodes were assembled and then incubated in a solution (200 µL) of thiol-

modified dsDNA (50 µM) in DNA buffer for 24 h at room temperature in the dark. The 

electrode modified with a monolayer of thiolated-DNA was then backfilled with 
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mercaptohexanol (1 mM, 200 µL) for 45 min, washed three times with DNA buffer or 

protein buffer prior to adding protein samples to the DNA-modified Au surfaces. 

 DNA sequences used for EndoIII electrochemistry: 

HS-C6-5'-GT GAG CTA ACG TGT CAG TAC-3' 

   3'-CA CTC GAT TGC ACA GTC ATG-5' 

 DNA sequences used for DinG electrochemistry: 

HS-C6-5'-GT GCT GCA ACG TGT CTG CGC-3' 

   3'-CA CGA CGT TGC ACA GAC GCG AGA GCA  

GAC GTC AGA-5' 

  (HS-C6 = hexanethiol linker) 

 Protein Preparation and Characterization. Wild-type proteins (EndoIII and 

DinG) were prepared as described previously (33). Crude proteins were harvested from 

cells and purified using fast protein liquid chromatography (FPLC, Bio-Rad) at 4 °C. 

Protein concentration was quantified based on the [4Fe4S] cluster absorbance (ε410 = 

17000 M–1 cm–1) using a 100 Bio UV-visible spectrophotometer (Cary, Agilent) (42). 

Cluster loading was over 70%. Protein samples (5 μM) were sealed in Teflon-capped 

cuvettes under anaerobic condition and characterized at room temperature on a Model 

430 circular dichroism spectrometer (Aviv). Continuous-wave electron paramagnetic 

resonance (EPR) and pulse electron spin echo envelope modulation (ESEEM) 

experiments were conducted on an EMX X-band CW-EPR Spectrometer (Bruker) and an 

ELEXSYS-E580 X,Q-band Pulse EPR Spectrometer (Bruker) at 10 K with samples 

sealed in EPR tubes in the glove bag. 
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 Electrochemistry. Electrochemical studies were performed as described 

previously (34,41,42). Electrochemical experiments were carried out in a three-electrode 

set-up under an anaerobic atmosphere. The working electrode was a DNA-modified Au 

electrode, the counter electrode was a piece of freshly-polished Pt wire separated from 

the solution by an agarose gel tip filled with NaCl (3 M), and the reference electrode was 

a Ag/AgCl electrode stored in saturated NaCl solution modified with an agarose gel tip 

filled with NaCl (3 M). All redox potentials were converted to and reported versus the 

NHE scale. 

 Cyclic voltammetry, square wave voltammetry, and chronoamperometry were 

carried out using a 760 D Electrochemical Workstation (CH Instruments) at room 

temperature inside an anaerobic chamber. The atmosphere of the anaerobic chamber (< 1 

ppm O2, ca. 3.4% H2) was monitored using a CAM-12 O2 and H2 sensor (Coy Lab 

Products). The chamber was maintained O2-free by using two ventilated Pd catalyst packs 

(Coy Lab Products). Protein sample was placed on an electrode surface and successive 

potential cycling treatments between +0.4 V and –0.2 V vs. NHE at a scan rate of 100 

mV/s using cyclic voltammetry were taken until the signal stabilizes. Bulk electrolytic 

oxidation and reduction of proteins were conducted by holding the electrode potential at 

+250 mV and –50 mV respectively vs. NHE for 25 min which is when the current 

stabilizes at a value similar to the background current obtained in a trial without protein 

in solution. The amount of charge passed during bulk electrolysis was calculated by 

integrating the area under the background-subtracted curve in the current vs. time 

chronoamperometric plot. The integrated charge was then divided by the Faraday’s 

constant (96485 C/mol) to convert to the total number of moles of electrons passed (43). 
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Since a [4Fe4S] cluster undergoes a 1-electron redox process, the number of moles of 

electrons passed equals to the number of proteins oxidized or reduced (44). The number 

of moles of proteins present in the solution prior to bulk electrolysis was calculated from 

the molarity and volume of the protein solution used. The bulk electrolysis yield was then 

computed as the percentage of [4Fe4S] cluster protein oxidized or reduced in the whole 

protein sample. 

 Synthesis of DNA Strands for AFM Experiments. Short well-matched DNA 

duplex, long well-matched DNA duplex, and long DNA duplex with a C:A mismatch 

engineered in the middle were prepared using published protocols. (21,25,33) Briefly, 

four primers were synthesized, phosphorylated, and purified using phenol–chloroform 

extraction followed by ethanol precipitation. After drying under vacuum overnight, 

primers were used in PCR reactions using pUC19 as a template to generate two DNA 

duplexes containing 14-nucleotide single-strand overhang. Short and long duplexes were 

annealed and ligated together. Incomplete reaction resulted in a mixture of ligated (3767 

bp, ca. 1.2 µm in length) and unligated (1610 bp and 2157 bp, ca. 0.5 µm and 0.7 µm in 

length) dsDNA samples that were identical with the exception of the presence of the 

mismatch site engineered at the overhang region. The single-strand overhang of unligated 

dsDNA was conjugated to complementary DNA strands prior to AFM experiments. 

 AFM Experiments. AFM was conducted following protocol reported previously 

(21,25,33). Briefly, mica surfaces were freshly cleaved with tape. Protein stock solution 

containing either 5 µM EndoIII or 2 µM DinG was collected after bulk electrolysis. Stock 

DNA solution (6 ng/µL) contained the mixture of ligated duplexes and the two unligated 

duplexes in Tris elution buffer (EB, Qiagen). A solution with a final protein concentration 
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(12 nM) and a final DNA concentration (1 ng/µL) was prepared and incubated at room 

temperature for 1 h to allow for the loading of protein onto DNA to reach equilibrium 

under an anaerobic atmosphere and minimize cluster degradation. MgCl2 (200 mM, 1.5 

µL per 25 µL total volume) was added to promote DNA adsorption on mica for AFM 

experiments. After pipetting 10 µL of DNA/protein/MgCl2 solution onto a mica surface 

and incubating for 2 min, a continuous stream of deoxygenated Milli-Q water (2 mL) was 

slowly poured over the top portion of the modified mica surface while holding the piece 

of mica in a vertical position to linearize the DNA. A piece of kimwipe was used to dab 

dry the bottom edge of the mica surface. The surface was dried using a stream of N2 

flowing in the same direction as the water rinse for 2 min. pUC19 (2,686 bp, ca. 0.9 µm) 

linearized by HindIII (New England Biolabs) was used instead of the ligated and 

unligated DNA to quantify how the DNA-binding activity of EndoIII changes as a 

function of the ratio of oxidized [4Fe4S]3+ cluster in the protein sample. 

 AFM Instrumentation. FESPA-V2 AFM tapping mode probes (Bruker Nano, 

Inc.) with a mean force constant of 2.8 N/m and mean resonance frequency of 75 kHz 

were used in a MFP-3D AFM (Asylum Research). Images were captured in air with scan 

areas of 3×3 µm2 in tapping mode at a scan rate of 1 Hz in order to obtain images of 

quality high enough for AFM redistribution assay analysis (512 pixels/line, 512 

lines/image). The images were collected and analyzed blind. 

 Differential Binding Density Ratio Calculations. WSxM software (Igor Pro) 

was used to measure DNA contour lengths and height profiles of the proteins as described 

previously (21,25,33). DNA and proteins were identified using the relative differential 

height profiles between protein and DNA. For each data set, images from at least three 



142 

 

 

independent samples were analyzed, compared, and pooled (> 400 long and short 

duplexes). Distinguishable DNA and proteins were counted by hand. Duplexes that were 

overlapped, indistinguishable, or cut off by the edge of the image were excluded from our 

counting procedure. For each sample, the binding density ratio, r, (see Eq. 5.1) is defined 

as the ratio of the proteins bound on long duplexes divided by proteins bound on short 

duplexes, which serve as an internal normalization factor to correct changes in 

concentration across samples that may confound results. Data presented are from 

representative trials, and error bars represent standard error of all trials based on the total 

number of proteins observed (n > 200 for all experiments). The differential binding 

density ratio, dr, (see Eq. 5.2) is calculated by dividing the r from the mismatched sample 

by the r from the well-matched sample. 

𝑟𝑟 =
# 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
# 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 sℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

             𝐸𝐸𝐸𝐸. 5.1 

 

𝑑𝑑𝑑𝑑 =
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒

𝑟𝑟𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒
=

�# 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
# 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 �

�# 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤-𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
# 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 �

  𝐸𝐸𝐸𝐸. 5.2 

 Microscale Thermophoresis. Microscale thermophoresis (MST) was carried out 

using a Monolith NT.115 series instrument (NanoTemper) at 21 °C. Oligonucleotides (21 

bp in length) based on the DNA sequence used in the AFM studies were synthesized and 

annealed to generate well-matched DNA of 21 bp in length. For measurements of EndoIII 

primarily in the reduced state, native EndoIII with His6-tag (200 nM, 100 µL) was mixed 

with MO-L008 His-tag labeling kit RED-tris-NTA (100 nM, 100 µL, NanoTemper) for 
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30 min at room temperature. The sample was centrifuged at 4 °C and 15,000 g for 10 

min. Serial dilution of dsDNA as titrants was performed in PCR 8-strip tubes with 

individual caps (USA Scientific) following the user manual provided by NanoTemper. 

Labeled protein (50 nM) was mixed with DNA titrant in the dark for 10 min. Samples 

with a final dye concentration of 25 nM were then loaded into MO-K003 Monolith 

NT.115 hydrophobic capillaries (NanoTemper) and were measured at 60% LED and 40% 

MST power. DNA buffer with 0.05% Tween 20 was used for MST studies. For 

measurements of EndoIII primarily in the oxidized state, EndoIII (1 µM, 200 µL) was 

oxidized in the absence of O2 using DNA-modified electrode previously described. 

Oxidized EndoIII was labeled with RED-tris-NTA under anaerobic condition in an 

aluminum-wrapped Eppendorf tube. MST samples were loaded into hydrophobic 

capillary tubes inside a glove bag in the dark. Capillaries were sealed with HR4-328 

capillary wax (Hampton Research) using a hand-held wax pen (Hampton Research) in the 

absence of O2 and light.  

  DNA sequences used for MST measurements: 

5'-ACT GAA CTC TGT ACC TGG CAC-3' 

3'-TGA CTT GAG ACA TGG ACC GTG-5' 

Isothermal Titration Calorimetry 

 Isothermal titration calorimetry (ITC) was carried out using a iTC200 

MicroCalorimeter (MicroCal) at 21 °C. The DNA sequences used in ITC experiments 

were identical to the sequences used in MST experiments. For measurements of EndoIII 

primarily in the reduced state, native EndoIII (71 µM, 200 µL) was placed in the cell port 
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and 21-mer (355 µM, 40 µL) was used as the titrant. For measurements of EndoIII 

primarily in the oxidized state, EndoIII (7.1 µM, 200 µL) was oxidized using a DNA-

modified electrode in the glove bag previously described and the oxidized EndoIII 

solution was sealed in the glove bag with parafilm prior to transporting to the ITC 

instrument room. The oxidized EndoIII solution was then placed in the MicroCalorimeter 

cell port. 21-mer (71 µM, 40 µL) was used as the titrant. Residual glycerol in protein 

samples was removed via diafiltration using Ultracel centrifugal filters (10 kDa cutoff, 

Amicon Ultra). DNA titrant was dialyzed using Slide-A-Lyzer MINI dialysis units (2,000 

MWCO, Thermo Scientific) against DNA buffer overnight, degassed with Ar, and 

centrifuged at 14,000 rpm to remove gas bubbles. Titrant was added in 16 successions 

(2.5 µL each) and the reaction mixture was allowed to equilibrate for 540 s between each 

addition. The stirring speed was kept at 1000 rpm. 

 

 

DNA sequences used for ITC and EMSA measurements: 

5'-ACT GAA CTC TGT ACC TGG CAC-3' 

3'-TGA CTT GAG ACA TGG ACC GTG-5' (complement) 

 

Electrophoretic Mobility Shift Assay 

 Electrophoretic mobility shift assay (EMSA), also known as gel-shift assay, was 

conducted on radioactive hot benches. First, phosphorylation of the complement strand in 

the 21-mer (5 µM) used in MST and ITC experiments was carried out using radioactive 
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[γ-32P]-labeled ATP (6000 Ci/mmol 150 mCi/ml Lead, 5 mCi, PerkinElmer) by T4 PNK 

(New England Biolabs) at 37 °C for 2 h and heat inactivated at 80 °C for 15 min. 

Radioactive 21-mer ssDNA was removed from the crude reaction containing unused ATP 

and denatured T4 PNK using Oligonucleotide Cleanup Kit (Monarch) by precipitating 

the 21-mer ssDNA onto the spin column using EtOH, then washed with 70% EtOH PE 

buffer solution for 3 times, and recovered using EB buffer (50 µL). Labeled 21-mer 

ssDNA was then gel-purified using a 20% polyacrylamide urea denaturing gel. The 

desired 21-mer ssDNA band was then visualized using an X-ray developer (Kodak) and 

excised using a razor blade. The excised band was re-dissolved in triethylammonium 

acetate buffer (TEAA, 100 mM, 1 mL) and incubated at 37 °C overnight. Water was 

removed from the reaction by SpeedVac and salt was removed by passing through Micro 

Bio-Spin 6 column (Bio-Rad) twice. Annealing titration between radio-labeled 21-mer 

complement strand and unlabeled 21-mer ssDNA that had been previously heated to 90 

°C for 10 min and cooled to room temperature over a period of 3 h was conducted using 

10% polyacrylamide native gel (Bio-Rad) at 4 °C and 50 V in 0.5X Tris/Borate/EDTA 

(TBE) buffer. Radioactively labeled 21-mer dsDNA was then degassed with Ar and 

incubated with native or oxidized EndoIII for 1 h in pH 7 DNA buffer with 20% glycerol 

to reach equilibrium under anaerobic condition. To quantify protein-DNA interaction, 

EMSA was then carried out using 10% polyacrylamide native gel (Bio-Rad) at 4 °C and 

50 V in 0.5X TBE buffer inside the glove bag. The protein-DNA and DNA bands were 

transferred to a piece of Amersham Hybond-N nucleotide blotting paper (GE Healthcare) 

in transfer buffer (25 mM Tris-HCl, 200 mM glycine, 10% methanol, pH 8.5) using a 

HEP-1 Semidry Electroblotter (Thermo Scientific Owl). Exposure time was determined 
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using a LS 6000SC Scintillation Counter (Beckman Coulter). The blotting film 

containing the transferred band was then exposed to a phosphorimaing storage screen 

(GE Healthcare) and imaged using a Typhoon FLA 9000 Imager (GE Healthcare). 

 Electrostatic Modeling. Distances between the [4Fe4S] cluster of EndoIII and 

the phosphate groups on the backbone of the DNA-bound EndoIII in the native state were 

obtained from a published crystal structure (PDB: 1ORN) (45). The 1ORN crystal 

structure also provided the number of phosphates interacting with protein residues. The 

dielectric constant of the portion of EndoIII of interest was estimated by calculating the 

average dielectric constant of the amino acid residues surrounding the [4Fe4S] cluster 

and in between the [4Fe4S] cluster and the bound DNA strand. In this electrostatic model, 

the [4Fe4S] cluster and the phosphate groups on the DNA backbone were modeled as 

point charges (46). The potential energy (PE) between two charged particles was 

calculated using Eq. 5.3 

𝑃𝑃𝑃𝑃 =
(𝑞𝑞1)(𝑞𝑞2)

4 𝜋𝜋 𝜀𝜀0 𝜀𝜀𝑟𝑟 𝑑𝑑
           𝐸𝐸𝐸𝐸. 5.3 

with 𝑞𝑞 = charge, 𝜀𝜀0 = permittivity of free space, 𝜀𝜀𝑟𝑟 = dielectric constant, and 𝑑𝑑 = 

distance between charges. The difference in

PE between EndoIII in the reduced and oxidized states was computed by calculating the 

difference between the total PE for the [4Fe4S]3+ case and the total PE for the [4Fe4S]2+ 

case. The experimental energy difference between the 3+ case and the 2+ case was 

calculated using the Nernst equation by converting the redox potential shift recorded 
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using electrochemical techniques (34). The electrostatic model was supported by 

comparing the modeled PE and the experimental energy difference. 

Results 

 Oxidation and Reduction of [4Fe4S] Proteins using Electrochemical 

Methods. Cyclic voltammetry (CV) was used to investigate the electrochemical 

properties of EndoIII on DNA-modified Au electrodes (Figure 5.1). These data, along 

with square wave voltammetry and differential pulse voltammetry measurements (Figures 

5.2, 5.3) show that within our potential window EndoIII exhibits a single redox couple 

with a DNA-bound midpoint potential of about +80 mV vs NHE, consistent with 

previous measurements of the [4Fe4S]2+/3+ redox couple in EndoIII when associated to 

DNA (34,35,39). 

 Solutions of primarily reduced or primarily oxidized EndoIII with an intact 

[4Fe4S] cluster were generated using bulk electrolysis and confirmed using electron 

paramagnetic resonance (EPR) and circular dichroism (CD) (Figure 5.4, 5.5). Randles-

Sevcik analysis (Figures 5.6, 5.7) demonstrates that there is exchange between proteins in 

solution and on the surface of the DNA-modified electrode so that a constant applied 

potential could oxidize or reduce the majority of proteins in the sample. The CVs shown 

in Figure 5.1 identify potentials at which the [4Fe4S] clusters of the proteins can be 

oxidized or reduced, which allow us to conduct bulk electrochemical oxidation and 

reduction of EndoIII at +250 mV and –50 mV vs. NHE, respectively. Similar electrolysis 

experiments were utilized to examine primase using its [4Fe4S] cluster as a redox switch 

(47). Figure 5.1 also shows the oxidation of EndoIII on a DNA-modified electrode held at 

a constant potential for 25 min to drive electrolysis to completion. Applying an oxidizing 
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Figure 5.1 Electrochemistry of EndoIII on DNA-modified electrodes. (a) CVs at a scan rate of 100 
mV/s and (b) bulk electrolysis held at +250 mV vs. NHE in DNA buffer (pH 7.0, 5 mM NaH2PO4, 
50 mM NaCl) without (black) and with 1 µM EndoIII (red) using DNA-modified electrodes 
passivated with mercaptohexanol.  

(a) 

(b) 
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Figure 5.2 Cyclic voltammetry of EndoIII on a duplex DNA modified electrode. CVs in 
DNA buffer (pH 7.0, 5 mM NaH2PO4, 50 mM NaCl) with 100 nM EndoIII (black), 1 µM 
EndoIII (red), and 10 µM EndoIII (blue) added at a scan rate of 100 mV/s. Emid = +80 
mV vs. NHE. 
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Figure 5.3 Square wave voltammetry (SWV) and differential pulse voltammetry (DPV) 
of EndoIII on a dsDNA modified electrode. (a) Cathodic and (b) anodic SWVs in DNA 
buffer (pH 7.0, 5 mM NaH2PO4, 50 mM NaCl) with 100 nM EndoIII (black), 1 µM 
EndoIII (red), and 10 µM EndoIII (blue) added. (C) Cathodic (red) and anodic (black) 
DPVs in DNA buffer (pH 7.0, 5 mM NaH2PO4, 50 mM NaCl) with 10 µM EndoIII 
added. 
 

(a) (b) 

(c) 
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Figure 5.4 UV-visible absorbance spectra of EndoIII. The [4Fe4S] redox cofactor 
exhibits an Ɛ of 17,000 M-1 cm-1 at 410 nm. Cluster loading was at least 70%.  
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Figure 5.5. The influence of bulk electrolysis on EndoIII structure as monitored by circular 
dichroism. (Top) Bulk electrolysis in DNA buffer (pH 7.0, 5 mM NaH2PO4, 50 mM NaCl, black 
line) with 1 µM EndoIII added (red line) held at –50 mV vs. NHE. Only a small portion of the 
proteins present in the solution was reduced, suggesting that the native or as-isolated oxidation 
state of the protein is primarily in the reduced [4Fe4S]2+ state. (Bottom) Circular dichroism 
spectra of DNA buffer (pH 7.0, 5 mM NaH2PO4, 50 mM NaCl, black line) with native (green), 
reduced (blue), and oxidized (red) EndoIII (5 µM, 1000 µL) added. The slight change in signal 
intensity is likely due to a change in the optical density. Measuring the ratio of the CD signal at 
222 nm to that at 208 nm is typically used to analyze α-helical proteins. Coiled coils and isolated 
α-helix exhibit ratios of 1.1 and 0.9, respectively. Here, native, reduced, and oxidized EndoIII 
exhibit ratios of ca. 1.15, suggesting that EndoIII retains its coiled coils and that the overall 
structure of EndoIII is not perturbed by bulk electrolysis. 
 

Ratio(222/208) 

1.15 ± 0.13 

1.15 ± 0.15 

1.16 ± 0.18 
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Figure 5.6. Cyclic voltammetry of EndoIII on a dsDNA modified electrode with varying 
scan rates. CVs in DNA buffer (pH 7.0, 5 mM NaH2PO4, 50 mM NaCl) with 10 µM 
EndoIII added at a scan rate of 50 (black), 100 (red), 200 (blue), 400 (green), and 800 
(orange) mV/s. 10 µM is chosen as the concentration to allow for clear visualization of 
the redox waves. 
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Figure 5.7. Randles-Sevcik plots of the peak currents of EndoIII. 10 µM EndoIII was plotted at 
various scan rates versus (a) the square root of the scan rate, and (b) the scan rate. The poor linear 
relationship observed for the Randles-Sevcik plot of EndoIII with the peak current versus the scan 
rate indicates that the redox event does not originate from a surface-bound species and that 
EndoIII does not adsorb very strongly onto DNA-modified electrodes under this condition. By 
contrast, the peak currents of both the anodic and cathodic peaks scale with the square root of the 
scan rate, indicating that under these conditions the redox reaction of EndoIII is in a diffusion-
controlled regime. Therefore, at concentrations at or below 10 µM, EndoIII likely diffuses from 
the bulk solution to the electrode surface to undergo redox reaction upon binding to DNA and 
then diffuses back into the bulk solution to allow for freshly exposed DNA surfaces for other 
copies of EndoIII to approach and participate in subsequent redox events. 

(a) 

(b) 
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or reducing potential to a solution with protein present results in a larger magnitude 

current than measured in the buffer control (Figure 5.1). This difference is indicative of 

the proteins being oxidized or reduced on the DNA-modified electrode surface, and the 

current decreases over time as the oxidation or reduction approaches completion (> 99% 

yield). We then utilized EPR to characterize the reduced and oxidized EndoIII generated 

by bulk electrolysis (Figure 5.8). The reduced EndoIII is EPR-silent and the oxidized 

EndoIII exhibits an EPR signal with a g value of 2.07, which are consistent with 

[4Fe4S]2+ and [4Fe4S]3+ clusters, respectively (48). 

 Binding Affinity Measurements Comparing EndoIII with Oxidized and 

Reduced [4Fe4S] Cluster. AFM was used to explore how the DNA-binding activity of 

EndoIII changes as the amount of oxidized and reduced clusters in the protein sample 

was varied (Figure 5.9). We then recorded the number of EndoIII present on the 

linearized pUC19 plasmid DNA as a function of the proportion of oxidized [4Fe4S]3+ 

cluster in the protein sample. As the ratio of EndoIII with oxidized [4Fe4S]3+ 

metallocofactors increases, the number of EndoIII bound on DNA increases (Figure 5.9). 

This trend indicates that oxidized EndoIII binds more tightly to DNA than does the 

reduced protein. We then utilized electrophoretic mobility shift assay (EMSA), 

isothermal titration calorimetry (ITC), and microscale thermophoresis (MST) to probe the 

non-specific DNA-binding affinity of EndoIII to well-matched dsDNA of 21 bp in length. 

In all three cases, we observed an increase in binding affinity of EndoIII to dsDNA upon 

oxidizing the [4Fe4S] metallocofactor from the 2+ state to the 3+ state (Table 5.1).  

 ITC is not anaerobic and EMSA generates O2 in situ, both of which result in 

cluster degradation that prevent accurate binding affinity measurements. EMSA is  
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Figure 5.8 Continuous wave electron paramagnetic resonance spectra of EndoIII. (a) 2 
µM (blue) and 50 µM (black) oxidized EndoIII prepared under anaerobic conditions, (b) 
reduced (black) and oxidized (red) 5 µM EndoIII exposed to ambient air, and (c) pulse 
electron spin echo envelope modulation (ESEEM) spectra of reduced (black) and 
oxidized (red) 20 µM EndoIII in protein buffer (20 mM NaH2PO4 pH 7.5, 100 mM NaCl, 
5% glycerol, 1 mM EDTA). Instrument settings: modulation amplitude = 10 G at 100 
kHz; frequency = 9.37 GHz; microwave power = 4.7 mW; and temperature = 10 K. for 
samples prepared under an N2 atmosphere, an absence of an EPR signal with a g value of 
2.01 indicates that no detectable [3Fe4S]1+ degradation product was generated. As a 
positive control, for the oxidized EndoIII sample that was exposed to O2 by passive 
diffusion in ambient air, we observed an EPR signal at a g value of 2.01, which is 
indicative of the presence of degraded [3Fe4S]1+ clusters. 

(c) 

(a) (b) 
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Figure 5.9 AFM visualization of EndoIII binding to DNA. (a) Visualization of proteins on DNA 
duplexes using AFM. The relative height of proteins allows for them to be distinguished from DNA 
and counted. (b) Plot of the amount of EndoIII bound on a DNA strand as a function of the extent 
of oxidation of the protein samples. The 33% and 66% oxidized EndoIII samples were prepared by 
mixing reduced and oxidized EndoIII in a 2:1 and 1:2 ratios, respectively. Curved lines in the 
schematic on the right represent linearized pUC19 DNA duplexes. 

  

(b) 

(a) 
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Table 5.1 Binding affinity measurements of EndoIII to 21-mer dsDNA in the 

reduced and oxidized forms using MST, ITC, and EMSA. 

 

KD (Red) and KD (Ox) denote the DNA-binding affinities of proteins with [4Fe4S]2+ and 

[4Fe4S]3+ clusters, respectively. Variations in KD obtained across the three techniques are 

likely due to differences in experimental conditions. (see S.I. for further discussion) DNA 

buffer (pH 7.0, 5 mM NaH2PO4, 50 mM NaCl) was used for all cases with the following 

modifications: for MST 0.05% Tween 20 was added and for EMSA 20% glycerol was 

added. The buffer ionic strength in all three cases was kept constant. MST was carried 

out at 21–24 °C using wax-sealed capillary tubes, ITC was conducted at 21 °C in air, and 

EMSA was conducted at 4 °C in an anaerobic glove bag. N > 3 for all three methods. 
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commonly used to measure the binding affinity between proteins and DNA. The EMSA 

experimental setup, even when conducted in an anaerobic chamber at 4 °C, is not 

compatible with oxidized EndoIII. The [4Fe4S] clusters of DNA repair proteins in the 

oxidized state degrade in the presence of O2. Efforts including pre-running gel in 

degassed buffer and then switching to freshly-degassed buffer prior to protein loading 

were not successful. The amount of O2 generated by the Pt electrodes during the gel 

running process resulted in cluster degradation. For an EMSA gel-shift experiment, about 

20 pmol (10 µL per lane) of protein is typically used.  

The amount of O2 generated per second during a gel-shift experiment is about 10 

µmol (= 50 V × 0.02 A × 1 s × 1 mol / 96485 C), and the total amount of O2 generated 

over the course of a 4-hour EMSA gel-shift experiment is about 37 mmol. Since the 

solubility of O2 in aqueous solution is about 1.2 × 10–6 mol cm-3, the maximum amount 

of dissolved O2 saturated in 1 L TBE buffer is ca. 1.2 mmol. The O2 diffusion coefficient 

in aqueous medium is about 1.9 × 10–5 cm2 s-1. The amount of O2 liberated during a gel-

shift experiment is more than enough to saturate the running buffer with O2. Accordingly, 

oxidized EndoIII likely is overwhelmed by O2 generated in situ during the gel running 

process. ITC measurements show a 28× increase in the affinity of the predominantly 

oxidized protein sample for DNA when compared to the predominantly reduced sample. 

However, instrument limitation prevented ITC from being operated anaerobically. We 

therefore switched to using MST to determine the DNA binding affinity of EndoIII. MST 

is a technique that allows for anaerobic determination of the binding affinity of O2-

sensitive proteins such as FeS cluster biogenesis machinery to their substrates.  
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 We utilized MST to probe the binding affinity of EndoIII to DNA in different 

redox states. MST results show that oxidized EndoIII with [4Fe4S]3+ cluster binds 21-

mer dsDNA 550 times stronger than EndoIII predominantly in the reduced state (Figure 

5.10). This comparison may understate the true difference in affinity between the reduced 

and oxidized proteins, because it is unlikely that bulk electrolysis has completely 

removed all oxidized protein from the reduced sample. The presence of a small amount of 

oxidized protein will convolute the affinity measurement in any sample, even when the 

oxidized protein is in low concentration compared to the reduced protein, because the 

oxidized protein has a significantly higher affinity for DNA. This phenomenon infers that 

the values measured by MST  that show a 550× change in affinity between the two 

protein redox states may be obfuscated by a change in the amount of oxidized protein 

present in the sample. Calculating the 99% confidence interval for the ratio of measured 

affinities suggests that the oxidized sample has between 276× and 1157× increase in 

affinity over the reduced sample. 

To prevent cluster degradation, we utilized MST for anaerobic binding affinity 

measurement (49). MST results show that EndoIII predominantly in the reduced state 

exhibits a KD of 6.1 µM ± 0.9 µM for unmodified duplex DNA and EndoIII 

predominantly in the oxidized state displays a KD of 0.011 µM ± 0.002 µM. Thus, we 

observed a 550 ± 130 times increase in DNA-binding affinity of EndoIII upon oxidation, 

which further supports the trend observed using AFM that the EndoIII occupancy on 

DNA increases upon oxidation. 
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Figure 5.10. MST traces of native and oxidized EndoIII. MST plots of (c) native and (d) 
oxidized EndoIII. 21-mer was used as the titrant. A 550-fold increase in binding affinity 
was observed for EndoIII upon oxidation. 

 

  

(c) (d) 

(a) (b) 
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 Electrostatic DNA-Protein Binding Model. To understand the origin of the 

redox-modulated affinity, we developed an electrostatic model that investigates the 

perturbation in the electrostatic interactions between DNA and proteins upon the addition 

or removal of an electron at the [4Fe4S] metallocofactor (Figure 5.11). This electrostatic 

model incorporates atomic distances obtained from crystallographic data and knowledge 

regarding the DNA-binding pocket from published literature (9,45,50). The crystal 

structure (PDB: 1ORN) revealed that eight negatively-charged phosphates on the DNA 

backbone not bound by cations interact with the amino acid residues of EndoIII. Another 

crystallographic study demonstrated that a high-potential iron-sulfur protein (HiPIP) 

undergoes only minor structural changes upon toggling the redox state of the [4Fe4S] 

cluster between 2+ and 3+ (51). Therefore, we assumed the coordinates of the atoms in 

the EndoIII protein structure are the same for both the [4Fe4S]3+ and [4Fe4S]2+ cases. 

The binding energy resulting from electrostatic interactions between the positively 

charged [4Fe4S] cluster and the negatively-charged phosphate groups on the DNA 

backbone are calculated to be ca. 7 kcal/mol, comparable to the energy change measured 

from the redox potential shift of EndoIII upon binding DNA using the Nernst equation, 

ca. 5 kcal/mol (52).  This model shows that the difference in binding affinity for the two 

oxidation states, [4Fe4S]2+ and [4Fe4S]3+, can be explained primarily by the electrostatic 

interactions between the cluster and DNA without a substantial protein structural change. 
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Figure 5.11 Model describing the electrostatic interactions between EndoIII and DNA. 
Eight phosphates on the DNA backbone interact with the amino acid residues of EndoIII. 
The average distance between the redox-active metallocofactor and the eight phosphate 
groups is about 18 Å. The neighboring phosphate groups that do not directly interact with 
the protein binding surface are not crucial in this calculation because (1) PE ∝ 1/d, (2) d 
increases for phosphate groups further away from the [4Fe4S] cluster, and (3) the 
dielectric constant (𝜀𝜀𝑟𝑟) between the two point charges needs to take into account of the 
intervening water molecules that have a 𝜀𝜀𝑟𝑟 of 80. The modeled ΔPE is ca. 7 kcal/mol, 
while the energy difference estimated from electrochemical studies is ca. 5 kcal/mol. 
Similar modeled ΔPE is also obtained for other DNA-processing proteins containing 
[4Fe4S] clusters or flavin cofactors, such as MutY, Dna2, and photolyase.  
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 Signaling Between Oxidized and Reduced EndoIII to Search for DNA 

Damage. We then examined the effect of the redox state of the [4Fe4S] metallocofactor 

on the ability of EndoIII to differentiate between well-matched (WM) and mismatched 

(MM) DNA strands by AFM. Solutions of EndoIII with controlled amounts of oxidized 

[4Fe4S]3+ cluster and reduced [4Fe4S]2+ cluster were incubated with two different 

mixtures of DNA and then the two sets of AFM results were compared. The first DNA 

mixture contained long and short duplexes with no mismatches, while the second DNA 

mixture  contained both short DNA duplexes with no mismatches and long DNA 

duplexes with a single C:A mismatch, which is not a native substrate for EndoIII but does 

inhibit DNA CT, engineered in the middle of the strand. The short WM DNA duplexes 

are identical in the two sets of experiments so the binding distribution profiles across the 

two data sets can be normalized and compared to one another (Table 5.2). Figure 5.12 

shows a bar graph summarizing the ability for solutions of EndoIII with varying 

proportions of oxidized proteins to bind preferentially to DNA with a single-base 

mismatch. Here we observed that the ability for EndoIII to differentiate between MM and 

WM DNA strands decreases as the percentage of oxidized protein in the sample 

increases. It should be noted that these data could also be used to determine the change in 

binding affinity with oxidation. On this basis, we found a 4–30 fold increase in DNA-

binding affinity upon oxidizing the [4Fe4S] cluster of EndoIII. The trend observed is  

consistent with that obtained using other techniques, but the magnitude of change is 

significantly smaller.
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Condition 
# of Short 

DNA 

# of 
Proteins on 
Short DNA 

Proteins: 
Short DNA 

# of Long 
DNA 

# of 
Proteins on 
Long DNA 

Proteins: 
Long DNA 

< 1 % Ox - 
MM 280 496 1.77 49 174 3.55  

< 1 % Ox - 
WM 139 185 1.33  31 49 1.58  

33 % Ox - 
MM 

140 192 1.37  23 55 2.39  

33 % Ox - 
WM 372 428 1.15  69 100 1.45  

66 % Ox - 
MM 352 594 1.69  49 134 2.73  

66 % Ox - 
WM 375 473 1.26  76 129 1.70  

> 99 % Ox 
- MM 169 210 1.24  25 39 1.56  

> 99 % Ox 
- WM 108 137 1.27  22 30 1.36  

Table 5.2 Number of DNA and proteins counted in the AFM redistribution assay using 
EndoIII oxidized to various extent. 
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Figure 5.12 AFM redistribution assay of EndoIII samples oxidized to various extent. The 33% and 
66% oxidized EndoIII samples were prepared by mixing reduced and oxidized EndoIII in a 2:1 and 
1:2 ratios, respectively. In the schematic on the right, short curved lines, long curved lines, and long 
curved lines with a red feature in the middle represent short well-matched DNA duplexes, long 
well-matched DNA duplexes, and long DNA duplexes with a C:A mismatch engineered in the 
middle.  
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This difference likely can be attributed to the protein-DNA sample not being at 

equilibrium in the AFM experiment, because of kinetic limitations associated with tight 

DNA binding, precluding rapid, full redistribution of proteins along the DNA. 

 Signaling Between EndoIII and DinG to Search for DNA Damage. This 

change in binding density ratio, associated with a change in oxidation state, could be used 

as a diagnostic of oxidation state in the AFM experiment and therefore a means to 

identify redox signaling between proteins. We evaluate whether DinG, another DNA-

processing enzyme containing a [4Fe4S] cluster, exhibits the same redox-modulated 

ability as EndoIII to bind preferentially to DNA duplexes with an intervening lesion. We 

chose to incorporate DinG because it has been shown to carry out DNA signaling with 

EndoIII; both proteins in the native oxidation state search for DNA damage in vitro and 

there is evidence that EndoIII helps DinG rescue defective growth in vivo (33). DinG 

exhibits a DNA-bound redox potential comparable to that of EndoIII (Figures 5.13 and 

5.14) and also shows that the protein in solution exchanges with the surface similar to 

EndoIII (Figures 5.15 and 5.16). Thus we subjected DinG to bulk electrolysis conditions 

similar to EndoIII to generate DinG with oxidized and reduced [4Fe4S] metallocofactors. 

Analogous to EndoIII, oxidizing DinG decreases its ability to bind preferentially to DNA 

duplexes with a single-base mismatch (Figure 5.17). 

 Mixtures of reduced DinG and oxidized EndoIII, as well as mixtures of oxidized 

DinG and reduced EndoIII, were then prepared to address whether a reduced protein can 

signal with a different oxidized protein. This cross experiment includes four scenarios: 

two contain proteins at the 33% overall oxidized state, and two contain proteins at the 
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Figure 5.13 Cyclic voltammetry of DinG incubated with a dsDNA modified gold 
electrode. CVs in protein buffer (20 mM NaH2PO4 pH 7.5, 100 mM NaCl, 5% glycerol, 1 
mM EDTA, black line) with 2 µM DinG added (red line) at a scan rate of 100 mV/s. 
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Figure 5.14 Squarewave and differential pulse voltammetry of DinG incubated on a 
duplex DNA modified gold electrode. (a) Cathodic SWVs, (b) anodic SWVs, and (c) 
cathodic and anodic DPVs in protein buffer (20 mM NaH2PO4 pH 7.5, 100 mM NaCl, 
5% glycerol, 1 mM EDTA) with 2 µM DinG added. 

(c) 

(a) 

(b) 
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Figure 5.15 Cyclic voltammetry of DinG incubated with a dsDNA modified gold 
electrode at different scan rates. CVs in 2 µM DinG in protein buffer (20 mM NaH2PO4 
pH 7.5, 100 mM NaCl, 5% glycerol, 1 mM EDTA) at a scan rate of 25 (black), 50 (red), 
100 (blue), 200 (green), 400 (orange), and 800 (purple) mV/s. 
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Figure 5.16 Randles-Sevcik plots of DinG electrochemistry. The background-subtracted 
peak currents of 2 µM DinG were plotted versus (a) the square root of the scan rate, and 
(b) the scan rate. 

 

(a) 

(b) 
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Figure 5.17 AFM redistribution assays for mixtures of DinG and EndoIII. Different protein 
mixturesmixtures were incubated with DNA: (a) oxidized and reduced DinG, (b) oxidized EndoIII 
with reduced DinG, and (c) oxidized DinG with reduced EndoIII. The 33% and 66% oxidized 
samples in (b) were prepared by mixing reduced DinG and oxidized EndoIII in a 2:1 and 1:2 ratios, 
respectively. The 33% and 66% oxidized samples in (c) were prepared by mixing reduced EndoIII 
and oxidized DinG in a 2:1 and 1:2 ratios, respectively. (d) Our proposed DNA damage search 
model for DNA-processing enzymes carrying redox-active [4Fe4S] clusters that uses DNA-
mediated CT as the first step of damage detection. Reduction of the [4Fe4S] cluster through 
unperturbed WM DNA allows for proteins to release from the DNA and search elsewhere for 
damage. If, however, damage is present along the DNA, the protein will not be reduced and will 
localize in the vicinity of the DNA damage. 
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66% overall oxidized state. Figure 5.17 shows the results of the cross experiments. When 

the overall protein oxidation is either 33% and 66%, EndoIII and DinG exhibit 

intermediate binding density ratios in between the values obtained for predominantly 

reduced and predominantly oxidized protein samples. These findings demonstrate that 

reduced proteins from different repair pathways can undergo DNA-mediated redox 

signaling with oxidized proteins to collaboratively search for and preferentially bind to 

DNA duplexes with a single-base mismatch. 

DISCUSSION 

 Redox-Active [4Fe4S] Cluster of Repair Proteins Functions as a DNA-

Binding Affinity Switch. Non-specific binding to DNA is an important first step in the 

damage search and repair process (3-5,24). The binding affinity measurements reported 

in this work clearly indicate that the oxidized protein has an increased binding affinity for 

DNA relative to the reduced protein. This increased affinity is consistent with 

electrochemical results that previously demonstrated binding to DNA shifts the redox 

potential of the [4Fe4S]2+/3+ couple of the cluster negative by about 200 mV, which 

indirectly showed that oxidation increases the protein/DNA binding affinity by at least 

two orders of magnitude (34,35,53,54). 

 We devised an electrostatic model to understand the underlying chemistry that 

dictates the apparent change in DNA-binding affinity. We assumed that changing redox 

state of the [4Fe4S] cluster does not significantly alter the structure of the protein, 

consistent with minimal structural changes observed in recent crystallographic studies on 

a HiPIP that is reduced or oxidized (51), EndoIII with and without DNA (9,45,50), and 

MutY spectroscopically examined with and without a cluster (15). Utilizing these 
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structural data, we developed an electrostatic model to understand how the redox state of 

the [4Fe4S] cluster affects the charge-charge interaction. Crystallographic data confirms 

that EndoIII binds to the negatively-charged phosphate groups on the DNA backbone via 

a series of positively-charged residues (45). Our electrostatic model demonstrates that the 

redox-modulated DNA-binding affinity can be fully explained by the electrostatic 

interactions between the [4Fe4S] cluster and the phosphate groups on the DNA backbone 

without a significant structural change between oxidized and reduced DNA-bound forms. 

 Redox-Modulated DNA-Binding Affinity of [4Fe4S] Repair Proteins 

Regulates DNA-mediated CT Signaling. AFM experiments reveal that the oxidation 

state of the [4Fe4S] cluster influences the ability of the protein to localize on DNA 

duplexes with single-base mismatches. The total amount of oxidation is important for the 

efficiency of this DNA damage sensing process. Despite starting with oxidized protein 

that is unable to localize preferentially on mismatch-containing DNA, the addition of 

reduced protein with different enzymatic function is able to achieve preferential binding. 

Intriguingly, the amount of oxidized [4Fe4S] cluster among all proteins in a mixture is a 

better predictor of damage recognition than the identity of the proteins with initially 

reduced or oxidized [4Fe4S] metallocofactors; thus it can be used as a diagnostic of 

signaling between proteins. 

 To mimic cellular oxidative stress, our group previously used H2O2 to oxidize the 

[4Fe4S] cluster in EndoIII. These experiments found that H2O2 increases the preference 

of [4Fe4S] cluster proteins for DNA duplexes containing a mismatch (21). These results 

are fully consistent with the idea that repair proteins with [4Fe4S]2+ clusters sense and 

respond to oxidative stress via cluster oxidation to the 3+ state. However, it is unclear 
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what other effects the H2O2 may have on the proteins and DNA in this system. The 

electrochemical oxidation and reduction presented here provides a milder and well-

controlled condition that allows for changing the redox state of [4Fe4s] clusters. 

Together, these data confirm that oxidative stress can generate repair proteins with 

[4Fe4S]3+ clusters that can aid the DNA damage search. It is important to note that the 

short incubation time in both of these experiments, which was required for sample 

stability, means that the protein-DNA binding may not be at equilibrium. If anything, 

giving more time to equilibrate should result in higher preferential binding to the duplex 

with the mismatch. 

 These observations using AFM are consistent with a DNA damage search scheme 

based on DNA-mediated redox signaling between proteins with oxidized and reduced 

[4Fe4S] clusters (Figure 5.17). DNA-mediated CT can occur between two proteins and, 

our data shows conclusively, this CT results in a change in affinity for each of the 

proteins. Incorporating a single C:A mismatch within a DNA duplex, even though it is not 

a preferred substrate for either EndoIII or DinG (27,31), is able to increase the number of 

proteins bound to that duplex relative to a duplex with no mismatches. In these 

experiments the mismatch only serves to disrupt DNA CT between proteins and, 

therefore, DNA CT prevents the exchange of affinity that results from changing the redox 

state of the [4Fe4S] clusters. This change in redox state increases the effective affinity of 

these proteins for a duplex containing a mismatch because it allows for oxidized proteins 

to stay in the vicinity of the mismatch, or potentially any lesion that disrupts DNA CT, 

without being reduced and released from the duplex by another protein. These data 

bolster the claim that proteins, even with completely different cellular roles, can work in 
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concert to aid their search for DNA damage by reducing and oxidizing one another via 

long-range CT through DNA (55-57). 

 Redox-Signaling Damage Search Model. DNA-mediated CT significantly 

expedites the search for DNA damage. Charge can be transported through large regions 

of DNA much faster than proteins can translocate, especially when the nuclear medium 

and DNA itself are crowded by other proteins (21). If a high-affinity, oxidized protein is 

bound to a region with no lesion, the protein may quickly become reduced by another 

protein along the duplex, and the decreased affinity will allow for it to release DNA and 

scan elsewhere (Figure 5.17). If, however, there is a lesion disrupting DNA CT, the 

protein will remain oxidized and associated to DNA. They can utilize both DNA CT and 

translocation making the search process faster and more efficient. 

 DNA-Mediated Redox Signaling Enables Low Copy Number Proteins to 

Efficiently Find Their Substrate. A growing number of proteins that process DNA have 

been discovered to contain redox-active [4Fe4S] clusters (7-10,20). Our data show that 

the oxidation state of the [4Fe4S] clusters is integral to the ability of proteins to search for 

DNA damage, but that the identity of the protein is unimportant for DNA-CT. The DNA-

binding affinity depends on the oxidation state of the [4Fe4S] cluster in both EndoIII and 

DinG and likely holds true for other [4Fe4S] proteins. Importantly, this allows for DNA-

processing proteins with different enzymatic functions to collaborate with each other to 

find damage so long as the [4Fe4S] clusters are in different redox states. This DNA-

mediated redox signaling strategy between [4Fe4S] clusters may enable low copy number 

repair proteins to be aided by high copy number proteins to efficiently find and repair 

damage. 
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Chapter 6 

 

Summary and Perspective 
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DNA-mediated charge transport (DNA CT) is well established in both ground and 

excited state systems. DNA CT arises from the physical structure and dynamics of DNA, 

so it is intriguing to consider how these structures, or perturbations to these structures, 

may impart other exciting and useful characteristics. In particular, the integrity of the 

extended π-stack of the aromatic heterocycles, the nucleic acid bases, plays a critical role 

in facilitating DNA CT. Electron donors and acceptors must be electronically well 

coupled into the π-stack, typically via intercalation, and perturbations that distort the π-

stack, such as single-base mismatches, abasic sites, base lesions, and protein binding that 

kinks the double helix, attenuate DNA CT dramatically.  

This thesis work describes experiments that expand the understanding of how the 

structural changes to DNA may influence its function. Although previous work using dry 

DNA in air or under vacuum indicated that DNA could filter spin, it was unclear whether 

this spin selectivity would translate to hydrated DNA. We developed experiments to test 

for spin selective charge transport on a DNA-modified ferromagnetic electrode. 

Magnetizing the electrode changed the proportion of spin up and spin down electrons that 

were injected into the DNA, and also changed the yield of charge transport to intercalated 

redox probes. Our experiments thus demonstrate that magnetic fields can affect the flow 

of electrons through native, hydrated dsDNA.   

Significantly, our data show that spin selectivity is observed only at films 

containing duplex DNA and with redox probes intercalated into the π-stack that undergo 

DNA-mediated CT. Magnetic field effects are not observed with redox reporters bound 

electrostatically to the DNA duplex nor with tethered reporters that contact the surface 

directly. These data emphasize that DNA-mediated CT is necessary for the observed spin 
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selectivity. It is not simply the electrostatic helical field that is responsible for the spin 

selectivity. Nor is it simply the chiral centers on the DNA; redox reporters bound to 

single stranded DNA do not show magnetic field effects. As with DNA CT, the extended 

π-stack appears to play a crucial role: reversing the handedness of the helix in the films 

generates a diode-like spin-filtering response. It is interesting to consider how 

conformational changes such as that between B- and Z-DNA might be utilized as a diode 

in organic spintronics and how this spin filtering might be applied in practical devices.  

This exquisite spin selectivity begged the question: how might biology take 

advantage of such a spin filter? This question led to electrochemical studies that monitor 

the repair of cyclobutane pyrimidine dimer lesions by E coli photolyase and truncated A 

Thaliana Cryptochrome 1 with an applied magnetic field. We find that the yield of dimer 

repair is dependent on the strength and angle of the applied magnetic field even when 

using magnetic fields weaker than 1 Gauss, though spin selective DNA CT is not found 

to be involved.  

These experiments illustrate how nature can design a magnetic field compass that 

functions at weak field strengths. Experiments with photolyase active site mutants and 

uracil-containing lesions show that the chemistry involved in the repair of cyclobutane 

pyrimidine dimers (CPD) is the likely source of magnetosensitivity that we observe. 

These data suggest that the photolyase active site is able to facilitate a delicately balanced 

competition between two reaction pathways that can be influenced by weak magnetic 

fields. Magnetic field-independent and dependent pathways are in competition in the 

enzymatic repair of CPDs, which allows a magnetic field to change how much of CPD is 
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repaired or left intact. It is intriguing to consider how this chemistry may be used in vivo 

to inform magnetoreceptive behavior.  

In a second line of work, electrochemistry and atomic force microscopy 

experiments were used to explore the ability of [4Fe-4S] cluster containing DNA 

processing enzymes to locate DNA damage using DNA CT. The [4Fe-4S] clusters in 

these proteins when they are freely diffusing are expected to be in the 2+ state. The 

proteins are activated towards oxidation upon binding to DNA.  A given protein already 

bound to DNA in the oxidized form could thus be reduced in a DNA-mediated fashion by 

another distinct redox-active protein that binds within CT distance of the first protein.  

Reducing this second protein promotes its dissociation from DNA.  Intervening DNA 

damage prevents DNA CT and the resulting dissociation.   

Based on the model, we expect the redistribution of proteins that use DNA-

mediated CT signaling onto strands containing a single base mismatch and away from 

fully matched duplex DNA, which is the observed result.  Proteins that are defective in 

DNA CT do not relocate to the mismatched strand, as predicted by our model. The 

atomic force microscopy experiments show that proteins are not only able to signal with 

themselves, but mixtures of different 4Fe-4S cluster containing proteins, such as EndoIII 

and DinG, are able to signal with one another. 

These observations using AFM are consistent with a DNA damage search scheme 

based on DNA-mediated redox signaling between proteins with oxidized and reduced 

[4Fe4S] clusters. Our data shows conclusively that this CT results in a change in affinity 

for each of the proteins. This change in redox state increases the effective affinity of these 

proteins for a duplex containing a mismatch because it allows for oxidized proteins to 
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stay in the vicinity of the mismatch, or potentially any lesion that disrupts DNA CT, 

without being reduced and released from the duplex by another protein.  

 Our data show that the oxidation state of the [4Fe4S] clusters is integral to the 

ability of proteins to search for DNA damage, but that the identity of the protein is 

unimportant for DNA CT. The DNA-binding affinity depends on the oxidation state of 

the [4Fe4S] cluster in both EndoIII and DinG and likely holds true for other [4Fe4S] 

proteins. Importantly, these data show that DNA-processing proteins with different 

enzymatic functions can collaborate to find damage so long as the [4Fe4S] clusters are in 

different redox states. This DNA-mediated redox signaling between [4Fe4S] clusters may 

enable low copy number repair proteins to be aided by high copy number proteins to 

more quickly find and repair DNA damage. 

Highlighted by this thesis work are three ways that DNA structure enables 

fascinating electrochemistry. The helicity of duplex DNA controls which electron spin 

migrates through the duplex with higher yield. Thymine dimer repair by photolyase and 

cryptochrome is exquisitely sensitive to magnetic fields thanks to radicals formed during 

the dimer breaking process, and a single base mismatch is able to disrupt DNA-mediated 

charge transport between [4Fe-4S] cluster containing proteins, which enables the proteins 

to efficiently locate DNA damage. Together, these experiments show that both small and 

large changes in structure can dramatically change the electrochemistry that DNA carries 

out. It is exciting consider the varied ways that functionality imparted by changes in 

DNA structure could be taken advantage of in practical devices and also how Nature may 

exploit this chemistry in some context. 
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