Monte Carlo Methods
For
2—D Compaction

Thesis by

R.C. Mosteller

In Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1986

(Submitted May 19, 1986)

— i —

Copyright (©1986 Richard C. Mosteller
All Rights Reserved

~ iii -

Acknowledgments

I would like to thank Chuck Seitz for starting me onto the road towards a PhD.
I owe special appreciation to Sandy Frey for his constant help and guidance, and
for his patience with me. Special thanks also to my advisor, Jim Kajiya, for his
years of patience, support and insight. I would like to thank Roberto Suaya for his
many nightly discussions. I would like to acknowledge some of the special people
who worked with me at Caltech: Don Speck for his insight into cell design, Telle
Whitney for discussions on data representation, Bill Dally for his help with cell
design and discussions, Calvin Jackson for his help with the intricacies of TEX, Bill
Athas for his help with text review, and Dan Whelan for his patience with me while
we shared an office.

— v —

Double, double toil and trouble,
Fire burn and caldron bubble.
SHAKESPEARE, MACBETH

Abstract

A new method of compaction for VLSI circuits is presented. Compaction is done
simultaneously in two dimensions and uses a Monte Carlo simulation method often
referred to as simulated annealing for optimization. A new curvilinear representation
for VLSI circuits, specifically chosen to make the compaction efficient, is developed.
Experiments with numerous cells are presented that demonstrate this method to
be as good as, or better than the hand compaction previously applied to these
cells. Hand compaction was the best previously known method of compaction.
An experimental evaluation is presented of how the run time complexity grows as
the number, N, of objects in the circuit increases. The results of this evaluation
indicates that the run time growth is order O(N log(A)) f(d) where f(d) is a function
of the density, d, and A is the initial cell area. The function f(d) appears to have
negligible or no dependence on N. A hierarchical composition approach is developed
which takes advantage of the capability of the curvilinear representation and the 2—
dimensional compaction technique.

AR La

Hand Versus Automatic Cell Compaction

- vii —

Table of Contents

Acknowledgments O ¢
Abstract e ey

List of Figuresx

List of Tables e e e oo xvi
Chapter 1. The Problem: 2-D Compaction . 1
1.1 Problem Definition 2
1.2 Approach 4
1.3 How We CompactaCell 5
1.4 System Overview S (]

1.5 Thesis OverviewaT

Chapter 2. Background18

2.1 Layout Methodology - Design Styles18
211 LeafCell Design19
2.1.2 Cell Composition20

2.2 Compaction e e e e 22
2211-D Compaction 22
2.222-D Compaction25

2.3 Limitations of Compactors26

Chapter 3. Structure of Primitives and Models 28
3.1 Background e e e e e 29

3.2 Primitive Geometric Objects30
3.2.1 Notation In The Plane32

— viii -

3.2.2 Bubble Definition
3.2.3 Wire Definition
3.3 Layers and Design Rules
3.3.1 Layer Concept
3.3.2 Primitive Rule Definition
3.3.3 Geometric Design Rules
3.3.4 Invariant Conditions
3.4 Abstraction to Structures
3.4.1 “Model” Definition .
3.4.2 Specifying Model Dxmensmn
3.5 Modifying the Design . .
3.5.1 Preserving Angle Constramts
3.6 Concept of “Related” Primitives
3.6.1 “Related” Definition .
3.6.2 “Related” Number Assxgnment
3.7 Specifying a Technology .
3.7.1 An Example: nMOS Models
3.7.2 Modify Geometric Design Rules

3.8 Post Processing and CIF Output Generation

3.9 Cell Definition
3.9.1 Minimum Boundmg Area
3.9.2 Ideal Bounding Area

3.10 Conclusion

Chapter 4. Modifying the Structures .

4.1 Bubble Move Algorithm
4.1.1 Clear Path Algorithm
4.1.2 Queue Construction Algorithm

4.2 Utility Routines . .
4.2.1 Around Collapsed
4.2.2 Bubble Absorption

4.3 Cell Perimeter Modification
4.3.1 Cell Edge Expansion
4.3.2 Cell Edge Contraction

4.4 Implementation Considerations

Chapter 5. Graphic Editor
5.1 Editing Frame

5.2 Uniform Transaction Process

. 33
.34
. 44
. 44
. 46
. 47
. 49
. 50
. 52
. 53
. 54
. 57
. 58
. 61
. 63
. 70
.12
. 78
L T7
. 78
.79
. 80

. 81

. 82

. 84
. 89

101

113
113
114

115
115
116

117

118
120
121

—ix —

5.3 Editing Functions ... 123
531 UndoLast 123
532Place 123
533 Wire L. o124
5.3.4 M-Wire T 11
535 Delete 125
5.3.6 Move T 2+
537 Absorb 1286
538Expand 126
539 Constrict 12
5310Probe 1286
5.3.11 Set Portname 126

54 Extensibility 127
55 Conclusion12

Chapter 6. Simulated Annealing 128
6.1 Optimization by Simulated Annealing 128

6.2 Background00 131

6.3 Objectives A 9

6.4 How We Compact by Annea.hng . 94

6.5 Choice of the Cost Function 134
651 WireCosts 135

6.5.2 Model Wire Costs . . . O £ 131

6.5.3 Membrane Cost (Central Potentlal) S
654PortCosts 138

Chapter 7. Experimental Results and Analysis 139
7.1 Choosing Cost Function Parameters 139
7.1.1 Wire Cost Experiments and Apalysis 139

7.1.2 Central Potential Parameters 147

7.1.3 Choice of Move Length 153

7.1.4 Choice of Move Directions 153

7.2 Choosing the Annealing Schedule 154

7.2.1 Stopping Criteria . . . S 155
7.2.2 Temperatures and Cooling Schedule S X1

73Complexity 158
7.3.1 Experiments 157
7328ummary 168
7.3.3 Run Time Enhancements 168

7.4 Cell Experiments

7.5 Fabrication Experiment

Chapter 8. Cell Composition

8.1 Specifying a Floor Plan

8.2 A Binary Composition Operator

8.3 Composition Compaction Controls

8.4 Composition Directed Cell Compaction
8.4.1 Cell Size Estimation
8.4.2 Guided Cell Compaction
8.4.3 Cell Composition
8.4.4 Replicated Structures

8.5 Ultra Compaction

Chapter 9. Conclusion and Continuing Research
9.1 Extensions e e e
9.1.1 Restriction to Orthogonal Geometry
9.1.2 Probabilistic Geometric Design Rules
9.2 Future Research

Appendix A. Technology File .
A.1 Technology File Description
A.2 nMOS Example

Appendix B. Miscellaneous Utility Functions .
B.1 Inside Around Algorithm .
B.2 Between a Around Segments Algorithm

Appendix C. Intermediate Structures

Bibliography

169
180

184
184
185
188

190
190
192
193
193

193

195

196
196
196

196

198
198
201

213
213
215

217

238

—xi—

List of Figures

Figure 1.1 Sample nMOS Design

Figure 1.2 Curvilinear Sample Design

Figure 1.3 4:1 Multiplexor Logic Diagram .
Figure 1.4 4:1 Multiplexor Initial Design Configuration
Figure 1.5 nMOS Color Pattern Representation

Figure 1.6 4:1 Multiplexor at a High Temperature Configuration

Figure 1.7 4:1 Multiplexor at Initial Cooling
Figure 1.8 4:1 Membrane Bowl .
Figure 1.9 4:1 Multiplexor at Cooling stage 1
Figure 1.10 4:1 Multiplexor at Cooling stage 2
Figure 1.11 Bubble and Wires

Figure 1.12 Model Examples Coe
Figure 1.13 4:1 Multiplexor at Cooling stage 3
Figure 1.14 4:1 Multiplexor at Cooling stage 4
Figure 1.15 Hypothetical Cost Function

Figure 1.16 Cell Boundary

Figure 1.17 Bubble Move Example

Figure 1.18 Allowable Bubble Moves .
Figure 1.19 4:1 Multiplexor at Cooling stage 5
Figure 1.20 4:1 Multiplexor at Cooling stage 6
Figure 1.21 4:1 Multiplexor at Cooling stage 7
Figure 1.22 4:1 Multiplexor at Freezing

Figure 1.23 4:1 Hand and Automatic Compacted Cell
Figure 1.24 4:1 Composed Cells

O © 0 o - T W OO ;O U oW W

Bk et ek pk d ek ek ek e bk ek et
Y U W o W W R N = OO

— xii —
Figure 1.25 4:1 Bubbleman System

Figure 2.1 Separated Hierarchy
Figure 2.2 Shear Line Example

Figure 2.3 Vertical Graph Compaction
Figure 2.4 Two way symbol limit

Figure 3.1 Bubble, Segment, and Around

Figure 3.2 Point and Vector

Figure 3.3 Wire ..

Figure 3.4 Wire-Bubble Interface

Figure 3.5 Segment

Figure 3.6 Segment Test . .

Figure 3.7 Arounds
Figure 3.8 Counter Clockwise Around - Bubble End
Figure 3.9 Counter Clockwise Around - Around End
Figure 3.10 Around to Bubble Test

Figure 3.11 Enhancement Transistor Model Example
Figure 3.12 Buried Contact Configurations

Figure 3.13 Instance Model Relation

Figure 3.14 Enhancement Transistor

Figure 3.15 Invalid Buried Contact

Figure 3.16 Valid Buried Contact

Figure 3.17 Invalid Enhancement Transistor

Figure 3.18 Valid Enhancement Transistor

Figure 3.19 Wide Enhancement Transistor

Figure 3.20 Snaky Enhancement Transistor

Figure 3.21 Angle Control

Figure 3.22 End Bubble Angle Control

Figure 3.23 Unconnected and Connected Bubbles .
Figure 3.24 Bubbles and Transistor Connection
Figure 3.25 Reln Enhancement Transistor

Figure 3.26 Related Side Definition .
Figure 3.27 Consistency Problem Example .

Figure 3.28 nMOS Color Pattern Representation
Figure 3.29 nMOS Contacts

16

. 19
. 23
. 23
. 26

.31
. 32
. 34
. 35
. 36
. 38
. 39
. 40
.41
. 43
. 80
. 51
. 92
. 54
. 55
. 55
. 56
. 56
. 56
. 87
. 58
. 58
. 59
. 59
. 63
. 64
.72
. 73
.13

— xiii -
Figure 3.30 nMOS Generic Equivalence Related Numbers
Figure 3.31 nMOS Enhancement Transistor
Figure 3.32 nMOS Depletion Transistor
Figure 3.33 nMOS Pullups
Figure 3.34 Wire and Transistor Sliver
Figure 3.35 Wire and Transistor Sliver Solution
Figure 3.36 Cell Representation
Figure 3.37 Sample Cell One
Figure 3.38 Sample cell Two

Figure 4.1 Bubble Move Example .

Figure 4.2 Bubble Move Example, Before Move

Figure 4.3 Bubble Move Clear Path Example, Before Move
Figure 4.4 Bubble Move Clear Path Example, After Move
Figure 4.5 Bubble Move Clear Path Example, Partial Move
Figure 4.6 Bubble Move Clear Path Example, Partial Move
Figure 4.7 Bubble Move Clear Path Example, Partial Move
Figure 4.8 Bubble Move Clear Path Example, Partial Move
Figure 4.9 Clear Path Move Position

Figure 4.10 Covered Primitive Example

Figure 4.11 Bubble to Segment Covered Example

Figure 4.12 Bubble to Around Covered Example

Figure 4.13 Segment to Segment Covered Example

Figure 4.14 Segment to Around Covered Example

Figure 4.15 Around to Segment Covered Example

Figure 4.16 Around to Around Covered Example

Figure 4.17 Attached Around

Figure 4.18 Around Path Test

Figure 4.19 Segment Path Test

Figure 4.20 Wire Process Segment Example

Figure 4.21 Wire Process Triangle Example

Figure 4.22 Triangle Example .

Figure 4.23 Around Setup Unwrap Example

Figure 4.24 Around Unwrap Example

Figure 4.25 Wire Process Around Example . .
Figure 4.26 Wire Process Around Side Move Problem

. 74
.75
. 75
. 76
. 78
. 78
. 79
. 80
. 80

. 82
. 84
. 85
. 86
. 87
. 87
. 88
. 88
. 90
. 93
. 94
. 94
. 95

S&KEK

. 99

100
102
102
103
104
104
105
106

- xiv —

Figure 4.27 Wire Process Around Side Move Example .

Figure 4.28 Wire Process Around Finger Problem
Figure 4.29 Attached Segment Process

Figure 4.30 Around Collapse Example

Figure 4.31 Simple Triangle

Figure 4.32 Complex Triangles

Figure 4.33 Special Triangle

Figure 4.34 Pivot Angle .

Figure 4.35 Pivot Angle Computation

Figure 4.36 Around Collapsed Example

Figure 4.37 Bubble Absorption Example

Figure 4.38 Example of Cell Expansion or Contraction
Figure 4.39 Cell Expansion

Figure 4.40 Cell Contraction

Figure 5.1 Editing Frame

Figure 6.1 Example Cost Function .
Figure 6.2 Poor Hypothetical Cost Function
Figure 6.3 Cell Region Costs

Figure 6.4 Cell Membrane Bowl Cost

Figure 6.5 Cell Membrane for Horizontal Axis

Figure 7.1 Wire Cost Test Set

Figure 7.2 Wire Cost Influence .

Figure 7.3 Wire Cost Influence Refined

Figure 7.4 Wire Cost Influence Refined

Figure 7.5 Wire Cost Influence Refined

Figure 7.6 Wire Model Test Set ..
Figure 7.7 Model Growth Cost Influence Case 1
Figure 7.8 Model Growth Cost Influence Case 2

Figure 7.9 Model Growth Cost Influence Case 1, 4 move size

Figure 7.10 Input Cell to be Compacted
Figure 7.11 Compaction Without Central Potential

Figure 7.12 Compaction With Overzealous Central Potential

Figure 7.13 Normal Central Potential
Figure 7.14 Membrane at Ideal Area

106
107
108
108
109
110
111
112
112
114
114
115
116
116

120

130
130
133
136
137

141
142
143
143
144
145
145
146
146
147
148
148
149
150

Figure 7.15 Membrane at 2 times Ideal Area

Figure 7.16 Membrane at 4 times Ideal Area

Figure 7.17 Membrane and Fence

Figure 7.18 Move Directions .

Figure 7.19 Base Cell for Timing Tests

Figure 7.20 Cells For Experiment .

Figure 7.21 Run Time versus Bubble Count

Figure 7.22 Sequence Count versus Temperature - stage 1

Figure 7.23 First stage, First Sequence Count versus Bubbles

Figure 7.24 Sequence Count versus Temperature - stage 2

Figure 7.25 Sequence Count versus Temperature - stage 3

Figure 7.26 Modified Run Time versus Bubble Count ..
Figure 7.27 Unblocked Calls/Total Calls versus Temperature - stage 1
Figure 7.28 Unblocked Calls/Total Calls versus Temperature - stage 2
Figure 7.29 Unblocked Calls/Total Calls versus Temperature - stage 3
Figure 7.30 Average Move Call versus Temperature - stage 1

Figure 7.31 Average Move Call versus Temperature - stage 2

Figure 7.32 Average Move Call versus Temperature - stage 3

Figure 7.33 Initial Mux1

Figure 7.34 Mux1 - Annealed Compacted Compared to Hand Compacted

Figure 7.35 Initial Mux4 . e e Coe e
Figure 7.36 Mux4 Annealed Compacted Compared to Hand Compacted
Figure 7.37 Initial C2 .. R . i
Figure 7.38 C2 Annealed Compacted Compared to Hand Cornpacted
Figure 7.39 Initial Cg .o .o .o .
Figure 7.40 Cg Annealed Compacted Compared to Hand Compacted
Figure 7.41 Initial Bil . e e e e
Figure 7.42 Bil Annealed Compacted Compared to Hand Compacted
Figure 7.43 Initial Stuff C e e e e
Figure 7.44 Stuff - Annealed Compacted Cornpared to Hand Cornpacted
Figure 7.45 One-Bit Adder Logic diagram

Figure 7.46 Uncompacted One-Bit Adder

Figure 7.47 Compacted First One-Bit Adder

Figure 7.48 Compacted Second One-Bit Adder

Figure 7.49 Compacted Four Bit Adder

- xvi —

Figure 8.1 Sample Floor Plan and Composition Tree
Figure 8.2 Cells to be Composed

Figure 8.3 Port Aligned Cells

Figure 8.4 Composed cells

Figure 8.5 Sample Membrane Control

Figure 8.6 Estimate Sub-Tree

Figure 8.7 Cell Compaction Translation

Figure 8.8 Cell Array

Figure B.1 Inside Around .
Figure B.2 Attached Around Test

Figure C.1 1 Cell - Initial

Figure C.2 1 Cell - end of first stage

Figure C.3 1 Cell - end of second stage
Figure C.4 1 Cell - end of final stage

Figure C.5 1 by 1 Cell - Initial .
Figure C.6 1 by 1 Cell - end of first stage
Figure C.7 1 by 1 Cell - end of second stage
Figure C.8 1 by 1 Cell - end of final stage
Figure C.9 2 by 2 Cell - Initial ..
Figure C.10 2 by 2 Cell - end of first stage
Figure C.11 2 by 2 Cell - end of second stage
Figure C.12 2 by 2 Cell - end of final stage
Figure C.13 2 by 3 Cell - Initial

Figure C.14 2 by 3 Cell - end of first stage
Figure C.15 2 by 3 Cell - end of second stage
Figure C.16 2 by 3 Cell - end of final stage
Figure C.17 3 by 3 Cell - Initial

Figure C.18 3 by 3 Cell - end of first stage
Figure C.19 3 by 3 Cell - end of second stage
Figure C.20 3 by 3 Cell - end of final stage

185
186
187
188
189
190
192
193

213
216

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

- xvii —

List of Tables

Table 3.1 Bubble Attributes - 1.
Table 3.2 Segment Attributes 38
Table 3.3 Around Attributes39
Table 3.4 Global Color Attributes N £
Table 3.5 Rule Attributes46
Table 3.6 Model Attributes53
Table 3.7 nMOS color Attributes B
Table 7.1 Membrane Size Statistics 150
Table 7.2 Timing Test Cells Statistics 159

Table 7.3 Compacted Cells Statistics 169

1

The Problem:
2—-D Compaction

The amount of time required to design integrated circuits has been increasing rapidly
with design complexity[Moore 79, Lattin 79]. Present day chip designs take several
years to complete with a large portion of the time spent on layout, the transformation
of electronic design to physical mask geometry. “Traditional” layout is accomplished
by a hand design process with the aid of automatic drafting machines. Much of this
effort is spent on compaction, i.e. minimizing the silicon area needed for the design.
Elaborate geometric design rule checking programs are then necessary to insure
an error-free design. These programs are run as a batch process. Correction of
geometric design rules errors is another time consuming process. Updates to this
design are tedious at best.

Early attempts at automating layout compaction were simplified by using only
rectangles orientated along the z and y axis. The first attempts minimized the
layout along each coordinate axis independently. This method is known as 1-D
compaction. One problems with this approach is that compaction in the horizontal
axis and the vertical axis, do not commute and the resulting layout is extremely
sensitive to the input geometry. More sophisticated attempts coupled the two 1-D
compactions into a single compaction. Unfortunately this method has been shown
to be NP-complete[Sastry 82]. Both methods are limited to wires that do not bend.
The automatic insertion of bends in wires has been called automatic jog insertion.
Some limited automatic jog insertion has been tried with mixed results. In all
of these approaches devices are rigid elements with fixed orientation. They are
only allowed to move along the z or y axis. Current automatic integrated circuit
compactors are not able to produce a design as compact as a design using traditional
methods. The automated compactors do not take advantage of the freedom allowed
by the chip media, i.e., they are limited to orthogonal geometry and orthogonal
compaction methods.

— 2 —

This thesis presents a new method for integrated circuit compaction using a
curvilinear framework. With non-rectangular geometry, even without compaction,
a better utilization of the area on the plane can be achieved by allowing arbitrary
relative orientations of the different circuit elements. Wires are treated as rubber
bands that are tautly stretched around obstacles. There is no need to have auto-
matic jog insertion because there are no rectilinear constraints in the framework.
Devices are treated as malleable objects that are allowed to rotate and bend within
parametrically controlled limits.

The optimization of this framework is more complex than the 2-D com-
pactors previously mentioned. We compact the framework by simulated anneal-
ing[Kirkpatrick 83]. Annealing is the process of heating and very slowly cooling a
metal to form an optimized structure. Simulated annealing is similar to this tech-
nique for metals. This compaction method produces extremely compact designs
which combines area and wire capacitance as optimization criteria. The compacted
design is as dense or denser than a hand compacted design. This technique was
first presented at the Workshop on Statistical Physics in Engineering and Biol-
ogy[Mosteller 84].

1.1 Problem Definition

Integrated circuit compaction is the translation of a zzometric physical representa-
tion of a cell which is geometrically design rule correct to a second geometrically
design rule correct physical cell with a near minimum area. Geometric design rules
are constraints associated with the relative position and overlap of the geometric
figures. Geometric design rules imply a set of inequality constraints. These rules are
necessary to insure a working integrated circuit. A sample of an nMOS rectilinear
cell is shown in Figure 1.1. A cell is composed of devices and interconnecting wires.
Devices and wires may be on one or more layer as shown.

The purpose of compaction is to reduce the area of the design while preserving
topology and without violating any geometric design rules. A reduced area, given
a fixed die size, provides the opportunity for additional functionality over the non-
compacted design. By reducing area, wire lengths are also shortened, resulting in
less time for signal propagation and in turn increasing the operational speed of the
circuit.

- 3 -

The input specification from which layout is compacted is one that can be
characterized as a sized schematic representation of the circuit. This is to say that
in the input phase one gives the ports, contacts, transistors(appropriately sized), and
wiring. This representation is a geometrically design rule correct initial configuration
of the circuit. This representation by itself contains all of the elements necessary to
generate a correct layout. The purpose of the translation is to optimize the output
mask geometry while still preserving the geometric design rules and circuit topology.
This translation is the task that is commonly done “by hand”, and often referred as
“micron-hacking”. The task is quite time consuming and error prone. To be able
to do it automatically is certainly a great leap forward.

We limit the compaction problem to a fixed topology. A topology for an inte-
grated circuit cell can be viewed as a set of planar graphs. The nodes in the graphs
represent the devices such as contacts, transistor and ports that are the interface
to the outside world. The arcs in the graph are the wires. A graph is constructed
for each set of wires that has a geometric design rule. For example, the nMOS cell
in Figure 1.1 would have a planar graph for the metal wires and a planar graph for
the polysilicon and diffusion wires. The nodes in the graph may be moved as long
as the planarity is preserved.

All compactors use a fixed topology. The reason for this is that topological
changes are extremely difficult. Simple local topological changes could be achieved
such as merging connected contacts of the same type which are in close proxim-
ity. Previous compactors are far more restrictive in that geometry is limited to
rectangles, wires are not allowed to bend, and devices have fixed orientation and
shape.

Figure 1.2 Curvilinear Sample Design

Hand designers do not limit themselves to orthogonal geometry as shown in
Figure 1.2 of a hand designed nMOS cell. Notice in the cell that the wires deform
around obstacles and use many angles. The devices are at angles that produce a
compact cell. This type of hand design produces tightly compacted cells. Curvilinear
hand compactions is an art that requires a highly skilled designer. The success
of compaction greatly depends upon the skill of the designer. Curvilinear hand
compaction is extremely time consuming. Our compactor is designed for this type
of compaction.

Although hand compaction produces extremely compact designs, it is almost
impossible to alter or update. Generally if a curvilinear cell requires a logic change,

— 4 —

a complete reconstruction of the hand compaction process is required. This would
not be a major problem with an automatic curvilinear compactor.

When a hand designer compacts a cell he starts with an idea of the desired cell
shape and port position. Cells are not compacted in a vacuum but with respect
to the environment in which they will be placed. A cell may be placed in a design
at two different location which could require completely different compaction. Our
compactor will allow the ability to control the final shape and port position.

1.2 Approach

To apply simulated annealing to the two-dimensional circuit compaction problem
requires a simple representation that can be modified easily. The variety of ob-
Jects -transistors, contacts, resistors, wires, etc.- and sizes of objects found in VLSI
circuits makes finding such a representation more difficult. Earlier applications of
simulated annealing to molecular dynamics suggested the representation that we
have developed. Primitive components called bubbles are connected by wires. Bub-
bles are hard objects that will be moved around as if they were molecules during
the annealing process. Wires connecting bubbles are stretchable objects which are
continuously modified to follow the shortest path between the bubbles they connect
while preserving all required geometric design rule constraints. They constitute an
attractive force between bubbles in the annealing process.

Geometric design rules are described through a set of tables reflecting the tech-
nology of the current implementation. Rules, used to reference these tables, are
assigned to individual bubbles and wires. A unique feature of the representation is
that all geometric design rules are broken up into constraints in several indepen-
dent layers. Each layer is assigned a color, some of which may be hypothetical for
geometric design rule checking. To check the geometric design rules, only a logi-
cal function of Boolean variables is needed to determine which layers are relevant
between two primitives. Checking the geometric design rules within one layer is
independent of any other layer. The checking is therefore reduced to a monochrome
problem. Finally, the geometric design rules are all satisfied if they are satisfied in
each of the relevant independent layers. When circuits are initially entered through
an interactive graphic editor, a check is made to assure that no geometric design
rules are violated. The geometric design rules continue to be maintained through
out the annealing process. Details of how the geometric design rules are represented
are described in Chapter 3. An interesting feature of this method of compaction
occurs when the technology changes. Since it is table driven, the tables can be
modified to reflect the changes and the circuit reannealed to incorporate the new
geometric design rules.

The variety of objects in VLSI circuits all are built from the two types of
primitive components as described in Chapter 3. A structure that will be used
many times can be constructed using several bubbles and wires as a model. It can
then be instantiated wherever it is needed. By building the models out of the the
two basic primitive components, the individual pieces of each model may be moved
independently and the model is thus malleable in the annealing process.

— 5 =

As this research was being developed, the absolutely essential requirement for
simplicity - particularly simplicity of modification of the data structure - became
increasingly obvious. Very small cells might be compacted with a reasonably small
number of computer cycles with standard representations, but those cells could also
be compacted reasonably by hand. As cells became large enough to make the hand
compaction time burdensome, the need for a representation that would reduce the
annealing time also became apparent. That has been the major concern in the
development of this representation.

The desirability of including an automated composition capability also was clear
from the start as well as the need for initial floor planning. The compaction system
presented here has been developed to support an overall VLSI design system that
includes these capabilities. Such a composition methodology is described in Chapter
8.

1.3 How We Compact a Cell

An example is presented to gain an understanding of the compaction process. We
are going to show how we compact a 4 to 1 multiplexor cell from start to finish. The
logic diagram for the 4 to 1 multiplexor is shown in Figure 1.3. First, the cell is shown
in its initial input specification. The representation of the devices and wires will be
discussed. Next a series of figures will show how the cell is annealed from the high
temperature configuration through the low temperature configuration. Simulated
annealing will be discussed along with the objective function to be optimized. The
final phase of compaction will be shown. A hand compacted version of the cell will

1 1 1 i . m) ;) M
Ut colapared Lo Lie aubolalically colnpacied version.

1 2 3 4

e
A _{J*r] A
B +E B
B +E B
out |4 Ll

1 2 3 4
Figure 1.3 4:1 Multiplexor Logic Diagram

A transistor diagram for the example nMOS cell is shown in Figure 1.3. The
relative position of the connectors or ports to the outside world are shown. The
input signals are 1 through 4 where the select lines are A, A, B, and B. The output
of the cell is out.

0

7
f:
-

o
b
B !

) o
T

Figure 1.4 4:1 Multiplexor Initial Design Configuration

The initial specification for the cell is shown in Figure 1.4 where the pattern
for each layer is shown in Figure 1.5. Notice that the cell is composed of two types
of primitives. There are round objects called “bubbles” and interconnecting lines
called “wires”. These objects are the primitive constructors from which integrated
circuits are built. The bubbles are the end points of the wires. If you look closely
you will notice that the wires curve around obstacles.

polysilicon cut .
metal implanf

diffusion () buried @
Figure 1.5 nMOS Color Pattern Representation

The cell was created using a graphic editor which is described in Chapter 5.
This editor allows the placing, moving, and deleting of devices. A device, that we
call a “model”, is a composition of wires and bubbles that forms a transistor or a
contact. These devices can be connected together by a wiring command. The editor
does not allow any instantiation that would generate a geometric design rule error.

3
e
b i

ey

: ﬁ?{‘?.e:'
HE
e

A S A o

Figure 1.6 4:1 Multiplexor at a High Temperature Configuration

-7 -

The first step in the annealing process is to “heat” the cell. This randomizes
the system to an initial configuration, removing any past history of configurations.
The cell is shown at a high temperature in Figure 1.6. The bubbles in the cell can
be compared to molecules in a metal. A major force on the bubbles is the pull from
the interconnecting wires. Each bubble can move in any direction provided it is not
blocked by another bubble and does not create a geometric design rule error.

Ao

tial Cooling

A close look at the cell will reveal that the bubbles have been pulled toward
the interior of the cell. This pull is what shapes the cell. The pull is caused by a
central potential that we control with the “membrane”. The membrane position is
shown in Figure 1.7 as an interior rectangle.

membrane

Figure 1.8 4:1 Membrane Bowl

Conceptually the central potential can be considered as a gravity bowl as shown
in Figure 1.8. Bubbles near the edge of the bowl have a strong pull toward the center
while bubbles near the center have weak pull and can move about freely. There is a
separate central potential function for each of the X and Y axes.

/;éﬁ\

. 'u_"‘v.: 27
d ia}y i a

=y T T 7

Figure 1.9 4:1 Multiplexor at Cooling stage 1

As the system is cooled the effects of the membrane on the cell is shown in
Figure 1.9. Bubbles near the perimeter are subjected to a large pull which implies
a lower effective temperature than the bubbles within the membrane that have
a higher effective temperature. This means that bubbles near the perimeter are
restricted to move toward the center while bubbles inside are only slightly affected
by the central potential and mostly influenced by the pull of the wires and bubble
bumping. The effect becomes more evident as shown in Figure 1.10 which shows
the cell after further cooling.

Figure 1.10 4:1 Multiplexor at Cooling stage 2

Taking a closer look at the structure of the cell, shows that it is composed of two
primitives, bubbles and wires, shown in Figure 1.11. Bubbles are solid objects that
can be moved. They have a location, a list of connected wires, and a rule. The rule
specifies properties of the bubble. For example, the rule specifies each fabrication
layer and the width of the object in those layers. A wire can be considered as a
tightly stretched band wrapping around obstacles. Wires are composed of straight
pieces called “segments” and curved pieces called “arounds”. Like bubbles they
have a rule. Wires are moved only as a side-effect of a bubble move.

— 9 —

Wires
Bubbles — Solid Segments — elastic
Location Bubble/Around Pointers
Wire Pointers Rules

Rules

Arounds — elastic
Segment Pointers

Bubble Pointer
Rules /

Figure 1.11 Bubble and Wires

The transistors and contacts are constructed from the primitives which are
called models as shown in Figure 1.12. The models are multi-layered objects. Tran-
sistors have a requirement that their shape be preserved at the completion of com-
paction in order to perform properly. During the annealing process, the transistors
are allowed to deform so that they can move to a more compact configuration. In
the final stages of annealing the transistors are pulled back together to form a proper
device. The models in their proper shape are shown in Figure 1.12 while the dis-
torted models are shown in the cell being compacted. In order to insure that the
models return to their proper shape there is a quadratic cost function on the wires
within models.

Figure 1.12 Model Examples

Models may have more than one valid shape. The long transistor in Figure
1.12 can bend slightly and still be valid. The control over bending is described in
Chapter 3.

Figure 1.13 4:1 Multiplexor at Cooling stage 3

Figure 1.13 and Figure 1.14 shows the cell at progressively further stages of
cooling. Notice how the transistors are being pulled by the membrane and by their
internal pull.

Figure 1.14 4:1 Multiplexor at Cooling stage 4

The following is an overview of how the cell is compacted using simulated
annealing. More detail is described in Chapter 6. The annealing process operates
by first simulating the system at a high temperature. The simulation at a specific
temperature operates by moving bubbles in a probabilistic manner. First a bubble
and a direction is chosen at random. If that move can be made without moving
any other bubble and without generating any geometric design rule error, then the
changes in the cost function, which is referred to as the delta cost, caused by that
move are computed. If the delta cost of the move is negative, the move is accepted.
This reduces the system energy. If the delta cost is positive the move is accepted
based on a probability function of the temperature and delta cost. This approach
allows bubbles that are stuck in a local minimum to jump out with some probability.
After the system nears equilibrium at that temperature, the temperature is reduced
in stages where near equilibrium is reached at each stage. The temperature stages
and the equilibrium criterion are referred to as the “annealing schedule”. This
process allows the cell to be compacted to a near global minimum without being
stuck in a local minimum.

~ 11 -
\Y

1NV,

Figure 1.15 Hypothetical Cost Function

For example, consider a cost function such as that shown in Figure 1.15. If only
down hill moves were taken it would then be possible to get stuck at configuration
z1. However with simulated annealing the hill could be jumped over and z5 found.
Simulated annealing will always find the global minimum provided at each stage of
cooling equilibrium is reached. For some problems, reaching this point can take an
extremely large amount of time.

The objective function that we will be optimizing is a sum of the cost of the
wires and the central potential cost. Each wire type may have a different cost. The
reason is that some wires need to be shorter than others for electrical reasons. For
example, in nMOS we would like the polysilicon wires to be shorter at the expense
of longer metal wires. The cost for polysilicon wires would be greater than the metal
wires. Model wires would also have a larger cost. The central potential cost controls
the shape of the cell.

—— perimeter

4,
A
/ N~ Wall
L Bounding Box
Membrane
Figure 1.16 Cell Boundary

The membrane rectangle as shown in Figure 1.16 is placed at the desired shape
for the final cell. Bubbles outside of the membrane incur a large cost pulling them
toward the membrane. Bubbles inside the membrane incur a decreasing cost toward
the center of the cell. The previous compaction example shows how the membrane
affects the final shape.

Bubbles are restricted to be within the cell boundary as shown in Figure 1.16.
Further restrictions can be imposed by the wall which limits the bubbles to be within
the wall boundary. The shape of the cell is not limited to a rectangle as shown but
may be a polygonal shape. Connectors to the outside world of the cell are called
“ports”. They are restricted to have their center on a perimeter side. A port may
not change sides automatically.

Figure 1.17 Bubble Move Example

When a bubble is chosen to be moved by the simulator, an algorithm is used
to see if the bubble can be moved and if so, the proper data is constructed. This
algorithm is called “bubble move”. The algorithm first checks if the bubble can be
moved without violating a design rule error. If it can move, then the appropriate
data structures are constructed. Bubbles are allowed to push wires where examples
are shown in Figure 1.17. The filled-in regions are the current position and the
outlined positions are the new locations. Bubbles are not allowed to push other
bubbles. A conceptual way to visualize the bubble move algorithm is to consider
the bubble to be moved as a solid round object that is being pushed. The wires are
rubber bands tautly stretched wrapping around pegs, and the other bubbles are the
pegs. Notice that the solid object can push the bands but is blocked by the pegs.
This allow only local moves. The bubble move algorithm is explained in Chapter 4.

When a bubble move can be performed the necessary changes for the move are
stored in two queues called “add queue” and “delete queue”. The delta cost for the
simulation is then calculated from these queues.

v
Figure 1.18 Allowable Bubble Moves

We will use one of the eight possible directions as shown in Figure 1.18 for the
move direction. This direction is picked at random. The move length is fixed for
each temperature. However, the move length is decreased as the cell gets tighter.

Initially there is a lot of freedom for the bubbles in the cell, hence we use a large
move distance. When the cell is cooled the freedom for the bubbles is reduced, hence
a smaller move size. For all the previous stages the move size was large. For the
next stages the size has been reduced.

Figure 1.19 4:1 Multiplexor at Cooling stage 5

As the cell is cooled as shown in Figure 1.19, the bubbles move into the mem-
brane and the models start to close in although they still can move. At this time
the move length is reduced. Further cooling is shown in Figure 1.20.

Figure 1.20 4:1 Multiplexor at Cooling stage 6

In the final stages of cooling the affects of the central potential are clearly visible
as shown in Figure 1.21.

Vo N

Figure 1.21 4:1 Multiplexor at Cooling stage 7

The final stage of compaction removes the central potential and places the wall
at the minimum bounding rectangle region which is described in Section 3.9.1. At
this time all distortions due to the central potential are removed. The final cell is
shown in Figure 1.22.

oo

Ao e e

Figure 1.22 4:1 Multiplexor at Freezing

The cell is constricted to its minimum bounding rectangle and shown in Figure
1.23. This cell is placed next to the hand compacted cell. Notice that the automat-
ically compacted cell is smaller than the hand compacted cell by about 10%.

Figure 1.23 4:1 Hand and Automatic Compacted Cell

This cell would not be very useful if it could not be composed easily with other
cells. An example of composition is shown in Figure 1.24. This cell is a composition
of the cell just compacted and a similar cell.

Figure 1.24 4:1 Composed Cells

1.4 System Overview

The “Bubbleman” system is composed of a collection of interacting modules through
a common data base. Each module is a functional unit that is devoted to a particular
aspect of the system. The modules are executable code units that are loaded and
executed upon demand.

The Bubbleman system is written in the language Mainsaill[Wilcox 85].
Mainsail is an Algol like language which supports object oriented programming.
An advantage of Mainsail is that it is portable. The Bubbleman system was create
on a DEC 2060 computer system. The exact same code was compiled and executed
on a VAX 780, VAX 750, and a Sun which run the Unix operating system. Also,
Bubbleman was compiled on a IBM 4341 using CMS. The Bubbleman program run
successfully on all the mentioned systems with no changes to the sources code.

Graphic Structure Optimization

Editor Modifier Scheduler
AN

Data Data Simulator
<>\ Base [<>

Manager Interface

User Composition Utilities

Interface

Figure 1.25 4:1 Bubbleman System

The modules for the Bubbleman system are shown in Figure 1.25. In the center
is shown the database with the data manager on the side. The user interface module
is a centralized interface to the user. All control over the modules comes from here.

The graphic editor is the editor for modifying cells which will be described in
Chapter 5. The structure modifier, consisting of the bubble move algorithm and
associated functions, is described in Chapter 4. The graphic editor, composition
and optimization scheduler use this module. The optimization scheduler is the
implementation of the annealing process as described Chapter 6. An advantage of
this module is that it is very small and can easily be altered for the experiments that
are described in Chapter 7. The simulator interface allows translation of cells to
simulator formats such as Mossim|Bryant 82]. The utilities provide functions such

1 Mainsail is a registered trademark of XIDAK, Inc.

~ 17 —

as trimming wires, and absorbing bubbles. The composition implements the binary
composition as described in Chapter 8.

1.5 Thesis Overview

The general strategy of the thesis is first to give an overview of previous work on
structured design methodology and early compaction methods. Next the structure
of the primitives is presented followed by how the structures are modified. The
simulated annealing optimization technique is presented with how it is applied to
cell compaction. Experimentation and analysis of the compaction method is pre-
sented. How the compacted cells are assembled into a chip and the way in which
the compaction is guided for composition is presented.

Chapter 2 gives the background of layout methodology and compaction. The
method known as structured design for VLSI is presented as related to the layout
problem. An overview of leaf cell design methods is given. Current composition
techniques are explored and criticized. Next, the method of 1-D compaction is
reviewed followed by the early attempts at 2-D compaction. The limitations of
current compactors are explored.

Chapter 3 introduces a new framework specifically designed for 2-D curvilinear
compaction. This framework is easily tailored for a specific technology. A simple
set of primitives are introduced that will be used to construct integrated circuits.
The sophisticated method of representing geometric design rules in a simple manner
for the primitives is described. An example of a nMOS technology is described in
addition to ways in which the structure may be modified for a change in a technology.
A metric for a cell area is introduced which will be used in the composition of cells.

Chapter 4 describes how a structure is modified. The bubble move algorithm is
described. Utility are also presented. Modification to the cell polygonal boundary
is described.

Chapter 5 describes a graphic editor for initially creating a cell and performing
updates to the cell. A unique feature of the editor is a uniform method to update
the data structure and process errors.

Chapter 6 describes the simulated annealing optimization method. How we use
this method to compact integrated circuits is described. The objective function is
presented.

Chapter 7 describes experimental results of the compaction process. Analysis is
performed on these results. The complexity of the system is estimated. To determine
if a cell compacted with the curvilinear models can be fabricated, a set of cells was
fabricated and tested.

Chapter 8 describes a new method for composition. A binary composition
operator is presented which can be used to assemble an integrated circuit chip. A
new method for directing the compaction for cells specifically from the floor plan is
described. With this method cells are compacted for their environment.

Chapter 9 ties the thesis together by unifying the various pieces of thesis in the
conclusions. Extensions to the system are presented, as are ideas for future research.

2
Background

Clearly problems associated with designing integrated circuits has only increased
as the complexity of the circuits has increased. The structured design technique of
Mead and Conway has been generally accepted as the best approach for managing
this complexity. The basis of the technique is to separate the design of individual
functional units from the design of their interconnection. This chapter presents a
summary of the tools that have been developed for these tasks.

2.1 Layout Methodology - Design Styles

The structured VLSI design methodology[Mead 80] provides many paradigms to
assist designers in managing large complex designs. Using this methodology, one
partitions the design into a hierarchy of blocks with well-defined interfaces between
the blocks. Each block may have a functional, structural, and physical represen-
tation, and occupies a contiguous area on the chip. Replicated blocks need to be
designed only once, reducing the complexity. The hierarchy allows the design task
to be partitioned into several disjoint tasks.

The design process proceeds in a top down fashion with decomposition and
refinement at each level. The design is then assembled with a bottom up imple-
mentation. The top down design is the architectural design phase where wiring
strategy, major functional blocks, and the general floor plan is defined. The wiring
strategy is addressed at the beginning of the design which eliminates costly routing
and placement. This phase continues with cell estimation and cell detailing. Next
there is a bottom up assembly of the design by composing the blocks into larger
blocks until the chip is completed.

The separated hierarchy[Rowson 80] restricts the design into two type of blocks
called leaf cells and composition cells, as shown in Figure 2.1. The leaf cells contain
the primitive elements. A leaf cell is a physical block with an interface to other cells
called connectors which lie around the perimeter of the cell. The composition cells

define the interface between cells where a cell is either a composition cell or a leaf
cell. The leaf cell contains the representation while the composition cell contains the
interface between cells. This restricted hierarchy allows definition of the composition
independent of representation.

Composition
Cells

Leaf Cells
Figure 2.1 Separated Hierarchy

The philosophy for the layout method of designing a cell is either to design the
cell followed by a geometric design rule checking method to insure a valid design,
or to use a method that only allows correctly designed cells. The design and check
method allows for the most flexibility to designer. The drawback is that the design
and check phase needs several iterations to produce a valid cell, whereas the second
method only allows correctly designed cells. These systems are generally not as
flexible.

The design process for a cell starts from an initial design, and proceeds through
many design refinements. The method used to design the cell should be amenable
to this design process. The design and check method performs reasonably well for
small designs; however this method becomes unwieldy as the problem size grows.
The methods that only allow correctly designed cells operate at all levels.

Separate layout strategies have evolved for leaf cell design and cell composi-
tion. Methods for leaf cells design are usually graphical in nature. Tools are either
interactive graphic or a graphic language. Composition tools specify the tiling in
the plane. These tools are usually language based because of the flexibility of such
languages|Trimberger 81].

2.1.1 Leaf Cell Design

Leaf cell design is the process of creating a physical representation for a cell. Leaf
cells contain as primitive elements both polygons and wires. The physical represen-
tation is in the form of mask geometry, and is usually created with an interactive
graphic tool or a graphic language.

The language entry method provides the most flexibility since languages gener-
ally provide capabilities such as variables, expressions, conditionals, and loops. The
first graphic language Lap[Locanthi 78] was embedded in the Simula[Birtwistle 73]

programming language which allowed the full power an object-orientated language
to be applied to leaf cell design. The primitives specified in the Earl[Kingsley 82]
design language system were in terms of X and Y constraints that provided a lot of
flexibility; however, Earl was quite tedious to use. Initially, designs were specified
in terms of CIF primitives namely - polygons, boxes, and wires[Sproull 79]. Later
languages provided symbolic input as in Pooh[Whitney 83]. The language based
systems are of the design and check type.

The interactive graphic method provides a good user interface with rapid up-
dates. Entry in early systems such as Icarus|Fairbairn 78] is in terms of low level
primitives with batch geometric design rule checking. More recent systems such as
Magic|Ousterhoust 84] provided on the fly geometric design rule checking. Sym-
bolic systems such as Rest[Mosteller 81| allows entry in terms of a “stick” notation
where the leaf cell is defined with a sketch. This system couples a compactor to the
editor to produce a correct design. Other symbolic editors such as Pooh[Whitney
83] couple a geometric design rule checker with the interactive design and disallow
geometric design rule errors.

2.1.2 Cell Composition

Cell composition is the process of assembling the leaf cells together to form an
integrated circuit. The process involves mating cells so that connectivity is insured
between the cells and the produced cell is geometric design rule correct. The process
of mating cells is called “pitch matching”. This is accomplished by abutment if they
perfectly align, or by stretching the cells, or adding an interface cell to mate the cells.
The purpose of the mating is to line up the connectors to insure connectivity and to
place the cells in such a manner that connectivity is preserved and the combination
is geometric design rule correct.

The specification of a composition is best described with a language|[Trimberger
81, Mosteller 82, Segal 84, Ackland 83]. Generally these languages assume the cells
are rectangular with connectors along the perimeter. When two cells are joined
along a side it is assumed that there is a one to one mapping of the connectors. It
is not necessary that the connectors line up. The advantage of a language based
specification is that large composition can be specified with a small number of
statements. Languages provide replication via iteration for cells that are duplicated.
Some experiments with graphic composition have been tried on the Riot[Trimberger
82| system. The language based composition specification is amenable to the update
design process while the graphic specification is difficult to update.

The three techniques that have been used for composition are: abutment of
cells, stretching cells, and adding routing cells. The abutment strategy requires
that the cells to be joined have their connectors lined up and when the cells are
Juxtaposed no geometric design rule violation is generated. The stretching method
increases the size of both cells to be joined so that the connectors line up and the
cells are pitched matched. The routing method adds a routing cell to provide the
connectivity between the cells to be composed. All composition systems use one or
more of these composition methods.

Abutment systems rely on the designer of the leaf cells to place the connectors
at the proper position and establish the correct cell pitch for composition. This
method performs reasonably well for small designs and with minimum updates.
The problem with abutment is that the burden of composition is forced on the leaf
cell designer. An interesting abutment system is Pooh[Whitney 85] which allows
composition of polygonal cells. This system provides connectivity checking and
geometric design rule checking.

The stretching method assumes that the leaf cells are geometric design rule
correct and stretching the cell at connector boundaries would not introduce a ge-
ometric design rule error inside the cell. The stretching process expands the cells
to be composed until the connections line up and the cells are pitch matched. The
stretching at each connector creates a rift line at the connector through the cell
where the cell is extended. The advantage of this method is that a correct composi-
tion is formed. The composition strategy is simplified. The disadvantage is that the
cell size 1s always increased and possibly destroys the circuit integrity. In addition,
the total wire length may be substantially increased.

Stretching has a major disadvantage. Suppose cell A which is to be composed
with itself side by side horizontally and the connectors on the left side are below
the connectors on the right side. If two of these cells are composed, the second
one would need to stretch for the connectors to mesh with the first, and both cells
would need to grow in order to pitch match. Each additional composition of the
cell with the composed cells would increase the size of the final composition. This
problem could be alleviated by careful design of cell A; however it is difficult for a
cell designer to foresee all possibilities.

Composition systems that use the stretching method rely on leaf cells being
properly designed with respect to geometric design rules. Locations of primitive el-
ements for leaf cells in the Slap[Rowson 80] and Earl[Kingsley 82] systems are defined
by user specified constraints. The external constraints are then extracted for the
connectors and cell boundaries. These constraints are used to control the stretch-
ing of the cells. Constraint extraction has also been used with leaf cell compaction
systems|Kingsley 84]. The Mulga[Weste 81] system uses a virtual grid compactor
for leaf cell compaction. These compacted cells are then stretched at virtual grid
boundaries for composition. The cells are designed so that there is one half of the
maximum separation geometric design rule from the boundary to internal objects.
This is done so that upon composition there will be no geometric design rule errors.

A system that combines the technique of abutment, stretching and routing is
Rcomp[Mosteller 82]. The leaf cells for the system are designed in the RestMosteller
81] stick system. The leaf cells are designed so that there is one half of the max-
Imum separation geometric design rule at the cell boundaries to internal objects.
Composed cells are thus geometric design rule correct. The composition performs
a trade-off by area between adding a routing cell, or stretching the cells to be com-
posed if they cannot be abutted. Language specification features allow customizing
cells for a particular composition by a connector omit option. Also there is a feature
to compose cells at closer than the half separation distance where the user takes the
responsibility of design rules correctness. This system has been used for very large
designs|Lien 81].

The problem with composition systems is that the optimization is done locally
at the cell level and not globally for the whole composition. Even though leaf cells
may be compactly designed, the resulting composition of the leaf cells could be
quite loosely compacted. Cells are compacted first before any guiding information
is given about the composition. For manually designed leaf cells the composition
requirements should be considered. However for a reasonably large design, the
composition constraints could be overbearing for manual designed leaf cells.

Past attempts at good composition systems is a reasonable starting point. The
composition should optimize the integrated circuit at the global level where the
compaction of individual leaf cell is directed from the global optimization.

2.2 Compaction

The compaction problem is minimizing the area, perimeter, wire length, or some
linear combination of the above. The compaction process is the translation of a
symbolic or physical representation of an integrated circuit cell to a physical cell
representation which is design rule correct and has a near minimum area. The
traditional compaction optimization criteria is that of minimizing area. At the
present the best known compaction method is that of manual compaction. This
process is onerous, error prone,and tedious but produces the best results. Manual
compaction depends on the skill of the designer.

Early automatic and human directed compactors reduced the two dimensional
problem into two separate compaction processes for the vertical and horizontal axes
which are called 1-D compactor. These compactors use only orthogonal geometric
boxes and limit the transistor and contacts to box symbols which can move only
along the vertical or horizontal axis. The optimization criteria is minimum cell area.
However with 1-D compactors, the optimization is minimum length for the axis to
be compacted. The intention is that this method will reduce area. The next section
will describe algorithms used for 1-D compaction.

Extensions to the 1-D compactors where the two compaction processes for each
axis are coupled to make a single compactor have been called 2-D compaction. The
next section will describe early attempts at 2-D compaction.

2.2.1 1-D Compaction

The first compaction method was the “shear line” approach first introduced in 1970
by Akers[Akers 70]. This approach operates on a fixed size grid in either of the
horizontal or vertical axes by identifying space that could be removed perpendicular
to an object as shown in Figure 2.2. The central idea is that a compression ridge
of uniform width is identified across the cell where the ridge could be split at shear
lines as shown. The area occupied by the compression ridge is then removed. The
compaction proceeds in the horizontal axis until no space can be removed and then is
repeated for the vertical. The first working program using the shear line method was
developed by Dunlop[Dunlop 79, Dunlop 80]. The shear line method was extended

- 23 -

to use a “node and line” representation. A limited jog insertion method was then
introduced at connection points of wires and device. The drawback of this method
is that it is computationally intensive.

,shear line compression ridge

—/ /

_J/ v/
A L
“/7
T —

Before After
Figure 2.2 Shear Line Example

I =

A second method for 1-D compaction is the directed graph model. A constraint
graph is constructed and solved for each of the vertical and horizontal axes. This
compaction method assigns features, which are groups of objects that move as units,
to nodes in the graph. Each node will have a location, which is the placement of
the feature along the compaction axis. The directed arcs of the graph represent the
minimum geometric design rule constraint between nodes. An example is shown
in Figure 2.3 for a vertical compaction. The graph is then solved by assigning
placement position to the nodes in the graph.

GRAPH <—=> STICKS
0 -
(6) ® I8 #

[

'9 2
éq‘ ot g
N/

d
0 ‘;‘

Vertical Compaction

(H
N

B
!

=)

Figure 2.3 Vertical Graph Compaction

The first compactor to use the graph model was “FLOSS” [Cho 77] which solved
the graph using a longest path approach. A formal presentation of the graph

method was done by Hsueh[Hsueh 80] and implemented in the CABBAGE sys-
tem. A method for automatic jog insertion was developed to further reduce the
size of the cell. The jog insertion method did not give favorable results/Bales 82]
and would eliminate the symmetry in symmetrical cells. Features in the graph that
were not on the critical path of the graph were centered between the corresponding
nodes which was called directed placement. Extension to the CABBAGE system
were accomplished by Bales[Bales 82].

Most of the computation cost in the graph method is in the generation of the
graph which is akin to performing a design rule check. The REST[Mosteller 81] sys-
tem provides a shadowing method to reduce the computation time in construction of
the graph and the number of nodes in the graph. This method reduced the checking
of a feature to every other feature to only the directly covered feature. REST has no
automatic jog insertion since it was found detrimental in previous systems. Instead
REST couples a human with the compaction process for jog insertion. This method
produced very compact cells over previous compactors.

REST is one of the first graph based compactors to be used for the construction
of working chips. Previous compactors had not been used to build chips|Weste
81]. A few of the chips that were constructed with REST was a theorem proving
chip[Lien 81}, a motion detector[Tanner 83] and a quaternary multiplier[Frey 83].
REST proved to be an excellent tool for the construction of VLSI designs.

The first compactor to employ a wire length criteria into the cost function was
REST. A wire affinity weight was added to the arcs in the graph and additional
arcs were added where necessary between features that were directly connected.
The graph was then solved as previously described by the critical path method.
The nodes in the graph that had slack were then optimized based on the affinity
weight. Each type of wire may have had a different weight. This innovation greatly
improved the compaction. Other compactors that use a wire minimization criteria
were developed later at VLSI Technology([Kingsley 84] and by Schiele[Schiele 83].

An interesting algorithm was developed by Maley|Maley 85] for automatic jog
insertion. This method used the graph to place objects, leaving room for the wiring
which is added later. A sketch was developed for the wiring of the cell that was
used to construct the 1-D constraint graph which leaves room for the wiring. The
graph was solved and the wires were then routed. The algorithm has not been
implemented and as pointed out by Maley, it is somewhat unclear how it would
perform in comparison to the previous methods. Also this method could increase
the length of the wires since there is no criteria for wire length.

The Virtual Grid method which is used by MULGA[Weste 81, Weste 81a] places
the components on a virtual grid which can be adjusted based on adjacency infor-
mation. The virtual grid method compacts each axis separately. The compaction
proceeds by assigning location to each virtual grid based on adjacency information
which is a purely local operation. This method is fast because only local checking is
necessary in the virtual grid. The drawback is that the size of the cell is not as good
as one compacted with the graph based method. There is no jog insertion with this
method. Although limited, this system has been used to create a large number of
designs[Cho 85].

A necessary requirement in a compactor is the ability to direct the final shape of
the compacted cell and the position of the interface connectors on the edge of the cell.
This is necessary to compact cells for an environment for composition. One of the
first compactors to allow the user to direct the shape of the final cell and to control
the position of the connectors was REST. This was easily accomplished by adding
user constraints as arcs in the compaction graph for connector position and final
shape control. The user constraints could add cycles in the graph which possibly
could create conflicting goals. When conflicting cycles in the graph are detected
the user arcs causing the conflicting goals are deleted and the graph solving method
proceeds.

The addition of user goals to the graph method is easily accomplished as previ-
ously described. For the shear line method and the virtual grid method, user defined
goal would be difficult at best, if not impossible.

2.2.2 2-D Compaction

Early in the research for a two dimensional compaction method, Sastry and
Parker|Sastry 82] showed that the orthogonal constraint based two dimension com-
paction was NP—complete[Garey 79].

The first 2-D compaction algorithm was developed at IBM by C.K. Wong[Wong
83a] which he also proved to be NP-complete. The model is composed of rectangles,
and vertical and horizontal connecting wire segment rectangles. The method uses a
set of base constraints which control the sizes of the boxes, the widths of the wire
segments, and the relative location of the wire segments to there corresponding rect-
angles. Assume we have N rectangles, then there would be O(N) base constraints.
The overlap constraints are used to prevent two rectangles from overlapping where
there are four constraints for each pair of rectangles. Only one constraint in the
four needs to be satisfied. There are O(N 2) overlap constraints. The initial po-
sition starts with the cell collapsed to a point. The heuristic algorithm proceeds
by satisfying the invalid constrains. A pruning method is used to reduced the run
time. There are some controls for the final results. There is no jog insertion. This
algorithm has been applied to small test cases with about 17 elements. No real cells
have been tried.

Another method for a 2-D compaction algorithm was developed by Watan-
abe[Watanabe 83] in the program Squash. This method couples the X and Y 1-D
compaction graphs with a decision table where the decision variable determines
whether an X or Y graph arc will be active. The coupling of the graphs limits
the relation of two element as shown in Figure 2.4 where the constraints d; > C,
and dy > Cy are always valid. This limits the position of element A to be above
and to the left of B. The constructed graphs are static in that if an element moves
sufficiently away from the one that it is constrained too, the constraint is never re-
moved from the graph. The algorithm uses a “branch and bound” method to solve
the graph. Unlike the previous method the initial starting point is an exploded cell
where all the constraints are valid.

Figure 2.4 Two way symbol limit

Several techniques have been tried to improve the compaction. However they
are used by iterating on the NP—complete algorithm. A method was devised to
use the jog insertion algorithm of CABBAGE[Hsueh 80] which was never success-
ful[Bales 82]. There were no examples of jog insertion so it is unclear if the jog
insertion method was ever used. An iterative technique was used for the two sym-
bol constraint limit,

Some control over the final shape and position of the connectors was provided.
Several cells of approximately 25 transistors each were compacted with this method.

2.3 Limitations of Compactors

All of the current compactors are limited to rectangular geometry with compaction
taking place along the horizontal or vertical axis. Each compactor considers the
framework to be composed of fixed symbols which can move in the horizontal or
vertical direction with interconnecting perpendicular wires. Forty five degree wires
are not allowed in the framework. Wires are not allowed to bend nor are jog points
inserted. This imposes a restriction on symbols that are connected by a straight
wire by only allowing the connected symbols to move as a unit perpendicular to the
wire. The orientation of the symbols is fixed. This framework severely limits the
compaction space. The human designers is not limited to these artificial restrictions.

The desired optimization criteria for the 1-D compactors is that of area, how-
ever, the optimization criteria used is to minimize the width of the side being com-
pacted. This criteria does not approximate the area. The 1-D compactors are
extremely sensitive to the order in choosing axes axes. The X Y compaction does
not permute. Compaction in one axis can block further compaction in the other
axis.

The current 2-D compactors are extensions of the 1-D compactors and suf-
fer from the same limitations with the addition of longer running time. The 1-D
compactors such as REST|Mosteller 81] could easily compact the example of the
2-D compactor Squash|Watanabe 83] with approximately the same area or better.
Further reduction would result if human directed jog points were used. The 1-D
compactors are just as good as the early 2-D compactors.

—- 27 —

Automatic jog insertion has been tried by several of the compactors with very
limited results[Bales 82]. The human directed jog insertion in REST[Mosteller 81]
has been used with very good results. Currently there are no effective automatic
jog insertion algorithms.

Some of the compactors have a wire minimization criteria which is applied
after the compaction has been completed. This possibly reduces the wire length of
connecting elements that have slack. However this is only a sub-goal and applied
after compaction. There is no real control over the lengths of wires.

An important property of a good compactor is the ability to direct the com-
paction of a cell for an environment. This control is used by some composition
processes. The controls that are needed are to direct the shape of the cell and the
connector position. The 1-D compactor REST which allows the shape and connec-
tor position to be directed was used by the composition system Riot{Trimberger 82].
Cabbage and Squash provided limited control.

To overcome the shortcomings of previous compactors we will use a curvilinear
framework as described in Chapter 3. This framework does not have the artificial
limitation of rectangular geometry and orthogonal wires. This framework allows
models to rotate and deform to natural positions while older compactors use rigid
non-rotating devices which have restricted movement. Jogs or wires wrapping ob-
stacles is an inherent part of the frameworks. We do not need an ad hoc process to
add jogs as previous compactors.

Previous compactors did not focus on a minimization criteria but tried to some-
how minimize area by using the longest distance along each axis. We use a crite-
ria where wire lengths, area, and composition constraints are uniformly addressed.
Users can make a tradeoff between area, wire length and composition constraints.

Along with this framework we use the optimization technique know as simulated
annealing, described in Chapter 6, to compact cells as well as a very good human
designer or better. There is no longer a need to hand compact cells.

— 28 —

3

Structure of
Primitives and Models

To apply simulated annealing to the two-dimensional circuit compaction problem
requires a simple representation that can be modified easily. The variety of ob-
jects -transistors, contacts, resistors, wires, etc.- and sizes of objects found in VLSI
circuits makes finding such a representation more difficult. Earlier applications of
simulated annealing to molecular dynamics suggested the representation that we
have developed.

In this chapter we define a curvilinear circuit description framework. This
framework allows devices such as transistors and wires to be positioned at any angle.
Wires can be considered as elastic bands tautly stretched from connection point to
connection point passing as closely as possible around obstacies. Each device is not
fixed to a specific shape or orientation but is a malleable entity. For example a long
transistor may bend to conform to a region in a VLSI circuit where a smaller design
would be possible over a design where the transistors are not pliable. The extent of
the deformation of the device beyond the canonical form is limited by the electrical
properties of the device and the geometric design rules.

In the design of the framework our objectives were to model the physical “real
world” that a hand designer would use as close as possible and not be limited by
artificial restrictions imposed by a compaction algorithm. The framework needs to
be easily modified for user editing and for simulated annealing compaction. We
wanted the representation of the design rules to be modular, easily altered. The
representation for specific technology should be easily defined in a technology file.

One of the interesting points about silicon is that it does not know about X
or Y as stated in a meeting with Ivan Sutherland in the early days of the Silicon
Structures Project at Caltech. Early design methods employ constraints to the X
and Y axes and fixed 90 degree device angles. Utilization of silicon area can be
achieved by using curvilinear geometry.

The framework is composed of three geometric primitives that are designed
for efficient manipulation. Transistors and other structures that form an integrated
circuit chip are introduced as compositions of the primitive objects. These composi-
tions are called models and define the archetype for transistors, contacts and other
devices.

A design represented in the framework is maintained geometric design rule
correct. All allowed modifications are to transform a correct design to another
correct design.

The geometric design rules are defined for our framework. The primitive ge-
ometric design rules is a separation rule between objects. A geometric rule can
be between objects on the same layer or between objects on different layers. The
geometric design rules are formulated to reduce a multi-layer problem to several
independent monochrome problems. In integrated circuit design the design rule
that applies to electrically connected elements is different then the design rule for
non-connected elements. We introduce the concept of “related” elements to provide
for variation in design rules such as those based on connectivity. This method is
also useful when defining models that are structures consisting of several elements
connected and related in a specific manner.

The framework we present is defined so that a technology file can define the
rules for our design. We will show how a nMOS technology file is constructed using
our framework.

3.1 Background

Traditional integrated circuit designs use rectilinear geometry based on boxes and
polygons with 90 degree and sometimes 45 degree angles. The reason for using
rectilinear geometry is twofold. First, only simple calculations need to be performed
for checking design rules. Second, early manufacturing processes were limited to
boxes. With modern day fabrication technique this is no longer true.

The use of curvilinear geometry is not new and has been used by design systems
as in Earl[Kingsley 82] and Pooh[Whitney 83]. The use of curvilinear geometry has
been coined “Boston” geometry while orthogonal has been called “Manhattan”, cor-
responding to the city streets where Boston has spaghetti-like streets and Manhattan
has orthogonal streets.

An interesting study was done by Don Speck|[Speck 85] at Caltech on savings
of rectilinear versus curvilinear geometry. This study showed as much as 25% of
cell area could be saved using curvilinear over rectilinear geometry. Speck found
that to get the maximum savings the initial topology needed to be designed for
curvilinear geometry although a substantial savings would result for cells designed
for rectilinear geometry.

Curvilinear geometric objects have been used by contemporary designers in
the design of the Mosaic[Lutz 84, Rabin 84] using the Earl system and in a dat-
apath[Hedges 82] using Pooh. The Mosaic chip is working and will be used in a
homogeneous machine. The cells in the Mosaic chip are extremely compact. Sev-
eral of these cells will be used to demonstrate the ability of our system to compact.

An early curvilinear geometric design system “Coma” [Mosteller 82] had an
extensive graphic editing system. The graphic part employed a virtual graphic in-
terface with device independence. This system was intended to provide a framework
for compaction. “Coma” data representation was in terms of wires and paths. Log-
ical layers were used to describe design rules and stylized devices. During research
of this system it was found that update and design rules checking was expensive.
This system was abandoned for the framework presented in this dissertation.

A formalized representation of curvilinear geometry was presented in the
“Pooh” system[Whitney 83]. Pooh provides an integrated approach of a uniform
representation for circuit and layout representation. Entering data is through a
layout language where placement is specified or through a layout graphic editor.

The framework we present here is restricted over the freedom allowed in Earl
and in Pooh. Besides allowing curved wires Earl allows rectangular objects and free
form polygons. Each object in Earl has only one layer. Pooh allows wire ends to be
square or defined with some minimum radius.

3.2 Primitive Geometric Objects

We define our three primitive objects as a “Bubble”, “Segment” and “Around” as
shown in Figure 3.1. We will build VLSI chip structures from these primitives.
For now we will consider the primitives to be single layered or monochrome. Each
primitive has an associated N-tuple called the rule that contains properties about
the primitive. One property is the radius of the primitive. The rule for a primitive
is described in Section 3.3.2.

The primitive will first be presented as single layered objects. In coming sections
we will extend the single layer concept to primitives existing on many layers.

The motivation for the type of primitives, and the structure and data fields of
the primitives is as follows.

e The primitives meet the specific geometric design rules that are defined in a
technology file. The cells constructed from the primitives is always design rule
correct.

e We have a reduced data structure where related objects on many layers are
represented by a single object on many layers. In past systems, geometric
related objects were partitioned by layer. For example a contact was represented
as three separate boxes on the polysilicon, metal and cut layer. We would like
to combine several related objects that are on different layers into a single object
on many layers. In our example the contact would be represented by a single
object on the polysilicon, metal and cut layer. This method reduces the data
structure and simplifies the modification of the data structure.

e We use the shortest path for wires interconnecting bubbles.

e Our structure is easy to manipulate. As you will notice the data structure of
the primitives are not in a natural form but a form designed specifically for fast
checking and manipulation. For example notice the segment definition is not
defined by its end points but by its line equation.

X

Figure 3.1 Bubble, Segment, and Around

There is a set of geometric inequalities that needs to be preserved in order
to construct a working chip. These constraints are geometric design rules. There
are geometric design rules for minimum widths, layer overlaps, layer extensions and
minimum separations. We can classify the geometric design rules into two types
where the first type affects the shape and size of wires and devices. The second affect
the location of primitives. The first class of geometric design rules is preserved by
construction consistent with definition in a technology file. The second type, which
is the minimum separation rules is preserved by not creating nor moving a primitive
to a location where the minimum separation rule would be violated.

For our primitives we will define the function MINW(O;,0;) as the minimum
separation distance between the two primitives Oy and O,. The function MINW
encapsulates the minimum separation geometric design rule. We define MINW as

follows
MINW(O;,02) = Oy.rule + Og.rule + mindistance. (3.1)

For our design the minimum separation distance between monochrome primitive
objects is mindistance.

This function is a simplified version of the function for single layer primitives.
In Section 3.3.3 on geometric design rules we will define MINW for the multilayer
design. In the function (3.1) the rule can be considered the radius of the objects.
MINW sums the radius of the first object with the radius of the second object
plus the minimum separation distance. The mindistance is the minimum separation
between two primitives.

For our framework we have two invariant conditions. The first invariant is that
the design described by our framework will not violate the geometric design rules
described in the technology file. The first class of geometric design rule is preserved
by definition in the technology file. The second type, the minimum separation
inequality rule, is preserved by not allowing any two primitives to be closer than
MINW.

The second invariant condition is that a wire will always have the shortest path
with a given topology. When wires are initially created they connect between two
points in a straight line that is the shortest possible wire. Later when the wire is
moved it will wrap objects which are as close as the geometric design rules allow.

The initial creation of primitives is accomplished by a graphic editor. We will
show in the definition of the primitives how the checking for a geometric design rule
violates is accomplished. If one is found, in the initial creation of a primitive, the
creation is aborted in the editor.

3.2.1 Notation In The Plane

Before we define our primitives we will review the nomenclature and vector defini-
tions that will be used in this dissertation. A point P will be defined as an order
pair (z,y) of real numbers z and vy,

P =(z,y) (3.2)

where the point represents a position in the rectangular cartesian coordinates
as shown in Figure 3.2. We will use the period to access a field of an N-tuple as in
P.z.

Figure 3.2 Point and Vector

We will consider a vector V associated with the point (z,y) to start at (0,0)
and end at (z,y). We write

—_—

V = (z,y) (3.3)

as shown in Figure 3.2. Most operations on these vectors are carried out by con-
sidering each vector as a complex number and applying the ordinary arithmetic of
complex numbers to the vectors. We will use the following notation to denote the

_}
components of a vector V
ey —
REAL(V) =12z, and IMG(V)=y.
The magnitude or length of vector V is denoted by

V| =|(z,y)| = L= /% + y2. (3.4)

The angle 9 of the vector V' is defined from the x-axis to the vector as shown

in Figure 3.2 and denoted 8(?) Thus we have

z = L cos(f) (3.5)
y = L sin(9) (3.6)

- 323 -

We will use this property later on to test if vector Vis in the top, bottom, left
or right half plane.

. ‘_) .-) .
Since the product of two vectors Vi, and V; is
e S
Vi*Vy = (z1,51) * (22,92) = (z1 % 22 — y1 ¥ y2, 21 ¥ y2 + 22 * 41), (3.7)

we have their lengths Ly * Ly =]71) * ¥72)[and the sum of their angles 6; + 8, =
8(V1 * 3).
——

We denote the conjugate of vector V as

<]
It

(z,-y), (3.8)
and we have L
[ﬁ*ﬁile*Lz and
O(V; +V3) = 6, — 6.

We will use this property later on in the definition of several algorithms.

3.2.2 Bubble Definition

A bubble is a circular object with a location defined by the center of the bubble
with a radius defined by the bubbles rule. Bubbles are used as connectors between
wires and as terminator for wires ends. Wires emanating from a bubble will have a
radius rule less than or equal to the bubble radius rule. A bubble can be considered
as a solid object. We define a Bubble as a n-tuple:

Bubble(X, Y ,segs(|,arnds[+],rule,reln[+]).

Bubble Attribute Type Attribute Description
X Real The x coordinate

Y Real The y coordinate
segs|*] Array! Attached segments
arnds|| Array Wrapped arounds

rule N-tuple the Rule for this bubble
reln|[«] Integers Related numbers

t An array is an n-tuple of objects of similar type.
Table 3.1 Bubble Attributes

3.2.2.1 Bubble to Bubble Geometric Design Rule Checking

We would like to know if two bubbles conform to a minimum separation distance.
Consider two bubbles, B; and By at the location Py = (Py.z,P.y) and P, =
(P;.z, Py.y) respectively. We can use the following inequality to determine if the
two bubbles conform to a minimum separation design rule.

MINW(By, By) < \/(P.z — P.z)? + (Pr.y — Py.y)2. (3.10)

3.2.3 Wire Definition

A wire is a geometric path of constant width that starts and terminates at a bubble
as shown in Figure 3.3. Wires are constructed from straight pieces called segments
and curved pieces called arounds. A wire can be considered as a non-empty sequence
of alternating segments and arounds that starts with a segment and ends with a
segment. The wire is directed from a start bubble to an end bubble. The components
of a wire are similarly directed.

The segments and arounds that construct a single wire have the same rule. No-
tice how the wire in Figure 3.3 wraps the two bubbles with the minimum separation
distance rule.

Figure 3.3 Wire

Wires were defined with two goals in mind - we wanted to be able to modify
a wire or a portion of a wire very easily and we wanted to be able to treat the
modification as a transaction with an add and delete pair that is used for compaction.
The reason for the transaction is to be able to calculate very quickly the delta energy
function that will be discussed in Chapter 6 on simulated annealing. We also need
the ability to quickly check for a geometric design rule violation. One possible
representation for a wire is a string of points. This representation was rejected
because it is difficult to update a string with an add delete pair.

Each element of a wire is related to its neighbor by links. Elements of a wire
can easily added or deleted by modifying links. Only the segments and arounds
that modified the shape of the wire need to be considered. At the global level, we
consider the framework to contain bubbles, segments and arounds. A wire is only an
abstract quantity not specifically included in the framework. This allows modifying
a wire by only examining segments and arounds. There is no need to consider the
wire as an entity. The framework for a wire satisfies our first goal.

The second goal in considering the definition of a wire is that of easily checking
for a geometric design rules violation. In the definition of segments and arounds in

the next subsections the data structure carries the information needed for geometric
design rules checking in a compact form.

We would also like our representation of segments and arounds to be consistent
and easily generated from bubble position with minimal calculation. This consis-
tency will be described In Section 3.2.3.2 on arounds. Because of this consistency,
the calculation for representation of an around and segment group needs only to be
done once and not for each piece.

The characteristic for wires is that all components of an individual wire will
have the same rule. The bubbles at either end of each individual wire will have a
radius greater than or equal to that of the wire radius. This simplifies the checking
of geometric design rules for segments as described in the next section. Also if a
segment is rotated about a bubble the geometric design rule checking of the segment
end is not necessary. Notice in Figure 3.4 part A, if the wire is rotated the end
attached to the bubble as shown could create a design rule error. Checking for this
would be a particularly difficult special case. In case B this is not necessary since
the end is not protruding.

A < B

Figure 3.4 Wire-Bubble Interface

Wires are initially created by the graphic editor as straight lines segments be-
tween bubbles which is the shortest path for the wire. Arounds may be created when
wires are modified by the move algorithm as described Chapter 4. The clearance
between a around and the object that the around wraps will be the minimum sep-
aration rule. The wires will be maintained with the shortest path possible without
violating a design rule.

3.2.3.1 Segment Definition

Our aim for the definition of a segment is to be able to quickly check the segment
against other objects for design rule violations. We could represent a segment by
its end points; however this representation would require creating the line equation
of the segment for checking. The segment will be represented with a length, line
equation, perpendicular line equation bisecting the segment at the center point.
This representation allows simple checking that satisfies our goal.

n U

V)

(a.b)

Figure 3.5 Segment

We define a segment S as shown in Figure 3.5 as directed from a point at
location P, = (Py.z, P1.y) to a point at location P, = (Py.z, P;.y). We will represent
a segment with a length, a normalized line equation, and a perpendicular normalized
line equation bisecting the segment at the center point. The line equation is

axz+bxy+c=0 (3.11)

V(a? +8?) = 1. (3.12)

The vector ((175 defined from (3.11) is a unit vector orthogonal to the segment as
shown in Figure 3.5,

The normalized line equation perpendicular to the segment and intersecting the
center is given by

and normalized so that

a xz+b *xy+ne. (3.13)

We define a segment as an n-tuple

Segment(starto,endo,a,b,c,a’, ¥, nc, L, rule, reln[+]).

Segment Attribute Type Attribute Description

starto Tuple The start of segment*

endo Tuple The end of segment*

(a,b) Reals Line equation vector

¢ Real Line equation constant

(a',b') Reals Line equation perpendicular vector
ne Real Line equation constant

L Real Line equation constant

rule Tuple The rule for this segment

reln|[«] Integers Related numbers

* This tuple will be either a bubble or an around.
Table 3.2 Segment Attributes

— 37 —

This n-tuple does not represent the data structures used for implementation.
It is presented to define the segment characteristics used throughout this thesis.

3.2.3.1.1 Segment Initialization

We will initialize the segment tuples fields based on bubble center points. We will
first consider the case where the segment’s end points are bubbles. The case where
both or either end is an around will be covered in Section 3.2.3.2.1. The reason for
this is that the calculation of the arounds fields also definite the segment fields. The
length of the segment from the bubble at P; to the bubble at P; is

L=1/(Pyz— P .2)? + (Ppy - Ppy)?. (3.14)
If L # O then we set

a = (Pz.y - Pl.y)/L,
b= —(Py.z — P;.2)/L, (3.15)
c= —a*Pl.:c - b*Pl.y.

Otherwise we set

a=0.0,
b= -1.0, (3.16)
c = P1 Y.

The normalized perpendicular line equations constants are

a' = b,
b = a, (3.17)
ne=—a'xpj.z—b «py—L/2

3.2.3.1.2 Bubble to Segment Geometric Design Rule Checking

We wish to test if a bubble conforms to the minimum separation rule to the segment
as shown in Figure 3.6. If the bubble B isin the region as shown in Figure 3.6, testing
against the segment is necessary. If the bubble is outside the region, the testing
would be accomplished when testing the primitive to what segment is attached too.

@ bubble

(a,b)

Segment

Figure 3.6 Segment Test

The normalized line equation has the following property: if it is evaluated at a
point in the plain, the resulting value is the directed distance from that point to the
line. The distance is positive if the point is on the outward pointing side of vector

(—c—z:’ls otherwise negative.

We can test for a bubble being inside the region and being too close to the
segment by using the perpendicular line equation and the length of the segment as
follows. If we have

S.L/2.0 > |S.a' * Pz + S+ Py + S.nc, (3.18)
Then the bubble is inside the region and we have

MINW(S,B) > laxz+b*y+ ¢ (3.19)

then the bubble is too close to the segment.

3.2.3.2 Around Definition

The arounds are curved segments that wrap bubbles. Arounds are needed to repre-
sent the curved portion of a wire. The around connects to segments on both ends.
Every around has a bubble at its center. Like segments, arounds have a direction
from a start point to an end point as shown, in Figure 3.7. Every around starts and
ends with a segment. The connected segments are tangent to the around but may
have zero length.

Similar to our goal for the definition of a segment, we wanted the around repre-
sentation to allow quick checking and be consistent with the segment representation.
We considered representing the around with end points but rejected the idea due to
complexities with geometric design rule checking.

Arounds are represented by a start unit vector s, an end unit vector €, a
radius R and a center point that is a bubble. The radius R is positive if the arc is
counter-clockwise and negative otherwise.

Observed that the around unit vectors are related to the attached segment
line equation vectors. Specifically, the segment line equation vector is equal to
the attached around end vector for counter clockwise arounds and the negative
otherwise. This representation provides a consistency between the segment and the
around. The calculation for an around vector and segment vector is only done once

for the pair.

The radius of the around is defined using the geometric separation design rule
of the closest primitive that the around wraps. If the around, A, wraps a bubble,
B, then the radius of the around, A, is R =MINW(A, B). When the around, A,
wraps an around, Q, then the radius would be R =MINW(A4,Q) + |Q.R|. Notice

Figure 3.7 Arounds

the arounds radius includes the radius of the around it wraps.
We define an around as a n-tuple:

Around(starts, ends, as, bs, ae, be, r, b, link, rule).

Around Attribute Type Attribute Description
startseg N-tuple The start segment
endseg N-tuple The end segment
—_—

(as,bs) Reals Start vector

—_—

(ae, be) Reals End vector

R Real Radius

B N-tuple Center bubble

link N-tuple Around Linked list
rule N-tuple The rule for this around

Table 3.3 Around Attributes

This n-tuple does not represent the data structures used for implementation.
It is presented to define the segment characteristics used throughout this thesis.
All the arounds that would wrap bubble, B, are in a linked list with reference

link.

— 40 —

3.2.3.2.1 Around Initialization

ony)

Segment

\ .=

Bubble L Around A

Figure 3.8 Counter Clockwise Around - Bubble End

We will first show how the around representation vector & is initialized when the
connected segment ends at a bubble and starts at an around as shown in Figure 3.7.
The radius R for the around is positive when the around is counter clockwise. We

—_—
define the unit vector € in the direction of the vector P, P; as show in the Figure
3.8. The unit vector € = (ae, be) is constructed by rotating the normalized vector

——_) . . _) . ——’ 3

P, P; by the conjugate of a unit vector V' . The unit vector V is defined by the
B —

vector Po Py x Py P3.

Az = Py.x — Pz,
Ay=P.y— Py,
R = radius of around,

—

V = (|R|/N,R/|R| * L/N).
—_—
Normalizing vector Py P; we get
PyP, = (Az/N,Ay/N). (3.21)

. . = . g -
Rotating normalized vector P, P; by the conjugate of vector V is

R
e = P2P1 * V,
& = (ae, be), (3.22)

ae= (Az* R+ R/|R| * Ay L)/N?,
be=(Ay* R— R/|R|+ Az * L)/NZ.

around

R bit;ble 5 L e R2
! N P bubble
A (AN
around E

Figure 3.9 Counter Clockwise Around - Around End

We will now show how the around representation vector & is initialized when
the connected segment ends at an around and starts at an around as shown in Figure
3.10. The radius for the around is positive. We can translate the problem to the
previous by moving the line P, P; by the radius of the second around R;. This
translation is done by letting R’ = R; — Ry. We define the unit vector ¢ in the

. . —_ . . . —
direction of the vector P, P3 as show in Figure 3.8. The unit vector & = (ae, be)

—_
is constructed by rotating the normalized vector P, P; by the conjugate of a unit

— . — R T ——
vector V. The unit vector V is defined by the vector P, P; * Py Ps.
Let

Ry = radius of first around,

Ry = radius of second around,

V' = (R'/N,Ry/|Ry| * L/N). (3.23)
]
Normalizing vector P, P; we get

PyP| = (Az/N, Ay/N). (3.24)

— 42 —

. - e 4 . Py d .
Rotating normalized vector P; P| by the conjugate of vector V is

T =PP*V,
& = (ae, be), (3.25)

ae = (Az* R'+ Ry/|Ry| + Ay + L)/N?,
be = (Ay* R' — Ry/|Ry|* Az + L)/N?.

In a similar manner the around representation unit vector s = (as, bs) may
be found by remapping the variables and appropriate signs.

Now we will consider initializing the segment when either end of the segment is
an around. First let us consider when the start of the segment is an around. Notice
that in the around initialization the length of the segment is L and the around vector
—€ = (a,b) for a positive R or € = (a,b) for a negative R. Therefore we set the
values for segment S to

S.L=1L,
if B> 0.0 we set
S.a = —ae,
S.b = —be.
Otherwise we set (3.26)

S.a = ae,

5.5 = be.

i

Sc=-SaxPy.xz— SbxPy,.y— R.

Now let us consider when the end of the segment is an around. Notice that
in the around initialization the length of the segment is L and the around vector
—"8 = (a,b) for a positive R or 3" = (a,b) for a negative R. Therefore we set the
value for segment S to

S.L=1L,
if R > 0.0 we set
S.a = —as,
S.b = —bs.
Otherwise we set (3.27)
S.a = as,
S.b = bs.

Sc=-Sa=* Pg.x — S.bx Pz.y - R.

— 438 —

3.2.3.2.2 Bubble to Around Geometric Design Rule Checking

Bubble B .
\ — /

Bubble P,
Figure 3.10 Around to Bubble Test

Now we will show how a bubble is checked for minimum separation distance
violation to an around A of less than 180° as shown in Figure 3.10. If the bubble at
P, is within the pie slice defined from the vectors 3’ to € then the bubble will need
to be checked for a minimum distance violation. The segment test would be invoked
when the bubble is not within the pie slice. To see if bubble B at P, is within the

pie slice we can use the vector }_’l_P; . The bubble is in the pie slice when the vector
Iﬁ; is in the left half plane of 3 and in the right half plane of ¢ for positive
R(counter clockwise around) or the vector ITP; is in the right half plane of 3" and
in the left half plane of "¢ for negative R(clockwise around). To see if vector ;’17’;

is in the left half plane of s’ we multiply the vector P, P; by the conjugate of vector
s then we take the imaginary part of the resultant vector and test for greater then

zero. This is the sine of the angle between P, P, and s times the magnitude of
vector P; P, that we will let equal a. If a is positive the vector P P; is in the left
half plane of 3. Similarly to see if vector Py P; is in the right half plane of & we

e
multiply the vector ¢ by the conjugate of P; P; then take the imaginary part of the
resultant vector and test for greater than zero. This is the sine of the angle between

g d —_— . . —_— R . .
Py P; and ¢ times the magnitude of vector P; P, which we will let equal b. If b is

positive, then vector 13—1“?;2) is in the right halt of vector €. We need to know if the
angle between § and € is less than 180°. We will let U equal the sine between
3 and ¢ which will be positive if the angle is less than 180° for positive R and
negative for negative R. For an angle greater than 180° we would need to logically
“OR” the previous test for the left plane of s* with the test for the right half plane
of ¢ .

We set
a=IMG(P\P; * 3), (3.28)
b=IMG(€ « P, P,), (3.29)
U=IMG(€ * %) =sin(8(7,¢)). (3.30)
If we have

(R >0.0 A {counter clockwise around}
(U>00Aa>0.0 A b>0.0)
\4
(U <00 A (a>0.0 v b>0.0))))
v (3.31)
(R < 0.0 A {clockwise around}
(U<00 A a<00 A b<0.0)
\
(U>00 A (a<0.0 Vb<0.0)))),

then the bubble B is within the pie slice and we have
—_—
MINW(B, A) < ||PP;] - |R|| (3.32)

is true for the Bubble to be within the design rule.

3.3 Layers and Design Rules

The layer concept and geometric design rule representation will be presented in this
section. Also the primitive rule that was introduced in Section 3.2 will be extended
to its full meaning.

3.3.1 Layer Concept

VLSI integrated circuit designs are composed of many layers. In this dissertation
each layer will be associated with a color. We will refer to layers as colors.

In the last section we defined the primitives for a single layer or monochrome
color. This section will extend the definition of a primitive to many layers. Each
primitive will have an associated n-tuple rule, that defines the layers for the primi-
tive with the corresponding radii for the layers.

Geometric design rules for VLSI have two types of minimum distance separation
relations. There are minimum separation distance rules between objects on the same
layer and minimum separation distance rules for objects on different layers. For
example there may be a rule between a red object and a green object with some
minimum distance. We wish to reduce the interlayer interaction rules to single layer

rules. This reduction is accomplished by introducing a new color for each interlayer
interaction rule. The interlayer rule is formulated in the new color. For all objects
with either layer, the new color will be added to the object and the width of the
object for the new color will be the maximum width of the interacting layers for
that object. The minimum distance for the color is the interlayer interaction rule.
For example we let the color “blah” represent the interlayer rule for red and green.
The color blah is added to all objects with colors red or green. The width of blah for
the object is set to the maximum of the red or green width. The minimum distance
for blah is the interlayer minimum distance for the red and green layers. Thus color
blah reduces the red and green interlayer interaction rule to a monochrome rule of
color “blah”.

There exists a potential problem if the interlayer separation rule is greater that
the normal separation layer rule. Two like bubbles with the normal layer rule and
such an interlayer rule would be separated by the maximum separation rule. This
unusual case is handled by ignoring the interlayer rule if the layer rule is present.
The next section on geometric design rules will show how this is done.

Colors are used for many purposes besides fabrication in the VLSI design pro-
cess. The color names in our system are defined by an array of color names, color.s{*]1
where the number of color names is |colors|. Colors are numbered from 1 to N. We
wish to know whether a color is relevant for a specific purpose. Each purpose has a
Boolean array that is indexed by a color number. We can test for the relevance of
a specific color in the Boolean array by arrayname[colornumber| where arrayname
is the name of the Boolean array. A logical operation on Boolean array is defined
to be that operation on each of its corresponding elements. For example a logical
“AND” on the arrays, A and B, resulting in C would be:

C[i] = A[{] A B[]
Each color may have several uses in the design process. For example a CIF color

would be used for fabrication. The following table defines uses for global colors. The
Boolean type is used to define the presence of a color in an application.

Color Attribute Type Attribute Description
Colors|¥] String Color names

CIF[#] Boolean Fabrication

CIFname|] String Fabrication

Mindistance[+] Real The minimum distance color

Table 3.4 Global Color Attributes

The real array mindistance[+] is the minimum distance between two primitives
with a specific color.

1 We will consider an array as an n-tuple of similar type object represented by
the symbol [#| where the index ranges from 1 to N where |[*]| = N.

3.3.2 Primitive Rule Definition

A Rule describes the attributes for a primitive. The geometric design rule properties
for a primitive are given in the rule. Control information for the graphic editor is
given. The rule describes if this rule may be used for a port. The colors that are
displayed to the user in the graphic editor are also described. The rules for a specific
technology are defined in a technology file.

We define the concept of a rule as introduced in Section 3.2 as a tuple:

rule(Name,Presentcolor [+],physical[*],

rulecolor(+],Rulectst[«],Ruleclear|«],
connection[+|,Edplace,Edport,Edwire,
width[#] relsignificant|«, *|,relwidth[«],

COST)
Color Attribute Type Attribute Description
Name String Name of the rule
Presentcolors|+] Boolean Relevant Colors
Physical|#] Boolean Graphical Plotting and displaying
Rulecolor|#] Boolean Design rule colors
Rulectst|| Boolean Design rule test colors
Ruleclear[*] Boolean Design rule clear colors
Width [«] Real The radius of the object
Connection|[#] Boolean Allows connection to primitive
Edplace Boolean Allows creating a bubble
Edport Boolean Allows creating a port
Edwire Boolean Allows connection to primitive
Relsignificant|+, ¥] Boolean Related Significant Rule colors
Relwidth[*,] Real Related width
COST Real Cost for a single step move

Table 3.5 Rule Attributes

The rule defines a set of properties of a primitive. We extend the number of col-
ors for a rule to be the relevant colors as defined by the Boolean array presentcolor|*].
The Boolean array physical[+] defines the colors for the primitive that will be plotted
and displayed during graphic editing. Not all colors would be displayed. An example
would be the colors introduced for the interlayer interaction geometric design rule.
The Boolean array rulecolor|+| defines the relevant colors for geometric design rules.
The Boolean array rulectst[*] is used to test for ignore colors and the Boolean array
ruleclear(+] is the colors to be ignored. The real array width[+] defines the radius of
the primitive. The arrays relsignificant|*,*| and relwidth[*, *] will be discussed in
Section 3.6 where concept of related is described.

The fields that control graphic editing are connection, edplace, edwire, and
edport. The Boolean array connection[+] allows other primitives to connect to this

primitive if the logical “AND” of their respective connection[*] has any relevant
colors. Zdplace is a Boolean that allows bubbles to be created with this rule. Edwire
is a Boolean that allows the rule to be used for wiring. The cell created during
graphic editing will have interfaces to the outside world called ports. Edport is a
Boolean that controls the use of the rule for a port.

The actual names and number of colors are described in a technology description
file. The section on nMOS will describe the technology file for nMOS.

3.3.3 Geometric Design Rules

Geometric design rules are a set of inequality constraints that are necessary for
a working chip. Minimum allowable width, extensions, overlaps, and separations
distances are geometric design rules. We will discuss how each is specified in our
system. The designer of the technology file defines the rules for a specific technology
he plans to use. We do not have the concept of a minimum width for a primitive
but individual widths are specified for each kind of primitive. The width is defined
for a primitive in the technology file within a rule. The widths may only vary
by defining each desired width as a separate rule. The extension is the minimum
distance a layer will extend over another layer. This extension is accomplished by
defining the model(see Section 3.4) with a new bubble that is the extension layer
with the proper separation constraint. The extension is also sometimes covered by
the overlap method. The overlap is the minimum amount that a layer will extend
over another layer. This rule can be accomplished by defining the width of the
overlap layer equal to the width of the other layer plus the overlap. The separation
constraints are defined between two objects where the sum of the two object widths
plus a minimum distance is greater than or equal to the distance between the two
objects. The constraints may be defined for objects on the same layer or different
layers. In the last section we showed how to reduce the interlayer constraints to a
monochrome constraint.

In our system the minimum separation rule between two primitives is calculated
by the maximum of the separation distances of the relevant colors between the two
primitives. The relevant colors are the intersection of the two primitives rulecolor[«].
‘The maximum separation distance is the maximum of the radius of the objects plus
the minimum distance for each relevant colors.

With the separation constraints there are exceptions based on connectivity of
the objects and other things. We will show how the exception is dealt with in this
section and how it is defined in the related section. We call this exception “related”.
When the two objects are related we intersect the relevant colors as previously
described with the union of the significant colors for each primitive. This allows
each primitive to specify what colors are significant when it is related to another
object. The calculation of maximum separation distance is accomplished as before
but with the new relevant colors. In addition to the significant concept we allow the
width to be a different value for related primitives.

There are cases when we wish to ignore a specific rule color when another is
relevant. We will use the Boolean array rulectst[«] to test for this condition. If there

are any relevant colors in the logical “and” of array m[*| as previously described
and rulectst[*| then the colors in array ruleclear[*] are set to false in array mx].

In our system the minimum separation design rule distance between any two
primitive objects is defined by the function MINW(O;,0;) where O is the first
primitive object and Og is the second. If the function MINW equals zero then there
is no design rule.

We will use a special function, “RELATED(O;,02)” to indicate when
there is an exception between O; & Oj to the usual design rule and spe-
cial handling is needed. The integer functions RELATEDINDEX,(0;,05) and
RELATEDINDEX; (0, O4) will also be used with the exception. These three func-
tion will be defined in Section 3.6.

MINW will use the Boolean array m[+] to indicate the relevant colors for
the geometric design. Array mi| is set to the logical “and” of the first ob-
jects rule.rulecolor[+] and the second objects rule.rulecolor|«] for a non-related
rule. The rulecolor+] is a Boolean array of relevant colors for geometric design
rule. We now test for presence of any color in m[] with rulectst[«] and clear
with ruleclear[*] for each object. If the array m[«] does not have any relevant
colors then there is no geometric design rule. We let the real array W[+] equal
the color widths for object one while W[*] equals the color width for object two.
Now we find the maximum geometric color rule for colors in array m[*] with
MINW(O;,03) = MAX (W1 [*] + W3] + mindistance[+]).

When there is a related exception, the Boolean array m[+] is set to the logically
“AND” of the significant Boolean arrays for each of the objects. The related signif-
icant defines the colors that are possible for a related rule. The rule color width of
each object may be different than the standard in the case of related. The arrays
W1[*], Wa[#] are set equal to the related widths array. Now we proceed as before.

We precisely define the function MINW as follows:

Boolean procedure MINW(O;,04)
begin
Real array(1 to *) Wy;
Real array(1 to x) Wy;
Boolean array(1 to *) m;
real r;
integer i;
if RELATED(O,, O;) then
begin
W [*] « Oy.rule.relwidth RELATEDINDEX, (Oy,0,), #;
Wi (] — Oy.rule.relwidth RELATEDINDEX,(O;, Oy),);
m#] « Oj.rule.rulecolor[x] A Oy.rule.rulecolor[+] A
(O .rule.relsignificant[Relatedindex; (Oy, Og), *|
V Og3.rule.relsignificant [Relatedindex3 (01, 03), *]);
end else
begin
W1 [*] « Og.rule.width|[x];
Wy l*] « Op.rule. width[«];
m[*] « Oy.rule.rulecolor[x] A Og.rule.rulecolor|*];
end
if ANYON(m[+] vV Oj.rule.ruletst) then
m[*] < m[*] A NOT Oj.rule.ruleclear
if ANYON(m[+] V Og.rule.ruletst) then
m[*] «— m[*] A NOT Og.rule.ruleclear
R « 0

for 1 «— 1 to |colors[#]| do
if m[i] then
R —MAX(R,W1[i] + Wa[i] + mindistancet]);
return(R);
end;

3.3.4 Invariant Conditions

The invariant condition for a design described by our framework is that the data
structures will not violate the geometric design rules as described in the technology
file. Initially when a design is created we start from an empty or null data structure.
The invariant condition is preserved by definition for the null structure. During
the editing of the design, objects are added or deleted to the data structure in
transaction. Before the design is updated with the transaction the graphic editor
checks the transaction with the design for the possible creation of a violation. If
a violation would occur the transaction is rejected. This checking process will be
described in the chapter on the graphic editor.

A design may be modified by moving a bubble to a new position. This modi-
fication is used by the graphic editor as an editor function for the user and by the
compaction process. The next chapter will describe how the invariant condition is
preserved for the bubble move process.

Geometric design rules are of two classes as previously described. The first class
is preserved by definition. The second class, the minimum separation inequality rule,
is preserved by not allowing any two primitive to be close than MINW.

Wires in our design will always have the shortest path for a given topology.
When wires are initially created they connect between two points in a straight line
which is the shortest possible wire. When a wire path is modified by either moving
an end point or bending around an object the shortest path is maintained. A bent
wire will wrap an obstacle as close as the geometric design rules allow.

3.4 Abstraction to Structures

We have shown in the previous section the primitive objects for our design. We will
now show how they are used to construct transistors, contacts and other structures.
A model for each type of transistor is defined in the rules file. An example of a
nMOS enhancement transistor model is shown in Figure 3.11. On the left is a mask
geometry realization of the device while on the right is a circuit representation.
These models are the building blocks that will be instanced in the design by the
graphic editor.

drain drain

gate, gate, gate gate

source source
Figure 3.11 Enhancement Transistor Model Example

The purpose of the model is twofold. First the model provides a mechanism to
consider a device such as a transistor as a unit that holds additional information not
normally carried in the primitives. Functions such as graphic editing and simulation
that treat devices as a unit will use the model structure.

The second purpose of the model is to allow the compactor and move algorithm
to manipulate the model pieces, not the model as a whole. All previously known
compactors as discussed in Chapter 2 do not allow transistors to move in pieces nor
rotate. Moving the individual primitives for compaction eliminates any rectilinear

constraints and allows the system to take full advantage of the allowed freedom of
orientation on silicon.

Considering the devices as composed of pieces complicates the representation
of design rules. This is the reason for the elegant method to model design rules.

Manipulating the pieces allows the model to move into regions that could not
normally be reached by moving the model as a whole. We allow the device to
distort during the move process so the device can “snake” its way into a tighter
region during the compaction process. The coming chapters will show how a device,
temporarily distorted in the compaction process, is pulled back into a valid shape,
and how the amount of distortion is limited.

e

&%‘ :-;j‘:.:

Figure 3.12 Buried Contact Configurations

Specific transistor or device may be of several configurations. For example,
consider Figure 3.12 that has several valid configurations for a buried contact. If we
only allowed one shape as previous compactors do, we would limit the choice of the
compaction space. Our devices can take on a multitude of configurations where the
configuration is governed by the geometric design rule mechanism. In Section 3.4.2
we will describe how the model dimensions are preserved while in Section 3.5.1 we
will show how angles are considered.

An instance of the model is created for each desired copy of the model in
the design. The primitives in an instance contain references to the primitives of the
model. The model contains additional information that is not stored in the instance.
Some of the information is about related number assignment that will be describe
in the next section. Pictorially we can see this in Figure 3.13. Notice that model
M; has two instances. In the design we may have several instances of transistors.
The model is the archetype for the instances.

Design Models
/QV"——“/T\\ "

Portt—t |, '|2‘<%/

< —1M

Figure 3.13 Instance Model Relation

Abstractly we can consider our design to contain instances of models, ports,
wiring bubbles, and wiring between instances, ports and wiring bubbles. Ports are
special bubbles that connect to the outside world. Our design is similar to a circuit
schematic in that we have instances that represent devices, and wiring between
instances that represent interconnect. In fact we could create a circuit schematic.
The information for a interconnect list can easily be derived from our representation
at this level. The simulator MOSSIM|Bryant 81] could be run with the information
we have although we would need to add more data to the model for special controls
to MOSSIM.

At the primitive level our design has no knowledge of transistor. We have only
bubbles, segments and arounds. We can extract the instance and wiring level easily
by following the links. This lets the modification to the design work at the primitive
level without considering higher level structures.

3.4.1 “Model” Definition

A model is a collection of interconnected bubbles and segments that form a standard
arrangement for the device that is sometimes referred to as the initial device. The
model bubbles and segments are special in they contain additional fields in their
n-tuples about the device, “related” information, and a link to the model N-tuple.
We call these special primitives “Mbubble” and “Msegments”. The model is an
n-tuple with references to the elements of the model.

A model is used by creating an instance of the model at a location and ori-
entation. An instance contains the same number of bubbles and segments as the
model. The instance bubbles and segments are also special in that they contain
an additional links to their corresponding primitives in the model. We call these
“Ibubbles” and “Isegments”.

There is one more special bubble that is used to interfaces the outside world
that we call Ports. The Port has the additional fields of name which is the port
name and side which is the side of the perimeter which the port resides.

The following is the list of special types of primitives that are used for models,
instances, and ports. They contain all the fields of the generic primitive plus the
additional fields as shown.

Mbubble(name,model,relindex|#]),
Ibubble(Mbubble),
Port(name,side).

Msegment (model,relindex[«]),
Isegment(Msegment).

The relindez|+] is information about related for a model that will be described
in Section 3.6.
The model is an N-tuple of fields
Model(Name,Relnets[*],Relatedcolor|+],Relatedside[*],Pieces[+]),

where the fields are described in the following table.

Model Attribute Type Model Attribute Description
Name String Name of model

Relnets|#] Integer Related number
Relatedcolors|+, *| Boolean Related connect colors
Relatedside|*] Integer Side related

pieces|#] Tuple Primitives for model

Table 3.6 Model Attributes

The model is the archetype for the instances. The name field of the model is its
name which is used by the graphic editor. The relnets[*] is an array which defines
the related mapping number for the model which will be discussed in Section 3.6.
The relatedcolor(+| and related[+] side will be discussed in Section 3.6. The pieces|]
is the array of tuples containing the primitives for this model. All models in the
rules file are listed in the global array models||.

3.4.2 Specifying Model Dimension

In some technologies it is necessary to control the length or width of a device. This
control can be accomplished by two methods or a combination of both. The first
method is to design the model to have the proper size bubbles as shown in Figure
3.14 part A for the length and width. Part B also uses this method to control the
length while the second method is used to control the width.

Longth —al#be

D)

width €1

> gL

s 1

Figure 3.14 Enhancement Transistor

The second method is to create a “related” geometric design rule between the
member bubbles in the model. This method is shown in the part B. We create an
internal related exception between the member bubbles with the desired exception
distance. The internal related exception means that this specific related property is
only within the individual instance. This will prevent the two bubbles from getting
any closer while preserving the length. The simulated annealing compaction will
pull the bubbles together to this minimum distance.

The monochrome layer used for length exception may be a new layer for this
purpose or an existing one may be used. We can define the related width for each
individual bubble in the rule for the bubble by the rule.relwidth[*, *| and stating that
the color is relevant by rule.relsignificant{+,*]. The specific row of relwidth[*,+] and
relsignificant[+, %] is defined by the position of the related numbers and the model
bubbles relindez[*] field. An example of this level of control will be demonstrated
in the example on nMOS models.

3.5 Modifying the Design

The design is modified incrementally by moving one bubble at a time. Large mod-
ifications are accomplished by moving many bubbles. Initially, devices and wires
are entered in a valid state by the graphic editor. We can consider our design to
have an energy state E for each configuration of our design. The definition for the
energy E will be defined in Chapter 6 on Simulated Annealing. What is important
to know at this time is that the energy E is a function of the wire length. The
compactor minimizes the objective function E. The compactor modifies the design
by moving bubbles first to a high energy state and then reduces the energy to a final
configuration.

In the high energy state models are allowed to distort to a possible invalid shape
although the invariant condition is preserved. As the system energy is reduced we
would like the models to return to a valid shape. The control we use is that the
energy E for a valid shape must be less than the energy E for an invalid shape.

Figure 3.15 Invalid Buried Contact

Consider the nMOS buried contact in Figure 3.15 with the model on the left
and a hypothetical portion of a design on the right. The connection to the model
is directly to the contact itself. With this model there is no means to control the
angle between the attached wires. As you can see this is a clear violation between
the connected diffusion and polysilicon wires. If we keep the length of the attached
segments constant the energy E is constant for any angle between the attached
segments. We need a mechanism to control the angle between connected wires.

Figure 3.16 Valid Buried Contact

Consider the nMOS buried contact in Figure 3.16 with the model on the left
and a hypothetical portion of a design on the right. Notice that the model has two
fingers protruding from the contact. These fingers are the connection points. The
geometric design rule between the bubbles on the fingers holds them apart. The
related mechanism is used to allow the finger bubbles to be closer to the contact
then normal geometric rules would allow. The normal rules do apply to the finger
bubbles that hold them apart. This limits the angle between the segments attached
to the buried contact proper. By using the related mechanism the distance between
the finger bubbles can be controlled. This allows complete control between the angle
of the two attached segments.

The energy necessary to move the finger bubbles away from the contact is costly
compared to the cost of a normal segment. The relationship of model segment cost
to normal segment cost will be discussed in Chapter 6 on simulated annealing. This
preserves their shape at a low energy states. We now have a buried contact that
preserve the angle design rules.

Another possible solution for angle control would be to add a test to see if
the angle was exceeded. At first this seems the simplest. However this method
limits the configuration space. Notice the configuration in Figure 3.15 is correctly

- 56 —

represented in Figure 3.16. If we had a true angle constraint this configuration
would not be possible without adding intermediate bubbles. In addition we would
limit the compaction space.

Figure 3.17 Invalid Enhancement Transistor

Now let us look at a possible model for an nMOS enhancement transistor as
shown in Figure 3.17 on the left and an use of it on the right. The model is composed
of a single bubble with a red, green and gate layer. Now look at the use of the model
that has a acute angle. This may or may not be a violation depending on the design.
This will affect the transistor behavior since the gate area has been increased. We
would like the minimum angle between the polysilicon and diffusion to be close to
90° as possible.

Figure 3.18 Valid Enhancement Transistor

Now consider the model in Figure 3.18 that has added finger bubbles. The
finger bubbles would tent to hold the model in an orthogonal state for low energy
states which is our desired goal. Notice the use of the model on the right that
has an equivalent positions as in Figure 3.17 however it does not have the previous
problems.

Figure 3.19 Wide Enhancement Transistor

We would like to be able create a wide transistor or device that is allowed to
snake or bend as shown in Figure 3.19. The model is created by adding several
intermediate bubbles that are the bending point as in Figure 3.20. The number of
bends can be controlled by number of bubbles in the device. The length can be

controlled as described previously with the related exception. The total length of
the transistor is the sum of distances between the individual bubbles as shown. All
we need to do to control the total length is to control the pieces.

Figure 3.20 Snaky Enhancement Transistor

Now we may wish to control the amount of bending in the snaky device. This
control can easily be accomplished by adding another length rule to limit the distance
between alternate bubbles in the device. This minimum distance would limit the
angle of the segments attached to the bubble between the alternate bubbles. Assume
L is the minimum distance between bubbles in the device. Then the new rule should
be no greater than 2 * L which would limit the angle to 180°. Suppose we wished
to limit the angle to 90°. Then we would let the new rule be L % 1/2.0.

The new distance rule is created by adding a new monochrome layer for this pur-
pose. We will use the related exception handling capability to exercise the new rule.
The rule.width and mindistance should be set to zero so non-related rules do not ap-
ply. We let alternate bubbles rule.relwidth[model related, *] for the new monochrome
layer be equal to one half of the desired distance rule. The rule.relsignificant [model
related, *| should be also set relevant for the alternate bubbles. The device should
have an internal related number which will be use to state that the alternate bubbles
are related.

3.5.1 Preserving Angle Constraints

From the previous examples with angle problems and their solutions we can present
a general mechanism to control angles within a model. First we need to know the
minimum allowed angle § between the two segments that we wish to limit as shown
in Figure 3.21. The bubbles By, B3 at the ends must be part of the model which can
easily be added if they are not. The distance L; is the minimum geometric design
rule between bubbles B; and B3. Likewise Lg is the minimum geometric design rule
between B; and By. We now create a geometric design rule of distance D between
bubble B3 and Bj if there is not one by using the exception handling method. The
distance D is defined by

D =1/L¥+ L — 2% Ly * Ly * cos(8).

Figure 3.21 Angle Control

Now let us apply the method to an example. In the Figure 3.22 we wish to
limit angle between the segment from By Bz and Bg B; to be greater than or equal
to 135° and less than or equal to 225°. Using the method we would add a geometric
design rule with the exception handling mechanism between bubble By and B3. The
distance between B; and B is 4A. The distance between By and Bj is 4\A. The
minimum distance between B; and Bs would be 7.4A. We could add a new color for
this rule and give each bubble one half of the distance with the minimum separation
of zero. We use the ”related” mechanism to confine the exception rule to these two
bubbles. In a similar manner the other end may be controller.

/\v 135°

by by bs

Figure 3.22 End Bubble Angle Control

3.6 Concept of “Related” Primitives

Let us first review how the geometric design rule between two bubbles or objects is
determined. The geometric design rule is the maximum of the sum of each object’s
widths, plus minimum separation for each relevant color, where the relevant colors
is the intersection of the objects rule colors. The objects may have none, one or
more colors in common. If there are no colors in common there is no geometric
design rule between the two objects.

Within our framework we will have bubbles that are connected by wires and
not connected as shown in Figure 3.23. In the top of Figure 3.23 there are two
bubbles that are not connected. In this case we would like the normal geometric
design rules to apply. In the bottom of the figure we have the same two bubbles
connected by a wire. In this exception case we would like the bubbles not to have a
geometric design rule. We could accomplish this by marking each bubble that is in

common with a unique integer. Then if two bubbles had the same integer we would
say there is no geometric design rule between them.

rule

e~

’Qonnec’red
rule

Figure 3.23 Unconnected and Connected Bubbles

We could extend this method by using a separate width and color set for each
object rule for cases where the object is connected to another object. When two
objects are connected we would use the separate width and color sets for each object.
This would allow altering the geometric rule between the two connect objects. In
our example we would use the normal rules for the unconnected bubbles and the
separate width and color sets for the exception when they are connected.

In the nMOS enhancement transistor described in Section 3.4 we have several
bubbles that have exception rules. Our new method for using a separate width and
color set for the member bubbles would give the desired affect.

b1 b2 | b3

\ \

Figure 3.24 Bubbles and Transistor Connection

With this method we would have difficulty with a bubble connected to the
transistor as shown in Figure 3.24. Bubbles b; and b; have the same colors and
widths while b3 has the colors of the previous bubbles plus a gate type color. We
would like the design rule between bubble b; to bs, to be zero and the design rule
between bubble b9 to b3, and b; to b3 to be the desired distance for the model. For
the connected bubbles, b; and b2, we need the separate color set to be null for the
geometric design rule to be zero. However, then we could have no rule between
bubbles by and bs or between bubbles b1 and b3.

We could add an extra color for the purpose of holding the bubble by away
from bubble b3. However if we had two of the models connected by a wire between
bubbles b4 to by the models could not come as close as desired because of the extra
color. This method does not function properly for bubbles connected to models.

Instead of using an alternate rule we will use an alternate set of widths as
before and a set of “significant” colors. A significant color is one that is significant
in the rule definition for a connected object. We will define the relevant colors for
the connected rule as the intersection of the object rules colors intersected with the
union of the significant colors. Assume rcolor is the rule color and scolor is the
significant color. Then

(rcolory A rcolory) A (scolory V scolors)

would be the relevant colors for two connect objects. Notice that if a color, say
green, is present in both rcolor; and rcolory than either scolor may be present to
specify green as a relevant color.

Applying the method of “significant” color to the case in Figure 3.24 bubble b3
would have a significant color and bubble b; and by would not. We would not have
a rule between bubbles b; and by because there are no significant colors. However
there would be a rule between bubbles b; to b3 and by to b3 because bubble b3 has
a significant color. '

In the models we would like to be able to add a color that is only relevant when
the objects are connected. If we alter the relevant expression as follows

((rcolory Vv scolory) A (recolory V scolors))
A

(scolory Vv scolory)

so that significant colors is the union with the rule color, we can introduce a color
that is not normally a rule color. This allows us to add internal colors to a model. We
now have a general method to define geometric design rules for connected objects.

Notice in Figure 3.24 that bubble b4 is connected to bg through b3 but is not
electrically in common with b3. We would like by to be connected to bg so that
they can be separated by a distance less than a normal design rule. Any non-model
bubbles connected to bubble by, we would consider connected to b3, and by but not
by. If bubble b; was connected to bubbles beyond bubble b4 they could generate
design rules errors in the compaction process.

We can use the general method of “related” to solve the previously described
problem. We will let each wiring object have a single unique related number where
any reachable wire and wiring bubbles from the wire without going through a model
will also have the same number. A model object will have a set of related numbers.
Two objects are related when they have an equal related number.

This solves the previous problem by having bubbles by, by, b3 and by related
where bubbles connected to bubble b4 and not in the model will not be related to
bubble ;. Then we would have a separate related number for by, b3 and b4 and for
objects connect to b4 and not in the model.

We will extend our method of “related” by allowing each model object to have
a width and significant set for each unique related number. This allows an alternate
rule for each kind of related.

How are related numbers defined? We can’t anticipate all the possible combi-
nations of related number assignment. We will let the definition of the model in the

- 81 —

rules file define the equivalence mapping for related. We now have a general method
for handling geometric design rule exceptions.

3.6.1 “Related” Definition

The “related” mechanism provides exception handling capability in determining
geometric design rules as previously described. Two primitives are related when
they have an equal non-zero related number in array “reln”. All primitives except
for arounds have reln number arrays. Arounds use the start segment for testing
for related numbers. This is done because each primitive of a wire will have the
same related number. Instance primitives may have a set of related numbers while
all others will have one. Recall from the section on abstraction to structures that
we can consider our design to have wires, wiring bubbles and instances. Wires and
wiring bubbles will have a single reln number while an instance may have many. The
reason for the array of reln numbers is that instance will have many more related
exceptions then wires.

Related differs from connection in that connection refers to a Netlist type of
interconnection structure while related is used for design rules exception handling.
Connection defines how devices are connected. Generally devices like contacts do not
pass related information for different layers while the different layers are electrically
in common.

The function related(O;,03) set the temporary arrays N; and N3 to the re-
spective reln arrays for object one and two. Then the function looks for a non-zero
match in the two arrays. We precisely define the function related as follows.

Boolean function RELATED(O;,03)
begin
Integer array(1 to *) Nj, Ny;
Integer i, j;
Ny [#] «if Oy is around then O;.starts.reln[+| else O, .reln[+];
N3[#] «if O; is around then Oj.starts.rein|+| else Oj.reln[#];
for 1 « 1 to MAX(| N [#]|, N2[#]|) do
for j— 1to1ido
begin
if Ni[i] = Na[j] A Ny[i] #0 then
return(TRUE);
end
return(FALSE);

end;

In a similar manner function relatedindex;(O;,03) set the temporary arrays
N; and N3 to the respective reln arrays for object one and two. However, it first
check O; to see if it is an instance type. Otherwise a 1 is returned. Then the
function looks for a non-zero match between the two arrays. If a match is found the
relindex of the model object is return. We precisely define the function as follows.

integer function RELATEDINDEX;, (0;,032)
begin
Integer array(1 to %) N, Ny;
Integer i, j;
if Oy is around then
if not O, .starts is Instance then return(1)
else
if not Oy is Instance then return(1);
if Oy is around then Nj[*] « Oj.starts.reln[%]
else Nj[#] « Oj.reln[*];
if O i8 around then Ny[*] «— Os.starts.reln[+]
else Ny[*] «— Og.reln[*];
for ¢ — 1 to MAX(|Ny[+]], N2[#]|) do
for j— 1to1t do
begin
if Ny[i] = Na[j] A Ny[i] # O then
return(O; MP.RELINDEX[{]);
end;
return(1);
end;

In a similar manner function relatedindexs(O1,O3) returns the relindex except
for object two. We precisely define the function as follows.

Integer function RELATEDINDEX; (0, O2)
begin
Integer array(1 to %) Ny, Ng;
Integer i, j;
if O4 is around then
if not Og.starts is Instance then return(1)
else
if not O is Instance then return(1);
if Oy is around then Nj[*] «— Oj.starts.reln|#]
else Nj[#] «— Oj.reln[#];
if Oy is around then Nj[+] «— O2.starts.reln|«]
else Ny[*] — Og.reln[+];
for ¢ «— 1 to MAX(|Ny[+]|, N2[#]|) do
for j— 1tos do
begin
if Nlm = ZVz[j} A Nl[f] # 0 then
return(Oy MOBJECT.RELINDEXf]);
end
return(1);
end;

3.6.2 “Related” Number Assignment

We will now describe how the related numbers are assigned to our design from
the technology file. Consider our design as wires, wiring bubbles, and instances.
Individual wires will have the same related number. All paths that can be followed
along a wire through any wiring bubbles will have the same related number. The
model defines the equivalence mapping of the related number for the instance. The
model has related numbers that have been defined in the technology file that describe
how the instances and connecting wires related numbers are assigned.

The model.relnets[«] is the array of related numbers for the model that define
the equivalence mapping in the instances. Each primitive of the model may have
one or more of these related numbers. Ibubbles connecting to Nsegments may pass
one related number since Nsegments are normal wires. The model.relatedcolors(*, *|
define a Boolean array of colors for each specific model related number. When there
is a relevant color in relatedcolors[i, *] and in the presentcolor[*] an equivalence is
performed for related index 1. For an Ibubble to define an equivalence between one
of its related numbers and a related number of an Nsegment the following array
must have at least one true element for the model related number index by 1.

Nsegment.rule.presentcolor[#] A model.relatedcolor|t, *]

For example consider the following nMOS enhancement transistor in Figure
3.25. The model would have 3 related numbers consisting of 1 for color red, and 2 and
3 for green. In the skeleton in Figure 3.25, the model primitives are numbered with
the related number. Notice the ordering of the related numbers on the bubbles, that
is the order in the array in the model primitive. The equivalence of an Nsegment to
a Ibubble will take place on the first valid related number. If an Nsegment connects
to the top or bottom it would be equivalent to one. If a green Nsegment connects
on the left it would be equivalent to 2 while on the right it would be equivalent to
3.

2,3 2,3
1,2,3

1

Figure 3.25 Reln Enhancement Transistor

We can define an internal model related number by not having any relevant
colors for the related number in array relatedcolor|*, |.
The related side further refines the equivalence mapping. A side of zero allows

-
connection to any side. A side of one allows a mapping if the Nsegment S; connects

between the Isegment 3_; and .S’—; as shown in Figure 3.26. The instance segment

order in the instance bubble array, segs[*] is preserved from the definition in the
model. Therefore the model defines segment one and segment two. A side of two

— —
allows a mapping if the Nsegment S; connect between the Isegment S; and g; as
shown.

S, side 1
S,

\
/

- N
B side 2

Figure 3.26 Related Side Definition

—
For an angle of less than or equal to 180° between S; and g;, we can easily test
—
for an Nsegment, S¢, on side one by testing for a positive sine between Isegment E;

— — — — —
and St, and a positive sine between S; and S3. For an angle between S; and S of
greater than 180° we would do a logical “or” instead of a logical “and”.

We will define the function testside(B,NS,z) that will return true if the Nseg-
ment, NS, is on side Z of Ibubble B. We will let the scratch variables z1,y; equal
the components of a vector pointing along segment S;. Similarly we will let the
scratch variables z3, y; equal the components of a vector pointing along segment Sz.
Similarly we will let the scratch variables zt,y: equal the components of a vector
pointing along segment S;. We will let scratch variable u equal the sine between

._571) and g; by taking the imaginary component of the vector .S_'zb multiplied by the
conjugate of 5_'; Similarly we will let scratch variable a equal the sine between —S_’:

and 3‘; and b equal the sine between 5; and E; We precisely define the function as
follows.

Boolean function testside(IB,NS, s)
begin
real zy,y;, T2, Y2, Tt, Yt;
real U,a,b;
if IB.segs[1].starto =IB then
ry + —IB.segs[1].b, y; —IB.segs[1].a
else
zy «—IB.segs(1].b, y; — —IB.segs(1].q;
if IB.segs|1].starto =IB then
z9 +— —IB.segs[2].h, yo —IB.segs[2].a
else
z9 «IB.segs(2].b, yo — —IB.segs[2].q;
if NS=IB then
zs — —NS.b, yt —NS.a
else
z¢ —NS.b, ys — —NS.qa;
U —y1 *z3 + yg * z1;
G —yY1 *¥ Tt + Yt * T1;
be— —yr*xxz3 +y2 *z4;
if s =1 then
return((U > 00 A a>0.0 A > 0.0) Vv
(U<00Aa>00V b>0.0);
else
if s =2 then
return(not
(U>00Aa>00 A b5>0.0)vV
(U <00 A a>00V b>0.0)));
else return(true);
end;

We will now define how the related numbers are assigned. Consider a design
that has all the related numbers set to zero. This is easily accomplished by visiting
each bubble and segment while setting their related numbers to zero. We now
proceed by visiting each bubble. We process the bubbles as follows. If the bubble
has a zero related number, a new related number, say r, is assigned to the bubble
and we trace all the attached wires while setting their related number to r. We
now process the bubbles at the ends of the wires just visited while setting their
related number to r. This continues until all the reachable primitives have been
assigned. This is a simplified description. We will now precisely define the setting
of the related numbers by four recursive algorithms.

The procedure “assignrelatedb” (B) will assign related numbers to the bubble B.
We will use the function “newrelatednumber” that will return a new unique related
number. Newrelatednumber can easily be created by using a global variable that is
increased by one for each call of newrelatednumber. If the bubble B is an Nbubble
we will check the Nbubble’s related number for zero and if it is zero we will call the
procedure “setnbubble” with a new related number and bubble B. Otherwise the

bubble must be a Ibubble. An Ibubble may have 1 to |reln[+]| related numbers. We
will use a for loop, indexed by t, to step through all the possible related numbers for
the Ibubble. If the related number index by 1 is zero then we will call setibubble. But
before we do so, we will locate the model related number by using a while loop with
index 7. Notice in the procedure, we are looping until we find the model relnets|[j]
equal to the Ibubbles mbubbles reln{j]. We now call the procedure setibubble with a
new related number, the bubble B, the model equivalence related number for index
J, the model related colors for index 7, and the model size for index 5. We define

procedure assignrelatedb as follows.

procedure assignrelatedb(B)
begin
if B is Nbubble then
begin
if B.reln[1] = 0 then
setnbubble(newrelatednumber,B);
end else
begin
Integer i, j;
for ¢ < 1 to |B.reln[#]| do if B.reln[{] = 0 then
begin
J<0;
while B.mbubble.model.relnets[j «— 5 + 1] #
B.mbubble.reln[s] do;
setibubble(newrelatednumber,B,B.mbubble.reln][1],
B.mbubble.model.relatedcolor|j,],
B.mbubble.model.relatedside|s]);
end;
end;
end;

The procedure “setnbubble” (r,B) will assign the related number r to Nbubble
B if the bubble B has a zero related number. This check is performed to prevent
infinite recursion, if there is a loop in the data structure. The procedure will step
through all the Nsegments of bubble B with index ¢ while checking for an Nsegment
zero related number. If the Nsegment related number is zero we will call procedure
tracensegment that will trace the wire path while setting the wires primitives related
number. We will pass the related number r, the Nsegment index by ¢ and the
direction of the segment. A true direction is where the segment starts at the bubble.
We define the procedure setnbubble as follows.

— 87 -

Procedure setnbubble(r,B)
begin
Integer i;
if B.reln[1] # 0 then return
B.reln[1] « r;
for ¢ < 1 to |B.segs[*]| do if B.segs[t].reln[1] = O then
tracensegment(r,B.segs|i],B.segs[i].starto=B);
end;

The procedure tracensegment and traceisegment will use the procedure
“next” (O, dir) that returns the next primitive from object O. The direction dir
1s true if we are proceeding from start to end. We define the procedure next as
follows.

Primitive procedure next(O,dir)
begin
if O is segment then
return(if dir then O.endo else O.starto)
else
if O is around then
return(if dir then O.ends else O.starts)
else
return(NULL);
end;

The procedure “tracensegment”(r,S,dir) is used to follow Nsegments and
arounds in direction dir to a bubble B while setting the related number to r. If
the bubble B is an Nbubble we will call setnbubble with the related number r and
bubble B. Otherwise, the bubble B must be an Ibubble. We will need to find the
equivalence number of the Ibubbles model to remap. This is accomplished by loop-
ing through the list of related numbers for the Ibubble with index ¢ and looking for
the proper match. For mbubble related number indexed by i we need to find the
model relatedcolor and related side. This is accomplished with a while loop with
index 7. The function “anyon” will return a true if there is a true in the passed
Boolean array. We can test for a proper match by checking the segments rule pre-
sentcolor with the models related color for index j. If there is any relevant colors
and the segment is on the proper side we will call setibubble with related number r,
the bubble B, the model equivalence related number, the model related colors, and
the model related side. We define the procedure tracensegment as follows.

— 68 —

procedure tracensegment(r,S,dir)
begin
Bubble B;
S.reln[l] « r;
while next(S,dir) is around do
begin
S«next(next(S,dir), dir);
S.reln[1] « r;
end;
Bnext(S,dir);
if B is Nbubble then setnbubble(r,B)else
begin
Integer i, J;
for 1+ « 1 to |B.reln[+|| do
begin
J+—0;
while B.mbubble.model.relnets[j — 5+ 1] #
B.mbubble.reln[t] do;
if anyon(B.mbubble.model.relatedcolor[7,] A
S.rule.presentcolor[*|) A
testside(B,S,B.mbubble.model.relatedside[s])then
begin
setibubble(r,B,B.mbubble.reln[t],
B.mbubble.model.relatedcolor|7, #|,
B.mbubble.model.relatedside|;});
return;
end;
end;
end;
end;

The procedure “setibubble” (r,B,e, m[#], z) will set the Ibubbles related number
to r for model equivalence related number e. The Boolean array m[+| is the model
related color, and the integer z is the side for the equivalence number e. The
procedure first locates the position in the bubbles related number array reln|[+] with
index [for the equivalence related number e. If there is not one or the related
number index by [is not zero we are done. Next the related number indexed by
l is set to r. We will now proceed to check each of the segments of bubble B. We
will let the pointer or link ¢ equal the current segment. There can be two types of
segments attached to the Ibubble. We will first consider when the segment ¢ is an
Nsegment. We will first check to see if the segment can be equivalent to the bubble
for the related equivalence number e by checking for proper color match and side.
If this is true, then we must make sure there is no better match by checking for
any valid equivalence before the index {. Finally if there is none and the Nsegments
related number is zero we call tracensegment with related number r, Nsegment ¢,

and the direction. For the case where the segment ¢ is an Isegment, we first find
the equivalence related number indexed by 7. If the Isegment related number is non
zero we call traceisegment with the related number r , Isegment ¢, the direction,
the model equivalence related number e, the model related colors, and the model
related side z. We define the procedure setibubble as follows.

procedure setibubble(r,B e, m[*], 2)
begin
Segment ¢;
Integer 1,4,k,1;
| — |B.mbubble.reln[+]|;
while [> 0 A B.mbubble.reln[l] # e do | — [+ 1;
if I =0 v Bureln[l] # 0 then return;
B.reln[l] « r;
for ¢ «— 1 to |B.segs[+|| do
if B.segs(¢] is nsegment then
begin
q —B.segs]1];
if anyon(m[*] A g.rule.presentcolor|+]) A
testside(B,g, z)then
begin
k1
while k£ > 0 do
begin
7+ 0
while B.mbubble.model.relnets[j «— j + 1] #
B.mbubble.reln[k] do;
if anyon(B.mbubble.model.relatedcolor(j,] A
q.rule.presentcolor|*}) A
testside(B,q,B.mbubble.model.relatedside[;])then
Done;
end;
if k = O A B.segs[i].reln[1] = 0 then
tracensegment(r,B.segs[i],B.segs[t].starto=B);
end;
end elsge
begin
q —B.segs]];
J < |g.msegment.reln|«]|
while j > 0 A g.msegment.reln[j] # e do j — j+1;
if 7 # 0 Vv g.reln[j] = 0 then
traceisegment(r, ¢,B= g.starto, e, m[«], z);
end;
end;

— 70 —

The procedure “traceisegment”(r,S,dsr, e, m[#], z) is used to follow Isegments
and arounds in direction dir to an Ibubble B while setting the related number to
r. We first need to find the position in the Isegment’s related number array for the
equivalence number e. This is accomplished with a loop with index 1. If there is no
equivalence related number or the Isegment related number indexed by 1 is non zero
we are done. We then set the related number indexed by 1 to r. We now proceed
through the list of Isegments and arounds setting the related number as previously
described. We then call setibubble with the related number r, the Ibubble B, the
equivalence related number e, the model related colors m[*], and the side z. We
define the procedure traceisegment as follows.

procedure traceisegment(r,S, dir, e, m[*], z)
begin
integer 1;
Bubble B;
i «— |S.msegment.reln[||;
while ¢ > 0 A B.msegment.relnff] #edo ¢t «— ¢+ 1;
if ¢ = 0 Vv s.reln[s] # O then return;
S.relnft] « r;
while next(S,dir) is around do
begin
S«—next(next(S,dir), dir);
i < |s.msegment.reln[*||;
while ¢ > 0 A B.msegment.reln[f] # e do ¢ — ¢ + 1;
S.reln[t] « r;
end
B«next(S,dir);
setibubble(r,B, e, m|[%], z);
end;

We have now shown how the related numbers are defined with four simple
recursive procedures. Notice that we will visit each bubble twice and each segment
and around once. We can consider the complexity to be approximately order N,
O(N) where N is the number of primitives.

3.7 Specifying a Technology

The design of a technology file need not be fully completed before it can be used. A
design using a partial file can only use the models and wiring medium that has been
specified. The file may be updated with new models and wiring medium, or existing
models may have limited update. The geometry design rules can be updated for
correction to the design or alteration for a fabrication process. A technology file
is sometimes designed in parts, which allows debugging. First a small version is
created and then it is updated to the desired version.

The first step in specify a technology, assuming you have decided on a technol-
ogy, is to gather the information about the geometric design rules. The information

- 71 -

generally is available from the fabricator as in nMOS Mosis[Mosis 84], or in a text
book such as in Mead and ConwayMead 80].

The basic unit and the grid size is determined next. The basic unit should be
a number which is meaningful to you. Design rules are specified in a basic unit as
in A in Mead and Conway|[Mead 80]. For example we will use 100 units as the base
for the nMOS description which corresponds to A. The basic unit may not be easily
changed for a design so it is important to make a wise choice here. The grid size is a
multiple of the basic unit. Each bubble will reside on a grid unit. This is generally
a multiplication of a basic unit as in 1/4A. The grid size may be changed for an
existing design. The system will automatically realign the bubbles to the new grid.

The next step is to determine what colors are to be used and what they rep-
resent. Recall that a color may be any of the following: rule, physical, and CIF.
Look at the table in the next section for an example of the nMOS rules. Colors may
be added, deleted, or modified to an existing design. During the description of the
models it will probably be necessary to come back to the color description and add
special rules colors.

Next the rules for the wiring are defined. This is accomplished by defining a
rule with the appropriate colors for each wire. Allowed bubble connection to the
wire based on colors is described next. A rule needs to be defined for each separate
width wire. For example if you want a 200 and a 400 width blue wire then two
rules are necessary. Colors may be needed for interaction between wires where there
exists a geometric design rule. For example in nMOS there is a red to green rule.
In the nMOS example a color blah was added as a rule color to represent the red -
green geometric design rule. The name of the rule will appear in the menu in the
graphic editor.

The next step is to define the models. A model can represent a contact, a
transistor, or device such as a diode. A contact is a passive device that is used to
establish a connection between different layers. The contacts are the next item to
be defined. At this time a decision needs to be made whether contacts pass related
numbers for dissimilar rules or not. In the nMOS example they do not pass related
information. Only similar wires connected to a contact will. Contacts with angle
rules are addressed next. They can be defined using the technique outlined in Section
3.5.1 on preserving angles. New contacts can always be added to a technology file
for an existing design.

The transistor and devices are defined next. The first decision is how much
bending in the devices will be allowed. This will determine the number of bubbles
for a device. Then a mapping of segments and bubbles to the device is performed
to create the desired shape of the device. Along with the mapping, rules are created
for the appropriate bubbles and segments. Next the bubbles that are to be used for
connection points are identified and marked as such. Last, the related and significant
mapping is defined. The amount of deformation of the model can be controlled by
using the method outlined in Section 3.5.1.

Figure 3.27 Consistency Problem Example

One of the problems in designing a model is to overlook being consistent within
the model. For example in Figure 3.27 the segment Bs B3 geometric rule to bubble
Bjs should be less than or equal to the geometric rule between bubble By to Bj. If
the rule for the segment was greater, the move algorithm would think there needs
to be a bulge in the segment that would cause the algorithm to fault. We define
the consistency of a model as any segment S; which is a member of the model or
can connect to the model and the segment end bubble B, which is a member of the
model and any other bubble in the model B;. Then following is true for a model to

be consistent -
MINW(Sj, B;) <= MINW(B,, B;).

The final item to define in the technology is to define the cost for each of the
rules. This will be discussed in the chapter on annealing. Things to consider are
what wires are to be shorter than others. Are there any special wires that require
short routes?

3.7.1 An Example: nMOS Models

The nMOS technology file definition is taken from Mead and Conway[Mead 80] and
augmented by the design rules for the Computer Science VLSI Class class at Caltech
for 1984. We may use any units we wish in our system. In designing a technology
file we will decide on a basic unit. We will use the unit of A as described in Mead
and Conway. The reason we chose A as our unit was to be able to compare cells
we compact with cells done by hand and by other automated compactors. Most
comparable test cases are done in A units. We will assign one X unit to be 100.0
internal units. For example a polysilicon wire would be 200.0 units. All Bubbles
in our system will reside on some minimum grid. For the nMOS rules we will use
a minimum grid of 25.0 units which is 1/4 of a A. The following table defines the
colors that we will be using for nMOS. The first column is the color name while the
second is the nMOS name. Blank nMOS name means that this is a rules color or
a color for some other purpose. The third color is the standard or minimum width
for the color. The forth column is the minimum distance between objects of that
specific color. The fifth column is the use for the color.

Color nMOS Width Mindistance Use

Blue Metal 300.0 300.0 Rule,physical , CIF
Green Diffusion 200.0 300.0 Rule,physical,CIF
Red Polysilicon 200.0 200.0 Rule,physical, CIF
Blah 200.0 100.0 Rule

Gate 200.0 200.0 Rule

Black Cut 200.0 Physical ,CIF
Yellow Implant 200.0 Physical,CIF
Brown Buried 200.0 Physical, CIF

Table 3.7 nMOS color Attributes
The first three colors in the table are the standard nMOS colors. The color
“blah” is a monochrome color that is used to represent the design rule between
red and green. The color “gate” is used for the nMOS gate rule. The last three

colors are non rule—colors and are used for fabrication. The Figure 3.27 defines the
patterns that will be used to represent the colors in our cells.

Black .

Yellow

Brown @

Figure 3.28 nMOS Color Pattern Representation

Red

Blue

Green

Appendix A will present the syntax for the technology file and the nMOS ex-
ample. We will only present a subset of the technology file in this section. Appendix
A will present the full definition in the technology file format.

Buried Green—Blue Red—Blue
Figure 3.29 nMOS Contacts

The three contacts that we will be using are shown in Figure 3.29. In general
the contacts provide a path from one layer to the next. We will not allow the contact
to pass related information for unlike layers. For the green-blue contact we will let

the blue color have an equivalent related number of 1 while the green color has
a equivalent number of 2. In a similar manner we will let the blue color have an
equivalent related number of 1 for the red-blue contact and the red color have an
equivalent number of 2. We will impose no restriction on related red, green, or blue
of these two contacts. The center cut color will also have a gate color of the same
width to prevent related contacts from getting closer than 4A. We will allow a green
and blue connection to the green-blue contact while we will allow a red and blue
connection to the red-blue contact.

The buried contact has red and green protruding fingers that are used to connect
to the buried device and to prevent the angle between the attached wires from getting
less then 90°. The red colored finger bubble is used to connect a red wire while the
green colored finger bubble is used to connect a green wire. The fingers are used to
prevent the end bubbles from getting closer than 3 from center to center while we
allow the finger bubbles to be 2A from the center. We will let the red finger have an
equivalent related number of 1 and the green have an equivalent related number of
2 while the center bubble has both. The related exception will be used to hold the
finger bubbles away from the center bubble. This is accomplished by reducing the
related width for the center bubble to the green and red finger bubbles. The center
bubble has a gate layer to prevent other contact and devices from violating the cut
to cut, and gate to cut separation rule.

10, C.0

c O&-E0O

Figure 3.30 nMOS Generic Equivalence Related Numbers

All the transistors will use one of three types of equivalent related number
assignments as shown in Figure 3.30. Equivalent related number 1 is for red, 2,
and 3 are for green and 4 is the internal equivalent related number. Four is used to
hold the many bubbled transistors apart. Type A is used for the square transistors.
Notice the ordering for the numbers 2, and 3 in type A. On the top it is 3, and 2
while on the bottom its 2, and 3. This allows green connections at the top to use
number 3 for the equivalence while 2 is used for bottom. Type B is for the long red

transistors. We will use 2 as side 1 and 3 as side 2. Notice that the number 4 is the
first number in the center bubbles. This is so the internal related number will take
precedence in the related exception handling. Type C is used for the long green
transistors. Notice that type B and C may be extended for any desired length.

Figure 3.31 nMOS Enhancement Transistor

The top two enhancement transistors on the left will use equivalent related
numbers assignment as previously described of type A. The center bubble effective
radius for the related exception will be reduced from the standard to a value that
will let finger bubbles come in toward the center as shown in Figure 3.31. We will
define the color Blah as significant. Notice that the related numbers are the same
for the end two green bubbles numbers 2 and 3 as shown in Figure 3.30. If this was
not allowed, the green bubbles could not be close as the design rules would allow
since the green bubble at the opposite would hold it out.

The remaining three enhancement transistors use the equivalent related number
assignment of type B. Notice the use of the internal related number 4 which holds
the primitives of the transistor apart. We can create any desired length of transistor
by adding extra bubbles.

330
sodvs.
o

Figure 3.32 nMOS Depletion Transistor

Similarly the two top depletion transistors on the left will use equivalent related
numbers assignment as previously described of type A for their model. The center

— 76 —

bubble effective radius for the related exception will be reduced from the standard
to a value that will let finger bubbles come in toward the center as shown. We will
define the color Blah as significant.

The remaining three depletion transistors use the equivalent related number
assignment of type C as shown in Figure 3.33. Notice the use of the internal related
number 4 that holds the primitives of the transistor apart. We can create any
desired length of transistor by adding more center bubbles.

AR s
e

Figure 3.33 nMOS Pullups

The Pullups use the equivalent related number assignment of type C. We can
create a pullup of any desired length by adding extra bubbles to the newly created
model and added the new model to the rules file.

3.7.2 Modify Geometric Design Rules

Many different fabrication lines are available for a given technology. Given an ex-
isting design we would like to be able to modify the technology file for variations in
processes lines. This is very important since we may find several fabrication houses
that can produce our chip but each may have variation in their design rules. We
would like to use the fabrication house which is the most cost effective.

There are two possible cases the design rules file is modified. The first case is
where the modification to the technology file will introduce no design rule violation
in an existing design. Generally this is where we reduce the width or separation rules.
All that is necessary is to modify the technology file and do a partial compaction.
A full compaction is not necessary since we assume the design has been previously
compacted. The second case is where the modification would introduce a design rule
violation. Generally this is where we increase a width or a separation rule. In this
case we would project or scale our design by the maximum change in the technology
file. We would then modify the technology file while not introducing any design rule
violations. The projection process would increase the arounds radius which may or
may not be the proper radius. We would next collapse the arounds as described in
Section 4.2.1 and partially compact.

- TT —

Another modification we may wish to do is to replace an existing device with
another. An example of this would be to replace an nMOS Butting contact with
a nMOS buried. Model replacement would require manual intervention. In the
example a butting contact is capable of accepting connection from blue, green and
red wires while the buried only accepts green and red wires. Therefore if a butting
contact has blue connecting wires, two instances must be added to replace the one.
What is required is first to add the new model to the technology file. Next use
the graphic editor(see Chapter 5 on graphic editor) to delete the old instance and
add the new ones while making necessary connections. Finally delete the unwanted
models from the technology file.

3.8 Post Processing and CIF Output Generation

The framework for a design is oriented toward compaction and does not have efficient
data storage for CIF format. CIF[Mead 80] is an interchange mediate to represent
geometric object on layers. We will translate designs to a CIF format using the CIF
primitive polygon which is a closed region defined by a set of points and a flash
which is a circular object.

The process of translating a cell design to CIF is accomplished in a two step
process. First the design is translated to a set of colored wires and flashes where
a wire is a set of points which has a radius and a flash is a circle with a radius.
Flashes are only generated when they are not an intermediate point in a wire with
the same radius and color. The minimum number of wires are generated. The final
step is to translate the wires to polygons and proceed with the sliver process. The
sliver process will be discussed later on in this section. The polygons and flashes
are then output to a CIF file.

The generation of wires and flashes is as follows. For each CIF color ¢ and each
unprocessed bubble b, do the following. Trace and generate wires for each different
width colored ¢ segment through all directly connected bubbles. Generate flashes
for each bubble just visited which is not a member of a wire and mark the bubbles
as processed.

A problem known as the “Sliver” problem is that of generating a sliver which
is very narrow. During the fabrication process the sliver can break off and land
somewhere else on the chip which could cause a faulty chip. This problem is not
mentioned in the design rules but comes from folklore[Seitz 85b]. Two examples
of sliver problems are shown in Figure 3.34. There are two type of possible sliver
generation. The first is shown on the left which is generated from two wires with
a sharp angle. The second is from two related objects that have partially closed
together while leaving a small gap.

[
Sliver g
Figure 3.34 Wire and Transistor Sliver

The first sliver problem is corrected by adding a curved fillet in the gap between
the wires with a radius of the minimum distance for the color. The solution is shown
in Figure 3.35. This fillet is added during the translation of wires to polygons.

Figure 3.35 Wire and Transistor Sliver Solution

The second problem requires the use of a general polygon package[Sutherland
78, Barton 80]. A general polygon package can intersect, union, expand and shrink
polygons, where a polygon can contain arcs and arbitrary angles. The second sliver
process takes advantage of the fact that an expand and shrink are not symmetrical.
The second sliver process is as follows. For each CIF layer, ¢, do the following.
Expand the polygons for layer ¢ by an amount smaller than one half of the minimum
separation geometric design rule. Next merge all intersecting polygons for layer c.
Finally shrink the resultant polygons by the amount expanded. The solution for the
sliver problem is shown in Figure 3.35.

3.9 Cell Definition

Our design is contained in cells. A cell is a polygonal bounded region. The interface
to the outside world from within the cell is through bubbles that we call “ports”
which rest on the perimeter of the cell. With our structure we are not limited to

any particular shape for the cell. The cell boundary is defined by a polygon starting
at a point P; as shown in Figure 3.36 and preceding counter clockwise through all
the points P;.

R 35 B
3
4 7 B
P 5
6 : 2 Cell

4 e 2

6 Cell
R R R 1 g

1
Figure 3.36 Cell Representation

The perimeter of our cell is described by an array of points P;(z,y) named
sides[*] which are numbered around the cell in a counter clockwise fashion starting
with 1 and ending with the number of sides in the cell. We number the side of the
cell defined from P; to P;;; as side 1. The port contains the integer side number
which defines the side on which the port resides. The ports are allowed to move
only along their side and not change sides.

A property of this type of cell is that it can be constructed to fit in any polygonal
region. Of course the primitives in the cell must be able to compact to the region.
We could design our chip to use any tiling pattern we wish. For now we will limit
the cells to rectangles so that we will be able to compare our cells with other cells.

A cell contains the primitives of the cell, the technology file as data structures,
and the shape of the cell. The primitives are contained in sets defined by the symbols
{} as in the set of all bubbles in the cell. We define a cell as:

Cell(Bubbles{},Segments{},Arounds{},
Colors|+|,mindistance[*],
Rules[+],Models[],
sides[*],

CIF[+] cifnames|+],CIFA,CIFB).

3.9.1 Minimum Bounding Area

The “Minimum Bounding Area”, A,,;, for a cell is the smallest area the cell could
reside in, if the ports are allowed to move along the cell edge. This area is used
as a measure to compare compactness of cells. A way to visualize the minimum
bounding area is to move each cell side in until it hits a bubble or an around edge
that is not a member of a wire that connects to a port on the edge being moved.
The minimum bounding area is the area of the cell when the sides are moved in.

For comparison purposes we will be using rectangular cells as previously de-
scribed. The minimum bounding area will sometimes be referred to as the minimum
bounding box. The method that we use to calculate the minimum bounding box is
to find the maximum bounding box of the bubbles excluding the ports. This mini-
mum bounding box is then increased by side, for each around that is not a member
of a wire to that side being increased and an outward perpendicular vector to that
side is within in the around.

3.9.2 Ideal Bounding Area

The “Ideal Bounding Area”, A, is a measure of the area required for the cell
excluding the wiring. The area is calculated by summing the area required for
each model instance in the cell and non-instance bubbles. The calculation includes
the fact that some models can overlap others. additionally, the wiring between
connected bubbles that can not overlap is accounted for.

Figure 3.37 Sample Cell One

The cell shown in Figure 3.37 has the same ideal bounding area as the cell in
Figure 3.38. Notice that the wiring in cell Figure 3.38 has the effect of increasing
cell minimum bound area.

Figure 3.38 Sample cell Two

A measure that we will use to relate minimum bounding area to ideal area is
Apnp/Asp which gives us an idea how much of the cell is wiring. For the first cell the
ratio is approximately 1 while the second is approximately 1.5. This measure will
be used in the analysis in Chapter 7.

A measure for the minimum length, L;, for a side of a cell which comes from the
ideal area will be used for the compaction process. The L, for a side is calculated
by taking the maximum of the sum of the separation distance between port plus the
maximum radius of the end ports. For the cell that is a rectangle we will calculate
the minimum horizontal length H,, for the cell by using the maximum of the top
and bottom side. For the vertical, Vi, we will use the maximum of the left and right
side.

We now have minimum limits for a cell. The minimum horizontal length is H,y,,
the vertical is Vy, , and the approximate minimum area is Mj;,. These constants
for a cell will be used in the compaction process.

3.10 Conclusion

In this chapter we have defined a new representation for a VLSI design based on
three simple primitives. We have shown how these primitives are composed to make
wires and devices. The devices called “models” are described in an independent
manner in a technology file. We have shown how we can abstract the circuit devices
and interconnect from a design using these primitives. This level of abstraction can
be used for a circuit schematic and design simulation.

We defined wires in our system as connected segments and arounds that
progress from a bubble to bubble. Wires can be considered as tightly stretched
bands that wrap bubbles or other arounds in the shortest possible distance.

We presented a new method to represent design rules in monochrome. This
greatly simplifies the geometric design rules checking and the geometric design rules
representation. A method of representing the exceptions in design rules called “re-
lated” was presented. This new method allows a simple technology file to describe
complex geometric design rules.

— 82 —

4
Modifying the Structures

We would like to be able to compact our design to a smaller or different shape while
preserving the topology and invariant condition as described in Section 3.3.4. The
design can be modified in a sequence of small steps to produce a large modification.
A small step is a move of a single bubble to a new position where the invariant
condition is preserved. This chapter will present a move algorithm which can move
a single bubble to a new location while preserving the invariant condition.

A bubble move will be an atomic action from which other modifications will be
constructed. We will allow only one bubble to be processed at a time. The bubble
may be moved only if the move preserves the invariant condition. We will not allow
a bubble to push or move another bubble. An example of a cell before and after a
bubble move is shown in Figure 4.1.

Figure 4.1 Bubble Move Example

Notice in the example when the bubble was moved to the new position the
wire was pushed out by the bubble. A simple way to visualize the bubble move is
by considering the bubble as a solid object that can slide on the board or plane.
We can move only one bubble at a time and other bubbles will appear as blocks.

Visualize wires as rubber bands with a thickness. Now look at the example. Notice
the bubble is pushed along the path to a new position. The intervening wire was
pushed out by the bubble while being tautly stretched. We will call this process the
bubble move. This chapter will present how the bubble move is accomplished.

The description of the bubble move algorithm will first be presented with an
example that has been carefully chosen to contain most of the special cases, which is
described in Section 4.1. The example presents a clear picture on how the algorithm
works. Detailed description of the algorithm’s two parts is presented in “clear path”
described in Section 4.1.1 and in “queue construction” described in Section 4.1.2.
These two sections go into detail about the algorithm and may be skipped.

All changes to our design will be processed through two sets which are
the set of primitives to be added called “addq”{} and the set of primitives to
be deleted called “deleteq”{}. We wish to be able to update our design with
these two sets while preserving the invariant condition. We define the function
“update” (U,addq{},deleteq{}) which returns a new design, U’ where all the primi-
tives in the deleteq{} have been deleted from U and all the primitives in the addq{}
have added to U, that is

U’ — update(U,addq{},deleteq{}).

We can consider the function update to happen in instantaneous time. A nice
property of the function update is that of symmetry. A change can be reversed or
undone by interchanging the sets, addq{} and deleteq{}, when the function update
is called. This property is extremely important in the interactive environment. If
we have constructed several changes which we are not happy with, the changes can
easily be backed out by calling update with the proper sets.

Portions of the bubble move algorithm are used as utilities by the functions
absorb bubble and around collapse. A design may have an intermediate bubble
between the path of two wires. The intermediate bubbles may have been used as
aids during the editing process or as a by product of the cell expansion process or
other processes. The algorithm for intermediate bubble absorption will be presented
in this chapter. During the editing processes bubbles may be deleted for a variety
of reasons. Wires may wrap or go around the bubble to be deleted. The collapse of
this type of around will be presented in this chapter.

This chapter will describe a uniform method for expanding or constricting the
perimeter of the cell. The relative positions for the ports is maintained for both the
expansion or constriction process. During the cell generation process in the graphic
editor the case arises where we would like to be able to expand the cell to add more
circuits. We call this process cell expansion. One edge of the cell is expanded at a
time. The whole cell may be expanded by expanding each edge one at a time. To
go along with the cell expansion we have the opposite of cell contraction. The cell
contraction also proceeds one edge at a time.

4.1 Bubble Move Algorithm

The bubble move algorithm is best described with an example first. The example as
shown in Figure 4.2 has been chosen with a variety of cases that should answer most
of the questions about the algorithm. The example will be explained in monochrome
as will the entire algorithm. We would like to move the bubble B; to the new position

B —
at By = (By.z+ Az, B;.y+ Ay), where (Az, Ay) is the vector from the old position
to the new. The possible new position is shown in the Figure 4.2 with an unshaded
circle.

Figure 4.2 Bubble Move Example, Before Move

The example shows some of the interesting deformation to the wires that are
necessary for the example move with the invariant condition preserved. Notice in
Figure 4.3 that the bubble B; has an attached wire wy which will need to wrap
bubble B; in the new position. The around of wire wy that wraps bubble B; may
need to be unwrapped. This wire may need to wrap other primitives which will
be discussed later. Now look at wire w3 which will be pushed by the bubble and
will need to be wrapped around B;. In a similar manner wire w4 will need to be
wrapped. There is also an around that will possibly need to be unwrapped which
is the around that wraps bubble Bj.

Before we can move the bubble B; to a new position, we need to know if the
bubble can be moved directly - 1.e., in a straight line - to that position without vio-
lating the invariant conditions and without moving any other bubble. If we can move
the bubble with no errors, then we can perform the move. This process naturally
divides the move algorithm into two parts. The first is the “clear path” algorithm
that determines whether we can accomplish the move with no geometric design rule
errors and “queue construction”, which constructs the addq{} and deleteq{}. In
this example we will describe the queue construction as actually taking place. It is
straight forward to translate this process into creating the add and delete queue.

— 85 —

Let’s consider bubble B; as a solid ball that is moved along a straight line
to the position B;s. As the bubble moves along the path a region is defined by
the radius of the bubble plus the minimum separation distance. Any bubble that
intersects this region will violate the invariant condition. Notice in Figure 4.3 the
region R, is defined by the lines parallel to the path. If we hit a wire, as shown with
wire w3, we need to increase the radius of the path above the wire by the radius of
the wire when it wraps the bubble plus the radius of the wire, plus the minimum
separation distance. We will save the wire with its wrapping radius in an array
called “forwardP”[*]. Now if a bubble is in region R; it would need to be further
away than a bubble in region R;. As we move along, another wire, w,, will be hit
which we will add to “forwardP” [+| with the radius that wy would have if it wrap
bubble B in the new position. Notice that the radius of w4 wrapping bubble By
would need to be the previous wrap wires radius plus the radius of the two wires
plus the minimum separation distance.

Figure 4.3 Bubble Move Clear Path Example, Before Move

Notice that we have defined an ordering in the array “forwardP”[*]. The array
is ordered with the closer wire first. For our example “forwardP”[*] would contain
w3 followed by wg. Also recall the array contains the radius that would need to be
created for the wire when it wraps bubble By;. This property will be used in the
queue construction algorithm.

Let’s consider what would happen, if the bubble hit an around along the path.
There are two cases for the around. The first is where the bubble B; is inside of
the around. If the bubble By is inside the around, then we will treat the around as
a wire and processes as previously described. If the bubble is outside the around
then the around must be treated as a bubble which is a solid object which would
possibly cause the clear path to fail.

In a manner similar to the creation of “forwardP”[*], we will create an array
“backwardP” [*] containing the wires that would need to be unwrapped. The order-
ing is closest to bubble B; as before. For our example this array would hold wire

wy. This array will be used later on by the queue construction algorithm.

Figure 4.4 Bubble Move Clear Path Example, After Move

We have now shown how clear path works. The processing of the move by
queue construction will now be explained. The queue construction takes advantage
of the arrays that were constructed by clear path. Notice in the Figure 4.4 that the
move has been performed. Now notice that we need to move wire wy first. If we
did not, and moved some other wire, say w3, there would not be the around of wire
wy for wire w3 to wrap. So, there is an ordering of processing. We need to process
wy, followed by w3 and then move the bubble with attached wires, and finally move
wire wy. Notice this ordering is from the end of array “forwardP” [*] to the start,
the bubble, followed by array “backwardP”(#] to the end. This order is the same
order queue construction does the processing.

Figure 4.5 Bubble Move Clear Path Example, Partial Move

The first wire to be processed by queue construction is wire w4 which is the last
wire in “forwardP” [+]. The old position is shown as an outline in Figure 4.5. The
new position is shown filled in. The old wire has two arounds where the first around
wraps the end bubble of wire w; and the second around wraps bubble B;. As we
move the wire forward we create an around with a radius defined by “forwardP” [*]
which will wrap bubble B;;. The wire can be considered as a taught band that
snaps, wrapping and unwrapping solid objects. In this case, wire wy would wrap
bubble By and unwrap the around for bubble Bj.

Figure 4.6 Bubble Move Clear Path Example, Partial Move

Wire w3 is the next wire to be processed from the “forwardP”[+] array. We
will create an around that wraps bubble B,/ with the radius from “forwardP” [+] as
shown in Figure 4.6. We will let the wire snap up to its new position. Notice that
it wraps the around created previously within wire wy and wrap bubble Bj.

Figure 4.7 Bubble Move Clear Path Example, Partial Move

The array “forwardP” [#] is now exhausted and we will proceed by moving bub-
ble By to B, as shown in Figure 4.7. As with the wires just processed, wire w; is
dragged to its new position wrapping bubble B;.

Figure 4.8 Bubble Move Clear Path Example, Partial Move

The last step of queue construction is to process the wires in array
“backwardP” [+] from start to the end. For our example there is only one wire,
wy. Consider the wire as being held by bubble By. We remove bubble B; and
allow the wire to snap into place. Notice that wire wg wraps the previously created
around of wire wy.

We have just demonstrated how the bubble move algorithm works for a complex
example. All of the possible bubble moves can be reduced to parts of the example.
Notice that before the move, the wires were tightly stretched, and after the move
they are tightly stretched. This is a property of the algorithm.

The Boolean procedure “bubblemove” is used to construct a single bubble move
in the addq{} and deleteq{} sets. The procedure will return a true if it was suc-
cessful. The procedure “bubblemove” takes as parameters, the cell U, the bubble
to move B, the delta position (Az, Ay), the addq{} and deleteq{} for the resultant
move. The procedure uses two temporary arrays “forwardP” [+] and “backwardP” [#]
for passing the wire wrap information created by clear path procedure to the queue
construction procedure. We define the procedure as follows.

Boolean Procedure bubblemove(U,b,Az, Ay,addq{},deleteq{})
begin
array forwardP[«];
array backwardp[*];
if clearpath(U,b,Az, Ay forwardp[*],backwardp|#]) then
begin
qconstruct(U,b,Az, Ay,forwardp[+| backwardp[+],addq{},deleteq{});
return(true);
end;
return(false);
end;

4.1.1 Clear Path Algorithm

The clear path algorithm determines if we can move a bubble B to a new location
defined by a delta position, (Az, Ay), in our cell U. Clear path also defines the array
“forwardP” [«] which contains the list of primitives and their respective radius that
will need to wrap bubble B at its new position. The array “forwardp” [] is ordered by
closest wrap primitive first. The array “backwardp” ¥] is also defined which contains
all the primitives that would need to be unwrapped when bubble B is moved. Array
“backwardp” [¥| is ordered by closest unwrap first. The clear path algorithm is
defined by procedure “clearpath” (U,B,Az, Ay,“forwardP”[*],” backwardP” [«]).

The variables U, B, Az, Ay, “forwardP”[+], and “backwardP”[+] will be as-
sumed to be global throughout the procedures and functions defined within a clear
path.

~ 90 —

The clear path algorithm proceeds in two steps. First, the “forwardP”[+] and
“backwardP” (] are constructed. This construction first examines the arounds at-
tached to bubble B in B.arnds[+]. These arounds are then added to “forwardP” [«]
or “backwardP”[+] depending if they would continue to wrap B in its new posi-
tion or would possibly be unwrapped. The order of the arrays “forwardP”[«] and
“backwardP” [+] is by the increasing absolute value of the radius of the primitive
that would wrap bubble B. Next, our cell, U, is searched for any segment or around
that would wrap bubble B in the new positions or any segment or around pushed
by bubble B. These primitives are added to “forwardP” [#] in the proper order. The
second step in the clear path algorithm is to check for any bubble or around in our
cell that would violate the invariant condition if the bubble B was moved to the new
position. Clear path would fail if any bubble or around would violate the invariant
condition when bubble B is moved along the path to the new position.

The second step of the clear path algorithm will be described first which checks
if the bubble B can be moved without geometric design rule violation. The con-
struction of the “forwardP”[*| and “backwardP”[#| arrays will be discussed later
on in Section 4.1.1.2. We wish to move the bubble B; as shown in Figure 4.9
to a new position defined by a delta position, (Az,Ay), to a new position at
By = (Bi.z + Az, B;.y + Ay). Each bubble, B, in our cell U, will be tested
with the path of the bubble B; to the new position at B,s for a geometric design
rule violate. In addition, each around A; which is outside the bubble B is tested for
a possible geometric design violation. We will use the normalized line equation pass-
ing through point P = (B;.z + Az, B;.y + Ay) to bubble B; and the perpendicular
normalized line equation passing through bubble By for this testing.

Figure 4.9 Clear Path Move Position

We let the length of the move be defined as
L =+/(Az)? + (Ay)2. (4.1)
For the normalized line equation,

a*z+bxy+c=0 (4.2)

—~91 -
passing through point P to bubble B; we will let

a=(Ay)/L,
b=—(Az)/L, (4.3)
c= —a%* By.z —bx* By.y.

For the perpendicular normalized line equation
adxz+b*xy+nc=0 (4.4)
passing through bubble By we will let

a' = —b,
¥ = a, (4.5)
nc=—a * By.z — b * B.y.

- .
Notice the vector (a,b’) points along the path move vector PB as shown in Figure
4.9. This property will be used later on.

We will use the procedure “Coveredprimitive”(p, w,1,j) described in Section
4.1.1.1. The procedure returns via the variable w, the minimum separation distance
between bubble B; and the primitive p which includes any wire which may be
between bubble B; and primitive p. Covered primitive uses the array “forwardP”[«]
that contains the tuple (r,p) where r is the signed radius of wire primitive p which
will wrap bubble Bj in its new position. The procedure searches from the last
primitive in “forwardP” [#] looking for a primitive where the minw ! is greater than
zero and the primitive is between the new position at P and bubble B;. If one
is found the absolute value of the radius in “forwardP” (] plus minw is returned.
Otherwise minw for the primitive p and the bubble B is returned.

To test if there is a clear path for bubble B; to move to point P we will test each
bubble B; in our cell for an invariant condition violation with the path bubble B;.
In addition we will test each around A; which bubble B is outside for an invariant
condition violation. If any bubble B; or around A; fails the tests, clear path will fail.
For each bubble B; in our cell we will do the following. First, “coveredprimitive”
is called that returns w which is the minimum separation distance of bubble B; to
bubble B; including any primitive between the two. If w is equal to zero there is no
separation rule and we will proceed with the next bubble.

We will let

r=|a*B;zx*b=* B;y+c| (4.6)

which is the distance from the line to bubble B,. Also let

d=a' *B;z+b + Bi.y+ nc (4.7)

1 Minw is a procedure which returns the minimum design rule separation between
two passed primitives. See Section 3.3.3.

which is the directed distance from the perpendicular line to bubble B;.
If d > L then the bubble is above point P in the region of bubble By as shown
in Figure 4.9. For this case the clear path fails if the following is true.

w>\/(d— L)%+ r2. (4.8)

fd >0 A d <= L then the bubble is below point P in the region of bubble
B3 as shown in Figure 4.9. For this case if the following is true then the clear path
fails, in which case we will return with a false.

w>r (4.9)

If d < 0 then the bubble is below bubble B; in the region of bubble B4 as shown
in Figure 4.9. This case can be skipped since a bubble violating a rule here would
violate the invariant condition.

We will treat arounds as if they are bubbles for the around test. We will only
check arounds that do not have the bubble B; inside. The reason for this can be
seen from the previous example. Arounds that bubble B; is not inside can not be
pushed since the around wraps another bubble and acts like a hard wall. For each
around A; in our cell we will do the following. First we will test if the bubble B;
is inside around A; and if so we will continue with the next around. Next we call
“coveredprimitive” with primitive A; which will return w which is the minimum
separation of bubble B; to around A; including any primitive between the two. If
w is equal to zero there is no separation rule and we will proceed with the next
around. Next we add the radius of around A; to w. We will let

r=la*Apbzxbx A;by+c| (4.10)
which is the distance from the line to the center of around A;. We will let
d=a *Apbz+b * A;by+ne (4.11)

which is the directed distance from the perpendicular line to the center of around
A;.

If d > L then the around is above point P in the region of bubble By as shown
in Figure 4.9. For this case clear path fails if the following is true.

w>4/(d—L)?+ 2. (4.12)

If d >0 A d <= L then the around is below point P in the region of bubble
B3 as shown in Figure 4.9. For this case if the following is true then the clear path
fails in which case we will return with a false.

w>r (4.13)

If d < 0 then the around is below bubble B; in the region of bubble By as
shown in Figure 4.9. This case can be skipped since a around violating a rule here
would violate the invariant condition.

4.1.1.1 Covered Primitive Definition

The procedure “Coveredprimitive”(p, w,1,7) determines the minimum separation
distance between passed primitive p and bubble Bj including any primitive between
the two which is in array “forwardP”[#]. The returned variable w is the minimum
separation distance. The returned variable 1 is the index in “forwardP”[*] of the
highest covered primitive. The variable j is the starting index in “forwardP”[«].
How variables ¢ and j are used will be described in Section 4.1.1.2.

Figure 4.10 Covered Primitive Example

The array “forwardp” [#] contains tuples of (g,r) where ¢ is a primitive and r
is the radius of the primitive when it would wrap bubble B; in its new position.
The sign of the radius r defines the wrapping as clockwise for negative and positive
for counter clockwise. The primitives in the Figure 4.10 would be organized in
“forwardP” [*| by (S, r;) followed by (Sg,rs).

We would like the procedure to include the effect of segment s in considering
bubble Bs as shown in Figure 4.10. For the case of the example in Figure 4.10
when called with bubble Bg the procedure would start by checking the last entry
in “forwardP”[] first. If it is not between bubble Bs and B; the entry would be
skipped and the next tried. Notice that segment s9 is not between bubble B3 and
B;. The next to be tried would be segment 8; which is between bubble B3 and B;.
The procedure would return the minimum separation distance between bubble Bj
and B; which includes the effect of segment sy.

The algorithm starts with the last primitive in “forwardP”[*] when passed
variable 7 = O otherwise, 7 is used as the starting position. The minw is calculated
for the primitive p and primitive ¢ and if it is zero this entry is skipped. Next the
primitive g is tested to see if it is between bubble B; and primitive p. If it is not
this primitive is skipped. The minimum separation design rule, w, is the sum of the
previously calculated minw plus the radius r. The index 1 is set to the first valid
primitive in “forwardp” [*]. The maximum value of w is calculated. If no primitive
was found the minw for primitive p and bubble B; is return in w with index 1 equal
to zero.

We call the testing of a primitive, ¢, between a primitive p and bubble B;

,

“covered”. There are two types of primitives in “forwardp” [*] which makeup a

wire. They are a segment and an around which bubble B is inside. The possible
combinations of covered primitives are six which is the number of primitives times
the two types of wire primitives in “forwardP”[+]. Each case will be covered next.

Before we show how the test is performed for each of the six cases an important
fact about the primitives in “forwardP”[*] will be pointed out. All primitives in
“forwardP” [+] will intersect the path of the bubble to be moved. We will take
advantage of this in the testing for “covered”. Also, we know that the two primitives,
p and ¢, have a minw greater than zero.

P

/MQ

B

Figure 4.11 Bubble to Segment Covered Example

The first case is that of a bubble p testing if a segment ¢ is between it and
bubble b as shown in Figure 4.11. We know which side bubble b is on in relation
to segment ¢ from the signed radius r in the tuple in “forwardp”[#|. The test is to
simply check if bubble p is on the other side.

P

Q
B

Figure 4.12 Bubble to Around Covered Example

For the case where ¢ is an around and p is a bubble as shown in Figure 4.12
we know the bubble B must be inside of the around ¢. The test is simply to test if
bubble p is not inside of the around gq.

Figure 4.13 Segment to Segment Covered Example

When we have p and ¢ as segments shown in Figure 4.13 we know the segment
bodies do not intersect since the minw is greater than zero and the invariant con-
dition is preserved. If the two segments are parallel we check for segment ¢ to be
closer to bubble B than segment p and we are done. Otherwise we compute the
intersection point and test to see if the point is within the body of segment ¢ . If
so, we only need to check for one end point of segment p to be above segment ¢ and
we are done. If the intersection point is not within the body we compute angle 4 as
shown which is the angle above segment ¢ to segment p about the intersect point.
If angle theta is less than 90° then segment p covers segment ¢; otherwise it is not
covered. We can use this test since we know that segment ¢ is in the path of bubble
B;.

Q

B

Figure 4.14 Segment to Around Covered Example

For the case where p is a segment and ¢ is an around as shown in Figure 4.14
we test for covered by checking for the ends of segment p to be outside of around gq.

mp

st ——>Q

B

Figure 4.15 Around to Segment Covered Example

When p is an around and ¢ is a segment as shown in Figure 4.15 we test the
end points of around p with segment ¢q. If either end point is above segment ¢ the

around covers the segment.
around
around

Q

P

B1

Figure 4.16 Around to Around Covered Example

The last case is when p and ¢ are arounds as shown in Figure 4.16. If either
end point of around p is outside of around ¢ the around p covers around g.

4.1.1.2 “forwardP”[+] and “backwardP”[«] Construction

We will now describe how the “forwardp”[+] array and “backwardp”[«! are con-
structed. First the arounds that wrap bubble B; are processed by adding them
to the appropriate “forwardp”[*] or “backwardp”(+] array. Next the arounds and
segments in our cell u are checked to see if they intersect the path of bubble B;. If
any do they are added to the “forwardp” [+] array in the proper position.

We will now show how the arounds attached to bubble B are placed in either the
“forwardP” [*| or “backwardP” [#] arrays. Notice in Figure 4.17 that if the bubble B

2
is moved in the direction between the segment vector S; and segment vector §§ the
around A would be unwrapped. This determination can be visualized by assuming
the bubble is a marble and the segments and around are hard walls. Now if the

marble is moved in the direction between the segment walls, the around would be
unwrapped. However, anywhere else the walls would be hit and the around would
need to be moved outward. We will use this fact to add the around to the appropriate
array.

Figure 4.17 Attached Around

We will use the Boolean function “betweenaseg”(A,z,y) (see Section B.2) to
determine whether to place the around in the “forwardP”[+] or “backwardP”[«]
arrays. The function is logically true if the vector defined by the pair (z, y) is between
the vector parallel to and pointing outward from the end segment of around A and
the vector parallel to and pointing outward from the start segment of A. We will
add the attached around to the “backwardP”[+] array when a call on the function
betweenaseg is logically true and add the around to the “forwardP”[#| array when
the function is logically false. The arounds are added by increasing radius.

Next we will test each around and segment in our cell to see whether either
would cause a minimum separation design rules violation with the path of bubble B;.
If the around or segment would it is added to “forwardp” [«] at the proper position.
The search of the segments and arounds is accomplished by a loop through each
around and a loop through each segment. If an intersection was found the search is
restarted. The search loop is best described with a pseudo code as follows.

hit«True;
while not hit do “search”
begin
hit«False;
for each around a of U do
if a not in forwardp[+] then
if insidearound(b;,a) then
if a intersect path then
begin
add a to forwardp|]
hit«True;
continue search;
end
for each segment s of U do
if s not in forwardp(] then
if s intersect path then
begin
add s to forwardp|¥]
hiteTrue;
continue search;
end
end;

Notice in the code that when an intersection is found the search loop is restarted.
This reduces some of the search run time. Also arounds that bubble B; is inside of
are only tested. The reason for this is that these arounds may be lifted or pushed
by bubble B; while the others act as blocks. When the search loop has finished we
have constructed the “forwardp”[+] and “backwardP” [«] arrays.

The test for an around, a, path intersection is described next. First we call
Coveredprimitive(a, w, , 7)(see Section 4.1.1.1) to determine if there is a possible
design rule between the bubble By with the wires in “forwardp” [+] added and around
a. If w is zero there is no design rule and around a can be skipped. We will save
the index ¢ for later use if the around a intersects the path.

We will first compute the intersection point z;, y; of the path line equation (4.6)
and the around a as shown in Figure 4.18. There are two intersection points for a
circle and a line equation. We will choose the furthest point from bubble B since
we know the path intersect on the inside of the around. Recall that bubble is on
the inside of the around a.

Figure 4.18 Around Path Test

We will let
s=abzxa+aby*xb+c (4.14)

which is the distance from the path to the around center. We will let
t=ar? - 8% (4.15)

If t is less than zero we will continue with the next object since for this case the
path would not intersect the around. We will let

z;=abz—axs—bx+/t, and

4.16
y,'———a.b.y——b*s—a*\/{' ()

We now will check the intersection point z;,y; to see if it is less than the
minimum separation distance w and the intersection point is within the arc of the
around. We will let

d=a' *z; b xy; + nc (4.17)

which is the directed distance from the perpendicular line to the intersection point.
If d < O then we can skip this around since it is below the bubble By. If d - < w
and the intersection point is within the around we have a hit.

If we do not have a minimum separation intersection from the previous test we
need to check the shortest point from the around to the end point of the path. If
we construct a line as shown in Figure 4.18 from the center of the around through
the end point of the path to the around the shortest distance will be from the path
end point to the around. We will let

h = abs(a.r) — \/(a.b.:c —by.z+ Az)2 + (a.by — b1y + Ay)? (4.18)

equal this distance. IF h less than w and the intersection point of the constructed
line and the around is within the around then we have a path intersection.

There is one last check to make if we do not have a path intersection. We need
to check each end point of the around using the same test as was done in the clear
path for the case of a bubble. We can do this since we can treat each end as a
bubble.

- 100 -

If we have an around path intersection we will add the around to the
“forwardp” [¥| array. Recall the index ¢ we saved when coveredprimitive was called.
We will insert around a and its radius r which has been set positive or negative
depending how around a would wrap bubble B in “forwardp” [*] at ¢ plus one. We
will adjust the primitives radius above t+ + 1 by using coveredprimitive with the
appropriate values.

Now we will describe how the test is accomplished for the segment path inter-
section as shown in Figure 4.19. First we call Coveredprimitive(a, w, 1, j)(see Section
4.1.1.1) to determine if there is a possible design rule between the bubble B; and
segment 8. If w is zero there is no design rule and the segment is skipped. We will
save the index ¢ for later use if the segment s intersects the path. We will next
compute the sin of the angle ¢ between segment s and the path in preparation for
computing the intersection point z;,y,;. We will let

g=a%*sb—saxb (4.19)

If ¢ equals O than the lines are parallel and we do not have an intersection from
the invariant condition. Next we compute the intersection point z;,y; by
z;=(bxs.c—s8bx*xc
yi = (cxs.a—scxa)/q,

and
d=da *xz;+b +y; +nc (4.21)

which is the directed distance from the perpendicular line to the intersection point.
If d is less than zero the segment is below bubble which can not intersect so we are

done.
W

Figure 4.19 Segment Path Test

If d > L then the path and segment do not intersect so we will check the final
desired position of bubble B; with the segment. We will let

s=s.a*(by.z+ Az)+ s.bx(by.y + Ay) + s.c, and

L , (4.22)
=s.a * (by.z+ Az) + 8.b' * (by.y + Ay) + s.nc

- 101 -

where s is the shortest distance from the final desired position of By and h is the
distance from perpendicular line which goes through the final desired position to
the center of the segment. If s < w and |h| <= s.[/2 we have an intersection.

The final case is where d is less than L and greater than zero. In this case we
will let

h=s.a *z;,+sb %y, +snc (4.23)

where h is the distance from intersection point to the center of the segment. If
\h| <= 8.0/2 we have an intersection. Otherwise we test the segment end points
with the path.

If we have a segment intersection we will add the segment to “forwardP” [«] as
we did for the around. The sign of the radius w is determined from the side of the
segment in which bubble B; resides.

4.1.2 Queue Construction Algorithm

At this point in time we have all the needed information in “forwardP”[+| and
“backwardp“[+] for the wires that need to be pushed out and wires that are al-
lowed to collapse. We also have the bubble B and its new position which has the
attached wires that need to be moved. We also know we have a clear path. Wires
in “forwardP” (] will be processed first as waves from the last wire in “forwardp”[]
to the first wire. Next the bubble B will be moved to the new location and attached
wires will be processed. Finally the wires in “backwardp”[+] from first to last will
be processed.

Moving a wire can be considered as a wave sliding out from its old position to
its new position wrapping any obstacle. Each wave may fall on the previous wave.
Therefore we need the search list of primitives to contain the cell U with all the
update being adds or deletes of primitives. Recall that we do not actually update
our cell but add the changes to the addq{} and deleteq{} queues. We will define
our search cell to be

U'=U n - deleteq{} U addq{}

which has all the primitives in the cell U with the deleteq{} excluded and all
the primitives in the addq{} added. We will use U’ for our processing in the queue
construction algorithm. The invariant condition is preserved by the cell U’.

We will first process the wires in “forwardp” [#] from last to first. There can be
two types of wire elements in the array which are segments and arounds. Recall that
each ciement in the array contains a wire primitive and a radius. The radius defines
the radius of the around to be created and the direction for the wire in its new
position where the around center is bubble B at its new position. We first create a
bubble B’ which is a copy of bubble B with its location at (B.z + Az, B.y + Ay).
Any around we create from “forwardp”[*] will have its center at bubble B’. The
newly created bubble B’ is not added to the addq{} at this time since it would
possibly violate the invariant condition for the cell U”’.

We will first show how a segment is processed in “forwardp” [#]. In Figure 4.20
we have a segment s being moved forward to create a new segments 81,83 and around

- 102 —

a where the radius of a is defined in “forwardp” *]. We will divide the processing
into a left and right half since we know there are no interfering objects in the center
channel where the around is created from clear path. We will first show how the
left side is processed where the new segment s; resides.

© B

Figure 4.20 Wire Process Segment Example

We will first identify any primitives that the wire defined by segment s; and
around a will need to wrap. Notice in the Figure 4.20 that there will not be any
interfering primitive closer to the path of bubble B to B’ with the radius of around
a. Any primitive that intersects segment s; or is in the region defined by segment
3, segment s; and the path of bubble B to B’ shifted left by the radius of around
a would need to be wrapped. Of course the primitive’s minw between itself and
segment s would need to be greater than zero. All others would be skipped. Notice
that this region defines a triangle as shown in Figure 4.21.

N

A

Figure 4.21 Wire Process Triangle Example

We will reduce all the processing in the queue construction to an primitive
identification process and processing of the identified primitives for a pseudo triangle
region as shown in Figure 4.21. The triangle will have one side which is a new
segment shown as N with each end being an around or bubble. The other two sides
define interior regions of the triangle. They have some width as shown. The triangle
has a general form where one side N is a new segment with possible attached arounds

- 103 —

and the other two, a and b are walls. The identification process involves searching
the cell U’ for any bubble or around which intersects the triangle and storing the
result in a queue ¢{} for processing.

The next part of the triangle process is to construct the new wire which will
wrap the primitives in Q{}. This construction is accomplished by first finding the
primitive in Q{} with the smallest angle § between a line drawn from the intersection
of side n and a to the primitive extended outward by minw as shown in Figure
4.22. Next the new segment and around is created to go around the obstacle. The
primitives in Q{} which are inside the new around and not intersecting the new
segment are culled from the queue. The process is then repeated until the queue
is empty. We will call this process of identification and processing of primitives
that intersect the triangle the “Triangle Process” which will be described in Section
4.1.2.1.

N

bubble minw

A

Figure 4.22 Triangle Example

You should now have a general idea of how segment s is processed in
“forwardp” [*]. The actual steps are as follows: First the segment s is added to
the delete queue. Next copies of s are created for segment s; and s3. The around a
is created which wraps bubble B’ using the rule of s. The reason that the segments
are copied is to preserve the related and rule information. If the ends of either s;
and sy, which is not connected to around a, is an around, the around is added to
the delete queue, copied and linked to the appropriate segment. This copying is so
that when the segments are initialized they only effect new arounds. The segments
and around are initialized as defined in Section 3.2. The triangle process is then
perform which adds the primitives to the add queue. This process is done for the
left and right triangles.

Now you may be wondering what happens when the end is an around and needs
to be unwrapped. This case is interesting since we will use what we have already
built - the “Triangle Process”.

Let’s consider the case as shown in Figure 4.23 where we have the old segment
s and the new segment s; where the start of the segments is an around q. We
can easily detect whether this around q possibly needs to be unwrapped from the
direction of s to s; and the direction of the around q. A necessary condition for the

- 104 —

around to be able to be unwrapped is that the around is less than 180°. For the
example shown we have met both of these conditions.

Figure 4.23 Around Setup Unwrap Example

We will proceed as before with the segment; however if the new around g¢; is
unwrapped the start point for the segment s; will be the start point of the around
as shown in Figure 4.23. We can test for the unwrap case by noting whether the
new around is greater than 180°. We will set the new around’s start and end point
equal. This also means the angle of the new around ¢ is zero. We will now proceed
as before with the triangle process for segment sy.

At the completion of the triangle process for segment s; we will test the around
q1 for zero angle. If the angle is zero we will unwrap the around ¢;. This unwrapping
1s accomplished in a manner similar to the previous example by creating a new
segment s, as shown in Figure 4.24. We now call the triangle process using the new
segment Sy, s and 8;. This unwrapping process is recursive and will unwrap any
arounds that needs to be unwrapped.

S, d
S,

S -
Figure 4.24 Around Unwrap Example

We will now explain how the unwrapping algorithm operates. The unwrapping
algorithm is given an around ¢ with a zero angle that will be unwrapped. The
around gq is culled from the add queue. If the segments, s, and s., on each end of
the around are on the add queue they are culled from the add queue otherwise they

- 105 —

are added to the delete queue. A new segment sy is created with the ends being the
start of s, and the other being the end of s,. When the end of the new segment s, is
an around, the around is deleted from the add queue if present otherwise it is added
to the delete queue. A copy of the around is created and connected to the proper
end of 8p. The segment s, is initialized as described in Section 3.2. The triangle
process is used next. If either end of s, needs to be unwrapped the algorithm is
called for each.

This is a good point to summarize the algorithms we have constructed so far.
We have developed a method to transform a segment into a segment -around-
segment triad when the “forwardp”[#| contains a segment. We have shown how
we wrap any primitives in the triad with the general method of the triangle process.
We have shown a general algorithm for unwrapping an around.

Figure 4.25 Wire Process Around Example

We will now show how an around a is processed from the “forwardp” [*] with
the radius r’. We will be moving the around a to a new position which wraps bubble
B' which is bubble b in its new position. All we need to do is show how the triangles
are constructed for the processing of an around. Notice in Figure 4.25 we are moving
around a to a new around at a'. The radius of a’ is defined in “forwardp”[+]. We
will first consider the cases where the radius is greater than or equal to the radius
of a. The construction of the triangle for the left side will be described first. Lets
assume the direction of the wire is from s;, to a, to s3. The triangle is defined by
segment 31, the line from the start point of around, a, to the start point of a’ and
segment s]. We can use the line from from two arounds, since we know the path of
the around from a to a' is not obstructed from clear path. In a similar manner the
triangle is created for the right side.

Figure 4.26 Wire Process Around Side Move Problem

This process works fine as long as the around moves up and away from bubble
B. However consider the example in Figure 4.26 in which the bubble is moving to
the side. If we create a triangle as previously described we will leave a hole under the
old around a. In a sense we are not moving a wave but jumping the wire. Assume
the direction of the wire is from 8; to a , to 8;. We can test for this condition by
checking for the end of s; being outside of s}.

d C]'1 S,

Figure 4.27 Wire Process Around Side Move Example

If the test is true we will copy around a to aj. We will link the start of s}
to the end of around a'l. This can be seen in Figure 4.27. We can do this and
preserve the invariant condition from clear path. We will then add around a} to the
“backwardp” [#] array in the proper position for later processing. Notice that now
the wire will act as a wave. We will process the right side as previously described.

We will now summarize how an around a is processed from “forwardp[*] when
the new radius is greater than or equal to the around a radius. First the around a,
its start segment 8; and its end segment Sy are added to the delete queue. Next if
the start of s; is an around it is added to the delete queue, copied and linked to s7.
Next sy is initialed. In a similar fashion sy is processed. We will first show how the
left side is process. The test is performed to see if the end of s; is outside of the
segment s}. If it is a copy of around a is created and linked to s}. The around a' is
added to the “backwardp”[*] in the proper position. Ctherwise the left triangle is

- 107 -

processed and any arounds on the start of s; are unwrapped. In a similar manner
the right side is processed.

But what about an around a in “forwardp” [«] whose radius is greater that the
new around’s radius? This case is a bulge out of the old around as shown in Figure
4.28. The figure shows the new around a’ as a finger which is valid because of clear
path. The around a' will have the radius defined in “forwardp”[*]. We will show
how the left side is processed. First we test to see if the left side of the finger is
inside of the around a. The test is simply to test if the end of sy is on the left of
the path of B to ¥ translated to the left by the radius of a’. If it is not we proceed
as we did before where the radius of a is less than or equal to the new radius.

Figure 4.28 Wire Process Around Finger Problem

If the test is true the following is performed. First the around a' is created from
a with new radius r/. Next segment s} is copied from segment s;. Now here is the
difference. We next copy around a'1 from a and link the start of s to the end of a'.
Notice that the start of a’ connects to the old s;. We initialize the segment s; with
the attached around a'. The triangle process is then performed using the path of B
to B’ as one side, the around a as the other, and segment s; as the last. Around a)
is unwrapped if necessary.

After the “forwardp” [#] we have all the wire ahead of the bubble b processed.
Notice that our cell U’ preservers the invariant condition. Next we process the
bubble B and the attached wires.

Figure 4.29 Attached Segment Process

Next the bubble B is added to the delete queue and bubble B’ is added to
the add queue. We will process each segment s; which is attached to bubble B as
follows. Assume the end of s; connects to bubble B as shown in Figure 4.29. First
the segment s; is added to the delete queue and s:- is copied from segment s;. If the
start of s; is an around it is copied and linked to s:-. The segment si is initialized
with any attached arounds. The triangle process is performed with sides s;, si. and
the path from B to B'. Any necessary unwrapping is performed.

O g

Figure 4.30 Around Collapse Example

Finally the “backwardp” [#| array is processed. We will process each around a
in “backwardp” %] from first to last. Consider the example in Figure 4.30 where a
is to be unwrapped. Notice how the figure looks like the old triangle. Assume the
start of the around connects to segment s$; and the end connects to segment s5.
The steps are as follows. First the around a, segment s; and segment s5 are added
to the delete queue. The segment s' is copied from segment s;. The end of ¢’ is
linked to what the end of 85 points to. If either end of segment s’ is an around it is
copied, added to the delete queue, and the new around is linked to segment s’. The
triangle process is then performed using the sides defined by around a and segment
4¢’'. Next any necessary unwrapping is performed. Notice that if the bubble B’ does
not extend out of the triangle it will be wrapped.

- 109 —

That completes the description of the queue construction process. Notice that
the cell U’ preservers the invariant condition.

4.1.2.1 Triangle Process

The function of the Triangle Process is to determine if any primitives intersect
the triangle and to modify the given wire to wrap the intersecting primitives. The
process is naturally divided into two parts where the first is the identification process
and the second is the wire modification. The given wire is in the form of a segment s,
where the segment is a new segment and not on the add queue. The only primitives
that we will consider has a minw greater than zero between the primitive p and
the segment s,. All sides of the triangle can be considered to have a rule relation
defined by the primitive being checked and segment s,,. The reason for this is that
the sides originally were either composed of the rules of segment s, or clear path
insures there is no rule of that type.

The identification process tests each bubble b and each around a in cell U’ for
intersection of the triangle and storing the result in list Q{}. The test is first to
determine the minw for the primitive and if it is zero the primitive is skipped. Next
the primitive is checked for intersection to the triangle and if so it is added to Q{}.

d

Figure 4.31 Simple Triangle

Let’s take a close look at a simple triangle as shown in Figure 4.31. Without
loss of generally We will assume the direction are as shown. The side n is the given
segment s,. Side a and b may be either a segment or a given line equation. The test
is simple to check to see if the primitive p intersect the segment sy or the primitive
is inside of the triangle. The test for inside the triangle is a simple check with the
line equations.

Figure 4.32 Complex Triangles

The normal case is the complex triangle as shown in Figure 4.32 where the sides
may be composed of a segment and an around. This does not complicate the test
since we can use the function “inside around” described in Section B.1 to test for
inside of the triangle. The sides a and b may be composed of a single segment or
line equation, or a segment and an around. The side n may be a single segment or
start and/or end with an around. The definition of the sides of the triangle is from
the caller.

We will now describe how the triangle process constructs the list Q{}. First
the list is set to null. We now check each primitive p in U’ which is a bubble or
an around. The variable w is set to the minw between primitive p and segment s,,.
If w equal zero we proceed with the next primitive. Now we test the primitive p
for intersection with the segment sy, as described in Section 3.2. Also if segment sy,
starts with an around it is also checked and so is the end if the segment s, ends in
an around. If we have an intersection with the segment, the primitive p and w are
added to list @{}. The list Q{} actually contains tuples of (w,p). The distance w
is the radius that the new wire will need to be away from primitive p. If we do not
have an intersection we will test to see if the primitive is inside of the triangle.

We will now describe how we test if a primitive p, which is either an around or
a bubble is inside the triangle. First we know the primitive is either totally outside
or totally inside of the triangle. This is because from clear path and the initial
invariant condition it does not intersect sides @ and b. Also we have just tested for
side n. Therefore we only need to check if one point of the primitive is inside of
the triangle. If the primitive p is a bubble we will let the point v = (z,y) equal
the center of the bubble; otherwise we will let the point v = (z,y) equal one end of
the around p. Now we only need to test if the point v is inside of the triangle by
testing with each side. When we test with a side that has an around the function
“inside around” is used. If the following tests for each side is true the primitive p
and distance w are added to the list Q{}. The test for each side is as follows.

Side n) If the segment sy, starts with an around the point v will need to be outside
of the around. If the segment s, ends with an around the point v will need
to be outside of the around. If neither end is an around the distance from the
segment 3, to the point v will need to be positive.

- 111 —

Side a) If side a is a segment and starts with an around the point v will need to
be outside of the around; otherwise the distance from the directed line a will
need to be negative.

Side b) If side b is a segment and starts with an around the point v will need to be
outside of the around; otherwise the distance from the directed line b will need
to be negative.

Figure 4.33 Special Triangle

There is a special triangle that comes from the processing of the “backwardp” [«]
array where the intersection of the sides a and b is an around as shown in Figure
4.33. In this case the testing of sides a and b is modified to test if the point v is inside
of the around of intersection of a and b. There is a possible hole if side a starts with
an around and/or side b ends with an around as shown. We will only describe one
side since they are similar. If the point v is outside of the intersection around and
side a has a start around we test distance from the point v to the directed side a for
greater than or equal to zero and the point v to be outside of side a start around.

If the list Q{} is empty we are done. If the list has one primitive p we copy
segment s, as s,. We create a new around a. If primitive p is a bubble the radius
of a is w with the center at bubble p. Otherwise the primitive p is an around in
which case the radius of a is w plus the radius of the around |p.r| where the center
is bubble p.b. We then link the end of 8, to around a, and the end of a to sl,.
Initialize the segments and around. Finally we add them to the add queue.

For the case where the list Q{} has more than one primitive it may be necessary
to wrap one or more primitives. The algorithm that we will describe next is repeated
until the list Q{} is empty. First let the primitive p with distance w be the first
primitive with the minimum pivot angle. We will describe how the pivot angle is
computed after the description of the algorithm. We create a new around a. If
primitive p is a bubble the radius of a is w with the center at bubble p. Otherwise
the primitive p is an around in which case the radius of a is w plus the radius of
the around |p.r| where the center is bubble p.b. The sign of the radius of a for the
triangle shown will be positive; if the triangles are mirrored then the sign will be
negative. We then link the end of sy, to around a, and the end of a to s/,. Initialize
the segments and around. We add s, and around a to the add queue. We next let

sn be s},. The elements in list Q{} culled if they are inside of the around a and

- 112 —

do not intersect segment sy nor around a. If the list Q{} is empty we are done, in
which case we add sy, to the add queue. Otherwise we repeat.

pivot angle

d
Figure 4.34 Pivot Angle

Now the question is, what is the pivot angle and why should the primitive with
the minimum pivot angle be the first primitive to wrap? Consider the Figure 4.34
where we have possible wrapping candidates Py, P, and P;. We can assume the
walls a and b are made of the rule of s,. Now let’s slowly let wall a rotate in about
the intersection of side n and a. Notice the first primitive to be touched will be p3.
The pivot angle is the angle between side a and the rotating side. The primitive P3
will have the minimum pivot angle. We could use either of the sides for rotation.

Figure 4.35 Pivot Angle Computation

In the previous example the rotating side was about a point; however the end
of the side could be an around where the side is rotating along an around. The
pivot angle py is the angle between the resting side shown as s and the side rotated
out until it is ry, away from the primitive P. The pivot angle will be represented by
a vector. The distance ry, is the clearance w plus the radius of the primitive if it is
an around. We will let

=T 5. (4.24)

- 113 —

The vector 3 is easily calculated by rotating the line equation vector of side s
by 90°.

Az =Pz - R.z,
Ay=Py—- R.y,
rw = w + plus radius of P if an around,

Welet ™= Twtra (4.25)

N =/Az? + Ay?,
P;=+V N2 -2
7 = (pd/N)r/N)'

The distance py is the distance from the point of rotation to the intersection of
the rotating side and the primitive P. The pivot point R may be either an around
bubble where r; is the radius of the around which may be positive or negative or a
bubble where r; is zero. The vector ¢ is the inside angle of the the vector RP and
vector v'. We will let the pivot angle be

’ (4.26)

Now the question may arise, what if the pivot angles are equal for two primi-
tives? Then we use the distance P; as the qualifier. We will take the primitive with
the maximum p, first.

4.2 Utility Routines

The utility routines are two functions that are constructed from portions of the
bubble move algorithm. The routines do not modify the data structure proper but
modify the add and delete queue. The routines will be used in the graphic editor
and other functions.

4.2.1 Around Collapsed

The around collapsed algorithm allows a wire being held by a bubble to be released
and snap inward wrapping any object in its path as shown in Figure 4.36. In this
example the filled in wires are before the around collapsed and the outline wires are
after. In the example we removed the bubble which allowed the wires to collapse. We
have just demonstrated a use for the algorithm in the deletion of a bubble. Another
of the uses of the algorithm is when the geometric design rules are modified as
described in Section 3.7.2 and the around radius needs to be altered. If we delete a
wire with an around wrapping the wire we would also need to unwrap the wrapping
wire.

- 114 —

Figure 4.36 Around Collapsed Example

The algcrithm for the around collapse is straight forward in that it will use the
algorithm for processing of the “backwardp” [#| as described in Section 4.1.2. The
first step is to load the “backwardp”[«] with the desired arounds to be collapsed.
The arounds are stored in the proper order in the array. Next the “backwardp” [«
array is processes as described in Section 4.1.2.

4.2.2 Bubble Absorption

The bubble absorption algorithm will remove a bubble that is an intermediate point
in a wire. The bubble can not be a model bubble and the two connected wires must
have the same rule as the bubble. An example of a bubble absorb is shown in Figure
4.37. The filled in wires are the before absorption where the outlines are the after.
Notice that there is a bubble below the bubble to be absorbed. Also notice that
there is a wire wrapping the bubble.

Figure 4.37 Bubble Absorption Example

The algorithm first checks if the bubble is not a model bubble and has two
connecting wires with the same rule as the bubble. Next the “backwardp”[«] arrays
is loaded with the arounds attached to the bubble in the proper order. The bubble
is added to the delete queue. The unwrapping algorithm described in Section 4.1.2
is used to merge and collapse the two attached wires. This algorithm can be used
since the intersection of the bubble with the two wires is the same as a zero degree
around. Then the arounds in “backwardp” (] are collapsed as previously described.

- 115 —

4.3 Cell Perimeter Modification

The cell is enclosed in a bounded polygon with the ports on the edge of the polygon.
Let’s assume that the polygon is a rectangle although the algorithm presented will
work on a polygon with the proper checks. We would like to be able to expand or
contract the cell. This process is accomplished by moving one edge at a time. The
edge will move parallel to its old position. The ports are maintained at the same
position on the edge. Figure 4.38 show a cell with expansion and contraction.

oS

expanded normal . confracfed

Figure 4.38 Example of Cell Expansion or Contraction

The reason the ports are maintained at their position of the edge is to be
consistent with expansion and contraction, and aid in cell composition. Suppose
we wish to compose two cells A and B. Assume cell A connects to cell B on the
right and cell B connects on the left. Let’s also assume there is a one to one port
match with location and rule. Therefore we can compose cell A and B on there right
and left edge respectively. We would like to add some more logic to cell B while
being able to preserve the ability to compose with cell A. This addition is easily
accomplished by expanding cells B on the left, adding the logic, and contracting the
cell to minimum size.

Another use of the expansion and contraction is to create a routing cell. We
could create a routing cell R with wires from port to port where the ports are
positioned for proper composition. We could than reduce the size of the cell by
contraction to minimum size.

4.3.1 Cell Edge Expansion

The expansion process algorithm is accomplished by creating a new side Syeq, as
shown in Figure 4.39 and deleting the old side. Next new ports are copied from the
old port to preserve rule and other information. The new ports are placed on the
new side on a line perpendicular to the new side and intersecting the old port at the
center. Next a wire is connected from each old port to the copied new port. The
old ports are then absorbed as described in Section 4.2.2.

— 116 —

Snew Solcl
O —d a
O —O P3
O —0>0 F’2
®»—¢ R

Figure 4.39 Cell Expansion

4.3.2 Cell Edge Contraction

The cell contraction will use the bubble move algorithm as previously described.
First we create a new side Sp.y as shown in Figure 4.40 at the desired contraction
position parallel to the old. Generally this position is at the minimum cell boundary
which also limits the position of the new side. We label one end of the side as bottom
as shown. Next we create an ordered list Q{} of tuples (P, s,d) where P is a port
on the side, s is the distance from the port to bottom, and d is the distance of
intersection point of the connected wire to the port and the desired new side with
bottom. The list is ordered by the increasing distance of the port to bottom.

Sold Shew
£ ds
e

3¢

bottom
Figure 4.40 Cell Contraction

We will use P; as the ¢ port in the list, s; as the ¢ port distance in the list and d;
as the ¢ distance in the list. We start with the lowest order port P; which is on the
old side where d; + 1 is greater than d; by the minw of P; to P; + 1 or the last port.
This choice is so there is room to move the port without the bubble move algorithm
failing on the above ports wire. The port is then moved to Spey if possible or as
close as possible with bubble move. If the port is not able to contact the side Speq
the new side is moved to the port and the list is adjusted appropriately. Next all
the bubbles in Q{} below i are move similarly starting with + — 1. This process is
repeated until all the ports have been moved or the new side Sy, is coincides with
So1d-

At this time we have all the ports moved to or beyond the new side Sp.y.
Notice that we have moved the new side as close as possible to the desired new side

- 117 -

position. Next we proceed like the expansion for the ports that are not on the new
side by copying the port to the new side, adding a strap, and absorbing the old port.
It is important to realize if the desired new side is on the minimum cell bound-
ary the algorithm just presented will put the new side as close as possible, to the
desired side without violating the invariant condition. This method is the way a
cells boundary is reduced to minimal size while preserving relative port position.

4.4 Implementation Considerations

As you may suspect a large portion of time is spent in searching for primitives. We
would like to minimize the search time. We can compute a bounding box for the
triangles and clear path search area and only test those primitives that intersect the
bounding box. This would eliminate some checking but the order would be O(N)
where N is the number of primitives.

The problem of reducing the search is very simple if we have a fixed object
size and there are fixed locations. However objects can be varying sizes and at any
location in the cell. In addition we are searching for all the primitives within a
variable size area. We will use a ternary tree with a left L, center C and right R
links. The top node will divide the cell into two part where objects on the left of the
center cut line would be held in the tree in the left link, objects intersecting the cut
line would be store in the center link, and objects on the right of the cut line would
be in the right link. Each link will point to another tree which would again split the
area in half or a list of objects. Assume we have a uniform distribution of objects,
and the ternary tree partition down to the average grain size. We could search for
an area of average grain size in order O(log(A)) where A is the area of the cell.

Each tree node will be a tuple of (S;,V, L,C, R,C},C}) where S; defines the cut
axis, V defines the cut ordinate, L,C, R are the node links, and C;,C}, are bounds
on the center node. The bounds on the center node limit the searching of the center
tree to those objects that intersect the center channel. Each node may divide the
cell area in the x-axis or y-axis. Each node splits the remaining area orthogonal to
the distance of the maximum axis.

The actual search could be for a small area as a grain size or a much larger
area. Assume the search area is a; and the total cell area is A. The total number of
elements is N. Then the search time would be O(log(A)+ k*n) where nis N*a,/A.

The implementation consists of two search routines. The first is for initializing
the search with a search bounding box or a null box for traversing the whole tree.
The second routine returns the next element in the search space or null for exhausted.

One question that is asked is what does it cost for an update on the tree? The
elements are stored as doubly linked objects. For a delete the links only need to be
adjusted. For an add it’s order Olog(A).

- 118 —

5
Graphic Editor

This chapter presents an interactive graphic editor for cell design. The editor is
a physical editor in that the placement of objects relative to one another has real
geometric meaning. The invariant condition as described in Section 3.3.4 is preserved
for the editing of cells. Direct immediate feedback is given to the user upon an error
condition. The editor has only a few flexible and powerful commands.

Generally most cell designers start with a hand sketch of the cell they are
working on. This sketch is usually done on grid paper in scale using the technology
design rules. The sketch serves as an editing medium. Even though there are graphic
editors available to the designer they usually start with a paper laid out cell. The
reason is that the graphic editors used do not have the commands nor the editing
capabilities that pencil and paper do. We would like our graphic editor flexible
enough that designers will choose to start with the editor rather then pencil and
paper.

Before we discuss the classes of editors it is important to consider how the
design process is done for cells. First an initial design is created. Next the design
is updated many times until the desired cell is achieved. Notice that it is not too
important to optimize the initial cell design process. However the update process
needs to be optimized since it is done many times and requires the larger amount of
user time. The cost of an update should be proportional to the amount of change
and the editing functions should be tuned for updating the design.

There are two general classes of cell editors. The first is a symbolic relative
graphic editor. With this class of editor the user enters the cell symbolically speci-
fying the topology. Generally this editing is done with a stick[Williams 77] type of
representation. Thin stylized lines are used to represent the wires where transistors
are defined by the crossing of the appropriate type of wires. The editor digests the
stick input and creates an internal representation which then can be compacted.
The advantage of this class of editor is in the update process which is the most
important. Circuit elements can easily be added between existing elements without
consideration of design rule errors.

- 119 —

One of the early symbolic editors to combine the editing function with com-
paction is Rest[Mosteller 81]. With this editor a user can enter or alter a cell,
compact the cell, and get immediate feedback on the compactness. Appropriate
adjustments to the cell are then done and process is repeated. The advantage
of this type of editor is the user is coupled with the compaction process. The
MULGA [Weste 81] system uses a virtual grid for the editing specification. With
this system the cell is laid out on a virtual grid. The compaction process can then
be utilized. The advantage of symbolic editors is that the user is freed from the task
of considering design rule and compacting the cell. Updates to an existing design is
very easy.

Cell editors of the second class of cell are called physical editors. Example of
early editors of this class are ICARUSFairbairn 78], Cell Design System|Franco
81], and Caesar|[Ousterhoust 81]. With these editors mask geometry is entered in
physical form with meaningful dimensions. Each mask layer must be individually
entered in the 2% D-plane. Updates to geometric elements are by each object on a
mask layer. The geometric objects are in the form of CIF[Sproull 79] where objects
are specified by boxes, wires, and polygons. The geometric objects are limited
to orthogonal shapes. The Caesar system only allows boxes. The Cell Design
System has the concept of a transistor path where transistors are specified like a
wire with a series of points. The drawback with this class of editors is that there
is no design rules checking. These editors are used by first editing a cell, running a
time consuming batch process design rule checker, and then correcting the mistakes.
This process is iterated until the desired cell is reached. Another drawback is that
the update process is tedious at best. Insertion of additional logic or modification
to a hand compacted cell requires extensive movement of elements.

The next generation of physical editors couple the design rule checking process
with the editor. This technique allows feedback on design rule errors when they
are created. Some of the frequently used circuit elements are combined into a single
symbol or a logical layer for easy manipulation. The Magic[Ousterhoust 84] system
is a primitive element editor of this type. The Magic system provides feedback
during the editing process where the design rule errors are displayed. Then it is
up to the user to correct the errors. The editor is similar to the Caesar editor in
that all modification is via single layered boxes. This editor provides a function for
moving obstacles called “plowing” which is similar to pushing a group of objects out
of the way. The Tigger[Whitney 85| editor is similar to Magic in that it provides
feedback on design rules violation. Unlike Magic, Tigger does not allow Design rule
violations and modifications are accomplished at the symbolic level. Tiggers input
is in the form of paths for wires and transistors. Contacts are created with a simple
command.

We are limited by the nature of our structure and the invariant condition
described in Section 3.3.4 to a physical editor. This restriction is not a drawback like
previous editors since we will provide immediate feedback during editing functions
that would produce a design rule error while not allowing the error. The extremely
powerful bubble move algorithm described in Section 4.1 will be provided as an
editing function and can also be used to construct additional powerful commands.
Unlike previous physical editors that need to describe individual mask geometry

- 120 -

pieces, we will only allow the higher level primitives of wires, bubbles and models.
Coupled with a compactor we have an extremely powerful editor.

5.1 Editing Frame

The editing frame provides the user “viewport” as shown in Figure 5.1. The im-
plementation uses a device independent graphic package with multiple widow and
menu capabilities. The frame is divided into two parts consisting of the editing view
of the cell and the menu’s. There are two scrollable menus where the scroll bar
shows the visible portion of the menu. The top menu contains the editing functions
while the bottom menu contains the rules and models defined from the technology
file. The order of the items in the menu and the function that the rules and models
can be used for is described in the technology file.

The graphic terminal has a pointing device with three buttons usually called
a mouse. We will call the left button the select button which is used for selecting
objects, the center button is called the do it button for causing action and the right
button is called the mark button for marking a point.

Show Grid
Physical
CONSTRICT
— EXPAND
1 Absorb
| MOVE
| PLACE
I M—Wire
| Wire
- DELETE
2 PAN
TWINDOW
1Undo—Last
REFRESH
EXIT

DP1-1
pull6—1
pull4—1
EH1-10
EH1-5
EH1—4
EH1-2
EH1—-1

] Buried

7 ContactMP

i ContactMD

i Blue

i Green

~ Red

Selecte

Q:

Cell Perimeter

Figure 5.1 Editing Frame

Items in the menu are selected by pointing at one and pressing any mouse
button. The selected menu item is then highlighted while the previous one is shown
as a normal item. A menu may contain sets of functions where only one item may be

— 121 -

highlighted in a set. The menu may also contain Boolean items where the Boolean
is highlighted in the true state. The menu is scrolled by using the center button
pointing within the scroll bar area at a new position for the scroll bar. This action
causes the menu to scroll. The processing of the menus is handled by the graphic
package.

The editing cell is shown to the user in a window where the perimeter of the
cell is highlighted. This can be seen in Figure 5.1. Editing can only occur inside
of the cell perimeter. Ports are the only exception. The models and bubbles are
shown in a physical form where the connecting wire may be shown as lines or as
fleshed out wires. This control is an option in the top menu called physical. The
colors displayed for each primitive are defined in the rule for the primitive as the
physical colors see Section 3.3.2.

There are three Booleans for controlling the response within the cell window.
The first, we have just talked about which is physical. The second is snap-to-grid
which causes any input point to be snapped to a user definable coarse grid which is
greater than the fine grid defined in the technology file. The window can have a grid
which appears as dots on the screen. The grid is turned on or off with showgrid.

We have the concept of a selected primitive. A primitive is selected by position-
ing the cursor on top of the desired primitive to be selected and pressing the select
button. An X will then appear on the selected primitive. An example is the selected
wire in Figure 5.1. The selected primitive has the primitive p and the selection
point. The point is the center of the . For bubbles the selected point is the center
of the bubble. For wires the selected point is on the path of the wire. The selected
primitive is used by the editing functions. The allowed set of selectable primitives
is controlled by the editing function.

There are two viewing functions that the user can use to get a closer look at
portions of the cell or to move the window across the cell. The functions use a
stack of windows so that the previous one may be popped back to. The window
function is used to defined an area within the current editing window for the next
editing window with a box defined by the mark and do it which of course causes
the windowing to take place. The pan function allows moving the current window
across the cell. The previous window is returned to by the use of the select button.

An important point about the coupling of a graphic editor and a graphic package
is the updating of the screen. Only the portion of the cell that has changed should
be updated on the screen. This technique is done to give the user quick response.
We would not want to refresh the entire screen each time a change is made. This
screen update is easily accomplished with the aid of the graphic package and the
uniform transaction process discussed in the next section.

5.2 Uniform Transaction Process

We would like all of the modifications to the cell to be processed by a common
function. The reason for this is to have a uniform error handler and allow for ease
of extensibility. This process would need to do a check for an invariant condition

- 122 -

violation with the objects to be updated. We call this process the uniform transac-
tion process since updates are presented as transactions in the add and delete queue
described in the bubble move algorithm.

The cost to accomplish the update and checking should be proportional to the
amount of change. We will only need to check the new items in the add queue with
the cell, U, and any possible broken related network defined by objects in the delete
queue. Any detected invariant condition errors will be presented to the user is a
reasonable manner.

To be able to perform the checks we need a cell, U’, that has been updated
with the changes. The reason for this is so that the related networks will reflect
the update when minw is used for the design rule check. We will first initialize a
queue C{} called the checking queue with all of the primitives in the add queue.
Next each end bubble B of a wire in the delete queue is processed as follows. If the
bubble B is in C{} or in the delete queue it is skipped. Next B is added to C{}
and each wire w connected to B not in C{} nor in the delete queue with the same
related information is added to C{}. End bubbles of the wire w are processed in a
similar manner. We now have a complete check list.

The editing cell, U, is then updated with the add and delete queue to create U’.
The update process alters the related information by clearing the related networks in
the delete queue and then updating all uninitialized related networks. This update
is a linear process on the number of changes in the add and delete queue.

The invariant condition checking is now performed for each primitive p in the
queue C{} and the cell, U’, by using the method outlined in Section 3.2. When and
if an error is detected, a triangle is placed on the primitives that caused the error.
The size of the triangle is based on the widths of the primitive. The location on
the triangle for a bubble is in the center. A segment will have the triangle on the
centerline of the segment closest to the error. The around will have the triangle on
the centerline closest to the error. This display gives the uses a clear perspective
where the errors are. The computation time is proportional to the size of the change
where the order is O(n * log(A)) where n is the number of changes and A is the
area of the initialized cell. The searching of the cell for primitives uses the method
outlined in Section 4.4.

If no errors were detected the cell U becomes U’. The screen is updated in the
region of the changes. The add and delete queue are saved on a whoops stack. This
method is extremely important since most of us are not perfect and we sometimes
would like to undo the last few changes. The size of the stack is user definable.

If there were errors the cell U’ is restored to U by undoing the add and delete
queue and discarding the queues. The error triangles are left on the screen until a
select or a new function is used.

The bubble move algorithm does not need to go though the checking phase
since the invariant condition is preserved by the algorithm. The triangle error flags
are produced for the move. The whoops stack also contains the move history.

- 123 -
5.3 Editing Functions

The cell is modified with the editing functions. A function is selected by placing the
cursor on the desired function in the menu and pressing any button. The desired
function is then highlighted and ready for use.

An editing function may require a rule or model where an example is the place
function. The rule or model that is used is the currently selected rule or model in
the technology menu. An item in the menu is selected by placing the cursor on the
desired one and pressing any button. How the selected rule may be used is defined
in the technology file described in Section 3.3.2.

The controlling of the selectable primitive is governed by the functions. Nor-
mally all primitives are selectable. Any exception will be described in the description
of the function. For example when the wire function is used only primitives that
are wirable are selectable.

All functions except expand and constrict go through the uniform transaction
process.

5.3.1 Undo Last

The undo last is one of the most important editing functions. Generally most people
do not make the correct modification to the cell the first time. Therefore they may
like to remove the last change or more. The undo last removes the last change by
undoing the last entry in the whoops stack. The size of the stack is user definable.
The whoops stack also contains the selected primitive when the stack entry is
constructed. The undo last also restores the selected primitive if there was one.

5.3.2 Place

The place function is used to create an instance of a bubble, port or model. The
orientation of the object to be placed is defined by the vector from the do it point to
the mark point. The pressing of the do it button causes the execution of the place
command. If a rule is selected a bubble or port is created, or if a model is selected a
model instance is created. The Edplace Boolean in the rule must be set for a bubble
to be placed while the Edport Boolean must be set for a rule to be used as a port.

First we will describe how a bubble or port is placed. If the do ¢t point is on the
perimeter of the cell a port is created; otherwise providing the do it point is on the
interior of the cell, a bubble is created. The description for the actual bubble place
is the same for a bubble or port. A bubble B of the appropriate rule is created at
the location of the do it point and added to the add queue. If bubble B is on top of
a compatible bubble we would like B to replace the bubble. Also if the bubble B is
on top of a compatible wire we would the wire to connect to the bubble B.

We will now describe how bubbles are tested for replacement. The set of bubbles
are searched for a bubble Q that is closer to the do 1t point than the nominal width
of @ and the rule colors of the bubble @ have any intersecting colors with the rule

— 124 —

colors of bubble B. If there is a bubble @, the attached wires to Q will be checked
for compatibility with bubble B. Wire to bubble compatibility mean the wire can
connect to the bubble as defined in the rule by the connection[] Boolean. If the
wires are compatible, the bubble Q is added to the delete queue along with the
attached wires. All wires connecting to bubble Q are then copied and added to
the delete queue. This process is then repeated since a bubble could be added that
would be compatible with many bubbles. An example of this would be placing a
red blue contact on top of a red and blue wire.

Wires are then checked for possible connection to bubble B. The set of wires
is searched for any wire w that is closer to the do it point than the nominal width
of the wire. The wire w is then checked for compatibility with B and if the wire is
allowed to connect to B as defined by connection[#] Boolean in the rule. If so, the
wire w is added to the delete queue and copied into two wires w; and w,, where the
end of w; points to bubble B and the start w, points to bubble B. This process is
then repeated until the list of wires is exhausted. We do not actually have wires, but
segments and arounds. The process is exactly the same for segments and arounds.

To place a model, first an instance of the model is created at the do it point with
the orientation defined by the vector from the do it point to the mark point. Each
instance bubble is processed exactly the same as placing a bubble. The instances
segments are then added to the add queue.

After the primitives have been processed by place, the uniform transaction
process is called to check for errors and to update the cell, U. The new selected
primitive is then set to the last placed bubble.

5.3.3 Wire

The purpose of the wire function is to connect two primitives by a wire with the
selected rule. Of course the Edwire Boolean must be set for the selected primitives
rule. The start of the wire is defined by the selected primitive. If there is no selected
primitive a bubble is placed at the do it point with the selected rule as defined by
the place function. Only primitives that are connectable by the selected rule are
selectable when the wire function is in effect.

If the selected primitive is a wire, the wire is split into two wires with an
intervening bubble that become the selected primitive. The wire split location is
the selected point. The old wire is added to the delete queue while the new bubble
and the two news wires are added to the add queue. Of course the appropriate flags
must be set is the rule for the wire. The rule for the intervening bubble is the rule
of the wire. Model instance wires may not be split.

We will now connect a wire from the selected bubble to the closest connectable
primitive to the selected bubble which intersects the line segment defined from the
selected bubble to the do it point if one exists. This process is done by searching the
bubbles and wire for the closest primitive p that intersects the line segment which
has the connection[*] Boolean true for any color in the selected rule. Model instance
wires are skipped since they can not be split. If the primitive p is a wire it is split
as defined previously and the primitive p is set to the intervening bubble. A wire is

- 125 —

created with the selected rule that connects from the selected bubble to the bubble
p which is added to the add queue.

If a primitive p was not found, a bubble is created with the selected rule and
add the connecting wire. The end bubble of the newly created wire becomes the
selected point. This allows a path to be created by a continued press of the do it
button. The uniform transaction process is then performed.

5.3.4 M-Wire

The M-Wire function is exactly the same as the wire function except that the start
point of the newly created wire is absorbed if possible as described in Section 4.2.2.
This command allows creation of a tightly stretched wire from a start bubble to an
end bubble without any intervening bubbles.

5.3.5 Delete

The delete is used to delete the selected primitive. If the selected primitive is a
member of an instance model the whole instance is deleted. If the primitive is a
bubble, the bubble and all connecting wires are deleted. For wires the whole wire
is deleted and any wire that wraps the deleted wire is allowed to collapse or rubber
band in.

We will first describe how a wire is deleted. First, the wire composed of segments
and arounds are added to the delete queue. Next, if the wire wraps any bubble each
bubble B is processed as follows. If the bubble is on the delete queue, it is skipped.
The arounds that wrap the bubble that are not deleted are processed by allowing
the around to collapse as described in Section 4.1.2. This collapsation is done to
remove the space between wires that wrap bubble B and the wire deleted wire. Also
this is necessary to preserve the invariant condition.

Next we will describe how a bubble B is deleted. First the bubble B is added
to the delete queue. Next any connecting wires are deleted as previously described.
The arounds that wrap bubble B are now collapsed as described in Section 4.1.2.

If the selected primitive is a member of an instance model all primitives of the
instance are delete as previously described. This process is easily accomplished by
tracing through the links of the instance.

The uniform transaction process is then performed to process the delete.

5.3.6 Move

The move allows the moving of the selected bubble to a new position described by
the do it point. This command is one of the more powerful functions. Any wire
in the path of the move will be pushed out. If the selected primitive is a wire, the
wire is split at the selected point as described in the wire function. The intervening
bubble becomes the selected bubble.

- 126 —

The move function is processed as follows. First the bubble move algorithm
described in Section 4.1 is used to create the add and delete queue. If the move can
not be performed the interfering bubbles are highlighted with triangles. Next a line
is drawn from the selected bubble to the desired new position. The pressing of the
mark button causes the bubble to be moved.

The selection process only allows bubbles or wires that can be split to be se-
lected.

The move function has a Boolean option called “move-sb“. When set a binary
search is done over the move vector for a successful move. If a success is found, the
function terminates as normal or errors are given for a single grid step move.

5.3.7 Absorb

The absorb will remove the selected bubble and merge the only two connecting wires
as described in Section 4.2.2. Only bubble that are absorbable are selectable.

5.3.8 Expand

The expand function will expand the cell side where the do it point intersects the
side to be expanded and the amount of expansion is the distance from the mark
point to the do it point. The expand function is described in Section 4.3.1. The
screen is then refreshed and the selected primitive is unselected.

5.3.9 Constrict

The constrict function will constrict the cell side where the do it point intersects the
side to be constricted. The amount of constriction is the distance from the mark
point to the do it point. The constrict function is described in Section 4.3.2. The
screen is then refreshed and the selected primitive is unselected.

5.3.10 Probe

The probe function display various attributes about the selected primitive when the
do it button is pressed.

5.3.11 Set Portname

The set portname function allows altering the portname by pressing the do it button
with the cursor on top of the port. A response is then requested for a new name for
the port. The port names are used to interface the outside world.

- 127 —
5.4 Extensibility

One measure of the quality of an editor is extensibility[Stallman 80]. An ex-
ample of an accepted text editor with extensive user modification capabilities is
EMACS|Stallman 80]. The curvilinear cell editor we have just presented is extend-
able by using the uniform transaction process and by creating new functions which
take advantage of the extremely powerful bubble move algorithm.

We extend the editor by creating a super move function which would move
all obstacles in the path of a move of a bubble. This function is easily created by
using a LIFO order queue or stack S{}. We initialize the stack S{} by placing the
desired move bubble into the stack. We now call the move algorithm with the top
bubble in the stack. If the move fails we push on the stack all the interfering bubbles
order by distance from the bubble just attempted to be moved. If the bubble move
is accepted we take the bubble off the top of the stack. This process is repeated
until the stack is empty. This is an example of extending the editor using the move
algorithm to create a super move function. The editor with the graphic package is
modular and very easily to modify.

One of the problems with existing physical editors is the lack of the ability to
open a hole or region to add addition logic. With the supper move we could create
a function that moves a block or region out of the desired area for editing. Another
more powerful method would be to create a cost function where any primitive in
a region would be extremely expensive. The region would be the location for the
desired new logic. The compactor is then used to open the region up.

An example of using the uniform transaction process is with a function to cut
out a rectangle and paste the result at a different location. To cut a rectangle out,
the wires that cross the rectangle are split into two wires with an intervening bubble.
The primitives on the interior of the rectangle are added to the delete queue along
with the wires to the edge. The bubbles along the edge are added to the delete
queue and copied and added to the add queue. The delete queue is then copied in
a temporary queue T{} for saving for the past. The uniform transaction process is
then called for the cut. The primitives in the queue T'{} are then translated to the
past position and the uniform transaction process is called for the past operation.
This is an example of using the uniform transaction process to extend the editor.

5.5 Conclusion

The graphic editor just described has been used by the author to enter and modify
some of the cells presented in this dissertation. The remaining cells we entered and
modified by a mathematician, A.S. Frey at Caltech. The graphic editor has been
demonstrated to several visitors at Caltech who after a few minutes of instructions
were able to create several large cells. The graphic editor is easily used, easily
taught, and extendable.

— 128 -

6

Simulated Annealing

There is a class of combinatorial problems that grow exponentially with the prob-
lem size that are called NP complete[Garey 79]. The graph based 2-D compaction
problem has been shown to be in this class. Experience has shown that simulated
annealing has been an effective method to find a near optimum solution for some
problems of this class.

6.1 Optimization by Simulated Annealing

The simulated annealing optimization method is similar to heating and slowly cool-
ing a metal. Extremely rapid cooling of a metal will not produce an ordered crys-
talline structure. For that reason, when we anneal a system it is very important that
the system is cooled very slowly to produce a tightly packed structure. The same
holds true in VLSI, that is if we want to find a global minimum we will cool the
system very slowly and in doing so will allow the system to explore configurations
that are away from a local minimum. This provides a form of backtracking and it
involves accepting configurations that are less desirable than the present configura-
tion. The equivalent of extremely rapid cooling in VLSI is the iterative improvement
optimization method where only moves that improve the configuration are accepted.
Iterative improvement methods will lead to a local minimum. It is only when the
problem has no local minima that the two methods will give the same result. This
is far from being the case in the problem under our consideration, i.e. the 2-D
compaction problem.

The simulated annealing method, developed by Kirkpatrick|[Kirkpatrick 83], is
an adaptation of the Metropolis algorithm[Metropolis 53] used extensively in the
simulation of physical systems in statistical mechanics for describing average prop-
erties of a physical system as a function of temperature. The algorithm was shown
to produce configurations with the Boltzmann’s probability distribution e~ E/kT
where FE is the system energy and k is the Boltzmann’s constant. The Metropolis

— 129 -

algorithm uses N rigid-spheres in a two-dimensional space. The simulation game
is played as follows. An initial configuration is established by placing the spheres
in any configuration. A sphere is picked at random and moved to a new position
by a small random displacement and the AFE is calculated. If the AE < 0 the
move is accepted. If AE > 0 then the moved is accepted with probability e~AE/KT
This is accomplished by comparing a random number r,[0,1] with e~ AE/*¥T If
rn < e"BE/FT then the move is accepted. Otherwise the sphere is return to its pre-
vious position. This operation is then repeated. When the system reaches thermal
equilibrium, the distribution of the population of the different energy states follows
the Boltzmann’s distribution. The Metropolis algorithm does not state how long it
takes to reach thermal equilibrium.

The translation of the Metropolis algorithm to a general optimization function
H that is to be minimized is straight forward. We will use X; to represent the

sth system configuration. The cost of a configuration X; is H(X;). The control
parameter T in the units of function H will play the role of the thermal energy kT.

The simulation at a specific temperature is as follows.

1. Pick a new state X; at random close to the current state X;.
Let AH = H(XJ) - H(X,)

2. If AH <0 then X; « X;.

3. If AH > 0 then if Ry < e H/Ti then X; « X;. Rpisa
uniformly distributed pseudo random number between [0, 1].

4. Repeat steps 1-3 until a stopping condition that estimates ther-
mal equilibrium is satisfied.

The simulated annealing method operates as follows. First the system is ran-
domized by simulating at high temperature until an equilibrium condition is ap-
proximated. The high temperature is large enough so that any further increase
would not affect the average energy very much. Next, the system is slowly cooled
by stages of decreasing temperature, T;; at each stage a simulation is performed
until the equilibrium condition is met. The sequence of temperatures and the stop-
ping condition is called an annealing schedule. The annealing schedule is critical
in the optimization process and is problem specific. Cooling too fast, skipping a
critical temperature range, not waiting long enough at each temperature stage, and
not heating high enough can cause lockup on a local minimum. On the other side,
cooling very slowly, heating too high, and waiting too long at a temperature can
require excessive computation time.

- 130 -

Cost Function

H

Configuration X,

Figure 6.1 Example Cost Function

The simulated annealing optimization method performs well on a cost function
with many local minima as shown in Figure 6.1 where no other heuristics are avail-
able. The reason is that the method allows jumping out of a local minima. Other
algorithms are better suited for convex functions.

Cost Functlon

H

Configuration X,
Figure 6.2 Poor Hypothetical Cost Function

There are cases when the likelihood of achieving a global minimum is not too
high. A specific realization of this case is shown in Figure 6.2. What is important
to notice is that the critical parameter that governs the approach to the mini-
mum is given by the width of the region monotonically approaching the minimum.
Extremely narrow minimums are very easy to miss during a finite search. The ad-
vantage of simulated annealing is that the whole configuration space does not need
to be explored. Fortunately the 2-D compaction problem is not of this type.

Kirkpatrick points out that there are four ingredients for an implementation of
the simulated annealing method which are: A concise description of the system, a
method to make random perturbations to the configurations, an objective function,
and an annealing schedule.

A requirement for an effective implementation of the simulated annealing
method is that the perturbation from state X; to state X; should be computationally
inexpensive. The change to the system should be very small and the computational
cost of the change should be proportional to the amount of change. The reason for
this is that the perturbation will be done over and over again. The calculation for
the A H should be computed only using on the changed data and not by computing
all of H(X;) - H(X;).

- 131 —

It 13 important that all the allowable states be accessible from any arbitrary
initial configuration in some sequence of moves. Also, the probability of choosing
a candidate move from state ¢ to state 7 should be equal to the probability of
choosing a candidate move from state j to state ¢. If these two conditions are
met, the Metropolis algorithm is guaranteed to the converge in equilibrium to the
Boltzmann’s distribution.

The framework described in Chapter 3 maps very closely to the simulated
annealing model. The bubbles are similar to the molecules used by Metropolis.
This is no accident. The framework was designed for the simulated annealing model.
The requirement that the perturbations be small, computationally inexpensive and
the cost proportional to the change is adhered to by the bubble move algorithm as
described in Chapter 4. The calculation of AH is a simple matter of computing the
cost of the add queue minus the cost of the delete queue. Changes to the cell are
easily accomplished by the nature of the add and delete queues.

6.2 Background

The traveling salesman is one of the first problems to which Kirkpatrick Kirkpatrick
83] applied the simulated annealing method. This problem is know to be NP com-
plete[Garey 79]. The problem is to connect a set of cities by the shortest path where
each city is visited once. The largest exact solution has been found for 318 cities.
Kirkpatrick had good solutions for cities up to 6000. Kirkpatrick points out that
most cities are clustered with sparse regions in between. He showed how the method
first optimized the interconnection of the clusters followed by the optimization of the
clusters as the system was cooled. This is an important property of the simulated
annealing method. First the global constraints are optimized followed by the local
constraints. The annealing schedule was determined empirically.

Other applications of simulated annealing include: global wiring, graph par-
titioning, number partitioning, graph coloring, PLA folding, etc. Many of these
applications were discussed at the Workshop on Statistical Physics in Engineer-
ing and Biology held at IBM Yorktown in April 1984|Kirkpatrick 84b, Johnson 84,
Mosteller 84, Suaya 84]. Johnson, in particular, compared the best know algorithm
for each problem to the method of simulated annealing. The initial temperature
for the problem was picked empirically while the cooling schedule was exponential.
Best results using simulated annealing were found using the Boltzmann distribu-
tion. Johnson concluded that simulated annealing fared well in graph partitioning
and possibly graph coloring, but not it did not fair well against heuristics on number
partition and traveling salesman problems. Simulated annealing is computer time
intensive[Johnson 84, Kirkpatrick 84a].

Simulated annealing was used for global wiring by Vecchi[Vecchi 83]. Exper-
imentation was used to compare simulated annealing to heuristic methods for the
global wiring problem. They have shown that the simulated annealing method is
an effective algorithm for global wiring.

Simulated annealing was applied to a graph embedding problem|Steele 85] that
was used to assign processes to processors on a Cosmic Cube[Seitz 85a]. Besides

- 132 —

using the Boltzmann distribution, results were presented with a Fermi Dirac type
distribution given by P{AE) = TeAIW’ this distribution discriminates against

both positive and negative AE. The convergence to equilibrium is claimed[Steele
85] to be faster than that obtained with the Boltzmann’s distribution.

i

6.3 Objectives

The objectives for the compaction process will need to be incorporated into the cost
function. Tradeoffs between goals should be easily controlled by adjusting external
parameters in the cost function. A user of the system should be able to easily
provide guiding information on the priorities of the objective function. For example
he may wish to have short wires at the expense of a larger cell area.

The first objective is to minimize the cell area. This is the normal goal in
most compactors. The priority of the cell area minimization with respect to other
objectives should be easily controlled.

In VLSI circuits the wiring plays a key role in the speed or performances of
the circuit. We would like to be able to minimize the wire length of the cell being
compacted. Various wire types in the design transmit signals at different speeds due
to the capacitance of the wire. We would like to be able to control the priorities of
wire minimization based on wire type. For example, the polysilicon wires are slower
then the metal wires in nMos. We would like the polysilicon wires to be as short as
possible at the expense of longer metal wires.

In some circuits to be compacted there are critical paths that effect the perfor-
mance of the circuit. Examples of these circuits are clock lines and timing paths.
We would like to be able to minimize the length of this type of path at the expense
of other objectives such as overall wire length and cell area.

A unique requirement of the cost function is to preserve the integrity of the
models. Our framework allows circuit devices to distort as described in Chapter
3. Model instances are allowed to bend and change shape during the compaction
process. After compaction, we would like our device to be in a valid configuration.
The objective function is used to control the model integrity.

Generally when cells are compacted the desired final shape and connector po-
sition is directed from a composition as described in Chapter 8. For example if we
have two cells that are to be composed horizontally we would like the ports to be at
similar positions and the height of the cells to be the same. Our objective function
will be able to direct the final shape of the cell and the final port position.

6.4 How We Compact by Annealing

The objective function H which will be described in the next section is a function
of the wire lengths, the model wire lengths and the bubble positions within the cell.
The wire length part of the cost function satisfies the objective off minimizing the
total wire length. The model cost satisfies the objective of preserving the model
integrity. The bubble position cost is used for the minimum area and cell shape

- 133 —

control. A conceptual way of viewing the bubble position cost is by considering the
bubbles as spheres placed in a bowl as shown in Figure 6.3 for the horizontal axis.
The positional cost of the bubble is more expensive near the perimeter of the cell and
less expensive near the center. This creates a central potential pulling the bubble to
the middle of the membrane. The desired final region for the cell is defined by the
membrane position as shown in Figure 6.3. The bubble cost at the transition of the
membrane will be discussed in the next section. The wall as shown in Figure 6.3 is
used to limit the excursion of the bubbles by not allowing the bubbles to penetrate
the wall.

,—perimeter
—Wall
membrane
@] Bubbl -+
“~Membrane TV \ 2
O
g O
Cell horizontal position

Figure 6.3 Cell Region Costs

The compaction process is divided into three annealing stages. The function of
the first stage is to randomize the cell into an initial configuration and to provide a
coarse annealing. This is achieved with a large step size (we use 8 grid units) and an
exponential cooling schedule: Ty4; = f * Ty, with f = .8. The cell is first expanded
if necessary as described in Chapter 4 to a size where the bubbles can freely move
about. The wall is set to the perimeter of the cell. The initial temperature, T},
is a value where no change in the “dominant” parameters would occur at higher
temperatures. The dominant parameter is one that would cause the probability for
a move with positive delta energy to be approximately 50%. The actual value for T}
will be defined from analysis of the cost function parameters and experimentation.
This will be described in Chapter 7.

The central potential is used to guide the bubbles into the desired shape. This
central potential is controlled by the placement of the membrane. The membrane
is generally placed at the ideal area(see Section 3.9.2). During the first and second
stage the central potential is present.

The annealing at a specific temperature T with step size s is accomplished in
passes, where each pass tries to move each bubble once. At the completion of each
pass, a check is made to see if the stopping condition has been met that would
terminate the simulation at the temperature. A pass tries N moves where N is
the number of bubbles in the candidate set, C{}, of bubbles. The candidate set is
generally all the bubbles in the cell. Exceptions could be ports that are frozen at
a specific position for interface reasons. The direction d of a move is chosen in 45°

— 134 ~-

increments, where a move length is approximately s grid units with the move end
position constrained to be on a grid position.

The follow steps are repeated N times where N = |C{}! for each

pass.

1. Pick a bubble b from C{} at random.

2. Pick a move direction d at random. Call bubble move with
bubble b and a move vector in direction d with step size s. If
there was not a success, repeat step 2 up to 4 times. After 4
tries without a success, return to step 1.

3. Calculate AH based on the add and delete queues.

If AH < 0 then update the cell with the add and delete queue.

5. If AH > 0 then choocse a pseudo random number R, between
[0,1] and if R, < e AH/T then update the cell with the add
and delete queue.

b

The purpose of the second stage is to fine tune the compaction. This is accom-
plished by decreasing the step size to a single grid unit and continuing annealing
with a temperature T; equal to the lowest temperature of the first stages divided
by the ratio of step sizes. What this accomplishes is, in first approximation, to
match smoothly Ac/T of the previous stages to the start of this stage. In addition
the constant f was chosen to be .85. The membrane position and central potential
function used for the second stage is the same as for the first.

The final annealing stage is to remove the distortions caused by the central
potential. The wall is set to the minimum bounding region after stage 2 and the
central potential is removed. The initial temperature for stage 3 is based on the
wire cost. An annealing is then performed to produce the final compacted cell.

6.5 Choice of the Cost Function

The objective function H is a sum of the costs for the wire lengths, the model wire
lengths, the bubble position and the user port control. The objective to minimize
the cell area is encapsulated in the membrane cost. The goal to minimize the total
wire length is the wire cost. The goal to preserve the soundness of the circuits is the
model wire cost. The port cost allows the final position of the ports to be controlled.
The cost function is

wa

Nw Ny Na Np
H=73 CoWn)+ Y Ci(W;)+ Crp(Br)+D_ CrmalA))+ >_ Cp(Pm). (6.1)
n=1 Jj=1 k=1 =1 m=1

The function Cy, is the cost for a wire where the index n ranges over the normal
wires. The function Cj is the cost for a model wire where the index j ranges over the
model instance wires. The function C,,; is the membrane cost for a bubble while
Cma is the membrane cost for an around. The index k ranges over the bubbles while

— 135 —

the index [ranges over the arounds. The function Cy is the port cost. The index
m ranges over the ports.

The rule for a bubble or wire as described in Section 3.3.2 has a value called
COST, C; that is the cost for a single grid unit step. All lengths will be measured
in the grid unit, Dy. This cost is used by the wires and models. This is the user
control that allows priorities between the different types of objects defined by the
rules.

6.5.1 Wire Costs

The wire cost is a linear function so that there is no difference in cost caused by
intermediate bubbles or structures on the path of a wire. The wire cost is

length(W;)

D, * cost(W;) (6.2)

Cw(W;) =

where the cost(W,) is the constant, Cj, from the rule for wire W;.

Experiments concerning the choice of the values for the rule cost are described
in Chapter 7. For now let us consider that we would like metal wires to be less costly
that polysilicon wires. Suppose we assign a value of 1 to the metal wire cost then
the polysilicon wire cost would need a value greater than 1 for the polysilicon wire
to have priority over the metal wire. If we assign a very large value to the polysilicon
wire cost say 1000 times the metal wire cost, the metal wires would have no influence
on the length of the polysilicon wires. Influence is the ability of one wire to give
bias to another wire that is felt before the stopping condition is reached. One way
to look at it is that the polysilicon wire would lock up long before the metal wire
becomes dominant. The effects of wire cost ratios will be shown with experiments
and analysis in Chapter 7.

6.5.2 Model Wire Costs

The purpose of the model cost is to insure with a reasonable probability that the
integrity of the model is preserved. The cost for the model wires needs to be greater
than the attached wires so that the model will pull together in the end. We would
like to limit the excursion of model bubbles from the model center so that the model
does not pull apart so far that it can not come back together before other wire costs
start to dominant. This implies a very large wire cost on the model wires. However
if we use a very large value for the model wires, any attached wire to the model will
have little influence on the position of the model. To accommodate these conflicting
goals, we will use a combination of a quadratic and linear term for model wire cost.
When the model wire is long the quadratic term will dominant. However when the
model wire is short the linear term will dominant. This means that when the model
wire is long or stretched out the delta cost will be very expensive. When the model
wire is short the model wire delta cost will be less expensive. This satisfies our goal
for model cost.

- 136 —

When the model wire is in the shortest length position, the cost for a single
step move from the position is equal to the cost defined in the rule for the wire.
Additional steps increase the cost based on a growth factor, G,,. The model wire

cost is R
Gm [length(W)) length(W)
C;(W;)= "2« (m_—L k| — 27 (6.3)
v 2 Dy, Dy

where G, is the model growth rate of the specific model. The growth rate is a
global parameter which is the same for all models.
The constant k controls the initial value for the cost where

L G
k = cost(W;) — (G * =2 ——ﬁ> . (6.4)
] ™ Dy 2

The length L, is the initial length of the wire in the model. This is the smallest
length for the wire that is possible due to the specific model rules. The cost is
defined in the rule for the wire.

The choice for the model wire cost will depend on the expected attached wires
to the model. The cost should be a little greater than the cost of the attached wires.

6.5.3 Membrane Cost (Central Potential)

The central potential cost provides the incentive for the bubbles to move into the
desired region called the membrane as shown in Figure 6.4. A bubble or an around
incurs a cost when its edge is outside the fence. The fence is centered inside of the
membrane. The delta cost increases as the distance from the fence increases. The
membrane position is the desired shape of the cell. We would like the dominant cost
for bubbles outside the membrane to be the central potential cost while bubbles
inside of the membrane will have the attached wire cost as dominant. If this were
not true we would have wires distorted by the influence of the central potential for
bubbles inside of the membrane. There is a separate central potential cost for the
horizontal and vertical axes. This allows for different perimeter shapes.

Cell perimeter

Fence

Membrane

Cell
Figure 6.4 Cell Membrane Bowl Cost

- 137 -

We will consider the membrane as a bowl as shown in Figure 6.5 for the horizon-
tal axis. We would like the influence of the membrane to be less than the influence of
the wires while primitives are inside of the membrane. When a primitive is outside
of the membrane we would like the membrane cost to be predominant. There is a
region of the cell where there is not a membrane cost which is inside of the fence.

/‘—Membrane——\

Cost

‘/—Fence—\
I I
Cell

Figure 6.5 Cell Membrane for Horizontal Axis

The central potential cost for a bubble is the sum of the effects of the membrane
on each side the fence. Of course two of these will usually be zero. The central
potential cost is thus

Cs(B) =M (Dstu(B),) + M(Dsty (B),) ©5)
+ M(Dst¢(B),dy) + M (Dsty(B), dy). '
The function M is the cost for an object in relation to a side where Dst; is
the directed distance from the outer most edge of the object to the left side of the
membrane. The reason we use the outer most edge of a primitive is that bubbles can
have different radii where we would like the influence of the membrane to push the
object inside of the membrane. The other three Dst functions are distances for the
right, top, and bottom edges respectively. The distance dj is the signed horizontal
distance from the membrane to the fence edge while d, is the signed vertical distance
from the membrane edge to the fence.
The proper definition for the function M will be left to the experiments in
Chapter 7. For now we will use

0 ifd < —d;
C

M(d,d,) = (m) « (dy + d)? if —d, <d<0 (6.6)
(F)+d®+ (Ci- (@) xd ifo<a.

The constant C; is the cost of a one step move outside of the membrane. The value
should be a little larger than the maximum port wire cost. This is to insure that a
connected bubble will not be pulled away from the membrane by a port wire. Inside
the membrane the cost reduces as the object gets closer to the fence. Outside of the
membrane the cost increases with a growth factor Cj.

— 138 —

A central potential cost for an around A on one side of the membrane will
only occur when a perpendicular vector pointing outward from that membrane side
intersects the around and the around is not a member of a wire going to a port on
the cell side of the membrane. The function TST(A, s) returns a 1 if the test is true;

otherwise a O for this condition.
The membrane cost for an around is the sum of the effects of the membrane

side cost where TST is 1 for the around which, i.e.

Crma(A) =TST(A, 1) « M(Dst;(A),)
+ TST(A, r) « M(Dst,(A), dy)
+ TST(A, t) * M(Dst;(A), dy)
+ TST(A,b) * M(Dsty(A), dy).

(6.7)

The cost term, C; in M may be different than that for the bubbles.

6.5.4 Port Costs

The port cost is the sum of the membrane influence and the user directed costs.
The membrane cost is used to pull the ports perpendicular to the desired membrane
region. The user port cost is used for composition considerations. The port cost is

M(P,Dsty,d,) + M(P,Dsts, D,) if P Left or Right

| M(P,Dst;,d) + M(P,Dsty, D;) if P Top or Bottom. (6.8)

Cp(P) = Up(P) +

The C; for the ports will be based on the port wire and will be discussed in

Chapter 7. The function Uy is the for user control over the ports. This allows adding
costs between ports and positions.

— 139 -

7

Experimental Results
and Analysis

This chapter describes experiments and their results obtained by applying the com-
paction method previously described. Experiments show the effect of choosing dif-
ferent cost function parameters, including wire costs and membrane costs. Different
annealing schedules are tested. The complexity of the compaction method is esti-
mated using a controlled set of experiments with a range of cell sizes. To estimate
the ability of the algorithm to compact, several cells are compacted and compared to
hand designed versions. To show that the curvilinear framework can build working
chips, several cells were fabricated and tested.

7.1 Choosing Cost Function Parameters

Experiments have been conducted to determine how the various cost parameters
interact. There are two types of wire cost functions - a quadratic for model wires
and a linear function for normal wires. The coefficients for these functions are
specified by the designer in the rule associated with each wire. There also is a
central potential cost function which pulls the various primitives toward the center
of the cell. We explore how the choice of the parameters for the central potential
and the parameters for the wire functions interact. The coming sections presents
these experiments.

7.1.1 Wire Cost Experiments and Analysis

Wires form the fundamental structural element between bubbles. To hold the col-
lection of bubbles together the wires exert a contraction force on their respective

— 140 —

end bubbles. This contraction force comes from the wire cost function which speci-
fies a pull between connected bubbles. This pull influences the final position of the
connected bubbles in a compacted cell.

Within our framework there are wires connecting model instances and wires
within a model instance. The wires connecting instances exert a contraction pull
on these instances while wires within model instances preserve the integrity of the
models. Within an instance we would like to limit the expansion of the model
instance and insure there is sufficient force within the instance that a proper shape
is present after compaction. On the other hand wires connecting model instances
need less cost and should not limit the movement of the model instance. This implies
two general classes of cost parameters where the first is for the normal wires and
the second is for the model instance internal wires.

Within the model we will limit the excursion of the member bubbles by using
a quadratic function. By controlling the parameters we can limit the excursion of
the member bubbles.

A linear cost function for the normal wires was chosen so that there would be
no bias on intermediate bubbles along the path of a wire and that two wires of
the same length, one with an intermediate bubble and one without, would have the
same cost. If this was not true, bubbles or bubble structures along the paths of
wires would be biased in some direction and would not tend toward their natural
position.

In the next section we will describe how to choose the parameters for the normal
wires followed by a section for choosing the internal model wire parameters.

7.1.1.1 Linear Cost Experiments and Analysis

What is important about the linear cost parameters is the ratio of the cost of two
wires connected to the same bubble. If we want one wire to be shorter than the
other then we would make the cost of the first wire less then the cost of the second.
The simulated annealing compaction would make the first wire shorter at the cost of
the second where the minimum of the two would be found. This is only guaranteed
to be true if we simulate until the equilibrium condition is met at each stage of
cooling. However in practice we never reach this condition. We try to measure this
condition with a stopping criteria however this is not very accurate. Also we would
like to minimize cpu time. Therefore the effect of the cost parameters should be as
quick as possible.

What we would like to know is how to set the linear cost parameters. Lets
consider that we have only two wire types and we would like the first to be shorter
than the second.

Consider Wire 1 with cost per unit length of ¢; connected to a bubble 4; and
Wire 2 also connected to bubble b; with cost per unit length of ¢z as shown in Figure
7.1. Suppose we would like Wire 2 to be short even at the expense of a longer Wire
1. Therefore ¢; should be less then ¢;. But by how much? If we make ¢; << ¢
then Wire 2 would dominate in determining the position of b; and Wire 1 would
have very little effect. If we make c; very close to ¢ then there may not be enough

- 141 —

bias for Wire 2 to be shorter than Wire 1. To answer these question we will use two
experiments.

We ask the question, if two wire costs differ by a given ratio then how much
influence will the cheaper wire cost have on the second wires structure? We will use
two bubbles, b; and b, connected by a wire with a cost ¢y and tethered by a wire to
a port with cost ¢; as shown in Figure 7.1 as Case 1. We will freeze the port at the
center position along the side as shown. Then for a range of ratios between ¢; and
cg, we anneal this configuration(using a fixed annealing schedule described below)
and measure the distance of bubble b; to the port. This experiment will show the
influence of the wire with cost ¢; on the two bubbles structure. If ¢y is very small
as compared to c3 then the structure would be positioned at a random place within
the cell after annealing. Of course the two bubbles, b; and by, will be separated by
the minimum distance because they are pulled together by Wire 2. As the system
cools the probability of accepting a move by bs away from b; decreases. Therefore
by would lock to b; at the end of annealing. For ¢; << cg, during the cooling the
probability of b; taking a move away from b9 and toward the port would decrease
at about the same rate as b3 moving away from b;. Therefore the bubbles would
be positioned at a random position in the box but next to each other at the end
of annealing. However if cost ¢; is close to ¢g the cost of b; taking a move toward
the port is small. Thus the probability of moving there is much higher than the
probability of b3 moving away from by. Therefore the structure would tend quickly
toward the port. Thus for a fixed annealing schedule, the distance from b; to the
port reflects the influence from the ratio of ¢y /c3.

In experiment using Case 1 of Figure 7.1, the cost ¢y will be fixed at 10 and
we will vary cost ¢; from 10 to 1 in increments of 1. The measure we will use is the
distance of bubble b; to the port. We will assume ¢y < c3. When ¢ is very close
or equal to cy the bubble b; will be pulled into the port. The cost ¢; will have a
high influence on ¢3. When cost ¢; << cp then there will be little influence and
bubble b; will assume a random position in the cell. This case will test for how
much influence we need.

Case 2

Figure 7.1 Wire Cost Test Set

To go along with the previous case, we need to know how close two wire costs
can be and still have an effect from the difference. Case 2 will test for too much

— 142 —

influence of ¢; on ¢3. We will add a new wire from bubble by to a port on the
opposite side of the previous port which is also frozen. When cost ¢; << ¢y then
the two bubbles will take a random position after the annealer because ¢; has no
effect. When cost ¢; is very close to ¢y, the two bubbles will take a random position
along the line between the ports. When the cost relation is proper the two bubbles
will be next to each other at a random position along the line between the ports.

If ¢y is too close to ¢y then the distance from bubble b; to by will be large. If ¢;
is too far from ¢y then the distance from b; to by will be small but the distance of
bubbles b; and b9 from the line joining the two ports could be large. The measure
we will use for Case 2 is d, the sum of the distance between bubble b; and bubble
by, and the distances of bubble b; and bubble by from the line joining the two ports.

To be able to compare various values we use a fixed cooling schedule with a
fixed number of passes. A pass is a move of each bubble once. We will use an
initial temperature where the probability is 0.5 for bubble b taking a move away
from b; in Case 1. The temperature is then decreased exponentially by .8. We
will use a fixed number of passes per temperature. The move distance is one grid
unit(0.251). Runs were made where 20, 40, 60, and 80 were the number of passes.
The number of passes per temperature was determined experimentally by using the
stopping criteria with the value of ¢; equal to 10. The reason we do not use a
variable stopping condition is that we would not want the result to be biased by
running more passes. What we are trying to see is how strongly the influence is felt
in a fixed time.

100
90
80
70
60
50

distance

30
20
10

b,

1 2 3 4 5 6 7 8 9 10
Cost ¢,

Figure 7.2 Wire Cost Influence

The results of experiments for Case 1 are shown in Figure 7.2. It can be seen
that a cost greater than 8 for ¢; will result in the maximum influence for a pass
count of 80 where the maximum influence is the smallest b; distance. The minimum
distance for b; is 14. As the pass count decreases, of course, the influence decreases
as can be seen from the plots using 60, 40 and 20 passes. A run using the stopping
criterion based on reaching near equilibrium should have the effect of the pass count
of about 80.

- 143 -

100
30 |
80]
70 |
60
50
40 |
30
20 |
o[—— ——— ———~
7.25 7.75 8.25 8.75 9.25 9.75 10
Cost ¢,
Figure 7.3 Wire Cost Influence Refined

distance

b,

60
80

A second independent set of runs was a refinement of the first for the values
between 7.25 and 10 in increments of .25 as shown in Figure 7.3. Notice that, for the
60, run a value for ¢; of above 8.25 is necessary for maximum influence. We conclude
that for a normal annealing a value greater than 8 will give sufficient influence.

100 _
90
80
70 4 20
60 | 60

50

distance d

40 _

30 40

20 - 80

10 ¥, T T T T

1 2 3 4 5 6 7 8 8 10
Cost ¢

Figure 7.4 Wire Cost Influence Refined

The results of the experiments for the Case 2 are shown in Figure 7.4. As
should be expected, for costs ¢; = c2 gives a random distance for d. The maximum
value for d is 131 when both bubbles are on the line joining the ports. For the first
value of 9 all runs give about the same minimum value where the absolute minimum
is where d = 16. Notice that for the range of values 2 < ¢; € 9, the value d only
increases very slowly if at all. The value d starts to increase after ¢; becomes less
than 2. This is where cost ¢ has relatively little effect on the bubbles b; and b,.

— 144 —

100 _
90
80 |

80

70 |

60 - 60

50 - 40

40

distance d

30 20
20 _
10

7.25 7.75 8.25 B.75 9.25 9.75 10
Cost ¢

Figure 7.5 Wire Cost Influence Refined

A refinement experiment was done for the second case, where the refinement
was for the range from 7.25 to 10 in increments of .25. What can be seen from the
refinement is that all values are very good. There is one anomaly in the case for 20
passes which probably is due to the fact that this is a random process.

From Case 1 we can concluded that the ratio of wire cost should be greater
than about .8 for sufficient influence, although this is not necessary for minimizing
wire length as shown from Case 2. The minimum value for a wire cost ratio should
be above .2 which is the lower limit where one would cost relatively mask out the
other cost. This would effect the final cell wire length minimization.

The wire costs are flexible and can be tuned by the designer of the rules file
for any need. However the minimum cost, ¢,,;,, should be greater than 20% of the
maximum cost ¢maz. If a large influence is desired then the wire costs should only
differ by .8. The wire costs we are using adhere to the minimum and are close to
the sufficient influence ratio.

7.1.1.2 Model Cost Experiments

A wire in a model has a quadratic function of the form (az? + bz) for its costs. The
coefficient a is a global parameter for all models and b is unique to the wire in the
model. The coefficient b determines the cost for a single step move at the initial
position. This parameter b includes a factor based on the cost for the wire in the
technology file. The coefficient a determines how much the cost will grow from the
initial position.

The model costs experiments are similar to the previous wire cost experiments.
We use the same two cases but with the intermediate wire replaced with a transistor
as shown in Figure 7.6. If it was not for the growth factor, we would know from the
previous wire experiments how to set the ratio of costs for sufficient influence for
a single step move. But the question is how do we set the growth factor. A value
too high may not let the model move, or a growth factor too low may not force the

— 145 —

model to return to a valid shape. Therefore the experiments are designed to test
the effects of different growth factors.

D

b1 b2 b1 b2

€

Case 1 Case 2

Figure 7.6 Wire Model Test Set

For Case 1 and Case 2 we set the attached wire cost at about 80% of the model
wire cost at its initial position. For each case we vary the growth factor. For the
model we need a larger number of passes to get an effect. The range for the number
of passes needed to reach equilibrium was determined experimentally using are usual
stopping criterion. The first experiment used a move size of one grid unit(0.25)).

100 _
90 |
80
70
60
50
40 J
30 80

20 |
,/\ 100
10- /\

140
0
0 4 '8 1216 2 24 28
Growth factor g
Figure 7.7 Model Growth Cost Influence Case 1

distance

b,

The results of the first case are shown in Figure 7.7. The growth factor is varied
from 0.1 to 2.8. We are measuring the distance of bubble b; to the port. Observe
that the growth factor does not influence the movement of the model. What is
extremely important about this is that the model can have a very high growth
factor for single step moves and still be pulled to the frozen port. This means that
under most conditions, the growth factor can be set high enough so that the models
will return to a valid shape. Having it too high does not hurt the compaction. This
is a very unexpected result.

— 146 —

100 _
90
80]
70]
60._
50
40_
30+ 80
20]

distance d

100
10 140

0
0 "4 T8 12 16T 2 2.4 2B
Growth factor g
Figure 7.8 Model Growth Cost Influence Case 2

The second case measures the effect of the model being pulled by two wires.
The results are shown in Figure 7.8. The distance d is the sum of the distances from
the bubbles b; and by to a line drawn between the two edge ports. For this case it
again appears that the growth factor has little or no effect on the movement of the
model.

100 .
90 |
80 |
70
80 |
50 |
40 |
30
20
10
0

0 "4 T8 1271672 24 2B
Growth factor g

80

distance

100

b,

140

Figure 7.9 Model Growth Cost Influence Case 1, 4 move size

The first case was repeated using a move size of four steps. Notice that in the
previous case the cost of minimum move always had the same ratio of cost to the
attached wire cost. However in the case of a four step move the cost grows with
the growth factor. The growth factor will now have an effect. Notice in Figure 7.9
that the distance b; to the port starts to vary randomly at about a growth factor
of 1.0. It is just at this point where the ratio of the cost of the wire by to the port
to the wire from b; to the center bubble of the transistor falls below the .8. As the
growth factor grows this ratio gets smaller. As seen in the linear experiments when
this ratio gets below .8 the wire to the port starts to lose its influence. What we
conclude from this is that the growth factor should be adjusted for the move size.

— 147 —

Two important results came out of these experiments. First, for single step
moves the growth factor should be very large. Second, for large moves the growth
factor should be adjusted for sufficient influence using the results of the linear ex-
periments.

7.1.2 Central Potential Parameters

The central potential provides an incentive for the bubbles to move toward the
center region of the cell. The central potential can be considered gravity in a bowl
rising steeply outside the membrane and flattening out in the center of the cell.
Bubbles are pulled toward the center of the cell. The force of the central potential
on the bubbles increases as the distance from the center increases. A rectangular
membrane is used to define the growth of the central potential. The membrane
is intended to be placed at the estimated boundary of the compacted cell. The
derivative of the central potential at the membrane is specified to determine the
growth of the central potential inside the membrane. The growth of the central
potential outside the membrane is specified independently. It is used to pull objects
into the estimated compaction region.

;_.j.-
3

SN -
AR DD
M AR5

N\ o

L & € Aoy o

Figure 7.10 Input Cell to be Compacted

To gain an idea of the effects of the central potential, we will show three versions
of a compacted cell, one without a central potential, one with an overzealous central
potential, and one with a normal central potential. Consider the uncompacted cell
shown in Figure 7.10. The cell, compacted without a central potential, is shown in
Figure 7.11. It is interesting to observe that this cell is not very compact although
the wires have been pulled to their shortest lengths.

— 148 —

S < -85 <

Figure 7.11 Compaction Without Central Potential

Now consider what happens when the membrane is in the wrong position or
central potential cost is too high. An example can be seen in Figure 7.12. In this
case, the transistors are deformed, and the wires are over stretched by the bubbles
pulled to the center. An interesting point about the overzealous membrane is that
it causes the running time to go up. This phenomenon is examined further in the
next section.

Figure 7.12 Compaction With Overzealous Central Potential

A compacted version with a normal central potential is shown in Figure 7.13.
Notice that the transistors are well formed, and the wires are not overly stretched.
A properly positioned membrane will pull the bubbles inside the membrane without
undue distortion.

— 149 —

o o (7

Figure 7.13 Normal Central Potential

In the next section we will describe how to position the membrane. The fol-
lowing section will describe the central potential function and how the parameters
are chosen.

7.1.2.1 Choosing Membrane Rectangle

The membrane is chosen by the designer of the cell or by a composition system - see
Chapter 8. The membrane perimeter is intended to enclose the region of the final
compacted cell and thus describe the final desired shape.

The guide for the size of the membrane is the ideal area, A;;, described in
Section 3.9.2. In that section we saw that there is a minimum size for each side of
the cell based on ports. For a rectangular cell this can be translated into a minimum
horizontal length, Hy,, and a minimum vertical length, V;,. The respective sides
of the membrane should be greater than or equal to these values. The total area
inside the membrane alsc should be greater than or equal to the ideal minimum
area, A;;. For our initial experiments we chose a rectangular membrane to enclose
an area equal to the ideal minimum area, A;;, always maintaining horizontal and
vertical lengths greater than or equal to the values, H,, and V,,, respectively. A
normal cell with the devices taking up most of the room, would compact to about
a ratio of 1.5 for actual area divided by ideal area. However, for a cell that has a
lot of wiring, the ratio of compacted area to ideal area can be greater than 2. An
example of this type of cell is stuff as described in Section 7.4. In this case it was
found that compaction would be improved by using a larger membrane. A better
choice for the membrane perimeter was found to be about the square root of two
larger.

There are two possible ways to adjust the membrane size. The first would
be to augment the calculation of the ideal area with some consideration for wiring
area. This could be accomplished by checking nets that go through the whole cell
and intermediate long wires. The second is to dynamically adjust the membrane
perimeter to be larger when during compaction the minimum bounding area of the
cell is larger than the membrane rectangle. Neither of these modification have been

— 150 —

implemented. Experiments presented in future section were conducted with the
membrane at the ideal area.

However we wanted to know how critical this choice of membrane size would
be on the compaction of cells. To evaluate this, we chose a medium-sized cell and
compacted it with various membrane sizes. Four experiments were run; first, with
the membrane area equal to the ideal area, second, with the membrane perimeter
multiplied by two, third, with the membrane perimeter multiplied by four, and last,
with the membrane perimeter multiplied by six. Table 7.1 shows results from these
experiments.

Membrane scale | Cpu time | Compact size | Actual/Ideal
1 6:0:8 54512 1.76
79X X 69X
2 4:49:17 | 544072 1.73
80X X 68
4 3:42:19 | 57622 1.86
86 x 6T\
6 4:40:58 |6390)2 2.07
86X x 67\

Table 7.1 Membrane Size Statistics

Observe that the cpu time for compaction decreases dramatically as the mem-
brane position is moved out. Only when the membrane is moved so far out that its
effect starts to become negligible does the run time finally increase. Also the com-
pacted size improves when the membrane is moved to twice the ideal area position.
These surprising results suggest the need for substantial further research.

The choice of the membrane size can affect the run time of the compaction.
Using a membrane that is far too restrictive will cause the compaction run time to
increase dramatically. The compaction run time will be minimal for a properly sized
membrane. The following figures show the compacted cells for cases 1,2 and 4.

)

£

1

¥

RS LEI T

|

Figure 7.14 Membrane at Ideal Area

— 151 -

e 5
HHHE ;
H . ;
SN :
. 4 ': :
£ -~
i i
e
iyinEs
[T

i

Figure 7.15 Membrane at 2 times Ideal Area

b :q;’.
.............. ‘(‘ > 83 G e
.......... 5 : =
__________ k\ g J{

Figure 7.16 Membrane at 4 times Ideal Area

7.1.2.2 Choosing Central Potential Parameters

The purpose of the central potential function is to attract the bubbles into the
membrane. We would like the pull on a bubble to diminish once it is inside of the

— 152 —

membrane. In the center region of the membrane we would like no central pull at all.
The reason for the decrease is that if the potential was large the wires connecting the
bubbles would over stretch and distort. It is conjectured that the bubbles outside the
membrane will be pulled inside the membrane faster by a stronger central potential.
Early on in the experimentation of the membrane a linear pull was used. A large
value was necessary to pull the bubbles to a compacted region. However the resulting
structures in this region were highly distorted. Thus a long re-annealing time was
necessary to remove the distortions. To correct this deficiency a quadratic central
potential function was chosen to replace the linear function.

We also consider the possibility that it might be desirable to have a region in
the middle of the cell inside of which there was no central potential. To provide
for this, we define a square called the fence. We use a quadratic function for the
central potential going out from the fence to the edge of the membrane as shown in
Figure 7.17. This function has the property that the cost decreases as the bubble
gets closer to the fence. The fence is the point where the central potential cost
flattens out. For all the experiments conducted, we have placed the fence at the
center of the membrane so that there is no region without any central potential.
At any point on the membrane perimeter, the cost for a bubble to move one step
perpendicularly outside the membrane is the same. Notice that the rate of decrease
of the cost from the membrane to the fence may be different for each axis for a
rectangular membrane.

Fence

Membrane

Figure 7.17 Membrane and Fence

There are two controls that govern the costs for the central potential. The
first control is the growth factor Cy which controls how fast the cost rises per step
outside of the membrane. Outside of the membrane we would like the cost to increase
uniformly. This is to provide a uniform pull into the membrane. The proper value
for this growth factor is still to be determined.

The second control is the cost,C;, of a one grid unit move from the membrane
edge going outside of the membrane. This cost is chosen to be a little greater than
the port wire cost, so as to pull in a device such as a contact that is connected to
an edge. For example, lets say we have a contact that connects to the top side with
a wire and to the left side with a wire. If the value of C; was less than the wire cost
that the contact would be pulled to the edge.

- 153 —

This choice for C; has been found experimentally to cause two problems. First,
the central potential cost near the membrane perimeter over shadows the wire cost
and cause distortions. Second, the over zealous central potential cost causes large
running times. The appropriate solution to this problem has not been determined
and left for future research. We would like, as we near the final stages of com-
paction, the effects of the central potential on interior bubbles to be reduced. We
conjecture that, by using higher powers for the central potential function inside of
the membrane, the goal might be satisfied.

A second conjectured solution is the following. The proper value for C; should
be equal to the minimum difference between the cost of any two wire types. Special
provision can be made to pull bubbles that are only connected to ports into the
compacted region.

7.1.3 Choice of Move Length

Before we discuss the move length we will review some properties of the bubble
move algorithm as described in Chapter 4. The move algorithm has two parts. The
first is clear path. The time for clear path increases with the number of primitives
examined. For an increase in move length the number of primitives examined grows.
The second part of the move algorithm, queue construction, is about the same
complexity for large or small moves for the following reason. For each wire to be
moved, the number of bubbles need to be examined depend of the segment length
more than on the move length. This is so because the length of the segment is a
lot longer than the amount being moved. Therefore a series of small moves is more
expensive than a large move.

The move length is the distance in grid units that the bubble will try to be
moved. When the density of the cell is sparse, a large move size is used since it
is more cost effective. We have chosen the average bubble size as the large move
size. As the cell is compacted the density goes up and a lot of potential moves are
blocked. The ratio of unblocked move calls to total calls decreases rapidly as the
density increases - see Section 7.3. At this time it is more cost effective to use a
smaller move size which is a grid step(approximately 0.251).

We conjecture that a dynamic move size based on the distance outside the
membrane would give an optimum move length. For bubbles far outside of the
membrane where the cell is less dense we would use a large move length. For
bubbles inside the membrane we would use a small move length where the cell is
denser. This conjecture is subject to further research.

7.1.4 Choice of Move Directions
We have chosen to consider eight possible move directions as shown Figure 7.18.

For a single step move all possible adjacent grid locations can be probe. For larger
move lengths not all possible neighbors would be explored.

Figure 7.18 Move Directions

When a bubble and a move direction are picked by the annealer there are two
possibilities: the move is blocked or the move is unblocked. If the move is blocked
the annealer may choose either a new bubble and direction or the same bubble in a
new direction. When the cell is in the initial configuration and not very dense, the
two methods produce about the same results. However consider what happens when
the cell becomes dense as it becomes more compact. Lets say 25% of the potential
moves are blocked and blocked moves are spread uniformly among the bubbles.
For the first method, we would find that the probability of the second move being
blocked would be the same as before, i.e., 25%. However for the second method the
probability of the second choice being blocked would be substantially smaller. Of
course if blocked direction were highly clustered on a few bubbles the first strategy
would be superior. Several experiments were conducted and we concluded that four
move directions should be tried for each bubble chosen until an unblocked move
direction is found. If after four directions have been tried at random, no unblocked
direction has been found, another bubble is then chosen at random.

7.2 Choosing the Annealing Schedule

Choosing the annealing schedule involves choosing the initial temperature, the rate
at which the temperature is decreased, and the criteria for stopping the annealing
process at any temperature. The compaction of a cell is accomplished in three
annealing stages where the temperature ranges for each stage overlaps. The first
two stages use the central potential while the final stage does not. The first stage,
akin to a wood carver roughing out the initial shape for a piece, does the global
type optimization. The wood carver uses large gouges at this time where we use a
large move size. The second stage uses the small move size since after the first stage
the cell is fairly compact. This stage is used to form the structures inside of the
membrane and move most bubbles inside of the membrane. The final stage without
the central potential is to reduce the fringe effects at or outside of the membrane and
form the final compacted cell. The final stage uses the wall placed at the minimum
bounding rectangle to prevent any bubbles from increasing the size of the cell.

— 155 -
7.2.1 Stopping Criteria

An ideal stopping condition would determine when the system is in equilibrium.
However this condition is extremely difficult to determine and requires a large num-
ber moves which imply a long running time. We have found by experimentation
that a heuristic may be used to get reasonable results. We average the delta energy
over the last n passes where a pass is a move try of each bubble once. By using the
average over passes we account for cells with a different number of bubbles. When
this average makes a zero crossing we stop. This produces reasonable results.

The value 8 was found by experimentation to be a reasonable choice for n. We
have tried using value of 16 and greater for the average. What happens is that the
cell becomes just as compact as with n equal to eight, but with a slightly longer
running time for the initialization period. Therefore we have settled on a value of
8.

We have tried other methods with less success that the mentioned test. One
method we tried was to average the counts of the good moves versus bad moves.
We were able to use this criteria however it took a longer time to converge. Another
attractive method was to guess. We assigned a fixed running time to each temper-
ature. This seemed to work quite well. We also used a fixed number of passes at
each temperature. This also worked well.

It is clear that further research remains to be done. However, it seems equally
clear that the time to get reasonably good compaction is not very sensitive to choice
of stopping criteria.

7.2.2 Temperatures and Cooling Schedule

The temperatures are the values which determine the probability distribution of the
configuration space. The first stage of compaction starts with the highest temper-
ature which allows the configuration space to be explored. This value is a function
of the maximum wire cost and the central potential cost. During the first stage,
we allow the system to cool to point where the wire costs start to take effect. The
starting temperature for the second stage should be chosen so that with the reduced
move size the same portion of the configuration space is explored. The second stage
18 cooled until a point where the wire costs are not longer dominate. The last stage
is to remove the distortion of the membrane. The initial temperature for this stage
is only a function of the most expensive wire cost.

The next section will define how the initial temperature is chosen, followed by
how the temperatures are varied during cooling.

7.2.2.1 Choosing Initial Temperature
The initial temperature, T}, should be high enough to allow the configuration space

to be easily explored. But how big an area is needed for this explorations? We saw
in Section 7.1.2 that the area for a compacted cell was seldom much more than twice

— 156 —

the computed ideal area. We have found that choosing the initial cell area to be 4
to 8 times the ideal area provide ample exploration space. This allows the global
constraints to be explored. The initial temperature is

;Vmax Cmem
T, = .
= @) T Thn(p) (7.1)

where Wy,q, is the maximum wire cost, Cyrep is the cost of a one step move for
a bubble when the bubble is at the cell boundary, 1.e., 2 to 3 times as far from
the center of the cell as the ideal area boundary. The probability P should be
approximately .5. A higher value for p does not hurt compaction but only requires
more time for cooling.

7.2.2.2 Choosing Cooling Function

The cooling schedule we use is the function that has been used by Kirk-
patrick[Kirkpatrick 83] on other problems with very good success. He used the

exponential cooling function,
Tn=f"«T; (7.2)

where T, is the temperature for pass n and 7} is the initial temperature. The value
f is less than one and controls the rate of cooling.

We have have followed the lead of other researchers in choosing a value for f
in the range .8 < f < .9. We have found that if we cool too fast we get a poor
compaction.

7.3 Complexity

We would like to know how the run time for this method of compaction grows with
cell size. The importance of run time complexity is that it can limit the size of
cells we can compact in a reasonable time. The effective cell size is measured by
the number of bubbles in the cell. The question is how does the run time of the
algorithm grow with the number of bubbles in a cell?

Before trying to answer this question we must point out some inherent limi-
tations of this examination. First, the complexity of 2-dimensional compaction of
VLSI layouts has been shown to be an NP—complete problem(Sastry 82]. For this
reason, a worst case analysis would not be fruitful. The algorithm we are using is
probabilistic. It is therefore natural to examine the expected complexity for the
most probable cells. This probabilistic method has been shown to find the global
minimum when equilibrium is reached at each temperature. To reach equilibrium
can require an infinite amount of time. Since we only approximate equilibrium we
can only hope to find an approximation to the global minimum configuration.

We examine the makeup of an annealing compaction. The process is divided
into three stages. The first stage is where the global optimization is accomplished
with large moves. The second stage is the refinement with small moves to form the

- 157 —

final shape inside the membrane. The final stage is to reduce the distortion due to
the central potential. The number of stages is independent of the number of bubbles
and is the same for all cells.

At each stage we have a fixed set of temperatures where we simulate at each
temperature. Within a temperature we proceed in passes until an equilibrium con-
dition is reached. A pass is a try of a move of each bubble once. The sequence of
temperatures is independent of the number of bubbles and the same for all cells.
The number of passes depends on reaching equilibrium and depends on the con-
figuration of the cell. We do not know how the number of passes grows with the
number of bubbles. We will leave the number of passes for the moment. A passis a
bubble move try of each bubble once so this grows with the number of bubbles N.
Therefore we know we have at least a factor of N in the run time per pass.

When a bubble is chosen the algorithm attempts to construct a bubble move
in a random direction. If the move is blocked, up to three more attempts are tried
before the next bubble is chosen. The more blocks there are in a cell the more time
is wasted. The question is, does the blocking of bubbles grow with the number of
bubbles in a cell? This reaily depends on the density of the cell in the area around
the bubble. We will investigate how this varies with cell size.

Now examine the bubble move as described in Chapter 4. The bubble move
is divided into two processes. The first is clear path and the second is queue con-
struction. The dominant time for clear path is the search time and the time to
examine the objects found. Every time a wire is found in the path another search
is needed. Thus the clear path time is order O(log{A) * n) where A is the area of
the initial cell and n is the average number of wires in the move path plus one. The
number of primitives in the move path depends on density. Since the move size is
small, n should be close to one until the cell is very compact. The dominant time
of queue construction is the search time and the time for the triangle processes for
each wire in the move path. Each triangle process requires a search. Again this
time is O(log(A) * m) where m is the average number of wires to be moved given
that the clear path has been satisfied. The number m should be close to two (since
most bubbles have two attached wires) unless the cell is wire dominated or the cell
is very compact. If density grows with the number of bubbles in a cell then n and
m may also grow. However density is a local function that is bounded.

If the number of passes required to reach equilibrium is independent of N then
the complexity of the annealing algorithm appears to be N(log(A)) f(d) where f(d)
is a bounded function of average density. The cost of a bubble move call depends
on the density of the cell. The denser the cell the more time per bubble move call.
If the number of passes also grows with N then there may be an additional factor.
In the next section we will run a set of experiments to determine if these estimate
are correct.

7.3.1 Experiments

To evaluate our assumptions about how the complexity grows with the number of
bubbles, we will run a set of timing tests with the composition of identical cells.

— 158 —

The base cell is the multiplexier cell from previous examples that is shown again in
Figure 7.19. To form a series of cells, we will compose this cell with itself. This is
easily accomplished with the binary composition described in the next chapter. We
chose this method to form the series of cells with different bubble counts so that
hopefully the topology of the cells would be uniform across the test set. This is to
eliminate any bias from the topology.

'::,mu()ji?i

RS IR

b % £
7 T

Figure 7.19 Base Cell for Timing Tests

The schematic picture of the five test cells is shown in Figure 7.20. The base
cell has 60 bubbles. When two of the base cells are composed to form cell 2 the
number of bubbles is not twice the bubbles in test cell 1. The reason for this is that
the bubbles that are along the seam of composition are absorbs which reduces the
total bubble count.

[] 1-60 I o I O

6—300

1] 2-110

Y VR s e
By OO0 248

Figure 7.20 Cells For Experiment

The compaction that is used for the test set is the three stage annealing algo-
rithm. Each cell uses the same annealing schedule. The membrane for each cell is
set at the computed ideal minimum bounding rectangle.

Table 7.2 shows the compacted size and ratio of actual compacted size to com-
puted ideal area. Appendix C contains figures showing each cell at the end of each
stage. Notice that the ratio of actual to ideal area first starts out low and then
increases for the second cell and then slowly decreases. We conjecture that this is

— 159 —

because the single cell was optimized for the topology while the composition of the
cells were arbitrarily composed. However, as the cell gets bigger, the pieces can use
the seam area and the ratio decreases.

Cell | Bubbles | Compact size | Membrane Size | Actual/Ideal

T1 |60 113122 9282 1.34
39\ x 29\ 32X x 29)

T2 |110 30032 159512 1.88
TTA x 39A 55A x 29\

T4 |204 545122 302412 1.76
79X x 69X 56X x 54

T6 |300 85402 51522 1.66
122X x 70X | 92X x 56

T9 |438 1227222 77282 1.60
118X x 104X |92 x 841

Table 7.2 Timing Test Cells Statistics

The running time for the test cells is shown in Figure 7.21 with processor time
in hours plotted versus bubble count. The run time for each cell is shown by a x.
The continuous line is an N log(A) plot normalized to the run time of the 300 bubble
cell. The run time appears to grow a little faster than N log(A4). Several conjectures
we posed in the previous section might explain this growth. We will examine this
1ssue further in a moment.

But first, we would like to consider a different question. Does the compaction
time depend on topology? Some very different cells were compacted using the same
annealing schedule and with their membrane coinciding with there idea area. These
not only have different topology, but also include many different model structures.
The run time for each is shown with a triangle above the corresponding bubble
count. Notice that they follow the timing test ceils. This means that running time
is probably not affected by topology.

— 160 —
30 _

438

X
5] A~ 204

Time cpu hours

YA 110
0 100 ' 200 ' 300 @ 400 ' 500
Bubble Count

Figure 7.21 Run Time versus Bubble Count

We now return to the test set experiments. The first question that was asked
in the previous section was, do the number of passes require to reach equilibrium
depend of cell size? The number of passes for the first stage versus temperature
is shown in Figure 7.22. The temperature scale has been normalized so that the
highest temperature is one.

- 161 —

240 _
300

438

220 |
200 |
180 |
160 |
140 204

120
110
100 |

80 _

60 | 60

Number of passes

40
20

0 Ty T TT T T[T T [T T T [TTTTTTI[TTT]
.0106 .0202 .0388 .0743 .1422 .2725 .5220 1

Temperature

Figure 7.22 Sequence Count versus Temperature - stage 1

The number of passes grows with cell size for the first temperature as shown. A
probable reason for this increase is that even at the initial temperature all the bub-
bles are pulled substantially toward the middle of the cell by the central potential.
The time it takes to reach equilibrium will be proportional to the distance that the
bubbles have to move from the initial configuration. This number distance should
be expected to be proportional to the square root of the number of bubbles for cells
with the same shape. Hence a larger number of passes is required. The number of
passes versus bubble count is shown in Figure 7.23. The cells with 60 bubbles, 204
bubbles, and 438 bubbles have the same shape. Their growth approximately follows
this pattern. The cells with 110 bubbles, and 300 bubbles are elongated and would
be expected therefore to require more passes. The fact that the 300 bubble cell
requires more passes than the 438 is an anomaly for which we have no explanation.

- 162 —

n 240 _
L 220 |
8 200 |
Q180
w— 160 |
© 140]
o 120 |
2100 _
80 _
60 |
40
20
0

£
)
z

0 100 200 ' 300 ' 400 ' 500
Bubble Count

Figure 7.23 First stage, First Sequence Count versus Bubbles

The number of passes for the second stage versus temperature is shown in
Figure 7.24. Again the first temperature has a high pass count. This stage has the
move size set to 1 grid square. Again since the distance for bubbles to travel is
longer, the first pass has a higher count for larger cells.

240 _
7]
b 220
7]
O 180 _ 438
Q.
160 |
Y
o 140
120 |
QL) 110
100 | 204
o]
E 80 |
3 60 60
Z 40 _
20 |
0 III!IIIIYT!!\!Iil(l‘l!l[llf}
.0106 .0202 .0388 .0743 .1422 .2725 .5220 1

Temperature

Figure 7.24 Sequence Count versus Temperature - stage 2

— 163 —

The number of passes for the third stage versus temperature is shown in Figure
7.25. This stage has the membrane removed and the wall set to the minimum
bounding rectangle. Again the first temperature has a high pass count. Notice that
there is a rise in the pass count for the cells at around a temperature of 0.0743. This
is probably where there is a transition from one wire cost dominating to a different
wire cost dominating.

240 _
0)220 _
(60
mZOO -
N 180
O

0 160 |
G« 140 _

438
O12() _
‘- 100 _

8 300

e 80 - 204
60]

5 110
= 40 |
20 _|

60
olll]llllillll!l{!ll'll[lilt
.0106 .0202 .0388 .0743 .1422 .2725 .5220 1
Temperature

Figure 7.25 Sequence Count versus Temperature - stage 3

Since we now know the first pass is affected by cell size we will plot cpu time
with the first pass of each stage removed as shown in Figure 7.26. This is closer to
N log(A). However we still need to examine the difference.

— 164 —

30 _

N
w
1

N
Q
i

X 438

)]
1

Time cpu hours
o
i

w
)

0

0O 100 ' 200 ' 300 ' 400 ' 500
Bubble Count

Figure 7.26 Modified Run Time versus Bubble Count

We observed in our earlier complexity discussion that run time could be affected
by time wasted on attempted moves in a blocked direction. This was observed to
depend on the density of the cell. We now turn to an examination of this phe-
nomenon. Figure 7.27 shows the ratio of unblocked move calls to total move calls
as a function of temperature for stage 1.

— 165 —

100 _
S0 _|
O
0] 60
¢ B804
3 110
o 70 - 204
L s0 | 300
C 438
S5 50
ol
C 40 -
(o)}
o 30 -
| -
o 20 |
0.
10 _
0 lll!l!l]}llll!llll|{lllll]l‘{
.0106 .0202 .0388 .0743 .1422 .2725 .5220 1

Temperature
Figure 7.27 Unblocked Calls/Total Calls versus Temperature - stage 1

100 _

80
o 80
® 60
¢ 70 4 110
0 204
O %0 - 300
0 so . 438
C
S 40
o
- 30 |
o
O 20
-
O 10 _
a.

0 lli[l!l[lll![ll!!ll{lllIlll[
.0106 .0202 .0388 .0743 .1422 .2725 .5220 1
Temperature

Figure 7.28 Unblocked Calls/Total Calls versus Temperature - stage 2

Figure 7.28 and Figure 7.29 show this ratio for stages 2 and 3 respectively.

— 166 —

100 _
80
°
¢ 80 |
O
_9 70
0 60 _
c 110
3 50 _ 204
- 298
40 _
S 60
O 30
| -
1) 20 _
a
10 |
O lll|ll!i!ll!l!!lili]l!l!llrl
.0106 .020Z .0388 .0743 .1422 .2725 .5220 1
Temperature

Figure 7.29 Unblocked Calls/Total Calls versus Temperature - stage 3

Observe that the percentage of unblocked calls monotonically decreases as the
number of bubbles increases throughout the temperature ranges for stages 1 and 2.
For stage 3 the same observation holds except that the base cell takes longer to find
its place.

This is a strong indication that for these tests the average density increased
as the number of bubbles increased, i.e., with cell size. At first we were surprised
by this. But then we understood that this was caused by the increased distance of
the membrane inside the final compacted cell area. The central potential outside
the membrane was designed to grow much faster than inside in order to pull in the
remote bubbles. It was clear that this added pressure was causing the cell to become
more dense for larger cell sizes.

The same phenomenon is reflected in the plot of average move call time shown
in Figure 7.30 for stage 1. The average move call time increased monotonically with
cell size. The spike found on the plot of run time for the 438 bubble cell is an
anomal,y probably caused by garbage collection.

- 167 —

125
120
110
100

[« o]
o O

438

300
204

60

Time in msec
8 88 3 3

(<]
(=]
| [ONS E O J UO (Y O T U T S O S T O O OO0 Y |

-t
(=]

o

LONLJL I ANLINL L L O O O
.0106 .0202 .0388 .0743 .1422 .2725 .5220 1

Temperature
Figure 7.30 Average Move Call versus Temperature - stage 1

125 _
120 |
110 |
¢ 100]
a) .
B 907
C 80]
70] M438
L 60 - 300
20 MZM
“E’ 40 110
—— : /\———\/\/—"\h\so
= 397
20
10
O IIl!l]!{l!![7|ll!!llllll“fl
.0106 .0202 .0388 .0743 .1422 .2725 .5220 1
Temperature

Figure 7.31 Average Move Call versus Temperature - stage 2

Figure 7.32 and Figure 7.31 show average move call time for stage 2 and 3
respectively.

— 168 —

125
120
110
100

. 1]
Time in msec
N W (7.
B 88838333838
| e e |

—
o

o

LIRS O O O B O O
.0106 .0202 .0388 .0743 .1422 .2725 .5220 1

Temperature

Figure 7.32 Average Move Call versus Temperature - stage 3

Again the effects of increase density are clearly seen.

7.3.2 Summary

It is clear from both the experiments on membrane position and complexity that
the central potential is the most critical parameter affecting the run time of this
algorithm. It is expected that further research will produce a method for controlling
the central potential that will provide outstanding compaction while limiting the
growth of run time complexity to order O(N log(A)).

7.3.3 Run Time Enhancements

We conjecture that the run time can be improved by using two techniques. The
first method is to vary the move length based on distance from the membrane.
From previous sections we know that as the density increases the bubble move time
increases. During the compaction process the density decreases from the inside of
the membrane to the outer parts of the cells. We can take advantage of this property
by using large moves outside of the membrane and small moves inside. Using this
method we could combine stages 1 and 2 into a single stage. This would remove one
heating cycle. It is expected that this will reduce the overall cpu time.

The second method is to make the choice of which bubble to pick next in the
simulation process based on the activity of the bubbles. The activity of a bubble is
the average delta cost this bubble has during simulation. We then could keep the

— 169 —

bubbles in an order list with the highest activity bubbles first. The random choice
function could then be biased to pick bubbles in the list with larger activity. Thus
active bubbles would be picked more often while inactive bubbles would be picked
less often. It is expected that this will reduce the cpu time.

7.4 Cell Experiments

The cells for the experiment were chosen for their diversity. The first two cells
are hand designed curvilinear cells. These two cells were designed by Don Speck
at Caltech. A lot of time was spent on optimizing the topology and the size of
the cells. The second cell is a composition of the first cell with other cells. The
next four cells were taken from the quanternary multiplier chip[Frey 83] that were
compacted using the Rest[Mosteller 81] system with human directed compaction.
An average of a weeks worth of time was spent compacting each cell. These cells
use orthogonal geometry. The first couple of cells use models with a small number
of bubbles while the later cells use models with a large number of bubbles. The
results of the experiment are shown in Table 7.3.

Cell Bubbles | Hand Size Compacted Size | Actual/Ideal

Muxl {60 13762 121672 1.34
43\ x 32X 38X x 32

Mux4 | 200 58932 53962 1.63
83X x 71X 76\ x T1A

C2 119 5891 47602 1.68
137X x 43\ 40X x 1197

Cg 174 5447.75A2 434072 2.09
141.5X x 38.5) | 35X x 124\

Bil 307 14490)2 12093.75)2 1.88
140\ x 103.51 |93.75) x 129

Stuff |302 16880\2 140002 2.26
105.5) x 160X | 100X x 140\

Table 7.3 Compacted Cells Statistics

Notice that in all cases the automatically compacted cells are smaller. Observe
that the cells mux1, mux4, and c2 have a low actual area to ideal area ratio. This
implies that these cells are mostly devices. The cells cg, bil, and stuff have a larger
ratio which implies more cell wiring. The initial version, and hand versus automatic
compaction figure are shown next.

An important point to notice about the cell figures is that the cells could be
compacted smaller if some topological changes were achieved.

Figure 7.34 Mux1 - Annealed Compacted Compared to Hand Compacted

Figure 7.35 Initial Mux4

A4

Figure 7.36 Mux4 Annealed Compacted Compared to Hand Compacted

c:::ﬁ %\ b

Figure 7.37 Initial C2

Figure 7.38 C2 Annealed Compacted Compared to Hand Compacted

Figure 7.39 Initial Cg

Figure 7.40 Cg Annealed Compacted Compared to Hand Compacted

G0N 3 KRR EASECEXYEITION 3 SAARE 5. ONMBAAANY / 4 AW Y7 A% R
f X

Figure 7.41 Initial Bil

Q4 onnonns H00% S X 00 1000 Y00 CONOIVITYYS £ 200t 0¥ XVenonn 1 o ¢
B L RRENS A B g 1

Figure 7.42 Bil Annealed Compacted Compared to Hand

Compacted

- 179 -

U

A=

OO0 55 00 W
§4

H 1 .
g5 1

££62 €% 0000 € 0K 1 O ¢ AR

\ 4

Figure 7.43 Initial Stuff

— 180 —

Figure 7.44 Stuff - Annealed Compacted Compared to Hand Compacted

7.5 Fabrication Experiment

A chip was fabricated to test techniques described in this thesis. The goal of the
experiment was to show that a design using the models of this framework in curvi-
linear compacted cells could be built and would perform as designed. A one-bit
adder was designed using combinatorial logic with no pass gates. The reason for
using such a simple cell was to minimize the chance of error. The logic diagram is
shown in Figure 7.45.

— 181 —

Cout

out
b

c

Figure 7.45 One-Bit Adder Logic diagram

Three cells were fabricated on one chip. The initial version of the one-bit adder
is shown in Figure 7.46. The first two were two versions of the one-bit adder,
compacted. The third was four one-bit adders stacked and compacted. The four-bit
compacted cell was smaller than four times a single bit cell.

The cells were assembled using the “Fusion” [Ayres 85] process from Mosis|Mosis
84]. The chip used a 4 micron nMOS process which is very conservative. The design
of the cells and assembly took about two days.

= & =

Figure 7.46 Uncompacted One-Bit Adder

¢

T

Figure 7.48 Compacted Second One-Bit Adder

Figure 7.49 Compacted Four Bit Adder

- 184 —

8

Cell Composition

Composition is the assembly of cells as directed from the floor plan to form an
integrated circuit. Composition has generally been a tedious manual task. There
are automatic checking aids to insure a composition correct design. There have been
some past composition tools that do automatic composition at the expense of chip
area. In this chapter we will introduce a binary composition operator that assembles
two cells with minimal area increase and correctness with respect to geometric design
rules and connectivity requirements. This operator can then be used to assemble the
chip. The lowest level cells, called leaf cells, are combined by the binary operator
to form composition cells which are further combined to form a complete chip.

In past compaction systems ! leaf cells are compacted generally without regard
to composition. We will show how to direct the compaction of leaf cells from the
floor plan that allows an optimal composition of the VLSI chips. Further reduction
of area can be achieved with the method of ultra compaction to remove the seam
area of composition.

8.1 Specifying a Floor Plan

A floor plan is a structured hierarchical description of the cell tiling for a VLSI
chip. The structured design methodology, as described in Section 2.1, with the
restricted hierarchy, supports good floor planning techniques. With this restricted
hierarchy, there are two types of cells: leaf cells contain the geometric representation,
and composition cells define the interface between cells. With this method, cells
are connected by abutment where there is a one-to-one mapping of the connectors
along the interface. The composition strategy insures that connectors align and no
geometric design rules are violated.

The first step in the design of a VLSI chip is to establish the major functional
blocks which in turn are translated to an initial floor plan of major blocks. At this

1 See Chapter 2.

— 185 —

time the wiring strategy is defined. Each block is then refined into its sub-blocks
until the leaf cell level is reached. Refinement continues until a desired floor plan is
achieved. This floor plan defines the composition for the VLSI chip. After the floor
plan is completed, the leaf cells are designed.

We will define the floor plan with a composition language as in Rcomp[Mosteller
82] which has a binary composition operator. A floor plan described with this
language has a binary tree representation for the composition as shown in Figure
8.1 for a sample composition of cells A, B, and D. A composition specification for

the example would be
(B/(A:A):D

where : represents horizontal composition and / represents vertical composition.
The language has the ability to rotate cells or composition of cells. The language
also has a special operator for omitting ports to allow a generic cell to be used at
various places.

\D
\ <)
B
A }\ A A

Figure 8.1 Sample Floor Plan and Composition Tree

The advantage of specifying a floor plan with a composition language is that
1t is easy to specify, easily updated and representation independent. A large VLSI
integrated circuit chip can easily be specified with only a few pages of code or possible
one. This code can easily be updated with a text editor. No change is required to
the composition specification for cell wiring changes provided the cell tiling has
not changed. Since the composition specification is representation independent, the
composition may be used by other tools such as functional simulators provided the
leaf cell representation needed for the tool has been defined.

As we have shown the cells are limited to rectangles. This restriction may be
eliminated by modifying the language to compose sides which could be used for the
polygonal cell described in Section 3.9.

8.2 A Binary Composition Operator

A binary composition joins two cells along cell boundaries to produce a cell where
electrical connectivity between boundary ports is insured and no geometric design
rule errors are introduced. This method of binary composition joins two cells with

— 186 —

the minimum possible separation distance without generating any design rule viola-
tions. A requirement for the sides to be joined is that there is a one-to-one mapping
of ports with proper type. The port type is the type of signal on the port where
an example would be “VDD” for a power type. The ports do not need to physi-
cally line up. The composition operator pitch matches the two cells to be joined,
aligns the ports, and adjusts cell sizes so no geometric design rule would be violated
upon composition. The two cells can then be placed in juxtaposition on the cell
boundaries where the ports on the joining side will be on top of each other to insure
electrical connectivity. Recall from the definition of a cell in Section 3.9 that the
port centers are coincident with the cell side.

Consider the two cells in Figure 8.2 that are to be composed horizontally. The
first step is to pitch match the cells if they are not already pitched matched. The
pitch matching is achieved, first by centering as close as possible the centroid of the
ports of the smaller cell side with the centroid of the ports of the larger cell side
without going over the size of the the larger cell. The smaller cell sides are than
expanded as described in Section 4.3.1 to the size of the larger cell. The result being
the two cells are pitched matched. Notice in the example that the pitch matching
is not necessary.

\,

% ', / ‘s ’~
A e
y !’3@55 CR
P Wl

Figure 8.2 Cells to be Composed

The next step is to align the ports along the cell edges to be composed. Port
alignment is accomplished by first expanding the cells on the corresponding sides by
an amount that allows the ports to be moved. This amount can be calculated from
the number of ports. The ports are then alignec by the move algorithm described
in Chapter 4 and annealed for minimum cost. This allows the wiring for the cells to
be internal to the cells, if possible. Next the cell composition sides are constricted
to the minimum bounding rectangle as described in Section 4.3.2. This constriction
can be seen in the example of Figure 8.3.

=
)

ol

SN
'Qp:';)g!% @&
RS

;f,%{

Figure 8.3 Port Aligned Cells

The next step is to determine the minimum distance, Dy, needed between the
cell boundaries to avoid all geometric design rule errors upon composition. The
minimum distance, Dy, is calculated by a design rule check among the boundary
primitives in each cell. A boundary primitive is one that is closer to the cell side
to be composed than the maximum of the minimum separation distances for the
primitives.

First an equivalence mapping is constructed for the related numbers? between
corresponding ports. This mapping can be considered as a set of ordered pairs of
equivalent related numbers. We will use a modified related function which uses
this mapping to determine if two primitives are related. Next a geometric design
rule check is done between the boundary primitives of the cell where the minimum
distance, D of the two cells is calculated. D) is the maximum of all the checked
primitives orthogonal minimum separation distance, M,, minus the orthogonal dis-
tance to the cell edges. M, is the minimum orthogonal separation distance for the
two primitives along the axis being composed. The primitive positions are trans-
formed for the purposes of the check to a point where the cell edges are coincident.
Due to the nature of the primitives all combinations are not necessary.

Only the primitives that are within the maximum separation distance from the
joining cells edges need to be checked. By constructing a search tree as described
in Section 4.4 with only these primitives the search time is order O(log(a)) where
a is the area defined by the cell edge and the maximum separation distance. The
construction of the search tree is order O(log(A)) where A is the initialized cell area.
This check is easily performed and quite fast due to the limited search.

The final step is to expand each cell if necessary by half of the calculated
minimum separation distance. The result of the binary composition is shown in
Figure 8.4.

2 Related numbers are described in Section 3.6.

— 188 —

Figure 8.4 Composed cells

The cells may now be joined at their corresponding edges to form a new cell
without any geometric design rule errors and connectivity between joined cell ports
insured. Alternately an abstraction cell of the two cells can be constructed with
the proper related equivalence number functions. This decision is a matter of the
implementation method.

It is important to realize the advantage of this method. First, the cells are
joined with the minimum possible separation distance without violating any geo-
metric design rule error. Past systems, as described in Chapter 2, did not do this
automatically. This composition could only be done manually with careful scrutiny.
Second, the ports are aligned with minimum wire cost without stretching the cells.
Previous methods stretched the cells to align the ports, which increased the overall
resulting area and possibly destroyed the integrity of the circuit. This stretching
could drastically increase the final chip area. The final result is a cell that is ge-
ometrically design rule correct, properly connected, and minimum composed area.
This area could further be reduced by the method in Section 8.5.

8.3 Composition Compaction Controls

A compaction algorithm is quite limited unless the final shape of a cell can be
directed and also the final position of the ports within the cell. This control is
used by the composition process. Our compaction algorithm allows the setting of
the membrane position which governs the final shape of the cell and allows various
controls over the port positions.

There are three methods to control the port position where they may be com-
bined on a single port basis. The first is that of “locking” the ports at the desired
position. This locking is accomplished by using the bubble move algorithm to po-
sition the ports and marking them as “frozen”. Frozen ports are not allowed to be
moved by the annealer. During the compaction process the body of the cell would
conform to the port position. The second method is to use a linear cost from the
port to the desired position or to another port. The annealer will try to minimize

- 189 —

this cost. The final control is the ability to lock two ports together so they move as
a unit. The compactor would treat the two ports as one. This port coupling is used
for cells that are going to be replicated together.

The shape of the cell is controlled by the shape of the membrane where the
membrane is the desired final region for the cell. The annealer will try to compact
the cell to the membrane region. The minimum area the which membrane may be
set to is the ideal area, Ay, as described in Section 3.9.2. The minimum length
for the vertical side of the membrane is V,, which is the minimum vertical side
distance based on the vertical ports. The minimum length for the horizontal side of
the membrane is H,, which is the minimum horizontal side distance based on the
horizontal ports. Within these limits, the membrane may be set by the user. An
automatic choice can be done by the compactor for a cell which will be based on the
ideal area. In the next section you will see how this choice is accomplished based
on the floor plan.

The degree of flexibility of the membrane can be seen in Figure 8.5. The cell
was compacted for a long flat cell on the left while the same membrane was rotated
90° for the cell on the right. Due to the constraints of internal circuitry the cell
could not be tight for the tall and narrow case. However both of these cases had a
minimum bounding area of approximately 1.4 times the ideal area.

Figure 8.5 Sample Membrane Control

- 190 —
8.4 Composition Directed Cell Compaction

In this section we will show how the cells of VLSI chips are compacted as directed
from the floor plan. In past composition and compaction systems, as discussed in
Chapter 2, the cell compactions were not directed from the floor plan. To gain an
optimum VLSI chip the cells must be compacted to be in harmony with each other.
This compaction is accomplished by a top down directed compaction of the cells
from the floor plan.

Assuming the floor plan has been specified and the cells have been designed the
first step is to determine the ideal area, A;;, the minimum vertical length, V,, and
the minimum horizontal length, Hy,, for the top level cell of the floor plan. The
user now specifies the desired membrane for the top level cell within these limits.
The next step is to partition the membrane to the leaf cells for compaction. After
compaction, the cells are composed to form the top level cell. At this time the
“ultra” compaction method described in the next section may be used to further
reduce the area.

It is assumed that the leaf cells at the leaves of the tree are instances of the
designed cell. Since a cell may be used at several locations in the design, there can
be several unique compactions of the same cell. Later in this section we will show
how a replicated structure of a single cell type is treated as a single cell.

8.4.1 Cell Size Estimation

Before the cells can be compacted, the membranes will need to be defined for the
individual leaf cells. This definition is accomplished from the floor plan and the
user’s input on the desired final shape. The first step is to pass the cell’s ideal
minimum area up the composition binary tree to the top cell. This is shown in
Figure 8.6 for sub-tree for cells a and b and the composition cell c.

7

.

A B

Figure 8.6 Estimate Sub-Tree

The ideal area, A;,,., minimum vertical length, Vi, and horizontal length,

— 191 —
Hp for composition cell ¢ is

Vo — {Vma + Vs, if vertical composition;

™ ™ | max (Ving,Vms), if horizontal composition.
0o = { Hpma + Hypp, if horizontal composition; (8.1)
¢ ™ | max (Hma, Hyp), if vertical composition.

Ajme =max ((Ajmg + Aimp), (Vmc * Hmc)) -

Notice that the ideal area is the maximum of the sum of the two cells ideal area and
the product of the vertical and horizontal lengths. This calculation is to account for
any mismatch between cells. This process of determining the ideal area for a low
level cell is repeated until the top cell ideal area is defined.

The next step is for the user to specify the top level cell membrane. The
choice may be made within the limits of the ideal area, vertical minimum length
and horizontal minimum length. Generally the designer will have a good idea of the
desired final shape.

The next step is, starting at the root node of the floor plan, to partition the
membrane to the lower cells. This partitioning is done recursively starting at the
root node of the floor plan. Generally the membrane at the top cell is specified by
a height, H, and a width, W. We will now show how a cell with membrane H and
W is partitioned to the two lower cells a and b. The value H,, Hy, W,, and W, is
specified by

i&ﬂ, Ha) if horizontal composition;

max (
ky, =
¢ max <—4‘1§Q,Va) if vertical composition
. max (ér‘,ﬂl, H b) if horizontal composition;
b = .
max (éﬁb-,Vb) if vertical composition.
H. = H =+ ((kakTaka) if horizontal composition;
2 =
H if vertical composition. (8.2)
Hy = H« ((E%a) if horizontal composition;
H if vertical composition.
w if horizontal composition;
We = W x ((k_aﬁ-h_ﬂ) if vertical composition.
w if horizontal composition;
Wy = W x ((k_ffﬁf) if vertical composition.

This process of assigning the membrane to lower cells is repeated until the leaf cell
is reached. We have now defined the membrane for all cells in our floor plan.

- 192 —
8.4.2 Guided Cell Compaction

There are two methods to compact the cells in our design. The first is the straight
forward method, where each cell is compacted and then constricted in size. This
compaction can be accomplished on one or more machines to complete the com-
paction of the cells. This method has been used and will produce quite good results.
However the ports are not aligned during compaction.

The second method requires a large multiprocessor computer such as the Cosmic
Cube[Seitz 85a]. This system consists of many processors connected as a Boolean
N-cube. Each cell will be one separate process running in a node communicating to
its neighbors about its size and port position. This allows abutting cells to agree on
final port position and shape. Cells abutting on the left, right, top and bottom will
be in adjacent nodes to limit the communication to one processor away. Each port
in a cell is connected to its corresponding port by a cost function. The messages
between the processes contains port position and when a port is going to be moved.
This allows the final port position of a cell to be governed by the floor plan.

A B
N
\—[membrcnes

Figure 8.7 Cell Compaction Translation

A translation is used to correlate the relative position of ports between commu-
nicating cells. We create a translation rectangle for each cell which is initially placed
at the membrane for the cells. The transiation for a horizontal composition of two
cells is shown in Figure 8.7. The ports are translated in such a fashion to make the
translation rectangle juxtaposition as shown. This translation is performed starting
at the leaf cells, proceeding up the floor plan tree, to each node within the tree.

During the communicating compaction process the translation rectangle is
slowly increased to the minimum rectangle of each cell. This modification is ac-
complished by cooperative increase with the composition neighbor cell. That is to
say, for two cells that are joined horizontally the height H of each cell is equal.

When the compaction process is completed, the cells are restricted to their
translation rectangle for a perfect fit with the composition neighbor. It may be
possible that some ports do not exactly line up. This problem will be taken care of
in the next section.

This method can be extended by communicating edge information between
joined cells to further enhance the method.

- 193 —
8.4.3 Cell Composition

After the cells have been compacted they are joined as specified by the floor plan
using the binary composition operator. This composition will produce the VLSI

chip.

8.4.4 Replicated Structures

A problem with the compaction method is that if we have a cell that is repeated as
in an array each component will be compacted separately. We will now shown how
they are combined to appear as a single cell. Consider the cell A that is in an array
of three cells as shown in Figure 8.8 for horizontal composition. Recall from Section
8.3 that we can lock two ports together so they are processed as a single entity. For
a horizontal array of the same cell we will lock the ports on the left side with the
ports on the right side after aligning them. This port locking will allow the cell to
be composed horizontally with itself without any port adjustment. Further, after
the cell is compacted the adjustment of the edges as described in Section 8.2 is done
with itself. Therefore we will have perfect mating for an array of n of these cells.

o0 SO
o0
AAA LT3 I
0)]
Q o o o
O oO—O—0—0

phantom ports
Figure 8.8 Cell Array

When this array cell is composed with other cells the ports are still locked
together so the cells making up the array still compose. We do not allow the edge
of the array to be expanded but add an interface wiring cell for this purpose. This
does not destroy the compactness of the array.

This method can also be used for a matrix. In this case we would lock the left
ports to the right, and the top to the bottom ports. Everything else is the same.

In the case of the cell processes for compaction as previously described, we
would still only compact one cell for the array. We would use the locking concept
for the left and right port and use phantom ports for the others as shown in Figure
8.8.

8.5 Ultra Compaction

When two cells are composed using the binary operator there is wasted area along
the joining seam. The reason for this is that the extent of the cell sides is limited

— 194 —

by the further out primitive. This means there is a small amount of wasted area
along the sides. When two cells are joined this wasted area is the sum of the two
cells’ wasted area. Ultra compaction is the removal of this wasted area.

After the cells are joined, a new cell is constructed from the two. This cell
is then annealed without increasing the size of the cell. This compaction further
reduces the composed cells. The process of composing and compacting starts at the
bottom of the floor plan tree and works up to the top node. This process creates
an extremely compact design at increased computational expense.

— 195 -

9

Conclusion
and
Continuing Research

It has been shown by several examples that cells compacted by simulated annealing
in 2 dimensions simultaneously can produce cells compacted at least as well as an
experienced designer can do by hand. A unique representation to minimize the run
time of simulated annealing has been developed. This representation has the added
benefit of minimizing wire length. Using this representation a simulated annealing
program has been written with complexity of O(N * log(A))f(d) where f(d) is a
slowly growing function of density, and A is the initialized cell area. Experiments
indicate that f(d) has very little or no dependence on N.

Development of integrated circuit design and layout tools has a software par-
allel. In the early days of software, executable machine code was generated by
hand using an assembler. As software developed with high level languages, com-
pilers were invented to translate the languages to machine code. In integrated
circuit compaction, abstract representations are used to represent the circuit topol-
ogy[Williams 77] where compactors are used to translate this form to near-minimal
geometry. The number of compiler generated assembly language instructions was
large as compared to hand assembled code. In automated integrated circuit com-
paction, the area was large as compared to a hand design. Early compilers were
very crude and unable to generate code comparable to hand assembled code. This
was the state of integrated circuit compactors.

Modern compilers|Robertson 81] generate code far superior to hand designed
code. Code generated by these compilers is extremely compact and efficient. Hand
generated code is easily read while such compiler generated is are not. Akin to the
modern compilers, the integrated circuit compactor we have presented in this thesis
produces extremely compact layouts, although they are not as easily read as hand
compacted designs.

- 196 —

As anticipated by Carver Mead[Mead 83], the compaction technique developed
has the advantageous characteristic of providing design portability with a technology
when the ground rules for that technology are modified. Previous design techniques
have either had to use inefficient constraints to allow for scaling or require complete
redesign when technology changes.

9.1 Extensions

9.1.1 Restriction to Orthogonal Geometry

Some of the current software design tools and fabrication houses are limited to
orthogonal geometry. Although the curvilinear framework was designed for all angle
compaction, it could be restricted to orthogonal geometry. This is accomplished by
using square boxes for the bubbles and right angles segments for the arounds. Wires
would still be composed of segments and arounds, however the segments would be
limited to being parallel to the x or y axis. The bubble move algorithm would be
about the same except the processing of a primitive would be much simpler. We
are planning to implement this version some time in the future.

9.1.2 Probabilistic Geometric Design Rules

Present day geometric design rules have been extracted from empirical estimation
of fabrication requirements. Although these design rules are presented as hard and
fast separation requirements, in fact they are based on statistical estimates of the
probability of fabrication defects. If these probabilities were to be converted into
a function of separation distance between objects, they could then be incorporated
into the annealing cost function. Better fabrication yield could also be achieved by
this technique.

9.2 Future Research

We have limited the compaction problem to a fixed topology. It can be seen from the
cell examples in Chapter 7 that small topological changes could make substantial
improvement in compaction. The area of automatic topological changes is open for
further research.

In Chapter 7 we have shown by experiments that the compaction run time and
compacted size are very susceptible to the membrane position and membrane cost.
Although we have a method to position the membrane and assign the cost, it is
clear that this method may not be the optimum. The question of what would be
the optimum parameters and position for the membrane is for future research.

- 197 —

We have identified two possible methods to improve the computer run time for
this algorithm in Chapter 7. Much more work can be done in this area.

— 198 —

Appendix A
Technology File

A.1 Technology File Description

We will define the syntax for the technology file in Backus—Naur form commonly
known as BINF. The notation was defined in the 1950’s by John Backus and Peter
Nuar. The technology file is composed of a color definition, a set of rules and models,
and the default parameters.

<Technology file>— <colors><rules and models><default>
<rules and models>—<rule> | <rule><rules and models> |
<model> | <model><rules and models> |

The color definition defines the colors for our design. The color attributes are
used both in the color definition and in the rules definition. The symbol “+” on a
color attribute denotes this attribute may only be used in the color definition while
the symbol “+” denotes an attribute that may be used in a rule definition. All others
may be used in either place. The attribute “physical” denotes a color that is to be
displayed in plotting and graphic editing. The attribute “rule” denotes a color that
is a rule color. Rule colors must have the “mindistance” attribute defined. The
“width” defines the width of the rule. The "connect” attribute allows connection if
the two primitives that are to be connected have this color. The “relsrule” defines
this color as related significant. The “relswith” defines the related width. If it is
not defined the width will be used. We define the syntax for the color definition as
follows.

<Colors>— colors(<color entries>)
<Color entries>— <color entry> | <color entry>, <color entries>
<colorentry>-<color name> | <color name> [<color attributes>
<color attributes>— <color attribute> |
<color attributes>, <color attributes>
<color attribute>— physical | rule| connect; |
mindistance. =<real> | width=<real> |
relsrule, |relsrule[<integeri|
relswidth|<integer>]4 =<real>

1

|
H

The rule definition defines a rule that may be used by a primitive. The rule has
a name and a body composed of rule parts. The rule part color definition describes
the colors and associated color attributes for the rule. The rule part edit describes
how the rule is to be used in the graphic editor. An edit type of port allows a port
to be created with this rule. The edit type of bubble allows this rule to be used as
a wiring bubble while an edit type of segment allows the rule to be used for a wire.
The flag type of showfill will display the rule fleshed out in the graphic editor. The
cost is the cost used to control the compaction process. We define the rules syntax
as follows.

<rule>—rule <rule name> (<rule parts>)
<rule parts>—<rule part> | <rule part>, <rule parts>
<rule part>— alias=<alias name> |

color= (<color entries>)]

edit= (<edit types>}|

flag= (<flag types>)]

cost=<real>
<edit types>— <edit type> | <edit type>, <edit types>
<edit type>— port|bubble[segment
<flag types>— <flag type> | <flag type>, <flag types>
<flag type>— showfill

The model definition describes a model that can be used in a design. The model
has a model name and a model body. The body is composed of a model related
part and the primitives of the model. The model related part defines all the related
equivalence numbers and their corresponding colors and side that will be used by the
model. The model part defines the bubbles and connecting segments that makeup
the model. The bubble entry defines an mbubble which has a name, a rule, a
location, and related part. The segment entry defines an msegment which has a
rule, a connect part, and a related part. The connect part defines the two mbubbles
for the msegment by their corresponding names. The order of presentation of the
msegment connect bubbles define the order of the fields in model structure which
defines the relationship for the related side. The related part defines the equivalence
related numbers and their associated related index.

When the model is instanced by the graphic editor the graphic editor creates
the instance structure and copies the model’s coordinates. The graphic editor then

- 200 -

translates the instance to the proper position. The zero point in the model coor-
dinate system is translated to the graphic editors place point in the design. The
location of the bubbles define the position of the bubbles in the model coordinate
space.

<model>— model <model name> (<model related parts>
<model parts>)
<model related parts>— <model related part> |
<model related part><model related parts>
<model related part>-—related(<model related entries>)
<model related entries>— <model related entry> |
<model related entry><model related entries>
<model related entry>-— <integer> |
<integer>,color= (<color name list>)|
<integer>,color= (<color name list>),
side=<side name>
<side name>— leftside|rightside
<color name list>— <color name> |
<color name>, <color name list>
<model parts>—<model part> | <model part>, <model parts>
<model part>—<mbubble entry> | <msegment entry>
<mbubble entry>—bubble <bubble name> (<bubble parts>)
<mbubble parts>— <mbubble part> | <mbubble part>, <mbubble parts>
<mbubble part>—rule=<rule name> |
location= (<x real>, <y real>})|
<related part>
<related part>—related= (<related entries>)
<related entries>— <related entry> | <related entry>, <related entries>
<related entry>—<integer> |
<integer>rels=<integer>
<msegment entry>—segment (<msegment parts>)
<msegment parts>— <msegment part> [<msegment part>,
<msegment parts>
<msegment part>—rule=<rule name> |
connect= (<nbubble name>, <nbubble name>)]
<related part>

The default defines the grid for the bubbles, the initial bounding box for a new
cell, shown grid spacing, and the snap to grid value.

<default>—default (<default parts>)
<default parts>— <default part> | <default part>, <default parts>
<default part>— grid=<real> |
bbox= (<real>, <real>, <real>, <real>, <real>)|
showngrid=<real> |
snapgrid=<real>

- 201 —
A.2 nMOS Example

colors(
blue [PHYSICAL Rule, width=300,mind=300,cif=nm],
green [PHYSICAL,RULE, width=200,MINDISTANCE=300,cif=nd |,
red [PHYSICAL,RULE ,width=200, MINDISTANCE=200,cif=np],
blah [RULE ,width=200,MINDISTANCE=100],
gate | RULE ,width=200,MINDISTANCE=200],
black {PHYSICAL,WIDTH=ZOO cif = nc|,
yellow [PHYSICAL cif=ni |,
brown [PHYSICAL,CIF=nb |,

RULE red(alias=polysilicon,

COLOR=(
red[PHYSICAL,RULE,CONNECT),
blah[RULE]

),

edit=(bubble,port,segment),

COST=2)

RULE green(alias=diffusion,
COLOR=(
green|[PHYSICAL,RULE,CONNECT],
blah[RULE]

edit=(bubble,port,segment),
COST=4

)
RULE blue(alias=metal,
COLOR=(
blue[PHYSICAL,RULE,CONNECT]

edit=(port,bubble segment),
COST=1

RULE “blue-4” (alias=metal,
COLOR=(
blue[PHYSICAL,RULE,CONNECT, width=400]

edit=(port,bubble segment),
COST=1

RULE “blue-6” (alias=metal,
COLOR=(
blue[PHYSICAL,RULE,CONNECT,width=600]
)

- 202 -

edit=(port,bubble,segment),
COST=1

RULE “blue-8” (alias=metal,
COLOR=(
blue[PHYS ICAL,RULE,CONNECT,width=800]
)

edit=(port,bubble,segment),
COST=1

)

RULE CONBLUGRE(
COLOR=(
green[PHYSICAL,connect, RULE, WIDTH=400 |,
blue[PHYSICAL,connect, RULE, WIDTH=400 |,
black[PHYSICAL],
blah|[RULE, WIDTH=400]
gate [RULE,relsrule],

)s
COST=1)

RULE CONBLURED(
COLOR=(
red[PHYSICAL,connect, RULE, WIDTH=400 |,
blue[PHYSICAL,connect, RULE, WIDTH=400 |,
black[PHYSICAL],
blah[RULE, WIDTH=400 |
gate [RULE,relsrule],

),
COST=1

)

model ContactMD(
related(1,color=(green),2,color=(blue))
bubble ar1(rule=CONBLUGRE location=(0,0),
related=(1,2)),

model ContactMP(
related(1,color=(red),2,color=(blue))
bubble ar1(rule=CONBLURED,location=(0,0),
related=(1,2)),

rule bur(
color=(
red|physical,rule],
green physical,rule],

- 203 -

brown|physical, width=400],
blah|rule,width=400,relsrule[0],relswidth[0]=100,
relsrule[1],relswidth{1]=100],

gate [RULErelsrule[0],relsrule[1],relsmrule,relsmwidth=0],

))

cost=1

)

rule “bur-gns” (
color=(
green|physical,rule],
blah[rule,relsrule[0],relswidth[0]=100]
),
flag=(showfill),
cost=.2)

)

rule “bur-rds”(
color=(
red[physical,rule],
blah[rule,relsrule[1],relswidth[1]=100]
)s
flag=(showfill},
cost=.2

)
model buried(
related (1,color=(red),2,color=(green))
bubble a(rule=bur,location=(0,0),related=(1 rels=0,2 rels=1))
bubble al(rule=red location=(-200,0),related=(1))
segment(rule=“bur-rds” connect=(a,al),related=(1,2 rels=1})
bubble ar(rule=green,location=(+200,0) related=(2))
segment (rule=“bur-gns” ,connect=(a,ar),related=(1 rels=0 ,2 rels=1)),

model “buried-redY”(
related (1,color=(red),2,color=(green))
bubble a(rule=bur,location=(0,0),related=(1 rels=0,2 rels=1))
bubble at(rule=red,location=(0,200),related=(1))
segment(rule=“bur-rds” connect=(a,at),related=(1,2 rels=1))
bubble al(rule=red,location=(-200,0) related=(1))
segment (rule=“bur-rds” connect=(a,al) related=(1,2 rels=1))
bubble ar(rule=green,location=(+200,0) related=(2))
segment (rule= “bur-gns” ,connect=(a,ar) related=(1 rels=0 ,2 rels=1)),

model “buried-grn¥Y”(
related (1,color=(red),2,color={green))
bubble a(rule=bur,location=(0,0),related=(1 rels=0,2 rels=1))

- 204 -

bubble al(rule=red,location=(-200,0),related=(1))
segment(rule=“bur-rds” connect=(a,al) related=(1,2 rels=1))

bubble ar(rule=green location=(+200,0),related=(2))

segment (rule= “bur-gns” connect=(a,ar),related=(1 rels=0 ,2 rels=1)),
bubble ab(rule=green,location=(0,200),related=(2))
segment(rule=“bur-gns” connect=(a,ab) related=(1 rels=0 ,2 rels=1)),

)

model “buried-X”(
related(1,color=(red),2,color={green))
bubble a(rule=bur,location=(0,0),related=(1 rels=0,2 rels=1})
bubble al(rule=red,location=(-200,0),related=(1))
segment (rule=“bur-rds” connect=(a,al),related=(1,2 rels=1))
bubble ar(rule=red,location=(+200,0),related=(1))
segment(rule=“bur-rds” connect=(a,ar),related=(1,2 rels=1))
bubble at(rule=green location=(0,200),related=(2))
segment(rule=“bur-gns” ,connect=(a,at),related=(1 rels=0 ,2 rels=1)),
bubble ab(rule=green,location=(0,-200) related=(2))
segment(rule=“bur-gns” ,connect=(a,ab) related=(1 rels=0 ,2 rels=1)),

rule t11c(
color=(
red[physical rule],
green|physical rule,relsrule[0]],
blah|[rule,

relsrule(0},relswidth[0]=50,

relsrule[1],relswidth[1]=50]

gate [RULE,relsrule,relsrule[1]],
),

cost=1

rule t11gs(

color=(
green|physical,rule],
blah[rule,
relsrule|0],relswidth[0]=50]

),

flag=(showfill),

cost=.2

rule t11rs(
color=(
red|physical,rule],
blah(rule,
relsrule(1],relswidth{1]=50]

— 205 —

flag=(showfill),

cost=.2

)
model “EH1-1”(

rule

rule

rule

related(1,color=(red)),
related(2,color=(green)),
related(3,color=(green)),
bubble ac(rule=t1lc,location=(0,0),related=(1,2 relsrule=1,3 relsrule=1))
bubble al(rule=green location=(-250,0),related=(2,3))
segment (rule=t11gs,connect=(ac,al) related=(1 rels=0,2 rels=1,3 rels=1))
bubble ar(rule=green location=(+250,0),related=(3,2))
segment(rule=t11gs,connect=(ac,ar),related=(1 rels=0,2 rels=1,3 rels=1))
bubble ab(rule=red location=(0,-250),related=(1))
segment(rule=t11rs,connect=(ac,ab),related=(1 rels=0,2 rels=1,3

rels = 1))
bubble at(rule=red Jocation=(0,+250),related=(1))
segment(rule=t11rs,connect=(ac,at),related=(1 rels=1,2 rels=1,3 rels=1))

t12¢(

color=(
red|physical,rule]
green|physical,rule,width=400,relsrule|[0]]
blah[rule,width=400,
relsrule[0],relswidth[0]=200,
relsrule[1],relswidth[1]=50]
gate [rule,width=200,relsrule[0],relsrule[1]],

),

cost=1

t12g(

color=(
green[physical,rule,width=400,connect]
blah|rule,width==400]

)s

cost=.2

t12gs(

color=(
green|physical,rule,width=400]
blah[rule,width=400,
relsrule[0],relswidth[0]=200]

),

flag=(showfill),

cost=.2

— 206 —

model “EH1-2”(
related(1,color=(red)),
related (2,color=(green)),
related(3,color=(green)),
bubble ac(rule=t12c,location=(0,0) related=(1 rels=0,2 rels=1,3 rels=1))
bubble al(rule=t12g,location=(-350,0),related=(2,3))
segment(rule=t12gs,connect=(ac,al) related=(1 rels=0,2 rels=1,3 rels=1))
bubble ar(rule=t12g,location=(+350,0),related=(3,2))
segment(rule=t12gs,connect=(ac,ar),related=(1 rels=0,2 rels=1,3 rels=1))
bubble ab(rule=red,location=(0,-300),related=(1))
segment(rule=t11rs,connect=(ac,ab) related=(1 rels=0,2 rels=1,3 rels=1))
bubble at(rule=red,location=(0,+300),related=(1))
segment (rule=t11rs,connect=(ac,at),related=(1 rels=0,2 rels=1,3 rels=1))

rule t14c(
color=(
red[physical,rule]
green|connect,physical,rule,width=600,relsrule[0]]
blah[rule,width=600,
relsrule[0],relswidth[0]=300,
relsrule[1],relswidth[1]=200]
gate [rule,width=200,relsrule[0],relsrule[1],relsmrule,relsmwidth=0],

),
flag=(showfill),
cost=.333

model “EH1-4”(
related (1,color=(red)),
related (2,color=(green),side=leftside),
related(3,color=(green),side=rightside),
related (4),
bubble at(rule=red,location=(0,1400),related=(1))
bubble acl(rule=t14c,location=(0,0),related=(4,1 rels=0,2 rels=1,3 rels=1))
segment(rule=t11rs,connect=(at,acl),related=(1 rels=0))
bubble ac2(rule=t14c,location=(0,-200),related=
(4,1 rels=0,2 rels=1,3 rels=1))
segment (rule=tl4c,connect=(acl,ac2),related=(4,1 rels=0,2 rels=1,3rels=1))
bubble ab(rule=red,location=(0,-600),related=(1))
segment(rule=t11rs,connect=(ac2,ab),related=(1 rels=0))

rule t110¢(
color=(
red[physical,rule]
green connect,physical,rule,width=600,relsrule[0]]
blah(rule,width=600,
relsrule[0],relswidth[0]=300,

— 207 -

relsrule[1],relswidth{1}=200]
gate [rule,width=200,relsrule(0],relsrule[1] relsmrule,relsmwidth=200],

)s
flag=(showfill),
cost=.2

model “EH1-5”(

related (1,color=(red)),

related(2,color=(green) side=leftside),

related (3,color=(green) side=rightside),

related (4),

bubble at(rule=red,location=(0,1-400) related=(1))

bubble acl(rule=t110c,location=(0,0),related=(4,1 rels=0,2 rels=1,3 rels=1))
segment(rule=t11rs,connect=(at,acl) related=(1 rels=0))

bubble ac2(rule=t110c location=(0,-400),related=

(4,1 rels=0,2 rels=1,3 rels=1))

segment(rule=t110c,connect=(acl,ac2), related=(4,1 rels=0,2 rels=1,3rels=1))
bubble ab(rule=red location=(0,-800),related=(1))
segment(rule=t11rs,connect=(ac2,ab),related=(1 rels=0))

)
model “EH1-10"(

)

related (1,color=(red)),

related(2,color=(green) side=leftside),

related(3,color=(green) side=rightside),

related(4),

bubble at(rule=red,location=(0,+400),related=(1))

bubble acl(rule=t110c,location=(0,0),related=(4,1 rels=0,2 rels=1,3 rels=1))
segment(rule=t11rs,connect=(at,acl) related=(1 rels=0))

bubble ac2(rule=t110c,location=(0,-400),related=

(4,1 rels=0,2 rels=1,3 rels=1))

segment (rule=t110c,connect=(acl,ac2),related=(4,1 rels=0,2 rels=1,3rels=1))
bubble ac3(rule=t110c,location=(0,-800),related=

(4,1 rels=0,2 rels=1,3 rels=1))

segment (rule=t110c,connect=(ac2,ac3) related=(4,1 rels=0,2 rels=1,3rels=1))
bubble ac4(rule=t110c,location=(0,-1200) related=

(4,1 rels=0,2 rels=1,3 rels=1))

segment(rule=t110c ,connect=(ac3,ac4),related=(4,1 rels=0,2 rels=1,3rels=1))
bubble ab(rule=red,location=(0,-1600),related=(1))
segment(rule=t11rs,connect=(ac4,ab),related=(1 rels=0))

rule d11c(

color=(
red[physical rule],
green|physical,rule,relsrule(0]],
blah|rule,

rule

)

— 208 —

relsrule[0],relswidth|0}=50,
relsrule[1],relswidth[1]=50]
gate [RULE,relsrule,relsrule(1]],
yellow physical,width=500]

),

cost=1

d11gs(

color=(
green|physical,rule],
blah(rule,
relsrule[0],relswidth[0]=50]

),

flag={showfill),

cost=.2

model “DP1-17(

rule

)

rule

related(1,color=(red)),
related (2,color=(green)),
related(3,color=(green)),
bubble ac(rule=d11c,location=(0,0),related=(1,2 relsrule=1,3 relsrule=1))
bubble al(rule=green location=(-250,0),related=(2,3))
segment(rule=d11gs,connect=(ac,al),related=(1 rels=0,2 rels=1,3 rels=1))
bubble ar(rule=green location=(+250,0),related=(3,2))
segment(rule=d11gs,connect=(ac,ar),related=(1 rels=0,2 rels=1,3 rels=1))
bubble ab(rule=red,location=(0,-250),related=(1))
segment(rule=t11rs,connect=(ac,ab), related=(1 rels=0,2 rels=1,3

rels = 1))
bubble at(rule=red location=(0,+250),related=(1))
segment(rule=t11rs,connect=(ac,at),related=(1 rels=1,2 rels=1,3 rels=1))

d21c(

color=(
red|physical,rule,width=400]
green|physical,rule,relsrule[0]]
blah(rule,width=400,
relsrule[1],relswidth[1]=200,
relsrule[0],relswidth[0]=50]
gate [rule,relsrule[0], relsrule[1]],
yellow[physical,width=500],

),

cost=1

d21gs(

color=(

- 209 -

green|physical,rule],
blah(rule,
relsrule[0],relswidth[0]=50]
yellow[physical,width=500]

),
flag=(showfill),
cost=.2

)
rule d21r(
color=(
red|physical,rule,width=400,connect]
blah[rule,width=400]
),

cost=.2)

rule d21rs(
color=(
red[physical,rule,width=400]
blah[rule,width=400,
relsrule[1],relswidth[1]=200]

),
flag=(showfill),
cost=.2

model “DP2-1”(
related (1,color=(red)),
related (2,color=(green)),
related (3,color=(green)),
bubble ac(rule=d21c,location=(0,0) related=(1 rels=0,2 rels=1,3 rels=1))
bubble al(rule=green location=(-300,0),related=(2,3))
segment (rule=d21gs,connect=(ac,al),related=(1 rels=0,2 rels=1,3 rels=1))
bubble ar(rule=green location=(+300,0),related=(3,2))
segment (rule=d21gs,connect=(ac,ar) related=(1 rels=0,2 rels=1,3 rels=1))
bubble ab(rule=d21r,location=(0,-350),related=(1))
segment (rule=d21rs,connect=(ac,ab),related=(1 rels=0,2 rels=1,3 rels=1))
bubble at(rule=d21r,location=(0,+350),related=(1))
segment(rule=d21rs,connect=(ac,at), related=(1 rels=0,2 rels=1,3 rels=1))

rule D14c(
color=(

red[connect,physical rule,width=600,relsrule|[1]]
green|physical,rule]
blah|rule,width=600,
relsrule([1] relswidth[1]=400,
relsrule[0],relswidth[0]=200]
gate [rule,width=200,relsrule[0],relsrule(1],relsmrule,relsmwidth=0],

- 210 —

yellow[physical ,width=500]

),
flag=(showfill),
cost=.2

model “PULL4-1%(

rule

)

related(1,color=(red)),

related(2,color=(green)),

related (3,color=(green)),

related (4),

bubble at(rule=green location=(-400,0),related=(2))

bubble acl(rule=d14c,location=(0,0) related=(4,1 rels=0,2 rels=1,3 rels=1))
segment(rule=d21gs,connect=(at,ac1),related=(2 rels=0))

bubble ac2(rule=d14c,location=(200,0),related=

(4,1 rels=0,2 rels=1,3 rels=1))
segment(rule=d14c,connect=(acl,ac2),related=(4,1 rels=0,2 rels=1,3rels=1))
bubble ab(rule=green,location=(600,0),related=(3))
segment(rule=d21gs,connect=(ac2,ab),related=(3 rels=0))

D101¢(
color=(
red[connect,physical,rule,width=600,relsrule[1]]
green|[physical,rule]
blah|rule,width=600,
relsrule[1],relswidth|[1]=400,
relsrule[0],relswidth[0]=200]
gate [rule,width=200,relsrule[0],relsrule[1],relsmrule,relsmwidth=200],
yellow [physical ,width=500]

),
flag=(showfill),
cost=.2

model “DP5-1”(

related (1,color=(red)),

related(2,color={green)),

related (3,color={green)),

related (4),

bubble at(rule=green location=(-400,0),related=(2))
bubble acl(rule=d101c,location=(0,0),

related=(4,1 rels=0,2 rels=1,3 rels=1))

segment (rule=d21gs,connect=(at,acl),related=(2 rels=0))
bubble ac2(rule=d101c,location=(400,0),related=

(4,1 rels=0,2 rels=1,3 rels=1))
segment(rule=d101c,connect=(acl,ac2),related=(4,1 rels=0,2 rels=1,3rels=1))
bubble ab(rule=green,location=(800,0),related=(3))
segment(rule=d21gs,connect=(ac2,ab),related=(3 rels=0))

— 211 -

model “DP10-17(

related (1,color=(red)),
related (2,color=(green)),
related(3,color=(green)),
related(4),
bubble at(rule=green,location=(-400,0),related=(2))
bubble acl(rule=d101c,location=(0,0),

related=(4,1 rels=0,2 rels=1,3 rels=1))
segment(rule=d21gs,connect=(at,ac1),related=(2 rels=0))
bubble ac2(rule=d101c,location=(400,0),related=
(4,1 rels=0,2 rels=1,3 rels=1))
segment(rule=d101c,connect=(acl,ac2),related=(4,1 rels=0,2 rels=1,3rels=1))
bubble ac3(rule=d101c,location=(800,0),related=

(4,1 rels=0,2 rels=1,3 rels=1))
segment(rule=d101c,connect=(ac2,ac3),related=(4,1 rels=0,2 rels=1,3rels=1))
bubble ab(rule=green,location=(1200,0),related=(3))
segment(rule=d21gs,connect=(ac3,ab) related=(3 rels=0))

)
rule p41(
color=(
red|connect,physical,rule,width=200,relsrule(1]]
green [physical,rule]
blah[rule,width=200,
relsrule[1],relswidth|[1]=200,
relsrule[0],relswidth{0]=200]
gate [rule,width=200,relsrule[0],relsrule[1],relsmrule,relsmwidth=200],
),
flag=(showfill),
cost=.2
)

model “pull4-1”(
related (1,color=(red)),
related (2,color=(green)),
related(3,color=(green)),
related(4),
bubble al(rule=green,location=(-200,0),related=(2))
bubble acl(rule=bur,location=(0,0), related=(4,1 rels=0,2 rels=1))
segment(rule=“bur-gns” ,connect=(al,acl),related=(4,1 rels=0,2 rels=1))
bubble ac2(rule=d101¢,location=(300,0),
related=(4,1 rels=0,2 rels=1,3 rels=1))
segment(rule=p41,connect={(acl,ac2),related=(4,1 rels=0,2 rels=1))
bubble ac3(rule=d101c,location=(700,0),related=
(4,1 rels=0,2 rels=1,3 rels=1))

- 212 -

segment(rule=d101c,connect=(ac2,ac3),related=(4,1 rels=0,2 rels=1,3rels=1))
bubble ab(rule=green,location={1100,0),related=(3))
segment(rule=d21gs,connect=(ac3,ab) related=(3 rels=0))

model “pull6-17(

related(1,color=(red)),
related(2,color=(green)),
related(3,color=(green)),
related (4),
bubble al(rule=green location=(-200,0),related=(2))
bubble acl(rule=bur,location=(0,0), related=(4,1 rels=0,2 rels=1))
segment (rule= “bur-gns” ,connect=(al,acl), related=(4,1 rels=0,2 rels=1))
bubble ac2(rule=d101c,location=(300,0),

related=(4,1 rels=0,2 rels=1,3 rels=1))
segment(rule=p41,connect=(acl,ac2),related=(4,1 rels=0,2 rels=1))
bubble ac3(rule=d101c,location=(700,0),related=

(4,1 rels=0,2 rels=1,3 rels=1))
segment(rule=d101c,connect=(ac2,ac3),related=(4,1 rels=0,2 rels=1,3rels=1))
bubble ac4(rule=d101c,location=(1100,0),related=

(4,1 rels=0,2 rels=1,3 rels=1))
segment(rule=d101c,connect=(ac3,ac4),related=(4,1 rels=0,2 rels=1,3rels=1))
bubble ab(rule=green,location=(1500,0),related=(3))
segment(rule=d21gs,connect=(ac4,ab),related=(3 rels=0))

default(grid=25,bbox=(4000,4000) ,showngrid=100,snapgrid=100)

- 213 -

Appendix B
Miscellaneous Utility Functions

B.1 Inside Around Algorithm

The function “insidearound”(A,z,y) return a logical true if the point defined by
z,y is inside the around; otherwise it returns a logical false. In Figure B.0 the point
P, is inside the around A while the point Py is outside the around A. One of the
uses of insidearound is to determine if an around is pushed out by bubble B or the
around is a block similar to a bubble.

Region 1

A

E S
A.B
X

A Region 2
Figure B.1 Inside Around

We will assume the around is a counter clockwise around where the radius
18 positive. For the case where the around is clockwise we would interchange the
definition vectors. The function inside around is divided into three parts. The
first case is if the distance from the point P = (z,y) to the center of the around,
(A.B.z, A.B.y) is less than or equal to the radius then the point is within the around.
The test is

— 214 —

Pz - ABaz)?+ (Py— ABy)?<|Ar.
.7

The second case is to test if the point P is in region 1 as shown in Figure B.1.
If the point P is in region 1 then the point P is outside of the around. We let the

vector
=(Pz—- ABz,Py—- A.By) (B.1)

be directed from the center of the around to the point. Point P is in region 1 if
vector C_j 18 in the left half plane of vector 'S and in the right half plane of vector E
for the around of less than or equal to 180°. For the vector —5 to be in the left half
plane of vector S the imaginary part of the product of vector 5 and the conjugate
of vector S rotated by 90° which is magnitude of vector 6 times the sine of the
angle between 6 and S rotated by 90° would be greater than or equal to zero. In
a similar manner vector 6 can be tested for presents in the right half plan of vector

E. For an around greater than 180° we would logically “or” the test. The point P
is in region 1 if the following is true.

(IMG(E % §) >
IMG(Q (S *(1,0))) >0 AIMG((E *(=1,0)) * Q) > 0)
A\

(IMG(E + §) <0 A
IMG(Q * (S *(1,0))) >0 VIMG((E *(-1,0))* @) > 0)

Either the previous cases determined whether point P was inside the around

or the point is in region 2. We now need to know if the point is inside the bounding
— —
segments attached to the around. We know the vectors S and E are unit vectors.
—
We take the imaginary part of the product of conjugate vector S rotated —90°
which is .
| Q |sin(f)
. —> R —> . .

where 6 is the angle between S rotated by —90° and Q. If the value | Q|sin(4) is
less than or equal to the radius of the around the point is on the inside of the start

segment.

—
(IMG(E « §)>0A

IMG((S * (~1,0)) * @) < |A.r| AIMG(Q +(F *(1,0))) < |A.r])
\

(IMG(E + §) <0A

IMG((S * (=1,0)) x @) < |A.r| VIMG(Q = (B *(1,0))) < |A.r])

- 215 —

procedure insidearound(A,x,y)

begin
real as,bs,ae,be;
if A.r > Othen
begin
as +— A.as; bs — A.bs;
ae «— A.ae; be +— A.be;
end else
begin
ae — A.as; be — Albs;
as « A.ae; bs «— A.be;
end;
z—z— A Bz, y—y— AB.y;
return(
return(

Vzr +y? < |sAr|V

(((—ae = bs + be * as > OA
(—z*bs+y*xas>0Azxbe—yx*ae>0A)
V/((—ae = bs + be * as < OA

(—z*bs+yxas >0 V z*be— y=*ae>0A))

A((ae * bs — be x as > OA

(z*bs—y*xas> |Ar|A—zxbe+yxae> |[Ar|A)
V/((ae * bs — be * as < OA

(z*xbs—yxas > |Ar| V —zxbe+y*ae> |Ar|A)))

end;

B.2 Between a Around Segments Algorithm

The boolean function “betweenaseg” (A, z,y) returns true if the vector defined by
the pair (z,y) is between the vector parallel to and pointing outward from the end
segment of around A and the vector parallel to and pointing outward from the start
segment of A for a counter clockwise around as shown in Figure B.2. For a clockwise
around the start and end vectors are interchanged.

— 216 -

(a,b) (a',b")
(as,bs)

(x,y) (x.y)

Figure B.2 Attached Around Test

We define the function betweenaseg for around A and vector (z,y) as the fol-
lowing. If the around A is counter clockwise we set

as = A.as, bs = A.bs,
ae = A.ae, be = A.be, B
a = — A.be, b= A.ae, (82)
a' = Abs, and ¥ = —A.as.
Otherwise for a clockwise around A we set
as = A.ae, bs = A.be,
ae = A.as, be = A.bs, B3
a = A.bs, b= —A.as, (B-3)

a' = —Abe, and b = A.qe.

If the around A is greater than 180° then the function must be logically false
since the vector (z,y) can not be between the segments. We can test if the vector
(z,y) is between the vector (a,b) and the vector (a',b’) by testing if vector (z, y) is
in the left half plane of vector (a,b) and the right half plane of vector (a’, ') for an
angle between (a,b) and (@/,b’) of less than or equal to 180°. For an angle greater
than 180° the test would be logically or. We define the function betweenaseg as:

—aexbs+bexas <0.0A
((a"*b+bxa>0nA

zxb+y*xa>0 A a xy+¥8+z>0)
\

(@' *b+b xa<0n
zxb+y*xa>0V dxy+b+z>0)

- 217 —

Appendix C

Intermediate Structures

This appendix contains the figures from the timing experiments as described in
Chapter 7.

— 218 -

Figure C.1 1 Cell - Initial

- 219 —

Figure C.2 1 Cell - end of first stage

— 220 -

B D0

£

Figure C.3 1 Cell - end of second stage

— 221 -

Figure C.4 1 Cell - end of final stage

- 222 -

Figure C.5 1 by 1 Cell - Initial

— 223 -

Figure C.6 1 by 1 Cell - end of first stage

— 224 —

Figure C.7 1 by 1 Cell - end of second stage

— 225 -

Figure C.8 1 by 1 Cell - end of final stage

— 226 -

Initial

Figure C.9 2 by 2 Cell -

- 227 -

Figure C.10 2 by 2 Cell - end of first stage

— 228 —

Figure C.11 2 by 2 Cell - end of second stage

— 229 —

Figure C.12 2 by 2 Cell - end of final stage

- 230 -

AL

Figure C.13 2 by 3 Cell - Initial

- 231 -

oo oo — oot

Figure C.14 2 by 3 Cell - end of first stage

— 232 —

Figure C.15 2 by 3 Cell - end of second stage

- 233 —

I 1

Hprd
3o
e

1
3
T
lEngirai-dE
TR

I
=

Figure C.16 2 by 3 Cell - end of final stage

D
P
P

o
.)
F

— 234 -

_\

7]

RPN SR A0

IR

RRG LML

R

Figure C.17 3 by 3 Cell - Initial

— 235 —

PPN o
[!

: |

q T
¢ = 4
4= g
) b
] >
[b

7 *
&]

T A

Figure C.18 3 by 3 Cell - end of first stage

— 236 —

Figure C.19 3 by 3 Cell - end of second stage

- 237 -

T

£l
R
RS TN

RISHU SR

4R

IR RS RE e
SmmEne
RS SRR 6

Figure C.20 3 by 3 Cell - end of final stage

[Ackland 83]

[Akers 70]

[Ayres 85]

[Bales 82]

[Barton 80]

[Bentley 80]

(Birtwistle 73]

— 238 —

Bibliography

Bryan Ackland and Neil Weste. .

“An Automatic Assembly Tool for Virtual Grid Symbolic Lay-
out”.

Proceedings of the IFIP TC 10/WG 10.5 International Confer-
ence on Very Large Scale Integration, Trondheim, Norway, 16-19,
August 1983, pages 457-466.

S.B. Akers, J.M. Geyer, and D.L. Roberts.

“IC Mask Layout with a Single Conductor Layer”.

Proceedings of the 7th Design Automation Workshop, San Fran-
cisco, 1970, page 7-16.

Ron Ayres.
A New MOSIS Service: FUSION.
Information Science Institute, Marina del Rey, California, 1985.

Mark W. Bales.
Layout Rule Spacing of Symbolic Integrated Circuit Artwork.
Masters Dissertation, University of California, Berkeley, 1982.

E.E. Barton, 1. Buchanan.

“The Polygon Package”.

“Computer Aided Design”, Volume=12(3), page 3-11, January,
1980.

J.L. Bentley, D. Haken, and R.W. Hon.
“Statistics on VLSI Designs”.
Carnegie-Mellon University, April 1980.

G.M. Birtwistle, O-J Dahl, B. Myhrhaug and K. Nygaard.
SIMULA begin.
Auerbach Publishers Inc., 1973.

[Buchanan 80]

[Bryant 81]

[Bryant 82]

[Cho 77]

[Cho 85]

[Dunlop 79]

[Dunlop 80]

[Fairbairn 78]

[Franco 81|

- 239 -

Irene Buchanan.

Modeling and Verification in Structured Integrated Circuit De-
sign.

PhD Dissertation, Computer Science, University of Edinburgh,
Edinburgh Scotland, 1980.

Randal E. Bryant.
A Switch-Level Simulation Model for Integrated Logic Circuits.
PhD Dissertation, Massachusetts Institute of Technology 1981.

R. Bryant, M. Schuster, and D. Whiting.

“Mossim II: A Switch-Level Simulator for MOS LSI User’s Man-
ual”.

California Institute of Technology, Computer Science Depart-
ment, Technical Report #5033, Pasadena California, Au-
gust 1982.

Y .E. Cho, A.J. Korenjak, and D.E. Stockton.

“FLOSS: An Approach to Automated Layout for High Volume
Designs”.

Proceedings of the 14th Design Automation Conference, June
1977, pages 138-141.

Y. Eric Cho.

“A Subjective Review Of Compaction”.

Proceedings of the g2nd Design Automation Conference, June
1985, pages 396—403.

A.E. Dunlop.
Integrated Circuit Mask Compaction.

PhD Dissertation, Carnegie-Mellon University, 1979.

A. Dunlop.

“SLIM- The Translation of Symbolic Layouts into Mask Data”.
Computer Aided Design, Volume 12, Number 6, June 1980, pages
595-602.

D.G. Fairbairn, J.A. Rowson.

“ICARUS: An Interactive Integrated Circuit Layout Program”.
Proceedings of the 15th Design Automation Conference, pages
188-192 1978.

D. Franco, and L. Reed.

“THE CELL DESIGN SYSTEM”.

Proceedings of the 18th Design Automation Conference, pages
240-247 1981.

[Frey 83]

[Garey 79|

[Hedges 82|

[Hsueh 80]

[Johannsen 81]

[Johnson 84]

[Kingsley 82]

[Kingsley 84]

[Kirkpatrick 83]

[Kirkpatrick 84a]

— 240 -

A. Frey.
Rabbit Chip.
California Institute of Technology, Pasadena California, 1983.

M.R. Garey and D.S. Johnson.

COMPUTERS AND INTRACTABILITY: A guide to the Theory
of NP-Completeness.

W.H. Freeman and Company, San Francisco, 1979.

T.S. Hedges, K.H. Slater, G.E. Clow, and T. Whitney.
“The Siclops Silicon Compiler”.
Proceedings of IEEE ICCC, September 1982, Pages 277-280.

Min-Yu Hsueh.

Symbolic Layout and Compaction of Integrated Circuits.

PhD Dissertation, University of California, Berkeley, Memoran-
dum No. UCB/ERL M79/80, 1980.

David Lawrence Johannsen.

Silicon Compilation.

PhD Dissertation, California Institute of Technology, Technical
Report #4530, Pasadena California, 1981.

David S. Johnson.

“Optimization By Simulated Annealing: An Experimental Eval-
uation”.

Workshop on Statistical Physics in Engineering and Biology, IBM
Thomas J. Watson Research Center, Yorktown Heights, NY,
April 26-7, 1984.

C. Kingsley.

“Earl: An Integrated Circuit Design Language”.

Masters Dissertation, California Institute of Technology, Com-
puter Science Department, Technical Report #5021, Pasadena
California,1981.

Christopher Kingsley.

“A Hiererachical, Error—Tolerant Compactor”.

Proceedings of the 215t Design Automation Conference, June
1984, pages 126-132.

S. Kirkpatrick, C.D. Gelatt, Jr., M.P. Vecchi.
“Optimization by Simulated Annealing”.
SCIENCE, Volume 220, May 13, 1983, pages 671-680.

Scott Kirkpatrick.
“Optimization by Simulated Annealing: Quantitative Studies”.
IBM Research, Yorktown Heights, N.Y. 10598 1984.

— 241 —

[Kirkpatrick 84b] Scott Kirkpatrick.

[Lattin 79)

[Lien 81]

[Locanthi 78]

[Lundy 84b)

[Lutz 84]

[Maley 85]

[Mead 80]

[Mead 83]

List of Abstracts.
Workshop on Statistical Physics in Engineering and Biology, IBM
Thomas J. Watson Research Center, Yorktown Heights, NY,
April 26-7, 1984,

Bill Lattin.

“VLSI Design Methodology: The Problem of the 80’s for Micro-
processor Design”.

Very Large Scale Integration, California Institute of Technology,
Charles L. Seitz, Pasadena, California, January 22-24 1979.

Sheue-Ling Lien.

“Toward a Theorem Proving Architecture”.

Masters Dissertation, California Institute of Technology, Com-
puter Science Department, Technical Report #4653, Pasadena
California, 1981.

B. Locanthi.

“LAP: A Simula Package for IC Layout”.

California Institute of Technology, #1862, Pasadena California,
1978.

M. Lundy.

“Applications of the Annealing Algoritm”.

Handout at the Workshop on Statistical Physics in Engineering
and Biology, IBM Thomas J. Watson Research Center, Yorktown
Heights, NY, April 26-7, 1984.

Chris Lutz, Steve Rabin, Chuck Seitz, and Don Speck.

“Design of the Mosaic Element”.

Conference on Advanced Research in VLSI, Massachusetts Insti-
tute of Technology, Paul Penfield, Jr., Editor, January 1984.

F.M. Maley.

“Compaction with Automatic Jog Introduction”.

1985 Chapel Hill Conference on Very Large Scale Integration,
Henry Fuchs, Editor, Computer Science Press, Inc. 1985.

C.A. Mead and L.A. Conway.
Introduction to VLSI Systems.
Addison Wesley, 1980.

Carver A. Mead.

“Structural and Behavioral Composition of VLSI”.

Proceedings of the IFIP TC 10/WG 10.5 International Confer-
ence on Very Large Scale Integration, Trondheim, Norway, 16-19,
August 1983, pages 3-8.

[Metropolis 53]

Milne 84]

[Minter 80]

[Moore 79]

[Mosis 84]

[Mosteller 81]

[Mosteller 81]

[Mosteller 82]

[Mosteller 82]

— 242 -

Nicholas Metropolis, Arianna W. Rosebluth, Marshall N. Rosen-
bluth, Augusta H. Teller, and Edward Teller.

“Equation of State Calculations by Fast Computing Machines”.
The Journal of Chemical Physics, Volume 21, Number 6, June
1953, pages 1087-1092

George Milne.

“Towards Verifiably Correct VLSI Design”.

University of Edinburgh, Internal Report CSR-164-84, The
King’s Buildings, Mayfield Road, Edinburgh, EH9 3JZ, 1984.

C. Minter.

“Charles Terminal Care Package”.

California Institute of Technology, Silicon Structures Project,
SSP Report #3804, Pasadena California, 1980.

Gordon E. Moore.

“Are We Really Ready for VLSI?”.

California Institute of Technology, Very Large Scale Integration,
Charles L. Seitz, Pasadena, California, January 22-24 1979.

The MOSIS Project.

The MOSIS System(what it is and how to use it).
USC/Information Sciences Institute, 4676 Admiralty Way, Ma-
rina del Rey, California 90292-6695, March 1984.

R.C. Mosteller.

“A Leaf Cell Design System”.

Masters Dissertation, California Institute of Technology, Com-
puter Science Department, Technical Report #4317, Pasadena
California, 1981.

R.C. Mosteller.

“REST A leaf Cell Design System”.

Very Large Scale Integration, University of Edinburgh, Academic
Press, Edinburgh, Scotland, ISBN 0-12-296860-3, John P. Gray,
August 1681.

R.C. Mosteller.

“Coma”.

California Institute of Technology, Silicon Structures Project
Spring Review, Pasadena California, 1982.

R.C. Mosteller.

“An Experimental Composition Tool”.

Conference on Microelectronics, The Institution of Engineers,
Australia, 1982.

[Mosteller 84]

[Ousterhoust 81]

[Ousterhoust 84]

[Rabin 84]

[Robertson 81]

[Rowson 80]

[Rupp 81]

[Sastry 82]

[Schiele 83]

— 243 —

R.C. Mosteller.

“The 2-D Compaction Problem”.

Workshop on Statistical Physics in Engineering and Biology, IBM
Thomas J. Watson Research Center, Yorktown Heights, NY,
April 26-7, 1984.

J.K. Ousterhoust.
“Caesar: An Interactive Editor for VLSI Layouts”.
VLSI Design, Fourth Quarter, pages 34-41, June 1981.

J K. Ousterhoust, Gt.T. Hamachi, R.N. Mayo, W.S. Scott, and
G.S. Taylor.

“Magic: A VLSI Layout System”.

Proceedings of 215% D.A. Conference, pages 152159, June 1984.

Steve Rabin.

“Mosaic Memory Design Notes”.

California Institute of Technology, Computer Science Depart-
ment, Technical Report 5162:DF:84, Pasadena California, 1984.

P.S. Robertson.

The Production of Optimized Machine—Code for High—Level Lan-
guages using Machine—Independent Intermediate Codes.

PhD Dissertation, University of Edinburgh, November 1981.

J.A. Rowson.

Understanding Hierarchical Design.

PhD Dissertation, California Institute of Technology, Pasadena
California, 1980.

C.R. Rupp.

“Components of a Silicon Compiler System”.

Very Large Scale Integration, University of Edinburgh, Academic
Press, Edinburgh, Scotland, ISBN 0-12-296860-3, John P. Gray,
August 1981.

Sarma Sastry and Alice Parker.

“The Complexity of Two—Dimensional Compaction of VLSI Lay-
outs”.

IEEE International Conference on Circuits and Computers,
ICCC 82, September 1982.

W._L. Schiele.

“Improved Compaction By Minimized Length Of Wires”.
Proceedings of the 215t Design Automation Conference, June
1984, pages 121-127.

[Segal 80|

[Segal 84]

[Seitz 85a)

[Seitz 85b]

[Speck 85]

[Sproull 79]

[Stallman 80]

[Steele 85]

[Suaya 84]

— 244 —

R. Segal, C. Carroll, G. Tarolli, S. Trimberger, R. Sproull,
R. Lyon, D. Lang.

“SSP Basic Software Package”.

California Institute of Technology, Silicon Structures Project,
SSP Report #4024, Pasadena California, 1980.

R. Segal.

“Structure, Placement and Modeling”.

Masters Dissertation, California Institute of Technology, Com-
puter Science Department, Technical Report #5132, Pasadena
California, 1984.

Chuck Seitz.

“The Cosmic Cube”.

Communications of the ACM, Volume 28, Number 1, January
1985,

Chuck Seitz.
Private Communication.
California Institute of Technology, Pasadena California, 1985.

Don Speck.
Private Communication.
California Institute of Technology, Pasadena California, 1985.

R. Sproull and R. Lyon revised S. Trimberger.

“The CALTECH INTERMEDIATE FORM for LSI LAYOUT
DESCRIPTION”.

California Institute of Technology, Silicon Structures Project,
SSP MEMO #2686, Pasadena California, 1979.

R. M. Stallman.

“EMACS Manual for TWENEX Users”.

Massachusetts Institute of Technology, Artificial Intelligence Lab-
oratory, AI Memo #3555 1980.

Craig S. Steele.

“Placement of Communication Processes on Multiprocessor Net-
works”.

Masters Dissertation, California Institute of Technology, Com-
puter Science Department, Technical Report #5184:TR:85,
Pasadena California, 1985.

Roberto Suaya.

“Simulated Annealing and VLSI Control Structures”.
Workshop on Statistical Physics in Engineering and Biology, IBM
Thomas J. Watson Research Center, Yorktown Heights, NY,
April 26-7, 1984.

[Sutherland 78]

[Tanner 83

[Tompa 80|

[Trimberger 80]

[Trimberger 81]

[Trimberger 82]

[Trimberger 83]

[Vecchi 83|

[Watanabe 83]

— 245 —

1.E. Sutherland.

“The Polygon Package”.

California Institute of Technology, Computer Science report
1438, Pasadena California, 1978.

John Tanner.
Motion Detection Chip.
California Institute of Technology, Pasadena California, 1983.

M. Tompa.

“An Optimal Solution to a Wire-Routing Problem”.
Proceedings of the Twelfth annual ACM Symposium on Theory
of Computing, 28-30 April 1980.

S. Trimberger.

“The Proposed Sticks Standard”.

California Institute of Technology, Silicon Structures Project,
SSP MEMO #3487, Pasadena California, 1980.

S. Trimberger, J. Rowson, C. Lang, and J.P. Gray.

“A Structured Design Methodology and Associated Software
Tools”.

IEEE Transactions on Circuits and Systems. CAS-28, 7, July
1981.

S. Trimberger, and J. Rowson.

“Riot - - A Simple Graphical Chip Assembly Tool”.
Proceedings of the 19th Design Automation Conference, June
1982, pages 371-376.

SM. Trimberger.
Automated Performance Optimization of Custom Integrated Cir-

cuits.
PhD Dissertation, California Institute of Technology, 1983.

Mario P. Vecchi and Scott Kirkpatrick.

“Global Wiring by Simulated Annealing”.

IEEE Transactions on Computer-Aided Design, Volume CAD-2,
Number 4, October 1983.

Gershen Kedem and Hiroyuki Watanabe.

“Graph-Optimization Techniques for IC Layout and Com-
paction”.

Proceedings of the 20th Design Automation Conference, June
1983, pages 113-120.

[Watanabe 84]

[Williams 77)

(Wipfli 78]

[Weste 81]

[Weste 81a]

[White 84]

[Whitney 82]

[Whitney 83]

[Whitney 85]

— 246 —

Hiroyuki Watanabe.

IC Layout Generation and Compaction Using Mathematical Op-
timization.

PhD Dissertation, Computer Science, The University of
Rochester, New York 1984.

John Williams.

“Sticks - A New Approach to LSI Design”.

Masters Dissertation, Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Technology,
June 1977.

J. Wipfli.

“A SIMULA Graphic Package”.

California Institute of Technology, Silicon Structures Project,
SSP Report #1929, Pasadena California, 1978.

N. Weste.

“Virtual Grid Symbolic Layout”.

Proceedings of the 18th Design Automation Conference, pages
225-233, 1981.

N. Weste and Bryan Ackland.

“A Pragmatic Approach to Topological Symbolic IC Design”.
Very Large Scale Integration, University of Edinburgh, Academic
Press, Edinburgh, Scotland, ISBN 0-12-296860-3, John P. Gray,
August 1981.

Steve R. White.
“Concepts of Scale in Simulated Annealing”.
Proceedings of ICCD, October 1984, Pages 646-651.

T. Whitney, and T. Hedges.

“Pooh User’s Manual”,

California Institute of Technology, Computer Science Depart-
ment Technical Report # 5029, Pasadena California, 1982.

T. Whitney, and C.A. Mead.

“Pooh: A Uniform Representation for Circuit Level Designs”.
Proceedings of International Conference on VLSI, Trondheim,
Norway, August 1983 Pages 401-411.

T.E. Whitney.

Hierarchical Composition Of VLSI Circuits.

PhD Dissertation, California Institute of Technology, Pasadena
California, 1985.

[Wilcox 85]

[Wong 83]

[Wong 83a)

— 247 -

C.R. Wilcox, M.L. Dageforde, and G.A. Jirak.
Mainsail Language Manual Version 9.0.
Xidak, Inc., Menlo Park, California, 1985.

M. Schlag,Y.Z. Liao and C.K. Wong.

“An Algorithm for optimal two-dimensional compaction of VLSI
layouts”.

North Holland INTEGRATION, the VLSI journal 1, 1983, pages
179-209.

Y.Z. Liao and C.K. Wong.

“An Algorithm to Compact a VLSI Symbolic Layout with Mixed
Constraints”.

Proceedings of the 20th Design Automation Conference, June
1983, pages 107-112.

