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ABSTRACT 

Cellular protein synthesis changes rapidly in response to internal and external cues in ways 

that vary from cell to cell. Global proteomic analyses of microbial communities, tissues, 

and organisms have provided important insights into the behavior of such systems, but can 

obscure the diversity of responses characteristic of different cellular subpopulations. Recent 

advances in cell-specific proteomics—fueled in part by the development of bioorthogonal 

chemistries, more sensitive mass spectrometers and more advanced mining algorithms—

have yielded unprecedented glimpses into how proteins are expressed in space and time. 

Whereas previous cell-specific proteomic analyses were confined to abundant cells in 

relatively simple systems, recent advances in chemoproteomics allow researchers to map 

the protein expression patterns of even rare cells in complex tissues and whole organisms.  

Chapter 1 highlights recently developed strategies for cell-selective proteomics, including 

metabolic labeling strategies such as bioorthogonal noncanonical amino acid tagging 

(BONCAT). BONCAT is a chemoproteomic technique that enables temporal labeling of 

proteins using noncanonical amino acids. In the cell-selective version of BONCAT, 

expressing a mutant aminoacyl-tRNA synthetase under the control of cell-specific genetic 

elements affords cellular resolution; only cells of interest can selectively incorporate a 

noncanonical amino acid into proteins for subsequent detection and identification. Chapter 

2 details protocols to set up a cell-selective BONCAT system.  

While BONCAT had previously been applied to studies of microbial pathogenesis in tissue 

culture-based models of infection, we sought to further develop the method to identify the 

proteome of methicillin-resistant Staphylococcus aureus (MRSA) within a mouse model of 

infection, as detailed in Chapter 3. We used this technique to enrich for staphylococcal 

proteins made within the host and in addition to finding many factors known to be 
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important for infection, we also found many that had not previously been associated with 

infection. Screening several of these previously unknown factors in vivo led to the 

discovery of a novel protein important for MRSA infection. This unbiased approach to cell-

selectively label pathogenic proteins during infection could be used as a global discovery 

tool for novel anti-infective strategies.  

In Chapter 4, we combine this cell-selective BONCAT strategy with microbial 

identification after passive clarity technique (MiPACT) to visualize both staphylococcal 

protein synthesis and ribosomal RNA within whole skin abscesses during infection. In 

Chapter 5, we continue developing cell-selective BONCAT to study microbial protein 

synthesis in the context of a living mouse by extending the system to Bacteroides fragilis, a 

common human gut commensal.  

Finally, cell-selective BONCAT is wholly dependent on the bioorthogonal nature of the 

azide and its detection reagents. Fishing out an azide-tagged molecule from the rest of the 

cellular milieu requires optimization of enrichment-based strategies. In Chapter 6, we 

describe the development of a peptide to quantitate the gain of our enrichments. 

While innovations in mass spectrometry and computational algorithms have facilitated the 

identification and quantification of thousands of proteins simultaneously from complex 

samples, this abundance of data does not necessarily lead to biological insight. Cell-specific 

proteomic techniques will play a key role in the identification of the mechanisms that 

govern cell specialization and that allow organisms to respond to changing environments. 

Overall, this work demonstrates the power of cell-selective chemoproteomics to ascertain 

biological insights in complex systems.  
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