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PART I: MODE LOCKING AND ULTRASHORT LASER PULSES BY A REFRACTIVE

INDEX NONLINEARITY

Jean-Pierre Raymond Henri Laussade

ABSTRACT

A new method for locking the longitudinal modes of a laser
resonator and generating ultrashort pulses of light has been found.
The cavity modes are coupled together when a medium possessing a
refractive index nonlinearity is placed inside the cavity.

A theoretical study is presented which analyzes the mode
structure of a laser resonator containing a cell filled with an
anisotropic molecular liquid. It is found that under certain condi-
tions the energy exchange between the modes gives rise to a mode
locked spectrum and to the attendant generation of ultrashort pulses
of light (~ lO_llsec for a ruby laser,'le_lgsec for a Nd3+ glass
laser).

An experimental investigation is reported. The presence of
ultrashort pulses in the output of a Q-switched ruby laser is observed
when a liquid cell containing nitrobenzene or a-chloronaphthalene is

placed inside the cavity.
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PART II: A THEORETICAL STUDY OF OPTICAL WAVE PROPAGATION THROUGH
A RANDOM MEDIUM AND ITS APPLICATION TO

OPTICAL COMMUNICATION

Jean-Pierre Raymond Henri Laussade

ABSTRACT

In this report we are interested in a theoretical study of
wave propagation in a randomly turbulent medium and the application
of the results to the evaluation of optical communication systems
through the atmospheric turbulence.

We first derive a power series expansion solution for the

wave function u(z) of ‘a wave propagating through a medium with a

random index of refraction. The average wave function u(;) and the

correlation function u(zl) u*(zg) are calculated in terms of the
correlation function of the index of refraction, the only assumption
being that the wavelength of the wave is much smaller than the small-
est size of the turbulence. The intensity correlation function
I(§l) I(;z) is investigated and recent experimental results concern-
ing the behavior of the intensity fluctuations are discussed.

Next, the performances of two schemes of optical communication
through the random atmospheric turbulence are compared: (a) heterodyne
detection, (b) video communication. It is found that for long propaga-

tion paths and strong turbulences, scheme (b) is preferable to scheme

(a). This is due to the cancellation of the phase fluctuations between

"reference" and "signal' parts of the beam in the video communication

scheme.
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I. MODE LOCKING AND ULTRASHORT LASER PULSES BY

A REFRACTIVE INDEX NONLINEARITY
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INTRODUCTION

The invention of the laser has provided many physicists in many
areas of research with a useful research tool.

The field of nonlinear optics 1s one of the most privileged in
this regard. The intense optical electric fields which are present
inside and outside a laser cavity have been successfully used to study
and obtain a better comprehension of the nonlinear behavior of many
materials. Intensive and fruitful research has been performed on optical
nonlinear phenomena such as stimulated Raman scattering, stimulated
Brillouin scattering, stimulated Rayleigh scattering. The nonlinear
properties of certain crystals have been used to modify the output
characteristics of lasers through parametric interactions of optical
beams or second and third harmonic generation of laser radiation.

Here, we wish to report a theoretical and experimental investigation
showing how the presence of a medium possessing a refractive index non-
linearity inside the cavity of a Q switched solid state laser can modify
its mode structure and give rise to the production of intense and ultra- .
short pulses of light.

The output electric field of a laser is equal to the sum of the
electric fields of the individual modes of the cavity which are amplified
by the laser medium, i.e. whose frequencies lie within the gain linewidth
AvG of the amplifying transition.

In the normal mode of oscillation of a laser (no perturbation inside
the cavity), the phases of the modes are random and uncorrelated, and the
output intensity is fluctuating randomly in time around its mean value

equal to NI where N is the number of oscillating cavity modes and I



is the average mode intensity.

It has been shown(l> that if the losses of the laser cavity are
modulated at a frequency equal to the intermode spacing frequency C/ZL
(L is the length of the cavity), then the output of the laser consists
of a train of pulses which have the following properties:

(a) The pulsewidth is equal to the reciprocal of the gain linewidth
l/AvG

(b) The pulses are separated in time by the double transit time of
the light inside the cavity 2L/C

(c) The peak power is equal to N times the average power of the
laser where N 1is the number of coupled modes.

The introduction of a loss modulator inside a cavity couples the
modes of this cavity in the following way. Suppose one mode at the

frequency v, 1s oscillating., When the electric field of this mode

0
passes through the modulator operating at a frequency &V, sidebands
are generated at frequencies Vo + 6v and VO - §v. On the next pass

through the modulator, sidebands of frequencies Vo * 26v  and Vi, = 26V
will be generated and so on, If 6v is equal to C/2L the intermode
spacing frequency, then the sidebands correspond to resonance frequencies
of the cavity modes, The modes are thus coupled together with a unique
phase relationship. (The term mode locking is.also applied to this
phenomenon,) While in the non-mode locked case, the phases of the modes
are random,

Using internal modulators, ultrashort pulses have been obtained in

continuous wave gas lasers<2) (with a width of 2.5 x lO_9 sec) and solid

state 1asers(3) (8 x os sec) with a pulsewidth approaching the
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theoretical value l/AvG. Internal modulators have also been used to
generate ultrashort pulses in pulsed solid state lasers where the
duration of the pulsing (~ 1 u sec) is larger than the modulating
period(u’s). The observed pulsewidths were 2 x 10_9 sec for Ruby
and 0.5 x 10_9 for Nd: glass while the theoretical values are

3 sec, indicating that the whole

respectively 107 sec and 4 x 107%

linewidth is not fully mode locked,
An increase in the output power of solid state lasers has been ob=-

tained by the technique of Q—Switching(6). The output of a non-mode

locked Q-switched solid state laser consists typically of a pulse of

10 to 50 x 10-9 sec with a peak power of up to a few hundred megawatts.

For these lasers, mode~locking has been obtained by inserting a saturable

(7,8)

absorber inside the cavity. A saturable absorber is an element
whose optical transmission is an increasing function of the intensity
of the incident beam, Pulses as short as a few lO-ll sec in Ruby lasers
and & few 1072 see in Wa: glass lasers with peak intensities in excess
of 109 watts have been observed by using this technique.

In this report, we present a new method for generating high
intensity picosecond pulses in Q-switched solid state lasers.

We show theoretically that the introduction of a refractive index
non-linearity inside a laser resonator gilves rise to a mode-locked
spectrum characteristic of the ultrashort pulse mode of oscillation(9).
The non-linearities are prévided by anisotropic molecular liquids. The
theoretical argument is presented in Part I.

In Part II we describe the experimental techniques and present the

experimental results. Ultrashort pulses are observed in the output of a
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Q-switched Ruby laser when a cell containing nitrobenzene or
O~ chloronaphthalene is placed inside the cavity<lo). The degree of mode
locking is found to be a sensitive function of the orientational relaxa-
tion time of the molecules which can be controlled by changing the
temperature of the liquid. Ultrashort pulses appear regularly only
when the nitrobenzene is heated above 120°C. The pulsewidth (~ lO-ll
sec) is measured accurately by the two photon fluorescence technique.
Some observations of the stimulated Raman emission from nitrobenzene are
presented.

A summary of the results is followed by a discussion where we give

a. physical argument to show how a pulse of light is shortened when

traveling through a nonlinear index of refraction.
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I. THEORETICAL INVESTIGATION

1-1, Statement of the problem.

In this report we consider the interaction of the longitudinal
modes of a laser cavity with a medium which possesses a nonlinear index
of refraction. In our analysis such a medium is a liquid with
anisotropic molecules, i.e. molecules having only one axis of symmetry.
These molecules have different polarizabilities along their axis of
symmetry and along any other axis perpendicular to it. We call these
polarizabilities all and ozdL respectively. A linearly polarized
electric field applied to such liquid induces a nonlinear polarization
in the medium which is proportional to the difference (a” - aL) and
to the cube of the electric field as we shall see later, and therefore
produces a change in the dielectric constant of the medium proportional
to the square of the electric field. When a liquid with anisotropic
molecules is placed inside a laser resonator where the optical electric
fields are large enough to produce an appreciable change of the dielectric
constant, it couples the longitudinal modes of the laser cavity together
in the following way. Let us assume that three modes of the cavity os-

cillate with frequencies w Wy + Q, w, - Q. (Figure 1-1.) Q is the

o’ 0

radial intermode frequency Q = %9 where L 1is the optical length of

the cavity.

The two modes (O0) and (+1) for example, induce a change in the
dielectric constant of the liquid A ¢ & EO El where EO and El are
the electric fields of the two modes. A ¢ has a component oscillating
at the frequency '(ab + Q) - Wy = Q. The mode (-1) incident upon the

liquid "sees" a modulation of the dielectric constant at frequency Q



i
J

=L tad, Wt 10

-1 O +

FIG 11 _ Three oscillating
laser modes
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-+ Q=w

0 is generated, therefore

and a sideband at frequency (ab
coupling the three modes together, i.e., introducing relationships be-
tween the amplitudes and the phases of the three modes.

Solid state lasers such as the ruby laser and the neodymium laser

with very large gain linewidth 2 x lO:Ll Hz for ruby, more than lO12

3+: glass can have a very large number of modes oscillating

Hz for Nd
at the same time., For example, in the case of a ruby laser with a 1-
meter-long cavity,as many as 600 modes of the cavity lie within the gain
linewidth of the ruby and can oscillate simultaneously.

Although it is difficult to account for the interaction of such a
large number of modes in a nonlinear medium, it can be seen by the
above qualitative argument that a liquid with anisotropic molecules
placed inside a laser resonator induces coupling and gives rise to
power exchange between the equispaced laser modes.

Our problem is to find the amplitudes and the phases of the modes
of a laser resonator containing a nonlinear liquid. For this purpose,
we first calculate the dipole moment of an anisotropic molecule induced

by an electric field. The electric field is then expressed as the sum

over the cavity modes of the electric field of one cavity.

1-2., Average dipole moment of an anisotropic molecule induced by a

linearly polarized optical electric field.

In this section, we consider the dipole moment induced on one
anisotropic molecule by a linearly polarized optical electric field,
The axis of symmetry of the molecule makes an angle 6 with the
direction of the electric field taken as the z-direction. See Figure

1.2



F1G 1.2 _ Orjentation of an
anisotropic molecule with
an electric field _
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Iet us call an and aL the polarizability of the molecule along

its axis of symmetry and an axis perpendicular to it and let us call

b pn and HL the components of the induced dipole moment along the

direction of the field, the | and the | axis.

The following relationships hold between u,, By and u .
L

woo=0 E cos 6 3 p =o Esin @ (1.1)

=u cos O+ p sin © (1.2)
Z i 1

From the two above expressions, we find

=
N
]
=l
Q
0
o
2
o
@
+
b=
Q
2
@

or

o =El@ =-a) cos® 6+ Q E (1.3)
Z Il fiL L

The average induced dipole moment of one anisotropic molecule is

found from (1.3) by replacing cos’e by its statistical average cos26

taken over the ensemble of molecules., Then

Lo=El@ =~o) cos’e+ a E (1.4)
z - Il 3 1

with
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TC
fcosze £(9) dQ
cos O = J
7T
ff(e) aQ
0

where f(6) d is the number of molecules whose axes of symmetry lie
in the differential solid angle dQ = 2x sin 6 d6.

When no electric field is applied, all orientations of the axis
are equally probable and

7T

£(8 = 1 . In this case cosze = cosze sin 6 d6 = 3‘-. When
7 I # _ 3

ff(e) an o

0

N B

a strong electric field is applied to the liquid, it tends to align the

molecules along its direction, and therefore cosze will be different

from i . We then write

3

cos’e = s + % (5]

The quantity s determines the average deviation of the orientation
of anisotropic molecules in a liquild when an electric field is applied
to it., s is the first diagonal element of the anisotropy tensor(ll)o

From (1.4) and (1.5) we find

=B -a)s+z(a
2 Il 1L

3 (o, + ZaL) (1.6)

The anisotropy tensor element s obeys the following differential



oy iy .
equation(ll)

a5 _2ap2 @.1)

where E 1s the linearly polarized electric field,
T. is the time it takes for the molecules to regain their random
orientation after the electric field has been turned off; it is often
called the Debye relaxation time(lz) or orientational relaxation time,.
A 1s a constant which can be found by the following argument.
The energy of a molecule whose axis makes an angle 6 with the
direction of the electric field is W(B) = - % B B = = % (x

z i
2

E cosze - % o E° where the relationship (1.3) has been used., In
L

thermal equilibrium, the average value of cosze is then:

y 2. wﬁg " u® 2
chos 0 e sin 6 db eY u du
0

-Qa ) X
A4

5 -1
(cos™0)yyy = W5y = s

e KT sin 6 db6 e

uz
Y du

(@)
1
(2]

where the change of variable u = cos 6 has been made and

2
(@ -a)E _ ,

o H = < . 2 —2: )+
Y= 2KT . For y << 1, we find (cos e>th =5+ E% _—

from (1.5), s, = I5 -
ds
==

= %L B . From the last three relationships, it is found that

0]

In equilibrium , the solution of Eq.(1.7) is

Sth

1 o)
oL | P (1.8)
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The next step is to solve the differential equation (1.7) when
the electric field is the sum of the electric fields of the modes of a

laser resonator,

1-3, Orientation of anisotropic molecules in a laser resonator.

In order to find the average dipole moment of an anisotropic mole-
cule in a laser cavity, we must solve the differential Eq.(1l.7) for the
anisotropy tensor element s. The electric field is now the sum of the
electric fields of all the individual longitudinal modes of the cavity‘
which lie within the gain linewidth of the laser medium,

1-3.1. Normal mode formalism,

In order to describe the mode spectrum of the laser resonator, we

introduce a set of orthonormal electric and magnetic vector functions

En(;) and ﬁn(?) as defined by Slater(l3>(lu). They are related by
the following relationships

knEn(r) =V X Hn(r) » ko Hn(r) =vxE_(r) (1.50)
and

v‘En(r) = V-Hn(r) =0 (1.10)

where kn is a constant and n is the index mode nunber. According

to (1.9) and (1.10), they satisfy the following differential equations

(v% + ki) En(_?) =0 , % + krzl) ﬁn(?j = 0 (1.11)

and they are defined to obey the normalization conditions.



] Bl

fﬁn(?) -E’m(I«’)de =65, fﬁ’n(F)-ﬁm(f’)d}’ =6 (1.12)
v v

The above integrations are performed over the total volume of the
cavity. We shall assume that the electric fields inside the cavity are
linearly polarized. This is the case in a solid-state laser where the
solid-state rods are cut at Brewster's angle to minimize the reflection
losses., In this case, the electric fields of all the longitudinal modes
of the laser cavity have the same direction; the same is true for the
magnetic fields, We will, therefore, consider the electric and magnetic
fields as being scalar quantities and we will drop the arrows.

We express the total electric field E(;,t) and the total magnetic

field H(r,t) inside the cavity as:

E(7,t) = - Z f_— P (t) 5_(7) (1.13)
n €0

H(Z, t) =Z \/_E_l_ o, a_(t) B (7) (1.14)
' n 0

where w, 1s defined by

kn = ah\/poeo (d1:15)

and where En(?) and Hn(?) are the electric and magnetic scalar
functions defined above., The summation is performed over the total

number of modes of the cavity. and by are the dielectric constant

o



e

and the permittivity of the medium filling the cavity.

Pn(t) and qn(t) are unknown functions of time describing the
amplitudes and phases of the individual longitudinal cavity modes. We
shall solve for these functions by using expansions (1.13) and (1.14)
into Maxwell's equation with an added polarization term proportional to
the cube of the electric field.

1-3.2. Expression of the anisotropy tensor element s in a laser

cavity.
With the help of the formalism presented in Section 1-3.1, we can

rewrite the differential Eq.(1.7) as follows:

%f; v 2= %ZZ% p,(t) p () E_(¥) B (¥) . (1.27)
a b

We assume a solution for pn(t) in the form

W in © =iy t
. n * n n
p (t) = 3/= |D (%) e - D (t) e

- (1.18)

where w, is the optical frequency of the oscillating mode n and

* in ©
Dn(t) and Dn(t) are slowly varying functions of time compared to e
*
N A
ie. |—g—| < alp (t)] (1.19)

*
Dn(t) is the complex conjugate of Dn(t). The phase and amplitude in-
¥, .
formation of mode n 1is thus obtained from the solution for Dn(t).

According to (1.18),
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Jo 5 i(w +w )t % i(w =-w )t
b (8) B (8) = - 22 D) ity e ® P - pi(e) p(t)e P
+ C.C.

we notice that the product pa(t) pb(t) is made up of two frequency
components, one at frequency W+ Wy and the other one at frequency

15

W, = W Both W, and w  ~are optical frequencies ~ 10 rd/sec;

then W, + is an optical frequency. Since the orientational

relaxation time of the liquid is of the order of lO-lo to lO_12 sec,

the molecules cannot respond to fields at optical frequencies. The only

term to which the molecules can respond is the term at frequency W, =0
. - - . - Y i

which ranges from @, 0 to W, = W 25 AvG where A G I8 the

gain linewidth of the laser medium. Then

i(w - t
~ L B ZKZZ @, @ D *(e)D, (8) e R | )

We look for a solution for s in the following form,

L(w =-w )t
s =§E:jg:;:b(t) el( . wb) + C.C (1 EL)
a b

*
where Sab(t) is a slowly varying function of time compared to

*
i(w -a )t ds_. (%)
e @ b when a % b. Therefore for a + b, we can neglect Q—EEE—-

*
with respect to (wé—wb) s . (t) and we write

ab
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ds’ (t) % i(w -a )t
%‘E E Z _%%"‘ * Z Z (o ~w )s () e 2™ + C.C. {l.28)
a bfa

a

With the help of expressions (1.20), (1.21) and (1.22), we find

as. (%) N i (o~ )t N i(w, ~a )t
Z —%—%— +ZZ/ i(wa-wb) sab(t) e 2 “b F %ZZsab(t) e ™%
a a Dbfa a b

. i - 1t
. 3%5 gb ;/wa%' D (%) D, (%) Hogmap) B () E, () (1.23)
’ a

From the above equation we find the following expressions for

s, (t) and s, (t)
. o D, (t) D, (%) -
s, (8) = %%Ea(r) E (%) Joo W for atb  (L.2h)
and

%G.(Z s, (t)] + = Zs:a(t) " 3_%2&& D:(t)Da(t)Ez(?) (1.25)
a:

a a

The last expression is a differential equation for the quantity

*
% saa(t). The summation is performed over all the oscillating modes of

a

the cavity. The right-hand side of Eq.(l.25) is related to the total
electromagnetic energy stored in the cavity 6& in the following way.

é} is defined as
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6& o % Jf eOEZ(F,t) # HOHZ(?,t)) r (1.26).
v

where the integral is performed over the volume of the cavity. E(;,t)

and H(T,t) are replaced by their expressions (1.13) and (1.1k4)

€T ='%EEZZE: pn(t)pm(t) En(?> Em(F)d; * CL)nwmqn(t)qm(t) J[Hn(;)Hm(?)d?
n m i \

and with the help of (1.12)

&p-1) [+ el (L.27)

n

e 3
or in terms of the functions Dn(t) and Dn(t) defined by (1.18)

€= Z @D, (t) D_(t) (1.28)

Note: The derivation of expression (1.28) from expression (1.27) is
given in the Appendix.

* -
The quantity % waDa(t) Da(t) EZ(r) is equal to the energy per
a

unit volume inside the cavity since the integral of this quantity over

the volume of the cavity is:

fd?ZwaD:(t) D_(t) E-(7) =Z oD (t) D_(t) = €7 .
v a a

If the total electromagnetic energy stored inside the cavity is

constant during the time the interaction between the modes takes place in
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the liquid, then the energy per unit volume can be considered a constant

and the solution of the differential equation (1.25) is:

z (t) = i WT)Z D, (%) D_(t) EX(F) (1.29)

a

Expressions (1.24) and (1.29) are then used in (1.21) to find s.

=.3L_. (1-e"t/)z D t)D(t)E(r)

D (t) t) 1(@ -mb)t . .
Ea(r) Eb(r) + C.C.
l+l((l) -(l)b> T (1.30)

For times t long compared to the relaxation time T of the

liquid, we have

— D (t) D, (%) l(co o)t
ZZ b E,(F) E (¥) + c.c.  (.31)
l+l -(nb)"r

We have expressed the anisotropy tensor element s 1in terms of
the complex amplitudes Dn(t) and DZ(t)» of the oscillating longitudinal
modes of the cavity and of the space eigenvectors En(;) of these modes.
We are now in a position to calculate the total polarization induced in

the nonlinear liquid placed inside a laser resonator.,
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1-4. Total nonlinear polarization induced in the anisotropic molecular

liquid.
The average dipole moment of an anisotropic molecule is EZ. It is
related to the total average polarization P per unit volume by the

relationship
P=N. ¢ (1.32)
where Nb is the number of molecules per unit volume,

E
P=N(&a =-a)sE+N(@ +20)=
O( I L) o< I L) 3

In M.K.S. units the displacement vector D 1is expressed as

aﬂ + 20
—3 —3 -
D=ceg+P ey + Ny ——-——-l-3 E + NO(Ot” oal) s E
which can be written as:
D = E+ P .y

o NL

where e, is the dielectric constant of the liquid and PNL is the
total nonlinear polarization induced in the liquid.
Pyr, = No(a ;" o:L) s E (l.3l+)
We now express the nonlinear polarization P in terms of the

NL
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cavity mode wavefunctions D (t) and E (r). With the help of (1.13),

(1.19) and (1.31), we find

Py, == 1 NO(OtH - ) —LZZZ‘M&%% Ea(F)Eb(F)Ec(?)
b e

L
Segeeg 5

D, (t) D, () (e -y )t ig b i b
———— e +

X c.c.|[Di(t)e S-D(t)e °| (1.35)

l+l(“h-aE>T
The two products in expression (1.35) are written explicitly as

. i * ’ %
* Da Db Dc l(aa-a%+a%)
—_— e + G Cs
l+1(aa—a%)T

(1.36)

D DD i ( ) t
a b ¢ el By =P e

+ i + CoCa

l+i(ab-mé)T

The second part of expression (1.36) is obtained from the first

part by interchanging the indices a and b, Since the double

summation EZ:ZE: will be performed, these two terms will give the same
a b

contribution to the nonlinear polarization and we can write

\/T 1 § § §
P_==20N(x -0 ) == J o0, 0
NL oMy 3 3 2 Lp%e
- 8803 a b ¢

i D:(‘c) Db(t) Di(t) ei(wa-mb+a)c)t

x By (¥) E (7) EC(?) + 8.0+ (1.37)

1 4 i(wa—mb)'r

At this point it is useful to define an important parameter of an



DT

anisotropic molecular liquid which is a measure of its anisotropy: the
optical Kerr constant,

Definition of the Optical Kerr Constant Ese

Let us consider the case of only one oscillating mode, say, mode n,

in the cavity. The nonlinear polarization PNL can then be expressed

according to (1.37) as:

3

W iy ©
. _ 2\ n 3, . X * n
Py, = = 2 Nb(an aL) 3 5.3 E, (r) {1 DDD e + .0, (1.38)
0

The electric field of this mode is, according to (1.13) and (1.18),

— (Dn %* iwnt —
E(r,t) = = 5 iD e + C.C. En(r)
0

and the component of E3(?,t) oscillating at the frequency W, is

- * *
En3(r) ipDD e 4 O, (1.39)

With the help of (1.38) and (1.39) we can write

_ BAT L 30
PNL_ZNO(oc“ ocL) 3 (r,t) (1.40)
The nonlinear polarization induced in the anisotropic liguid by the.

applied electric field 1s proportional to the cube of the electric field.
The coefficient of proportionality is called the optical Kerr constant of

the liquid and 1s expressed with the help of (1.8) as:

€2



T

2
22T L (o -a )

_ 2 - _ [
=3 N (ocn aL) 3 55 Yo = (1.41)

This constant has been measured by various authors in wvarious
liquids in relation to the self-focusing of optical beams in anisotropic
liquids(l5). It is proportional to the square of the anisotropy (a“-aL)
of the molecules and inversely proportional to the temperature. It is
an important parameter of our analysis; the larger the optical Kerr
constant, the lafger the coupling between the cavity modes. In the
experimental part of our work, we will use liquids with a very large

Kerr constant.

The nonlinear polarization PNL is then expressed in terms of €
From (1.37) and (1.41)
w, o 0
. . a [e] - - —
Py =-31 gzz > Z\/—————8 3 Ea(r) Eb(r) Ec(r)
a b ¢ 0
D (), (£)D_ (%) i )t
1w =0 +w
gt e TR (1.12)

1 -+ i(aé-wb)T

We have now expressed the nonlinear polarization induced in the
anisotropic molecular liquid by the fields of the laser cavity modes in
terms of the wave functions Dn(t) En(?) of these modes. P, as ex-
pressed by (1.42) involves a triple summation over all the cavity modes
of the product of the wave functions of three modes. Coupling of the

cavity modes will occur through this nonlinear polarization only if the

frequency components of PNL are within the gain linewidth of the laser
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medium,

We are now in a position to find solutions for the complex
amplitudes D:(t) and Dn(t) of the oscillating cavity modes in the
presence of a nonlinear dielectric., This is done in the next section
by solving Maxwell's equations with the nonlinear polarization acting

as a driving source.,

1-5, Solution of Maxwell's equations with a third order nonlinear

polarization.,

In order to find an expression for the electric field in a laser
resonator containing an anisotropic molecular liquid, we solve Maxwell's
equations with a nonlinear polarization driving term. By this procedure
we shall first find a differential equation obeyed by the mode amplitudes

*
Dn(t).

*
1-5.1. Differential equation for D_(t).

1-5,1.1. Maxwell's equations,

In M.K.S. units, Maxwell's equations for the electric field

E(r,t) and the magnetic field H(T,t) are

v HEE) = I+ 2 (1.43)

(1.4k)

e

v x E(T,t) = -

where all the fields are scalar fields.

The consitutive relations in the nonlinear medium are

I =0 E (10)4'5)
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w)
]

ep B+ B (1.Lk6)

e, is the dielectric constant of the medium and o dis the
electrical conductivity of the medium. We shall assume in the remainder
of this analysis that the linear dielectric constant of the liquid is
the same as the dielectric constant of the medium filling the cavity.
This is not exactly true since the liquids which are used have an index
of refraction equal to 1.5 and therefore a dielectric constant of 2.25
while air with a dlelectric constant of 1 fills the cavity. A correct
result is obtained, however, if we consider the equivalent path of the
light inside the liquid, i.e. the physical length of the liquid cell
multiplied by the index of refraction of the liquid. Using (1.45),

(1.46) and (1.47), we can rewrite Maxwell's equations as

e}
VXH=GE+-5E(30E+PNL) (1.48)
and
oH
VXE=- HO = (1-49)

Iet us first replace the electric and magnetic fields by their

expressions (1.13) and (1.14) into the second Maxwell equation (1.49)

. Z 2 p (8) (vxE(F)) = "\/“—oz w, —g— H () (1.59)
n vgb n

We then use relationship 1.9, multiply both sides by ﬂm(f) and
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integrate over the volume of the cavity. With the help of (1.12), we

find

dqn(t)

pn<t) B = JES Y TEE

S

and from the definition (1.15) of @,
p,(t) = q (%) (1.60)

The second Maxwell equation (1.49) has provided a relationship
between pn(t) and qn(t). To find a solution for pn(t) and q_(t)
we use the first Maxwell equation (1.48).

According to (1.60) and (1.18) we can now express qn(t) and then
the magnetic field H(T,t) in terms of the complex amplitude Dn(t) of

the nth cavity mode in the following way:

. i t -iw t
ay(8) = === D (t) ¢ * +Dy(t)e © (1.60)
20
n
since %
n( *
2| << e lDa(e)|

With the help of expressions (1.13), (1.14) and (1.42) we write

the first Maxwell equation (1.48) as
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L g () x B (F)) = - ——G—-Z p_(t) E (7) - \[e Zp'(t)En(?)
Z\/@ nq-n n \/?o‘ - n n \/—O_ = n

3 e, Z}:> S/wzjb?c B, () B, () B,(7)
a b c 0

D (%) D, () D.(t) ei(wa-%mc)t

+ C.Ce. (1.62)

: @aﬂ%ﬂ%) l4—i@€w%h

We recall that v x Hn(r) =k En(r) and that k = ah\/uoeo

and we write the left-hand side of (1.62) as

Z\/—l: 0 (t) kE (F) = \/%szqn(t) E (T) .
"o

n n

We then multiply both sides of Eg.(1l.62) by Em(?) and integrate
over the volume of the cavity. The last term of Eq.(l.62) represents
the nonlinear polarization term., It will be non zero only inside the
volume of the nonlinear medium, i.e., the volume of the liquid cell
placed inside the optical resonator. Under these conditions and with

the help of the normalization conditions (1.12), we find
' 0w, O
2 _ o i 2% %e
Veg @, (8) = - P (t) = \Jeq PA(E) + 3 ¢, g Z%/ - 8 abo
a b c o)

Da(t) Db(t) Dc(t) ei(wa-axb+a)c)t

o l

X (@ =w + + C.C. lo63
Y 1+ Homw) T -
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where S is defined by the relationship
nabc
S e = f B, (7) E,(F) B, () B,() av (1.64)
Volume
of the cell

We shall calculate this parameter explicitly later.

We can also write expression (1.63) as follows by dividing through

by J%
5 - 5 €5
w “q, (t) + = p (t) + pl(t) = '2“\/;“;“5 V%P Spape
0 a b ¢

D:(t) D, (t) D (%) i(wa-mb+wc.) %
e +

x (aé-a%+wc YT -wb) - 8.0.1 . [1.65)
a

By using both Maxwell's equations, we have found two different
relationships between pn(t) and qn(t). They are expressions (1.60)
and (1.65). By eliminating qn(t), for example, between these two rela-
tionships, we can find a differential equation obeyed by pn(t). The
configuration of the electric field inside the cavity will then be
found by solving this equation, We shall follow this procedure with a
slight difference however,

The equation pn(t) = qﬂ(t) has allowed us to express qn(t) in
terms of DZ(t) and Dn(t). We shall then replace pn(t) and qn(t)

by their expressions (1.18) and (1.61) and we shall find a differential

%
equation for Dn(t), instead of pn(t).
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i t w i t i T @)
2 1 * n .o n ¥ i * n .| n
@ D_(t)e + 1 -86\/-— —Z—Dn(t)e -\ 5 a)nDn(t)e + T

nooo=n
7
* .
an(t) Ty b
at  ©
* * . |
) 3 & . (6 o5 ) Da(t)Db(t)Dc(t) 1(a€-wb+ah)t
- o [z 2 L% Pnabe 'L % Teilw =m.) "
EO a b c¢ ﬂﬁ %

(1.66)

In the equation (1.66), we look for combinations of the modes a,

b, and c¢ such that the nonlinear polarization induced by these

modes oscillates at frequency ), i.e. such that

(1.67)

(l)a—(,L)b+(Dc=(Dn

since only this term can provide synchronous driving of the oscillation

With this condition, the above expression is written as:

at A
* * *
ap_ (%) 3ie ; : D_(t)D, (t)D (%)
n o * 2 a b (&)
at — * Eg Dn(t) =T oo 2 V& V0, By e T
0 a,b,c G %/ T

(1.68)

This is our main working equation; it is a differential equation
*
for the nth mode complex amplitude Dn(t). A similar differential
equation for Dn(t) is obtained by taking the complex conjugate.

In a cavity with no nonlinear medium, the differential equation

dD*(t) 5
(1.68) reduces to ——%E—— + %— Dn(t) = 0 the solution of which is
g 0

-—1
T €
Dn(t) =ha 2 The amplitudes of modes decrease with time if o >0



=8

(passive cavity) or are amplified if o <0 (in a laser the gain or
0 < 0 is provided by the active medium),

We shall assume that the gain provided by the laser medium is at
each time equal to the losses of the cavity (reflection losses at the
mirror and diffraction losses). In that case o = O and the differen-

tial equation (1.68) is reduced to
* . * *
wi(r) 3t D} (6)0,, ()05 (6)

2y (1.69)

2 from——s
VG%: 2{: L0 Sna,bc

T o B
2€O &y b, e

1+ i(wy=0))T

We have obtained a differential equation for the wave function of
one cavity mode Dz(t) in terms of the wave functions of all the other
modes., The mode n 1s coupled to the modes a, b, ¢, such that
W) = W0, by a susceptibility which is proportional to

1
i (o = T
1+ 1(g€ a%)
that the effect of the end modes (at the low frequency and high frequency

. When the number of oscillating modes 1s very large so

sides of the gain linewidth) can be neglected, the interaction between

all the modes can be accounted for in a rather simple and accurate way.

% ¥
DanDc
We first reduce the triple summation 3;31__:——7- to a
a,b,c Py~ %/ T
double summation and we calculate explicitly Snabc'

*_ ¥
DanDc
1-5.,1.2. Expression of - as a double summation.
a,b,c l+1(ma—wb57

* ¥
DanDc
The triple summation T is in fact a double summa-
+1(w —&%;T
a,b,c a

tion since the mode indices a, b, ¢ are such that



=30

W, =W, - (1.67)

The mode spectrum of a laser resonator in the absence of the
nonlinear liquid (and we will assume that the presence of the liquid
does not change it appreciably) consists of a large number of modes
equispaced in frequency. The (radian) frequency separation between two

C

adjacent modes is  such that Q = 2x 5T ¢

The frequency of the nth mode is defined as
. =10 (1.70)

where n is a very large number approximately equal to the number of
half wavelengths contained in the length of the resonator n ~ %75 .
For L=1m and A\ =1y, we have n ~ 2 x 106. With the definition
(1.70), the condition (1.67) becomes n =a - b + c; this condition is

satisfied if we take a=n+m, b=n+m+ p, c¢c =n+ p, The

summation over a, b and c¢ becomes a summation over m and p and

* *

D D D
_ n+m NHMED  n+p (1.71)
1, 1(@ -wb)T 55 1-1ipQr
J

a,b

))c

We notice that the beating of modes n+ m and n+ m+ p-at
frequency Q2 will modulate the dielectric constant seen by the mode
n + p and thus will generate a sideband at frequency (n+p) Q - pQ =
nQ = @, > which 1s the frequency of the nth mode. In this way, modes
n, n+m, n+m+p, and n+p are coupled together (see Figure 1.3). The

nonlinear susceptibility is proportional to

.
T-ipgaT
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N N n«pfM NiM
> >
PIgW PEQE

F1G 1-3 _ Coupling of the
cavity modes n, n«p, N+=m, n+a«m _
here m=5p=-2
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Il

S

1-5.1.3, Explicit calculation of S .
n, N+, N+I6-P, D+ P n,m,p

In the double summation cver m and p, the term S is re=-
nabe

placed by S " which is defined by (1.6k4).

270

Sn,m,p " f E (r) B (r) En+m+p(r) En+p(r) av
Volume
of the cell (1.72)

In order to evaluate explicitly this integral, we must specify the
configuration of the liquid cell in the cavity.

A liquid cell of length 24 1is inserted in an optical cavity of
length L at a distance LO from a mirror which is taken as the origin
of the coordinates (see Figure 1.4).

The nth mode of the empty cavity has the following spatial depend-

ence defined by (1.11) and (1.12).

- 2 . nmx
En(r) 1 ET, SlnT (1-73)

where A 1s the cross section of the beam. We have, in (1.71),
neglected the spatial dependence in the transverse direction. Then,

according to (1.72),

L +4
> 0
2 . ORX : X\ - K| . X
Smmp_(ﬁﬂ f-mcmmjr)mn(mm&-wn(mmy&—mn(mmrﬂﬁ
LO-%
The integration with respect to x yilelds
2npL 2maL
14 1 . 2wl o 1 . e2mu 0
nap =T LT PR 098 —p— o g S0 % cow — (1.74)
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>

W) =3
rmTTrmg

F1G 1-4 _The liquid cell (lc)
s placed inside the cavity
formed by the mirrors m .
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where V = AL is the volume occupied by the light in the cavity. We

see that the quantity Sn 1, is roughly proportional to the ratio of
S A

the length of the liquid cell to the total length of the cavity.
All the frequencies B Yip Cpimepy’ Corn are optical frequencies
which lie within the gain linewidth of the laser medium, Therefore we

can write without any apprecilable error.

v‘%f%ﬂ;ﬁh+m+p®n+m - “nim (2.75)

1-5.1.4, Final expression of the differential equation for

Do (t).

With the help of (1.71), (1.74) and (1.75) we express the differ-

*
ential equation for Dn(t) in the following way.

dD* il D*
n 31 82 “ n+p *
at "~ 2 £t K Srm Dn+m+p D
2 £ \Y% B (1-1pQT) o
2npL 2nmnL
2 1 . 2npld 0 1 . onnd 0
x|+ 55m sin == cos ——— + = sin ——= cos —¢ (1.76)

The solution of this differential equation 1s very difficult in the
general case where the liguid cell occupiles an arbitrary position in the
cavity. However, the physical situation will not be hindered if we solve
the above equation for a special configuration of the cavity. This will

be done in the next section.
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*
1-5.2. Solution of the differential equation for D_(t).

We shall find a solution of the differential Eq.(1.76) for the
following case: The liquid cell fills half of the laser cavity (see

Figure 1.5).

. L . omgd, 0 . Ing mst
In this case LO =4 =1, sin T COS 2m —— = sin 5= cos = =
L
5 sin mx and
,
0] m=1
= sin i cos ZﬁmLo =
2t L L B < 2
i m=20
\
[
0 p =l
1 . 2mph Rl
sin cos =
2pm L L
- =0
A
\
Under these conditions, we write the differential equation (1.76)
as:

dD*
no_ _ €2 “n g g % D*
dt 2 L (l—poT) “nim n+n&p n+m
* E *

+ D w D D
n n+m T n+m T n+m

m
*%
. D*Z“ Povp Pnip (L1773
8 LT i)

In order to specify the values of p and m over which the
summations in (1.77) are performed, we must discuss in more detail the

mechanism of power exchange between modes.
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FIG 1-2 _The liquid cell(c)
fills half of the laser cavity
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F1G 1-7 _Description of the
modes participating directly
to the energy flow to and
from mode n
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In Section 1-5.1.2, we have described the mode coupling between
four modes labeled n, n+p, ntm+p, n+m, See Figure 1.3. A nonlinear
polarization is induced at frequency @ The susceptibility for this
process 1s X = T:;%ﬁ? . The dielectric constant seen by mode n+p 1is
modulated at frequenc& P2 thereby creating a sideband at the
frequency W, We can write the susceptibility X as a real part X!

plus an imaginary part +iX" where X" 1s a real function. The trans-

fer of energy between the modes n and n+p 1is proportional to X" and
pQT

2 °

)

_ 1+ (pQT
If p 1is positive, i.e, if the mode n+p has a higher frequency

in our case proportional to X" = ¢

than the mode n, energy will be transferred from mode n+p into mode

n at a rate proportional to -—¥g21—7§ « If p is negative, i.e. if
L+ (pQT)
w, > ah*p, energy will flow from mode n into mode n+p at the same

rate., If we neglect the effects of the end modes, i.e. if we assume a
large number of oscillating modes, the amplitude of each mode is likely
to stay constant since as much power is fed into it from higher frequency
modes as flows out of 1t to lower frequency modes,

The rate at which energy is transferred into one mode via another

mode separated in frequency by pQ 1is proportional to ——291——5 . We
1+ (pQr)
call this function of p, f(%—) where
0
1

then

p/m

0
£(2-) = (1.79)

0 1 4 (p/mo)2

This function is depicted in Figure 1.6. f(g—) increases for
0
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O 1 2 3 4 5 G p/m,

-1G 1-O _Representation of

/M,

the function f(p/m,)= =
( 1+ (p/m)
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p < my to its maximum value of % for p = my and decreases to zero

for p > . The energy flowing from or into mode n via mode n + p

decreases when p >m In our analysis we shall neglect the inter-

OC
action of the nth mode with the mode n + p such that p > BHkﬁ there-

fore we shall limit the summation over p to -Zmo and. +2mo, See

Figure 1.7.

We label Nl

inside the gain linewidth., The total number of oscillating modes is

and N2 the lowest and highest frequency modes

N = N2 - Nl'

We can now write the differential equation (1.77) as

dD* D* N, -n
it Sl 0 B S o
dt  ~ 5 2 v L (I=1ipQrT) NP T n+m
€0 m=N. -n
1
2mo g
D D ‘ “n-p “nep 1.80
**n é"T T Yn wn+p (I-1ipGT) (1.80)
P=-2m

0
where &, is the total energy stored in the cavity, according to (1.28),

N.-n
*
w, D D .
n+m T n+m o n+m

& =
m=Nl—n

We shall look for a solution of (1.80) which has the following form
* ind (4) ~ind(t)
pi(s) = 8(e) «FE) () < p(e) e (1.82)

where B(t) and &(t) are real functions of time., In this assumed

form the cavity modes have the same amplitude B(t) and the phase
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difference between any two adjacent modes 1s the same and equal to
&(t).

*
We now replace D = and D, in Eq.(1.80) by their expressions

(1.81)
. 31 e, w .
dgét) . in@kt)s(t) eln@(t) _ 22 n % e.:r.n@(t)
2 e V '
0
Zmo ZmO
2
" et 8% + B B rp 8

B T/ %un Pt PEp T T | (1.82)

P=-Zm m p=-2m

0 0]

We use the fact that the total energy 6& is

i * % 2
€T - (Dn+m Dn+m Dn+m = wn+m B
m

m

to write
ZmO Zmo

1 2 1
E T-ipar E OQm B+ Ep = 28y ; 7 2 2)

lip QT
p=-2mO m p=0
The last term of Eg.(1.82) is roughly equal to % the first term
Cny 62 é%w i
since 2 = 2 ~ where N 1s the number of oscillating
Z g2 €T
a
n+m

modes, Since N is very large, the last term of Eq.(1.82) can be

neglected and we write
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onm
0
31 e, W
B 4 e pte) - - e ) (L (1.83)
€0 v p=0 l+p Q7T

The right-hand side of Eq.(1.83) is purely imaginary; therefore

dBéE) = O and B(t) = B = constant, (1.84)

The amplitudes of the cavity modes are constant in time and the

solution for &(t) is

2mo
3 e, 0
8(t) = - —5— F & Z(""z‘l’ﬁ 6 (1.85)
Y l+p QT
B =0

Since @(t) is independent of the mode index n, the expression

% .
Dn(t) = B(t) eln®(t> is indeed a solution of the differential equation
*
(1.80). We write Dn(t) explicitly with the help of (1.84) and (1.85)
Zmo
3e
. . a2 & 1
iw t i (1-——2¢ % —_— |t (1.86)
* n n B da =T ARz )
% =
D (t) e Be e V oo AT

We notice that the resonant frequency of the nth mode has been
slightly pulled from its initial value w, by an amount which 1s pro-
portional to the stored energy é&. Therefore the presence of an
anisotropic molecular liquid inside a laser resonator gilves rise to a
mode~locked spectrum of equal amplitudes and zero phases. The time

" iaht >
j{: Dn(t) e + C.C.| where Dn(t) is given by (1.86)

n
consists of a train of ultrashort laser pulses of very high intensity. See

envelope E(t) «

Figure 1.8. These pulses are separated in time by the double transit
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time of the light inside the cavity %E and approach a duration

T ~ (AVG>—1 where Av, 1s the gain linewidth of the amplifying
transition.

For a Ruby laser, Av ~ lOll Hz. High intensity pulses of duration
T = lo—ll sec = 10 p sec should be obtained by placing an anisotropic
molecular liquid inside the cavity of a Ruby laser.

For a Neodymium glass laser, Av ~ 2 X lO12 Hz ; pulses as short
as 0.5 p sec can be obtained from such a laser.

Since high intensity fields in the cavity are necessary to induce
a sizeable nonlinearity of the index of refraction of the anisotropic
molecular liquid, we expect to generate ultrashort pulses from Q-
switched(6) solid state lasers, These lasers in their normal mode of
operation (no anisotropic liquid, no saturable absorber dye inserted in
the cavity) emit intense light pulses (~ 100 MW) with a duration of
~ 10-8 sec.

In order to couple the longitudinal modes of the cavity in the way
described above, sufficlent energy exchange between the modes must take
place during the time the laser is oscillating, i.e. ~ 10-8 sec,

In the next section we define and calculate a time constant T

0]

for the energy circulation between the modes to find out whether the

8

above condition TO < 10~ sec can be satisfied under reasonable

experimental conditions.
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1-6. Energy circulation time constant.

1-6.1. Definition.

As a measure of the strength of the mode coupling due to the
refractive index nonlinearity, we define a circulation time T, as the
expohential time constant for the circulation of the energy in one mode
due to its interactions with all others. If 6;1 is the energy of the

nth mode,

a€
1 1 n
0 én .
1-6.2., Calculation of TO'
The en f the nth mode is & = D D = o B> where D
e energy o en ode n=® D)D)= B where A

and Dn have been replaced by their expressions (1.81). Therefore,

according to (1.87)

%_ - 2 %L (1.88)
0

We have found in Section 1-5 that B*' = 0 and B = constant. This
is true because as much energy flows into the nth mode via the higher
frequency modes as flows out of 1t via the lower frequency modes., We
want to calculate the rate at which energy is flowing into the nth mode.
Therefore, to find B', we shall keep in expression (1.82) only the
terms where ©p 1s positive in the summation over p.

Only the reallpart of the right-hand side of (1.82) gives rise to
power exchange between the modes. Equating B'(t) to the real part of

the right-hand side of (1.82) and using the definition (1.87) yields
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2m

0
1 _3%% ¢ & I (1.89)
Ty 2 L ¥ 1+ (par)Z |

0 p=1

The rate at which energy is exchanged between modes is proportional
&
to the electromagnetic energy stored per unit volume in the cavity VE;

to the ratio of the length of the liquid cell to the length of the

cavity % , to the optical Kerr constant €5 and to the term
2m ’
0
_POr

accounting for the number of modes interacting with any
p=l 1+ (pQT)

one mode, To give an estimation of this last quantity, we notice that

we can write

ZmO p/m ZmO .
Z —2 - Z £(R) with m. = =
. p=1 0 p=1

The function f(p/mo) is depicted in Figure 1.6. In this figure,

2mo
the sum Ei: -f(%—) is pictured by the area under the rectangles which
p:l 0

p/m
have a height equal to ———2— and a base equal to 1. We see that

l+(p/mo)
we can approximate the area under the rectangles by the area under the

curve, and therefore approximate the summation

2m 2m
0 p/mO 0 x/mO
prom—— by the integral —/ sy dx. We make the change
p=1 1+(p/m) o Lr(x/mj)

of variable y = x/m.o and the integral is equal to

z
m
mof b dyz = -2—0 Toa(ledy = o2 m e (1.90)
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According to (1.89) and (1.90), we write

1 BEan&éT 1
TEE TV o (2.91)
0 EO

'We can now calculate a numerical value for TO in a typical
experimental situation. However, in the literature, the measured values
of the optical Kerr constant are given in electrostatic units. Since
our analysis has been performed in MKS units, we must now relate €5 to
the measured values in esu units.

For this purpose, we express the displacement vector and the
change in the dielectric constant in both systems of units,

In electrostatic units, the displacement vector is expressed as
D, =E  + MnPe where E_ and P, are the electric field and.the
polarization in electrostatic units. And in the liquid
3

P =X Ee + XN

e L L Ee

where XL and XNL are the linear and nonlinear susceptibilities,

Therefore

D =E + LiX B + L E3
L TXNL

or

2
D =E (1+)+xXL) + A@QNLE

D, = (e+ Ae) E‘e
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¢ is the dielectric constant of the liquid in esu units. Ae 1is
the change in dielectric constant due to the nonlinearities of the
medium in esu units.

We now relate the change in dielectric constant Ae to the Kerr
constant BO measured by M. Paillette(l6). This constant is measured
by the following method.

The Kerr effect induced by a linearly polarized Q-switch ruby laser
changes the index of refraction of a liquid for an Argon laser linearly
polarized at M5O from the direction of polarization of the Ruby laser,
therefore introducing a birefringence and a phase difference @& between
two perpendicular components of the Argon laser electric field, one
perpendicular to the Ruby laser electric field, the other one perpen-
dicular to it,

By this method, M. Paillette is able to measure a constant which
is proportional to the difference between the index of refraction of
the liquid parallel to the Ruby laser electric field nll and perpen-
dicular to it nL. This change n” - nL is related to the change of
the index of refraction An induced by a linearly polarized electric
field upon itself by 2An =n_ - n .

Il i

According to M. Paillette, L. (n -n) =8 % where A\
Aoy 0 e A

wavelength of an Argon laser in vacuum = 4880 £, E, is the electric

is the

field expressed in esu units, BO is the optical Kerr constant in esu

units., Therefore

B. E A
2A0 = _9__2__;é (1.92)
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Sinee g = nz, the change of the dielectric constant Ae is

related to the change of the index of refraction An by
2
nBy B N
0
pe=2nn= ——2 B (1.93)

n 1s the index of refraction of the liquid. We have expressed the
change of the dielectric constant in esu units. We now find an ex=-
pression for the same gquantity in MKS units. In MKS units the dis-
placement vector is expressed as DM = ngM+PM where EM and PM are the

electric field and the polarization in MKS units., In the nonlinear

o _ 3 g .
liquid, we have PM = XLEM + EZENV where XL is the linear suscep-

is the Kerr constant in MKS units. Therefore,

tibility and €5
D, =¢ E +X_E_ + ¢ B 3
M 0™ L™M 2 M
or
X €
I 2 2
D, =¢. B l+—|+— E
M 0™ £ £ M

We can then write DM in the following form

DM = so(e + Ag) EM

where ¢ 1s the dielectric constant of the medium in esu units (in MKS

units, the dielectric constant is eoa) and

pe = =28 ° (1.94)
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is the change in the dielectric constant in esu units when €5 and EM

are expressed in MKS units,

Therefore, from (1.93) and (1.94%), we find a relationship between

BO and €oe

s (1.95)

The electric field in esu units Ee is related to the electric
field in MKS units EM:_ Ee = Mnso EM. Therefore

e, =k 502 n By Ay (1.96)

where €s is expressed in MKS units and BO in esu units and
107 : : :

gy = 5 e We can now express the circulation time TO in terms of
LnC

quantities in esu units. From (1.91) and (1.96),

pai
13 Mo BBy e 1 1
T. 2 2 A vV QT
0 80 R
or
A €
1 A 2ET7 1
7= = 1entn == B, § 7 &= (1.97)

where we have replaced w, by 2= %E, XR is the ruby wavelength

= 6943 R. Numerical application: We calculate the circulation time Ty
for the following experimental situation. A 5 cm (22 = 5 cm) cell con-
tailning nitrobenzene is inserted into a laser cavity 1 meter long

v

(L = 100 cm); the cross section of the beam is 1 cmz, therefore,
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v = 100 cmd By = 2.9 X 1077 esu. The other parameters are
g& = 0.1 Joule = 106 ergs and T =5 x o sec. We find T, ~
10-9 sec.

For this experimental situation, the circulation time T is of
the order of 1 nanosecond and therefore sufficient energy exchange
between cavity modes is expected to take place to produce effective
mode coupling.

In our theoretical analysis, we have considered the effect of an
anisotropic molecular liguid placed inside a laser resonator on the
mode structure of the cavity. We have found that under reasonable
experimental conditions, the nonlinear polarization induced in the
liquid produces strong coupling between the cavity modes. A quasi>
equilibrium situation might be reached where all the modes have equal
amplitudes and zero phase difference, thus giving rise to the production
of ultrashort and intense pulses of light of duration equal to the

inverse of the gain linewidth Av, of the amplifying transition (in

G
Ruby Av, ~ lOll Hz) and separated by the transit time of the light in
the cavity E% ’

An experiment has been performed to verify these predictions which

is reported in the following pages.
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II. EXPERIMENTAL INVESTIGATION

In Chapter II we report the experimental results obtained when a
liquid cell filled with an anisotropic molecular liquid is placed
inside the cavity of a Q-switched Ruby laser.

An evaluation of the important parameters of the experiment help
us in selecting an anisotropic molecular liquid which induces strong
mode coupling.,

The expefimental apparatus is described, the experimental tech-

niques and results are then presented,

2-1, Parameters of the experiment,

In Part I we have shown by a theoretical argument that the
presence of an anisotropic molecular liquid inside a laser resonator
induces a mode-locked operation; the output of the laser then consists
of a train of ultrashort pulses of light.

In order to perform an experiment and verify the above predictions,
we consider the various parameters of the problem, The important param-
eters of the liquid system are:

- The Kerr constant €5

- The orientational relaxation time T

- The length of the cell 24

The parameters for the laser system are:

- The length of the cavity L and then the frequency difference

between adjacent modes Q = %9 ”
- The gain linewidth of the amplifying laser transition AvG and
Av
therefore the number of oscillating modes N = - ‘

Cc/2L
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A careful examination of the parameters of the liquid is needed to
choose the liquid which induces a strong mode coupling. The parameters
of the laser system are fixed by the equipment available in our
laboratory. The experimental work is performed with a ruby laser
Q-switched by a rotating prism, The wavelength is A = 6943 K; the

1

gain linewidth measured with a Fabry-Perot etalan is AW& = 1.8 cm .

The laser cavity is 1 meter long, then Q ~ 107 rd/sec., and

-
@

N ~ = 360 modes are oscillating.

|

3]
(@)
O

2-2. Selection of the anisotropic molecular liquid.

In this section we determine which specific liquid can be used to
produce strong coupling between the modes of the laser resonator by
examining the important parameters of the liquild with respect to the
parameters of the laser systems described above.

The criterion we use to evaluate the parameters of the liquid is
the following: We require the circulation time TO defined in Section
1-6 to be as short as possible so that sufficient energy exchange between
the modes takes place during a Q-switch pulse to produce mode coupling.

According to 1.97, we shall use materials with a large Kerr constant
BO’ i.e. molecules with a large anisotropy.

Another important parameter is the orientational relaxation time T
or rather the quantity Qr. According to (1.97), Qr should be as small
as possible, but we shall see that there is a lower limit to the possible

values of (T Dby examining the physical significance of this parameter.

The rate at which energy is exchanged between the nth mode and the
ot
2
1+ (pQT)

(n+p)th mode, for example, 1s proportional to the quantity
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which is equal to the imaginary part of the susceptibility of an
anisotropic molecule in an electric field with radian frequency pQ.
The maximum of this quantity is equal to % and occurs at p = 1/Qr,
See Figure 1.6,

If Qr >> 1, the molecular orientation does not respond to optical
envelope variations at frequency O or higher and the amount of re=-

fractive index nonlinearity is too small to couple the modes together.

If QT = 1

)

the nth mode exchanges energy principally with

adjacent modes, The rate at which it receives energy from higher fre-
quency modes is maximum for the (n+1l)th mode and decreases rapidly for
the (n+2), (n+3) modes and so on. In order to couple more modes faster,
the relaxation time T of the molecule has to be made shorter, so that
the molecules respond to more frequency components. But there is a limit
as to how  ghort Qr should be. If Qr << Nl-, where N is the total
number of oscillating modes, the nth mode is coupled very weakly with all
the other modes., In that case most of the energy is coupled outside the
gain linewidth and lost without giving rise to any appreciable coupling

between the oscillating modes. In Figure 2.1, the function

£(7) = "“B§£§‘§a which is a measure of the mode coupling strength, is
+p Q77T
presented for QT = 1, % < QT <1 and Qr <:%q To produce strong mode

coupling, the relaxation time must be chosen so that

= <Qr <1l (2.1)

or according to the laser parameters.
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3 x 102 geq <7 < lO-9 sec,

The three criteria for choosing the nonlinear liquid are:

- Large Kerr constant BO

- Shortest relaxation time T as possible but no shorter than

3 X 10-12 sec

- The liquid must be transparent at the rupy wavelength.
In our experimental work, we used (a) Nitrobenzene and (b) a-
chloronaphthalene as the anisotropic molecular liquids. In case (a),

the Kerr constant is BO =2.,9%x Zl.O—7 esu, At room temperature, the

relaxation time is T ~ 50 x 107-° sec. In case (b), By =2.7x 1077

esu and the room temperature relaxation time is T = 53 x 10-12 sec.

The relaxation time T 1is given by:(12>

T=:Dy-
kT
where T 1s the viscosity of the liquid

V 1is the volume of one molecule
T 1is the temperature of the liquid.

The viscosity 7T 1is a decreasing function of temperature<17). It
B

o

varies empirically as A eT where A and B are two empirical constants
characteristic of the liquid. Therefore, the relaxation time T 1is a
decreasing function of the temperature. This dependence has been experi-
mentally verified for nitrobenzene by Rank et al(l8). They measured the

frequency shift of the stimulated Rayleigh line as a function of tempera-
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ture from T = 12°C to T = ll7OC. Their results are plotted in
Figure 2.2 and extrapolated to higher temperatures,

Therefore, by heating the liquid placed inside the laser resonator.
we expect to decrease the relaxation time T (from its value of
50 x 10-12 sec at room temperature) and produce a faster mode coupling.

Note that carbon disulfide has a larger Kerr constant than
nitrobenzene (BO = 4,18 x 1071 esu)<l6) but at room temperature its
relaxation time is ~ 10—12 sec which is not within the limits of the
second criterion, Therefore 082 should be cooled down to increase -
its relaxation time; however, since it 1s less convenient to cool a

liquid than to heat it, we did not use it in our experiment.

2-3. Description of the experimental apparatus,

2-3,1., The cell and temperature controller.

A cell has been specially designed and built for this experiment.
A 5 cm long Kovar tube was cut at the Brewster angle of the Ruby
wavelength; two glass windows were then cemented on the ends with a
heat resistant epoxy. Kovar was chosen because its heat expansion
coefficient 1s close to the one of glass and because of good heat
conductivity.

A thin heating wire is glued around the Kovar tube. A thermistor
(negative temperature resistivity coefficient) is inserted inside the
cell, The temperature of the liquid in the cell is measured by
measuring the resistance of the thermistor. This is done by placing it
into one arm of a bridge of resistors. Two known and fixed resistors

are placed in two other arms. In the fourth arm there 1s a variable
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resistor whose value determines the equilibrium condition of the

bridge for a certain temperature. An on and off relay switch is in

one diagonal of the arm and controls the power supply to the heating
wire, This apparatus controls the temperature of the liquid to

within one percent in the following way. First, the variable resistor
is set to a fixed value; then the power supply of the heating wire 1is
turned on. When the liquid is cold, the resistance of the thermistor
is high, the bridge is not in equilibrium and current flows in a cer-
tain direction through the relay switch which remains closed. When

the temperature of the liquid rises slightly above the present tempera-
ture, the resistance of the thermistor becomes smaller than the
equilibrium resistance of the bridge and current flows in the opposite
direction through the relay switch thus opening it and turning off the
power supply to the heat resistor. During the experiments, we wait a
few minutes so that the oscillations of the temperature around its
preset equilibrium conditions are small. The range over which the
temperature of the liquid can be controlled depends upon the sensitivity

of the thermistor; in our case the range was from -9500 to lhOoc.

2-3.2. The laser system,

The laser system and the liquid cell are described in Fig. 2.3.
A Spacerays laser system with a maximum output of 2.84 Joules Q-switched
is used. The Ruby rod L4-5/16" long and 1/2" in diameter is cut at the
Brewster angle and placed along the common focus of a double elliptical
cavity. It is pumped by two water-cooled linear Xenon flashtubes
placed at the two other foci.

The laser is Q-switched by a glass prism, 1/2" x 1/2", rotating at
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a speed of 20.000 rpm,

The output mirror, a 55% reflecting dielectric mirror, is fixed.
The back surface and the reflecting surface are at a wedge angle so
that no light reflected from the back surface is coupled back into the
cavity, and therefore the only oscillating cavity is formed by the
reflecting surface of the mirror and the rotating prism.

The output energy of the laser is 1 Joule on the average in a
giant pulse 50 nsec long.

The total cavity length is 1.05 m measured by observing the
modulation period of the laser power with a fast pulse detector and a

fast oscilloscope.

2-3.3. The nmeasuring apparatus.

The measuring equipment which is used in the experiment is of two
kinds.

-- The electric equipment which records the power of the laser +
a Fabry-Perot etalon to measure the oscillating linewidth of the laser

which can be easily modified to observe the stimulated Raman

emission from the anisotropic molecular liquids.

-- An optical, two-photon fluorescence technique which allows us
to measure accurately optical pulse lengths as short as 10_12 sec, |

The measuring equipment is described in Figure 2..4.

2-3.3.1. The electronic measurement equipment.

30% of the laser output is intercepted by a beam splitter and
passes through a diverging lens. 30% of the diverging beam is
detected on a fast pulse detector (United Aircraft Model 1240) which

has a S=-1 photo emissive surface and a response time of less than 0.3
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nanosecond. The output of the detector is fed into a Tektronix
oscilloscope Type 519 with a measured risetime of 0,32 nsec and a
vertical sensitivity of 8.9 v/cm.

The total response time of the detector and the oscilloscope is
of the order of 0.6 nsec.

In order to measure the oscillating linewidth of the laser tran-
sition and to compare it with the duration of the ultrashort pulses, a
Fabry-Perot etalon is set up behind the diverging lens. The concentric
rings formed by the etalon are then focussed on the plate of a polaroid
camera by a converging lens. To eliminate the background light, a ruby
narrow band filter is placed in front of the camera.

The Fabry-Perot has been made by evaporating a silver layer on
two flat glass surfaces. The separation between the two reflecting
surfaces can be varied easily from 1/16" = 0.16 cm to 1/4" = 0.62 cm.
The finesse of the etalon is equal to 5.

2-3.3.2., Modification of the apparatus for the observation of

Stimulated Raman scattering.

The intense laser light incident upon the liquid induces transi-
tions between the molecular vibration modes. A certain amount of
light is emitted by a stimulated process from the liquid at a frequency
equal to the frequency of the incident light @ minus the vibrational
frequency of the liquid av; it is called the stimulated Raman
scattered radiation.

The liquids we use in our experiment are known to exhibit this

effect under intense optical electric fields. When stimulated Raman

scattering takes place, a certain amount of energy is coupled out of



-63-

the gain linewidth of the laser transition since the Raman frequency
shift Wy ™ 1300 cm~l is much larger than the gain linewidth AvG ~
2 cm—l. This process represents a loss mechanism as far as the process
of mode coupling within the gain linewidth is concerned.

It is therefore interesting to make some observations of the
Stimulated Raman light. For this purpose, the electronic apparatus
described in Section 2-3.3.1 is modified in the following way. See
Figure 2.5.

The Fabry-Perot etalon is removed, and a second fast pulse
photodetector (Applied Iasers Model FP 125) is set up. It has an S-1
photocathode and a risetime of 0.5 nsec. A 7.69 Corning filter is
placed in front of the detector to absorb the laser light which is not
transformed into Raman light. This filter has a transmission of less
than 0.1% at the Ruby wavelength and a transmission of 70% at the
Stokes wavelength of nitrobenzene (~ 7700 X). A narrowband ruby filter
with a bandwidth of 200 £ is placed in front of the United Aircraft
(UA) detector to eliminate all the Raman light. Calibrated neutral
density filters are also placed in front of the UA detector to
attenuate the laser light. With all the filters, the UA detecfor
(recording the laser light power) is 500 times less sensitive than the
Applied Laser (AL) detector recording the Raman light. The output of
both detectors is fed into the Tektronix 519 oscilloscope. The AL
detector output is delayed by 100 nsec with respect to the output of
the UA detector. The Raman and the laser intensities are thus recorded

simultaneously on the same oscilloscope trace.
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2-3.3.3. The two-photon fluorescence technique.

In this experiment we want to detect and measure intense pulses
of light which last no longer than .'I.O-l:L sec., No electronic equipment
to date has a sufficiently fast response time to record these ultra-
short pulses. An optical method has been devised recentLy(l9)(20)
which gives a simple and accurate measurement of pulses as short as a
few 10-12 sec, It is called the two-photon fluorescence technique,

This technique is based on the two-photon absorption and fluo-
rescence in an organic dye. In our experiment, we use a nearly saturated
solution of Rhodamine 6G in isopropyl alcohol. This dye has an
absorption peak at a wavelength of 3500 £ close to the frequency of
the second harmonic of the Ruby light (3470 ).

The fluorescent intensity IF is proportional to the square of

the intensity of the laser light I. since we assume a two-photon

L

process IF = O Ii (2.2) where « 1is the coefficient of proportionality.

The experimental setup used to record the ultrashort pulses is the
following: A 5-cm cell containing Rhodamine 6G is placed on the axis
of the laser cavity behind the beam splitter so that 70% of the laser
intensity is incident upon it. See Figure 2.k,

A mimar (99% reflecting at 6943 &) is placed behind the cell so
that the laser beam passing through the cell is reflected back onto

itself. The laser intensity IL(x,t) at some time t and some point

in the cell at a distance x from the mirror is

i 2

IL(X,T) = % ‘/ﬂ E(x,t) - E{x,t + EEE) at (2.3)
0




W
E(x,t) 1is the electric field of the optical traveling wave at
its first passage and E(x,t + 225) is the electric field of the
reflected wave. T  1s a time equal to a few optical‘cycles. n 1is the
index of refraction of the organic dye at the ruby wavelength. We

assume that E(x,t) has the following form
E(x,t) = V(%) cos(abt - kx) (2.4)

w~ 1s the optical radian frequency, k 1s the wave number =

0
WA

—%— and V(t) is the time envelope of the wave which is a slowly

varying function compared to cos abt. V(t) 1is a real function.

We use expression (2.4) and perform the integration in (2.3),

then
I (x) =92: (V2 () + VE(trT)) = V(£)V(t+T) cos (w,T + 2ix) (2.5)
where T = 225 5

c

The fluorescent intensity recorded on the film plate of a camera

focused on the center of the cell is

T

IR(X) =B Jf IF(x,t) at (2:56)

0

where TO 1s the duration of the laser burst and B is a constant

coefficient, From relationships (2.2) and (2.5), we find
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i T

0
I (x) =2 /Qv“(t) it + f Hber) @t
0 : 0]

T
0
- 4 cos (M) f (V2 (t) V(brr) + V() VO (t+T)) dt
0
I'—LIO TO
w2 | VE(t) VE(ter)dt + b cost(lix) | VE(t) VE(ter) dt
| ot |

0 2.7}

IR(x) as given by (2.7) would the rgcorded fluorescent intensity
if the film had a spatial resolution smaller than a wavelength. How-
ever, usual films have a resolution of the order of 1O0Ou. The film is
not able to record optical spatial fluctuations (cos(bkx)). A spatial

average 1s then performed over a few optical wavelengths. Then

7 T, T
I (x) = & fvu(t)dt +[ V(i) at + uf VE(t) VE(ter) at| (2.8)
0 0 0 -

The first two terms in expression (2.8) are independent of position
and represent the fluorescent tracks due to the incident and the

reflected laser beams.
If the output of the laser consists of a train of ultrashort

pulses of width Z%— Separated by To = where L 1s the length

G
of the laser cavity, then the last term will be different from zero

ol

only if 1T = mT where m 1is an integer; i.e. the fluorescence will

be brighter at the points of the cell where an incident pulse crosses a

reflected pulse. The third term represents an enhancement of the
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fluorescence at the mirror due to the reflection of one pulse upon
itself if m = 0, or at a distance L from the mirror due to the
crossing of one pulse with the following one when m = 1., The width
of these bright spots is equal to the duration of each individual

pulse multiplied by the velocity of the light in the liquid. An ultra-
short pulse of lO-ll sec with a Lorentzian shape gives a bright spot

of 4,5 mm, The contrast ratio CR between the peak fluorescence inten-

sity and the background intensity is defined as follows. According to

(2.8)
To To
vH(t) ab + 2 jr Ve (6) V4 (te) dt
CR = (IR)peak _ 0 0 (2.9)
(IR)back TO ‘ )
Vu(t) at
0

For perfectly coupled modes, CR = 3. For purely random phases,
R = l.5€21)

However, we wish to point out that a contrast ratio of 3 has
never been experimentally observed for a ruby laser mode-locked by a
saturable absorber which is known to produce ultrashort pulses. The
reason for this discrepancy is not known. It may be due to deviation
of the two-photon fluorescence intensity from an exact square law
dependence on IL.

The camera looks at the fluorescent track perpendicularly to it;
therefore it records an average intensity over the spatial cross-

section of the beam and the randomness of the spatial output from pulse

to pulse may decrease the contrast ratio. In our experiment we shall
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compare the contrast ratios observed with the contrast ratios we ob-
tained by mode locking the ruby laser with a saturable absorber (a
solution of cryptocianine in methanol).

Our apparatus is set up so that we look for the enhancement of
the fluorescence of the organic dye due to one ultrashort pulse with
the next one, For this purpose the 99% reflecting mirror is placed at
a distance from the center of the fluorescence cell equal to the optical
length of the laser cavity, i.e. 1,05 m (this distance is physically

shorter due to the index of refraction of the organic dye).

2-li, Presentation of the results.

In part I of this report, we have predicted theoretically the
production of ultrashort laser pulses when an anisotropic molecular
liquid 1s placed inside the laser resonator.

In Section 2-1, 2-2 and 2-3, we have described the experimental
apparatus which allows us to detect the presence of these short light
pulses.,

In this section we present the results of our experimental
investigation. The laser was first fired with no nonlinear refractive
index medium inside the cavity. Figure 2.6 shows a typical picture of
two-photon fluorescence dye cell. No ultrashort pulse was present in
that case.

2-L,1, Observation of ultrashort pulses.

2-4,1.1. Nitrobenzene.

The liquid cell was filled with nitrobenzene. The temperature was

varied from 6°C (its melting point) to 144°C (its boiling point is 211°
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FIG 2-6 Two-photon fluorescence

dye cell. No non linear
medium in the cavity

FIG 2-7 Two-photon fluorescence
dye cell Nitrobenzene
at 25°C
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C). No ultrashort short pulses were observed at room temperature
and below. As the temperature was increased, a tendency for pulses to-
appear on the fluorescence track of the dye cell was noticed.

At llOOC, 126°C and lhhoc, a brighter fluorescent spot appeared
at the center of the dye cell. When the mirror behind the fluorescence
cell was displaced by a certain amount, the bright fluorescent spot was
displaced by the same amount divided by the index of refraction of the
dye indicating that the bright fluorescent spot is due to the over-
lapping of one incident short pulse with the previous one reflected
back by the mirror.

In Figure 2-7 we show the fluorescent dye cell when a 5 cm cell
of Nitrobenzene at 2500 is inserted in the laser resonator. There is
no indication of ultrashort pulses;

Figure 2.8 shows two consecutive pictures of the dye cell when
the nitrobenzene has been heated to 12600. At that temperature there
is clear evidence of ultrashort pulses and therefore mode coupling,

The contrast ratio estimated with a calibrated film is close to 2.
It is not equal to 3, the theoretically predicted value for complete
mode locking but it is the same as the one observed when a saturable
absorber is used inside the cavity to generate ultrashort pulses,

At this temperature, the orientational relaxation time T is
estimated to be ~ 10T sec from Figure 2.2; and therefore Q T ~ 16972,

The gain linewidth of the laser Av, 1s measured with the

G
Fabry-Perot etalon to be 1.8 cm-l. The expected pulse width is
Z%— ~ 1,8 x 100" sec., The measured pulse width is At = % x % where
G

d 1is the length of the fluorescent spot.
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FIG 2-8 Two-photon fluorescence
dye cell. Nitrobenzene

at 126 °C.
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n is the index of refraction of the dye solution (n = 1.5) and
G is the magnification of the camera. The experimental value of At

ig .2 x lO_ll sec which, when compared to the expected value of

1.8 x lO-ll sec, indicates mode-locking across the full gain linewidth.

The amount of mode-locking is a sensitive function of the tempera-

ture of the anisotropic molecular liquid, i.e., of its orientational
relaxation time. For nitrobenzene the pulsewidth (1.2 x lO;ll sec)
is comparable to the relaxation time T ~ 167 g,

A noticeable variation of the pulsewildth as a function of
temperature was not observed since the relaxation time of nitrobenzene
varies slowly for temperatures over lOOOC. See Figure 2.2.

2-4.1.2. @-Chloronaphthalene.

In this phase of the experiment the liquid cell within the optical

resonator was filled with a=~chloronaphthalene. This liquid has a Kerr

constant BO =Bl X .'LO-7 esu(ls) and a relaxation time T = 5.3 x
-11 (22)

10 sec at room temperature. These parameters are very close to

the ones of nitrobenzene, B, = 2.9 x 1077 esu and T=L4.75x lO-ll

0

sec at room temperature. Although no experimental data on the tempera-

ture dependence of the relaxation time is available for this material,
T 1s expected to decrease faster with temperature than nitrobenzene

Ultrashort pulses were observed using o~-chloronaphthalene heated
to 62°C. At that temperature, T is in the range of 2 to 4 x 10T
sec, In Figure 2.9, two consecutive fluorescent tracks are shown and

ultrashort pulses are apparent; the pulse width is estimated to be

~1.2 % lO-ll sec.

L&

)
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FIG 2-9 Two-photon fluorescence
dye cell. a-chloronaphtalene
at 62°C.
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2-4,1.3. Carbon Disulfide,

CS, has a Kerr constant (4,18 x 107! esu)(l5) larger than
nitrobenzene and o~chloronaphthalene but at room temperature its
velamedion time fs = 1078 sec, too short a time to produce
efficient mode locking as explained in Section 2-2.

To verify this assertion, 032 was placed in the Brewster angle
cell inside the cavity. The photographs taken of the fluorescence
cell showed a uniform light intensity along the cell indicating the
absence of ultrashort pulses. Decreasing the temperature of Carbon
Disulfide would increase its relaxation time and its Kerr constant and
this should induce strong mode coupling. An attempt to observe this
effect failed due to clouding of the CS2 upon cooling. This can
possibly be avoided by using extremely pure CSZ which is distilled

in Situo. This was not deemed practical in our experiment,

2-4.2. Observation of Stimulated Raman Scattering.

Stimulated Raman scattering was observed when the cell containing
nitrobenzene was placed inside the optical cavity.

The Raman frequency shift for nitrobenzene is 1345 cm-l. The
powers of the Raman scattered light and of the rﬁby light are recorded
simultaneously by the technique described in Section 2-3.3.2. A
typical picture of the Tektronix 519 oscilloscope trace is shown in
Figure 2.10. The first pulse represents the ruby light intensity, the
second pulse 1s the Raman light intensity and the third pulse is the
electronic reflection of the first pulse off the end of the 100 nsec

delay cable. The detection of the Raman light is 500 times more sensitive

than the detection of the ruby light.
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FIG 2-10 Detection of stimulated
Raman emission from
nitrobenzene at 25°C.



-T7-

This picture was taken with nitrobenzene at 2500, i.e. when no
ultrashort pulse was present in the laser output. The Raman intensity
is an increasing function of the laser intensity. Measurements per-
formed at various liguid temperatures have shown a nearly exponential
dependence of the Raman intensity on that of the laser. The gain
coefficient is comparable to the theoretical value of 1.4 x lO-3 cmfl/
uW/cm2(23>. The Raman gain coefficient(eh) is
3 1 " ¥T

e B L =

doj ¢
VS Av

g€ =130

%% is the differential cross section of the Raman process

per unit volume, per unit solid angle. Vg and Av are the peak fre-

where

quency and the width of the Raman scattered light. n&/V is the laser
photon density.

As the temperature of the cell was increased, the Raman gain de-
creased. This is due to the fact that the Raman width Av is an
increasing function of the temperature. We observed stimulated Raman
emission both at low and high temperatures when ultrashort pulses do
and do not occur regularly. The observed Raman intensities are at
most 1/500 of the laser intensity.

No stimulated Raman scattering was observed when the cell inside
the cavity was filled with a-chloronaphthalene. The frequency shift of
the Raman light is 1368 et for a-chloronaphthalene and therefore our
apparatus had the same sensitivity for detecting the Raman light as

for nitrobenzene,
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In liquids with a large Kemwr constant (large molecular anisotropy),
the observation of stimulated Raman emission is often accompanied by
the phenomenon of self-focusing: when a beam with a gaussian intensity
profile (large intensity at the center of the beam decreasing radially)
travels through a liquid with a nonlinear index of refraction

no=n,+ n, Ez, the center of the beam will see a larger index of

0
refraction than the outside part of beam and will travel slower through
the liquid than the outside parts of the bean,

The liquid then has the effect of a converging lens and focuses
the light into filaments. In these filaments, the intensity of the
beam is very high and a large fraction of the ruby light is transformed
into Raman light by stimulated Raman scattering.

In our experiment, we believe that stimulated Raman emission
occurred in the absence of self-focusing for the two following reasons:

(1) DNo stimulated Ramen emission was observed in c~chloronaphtalene
which has nearly the same threshold for self-focusing and relaxation
time as nitrobenzene.

(2) A nearly exponential dependence of the Raman intensity on
that of the laser with a gain coefficient comparable to the theoretical
value was measured.

The observation of the stimulated Raman emission has shown that
only a small portion of the laser intensity is transformed into Raman
light, and therefore only a small amount of energy is coupled outside
the gain linewidth of the laser by this process. This energy loss is
not sufficient to prevent the mode coupling and the production of

ultrashort pulses by a refractive index nonlinearity as observed above.
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DISCUSSION AND CONCLUSION

In part I of this report we have studied theoretically the be-
haviour of the longitudinal modes of a laser resonator when a cell
containing an anisotropic molecular liguid was placed inside it. We
have found that under certain conditions (large molecular anisotropy‘
and an orientational relaxation time T such that 3 x ].O-12 sec

2w < 12

sec), the presence of a nonlinear refractive index inside a
laser cavity can produce mode coupling and generate ultrashort pulses
of ruby light.

In part II, an experiment was described which allowed us to observe
the presence of pulses of ruby light as short as lO-ll sec when a cell
containing nitrobenzene or Q-chloronaphthalene was placed inside the
cavity. The most important parameter of the experiment is the
orientational relaxation time T. Ultrashort pulses appeared only when
T was such that energy transfer between the cavity modes occurred in

va time short compared the length of a Q-switchéd pulse.

The value of T was varied by changing the temperature of the
liquid.

Stimulated Raman.scattering without self-focusing was observed
when nitrobenzene was placed inside the cavity. Only 1/500 of the
beam energy was shifted outside of the gain linewidth of the laser by
this process. No stimulated Raman emission occurred when the nitroben-
zene was replaced by o~-chloronaphthalene.

The following simple and physical argument can be given to show
how a pulse of light travelling back and forth in a laser cavity is

shortened by the presence of a refractive index nonlinearity.
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When a pulse of light (pulse (1) in Figure 2.11) travels through

a medium with an index of refraction of the form n = nO + nZE2 where

E2 is the intensity of the pulse, the region of high intensity "sees"

a larger index of refraction than the regions of low intensity and
therefore travels slower through the medium. After a certain distance
of propagation, the front part of the pulse has gained distance rela=-
tive to the center and hence rises more slowly than the original pulse,
Similarly the back portion drops off more steeplygzs) This case is
depicted by pulse (2). Pulse (2) has been shortened with respect to
pulse (1). Then, as the back end of the pulse drops off in a time
comparable to the orientational relaxation time T, the law
no=ny+ nZE2 is.not obeyed any more because the molecules do not
respond to the fast time change of the electric fields. Therefore the
front end of the pulse rising more slowly is delayed more than the
back end. The pulse is sharpened again; 1t is depicfed by pulse (3).
This pulse-sharpening mechanism goes on as the number of passes
through the liquid increases until the length of the pulse is of the
order of T, at which point the nonlinearities due to orientational
Kerr effect have no effect on the pulse which is shown as pulse (4).
The pulse width could be made shorter only by decreasing the
orientational relaxation time. This can be done by heating the liquid
or by mixing it with a liquid of a lower viscosity. However, this
would mean a smaller orientational Kerr constant and weaker mode
coupling. The use of a temperature-controlled nonlinear dielectric
constant inside the laser cavity may be, however, a practical way of

generating ultrashort pulses of variable length.
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FIG 2-11 _Pulse sharpening 'in
a non linear index
of refraction
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Another advantage of the use of this effect to generate ultra-
short pulses is the following: Present techniques generally use a
saturable absorber which tends to enhance the filamentary structure of
the laser output, often causing damage to laser components. The
liquids used here reduced the filamentary nature of the beam even when
compared to that without any liquid. This can be seen from comparing
the transverse structures in Figures 2.6 and 2.8 for example., No
damage to the components was observed when ultrashort pulses were gen-
erated by the anisotropic molecular liquids, while it was a frequent

problem with saturable absorbers.
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APPENDIX

The total electromagnetic energy €T stored inside the cavity

is given by expression (1.27)

&p = -Zl-z (p,2(5) + @ Pa B(v)) (1.27)

where pn(t) and q_n(t) are defined by (1.13).
We have expressed pn(t) in terms of the wave function Dn(t)

*

and 1ts complex conjugate Dn (t) in the following way
W, X iwnt icont .

_pn(t) = 1\/5- D, (t)e - Dn(t)e (1.18)

In this appendix we look for an expression for the electromagnetic

*
energy g‘T in terms of Dn(t) and D (t). For this purpose, we

. *
find a relationship between q_n(t) 5 Dn(t) end D (t) by solving
- fe

the Maxwell's equation v x E(r,t) = - S% .

This has been done in Section l—5 and a relationship between

Pn(‘c) and qn(t) has been found

7, () = @)(¥) (1.60)

n

With the help of (1.18) and (1.60), we can write

1 % iaht -iaht
qn(t) =——=|D, (t)e + Dn(t)e (1.61)

20
n
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and from (1.27), (1.18) and (1.61),

& =Z @D " (t) D_(£)

n
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FIGURE CAPTIONS

Three oscillating laser modes,

Orientation of an anisotropic molecule with an
electric field.

Coupling of the cavity modes n, n+p, n+m, n+p+m,

The liquid cell is placed inside the cavity formed by
the mirrors.
The liquid cell fills half of the laser cavity.
P/mO
2
1 4 (p/mo)

Representation of the function f(P/mo) -

Description of the modes participating directly to the
energy flow to and from mode n.

Output of a mode-locked laser: a train of ultrashort
pulses.,

The strength of the mode coupling is a function of Qr.

The orientational relaxation time T of nitrobenzene
as a function of temperature,

Description of the liquid cell and the laser systen.
Description of the measuring apparatus.

Electronic apparatus for observing stimulated Raman
scattering.

Two-photon fluorescence dye cell, No nonlinear medium
in the cavity.
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ng-photon fluorescence dye cell, Nitrobenzene at
25 s

Twoaphoton fluorescence dye cell, Nitrobenzene at
126G,

Two—pgoton fluorescence dye cell., q-chloronaphthalene
at 62°C.

Detection 8f s timulated Raman emission from nitroben-
zene at 25°C.

Pulse sharpening in a nonlinear index of refraction.
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II. A THEORETICAL STUDY OF OPTICAL WAVE PROPAGATION
THROUGH A RANDOM MEDIUM AND ITS APPLICATION TO

OPTICAL COMMUNICATION



-90-

INTRODUCTION

The discovery and development of the laser has, in recent years,
opened new perspectives in the area of optical communication. This is
due mainly fo the availability of a large bandwidth, theoretically up
to lOlEHz. Any optical communication system using a laser as an
optical carrier transmits a modulated information through a layer of
atmospheric turbulencé. This is true when the communication 1link is
from earth to a satellite, another planet, or from earth to earth. The
atmospheric turbulence introduces random fluctuations in the amplitude
and phase of the modulated optical signal and therefore distorts the
information carried by the optical beam.

There are two principal detection schemes of modulated optical
signals: (a) heterodyne detection, and (b) video detection. In scheme
(a) the incoming modulated optical beam is mixed in a nonlinear detec-
tor with a local reference signal, while in scheme (b), the reference
signal (i.e. the carrier) is transmitted together with the modulated
signal along the communication path. The purpose of this report is to
compare the theoretical performaﬁce of these two optical communication
schemes through a randomly turbulent medium in terms of the parameters
of this medium.

In order to achieve this goal, the propagation of an optical
wave through a random medium has to be studied. There is a consider -
able and valuable amount of literature on this subject (1-5). The
problem common to all these references is finding & solution for the

wave equation (V2+ anQ(;)) u(X) = 0 in & medium where the index of
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refraction n(z) is a random process. No simple analytical expression
for the wave function u(;) of the propagating wave can be found under
these circumstances. Tatarski in reference (1) uses an approximation
(the Rytov approximation) in order to find an analytical expression for
the wave function. The Rytov approximation has been contested theoreti-
cally (6) (7) and its limits of applicability have been determined
experimentally (8). The results obtained from the use of the Rytov
approximation are only valid for short propagation lengths in a weakly
turbulent medium. The geometrical optics and the Born approximations
have also been used to solve the wave equation, but their range of
validity is severely limited.

Other methods make use of a correct power series expansion for

the wave function u(z) for calculating its statistical properties

>
such as the ensemble average u(x) and the correlation function

> i , . —

u(xl) u (x2) (5). However, in the averaging process, approximations
are made which seriously handicap the validity of the results obtained.
In this report we shall derive a power series expansion solution

for the wave equation, in a form which is slightly different from that

of reference (5) . This enables us to find analytical expressions for

u(;) and u(;l) u*(zé) without any approximation for a turbulent
medium in which the fluctuations of the index of refraction are a
Gaussian random process.

In Chapter I we examine the wave equation satisfied by an optical

wave propagating through a medium with a random index of refraction. A

formal solution as a series expansion in powers of the variance of the
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refractive index fluctuations is derived. Various approximate methods
are then reviewed and their results compared with the correct expression
for the wave function. In Chapter II the statistical mean of the wave
function ;?53- is calculated and an exact analytical expression is
obtained in terms of the correlation function of the refractive index

fluctuations. 1In Chapter III the results derived in Chapter II are com-

pared with expressions for u(;) obtained by using various approxima-

tions. 1In Chapter IV the correlation function u(L,;l) u*(L,; ) of the

2
wave function between two points in a plane perpendicular to the direc-
tion of propagation after a propagation distance L through the turbu-
lent medium is calculated. An exact analytical expression is obtained

in terms of the correlation function of the refractive index fluctua-

tions. In Chapter V the results derived in Chapter IV are compared with

results obtained for the same function u(L,;i) u*(L,;é)

using various
approximations. In Chapter VI another useful statistical function of

the propagating wave, the intensity correlation function

>

I(L,rl) I(L,;e) is investigated by the same methods as in Chapters II

and IV. Our exact theoretical analysis is incapable, in this case, of

predicting the behavior of this function for any propagation length and
turbulence strength. Chapter VII is devoted to the calculation of the

intensity correlation function using various approximations. Both our

results and the results of the approximation methods cannot adequately

explain the experimental results of reference (8) and others.

In Chapter VIII we present and discuss recent experimental

observations on the behavior of the intensity fluctuations in relation
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to our results. Several empirical formulas which "fit" the experi-

mental data for the variance of the intensity fluctuations IE(L) are
introduced.

In Chapter IX the results of the previous chapters are applied
to the comparison between two schemes of optical communication through
the atmospheric turbulence (a) heterodyne detection, (b) video communi-
cation. 1In scheme (a) the detection of a phase modulated optical beam
is performed by mixing it in a nonlinear detector with a local reference
signal. In scheme (b) the reference beam is sent together with the
signal beam through the same path in the turbulent medium. In both
these cases the signal-to-noise ratio (S/N) is derived in terms of the
statistical properties of the refractive index fluctuations. The
Kolmogoroff model of turbulence is then used for obtaining a numerical
comparison of the performances of the two methods of optical communica-

tion. The following performance criterion is introduced,

N)
(s/N

R = scheme (b)

scheme(a)

R is expressed explicitly in terms of the length of the communication
link, the diameter of the receiving aperture, the strength of the tur-
bulence and the wavelength. These results are then analyzed and dis-

cussed.
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CHAPTER I - SOLUTION OF THE WAVE EQUATION IN A MEDIUM WITH A

RANDOMLY HOMOGENEOUS INDEX OF REFRACTION

1.1 Statement of the Problem

The problem is to solve Maxwell's equations in a medium where
the index of refraction is a homogeneous random field. An optical wave
propagating through such a random medium satisfies the following scalar
wave equation. (In deriving this equation we have neglected depolari-
zation effects (9)).

[v2 + K2n2(%)] w(®) = © (1.1)

where k 1s the wave number of the wave = %F in the absence of

turbulence
A 1s the wavelength of the wave

n(;) is the index of refraction of the turbulent propagation

medium.,

>
In the absence of any turbulence we assume that n(x) = 1. However,
in the presence of turbulence, the index of refraction varies randomly

-
in space. We shall assume that the index of refraction n(x) takes

the following form

n(x) = 1+¢ nl<;€) (1.2)

The random field n(X) is assumed to be homogeneous and isotropic. By
homogeneous, it is meant that its mean value is a constant (independent

of position) and its correlation function Bn(zl,;2) between two

>

=
points ;l and ;2 ‘depends only upon the difference xl o x2 . Here
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we choose the mean value of n(xX) to be equal to one n(x) =1,

s
therefore nl(x) =0

= e n(x.) n(x.) = B_ (%~ X,) (1.3)

For example, the mean and the correlation function of a random
function f(x,y,z) of the spaces coordinates x, y and z are defined

as follows:

/2 1/2 L/2

f(x,y,2z) = 1lim j? J ax J dy J dz  f(x,y,z)
L>= LMy —1/2 -1y2
B.(a,B8,Y) = f(x+a, y+8, z+Y) f(x,y,2)
L/2 L/2 L/2
= lim -25 dx dy dz f(x+a,y+B,z+Y) f(x,y,z)
LHEVE e sy SO0
The bars denote an ensemble average over the total ; space. By

isotropic, it is meant that the correlation function Bn(zl,zg) depends

> >
only upon the distance between the two points xl and x2, i.e.
B (X.,x.) = B (|§ - X |) where i? = & | denotes the modulus of the
n 1’72 n''"1 "2 1 72
‘ > -
vector X - X, .

The homogeneous random field nl(z) has the following two-

dimensional Fourier-Stieljes spectral representation (10)
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) = Jeik.r an (k ,x) (1.4)
4

>

where dN(k,x) is another random field; its properties will be given

later. The position of a point in space is determined by its coordi-

nates x and ; . The x-axis is along the direction of propagation
>

of the wave. r 1is a vector perpendicular to the x-axis. The problem

is to find statistical information about the wave function u(%), e.g.

e

its mean wu(X), its correlation function u(%.) u*(x2) in terms of

L
the statistical properties of the fluctuations of the index of refrac-
tion nl(z) :

The wave equation 1.1 has been solved by various researchers
[(1) - (5)] using various approximations: the geometrical optics
approximation, the Born approximation, the Rytov approximation. The
purposé of this report is not to review these approximations in detail,
but during the development of our analysis we will mention how these
approximations come about.

We shall first look for a solution of the wave equation 1.1 in

the following manner. According to 1.2 we can write

n2(%) =[1+ en ) =14 20 nl3) (1.5)

1 1

Since € is a very small quantity (of the order of lO_8 in the atmos-
phere), we can drop the term in €2 which gives a negligible
contribution to the fluctuations of the square of the index of refrac-

tion. Therefore the wave equation takes the following form:
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(7= & ¥°) ulzZ) * 2e K4 n, (%) u(x) = 0 (1.6)

We shall look for a solution of u(z) as a power series of €

u(x) = uo(Z) + e (X) + equ(;) #oeeed et (X) 4 eee (1LT)

We substitute the above expansion for u(X) in the differential equa-

tion 1.6

(V2+ k2) z ePu (;) + 2k2nl
p:O P p=O

(%) f aP+1up(§) = 0 (1.8)

We now look in expression 1.8 for the terms of a given power of ¢ and
we find the following recursion relationship between up(;) and

up_l(X)

2

(V-+ k2) up(;) + 2k2nl(;) up-l(;) = 0 (1.9)

The method for calculating the various terms in the expansion

-> ->
of u(x) becomes now clearer. Knowing u (x), we can calculate the

-1

following term up(z) by means of a Green's function.

L(x") up—l(;') (1.10)

u (%) = ~2k? J ax' 6(¥,%') n
G(z,;') is, according to 1.9, the Green's function corresponding to

2

the operator (V°+ k2) which is defined by the following equation:

(vo+ X2) G2, 5") = ~8(%X = 2')
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Therefore,.

-> -
eik|x - x'|
Bl,k") = (1.11)

hﬂ;—;ﬂ

We shall calculate explicitly the first two terms ul(;) and

ug(Z) of the power series expansions 1.7, assuming that the solution
of the wave equation is a plane wave in the absence of turbulence. We
shall then assume a forumla for um—l(;) which is valid for

m-1 = 1 and 2, and show that um(z) is obtained from um—l(;) by

replacing m-1 by m . In this manner we prove that the formula

postulated for u (;), valid for m-1

1 and 2 is wvalid for any
m-1

m-1.
The zero order term uo(;) is the solution of the wave equation
in the absence of turbulence (e = 0). We assume that this solution is

a plane wave propagating in the x direction with amplitude Ao

u (x) = A e. (ledZ)

) ->
For convenience we do not compute the terms up(x) in the expansion of

u(X), but rather the quantities

L u (%)
b (x) = 22— (1.13)

p ey
u_(x)
and we call w(;) the following series

u(x)

uo(z)

V() = =14 ep(E) + F,(X) 4 e+ Py ) (1.14)

w(%) is the ratio of the wave function wu(x) in the presence of
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turbulence to the wave function uo(x). In the absence of turbulence
=¥ 5
v(x) = 1.

> >
We shall now proceed to compute wl(x) and w2(x)

1.2 Calculation of wl(i’) = ul(;)/uo(}_z)

The first order term wl(;) in the expansion of v(X) is

defined by 1.13 as

oo (® w®
Wl(x) s — = lA -ikx
uo(x) Q)

We then use relationship 1.10 to find

b () = -2 | oz o) gy (1.15)

1

We then express the Green's function G(;,;') as follows:

P
> > > > > > > 1K.(r—r')+
G(x,x'") = G(x=-x") =G(x=-x" ,r-r') = | G(K,x-x"') e dK
K (1.16)

_> . . . .
where G(K,x-x') is the transverse two-dimensional Fourier transform

< P . N
of G(x,x') and is given by

(2n)2 6(R,x-x") = explile- B2 gt |1 (117

.
2(x2- ¥2)2
> > ->

We then replace G(x,x') expressed by 1.16 and 1.17 and nl(x)

given by 1.4 into expression 1.15:
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The- integration with respect to ;' is easily performed

> > ->

- K PO, |
f ar' e 1(K-K')-r = (2ﬂ)26(§-§')

Due to the presence of the Dirac delta function, we notice that
the only values of K (the space Fourier transform variable of the
Green's function) which will contribute to wl(;) will be the ones
which are of the same order of magnitude as K' , the space Fourier
transform variable of the fluctuations of the index of refraction
nl(z). At this point it is important to state which specific problem
we are trying to solve. We are concerned with the propagation of an
optical wave through atmospheric turbulence. By optical wave, we mean
a wave with a wavelength of up to about 10u = 10" %nm.,

We shall now examine qualitatively the structure of the atmos-
pheric turbulence. The atmospheric turbulence is made up of inhomo-
geneities of different sizes called eddies (11). The energy in the

largest eddies is obtained from large scale ordered motions in the

atmosphere, like atmospheric winds, for example. Each eddy of size &
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is characterized by a parameter called the Reynolds number Re and is

defined as follows

Re = Y2
v
where v 1s the velocity of the turbulent
v is the kinematic viscosity = u/p

p  1s the dynamic viscosity

p 1is the fluid density.

As the Reynolds number of an eddy of size & is increased (by

increasing the velocity) above a critical value the motion of

Recr>
the fluid becomes unstable and the eddy of size £ Dbreaks up into
eddies of smaller sizes {' so that the Reynolds number of the eddies
of size &' < ¢ Dbecomes smaller than the critical value ReCR and the
motion of the fluid inside the eddies of size &' Dbecomes stable. As
the Reynolds number of the eddy of size &' increases further, it
breaks up into eddies of smaller sizes. This process goes on until the
size of the eddies reaches a minimum called the inner scale of turbu-
lence Qo . The eddies of size 20 do not break into smaller eddies
because their Reynolds number is always smaller than the critical
value. Energy is transferred from the largest eddies to the smallest
eddies of sizes 20 at which point energy is direétly transformed into
heat via viscous motion of the fluid. In the atmosphere, wind shear

provides the energy to maintain the turbulence. The size of the

largest eddies is called the outer scale of turbulence LO. Therefore
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the size ¢ of the inhomogeneities in the atmosphere is such that
L £ 9 £ LO . This range of energy containing eddies is called the
inertial subrange by Kolmogoroff (12).

In the spectral representation of the random process

'
n, (x')
> iK' 7! 2
nl(x‘) = e dN(K' ,x")
il
>
the magnitude of K' is such that %1 £ K= %1 5’%1 . In the atmos-
o o

phere lo is,typically, -of the order of one millimeter and LO of the

order of a few meters. Therefore for an optical wave

K £ %1 ge Elg k (1.19)
A
o)
; S N T
since 5 < QO = 7 = 10 .

We can then express the two-dimensional Fourier transform

G(K),x-x') in 1.17
G(fix-x') — ———l——g expli(k - g;ﬁ lx—x'l ] (l.QO)
2k (2m)

We also notice that the propagation of a wave in the x-direction

between two points of coordinates (O,;) and (x,;) will be affected by
._>

the random field nl(x',r') or dN(gw,x') only if the condition

“

0 €x' € x is fulfilled. Therefore in 1.18 we must perform the inte-

gration with respect to x"' Dbetween the limits x' =0 and x' =x .
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Using expression 1.20, taking into account the above remark,

performing the integrations with respect to K and ;', we find

ax! J e e an(¥',x") (1.21)
-5
K

We shall state again, because it is an important point, the
approximation made above. We have assumed that the wavelength of the
propagating wave is much smaller than the inner scale of the turbulence.
This is especially true for the case.of an optical wave propagating
through the atmosphere and roughly exact for submillimeter waves. This
assumption allowed us to approximate the two-dimensional Fourier
transform of the Green's function by expression 1.20. This simplified

greatly the calculation of wl(;) because of the cancellation of the

eik(x-x') e—ik(x—x')

terms and . We shall use the assumption

A << Zo (1.22)

all along the development of our analysis. This inequality is an
essential condition for its wvalidity. We now proceed to calculate the

> >
second term wg(x) in the expansion for y(x) .

1.3 Calculation of wz(;)

The second order term in €° in the expansion 1.1k for y(x) is

wz(;) defined by 1.13. ¢ (x) = u (;)/uo(z) where u2(§) is expressed

2 2

in terms of ul(;) by the recursion formula 1.10. First, we can

write wg(;) as



Ty

Loou(x) uy(e) u, (x) exp[-ik(x-x")]
gt = o (%) Aemp(ikx) A exp(ike')
o oS XP g o W
5
ue(x) exp[-ik(x-x")]
= = {1.23)
u (x')
o
We now make use of relationship 1.10 for p = 2
u, () = - 2 J & GEE) 0 (5 w () (1.24)
Combining 1.23 and 1.24, we find
. ; w (x')
0y (%) = -2K° j & o(F,%) e ) gy (1.25)
u (x')
N )
» ul(x') . .
We notice that ——— = wl(x') and we replace wl(x') in 1.25 by its
u (x')

expression 1.15.
- -x!
b3 = (-2x2)? J a3 [ B o2 ). ) g gy

>, >
x e nl(x ) nl(x )

In the »llowing step the Green's functions and the fluctuations

of the index of refraction n, are replaced by their two-dimensional

Fourier transforms 1.16 and 1.4. Under the assumption A << lo s We

can write, according to 1.20,

> >y =ik(x-x')

G(x,x') e = J dKl

- 00

and then
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- * ° T
wg(I) = i%rj dx' J ax" [ dar' J ar" J ak | J dﬁz J J
8 o == o= k' K"

K <
X {exp[-i 5 (x=x')] exp[-i 5= (x'- x")]

X exp[i(k*l'(;—;' ) + KQ-(;'_;") +Kv .;' § Kn.;n)]
« an(@x') m(k’",x")} (1.27)

The integrations with respect to r' and " yield

T i(~’1€l+k’2+ Kzt 7 i(-ﬁ2+ K")p"
J dr' e J dr" e
= (on) SR B+ B (B B
2 1 2

The integrations with respect to ﬁ and E are then easily performed

1 2
and
R ) X - x! (E'+ §")2
(x) = (ik) ax' | dax" exp |-i (x=-x")
Yo oK
: o R
k"2 1K+ Ker "
X  exp [—i e (x'- x"] e an(K' ,x") an(x",x") (1.28)

We can also express wZ(;) in another form which will be useful later
by writing

(B + B2 (x-x') + K"%(x'= x") = K'Z(x-x")

" QE' 'E"(x—x')+ an(x_xn)

then
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X X
w2(;) = (1k)2 J dx' J dx" J J {%xp[:— EE'(K'Z(X—X')'+K" (x-x")
0 0 K' K"
N 21_%' . i{)"(x_x'))] ei(K'+ K")'r dN(—IZ' a?{') dN(K",X”)} (1.29)

We notice that the calculation of the terms of various orders in
the expansion of w(;) is straightforward once the assumption A << 20
th
has been made. We shall now find the formula for the m =~ term by the

following method.

T.h Cﬂmﬂaﬁm1ﬁ'wm&)

We shall first assume a formula for (2) which is valid for

wm—l
m-1 =1 and 2, then we shall use the recursion formula to calculate

-> -> . . = "
wm(x) from wm_l(x) and find out that the expression for wm(x) is
obtained by replacing m-1 by m in wm_l(;). Therefore if the
formula proposed for wm—l(;) is valid for m-1 =1 and 2, it will be

valid for any m .

> > > >
wm(x) is defined by 1.13 as wm(x) = um(x)/uo(x) which we can

write
. u_(x) u (%) expl-ik(x-x")] u (%) expl-ik(x-x')]
v (x) = = =
e Aoexp(ikx) Aoexp(ikx') uo(;')
(1.30)
and um(;) is given in terms of um_l(;) by the recursion formula 1.10
Y o 2 - > > Fo %y
um(x) & =Dk J ax' G(x,x") nl(x ) umrl(x ) (lf3l)

Therefore we use 1.30 and 1.31 to express wm(;) as follows
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. i ( '
1] (;) = -2k2 { d;l G(;,X') "'lk(X-X ) nl(-+') um_l+x
" u (x')
O
or
lpm(;(}) = —2k2 J ax!' G(;,;l) e—ik(X—X') nl(;v) wm_l(;,) (1.32)

We now postulate the following formula for ¢ (2) which is

m-1
valid for m-1 = 1 and 2 (see expressions 1.21 and 1.29)

1 (m—2)
X X X
by ) = @07 [ [ax oo [ et
0 0 0
=m-1
] (BT )
£ g gD e
=m-1, p=(m-1) 2
X exp[(— %EJ q~§ P zm E(P) (X(Q'l)_ X(Q))]
=l | pmq
=m-1
« [T an@®) £ (1.33)
=1
where 0 £ x(m_l) < X(IH—Q) & G s gx(p) {X(p_l) 2 veiv E gt & gt £y
Pl @) ()
The symbol 1  aN(K'®’/,x'P’) stands for the product of the m- 1
p=1

random functions dN(K(p),x(p)) evaluated for E(p) at points x(p)
where p runs from'l to m-1, i.e.
m-1

T ()= an(¥',x') an(k",x") .-+ an(¥
=1

(m—l)’x(m—l))
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We now replace wm_l(;'), which is easily obtained from 1.33,

into 1.32. The Green's function and the fluctuation of the index of

-—> 3 .
refraction nl(x') are expressed in terms of their two-dimensional

Fourier transforms 1.20 and 1.4, wm(;) takes the following form
x ® K2
2 > > -1 M |
) (2) = ("2k ) J dX'J dr' J dK (—-—-—) exp|-i = (x_x')
m : - 1 2k(2“)2 [ 2k ]
=5 e s > >
1Kl-(r—r') iK' ep!
x e J e an(K' ,x')
Y
K'
x! X" x(m—l) n
" (ik)m-l J gzt J dx e J dx(m) J J .. I {exp[l( z k’(p)) " I"}
0 0 0 "K*u k’m -K*(m) p=2
r_s Q=m,p=m 2 _ p=m N
x exp[(al?) I [y &P (xlerth x(Q))} i dN(K(p),x(p))}(l.Bh)
q:2 P=q p=2

In this apparently complicated expression we can perform two straight-
>
forward integrations. The first is the integration with respect to «r',

T > P =0, > > P
[ dr' exp[?(-Kl+ K' + PZ K(p)) ~r'} = (21r)2.6(K1 = 2 K<p)) (1.35)
- p=2 p=1

The second is theintegration with respect to ﬁi which 1s performed by
, - P S (p) :
replacing K, by ) K in expression 1.34. Carrying out these
p=l.

two integrations leads to the final expression of wm(;)
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' (m"l>
X X X
b (%) = (i) J ax! de". J ax(m) J j J
0 0 0 I—{>' K" g(m)
p=m " _ =m  p=m _
% {eXP[l( £(p)y . r] eXp[EIl{) qZ i z(p) (x{a-1)_ x(q))J
p=1 9=1 | p=1
y (P;m m(ﬁ“’),x(p)>) } o0 585
p=1

We have proved that if wm_l(i) is given by expression 1.33,

then the formula for wm(;) is obtained by replacing m-1 by m in
1.33. Therefore, since expression 1.33 is valid for m-1=1 , which has
been checked by the direct calculation of wl(;), it is valid for
m-1=2, therefore for m-1=3 and so on; it is valid for any m.

vWe have calculated the general term wm(;) in the power series

expansion of

(

o]

pE = sxl oy oy
o(x) m=0 -

o

This series is often called the Neumann series. Its convergence (5) is
slow iftheeffect of multiple scattering is important.

At this point it is interesting to make‘reference to the various
methods which have been used previously in the literature to solve the
wave equation 1.1 .

1.5 Review of Approximate Methods

Many authors have previously tried to solve the wave equation

(V2+ k2n2(;)) u(x) = 0 , 1.1. All the methods which have been used are
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based on approximations which limit their range of validity. In
Sections 1.1 to 1.4 we have derived an exact series solution of

equation 1.1 for an optical wave propagating through the atmospheric

o

) > m, ,> > .
turbulence. The series Y(x) = z € wm(x) where wm(x) is given by
m=0
1.36 is not summable analytically. We shall now refer to approxima-

tions which allow us to find an analytical sum to the series w(%)

' >
and then draw conclusions on the amplitude A(x) and phase ¢(;) of

) ei¢(?c)

s

—>
the wave function wu(x) = A(x directly, rather than on statis-

tical averages of these quantities.

1.5.1 The Born approximation. The Born or single scattering

>
approximation wB(x) is obtained by keeping only the first term wl(;)

-+
given by 1.21 in the expression for ¥(x) , i.e.

-
-> (;) * -'——(lK X—X') . .—»
wB(x) = e —— =1+ ick J dx' J e o e1K d dN(f',x')
uo(x 5 4
K' (1.37)

The Born approximation is a good approximation for w(z) only if

2
e”|

wl(;)|2<« 1 where the bar denotes an ensemble average defined in

Section 1.1. We will show below that the above condition is satisfied
for a length of propagation L through the atmospheric turbulence
such that

egkeLOL << 1 (1.38)

where LO is the outer scale of the turbulence. For an optical wave
propagating through the atmosphere, the range of validity of the Born

approximation is only a few meters.
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1e5.2 The geometrical optics approximation. In this

approximation we look for a solution to the wave equation in the near

field of the smallest size scatterer of the random medium, i.e. at a

distance L from the source such that L £ LCR where LCR is defined
as follows:
b
LCR B (1.39)

where lo is the inner scale of the turbulence.
For a wavelength of 1lu , .LCR ~ 1m . We make use of this

-
approximation to evaluate the various terms wm(x) of w(;) . In the

expression 1.21 of wl(L,;) we can neglect the term

2 2 2
! K K'"L 2m\2 LA AL
] =—— - x! i s -x') £ £ (&= = a=
expli = (L-x")] , since o (L= %) o (lo) o “22 << 1
o

Therefore we can write, according to 1.k

L
v (L,F) = ik J dax! J eig"r an (k' ,x")
0 #

%
ik J ax' nl(x',¥) (1.40)
0

Similarly, we can neglect the term exp[- %E-(K'Q(L-x') +

K"2(L—x") + 2?’-?"(L—x'))] in expression 1.29 for wg(;) and write

L x*
¢2(L,;) = (ik)2 J dx!' J ax" J J ei(K'd-K")-r dN(K',x') dN(K",x")
0 0 K' #n .
L x! L 5
- 0 [ e my ) [ ety 08 = Hix [ @m0 ) |
0 0 0

(1.41)

Similarly, we can express ¢m(L,r) in the geometrical optics
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approximation as:

L b (m-1)

p(0s8) = 0 [ax G By e my e 3) e [t G )
0 0 0
L m

bp0s) = 3 [ [ axtny G 2] (1.42)
0

> >
The expressions 1.40, 1.41 and 1.42 for the terms wl(L,r), ¥ (L,r)

>
and wm(L,}’) lead to the following summation for w(GO)(L,}’)

L
© m m
> 1 ek ->
T )
m=0 0
L
>
= exp [iek J dx! nl(x',r)] (1.43)
0
%
under the condition L << > This expression is equivalent to the

solution of reference (13) in the limits where the amplitude fluctua-

tions are negligible.

1.5.3 The Rytov approximation (1). The Rytov approximation is

used by many authors to solve the wave equation 1.1 . Its validity has
been contested (6),(7). We shall discuss this approximation in more
detail later in comparison to our results. At this point we notice
that if a few terms are neglected in expression 1.36 for wm(;), the
solution of the wave equation under the Rytov approximation is put in
evidence.

In expression 1.36 we write
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mip 2(p+q)
q=1

-1
= 7 @2 o)y T R (x- xP)y  (1.41)

1 p=1

For better comprehension we write down these summations explicitly for

m=3

(x(q—l)_ X(Q)) = (k*|+ k’n_’_ E'")Z(X—X')-‘-

+ (Kn + k’vu)g (x'—x") + I'{*ue(xu_xm)

K'E(X—X' )+ K"2(x-x")+ K"'Z(X—X'")‘F 21_{" ,(R’n_‘\_ KH‘ M x-x')

> >
+ 2K"- K" (x-x") .

If, for some reason, the terms containing dot products of spatial wave

>(

vectors K p)_K(p+q) - are dropped in 1l.4k4 and 1.36, .wm(;) can be

written as

X x" x(m_l) -
¢m(§) = (i)™ J dx' J ax" de m)J J J exp[i 21 gp) | 2 J
0 0 0 Zooge gm)
x eXP[(é_lj;) Iil(l‘{*(P))Q (x-x P))— ?[1 dN(K(P)’X(P))
p=1 =} p=L

: (m-1)

x x X 2

= (ik)m J dx'J dax" J dx(m) il exp[éi-(ﬁ(p))e(x x(p)ﬁ
L 3(p)
0 0 0 >(p
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Let us define f(x(p>) by

; 2 ) s
CI N f xp[ @) (x_x(p>)] JAKPE ) ()

2k
7(e) (1.45)
Then we can express wm(;) as
X x! x(p—l)
wm(i) = (ix)™® J ax' f(x') J ax" f(x")ee- J ax(®) £ (x(P))
0 0 0
x(m—l)
X e J dx(m)f(x(m)) (1.46)
0

It can be seen that the m-dimensional integral in 1.46 with the above
limits is performed in a m-dimensional volume equal to  1/m!, the
volume of the m-dimensional "cube" of size x and yields

X

z m m
i@ = B [ e 1] (1.47)
0
2
e R % ~iE—(x-x")
p(x) = 2 emwm(x) = expl}ek J dx ' J e

=0 0 '+'

K
x oIK''T cm(k*',x")] (1.148)

v(X) given by 1.48 is the solution of the wave equation under the
Rytov approximation. We have obtained this solution by neglecting
arbitrarily certain terms in the expression of wm(;) . There is no
Justification for neglecting these terms. The Rytov approximation, as

we shall see later, leads to erroneous information about some
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statistical averages of the wave function u(;)

We have reviewed three types of approximations commonly made in
order to solve the wave equation 1.1: The Born approximation, the
geométrical optics approximation, and the Rytov approximation. The
solutions corresponding to these approximations have been put in evi-
dence by neglecting various factors in each term wm(i) of the series

(o]

expansion w(%) = z emwm(;) . (The exact solution to the wave equa-
tion is u(X) = Aom;gkx W(;))~

The motivation for the use of these approximations is to give a
simple and analytical expression for u(X) and therefore simple and
analytical expressions for the amplitude A(X) and the phase (%) by
separating u(;) into its real and imaginary parts. Conclusions about
the statistics of the amplitude and phase of the wave separately can
then be drawn.

o]

A look at the formal exact solution W(;) = z emwm(;) where
wm(;) is given by 1.36 shows us that it is hopelezzoto try and sepa-
rate the wave function into its phase and amplitude without some
approximation and therefore to calculate the statistical properties of
the phase and the amplitude of the wave separately. However, we can

hope to deduce statistical information about the wave function u(x)

itself. In the following parts of this report we shall evaluate the mean

-> . = o o ->
u(x), the correlation function of the wave function wu(L,r,) u*(L,r,)
—>
r

between two points (L, and (L,;z) in a plane perpendicular to

1)

the direction of propagation of the wave at a distance L from the

source, and we shall investigate the correlation function of the wave
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intensity I(L,¥) between these two points

I(L,?l) I(L,?g) = u(L,r.) u*(L,r.) u(L,?e) u*(L,?g) )

1 1

The asterisk denotes the complex conjugate.
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CHAPTER II - CALCULATION OF u(;)

We have, in Chapter I, found a formal solution of the wave equa-

2

tion [V2+ k+ 2€k2nl(§)] u(X) = 0 as a power series expansion

u(x) = Aoeikx ¥(x) = AoeikX E Emwm(;) for an optical wave propagat-
ing through atmospheric turbﬁignce. ‘An expression for each term

wm(;) of the series has been given, but it has not been possible to
find a useful analytical sum to the series uy(X) without using some
approximation. Therefore, no information on the phase and the ampli-

tude of the wave is available directly from the series w(z).

We now proceed to calculate the mean of the wave function u(;)

or, rather, the statistical average w(z) of the sum y(x), since

u@) = A o B i (2.1)

I & v (%) (2.2)
m=0

where w(;)

In order to do so, some information on the nature of the statistics of
the turbulent medium is needed. In the following paragraph the statis-

tical properties of the random refractive index field are stated.

2.1 Statistical Properties of the Random Index of Refraction

The only random quantities appearing in wm(;) are the two-
. . . . >(p) _(p)
dimensional Fourier Stieljes transforms dN(K'*’,x'*’) of the
fluctuation of the index of refraction nl(x(p),;). The random process
dN(E(p),x(p)) satisfies the following relationms.
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where Fn(ﬁ(p),lx(p)— x(q)|) is the transverse two-dimensional Fourier

transform of the correlation function of the fluctuation nl(;) of the

index of refraction, also called the two-dimensional spectral density

function of n. (X). The correlation function B (x ,; 45X ,; ) of
4 nl 12712 2272
> . > >
nl(x) between two points (xl,rl) and (x2,r2) can be expressed as

follows according to 1.L:

- -> -> ->
Bnl(xl 9r1 !x2 ’r2) = nl(xl ,rl)nl(xe Srg)
'(El > K -> )
i Lo - Y,
_ 1 272 > %(T
= J e an (K, ,x,) aN*(K,,x,)
>
K

I
K &

and the transverse two-dimensional Fn(ﬁ,lxl- x2|) is defined by the

following relation

> - 2)

B (xl,rl,xg,r2) =

x> ->
[ IK (rl— 55
5 e

1.

>
Fn(K),le- xgl) ax

Y-

In order for the last two expressions of the correlation function to be

compatible, the identity 2.4 must hold, i.e.

-> . - > > > _ - -
dN(Kl,xl) an* (K, ,x,) = §(K - K,) Fn(Klixl x2|)dK aK, .
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> >
The two-dimensional Fourier transform Fn(K,x) of n.(x) is related

1

=
to the three-dimensional Fourier transform ¢n(K,Kx) by the relation

" % 1Kxx -
F (K,x) = J e ¢n(K,Kx) aK_
where

® o o ;ugx+%y+gz)
Bnl(x,y,z) = J J J dedK&dKz e ¢n(Kx,Ky,KZ)

=00 =00 =00

>
It is assumed that the random process dN(K,x) is a Gaussian
random process and therefore possesses a multivariate Gaussian distri-

bution. Its higher moments are then given by the following relations.

m N :

1oan(x®) <)y - o if m is odd

p=1

m ->

I dN(K(p),x(p)) = sum of all the different permutations
p=1

of m products dN(E(i),x(p)) dN(K(q),x(q)) if m is even (2.5)

m!
(m/2)1 2%/2

write explicitly the above products for m=3 and m=L ,

There are such permutations. For better comprehension we

(m=3) le aN,, dN3 =0

(m=L) dN, dN, dN, dN, = dN, dN, * dN, aN, + aN, dN, - dN, dN,
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. . =>(p) _(p)y -
where the following notation has been used an (K SX ) B de .
According to relationships 2.5, the only terms which will contrib-

ute to ¥(X) will be the terms of 2.2 with m even, then

>

=Py, (%) (2.6)

[l 2
1

<=
—~

°_f

p=0

with wo(?c) = 1

We shall calculate a few terms in expansion 2.6 and show how

._).
these terms lead to an exact analytical sum for ¢(x) . The first

> . >
term in the series expansion for y(x) is w2(x) ;

2.2 Calculation of w2(§)

w2(;) is given by expression 1.28. The random quantity appear-

ing in ¢2(;) is dN(K',x')dN(K",x"); its statistical average is,

according to 2.4,

an (k' ,x') an(®",x") = s(K'+ K") F_(K',[x'~ x"[) &K' aK" .

We make use of the above relation to calculate wg(;)‘ and we

perform the integration with respect to K" , Yielding

X 5'el © 5
i - 1" e -iK' " e "
v (x) = (ik) dx' dx dK' expl (x'= x")]F (K',fx'—x |)
2 2k n
0 0 Zoo

(2.7)

Fn(ﬁ',lx'— x"|) is the two-dimensional spectral density function
of the random index of refraction. It is a measure of the correlation

of the index of refraction between points in the plane X = x' and the
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plane X = x", see Fig. 2.1. Clearly, this correlation is produced
only by the inhomogeneities in the index of refraction which have a size

] 1

2 larger than the distance between these two planes £ = |x % 2

NN

O xll x; x

NN

Fig. 2.1 The two-dimensional Fourier transform Fn(ﬁ,lx'—x"l)

\'%
X

is a measure of the correlation of the index of
refraction in two planes perpendicular to the direc-

tion of propagation of the wave

The wave number K' is related to the scale of the turbulence
% by K' =21/% . Therefore, Fn(E',lx'-x"]) will be appreciably dif-
ferent from zero only if the condition K'|x'- x"l:]q equation 2.8, is

satisfied. Therefore we can neglect the exponential term in the

expression of ¢ (2) , since according to 2.8 and 1.22
2

This simplification is again due to the fact that the wavelength of the
propagating wave is much smaller than the inner scale of the turbulence

lo <, We can then write

X X'
¢2(§) .~ J ax' J ax" Jdﬁ' Fn(ﬁ',]x'- x"|) (2.9)
0 0
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or, for later convenience

1

b'd x x X
> 2 k2
v (x) = -k J ax' J ax" £(|x'- x"[) = - = f dx' J ax" £(|x'- x"|)
0 0 0 0
(2.10)
the function f(|X|) is defined by the following relation
£(|x|) = J &' (R, [x]) (2.11)

=00

We shall now proceed to calculate the term of order eh in the

expansion of w(;) , i.e. wh(;)

2.3 Calculation of wh(;)

The calculation of the term of order eh in the expansion of

w(;) is a little more tedious than the calculation of w2(;) , but

still straightforward. wh(;) is given by expression 1.36 with n=kL,

then
- L 1 X2 *3 K +K +K +Kh) T
o= it o, P o o | ] [
0 0 0 0 ¥ ¥ % E

EEp Eflc' ( i%f'ifﬁs h)z (x-x) ) + (K2+K3+Kh) (x)-x,)+ (K +Kh)2 (xp-x3)

+ Ki(x?)—xh)):l an(®, %)) an(ky,xy) an(¥y,x,)

2 dN(Kh,xh) (2.12)

where, according to 2.5
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ledNQdNBth = ledN2 . dN3th + ledN3 e dN2th + leth . ngdN3

(2.13)

The product dN.dN, ° 4N th is proportional to Fn(fl,lxl— l)

15 3 “5

+
Fn(K3,|x3—xh|) i.e., proportional to the product of the correlation

functions of the index of refraction between the point Xy and X5

X and xh .

3

- >
AN, dN, + dN,dN) = Fn(Kl,]xl-x3|) F (K, |x,-x), ) and

> > A
AN, dI, + dN,dN, <« Fn(Kl’lxl—th) Fn(K2,1x2—x3|) where the following

inequalities hold for x, xl, X5 X and x),

3

0 = x), = £ x L x &x (2.1L4)

e Tl Rl |

Therefore we expect the term 12-3F to give a larger contribution to
the integrals in 2.12 than the term 132k because the correlations of

the index of refraction between the points x and X and the

1 2
points x3 and Xh are larger than the correlations of the index of
refraction between the points X, and x3 , and the points x, and
. - é " o é - . .
X), since le x2| le x3| and [x3 Xhl |x2 xhl . But it is not

clear that the term 12-3L will give a larger contribution than the term

1L .23 since in the integrals of 2.12 all the limits x will

1°%0%3
actually reach x.
Some authors (5),(14) have retained only the term 12-3% and

neglected the terms 13-2L and 1k 23 in the averaging procedure, i.e.
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they have kept only the terms which represent the correlations between

neighboring points. They have approximated

m

. ->
I aN(K ,x )
o=l PP

as follows, when m 1is even

m m
>
I aN(K ,x ) = NI dN_ = dN.dN, ¢ aN_dN, s -—— ° an (2.15)
p=1 2l - 172 37k m-1"m
In this report we shall not make use of approximation 2.15 to
calculate w(;) . The correct expression of w(;) we shall obtain,

will be compared in Appendix A with the expression obtained by using
approximation 2.15.

We now calculate the contribution of each term of 2.13 to

0, (%)

2.3.1 Contribution of mrm2-ém§m451‘3 . We call this

contribution wha(;) . According to 2.4,

aN. aN, - an.aN, = 8(X.+ k) 6(K.+ &) F_(X,,|x
L~ 172 3 "’ “pr®

1% 3 1‘x2|)

F (K |) &k, &K, K, dk
N 1 T2 T3 T

We  use this relationship in the expression 2.12 for wh(;) , and per-

form the integrations with respect to Kg and Kﬁ to find
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+ Kg(x3—xh))] PR LIk ox, ) B (g Ixgox, ) (2.16)

We can neglect the exponential terms in 2.16 for the same reason

>
which was already given in the calculation of wz(x), i.e.

F (K

N l,|xl-x2|) and Fn(ﬁ3,lx3—xh|) are appreciably different from

zero only if Kl|x1—x £ 1 and K3|x3-xh| £ 1 . Therefore the coef-

ol

ficients of the exponentials in 2.16 are such that

2

K K

.._l. K..._];.é_}‘..

e (%p7%p) £ 50 2L wsd 5 EEd
>

K K

3 e 3 2 _A

o (Xg7x) £ 5 < 21 e

’ N
We then obtain the following expression for ¢ha(x)

X J dK3 Fn<K3’|x3—xh!) [2.17)

=00

or in terms of notation 2.11

X Xl X2 X3

T . o B

¢ha(§) = K J dx, J ax,, f(]xl-xgl) J ax J gxh f(|x3—xh|) (2.18)
0 0 0 0
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2.3.2 Contribution of ledN3 . ngth = 13-24 We call this

contribution whb(;) . According to 2.4,

avan, = 6.+ E,) s(®+ &) F (R, 1) F (X, B

<3

x dﬁ dK aK 53K,

After performing the integrations with respect to K, and Kh , We can

3

write

X X X X @ @
e 1 2 3
> L > >
by (®) = K delj dx2de3Jd.xh JdKl JdK2{exp[—K2(x )
0 0 0 0 ©

Ko (x,x,))] F (K, [x - xy|) P (K, Ixpmx |) K @Ky ) (2.29)

We can neglect the exponential terms -in 2.19 as in the calculation of

wha(z) which yields

X Xl X2 X3
whb(Q) - 5 J ax, J ax,, J ax J axy, £(|x;-x51) £(|xy-x |) (2.20)
0 0 0 0

where we have used notation 2.11 for f(|Xl)

2.3.3 Contribution of 4N th . dN2dN3 = 1k.23 We shall

call it whc(;) . According to 2.k,

> > - > >
an aN, - av.aN, = §(K+ K)) 8(Ky+ Ky) F_ (K ,[x -x)]) F (K, [xy-x5])
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-5
The integrations with respect to K and ﬁﬂ are then performed

3
in 2.12 to yield

X X p'e X_

g L ( i1 2 3

whc(x) = k J dxl j dx2 J dx3 J dx), f(]xl—xhl) f(|x2—x3|) (2.21)
0 0 0 0

where again f(|X|) is defined by 2.11.

2.3.4 Expression for wh(z).

b, (%) = wha(Q) + whb(ﬁ) $ whc(I) or from 2.18, 2.20 and 2.21,
. x X, %, Xo X),
wh(x) =k J dx; j dx,, J ax J dx), [ f(le—x2|) f(|x3-xh|)
0 0 0 0 0
+ f(|xl-x3|) f(|x2—xh[) + f(|xl—xh|) f(lxg-x3 ) (2.22)

The four-fold integration in 2.22 is performed in a four-dimen-
sional volume equal to 1/4! = 1/2L4 , the volume of a four-dimensional

"cube" with sides equal to x . We know that the following equality is

true
X Xl X2 X3
J ax, f ax, [ ax, J ax), . Zk . G(xi,xj,xk,xz)
O 0 O 0 ’j b 9
X X X X
= J dx, J dx,, J dx 5 J dx), G(xi,xj,xk,xg) (2.23)
0 0 0 0

where G(xi,xj,xk,xl) is any function defined in the four-dimensional

"cube" with sides equal to x . The summation ) G(x, ,x 25X )
1,4k, 4 F N
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stands for all the possible G functions evaluated for all the permu-
tations f,i,j,k and & where the indices i,j,k and £ run from 1
to L4 and are all different in any one term of the sum. There are U!

such terms. In our case G(Xi’xj’xk’xl) = f(lxi—xj|) f(|xk—le) and

f([xl—x2|) f(|x3—xh|)-+f(|x |) f(lxz-xhl)-kf(lxl—xhl) £(|x

17%3 2"X3|)

= L
= 3 i,jgk,z f(lxi—xj[) f(lxk—le) (2.24)

where ) f(]xi—le) f(ka—x2|) has been defined above. Therefore,
i,j,k,l =
with the help of 2.23 and 2.24 we can express wh(x) as follows

)4 X X X X
¥, (x) = k—8-J ax, f ax, J ax, j ax) £(]x-x, ) £(|xg-x,])
0 0 0 0
or
o X X 2
5 -1 Lo
0@ =2 [ a [ ax, 2lom,D| = 3 3) (2.25)
0 0

where ¢2(Z) is given by 2.10.

We have calculated the three first terms in the series expansion

X >
2.6 for Y(x), the statistical mean of the wave function in the
presence of a turbulent propagating medium normalized to the wave
function in the absence of a turbulence. We shall now calculate the

5
general term of the series, i.e. w2m(x) ’
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e
2.4 Calculation of wzm(x)

w2m(;) is given for any m by expression 1.36. The calculation
of w2m(;) involves the following averaging

2m

dn
i D

D

sum of all the different permutations of 2m
products dN 4N
P q

=1

b

—_— > > > > >
where dNV dN = 6(K + K ) F (K ,|x -x |) dK dK_ . There are
P q p q n p P a P aq
=5
(2m)!/m!2™ such products. After the integration with respect to Kﬁ
for example, any product dequ gives the contribution f( |xp—xq|)

to the integral of ¢2m(;) where f(|X|) = IJ aK Fn(ﬁ,|Xl) - The

exponential terms in the expression of ¢2m(§) can be neglected for

the reasons described above in the calculation of wp(f), (A << zn).

wgm(i) is then expressed as follows
— woom b om-2 fom-1
Vo (X) = (-1)7 k del J Axy oo J dxem-J Ko
0 0 0 0
x P { T f(|xp-x 1)} (2.26)
p#q 4

n £(|x —xq]) stands for the product of m terms f(lxp—xq]) where

p#q
the indices p and q are different and run from 1 to 2m. The

symbol Pl{ I f(]xp—xq|)} stands for the sum of all permutations of
p#q

the terms I f(lx —qu) obtained by interchanging any two variables
p#q
X, and x in such a way.as to give a different product. There are

J
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2m!/m12m such terms. An example of such a term is

f(lxl-x2|) f(|x3—xhl) oL f(|x2m_l - x2m|)

all the other terms of Pl{ } are obtained by interchanging the posi-
tion of any two variables X, and xj in such a way as to give a
different product. Interchanging xl and x2 , for example, would

give the same product, since f(lxl-x2|) = £(|x ) . There are 2"

o7% |
possibilities of interchanging any pair X, and xj in this way
without changing the product. Interchanging Xy and X, with x3

and x) would not change the product, since f(]xl—xgl)f(|x3-xh]) =
f(|x3—xh|) f([xl—x2]) . There are m! possibilities of interchang-
ing any pair X and xj without changing the product; therefore
there are 2'm! possibilities of interchanging any two variables Xy and

X, in any of the (2m)!/2™m! products without changing the product.

To clarify the argument let us preseht explicitly the case m=2 , then

if we call f(|xi—xj|) = ij , we can write the
(2m)! _ _Wr  _ 3
2"m! 2%.21

terms of Pl{ } as 12-3k + 13.2L + 1k.23 . We can interchange the
indices 1,2,3 and 4 in ot = 8 ways in any of these products without

changing the product, for example ,

1—3—.—2-)1— = ’:18_-'(T§°§H.+ ﬁ;‘éﬂ."' ﬁ’@-}- E’E"‘ §I;.T§+ 5):.3_1—4_ E.ﬁ_'_ )_72—.1—?:‘)

therefore 1234 + 13-2L + 1L+23 = 1/8 (sum of all the possible permu-

tations of the indices i,j,k and & in the product Eﬁlii'). There
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are 4! possible permutations.
In the same way for any m

P {n f(x-x )} = L p{n £(]x-x |}

i P mt o™ s P q (2.27)

where P{ I f(]x —xq])} stands for the sum of all possible permutations
p#q
of the indices in the product 1 f(|x —qu) , there are (2m)! terms

p#q
in this sum. According to 2.26 and 2.27

—— om X %1 Xom-2 Xom-1
o) = (1 E— L [any o[ [ ax
2m - 2m 1 2 2m-1 2m
0 0 0 0
x P{n f(|x-x|)} (2.28)
p#q. P4

The above integration of the sum of all possible permutations of

the coordinates xX,,X,s* "X, X, in a volume equal to 1/(2m)!, the

volume of a 2m-dimensional "cube'" with sides equal to x, is equal to the
integration-of any one term of the permutation integrated over the 2m-

dimensional cube, i.e.

. . X X X X X2m_2 Xem_l
¢2m(x) = (-1) - del J dx2 J dx3 J dx) < J ax, 1 J ax,
ol &5 B 0 0 0 0
x (£ ]x=x, ) £ ]xgmmy [) ooe £Cxg = %50 ()

or
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> X X m
by () = =25 |- & f ax, J ax, f(lxl-le)) = 1o (b, ()" (2.29)
0 0

where wg(;) is given by 2.10

We have calculated the first three terms and the general term of

the series expansion of ¥(X) . These results are used in the next

paragraph to find an analytical expression for u(X) , therefore for
u(x)

2.5 Calculation of wu(X)

gt G e
1+ ¢ wz(x) + -5'(w2(X)

)2

n

W(3) #oee e I (P () e

therefore,

W(E) = exp(e® V(%)) (2.30)
-> k2 I i k2 T i T >
with  y,(x) = - —2-J dx, J am, £ |, =) = = 'EJ dx, J dx,, J dK
0 0 0 0 -

X Fn(ﬁ,|xl—x2|)

The first statistical moment of an optical plane wave propagating a
distance L through a randomly turbulent medium is given by the fol-
lowing expression in a plane perpendicular to the direction of

propagation
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w(L,r) = AoelkL exp 2 5 5

€2k2 i i T > >
- -———-J ax J dx j ax Fn(K,|xl—x2 )| (2.31)
0 0 o

>
where Fn(K,!x I) "is the two-dimensional transverse Fourier trans-

172
form of the correlation function Bn (le—x2|,;) of the index of

refraction fluctuations ny

Bnl(x,;) = nl(a,g) n, (o + x, B+7))

oo

B (le—le,;) = J T Fn(ﬁ,lxl—le)

1
-0
therefore,
J K Fn(ﬁ,|xl~x2|) = Bnl(lxl—le,O) {2.32)
+
and we can express u(x) as
, L
w(L,?) = A P expl- EEKE— dx ax, B_ (|x,-x,],0) (2.33)
2 o 2 1 2 n, 1 2l ’
O .

We can also express u(L,;) in terms of the correlation function Bn(x,;)

of the index of refraction n(X) = 1 + en (x) , which is defined as

ilt
follows
; >
B_(x,7) = (n(a,8) - 1)(n(a+x, B+F)-1) = ¢ B (x,7)  (2.34)
i |
then L I
-+ ikL k2

u(L,r) = Aoe exp| - =5 dxl dx2 Bn([xl—le,o) (2.35)

0 0
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Note that u(L,;) does not depend upon the transverse coordinate r.
In Chapter I of this report we found a formal series expansion
for the wave function u(;) of an optical wave which satisfied the
wave equation (V2+ kgnz(z)) u(;) = 0 . This formal series solution
does not lead to useful results unless some approximations are made to
find an analytical sum of the series. These approximations limit the
range of validity of all the results which are obtained by using them.
However, an analytical expression for the first moment u(L,;) has
been found without the use of any approximation; this result is there-
fore valid for any distance of propagation L and any strength of the
turbulence. We shall later compare the result obtained in this section
for u(L,r) with results which can be obtained by using the approxima-

tions described in Chapter I.

The correlation function Bn(lxl-le) which appears in 2.35

depends only upon the difference lxl—x2 . In order to evaluate the
L L
integral [ ax. [ ax, B_(|x,-x,|) , we make the following change of
0 1 0 2 n 172
variables: X5 xl =a x2+ X, = 28 . The above integral is then
replaced by the integral
L L—d/g
2[4 [ e
0 a/2

This can be seen by looking at Fig. 2.2. The integration with respect
to B with « fixed is performed along a straight line at MSO from
both axes. This integration is easily performed, since Bn depends

only upon o , then
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X, L-d > X

Fig. 2.2 Graphic illustration of the change of variables

X5- xl =0 x2+ X, = 28 . The integration

L L

j dx, J dx, over the square of sides L is

0 | 0 L L-OL/2

replaced by 2 da ag

0 a/2

7 L L |
J dxl‘[ ax,, Bn(lxl— x2|) = 2 j (L-a) Bn(a) da (2.36)
0 0 0

The correlation function Bn(a) between two points separated by s
distance a is equal to zero if a 2 LO where LO is the outer

scale of the turbulence. LO in the atmosphere is of the order of 1 to
10 meters. We are interested in propagation paths in the atmosphere

much larger than a few meters. In this case L >> Lo and the integral

in 2.36 is written
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L L Lo
J dx, J dx,, Bn(|xl—x2|) = 2L J Bn(a) dc (2.37)
0 0 0
u(L,7) is then expressed simply in terms of the correlation function
Bn of the index of refraction.

L

o}

L exp(—kgL J Bn(a) do) (2.38)
0

-5
u(li,r}) = Ae

where k = 3;— is the wave number of the absence of turbulence ;

Lo is the outer scale of the turbulence.

The wave number k in the absence of turbulence is replaced by an

effective wave number ke in the presence of turbulence

~ ik L
ull,r) = Aoe (2.39)
i
with K, &
& = 1+ ik J Bn(a) da (2.40)
0

In order to give an explicit expression for u(L,;) and ke in
terms of the parameters of the turbulent atmosphere, reference must be
made to an existing model of the atmosphere. This is done in the next

paragraph.

2.6 u(x) and the Kolmogoroff Model of Atmospheric Turbulence

The Kolmogoroff model of turbulence (12) has been described in
Section 1.2. Using this model, Obukov (15) has found the following

expression for the structure function Dn(r) of the index of



o

refraction on thebasis of dimensional arguments.

2 r2/3

P {r]=¢ for 4 2r 2] (2.L41)
n n O (o]

_ 2 2/3 r 2 Z Z
Dn(r) = Cn lo (z—) for 0 £ r £ 20

0]

The structure function Dn(r) of the index of refraction between

two points separated by a distance r is defined as follows

D_(r) = (n(F) - n(y))? (2.42)

>
where r = le— ;EI and the bar denotes the ensemble average over all
ints X d X

points x, and x, .

The parameter Cn is called the structure constant. It describes
the strength of turbulence. C_ has been measured experimentally (16),
(17); itis a decreasing function of the altitude (18). Along a
8 n—1/3

horizontal path, Cn is of the order of 10 for a weak turbu-

lence and of the order of lO—7 mfl/3 for a strong turbulence.
Our next goal is to relate the structure function. Dn(r) to the
correlation function Bn(r) to obtain an explicit expression for the

correlation function which corresponds to the Kolmogoroff model.

Bn(r) is defined as follows

-> >

B (r) = (n(x)) - n(x))) (n(x,) - n(x,))

and Dn(r) is defined by 2.42. We can express Dn(r) as

D_(r) = n2(;i) § n2(§2) - 20(%)) n(x,)
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or
D_(r) =2 + 0e2 - 2 n(x;) n(x,) (2.43)
since
n°(3) = (1+ en) ()% = 1 + 2en (3) + nf(X) = 1 + €
and
nl(z) = 0, ni(z) = 1

Bn(r) can be expressed in the following way. Since n(X) = 1,

B (r) = n(x)) n(x,) - n(x;) - n(xy) + (n(x})) (a(xy)) = n(x)n(x,) -1

(2.k4k)

From 2.43 and 2.L44 it is found that

2 hi
Bn(r) =g -3 Dn(r)
Then for r >> &, Bn(r) = & - %—Ci r2/3 A simple relationship

between ¢ the variance of the index of refraction fluctuations,

Cn the structure constant, and Lo the outer scale of the turbulence is

2 1 .,2.2/3_

obtained by noticing that Bn(LO) =0, Lees = cT L 0 , then

2 n o©
_1 2 .2/3 r ,2/3 £
Bn(r) -20n Ly (1 - (LO) ) zoér-Lo
B(r)=lch2/3(1-——32——-—-—) 0£r£y (2.145)
n 2 'n o L2/3 2&/3 o '
o (0]

L
)

The integral J Bn(a) do  can then be evaluated as follows
0
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T L
(@] (e] ) O
- o o 2/3
an(a)da-eano J l—L2/32/3)da+J 1 (L) do.
O
0 0 o) o 2
(o]
which leads to
L
° %0.5/ 2 .5/3
1 .2 .53 2,70,\5/3|_ 1
JBn(u) do 5CnL 1+3(LO) )-5cn Lo (2.46)
0

since 20 << LO where 20 is the inner scale of the turbulence.

After propagating a distance L +through a homogeneous and isotropic
turbulent medium where the correlation function of the index of refrac-
tion is given by expression 2.45 (i.e. in the Kolmogoroff inertial
subrange of turbulence), the statistical mean of an optical wave
function is given by the following expression

. - l-kEC2 L5/3L

u(L) = A elk?‘e 2 noo , (2.47)

o

The statistical mean wu(L) is attenuated as e Bl e

o= 2122 1273,

5 n Lo The attenuation coefficient o is proportional to

the strength of the turbulence described by _Ci and inversely propor-
tional to the square of the wavelength.

Numerical application. For an optical wave with a wavelength

8 m—l/3

of 1y propagating in an intermediate turbulence Cv1 = 3 % 10 §

the attenuation coefficient is o = 0.33 m—l for Lo = 10m, and

a=7.1km‘1 for Lo=lm.
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CHAPTER III - CALCULATION OF u(;) USING VARIOUS APPROXIMATIONS

In Chapter II an exact expression for the statistical mean of a
wave function propagating in a turbulent medium has been obtained, the
only assumption being that the wavelength of the wave is much smaller
than the inner scale of the turbulence. This assumption is a very good
one for the case of an optical wave propagating through the turbulent
atmosphere. In Chapter IIT we shall compare the results obtained in
Chapter II with the expressions for EZ§;. which are calculated from
the various approximations described in paragraph 1.5. These are the

Born, the geometrical optics, and the Rytov approximations.

>

3.1 u(x) in the Born Approximation: uB(z)

The Born approximation solution uB(x) of the wave equation 1.1

is given by expression 1.37. The statistical mean uB(z) is then

easily obtained with the help of condition 2.3.

2j = Aoe' (3.1)

In the Born, or single scattering approximation, the coherent part of

—* o 3 ° ° . 03
the wave u(x) does not decrease with distance. This is evident since

the effects of multiple scattering are neglected. This is a good
approximgtion when the condition
1.2 .2

1 5/3
3 k cn LO L << 1 (3.2)

is satisfied. This condition represents the limit of validity of
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the Born approximation as stated in 1.38.

3.2 u(X) in the Geometrical Optics Approximation: u(GO)(L’?)

The solution of the wave equation 1.1 in the geometrical optics

approximation u(GO)(;) is given by expression 1.43. Then

L
u(GO)(L’;) = AoeikL exp|ick J ax' nl(x',;) (3.3)
L 0

nl(x',;) and therefore J ax' nl(x’,r) are Gaussian random fields

0
with zero mean. We can then apply to 3.3 the following property of a

Gaussian random process R with zero mean,

_ 1.2
8 g P
e” = e (3.4)
L L L
-> €2k2 > >
exp| iek | ax' nl(x',r) = exp|-~ =5~ ax' | ax" nl(x',r)nl(x",r)
0 0 0
We notice that 32 nl(x',r) nl(x",r) = Bn(x'—x",O) where B is the

correlation function of the index of refraction. We can then write

L
2
4 — ikL k_ (] " ] 1"
u(GO)(L,r) = Ae exp|- 3 J dx J dx Bn(x -X ,OJ
0 0

. . > .
This expression for )(L,r) is the same as the correct expression

Yo

for u(L,7) obtained in Chapter II with no approximation

u(GO)(L,?) = u(L,r) (3.5)

Therefore, although the geometrical optics approximation gives results
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for the phase and the amplitude of an optical wave propagating in a
turbulent medium which are valid only for propagation distances L

-5
such that L << Qi/k , it leads to an expression for u(L,r) which is

valid for all L .

—+ . . . +
3.3 u(x) in the Rytov Approximation: u (L,r)

RY)

The solution of the wave equation 1.1 in the Rytov approximation

>

u(RY)(X) is given by expression 1.48 . We write it in the following

form
¥ ik, iek L

upyy (DoF) = AelEl ook B ) (3.6)

where
L i K-'--2--(L x' P+
- - -
B(L) = J ax' j = T an(¥r ,x') (3.7)
0 f{*,

We use the relationship 3.4 for the Gaussian random process B(L)

to evaluate u (L,;) . From 3.6

RY)

2.2 ——
s e ABERT Y

u(RY)(L’;) = AO eikL eiﬁk B(L) = AoeikL e - (3.8)
We now evaluate (B(L))2 . From 3.7
L L
(8107 = [ @t [ axr [ | explpheramx) ¢ £72(0ex")]
0 0 Ty on

> > -
1 (K1+K") 7 —— =
x e an(k',x') an(k",x") (3.9)
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> >
The averaged quantity daN(K',x') dN(K",x") is replaced by its
' >
expression 2.U4,and the integration with respect to K" is easily per-
%
formed due to the presence of the delta function &(K'+K"). It is

then found that

L L o
(B(L))2 = J ax' J ax" J aK exp(é%'K2(2L-x'—x")) Fn(i,lx'—x"l) {%.30)
0 0 -0
or
L L o -
(B(L))2 = J ax' J dx" J aK cos(gE(QL—x'-x")) Fn(ﬁ,lx'-x"l)
0 0 -0
since

[ee]

2
J aK sin(gi-(QL—x'—x")) Fn(K,|x'-x" ) = 0 for symmetry reasons.

-—00

In order to simplify expression 3.10, the same change of variables as

in 2.5 is made, i.e. x"- x' =0a , x"+ x' = 2B . The integral

L L L L—O"/z

J ax' J dx" 1is then replaced by 2 J do J dB , and

0 0 0 a/2
e L L—a/g >

2 > [ K B >
(B(L))" = | dK 2 | da J dg cos = — Fn(K,a) : (3:11)

- 0] a/2

The integration with respect to B 1is then performed to yield
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K2(L— ) Kz

= pin &2 (3.12)

o
N

© L
(B(L)) = 2 J K J ao F_(K,a) B tein
- 0

[ee]

Fn(ﬁ,a) is different from zero only if Ka < 1 as in 2.8; therefore

2

o
<< 1 and we can neglect the term 51nK§E- in the inte-

K2a
2k

<Kz
2

2
o
gral 3.12. Also o £ LO , therefore for distances of propagation L
such that L >> Lo we can neglect o/2 with respect to L and write

with the help of 3.8 and 3.12 ,

T o
; o 2
> _ , _ikL 2 2 > k. KLy =2
u(RY)(L,r) = A e exp|l-ekL J da J dK —5— sin (35 )Fn(K,a) (3.13)
0 -

This expression for the statistical mean of the wave function u(;)

obtained by using the Rytov epproximation is the same as the correct

2
2 2
expression 2.38 if EEE << 1, i.e, if L << —% , the geometrical

optics approximation limit, since in that case

o i EEL-= 1 and e J dK F (K,a) = Bn(a) ;

KL

We write expression 3.13 in the following way

I =)
R . o 2
u(RY)(L’;) = AoelkL exp -52k2L J do J (1-1 + —%— sin —E—J F K,a)df)
KL
0 -0
or v .
o) 2
u (L,7) = u(L,r) exp e2k2L da | ax( l--——— sin K—LQ F (K,a)
(RY). 2L n

(3.1h)
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where u(L,?) is the correct expression given by 2.38. The Rytov
approximation gives an expression for the statistical mean of the wave
function which is wvalid for propagation distances and turbulence
strengths such that the coefficient of the exponential in 3.1k is very
small compared to one. A similar integral has been evaluated by

Tatarski (19). It yields

o -
o) 2

s2k2LJdaJdk’(1-k sin )F(Ka)-03107/611/6
1 KL

(3.15)

for L >> Qi/k .

The validity of u (L,7) is limited to propagation lengths
(RY)

L and turbulence strengths Cn such theat

2 k7/6 11/6

0.31 € s 1 (3.16)

Numerical application. For A = 63288 the limit of validity
1/3)

is 7.4 km under intermediate turbulence (Cn 3 x lO

n1/3).

and

2km under strong turbulence (C = 107"
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CHAPTER IV - CALCULATION OF THE CORRELATION FUNCTION

5

B L,;l,;z) = u(L,r u*(L,r2

) )

A

In Chapter I a formal series solution of the wave equation

(V2+ keng(Z))u(;))= 0 has been found. This solution has been used in

Chapter II to calculate the statistical mean u(X) of the wave func-
tion. Although no useful information can be extracted without some

approximation from the formal series solution for u(;), an analytical

expression for the statistical mean wu(X) has been found without any
approximation. In Chapter IV we calculate another important statisti-
cal quantity: the correlation function of the wave function between two
points in a plane perpendicular to the direction of propagation of the

wave after a propagation length L through random atmospheric turbu-

)

where the asterisk denotes the complex conjugate. The knowledge of the

lence. We call this correlation function Bu(L,;l,?

N >
2)=1ﬂlurl)u*(L,r

2

correlation function Bﬁ is useful to calculate the signal-to-noise
ratio in the astput current of a detector in an optical heterodyne com-

munication scheme. The method of calculating Bu(L,;i,;é) is straight-

2

forward. In the absence of turbulence Bu(L’;l’; = Ao . The wave

2)
"oy > e nm -
function u(x) is expressed as a power series of € , u(x) = ) € u (x)
' m=0 ©
or, rather

v(x) = =] ey (0

where wm(;) is given by 1.36. Therefore,
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(k1)

From condition 2.5 only the terms in B, such that m+p is an even

number will be different from zero. We shall write

[eo]

> >y 2 2q o > >
Bu(L,rl,r2) = AO z € Buq(L’rl’r2) (k.2)
q=0
> >
where Bﬁq(L,r ,r2) is defined by 4.1 and 4.2. We shall calculate
Bﬁq for q=0,1 and 2 and show how these terms lead to a simple analy-

. . = >
tical expression for Bu(L,rl,r2) .

4.1 Calculation of B
uo

From 4.1 and L.2 it is easily seen that

> >
B = wo(L,rl) wg(L,r2) & g (4.3)

4,2 Calculation of B
ul

> >
B _(L,r,,r

4 13 2) is defined by relations 4.1 and 4.2

B,y = Vp(LuTy) + vA(L.T,) + ¥y (L,7) ¥R(L,T,) (b.2)

The first two terms of Bul have already been calculated. They are

expressed by 2.10

L T
2
wQ(L,¥l) + w;(L,¥2) = -k J dx, J dx,, f(lxl-x2|) (4.5)
0 0
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where f(|X|) 1is defined by the relation 2.11

o

£(|x]) = [ aK Fn(ﬁ,lxl) , eand F_(K,|X|) is again the trans-

- 00

verse two-dimensional Fourier transform of the correlation function of

the index of refraction fluctuations. The last term of Bu is cal-

1
culated in the following way. From 1.21
L L
S oy o2 J J s - DO P
¥y (Lory Jv3(L,r,) = k dx, | dx, expl 5 (K] (L-x, ) - K5(L-x,) ]
0 0 Kl .
i (K, 7, - K,°7,)
i r °r
i 2 "2 =
x N (K, ,x, ) dN¥(K,,x,) (L.6)

where according to 2.4

> >

dK. dK

an (X, ,x -x|)
12 1m %2 1%

> - > >
l) dN*(Ke,xg) = G(Kl— K2) Fn(K ) |x

The integration with respect to K , for example, is easily performed

2

in 4.6 due to the presence of the delta function G(Kl— Ké). The first ex-

ponential of 4.6 which becomes exp[(iKi/2k) ( )] can be neglected

e

when A << Qo for reasons which have already been stated (see paragraph

2.2). Then
L L 0 e e e
iKe(r.-r
—>*~>=2 = 12+_
v (L7 Ju¥(L,ry) = k ax, | ax, | &K e Fn(K,|xl x2|)
0 0 -

(b.7)



-1ho-

With the help of 4.4, 4.5, 2.11 and 4.7, it is found that

L L
> > 2 > >
Bul(L,rl,rz) = =k J dx, J dx,, F(lxl"xe|’r1'r2) (L.8)
0 0
where F(|X|,p) is defined by the following relation
> 1 > 1K+ -
rl|x|.p) = J dK(1 - e*°P) F_(K,|x]) (k.9)
or
- 1 ->
F(|x],0) = = (B (Ix],0) - B (|x],0)) (4.10)

€

where Bn is the correlation function of the index of refraction.

4.3 Calculation of Bo

5
»Bﬁz(L,rl,re) is defined by relations L.l and 4.2; therefore,

- wh( 1) ) g (m R () + vy (7 D04(F,) + wy(m Jua(x,)  (4.11)

4.3.1 Calculation of ¥, (¥) + ¥f(r,) . The first two terms
of B‘2'have been calculated previously. From 2.25
u
: Ll L L 5
wh(L r ) + b (L r =7 K J dx, J dx,, f(lxl-x2 ) (k.12)
0 0 '

where f(|X|) is defined by 2.11. We now calculate the third term of

Bu2 .

4.3.2 Calculation of ¢3(;1)¢§(;2) . With the help of 1.21

and 1.36 for m=3, the following expression is obtained:
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L o T~ S
b EGE,) = 07 (i) [ e [, [ [a [ | ] ]
& ¢ . . K E E3 Kh
i(K.+ K.+ K. )er, (-iK, 7
X {% L8 3 {% = exp éi((ﬁl+ K2+ KB)Q (L-xl)

+ (Bt k*3)2 (x,- x,) + Kg(xg— x,) - Ki(L . xh)))

x dN(El,xl) amcg %) dm(k’3,x3) w*(ﬁh,xh)} (4.13)

According to 2.5
1234% = 12.3L% + 13-2L4% + 1L%.03 (k.1k)

—)
where we have used the notation dN(Km,xm) =m . We shall calculate

the contribution of the three terms of 4.1l to the average

by (T VA (T,)

4.3.2.1 Contribution of 12+34* The first term of L.1lL is

—_— _— > ->

12+34* which can be written .according to 2.h, 12°34% = 6(K1+ K2)

x §(K- &) F (K %~ |) F (X |x_-x, |) ax aK The integration
3 "W Tav1Ir1e gty 1By X 13 digals, 3 h

with respect to Kg and ﬁh is easily performed in 4.13 because of the

> > > >
presence of the two delta functions G(Kl+ K2) 6(K3—Kh). The coeffi-

cient of the exponential in L4.13 becomes

K2(x

G (Lox )+ (RK )P (x5

3 i —L+-xh))

2
1% o7%3 2k(K3(xh‘ x3)

2
“ Kl(xl—x2 2%1 K3 X, - x2))

This exponential can be neglected for the reasons described in Section

2.2, since K3|xh-x3 <1 and Kl]x <1 . The contribution of

1'x2|
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12.3k*¥ to the integrals in-L4.13 is then

F (g lxgx, 1) (4.15)

4.3.2.2 Contribution of 13+2L% The second term of 4.1% is

13:2L* which can be written according to 2.4

— > > > > > >
13.2L* = 8(K + K3) §(K - X)) Fn(Kl,|xl—x3|) Fn(K2,|x2-—xh|)

x ak, dk, ak, ak
172 3L

The integration with respect to K3 and Kh is then easily performed.

The coefficient of the exponential in L4.13 becomes

o (G(ex) + Ry B (x (1-x),))

2 2
l—xz) + Kl(x2-x3) - K2

2
2

:-_—j'—(K

2 > >
— (xh— x2) + Kl(xl— x3) - 2Kl°K2(xl-x2))

This exponential can be neglected for an optical wave (X << ko) since

Kzlxh—x2| " Kllxl—x3| <1 , and
&
Kl(xl_x2) — Kllxl_XBI <1

The contribution of 13-2L¥ to the integrals in 4.13 is then

> >

) g ik o(r.-r.)
J ak, J ak, 7 (K [x-x,4]) e LR R (R, |x,mx, ) (4.16)

=00 (o]
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L.3.2.3 Contribution of 1L¥-23 The last term of L.1lL is

1L¥.23 . From 2.k

>

IZ;:§§-= 6(El— Kh) G(K2+ % ) Fn(ﬁl’lxl_xhl) Fn(E2,|x2—x3|)

3
% > > > >
dKl dK2 dK3 th

-> >
The integration with respect to K, and Kh is then performed and

3

the coefficient of the exponential in 4.13 becomes

Ko(L- 3, 1) = - %E (Ki(xh— x,)

-4 .2 >
o (K (T=xp) + K5(xpmx3) = Ky

+ 15 (x,mx5))

This exponential can be neglected, since Kllxh— Xl] <1 and
K2|x2—x3| <1 . The contribution of 14*¥-23 +to the integrals in

4,13 is then

- ik (7. -7.)
° r —
> il 12
J ax Fn(KlJXl—xh|) e

3 Fn(ﬁg,lxz—x3|) (4.17)

4.3.2.4 Expression of y.(r.) v¥(%,) The contributions of the
3L 172

three terms in 4.1L have been calculated. We have already introduced

the definition

co
£(|x]) = J & F (R, [x]) (2.11)
-oc
we now introduce the following definition:

© 'K'(+-+)
n(|x|) = J e L e F_(%,[x]) (4.18)

=00
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> >
Then we can express w3(rl)wi(r2) in terms of the functions of

f and h . Assembling together the results of 4.13, 4.1k, L4.15, L4.16

and 4.17, it is found that

i ¥ % 1
> > L
w3(rl)wi(r2) = =k J dxl J dx2 J dx3 J dxh f(|xl—x2|) h(|x3—xh|)
0] 0 ¢} 0

+ f(lxl—x3|) h(|x2—xh|) + f(]xz—x3|) h(le-xh|) (4.19)

Let us introduce the notation G(xi,xj,xk) = f(|xi—xj|)
xh(lxk-xul) . From this definition G(xi,xj,xk)=G(xj,xi,xk) and we

can write the integral of 4.19 as

X X

L L 1 2
J dx), J dx, J dx,, J dx3(G(xl,x2,x3) + G(xl,x3,x2) + G(X2’X3’xl))
0 0 0 0
L i o 3
o
ot J ax,, J dx, J dx,, j dx3 (G(xl,x2,x3)-+G(xl,x3,x2) + G(xe,x3,xl)
0 0 0 0

t &% & & |
J dxh J dxl J dx2 J dx3 G(xl,x2,x3)
0 0 0 0

L L L L

=L "

- J dx, J dx, £|x -x,[) J ax J dx,, h(|x3 x),|)
0 0 0 0 -

and therefore
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L L L L L
> -> _ &_ _ _
w3(rl)w§(r2) == J dx) J dx,, f(|xl x2|) J dx3 J dx), h(|x3 Xhl)
0 0 0 0

where f£(|X|) and h(|X|) are defined by 2.11 and L4.18.

> >
4.3.3 Calculation of wl(rl)wg(re) The expression for

(7,)¥%(7,) is obtained from th ion f (7, )u%(7,) b
wl rl ¢3 r, is obtaine rom e expression for w3 ry wl r, y

taking the complex conjugate and interchanging ;i and ;é . It is
easily seen that
> Sl - -> %2
wl(rl)¢3(r2) va(ry Jut(r,) (k.21)

>
r

- ->
4.3.4 Calculation of wg( l)w;(rg) The last term to be cal-

lated in th ion 4.11 of B__(L,r ,r,) i (7, )0 (7,)
culated in the expression U, o o \LoTysTp) s ¢2 r ¢2 r,) -

This quantity is expressed as follows with the help of 1.36

(U, = (1k)? (-ik)?

O —-
&
[
s
Q
el
n
O —-tt
&
w
—_ X
w
&
=
b
By
TR —
S p—

i(ﬁ + K )’; 'i(“K> + K )'; L pss B
y {:e - T e exp(§§<(Kl+Ké)2 (L-x,) + Kg(xl-xz)
> > N2 2
- (K3* Ku) (L—XB) - Kh(x3_xh)))

x dN(fEl,xl) m(ﬁe,xe) dN*(k*3,x3) dN*(Eh,xh)} (4.22)

Again, for a Gaussian random process dN(Km,xm) =M o,
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123%L4* = 10-3%¥L¥ + 13%.2L* + 1L¥.23% and again there will be three con-
tributions to the integrals of 4.22. The method of calculation is the
same as the one used in the detailed calculation of w3(;i)wi(;2) « It
is easily seen that the exponential terms in 4.22 can be neglected in

every one of the three terms which can be expressed in the following way.

4.3.4.1 Contribution of 12.3¥L¥

[o0]

J ak, J dﬁ3 F (K], [x-x,]) Fn(ﬁ3,|x3-xh|) (4.23)

- 00 - 00

4.3.4.2 Contribution of 13%.2L¥

- . iK (? r ik (; T )
> > 1 ¥ Ly i oy >
JdKl_J K, e Pyt 1’|X x3]) e Fy(Kps [xp=x) |)
- 7" (4.2k4)
4.3.4.3 Contribution of 1L¥+23%
5 - 1K (r -r ik ~(; -r )
> i 2 > 2 172 >
J aK, J di%e Fn(Kl,lxl-xhl) e F (X ,|x2—x3|)

4.3.4.4 Expression of wg( l)\pg( 2) . w2(;1)w§(;2) can be

expressed in terms of the functions f and h defined by 2.11 and
4.18. Assembling together the results of 4.22, 4.23, L.2L and L4.25, it

is found that

I i S | *3
e L
we(rl)w§(§2)=k J dx, J dx,, J ax J dx,, (f(lxl—le) f(|x3—xh|)
0 0 0 0

le—xhl h(|x + h(lxl—x3|) h(lxz-xhl)

23l
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which can be written

- % (> ]g{h 2
o (ry Jut(zy) = =g

i i
J 2 J axy £([x-x,[)
0 0

2

L L L
5 l‘é-( J ax, J ax, h(|x,-x, ) (1.26)
0 0

4.3.5 Expression of B (L,?i,;é) We have calculated all

u2

the terms in the expression L4.11 of B The expressions for each

w
term obtained in 4.12, 4.20, L.21 and 4.26 are then collected together

to yield
b L L 5 . L L
B, = TT-(J dx, J ax,, f(|xl-x2|)) -k J dx, [ ax, £([x;-x,])
0 0 0 0

2

L

L L L L
X ( J dx, J dx, h(|x -x,[) J ax, J dx, £([x;-x,])
0 0 0 0

I L L 2
+ E;I J ax J dx, h(|x, -x |J
2 1 2 172
0 0
or
kh L L o
Ba =S J dx, [ dx,, (f(lxl-xgl) - h(|xl—x2|))
0 0

The functions f, h and F defined respectively by 2.11, 4.18
and 4.9 obey the following relation F(|X|,p) = £(|X|) - n(|x]) .

Then
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L L
Buo = K ax, | ax, F(|x,-x | ,r -%.) :
v 7] 1 2 1 gl 2%y
0 0 '
and according to 4.8,
- 2

The calculation of the second order term Bu in the power

2

a3y

series expansion of the correlation function Bu(L,rl,;é) was long but

rather straightforward. The calculation of higher order terms becomes

very tedious; however, the third order term Bu has given the follow-

3

ing result

=1 3
Bu3 = 6(Bul) (L.28)
where Bul is given by 4.8, In the next section we show how an analyt-
ical sum of the power series expansion for Bu(L’;l’;Q) can be found.

4.4 Expression of the Correlation Function Bu(L,;l,;2

)

The correlation function Bu(L’;i’;2) of the wave function
between two points (L,;i) and (L,;é) in a plane perpendicular to the
direction of propagation of the wave has been expressed in a power

: . 2 . : . :
series expansion of €  the variance of the index of refraction fluc-

tuations.

> > _ 2 2q
Bu(L,rl,re) = A qZO € Buq (4.2)

An explicit calculation of the first terms in this expansion has shown
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(B )2 ()3

€ B B
2 2 ul ul
that B, =A(1+ € B + 5 + = + )
which suggests that
B (L T, ] = & exp(eQB ) (4.29)
w1 e ul

Although it would be too tedious to calculate the general term

Buq’ it can be seen that the averag%ng process allows us to neglect the
i(ZK )er
exponential terms (other than e p ) in all cases. This is again

due to the assumption that the wavelength of the wave is much smaller
than the inner scale of the turbulence. Therefore we would have
obtained the correct expression for Bu(L,;i,?z) if we had neglected

. " -> ->
the exponential terms in u(L,r ) and u*(L,r ) (other than

. - 1 2
ig K °rl -iz K 'r2
PP sid @ PP )

e to start with, i.e. if we had used the
expressions of the wave functions in the geometrical optics approxima-
tion 1.43.

We will now verify that by using the expression 1.43 for the

wave functions u(L,r,) and u*(L,r.) the correct result for the cor-

1 2
relation function Bu(L,;i,?Q) given by 4.29 is obtained. From 1.43
L
++= -;-*—*___2‘, —>_ -
Bu(L,r ,r2) u(L,rl)u (L,r2) A exp|iek dxl(nl(xl,rl) nl(xl,rgn
0
(L.30)
which we can write
T (4.31)
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where B 1is defined by 4.30 and 4.31. Since nl(x,;) is a Gaussian

random process with zero mean, Bu is expressed as follows:
—k2 82
B =A e (4.32)

and B is calculated in the following way

. L L

2 _ 2 - -> -> -

B™ = ¢ J dx, [ dx,, (nl(xl,rl) - nl(xl,rz))(nl(xg,rl)- nl(xz,rz))
0 0

or

L L
> > > >
B~ = g J dx, J dx, nl(xl,rl) nl(xg,rl) + nl(xl,r2) nl(x2,r2)
0 0

=5

-> - ->

From the definition of the correlation function of the index of refrac-

tion

> > 2 - ->
Bn(|xl~x2|, rl-rgl) = g nl(xl,rl) nl(xe,re) , and with the help
of 4.32, the correct expression for Bu(L,;l,;é) is

> > 2
Bu(L,|rl—r2|) = Ao exp

L L
2
-k [ ax, J ax, (B ([x;-x,],0)
0 0

- B_(]x,-x, ,|1~*l_‘;2|>)) (4.33)
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According to L4.10, the above expression for the correlation

>

function Bu(L,]r —?2|) is the same as the expression L4.29 suggested

i

by the results for the first terms of the power series expansion 4.2

for B_(L,r..r.)
or B (L,r,,r,).

. . > > > >
Then the correlation function Bu(L’rl’rQ) = u(L,rl)u*(L,rg)
of the wave function between two points (L,; ) and (L,; ) in a plane

1 2

perpendicular to the direction of propagation of the wave after a propa-
gation distance L through a randomly turbulent atmosphere is correctly
given by expression 4.33. This expression is valid for any propagation
distance L and any strength of the turbulence for an optical wave
whose wavelength is much smaller than the inner scale of the turbulence.
This expression is the same as the oﬁe which can be calculated from the
geometrical optics approximation. The correlation function Bu(L,?l,zg)
)3

This is due to the assumption that the

> >
is a function of the distance between the two points (L,rl) and (L,r2

. > >
we shall call it p = rl—r2| .

>
index of refraction n(x) is an isotropic and homogeneous random field,

i.e. the correlation function Bn(;l,ze) of the index of refraction

> >
between two points x X5

1 is only a function of the diétance between

the t ints B (x.,x.) = B (|X.-x.]) . W B (L,p) i
e two points B (x;,x,) = B (|x;-x,|) . We can express B (L,p) in

a simpler way by making the same change of variables as in Section 2.5,

X,=X, = @ and xl+x2 = 28 . The integral

L L L L-9/o

j dxl [ dx2 is then replaced by 2 J da J dB ; the integration with
0 0 0 /2

respect to B is performed in 4.33. Then,



2
Bu(L,p) = Ao exp

Since the propagation distance L
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L
~2k°L J (Bn(a) - Bn(\/a2+ pg))da
0

relation length of the index of refraction, we have neglected o

respect to L to obtain the above expression for Bu(L,p).

In order to obtain

an explicit expression for

(4.3L)

is much larger than any cor-

with

Bu(L,o) in terms

of the parameters of the turbulent medium, we shall evaluate the inte-

gral in 4.34 for two different models of the atmospheric turbulence:

the Kolmogoroff model and the model leading to the correlation function

—(a/ro)2

Bn(a) = e e

4.5 The Correlation Function Bu(L,p) and the Kolmogoroff Model of

Atmospheric Turbulence

-In the Kolmogoroff model of atmospheric turbulence the correla-

tion function Bn(a) of the index of refraction is given by 2.L45

2
G s 2/3 _ o z z

Bn,(a) =3 C L. (1 £§7§—;ﬂ7§) for 0% o€ 8
o. o
2/3

= _1i, 22/3 a ” & &
Bn(a) Bnn(a) o i S 573 ) for 4 € a €L

A .

C for a=1L

We introduce the following definition

L
o

G(o,Lo,zo) = J Bn(a) do - J

0

VLg - p2
Bn( o ooy p2) da

0

(4.35)
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the two curves is
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G(p,LO,Qo) is equal to the integral appearing in expression U4.3L4, since

B(a) =0 for o=2L and B ( o+ p2) =0 for o 2 35 L2 - 02 :
n o n o

G(p,LO,lO) is equal to the area in between the two curves of Fig. U4.1.

We shall evaluate G(p,LO,QO) explicitly in the three following cases:

< £ <z ol D
= £ = = = .
0 o] Py 2 0] L and 0] L

h,5,1 Bu(L,p) for o £ Qo In the case where p 1is smaller

than the inner scale of turbulence, G(p,LO,QO) is given by the follow-

ing sum of integrals

2 L 22— 92
(o] o (0]
G(p,L 4 ) = J B ,(a) do + J B y(a) do - J B ,(Vp2+ a2) da
o (%) n n n
0 0 0
Li— p2
fa 2
- J B w(Vo™+ a7) da
2o 2
o= P

where Bn' and Bn" are given by 2.45. The explicit calculation of
the above integrals is carried out and it is found, with the help of

4.35, that

2 o 2)L s5/3. 1 (25‘ 92)1/2(2§+ 20°)
Bu(L,p) =& exp(-kL Coits % T+ 3 zh/3
o

/2 2

Lo- P ' I
|

2 2

20— o]

2 —_

for p £ 8 .
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£y £ £ 5 &
4.5.2 Bu(L,p) for & €p <L Inthecase L €p <L ,

G(p,LO,lO) is given by the following expression

2 _ 2
2 LT - p

T
G(p,LO,ZO) = f Bn,(a) da JO Bn"(a) da - J Bn"('%2+ ae) d
0 2 0

0
where Bn' and Bn" are given by 2.45. With the help of L4.3k4 and

4.35, the expression for Bu(L,D) is obtained

VLg-p2

B, (L,p) = Ai exp| -k°L 02-{3—-25/3-+ J (a=+ 02)1/3 do

n|1l5 "o
0
2 1o
. L2/3(%_ (-2 / )}) (4.37)
1
(o]

for g £p €L .

4.5.3 Bu(L,p) for p 2 L, - In the case where p is larger

than the outer scale of the turbulence,
L
o

_ _ 1
G(p,LO,ZO) = J Bn(a) do = 5 C

Then the correlation function Bu(L,p) is given by the following

expression

, - %—kQCiL2/3L
- &
_Bu(L,o) =A e for p 2 L (4.38)

We notice, with the help of 1.47, that for p = L, »

Bu(L,p) = (u(L))(u*(L)) . The correlation Bu(L,D) for p 2 L is
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=Y
r

l) and

equal to the product of the two independent averages u(L,
u(L,r,)

In this section we have calculated the correlation function
Bu(L,p) explicitly in terms of the parameters of the turbulent atmos-
phere, the inner scale of the turbulence 20, the outer scale of the
turbulence LO, and the structure constant Cn . Expressions have been
found for various ranges of p : p £ 20, 20 € p < LO and p = LO . In
all cases the correlation function Bu(L,p) is & decreasing function
of the propagation length L , of the strength of the turbulence Cn

and of the distance between points p and an increasing function of

the wavelength of the wave A .

4.6 The Correlation Function Bu(L,p) with a Refractive Index Corre-

2 '“Q/rg
lation Function Bn(a) = ¢ e

The correlation function

2,2

-0 /rO
B (a) = ¢" e (4.39)

has often been used in calculations relating to the problem of wave
propagation in turbulent media. Although it gives an incorrect descrip-
tion of the correlation of the index of refraction in the atmospheric
turbulence, the calculations are usually easier and lead to simple
analytical expressions where the only parameters describing the turbu-

lence are the variance of index of refraction fluctuations €2 and the
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correlation length roo. Reasonable values of r, vary from a few
centimeters to a few meters. For propagation lengths L much larger
than r_ , thelimits of the integrals in 4.34 can be extended to

infinity and we can write according to L4.39

t _— RS T
J (Bn(a) - Bn(l/a +p7)) da = € J (e Y& ° 4o
0 0
2,2 o 2,2 2,2
-p"/r -a /r -0 /r
= 62 (1 - °) [ e ° 4o = ez-ég ro(l - e =

0

Then the following expression is found for the correlation function

B

L (Lsp)

2,2
-p /rO

)

N - 3 B
B, (L,p) = AT exp (-V/7 %k roL(l - 8

4,7. Conclusion of Chapter IV

.—)
In Chapter IV the two-point correlation function u(L,; Ju*(L,r,)

1 2

of the wave function of an optical wave propagating in a turbulent
medium has been calculated. The only approximations made are based on
the assumption that the wavelength of the wave is much smaller than the
inner scale of the turbulence. The starting point is the formal power
series expansion for u(X) which was found in Chapter I. Although
no information about the phase and the amplitude of the wave could be
obtained from the power series expansion for u(X) without some

approximations, we were able to obtain a correct and analytical
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>
expression for the correlation function u(L,r1

>
)u*(Lsrg) = Bu(Lap)
This correlation function is expressed only in terms of the wave number

k , the distance of propagation L , and the correlation function of

the index of refraction Bn(a) "

L
B (L,p) = A° exp(-2°L J (B_(a) - B_( Va®+ 0°)) aa) (4.3h)
0
. . o> i
This is a function of the distance p = |r,-r |  between the two

1 2!
points. Bu(L,p) has been calculated explicitly in terms of the param-

eters of the turbulent medium for two different models of the
turbulence:

(a) The Kolmogoroff model with the index of refraction cor-

relation function given by 2.U45

(b) A model for which the correlation function of the index

o -02/re
of refraction is given by Bn(a) = g @ e .,

The correct expression L.3L4 for Bu(L,p) which is valid for all
propagation lengths and all turbulence strengths is the .same as the
expression for Bu(L,p) which is obtained with the help of the geo-
metrical optics approximation. This is only true for a propagating
wave with a wavelength much smaller than the inner scale of the tur-

bulence.

In the next chapter, we shall compare the results obtained in
Chapter IV with the expressions for Bu(L,p) which are obtained by

using the various approximations described in Section 1.5.
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-> -
CHAPTER V - THE CORRELATION FUNCTION Bu(L,p) = u(L,r. )u*(L,r

IN VARIOUS APPROXIMATIONS

>

-
The correlation function u(L,r )u*(L,re) was calculated in

1
Chapter IV. In order to calculate this function, the formal power
_>
r

1 ) obtained in Chapter Iwas

B
series expansion for u(L,r,) and u*(L,r

2
used and an analytical expression for Bu(L,p) was obtained. In this
chapter we compare the results of Chapter IV with the expressions for
the correlation function Bu(L,p) obtained by using various approxima-

tions: the Born approximation, the geometrical optics approximation,

and the Rytov approximation.

il Bu(L,p) in the Born Approximation: B (

u B)(L’p)

The solution of the wave equation 1.1 in the Born or single scat-

tering approximation is given by 1.37. We can express the correlation

function Bu(B)(L,D) as
5 <
-i—=—~(L-x,) iK_-* .
-1 2k X Yty o
BMBﬂLm)—A01+1d<Jdﬁ_Je e dMKP;N
0 ->
Kl
2
K
L iR b,
- 4 *
X (l iek J dx, J e e an (K2,x2))
o 0y

With the help of relations 2.3 and 2.4, one obtains
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and it is easily seen that the above expression can be transformed to

yield
L

B 1 + 2K°L f B_( st o) Ao
0

)(Lyp) = A (5.1)

u(B

where Bn is the correlation function of the index of refraction.

This expression is only valid when the following condition is fulfilled
L
2
2k L Bn(a) da << 1
0

or, for a Kolmogoroff spectrum, g-k2C

o L5/3L 1 .
5 n o

5.2 Bu(L,p) in the Geometrical Optics Approximation: Bu( (L,p)

GO)

In the geometrical optics approximation L << Ri/l s the solu-

tion of the wave equation 1.1 is given by 1.43. It has been shown in

Section 4.4 that the correlation function u(L,;i)u*(L,;é) obtained
from the geometrical optics approximation is the same as the correct
expression obtained without any approximation.

Although the geometrical optics approximation is valid for
propagation distances L such that L << Ri/k , the expressions for

the statistical mean of an optical wave function u(L,;) and for the

correlation function u(L,;i)u*(L,;e) obtained by using this approxi-

mation are valid for any length of propagation and any turbulence
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strength. This is true provided that the wavelength of the wave is

much smaller than the smallest scale of the turbulence 20 .

5.3 Bu(L,o) in the Rytov Approximation: B (L,p)

u(RY)

According to 1.48, the correlation function B

u(RY)(L’p) in the
Rytov approximation is
2
K
L ., -
-i=—=(L-x,) iK_er
_ .2 . ( 2k 1 5 I | >
Bu(RY) = A exp|iek j ax, J e dN(Kl,rl)
0 -
Kl
2
K
1 > >
i—=(L-x,) -iK. er
g2 L TR i B )] (5.2)
1’72
which can be written
2 iekB
Bu(Ry)‘ A e (5.3)

where B8 is defined by 5.2 and 5.3. B 1is & Gaussian random process
. > > T .
with zero mean, since dN(Kl,rl) and dN*<K1’r2) are Gaussian random

processes with zero mean. Then, according to 3.k,

€2k2 -25
2 ~ "2 B
A" e (5.k4)

Botwr) © %

B~ 1is given by the following expression:



~171-

172
o 2
i_(L ) ik, P —}il—(L ) -iK -7
L s Tl ) aE ) - e12k =1 e 172 gz 2
x € € 1°71 K o
oD 5
1K2(L T T3 KQ(L iR e
- —(L-x iK, *r i=—(L-x - »
2k 2 2" Fo ok 2 2 o
x(e e 2 L an(,,2)- an+ (%, 2))( 5)
or
- t 7 (K (1mx) ) + Ko (1-xy)) i(Kp+ K))F
2 o | o = . 1 17 %2/ Ty
1 2
0 0 S
hy By
(K (L) )+ K (L-x,)) -i(K +K,)-T
5 > g ok K1 2 17! o
X dl\I(Kl,rl) dN(KQ,rl) + e
i 2 2 -> s o
—(K- (L-x. )= KZ(L-x.)) i(K.*r.— K. °r.)
x aN* (K ’; ) AN ( ?‘)—eek 1 1 2 2 o 271 1 2
1 23%o
-> > >
* \
x 4N (Kl,rg)dN(Kg,rl,
1 2 > > - >
Ak (e, = (T, )] (K % = B2, )
2
2 2 1 17 Tt e gdﬂ(ﬁlagl)dN*(Kgsgg)

The statistical averaging is performed with the help of relation

. > > > >
2.4, It introduces delta functions G(Kl— K2) or 6(K1+ K2) 2

integration with respect to KE is then performed to yield

the
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L L o
— 2
2 K
B= = 2 J dxl j dx2 J aK (cos(EE(QL—xl—x2))— cos K-S)
0 0 -
x F_(K,] ) (5.6)
oK xl—x2 5

> > >
> o

where o = rl— 5 We then follow the same procedure which was used

in Section 3.3 for the caculation of u(L,;) in the Rytov approxima-
tion.

In order to simplify expression 5.6, the following change of
variables is introduced: X=Xy T O, x2+xl = 2B . The integration
with respect to B 1is then performed. For propagation distances L
much larger than the outer scale of the turbulence and for a wavelength

much smaller than the inner scale of the turbulence, 82 can be

expressed as follows (see 2.3)

(o]

P e [ o | @ (e atnED) - cos 1) 7, ()
0

i .

or
— L e )
32 = 4L, Jda Jdﬁ((-%f—sin Kié-— 1)+ (1- cos 2-3)) F (K,a) (5.7)
KL, "
0 -~

Fn(f,a) is the transverse two-dimensional Fourier transform of the

correlation function of the index of refraction; therefore,

o J ak (1- cos(¥+p)) Fn<f<*,a) = Bn(a,3=o) - Bn(a,z)

= Bn(oz) - Bn( oo+ 02)



T

for a homogeneous and isotropic index of refraction.

With the help of this last result, of expressions 5.7 and 5.4,
and of the correct expression L.3L4 for the correlation function
Bu(L,p) , the correlation function Bu(RY)(L’p) in the Rytov approxi-
mation is expressed in terms of Bu(L,p) and of a correction factor:

L ©

)(L,p) = B (L,0) exp{2€2k2L J da J B8 (1~ s iy I—{E-E)Fn(i?,oc))

Bu(RY 2 k
0 00

KL
(5.8)

The correction factor is the square of the correction factor which
appeared in the expression 3.1k for u(RY)(L,D) . Since the correction

factor in 5.8 does not depend upon )(L,p) has the correct

L Bu(RY

dependence upon o , the transverse coordinate. But the validity of
Bu(RY)(L’p) is limited to propagation distances and turbulence
strength such that the correction factor in 5.8 remains much smaller

7/6L11/6

than one, i.e. from 3.15,0.62 Cik << 1 in the Kolmogoroff

spectrum.
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CHAPTER VI - INVESTIGATION OF THE INTENSITY CORRELATION FUNCTION

S
B (L,rl,r2

; ) 1(L,7,)

>
) == I(L,I‘ P

1

6.1 Introduction

Analytical expressions for the statistical mean u(L,r);

the correlation function u(L,;i)u*(L,;z) of an optical wave propagat-—
ing through a randomly turbulent medium,have been obtained in Chapters
IT and IV under the condition A << 20 , where X 1is the wavelength of
the wave and Qo is the inner scale of the turbulence. In this section
the investigation of another statistical quantity will be performed:

3 . . . _) + +
the correlation function of the wave intensity I(x) = u(x)u*(x)

between two points (L’;l) and (L,7,) in a plane perpendicular to the

5)
direction of propagation of the wave after a propagation length L

through a randomly turbulent atmosphere. It is defined as follows:

> > -
BI(L,rl,r ] = I(L,rl

>
" )I(L,?g) = u<L,¥l)u*(L,¥l)u(L,r

Yu*(L,7,)

(6.1)

2

The method of calculation is straightforward. The correlation
function BI is expressed as a power series expansion of € , follow-

ing 1.1k

B.=A z E(m+p+s+t)

mM,Pys,t

v, (1)uE(L)v, (2)vF (2) (6.2)

where the indices m,p,s and t run from zero to infinity. The
notation wm(l) B wm(L,zl) has been used and the y's of various orders
are given by 1.36. The only terms contributing to B are the terms

1

for which m+p+s+t 1is an even number and we can write



-175-

wm(l)w;(l)ws(e)w*(z)

Iq Iq z t

Z €2q B where B
q=0 m+p+s+t=2q

(6.3)

) for q=0 and q=1

The explicit calculation of BIq(L’; ,;2

will be carried out in the remainder of this section. The complexity

of the calculations for g > 1 will become apparent. However, the

> > >
correct xpression for BIZ(L’rl’r =r

o l) will be given. It will then

be shown that it is not possible to find a useful analytical expres-

. 3 > B o . .
sion for BI(L,rl,rg)' and even BI(L,r,r) = I(L,r) without some

approximations.

> >

6.2 The Term of Order Zero BIO(L’rl’rQ)

From 6.3 and the fact that wO(L,;) = 1, we can readily write

B (Ls?l,?z) = g | (6-)4)

6.3 The T £ Order One B__(L,r,,r.)
o3 e Term o rder One 11 ,rl,r2

The term of order one in the power series expansion for

> >

B L,rl,rg) is given in 6.3 by the combinations of the indices m,p,s

7
and t for which m+p+s+t = 2 , i.e. the following 1 +3+2x3 = 10

combinations

Br, = (0 (1) +9E(2) +9, (1)u¥(1)) + (v,(2)+ vE(2) + v, (2)y2(2))

+ (0 (1) + v2(1))(y  (2) + v2(2)) (6.ka)

According to expression 4.4, the first two terms of expression 6.la
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>

. > 3 2
are respectively equal to Bul(L,rl,rl) and Bul(L,r2,r2) where

Bul(L’;l’;2) is the first order term in the expansion L4.2 of

Bu(L,? ,;2) , the wave function correlation function. The result for
Bul(L,?l,}’g) is given by 4.8. Tt is then found that
L L
B, (L7 ,7)) = B (L,F,.7,) = X2 J ax; J ax, F(|x-x,[,0) = 0
0 0

since F(|X|,p=0) = 0 according to the definition 4.9. The only term

different from zero in 6.4a is the last one; then

By = (v (2) + 92(1)) (v (2) + ¥%(2)) (6.1p)

wl(;) is given by 1.21; therefore B_. can be expressed as

Il
L Iy -
-> -> . .
BIl(L,rl,r2 = (ik)(+ik) J dxl J dx2 j
0 0 > =
5 5%
2 2
—iEl—(L-x ) ik, er iK—l(L—x') —iK_ 7
2k L 5 A =2 2k 1 R S— - ..
e e dN(Kl’rl)_ e e ‘dN (Kl,rl))
2 2
-iEz—(L-x ) ik e i-Iig-(L—x ) iK.e7
2k 2 e 22 dN(Ees;e) _ e °k 2 2 2 2 dN*(EQ’;g))

A similar calculation has been carried out in Section 5.3
(see equation 5.5). The statistical averaging is performed with the
help of relation 2.4 which introduces the delta functions 6(§l+ Ke)

and G(Kl— ﬁe) . The integration with respect to Kz is then carried

out
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L L 0

B, (L,3) = 2k° | ax, | a aK (cos K+p EE(ZL )- K+5))

11\Lep) = 1 X, cos o - cos(2k =X =X, )= o)
0 0 -

(o]

x Fn(i,lx (6.5)

17% D

In order to simplify this integral, the following change of

variables is made. = 0 x2+ X, = 2B . The integration with

iR | 1
respect to B 1is easily performed; we make use of the assumption

A << go to find

I ©
)
BIl(L,Z) = WL, J da J ak (1- £ win K—EJ Fn(f,a)cos -5 (6.6)
o) .

A similar expression is considered by Tatarski (20) ( the r