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PART I: MODE LOCKING AND ULTRASHORT LASER PULSES BY A REFRACTIVE 

INDEX NONLINEARITY 

Jean-Pierre Raymond Henri Laussade 

ABSTRACT 

A new method for locking the longitudinal modes of a laser 

resonator and generating ultrashort pulses of light has been found. 

The cavity modes are coupled together when a medium possessing a 

refractive index nonlinearity is placed inside the cavity . 

A theoretical study is presented which analyzes the mode 

structure of a laser resonator containing a cell filled with an 

anisotropic molecular liquid. It is found that under certain condi-

tions the energy exchange between the modes gives rise to a mode 

locked spectrum and to the attendant generation of ultrashort pulses 

( -11 -12 3+ 
of light "' 10 sec for a ruby laser, "'10 sec for a Nd glass 

laser). 

An experimental investigation is reported. The presence of 

ultrashort pulses in the output of a Q-switched ruby laser is observed 

when a liquid cell containing nitrobenzene or a-chloronaphthalene is 

placed inside the cavity. 
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PART II: A THEORETICAL STUDY OF OPTICAL WAVE PROPAGATION THROUGH 

A RANDOM MEDIUM AND ITS APPLICATION TO 

OPTICAL COMMUNICATION 

Jean-Pierre Raymond Henri Laussade 

ABSTRACT 

In this report we are interested in a theoretical study of 

wave propagation in a randomly turbulent medium and the application 

of the results to the evaluation of optical communication systems 

through the atmospheric turbulence. 

We first derive a power series expansion solution for the 

wave function u(~) of ·a wave propagating through a medium with a 

random index of refraction. The average wave function u(~) and the 

correlation function u(~1 ) u*(~2 ) are calculated in terms of the 

correlation function of the index of refraction, the only assumption 

being that the wavelength of the wave is muGh smaller than the small­

est size of the turbulence. The intensity correlation function 

I(~1 ) I(~2 ) is investigated and recent experimental results concern­

ing the behavior of the intensity fluctuations are discussed. 

Next, the performances of two schemes of optical communication 

through the random atmospheric turbulence are compared: (a) heterodyne 

detection, (b) video communication. It is found that for long propaga­

tion paths and strong turbulences, scheme (b) is preferable to scheme 

(a). This is due to the cancellation of the phase fluctuations between 

"reference" and "signal" parts of the beam in the video communication 

scheme. 
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I. MODE LOCKING AND ULTRASHORT LASER PULSES BY 

A REFRACTIVE INDEX NONLINEARITY 
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INTRODUCTION 

The invention of the laser has provided many physicists in many 

areas of research with a useful research tool. 

The field of nonlinear optics is one of the most privileged in 

this regard. The intense optical electric fields which are present 

inside and outside a laser cavity have been successfully used to study 

and obtain a better comprehension of the nonlinear behavior of many 

materials. Intensive and fruitful research has been performed on optical 

nonlinear phenomena such as stimulated Raman scattering, stimulated 

Brillouin scattering, stimulated Rayleigh scattering, The nonlinear 

properties of certain crystals have been used to modify the output 

characteristics of lasers through parametric interactions of optical 

beams or second and third harmonic generation of laser radiation. 

Here, we wish to report a theoretical and experimental investigation 

showing how the presence of a medium possessing a refractive index non­

linearity inside the cavity of a Q switched solid state laser can modify 

its mode structure and give rise to the production of intense and ultra­

short pulses of light. 

The output electric field of a laser is equal to the sum of the 

electric fields of the individual modes of the cavity which are amplified 

by the laser medium, i.e. whose frequencies lie within the gain linewidth 

6vG of the amplifying transition. 

In the normal mode of oscillation of a l aser (no perturbation inside 

the cavity), the phases of the modes are random and uncorrelated, and the 

output intensity is fluctuating randomly in time around its mean value 

equal to NI where N is the number of oscillating cavity modes and I 
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is the average mode intensity, 

It has been shown(l) that if the losses of the laser cavity are 

modulated at a frequency equal to the intermode spacing frequency C/2L 

(L is the length of the cavity), then the output of the laser consists 

of a train of pulses which have the following properties: 

(a) The pulsewidth is equal to the reciprocal of the gain linewidth 

l/t.ivG 

(b) The pulses are separated in time by the double transit time of 

the light inside the cavity 2L/C 

(c) The peak power is equal to N times the average power of the 

laser where N is the number of coupled modes, 

The introduction of a loss modulator inside a cavity couples the 

modes of this cavity in the following way, Suppose one mode at the 

frequency v
0 

is oscillating. When the electric field of this mode 

passes through the modulator operating at a frequency ov, sidebands 

are generated at frequencies v0 + 6v and v0 - ov. On the next pass 

through the modulator, sidebands of frequencies v0 + 26v and v0 - 26v 

will be generated and so on. If 6v is equal to C/2L the intermode 

spacing frequency, then the sidebands correspond to resonance frequencies 

of the cavity modes. The modes are thus coupled together with a unique 

phase relationship. (The term mode locking is also applied to this 

phenomenon.) While in the non-mode locked cas~ the phases of the modes 

are random. 

Using internal modulators, ultrashort pulses have been obtained in 

continuous wave gas lasers( 2) (with a width of 2.5 x lo-9 sec) and solid 

state lasers(3) (8 x 10-ll sec) with a pulsewidth approaching the 
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theoretical value l/6vG. Internal modulators have also been used to 

generate ultrashort pulses in pulsed solid state lasers where the 

duration of the pulsing (~ l µ sec) is larger than the modulating 

period(4, 5). The observed pulsewidths were 2 x lo- 9 sec for Ruby 

-9 and 0.5 x 10 for Nd: glass while the theoretical values are 

respectively lO-ll sec and 4 x lo-13 sec, indicating that the whole 

linewidth is not fulJ.¥ mode locked. 

An increase in the output power of solid state lasers has been ob­

tained by the technique of Q-switching( 6). The output of a non-mode 

locked Q-switched solid state laser consists typically of a pulse of 

10 to 50 x 10-9 sec with a peak power of up to a few hundred megawatts. 

For these lasers, mode-locking has been obtained by inserting a saturable 

absorber inside the cavity. (7,S) A saturable absorber is an element 

whose optical transmission is an increasing function of the intensity 

-11 of the incident beam. Pulses as short as a few 10 sec in Ruby lasers 

-12 and a few 10 sec in Nd: glass lasers with peak intensities in excess 

of 109 watts have been observed by using this technique. 

In 'this report, we present a new method for generating high 

intensity picosecond pulses in Q-switched solid state lasers. 

We show theoretical]¥ that the introduction of a refractive index 

non-linearity inside a laser resonator gives rise to a mode-locked 

spectrum characteristic of the ultrashort pulse mode of oscillation(9). 

The non-linearities are provided by anisotropic molecular liquids. The 

theoretical argument is presented in Part I. 

In Part II we describe the experimental techniques and present the 

experimental results. Ultrashort pulses are observed in the output of a 
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Q-switched Ruby laser when a cell containing nitrobenzene or 

a-chloronaphthalene is placed inside the cavity(lO). The degree of mode 

locking is found to be a sensitive function of the orientational relaxa-

tion time of the molecules which can be controlled by changing the 

temperature of the liquid. Ultrashort pulses appear regularly only 

0 ( -11 when the nitrobenzene is heated above 120 C. The pulsewidth ~ 10 

sec) is measured accurately by the two photon fluorescence technique. 

Some observations of the stimulated Raman emission from nitrobenzene are 

presented. 

A summary of the results is followed by a discussion where we give 

a physical argument to show how a pulse of light is shortened when 

traveling through a nonlinear index of refraction. 
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I. THEORETICAL INVESTIGATION 

1-1. Statement of the problem. 

In this report we consider the interaction of the longitudinal 

modes of a laser cavity with a medium which possesses a nonlinear index 

of refraction. In our analysis such a medium is a liquid with 

anisotropic molecules, i.e. molecules having only one axis of symmetry. 

These molecules have different polarizabilities along their axis of 

symmetry and along any other axis perpendicular to it. We call these 

polarizabili ties a 
11 

and a respectively. A linearly polarized 
l. 

electric field applied to such liquid induces a nonlinear polarization 

in the medium which is proportional to the difference (a:
11 

- a ) and 
l. 

to the cube of the electric field as we shall see later, and therefore 

produces a change in the dielectric constant of the medium proportional 

to the square of the electric field. When a liquid with anisotropic 

molecules is placed inside a laser resonator where the optical electric 

fields are large enough to produce an appreciable change of the dielectric 

constant, it couples the longitudinal modes of the laser cavity together 

in the following way. Let us assume that three modes of the cavity os-

cillate with frequencies mo, 

radial intermode frequency 0 

m0 - o. (Figure 1-1.) O is the 

where L is the optical length of 

the cavity. 

The two modes (0) and (+l) for example, induce a change in the 

dielectric constant of the liquid ~ E a E0 E1 where E0 and E1 are 

the electric fields of the two modes. ~ E has a component oscillating 

at the frequency (m0 + 0) - m0 = O. The mode (-1) incident upon the 

liquid "sees" a modulation of the dielectric constant at frequency 0 
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-1 () +1 

FJG 1-1 _ Tllr88 oscillating 
las 8r n1od.cs _ 
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and a s ideband at fr equency (m0 0) + 0 = mo is genera t ed, therefore 

coupling the three modes together, i.e. introducing relationships be­

tween t he amplitudes and the phases of the three modes. 

Solid sta t e lasers such as the ruby laser and the neodymium laser 

with very large gain linewidth 2 x lOll Hz for ruby, more than 10
12 

Hz for Nd3+: glass can have a very large number of modes oscillating 

at the same time. For example, in the case of a ruby laser with a 1-

meter-long cavity,.as many as 600 modes of the cavity lie within the gain 

linewidth of the ruby and can oscillate simultaneously. 

Although it is difficult to account for the interaction of such a 

large number of modes in a nonlinear medium, it can be seen by the 

above qualitative argument that a liquid with anisotropic molecules 

placed inside a laser resonator induces coupling and gives rise to 

power exchange between the equispaced laser modes. 

Our problem is to find the amplitudes and the phases of the modes 

of a l aser resonator containing a nonlinear liquid. For this purpose, 

we first calculate the dipole moment of an anisotropic molecule induced 

by an electric field. The electric field is then expressed as the sum · 

over the cavity modes of the electric field of one cavity. 

1-2 . Aver age d i pole moment of an anisotropic molecule induced by a 

linearly polarized optical electric field. 

In this section, we consider the dipole moment induced on one 

anisotropic molecule by a linearly polarized optical electric field. 

The axis of symmetry of the molecule makes an angle e with the 

direction of the electric field taken as the z-direction . See Figure 

1.2. 



J_ f z i-----,,,. 
11 

~ 

FIG 1-2 _ Or·ientation of an 
anisotropic . n1olecu1e w itl1 
an ·electric field _ 
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Let us call ex 
II 

and ex the polarizability of the molecule along 

its axis of symmetry and an axis perpendicular to it and let us call 

and µ the components of the induced dipole moment along the 
.l. 

direction of the field, the II and the axis. 

and 

The following relationships hold between µ2 , µ
11 

µ == ex E cos e 
II II 

cos e + µ sin e 
.1.. 

µ == ex E sin e 
.l. .l. 

From the two above expressions, we find 

µ ==Eex 2 e + Eex sin 2 e cos 
Z II 

.l. 
or 

µ == E(ex - a ) 
2 e + aE cos 

z 11 .L .1.. 

and µ • 
.1.. 

(1.l) 

(l.2) 

(1.3) 

The average induced dipole moment of one anisotropic molecule is 

found from (1.3) by replacing 2 2 cos e by its statistical average cos e 

taken over the ensemble of molecules. Then 

µ == E(a - a ) cos2e + a E 
z . I\ .L .L 

(l.4) 

with 
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n: 

Jcos
2

e f(e) dO 

2 0 
cos e = ------­

n: J f(8) dO 

0 

where f ( e) dO is the number of molecules whose axes of symmetry lie 

in the differential solid angle dD = 2n: sin e d8. 

When no electric field is applied, all orientations of the axis 

are equally probable and 

f(e) 
n: J f(e) a.o 
0 

1 
= 4r( • In this case, 2 cos e 1 Jn: 2 

= 2 cos e 

0 

1 sin e de = 3. When 

a strong electric field is applied to the liquid, it tends to align the 

molecules along its direction, and therefore cos 2e will be different 

1 
from '3 We then write 

2 cos e = 
1 

s + 3 (l.5) 

The quantity s determines the average deviation of the orientation 

of anisotropic molecules in a liquid when an electric field is applied 

to it. s is the first diagonal element of the anisotropy tensor(ll). 

From (1.4) and (1.5) we find 

µz = E(cx 
II 

+ 20: ) 
.L 

(l.6) 

The anisotropy tensor element s obeys the following differential 
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equation(ll) 

(1. 7) 

where E is the linearly polarized electric field. 

T . is the time it takes for the molecules to regain their random 

orientation after the electric field has been turned off; it is often 

11 d th D b 1 t . t" (12) ca e e e ye re a.xa ion ime or orientational relaxation time. 

A is a constant which can be found by the following argument. 

The energy of a molecule whose a.xis makes an angle e with the 

direction of the electric field is w(e) 1 1 
= - 2 µz E = - 2 (all 

2 2 l 2 
E cos e - 2 ex E where the relationship 

l. 

thermal equilibrium, the average value of 

:rr _ W( e) 

f cos
2

e 
kT sin e de e 

2 0 
(cos e)th = :rr w( e) J--w. e de e sin 

0 

(l.3) has been used. 

2 cos e is then: 

+y 2 yu 2 e u du 

-l 
= 

+ye yu2 
du 

-s 

where the change of variable u = cos e has been made and 

(ex 
y = _....._--=--------

2kT For y << l, we find 

from (l.5), sth = ~ . 

- ex ) x 
l. 

In 

In equilibrium (~~ = o) , the solution of Eq.(l.7) is 

sth = ~A 1E
2 

• From the last three relationships, it is found that 

3sth 1 3 4 1 1 (ex - ex ) 
A = -2- TE 2 = 2 x 45 y x TE 2 = l5 kTT (l.8) 
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The next step is to solve the differential equation (l.7) when 

the electric field is the sum of the electric fields of the modes of a 

laser r es onator. 

l-3 . Orientation of anisotropic molecules in a l aser r esonator. 

In orde r to find the average dipole moment of an anisotropic mole-

cule in a laser cavity, we mus t solve the differential Eq.(l.7) for the 

anisotropy tensor element s. The electric field is now the sum of the 

electric fields of all the individual longitudinal modes of the cavity 

which lie within the gain linewidth of the laser medium. 

1-3 .l. Normal mode formalism. 

In order to describe the mode spectrum of the laser resonator, we 

introduce a set of orthonormal electric and magnetic vector functions 

En(;) and Hn(r) as defined by Slater(l3 )(l4). They are related by 

the following relationships 

k i (r) = v x li (r) n n n , (1.9) 

and 

v·E (r) = V•H (r) = 0 n n (l.10) 

where k is a constant and n is the index mode nwnber. According 
n 

to (1.9) and (l.lO), they satisfy the following differential equations 

, 2 2 -+ --> 
(v + k ) H (r) = o 

n n 
(l.ll) 

and they are defined to obey the normalization conditions. 
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(l.12) 

The above integr ations are performed over the total volume of the 

cavity. We shall assume that the electric fields inside the cavity are 

linearly polarized. This is the case in a solid-state laser where the 

solid-state rods are cut at Brewster's angle to minimize the reflection 

losses. In this case, the electric fields of all the longitudinal modes 

of the laser cavity have the same direction; the same is true for the 

magnetic fields. We will, therefore, consider the electric and magnetic 

fields as being scalar quantities and we will drop the arrows. 

-+ 
We express the total electric field E(r,t) and the total magnetic 

field H(;,t) inside the cavity as: 

P (t) E (r) n n (l.l3) 

-+ \ l 
H(r,t) = L -

n~ 
(l.l4) 

where is defined by 

(l.l5) 

and where E (r) and H (;) are the electric and magnetic scalar 
n n 

functions defined above. The summation is performed over the total 

number of modes of the cavity. and are the dielectric constant 
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and the permittivity of the medi wn f illing the cavity. 

Pn(t) and ~(t) are unknown functions of time describing the 

amplitudes and phases of the individual longitudinal cavity modes. We 

shall solve for these functions by using expansions (1.13 ) and (1.14) 

into Maxwell's equation with an added polarization term proportional to 

the cube of the el ectric field. 

1-3.2. Expression of the anisotropy tensor element s in a laser 

cavity. 

With the help of the formalism presented in Section 1-3.1, we can 

rewrite the differential Eq.(l.7) as follows: 

D (t) 
n 

i.e. 

ds 
dt + 

We asswne 

p (t) n 

a solution for 

= ijf (o:(t) e 

p (t) in the form n 

im t e-~t) n 
- D (t) n 

is the optical frequency of the oscillating mode 

(1.17) 

(l.18) 

n and 
im t * n and Dn(t) are . slowly varying functions of time compared to e 

* 
ldD~~t)I << wnJD:(t)I (l.19) 

* D (t) is the complex conjugate of D (t). The phase and amplitude in-
n n 

* . formation of mode n is thus obtained from the solution for D (t). 
n 

According to (1.18), 
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+ c.c. 

we notice that the product pa(t) pb(t) is made up of two frequency 

components, one at frequency ma + ~ and the other one at frequency 

m -a ~· Both are optical frequencies "' 1015 rd/ sec ; 

then ma+ ~ is an optical frequency. Since the orientational 

relaxation time of the liquid is of the order of 10-lO to lo-12 sec, 

the molecules cannot respond to fields at optical frequencies. The only 

term to which the molecules can respond is the term at frequency ma-~ 

which ranges from ma - ma = 0 to ma - ~ = 2rr 6vG where 6VG is the 

gain linewidth of the laser medium. Then 

(l.20) 

We look for a solution for s in the following form. 

i(ma-~)t 
e · + C.C (l.21) 

* where sab(t) is a slowly varying function of time compared to 

i(ma-~)t 
e when Therefore for a =I= b, we can neglect 

with respect to (ma-~) * sab(t) and we write 
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(l.22) 

With the help of expressions (1.20), (1. 21) and (l. 22 ), we find 

(l. 23) 

From the above equatio~ we find the following expressions for 

* and s (t) 
aa 

(l.24) 

and 

The last expression is a differential equation for the quantity 

\"""'s* (t) . The summation is performed over all the oscillating modes of 
Laa 

a 

the cavity. The right-hand side of Eq.(1.25) is related to the total 

electromagnetic energy stored in the cavity eT in the following way. 

CT is defined as 
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where the integral is performed over the volume of the cavity, E(;,t) 

and H(~,t) are replaced by their expressions (1.13) and (1.14) 

and with the help of (1.12) 

(l. 27) 

* or in terms of the functions D (t) and D (t) defined by (1,18) n n 

eT = \ w D * ( t) D ( t) L n n n 
(1.28) 

n 

Note: The derivation of expression (1.28) from expression (l.27) is 

given in the Appendix, 

The quantity L 
a 

is equal to the energy per 

unit volume inside the cavity since the integral of this quantity over 

the volume of the cavity is: 

* wD (t) D (t) = eT • a a a 

If the total electromagnetic energy stored inside the cavity is 

constant during the time the interaction between the modes takes place in 



-18-

the liquid} then the energy per unit volume can be considered a constant 

and the solution of the differential equation (l.25) is: 

(l.29) 

Expressions (l.24) and (l.29) are then used in (1.21) to find s. 

For times t long compared to the relaxation time r of the 

liquid} we have 

* Da(t) D,
0
(t) i(ru -m )t 

a D (~ (~ ----- e Ear) Eb r) + C.C. 
l+i(rua -~)r 

(.1.31) 

We have expressed the anisotropy tensor element s in terms of 

the complex amplitudes D (t) 
n 

* and D (t) 
n 

of the oscillating longitudinal 

modes of the cavity and of the space eigenvectors E (r) 
n 

of these modes. 

We are now in a position to calculate the total polarization induced in 

the nonlinear liquid placed inside a laser resonator . 
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1-4. Total nonlinear polarization induced in the anisotropic molecular 

liquid. 

The average dipole moment of an anis otropic molecule is µz• It is 

related to the total average polarization P per unit volume by the 

relationship 

p = N µ 
0 z 

where N0 is the number of molecules per unit volume. 

P = N
0

(a 
II 

(l.32) 

In M.K.S. units the displacement vector D is expressed as 

which can be written as: 

- a ) s E 
.L 

(l. 33) 

where EL is the dielectric constant of the liquid and PNL is the 

total nonlinear polarization induced in the liquid. 

- a ) s E 
.L 

(1.34) 

We now express the nonlinear polarization PNL in terms of the 
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cavity mode wavefunctions D (t) and E (~). With the help of (1.13), n n 

(1.19) and (1. 31), we find 

The two products in expression (1.35) are written explicitly as 

* * i D Db D i ( w -m +w ) t a c a o c 
----- e + C.C. 

* * D Db D 
+ i a c 

i ( m -w +w ) t 
D a C 

e + C.C. 

(1.36) 

The second part of expression (1. 36 ) is obtained from the first 

indices a and b. Since the double part by interchang ing the 

summation LL will be 
a b 

performed, these two terms will give the same 

contribution to the nonlinear polarization and we can write 

(l.37) 

At this point it is useful to define an important parameter of an 
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anisotropic molecular liquid which is a measure of its anisotropy: the 

optical Kerr constant. 

Definition of the Optical Kerr Constant £2• 

Let us consider the case of only one oscillating mode, say, mode n, 

in the cavity. The nonlinear polarization PNL can then be expressed 

according to (l.37) as: 

& 2/.. 3 -+ 
P = - 2 N (a -a ) ~ E (r) 

NL 0 11 J. 3 8 n 
£0 

( 
i D * D D * e imn t + C • C ·) 

nnn (1.38) 

The electric field of this mode is, according to (l.13) and (l.18), 

E (r, t) = - /m:-2n (i n* e imn t + c.c.) v~ n 
E (r) 

n 

and the component of E3(r,t) oscillating at the frequency mn is 

3 ___, ( * * E (r) i D D D n nnn (1.39) 

With the help of (l.38) and (l.39) we can write 

(l.40) 

The nonlinear polarization induced in the anisotropic liquid by the . 

applied electric field is proportional to the cube of the electric field. 

The coefficient of proportionality is called the optical Kerr constant of 

the liquid £2 and is expressed with the help of (1.8) as: 
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(a -a )2 
II 
kT (1.41) 

This constant has been measured by various authors in various 

liquids in relation to the self-focusing of optical beruns in anisotropic 

liquids(l5). It is proportional to the square of the anisotropy (a -a ) 
II .L 

of the molecules and inversely proportional to the temperature. It is 

an important parameter of our analysis; the larger the optical Kerr 

constant, the larger the coupling between the cavity modes. In the 

experimental part of our work, we will use liquids with a very large 

Kerr constant. 

The nonlinear polarization PNL is then expressed in terms of E2• 

From (l.37) and (1.41) 

* * D (t)Db(t)D (t) i(m -m+m )t a c a o c 
x e + C.C. (1.42) 

1 + i(ma-~)T 

We have now expressed the nonlinear polarization induced in the 

anisotropic molecular liquid by the fields of the laser cavity modes in 

terms of the wave functions Dn(t) En(r) of these modes. PNL as ex­

pressed by (1.42) involves a triple summation over all the cavity modes 

of the product of the wave functions of three modes. Coupling of the 

cavity modes will occur through this nonlinear polarization only if the 

frequency components of PNL are within the gain linewidth of the laser 
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medium. 

We are now in a position to find solutions for the complex 
-)(-

amplitudes D (t) 
n 

and D (t) n 
of the oscillating cavity modes in the 

presence of a nonlinear dielectric. This is done in the next section 

by solving Maxwell's equations with the nonlinear polarization acting 

as a driving source. 

1-5. Solution of Maxwell's equations with a third order nonlinear 

pqlarization. 

In order to find an expression for the electric field in a laser 

resonator containing an anisotropic molecular liquid, we solve Maxwell's 

equations with a nonlinear polarization driving term. By this procedure 

we shall first find a differential equation obeyed by the mode amplitudes 

* 1-5.1. Differential equation for Dnl!J.· 

1-5.1.1. Maxwell's equations. 

In M.K.S. units, Maxwell's equations for the electric field 

E (r', t) and the magnetic field H(r', t) are 

0D 
= I+ Ot 

where all the fields are scalar fields. 

The consitutive relations in the nonlinear medium are 

I = cr E 

(l.43) 

(l.44) 

(l.45) 
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(l.46) 

(l.47) 

EL is the dielectric constant of the medium and 0 is the 

electrical conductivity of the medium. We shall assume in the remainder 

of this analysis that the linear dielectric constant of the liquid is 

the same as the dielectric constant of the mediwn filling the cavity. 

This is not exactly true since the liquids which are used have an index 

of refraction equal to l.5 and therefore a dielectric constant of 2 .25 

while air with a dielectric constant of 1 fills the cavity. A correct 

result is obtained, however, if we consider the equivalent path of the 

light inside the liquid, i.e. the physical length of the liquid cell 

multiplied by the index of refraction of the liquid. Using (1.45), 

(1.46) and (1.47), we can rewrite Maxwell's equations as 

V x H oE+ 
0 

(EOE + PNL) = at (l.48) 

and 

V x E OH 
= - µo at (l.49) 

Let us first replace the electric and magnetic fields by their 

expressions (l.13) and (1.14) into the second Maxwell equation (1.49) 

-L-2..p (t) 
n Vso n 

( V x E (~)) 
n (l .59) 

We then use relationship 1.9, multiply both sides by H (r) and 
m 
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integrate over the volume of the cavity. With the help of (l.l2), we 

find 

and from the definition (l.l5) of mn 

(l.60) 

The second Maxwell equation (l.49) has provided a relationship 

between pn(t) and ~(t). To find a s olution for p (t) 
n 

we use the first Maxwell equation (l.48). 

and ~(t) 

According to (l.60) and (l.l8) we can now express <1n(t) and then 

the magnet ic field H(;,t) in terms of the complex amplitude D (t) 
n 

of 

the nth cavity mode in the following way: 

l ( * iw t qn (t) = -- D (t) e n + D (t) r;::- n n (1.61) 
vcmn 

since 

With the help of expressions (1.13), (l.14) and (l.42) we write 

the first Maxwell equation (1.48) as 
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= - ~ \ p ( t) E (r') - !E
0 

\ p' ( t )E (r') rL n n V"o L n n 
VEo n n 

x (m -m +m ) a o c 
a o c i(m -m+m )t ) 

e + c.c. 

We recall that 'iJ x Hn (r') = kn En (r') and that kn = mn Jµ0 E0 

and we write the left-hand side of (1.62) as 

L l -+ ~L2 -+ - m a ( t) k E ( r) = Eo m q ( t) E ( r) • r-- n""Il n n n n n 
n vµo n 

(l.62) 

We then multiply both sides of Eq.(l.62) by E (r') and integrate 
m 

over the volume of the cavity. The last term of Eq.(l.62) represents 

the nonlinear polarization term. It will be non zero only inside the 

volume of the nonlinear medium, i.e. the volume of the liquid cell 

placed inside the optical resonator. Under these conditions and with 

the help of the normalization conditions (1.12 ), we find 

( 
* * D (t) Db(t) D (t) 

x (m -m +m ) a c 
a o c . ( ) 

1 + 1 ma-~ 'f 

i ( m -m +m ) t ) a o c 
e + C.C. (1.63) 
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is defined by the re l ationship 

s nabc J 
Vol ume 

of the cell 

We shall calculat e this parameter explicitly l a t er. 

(1 .64 ) 

We can als o write expression (1 .63 ) as f ollows by dividing through 

by ~ 

s nabc 

(1 . 65) 

By using both Maxwell 's equat ions , we have found two different 

relationships between pn(t) and ~(t ). They are expressions (1 .60) 

and (1.65 ) . By eliminating ~(t), for exampl e, between these two rela­

tionships, we can find a differential equation obeyed by p (t ) . The 
n 

configuration of the electric field inside the cavity will then be 

found by solving this equation. We shall f ollow this procedure with a 

sli ght difference however. 

The equation pn(t) = ~(t) has allowed us to express ~(t ) in 

* Dn(t). p (t) ~(t ) terms of D (t) and We shall then repl ace and n n 

by their expressions (1.18) and (1. 61 ) and we shall find a di fferential 

* pn ( t ) . equation for D (t),,. instead of n 
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2 1 * irun t sH- * iru t § * iru t . [ill; 
ru -- D ( t) e + i D ( t) e n - -2 ru D ( t) e n + ~ ~2n n A n t:0 n n n 

n 

e 

* * 3 £ LL~ D (t)Db(t)D (t) 
= 2 2 J ruam ruc· S ( ru -m +ru ) a c 

i ( ru -m +ru ) t a D C 

r;:: o nabc a o c 1 . ( ) 2V 2 £ o a b c + 1 rua -~ T 

e 

(l.66) 

In the equation (1.66), we look for combinations of the modes a, 

b, and c such that the nonlinear polarization induced by these 

modes oscillates at frequency run' i.e. such that 

= (l) 
n 

(l. 67) 

since only this term can provide synchronous driving of the oscillation 

at ru • With this condition, the above expression is written as: 
n 

* dDn(t) o * ( 
dt + - D t) = 

£0 n 

* * D (t)Db(t)D (t) a c 

(l.68) 
This is our main working equation; it is a differential equation 

for the nth mode complex amplitude * D (t). 
n 

A similar differential 

equation for D (t) is obtained by taking the complex conjugate. 
n 

In a cavity with no nonlinear medium, the differential equation 
dD*(t) * 

(1.68) reduces to ~t + ~ D (t) = 0 the solution of which is 
o £0 n 

- - t 
* £0 Dn(t) =A e The amplitudes of modes decrease with time if 0 > 0 
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(passive cavity) or are amplified if cr < 0 (in a laser the gain or 

cr < 0 is provided by the active medium). 

We shall assume that the gain provided by the laser medium is at 

each time equal to the losses of the cavity (reflection losses at the 

mirror and diffraction losses). In that case cr = 0 and the differen-

tial equat ion (l.68) is reduced to 

* * D (t)Db(t)D (t) a c 
(l .69 ) 

We have obtained a differential equation for the wave function of 

* one cavity mode D (t) in terms of the wave functions of all the other 
n 

modes. The mode n is coupled to the modes a, b, c, such that 

ill = ill - m +ill , by a susceptibility which is proportional to n a o c 

1 
When the number of oscillating modes is very large so 

1 + i( illa-~)T 
that the effect of the end modes (at the low frequency and high frequency 

sides of the gain linewidth) can be neglected, the interaction between 

all the modes can be accounted for in a rather simple and accurate way. 

We first reduce the triple summation ~ 
a, b, c 

* * D DbD a c to a 

double summation and we calculate explicitly s b • na c 

1-5.1.2. Expression of L 
~~~~---------~~~~~ a,b,c 

* * D DbD a c 

The triple summation 2:= 
a, b, c 

-x- * 
D DbD a c 

as a double swmnation. 

is in fact a double summa-

tion since the mode indices a, b, c are such that 
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(l. 67) 

The mode spectrum of a laser resonator in the absence of the 

nonlinear liquid (and we will assume that the presence of the liquid 

does not change it appreciably) consists of a large number of modes 

equispaced in frequency. The (radian) frequency separation between two 

adjacent modes is such that c 
0 = 2rc 2L • 

The frequency of the nth mode is defined as 

(l) = nO 
n (l.70) 

where n is a very large number approximately equal to the number of 

half wavelengths contained in the length of the resonator L 
n "'Y:[2. 

For L = lm and A = lµ, we have n,.., 2 x 106 • With the definition 

(l.70), the condition (l.67) becomes n =a - b + c; this condition is 

satisfied if we take a = n + m, b = n + m + p, c = n + p. The 

summation over a, b and c becomes a summation over m and p and 

a, b, c 

* * D Db D a c 

m,p 

* * D D D n+m n+m+p n+p 

l-ipD'f 
(l. 71) 

We · notice that the beating of modes n + m and n + m + p · at 

frequency pO will modulate the dielectric constant seen by the mode 

n + p and thus will generate a sideband at frequency (n+p) 0 - pQ = 

nO = m , which is the frequency of the nth mode. In this way, modes 
n 

n, n+m, n+m+p, and n+p are coupled together (see Figure 1.3). The 

nonlinear susceptibility is proportional to 1 
l-ipO'f • 
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cavi t y m odes n, n+p 
1
n+m 1 n+p-1m _ 

here m=5, p=-2 
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1-5.1. 3 . Explicit calculation of S = S 
~"'"----';..._--.::.--~~~~-~~~- n,n+m,n+m+p,n+p n,m,p 

In the double summation civer m and p, the term S b is re­na c 

placed by S which is defined by (1.64). 
n,m,p 

s 
n,m,p J 

Volume 
of the cell (1.72) 

In order to evaluate explicitly this integral, we must specify the 

configuration of the liquid cell in the cavity. 

A, liquid cell of length 2t is inserted in an optical cavity of 

length L at a distance L0 from a mirror which is taken as the origin 

of the coordinates (see Figure 1.4). 

The nth mode of the empty cavity has the following spatial depend-

ence defined by (l.ll) and (1.12). 

(1.73) 

where A is the cross section of the beam. We have, in (1.71), 

neglected the spatial dependence in the transverse direction. Then, 

according to (1.72), 

s 
n,m,p 

The integration with respect to x yields 

1( t 1 8n,m,p = v 1 + 2prc 
2 9 2rcpLO 1 2 9 . rcp-v . mrc-v 

sin --L- cos L + - sin --2mrc L (1.74) 
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is placed i_nside the cavity 
f ormed by the mirrors m _ 
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where V =AL is the volume occupied by the light in the cavity. We 

see that the quantity S is roughly proportional to the ratio of 
n,m,p 

the length of the liquid cell to the total length of the cavity. 

All the frequencies w , w , w , w are optical frequencies n n+p n+m+p n+m 

which lie within the gain linewidth of the laser medium. Therefore we 

can write without any appreciable error. 

(l.75) 

l-5.l.4. Final expression of the differential equation for 

* £nill· 
With the help of (l.7l), (l.74) and (l.75) we express the differ-

* ential equation for D (t) 
n 

in the following way. 

* dD 
n 

dt = 
3i E CJ.) L D* L 2 n n+p ----

2 Eo2 v p (l-ipOT) m 
* w D D n+m n+m+p n+m 

( 
t l . 2rrpt x - + -- sin--L 2prr L cos 

2rrpLO l . 2mrrt 2mrrLO l 
L + 2mrr sin -L- cos L 

The solution of this differential equation is very difficult in the 

general case where the liquid cell occupies an arbitrary position in the 

cavity. However, the physical situation will not be hindered if we solve 

the above equation for a special configuration of the cavity. This will 

be done in the next section. 
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* l-5. 2 . Solut ion of the di ffe r ential equation for Dni..!2.· 

We shall find a solution of the differential Eq.(l.76) for the 

following case; The liquid cell fills half of the laser cavity (see 

Figure l. 5) • 

In this case 

l sin m:n: and 
2 

l . 2rant 
-- sin --2m:n: L 

l 

cos 

. 2:n:pt 
2p:n: sin -L- cos 

2nmL
0 

L 

2:n:pL
0 

L 

. 2m:n:t :n:Lo 
sin -L- cos 2m -y;- = . m:n: m:n: sin 2 cos 2 

0 m;:;:: l 

= 
t 
L m = 0 

0 p ;:;:: l 

= 
{, 

L p = 0 

= 

Under these conditions, we write the differential equation (l.76) 

as; 

* w D D n+m n+mt-p n+m 

* w D D n+m n+m n+m 

*L + D w n n+p 
p 

* ) D D n+p n+p 

(l-ip(}r) 
(1.77) 

In order to specify the values of p and m over which the 

summations in (l.77) are performed, we must discuss in more detail the 

mechanism of power exchange between modes . 
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from mode n 
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In Section l-5.l.2? we have descr ibed the mode coupling between 

four modes l abeled n, n+p, n+m+p, n+m. See Figure l. 3. A nonlinear 

polarization is induced at frequency m • 
m 

The susceptibility for this 
€2 

process is X = -l---i-pJ~T • The dielectric constant seen by mode n+p is 

modulated at frequency pO thereby creating a sideband at the 

frequency mm. We can write the susceptibility X as a real part X' 

plus an imaginary part +iX" where X" is a real function. The trans-

fer of energy between the modes n and n+p is proportional to X" and 

in our case proportional to X" = €2 
pOT 

l + (:PJ1")2 
. 

If p is positive, i.e. if the mode n+p has a higher frequency 

than the mode n, energy will be transferred from mode n+p into mode 

n at a rate proportional to 
l+ (p01")2 • 

from mode n 

If p is negative, i.e. if 

m > m energy will flow n n+p' into mode n+p at the same 

rate. If we neglect the effects of the end modes, i.e. if we assume a 

large number of oscillating modes, the amplitude of each mode is likely 

to stay constant since as much power is fed into it from higher frequency 

modes as flows out of it to lower frequency modes. 

The rate at which energy is transferred into one mode via another 

mode separated in frequency by pO is proportional to 

call this function of p, where 

then 

This function is depicted in Figure l.6. 

2 • 
l+ (pOT) 

We 

(1.78) 

(l. 79) 

increases for 
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F IG 1-6 _Representation of 

h t - f ,fm )= · D/mo t e f unc ion (P1· • 
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+(p/m.)' 
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to its maximum value of l 
2 

for p = m0 and decreases to zero 

for p > m0 . The energy flowing from or into mode n via mode n + p 

decreases when p > m0 • In our analysis we shall neglect the inter­

action of the nth mode with the mode n + p such that p > 2m0~ there-

fore we shall limit the summation over p to 

Figure 1.7. 

-2m 
0 

and +2m0 • See 

We label Nl and N2 the lowest and highest frequency modes 

inside the gain linewidth. The total number of oscillating modes is 

N = N2 - N1 . 

We can now write the differential equation (l.77) as 

* D n+p 
(l-ipOTJ 

().) 
n+p 

* ) 
D D n-p n+p 
(l-ipOT) 

* D D n+m+p n+m 

(l.80) 

where e'T is the total energy stored in the cavity, according to (l.28), 

* w D D • n+m n+m n+m 

We shall look for a solution of (1.80) which has the following form 

n* (t) = ~(t) ein~ (t) 
n ' 

D (t) = ~(t) e-in~(t) 
n (l.81) 

where ~(t) and ~ (t) are real functions of time. In this assumed 

form the cavity modes have the same amplitude ~(t) and the phase 
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difference between any two adjacent modes is the same and eQual to 

cji ( t). 

* We now replace Dn and Dn in EQ.(l.80) by their expressions 

(l.81) 

(~ dt + 
t incJi(t) 
- e 1 

We use the fact that the total energy §'T is 

* w D D n+m n+m n+m 
m m 

to write 

2m
0 

2 
wn+m t3 + ~T = 2 8T fu ( l+p;0272 ) 

l 
The last term of EQ. (l.82) ·is roughly eQual to N the first term 

(l) t32 

(1.82) 

S'n+p 1 
since n+:p where N is the number of oscillating = -- "' -

L eT N 
(l) t32 

n+m m 

modes. Since N is very large, the last term of EQ.(l.82) can be 

neglected and we write 
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dt 
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2m0 

+ in<I>'(t)~(t) fu ( i)02"2) (l.83) 

The right-hand side of Eq.(l.83) is purely imaginary; therefore 

The 

d~( t) 0 
dt = 

amplitudes of the 

and ~(t) = ~ = constant. (l.84) 

cavity modes are constant in time and the 

solution for <I> (t) is 

2m0 
3 E2 0 

t fu ( l+p2~2"2) <I> (t) = .2 L CT t (l.85) 
EO v 

Since <I> ( t) is independent of the mode index n, the expression 

n*(t) = ~(t) ein<I>(t) is indeed a solution of the differential equation 
n 

* (l,80). We write D (t) explicitly with the help of (l.84) and (l.85) n 

. . ( 3 E2 t L2mo ( 1 l) * J.(J)t J._CJ.) l----8 t 
D (t) e n = ~ e n 2V L T 1 ·2021"2 

n Eo p=O +p 
(l.86) 

We notice that the resonant frequency of the nth mode has been 

slightly pulled from its initial value mn by an amount which is pro­

portional to the stored energy eT· Therefore the presence of an 

anisotropic molecular liquid inside a laser resonator gives rise to a 

mode-locked spectrum of equal amplitudes and zero phases. The time 

(
\ * im t ) 

envelope E ( t) ex: ~ D n ( t) e n + C. C. * where D (t) is given by (l.86) 
n 

consists of a train of ultrashort laser pulses of very high intensity. See 

Figure l.8. These pulses are separated in time by the double transit 
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time of the light inside the cavity ~L and approach a duration 

where is the gain linewidth of the amplifying 

transition. 

For a Ruby laser, 11 
6v ~ 10 Hz. High intensity pulses of duration 

T = 10-ll sec = 10 p sec should be obtained by placing an anisotropic 

molecular liquid inside the cavity of a Ruby laser. 

For a Neodymium glass laser, 6v ~ 2 x 1012 Hz pulses as short 

as 0.5 p sec can be obtained from such a laser. 

Since high intensity fields in the cavity are necessary to induce 

a sizeable nonlinearity of the index · of refraction of the anisotropic 

molecular llquid, we expect to generate ultrashort pulses from Q-

swi tched ( 6) solid state lasers. These lasers in their normal mode of 

operation (no anisotropic liquid, no saturable absorber dye inserted in 

the cavity) emit intense light pulses (~ 100 MW) with a duration of 

-8 10 sec. 

In order to couple the longitudinal modes of the cavity in the way 

described above, sufficient energy exchange between the modes must take 

-8 place during the time the laser is oscillating, i.e. 10 sec. 

In the next section we define and calculate a time constant T0 

for the energy circulation between the modes to find out whether the 

above condition T0 < lo-8 sec can be satisfied under reasonable 

experimental conditions. 
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l-6. Energy circulation time constant. 

l-6.l. Definition. 

As a measure of the strength of the mode coupling due to the 

refractive index nonlinearity, we define a circulation time T
0 

as the 

exponential time constant for the circulation of the energy in one mode 

due to its interactions with all others. If € is the energy of the 
n 

nth mode, 

and 

1 

TO 
= 

1 

e_·n 

1-6.2. Calculation of T
0

• 

' * ' 2 The energy of the nth mode is e = m D D = m f3 n n n n n 

D have been replaced by their expressions (1.81). n 

according to (1.87) 

1 
TO = 

(l.87) 

* where D 
n 

Therefore, 

(1.88) 

We have found in Section 1-5 that f3' = 0 and f3 = constant. This 

is true because as much energy flows into the nth mode via the higher 

freQuency modes as flows out of it via the lower freQuency modes. We 

want to calculate the rate at which energy is flowing into the nth mode. 

Therefore, to find f3', we shall keep in expression (1.82) only the 

terms where p is positive in the summation over p. 

Only the real part of the right-hand side of (1.82) gives rise to 

power exchange between the modes. EQuating f3'(t) to the real part of 

the right-hand side of (1.82) and using the definition (1.87) yields 
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2m

0 

1 3 £2 mn t ~T L pOT 
TO = 2 L v 2 

£0 p=l l+ (p0.T) 
(l.89) 

The rate at which energy is exchanged between modes iq proportional 

eT 
to the el ectromagnetic energy stored per Wlit volume in the cavity -v , 

to the ratio of the length of the liquid cell to the length of the 

"t t cavi y L , 
2m

0 

to the optical Kerr constant and to· the term 

[ 2 
l+ (pOT) 

accoWlting for the number of modes interacting with any 
p=l 

one mode. To give an estimation of this last quantity, we notice that 

we can write 

2m
0 

p/mo 
2m0 

2= 2= f(L) with 1 
2 = mo = QT 

. P=l 
l+ (p/m

0
) p=l 

mo 

The function 
2m

0 

f(p/m
0

) is depicted in Figure 1.6. In this figure, 

L . f(L) 
p=l mo 

the sum is pictured by the area Wlder the rectangles which 

have a height equal to and a base equal to 1. We see that 

we can approximate the area under the rectangles by the area under the 

curve, and therefore approximate the summation 
2m / 2m / 
'\" o P mo 2 j o x mo 2 dx • L., by the integral 
p=l l+(p/m0 ) 0 l+(x/m0 ) 

of variable y = x/m0 and the integral is equal to 

y dy 
2 

1 + y 

mo 2 
= 2 log(l+2 ) 

mo 1 
"'-=--2 20.'f 

We make the change 

(1.90) 
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According to (l.89) and (l.90), we write 

(l. 9l) 

We can now calculate a numerical value for T0 in a typical 

experimental situation. However, in the literature, the measured values 

of the optical Kerr constant are given in electrostatic units. Since 

our analysis has been performed in MKS units, we must now relate 

the measured values in esu units. 

For this purpose, we express the displacement vector and the 

change in the dielectric constant in both systems of units. 

In electrostatic units, the displacement vector is expressed as 

E e 
and P 

e 
are the electric field and the 

polarization in electrostatic units. And in the li~uid 

where x1 and ~L are the linear and nonlinear susceptibilities. 

Therefore 

D = E + 4rrx:
1
E + 4~LE3 e 

or 

E( (1+4nXL) + 4~LE2) D = e 

D = ( E + f::.E) E e e 

to 
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£ is the diel ectric constant of the liquid in esu units. 6£ is 

the change in dielectr ic constant due to the nonlinearities of the 

medium in esu units. 

We now relate the change in dielectric constant 6£ to the Kerr 

constant B
0 

measured by M. Paillette(l6). This constant is measured 

by the following method. 

The Kerr effect induced by a linearly polarized Q-switch ruby laser 

changes the index of refraction of a liqui d for an Argon laser linearly. 

polarized at 45° from the direction of polarization of the Ruby laser, 

therefore introducing a birefringence and a phase difference ~ between 

two perpendicular components of the Argon laser electric field, one 

perpend1cular to the Ruby laser electric field, the other one perpen-

dicular to it. 

By this method, M. Pa ill ette is able to measure a constant which 

is proportional to the difference between the index of refraction of 

the liquid parallel to the Ruby l aser el ectric field n and perpen-
II 

dicular to it n • This change n - n is related t o the change of 
l. II l. 

the index of refraction 6n induced by a linearly polarized electric 

field upon itself by 26n = n 
\\ 

- n • 
l. 

rr ) 2 According to M. Paillette, ~ (n -n = B0 Ee 
AA \\ l. 

wavelength of an Argon laser in vacuum = 4880 ~. E 
e 

where is the 

is the e l ectric 

field expressed in esu units, B0 is the optical Kerr constant in esu 

units. Therefore 

26n = 
B E 

2 
AA 0 e (l .92 ) 
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Since the change of the dielectric constant 6E is 

related to the change of the index of refraction 6n bv 

6E = 2n 6n = 
n B E 

2 
"'A.A 0 e 

(l. 93) 

n is the index of refraction of the liquid. We have expressed the 

change of the dielectric constant in esu units. We now find an ex-

pression for the same quantity in MKS units. In MKS units the dis-

placement vector is expressed as DM = EOEM+PM where EM and PM are the 

electric field and the polarization in MKS units. In the nonlinear 

liquid) we have where x
1 

is the linear suscep-

tibility and is the Kerr constant in MKS units. Therefore, 

or 

We can then write DM in the following form 

where E is the dielectric constant of the medium in esu units (in MKS 

units, the dielectric constant is 

(l.94) 
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is the change in the dielectric constant in esu units when s
2 

and EM 

are expressed in MKS units. 

Therefore, from (l.93 ) and (l.94), we find a relationship between 

(l.95) 

The electric field in esu units E is related to the electric 
e 

field in MKS units EM: Ee = J4rcs0 EM" Therefore 

where s
2 

is expressed in MKS units and B
0 

in esu units and 

lo7 
s0 = ~~2 • We can now express the circulation time T

0 
in terms of 

4rcc 

quantities in esu units. From (l.9l) and (l.96), 

or 

l 

TO 

where we have replaced m by 
n 

c 
2rc "-p,_' is the ruby wavelength 

(l.97) 

Numerical application: We calculate the circulation time 

for the following experimental situation. A 5 cm (2t = 5 cm) cell con-

taining nitrobenzene is inserted into a laser cavity l meter long 

(L = lOO cm); the cross sec~ion of the beam is l cm2; therefore, 
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3 -7 v = 100 cm B
0 

= 2.9 x 10 esu. The other parameters are 

6 -11 eT = 0.1 Joule = 10 ergs and r = 5 x 10 sec. We find T0 ~ 

10-9 sec. 

For this experimental situation, the circulation time T
0 

is of 

the order of 1 nanosecond and therefore sufficient energy excnange 

between cavity modes is expected to take place to produce effective 

mode coupling. 

In our theoretical analysis, we have considered the effect of an 

anisotropic molecular liquid placed inside a laser resonator on the. 

mode structure of the cavity. We have found that under reasonable 

experimental conditions, the nonlinear polarization induced in the 

liquid produces strong coupling between the cavity modes. A quasi 

equilibrium situation might be reached where all the modes have equal 

amplitudes and zero phase difference? thus giving rise to the production 

of ultrashort and intense pulses of light of duration equal to the 

inverse of the gain linewidth 6vG of the amplifying, transition (in 

Ruby 11 
6VG ~ 10 Hz) and separated by the transit time of the light in 

th ·t 2L e cavi y C . 

An experiment has been performed to verify these predictions which 

is reported in the following pages. 
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II. EXPERIMENTAL INVESTIGATION 

In Chapter II we report the experimental results obtained when a 

liquid cell filled with an anisotropic molecular liquid is placed 

inside the cavity of a ~-switched Ruby laser. 

An . evaluation of the important parameters of the experiment help 

us in selecting an anisotropic molecular liquid which induces strong 

mode coupling. 

The experimental apparatus is described, the ex~rimental tech-

niques and results are then presented. 

2-1. Parameters of the experiment. 

In Part I we have shown by a theoretical argument that the 

presence of an anis otropic molecular liquid inside a laser resonator 

induces a mode-locked operation; the output of the laser then consists 

of a train of ultrashort pulses of light. 

In order to perform. an experiment and verify the above predictions, 

we consider the various parameters of the problem. The important para.m-

eters of the liquid system are: 

- The Kerr constant E2 

- The orientational relaxation time ~ 

- The length of the cell .2t 

The parameters for the laser system are: 

- The length of the cavity L and then the frequency difference 

between adjacent modes ('"'\ - rec 
•• - L 

- The gain linewidth of the amplif'ying laser transition 
6vG 

therefore the number of oscillating modes N = c/21 • 

and 
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A careful examination of the parameters of the liquid is needed to 

choose the liquid which induces a strong mode coupling. The parameters 

of the laser system are fixed by the equipment available in our 

laboratory. The experimental work is performed with a ruby laser 

Q-switched by a rotating prism. The wavelength is A = 6943 R; the 

8 -l gain linewidth measured with a Fabry-Perot etalan is LWG = l. cm 

The laser cavity is l meter long, then 0 ~ l09 rd/sec., and 

N ~ liS = 360 modes are oscillating. 

200 

2-2. Selection of the anisotropic molecular liquid. 

In this section we determine which specific liquid can be used to 

produce strong coupling between the modes of the laser resonator by 

examining the important parameters of the liquid with respect to the 

parameters of the laser systems described above. 

The criterion we use to evaluate the parameters of the liquid is 

the following: We require the circulation time T
0 

defined in Section 

l-6 to be as short as possible so that sufficient energy exchange between 

the modes takes place during a Q-switch pulse to produce mode coupling. 

According to l.97, we shall use materials with a large Kerr constant 

B0, i.e. molecules with a large anisotropy. 

Another important parameter is the orientational relaxation time T 

or rather the quantity OT. According to (l.97), OT should be as small 

as possible, but we shall see that there is a lower limit to the possible 

values of OT by examining the physical significance of this para.meter. 

The rate at which energy is exchanged between the nth mode and the 

(n+p)th mode, for example, is proportional to the quantity 
l+(p0T) 2 
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which is equal to the imaginary part of the susceptibility of an 

anisotropic molecule in an electric field with radian frequency pO. 

The maximum of this quantity is equal to 

See Figure 1. 6. 

1 
2 

and occurs at 

If OT >> 1, the molecular orientation does not respond to optical 

envelope variations at frequency 0 or higher and the amount of re-

fractive index nonlinearity is too small to couple the modes together. 

If OT - 1 
- ' the nth mode exchanges energy principally with 

adjacent modes. The rate at which it receives energy from higher fre-

quency modes is maximum for the (n+l)th mode and decreases rapidly for 

the (n+2), (n+3) modes and so on. In order to couple more mod.es faster, 

the relaxation time T of the molecule has to be made shorter, so that 

the molecules respond to more frequency components. But there is a limit 

OT<<~ 
N' 

as to how short should be. If where N is the total 

number of oscillating modes, the nth mode is coupled very weakly with all 

the other modes. In tbat case most of the energy is coupled outside the 

gain linewidth and lost without giving rise to any appreciable coupling 

between the oscillating mod.es. In Figure 2.l, the function 

p!J:r h" h . f 
2 2 2 , w ic is a measure o· 

l+p 0 T l 
presented for OT = l, N < OT < l and 

the mode coupling strength, is 

l 
OT < N. To prod. uce strong mode 

coupling, the relaxation time must be chosen so tbat 

(2 .l) 

or according to the laser parameters. 
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-l2 -9 3 x lO sec < T < lO sec. 

The three criteria for choosing the nonlinear liquid are: 

- large Kerr constant B0 

- Shortest relaxation time T as possible but no shorter than 

-l2 3 x lO sec 

- The liquid must be transparent at the ruby wavelength. 

In our experimental work, we used (a) Nitrobenzene and (b) a-

chloronaphthalene as the anisotropic molecular liquids. In case (a), 

the Kerr constant is -7 B
0 

= 2.9 x lO esu. At room temperature, the 

relaxation time is -l2 
T "' 50 x lO sec. In case (b ), -T B0 = 2.7 x lO 

esu and the room temperature relaxation time is -12 
T = 53 x 10 sec. 

where 

The relaxation time T 

'f - :rJY - kT 

. . b (12) is given y: 

T\ is the viscosity of the liquid 

V is the volume of one molecule 

T is the temperature of the liquid , 

The viscosity T\ is a decreasing function of temperature( l7). It 

B 

varies empirically as T A e where A and B are two empirical constants 

characteristic of the liquid. Therefore, the relaxation time T is a 

decreasing function of the temperature. This dependence has been experi­

mentally verified for nitrobenzene by Rank et al(lS). They measured the 

frequency shift of the stimulated Rayleigh line as a function of tempera-
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tu.re from T = 12°c to 
0 

T = 117 C. Their results are plotted in 

Figure 2,2 and extrapolated to higher temperatures. 

Therefore, by heating the liquid placed inside the laser resonator 

we expect to decrease the relaxation time ~ (from its value of 

-~ ) 50 x 10 sec at room temperature and produce a faster mode coupling. 

Note that carbon disulfide has a larger Kerr constant than 

nitrobenzene (B
0 

= 4.18 x 10-7 esu)(l6) but at room temperature its 

relaxation time is ~ lo-12 sec which is not within the limits of the 

second criterion. Therefore cs 2 should be cooled down to increase 

its relaxation time; however, since it is less convenient to cool a 

liquid than to heat it, we did not use it in our experiment. 

2-3. Description of the experimental apparatus, 

2-3.1. The cell and temperature controller. 

A cell has been specially designed and built for this experiment. 

A 5 cm long Kovar tube was cut at the Brewster angle of the Ruby 

wavelength; two glass windows were then cemented on the ends with a 

heat resistant epoxy. Kovar was chosen because its heat expansion 

coefficient is close to the one of glass and because of good heat 

conductivity. 

A thin heating wire is glued around the Kovar tube. A thermistor 

(negative temperature resistivity coefficient) is inserted inside the 

cell. The temperature of the liquid in the cell is measured by 

measuring the resistance of the thermistor. This is done by placing it 

into one arm of a bridge of resistors. Two known and fixed resistors 

are placed in two other arms. In the fourth arm there is a variable 
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resistor whose value determines the equilibrium condition of the 

bridge for a certain temperature. An on and off relay switch is in 

one diagonal of the arm and controls the power supply to the heating 

wire. This apparatus controls the temperature of the liquid to 

within one percent in the following way. First, the variable resistor 

is set to a fixed value; then the power supply of the heating wire is 

turned on. When the liquid is cold, the resistance of the thermistor 

is high, the bridge is not in equilibrium and current flows in a cer-

tain direction through the relay switch which remains closed. When 

the temperature of the liquid rises slightly above the present tempera-

ture, the resistance of the thermistor becomes smaller than the 

equilibrium resistance of the bridge and current flows in the opposite 

direction through the relay switch thus opening it and turning off the 

power supply to the heat resistor. During the experiments, we wait a 

few minutes so that the oscillations of the temperature around its 

preset equilibrium conditions are small. The range over which the 

temperature of the liquid can be controlled depends upon the sensitivity 

0 4 0 of the thermistor; in our case the range was from -95 c to l 0 c. 

2-3 . 2 . The laser system. 

The laser system and the liquid cell are described in Fig. 2.3. 

A Spacerays laser system with a maximum output of 2.84 Joules Q-switched 

is used. The Ruby rod 4-5/16 11 long and 1/2 11 in diameter is cut at the 

Brewster angle and placed along the common focus of a double elliptical 

cavity. It is pumped by two water-cooled linear Xenon flashtubes 

placed at the two other foci. 

The laser is Q-switched by a glass prism, 1/2" x 1/2 11
, rotating at 
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a speed of 20.000 rpm. 

The output mirror, a 55% reflecting dielectric mirror, is fixed. 

The back surface and the reflecting surface are at a wedge angle so 

that no light reflected from the back surface is coupled back into the 

cavity, and therefore the only oscillating cavity is formed by the 

reflecting surface of the mirror and the rotating prism. 

The output energy of the laser is 1 Joule on the average in a 

giant pulse 50 nsec long. 

The total cavity length is 1.05 m measured by observing the 

modulation period of the laser power with a fast pulse detector and a 

fast oscilloscope. 

2-3.3. The measuring apparatus. 

The measuring equipment which is used in the experiment is of two 

kinds. 

The electric equipment which records the power of the laser + 

a Fabry-Perot etalon to measure the oscillating linewidth of the laser 

which can be easily modified to observe the stimulated Raman 

emission from the anisotropic molecular liquids. 

-- An optical, two-photon fluorescence technique which allows us 

-12 to measure accurately optical pulse lengths as short as 10 sec. 

The measuring equipment is described in Figure 2.4. 

2-3.3.1. The electronic measurement equipment. 

30% of the laser output is intercepted by a beam splitter and 

passes through a diverging lens. 30% of the diverging beam is 

detected on a fast pulse detector (United Aircraft Model 1240) which 

has a S-1 photo emissive surface and a response time of less than 0.3 
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nanosecond. The output of the detector is fed into a Tektronix 

oscilloscope Type 5l9 with a measured risetime of 0.32 nsec and a 

vertical sensitivity of 8.9 v/cm. 

The total response time of the detector and the oscilloscope is 

of the order of o.6 nsec. 

In order to measure the oscillating linewidth of the laser tran­

sition and to compare it with the duration of the ultrashort pulses, a 

Fabry-Perot etalon is set up behind the diverging lens. The concentric 

rings formed by the etalon are then focussed on the plate of a polaroid 

camera by a converging lens. To eliminate the background light, a ruby 

narrow band filter is placed in front of the camera. 

The Fabry-Perot has been made by evaporating a silver layer on 

two flat glass surfaces. The separation between the two reflecting 

surfaces can be varied easily from l/l611 = O.l6 cm to l/4" = 0.62 cm. 

The finesse of the etalon is equal to 5. 

2-3.3.2. Modification of the apparatus for the observation of 

Stimulated Raman scattering. 

The intense laser light incident upon the liquid induces transi­

tions between the molecular vibration modes. A certain amount of 

light is emitted by a stimulated process from the liquid at a frequency 

equal to the frequency of the incident light w
0 

minus the vibrational 

frequency of the liquid u:y; it is called the stimulated Raman 

scattered radiation. 

The liquids we use in our experiment are known to exhibit this 

effect under intense optical electric fields. When stimulated Raman 

scattering takes place, a certain amount of energy is coupled out of 
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the gain linewidth of the laser transition since the Raman fre~uency 

shift -l U\v ~ l300 cm is much larger than the gain linewidth 

-l 2 cm • This process represents a loss mechanism as far as the process 

of mode coupling within the gain linewidth is concerned. 

It is therefore interesting to make some observations of the 

Stimulated Raman light. For this purpose, the electronic apparatus 

described in Section 2-3.3.l is modified in the following way. See 

Figure 2.5. 

The Fabry-Perot etalon is removed, and a second fast pulse 

photodetector (Applied Lasers Model FP l25) is set up. It has an S-1 

photocathode and a risetime of 0.5 nsec. A 7.69 Corning filter is 

placed in front of the detector to absorb the laser light which is not 

transformed into Raman light. This filter has a transmission of less 

than 0.1% at the Ruby wavelength and a transmission of 70% at the 

Stokes wavelength of nitrobenzene (~ 7700 R). A narrowband ruby filter 

with a bandwidth of 200 R is placed in front of the United Aircraft 

(UA) detector to eliminate all the Raman light. Calibrated neutral 

density filters are also placed in front of the UA detector to 

attenuate the laser light. With all the filters, the UA detector 

(recording the laser light power) is 500 times less sensitive than the 

Applied Laser (AL) detector recording the Raman light. The output of 

both detectors is fed into the Tektronix 519 oscilloscope. The AL 

detector output is delayed by 100 nsec with respect to the output of 

the UA detector. The Raman and the laser intensities are thus recorded 

simultaneously on the same oscilloscope trace. 
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2- 3 . 3 .3 . The two-photon fluorescence technique. 

In this experiment we want to detect and measure intense pulses 

of light which last no longer than 10-ll sec. No electronic equipment 

to date has a sufficiently fast response time to record these ultra­

short pulses. An optical method has been devised recently(l9 )(
2
0) 

which gives a simple and accurate measurement of pulses as short as a 

few lo-12 
sec. It is called the two-photon fluorescence technique. 

This technique is based on the two-photon absorption and fluo-

rescence in an organic dye, In our experiment, we use a nearly saturated 

solution of Rhoda.mine 6G in isopropyl alcohol. This dye has an 

absorption peak at a wavelength of 3500 R close to the frequency of 

the second harmonic of the Ruby light (3470 R). 

The f luorescent intensity ~ is proportional to the square of 

the intensity of the laser light IL since we assume a two-photon 

2 process IF =a IL (2.2) where a is the coefficient of proportionality. 

The experimental setup used to record the ultrashort pulses is the 

following: A 5-cm cell containing Rhodamine 6G is placed on the axis 

of the laser cavity behind the beam splitter so that 7CJ1/o of the laser 

intensity is incident upon it. See Figure 2.4. 

A mirror (9CJ1/o reflecting at 6943 ~) is placed behind the cell so · 

that the laser beam passing through the cell is reflected back onto 

itself. The laser intensity IL(x,t) at some time t and some point 

in the cell at a distance x from the mirror is 

(2.3) 
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E(x)t) is the electric field of the optical traveling wave at 

its first passage and 2nx 
E(x) t + -) c 

is t he electric field of the 

reflected wave . T is a time equal to a few optical cycles. n is the 

index of refraction of the organic dye at the ruby wavelength. We 

assume that E(x,t) has the following form 

E(x,t) = V(t) cos(m0t - kx) (2.4) 

w
0 

is the optical radian frequency, k is the wave number = 

and V(t) is the time envelope of the wave which is a slowly 

varying function compared to cos m0t. V(t) is a real function. 

We use expression (2.4) and perform the integration in (2.3), 

then 

1 2 2 = 2 (V (t) + V (t+~)) - V(t)V(t+~) cos(m0~ + 2kx) (2.5) 

where 2nx 
~ = --c 

The fluorescent intensity recorded on the film plate of a camera 

focused on the center of the cell is 

~(x) (2.6) 

where T0 is the duration of the laser burst and ~ is a constant 

coefficient. From relationships (2.2) and (2.5), we find 
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JE(x) = ~[J v4
(t) dt + f v4

(t+T) 
0 . 0 

dt + 

- 4 cos(4kx) J (V3(t) V(t+T) + V(t) v3(t+T)) dt 

0 

~(x) as given by (2.7) would the recorded fluorescent intensity 

if the film had a spatial resolution smaller than a wavelength. How-

ever, usual filr!B have a resolution of the order of 100µ. The film is 

not able to record optical spatial fluctuations (cos(4kx)). A spatial 

average is then performed over a few optical wavelengths. Then 

dt + (2.8) 

The first two terms in expression (2.8) are independent of position 

and represent the fluorescent tracks due to the incident and the 

reflected laser beams. 

If the output of the laser consists of a train of ultrashort 

pulses of width separated by where L is the length 

of the laser cavity, then the last term will be different from zero 

only if ~ = m~0 where m is an integer; i.e. the fluorescence will 

be brighter at the points of the cell where an incident pulse crosses a 

reflected pulse. The third term represents an enhancement of the 
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fluorescence at the mirror due to the reflection of one pulse upon 

itself if m = o, or at a distance L from the mirror due to the 

crossing of one pulse with the following one when m = l. The width 

of these bright spots is equal to the duration of each individual 

pulse multiplied by the velocity of the light in the liquid. An ultra­

short pulse of lO-ll sec with a Lorentzian shape gives a bright spot 

of 4.5 mm. The contrast ratio CR between the peak fluorescence inten-

sity and the background intensity is defined as follows. According to 

(2.8) 

CR = (2 .9) 

For perfectly coupled modes, CR = 3. For purely random phases, 

CR = l.5~ 2l) 

However, we wish to point out that a contrast ratio of 3 has 

never been experimentally observed for a ruby laser mode-locked by a 

saturable absorber which is known to produce ultrashort pulses. The 

reason for this discrepancy is not known. It may be due to deviation 

of the two-photon fluorescence intensity from an exact square law 

dependence on IL. 

The camera looks at the fluorescent track perpendicularly to it; 

therefore it records an average intensity over the spatial cross-

section of the beam and the randomness of the spatial output from pulse 

to pulse may decrease the contrast ratio. In our experiment we shall 
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compare the contrast ratios observed with the contrast ratios we ob­

tained by mode locking the ruby laser with a saturable absorber (a 

solution of cryptocianine in methanol). 

Our apparatus is set up so that we look for the enhancement of 

the fluorescence of the organic dye due to one ultrashort pulse with 

the next one. For this purpose the 9gfo reflecting mirror is placed at 

a distance from the center of the fluorescence cell equal to the optical 

length of the laser cavity) i.e. l.05 m (this distance is physically 

shorter due to the index of refraction of the organic dye). 

2-4. Presentation of the results, 

In part I of this report) we have predicted theoretically the 

production of ultrashort laser pulses when an anisotropic molecular 

liquid is placed inside the laser resonator. 

In Section 2-l) 2-2 and 2-3) we have described the experimental 

apparatus which allows us to detect the presence of these short light 

pulses. 

In this section we present the results of our experimental 

investigation. The laser was first fired with no nonlinear refractive 

index medium inside the cavity. Figure 2.6 shows a typical picture of 

two-photon fluorescence dye cell. No ultrashort pulse was present in 

that case. 

2-4.l. Observation of ultrashort pulses. 

2-4.l . l. Nitrobenzene . 

The liquid cell was filled with nitrobenzene. The temperature was 

varied from 6°c (its melting point) to l44°c (its boiling point is 2ll0 
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FIG 2-6 Two-photon fluorescence 
dye eel I. No non linear 
medium in the cavity 

FIG 2-7 Two-photon fluorescence 
dye cell. Nitrobenzene 
at 25°C 
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c). No ultrashort short pulses were observed at room temperature 

and below. As the temperature was increased, a tendency for pulses to 

appear on the fluorescence track of the dye cell was noticed. 

At llo0 c, 126°c and 144°c, a brighter fluorescent spot appeared 

at the center of the dye cell. When the mirror behind the fluorescence 

cell was displaced by a certain amount, the bright fluorescent spot was 

displaced by the same amount divided by the index of refraction of the 

dye indicating that the bright fluorescent spot is due to the over-

lapping of one incident short pulse with the previous one reflected 

back by the mirror. 

In Figure 2-7 we show the fluorescent dye cell when a 5 cm cell 

of Nitrobenzene at 25°c is inserted in the laser resonator. There is 

no indication of ultrashort pulses. 

Figure 2.8 shows two consecutive pictures of the dye cell when 

the nitrobenzene has been heated to l26°c. At that temperature there 

is clear evidence of ultrashort pulses and therefore mode coupling. 

The contrast ratio estimated with a calibrated film is close to 2. 

It is not equal to 3, the theoretically predicted value for complete 

mode locking but it is the same as the one observed when a saturable 

absorber is used inside the cavity to generate ultrashort pulses. 

At this temperature, the orientational relaxation time T is 

estimated to be ~ 10-ll sec f-rom Figure 2.2; and therefore 0 T ~ 10-2. 

The gain linewidth of the laser 

8 -1 Fabry-Perot etalon to be 1. cm • 

6. VG is measured with the 

The expected pulse width is 

1 8 -11 -- ~ 1. x 10 sec • 
6. VG 

The measured pulse width is 6.t = ~ x ~ where 
G c 

d is the length of the fluorescent spot. 
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Fl G 2-8 Two-photon fluorescence 
dye cell. Nitrobenzene 
at 126 °C. 
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n is the index of refraction of the dye solution (n = 1.5) and 

G is the magnification of the camera. The experimental value of ~t 

is -11 1.2 x 10 sec which, when compared to the expected value of 

-11 . 
1.8 x 10 sec, indicates mode-locking across the full gain linewidth. 

The amount of mode-locking is a sensitive function of the tempera-

ture of the anisotropic molecular liquid, i.e. of its orientational 

( -ll ) relaxation time. For nitrobenzene the pulsewidth 1.2 x 10 sec 

is comparable to the relaxation time -ll 
T "' 10 sec. 

A noticeable variation of the pulsewidth as a function of 

temperature was not observed since the relaxation time of nitrobenzene 

varies slowly for temperatures over loo0c. See Figure 2.2. 

2-4.1.2. a-Chloronaphthalene. 

In this phase of the experiment the liquid cell within the optical 

resonator was filled with a-chloronaphthalene. This liquid has a Kerr 

constant B
0 

= 2.73 x 10-7 esu(l5 ) and a relaxation time T = 5.3 x 

-11 (22) 10 sec at room temperature. These parameters are very close to 

-7 4 -ll the ones of nitrobenzene, B0 = 2.9 x 10 esu and T = .75 x 10 

sec at room temperature. Although no experimental data on the tempera-

ture dependence of the relaxation time is available for this material, 

T is expected to decrease faster with temperature than nitrobenzene( 2l). 

Ultrashort pulses were observed using a-ahloronaphthalene heated 

to 62°c. At that temperature, T 4 -ll is in the range of 2 to x 10 

sec. In Figure 2.9, two consecutive fluorescent tracks are shown and 

ultrashort pulses are apparent; the pulse width is estimated to be 

-ll 
"' 1.2 x 10 sec. 
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Fl G 2-9 Two-photon fluorescence 
dye cell. a-chloronaphtalene 
at 62°C. 
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2- 4 .1. 3 . Carbon Disulfide . 

cs
2 

has a Kerr constant (4.18 x 10-·r esu)(l5 ) larger than 

nitrobenzene and a-chloronaphthalene but at room temperature its 

relaxation time is -12 
~ 10 sec, too short a time to produce 

efficient mode locking as explained in Section 2-2. 

To verif'y this assertionJ cs 2 was placed in the Brewster angle 

cell inside the cavity. The photographs taken of the fluorescence 

cell showed a uniform light intensity along the cell indicating the 

absence of ultrashort pulses. Decreasing the temperature of Carbon 

Disulfide would increase its relaxation time and its Kerr constant and 

this should induce strong mode coupling. An attempt to observe this 

effect failed due to clouding of the cs 2 upon cooling. This can 

possibly be avoided by using extremely pure cs
2 

which is distilled 

in Situo. This was not deemed practical in our experiment. 

2- 4 .2. Observa tion of Stimulated Ra:rran Scattering. 

Stimulated Raman scattering was observed when the cell containing 

nitrobenzene was placed inside the optical cavity. 

4 -1 The Raman frequency shift for nitrobenzene is 13 5 cm The 

powers of the Raman scattered light and of the ruby light are recorded 

simultaneously by the technique described in Section 2-3.3.2. A 

typical picture of the Tektronix 519 oscilloscope trace is shown in 

Figure 2.10. The first pulse represents the ruby light intensityJ the 

second pulse is the Raman light intensity and the third pulse is the 

electronic reflection of the first pulse off the end of the 100 nsec 

delay cable. The detection of the Raman light is 500 times more sensitive 

than the detection of the ruby light. 
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FIG 2-10 Detection of stimulated 
Raman emission from 
nitrobenzene at 25° C. 
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This picture was taken wi th nitrobenzene at 25°c) i.e. when no 

ultrashort pulse was present in the laser output. The Raman intensity 

is an increasing function of the laser intensity. Measurements per-

formed at various liquid temperatures have shown a nearly exponential 

dependence of the Ra.man intensity on that of the laser. The gain 

coefficient 

W/ 2(23) 
µ cm • 

is comparable to the theoretical value of 1.4 x 10-3 crn.-1/ 

The Raman gain coefficient( 24 ) is 

Where ( dd~ ) •
6 

is the differential cross section of the Ra.man process 

per unit volume) per unit solid angle~ v8 and 6v are the peak fre­

quency and the width of the Ra.man scattered light. nt/v is the laser 

photon density. 

As the temperature of the cell was increased) the Raman gain de-

creased. This is due to the fact that the Raman width 6V is an 

increasing function of the temperature. We observed s timuJa ted Raman 

emission both at low and high temperatures when ultrashort pulses do 

and do not occur regularly. The observed Ra.man intensities are at 

most 1/500 of the laser intensity. 

No stimulated Raman scattering was observed when the cell inside 

the cavity was filled with cx-chloronaphthalene. The frequency shift of 

the Ra.man light is 1368 cm-l for cx-chloronaphthalene and therefore our 

apparatus had the same sensitivity for detecting the Raman light as 

for nitrobenzene. 
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In liquids with a large Kerr constant (large molecular anisotropy), 

the observation of stimulated Raman emission is often accompanied by 

the phenomenon of self-focusing: when a beam with a gaussian intensity 

profile (large intensity at the center of the beam decreasing radially) 

travels through a liquid with a nonlinear index of refraction 

2 
n = n0 + n2 E , the center of the beam will see a larger index of 

refraction than the outside part of beam and will travel slower through 

the liquid than the outside parts of the beam. 

The liquid then has the effect of a converging lens and focuses 

the light into filaments. In these filaments, the intensity of the 

beam is very high and a large fraction of the ruby light is transformed 

into Raman light by stimulated Raman scattering. 

In our experiment, we believe that stimulated Raman emission 

occurred in the absence of self-focusing for the two following reasons: 

(1) No stimulated Raman emission was observed in a-chloronaphtalene 

which has nearly the same threshold for self-focusing and relaxation 

time as nitrobenzene. 

(2) A nearly exponential dependence of the Raman intensity 0n 

that of the laser with a gain coefficient comparable to the theoretical 

value was measured. 

The observation of the stimulated Ra.man emission has shown that 

only a small portion of the laser intensity is transformed into Raman 

light, and therefore only a small a.mount of energy is coupled outside 

the gain linewidth of the laser by this process. This energy loss is 

not sufficient to prevent the mode coupling and the production of 

ultrashort pulses by a refractive index nonlinearity as observed above. 
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DISCUSSION AND CONCLUSION 

In part I of this report we have studied theoretically the be-

haviour of the longitudinal modes of a laser resonator when a cell 

containing an anisotropic molecular liquid was placed inside it, We 

have found that under certain conditions (large molecular anisotropy 

and an orientational relaxation time 'T such that 3 x l0-12 sec 

< 'T < 10-9 sec), the presence of a nonlinear refractive index inside a 

laser cavity can produce mode coupling and generate ultrashort pulses 

of ruby light. 

In part II, an experiment was described which allowed us to observe 

-11 the presence of pulses of ruby light as short as 10 sec when a cell 

containing nitrobenzene or a-chloronaphthalene was placed inside the 

cavity. The most important parameter of the experiment is the 

orientational relaxation time 'T, Ultrashort pulses appeared only when 

'T was such that energy transfer between the cavity modes occurred in 

a time short compared the length of a Q-switched pulse. 

The value of 'T was varied by changing the temperature of the 

liquid. 

Stimulated Raman scattering without self-focusing was observed 

when nitrobenzene was placed inside the cavity. Only 1/500 of the 

beam energy was shifted outside of the gain linewidth of the laser by 

this process. No stimulated Raman emission occurred when the nitroben-

zene was replaced by a-chloronaphthalene. 

The following simple and physical argument can be given to show 

how a pulse of light travelling back and forth in a laser cavity is 

shortened by the presence of a refractive index nonlinearity, 
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When a pulse of light (pulse (1) in Figure 2.11) travels through 

2 
a medium with an index of refraction of the form n = n0 + n2E where 

E2 is the intensity of the pulse, the region of high intensity "sees" 

a larger index of refraction than the regions of low intensity and 

therefore travels slower through the medium. After a certain distance 

of propagation, the front part of the pulse has gained distance rela-

tive to the center and hence rises more slowly than the original pulse. 

Similarly the back portion drops off more steeply~25) This case is 

depicted by pulse (2). Pulse (2) has been shortened with respect to 

pulse (1). Then, as the back end of the pulse drops off in a time 

comparable to the orientational relaxation time ~, the law 

2 n = n0 + n2E is not obeyed any more because the molecules do not 

respond to the fast time change of the electric fields. Therefore the 

front end of the pulse rising more slowly is delayed more than the 

back end. The pulse is sharpened again; it is depicted by pulse (3). 

This pulse-sharpening mechanism goes on as the number of passes 

through the liquid increases until the length of the pulse is of the 

order of ~, at which point the nonlinearities due to orientational 

KerT effect have no effect on the pulse which is shown as pulse (4). 

The pulse width could be made shorter only by decreasing the 

orientational relaxation time, This can be done by heating the liquid 

or by mixing it with a liquid of a lower. viscosity. However, this 

would mean a smaller orientational Kerr constant and weaker mode 

coupling. The use of a temperature-controlled nonlinear dielectric 

constant inside the laser cavity may be, however, a practical way of 

generating ultrashort pulses of variable length. 
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(4) (3) (2) (1) 

time 

FI G 2 -11 _Pulse sharpening 'in 
a non linear index 
of refraction 
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Another advantage of the use of this effect to generate ultra­

short pulses is the following: Present techniques generally use a 

saturable absorber which tends to enhance the filamentary structure of 

the laser output, often causing damage to laser components. The 

liquids used here reduced the filamentary nature of the beam. even when 

compared to that without any liquid. This can be seen from comparing 

the transverse structures in Figures 2.6 and 2.~ for example. No 

damage to the components was observed when ultrashort pulses were gen­

erated by the anisotropic molecular liquids, while it was a frequent 

problem with saturable absorbers. 
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APPE:NDIX 

The total electromagnetic energy e'T stored inside the cavity 

is given by expression (1.27) 

&'.T = ~ L (pn
2
(t) + '°n\1

2
(t)) 

n 

where pn(t) and ~(t) are defined by (1.13). 

We have expressed p (t) in terms of the wave function 
n 

* and its complex conjugate D (t) in the following way 
n 

(1. 27) 

D (t) 
n 

(1.18) 

In this appendix we look for an expression for the electromagnetic 

* energy eT in terms of D (t) 
n 

and 

find a relationship between ~(t) 

the Maxwell's equation v x E(T',t) 

D ( t). 
n 

D (t) 

For this purpose, we 

* and D (t) by solving 
' n n 

oB 
= - Qt • 

This has been done in Section 1-5 and a relationship between 

pn(t) and ~(t) has been found 

(1.60) 

With the help of (1.18) and (1.60), we can write 

1 ( * im t -im t) 
a (t) = -- D (t)e n + D (t)e n 
"'TI J2mn n n 

(l.61) 
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and from (l. 27 ), (1.18) and (l. 61) , 

ST=\ m D * (t) D (t) L n n n 
n 
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FIGURE CAPTIONS 

Three oscillating laser modes. 

Orientation of an anisotropic molecule with an 
electric field. 

Coupling of the cavity modes n, n+p, n+m, n+p+m. 

The liquid cell is placed inside the cavity formed by 
the mirrors. 

The liquid cell fills half of the laser cavity. 

Representation of the function 

Description of the modes participating directly to the 
energy flow to and from mode n. 

Output of a mode-locked laser: a train of ultrashort 
pulses. 

The strength of the mode coupling is a function of OT. 

The orientational relaxation time T of nitrobenzene 
as a function of temperature. 

Description of the liquid cell and the laser system. 

Description of the measuring apparatus. 

Electronic apparatus for observing stimulated Raman 
scattering. 

Two-photon fluorescence dye cell. No nonlinear medium 
in the cavity. 



Figure 2 . 7 . 

Figure 2.8. 

Figure 2.9. 

Figure 2 • lo. 

Figure 2 .ll. 
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Two-photon fluorescence dye cell. Nitrobenzene at 
25°C. 

Two-photon fluorescence dye cell. Nitrobenzene at 
l 26°c. 

Two-photon fluorescence dye cell. a-chloronaphthalene 
at 62°c. 

Detection of stimulated Raman emission from nitroben­
o zene at 25 C. 

Pulse sharpening in a nonlinear index of refraction. 
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II. A THEORETICAL STUDY OF OPTICAL WAVE PROPAGATION 

THROUGH A RANDOM MEDIUM AND ITS APPLICATION TO 

OPTICAL COMMUNICATION 
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INTRODUCTION 

The discove ry and deve lopment of the laser has, in recent years, 

opened new perspectives in the area of optical communication. This is 

due mainly to the availability of a large bandwidth, theoretically up 

12 
to 10 Hz. Any optical communication system using a laser as an 

optical carrier transmits a modulated information through a layer of 

atmospheric turbulence. This is true when the communication link is 

from earth to a satellite, another planet, or from earth to earth. The 

atmospheric turbulence introduces random fluctuations in the amplitude 

and phase of the modulated optical signal and therefore distorts the 

information carried by the optical beam. 

There are two principal detection schemes of modulated optical 

signals: (a) heterodyne detection, and (b) video detection. In scheme 

(a) the incoming modulated optical beam is mixed in a nonlinear detec-

tor with a local reference signal, while in scheme (b), the reference 

signal (i.e. the carrier) is transmitted together with the modulated 

signal along the communication path. The purpose of this report is to 

compare the theoretical performance of these two optical communication 

schemes through a randomly turbulent medium in terms of the parameters 

of this medium. 

In order to achieve this goal, the propagation of an optical 

wave through a random me di um has to be studied. There is a consider -

able and valuable amount of literature on this subject (l-5). The 

problem common to all these references is finding a solution for the 

wave equation (V
2
+ k2n2 (~)) u(~) = 0 in a medium where the index of 
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refraction n(;) is a random process. No simple analytical expression 

for the wave function u(;) of the propagating wave can be found under 

these circumstances. Tatarski in reference (1) uses an approximation 

(the Rytov approximation) in order to find an analytical expression for 

the wave function. The Rytov approximation has been contested theoreti-

cally (6) (7) and its limits of applicability have been determined 

experimentally (8) . The results obtained from the use of the Rytov 

approximation are only valid for short propagation lengths in a weakly 

turbulent medium. The geometrical optics and the Born approximations 

have also been used to solve the wave equation, but their range of 

validity is severely limited. 

Other methods make use of a correct power series expansion for 

the wave function u(~) for calculating its statistical properties 

-+ 
such as the ensemble average u(x) and the correlation function 

u(~1 ) u*(~2 ) (5). However, in the averaging process, approximations 

are made which seriously handicap the validity of the results obtained. 

In this report we shall derive a power series expansion solution 

for the wave equation, in a form which is slightly different from that 

of reference (5) This enables us to find analytical expressions for 

u(~) and u(~1 ) u*(~2 ) without any approximation for a turbulent 

medium in which the fluctuations of the index of refraction are a 

Gaussian random process. 

In Chapter I we examine the wave equation satisfied by an optical 

wave propagating through a medium with a random index of refraction. A 

formal solution as a series expansion in powers of the variance of the 
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refractive index fluctuations is derived. Various approximate methods 

are then reviewed and their results compared with the correct expression 

for the wave function . In Chapter II the statistical mean of the wave 

~ 

function u(x) is calculated and an exact analytical expression is 

obtained in terms of the correlation function of the refractive index 

fluctuations. In Chapter- III the results derived in Chapter II are com-

~ 

pared with expressions for u(x) obtained by using various approxima-

tions. 
~ ~ 

In Chapter IV the correlation function u(L,r1 ) u*(L,r
2

) of the 

wave function between two points in a plane perpendicular to the direc-

tion of propagation after a propagation distance L through the turbu-

lent medium is calculated. An exact analytical expression is obtained 

in terms of the correlation function of the refractive index fluctua-

tions. In Chapter V the results derived in Chapter IV are compared with 

results obtained for the same function u(L,;
1

) u*(L,;
2

) using various 

approximations. In Chapter VI another useful statistical function of 

the propagating wave, the intensity correlation function 

I(L,;
1

) I(L,;
2

) is investigated by the same methods as in Chapters II 

and IV. Our exact theoretical analysis is incapable, in this case, of 

predicting the behavior of this function for any propagation length and 

turbulence strength. Chapter VII is devoted to the calculation of the 

intensity correlation function using various approximations. Both our 

results and the results of the approximation methods cannot adequately 

explain the experimental results of reference (8) and others. 

In Chapter VIII we present and discuss recent experimental 

observations on the behavior of the intensity fluctuations in relation 
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to our r esults. Several empirical formulas which "fit" the experi-

mental data for the variance of the intensity fluctuations I
2

(L) are 

introduced. 

In Chapter IX the results of the previous chapters are applied 

to the comparison between two schemes of optical communic ation through 

the atmospheric turbulence (a) heterodyne detection, (b) video communi-

cation. In scheme (a) the detection of a phase modulated optical beam 

is performed by mixing it in a nonlinear detector with a local reference 

signal. In scheme (b) the reference beam is sent together with the 

signal beam through the same path in the turbulent medium. In both 

these cases the signal-to-noise ratio (S/N) is derived in terms of the 

statistical properties of the refractive index fluctuations. The 

Kolmogoroff model of turbulence is then used for obtaining a numerical 

comparison of the performances of the two methods of optical communica-

tion . The following performance criterion is introduced, 

(S/N)scheme(b) 
R = 

(S/N)scheme(a) 

R is expressed explicitly in terms of the length of the communication 

link, the diameter of the receiving aperture, the strength of the tur-

bulence and the wavelength. These results are then analyzed and dis-

cussed. 
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CHAPTER I - SOLUTION OF THE WAVE EQUATION IN A MEDIUM WITH A 

RANDOMLY HOMOGENEOUS INDEX OF REFRACTION 

1.1 Statement of the Problem 

The problem is to solve Maxwell's equations in a medium where 

the index of refraction is a homogeneous random field. An optical wave 

propagating through such a random medium satisfies the following scalar 

wave equation. (In deriving this equation we have neglected depolari-

zation effects (9)). 

[ v2 + k
2n 2 (1)] u(~) = O 

where k is the wave number of the wave = 
turbulence 

).. is the wavelength of the wave 

21T 
>-. 

in the absence of 

(1.1) 

~ 

n(x) is the index of refraction of the turbulent propagation 

medium. 

~ 

In the absence of any turbulence we assume that n(x) = 1. However, 

in the presence of turbulence, the index of refraction varies randomly 

in space. We shall assume that the index of refraction n(~) takes 

the following form 

(1. 2) 

The random field n(~) is assumed to be homogeneous and isotropic. By 

homogeneous, it is meant that its mean value is a constant (independent 

of position) and its correlation function between two 

~ ~ 

points x
1 

and x
2 

depends only upon the difference Here 
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we choose the mean value of n(~) 
~ 

to be equal to one) n(x) = 1 , 

-7-
th ere fore n1 (x) = 0 

(1. 3) 

For example, the mean and the correlation function of a random 

function f(x,y,z) of the spaces coordinates x, y and z are defined 

as follows: 

f(x ,y ,z) = lim 
L -r "" 

[ 

1/2 1/2 L/2 

:3 fdx fdy fdz 
-1/2 -1/2 -L/2 

B~(a,8,Y) = f(x+a, y+8, z+Y) f(x,y,z) 

f(x,y,z)] 

L/2 L/2 L/2 

= Ll~m~( L~ f dx f dy f dz f(x+o,y+8,z+Y) f(x,y,z)) 
-L/2 -L/2 -L/2 

-7-
The bars denote an ensemble average over the total x space. By 

-7- -7-
i sot rop i c, it is meant that the correlation function Bn(x1 ,x2 ) depends 

-7- -7-
on ly upon the distance between the two points x1 and x2 , i.e. 

Bn(~1 ,~2 ) = Bn( 1~1- ~2 1) where 1~1- ~2 1 denotes the modulus of the 

-7- -7-
vector x l - x2 . 

The homogeneous random field n1 (~) has the following two­

dimensional Fourier•Stieljes spectral representation (10) 
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= eik. r d.N(k,x) I 
-+ -+ 

(1. 4) 

-+ 
k 

-+ 
where d.N(k,x) is another random field; its properties will be given 

later. The position of a point in space is determined by its coordi-

-+ 
nates x and r The x-axis is along the direction of propagation 

-+ 
of the wave. r is a vector perpendicular to the x-axis. The problem 

is to find statistical information about the wave function -+ u(x), e.g. 

-+ 
its mean u(x), its correlation function in terms of 

the statistical properties of the fluctuations of the index of refrac-

tion n
1 

()t)_ • 

The wave equation 1.1 has been solved by various researchers 

[(l) - (5)] using various approximations: the geometrical optics 

approximation, the Born approximation, the Rytov approximation. The 

purpose of this report is not to review these approximations in detail, 

but during the development of our analysis we will mention how these 

approximations come about. 

We shall first look for a solution of the wave equation 1.1 in 

the following manner . According to 1.2 we can write 

2 -+ n (x) (1. 5) 

Since -8 
E is a very small quantity (of the order of 10 in the atmos-

phere), we can drop the term in 2 
E which gives a negligible 

contribution to the fluctuations of the square of the index of refrac-

tion. Therefore the wave equation takes the following form: 
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2 2 + 2 + + 
(V + k ) u(x) + 2E k n

1
(x) u(x) = 0 (1. 6) 

+ 
We shall look for a solution of u(x) as a power series of E 

(1. 7) 

+ 
We substitute the above expansion for u(x) in the differential equa-

ti on 1. 6 

00 

p+l (+) 
E U X 

p 
= 0 (1. 8) 

We now look in expression 1.8 for the terms of a given power of E and 

+ 
we find the following recursion relationship between u (x) 

p 
and 

+ u 
1

(x) 
p-

(1. 9) 

The method for calculating the various terms in the expansion 

+ + 
of u(x) becomes now clearer. Knowing u 

1
(x), we can calculate the 

p-

following term 

+ u (x) 
p 

+ u (x) 
p 

by means of a Green's function. 

(1.10) 

+ + 
G(x,x') is~ according to 1.9, the Green's function corresponding to 

the operator (V2+ k
2

) which is defined by the following equation: 

2 2 ++ + + 
(V + k ) G(x,x') = -6(x - x') 
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Therefore, 

-+ -+ 
G(x,x') = 

ik I~ - ~· I e 

4rrJ~-~, I 
( 1.11) 

-+ 
We shall calculate explicitly the first two terms u

1
(x) and 

u2 (~) of the power series expansions 1.7, assuming that the solution 

of the wave equation is a plane wave in the absence of turbulence. We 

-+ 
shall then assume a forumla for um_1 (x) which is valid for 

-+ -+ 
m-1 = 1 and 2, and show that um(x) is obtained from um_

1
(x) by 

replacing m-1 by m . In this manner we prove that the formula 

-+ postulated for um_1 (x), valid for m-1 = 1 and 2 is valid for any 

m-1. 

-+ 
The zero order term u (x) is the solution of the wave equation 

0 

in the absence of turbulence (E = 0). We assume that this solution is 

a plane wave propagating in the x direction with amplitude A 
0 

-+ 
u (x) = 

0 
A 

0 

ikx 
e 

For convenience we do not compute the terms 

u(~), but rather the quantities 

1jJ (~) = 
p 

u (~) 
p 

u (~) 
0 

-+ 
and we call ljl(x) the following series 

-+ 
u(x) = 
u (~) 

0 

-+ 
is the ratio of the wave function u(x) 

(1.12) 

-+ 
u (x) 

p 
in the expansion .,of 

(1.13) 

+ Q •• ( 1.14) 

in the presence of 
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turbulence to the wave function u (x). In the absence of turbulence 
0 

-+ -+ 
We shall now proceed to compute w1 (x) and w

2
(x) . 

The first order term in the expansion of w(~) 

defined by 1.13 as 

-+ u (x) 
0 

= 
-+ 

u
1

(x) 

A. 
0 

We then use relationship 1.10 to find 

-ikx 
e 

We then express the Green's function -+ -+ 
G(x,x') as follows: 

is 

( 1.15) 

-+ -+ 
G(x ,x') = G(~ - ~') -+ -+ = G(x - x' ,r - r') I 

iK· c;_-;. ) 
= G(K,x-x') e d 

I( (1.16) 

-+ 
where G(K,x-x') is the transverse two-dimensional Fourier transform 

-+ -+ of G(x,x') and is given by 

(1.17) 

-+-+ -+ 
We then replace G(x,x') expressed by 1.16 and 1.17 and n1 (x) 

given by 1.4 into expression 1.15: 



-+ 
l/11 (x) 

-+ 
dr' 
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-+ -+ 
K K' 

-i 

-+ 
The integration with respect to r .' is easily performed 

( 1.18) 

Due to the presence of the Dirac delta function, we notice that 

-+ 
the only values of K (the space Fourier transform variable of the 

Green's function) which will contribute to 
-+ 

l/1
1 

(x) will be the ones 

which are of the same order of magnitude as 
-+I 
K , the space Fourier 

transform variable of the fluctuations of the index of refraction 

n1 (~). At this point it is important to state which specific problem 

we are trying to solve. We are concerned with the propagation of an 

optical wave through atmospheric turbulence. By optical wave, we mean 

a wave with a wavelength of up to about -2 10µ = 10 mm. 

We shall now examine qualitatively the structure of the atmos-

pheric turbulence. The atmospheric turbulence is made up of inhomo-

geneities of different sizes called eddies (11). The energy in the 

largest eddies is obtained from large scale ordered motions in the 

atmosphere, like atmospheric winds, for example. Each eddy of size t 
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is characterized by a parameter called the Reynolds number Re and is 

defined as follows 

where 

Re v fl 
\) 

v is the velocity of the turbulent 

v is the kinematic viscosity = µ/p 

µ is the dynamic viscosity 

P is the fluid density. 

As the Reynolds number of an eddy of size fl is increased (by 

increasing the velocity) above a critical value ReCR' the motion of 

the fluid becomes unstable and the eddy of size fl breaks up into 

eddies of smaller sizes fl' so that the Reynolds number of the eddies 

of size fl' < fl becomes smaller than the critical value ReCR and the 

motion of the fluid inside the eddies of size fl' becomes stable. As 

the Reynolds number of the eddy of size fl' increases further, it 

breaks up into eddies of smaller sizes. This process goes on until the 

size of the eddies reaches a minimum called the inner scale of turbu-

lence fl 
0 

The eddies of size fl do not break into smaller eddies 
0 

because their Reynolds number is always smaller than the critical 

value . Energy is transferred from the largest eddies to the smallest 

eddies of sizes fl at which point energy is directly transformed into 
0 

heat via viscous motion of the fluid. In the atmosphere, wind shear 

provides the energy to maintain the turbulence. The size of the 

largest eddies is called the outer scale of turbulence L . 
0 

Therefore 



-102-

the size i of the inhomogeneities in the atmosphere is such that 

i ~ i ~ L 
0 0 

This range of energy containing eddies is called the 

inertial subrange by Kolmogoroff (12). 

In the spectral representation of the random process 

J 
iK' .-;, 

. e 

K' 

+ dN(K' ,x I) 

the magnitude of K' is such that 2
n £ 

L 
0 

phere i is, typically, ·of the order of 
0 

K' _ 2n L 2n 
- i - i . 

0 

one millimeter 

order of a few meters. Therefore for an optical wave 

K' £ 2n 2n k << -= 
i A 

0 

since 
K' A lµ 10-3 -< -= --= . k i lrmn 

0 

In 

and 

the atmos-

L of the 
0 

(1.19) 

We can then express the two-dimensional Fourier transform 

G(°i?,x-x') in 1.17 

G(it,x-x') i exp[i(k - ~) lx-x' I ] 
2k(2n) 2 

(1. 20) 

We also notice that the propagation of a wave in the x-direction 

+ -+ 
between two points of coordinates (O,r) and (x,r) will be affected by 

+ 
the random field n

1
(x' ,r') or only if the condition 

0 ~ x' ~ x is fulfilled . Therefore in 1.18 we must perform the inte-

gration with respect to x' between the limits x ' = 0 and x' = x • 
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Using expression 1.20, taking into a ccount the above remark, 

performing the integrations with respect to 
-+ -+ 
K and r', we find 

x .K,2 -+ -+ 
-+ I I 

-
1

- (x-=x') iK' •r 
2k -+ 

ljll (x) = ik dx' e e dN(K' ,x I) ( 1. 21) 

0 K' 

We shall state again, because it is an important point, the 

approximation made above. We have assumed that the wavelength of the 

propagating wave is much smaller than the inner scale of the turbulence. 

This is especially true for the case of an optical wave propagating 

through the atmosphere and roughly exact for submillimeter waves. This 

assumption allowed us to approximate the two-dimensional Fourier 

transform of the Green's function by expression 1.20. This simplified 

-+ 
greatly the calculation of w1 (x) because of the cancellation of the 

ik(x-x') -ik(x-x') 
terms e and e We shall use the assumption 

A << i (1.22) 
0 

all along the development of our analysis. This inequality is an 

essential condition for its validity. We now proceed to calculate the 

-+ 
in the expansion for tjJ(x) . 

1.3 Calculation of 

The second order term in 
2 -+ 

E in the expansion 1.14 for tjJ(x) is 

-+ w
2

(x) defined by 1.13. 

in terms of by the recursion formula 1.10. First, we can 
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-+ -+ -+ 
exp[-ik(x-x')] -+ u

2
(x) u2 (x) u2 (x) 

lj!2 (x) = = = -+ 
A exp(ikx) exp ( ikx') u (x) A 

0 0 0 

-+ 
u2 (x) exp[-ik(x-x' )] 

= -+ 
u (x') 

0 

We now make use of relationship 1.10 for p = 2 

Combining 1.23 and 1.24, we find 

-+ 

= _2k2 J cJ1 1 G(~,~') e-ik(x-x') 
-+ u

1
(x') 

nl (x' ) -+ 
u (x') 

0 

We notice that 

-+ 
u

1 
(x') 

-+ 
u (x') 

expression 1.15. 0 

and we replace 

x 
-ik(x'-x") 

e n ( ~' ) n ( ~" ) 
1 1 

( 1. 23) 

(1. 24) 

(1.25) 

In the :fbllowing step the Green's functions and the fluctuations 

of the index of refraction are replaced by their two-dimensional 

Fourier transforms 1.16 and 1.4. Under the assumption A. << 9, , we 
0 

can write, according to 1.20, 

00 2 -+(-+-+,) ( ) K iK. r-r 
-i exp[-i 2~(x-x')]e 1 

2k(2w) 2 (1.26) 
( -+ -+ ) -ik(x-x') J -+ G x,x' e = dK1 

and then 
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x x' 00 00 

-+ (ik) 2 

J J dx" J 
-+ 

J d;" J 
-+ 

J 
-+ 

J J l/!2 (x) = 
(2n) 4 dx' dr' dK1 dK2 

0 0 -00 -oo -+ K" K' 

x (exp[-i K2 K2 
--1. (x-x')] exp[-i 2 (x'- x")] 2k 2k 

-+ -+ -+ -+ -+ -+ -+ -+ -+ -+ 
x exp[i(K •(r-r') + K ·(r'-r") +K' •r' + K"·r")] 

l 2 

x dN(K• ,x') dN(iC" ,x") J 
The integrations with respect to 

00 -+ -+ -+ -+ 00 

I -+ i ( - Kl+ K2 + K' ) • r ' . I 
dr' e 

r' 

-+ 

and yield 

-+ 

(1. 27) 

The integrations with respect to Kl and K2 are then easily performed 

and 

x . x' 

(exp [-i 
-+ -+ 2 

l/!2 (~) (ik) 2 
J J J J 

(K' + K") 
(x-x' )] = dx' dx" 2k 

0 0 -+ K" K' 

-+ -+ -+ 

exp [-i 
K"2 

x" )] e 
i(K'+ K") •r 

+ + J x (x'- dN ( KI 'x i ) dN ( K" 'x II ) (1. 28) 
2k 

-+ 
We can also express w

2
(x) in another form which will be useful later 

by writing 

-+ -+ 2 
+ 2K' • K"(x-x' )+ K" (x-x") 

then 



x 

= (ik)
2 f dx' 

0 

x' 

f dx" 

0 
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I I ~xpc-
-+ -+ 
K' K" 

-+ -+ -+ 
-+ -+ J i ( K' + K") • r + 2K' • K"(x-x')) e -+ -+ } dN(K' ,x') dN(K" ,x") ( 1. 29) 

We notice that the calculation of the terms of various orders in 

the expansion of A. « Q, 
0 

-+ iji(x) is straightforward once the assumption 

has been made. We shall now find the formula for the mth term by the 

following method. 

1.4 Calculation of 
-+ 

ijJ (x) 
m 

We shall first assume a formula for 
-+ 

ijlm_1 (x) which is valid for 

m - 1 = 1 and 2, then we shall use the recursion formula to calculate 

ijJ (;) 
m from 1jim_1 (~) and find out that the expression for 

-+ 
ijJ (x) 
m 

is 

obtained by replacing m - 1 by m in ijlm-l (~). Therefore if the 

formula proposed for ijlm-l (~) is valid for m - 1 = 1 and 2, it will be 

valid for any m . 

-+ -+ -+ -+ 
ijJ (x)- is defined by 1.13 as ijJ (x) = u (x)/u (x) which we can 
m m m o 

write 

-+ 
u (~) 

m 
ijJ (x) = m 

A exp(ikx) 
0 

and u (;) is given in 
m 

u (;) exp[-ik(x-x')] 
m 

u (~) 
m 

exp[-ik(x-x' )] 
= -

A exp(ikx') u (~') 
0 0 

(1. 30) 

terms of um-1(~) by the recursion formula 1.10 

-+ -+ -+ -+ -+ 
dx' G(x,x 1

) n (x') u (x') 
· l m-1 

(1. 31) 

Therefore we use 1.30 and 1.31 to express ijJ (~) as follows 
m 



or 

-+ 
ljJ ( x) 
m 
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f 
( __ L um-1 ( ~' ) 

- 2k 2 -+ -+-+) -ik x-x') (~) = dx' G(x,x' e n
1 

x' -+ 
u (x' ) 

0 

( -+) 2 J -+ -+-+ -ik(x-x') (-+ ) (-+ ) l)Jm x = -2k dx' G(x,x') e n1 x' l)Jm-l x' ( 1. 32) 

-+ 
We now postulate the following formula for l)Jm_

1
(x) which is 

valid for m - 1 = 1 and 2 (see expressions 1. 21 and 1. 29) 

x x' x 
(m-2) 

-+ (ik)m-1 
J f dx" ... J dx(m-1) 

l)Jm-l(x) = dx' 

0 0 0 

x f I · · · I {·xp [f :r K<P) l . ;J 
-+ -+ -+(m-1) 
K' K" K 

x ~k) L L K p (x q - x q ) exp[(
- q=m-1( p=(m-1) -+( )) 2 ( -l) ( ) ] 

q=l p=q 

( 1. 33) 

where 0 ~ x(m-1) !f )m-2) ~ •.• ~ )p) ~ x(p-1) ~ .•• ~ x" !{ x' ~ x 

The symbol 
p=m-1 ( ) ( ) 

TI dN(K p ,x p ) 
p=l 

random functions 

stands for the product of the m - 1 

evaluated for at points 

where p runs from ·1 to m- 1, i.e. 

m~l = dN(K' ,x') dN(K" ,x") • • • dN(K(m-l) ,)m-l)) 

p=l 
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-+ 
We now replace Wm_

1
(x' ), which is easily obtained from 1.33, 

into 1.32. The Green's function and the fluctuation of the index of 

-+ 
refraction n

1
(x') are expressed in terms of their two-dimensional 

Fourier trans forms 1. 20 and 1. 4. 

x 00 

J 
-+ 

(-2k2 ) J dx'f 
-+ -+ 

W (x) = dr' dKl m 
0 -00 

-+ -+ -+ -+ -+ 
iK •(r-r') 

J 
iK' •r' 

1 x e e 

K' 

x' 

x (ik)m-l J dx" 

0 

( 

-+ w (x) takes the following form 
m 

K2 
-i ) exp[-i 

1 
(x-x') J 2k 

2k(21T) 2 

-+ 
dN(K' ,x') 

In this apparently complicated expression we can perform two straight-

-+ 
forward integrations. The first is the integration with respect to r', 

00 

= (21T) 2 o(K
1 

- P'f1 K(p)) (1.35) 
p=l 

-+ 
The second is the integration with respect to K

1 
which is performed by 

-+ p~ K-+(p) 
replacing K1 by l in expression 1.34. 

p=l 
Carrying out these 

two integrations leads to the final expression of 
-+ 

W (x) 
m 



-+ 
1jJ (x) = 
m 

x 

(ik)m I d.x' 

0 

x' 

J dx" 

0 
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x 
(m-1) 

I a.x(m) I I ··· J 

° K' K" It(m) 

p=m 
II 

p=l 
} (1. 36) 

-+ 
We have proved that if ijJm_

1
(x) is given by expression 1.33, 

-+ 
then the formula for 1jJ (x) is obtained by replacing m-1 by m in 

m 

1.33. Therefore, since expression 1.33 is valid for m-1=1 , which has 

-+ 
been checked by the direct calculation of iµ

1
(x), it is valid for 

m-1=2, therefore for m-1=~ and so on; it is valid for any m. 

We have calculated the general term 

expansion of 

-+ 
ijJ(x) = 

-+ 
u(x) 

-+ 
u (x) 

0 

co 

= I 
m=O 

-+ 
1jJ (x) 

m 
in the power series 

This series is often called the Neumann series. Its convergence (5) is 

slow if the effect of multiple scattering is important. 

At this point it is interesting to make reference to the various 

methods which have been used previously in the literature to solve the 

wave equation 1.1 . 

1. 5 Review of Approximate Methods 

Many authors have previously tried to solve the wave equation 

2 22-+ -+ 
(V +kn (x)) u(x) = 0 , 1.1. All the methods which have been used are 



-llO-

based on approximations which limit their range of validity. In 

Sections l .·l to 1. 4 we have derived an exact series soluti on of 

equation 1.1 for an optical wave propagating through the atmospheric 
00 

-+ 
l m -+ -+ 

turbulence. The series w(x) = E: ljJ (x) where ljJ (x) is given by 
m=O m m 

1. 36 is not summable analytically. We shall now refer to approxima-

tions which allow us to find an analytical sum to the series 
-+ 

lji(x) 

(-+) ~(x-+) and then draw conclusions on the amplitude A x and phase ~ of 

the wave function u(~) = A(~) ei¢(~) directly, rather than on statis-

tical averages of these quantities. 

1 . 5.1 The Born approximation. The Born or single scattering 

-+ -+ 
approximation ljJB(x) is obtained by keeping only the first term lji

1
(x) 

-+ 
given by 1.21 in the expression for lji(x) , i.e. 

-+ 
~(x) 

-+ 
u (x) 

0 

=l+isk 

0 -+ 
K' 

'K'2 
-~x-x') 2k 

e 
iK' . --; -+ 

e d.N(K' ,x') 

(1.37) 

The Born approximation is a good approximation for lji(~) only if 

2 -+ 12 
E: I ljil ( x) « l where the bar denotes an ensemble average defined in 

Section 1.1. We will show below that the above condition is satisfied 

for a length of propagation T .u through the atmospheric turbulence 

such that 

2 2 skLL « l 
0 

( 1. 38) 

where L is the outer scale of the turbulence. For an optical wave 
0 

propagating through the atmosphere, the range of validity of the Born 

approximation is only a .few meters. 
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1. 5 .2 The geometrical optics approximation. In this 

approximation we look for a solution to the wave equation in the near 

field of the smallest size scatterer of the random medium, i.e. at a 

distance L from the source such that L ~ LCR where LCR is defined 

as follows: 

( 1. 39) 

where i is the inner scale of the turbulence. 
0 

For a wavelength of lµ , LCR ~ lm . We make use of this 

-+ -+ 
approximation to evaluate the various terms ijJ (x) of ijJ(x) . In the 

m 
-+ 

expression 1.21 of ijJ
1

(L,r) we can neglect the term 

K'2 
exp [ i 

2
k ( L - x' ) ] , since 

K'2 
- (L- x') 

2k 

Therefore we can write, according to 1.4 

L 

~ K'
2

L ~ (2n)2 _g_=nA.L 
2k i

0 
2x2n i2 

0 

L 

<< 1 

= ik f dx' 

0 

r eiK' .-; d.N(K' ,x') 

K' 
= ik J 

-+ 
dx' n

1 
(x' ,r) (1. 40) 

0 

. 2 
Similarly, we can neglect the term exp[-.!___ (K' (L-x') + 2k 

K"
2 (L-x") + 2K' ·K" (L-x' ) ) ] in expression 1. 29 for 1/J2 (;t) and write 

L 

ijJ
2

(L,-;) = (ik)
2 f dx' 

0 0 

L 

= (ik)2 f 
0 

-+ 
dx' n

1 
(x' ,r) 

• ( -+I :tu ) -+ 
el. K + K. •r d.N(K' ,x') dN(K" ,x") 

K' K" 
x' 

J dx"n
1 

(x" ;;) 

0 

-+ 
dx 1 n

1
(x',r) ]2 

(1. 41) 

Similarly, we can express ijJm(L,r) in the . geometrical optics 
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approximation as: 

L x' 

(ik)m f dx' n1 (x' ,;) f dx" 

0 0 
L 

l)Jm(L,;) = !i [ f dx' n1 (x' ,;)] m 

0 

-+ 
n

1
(x",r) 

The expressions 1. 40, 1. 41 and 1. 42 for the terms 

-+ 
and ljJ (L,r) lead to the following summation for 

m 

L 
00 

(i Ek )ID 
[ J dx' n

1 
(x' ,X:)Jm 

-+ I ljJ (GO) (L ,r) = 
m=O ml 

0 

L 

= exp [iEk f dx' n1 (x' ,;)] 

0 

Q,2 

x 
(m-1) 

J 
(m) ( (m) -+) 

· ·· dx n1 x ,r 

0 

( 1. 42) 

-+ -+ 
l)J
1

(L,r), l)J
2

(L,r) 

ljJ (GO) (L,X:) 

(1.43) 

under the condition L << ~ This expression is equivalent to the 

solution of reference (13) in the limits where the amplitude fluctua-

tions are negligible. 

1.5. 3 The Rytov approximation (1). The Rytov approximation is 

used by many authors to solve the wave equation 1.1 . Its validity has 

been contested (6),(7). We shall discuss this approximation in more 

detail later in comparison to our results. At this point we notice 

that if a few terms are neglected in expression 1.36 for ljJ (~),the 
m 

solution of the wave equation under the Rytov approximation is put in 

evidence. 

In expression 1.36 we write 
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= I (K(p)) 2 (x-)p)) + 2 mt K(p)·( mip K(p+q)) (x- )p)) 
p=l p=l q=l 

( 1. 44) 

For better comprehension we write down these summations explicitly for 

m=3 

I ( I K(p))
2 

()q-l)_ )q)) = (K'+ K"+ K'")2(x-x') + 
q=l p=l . 

-+ -+ 2 -+I) 
+ (K" + K"') (x' -x") + K"ic. (x"-x"') 

= K' 2 (x-x' )+ K" 2 (x~x" )+ K'"~x-x"1 ) + 2K' • (K"+ K"1 )(x-x') 

-+ -+ 
+ 2K"·K"' (x-x") 

If, for some reason, the terms containing dot products of spatial wave 

vectors K(p)_K(p+q) - are dropped in 1.44 and 1.36, -+ 
ljJ (x) 

m 
can be 

written as 

x' (m-1) x 
xf (m) f f I [ p=m +( ) -+ (ik)m 

J f dx" . ; J ljJ (x) = dx' . . . dx · · · exp i I
1 

K p m 
0 0 0 -+ -+ -+(m) p-

K' K" K 

x exp [ci_) 
2k 

x x' 

= (ik)m I dx'f dx" 

0 0 



Let us define f(x (p)) by 

Then we can express 

t/! (;t) = m 

x 

(ik)m I 
0 

t/! (;t) 
m 

as 

x' 

dx' f(x') J 
0 

-ll4-

x 
(p-1) 

dx" f(x") · • · J dx (p) f()P)) 

0 

x (m-1) 

x • • • f d)m) f(x(m)) 

0 

( 1. 46) 

It can be seen that the m-dimensional integral in 1.46 with the above 

limits is performed in am-dimensional volume equal to l/m!, the 

volume of the m-dimensional "cube" of size x and yields 

x 

t/! ( ;t) = 
(ik)m 

[ I dx' f(x') ]m 
m ml (1.47) 

0 

x K'2 
00 

exp [ie:k I J 
-i~x-x') 

t/! (;t) l 
m -+ 2k 

= e: t/! (x) = dx' e 
m=O 

m 
0 K' 

iK' •r -+ · -+ -+ J 
x e dN(K' ,x' ) ( 1. 48) 

t/!(;t) given by 1.48 is the solution of the wave equation under the 

Rytov approximation. We have obtained this solution by neglecting 

arbitrarily certain terms in the expression of 
-+ 

t/! (x) . m There is no 

justification for neglecting these terms. The Rytov approximation, as 

we shall see later, leads to erroneous information about some 
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-+ 
statistical averages of the wave function u(x) . 

We have reviewed three types of approximations commonly made in 

order to solve the wave equation 1.1: The Born approximation, the 

geometrical optics approximation, and the Rytov approximation. The 

solutions corresponding to these approximations have been put in evi-

-+ 
dence by neglecting various factors in each term I/! (x) of the series 

m 
()() 

expansion I/!(~) = I Eml/! (~) . 
m=O m 

(The exact solution to the wave equa-

u(~) = A eikx I/!(~)). 
0 

tion is 

The motivation for the use of these approximations is to give a 

+ 
simple and analytical expression for u(x) and therefore simple and 

-+ 
analytical expressions for the amplitude A(x) ri.(-+x) and the phase y; by 

+ 
separating u(x) into its real and imaginary parts. Conclusions about 

the statistics of the amplitude and phase of the wave separately can 

then be drawn. 
()() 

+ I Eml/J (~) A look at the formal exact solution l/!(x) = where 
m=O m 

ljJ ( ;t) is given by 1.36 shows us that it is hopeless to try and sepa-m 

rate the wave function into its phase and amplitude without some 

approximation and therefore to calculate the statistical properties of 

the phase and the amplitude of the wave separately. However, we can 

hope to deduce statistical information about the wave function u(~) 

itself. In the following parts of this report we shall evaluate the mean 

+ 
u(x), the correlation function of the wave function 

between two points in a plane perpendicular to 

the direction of propagation of the wave at a distance L from the 

source, and we shall investigate the correlation function of the wave 
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intensity I(L,1) between these two points 

The asterisk denotes the complex conjugate. 
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-+ 
CHAPTER II - CALCULATION OF u(x) 

We have, in Chapter I, found a formal solution of the wave equa-

2 2 2 -+ -+ 
tion [V + k + 2sk n

1
(x)] u(x) = 0 as a power series expansion 

<X) 

( -+ ) A ikx (-+) A ikx \' ,_m,,, (x-+) u x = 
0

e ijJ x = 
0

e l ~ ~ 
m=O m 

for an optical wave propagat-

ing through atmospheric turbulence. An expression for each term 

ijJ (~) of the series has been given, but it has not been possible to 
m 

find a useful analytical sum to the series iji(~) without using some 

approximation. Therefore, no information on the phase and the ampli-

-+ 
tude of the wave is available directly from the series iji(x). 

We now proceed to calculate the mean of the wave function u(~) 

or, rather, the statistical average iji(1) of the sum iji(~), since 

u(1) A 
ikx iji(1) = e 

0 
(2.1) 

<X) 

where iji(~) I m 
ijJ (~) = E 

m=O 
m 

(2.2) 

In order to do so, some information on the nature of the statistics of 

the turbulent medium is needed. In the following paragraph the statis-

tical properties of the random refractive index field are stated. 

2.1 Statistical Properties of the Random Index of Refraction 

-+ 
The only random quantities appearing in ijJ (x) are the two-

m 

dimensional Fourier Stieljes transforms dN(K(p) ,)P)) of the 

fluctuation of the index of refraction n
1

(x(p) ,;), The random process 

dN(K(p) ,x(p)) satisfies the following relations. 
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(2.3) 

where Fn(K(p) ,jx(p)_ x(q)j) is the transverse two-dimensional Fourier 

-+ 
transform of the correlation function of the fluctuation n1 (x) of the 

index of refraction, also called the two-dimensional spectral density 

-+ 
function of n1 (x). The correlation function 

-+ -+ -+ 
n
1

(x) between two points (x
1

,r
1

) and (x2 ,r
2

) 

-+ -+ 
Bnl(xl,rl,x2,r2) 

can be expressed as 

of 

follows according to 1.4: 

= I I 

and the transverse two-dimensional Fn(K,jx1- x2 j) is defined by the 

following relation 

In order for the last two expressions of the correlation function to be 

compatible, the identity 2 . 4 must hold, i.e. 
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-+ -+ 
The two-dimensional Fourier transform Fn(K,x) of n

1
(x) is related 

-+ 
to the three-dimensional Fourier transform ¢ (K,K ) by the relation 

n x 

00 

-+ 
F (K,x) = e x 

I 
iK x 

-+ 
¢ (K,K ) dK 

where 

B (x,y ,z) = 
nl 

n 

00 00 co 

I I I 
_oo -oo -co 

n x x 

i(Kx+Ky+Kz) 
dK dK dK e x y z ¢ (K K K ) x y z n x, y, z 

-+ 
It is assumed that the random process dN(K,x) is a Gaussian 

random process and therefore possesses a multivariate Gaussian distri-

bution. Its higher moments are then given by the following relations. 

~ dN(K(p) ,)P)) = 0 if m is odd 
p=l 

~ dN(K(p) ,)P)) = sum of all the different permutations 
p=l 

of m products (2.5) 

m! There are such permutations. For better comprehension we 
(m/2) ! 2m/2 

write explicitly the above products for m=3 and m=4 , 

(m=3) 

(m=4) 
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where the following notation has been used 

According to relationships 2.5, the only terms which will contrib-

-+ 
ute to w(x) will be the terms of 2.2 with m even, then 

co 

w(~) = I 2p -+ 
E w2p(x) ( 2. 6) 

p=O 

with w (~) = 1 
0 

We shall calculate a few terms in expansion 2.6 and show how 

-+ 
these terms lead to an exact analytical sum for w(x) • The first 

-+ -+ 
term in the series expansion for w(x) is w2 (x) . 

2.2 Calculation of w2 (~) 

w2 (~) is given by expression 1.28. The random ~uantity appear-

-+ -+ -+ 
ing in w

2
(x) is dN(K' ,x' )dN(K",x"); its statistical average is, 

ac.cording to 2. 4, 

-+ -+ · -+ -+ -+ I I -+ -+ dN(K' ,x') dN(K",x") = o(K'+ K") Fn(K', x'- x" ) dK' dK" . 

We make use of the above relation to calculate w2 (~) . and we 

-+ 
perform the integration with respect to K" , yielding 

x 

= (ik)
2 J dx' 

0 

x' 

f dx" 

0 (2.7) 

F n (K', Ix' - x" I) is the two-dimensional spectral density function 

of the random index of refraction. It is a measure of the correlation 

of the index of refraction between points in the plane X = x 1 and the 
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plane X = x", see Fig. 2.1. Clearly, this correlation is produced 

only by the inhomogeneities in the index of refraction which have a size 

Q, larger than the distance between these two planes Q, = Ix' - x" I • 

0 

Fig. 2.1 

x x 

The two-dimensional Fourier transform F (K, lx'-x" I) 
n 

is a measure of the correlation of the index of 

refraction in two planes perpendicular to the direc­

tion of propagation of the wave 

The wave number K' is related to the scale of the turbulence 

Q, by K' = 2TT/t. Therefore, Fn(K',lx'-x"j) will be appreciably dif­

ferent from zero only if the condition K' Ix'- x" I= l, equation 2.8, is 

satisfied. Therefore we can neglect the exponential term in the 

-+ 
expression of $

2
(x) , since according to 2.8 and 1.22 

K'2 (x'- x") L' K' £ 1' 
2k - 2k - ~ « 1 

0 

This simplification is again due to the fact that the wavelength of the 

propagating wave is much smaller than the inner scale of the turbulence 

to .. , We can then write 
x x' <X> 

$2(~) = - k 
2 

J dx' r dx" J dK' F n (K' ' Ix' - x" I ) (2.9) 
0 0 -"" 
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or, for later convenience 

x 

ljJ2 (~) = -k2 f 
0 

dx' 

x' 

f dx 11 f ( I x ' - x 11 I ) 
0 

x 

k22 f 
0 

dx' 

x 

f dx
11 

0 

the function f( IX I) is defined by the following relation 

00 

f( Ix I) = F (K',IXI) 
n 

-oo 

We shall now proceed to calculate the term of order 

-+ -+ 
expansion of ljJ(x) , i.e. l)J 4(x) . 

-+ 
2.3 Calculation of ljJ

4
(x) 

f( Ix'- x11 I) 

(2.10) 

(2.11) 

£
4 in the 

The calculation of the term of order £
4 

in the expansion of 

ljJ(~) -+ 
is a little more tedious than the calculation of l)J

2
(x) , but 

still straightforward. 

then 

x 

x 

= (ik)4 f 
0 

where, according to 2.5 

.:+ 
ljJ 4(x) is given by expression 1.36 with n=4, 

f f f J 

(2.12) 
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(2.13) 

Fn(K
3

,lx
3
-x41) i.e., proportional to the product of the correlation 

functions of the index of refraction between the point and 

and 

where the following 

inequalities hold for x, x
1

, x2 , x
3 

and x4 

(2.14) 

Therefore we expect the term 12·34 to give a larger contribution to 

the integrals in 2.12 than the term 13·24 because the correlations of 

the index of refraction between the points and and the 

points and are larger than the correlations of the index of 

refraction between the points x
1 

and x
3 

, and the points and 

since and But it is not 

clear that the term 12·34 will give a larger contribution than the term 

14·23 since in the integrals of 2.12 all the limits will 

actually reach x . 

Some authors (5),(14) have retained only the term 12·34 and 

neglected the terms 13·24 and 14·23 in the averaging procedure, i.e. 
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they have kept only the terms which represent the correlations between 

neighboring points. 

m 
II 

p=l 

They have approximated 

· dN(K ,x ) 
p p 

as follows, when m is even 

m 
II 

p=l 

-+ 
dN(K ,x ) -

p p 

m 
n 

p=l 
dN 

p 
(2.15) 

In this report we shall not make use of approximation 2.15 to 

-+ -+ 
calculate ~(x) . The correct expression of ~(x) we shall obtain, 

will be compared in Appendix A with the expression obtained by using 

approximation 2.15. 

We now calculate the contribution of each term of 2.13 to 

-+ 
contribution ~4a(x) According to 2.4, 

We call this 

We· use this relationship in the expression 2.12 for ~4 (~) , and per-

form the integrations with respect to to find 
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x 00 00 xl x2 x3 
-+ k4 

r 
J dx2 J dx3 J dx4 J 

-+ 
J cll(3 exp[;~(K~(x1-x2 ) ij;4a(x) = J dxl dKl 

0 0 0 0 -oo -oo 

2 
+ K3(x3-x4))] Fn(K1 , lx1-x2 1) Fn(K

3
, lx3-x4 1) (2.16) 

We can neglect the exponential terms in 2.16 for the same reason 

-+ 
which was already given in the calculation of 1);2(x), i.e. 

Fn(K1 , lx1-x)) and Fn(K
3

, lx
3
-x4 1) are appreciably different from 

zero only if K1 1x
1
-x2 1 ~ 1 and K

3
jx

3
-x4 1 £ 1 • Therefore the coef­

ficients of the exponentials in 2.16 are such that 

<< 1 

-+ 
We then obtain the following expression for 1);4a(x) 

x xl x2 x3 00 

-+ k4 
J J dx2 J dx3 J J 

-+ 
F n ( K1 , I x1 -x2 I ) ij;4a(x) = dxl dx4 dKl 

0 0 0 0 -oo 

00 

x 
J dl(3 Fn(K3,lx3-x4I) 

-oo 

or in terms of notation 2.11 

(2.17) 

(2.18) 
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We call this 

-+ 
contribution ~4b(x) . According to 2.4, 

x 

-+ -+ 
A:fter performing the integrations with respect to K

3 
and K4 , we can 

write 

(2.19) 

We can neglect the exponential terms ·in 2 .19 as in the calculation of 

where we have used notation 2.11 for f( !xi) . 

2.3.3 Contribution of dN1dN4 • dN
2

dN
3 

= 14·23 

call it ~4 c(~) . According to 2.4, 

x 

(2.20) 

We shall 
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-+ -+ 
The integr ations with r espect t o K

3 
and K4 are then performe d 

in 2.12 to yield 

x 

W4c(~) = k4 f dxl 

0 

(2.21) 

where again f( IX I) is defined by 2.11. 

2.3.4 Expression for w
4

(.Jt) . 

or from 2.18, 2 . 20 and 2.21, 

(2 . 22) 

The four-fold integration in 2. 22 is performed in a four-dimen-

sional volume equal to 1/41 = 1/24 , the volume of a four-dimensional 

"cube" with sides equal to x . We know that the following equality is 

true 

x xl x2 x3 

J dxl I dx2 f dx3 I dx4 l G(x . ,x. ,~ ,x ) 
. j k ,Q, l. J ,Q, 

0 0 0 0 l. ' ' ' 

x x x x 

- I dx
1 f dx2 I dx3 J dx4 G(xi,xj'~'x,Q,) (2 . 23) 

0 0 0 0 

where G(xi,xj,xk,x,Q,) is any function defined in the four-dimensional 

" cube" with sides equal to x . The summation . . l G(xi ,xj ,~ ,x,Q,) 
1 'J ,k ',Q, 
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stands for all the possible G functions evaluated for all the permu-

tations f,i,j,k and t where the indices i,j,k and t run from 1 

to 4 and are all different in any one term of the sum. There are 4! 

= -8
1 l f( lx.-x. I) f( Ix. -x 0 I) 

. . k n 1. J K "' 
1.,J, •"' 

(2.24) 

where l f( lxi-xj I) f( l~-xtl) has been defined above. Therefore, 
i,j,k,t 

-+ 
with the help of 2.23 and 2.24 we can express w

4
(x) as follows 

or 

where 

x 

f dx4 f( lx1-x2 1) f( ix3-x41) 
0 

-+ 
w2(x) is given by 2.10. 

(2.25) 

We have calculated the three first terms in the series expansion 

2.6 for 
-+ 

w(x), the statistical mean of the wave function in the 

presence of a turbulent propagating medium normalized to the wave 

function in the absence of a turbulence. We shall now calculate the 

-+ 
general term of the series, i.e. w2m(x) • 
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2.4 Calculation of 1/J2m(~) 

-+ 
1/J2m(x) is given for any m by expression 1.36. The calculation 

-+ 
of 1/J2m(x) involves the following averaging 

p=2m 
IT 

p=l 
dN 

p 
= sum of all the different permutations of 2m 

products dN dN 
p q 

where dN dN = o(K + K) F (K ,Ix -x I) tlK dK . There are p q p q n p p q p q 
-+ 

(2m) I /m! 2m such products. After the integration with respect to K 
q 

for example, any product dN dN gives the contribution f( Ix -x I) p q 
00 

p q 

to the integral of 1/J2m(~) where f( Jx I) = If d F (K, Jxl) . The 
n 

-oo 

exponential terms in the expression of 1jJ2m(~) can be neglected for 

the reasons described above in the calculation of 1jJ~(~), (A << in). 

1jJ2m(t) is then expressed as follows 

1/J2m (~) 

x x 

J

2m-2 J2m-l 
dx2m-l dx2m 

0 0 

x p 1 { IT f ( I x -x I ) } 
p;iq_ p Cl 

(2.26) 

IT f( Ix -x I ) stands for the product of m terms f( Ix -x I ) where 
p;iq_ p Cl p Cl 

the indices p and q_ are different and run from 1 to 2m. The 

symbol stands for the sum of all permutations of 

the terms IT f( Ix -x I) obtained by interchanging any two variables 
p;iq_ p Cl 

x. 
l. 

in such a way as to give a different product. There are 
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2m!/ml2m such terms. An example of such a term is 

all the other terms of P
1

{ } are obtained by interchanging the posi-

tion of any two variables x. 
l 

and x. 
J 

in such a way as to give a 

different product. Interchanging x
1 

and x
2 

, for example, would 

give the same product, since f( Jxl-x2 J) = f( Jx2-xl J) There are 

possibilities of interchanging any pair x. and x. in this way 
l J 

without changing the product . Interchanging xl and x2 with x3 

and would not change the product, since 

ing any pair x. 
l 

and x. 
J 

There are m! possibilities of interchang-

without changing the product; therefore 

2m 

there are 2mm! possibilities of interchanging any two variables x. and 
l. 

x. in any of the (2m)!/2mm! products without changing the product. 
J 

To clarify the argument let us present explicitly the case m=2 , then 

if we call f( Jx.-x. J) = ij 
l J 

, we can write the 

( 2m) ! 4! 
3 = = 

2m I 22 ·2! m. 

terms of P1 { } as 12·34 + 13·24 + 14·23 We can interchange the 

indices 1,2,3 and 4 in 2mm! = 8 ways in any of these products without 

changing the product, for example , 

therefore 12•34 + 13•24 + 14•23 = 1/8 (sum of all the possible permu-

tations of the indices i,j,k and £ in the product ij•kt ). There 
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are 4! possible permutations. 

In the same way for any m 

= P{ IT f( Ix -x I)} 
p;tq p q (2.27) 

where P{ IT f( Jx -x J)} stands for the sum of all possible permutations 
p;tq p q 

of the indices in the product IT f( Jx -x I) , there are (2m)I terms 
p,tq p q 

in this sum. According to 2.26 and 2.27 

x x 

J

2m-2 J2m-l 
.. • dx dx 

2m-l 2m 
0 0 

x P { IT f( Ix -x J)} 
p;tq p q 

(2.28) 

The above integration of the sum of all possible permutations of 

the coordinates x
1

,x2 ,··· ,x2m_1 ,x2m in a volume equal to l/(2m)!, the 

volume of a 2m-dimensional "cube" with sides equal to x, is equal to the 

integration·of any one term of the permutation integrated over the 2m-

dimensional cube, i.e. 

or 

x 

J

2m-2 dx 

2m-l 
0 

x 

J

2m-l 
dx2m 

0 
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x m 

dx1 J dx2 f( lx1-x2 I)) 
0 

-+ 
where w2(x) is given by 2.10 

(2.29) 

We have calculated the first three terms and the general term of 

the series expansion of $(~) . These results are used in the next 

paragraph to find an analytical expression for 
-+ 

w(x) ' therefore for 

u(i) 

2.5 Calculation of u(~) 

According to 2.6, 
u(~) 

u (i) 
0 

with the help of 2.25 and 2.29, 

w(~) 

therefore, 

w(~) = 

x 

00 

-+ \ 2m -+ = $(x) = l E $2m(x) 
m=O 

2 x x 

with $2(~) - - k2 J 2 dxl I dx2 f( Jx1-x
2

1) - - k2 I dxl I 
0 0 0 0 

x F n ( K, I x1 -x2 I ) 

or, 

(2.30) 

00 

I -+ 
dx2 dK 

-co 

The first statistical moment of an optical plane wave propagating a 

distance L through a randomly turbulent medium is given by the fol-

lowing expression in a plane perpendicular to the direction of 

propagation 



-133-

-+ ikL ( u(L,r) = A
0

e exp -

L 

€2~2 J 

0 

dxl 

co 

J dK F n ( K, I x 1 - x2 I ) ) (2.31) 

- co 

where Fn(K,lx
1
-x2 1) is the two-dimensional transverse Fourier trans-

form of the correlation function of the index of 

refraction fluctuations 

co 

Bn
1 

( lx1-x2 1,;) = f dK eiK•; F n (K, lx1-x2 j) 

therefore, 

co 

-co 

and we can express u(~) as 

u(L,±) 

-co 

L 

dxl f dx2 Bnl ( lx1-x2l ,ol) 
0 

(2.32) 

(2.33) 

-+ We can also express u(L,r) in terms of the correlation function Bn(x,;) 

-+ n(x) = l + rn1 (x) , wh i ch is defined as of the index of refraction 

follows 

B (x ,;) 
n 

then 

-+ -+ -+ = (n(a,S) - l)(n(a +x, S +r) -1) = 

L 

k: I 
0 

L 

dxl I dx2Bn(1.x1-x2l ,o)) 
0 

(2.34) 

(2.35) 
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+ + 
Note that u(L,r) does not depend upon the transverse coordinate r . 

In Chapter I of this report we found a formal series expansion 

+ 
for the wave function u(x) of an optical wave which satisfied the 

wave equation (V2+ k2n2 (~)) u(~) = 0 . This formal series solution 

does not lead to useful results unless some approximations are made to 

find an analytical sum of the series. These approximations limit the 

range of validity of all the results which are obtained by using them. 

+ 
However, an analytical expression for the first moment u(L,r) has 

been found without the use of any approximation; this result is there-

fore valid for any distance of propagation L and any strength of the 

turbulence. We shall later compare the result obtained in this section 

+ 
for u(L,r) with results which can be obtained by using the approxima-

tions described in Chapter I. 

The correlation function Bn ( I x
1 
-x

2 
I) which appears in 2. 35 

depends only upon the difference lx1-x2 J. In order to evaluate the 
L L 

integral l dx1 l dx2 Bn( ix1-x2 J) , we make the following change of 

variables: x
2

- x
1 

= a , x
2
+ x

1 
= 2B The above in~egral is then 

replaced by the integral 

L-a/2 I dB B (a) 
n 

a/2 

This can be seen by looking at Fig. 2.2. The integration with respect 

to B with 

both axes. 

fixed is performed along a straight line at 45° from 

This integration is easily performed, since B 
n 

depends 

only upon a , then 
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X1 

L 

L-c\ 
X, 

Fig. 2.2 Graphic illustration of the change of variables 

x2- x1 = a 

L L 

I dxl I dx2 
0 0 

replaced by 

L L 

, x
2

+ x
1 

= 28 . The integration 

over the square of sides L is 

2 I a.Lr/2 dB 

0 6./2 

J dx1 J dx2 Bn( lx1- x 2 j) ( L - a ) B ( a ) da 
n 

(2.36) 

0 0 

The correlation function B (a) 
n 

distance a is equal to zero if 

scale of the turbulence. L in 
0 

10 meters . We are interested in 

much l arger than a few meters. 

in 2 . 36 is written 

between two points separated by a 

a ~ L where L is the outer 
0 0 

the atmosphere is of the order of 1 to 

propagation paths in the atmosphere 

In this case L >> L and the integral 
0 



L 

J dxl 
0 

L 

J dx2 Bn ( I x1 -x2 I ) 
0 
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L 

= 21 J
o 

0 

B (a) de 
n (2.37) 

u(L,;) is then expressed simply in terms of the correlation function 

B of the index of refraction. 
n 

where k = 2TI 
A. 

-+ 
u(L,r) 

L 

= A
0

eikL exp(-k2L J
0

Bn(a) da) 

0 

is the wave number of the absence of turbulence 

L is the outer scale of the turbulence. 
0 

(2.38) 

The wave number k in the absence of turbulence is replaced by an 

effective wave number k in the presence of turbulence 
e 

with 

-+ 
u(L,r) = A e 

0 

ik L 
e 

k 
e 

k 

L 
0 

= 1 + ik J Bn(a) da 

0 

In order to give an explicit expression for u(L,;) 

(2.39) 

(2.40) 

and k in e 

terms of the parameters of the turbulent atmosphere, reference must be 

made to an existing model of the atmosphere . This is done in the next 

paragraph. 

2.6 -+ 
u(x) and the Kolmogoroff Model of Atmospheric Turbulence 

The Kolmogoroff model of turbulence (12) has been described in 

Section 1 . 2. Using this model, Obukov (15) has found the following 

expression for the structure function D (r) 
n of the index of 
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refraction on the l::asis of dimensional arguments. 

D ( r) = c2 2/3 for Q, ~ r ~ L (2.41) r n n 0 0 

D ( r) = c2 Q,2/3 (!__)2 for 0 1f r ~ Q, 
n n 0 Q, 0 

0 

The structure functi.on D ( r) of the index of refraction between n 

two points separated by a distance r is defined as follows 

D (r) = 
n 

(2.42) 

where r = 1~1- ~2 1 and the bar denotes the ensemble average over all 

points and 

The parameter c 
n 

is called the structure constant. It describes 

the strength of turbulence. C has been measured experimentally (16), 
n 

(17); it is a decreasing function of the altitude (18). Along a 

horizontal path, C 
n 

is of the order of 10-8 m-l/ 3 for a weak turbu-

lence and of the order of 10-7 m-l/ 3 for a strong turbulence. 

Our next goal is to relate the structure function . D (r) to the 
n 

correlation function B (r) to obtain an explicit expression for the 
n 

correlation function which corresponds to the Kolmogoroff model. 

B (r) is defined as follows 
n 

and D (r) 
n 

is defined by 2.42. 

D (r) 
n 

We can express D ( r) as 
n 
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or 

D (r) 
n 

(2.43) 

since 

and 

-+ 
n

1 
(x) = 0 , 

2 -+ 
n

1 
(x) = 1 

B (r) can be expressed in the following way. Since n(~) = 1, 
n 

B ( r) 
-+ -+ -+ -+ -+ -+ -+ -+ = n(x

1
) n(x2 ) - n(x

1
) - n(x2 ) + (n(x1 )) (n(x2 )) = n(x

1
)n(x2 )-l 

n 

From 2.43 and 2.44 it is found that 

Then for r >> t 
0 

B (r) 
n 

2 = E: 

B (r) = E:2 - l C2 r2/3 
n 2 n 

(2.44) 

A simple relationship 

between E: the variance of the index of refraction fluctuations, 

C the structure constant, and 1 the outer scale of the turbulence is 
n o 

obtained by noticing that 

B (r) = ! c2 12/3 
n 2 n 0 

= ! c2 2/3 B (r) L n 2 n 0 

L 

The integral r B (a) da n 
0 

B (1 ) = 0 , i.e. 
n o 

(1 - (!....)2/3) 
1 

0 

2 
(1 - r ) 

12/3 t4/3 
0 0 

t 
0 

0 

t::
2 - l c2 12/ 3 = 0 ' then 

2 n o 

:f r ~ L 
0 

~ r ~ t 
0 

(2.45) 

can then be evaluated as follows 
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L Q, L 
0 

L~/3 ( f I 2/~2 4/3 ) da + r 1 l- '~/13H I B (a) da = l c2 1 -n 2 n L Q, 
0 0 0 

which leads to 

L 
0 

f B (a) da = l c2 
n 5 n 

0 

since Q,
0 

<< 1
0 

where 

0 

(l+~(io)5/3)= ! c2 1 5/3 15/3 
0 3 L 5 n o 

0 

Q, is the inner scale of the turbulence. 
0 

(2.46) 

After propagating a distance L through a homogeneous and isotropic 

turbulent medium where the correlation function of the index of refrac-

tion is given by expression 2.45 (i.e. in the Kolmogoroff inertial 

subrange of turbulence), the statistical mean of an optical wave 

function is given by the following expression 

u(L) = A 
0 

ikL 
e .e 

The statistical mean u(L) is attenuated as -aL e with 

(2.47) 

a = ! k2C2 15/3 
5 n o 

The attenuation coefficient a is proportional to 

the strength of the turbulence described by 

tional to the square of the wavelength. 

c2 
. n and inversely propor-

Numerical application. For an optical wave with a wavelength 

of lµ propagating in an intermediate turbulence -8 -1/3 C = 3 x 10 m , 
n 

the attenuation coefficient is 

a = 7.1 km-l for L = lm • 
0 

-1 a =· 0. 33 m for L = lOm, and 
0 
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CHAPTER III - CALCULATION OF u(t) USING VARIOUS APPROXIMATIONS 

In Chapter II an exact expression for the statistical mean of a 

wave function propagating in a turbulent medium has been obtained, the 

only assumption being that the wavelength of the wave is much smaller 

than the inner scale of the turbulence. This assumption is a very good 

one for the case of an optical wave propagating through the turbulent 

atmosphere. In Chapter III we shall compare the results obtained in 

Chapter II with the expressions for u(t) which are calculated from 

the various approximations described in paragraph 1.5. These are the 

Born, the geometrical optics, and the Rytov approximations. 

3.1 u(~) in the Born Approximation: ~(~) 

The Born approximation solution ~(x) of the wave equation 1.1 

-+ 
The statistical mean ~(x) is then is given by expression 1.37. 

easily obtained with the help of condition 2.3. 

= (3.1) 

In the Born, or single scattering approximation, the coherent part of 

-+ 
the wave u(x) does not decrease with distance. This is evident since 

the effects of multiple scattering are neglected. This is a good 

approximation when the condition 

1. k2 C2 L5/3 L << 1 
5 n o 

(3. 2) 

is satisfied. This condition represents the limit of validity of 
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the Born approximation as stated in 1.38. 

3.2 u(~) in the Geometrical Optics Approximation: u(GO)(L,;) 

The solution of the wave equation 1.1 in the geometrical optics 

approximation u(GO) (~) is given by expression 1. 43. Then 

L 

u(GO)(L,i') = A
0

eikL exp(iok f dx' n1 (x•,i')) (3.3) 

L 0 

n
1

(x' ,;) and therefore J dx' n
1

(x' ,r) are Gaussian random fields 

0 
with zero mean. We can then apply to 3.3 the following property of a 

Gaussian random process B with zero mean, 

We notice that 

= e 

1. B2 
2 

(3.4) 

L 

E2~2 I dx' 

L 

J dx" n
1 

(x' ,;)n1 (x" ,;)) 

0 0 

s2 n
1 

(x' ,r) n
1 

(x" ,r) = B (x'-x" 0) 
n ' 

where B 
n 

is the 

correlation function of the index of refraction. We can then write 

= A eikL 
0 

L 

k22 I 
0 

dx' 

L 

J dx" Bn(x'-x",o)) 

0 

This expression for u(GO)(L,;) is the same as the correct expression 

for u(L,;) obtained in Chapter II with no approximation 

+ + 
u(GO)(L,r) = u(L,r) (3.5) 

Therefore, although the geometrical optics approximation gives results 
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for the phase and the amplitude of an optical wave propagating in a 

turbulent medium which are valid only for propagation distances 1 

such that 1 << t 2/A 
0 

-+ 
it leads to an expression for u(1,r) which is 

valid for all 1 . 

3.3 -+ u(x) in the Rytov Approximation: 

The solution of the wave equation 1.1 in the Rytov approximation 

-+ 
u(RY)(x) is given by expression 1.48 . We write it in the following 

form 

-+ ik1 ie:k 8(1) 
u(RY) (1 ,r) = A e e 

0 
(3.6) 

where 
K'2 1 

f f 
-i -(1-x') -+ -+ 

8(1) 
2k iK' •r -+ 

= dx' e e dN(K' ,x') (3,7) 

0 K' 

We use the relationship 3.4 for the Gaussian random process 8(1) 

to evaluate u(RY)(1,;) . From 3.6 

We now evaluate (8(1))
2 

1 1 

(8(1)) 2 = I dx' I dx" I 
0 0 K' 

x 

f 

eie:k 8(1) = A eik1 e 
0 

From 3. 7 

exp [-i (K' 2(1-x' ) + K112 (1-x")] 
2k 

K" 
-+ -+ -+ i (K' +K") •r 

-+ -+ 
e dN(K' ,x' ) dN(K" ,x") 

(3.8) 

(3,9) 
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-+ -+ 
The averaged q_uantity d.N(K',x') dN(K",x") is replaced by its 

expression 2.4,and the integration with respect to K" is easily per-

-+ -+ 
formed due to the presence of the delta function o(K'+K" ). It is 

then found that 

or 

1 

(8(1))
2 = f dx' 

0 

1 

(8(1))
2 = J dx' 

0 

since 

<X> 

1 oo 

f dx" f a.K exp(;! K
2

(21-x'-x")) Fn(K,ix'-x"I) (3.10) 

0 -oo 

f 
. K2 aK sin( 2k (21-x'-x")) Fn(K,lx'-x"I) = 0 for symmetry reasons. 

-oo 

In order to simplify expression 3.10, the same change of variables as 

in 2.5 is made, i.e. x"- x' = a , x"+ x' = 28 The integral 

1 1 1 1-a/2 

I dx' J 
dx" is then replaced by 2 J 

da J d8 , · and 

0 0 0 a/2 

<X> 1 1-a/2 

(8(1)) 2 
J 

-+ 

I 
r K

2
8 -+ 

(3.11) = dK 2 da 
J 

d8 cos F (K,a) 
k n 

-oo 0 a/2 

The integration with respect to 8 is then performed to yield 
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K2 (L - S:.) 
da F (K,a) k (sin k 2 

n K2 
sin 

2 
K a) 

2k 
(3.12) 

-co 0 

-+ 
F (K,a) is different from zero only if Ka < 1 as in 2.8; therefore 

n 

K2a ~~ ;\ 
and we can neglect the term 

K2a 
in the inte--- < << 1 sin 2k 2k 2k 2£ 

0 

gr al 3.12. Also a ~ L therefore for distances of propagation L 
0 

such that L >> L we can neglect a/2 with respect to L and write 
0 

with the help of 3.8 and 3.12 , 

= A eikL 
0 ( 

L co ) 2 2 o -+ k K2L -+ 
exp -Ek L f da f dK ~ sin(~)Fn(K,a) 

0 -co K L . 

(3.13) 

-+ 
This expression for the statistical mean of the wave function u(x) 

obtained by using the Rytov approximation is 

K2L 
expression 2.38 if ~ << 1 , i.e. if L << 

the same as the correct 
£2 

0 ;\ , the geometrical 

optics approximat i qn limit' since in that case 

co 

k K
2

L 2 I -+ -+ 
B (a) -- sin --= 1 and € dK F (K,a) = 

~L k n · n 
-co 

We write expression 3.13 in the following way 

( -+). ikL ( 2 2 u(RY) L,r = A
0

e exp -E k L 

k K
2

L 
aK(l- - sin-) 

~L k 
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where u(L,r) is the correct expression given by 2.38. The Rytov 

approximation gives an expression for the statistical mean of the wave 

function which is valid for propagation distances and turbulence 

strengths such that the coefficient of the exponential in 3.14 is very 

small compared to one. A similar integral has been evaluated by 

Tatarski (19). It yields 

L oo 

f°da f 
0 -oo 

for L » i
2 t>.. 
0 

d.K+ (1 k . K2L) F ·(+K ) --
- ~L sink n ,a 

(3.15) 

The validity of u(RY)(L,;) is limited to propagation lengths 

L and turbulence strengths C such that 
n 

2 7/6 · 11/6 0.31 C k L << 1 
n 

(3.16) 

Numerical application. For >.. = 6328R the limit of validity 

is 7.4 km 

2km under 

under intermediate turbulence (C = 3 x 10-8 m-l/3 ) 
n 

strong turbulence (C = 10-7 m-l/3 ). 
n 

and 
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CHAPTER IV - CALCULATION OF THE CORRELATION FUNCTION 

In Chapter I a formal series solution of the wave equation 

2 22-+ -+) 
(V +kn (x))u(x) = 0 has been found. This solution has been used in 

Chapter II to calculate the statistical mean u(~) of the wave func-

tion. Although no useful information can be extracted without some 

-+ 
approximation from the formal series solution for u(x), an analytical 

expression for the statistical mean u(~) has been found without any 

approximation. In Chapter IV we calculate another important statisti-

cal quantity: the correlation function of the wave function between two 

points in a plane perpendicular to the direction of propagation of the 

wave after a propagation length L through random atmospheric turbu-

lence. We call this correlation function -+ -+ - -+ * -+ Bu(L,r1 ,r2 )-u(L,r1)u (L,r2 ) 

where the asterisk denotes the complex conjugate. The knowledge of the 

correlation function B u is useful to calculate the signal-to-noise 

ratio in the01tput current of a detector in an optical heterodyne com-

-+ -+ 
munication scheme. The method of calculating Bu(L,r1 ,r2 ) is straight-

-+ -+ 2 
forward. In the absence of turbulence Bu(L,r1 ,r2 ) = A

0
• The wave 

. -+ 
function u(x) 

or, rather 

-+ 
ijJ(x) 

is expressed as a power series of 

= u(~) 
-+ 

u (x) 
0 

00 

= I 
m=O 

m -+ 
E: 1jJ (x) 

m 

-+ 
where 1jJ (x) is given by 1.36. m 

Therefore, 

00 
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(4.1) 

From condition 2. 5 only the terms in Bu such that m+p is an even 

number will be different from zero. We shall write 

(4.2) 

+ + 
where Buq (L,r1 ,r2 ) is defined by 4.1 and 4.2. We shall calculate 

B for q=O ,1 and 2 and show how these terms lead to a simple analy-
uq 

4.1 Calculation of B uo 

From 4.1 and 4.2 it is easily seen that 

4.2 Calculation of Bul 

+ + . 
B~(L,r1 ,r2 ) is defined by relations 4.1 and 4.2 

(4.3) 

(4.4) 

The first two terms of Bul have already been calculated. They are 

expressed by 2 . 10 

L 

= -k2 I dxl 

0 

L 

J dx2 f( jx1-x2 I) 
0 

(4.5) 
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where f( Ix I ) is defined by the relation 2.11 

00 

and F (K, Ix I) is again the trans­
n 

verse two-dimensional Fourier transform of the correlation function of 

the index of refraction fluctuations. The last term of Bu
1 

is cal­

culated in the following way. From 1.21 

x (4.6) 

where according to 2.4 

-+ 
The integration with respect to K2 , for example, is easily performed 

-+ -+ 
in 4.6 due to the presence of the delta function o(K1- K2 ). The first ex-

ponential of 4.6 which becomes exp[ (iK~/2k) (x
1
-x2 )] can be neglected 

when A << i for reasons which have already been stated (see paragraph 
0 

2.2). Then 

(4.7) 
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With the help of 4.4, 4.5, 2.11 and 4.7, it is found that 

L L 
-+ -+ -k2 

I I ax
2 

F( lx
1
-x

2 
j ,;

1
-;

2
) Bul (L,rl,r2) = dxl 

0 0 

where F( lxl ,p) is defined by the following relation 

00 

= I -+ 
dK(l 

-+ -+ 
eiK·p) F (K,jxj) 

n 
-oo 

or 

F(jXj,p) = 12 ( B ( I x I '0 ) - B ( Ix I 'p) ) n n 
£ 

where B is the correlation function of the index of refraction. 
n 

4.3 Calculation of ~2 

(4.8) 

(4.9) 

(4.10) 

-+ -+ 
Bu

2
(L,r1 ,r2 ) is defined by relations 4.1 and 4.2; therefore, 

of B have been calculated previously. From 2.25 
u2 

(4.11) 

The first two terms 

(4.12) 

where f( jx I) is defined by 2 .11. We now calculate the third term of 

4.3.2 Calculation of w
3
(;1) wi(;2 ) . With the help of 1.21 

and 1.36 for m=3, the following expression is obtained: 



L 

= ( ik) 
3 

(-ik) J 
0 
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0 0 0 

+ (K2+ K3 )
2 

(x1- x2 ) + K~(x2- x
3

) - K~(L - x4 ))) 

J J J I 

x dN(Kl,xl) aN(K2,x2) aN(K3,x3) aN•(K4,x4)} (4.13) 

According to 2.5 

(4.14) 

-+ 
where we have used the notation dN(K ,x ) = m • We shall calculate m m 

the contribution of the three terms of 4.14 to the average 

4.3.2.l Contribution of 12·34* The first term of 4.14 is 

12·34* which can be written .according to 2.4, 12•34* = o(K
1
+ K

2
) 

The integration 

-+ -+ 
with respect to K

2 
and K

4 
is easily performed in 4.13 because of the 

-+ -+ -+ -+ 
presence of the two delta functions o(K

1
+ K

2
) o(K

3
-K4 ). The coeffi-

cient of the exponential in 4.13 becomes 

-i 2 -+ -+ 2 2 
2k (K3 (L-xl) + (K3-Kl) (xl -x2) + K3 (x2-x3-L + x4)) 

+ Ki(x1-x2 ) - 2K1 ·K
3

(x1-x2 )) • 

This exponential can be neglected for the reasons described in Section 
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12•34* to the integrals in 4.13 is then 

(4.15) 

-oo -oo 

4.3.2.2 Contribution of 13·24* The second term of 4 .14 is 

13 •24°* which can be written according to 2. 4 

x 

-+ -+ 
The integration with respect to K

3 
and K4 is then easily performed. 

The coefficient of the exponential in 4.13 becomes 

This exponential can be neglected for an optical wave (A << i ) since 
0 

' . and 

The contribution of 13•24* to the integrals in 4.13 is then 

(4.16) 

-oo -oo 
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4.3.2.3 Contribution of 14*·23 The last term of 4.14 is 

14*""·23 . From 2.4 

x 

-+ -+ 
The integration with respect to K

3 
and K4 is then performed and 

the coefficient of the exponential in 4.13 becomes 

-i (K2(L-x ) + K2(x -x ) ~ ~(L- x4)) = - 2ik (~l(x4- xl) 2k 1 1 2 2 3 1 

This exponential can be neglected, since K1 1x4- x1 1 < 1 and 

K2lx2-x3I < 1 

4.13 is then 

"" 

-oo -oo 

The contribution of 14*·23 to the integrals in 

(4.17) 

The contributions of the 

three terms in 4.14 have been calculated. We have already introduced 

the definition 

00 

(2.11) 

-cc 

we now .introduce the following definition: 

""f iK·c;-
h(1x1) = dKe 

1 
-+ 
r'.'.) -+ 

- F (K, Ix I) 
n 

(4.18) 

-oo 
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+ + 
Then we can express ~ 3 (r1 )~i(r2 ) in terms of the functions of 

f and h As sembling together the results of 4.13, 4.14, 4.15, 4.16 

and 4 .17, it is found that 

L 

= -k4 f 
0 

L 

J dx4 f( I x1 -x2 I ) h ( I x3-x4 I ) 
0 

Let us introduce the notation G(xi,xj,~) = f(Jxi-xj I) 
xh( l~-x4 1) . From this definition G(xi,xj,~)=G(xj,xi,~) and we 

can write the integral of 4.19 as 

L L xl x2 

f dx4 f dxl J dx2 J dx3(G(xl,x2,x3) 
0 0 0 0 

L L 

= i I dx4 I 
0 0 

L L 

=if dxl f 
0 0 

and there fore 

dxl 

L 

x2 

f dx
3 

(G(x
1

,x
2

,x
3

) +G(x
1

,x
3

,x
2

) + G(x2 ,x
3

,x1 ) 

0 

+ G(x
2

,x
1

,x
3

) + G(x
3

,x
1

,x
2

) + G(x
3

,x2 ,x1 )) 

L 

I dx2 I dx
3 

G(x
1

,x
2

,x
3

) 

0 0 

L L 

dx2 f( Jx1-x2 J) I dx3 J 
dx4 h( Jx3-x4 J) 

0 0 
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k4 
L L L L 

-+ * -+ 

I dxl I a.x2 f( lx1-x2 I) I dx3 I dx4 h( lx
3
-x4 I) 1jJ3(rl)1jJl(r2) - - 2 

0 0 0 0 

(4.20) 

where f( Ix I) and h( Ix I) are defined by 2.11 and 4.18. 

4.3.3 The expression for 

-+ -+ -+ -+ 
iµ1 (r1 )iµ3(r 2 ) is obtained from the expression for iµ

3
(r1 )iµi(r 2 ) by 

-+ -+ 
taking the complex conjugate and interchanging r

1 
and r

2 
• It is 

easily seen that 

(4.21) 

4.3.4 The last term to be cal-

-+ -+ -+ -+ 
culated in the expression 4.11 of Bu2(L,r1 ,r2 ) is 1J!2 (r1 )1J!2(r2 ) 

This quantity is expressed as follows with the help of 1. 36 

L xl L x3 

1J!2(:tl)iµ2(:t2) = (ik) 2 (-ik) 2 

I dxl J 
dx2 J dx3 I dx4 J I I I 

0 0 0 0 -+ -+ -+ -+ 
KlK2K3K4 

{ i(S+ K2h'1 -i(K:3+ 
-+ -+ 
K4) •r 2 (-i -+ -+ 2 (L-x1 ) + ~(x1-x2 ) x e e exp 2k ((Kl+ K2) 

-+ -+2 2 ) - (K
3
+ K4 ) (L-x

3
) - K4(x

3
-x4 )) 

• dN(Kl'x
1

) dN <K
2 

,x
2

) dN*(K
3 

,x
3

) dN* <K4 ,x4 ) } ( 4. 22) 

Again, for a Gaussian random process 
-+ 

dN(K ,x ) :: m , · m m 
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123*4* = 12·3*4* + 13*·24* + 14*•23* and again there will be three con-

tributions to the integrals of 4.22. The method of calculation is the 

-+ -+ 
same as the one used in the detailed calculation of ~3 (r1 )~f (r2 ) . It 

is easily seen that the exponential terms in 4.22 can be neglected in 

every one of the three terms which can be expressed in the following way. 

4.3.4.1 Contribution of J:2.3*Ii* 

00 00 

(4.23) 

-co -oo 

4.3.4.2 Contribution of '13*·24* 

-+ -+ -+ 
iK

2 
• ( r 

1
-r 

2
) -+ 

e F n (K2 , I x2-x4 I ) 
00 00 

-00 -00 

(4.24) 

4.3.4.3 Contribution of 14*·23* 

-+ -+ -+ 
iK

2
•(r

1
-r

2
) -+ 

e F n (K2 , I x2-x
3 
i ) 

-oo -00 

(4.25) 

expressed in terms of the functions f and h defined by 2.11 and 

4.18. Assembling together the results of 4.22, 4.23, 4.24 and 4.25, it 

is found that 

x3 

dx3 J dx4 (f(!x1-x2 !) f(!x3-x4 1) 
0 
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which can be written 

L 

+ ~4 ( J 
0 

(4.26) 

We have calculated all 

the terms in the expression 4.11 of Bu2 . The expressions for each 

term obtained in 4.12, 4.20, 4.21 and 4.26 are then collected together 

to yield 

4 L 

= \ [ f dxl 
0 

L 

+ ~4 ( J 
0 

or 
L L 

[ I dxl I dx2 ( f ( I xl -x2 I ) - h ( I xl -x2 I ) ) ) 2 

0 0 

The functions f, h and F defined respectively by 2.11, 4.18 

and 4.9 obey the following relation F( !xi ,p) = f( lxl) - h( !xi) . 
Then 



and according to 4. 8, 

Bu2 = 1 (B )2 
2 ul 
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(4.27) 

The calculation of the second order term Bu2 in the power 

series expansion of the correlation function Bu (1,;
1
,;

2
) vas long but 

rather straightforward. The calculation of higher order terms becomes 

very tedious; however, the third order term Bu
3 

has given the follow­

ing result 

B =1.(B )3 
u3 6 ul (4.28) 

where Bul is given by 4.8. In the next section we show how an analyt-

-+ -+ 
ical sum of the power series expansion for Bu(L,r1 ,r

2
) can be found. 

4.4 Expression of the Correlation Function 

-+ -+ 
The correlation function Bu(L,r

1
,r

2
) of the wave function 

-+ -+ 
between two points (L,r1 ) and (L,r2 ) in a plane perpendicular to the 

direction of propagation of the wave has been expressed in a power 

series expansion of 2 
€ ~ the variance of the index of refraction flue-

tuations . 
00 

A2 l 
0 q=O 

( 4. 2) 

An explicit calculation of the first terms in this expansion has shown 
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that 

which suggests that 

(4.29) 

Although it would be too tedious to calculate the general term 

Buq' it can be seen that the averaging ~rocess allows us to neglect the 
i (EK ) •r 

exponential terms (other than e p ) in all cases. This is again 

due to the assumption that the wavelength of the wave is much smaller 

than the inner scale of the turbulence. Therefore we would have 

obtained the correct expression for 
-+ -+ 

Bu(L,r1 ,r2 ) if we had neglected 

the exponential terms in u(L,;
1

) and u*(L,;
2

) (other than 
. ;t: -+ . ;t: -+ 
iE K. •r

1 e p p and 
-iE K. •r 

e p p 2 ) . to start with, i.e. if we had used the 

expressions of the wave functions in the geometrical optics approxima-

ti on l. 43. 

We will now verify that by using the expression 1.43 for the 

wave functions u(L,;1 ) and u*(L,~2 ) the correct result for the cor-

relation function 

which we can write 

B 
u 

given by 4.29 is obtained. From l. 43 

L 

= A~ exp ( i c:k f dx1 (n1 (x1 ,!!"1 ) - n1 (x1 ,;2))) 

0 

2 ikB = A e 
0 

( 4. 30) 

(4.31) 
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where S is defined by 4.30 and 4.31. Since n1 (x,;) is a Gaussian 

random process with zero mean, B is expressed as follows: 
u 

and s2 is calculated in the following way 

or 

L 

s2 = e:2 f dx1 

0 

L 

(4.32) 

dxl f dx2 ( nl(xl,;l) nl(x2,;l) + nl(xl,;2) nl(x2,;2) 

0 

From the definition of the correlation function of the index of refrac-

ti on 

of 4.32, the correct expression for 

L 

Bu(L,1;1-;2 1} =A; exp{-k
2 f dx1 

0 

is 

L 

f dx2 (Bn( lx1-x2! ,o) 
0 

(4.33) 
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According to 4.10, the above expression for the correlation 

is the same as the expression 4.29 suggested 

by the results for the first terms of the power series expansion 4.2 

Then the correlation function 

-+ -+ 
of the wave function between two points (L,r

1
) and (L,r

2
) in a plane 

perpendicular to the direction of propagation of the wave a~er a propa-

gation distance L through a randomly turbulent atmosphere is correctly 

given by expression 4,33, This expression is valid for any propagation 

distance L and any strength of the turbulence for an optical wave 

whose wavelength is much smaller than the inner scale of the turbulence. 

This expression is the same as the one which can be calculated from the 

-+ -+ 
geometrical optics approximation. The correlation function Bu(L,r

1
,r

2
) 

-+ -+ 
is a function of the distance between the two points (L,r

1
) and (L,r

2
); 

we shall call it p = 1;1-;2 1 . This is due to the assumption that the 

-+ 
index of refraction n(x) is an isotropic and homogeneous random field, 

-+ -+ 
i.e. the correlation function Bn(x1 ,x2 ) of the index of refraction 

-+ -+ 
between two points x

1
,x

2 
is only a function of the distance between 

-+ -+ 
the two points Bn(x1 ,x2 ) - We can express B (L,p) 

u 
in 

a simpler way by making the same change of variables as in Section 2.5, 

x2-xl = a and x +x = 
1 2 28 . The integral 

L L L L-a/2 

I dxl I dx2 is then replaced by 2 J da J dS the integration with 

0 0 0 /2 
respect to s is performed in 4,33, Then, 
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L 

Bu(L,p) =A~ exp(-2k
2

L f (Bn(a) - Bn( Ja2
+ p

2
))da) 

0 

(4.34) 

Since the propagation distance L is much larger than any cor-

relation length of the index of refraction, we have neglected a with 

respect to L to obtain the above expression for B (L,p). 
u 

In order to obtain an explicit expression for B (L,p) in terms 
u 

of the parameters of the turbulent medium, we shall evaluate the inte-

gral in 4.34 for two different models of the atmospheric turbulence: 

the Kolmogoroff model and the model leading to the correlation function 
2 -(a/r )2 

B (a) = s e 0 

n 

4.5 The Correlation Function B (L,p) 
u 

Atmospheric Turbulence 

and the Kolmogoroff Model of 

. In the Kolm.ogoroff model of atmospheric turbulence the correla~ 

tion function B (a) of the index of refraction is given by 2.45 
n . 

1. C212/3(1 
2 

B , (a) = a ) for O f: a f R, 
n 2 n o 12/3 R,4/3 0 

0 0 

l C212/3(1 
2/3 

B (a) B 11 (a) a 
for Q, ~ a~ L = = n n 2 n o 12/3 0 0 

0 

0 for a ~ L 
0 

We introduce the following definition 

L .1L2 - p2 
0 0 

G(p,L ,t ) = f B (a) da f B ( ja2+ p2) da (4.35) 
0 0 n n 

0 0 
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81)\(~) . 

Bh\.(O) 

B "(o<) .t/3 
m =1-(tX/Lj 

B (O) 
l't\ 

·FIG 4-1 _The area in between 
the two curves is 

L. l..-Co-_ f-2. 

G(e,P.,L.)= J 8,,,_(o<) cJ<\ - j81n(W,'+f1
) d« 

0 0 
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G(p,L ,£ ) is equal to the integral appearing in expression 4. 34' since 
0 0 

B (a) = 0 for a ~ L and B ( /a2+ p2) = 0 2 ~ 2 2 
for a - L - p 

n 0 n 0 

G(p,L ,£ ) is equal to the area in between the two curves of Fig. 4.1. 
0 0 

We shall evaluate G ( p ,L , Q, ) explicitly in the three following cases: 
0 0 

0 £ p ~ Q, Q, ~ p ~ L and p ~ L . 
0' 0 0 0 

B (L,p) 
u 

for p ~ Q, 
0 

In the case where p is smaller 

than the inner scale of turbulence, G(p,L ,£ ) is given by the follow­
o 0 

ing sum of integrals 

Q, L /.e,2_ p2 
0 0 0 

G(p,L ,£ ) 
J 

B , (a) 
J 

B " (a) da J 
B I dp2+ 2 = da + a ) da 

0 0 n n n 
0 0 0 

where B , and B " - are given by 2. 45. The explicit calculation of 
n n 

the above integrals is carried out and it is found, with the help of 

4. 35, that 

B (L,p) 
u 

for p ~ Q, 
0 

(4.36) 
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4.5.2 B (1,p) 
u 

for In the case 

G(p,1 ,t ) is gi.ven by the following expression 
0 0 

Q, 
1 

/12 -
0 0 

G(p,1 ,£ ) I B , (a) r B 11 (a) I = da + da 
0 0 n n 

0 ,Q, 0 
0 

p2 

B .,(Jp2+ 2 a ) da 
n 

where B , and B " are given by 2.45. With the help of 4.34 and 
n n 

B (1,p) 
u 

is obtained 4.35, the expression for 

0 

+ 
2 1/2 } ) 

(1 - ~) ) ( 4. 37) 

0 

for ,Q, £ p :f 1 
0 0 

4.5.3 B (1,p) for p ~ 1 
u 0 

In the case where p is larger 

than the outer scale of the turbulence, 

Lo 

G(p,1 ,£ ) = f B (a) da = 1 c2 15/3 
0 0 n 5 n 0 

0 

Then the correlation function B (1,p) is given by the following 
u 

expression 

for p ~ 1 
0 

We notice, with the help of 1 . 47, that for P ~ 1 
0 

(4.38) 

B (1,p) = (u(1))(u*(1)) • The correlation B (1,p) for p ~ 1 is 
u u 0 



-+ 
equal to the product of the two independent averages u(L,r

1
) and 

u(L,;
2

) . 

In this section we have calculated the correlation function 

B (L,p) explicitly in terms of the parameters of the turbulent atmos­
u 

phere, the inner scale of the turbulence £ , the outer scale of the 
0 

turbulence L , and the structure constant C 
o n Expressions have been 

found for various ranges of p : p ~ £ £ ~ p ~ L and p ~ L In 
0' 0 0 0 

all cases the correlation function B (L,p) is a decreasing function 
u 

of the propagation length L , of the strength of the turbulence c 
n 

and of the distance between points p and an increasing function of 

the wavelength of the wave A 

4.6 The Correlation Function B (L,p) 

lation Function B (a) 
n = E: 

u 

2 

The correlation function 

B (a) 
n 

= E: 
2 

2 2 -a /r 
0 

e 

with a Refractive Index Corre-

( 4. 39) 

has o~en been used in calculations relating to the problem of wave 

propagation in turbulent media. Although it gives an incorrect descrip-

tion of the correlation of the index of refraction in the atmospheric 

turbulence, the calculations are usually easier and lead to simple 

analytical expressions where the only parameters describing the turbu­

lence are the variance of index of refraction fluctuations i::
2 and the 
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correlation length r 
0 

Reasonable values of r vary from a few 
0 

centimeters to a few meters. For propagation lengths L much larger 

than r , the limits of the integrals in 4.34 can be extended to 
0 

infinity and we can write according to 4.39 

L 00 2; 2 2 2 2 

I B ( Vcl+ 
2 2 I 

-a r -(a +p )/r 
(B (a) - (e o 0 

p )) da = £ e n n 
0 0 

2; 2 00 2 2 2 2 
2 -p r 

J 
-a /r 2 /; r (1 

-p /r 
(1 - e o) 0 

da = e o) = £ e £ 
2 0 

0 

da 

Then the following expression is found for the correlation function 

B (L,p) 
u 

4.7 Conclusion of Chapter IV 

In Chapter IV the two-point correlation function 

of the wave function of an optical wave propagating in a turbulent 

medium has been calculated. The only approximations made are based on 

the assumption that the wavelength of the wave is much smaller than the 

inner scale of the turbulence. The starting point is the formal power 

-+ 
series expansion for u(x) which was found in Chapter I. Although 

no information about the phase and the amplitude of the wave could be 

-+ 
obtained from the power series expansion for u(x) without some 

approximations , we were able to obtain a correct and analytical 
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~ ~ 

expression forihe correlation function u(L,r1 )u*(L,r2 ) = Bu(L,p) . 

This correlation function is expressed only in terms of the wave number 

k , the distance of propagation L , and the correlation function of 

the index of refraction B (a) , 
n 

B (L,p) 
u 

0 

This is a function of the distance 

(4.34) 

between the two 

points. B (L,p) has been calculated explicitly in terms of the para.m­
u 

eters of the turbulent medium for two different models of the 

turbulence: 

(a) The Kolmogoroff model with the index of refraction cor-

relation function given by 2.45 

(b) A model for which the correlation function of the index 
-a2/r2 

of refraction is given by B (a) = £
2 

e 0 

n 

The correct expression 4.34 for B (L,p) 
u 

which is valid for all 

propagation lengths and all turbulence strengths is the same as the 

expression for B (L,p) 
u 

which is obtained with the help of the geo-

metrical optics approximation . This is only true for a propagating 

wave with a wavelength much smaller than the inner scale of the tur-

bulence. 

In the next chapter, we shall compare the results obtained in 

Chapter IV with the expressions for B (L,p) 
u which are obtained by 

using the various approximations described in Section 1.5. 
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CHAPTER V - THE CORRELATION FUNCTION B (L,p) 
u 

IN VARIOUS APPROXIMATIONS 

-+ -+ 
The correlation function u(L,r

1
)u*(L,r2 ) was calculated in 

Chapter IV. In order to calculate this function, the formal power 

-+ -+ 
series expansion for u(L,r1 ) and u*(L,r

2
) obtained in Chapter Iwas 

used and an analytical expression for B (L,p) 
u 

was obtained. In this 

chapter we compare the results of Chapter IV with the expressions for 

the correlation function B (L,p) obtained by using various approxima­
u 

tions: the Born approximation, the geometrical optics approximation, 

and the Rytov approximation. 

5.1 B (L,p) 
u 

in the Born Approximation: Bu(B) (L,p) 

The solution of the wave equation 1.1 in the Born or single scat-

tering approximation is given by 1.37. We can express the correlation 

x 

With the help of relations 2.3 and 2.4, one obtains 
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and it is easily seen that the above expression can be transformed to 

yield 

L 

Bu(B) (L,p) = A~ ( 1 + 2~1 J 
0 

(5 .1) 

where B is the correlation function of the index of refraction. 
n 

This expression is only valid when the following condition is fulfilled 

B (a) da 
n 

<< 1 

or, for a Kolmogoroff spectrum, 

5.2 B (L,p) 
u in the Geometrical Optics Approximation: Bu(GO)(L,p) 

In the geometrical optics approximation 

tion of the wave equation 1.1 is given by 1.43. 

2 L << t /A , the solu­
o 

It has been shown in 

-+ * -+ Section 4.4 that the correlation function u(L,r1 )u (L,r2 ) obtained 

from the geometrical optics approximation is the same as the correct 

expression obtained without any approximation. 

Although the geometrical optics approximation is valid for 

propagation distances L such that 
2 

L << t /A ~ the expressions for 
0 

the statistical mean of an optical wave function u(L,;) and for the 

correlation function u(L,;1 )u*(L,;2 ) obtained by using this approxi­

mation are valid for any length of propagation and any turbulence 
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strength. This is true provided that the wavelength of the wave is 

much smaller than the smalles t scale of the turbulence i 
0 

5.3 B (L,p) 
u 

in the Rytov Approximation: Bu(RY) (L,p) 

According to 1.48, the correlation function Bu(RY)(L,p) in the 

Rytov approximation is 

L 

Bu(RY) =A~ exp(iEk f 
0 

which can be written 

iEkB 
e (5.3) 

where B is defined by 5.2 and 5.3. B is a Gaussian random process 

are Gaussian random 

processes with zero mean. Then, according to 3.4, 

s2 is given by the following expression: 
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J J 

K2 K2 

( -i 2~ (L-x1 ) 
-+ -+ i 2~(L-x1 ) -+ -+ 

iK1 ·r1 
-iK ·r 

-+ -+ 1 2 * -+ -+ ) 
>< e e d.N(Kl,rl) - e e dN (K1 , r 2 ) 

x ( e -

or 

s2 = 

x 

.K2 
l 2 

2k(L-x2) 
e 

L L 

J 
dx

1 J dx2 

0 0 

d.N(K1,X:1) 

K2 
-+ -+ -+ -+ 

-iK •r i2~(L-x2 ) iK2 ·r
1 d.N* ( K2 , ; 2 ) ) ( 5 • 5 ) d.N(K2 ,;1) - e 

2 2 e 

J J 
(e-

-+ -+ 
Kl K2 

-+ + 
d.N(K2,rl) 

i ~ 2 2k( 1 (L-xl) + K2(L-x2)) 
-+ 

i(K
1

+ 
-+ -+ 
K2) •r 1 

+ e 

e 

i 2 2 
2k(Kl(L-xl)+ K2(L-x2)) 

-+ -+ 
i(K •r -

1 1 
e 

-+ -+ -+ 
-i(K +K )•r 1 2 2 

e 

The statistical averaging is performed with the help of relation 

2.4. It introduces delta functions the 

integration with respect to is then performed to yield 
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1 1 00 

82 = 
I J J 

K2 
-+ -+) 2 dxl dx2 aK ( cos ( 2k ( 21-x1 -x2 ) ) - cos K•p 

0 0 - oo 

x F n ( K, I x1 -x2 1 ) ( 5. 6) 

where We then follow the same procedure which was used 

-+ 
in Section 3,3 for the caculation of u(1,r) in the Rytov approxima-

ti on. 

In order to simplify expression 5.6; the following change of 

variables is introduced: x +x = 28 2 1 
The integration 

with respect to 8 is then performed. For propagation distances 1 

much larger than the outer scale of the turbulence and for a wavelength 

much smaller than the inner scale of the turbulence, 8
2 

can be 

expressed as follows (see 2.3) 

or 

1 oo 

s2 = 4L f da f aK (K~L sin(~L) - cos K•P) Fn(K,a) 
0 -oo 

82 = 

1 oo 

41 f da Ja.K( ( ~ sin 
K 1 0 - oo 

( 5. 7) 

-+ F (K~ a) is the transverse two-dimensional Fourier transform pf the 
n 

correlation function of the index of refraction; therefore, 

00 

-+ -+-+ -+ -+ -+ 
dK (1 - cos(K•p)) F ( K,a) = B (a,p=O) - B (a,p) 

n n n 
-oo 

= B (a) 
n 



-173-

for a homogeneous and isotropic index of refraction. 

With the help of this last result, of expressions 5.7 and 5.4, 

and of the correct expression 4.34 for the correlation function 

Bu(L,p) , the correlation function Bu(RY)(L,p) in the Rytov approxi-

mation is expressed in terms of B (L,p) and of a correction factor: 
u 

L oo 

f da f aK (1- ;L sin ~L)F0 (K,al) 
0 -"" 

( 5. 8) 

The correction factor is the square of the correction factor which 

appeared in the expression 3.14 for u(RY)(L,p) . Since the correction 

factor in 5.8 does not depend upon p , Bu(RY)(L,p) has the correct 

dependence upon p , the transverse coordinate. But the validity of 

Bu(RY)(L,p) is limited to propagation distances and turbulence 

strength such that the correction factor in 5.8 remains much smaller 

than one, i.e. from 3,15,0.62 C
2

k716111 / 6 
<< 1 in the Kolmogoroff 

. n 

spectrum. 
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CHAPTER VI - INVESTIGATION OF THE INTENSITY CORRELATION FUNCTION 

6.1 Introduction 

Analytical expressions for the statistical mean u(L,;), 

the correlation function u(L,;1 )u*(L,;
2

) of an optical wave propagat­

ing through a randomly turbulent medium,have been obtained in Chapters 

II and IV under the condition A << £ , where A is the wavelength of 
0 

the wave and £ is the inner scale of the turbulence. In this section 
0 

the investigation of. another statistical quantity will be performed: 

the correlation function of the wave intensity I(~) = u(~)u*(~) 

between two points (L,;1 ) and (L,;2 ) in a plane perpendicular to the 

direction of propagation of the wave a~er a propagation length L 

through a randomly turbulent atmosphere. It is defined as follows: 

BI(L,;
1
,;

2 ) = I(L,;1 )I(L,;
2 ) = u(L,;1 )u*(L,;1 )u(L,;

2
)u*(L,;2 ) 

(6 .1) 

The method of calculation is straightforward. The correlation 

function BI is expressed as a power series expansion of £ , follow-

ing 1.14 

I £(m+p+s+t) w (1)w*(1)w (2)wt*(2) 
m p s 

m,p,s,t 

where the indices m,p,s and t run from zero to infinity. The 

(6. 2) 

notation wm(l) = wm(L,;1 ) has been used and the w's of various orders 

are given by 1.36. The only terms contributing to BI are the terms 

for which m+p+s+t is an even number and we can write 
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00 

B = A4 \ 2q B 
I 0 l E Iq 

q=O 
where I ~)w*(1)w (2)w~(2) 

m+p+s+t=2q m P s 

(6.3) 

-+ -+ 
The explicit calculation of B

1
q(L,r1 ,r2 ) for q=O and q=l 

will be carried out in the remainder of this section. The complexity 

of the calculations for q > l will become apparent. However, the 

-+ -+ -+ 
correctecpression for B12 (L,r1 ,r

2
= r 1 ) will be given. It will then 

be shown that it is not possible to find a useful analytical expres-

-+-+ 2 -+ 
B

1
(L,r,r) = I (L,r) without some 

approximations. 

6.2 The Term of Order Zero 

From 6.3 and the fact that w (L,;) = 1, we can readily write 
0 

(6.4) 

6.3 The Term of Order One 

The term of order one in the power series expansion for 

-+ -+ 
B1 (L,r1 ,r2 ) is given in 6.3 by the combinations of the indices m,p,s 

and t for which m+p+s+t = 2 , i.e. the following l + 3 + 2x3 = 10 

combinations 

(6.4a) 

According to expression 4.4~ the first two terms of expression 6.4a 
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-+ -+ 
Bul(L,r

1
,r2 ) is the first order term in the expansion 4.2 of 

-+ -+ Bu(L,r
1

,r
2

) , the wave function correlation function. The result for 

Bu
1

(L,;
1
,;

2
) is given by 4.8. It is then fo1ind that 

L 

I dx2 F ( I x1 -x2 I , 0) = 0 

0 0 

since F( lxl,p=O) = 0 according to the definition 4 . 9. The only term 

different from zero in 6.4a is the last one; then 

~1 (~) is given by 1.21; therefore B11 can be expressed as 

K2 

( 

-i_h(L-x ) 
2k l 

e 

K2 

( 

-i~(L-x ) 
2k 2 

e 

L 

( ik) ( +ik) f 
0 

I I 

A similar calculation has been carried out in Section 5. 3 

(6. 4b) 

(see equation 5,5). The statistical averaging is performed with the 

help of relation 2.4 which introduces the delta functions 

-+ -+ -+ 
and o(K

1
- K

2
) . The integration with respect to K2 is then carried 

out 
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L L 00 

2k2 

J J J 
2 

B
11 

(L, i) -+ ( -+ -+ K -+ -+ ) = dxl dx2 dK cos K•p - cos(~(2L-x -x )- K•p) 2k 1 2 
0 0 -oo 

x F n ( K, I xl -x2 I ) (6.5) 

In order to simplify this integral, the following change of 

The integration with 

respect to B is easily performed; we make use of the assumption 

>.. << .e,o to find 

(6.6) 

A similar expression is considered by Tatarski (20) (the reason 

for the similarity will become apparent in Section 7.3.) The same 

arguments given by Tatarski will be used here to transform 

the following way. The limit in the integral J da Fn(K,a) 

extended to infinity since the function 
0 

F (K,a) is zero for 
n 

can be 

a > L 
0 

the outer scale of the turbulence. The two-dimensional Fourier trans-

form F (K ,K ,a) of the correlation function of the index of refrac­
n y z 

tiorr fluctuations is related to the three-dimensional Fourier transform 

¢ (K ,K ,K ) in the following way: n x y z · · 

00 

¢ (K ,K ,K ) 1 I cos(K a) F (K ,K ,a) da = n x y z 21T x n y z 
-oo 

00 

therefore I F (K ,K ,a)da = TI0 (O,K ,K ) n y z n y z 
0 

For a homogeneous and isotropic random index of refraction, the three-
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dimensional Fourier transform ¢ (K ,K ,K ) is only a function of the n x y z 

magnitude of the vector (K ,K ,K ), i.e. 
x y z 

¢ (K ,K ,K ) 
n x y z 

Recalling that K
2= K2 

+ K2 we have 
y z ' 

(/J (O,K) = (/J (K) Then with the 
n n 

help of all the above considerations B11 (L,p) is expressed as 

(6.7) 

Polar coordinates are then 
00 

gral f d is replaced by 

used to simplify this expression, the inte­

J'a• J KdK • The integration with respect 

0 0 
to ~ is then easily performed, since 

2n 

f 
0 

d~ cos(Kp cos~)= 2n J (Kp) 
0 

where J is the Bessel function of order zero. Then finally 
0 

00 

2 
( ) ( k . K L) ~ (K) KdK J

0 
Kp 1 - - sin YJ 

K2L k n 
(6.8) 

The first order term (in £
2 ) B

11
(L,p) in the power series expan­

sion for the intensity correlation function B
1

(L,p) is given by 

expression 6.8 in terms of the three-dimensional Fourier transform 

¢ (K) of the correlation f'unction of the index of refraction fluctua­
n 

tions . 

The next step would be to calculate the second order term (in £
4) 

B
12

(L,p); this calculation, although very tedious, has been attempted 

for the simpler case p = 0 ; the results are given in the following 

section. 
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6.4 The Term of Order Two B
12

(L,;,;) 

The cal.culation of the second order term (in E:
4) B

12
(L,;

1
J

2
) 

involves the computation of all the terms in 6.3 for which the indices 

m+p+s+t = 4 • There are 35 such combinations. B
12 

can be expressed 

as 

+ same term as above, where and are interchanged 

(6.9) 

The first two terms are equal to zero according to 4.27, since 

-+ -+ 
Bu

2
(L,r,r) = 0 . The computation of all the other terms in 6.9 has 

-+ -+ 
been carried out. The result for B

12
(L,r,r) is given by expression 

6.10. This expression is rather formidable; many attempts to greatly 

simplify it have failed. This is mainly due to the presence of the 

-+ -+ 
terms involving the dot product K

1
·K

2 
in the integrals. If there 

-+ -+ 
were no dot products K1 ·K2 

, expression 6.10 would reduce to its first 

1 2 
term equal to 2(B11 ) and we could expect 

-+ + 
B

1
(L,r,r) to be equal to 

2 -+ -+ exp(E: B
11

(L,r,r)) where 
-+ -+ 

B
11 

(L,r,r) is given by .6.8 with p = 0 ~ but 

-+ -+ 
there is no apparent reason to drop the dot products K

1
·K

2 
We 

emphasize this point in view of the upcoming comparison of our results 

with similar results obtained by using various approximations. 
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The calculation of BI
3 

and higher order terms becomes imprac-

ti cal and worthless since no analytical expression for the correlation 

function BI(L,;1 ,;
2

) can be anticipated from the look of the first 

order (in E
2

) and second order (in E
4

) terms. In the next section, the 

results obtained for the correlation function BI(L,;
1
,;

2
) and 

BI(L,i,i) = BI(L,0) are summed up. 

6.5 Considerations on the Variance of the Intensity Fluctuations 

~ 2 
BI(L,O) = (I(L,r)) and on the Intensity Correlation Function 

The variance of the intensity fluctuations 
~ 2 

BI(L,O)= (I(L,r)) 

of an optical wave propagating a distance L through a randomly turbu-

lent atmosphere has been expressed in a power series expansion of 

the variance of the index of refraction fluctuations 

00 

2 
E 

=A~ l E
2

q Biq(L,O) 
q=O 

(6.3) 

The terms q=O,l and 2 have been explicitly calculated. The results 

are given by expressions 6.4, 6.8 with p = O, and 6.10. Since 

there is no apparent recursion relationship relating BI1 (L,O) and 

BI2 (L,O), no guess can be 

the sum BI(L,O) = A~(l + 

formulated for an analytical expression for 

2 4 
E Bil (L,O) + E BI2 (L~O) + ···) • In the 

view of a later discussion, we notice that BI2 (L,O) given by 6.10 is 

1 2 1 2 
not equal to 2(BI1 (L,O)) or - 2(BI1 (L,O)) . It is then concluded 

that there exists no exact simple theoretical expression for the 
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variance of the intensity fluctuations B
1

(L,O) while such exact expres­

+ 
sions could be found for u(L,r) and the correlation function 

+ + 
u(L,r1 ) u*(L,r

2
) . Analytical expressions chosen to fit the experimental 

data have been proposed by some authors (21),(22); these expressions, 

which are not the results of a theoretical investigation, are useful, 

however, in practical calculations. We shall extend this discussion in 

Chapter VIII. 

The first order term B11 (1,;
1
,;

2
) in the power series expansion 

6.3 for the intensity correlation function has been expli-

-+ -+ 
citly calculated. The second order term B

12
(L,r

1
,r

2
) has also been 

calculated~ although the result has not been explicitly written down 

because of its complexity. No simple recursion relationship between 

can be found without some approxima-

tions; therefore there exists no simple analytical expression for the 

-+ -+ 
correlation function B

1
(L,r1-r

2
) which is valid for any propagation 

distance L and any strength of turbulence. In the next section we 

shall calculate this function using various approximations. 
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CHAPTER VII - THE INTENSITY CORRELATION FUNCTION BI(L,p) 

UNDER VARIOUS APPROXIMATIONS 

7.1 BI(L,p) in the Born Approximation: BI(B)(L,p) 

7.1.1 Formal calculation of BI(B)(L,p) In the Born approxima-

tion, the solution of the wave equation 1.1 is given by expression 1.37 

Therefore , the correlation function BI(B) can be expressed as fol lows: 

(7.1) 

-+ 
and $1 (L,r2 ) = $1 (2) have been used . 

Let us first look at the terms in 2 
E which have been calculated pre-

viously. The first two terms are given by expression 4.7, where 

-+ -+ 
$1(1)$f (1) + $1(2)$f (2) = rl= r2 ' therefore 

L L 

2k2 I dxl f 
0 0 

which can be expressed as 

00 

dx2 I a.K Fn(K,Jx1-x2 J) 

-oo 

B (a) da 
n 

(7 .2 ) 
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where B (a) is the correlation function of the index of refraction. 
n 

The third term in 2 . 
E: in 

by 6.5 and 6.8. We call 

7.1 is equal to 

Bil(B) the term 

B
11 

(L,;1 ,?
2

) which is given 

2 
in E: and write 

Bil(B) (L,p) 

(7.3) 

The term in 4 
E: has already been computed in the calculation of 

B12 (L,p), (see 6.9). We call this term B12 (B) 

= E 4k 4 (1 L L aK Fn(K, lx1-x2 Ir BI2(B) dxl I dx2 
0 

+ E 4k 4 (f L I aK cos(K.;) Fn(K, lx1-x2 Ir dxl I dx2 

0 0 -oo 

-oo 

Fn(K,lx1-x2I>) 2 

(1.4) 

Each of the three terms appearing in 
l 

B12 (B) is equal to 4 of the 

square of one term in Bil(B) , i.e. · if Bil(B) = a+b+c, then 

L 

l 2 2 2 
BI2(B) = 4(a + b + c ) 

00 

, where 
2 

a"' 4k L 

b = 4k2
L 2TI

2 J J
0

(Kp) ¢n(K) K dK = 4k2
L 

0 

0 

J Bn(a) da 

01 
0 

J Bn (Va.2+ p2) da. 

0 

(7.5) 

(7.6) 
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c = 

The intensity correlation function BI(B)(L,p) in the Born 

approximation is given by the following expression 

(7.7) 

where are given by 7.3 and 7.4. 

We now calculate these quantities explicitly in the Kolmogoroff 

spectrum for p = 0 . 

7.1.2 Explicit expression of BI(B)(L,O) in the Kolmogoroff 

spectrum. In this paragraph the variance of the intensity fluctuations 

~ 2 
BI(B)(L,O) = (I(B)(L,r)) is explicitly expressed in terms of the 

parameters of the turbulent medium in the Kolmogoroff spectrum, i.e. the 

model of atmospheric turbulence in which the correlation function of the 

index of refraction is given by 2.45. According to 7.7, 

where 

Bil(B)(L,O) = a+ b + c , 

B (a) da 
n 

The last equality has been written with the help of 2. 46. For p = O, 

b = a according to 7.5 and 7.6. The expression 
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8 2k2L I (1 -
k K2L 

r/J (K) K dK b+c = -- sin -) 
K2L k n 

0 

has been calculated by Tatarski (19). The result is 

c2 k7/6 111/6 2 
(7.8) b+c = 1.23 = E: B

11 
(L,O) n 

The quantity b + c is also equal to the first order term B
11

(L,O) 

in the power series expansion 6 . 3 of the variance of the intensity flue-

tuations B
1

(L,O) (see equation 6.6 with p = 0). 

Let us look at the ratio 

a 
b+c = 

o.8k2 c2 1513 L 
____ n __ o ____ = 0. 6 

l.23k7/6 c2 111/6 
n 

a 
or b+c = This ratio is much larger than one for dis-

tances L such that L < L2 /A ~ l06m for L = 1 and A= lµ . 
0 0 

Therefore, for short distances where . we expect the Born approximation 

to hold, we can neglect b +c with respect to a and also writ e 

2 2 2 2 a + b + c ~ 3a . The variance of the intensity fluctuations in the 

Born approximation is then expressed as follows in the Kolmogoroff 

spectrum: 

BIB(L,O) (7.9) 
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7.2 B
1

(L,p) in the Geometrical Optics Approximation: BI(GO)(L,P) 

The solution of the wave equation 1.1 in the geometrical optics 

approximation is given by expression 1.43. The correlation function of 

the intensity fluctuations in the geometrical optics approximation: 

BI(GO)(L,p) is then given by 

therefore 

(7.10) 

The geometrical optics approximation does not account in a satis-

factory way for the intensity fluctuations of the wave, although it gave 

-+ 
correct expressions for u(L,r) and the correlation function 

7,3 B1 (L,p) in the Rytov Approximation: BI(RY)(L,p) 

The solution of the wave equation 1.1 in the Rytov approximation 

is given by expression 1.48 or. in terms of 

term 1.21 in the expansion 1.14 for 
-+ 

ijJ(L,r) 

= 

-+ 
iJi

1
(L,r), the first 

-+ = u(L,r)/u (L) 
0 

order 

The intensity correlation function is then expressed as follows: 
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(7.11) 

or we can write 

(7.12) 

where 8(L,p) is defined by 7.11 and 7.12. 8(L,p) is a Gaussian random 

variable with zero mean; therefore 

Then 8
2 = (~1 (1)+ ~i(l) + ~1 (2) + ~i(2)) 2 where the notation 

~1 (L,~1 ) - ~1 (1) has been used, 

(7.13) 

The first term in 82 
is equal to 2B11 (L,p) (see expression 6.4b). 

We notice that the last two terms in 82 can be written as 

= 2B
11

(L,O) 

Therefore 
2 8 = 2B11 (L,p) + 2B11 (L,O), and from 7.13~ 

(7.14) 

or 
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00 

x (7.15) 

This expression represents the correlation function in the Rytov 

approximation of the intensity fluctuations of an optical wave propagat-

ing a distance L through random atmospheric turbulence. 0 (K) is 
n 

the three-dimensional Fourier transform of the correlation function of 

the index of refraction. This expression is in agreement with Tatarski 

since in its terms the correlation function BI(RY)(L,p) can be 

expressed as follows: (see Appendix B), 

where BA(p) is the correlation function of the logarithm of the 

amplitude of the wave and x2 = BA(O) • BA(p) and x2 
are given 

by equations 7.54 and 7.50 in Tatarski (23); their expressions used in 

7.16 lead to expression 7.15. 

In order to compare the expression BI(RY)(L,p) and the correct 

expression for BI(L,p) calculated in Chapter VI, we can only look at 

the first order term in 
2 

E since only this term has been explicitly 

found in the expansion of BI(L,p) The first order term in the 

correct expression for BI(L,p) is BI
1

(L,p) given by 6.8. The first 

order term in the Rytov approximation is, according to 7.14, 
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Bll ( L, p) + Bll ( L, 0) . Even in the first order in 2 
t: the correct 

expression for B1 (L,p) and its counterpart in the Rytov approximation 

differ; therefore the expression for BI(RY)(L,p) is expected to give 

a valid result when B11 (L,O) << 1 or, according to 7.8, 

1.23 c2 k7/l6 Lll/6 
<< 1 in the Kolmogoroff model of turbulence. This 

n 

result has been verified experimentally by measuring the variance of 

the intensity fluctuations I
2 

In the next section we examine the 

experimental results available in the literature for the variance of 

the intensity fluctuations r2 and relate them to the results obtained 

in Chapter VI and other results obtained by various authors. 
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CHAPTER VIII - PROBLEMS OF CURRENT INTEREST IN THE FIELD OF 

OPTICAL WAVE PROPAGATION THROUGH A RANDOM MEDIUM 

In Chapter VI we have tried to find an analytical expression for 

-+ -+ . 
the intensity correlation function BI(L,r) = I(L,r1 ) -+ -+r) I(L,r

1
+ and 

the variance of the intensity fluctuations BI(L,O) = 2 -+ 
I (L,r) We 

have shown that it is not possible to find such expression without some 

approximations. We have calculated explicitly the first two terms 

B11 (L,O) and BI2 (L,O) in the power series expansion 6.3 for 

2 -+ = I (L,r) (8.1) 

Using the Kolmogoroff spectrum, we have derived the following expres-

sion for the first term E
2 

Bil (L,O) (we call it in terms of the 

parameters of the turbulence and of the wave. According to 7.8, 

2 
E B

11
(L,O) = 2 = c2 k7/6 111/6 a1 1.23 n (8.2) 

L is the distance of propagation of the wave through the atmospheric 

turbulence , k is the wave number and C is the structure constant. 
n 

In this chapter we compare our results with recent experimental 

results. We point out their salient features and we discuss how the 

work in the field of optical propagation through random media can be 

extended to explain the results. 

Some experimental work has been performed recently to determine 

the dependence of the intensity fluctuations upon the turbulence con-

ditions (8),(24),(16),(25). In these references the function 
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2 2 
a

1 
= (log I - log I) 

is investigated. 2 
a

1 
is the variance of the fluctuations in the 

logarithm of the wave intensity. If we assume that log I is 

normally distributed, we can write 

2 
crI = (log I - log I) 2 = log( (_

1

12
)
2

) = log( BI(L,O) ) 
(Bu(L,o)) 2 (8.3) 

where B1 (L,O) is the variance of the intensity fluctuations and 

B (L,O) is the average intensity. 
u 

According to the results of Chapter IV, we have B (L,O) = A2 
u 0 

With the help of 8.1, 8.2 and 8. 3, we write 

2 2 4 
a1 = log(l + a1 + E B12 (L,O) + ···) (8. 4) 

Figure 8.1 shows the results of Gracheva (24). 2 
o

1 
is plotted as 

a function of 
2 

al increases as for small 

From 8.4 we see that if 

2 
al 

2 a
1 

<< l , then 

Then as 
2 

a
1 

approaches the value of one, 
2 

a
1 

increases more slowly, 

passes through a maximum, and eventually saturates at the value of 0.8 

when 2 
al >> l . Other workers have observed the saturation of the 

variance of the logarithm of the intensity for strong turbulence and 

long propagation distances (ai >> 1) but failed to notice a pronounced 

maximum of this function. 
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Note that in the Rytov approximation 

approximation is valid only when 
2 

a << 1 . 
1 

therefore this 

No satisfactory theoretical explanation has been given for the 

observed behavior of when is larger than one. However, it is 

interesting to point out the work of Salpeter (26) in a similar area. 

This author theoretically investigated the behavior of the variance r2 

of the intensity of a wave after a passage through a phase screen. A 

phase screen is a medium which modifies the phase of a wave passing 

through but not its amplitude. He found that r 2 is an increasing 

function of the parameter 13 = /zr/J/ka
2 

where z is the distance 

from the phase screen; k is the wave number. ¢0 and a are two 

parameters which characterize the phase screen, 00 is the rms phase 

disturbance and a is the correlation length of the phase fluctuations. 

r2 
increases as 13

2 
for 13 < 1 and has a maximum for 13 = 1 . The 

value 13 = 1 corresponds to a distance 2 
Z = ka /r/J which is the aver­

o 

age focal length of the phase screen. r 2 then reaches a constant value 

for 13 > 1 . Although the similarity between a thin phase screen and a 

turbulent atmosphere is not evident, the analysis of Salpeter could be 

2 
oI • used to explain the experimental results obtained for 

Some authors have proposed empirical formulas for as a 

function of ai designed to fit the experimental data. These formulas 

which are derived from intuitive arguments can be useful for practical 

calculations. We give four examples: 
2 

2 -a 
(1) oI = 1n(2 e 1) Reference (21) 

2 -a 2 
(2) a I = 1n(l + (1 - e 1 ) ) Reference (22) 
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(3) 
2 

£n(2 -
1 

2) or = 
1 + 01 

2 

(4) 2 R-n(l + 
01 

) or = 
(1 + 01)2 

These four functions are plotted in Figure 8.1, together with 

the experimental data of Gracheva. The fit is good for o1 << 1 and 

o1 >> 1 but, since the four functions are monotonous functions, the 

empirical formulas are not in good agreement with the experimental 

results when has a value close to one. 

More experimental results on the behavior of the intensity flue-

tuations are needed in order to obtain a precise evaluation of any 

optical system operating through the atmospheric turbulence. 

Another important question partially unanswered, concerning the 

propagation of an optical wave through a randomly turbulent atmosphere, 

is: What is the probability distribution of its intensity fluctuation? 

Some authors (1) have suggested that it is a log-normal distribution; 

i.e. in r is normally distributed. Others (5)(21) have predicted a 

Rayleigh distribution. By a simple physical argument we show how these 

two distributions can arise. 

(1) Log-normal distribution. Ass.ume that we have an optical 

link through the atmospheric turbulence where the receiver is inside 

the turbulent area. Let us suppose also that the turbulent medium is 

composed of a large number of slabs. A is the amplitude of the opti­
o 

cal electric field at the source. A~er having passed through the 

first slab, the amplitude of the field is equal to A 
0 

multiplied by 
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a random factor R1 . R1 is a random func t ion of the turbulence in the 

first slab. The amplitude of the field is A
1 

= A
0
R

1 
at the output of 

the first slab. At the output of the second slab the amplitude is 

A2 = A1R2 = A
0

R1R2 where R2 is a random function of the turbulence 

in the second slab. At the receiver, the wave has passed through N 

slabs and the field is 

A = 

Its logarithm is 

£n A = 

ARR · · ·R o 1 2 N 

£n A 
0 

N 

+ I 
n=l 

£n R 
n 

If the lengths of the slabs are larger than the outer scale of 

the turbulence 1
0 

, we can consider that the random functions R
1

,R
2
··· 

RN are independent of each other. According to the central limit 

theorem (30) £n A tends to a Gaussian distribution, i.e., the ampli-

tude and the intensity have a log-normal distribution. 

(2) Rayleigh distribution. The optical field at the receiver 

can in some cases be equal to the sum of a large number of random 

fields which have been scattered independently by different portions of 

the turbulence. This situation occurs when the effect of multiple 

scsttering is important, i.e. when the unscattered part of the wave 

function u(L) calculated in Chapter II is 

or , according to 2.47, 1
5 

k2c2 15/3 L >> 1 • 
n o 

such that lu(1)i « A 
0 

We have seen that under 

intermediate turbulence with L = lm, this condition is fulfilled for 
0 

L > 7.1 km. 
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The application of the central limit theorem to a large number 

of independently scattered fields leads to the conclusion that the 

field at the receiver has a Gaussian distribution. The phase of such 

fields has a uniform probability distribution and its amplitude has a 

Rayleigh probability distribution (31). 

Experimental results to date (8)(24)(16)(25) show evidence of a 

log-normal distribution. However, the accuracy of these results has 

been disputed (21) for the following reason. The experiments have 

tested the distribution around its mean value where the log-normal and 

the Rayleigh distributions are very similar , A valuable test would be 

to examine carefully the tails of the probability distribution function 

where the two distributions differ. 2 An X test performed on the ex-

perimental data would provide useful information on the shape of the 

probability distribution of the intensity fluctuations. 

In this chapter we have pointed out the following problems of 

current interest in the field of optical wave propagation through a 

random medium: (a) A theoretical explanation of the saturation of the 

variance of the intensity fluctuations with turbulence strength and 

propagation distance. (b) What is the probability distribution function 

of the intensity fluctuations'? 

The answers to these problems would be useful in evaluating the 

performances of various optical communication schemes through the 

atmospheric turbulence as we shall see in the following chapter. 
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CHAPTER IX - OPTICAL COMMUNICATION THROUGH RANDOM ATMOSPHERIC 

TURBULENCE 

9.1 Introduction 

In the previous chapters we have considered the propagation of an 

optical wave through a random atmospheric turbulence, and we have 

derived statistical information for the wave function in terms of the 

statistical properties of the index of refraction of the turbulent 

-+ 
medium. Analytical expressions for the mean wave function u(x) and 

the correlation function u(L,±1 )u*(L,;2 ) have been obtained. The 

intensity correlation function I(L,±1 )I(L,±2 ) has also been investi­

gated. In this chapter these results are applied to the comparative 

evaluation of two schemes of optical communication: 

Scheme (1). Heterodyne detection of a phase-modulated optical beam 

Scheme (2). Video communication 

In both schemes the information to be transmitted is impressed upon an 

optical carrier at frequency w by means of a phase modulator operat­
o 

ing at a frequency w 
m 

Sidebands at frequencies w - w and 
o m 

w + w are generated. In Scheme (1) the local oscillator electric 
o m 

field at a fixed frequency w + 8.w 
0 

is mixed in the plane of the non-

linear detector with the modulated optical electric field. The output 

current of the detector has an oscillating component at a frequency 

equal to the difference frequency between the local oscillator fre-

quency and the modulated optical signal frequency 8.w + wm . The 

output current of the detector is then fed into an amplifier tuned 
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around the frequency 6w. Apart from the fixed frequency shi~ 6w , 

the output current of the amplifier is a replica of the modulating 

signal, i.e. the information to be transmitted. It is very important 

that the frequency shift 6w be constant in time. Therefore, in a 

practical heterodyne optical communication system, using two lasers-­

one as the optical carrier and the other as the local oscillator-­

sophisticated electronic equipment is needed to stabilize the frequency 

of each laser and to lock their frequencies together. 

An alternative method is video communication. In Scheme (2) the 

reference signal is transmitted with the phase modulated optical beam 

along the communication path. In practice, the linearly polarized 

electric vector of a laser is divided into two linearly polarized com­

ponents at right angles to each other. One component is phase-modulated; 

the other component is used as the transmitted reference. Since the 

carrier frequency and the reference frequency are the same, the output 

current of the nonlinear detector is proportional to the modulating 

voltage. The detection of the phase-modulated information in Scheme (2) 

does not require a local oscillator and therefore the complexity of the 

receiving apparatus is reduced, while the complexity of the transmitting 

apparatus is not increased, In this chapter we shall calculate the 

signal-to-noise ratios (S/N) in the output current of the detector for 

both schemes of communication in terms of the statistical functions of 

the wave function which have been evaluated in the previous chapters. 

The signal-to-noise ratios for heterodyne and video communication 

schemes will then be compared and their comparative performances will 
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be numeric ally expre ssed in t e rms of the l ength of the communication 

link and the strength of the turbulenc e and diameter of the detector. 

9.2 Signal-to-Noise Ratio in Optical Mixing Detecti on 

The detection of a phase-modulated optical signal is accomplished 

by mixing it with a reference signal on a square law detector such as a 

photomultiplier. In the most general case, we assume that both the 

reference and the information signal have random amplitudes and phases 

due to random fluctuations of the refractive index along the propagation 

path in the atmosphere. The amplitudes and phases are not constant over 

the area of the detector; at each point M on the detector defined by 

r and Q they are functions of r and Q , see Fig. 9.1. 

The modulated signal in the plane of the detector is then 

i[w
0

t + ¢m(t) + ¢8 (r,Q)] 
e (9.1) 

A
8

(r,Q) and ¢8 (r,Q) are the random amplitude and phase due to the 

turbulent nature of the transmission medium. w is the frequency .of 
0 

the optical wave. ¢ (t) is the modulation phase which contains the 
m 

information. 

We shall consider in the remainder ¢ (t) = o sin wt m m 

0 = modulation index 

w = modulation frequency m 

The reference signal is written as 

~(r,Q) ~(r,Q) 
i((w

0
-tiw)t+¢ + ¢R(r,Q)) 

(9.2) = e 
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Figure 9.1 NOTATIONS IN THE PLANE OF THE DETECTOR 

R is the radius of the detector 
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where ~(r,G) and 0R(r,G) are the random amplitude and phase due to 

the turbulent transmis·sion medium. 

0 is a constant phase factor 

A~ and A~ are the intensities of the light information 

signal and reference signal in watts/m2
. 

In the general case, the optical carrier frequency and the fre-

quency of the reference beam are not equal; we call the difference 

frequency 6w. The total field in the plane of the detector is 

i[wt+0 (t)+0
8

(r,G)] 
+ ER(r,Q) = A

8
(r,G) e 

0 
m 

i ( ( w 
0 

- 6w )t + 0 + ¢R ( r , Q ) ) 
+ ~(r,G) e (9,3) 

The output current of the nonlinear detector is 

In 

E 

2TI R 

i(t) = nq f 
2hv dQ f 

0 0 

R is the radius of the detector 

n is the quantum efficiency of the detector 

\) is the frequency of the optical wave ( \) = w /2n) 
0 

2TI R 

the following expressions f dQ f r dr is replaced by I 
0 0 E 

is the area of the detector. 

From 9,3 we find 

ET(r,Q) E;(r,Q) = [E8 (r,G) + ~(r,G)][E8 (r,G) + ~(r,G)]* 

2 2 = A8 (r,G) + .A.R(r,G) + ~(r,G) A8 (r,G) 

i[6wt + o sin wmt-¢ +¢8 (r,G) -¢R(r,G)] 
x Re e 

(9.4) 

dcr 
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and the output current is 

i(t ) = 2~~ Re J do [A~(r,G) +~(r,G) + 2A8 (r,G) ~(r,G) 
L: 

x 
ei[tiwt + cS sin wmt- r/J + rf; 8 (r,G) - r/JR(r,G)J 

The current i(t) has a d.c. component 

iDC = 2~~ J do [A~(r,G) + ~(r,G)] 
L: 

and an oscillating part 

(9.5) 

= nq Re 
hv J 

i[tiwt +cS sin wmt- r/J + r/J
8

(r,G)- r/JR(r,G)] 
do ~(r,G)A8 (r,G)e 

Putting r/J = TI/2, we write 

= sin(o sin wt) cos(tiwt +tir/J(r,G))+ cos(o sin wt) m m 

x 

If we consider only the terms oscillating at frequenc i es tiw and 

tiw ±. wm , then 

o t cos(tiwt + tir/J(r,G)) 
m 

+ J (cS) sin(tiwt + tir/J(r,G)) 
0 

(9.6) 

(9.7) 

(9.8) 

(9,9) 

In the case of video communication, the frequencies of the optical car-

rier beam and of the reference beam are equal; then tiw = 0 and 
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J (o) sin 6 (r,G) represents an additional d.c. part of the current 
0 

which is introduce d by the random phase fluctuations. The d.c. current 

iDC of 9. 5 is thus more accurately given by 

sin 60 ( r, G) ] (9.10) 

Using 9.6 and 9.9 we find the signal part of the current 

nq 2J ( o) sin w t 
hv 1 m 

f da ~(r,G) AS(r,G) cos(6wt + 6¢(r,G)) 

E (9.11) 

Since ~,AS and 60 are random fields, the output currents iDC and 

is(t) are also random fields. A statistical averaging will have to be 

performed later. With the help of expressions 9.10 and 9.11, the 

signal-to-noise ratios for both local reference and transmitted refer-

ence can be calculated. 

9.3 Signal-to-Noise Ratio for Heteroayne Detection 

In a heterodyne detection scheme, a local reference is mixed 

with the incoming optical signal at the detector. The amplitude of 

the reference signal is constant over the plane of the detector; we 

call it ~(r,G) = ~ . 
The reference signal does not contain any phase fluctuations 

0R(r~G) = 0 . We shall drop the index S and call t.~(r,G) = 0(l) (r,G). 

We call A(l)(r,G) the amplitude of the modulated signal. From 9.11 

the signal part of the current is 
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i 8 (t) = (~~) 2J1 (o) ~sin wmt f do A(l)(r,G)cos(llwt +¢(l)(r,G ) ) 

l: (9.12) 

Expression 9.12 is the correct form of the output current of 

the nonlinear detector at frequency llw ±. wm in heterodyne detection. 

The optical signal is phase modulated at a frequency w 
m 

therefore 

it contains sidebands at the frequencies w + w and w - w 
o m o m 

The 

current i
8

(t) as in 9.12 is obtained by the beating of both the 

sidebands of the signal beam with the reference beam at frequency 

w
0 

- llw at the nonlinear detector. The term sin wmt cos(llwt + ¢(1 )) 

in 9.12 is seen to be the sum of two terms with frequencies llw + w • - Il). ., 

Each term corresponds to the mixing of one sideband of the optical 

signal with the reference at frequency w - llw . 
0 

The term 

sin wmt cos(llwt + ¢(1 )) has widely been incorrectly replaced by 

sin((wm+ llw)t + ¢( 1 )) . The term sin((wm+ llw)t + ¢(1 )) represents 

twice the contribution of one sideband to the output current of the 

detector at frequency llw + wm , while the term sin wm t cos ( llwt + ¢ (l)) 

which describes correctly the output current, represents the sum of 

the contributions of the two sidebands at frequencies w ±. w 
o m 

We shall, however) in the remainder of this paper, make use of 

the formally incorrect expression 9,13 for the output current of the 

detector because it is simpler to relate it to known functions describ-

ing the turbulence: 

i 8 (t) = ~~ 2J1 (6) ~ f do A(l)(r,G) sin((llw +wm)t + ¢(l)(r,G)) (9.13) 

l: 
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In Appendix C we shall make use of expression 9 .12 to calculate the 

signal power in the output current of the detector. We will show that 

the correct result which is then obtained is analytically more complex 

but quantitatively is at least within a factor 1/2 of the incorrect 

result obtained by using 9.13. 

The signal power in the output current of the detector in the 

case of heterodyne detection S(l)(t) is defined as S(l)(t) = i~(t) 

where i
8
(t) is given by expression 9 . 13 

ff doldo2 A(l)(rl,Ql) 
l: l: 

x A(l)(r2 ,Q2 ) sin((t.w+wm)t + ¢(l)(r1 ,Q1 )) sin((t.w+wm)t+¢(l)(r2 ,Q2 )) 

In order to find the time average of S(l)(t) we make use of the 

relationship: 

The time average of cos(2(t.w + wm)t + ¢(l)l + ¢( 1 )2 ) is zero over an 

averaging time much larger than the period 27f I ( 1::iw + w ) 
m 

of the oscil-

lating current . Therefore the time average of the total signal power 

in the output current of the detector will be 
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s(l) = (~)2 2Ji(o) ~ f J dol do2 A(1)1 A(1)2 
E E 

x 

We can also write 

since 

f I dol do2 A(l)l A(l)2 
E E 

I f dol do2 A(l)l A(l)2 sin(~(l)l - ~(1)2) = 0 
E E 

due to the symmetry of the double integration with respect to the coor-

dinates r 1 ,G
1 

and r
2

,G
2 

At this point we notice that the wave function u(~) which is 

the solution of the wave equation 1.1 is expressed in terms of its amp­

litude A(~) and phase ¢(~) as u(~) = A(~) ei¢(~) and 

according to our notations. L is the distance of propagation through 

the random medium. The total statistically averaged power is then: 

s(l)(L) = (~) 2 
2Ji(o) ~ J J do1 do2 u(l)(L,;1 ) u(1 )(L,;2 ) 

E E 
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This expression for the power S(l) is directly related to the 

correlation function of the wave function between two points in a plane 

perpendicular to the direction of propagation of the wave 

This function has been evaluated in Chapter IV. Then 

s(l)(L) = (~) 2 2J~(o) ~ J Jdo1 do2 Bu(l)(L,p) 

E E 

(9 .14) 

We have kept the subscript (1) in Bu(l)(L,p) . It means that 

Bu(l)(L,p) is the correlation function of the wave function 

u(l)(L,r) of the optical beam carrying the information. 

From 9.10 the d-c part of the output current of the detector is 

. _--2]9. 2 2 
1 DC - 2hv AR TIR (9.15) 

where the optimal conditions for heterodyne detection have been assumed, 

i.e. the amplitude of the reference signal is much larger than the 

amplitude of the information signal .~ >> A(r,Q) • 

The shot noise power N(l) associated with iDC is 

where q = electronic charge = 1.6 x l0-19 coulomb 

B = bandwidth of the circuit following the detector 

R = radius of the detector. 
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The signal-to-noise ratio S(l)/N(l) for heterodyne detection of a 

phase-modulated signal transmitted over a path L in the atmospheric 

turbulence is then given by combining 9.14 and 9.16. The result is 

(9.17) 

The signal-to-noise (S/N)(l) in the output current of the detector for 

the heterodyne detection of a phase modulated optical signal is given 

by expression 9.17 in terms of the correlation function Bu(l)(L,P) of 

the optical signal wave function. It is sensitive to both amplitude 

and phase fluctuations introduced by the turbulent propagating medium. 

9.4 Signal-to-Noise Rat1o for Video Communication 

In the video communication scheme the modulated optical signal 

is mixed on a nonlinear detector with a transmitted reference signal. 

The amplitude and phase fluctuations of both the information sig-

nal and the reference signal are the same because they follow the same 

atmospheric path; then 

~~(r,Q) = 0 (9.18) 

If the laser electric vector has equal components in the directions of 

polarization of the reference and information signals, then 

(9.19) 
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We shall call A( 2 )(r,G) = ~(r,G) = A8 (r,G) the conunon ampli­

tude. Note that the subscript (2) refers to either the part of the 

optical beam which carries the information signal or the part which is 

used as the transmitted reference signal. 

The signal part of the output current at w of the detector is given 
m 

with the help of 9.11, 9.18 and 9.19 

tor is 

i 8 = ~ 12 J 1 (o) f da A(2 )(r,G) 

L 

(9.20) 

The total signal power s( 2 ) in the output current of the detec-

f J 
2 2 

A(2)(rl,Gl)A(2)(r2,G2) 

L L (9.21) 

It is then noticed that 

= 

The total statistically averaged power s( 2 ) involves the statistical 

-+ -+ 
average I( 2 )(1,r1 ) I( 2 )(1,r2 ) which is e~ual to the intensity corre-

lation function BI( 2 )(1,p) which has been examined in Chapter VI. We 

can then write from 9.21 

s( 2 )(1) = (~~) 2 2Ji(o) J J da1 da2 BI( 2 )(1,p) 

L L 

(9.22) 
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The d-c part of the output current of the detector due to opti-

cal signal power is, from expressions 9.10, 9.18 and 9.19 

= nq I 
hv 

E 

= .!19.. I hv (9.23) 

E 

where I( 2 )(°L,;) is the intensity of either the reference beam or the 

~ 

information signal beam at a point (L,r) in a plane perpendicular to 

the direction of propagation of the wave at a distance L from the 

source. 

We shall assume in the derivation of the noise power that the 

shot noise due to the incoming optical signal overcomes every other 

noise term in the detector output current, This assumption will be 

discussed in Appendix D and proved to be correct for large enough 

optical powers in the plane of the detector. 

total 

since 

The noise power N( 2 ) in the output current of the detector is 

N( 2 ) = 2q B iDC = 2qB ~ J do I( 2 )(L,;) 

E 

B is the bandwidth of the circuits following the detector. The 

average noise power is 

2 
f do 

2 

f N( 2 ) (L) 2 .D.9..._ B ~ 2 219- B do Bu( 2 )(L,O) (9 . 24) = I( 2 )(L,r) = hv hv 
E E 

The signal-to-noise ratio 

S( 2 )/N( 2 ) - (S/N) (2 ) 
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for a video corrununication link which uses a transmitted reference to 

demodulate a phase modulated information signal is found by combining 

9.22 and 9.24 

( S/N) ( 2 ) = _n_ 
hvB 

f I dcrl dcr2 BI(2)(L,p) 

Ji(o) _E_E~--~~~------

f do Bu ( 2 ) ( L, 0 ) 

E 

(9.25) 

The signal-to-noise ratio (S/N) (
2

) in the output of the detector 

for video comrnunicationisgiven by expression 9,25 in terms of the 

intensity correlation function of the optical signal wave function 

. BI( 2 )(L,p) and the average Bu( 2 )(L,O) . It is only sensitive to 

amplitude fluctuations and not to phase fluctuations. 

9.5 Comparison of Performances 

9.5.1 Definition and expression of a performance criterion. We 

have calculated the signal-to-noise ratios for both heterodyne and video 

communication links through a randomly turbulent medium. In the first 

scheme the S/N is influenced by the amplitude and phase fluctuations 

introduced by the turbulent propagation medium, while in the second 

scheme only amplitude fluctuations affect the S/N. The purpose of 

this section is to examine and compare the two communication schemes. 

We define the quantity R 

R = 
( S/N) ( 2 ) 

(S/N)(l) 
which is a measure of the relative performance 

of a video communication system over a heterodyne communication system. 

From 9.17 and 9.25 
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I I dcr1 dcr2 BI( 2 )(L,p) 

R 
1 1 I: I: = 2 Bu( 2 )(L,O) 

x 

J I dcr
1 

dcr
2 Bu(l)(L,p) 

I: I: 

since Bu( 2 )(L,O) is independent of r and Q and therefore 

f da Bu( 2 )(L,O) = Bu( 2 )(L,01) 

I: 

f da = 
I: 

(9.26) 

We now evaluate R in the absence of any turbulence; we call it 

R In that case, 
0 

4 
BI(2)(L,p) = Ao(2) where are the amplitudes of the 

phase modulated optical beam for heterodyne and video communcation 

schemes respectively. 

R = 
0 

Then 
2 

Ao(2) 
1 
2 2 

Ao(l) 

(9.27) 

We suppose that the same laser optical beam with amplitude A 
0 

at the 

plane of the detector is used as a carrier for both communication 

schemes. 

In the case of heterodyne detection, the phase of the total laser 

electric vector is modulated; then Ao(l) = A
0 

• In the case of video 

communication the laser polarization is chosen to have equal components 

along two perpendicular directions . One polarization component is used 

as the information signal, the other as the transmitted reference 

signal. Then only the amplitude 

of the reference signal is also 

A I 12 is modulated and the amplitude 
0 

A /./2 9 Fig. 9.2a. 
0 
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x x 

x 
x 

y 

(a) (b) 

Figure 9.2 CONFIGURATION OF THE POLARIZATIONS IN THE 
CASE OF A COMMUNICATION SCHEME WITH A 
TRANSMITTED REFERENCE 

The direction X is the direction of the laser polarization and 
of the parallel polarizer 

y 
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A polarizer is used at the detector to mix the information with 

the reference signal, Fig. 9.2b. If the polarizer is parallel to the 

laser polarization, then the amplitude of the modulated optical signal 

along this direction is 

A 
0 -x 

12 
1 

12 
= 

A 
0 

2 

The amplitude of the reference signal is also A /2 . 
0 

Therefore 

and R = 1/8 , 
0 

This minimum value for R is obtained in 

the absence of any turbulence; under these circumstances the heterodyne 

detection scheme has a signal-to-noise ratio 8 times larger than the 

shot-noise-limited video communication scheme. However, as both com-

munication links go through a turbulent atmosphere, the figure of merit 

R increases from its minimal value of 1/8; the longer the communication 

link and the stronger the turbulence, i.e. the more adverse the com-

munication conditions, the larger R becomes. When R is larger than 

one, the video communication scheme is defini t.ely preferable to 

the heterodyne detection scheme. 

In the next section we determine numerically R for various 

communication conditions where the important parameters are the length 

of the communication link, the strength of the turbulence and the 

diameter of the detector. 
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9.5.2 Quantitative. comparison. In order to find a numerical 

estimate for R , we replace the functions Bu(l)(L,p) and BI( 2 )(L,p) 

by expressions found in Chapters IV and VI. According to 4.34, 

2 
Bu(l)(L,p) = Ao(l) exp(-G(L,p)) (9.28a) 

where 

L 

G(L,p) = 2k
2
L( I

0

Bn(a)da 

/12-P2 

- of Bn(Ja2+ p2) da)) 

0 

( 9. 28b) 

B (a) is the correlation function of the refractive index fluctuations. 
n 

The following numerical calculations are performed for the Kolmogoroff 

model of turbulence. In that case the correlation function B (a) is 
n 

given by 2.45. 

Our theory has proven insufficient to find an exact analytical 

expression for the intensity correlation function B
1

(
2

)(L,p) . For 

this numerical application we shall choose an expression for 

BI( 2 )(L,p) which "fits" the experimental data described in Chapter 

VIII 

4 
= Ao(2) 

2 

( 

cr1 (L,p) ) 
1 + 2 = 

l+cr
1

(L,p) 

where is equal to the first order term in 

1 
2 

l+cr
1

(L,p) 

(9.29) 

2 
E in the power 

series expansion 6.3 of B1 (L,p) 

ter VI, and according to 6.8 

In terms of the notations of Chap-



2 cr
1

(L,p) 2 
=EB

11
(L,p) 

- 217-

00 

J (Kp) 
0 

(9. 30) 

E
2

¢n(K) is the three-dimensional Fourier transform of the correlation 

function of the refractive index fluctuations in the Kolmogoroff 

spectrum ( 27) 

2 
E: ¢ (K) = 

n 

0.033 c2 K-ll/ 3 
n 

0 

for 

for 

For p = 0 with the help of 7.8, we have 

K < K = 5.48/t m o 

K > K 
m 

(9.31) 

(9,32) 

2 a
1

(L,O) is exactly equal to the variance of the fluctuations in the 

logarithm of the wave intensity when it is smaller than one, i.e. 

(log I(L) - log I(L)) 2 2 = a
1

(L,O) 

and also 

2 
1 + cr

1
(L,O) for 

for 
2 a (L,0) « 1 
l 

2 cr
1 

(L,O) « 1 

In Tatarski's notations cri(L,O) is called 4x2 (23). It is 

called in the experimental papers of Gracheva et al (8),(24) and 

also in DeWolf (21). cri(L,O) is equivalent to C~(O) in Ochs et al 
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(16),(25). 

With the help of 9.28a, 9.29 and 9.26 we can write 

ff 1 dcr1 dcr2 ( 2 - 2 ) 

R 
1 H 

l+cr1 (L,p) 
= 8 

JI dcr1 dcr2 exp(-G(L,p)) 

(9.33) 

EE 

The double integration J J dcr1 dcr2 is performed over the area of the 

E E 
detector; it is equal to 

where D is the diameter of the detector. This four-fold integral 

can be replaced by the following integral (28),(29) 

D 

nf (D
2 

Arc cos(p/D) - p /n2
- p

2
) p dp 

0 

1 
2 ) 

l+cr
1

(L,p) 
since the functions to be integrated, (2 and 

exp(-G(L,p)) depend only upon p , the distance between the two 

points of coordinates (r
1

,G
1

) and (r
2

,G
2

) in the plane of the detec-

tor. We will therefore use the following formula for a numerical 

estimation of R 

1 

J (cos -1 xJ1-x2 )(2 
1 )x dx x - 2 l+ cr
1 

(.L ,Dx) 
R= 1 0 (9.34) 

8 1 

f (cos -1 x V1- x
2

) exp(-G(L,Dx))x dx x -

0 
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whe r e the change of variable x = p/D has been used and G(L,Dx) is 

given by expression 9.28b and from 9.30 and 9.31 

K 

2 o1 (L,Dx) I 
0 

m 

x 

K = 5.48/£ ; £ is the inner scale of the turbulence. m o o 

(9,35) 

Numerical calculations of R as a function of D~ the diameter 

of the detector for various propagation distances L in various tur-

bulence strengths have been performed. The results are shown in 

Figures 9.3 to 9,5 for a wavelength of lµ and in Figures 9.6 and 9,7 

for a wavelength of 10µ. The values of R vs . D for the case >. = lµ 

are presented for three turbulent strengths: 

Fig. 9,3 Weak turbulence: c -8 -1/3 = 10 m 
n 

-8 -1/3 Fig. 9.4 Intermediate turbulence: c = 3 x 10 m 
n 

Fig. 9.5 Strong turbulence: c = l0-7m-l/3 . n 

In a weak turbulence R is smaller than one for a propagation dis-

tance L = 103m for any reasonable receiver diameter. For 

R becomes larger than one for D = 46 cm, while when L = l05m, R is 

larger than one for D > 7 cm . 

In the case of an intermediate turbulence, the values of the 

receiver diameter for which the ratio R isJarger than one are 

smaller than in the case of a weak turbulence . It is even more true 

for a strong turbulence. As an example, let us examine a communication 

link of 10 km at a wavelength of lµ through the atmospheric 
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turbulence. Under a weak turbulence the video communication scheme 

has a larger signal-to-noise ratio than the heterodyne detection 

scheme (R > 1) for a receiver diameter larger than 46 cm. This value 

drops to 11 cm for an intermediate turbulence andto 2 cm for a strong 

turbulence. It is then concluded that for long propagation through the 

atmospheric turbulence where large receiver diameters are needed to 

detect a sizable amount of power, the video communication scheme is 

definitely more favorable than the heterodyne detection scheme. This 

is even more so, the stronger the turbulence and the longer the propa-

gation path. This is due to the fact that the heterodyne S/N is very 

sensitive to the phase fluctuations impressed upon the signal beam by 

the atmospheric turbulence, while in the video communication scheme 

there is a cancellation of the phase fluctuations between the "refer-

ence" and the "signal" part of the beam. 

The heterodyne S/N is a rapidly decreasing function of . the 

detector diameter . In Figures 9.8 and 9.9 we show the S/N normalized 

to its value in the absence of turbulence as a function of the .receiver 

diameter D for various propagation lengths under intermediate and 

strong turbulences at a wavelength of lµ . These curves follow 

closely the curves "R" vs "D " . 

By comparing Figures 9.4 and 9.6, for example, we notice that for 

two similar communication links (same Land C ), R is always smaller 
n 

for a wavelength of 10µ than for a wavelength of lµ . This is due to 

the fact that the correlation function B (L , p) as expressed by 4.36 
u 

-1/'A 
2 

and 4.38 varies as e with wavelength and therefore decreases 

more slowly with a longer wavelength . 
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50 D (cm) 100 

Figure 9.8 NORMALIZED 11S/N
11 

vs "D" FOR HETERODYNE 
DETECTION AT Iµ IN AN INTERMEDIATE TURBULENCE 
Cn = 3X 10-8 m- l/3 
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50 D (cm) 100 

Figure 9.9 NORMALIZED "SIN" vs 11 D11 FOR HETERODYNE 
DETECTION AT Iµ. IN A STRONG TURBULENCE 
Cn = 10- 1m- 113 
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Figure 9.10 NORMALIZED 11S/N 11 vs 11 D11 FOR HETERODYNE 
DETECTION AT 10µ. IN A STRONG TURBULENCE 
Cn = 10- 1m- 113 
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This effect can be seen by comparing Figures 9.9 and 9.10. In 

Figure 9.10 we have plotted the normalized signal-to-noise ratio for 

heterodyne detection at 10µ vs the diameter of the detector in a strong 

turbulence. Under similar conditions the S/N for heterodyne detection 

decreases faster for lµ than 10µ. 

9.6 Conclusion 

In Chapter IX we have calculated the signal-to-noise ratios for 

two schemes of optical communication through the atmospheric turbulence: 

(a) heterodyne detection, (b) video communication. A numerical esti-

mate of their comparative performance has been calculated for various 

propagation distances, turbulent conditions and detector diameters. 

In the absence of turbulence, the signal-to-noise ratio of 

scheme (a), (S/N)a is 8 times larger than (S/N)b. 

In atmospheric turbulence under realistic communications condi-

tions, (S/N\ becomes larger than (S/N) . 
a 

(For a communication link 

at a wavelength of lµ over a distance of 10 km through intermediate 

turbulence, (S/N)b = 10(8/N)a when the diameter of the detector is 

42 cm.) 

The performances of the video communication scheme are even 

better for longer communication lengths and stronger turbulent condi-

tions. This is true because this scheme is not sensitive to the 

random phase fluctuations introduced by the turbulent atmosphere. In 

scheme (b) the phase fronts of the signal beam and the reference beam 

are always in coincidence because they experience the same phase dis-

tortion. In scheme (a) only the phase of the signal beam is distorted 
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by the atmospheric turbulence,and in the plane of the detector there is 

destructive interference between the distorted signal phase front and 

the plane reference phase front. Scheme (b) is more sensitive to 

amplitude fluctuations than scheme (a), but they play a lesser part 

than phase fluctuations. 
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CONCLUSION 

We have studied theoretically the propagation of an optical wave 

through a random medium. We have derived a power series expansion for 

-+ 
the wave function u(x) which satisfies the wave equation 

-+ 
n(x) is the index of refraction of the 

turbulent medium. Exact analytical expressions have been obtained for 

-+ 
the average wave function u(x) and the two-point correlation func-

tion u(~1 )u*(~2 ) in terms of the two-point correlation function of 

-+ -+ 
the index of refraction n(x

1
) n(x2 ) • The intensity correlation 

tigated, but no simple analytical expression for it can be found with-

out some approximations which limit its validity. Our results are 

compared with similar results which have been obtained by using approxi-

mate methods: The Born, the geometrical optics, and the Rytov 

approximations. 

The Kolmogoroff model of turbulence is then used to find 

explicit expressions for the statistical moments of the wave function 

u(~) in terms of the turbulence strength, the length of propagation 

and the wavelength of the wave. 

In Chapter VII some problems of current interest are pointed 

out . These concern mainly the behavior of the wave intensity fluctua-

tions for long propagation paths and strong turbulent conditions and 

the probability distribution function of the intensity. 

The signal-to-noise ratios in the output current of a nonlinear 

detector are then calculated for two schemes of optical communication 

through atmospheric turbulence: 
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Scheme (a) - Heterodyne detection, 

Scheme (b) - Video Communication. 

(S/N) is a function of the correlation function of the wave 
a 
+ + 

function u(x1 ) u*(x2 ) which has been calculated in Chapter IV. 

+ + 
is a function of the intensity correlation function I(x

1
)I(x

2
) 

which has been investigated in Chapter VI. 

A numerical comparison of these two schemes of communication 

through a turbulent atmosphere is performed by computing the ratio 

R = (S/N)b/(S/N)a in terms of the propagation distance, the turbu-

lence strength, the diameter of the detector, and the wavelength. 

It is found that for long propagation distances in weak turbu-

lence, or for a propagation distance of. a few kilometers in interme-

diate turbulence, the video communication scheme has a larger signal-

to-noise ratio than the heterodyne detection scheme. Scheme (b) 

performs even better for longer distances or stronger turbulences. 

This is due to the fact that (S/N) is very sensitive to the random 
a 

phase fluctuations introduced by the turbulent medium, while in scheme 

(b) the phase fluctuations are cancelled between the reference and the 

signal portion of the beam since both go through the same atmospheric 

path. 

It is found that a communication link at a wavelength of 10µ 

is less sensitive to phase fluctuations than at a wavelength of lµ 

Our analysis of the signal-to-noise ratios has been based on the fol-

lowing assumption: In the case of video communication the largest 

source of noise in the detector is the shot noise due to the optical 
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signal. A careful evaluation of all the communication parameters 

(areas of the transmitter and the receiver, length of propagation, 

wavelength, transmitted power, noise equivalent power of the detector) 

is needed in a particular communication system to determine whether 

this condition is satisfied. 
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LIST OF FIGURE CAPTIONS 
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Figure 9,6 "R" vs "D" for an intermediate turbulence 

C = 3 x 10-Sm-l/3 at A = 10µ 
n 

Figure 9.7 "R" vs "D" for a strong turbulence 

A = 10µ 

Figure 9,8 Normalized "S/N" vs "D" for heterodyne detection at lµ 

under an intermediate turbulence C = 3 x 10-Sm-l/3 
n 

Figure 9.9 Normalized "S/N" vs "D" for heterodyne detection at lµ 

under a strong turbulence C = 10-7m-l/3 
n 

Figure 9.10 Normalized "S/N" vs "D" for heterodyne detection at 10µ 

d t t bul C = 10-7m-l/3 un er a s rong ur ence n 
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APPENDIX A 
-+ 

CALCULATION OF u(x) USING APPROXIMATION 2.15: u(A)(~) 

The approximation 2.15 is the following 

2m 
II 

p=l 
d.N 

p 

-+ 

d.N d.N 2m-l 2m 

where the notation 
2m 

d.N :: d.N(K ,x ) p p p has been used. The correct expres-

sion for II d.N 
p 

is given by 2.5. In the approximation 2.15 only one 
p=l 

of the (2m)l/m!2m permutations of 

this case, let us call 

-+ 
u(A) (x) 00 

lji(A)(~) l 2m 
= = E: 

u (x) m=O 
0 

m products 

-+ 

lji(A)2m(x) 

d.N d.N is kept. 
p q 

where lji(A)2m(~) are the statistical averages of the functions 

In 

(A-1) 

lji2m(~) (given by 1.36) which are calculated with approximati on 2.15. 

-+ 
It is easily seen that lji(A)O(x) = 1 and 

L xl 

ljJ (A )2 (L) = lji2 (L) = - k2 f dxl f dx2 f ( J x1 - x2 J ) (A-2) 

0 0 

where the function · f( Jx I) is defined by relation 2.11. In the calcu-

lation of lji(A) 4(L) 

to the integrals of 2.12 is considered. 

Therefore, according to 2.18 



4 
= l)J4a (L) = k 
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L xl x2 

I dxl I dx2 f( lx1-x2 I) J 
0 0 0 

x3 

I dx4 f( lx3-x4 I) 
0 

(A. 3) 

and it is msy to see that under approximation 2.15 the general term 

,i. (L) can be expressed as follows: .,,(A)2m 

L xl x2 x3 

= (-1)~2m J dx1 I ax2 f( lx1-x2 I) 
0 0 

J dx3J ax4 f( ix3-x4 i) 

0 0 

x x 
2p 2p+l 

I dx2p+l I dx2p+2 f( lx2p+l - x2p+2 I) · · · 
0 0 

x 
2m-2 

f dx2m-l 
0 

x2m-l 

f dx2m f( lx2m-l - x2m I) 
0 

(A. 4) 

The expressions A.2, A.3 and A.4 are then collected into the 

series expansion A.l: 

x2 

+ (-l)m-l(e:2k2)m-l f dx3 
J 
0 

x2m-2 x 2m-l 

f dx2m-l f 
0 0 

x 

J 
0 

dx 

3 

dx4 

x2 x3 

f( lx1-x2 j) (1- e:
2
k

2 J dx3J dx4 
0 0 

f( ix
3
-x4 1) • .. 

2m r(lx -x ll + ... J 2m-l 2m 
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L 

= 1 - E2k2 f 

xl 

dx1 J dx2 f(lx1-x2 1) ( l+ E
2

1)J(A)(x2 ) 

0 0 

+ .•. 

and with the help of A.l we obtain the following integral equation for 

\jJ(A)(L) 

L xl 

\jJ(A)(L) = 1 - E:2k2 
J dxl J dx2 f( lx1-x2I) \jJ(A)(x2) (A. 5) 

0 0 

Using approximation 2.15 and the same method, DeWolf found the 

correct result 
L 

ljJ(L) = exp -E
2
k

2 J 

xl 

dx1 J dx2 f( lx1-x2 1) 
0 0 

(which is not a solution of equation A.5) due to some mysterious 

intuition. 

Brown (5) used approximation 2.15 and, with a slightly different 

method, derived the integral equation A.5. (It is the equivalent of 

equation 16 in Reference (5)). 
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APPENDIX B 

CALCULATION OF THE INTENSITY CORRELATION FUNCTION BI(RY)(L,p) IN 

THE RYTOV APPROXIMATION USING TATARSKI'S NOTATIONS (1) 

In order to compare our results for the intensity correlation 

function BI in the Rytov approximation and Tatarski's results, we now 

calculate this function using Tatarski's notations. 

The wave function u(~) can be expressed as 

u(~) = A(;t) ei¢(i") = elog A(~)+ i¢(~) = A ex(~)+ i¢(;t) 
0 

where the notation x(~) = log(Ai~)) has been used. 
0 

A is defined by the relationship 
0 

so that 

log A = log A(i) 
0 

x(~) = log A(i) - log A = o 
0 

(B.l) 

(B.2) 

(B.)) 

A is also e·qual to the amplitude of the wave in the absence of 
0 

turbulence. The intensity correlation function is expressed as follows 

B1 (L,p) = u(L,;1 )u*(L,;1 )u(L,~2 )u*(L,;2 ) 

2(X(L,;
1
) +X(L,f2 )) 

= e (B.4) 

In the Rytov approximation, the amplitude of the wave has a log-normal 

distribution; therefore x(Jt) = log A(~) has a Gaussian distribution 

and zero mean according to B.3. Then (see 3.4), 
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-+ -+ 2 
2 (X(L,r1 ) + X(L,r2 )) 

= e (B. 5) 

-+ -+ 
x(L,r1 ) X(L,r2 ) is the correlation function of the logarithm of the 

amplitude fluctuations. It is called BA(p) by Tatarski, with 

P = 1;1-;2 1 and (x(L,r1 ))
2 = (x (L,r2 )) 2 = BA(O) = x2 

x2 is the variance of the logarithm of the amplitude fluctuations. 

With the help of these notations we can rewrite expression B.5 as 

(B.6) 
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APPENDIX C 

CORRECT EXPRESSION FOR THE SIGNAL POWER IN THE OUTPUT CURRENT 

OF THE DETECTOR IN AN OPTICAL HETERODYNING DETECTION SCHEME 

In this appendix we calculate the signal power in the output 

current of a detector in the heterodyne detection of a phase-modulated 

optical beam. In order to do so, we make use of the correct expression 

9 .12 for the output current of the detector. 

is(t) = (~) 2J1 (o) ~sin wmt J dcr A(r,G) cos ¢(r,G) 

l: 

(9.12) 

We dropped the subscript (1) with the understanding that A(r,G) and 

~(r,G) are the amplitude and the phase of the optical beam carrying 

the information signal. 

is 

The total signal power at the frequency w 
m 

S(t) = i~(t) = (~)2 
4Ji(o) ~ sin

2
wmt J f dcr1 dcr2 A1A2cos ¢1cos ~2 

l: l: 

where 

The time averaged signal power is then 

s = (~) 2 2J~(o) ~ J J dcr1 dcr2 A1A2cos ¢1 cos ¢2 
l: l: 

In Tatarski 1 s notation we can write 

(C.l) 
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A1A2cos ¢1 ¢2 
A2 

(xl+ x2) 
cos r/Jl cos ¢2 cos = e 

0 

A2 (Xl + x2) ir/Jl -ir/Jl ir/J2 -ir/J 
0 2 = 4e (e + e ) ( e + e ) 

and 

We write 
2 

Ao C C' 
= 2 (e + e ) 

where C = x
1

+ x
2 

+ i(a
1

- a
2

) and C' = x + x + i(a + a ) 
'11 '11 1 2 'Pl '112 

We shall assume in this calculation that x
1

, x2 ~ ¢
1

, ¢
2 

are 

normally distributed functions with zero mean; then C and C' are 

normally distributed f'unctions with zero mean C = CT= 0 . 

Therefore 

c 
e = e 

l c2 
2 

and 
C' 

e (C.2) 

c2 is calculated by assuming that the fluctuations of the amplitudes 

and of the phases are uncorrelated. 

c2 = (Xl+ X2 + i(¢1- ¢2))2 
2 2 = 2X + 2X1x2 

- (r/J - ¢ ) 
1 2 

and 

C'2 = (Xl+ X2+ i(r/Jl+ ¢2))2 
2 

(r/Jl+ ¢2)
2 = 2x + 2X1x2 

= c2 - 4¢1¢2 (C.3) 



~ is the correlation function of the phase fluctuations,· we call \Ul\U2 
-+ -+ 

it B¢(r1 ,r2 ) . 

With the help of C.2 and C.3 we obtain 

(c.4) 

The incorrect expression 9.13 for output current of a detector 

in a heterodyne communication scheme led to the following averaging 

(c.5) 

The discrepancy between expressions c.4 and c.5 comes from the factor 

(c.6) 

The correlation function of the phase fluctuations has never been 

calculated yet, and a detailed knowledge of the term C.6 is not avail-

-+ -+ 
able . However, we know that the correlation function B~(r1 ,r2 ) is a 

positive function; therefore 

and 

From C.6 we can write 
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f f (c.7) 

L: L: 

S as given by C.7 is the correct statistical average signal power in 

the output current of the detector. 

C.7 and expression 9.14 occurs when 

The largest discrepancy between 
( + + 

-2B¢ r 1 ,r2 ) 
e is very small, i.e. 

is the largest. This occurs when in the 

plane of the detector. However, S given by 9.14 is at most twice S 

given by c.7. Therefore, expression 9.14 is a good approximation to 

the correct expression C.7; it is handier to use in practical calcula-

tions at least until a knowledge of the correlation function of the 

phase fluctuations is available. 



APPENDIX D 

CONDITION FOR A SHOT-NOISE LIMITED DETECTION IN A VIDEO 

OPTICAL COMMUNICATION SCHEME 

Our analysis of the S/N for the video communication scheme has 

been based on the assumption that the detection is shot-noise (quantum 

noise) limited, i.e. the shot noise inherent to the d.c. current due 

to the signal overcomes all the other possible noise sources. This is 

only true for suf ficiently large optical signal power. 

The noise power in a photomultiplier is 

where g = amplification factor of the photomultiplier 

B = i. f. bandwidth 

q = electron charge = 1.6 x 10-l9 coulomb 

iDC = D. C. photocurrent due to the optical signal 

ID = dark current 

kTB = thermal noise 

R = resistance of the output load 

The noise power includes optical signal shot noise, dark current 

shot noise and thermal noise . 

If the detector is exposed to a large amount of background 

light, then a corresponding shot noise term must be added to the noise 

power. However, we shall assume that the background light, if any, 

has been made much smaller than the signal light by optical filtering 
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techniq_ues. 

For large values of the gain factor g and of the output load 

resistance R , the contribution of the thermal noise to the total noise 

power is negligible compared to the shot noise part. Then the detection 

of the video communication scheme will be shot-noise limited if the 

cathode photo current I is made larger than the dark current ID , 

(D. l) 

With the help of 9,23 we obtain 

~f -+ 
iDC = h \) dcr I ( 

2 
) ( L , r ) 

E or 

inc = ~p hv 4 (D. 2) 

where P is the laser power incident on the receiving aperture area in 

the absence of turbulence. The condition D.l is written 

P 4I h v 
> D nq 

Taking n = 10-2 and a dark current -14 ID = 10 A , the laser power 

should be greater than 10-ll watts at the plane of the detector . 


