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ABSTRACT

The angular velocity of propagation of 2 single cell partial span
propagating stall traveling on an isolated, or relatively isolated, axial
compressor blade row was found experimentally to be equal to the down-
stream angular velocity of the flow outside the stall cell between suc-
cessive passages of the stall cell averaged over the blade span. Ina
machine consisting of three identical stagee, 2 similar stall was found
to propagate at the mean of two such averages, i.e., upstream and
downstream from any interior blade row. The sides of partial span
gtall cells were found to be streamtubes in several cases.

Other general but less significant obaervations of propagating
stall are reported. The hot wire anemometers used to measure unsteady

vector veloecities are degscribed,
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SYMBOLS

area of compresgor annulus

fraction of mﬁ?a@ supporting reversed flow
{raction of annulus supporting transition flow
constants in King's Equation (Sec. 2:2, 1}

component of flow velocity

hot wire resistance

hot wire resistance at ambient alr temperature

radial coordinate

flow speed

flow gpeed indicated by hot wire

flow speed indicated by hot wire 1, 2.

angle between flow velociiy and bisector of angle between wires
of V" probe

flow angle measured from plane of blade row in coordinate sys-
tem moving with rotors

flow angle measured from plane of blade row in coordinate sye-
tem: fixed to stators

half-angle between wires of V' probe

angle between flow veloclity and normal to hot wire
ac / U,

zf r, == dimensionless radius

density of aly

dimensionless torgue

e /u, -- local flow coefficient



R c, /¥ -- flow angular velocity

W, angular velocity of stall

U)@ u @! r, == rotor angular velocity
Subgcripts

B axial

o) ungtalled flow between stall cells
o tip

& stall cell

o

trangition zsone

i just upstrearn from rotor
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I. INTRODUCTION

When the angle of incldence on a blade row of an axial compres-
sor ig increased due to off-design operation caused by starting, acceler-
ation, or reduced fow in throttling, the individual blades stall, much the
same a8 isclated aixfoils. The blades rarely stall over the entire annue
lus; the preferved mode is for a group (or groups) of blades to stall, and
for the pattern of stalled flow to be propagated, unchanged in shape, a-
round the blade row. A simplified scheme of stall propagation on a two-
dimensional cascade is shown in Figure 1. The air incident on the
stalled blade row is deflected so that the angle of attack ig increased on
ome side of the stall cell, and decreased on the othey side; thus the area
of stalled flow propagates.

There are two compelling reasons for interest in propagating
stall. First, stall occure at flow rates very near those of maximum ef-
ficiency and sometimes reesults in an abrupt lowering of compressor
performance. Thug, stall is an ever-present hazsard in virtually every
compressoy applicatbn., Second, since the blades lose 2 considerable
fraction of their lift as the stall cell paszses, propagating stall repre-
sents a periodic forcing function on therm., Numerous cases of comprese
sor destruction caused by the fact of coincidence of stall propagation
frequency with the natural frequency of the blades have been reported.

Stall W&i@ first discovered in the development of the British jet
engines in 1945 (2), while its propagating nature seems ¢o have been re-

ported first in 1950 (16).  Since that time, there have been rmany ine

= Reference {16) was clagsified at the time of its publication. In the un-
claseifled literature, stall propagation was discovered independently and
almeost simultaneously by three groups of investigators about 1951 {{3),
{4) (5) )



-

vestigations &f the phenomenon in a variety of machines {e.g. (1) (3}
(4}, (5% (9), {10), {11}, and (17) through (24) }. The diversity of the
ohserved stall characteristics is amplified by the fact that most ma-
chines exhibit several stalling modes over different ranges of flow
rates. The results of these studies of different machines and of sys-
tematic changes in the blading of any particular machine have produced
results which ave 8o complex and varied that it is difficult to derive
{rom them statements of general validity. A few of the ouistanding
characteristice are as {ollows: |

1. Most of the stalls z*ep@&@ﬁ involve large, rather then small

perturbations from the mean flow. Low amplitude stall of a

type consistent with linearized theories (see below) has been

found in & rectangular cascade and In zun annular cascade (9)

2. The stall disturbances may be concentrated near the hub or
near the case in low hub ratio machines, but usually extend

more or less evenly ovey the entire blade span in compressors
of high hub ratio and in low hub ratic machines at very low flow
vates. Because of the relative amount of the span involved, the

concentrated stalls have been termed partial stall, and the others

full stall, A third basic type of stall lnvelving disturbances at
both the hub and the case which are out of phase with each other
was discovered in the course of the research for this paper, al-

though it was not studied in detail.

3. Stalls usually start as one patch or cell. As the flow rate is

decreased, the size of this cell increases to a point and then
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the cell splits, forming two approximately diametrically op-
posed cells. In some machines, this splitting may produce as
many 28 12 distinguishable cells. In others, the single cell pat-
tern may not be found and/or the number of cells may decrease

£

as the fow rate e reduced {e.g. {10}, {11}

4. Each partial stall cell usually {nvolves not more than 20%
of the annular area, while full stall cells may occupy more than

- .
60 fo of the snnular area.

5. In a stationary system, the rolative speed of the stall is al-
ways less than that of the rotor and in the same direction. In
general, the propagation speed becomes lower as the flow rate

ie decreased,

6. The stalling characteristics of a blade row are markedly af-

fected by the close proximity of other blade rows.

Theories of stall propagation soon followed the experimental in-
vestigations. Several approaches to the Uinearized problem of 2 small
disturbance propagating along a single two-dimensional blade row have
been developed { (3}, (&), {7), {8} ). A non-linear theory involving the
ghedding of discrete vortices {17) and 2 restricted solution to g threa-
dimensional theory (18} show the beginnings of 2 more realistic ap-
proach to the problem from the theoretical polnt of view. Some of the
theories have been able, by the suitable adjustiment of wndetermined
parameters, to predict or “explain’ stall propagation velocities within

@ 5
10 20700 . Others give rough indications of the conditions necessary
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for the initiation of propagating disturbances, but none can predict the
sumber of stall cells, their annuvlar extent, or the magnitude of the ve-
locity disturbance, all of which are Important in the consideration of
possgible blade {ailure,

The development of adequate theories has suffered from a lack
of generally applicable experimental data, and the experiments have
suffered, for the most pavt, from 2 lack of adequate instrumentation to
deal with the complex unsteady flow fislds of propagating stall. For this

%, b4

reagon, the work described in this paper has been divected toward prac-
tical application of hot wire anemomatry fo the stall problem and toward
e search for further descriptive statements which may he applicable to
a majority of cases of propagating stall. Although a wide variety of
compressor configurations were studied, the goal was not a detalled

description of each type of stall pattern, but rather the discovery of any

unifying trait which might be characteristic of all propagating stalls,
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O, TEST EQUIFMENT

2.1 Asdal Flow Cempressor and Standard Instrumentation

The compressor shown in Figures 2 and 2 is the same one
which was used fox the studles of stall propagation reported in refer-
ences {5) and (9). The machine and the instruments described in this
section are treated in more detall in refevences {12) and (13).

The compressor hub ratio is 0. 6 and the tip radius is 18 inches.
The machine ig driven by & 125 horsepower dynamometer on & shaft
which passesg through the vertical e=it duct. A honeyecomb @s’:meﬁ placed
in the bellemouthed cylindrical entrance duct provides flow at the pre-
rotation or entrance gulde vanes in which turbulence is low enough for
accurate calibration of hot wire anemometers. An electric motor with
2 high gear ratio drive unit permite precise control of the opening of
the two rectangulay doors which comprise the throtile at the upper end

of the exit duct.

L

Each blade of the threc-siage compressor is separately remov-
able, making possible a wide range of compressor configurations.
The meaximurn golidity (nominally unity) was used throughout these
tests, there beling 30 rotor blades and 32 stator blades per row. There
are available three identical stages of {ree-vortex blading and one
stage of solid-body blading. Root, tip, and mid-radius sections of the
bledes are shown in Figure 4, and thelr geometric properties are pre-
sented in Table L

The flow rate through the compressor had been previously cal-
ibrated as a function of the inlet duct wall pressure, and this pressure

was read from 3 movable-well watser manometer.



oy

Instrument porte are located at various tangential positions aft
of each blade row and in front of the entrance guide vanes ag shown in
Figure 5.,

Steady velocities, used in calibrating the hot-wire ansmome-
ters, were measured with a standard pitet static tube coupled with an
electric pressure transducer in conjunction with a bridge network and
a Brown precision indicator. This system measured the velocity head
within about 1% . The directions of the steady velocitiea {used mostly
to calibrate hotswire anemometers) were measured with a claw-type
yaw probe to within 1/2 degree.

A radial survey carriage, shown in Figure 6, was used to posi-
tion the pressgure-gensitive probes and the hot-wire anemometers.

The radizl position of a probe in this carriage can be set with 2 least
reading of 0. 01 inches, while the angular posgition can be set with a
least reading of 0. 1 degree.

The rotational speed of the machine was measgured by using 2
coupled counter and timer in conjunction with a smaeall synchronous
generator which is directly coupled to the dynamometer shaft, A period
of one minute was used to determine the speed with an accuracy betier
than 1/2 ypm. All studies of stall were made at speeds between 500
and 750 rpm after it was determined that the character of stalling at
the maximum speed of 1500 rpm was not significantly different from
that at the lower speeds.

2. 2 Hot-Wire Anemometry

Unsteady velocitles within and between the stall cells were
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measured with seversl types of hot-wire anemometers, References
(14) and {15) contain quite complete discussions of the theory of the
hot-wire and offer helpful suggestions for the constructlon of probes
for the measurement of vector velocities.

2.2.1 Circuit. The comstant current hot-wire circuit which
wag used throughout the investigation is shown in Figure 7. The $0-
velt batteries, each made up of 45 2-volt cells, and the regulating re-
sistors, were chogen with power ratings far in excess of that required
to heat the hot«wires so that these elements would not contribute to hot-
wire calibration drift. A selector switch on each side of the circuit
permitted the use of several anemometers in the machine at one Hme
This feature was especially convenient when the qualitative nature of
propagating stall was being observed, because it was possible to check
stall characteristics at different radii and on different survey planes
almost simultaneously. The 2-volt variable ground blas permitied the
use of higher gain in the oscllloscope, as it was then necessary to ame
plify only the difference between the instantanecous hot-wire voltage and
the mean value to which the bias was set.

In operation, the current regulating resistance used was about
900 chms, while the resistance of the platinum hot-wires, which were
8, 0004-inch dlameter and 3/16-inck long, varied{with velocity changes)
between 8 and 10 ohms. The nominal current, then, was 100 milli-
amperes, and it was constant within 2% . With thie 2% ecror, ihe
assumption of constant current produces an error of about 3% in ve-

locities calculated on the basis of King's equation,



Brrors of about the same magnitude are produced by the general ten-
dency of the hot-wire calibration curves fo drift with use. The gensral
calibration procedure was to record, before and after a run, the volitage
across the hot-wire as a function of the velocity head at the point in the
gntrance vane chammel used for calibration, Interpolation between cali~
bration points was made graphically, so that thé error inherent in the
assumption of constant current was eliminated. Calibration flow speeds
were measured with a pitot static tube at the same relative position as
that of the hot wire, but in the adjacent blade channel.

The frequency response of the oscilloscope amplifiers iz flat
to 10 ke, Using the methods of reference {14), the response of the hot-
wire was estimated to be adsquate to 400 ¢ps. At 600 rpm the blade
wakes cross the wire at 300 cps; a three~cell stall pattern traveling at

o :
70 o votor speed corresponds to

e

iecps.

2.2, 2 Angular Behavior of Bot Wires., Hot-wire ansmometers

are velatively less sensitive to flow parallel to the wire than they are
to flow normal to it. In fact, over a limited range of angles, 8, be-
tween the incident flow and the normal to the wire, the wire behaves as
if the flow were normal and of magnitude v, =V cos 8, as is shown in
Pgure &, | |

Measurements of radial components of velocity during stall
have indicated that the flow between the stall cells is ezsentlally two
dimensional. Thus, by using two wires placed at different angles on

the same probe, it is possible to make simultaneous measurements of
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both gpeed and direction of the flow, Similarly, a single wire, prop-
erly oriented, can be used to read roughly the axial component of ve-
locity alone or the tangential component alone.

2. 2.3, Hot-Wire FProbes. All of the probes used could be

mounted in the ingtrument carriage shown in Figure 6. In addition,
simple survey port plugs, drilled to accommodate the probes, were
uged to position the instruments for qualitative measurements.

Single wire probes, shown in Figure 9, were used to ﬁa&i@.@ pre-
liminary determinations of the velocity fluctuations of the stalled flow
and to observe itz gualitative nature. In twoedimensional {low, the
probe with the wire perpendicular to the axis of the probe support is
suitable for meansurements of tangential or axial components of veloc-
ity and iz sensitive to changes in the flow angle. The probe with the
wire parallel to the support axis measures the magnitude of the velocity
and is insengitive to purely zugulay disturbances. Either of these probes
can be used to determine the stall propagation speed in conjunction with
a timing signal, and the phase shift between the signals from two tan-
gentially displaced probes determines the number of cells in the stall
patiern.

The two wires which form the V of the probe shown in Figure 10
lie in a plane which iz perpendicular to the axis of the probe support.
Restricting the discussion to the {wo-dimensional flow depicted in Fig-
ure 10, and assuming that & is sufficlently large and of sufficiently

smazall for the cosine law to hold,
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These equations yield

iy VooV
o = tan = {

i
vzé*vz

f

tan 5 ,

and v may be computed from either of the original equations after

is known. As may be seen {rom Figure 8, high sensitivity to angular

&

disturbances reguires small § , whereas agreement with the cosine
law requives large § . At reduced speeds encountered within the cells,

336

the coszine law is followed only ag & —e 90 . Since the purpose of the

study at the time the V-probe was built was an investigation of condi-
tions between the cells, & was chosen as 30° . With the use of an
optical comparator, the relationship between the characteristic divec-
ton of the V aad the instrument carriage angle dial could be deter-
minad within 1/4 degree.

In use, the probe wag aligned in the mackine go that the mean
velocities between the stall cells were nearly equal. This made
of = 5% go that variations in the flow angle of + 10° at the between-stall

]

speed did not take the wire far off the cosine curve. At low epesds, the

{ha
[
g&
5
£
£
o
o

assumption of the cosine behavior where it is not warranted
measured speeds being higher than actual speeds, and measured angu-
laz a@%ﬁ@aiﬁ,ﬁmé lower than the actual deflections.

The Leprobe shown in Figure 11 consists of one wire mounted
parallel to the axis of the probe support, and one perpendicular to it.
| Again restricting the discussion to two-dimensional flow in a plane per-

pendicular to the probe suppori, it will be seen that the wire parsllel o

the probe axis is sensitive only fo the magnitude of the flow velocity. If
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the other wire ls aligned zo that éh@ mean flow makes an angle of 45°
to 60° with the normal to the wire, the indicated velocity will be a sen-
gitive function of both the speed and the direction of the {low.

In practice, b@%}aéﬁm@ of the Leprobe were calibrated simul-
taneously in flow normal to the plane of the wires. Then the instrument
carriage was installed at a selected survey plane, and the carriage
angle was fixzed at a value which made the mean flow incident on the
angle~sensing wire at about @ = 50°, A stall study run would be made
which did not excesd 30 minutes in length. During the run, several
photographs of the wire signals were made at a2 number of radial posi-
tions, using a FPolaroid camera. These photographs were quickly
studied, and a "typical” or "mean' example of the stall pattern at each
radius was selected for data reduction.

On the photographs which were selected, the oscilloscope read-
ings for both wires were recorded for several "significant” points. The
coordinate of each point was normalized against the pattern wave length,
Blade wake disturbances were averaged out of the readings by eve.
Mext, the probe was returned to the calibration position in the entrance
gulde vane row. The direction of the flow at this position had been
measured previocusly and was found to be nearly independent of the flow
speed, with a maximum angular variation with speed of about 1/2 de-
gree. During the angular calibration which followed, the flow wae as-
sumed to be in a constant divection.

The angular calibration consisted of serially matching the flow

conditions on the Leprobe with the flow conditions which produced the
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hot-wire gﬁgn&i@ of the selected data p@iéﬁ:g, Plrst, the speed of the
incident air was adjusted by changing the rotative speed of the machine
or adjusting the throttle. The speed could be matched quite easily just
by matching the voltage on the wire parallel to the probe axzis with the
voltage on the same wire which was recorded for the data point in ques-
tion., Next, the instrument carriage was turned until the voltage across
the angularly sensitive wire matched that for the data point. Finally,
after all data points were calibrated for speed and angle, both wires
were given a normal-incidence calibration. If the calibration curves of
either wire differed by more than 3o from the pre-run calibrations,
the data was not used,

This method of calibration was not too laboricus, for the data
points were selected only where the time rate of change of the slope of
the signal was large. There were usually several points in each run
which had very nearly the same velocity, the angles of which could be
read without changing the flow rate. ILikewise, the system was not as
crude ag it might seem, because the vector velocities of the data points
easily could be reproduced within the natural variations from one stall
cell to the next in the same rotating pattern or between successive
passes of the same cell. These variations were roughly 3% an speed
and 1 -é@ on the flow angle. An example of an oscilloscope photograph,
the gelection of data points, and the reduced data are shown in Flgure
18. It should be pointed out that this technique of calibration is not
practical for V-probes because in that case both wires are sensitive to
speed and angle, which makes matching almost impossible. It was not

necessary to use the optical comparator with the L-probe, since the
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difference between the absolute fiow angle of the data point and known
flow angle af the calibration polnt was measgured directly.

The radial Veprobe shown in Figure 12 was used to measure the
radial component of the flow. In use, the probe was aligned so that the
plane of the two wires contained the mean flow vector between the stall
cells, It iz easily shown that excursions of this vector of up to 206% out
of this plane produce & maximum error a:aﬁ 10% in the measured radial
component of the flow and 2° in the measured angular deviation of the
flow from a tangential plane. Excursions of 20° were abeout the maxi-
mum found in partisl span stalls,

The wake from the leading wire of the radial V-probe made ig
difficult to obtain precise quantitative dats concerning radial flows, so

those data are presented only qualitatively in this paper.

@
*‘“‘e;s

in full stall regimes, reversed flow within the stall cell was ease
i1y detected by obseyving the deflections of a tufl on the end of a rod in-
serted into a radial survey port. In order (o correlate the reversal of
fow with the other hot-wire measurements, the reversal indicator
shown in Pigure 13 way designed. The probe consisted of two parallel
hot wires, separated by & porous shield made of fine screen and stuffed
with steel wool. A variety of solid and porous separation shields was
%riaé before the desived angulay behavior {(Figurs 14a) was closely ap«
prodimated (Pigure 14b) When the gualitative behavior of the flow
speed t.%ass simultanecusly obtained from 2 single radial hot wive, it
was very easy to detect flow reversal using the scheme presented in
Figure 14¢. The increased turbulence of the signal from the leeward

wize also helped to discern reversal.

As can be seen {rom the angular behavior of the sigs



w ] B
the two wires, if the flow wae normally incident on wire A in the un-
staliled or between stall conditions, a change in direction of 120% to
2407 was clearly identifishble ae 2 reversal, Reversed flow is that flow
which has a negative axial component of velocity. Considering the flow
angles usually found in axial compressors, changes in flow angle larger
than 240° might be encountered in reversed flow., By aligning the flow
reversal probe so that the unstalled flow is incident at -60° from the
normal, angular changes up to 300° can be detected.

Some investigators have reported that since the speed indicated
by 2 single hot-wire anemometer failed to pass through zero, there was,
necesgsarily, no reversed flow involved in the propagating stalls they
gstudied. It should be noted that a vector velocity can be reversed with-
out experiencing zeroe magnitude, Furthermore, the reversal of flow
need not involve direction changes of 186°, It was for these reasons
that the flow reversal probe was designed to have the characteristic

angular behavior shown in Figure 14.
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3.1 General Character of Stalls

3.1, 1 Throughflow. The V-probe and the flow reversal probe

were used to determine the general nature of both partial and full span
propagating stalls. While the signal from the Veprobe was very diffi-
cult to interpret within the stall cell, vector velocities (assuming ra-
dial flow to be negligible) were easily measured in the flow area bee
tween cells. In the three-stage {ree-vortex machine, these velocitics
were found to be quite close to the velocities found in unstalled flow
with stall imminent. In the single-stage {ree-vortex and solid-body
machines, similar results were found.

From the vector velocities, axizl speeds were determined, and
the flow rate outszide the stall cell was integrated. Eleven radial posi~
tions were used for these measurements. Simultaneocusly, the entrance
duct wall pressure was measured and from i, uvsing a previcus over-
all flow rate calibration, the total flow rate was determined, The dif-
ierence between the total flow rate and the flow rate measured betweesn
the stall cells wae taken to be the flow rate within the cells.

For three-stage {ree-vortex blading, it was found that within a
single cell partial span stall, the average local flow coefficient iz posi-
tive and of magnitude $ g * 8.70% . This means that 23% of the total
flow passed through the 33% of the area of the annulus which was oc-
cupied by the stall cell,

8imilar measurements for a full span stall in the three-stage
machine indicated the presence of reversed flow, since it was found that

é}gﬁ‘@nﬁ-i%‘gaéﬁg.
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The flow reversal probe was applied to both of the previously
mentioned stalls, A qualitative picture of the distribution of axial ve-
locities fox full and partisl span stalle in the three-stage fres-vortex
machine is presented in Flguve 15, In the figure, a "'+ indicates flow
in the normal direction, and a =" indicates veversed axial flow. The
proximity of neighboring symbols is indicative of the relative magnitude
of the axial component of velocity. The portions of the flow which show
significant departures from the pre-gtall condition are called the "stall
cell” and are ouvtlined. These qualitative plctures are typical of flow
just downstream from any of the thres rotors. The flow downstream
from the stators differed somewhat as is evidenced by Figure 23 which
is discussed later. Flow ahead of the first rotor took on the "softened?
look of 2 potential disturbance in all cases.

The hub boundary layer in paztial stall is shown ag entirely re-

versed, although this may not be the true situation. The boundary layes

fudy
g
&

g, of cours < the flow reversal probe did indicale
reversed flow, but the reversed flow could easily have been mixed with
forward flow within any single blade channel.

The full stall exhibited clearly defined reversed flow over most
of the stalled area, with areas of increased axial velocity forming
“transition zones” on the leading and trailing edges of the stall. The
area across the greater portion of the interior of the full stall cell was
found to consist of almost constant velocity flow at any radius. Rough
meagurements were made at mid-radius of the catire flow field through
all three stages in and close to the full stall cell. The velocities found

are shown velative to the stall cell in Figure 16, The length of the flow
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aryowe in the figure indicates the magnitude of the velocity normalised

against the local absolute rotor speed.

3.1.2 Spiraling. Two single wire anemometers were used to
determine whether the stall cell extended straight back through the mae
chine parallel to the axis, or if it spiraled. Survey planes &, 4, &, and
8 were used for this study. One anemometer was fixed in one of the
selected planes, and the other was placed alternately in each of the othe
er three to determine the phase angle between the stall signals at those
three planes relative to the base plane., Then the first anemometer
wag moved to another plane and the second, again, was placed alter-
nately in each of the remaining planes. This process was repeated until
twelve phase angle measurements had been made 28 & result of using
each of the four planss in turn as the base plane,

The edges of the stall cells are not as shavp as one would like
for measurements of this type; that is, it is difficulf to determine where
the stall cell begine and ends. For this reason, the phase relation-
shipes were read for both the leading and trailing edges of the stalls,
and the mean was calculated. Even with this averaging process, the
scatter in i:?z@ data was extremely wide. The mean phase angles of the
disturbances recorded at each test plane relative to sach base plane
were plotied and superimposed to give the least scatter and the most
consistent patiern. Examples of the superimposed data for full and
partial span stzlls in the thres-stage free-vortex machine are shown in
Figure 17, The scatter of these data indicates that the angle between
the stall cell (sxtending through the machine) and the axls of the ma-

chine is very difficult to measure. This angle enters into some stall
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propagation theories as an empirical parameter.

30 1o % Fwull Stall Transition Zones.  The fow in the traneition

zomes of full stall was extremely turbulent and the time rate of change
of velocity was appavently high. To determine at least an approxima-
tion to the flow conditions within the transition zones, the following
analysis, based on & torque balance was made.

The {raction, 2, of the annulus supporting reversed flow &ﬁfiﬁg
full stall propagation in the three-stage compressor was measured &g

a huonetion of the flow rate and was found to behave ag
a = 0.83«1.7% for L14€$£0.,3 .

The fraction, b, of the annulus involved in the transition zones was
found o have & nearly constant value of 0, 17 for the range of flow coe
efficlients above.

Under the assumptions that the flow over the unstalled portion
of the annulus was very near the design flow and remained so 25 a in-
creased with decreasing § , and that the reversed flow was locally con-
gtant at 2 mean measured value of ¢, = = 0.08, the torque caused by
the flow through the unstalled and reversed portions of the annulus was
calculated. The flow parameters used were measured at mid-radiug
and assumed io be near the true values averaged over the blade span.

The dimensionless torqgue on a {ull blade row is
Tpe, Ade,

Lo alae
3@'&@&&@

T=

oz

T = Zg:g;)\



where
o e Lo
r a 7
R A
o e o

The dimensionless toraue caused by the flow through & fraction
) Y (] kel

£, of the annular area and flowing acrose three identical rotor rows is

T= 6£E4 A .

et
T = U +7T + 7T,
n 8 t*®

where

Tﬁ = torque caused by normal flow in unstalled area,

T. = torque caused by flow in reversed area,

s
T g = torqgue caused by flow in transition zones.

In terms of the parameters used to define the various areas of

the How,

T =3 a"@v"E‘»’

L= bllea-b)Ta,
ng%’;&?ﬁé}ﬁ 2

Ty = 604

Using the previously stated values of & and b, and ¢_=

o
E-3
18
]
L

T =0.25 ¢, =-0.08 E=0.8, and A =~ 10,

It was impossible to evaluate ¢, and A . With precision even

as limited as that of the other guantities in the caleulation.

Over the limited range of & in question, the torque actually
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meagured on this same machine and reported in Reference 5 is related

to & nearly linearly:

if the torgue caloulated from the approzimate measured flows
iz to be congistent with the torque meagured on the dynamometer shaft,
then

::f‘ ”'béﬁx Ue G2 & °
T, = 0.21-0.48F = 0.32 A,

1 &, ie constant and {judging from experimental results) a lit-
tle highez than @n » say 0. 50, then

}\. z%}a%%”ioa%’

t
or
.14 < A < 0.38 ,
as
0.3 > & > 0.10
This range of values for A_ is not unreasonable, but the nature of the

&
1

dependence of 7\% upon ¢ is not understood.

3., 2 Vecior Velocitiss

3.2, 1 Tangentlal Flow. The L-probe was used to measure the

behavior of vector velocities in the flow fields of several blading con-
figurations during stall propagation. The single cell partial span stall
was chosen for most of this detailed study because of its relative sim-
plicity and because it is frequently the first type of stall to eppear in a
machine asg the flow rafe is reduced from the polnt of masdimum effi-

ciency.
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As a first approximation, radial flow was assumed to be negli-

gible, since the radial component of velogity was difficult to measure

and since it was believed (and later confirmed) that radial flow is gig-
nificant only within and very near the stall cell itsell,

The firvst configuration studied was an expanded free-vortex
stage consisting of inlet guide vanes, the second rotor, and the third
stator. The magnifudes (non-dimensionalized in terms of the rotor tip
speed) of the total velocity, the whirl component, and the axial compo-
nent as well as the ﬁéw angle, all meagured immediately downsiream
of the rotor at five radial positions, are shown in Figure 18, The fig-
ure also showe a faithful reproduction of an oscilloscope photograph il-
lustrating the selection of data points. Figure 19 deplcts the radial
distribution of velocity components at the point in the flow fleld mid.-
way between sﬁmﬁwi‘%@ passages of the stall cell and compares these
speeds to the same ones at a flow coefficient for which stalling was im-
minent, and with the design speeds. Also shown in Figure 19 is the
rvadial distribution of angular velocity of the flow between p%w@g% of
the stall cell. |

Figure 20 is similar to Figure 19 but shows the radial distribu-
tion at survey planes 3, 5y and 7 of mean fow ﬁ@m}@ﬁ%&%ﬂ%ﬁ between suce
cessive passages of the stall cell for a configuration consisting of free~
vortex guide vanes and first votor with no statoer.

Figures 23 and 22 present éa%a gimilar to that of Figures 18 and
19, but for stall propagating on & configuration consisiing of solid body
guide vanes and first rotor.

Figures 23 and 24 show date still similar to that for Flgures 18

and 19, but for a single cell partial span stzll propagating in the three-
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stage {ree-vortex machine. These data were taken (prioy to the design
of the Le-probe) with the Ve-probe, for which the accuracy during large
angular excugrsions is considerably lower than that of the L-prabe,
For that reagon, data were taken at a limited number of positions; two

radial positions in front of and two behind the second stator.

The flow between successive passages of the full-span stall
cell propagating on the three-stage free-vortex machine {8 shown in
Figure 25, The radial distribution of the mean values of the whirl com-
ponent of velocity and the angular velocity of the flow is given in Fig-
ure 26.

Table 2 summarizes propagation angular velocities of etalls
described in Figures 18 - 26 as well as those of stalls on diffevent
blade configurations for which no detailed flow measurements wore
made. The table also includes measured average angular velocities of

the flow between successive passages of the stall cells,

k! T2 e oS ) y ; WY ey A 2 &7 % & /
3. 2.2 Radial Flow. The radial Veprobe showed that throughout

the partial span flow fields and in all areas of full stall but the transi-
tion zones {for which the flow was too turbulent to interpret the resulte),
the radisl component of flow was no larger than 20%o of the total speed.
This means that the assumption of two-dimensional flow for the meas-
urements described above produced a maximum error of
1 - cos (sin” «g‘%é = 2% ,

For both partial and full-span stalls, radisl flow was outward
at the leading edges of the cells and inward at the trailing edges over
the middle portion of the span. Fartial stall exhibited notably leose

radizl flow over the area between stall cells than did full stall. At
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mid-radiug, the reversed flow within the full stall cell immediately
downstream from the rotors had an outward radial component of about
2@{3&3 of the total speed, whils immediately upstream an inward radial

component of approximately the same magnitude was chserved,
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IV, DISCUSSION OF EXPERIMENTAL RESULTS

Table 2 sugpests that stalle of the single-cell partial span type
propagate at the angular velocity of the flow between successive pasg-
sages of the stall cell averaped over the blade span immediately down-
stream from a relatively isclated blade row. Furthermore, stalls of
the same type in a multistage machine composed of identical stages
travel at the arithmetic mean of two such averages; one just upsitream
and ene just downstiream from any particular blade row.

Figure 18 shows that for a partial span stall traveling on &
free-vortex rotor the whirl velocity just downstream of the rotor ine
creases or decreases as necessary to maich the local stall propagation
velocity at all but one of the {ive radial positione investigated., This
suggests that although large disturbance of the flow epesd is confined
to the tips of the rotor blades {(thus making the stall "partial®), the dig-
turbance actually extends over the whole span. If further suggests thag
the boundayies of the stall cell are formed by streamiines, since if the
locel velocity equale the stell veloeity there is no flow into the stall
cell.

Figure 21 shows similar results for a partial stall traveling on
& solid-body rotor. In this case, however, the stroang tendency for the
whizl velocity to conform to the local stall velocity near the hub is ab-
sent,

Both Figures 18 and 21 show that for some portion of the span
between the case and the point 2t which the mean whizl velocity of the

flow between stall cells equale the local stell velocity, the whirl ve-
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locity tends not to conform to the etall velocily ae the stall passes.

As it is ghown in Figure 15, the largest area of disturbance
from the mean flow for a partial stall traveling in the three-stagze ma-
chine is near the hub. Figure 23 shows that the whirl veloeity i allered
to conform fo the locsl stall speed near the hub both upstream and downs
stream from the stator. AL the test polvls near the case, the whizl ve-
locity ahead of the stator between successive passages of the stall was
nearly equal to the stall velocity, but behind the siator there was no
tendency for the whizl velocity to conform to the stall. Thus, the con-
cept of a stall cell the boundary of which is 2 streamtube is of limited
utility.

Reference 16 was the firet to cbeserve experimentally that a stall
cell propagating on an isdated rotor ‘'propagates at the gpeed of the
downstream whirl, " The two-dimensional vortex-shedding theory of
Reference 17 predicts the propagation velocity to be equal to the downs-
stream whizl if the gtell cell does not gpiral avound the machine axis
downstream from the blade row. If is pointed out in References 1 and
19 that the angle of downstream spiral is very small in most reported
cases. Reference 17 places the experimentally measured angle be-

" tween the tangent to the stall cell and an element of a cylinder coaadal
with the annulus at from - 15° to + 197, Figure 18 shows the difficulty
of measuring this angle., Reference 17 also states that fair experimental
agreement between the stall propagation velocity and the downstream
whirl veloeity has been noted by “other ocbservers'.

A properiy designed compreasor will stall fairly close to ite

design point, and, es has been shown here and suggested by several
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invgm;ﬁgmérs {e. g. see Neference 11), the flow conditions (at least in
the mean) between stall cells remain about the same as the flow which
occupied the whole annulus at the flow rate for which gtalling was im-
minent, It is useful, then, to compave stall propagation angular ve-
locities reported by other observers with the range of mid-pradius an.
gular velocities of the design flow for their respective machines, even
though vector velocity measurements during stall were not made,

In Figure 27, absolute stall propagation angular velocity is
plotted against design angular velocity at mid-radius for 18 reported
cases of partial end full-span stalle., The design angulay velocity is
plotted as a bar, the right end of which represents the angular velocity
downstream, and the left end of which represents the angular velocity
upstream {rom the rotor. The line of equality between stall angulay
velocity and design fow angular velocity is drawn in,

The general trend of Figure 27 is for partial stalls on isolated
eft and for full

3 forg v &%
ii%m“%&& to the lef

sty
'6"‘9"

ga

rotors to be farthest from the line of ¢
stalls on camgi@%& single-gtage machines to be farthest away to the
right. Cases 2 and 4,which ave referenced to this paper, are to the
left of the line, although in Table 2 the angular velocity is reported to
be very nearly equal {o the angular velocity of the flow behind the rotor
between puccessive passages of the stall cell, This is because the
blades used were either isclated or separated from the stator blades
they were designed to match and the downstream angular velocity of the
flow wesg actually higher than the design valus., The one case of full
stall reported in Table 2 exhibits the general trend of Figure 27 that

the angular velocity of full stall matches the flow behind the stators
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much closer than it does an average over the rotors and siators.

Allowance for reasonable variation in the separation of design
points and stall points among the different compressors reporied and
further allowance for the fact that the mean angular velocity of the flow
does not occur at mid-radius for all machines shows that Figure 27
doeg not contradict the hypothesis that on isolated blade rows partial
stalls travel at the mean downstream angular velocity of the flow be-
tween successive passages of the stall cells. The gquestion which re-
mains, however, is of the efiect on the stall speed of flow through
closely-gpaced multiple blade rows.

Case 1 of Figure 27 shows a stall speed which seems to conform
to the whirl flow just downstream from the rotor. Cases 7, § and 9
seem to conform to the average of flows on both the rotor and stator.
Cases 11 and 13 seem to be governed exclusively by the stator. The
conclusion must be that stall pi@@ag&ticm speed iavargf sensitive to the
particviar design of a get of blades. The discussion below indicates
that the very existence of a stable partial stall on a rotor is guite sen-
si%:‘ive to the angle at which the stators are set, even in a single-stage
machine,

With very few exceptions, compressor blades are designed for
perfect fluid flow. Real fluid effects cause increased angles of attack
on rotor blades near the case and on the stator blades near the hub,

Preliminary tests using a rectangular cascade in which the flow
near one wall was twisted by a row of vanes upstream to simulate the
conditions of a moving wall revealed that 25%0 of the area of the suction

side of the blades was in separated flow at the angle of attack for max-
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imum lift-to-drag ratio as given in Reference 25, The area of sepa~
rated flow was roughly triangular in shape, and covered 85%o of the
chord at the wall on which the flow was twisted and about 30% of the
span along the trailing edge. Although 2 propagating disturbance was
found on the cascads, its properties were difficult to study becauvse of
the wakes shed by the upstream turning vanes,

Stalls involving only a portion of the blade span would seem (o
be a natural result of the fact that near a relatively moving wall the
blades are subjected to angles of attack higher than those for which they
were designed. Most compressors exhibit partial stalls near the case,
i,e. on the votors. The three-stage {rec-vortex machine described in
this paper iz one of the few machines to evidence partial stall near the
hub, i.e. on the stators.

In the free-vortex machine consisting of guide vanes, second
rotor, and third stator, 2 fairly stable flow could be attained with stall
propagating on the stators when the stator blades were turned so as to
increase their angles of attack. The stall was clearly on the stators,
{or while it resembled any other stall behind the stater, it was detect-
able only as a small amplitude potential-type disturbance immediately
behind the rotor.

It might be expected that compresgors would stall on elither the
case or the hub depending upon whether the real angles of attack were
farther {rom design on the tips of the rotors or stators, respectively.
Experiments with different stator angles on the various machine cone-
figurations vsed to compile Table 2 were conducted, In most cases,

irregular disturbed flow was detected near the hub a2t flow rates higher
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than those for which clearly-defined case stalls were established on
the rotor. As the flow vate was decreased, the flow near the hub would
gradually become as regular as that near the case and then, suddenly,
a stall would begin to propagate on the rotor. Multiple-cell rotor stalls
could be established at virtually any stator angle, but in some cases
the existence of the pre-stall irregular flow near the hub was pre-
requisite to the establishment of a stable single-cell rotor stall.

Figure 25 shows that the angle of attack on both rotor and sta-
tor blades decreases (rather than increases) as the full stall cell ap-
proaches. Iull stall, then, is 2 phenomenon quite different in charace-

ter from the simple concepis of Figure 1.
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CONFIGURATION

SOLID BODY
FREE VORTEX

V|R|*—"—""”‘““*V2V3
VRSR. S R S, V. V

FHir2zz233 23

Vi RiS|R,S,RS 3V, Vg

VT TRZT T S3VpVy
WRm—— =~ V23
VRTTT7S53% Y,
MR =Sm = VoV,
VRS~ ===\, V,
VITTRST T VR Y,

TABLE 2:

| SURVEY
l’ STaLL or Q{;‘/i)o W, | Pl
| PARTIAL 3 69 | 7
. FuLL | 6 28 | .26
. PARTIAL | (Av.586) 38 38
j l 5 62 | .63
‘» 3 .60 61
1 | .61
| NOT Y
| ME ASURED | a0
‘ 1 55

SUMMARY OF MEASURED AVERAGE ANGULAR
VELOCITIES OF FLOW BETWEEN STALL
CELLS (Ww,) AND STALL ANGULAR

VELOCITIES (%s/w,)
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FiIG. 3 AXIAL-FLOW COMPRESSOR
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