Heading Estimation via Sun Sensing for Autonomous
Navigation

Thesis by
Parth Shah

In Partial Fulfillment of the Requirements for the
degree of

Bachelor of Science in Mechanical Engineering

Caltech

CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California

2017
Defended June 5th, 2017

© 2017

Parth Shah
ORCID: 0000-0003-0780-0847

All rights reserved

ii

iii

ACKNOWLEDGEMENTS

First, I would like to thank my thesis advisor, Professor Joel Burdick. The door to
Professor Burdick’s office was always open whenever I hit an unexpected hurdle or
had a question about my research. His guidance allowed me to feel out the true ex-
perience of conducting research for longer than a 10-week SURF while keeping me
on track whenever I stumbled or felt overwhelmed. From force closure and Kalman
filters to fisheye cameras on Mars, everything he has taught me inside and out of the

classroom has inspired me to pursue my future career in the field of robotics.

I would also like to thank Professor Guillaume Blanquart, the Chair of the Me-
chanical Engineering Undergraduate Thesis Committee, for his advice both inside
and outside the technical realm. Without him I would not have been able to explore
the plethora of resources available to undergraduates in this department or at this

institution.

I wish to thank Daniel Pastor Moreno and Dr. Larry Matthies as vision expert

who I often consulted.
Finally, I must express my profound gratitude to my parents and brother for provid-
ing me constant encouragement and support through the process of researching and

writing this thesis. This accomplishment would not have been possible without them.

Parth Shah

iv

ABSTRACT

In preparation for the mission to Mars in 2020, NASA JPL and Caltech have been
exploring the potential of sending a scout robot to accompany the new rover. One
of the leading candidates for this scout robot is a lightweight helicopter that can fly
every day for ~1 to 3 minutes. Its findings would be critical in the path planning
for the rover because of its ability to see over and round local terrain elements. The
inconsistent Mars magnetic field and GPS-denied environment would require the
navigation system of such a vehicle to be completely overhauled. In this thesis,
we present a novel technique for heading estimation for autonomous vehicles using
sun sensing via fisheye camera. The approach results in accurate heading estimates
within 2.4° when relying on the camera alone. If the information from the camera
is fused with our sensors, the heading estimates are even more accurate. While this
does not yet meet the desired error bound, it is a start with the critical flaws in the
algorithm already identified in order to improve performance significantly. This
lightweight solution however shows promise and does meet the weight constraints
for the 1 kg Mars 2020 Helicopter Scout.

TABLE OF CONTENTS
Acknowledgements Lo iii
Abstract iv
Tableof Contents v
List of [llustrations vii
Listof Tables X
Nomenclature L xi
Chapter I: Introduction oL 1
1.1 The Mars Helicopter 1
1.2 Mission Requirements 2
1.3 Space Environment 3
1.4 Roadmap 5
Chapter II: Background Lo 6
2.1 Navigation Requirements 6
2.2 Navigation Methods 6
2.3 PastSolutions 7
Chapter III: Objectives 9
Chapter IV: Fisheye Review and Algorithm Overview 12
Chapter V: Environments 15
ST Linuxo 15
52 ROS . . 16
5.3 OpenCV e 17
54 cv_bridge 17
5.5 External Hardware 18
Chapter VI: Image Processing to Find and Track the Sun 21
6.1 CameraParameters 21
6.2 Encoding 23
6.3 Thresholding L 25
6.4 Finding and Tracking 26
6.5 Gaussian Blurring and Sobel Kernels 28
6.6 Erosion and SimpleBlobDetection 29
6.7 No Rectificationor PSF oo 30
6.8 Further Improvements 31
Chapter VII: Estimating Heading 32
7.1 TruePosition 32
7.2 Fixed Position, Heading Estimate Test 33
7.3 Second Iteration 35
7.4 Third Iterationo 36
7.5 Kalman Filter Model 37

7.6 TurtleBot Experiment 39

7.7 High-level Error Budget
Chapter VIII: Conclusions and Further Work

Bibliography

Number

1.1

1.2

4.1

5.1
5.2

53

54

5.5
6.1

6.2

6.3

vii

LIST OF ILLUSTRATIONS

Page
Scout, the helicopter that will accompany the Mars 2020 rover. It
will be able to explore the region ahead of the rover and communicate
back its results and position. (Landau, 2015) 2
Isomagnetic contours of Mars drawn at 10, 20, 50, 100, 200 nT
from ~400 km to demonstrate the weak and varying magnetic field
(Connerney et al., 2001). A compass could only be used for state
estimation if the image had little to no color variation. The incon-
sistency of the magnetic field renders the compass useless for state
estimationon Mars. L L L Lo 4
An image of a room from a camera with (a) a normal perspective lens
and (b) a fisheye lens (Courbon et al., 2007). 12
A screen capture of the working Ubuntu 14.04 environment 16
A screen capture showing the camera successfully running and dis-
playing as a ROS node. The terminal on the left is running the
camera node. The upper right terminal is displaying the image using
image_view and finally the bottom right terminal is running the main
TOSCOTE. .« & v v v e e e e e e e e e e e e e e e e e e 17
The display window on the left is the output from the image in
OpenCV. The display window on the right is the direct stream from
the fisheye camera itself. The reason for the discrepancy between the
images is the different encodings the image takes on in the two systems. 18
A screenshot of the fisheye camera housing that I created in Solid-
Works. It will be fabricated using a 3D printer. 19
The fisheye camera successfully installed into the 3D printed housing. 19
The control image of the two light sources with the camera parameters
settotheirdefaults. L L. 21
Outdoor and indoor images with the white balance temperature set to
its maximum value of 6500 Kelvin. The camera adds warmer tones
totheraw image. 22
Increasing the gain value did not have much of an effect on the image.

The gain effect only effects images that are taken in dark environments. 22

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

7.1

Increasing the gamma value may have actually reduced the blooming
effect but it came at the cost of the entire image becoming a lot
brighter, thus making it more difficult to differentiate objects.

The original image published by the camera node. It is transported

to OpenCV and its encoding at that pointisRGBS8.

Using the cvtColor function the image is transformed to the GRAY

colorspace.

Again using the cvtColor function in OpenCV the original RGB
image is transfored to the HSV space. This figure displays the H

(hue) matrix of this colorspace.

The masked image after it has been successfully thresholded. The
white spaces are the only parts of the image that had value score
greater than 225. The three objects on the left are lights in the room,
and the large object on the right is the sky that is being illuminated

bythesun.

The result of the Sun finding script. The contour seems to have

included a part of the cloud as well, and as a result the radius of the

enclosing circle is larger than desired.

The image on the left is the original thresholded image. The one on the
right is after a Guassian blur of size 3 has been passed over the image.
Some of the streakier bloom phenomena are removed by the blurring,
but the dense bloom region on the right side of the Sun becomes
stronger. Because the phenomena is not normally distributed, a

Gaussian blur alone does not help improve the performance of the

algorithm.

The image shows the result of the edge detector, Sobel kernel. The
bumpy outline of the Sun is due to the bloom phenomena. The

roughness causes the centroid to be off, thus influencing the heading

estimates. e e e e e e e e e

The blue circle indicates "the Sun" as found by the findContour
function. The red circle is the improvement after implementing a
series of preprocessing functions along with simpleBlobDetect.

The algorithm successfully identifies the Sun while excluding any

of the surrounding bloom phenomena. The resulting estimates are

within 2° and 3° respectively.

viii

23

24

24

27

30

7.2

7.3

7.4

7.5

7.6
7.7
7.8
7.9

Here the algorithm struggles to differentiate the Sun from the neigh-

boring bloom phenomena. As a result the estimates are off by 5° and

8°respectively.

The two graphs showing the angle approximations against the true
values. The zenith approximation started off wrong and strayed even

further, while the azimuth approximation wavered around the true

values. e

The two graphs showing the angle approximations against the true
values for the second iteration with higher resolution images and

increased threshold values. Both the zenith and azimuth approxima-

tions worsened with these changes.

The azimuth approximations with a new overhauled algorithm over

the course of a two hours period produced a heading estimate error

of 3.5%. . . s,
TurtleBot start location.
TurtleBotend location.

This graph illustrates the heading estimates of all 3 sources alone. . .

This graph illustrates the heading estimates after all 3 sources have

been fused together with a Kalman filter.

ix

34

LIST OF TABLES

Number Page
2.1 The mapping functions and strengths of the four most common fisheye

camera types (Schneider, Schwalbe, and Maas, 2009) 8

CAD.

Cv.

EKF.

HSV.

IMU.

JPL.

KF.

MER.

Xi

NOMENCLATURE

Computer Assisted Drawing is the use of computer technology, such as
SolidWorks, for design and design documentation.

Computer Vision involves acquiring, processing, analyzing and understand-
ing digital images to make decisions.

Extended Kalman Filter is the nonlinear version of a Kalman filter.
Hue-Saturation-Value is a common color model used for image encodings.

Inertial Measurement Unit, is an electronic device that measures and re-
ports a body’s specific force and angular rate surrounding the body, using a
combination of accelerometers and gyroscopes.

Jet Propulsion Lab is a federally funded research and development center
that is managed by Caltech.

Kalman Filter is an optimal estimator.

Mars Exploration Rovers is an ongoing robotic space mission involving two
Mars rovers, Spirit and Opportunity, exploring the planet Mars.

NAVCAM. Navigation cameras is a stereo pair of cameras, each with a 45-degree

field of view to support ground navigation planning by scientists and engi-
neers.

Pancams. Panoramic Cameras is a color, stereo pair of cameras that is mounted

PSF.

RGB.

ROS.

WO.

on the rover mast and delivers three-dimensional panoramas of the Martian
surface.

Point Spread Function describes the response of an imaging system to a point
source or point object.

Red-Green-Blue is the most popular color model and is also the most fre-
quently used encoding for digital images.

Robot Operating System provides libraries and tools to help software devel-
opers create robot applications.

Wheel Odometry is the use of wheel sensors to estimate position and heading.

Chapter 1

INTRODUCTION

1.1 The Mars Helicopter

Mars is the closest neighboring planet to Earth and is located approximately 33.9
million miles away. The planet’s surface, climate, and geography is heavily studied
with the hopes of determining if the planet ever had the correct conditions to support
microbial life. Recent findings from the Mars Reconnaissance orbiter mission have
revealed a water deposit larger than the size of New Mexico on Mars’ Utopia Planitia
region (Webster, 2016). The past orbiters and rover exploration missions have been
critical in making such discoveries and setting up the groundwork. In order to
further this work, NASA hopes to send a lander, Insight, in 2018 as a part of the
NASA Discovery Program to study the deep interior of the planet. This will be
followed with a rover, Mars 2020, in 2020 as a part of its Mars Exploration Program
(Mission: InSight n.d.) (Mars 2020 Mission Overview n.d.).

The rover design for Mars 2020 will be based off of the Mars Science Laboratory
mission architecture and will contain many of the successful elements. The rover
will have a mass of ~900 kg and will operate for up to one Martian year (687 days)
on the surface of Mars. Every single exploration program including Curiosity has
performed motion planning and destination selection using a combination of satellite
and on-board camera images. The on-board cameras provide a picture of the rover’s
immediate surroundings but cannot look past obstacles such as crater walls or large
rocks. This is due to the design limitations of where the cameras can be placed
and their reduced field of views, ~16-45°, to produce higher quality images. As the
mapping of Mars has increased, satellite image qualities have significantly improved
but they still remain a limiting factor when planning the target for a rover. To combat
this, a small helicopter, Mars 2020 Helicopter Scout, may accompany the rover as a
part of the scientific payload. The proposed helicopter is depicted below in Figure
1.1.

Figure 1.1: Scout, the helicopter that will accompany the Mars 2020 rover. It will
be able to explore the region ahead of the rover and communicate back its results
and position. (Landau, 2015)

1.2 Mission Requirements

The primary objective of this helicopter is to explore the terrain ahead of the rover.
It will be able to provide overhead images with ~10x greater resolution than orbital
images and will display features that may be occluded from the on-board cameras
(Volpe, 2014). The current proposals call for a lightweight helicopter, ~1 kg, in
order to generate the required thrust in Mars’ thin atmosphere. With a total mass of
1 kg, it would fly once every Martian day for approximately 3 minutes and cover up
to 600 meters (Volpe, 2014).

Communication is another critical process for this helicopter. A radio signal can take
up to 45 minutes to make the roundtrip between Mars and Earth. As aresult, the Mars
helicopter, with its 3-minute flight, will need to be almost completely autonomous.
A human operator may be able to once a day sketch out the approximate patch
of land that it wants the helicopter to survey, but the operator cannot reasonably
administer finer commands then that. Therefore, the helicopter needs to be able to
sense the environment sufficiently so it can autonomously navigate to the desired

destinations and back to the home location.

For the safety of the rover, the helicopter will be deployed only after the rover has

3

left the drop off site. The communication systems onboard the rover will update the
helicopter of the rover’s position so the helicopter explores the correct regions while
always remaining a safe distance away from the rover. It would be a tragic failure
for NASA if its exploration vehicles could not communicate with one another, so it
is critical that the helicopter stays close enough to the rover so that it can relay its
findings. Because of its limited flight times, the helicopter will have to convey the
results once it has landed. This information can be sent in one of two ways back
to the rover. If the rover is within close proximity, line of sight, the information
can be sent directly to the rover. Otherwise, information will have to be conveyed
via the network of satellites that orbit Mars. Unfortunately, this network is nowhere
as robust as the one for Earth, and can result in communication delays of up to 45
minutes. It would be impractical to waste the helicopter’s power on hovering at
an altitude above all local obstacles just to convey data directly to the rover from a
slightly further location.

To ensure the helicopter is far enough from the rover to fly safely and close enough
to the rover to communicate, the helicopter will rely on being able to accurately
know and report its location. The process in which a system estimates its own
state using system inputs and outputs is known as state estimation. In the case of
planetary exploration this procedure draws upon data from the inertial measurement
unit (IMU) for state prediction and additional sensors for state verification. The
sensors used for state verification must draw upon external variables outside of the
system. For the helicopter, this will mean magnetic fields, beacons, stars, or any

other phenomena that occurs in a constant pattern.

1.3 Space Environment

Although there are many difficulties in designing an autonomous robot on Earth,
this specific helicopter must also endure the harsh environment of Mars. There is a
vast amount of research done on characterization of the Martian environment. The
details will not be discussed in this paper but the key components will be highlighted

and addressed as they pertain to the heading estimation task.

On Earth, multirotor systems utilize a compass for heading estimation. However,
extraterrestrial environments like Mars often have weak or inconsistent magnetic
fields rendering compasses useless. Instead, planetary exploration missions have
capitalized on the presence of stars for navigation purposes (Eisenman, Liebe, and

Perez, 2002). Because of the thin atmosphere and weak magnetic field on Mars, the

4

Sun becomes a critical feature for localization on Mars. As displayed in Figure 1.2, a
strong global magnetic field does not exist on Mars and the scattered local magnetic
fields are about a 100 times weaker than the magnetic field of Earth (Acuia et al.,
2001).

0 90 180 270 360
d. East Longitude

Figure 1.2: Isomagnetic contours of Mars drawn at 10, 20, 50, 100, 200 nT from
~400 km to demonstrate the weak and varying magnetic field (Connerney et al.,
2001). A compass could only be used for state estimation if the image had little
to no color variation. The inconsistency of the magnetic field renders the compass
useless for state estimation on Mars.

The atmosphere on Mars is a 100 times thinner than that on Earth and is composed
of mainly carbon dioxide. The gravity on Mars is approximately % of that on
Earth. The thin atmosphere overshadows the benefits of reduced gravity and results
in exponential growth of propeller length in order to generate the required thrust.
The abundance of carbon dioxide dampens the greenhouse gas effects, as a result,
severe weather patterns such as clouds are much less pronounced, thus increasing
the likelihood of locating key features such as stars. Dust storms, on the other hand,
are frequent and assumed to be the common natural occurrence that could hamper

the visibility of the Sun and stars, and damage some of the equipment onboard.

To successfully design a helicopter that can autonomously navigate on Mars, it is
imperative that the correct facets of the environment are capitalized upon. Different
planetary exploration missions in the past have implemented the required state

estimation techniques using a variety of approaches.

1.4 Roadmap

The thesis is divided into 3 main parts. The first three chapters set the scene for
the thesis and delineate the goals. Chapters four and five describe the methods and
necessary environment in detail. Finally, chapters six and seven present the results
and discuss the impacts of the findings before before recapping the accomplishments
and suggesting future work for autonomous navigation on Mars using a fisheye

camera in chapter eight.

Chapter 2

BACKGROUND

2.1 Navigation Requirements

Navigation is the act in which a vehicle determines its location with respect to
a reference using its sensors. It is a critical component of autonomous vehicles
because it is used to guide them to their targets or goals. In the case of the Mars
helicopter, the target is a region specified by a human operator. Arriving at this
location and exploring it is much more important than what paths or waypoints are

traveled on the way there.

As state earlier, the goal of the Mars helicopter is to scout out operator suggested
areas around the rover with short, daily flights. The helicopter should return home to
a position that is far enough away from the rover to maintain the safety buffer zone.
The position accuracy for similar missions in the past has been 10% (Eisenman,
Liebe, and Perez, 2002). To reasonably bound the helicopters state estimation error
within a range it can still communicate through line of sight, ~30 m, the position
accuracy must be 5% or better. The helicopter must be able to accept commands
from the human operator via the rover, autonomously navigate and survey the desired
area, and communicate its findings back to Earth via the rover’s communication

equipment.

It should be noted that all autonomous navigation will be done during the day, when
there is enough light for sensing and reacting. The rover will also play no role in the

navigation process forcing the helicopter to rely exclusively on its onboard sensors.

2.2 Navigation Methods

There are two main categories of navigation: by reference and by dead reckoning.
Navigation by reference requires for there to exist external objects in the environment
whose location is either fixed or known at a given time. If a network of beacons were
set up within a mile radius of the rover, and their positions were communicated to the
helicopter, then it would be able to navigate through this surrounding region. This
is of course assuming that the required beacons are in line of sight of the helicopter.
Dead reckoning, a method that only draws upon internal variables, on the other hand

is a self-sufficient process but is subject to unbounded error growth. Unfortunately,

7

the high quality instruments necessary to keep the error low will not fit the weight
constraint of the helicopter, 1 kg. Therefore, the low quality, lightweight versions of
the instruments must be cleverly combined to meet the real-time position estimation
requirements of the helicopter while attempting to keep it within its predefined

bounds using reference based navigation.

As discussed above, one of the sensors will need to reference a heading. On Mars,
the magnetic field is weak and uneven. However, the atmosphere and weather
provide easy access to the Sun and other stars. The helicopter will be flying during
the daytime. As a result, the logical reference to use in the sky will be the Sun.
Historically, sun sensors have provided accuracies as high as 0.001 degrees for
active implementation (Psiaki, 1999). It will be critical to draw from these past

inspirations for the case of the helicopter.

2.3 Past Solutions

In the past, the Sun has been used to guide a plethora of space missions, including
satellites and the descent stages of rovers. Sun sensors of different sorts are used to
calculate the attitude of the satellite or spacecraft. For example, the Mars Exploration
Rover (MER) used a visual odometry system that combined the estimates from
integrating the IMU and the encoders on the wheels with the information extracted
from the NAVCAM images (Eisenman, Liebe, and Perez, 2002). The position
estimate can accumulate a couple degrees of drift from repeatedly integrating the
IMU data. To eliminate this error, the direction of the gravity vector measured by
the IMU is combined with a vector pointed at the sun and the knowledge of the
current local solar time (Maimone, Leger, and Biesiadecki, 2007). The Panoramic
Cameras (Pancams) are located 1.5 meters high on the mast of the rover and are used
to calculate the sun vector. The Pancams have a 16° by 16° field of view (FOV) and
are mounted with a 1° shoe on a 2 axis gimbal at the top of the mast. The Pancams
are positioned with respect to the sun vector such that the sun appears in the center
for the image. The error is then determined by identifying the location of the sun in
the image and from this the updated sun vector is calculated (Eisenman, Liebe, and
Perez, 2002).

Other solutions include a star tracker, an optical device that measures the position
of stars, or a network of photodiodes. The photodiodes are a low cost solution for
satellites that can determine the sun vector for navigation purposes (Springmann,

2013). The MER descent stage combined a sun sensor with a star tracker to estimate

8

the attitude of the plummeting rover. These methods however will be impossible
to implement on the Mars helicopter; the MER Pancams or a star tracker weigh on
the order of a couple kilograms and will not fit in the weight budget of the 1 kg
helicopter. As for the network of photodiodes, they may not work as effectively
because the sun will only be illuminating the top surface of the helicopter and
therefore the network of photodiodes would only be able to discern two of the three

dimensions of the sun vector.

An alternative that draws from the past implementation on MER is a camera. This
camera would not serve multiple additional functionalities like the Pancams does
and would ideally have a much larger field of view than the Pancams because relying
on a gimbal on top of a helicopter would be relatively heavy. Fisheye cameras are a
lightweight option with wide fields of view. The four most common types of fisheye
cameras are stereographic, equidistant, equisolid, and orthographic. The unique
mapping functions and benefits for these different fisheye cameras are displayed in
Table 1. An equidistant fisheye camera maintains angular distances making it the
ideal candidate for measuring angular differences in the Sun’s position. The camera

normally weighs on the order of 100 grams and boasts a 180° field of view.

Stereographic Equidistant Equisoid Orthographic

Mapping Function R = 2ftan(§) R=f60 R= 2fsin(§) R = fsin(0)

Maintains Angles Angular Surface Planar
distances relations illuminance

Table 2.1: The mapping functions and strengths of the four most common fisheye
camera types (Schneider, Schwalbe, and Maas, 2009)

Combining the lightweight fisheye camera with other lightweight dead reckoning
sensors will be key for developing the desired state estimation platform for the

helicopter.

Chapter 3

OBJECTIVES

The goals for this senior thesis are as follows:

1. Easy -

* Track the Sun using a fisheye camera and output heading estimates while

being stationary

* Model a Kalman filter for providing heading estimates by fusing a variety

of data sources
2. Intermediate -

* Explore advanced image processing techniques to improve heading es-

timates

* Track the Sun using a fisheye camera and implement the Kalman filter

to provide heading estimates while onboard a planar vehicle (TurtleBot)
3. Advanced -

* Integrate the Sun tracking fisheye camera with JPL’s visual inertial nav-

igation filter

* Create a comprehensive error budget

To achieve goals a couple key tasks are required to lay the proper foundation. First,
a comprehensive literature review must be completed to understand how similar
problems have been successfully solved. This review will require reading journal
articles and space agency documents in order to understand the true complexity
of the problem. Then begins the project specific research. Journal articles and
textbooks will be critical for differentiating the types of fisheye lenses. Based on
the pros and cons of each type and the availability, a fisheye lens will need to be

purchased.

Next, the environment to connect all the sensors and perform all the computation

must be properly setup. In this case it will require properly installing the complete

10

Indigo release of Willow Garage’s robotic operating system (ROS) on the compatible
Ubuntu release. Then ROS needs to be connected to OpenCV, a C++ computer
vision library that is also now available in Python, Matlab, and Java, for image
processing. The specific fisheye camera then needs to be appropriately mounted
so it is compatible with the aforementioned operating systems. Once this has been
completed, the fisheye camera can capture an image while running through ROS
and then can be processed in OpenCV. There exist a handful of tutorials online to

familiarize oneself with these open source technologies.

The final task of preparation that needs to be done is the solar ephemeris approxima-
tions. Using the solar ephemeris it is possible to calculate the approximate position
of the sun in the sky based on one’s latitude and longitude and absolute time. These
equations can be identified very easily for earth and have been converted into cosines
and sines for simplicity. The other calculation that needs to be performed is the size
of the sun in an image. The Sun is known to be a certain angular measurement in the
sky. As a result, this value can be translated in a square of pixels. This square will
be used to sweep the image when searching for the sun. The size of this square is
dependent on the resolution of the fisheye camera used. It will also be dependent on
the approximate position of the Sun in the fisheye camera because fisheye cameras

distort objects in certain manners for different parts of images.

Three additional performance optimization topics that may be explored in prepa-
ration for the advanced goals include rectilinear reconstruction, point from spread
deconvolution, and Kalman filters. One of the most common type of fisheyes is an
equidistant fisheye. To reconstruct a rectilinear image from an equidistant fisheye
image the image has to be split up into a central region and four peripheral ones
before being reconstructed using geometric transformations [12]. The current ap-
proach calls for bypassing this computationally intensive step, but if the errors are
too high then some sort of a reconstruction may need to be implemented to meet
the desired performance specifications. Another phenomena that is computation-
ally intensive to combat is PFS - point from spread. PFS causes the dilution of
pixels. If the error budget reports a large error, then it may be worth investigat-
ing if a generic deconvolution can be reasonably applied to enhance the quality of
the image. Finally, the sun detection algorithm will output information about its
heading versus its expected heading. From this information, the sun vector and the
associated heading error can be calculated. To correct this naturally growing error,

the information will be fed back into an extended Kalman filter. All three of these

11

topics will be addressed in following sections. Ideally the working algorithm and
sensor are integrated with JPLs visual inertial navigation extended Kalman filter. In

general, Extended Kalman Filters are commonplace for autonomous navigation of
robots, especially rotorcrafts.

12
Chapter 4

FISHEYE REVIEW AND ALGORITHM OVERVIEW

The first step of this experiment is to conduct a review of fisheye lenses. The
main way fisheye lenses vary is the mapping function they implement. The four
leading types are stereographic, equidistant, equisolid angle, and orthographic. The
characteristics that need to be considered in this review include mass, resolution,
reconstruction technique, and related point from spread functions. From the review,
the findings appear to favor an equidistant fisheye camera. They are the cheapest, and
most commonly available fisheye camera that interface with our desired platforms

and meet the weight constraints. The mapping function for these fisheye cameras

also tends to be the simplest of them all.

(b)

Figure 4.1: An image of a room from a camera with (a) a normal perspective lens
and (b) a fisheye lens (Courbon et al., 2007).

Now that the type of fisheye lens has been selected, a camera that fits the desired
specifications will be utilized for all future experiments. There are a couple extra
tests that can be performed if one would like to further analyze fisheye cameras. The
first extra test that can be performed is a simple validation of the selected mapping
model. Using a simple object with a bright color and defined edges, a series of
images can be captured using the fisheye camera. The location of the object will

vary from the center to the edges of the image. The location of the object will also

13

be measured with respect to the defined center of the image. The radial position
will be predicted and compared to the ideal case mapping function that is provided
in literature. The second test that can be performed is to fit a fifth order polynomial,
the polynomial fish eye transform, to create a secondary model that accounts for
manufacturing errors (Hughes et al., 2010). It can be pursued to further understand
the radial distortion introduced by the fisheye lens. Both these tests extend the
analysis performed on the selected fisheye camera to ensure the user understands

any special phenomena or irregularities in the lens or camera.

u

o0

rg = Z knt™ = kyry + kor? + ...+ k"

n=1

The high level algorithmic review can now proceed, given that the appropriate
hardware has been selected. The algorithm that will be developed for the vehicle
will need to first acquire images that are being broadcasted by the camera in our
ROS architecture. From there it will have to convert it to the appropriate encoding
and data structure so that our analysis library, OpenCYV, can use it. From the raw
image, we will have to extract the location of the Sun. To do this a couple different
techniques can be implemented. One approach to consider might be similar to the
MER Pancams — a window that sweeps the image. Another approach might include
searching for contours and biasing the size or location of these contours. After a
final technique has been implemented for extracting the location of the Sun, it has
to be calibrated to the real world location to produce a heading estimate. Once it
has been calibrated, the calibration transform can be applied to every new reading

to predict the next heading estimate as the vehicle travels.

The algorithm can be made even more robust by combining other fundamental
technique of state estimation to improve the heading estimate. When extending
the system to planar vehicles, wheel odometry, is the leading candidate. As for
aerial vehicles, we look to include visual odometry. This techniques provide extra
information that may need to be passed through a filter but should improve the

heading estimates when combined with the estimates output from the fisheye camera.

There are a couple other features that might need to be built into the algorithm, if
their effects significantly impact the outcomes. The first is the point spread function.
To begin the impact of the point spread function would need to be determined. In
general the point spread function blurs out a point-like object and spreads it out to a

certain minimal size. Its effects are generalized as a convolution of the object and the

14

estimated point spread function. If the impacts of the point spread function are large,
quantified by a pixel blurring kernel, then a deconvolution needs to be performed
to the image to restore the original image. Deconvolution however requires a large
amounts of computing power and may not be feasible with the onboard electronics.
Performing a deconvolution of only the sun may be possible if a simple and generic

transform can be calculated off-board beforehand and then stored onboard.

The next feature is rectifying the image. If the algorithm struggles to identify the
Sun in the distorted regions of the image then the image will need to be rectified.
The theory behind rectilinear transforms call for splitting the image into 5 sections
and applying different transforms to each portion to rectify the image. If we end
up rectifying the image, we will most likely end up referring to existing library
functions or procedures instead of implementing our own. Once rectified, the size
of the Sun should not change significantly based on its location in the image and a

tighter bound can be given to the search component of the algorithm.

This technique has to then be integrated into the frame of a helicopter. The helicopter
does not ensure that the camera’s normal vector is always facing up when taking
images. As aresult, the tilt of the helicopter must be accounted for. A couple different
methods will be explored in this section. First a horizon tracking methodology may
be implemented to approximate the tilt of the helicopter at any given time. Another
approach integrates a tilt sensor and utilizes its output when calculating the location
of the Sun.

Now that that main hardware and software components have been discussed at
a high level it is time to turn our attention towards the detailed implementations
and results. The next chapter will address the environment and necessary setup

procedures before we move into developing and testing the algorithm.

15
Chapter 5

ENVIRONMENTS

In this chapter, we will be addressing how the environments necessary for this project
were setup. This will involve discussing where different packages and drivers were
downloaded from and how they were installed properly. Because a majority of the
components were only compatible with Linux, it was critical that a distribution of

that was installed first.

5.1 Linux

With Linux, there are many distributions that can be installed. Some distributions
are commercially backed, such as Ubuntu or Fedora, while others are community-
driven, like Debian and Gentoo. The one I had dabbled into in the past was Ubuntu,
so I choose to install that. Ubuntu recently released Ubuntu 16.10, Yakety Yak, in
October 2016. Instead of downloading the latest release, I decided to install Ubuntu
14.04, Trusty Tahr. The reason I installed Ubuntu 14.04 was because of the ROS
release it was associated with. The new release Kinetic Kame is tied to Ubuntu
16.10 and lacks some of the libraries with the appropriate drivers for mounting
USB cameras. They rely on the user downloading the desired extra packages from
external sources, such as poorly maintained Github repositories, and compiling them
in the appropriate directories. In the beginning, this was something I was not very
comfortable doing and had a lot of trouble with. I learned that the ROS release
of Indigo however interfaced with these older libraries much better. As a result, I
wiped the Windows 10 from my ASUS U32U and installed Ubuntu 14.04 with a
bootable USB. Figure 5.1 below, shows the operating system up and running with 4
GB RAM, 320 GB SSD, and an AMD E450 processor.

16

= B | =(0:38,45%) 5:48PM 3%

E
)
B
%
a]
%

Figure 5.1: A screen capture of the working Ubuntu 14.04 environment

5.2 ROS

As discussed above, the Indigo release of ROS was selected because of the sup-
ported packages related to USB cameras. Also a quick Google query illustrated
that there was much more thorough documentation related to bugs and common
problems for Indigo as opposed to Kinetic Kame. With that in mind, I followed the
installation steps outlined on the ROS website (http://wiki.ros.org/indigo/
Installation/Ubuntu). I opted for the full desktop install, as this machine was
entirely devoted towards running Linux, ROS, and OpenCV for this project. The
first additional stack that had to be installed was the camera_umd stack. Inside of
this stack were three libraries: camera_umd, jpeg_streamer, and uvc_camera. It
was the last library, uvc_camera that I was most interested in because this library
had the launch files for USB cameras. While this library made it possible to run
the USB camera as a node in the operating system, it did not allow for the user
to see the image. To display the image, the aptly named image_view library was
utilized. The simplest way of using that library just subscribed to the user identified
topic, and streamed the images from the camera to the user in a window. The figure
below shows the USB camera successfully running on ROS and being displayed via

image_view.

17

/image_raw = [@ ¢ =(0:36,44%) 5:48PM 3%

discrete: 640x480: 1/30 parth@parth-us3 catkin_ws/src/camera_umd/uvc_camera/launch$ rosrun image_view
e 40 1/30 image_view im image_|
1200: 1/10 [INFO] [1486948586.949834680]: Using transport "raw"
0, id = 980960): -64 to 64 (1)

int (Contrast 91): © t (1)
int (saturation, 980962): @ to 128 (1) [
int (Hue, 0, id =): -40 to 40 (1)
bool (White Balance Temperature, Auto, 6, id = 98898c): 6 to 1
int (Gamma, @, id = 988918): 72 to 500 (1)
int (Gain, @, id = 980913): @ to 160 (1)) started roslaunch server http://parth-U32U:40031/
menu (Power Line Frequency, @, id = 980918): @ to 2 (1) ros comm version 1.11.28

0: Disabled = P

1: 50 Hz

Press Ctrl-C to interrupt
Done checking leg file disk usage. Usage is <1GB.

fimage_raw

2: 60 Hz 5 S ’v_ SIS

sul
int (White Balance Temperature, 16, id = 98091a): 2800 to 6500 __
: . o 3.

8 (1)
, 8, id = 98091¢c): @ to 2 (1)
d = 9a8901): @ to 3 (1)
, 16, id = 9a6902): 1 to 5000 (1)
ty, 0, id = 9a8903): 0 to 1 (1)

NODES

auto-starting new master

process[master]: started with pid [23551]

ROS_MASTER_URI=http://parth-U32U:11311/
-

setting /run_id to c2579cf4-f189-11e6-94f8-0008ca3d400b

process[rosout-1]: started with pid [23564]

started core service [/rosout]

Figure 5.2: A screen capture showing the camera successfully running and display-
ing as a ROS node. The terminal on the left is running the camera node. The upper
right terminal is displaying the image using image_view and finally the bottom right
terminal is running the main roscore.

5.3 OpenCV

OpenCV is alibrary of programming functions that are geared for real-time computer
vision. It was originally developed by Intel and is now managed by Itseez. It is
an open source software that can be downloaded from Github and easily installed.
For this project I tried to download one of the most recent releases, OpenCV 3.1.
Unfortunately, after installing it and trying to use it in conjunction with cv_bridge,
the program kept segfaulting. After trying to debug this issue with Dr. Kun Li,
we finally discovered a StackOverflow question that declared there was still not fix
to solve the compatibility issues between OpenCV 3 and cv_bridge. As a result, I
had to uninstall this release and download OpenCV 2.4.13 instead. The files were

finally installed and the OpenCV environment was built.

5.4 cv_bridge

To connect ROS to OpenCV I used a library built into ROS called cv_bridge.
There was an online tutorial on the ROS wiki that demonstrated how to convert
an image from the ROS encodings to the OpenCV encodings and then display it
after transforming it into a numpy matrix. The figure below illustrates a successful

transport to OpenCV in which the image is displayed after drawing a red circle in

18
the upper left corner.

A simple break down of how cv_bridge works is that is subscribes to a specified
topic. It also establishes a publisher that is normally called image_converter. So
the packages are received from the topic that is predecided and then the cv_bridge
transports it into OpenCV format. A display of this working is displayed below.

/image_raw = B ¢ 27, 77%) 1:37AM 2%

converted
480 640 rgbs
converted
480 640 rgbs fimage_raw
converted
480 640 rgbs
converted
480 640 rgbs
converted
480 640 rgbs
converted
480 640 rgbs
converted
480 640 rgbs
converted
480 640 rgbs
converted
480 640 rgbs
converted
480 640 rgbs
converted
480 640 rgbs
converted

l . Uz~ pcatkin /Camera_uma/uvc_camerajLauncny ca ~/catkin_ws;

i~/catkin_ws/2.14.17$ mkdir inside
menu (Power Line Fregquency, @, id = 98 8): 0 tc (1) i~/catkin_ws/2.14.17% cd inside/
6: Disabled catkin_ws/2.14.17/inside$ rosrun image_view image_view image
1: 50 Hz
2: 60 Hz 1765.84180544 sing transport "raw”
int (White Balance Temperature, 16, id = 98091a): 2800 to 6500 (1) b . aved image frame©eee.jpg
int (Sharpness, 6, id = 98891b): © to 6 (1) 8160.10822379 aved image frame6@®1.jpg
int (Backlight Compensation, 0, id = 98691c): 6 to 2 (1) .72005248 d image frame00o2.jpg
menu (Exposure, Auto, ©, id = 9ae901): @ to 3 (1) 835142, aved image frame@0@3.jpg
962): 1 to 5000 (1) aved image frame0oes.jpg
ol (Exposure, Auto Priority, 6, id = 9a8963): 6 to 1 (1)
10 1 o 1
: Saved image frame@@es.jpg

=
)
B
a
7

Figure 5.3: The display window on the left is the output from the image in OpenCV.
The display window on the right is the direct stream from the fisheye camera itself.
The reason for the discrepancy between the images is the different encodings the
image takes on in the two systems.

5.5 External Hardware

In order to get the whole system to work as a single unit in space, the camera had
to be successfully mounted on a stand. This stand was designed in SolidWorks and
fabricated using the Dimension 3D Printer in the shop. The CAD for the stand is
displayed below. The board for the camera already had four pre-drilled holes in
the corner. The design capitalized on those holes as mounting points and locked in
the camera so that the lens faced directly up. The first iteration includes no way of

tilting the camera.

19

Figure 5.4: A screenshot of the fisheye camera housing that I created in SolidWorks.
It will be fabricated using a 3D printer.

The housing was designed so that the pillars in the 3D print would interact with the
pre-drilled holes in the chip as a slip fit. After printing the housing, it became clear
that the tolerances were not as fine as they appeared to be in the CAD. As a result,
the fit transitioned from a slip fit to a press fit and the caps were no longer necessary.

The installed version of the first iteration is displayed in Figure 5.5.

—

Figure 5.5: The fisheye camera successfully installed into the 3D printed housing.

Moving the project onto a quadcopter will be a very different task. Instead of
having a display and running the tasks through the host laptop, a small computer,

Raspberry Pi or comparable, will have to be loaded with rOS and OpenCV along

20

with the commands necessary to start the camera as a node and run the programs

for finding the Sun.

21
Chapter 6

IMAGE PROCESSING TO FIND AND TRACK THE SUN

6.1 Camera Parameters

Blooming is the phenomena where light streaks out of a light source saturating other
pixels. This is often seen in cameras when trying to capture very bright objects such
as the sun. With the fisheye camera that is being used, there are few variables that
can be manipulated. These different camera properties need to be best manipulated
in order to reduce the blooming effect of the Sun. The three variables that can be
varied are: white balance temperature, gain, and gamma of the image. Below I
present a side by side comparison of how each of these variables effects a LED light

source and the Sun.

First we need to present the control. In the figures below the LED light and the Sun
is captured with all three variables set to their minimum, which is the default. In the
control picture of the Sun, the blooming effect is clearly visible. As for the image of
the LED light, it is important to focus on how the areas surrounding the LED light
change. It is also important to note the presence of the halo from the glare of the

Sun.

Figure 6.1: The control image of the two light sources with the camera parameters
set to their defaults.

Next we increase the white balance temperature to its maximum of 6500 Kelvin.
In photography the white balance temperature is used to denote the approximate

temperature of the light source. With the Sun as the light source, the white balance

22

temperature should be set close to 5800 Kelvin. The images below display the
difference produced when the white balance temperature is set to its maximum. The

most obvious result is that the camera adds warm tones to the raw image, specifically

notice how the walls become yellower.

Figure 6.2: Outdoor and indoor images with the white balance temperature set to its
maximum value of 6500 Kelvin. The camera adds warmer tones to the raw image.

The second variable that was increased to its maximum value of 6 was the gain. The
gain is used to boost the brightness of an image in low light conditions. However,
the gain cannot be used to reduce the brightness of an image, as is required when
shooting the Sun. The result of changing the gain from O to 6 is not very noticeable

as the two environments that we have captured are not poorly lit.

s

;.

Figure 6.3: Increasing the gain value did not have much of an effect on the image.
The gain effect only effects images that are taken in dark environments.

The final variable manipulated was the gamma value. Gamma defines the relation-

ship between the value a pixel carries and the luminescence it outputs. Interestingly,

23

this value ranges from 72 to 500. Normally this value is set at its minimum of 72.
By increasing this value to 500, the image should transform to a much brighter one.
This is clearly what is observed in the set of images below. The blooming effect
is definitely less noticeable with this change of gamma. However, it is not clear
whether increasing the gamma and making the image very bright will be worth the

reduction of the blooming effect. As a result, the gamma value will be set to its

minimum value of 72 unless stated otherwise.

Figure 6.4: Increasing the gamma value may have actually reduced the blooming
effect but it came at the cost of the entire image becoming a lot brighter, thus making
it more difficult to differentiate objects.

The final set of parameters that will be used with the camera include: white balance
temperature of 6500 Kelvin, gain of 0, and a gamma of 72. The image format
will be JPEG. The size of the image will be determined later when optimizing the

performance of the function against some error bound.

6.2 Encoding

The next experiment that will have to be performed before beginning the image
analysis is the encoding for the image in OpenCV. There are many different formats
the image can be reformatted to in OpenCV. It originally is transported to OpenCV
in RGBS. This is displayed below.

24

Figure 6.5: The original image published by the camera node. It is transported to
OpenCV and its encoding at that point is RGBS.

It is clear that there exist a plethora of different encodings for images that are
compatible with OpenCV. Just to name a few, some of the possible encodings
include: GRAY (black and white), HSV (hue, saturation, and value), YUV (luma
and chrominance), and Bayer (half the pixels are filtered green). Initially it was
thought that transforming the RGB image to GRAY, as displayed below, would be
the dominant strategy because then it would be easy to isolate the white objects, the

sun, in the image.

Figure 6.6: Using the cvtColor function the image is transformed to the GRAY
colorspace.

25

However, after seeking advice from users familiar with image encodings another
encoding emerged as a possibility, HSV. HSV appeared to be another candidate
because it separated the image into three different matrices: hue, saturation, and
value. The object that we are concerned with is going to normally be the brightest
object in the image. For this reason, this value matrix is important because it
quantifies the magnitude of the brightness of that specific pixel in the image. The
hue matrix is displayed below in Figure 6.7. In reality, we will discard the hue and

saturation matrices and only focus on the value one.

Figure 6.7: Again using the cvtColor function in OpenCV the original RGB image
is transfored to the HSV space. This figure displays the H (hue) matrix of this
colorspace.

6.3 Thresholding

Once the value matrix of the image has been attained it needs to be thresholded.
This procedure will impose a mask on the value matrix. All values that are below
the predefined threshold will be set to 0. The resulting matrix, as displayed in
Figure 6.8, only reveals the brightest features. All the scales in the HSV encoding
range from 0 to 255. Originally the image was thresholded to accept the entire hue
spectrum, the entire saturation spectrum, but only the upper end, values above 225,

of the value spectrum.

26

Figure 6.8: The masked image after it has been successfully thresholded. The white
spaces are the only parts of the image that had value score greater than 225. The
three objects on the left are lights in the room, and the large object on the right is
the sky that is being illuminated by the sun.

Of course the thresholding bounds had to be iterated a few times before finally
arriving to the desired limit for the sun. Originally the threshold was tested on LED
lights inside of Gates-Thomas and the 225 value was sufficient. Unfortunately, when
testing the threshold function outside on a cloudy day, a limit of only 225 picked up
a lot of extraneous white objects such as clouds and white walls that reflect the sun
light. To reduce the number of extraneous objects that remain after the thresholding
the bound was increased to only accept value readings that were between 253 and
255.

6.4 Finding and Tracking

Originally the strategy to find the Sun was to sweep the image with a square
approximately the size of the Sun and determine what region had the highest value
score. This approach however has a runtime of O(n?) and there exist more efficient
methods to find objects in an image. After thresholding, our matrix is essentially a
binary matrix. There exist a set of functions already built into OpenCV that can help
us identify the groups of 1’s in the matrix. First we run the function findContours
which identifies all the groups of 1’s in the matrix by constructing convex hulls
around them. Then we create a circle that can enclose the convex hull using the
minEnclosingCircle function. This returns the center and radius of the enclosing

circle that has been found. We store these values in two separate arrays to remember

27

all the different contours we have found.

Now that we have all the different contours we need to identify which one is the
sun. Normally the Sun tends to be the largest contour in the image when we have
thresholded the image so strictly. For this reason we determine the index of the
contour with the largest radius and that is determined to be the Sun. Using the
OpenCV circle function, we can overlay a circle on the original image to denote the
contour with the Sun. The results of the first attempt to run this script is displayed

in Figure 6.9.

Figure 6.9: The result of the Sun finding script. The contour seems to have included
a part of the cloud as well, and as a result the radius of the enclosing circle is larger
than desired.

In Figure 6.9, the Sun is clearly partially obstructed by the roof. The threshold also
does not appropriately eliminate the entirety of the cloud that is near the Sun. As a
result the contour denoting the Sun is larger than it needs to be and includes a part
of the cloud. To fix this the threshold bounds need to be adjusted. It might also be
necessary to introduce a bias factor that bounds selected contour sizes above and
below. As of now we only have below in order to remove contours that appear as
a result of random white noise. By bounding the contour size above, we will bias
the script to only select contours that are similar to the size of the Sun. Further
data needs to be gathered to tune the bounds as to account for the size discrepancies

based on the distortion of the image.

Achieving the most rudimentary requirements for tracking is relatively easy. The

ROS node for the camera publishes an image once every second. The script we

28

are running is set to find the Sun on every tenth image. We are also saving the
image after the Sun has been idenitified in a folder on the Desktop. The location of
the contour, the center of the circle, is written to a separate text file every time an
image is saved. This process blindly meets the requirement for tracking the Sun in
sequential images. However there are definitely more intuitive methods that can be

implemented to make the process more efficient.

6.5 Gaussian Blurring and Sobel Kernels

The next step is to see if some clever image processing tricks can be applied to get
around the bloom phenomena. The first is to see if it was normally distributed. This
does not appear to be the case because in consecutive images the phenomena tends
to appear in the same place. As a result it is not feasible to gather a large number
of images at once and then average the phenomena over the samples collected to
remove its impact. The other image processing trick that confirms that it is not
normally distributed is Gaussian blurring. This procedure takes a square matrix and
sweeps it over the image while reassigning the center pixel the average value of the
pixels in the matrix. This will ideally remove any streaky or randomly distributed
features in the image. Figure 6.10 illustrates the result of Gaussian blurring. It
diminishes some of the isolated bloom regions but also strengthens some of the
highly concentrated bloom regions. By strengthening these areas it does not remove

the shift in the centroid estimation, which is the root cause of error in heading

estimates.

Figure 6.10: The image on the left is the original thresholded image. The one on
the right is after a Guassian blur of size 3 has been passed over the image. Some of
the streakier bloom phenomena are removed by the blurring, but the dense bloom
region on the right side of the Sun becomes stronger. Because the phenomena is not
normally distributed, a Gaussian blur alone does not help improve the performance
of the algorithm.

29

The other image processing technique that can be implemented is an edge detector,
the Sobel kernel. The idea here is that maybe if the edge is better isolated and
apparent the contour fit might be tighter. The Sobel kernel takes the gradient in the
x and y direction before combining them to output the edge. The result of one pass
of the Sobel kernel is displayed in Figure 6.11. Unfortunately, the regions of bloom
do not falter and are present after the kernel has passed over. As a result, the contour

still finds the same expected fit and the error in the heading estimate persists.

Figure 6.11: The image shows the result of the edge detector, Sobel kernel. The
bumpy outline of the Sun is due to the bloom phenomena. The roughness causes
the centroid to be off, thus influencing the heading estimates.

Neither of these techniques seem as if they alone can impact the original finding

and tracking algorithm to nullify the presence of the bloom effect.

6.6 Erosion and SimpleBlobDetection

After discussing these issues with content experts, the persistence appears to be
dependent on the choice of preprocessing and estimation functions. Once the image
has been converted into the appropriate encoding and masked, there appear to
be some white streaks that occasionally influence the results of the findContour
function. A function that is strong in removing these patchy and streaky phenomena
is erosion. It takes a kernel similar to the one used in GaussianBlur, but instead
turns the center pixel to O if all its neighbors are 0 as well. A couple iterations of
this function leads to the removal of any streaky phenomena present around the Sun

or randomly in the image.

30

The erosion function also helps remove the bloom effect, ever so slightly. Given an
ellipse, the erosion function will chip away at some of the awkward perimeter pixels
equally. But with the bloom effect present, because it increases the perimeter in that
region, it results in a slightly higher expected erosion in that region in comparison

to the rest of the perimeter of the Sun.

Once this modification has been applied to the image, only a circular or slightly
elliptical object should be left in the image. The findContour function would
identify this contour and then return the minimum bounding circle for the contour.
While this is a reasonable approach, even the slightest remains of the bloom effect
could cause significant changes in the heading estimate. The simpleBlobDetect
function however finds a blob and then returns a circle that best fits inside the blob.
The difference between the two functions is displayed in Figure 6.12 and in turn will

hopefully reduce the effects of the bloom effect.

Figure 6.12: The blue circle indicates "the Sun" as found by the findContour function.
The red circle is the improvement after implementing a series of preprocessing
functions along with simpleBlobDetect.

6.7 No Rectification or PSF

Calibrating the camera is important because it allows us to remove any distortions
and rectify the original image. This process can make it easier to determine where
the Sun actually is in order to calculate the error of the state estimation system. ROS
has a built in node, camera_calibration, that already has the necessary files to create
the appropriate calibration file. It requires the user to first print out a standard pattern

and input the pattern type and its dimensions before running the camera calibration.

31

The .yaml file that will be created will contain the camera matrix, distortion vector,
and rectification and projection matrices. These matrices play a critical role in

rectifying the image before running the scripts to find and track the Sun.

In our case however, we do not appear to need to rectify the image. The simple-
BlobDetect should be able to outperform the traditional sweep we had originally
discussed. If the sweep of a constant size window was implemented, then the recti-
fication will be crucial. As a result, the matrices for the rectification for the fisheye
camera have been stored, but will not be used unless the algorithm reverts back to

sweeping a constant size window across the image in search for the Sun.

The PSF also does not play a large role in this image processing portion because
we have already determined that the bloom effect is not normally distributed. As a
result, if we are to apply the deconvolution to remove the PSF, the Wiener filter, it will
not isolate and remove the bloom effect. As a result we disregard this phenomena

for now and focus on minimizing the impact of the bloom effect.

6.8 Further Improvements

A simple improvement that can be made to the tracking algorithm involves storing
the center location of the Sun in the prior image. This would require modifying the
desired data structure, to take the form of a modified linked list. The script can then
be changed to focus on blobs that are located near the prior center. This is all under
the assumption that there are no rapid maneuver performed with the robot. This is
reasonable because its path should be relatively predictable and this restriction can
be imposed on the planning algorithm. The only time there could be a quick change
in pose could be when the robot decides to make an aggressive maneuver and return
back to its home location. At this time the robot or helicopter will rotate quickly to

find the shortest path back to the home location while avoiding the rover.

32
Chapter 7

ESTIMATING HEADING

7.1 True Position

To acquire the true position data of the Sun we had to find an online calculator
published by a reputable source. The National Renewable Energy Laboratory has
two such calculators. Their first one is called SOLPOS and has valid data between
1950 to 2050 within a hundredth of a degree. Their other calculator has valid data
between -2000 and 6000 within a couple hundred thousandth of a degree. The
SOLPOS calculator exported the desired data between a certain time period as a zip

file very conveniently, so that is the one we used.

The user had to input the latitude, longitude, and time zone of their location along
with the desired output values. During this first iteration only the azimuth and zenith
angles of the Sun were output assuming the user was in Pasadena, California. We
asked the calculator to output data for ideal dates of the mission. The mission is
scheduled for 2020 and these types of missions normally have a lifespan of under
a couple years. Just to be conservative we asked the calculator for a six year time
period between 1/1/2020 and 1/1/2026. Unfortunately, the calculator only outputs
less than a million data points in one go. So the frequency of the data had to be
decreased to once every ten minutes. The text file containing the data for this six

year period had a size of 3.43 megabytes.

The data however included the position of the sun before sunrise and after sunset.
A script can be written to remove all these useless readings to shrink the size of the
file. Further investigation also needs to be done on whether the trajectory of the
sun is constant and can be extrapolated from two data points. Because our flights
will normally be less than ten minutes, we will have to rely on just two data points
or increase the frequency of the data we have stored from the SOLPOS calculator.
Ideally, we can just take the two nearest data points and extrapolate based on the time
on the clock to get where the Sun is. This would definitely save us some memory

that the file would otherwise take up.

33
7.2 Fixed Position, Heading Estimate Test

A couple different iterations of experiments were performed to test this algorithm.
The first one focused on reducing all potential moving parts and determining the
performance and accuracy of the algorithm. In this experiment the camera was
placed on a table on the roof of Gates Thomas and the algorithm output the azimuth
and zenith angles of the Sun. We did not have to worry about any motion of what
the camera was mounted to because in this experiment it was fixed to a table on the

roof.

Please note that from here on forward both the zenith and azimuth estimates will
be provided. When estimating the heading, we will only need the azimuth reading.

Both are provided as to further understand the impact between the variables altered.

There are a couple of parameters that should be noted before we dive into the results
of this experiment. The resolution of the images passed from the camera to the
algorithm was 640 by 480. The experiment was started at 10:30 am and ran till 6:30
pm. The table was placed on the gravel that was on the roof of Gates Thomas. This
resulted in the surface of the table being slightly tilted. Using a cheap level, the table
was tilted by approximately 1°. The first ten azimuth readings were also averaged and
compared against the first ten expected azimuth readings. The difference between
these values ended up being the rotation matrix applied to the rest of the data. The
algorithm that was implemented was also limited to the advancements made while
the findContour function was still in the code. The simpleBlobDetect function had

yet to be implemented.

The azimuth and zenith approximations were off by an average of 2.4° and 5.6°
respectively. Unfortunately, these results result in error bounds that are larger than
what we targeted. Looking back on intermediate images saved along the way it is
clear why the error is so large. Figure 7.1 shows the algorithm working as expected.
It finds the Sun in the image and only encloses the Sun while discarding parts of the
blooming effect that surround the Sun. Figure 7.2 however shows the opposite. Here
the algorithm drastically failed at excluding the bloom phenomena from the Sun. As
a result. the zenith approximation was off by 7°. The graphs off the approximations

versus real angles are provided in Figure 7.3.

34

Figure 7.1: The algorithm successfully identifies the Sun while excluding any of
the surrounding bloom phenomena. The resulting estimates are within 2° and 3°
respectively.

Figure 7.2: Here the algorithm struggles to differentiate the Sun from the neighbor-
ing bloom phenomena. As a result the estimates are off by 5° and 8° respectively.

40

Angle (degrees)

N
3

20

15

\
35 *

@
=3

0

— Alg Output
True Value

L
200

400

Zenith

L L L
600 800 1000 1200

Time in intervals of 10s

1400

Angle (degrees)
- = = N N N
B D @ [=3 N P
S 3 3 3 S S

]
S

=)
S

=3

L
200

L
400

Azimuth

600 800
Time in intervals of 10s

L
1000

35

— Alg Output
True Value

L)
1200 1400

Figure 7.3: The two graphs showing the angle approximations against the true
values. The zenith approximation started off wrong and strayed even further, while
the azimuth approximation wavered around the true values.

7.3 Second Iteration

In the next iteration of the experiment, the resolution of the images was changed
from 640 by 480 to 2048 by 1560. The thresholding was also changed from 253
to 255 in an effort to reduce the impact of the bloom effect. As depicted in Figure
7.4, this resulted in the two approximations being off by an average of 3.6° and 6.6°
degrees in the azimuth and zenith values, respectively. This was worse than the
heading estimates produced when the image resolution was 640 by 480. Increasing
the threshold from 253 to 255 did not reduce the bloom effect. Those neighboring
pixels that are being saturated, tend to saturate to their maximum values, thus making
it difficult to distinguish them from the actual light source. The increased image
resolution allows for the bloom effect to be portrayed with a higher resolution. This
clarity of this phenomena biases the centroid more consistently, causing the estimates
to worsen with the change that was implemented. It is important to note that the
algorithm still used findContour instead of simpleBlobDetect in this iteration. The

next approach will definitely call for lower resolution images.

36

Zenith Azimuth
o 280

—— Alg Output y’ —— Alg Output o
L =
True Value ff” 2en True Value "

60 -

a

o
Zﬁ‘?
AN
N N
o N
o o
\

, g |
A S 180 F
\ *4 / & g
o 2
\ / <

W, N ! |
AN WMM / i /

Angle (degrees)
S
o

w
s}

20 -

10 1 . 1 . .) . 1 . I . .
0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.4 0.45 0.5 0.55 0.6 0.65 0.7

Time in days Time in days

Figure 7.4: The two graphs showing the angle approximations against the true values
for the second iteration with higher resolution images and increased threshold values.
Both the zenith and azimuth approximations worsened with these changes.

7.4 Third Iteration

In the third iteration of the fixed position, heading estimate test the image size
was reduced to 1024 by 768. The algorithm was also overhauled to include new
preprocessing steps such as erosion and gaussinBlur. The findContour function was
scrapped and was replaced with the simpleBlobDetect function. This experiment
was only two hours long but produced an error of 3.5° for the azimuth approximation.
This was definitely a step in the right direction. With a little bit more preprocessing,
it clear that the error can be brought down drastically using a script centered around
the simpleBlobDetect function.

Azimuth
200

— Alg Output
190 - True Value A

110)
0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55

Time in days

Figure 7.5: The azimuth approximations with a new overhauled algorithm over the
course of a two hours period produced a heading estimate error of 3.5°.

37

Optimizing preprocessing techniques and fusing the sensor output with other sources

will improve the heading estimation accuracy.

7.5 Kalman Filter Model
In this section we will define the Kalman filter necessary to fuse the different heading

estimates into one.

The linear state space that describes the heading and angular velocity:

o

From dynamics we can conclude that:

O = FOr1
where:
|1 Ae
oo
1
G =
0]
so that:
Or = FOr_1 +wy
where:
wi ~ N(0,Q)
1 0
Q=GG'o; = lo O] :
Suppose the measurement noise, vy is also normally distributed with mean 0 and
std dev o,
Ik = HH;C + Vi
where:

38

We know the initial starting state of the TurtleBot with perfect precision so we

initialize it to:

0
0

b

Bojo =

00
Now that we have identified all of the elements, we must show how they are used.

First you must predict. We will show the two predictions, predict state estimate and

predict estimate covariance, respectively:

Okik-1 = FxOr—1jk—1 + Bruy

Piji-1 = FePr_ij-1 F + Ok

Please note that we have no Bu term because we have no known control inputs.

Instead we have a second source 8" and G applies it to the state vector.

The update steps then follow. First you find the innovation:
Yk = 2k — HiOrji—1
Then calculate the innovation covariance:

sk = HPyp—1H] + Ry

Now the optimal Kalman gain:
T ~1
Ky = Prji—1H sy
Finally update the state estimate and estimate covariance, respectively:

Orik = Oxp—1 + Ki ik

Pix = (I — K Hy)Py

Thus we have successfully derived the Kalman filter necessary to fuse different

sensors inputs for a singular heading estimate.

39

7.6 TurtleBot Experiment

In this experiment we used a TurtleBot. By using the ROS package turtlebot_bringup
it was easy to command the robot to follow certain predefined commands in a python
script. The camera was mounted using the ROS package uvc_camera. The script
that was transferring the images to OpenCV and performing the analysis was a ROS

package I have written myself, learning_cv_bridge.

First the robot would be launched using the minimal.launch file. This would get the
TurtleBot live and ready. Then the fisheye camera would be mounted and the image
processing script would be started. This would immediately start saving a stream
of images. Then rosbag was used to record /mobile_base/sensors/imu_data_raw as
well as /mobile_base/sensors/core. This would bag all the IMU and wheel encoder
readings necessary for the experiment. Finally a python script, square.py was used
to trace out a square with the TurtleBot. One the script terminated, all the other
nodes were terminated in reverse order. The data from the rosbag was finally piped
into a CSV file so it could be analyzed. The heading estimates from the fisheye

camera were also outputted to a separate CSV file.

This experiment was performed on the cobblestone path beside Milikan Pond.
The final heading once the robot at the end of its script was +25°, which is 0.4363
radians (or 6.7195 radians).

Figure 7.6: TurtleBot start location.

40

Figure 7.7: TurtleBot end location.

Before we dive into the results of the Kalman filter, lets first see what results inertial
navigation, wheel odometry, and fisheye camera along output. Figure 2 below
displays the heading estimates as a result of all the techniques individually. The
inertial navigation outputs that the final heading estimate is 6.4904 radians. Wheel
odometry on the other hand outputs 8.6727 radians. The fisheye camera reports a
final heading estimate of 6.6450 radians. We will address the potential sources of

error below.

41

Heading Estimate w/o Kalman filter

—IMU
8r Wheel Odom |
Fisheye /

Heading Estimate (radians)
A

0 1000 2000 3000 4000 5000 6000
Time (0.02 sec steps)

Figure 7.8: This graph illustrates the heading estimates of all 3 sources alone.

Unlike the other two data sources, IMU and odometry, that provided over 5000 data
points, the camera was only able to process and provide 37 data points. The fisheye
camera was used to provide a second input for the angular velocity of the robot.
With such few readings, the angular velocity had to be average in chunks over rather
large time intervals. The Kalman filter with all 3 sensor inputs fused together output

a final estimate of 6.7101 radians.

Heading Estimate w/ Kalman filter

Heading Estimate (radians)
w

0 1000 2000 3000 4000 5000 6000
Time (0.02 sec steps)

Figure 7.9: This graph illustrates the heading estimates after all 3 sources have been
fused together with a Kalman filter.

The results reveal that the Kalman filter heading estimate was the best. Fusing the
information from all 3 sensors does provide a benefit and is very useful in estimating

the heading angle.

42
7.7 High-level Error Budget

This section will address the variables currently in the system that maybe impacting
the shortfall in results. Each error will be briefly described and will be followed by

bullet points that suggests either future work or potential solutions.
1. Fisheye camera housing - The housing of the fisheye camera is made of 3D
printed material and the camera does not sit flush on the top

* Machine the housing out of some aluminum

* Replace the press fit with a slip fit and locking mechanism
2. Improve Kalman filter experiment

* Find flat surface as to reduce wheel slippage

* Have a more robust ground truth system to compare against

3. Level - ensure experiment surface is level to a higher fidelity than just then

unit place

* Find a new roof or place to gather data

» Use a digital level with higher accuracy
4. Location - only the approximate coordinates of Pasadena were provided

» Use the exact coordinates of where the experiment is being performed
5. Atmospheric effects - refraction of the rays as they pass through the atmosphere

* Better understand the physics of how the rays from the Sun bend or
warp as they travel through the atmosphere and reach the location of the
experiment. Also explore other environmental features that may impact

readings

43
Chapter 8

CONCLUSIONS AND FURTHER WORK

We have successfully demonstrated that it is possible to estimate heading using only
a fisheye camera. We began by first estimating heading on a fixed vehicle. This
experiment was designed to see how much the heading estimate would vary over
the course of 4 hours for a fixed object. It also evaluated the impacts of external
environmental factors that were not considered the first time around. In the first
iteration of this experiment, using 640 by 480 pixel images, the heading estimates
were within 2.4° and 5.4° for azimuth and zenith, respectively. The second iteration
of this experiment utilized image sizes of 2048 by 1560 pixels. This resulted in
the heading estimates regressing to 3.6° and 6.6° respectively. The final iteration
of this experiment implemented a new algorithmic approach with images of size
1024 by 768 and resulted in what appeared to be much better identification of the
Sun. The minimum enclosing circle was replaced by a maximum inscribing circle.
This led to a slight improvement in the heading estimate to 3.5°. Further refinement
of preprocessing techniques show solid potential for reducing this error even more

now that we are working with maximum inscribing circles.

We extended this proof of concept and tried to implement it on a relatively planar,
ground vehicle. The TurtleBot traced out a predetermined path, but no information of
this path was included in the heading estimate. The data from the fisheye camera was
fused with that of an IMU and wheel encoders through a Kalman filter. The output
resulted in a more accurate heading estimate than each of those sensors performed
individually. This experiment needs to be repeated and improved by varying path,
improving testing surface, and integrating a more robust ground truthing technique.
Algorithmic improvements will also lend to the production of more data points from
the fisheye camera, increasing its presence and impact in the filter. Once this had
achieved heading estimates under the desired threshold, the experiment can be lifted

from planar robots to aerial robots.

In practice though, this technique is most useful for aerial vehicles because of
their weight constraints. The Kalman filter that we have presented hear would be
augmented to include the other sensors onboard the aerial vehicle. For example,

some of these new inputs might include gyros, visual odometry, and tilt sensors. To

44

move the sun sensor onboard the aerial vehicle, its scripts and necessary software
platforms would have to be loaded onto a smaller, onboard computer. This would

allow for successful heading estimates from the sun sensor onboard an aerial vehicle.

Some of the next steps to further this project include increased collaboration with
JPL. They have developed a visual inertial for aerial vehicles. Tuning it for ex-
traterrestrial missions would require removing compass and GPS components and
replacing it with our fisheye camera and its heading estimate functions. The as-
sumed working code will require some minor tweaks including redefining some

frame transforms for where the camera is mounted with respect to the vehicle.

The code also could use some major overhauls to optimize its performance. As of
right now, both the fisheye and rectilinear image are stored throughout the entire
estimation process. A decision should be made as to which schema will be used
for the aerial vehicles, and this will ideally free up a large chunk of memory. The
encodings can also be optimized. When transitioning to HSV from RGB, we only
end up using the value channel. The final code change that comes to mind is a
modification to the data structure. The hemispherical data structure can be extended
into a linked hemispherical architectures so that it remembers the previous location
of the Sun. This algorithm will be running often during the flight, so it would be a

definite advantage to have a clue as to where to begin searching.

Once the code has been optimized and integrated into JPL’s extensive aerial vehicle
navigation architecture it needs to undergo testing. There are two major testing
components that come to mind. The first is the hostile environment testing for the
physical sensor. It needs to be able to function in the cold temperature, endure
the radiation present, and to withstand the rubbish kicked up by sandstorms. The
second major test involves simulating the Mars atmosphere and sky. Unlike Earth
where the sky is normally blue, the sky on Mars is a shade of orange. This might
make it slightly more difficult to find the Sun because of the warmer color sky and
the generally dustier environment. Also, because Mars is about 1.5 AU away from
the Sun, the Sun will appear smaller on Mars then Earth. Once the fisheye camera
and algorithm have passed all these test, it will start to be ready for integration on

the Mars 2020 mission prototypes.

45
BIBLIOGRAPHY

Acufia, MH et al. (2001). “Magnetic field of Mars: Summary of results from the
aerobraking and mapping orbits”. In: Journal of Geophysical Research: Planets
106.E10, pp. 23403-23417.

Connerney, JEP et al. (2001). “The global magnetic field of Mars and implications
for crustal evolution”. In: Geophysical Research Letters 28.21, pp. 4015-4018.

Courbon, Jonathan et al. (2007). “A generic fisheye camera model for robotic appli-
cations”. In: Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ Inter-
national Conference on. IEEE, pp. 1683—1688.

Eisenman, Allan R, Carl Christian Liebe, and Ramiro Perez (2002). “Sun sensing
on the Mars exploration rovers”. In: Aerospace Conference Proceedings, 2002.
IEEE. Vol. 5. IEEE, pp. 5-5.

Hughes, Ciarén et al. (2010). “Accuracy of fish-eye lens models”. In: Applied optics
49.17, pp. 3338-3347.

Landau, Elizabeth (2015). Helicopter Could Be ’Scout’ for Mars Rovers. URL:
https://www. jpl.nasa.gov/news/news.php?feature=4457.

Maimone, Mark W, P Chris Leger, and Jeffrey J Biesiadecki (2007). “Overview
of the mars exploration rovers’ autonomous mobility and vision capabilities”. In:
IEEE international conference on robotics and automation (ICRA) space robotics
workshop.

Mars 2020 Mission Overview (n.d.). UrRL: https://mars. jpl .nasa.gov/
mars2020/mission/overview/.

Mission: InSight (n.d.). urL: https://insight. jpl.nasa.gov/overview.cfm.

Psiaki, Mark L (1999). “Autonomous low-earth-orbit determination from magne-
tometer and sun sensor data”. In: Journal of Guidance, Control, and Dynamics
22.2, pp. 296-304.

Schneider, D, E Schwalbe, and H-G Maas (2009). “Validation of geometric models
for fisheye lenses”. In: ISPRS Journal of Photogrammetry and Remote Sensing
64.3, pp. 259-266.

Springmann, John C (2013). “Satellite attitude determination with low-cost sensors”.
PhD thesis. University of Michigan.

Volpe, Richard (2014). “2014 Robotics Activities at JPL”. In: International Sym-
posium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS)
17.

Webster, Guy (2016). Mars Ice Deposit Holds as Much Water as Lake Superior.
URL: https://www.jpl.nasa.gov/news/news.php?release=2016-299.

