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ABSTRACT

The efficiency of fuel cells, batteries and thermochemical energy conversion devices
depends on inherent material characteristics that govern the complex chemistry and
transport of multiple species as well as the spatial arrangement of the various materi-
als. Therefore, optimization of the spatial arrangement is a recurrent theme in energy
conversion devices. Traditional methods of synthesis offer limited control of the
microstructure and there has been much work in advanced imaging for these uncon-
trolled microstructures and optimizing gross features. However, the growing ability
for directed synthesis allows us to ask the question of what microgeometries are op-
timal for particular applications. Through this work, we study problems motivated
by metal oxides used in solar-driven thermochemical conversion devices designed
to split water or carbon dioxide into fuels. We seek to understand the arrangement
of the solid and porous regions to maximize the transport given sources and sinks
for the gaseous oxygen and vacancies. Three related problems are investigated with

the common theme of understanding the role of microstructure design.

We derive the transport equations for electrons and oxygen vacancies through ce-
ria under an externally-applied electric potential in an oxygen environment using
various balance laws and constitutive equations. From this, we obtain various
thermodynamic potentials that take into consideration the thermal, chemical, and
mechanical state of the material. Accordingly, we obtain a system of partial dif-
ferential equations describing ambipolar diffusion. We present the applicability of
strain-engineering as a way to design systems to improve the behavior of thermo-
chemical conversion devices. We look at an idealized thin film of mixed conductor
attached to an inert substrate with a thermal mismatch as a way to induce strain
into the film. The resulting impact on equilibrium non-stoichiometry is analyzed
using data describing non-stoichiometry in ceria as a function of oxygen pressure

and temperature.

The optimal design of material microstructure for thermochemical conversion is
addressed from two standpoints: the mathematical homogenization of associated
transport models, and from topology optimization. We present the homogenization
of coupled transport through porous media consisting of linearized Stokes flow, con-
vective diffusion, and diffusion in the solid phase with interface reaction. Depending
on the strength of the interface chemistry, different forms of effective behavior are

described at the macroscale, and we gain insight into the impact cell-design and
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pore shape has on the behavior.

The topology optimization of a model energy-conversion reactor is then presented.
We express the problem of optimal design of the material arrangement as a saddle
point problem and obtain an effective functional which shows that regions with
very fine phase mixtures of the material arise naturally. To explore this further, we
introduce a phase-field formulation of the optimal design problem, and numerically
study selected examples. We find that zig-zag interfaces develop to balance mass

transport and interface exchange.
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Chapter 1

INTRODUCTION

The scientific quest for developing novel ways to convert and store energy is an ever-
growing effort. It is undeniable that at some point in the not so distant future, the
planet as a whole will need to shift away from traditional energy sources to methods
that are economical, efficient, sustainable, and clean. Regardless of background,
there is no clear answer to solve this grand challenge and proposed solutions are
highly interdisciplinary and require collaboration across fields. Experimental and
theoretical studies spanning length scales from atoms, to microstructures, and up to

power plants continue in the search for changing the energy industry.

The high energy density found in the chemical bonds making up traditional hydro-
carbons is one of the most effective ways of storing energy. Contemporary energy
conversion and storage methods rely on chemical energy as a way to provide power
when necessary. Being that more energy from sunlight strikes the Earth in one hour
than the global energy consumed in one year [1], conversion methods utilizing this
unbounded energy source have an inherent advantage over other sustainable sources.
The conversion of solar energy into useful forms has reached a critical stage where
large-scale industrial applications are allowing it to be a relevant method in energy
conversion [2]. The conversion of solar energy to electricity via photovoltaic cells is
becoming extremely cheap and efficient, and with growing battery technologies the
problem of storage is becoming a more relevant issue. Solar energy can also be used
as a heat source for fuel cells, where it is converted to chemical energy in a storable
fuel, as an energy source for direct generation of fuels through the thermochemical
splitting of molecules, or through the combination of light harvesting techniques
and chemical energy conversion using a photoelectrochemical cell. Regardless of
the proposed solution, countless materials science challenges in these devices must

be overcome to shift away from traditional energy sources.

The efficiency of fuel cells, batteries and thermochemical energy conversion devices
depends on inherent material characteristics that govern the complex chemistry and
transport of multiple species as well as the spatial arrangement of the various
materials. Therefore, optimization of the spatial arrangement is a recurrent theme

in energy conversion devices. Traditional methods of synthesis offer limited control
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Figure 1.1: Schematic representation of a single solid oxide fuel cell, from [9].

of the microstructure and there has been much work in advanced imaging for these
uncontrolled microstructures (e.g., [3]) and optimizing gross features. However, the
growing ability for directed synthesis [4, 5, 6, 7] allows us to ask the question of
what microgeometries are optimal for particular applications. In this sense we direct
the problem to one of optimal design where we are not limited by the imagination
in determining new microstructures but instead allow for the underlying physical
behavior and optimization techniques to direct architecture and microstructure, and

eventually lead synthesis to unprecedented performance.

Solid oxide fuel cells (SOFCs) have been at the forefront of materials science
research since the early 2000’s because of their promise as a low-cost, clean, and
highly efficient energy source hosting a plethora of interesting research topics.
The flexible use of different fuels (such as hydrocarbons, biofuels, or coal-derived
syngas) and with CO, production being marginal, and easily managed, compared
to other energy sources are highlights of why industrial scale-up or small-scale,
sub-grid, implementation of these devices is so attractive. Material challenges
associated with the devices span materials development, microstructural and phase
characterization, and multi-scale design and modeling with the goal of increasing
reliability at a lower cost [8]. SOFCs are one of many ways to convert chemical
energy to electrical energy without the combustion of fuels, and exemplify the

application of unique materials for energy production.

SOFC device architecture is sketched in Fig. 1.1. Oxygen enters the system on one
side of the membrane and is reduced at the porous cathode. The oxygen ions are then
transported through the dense supporting ion-conductive electrolyte to the porous
anode, where an oxidation reaction occurs with a reactant fuel to produce H,O and
CO,. The electrons released and consumed at the anode and cathode and conducted
through an external circuit. Electrode and electrolyte materials are commonly
perovskite- or fluorite-structured oxides that rely on large non-stoichiometry (oxygen

vacancy concentration) to afford ion conduction and various atomic impurities
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Figure 1.2: SOFC cathodes: (a) porous single-phase electronically conductive
oxide such as LSM; (b) porous single-phase mixed conductor; (¢) porous two-phase
composite. From [9]

(dopants) to increase kinetic behavior [10]. Yttria-stabilized zirconia (YSZ) and
ceria-based metal oxides are commonly used as an electrolytes because of their
high-temperature stability, general compatibility with other materials used, and
ability to effectively transport oxygen ions with minimal electrical conduction [11,
12].

In both porous electrodes, microstructure must be chosen to provide an abundance of
electrochemical reaction sites (to promote charge-transfer) and high phase connec-
tivity (for electron and ion conduction, and mass transport in the gas phase). These
features are coupled with volume fractions, surface area densities, interfacial curva-
tures, and phase tortuosities to find the optimal balance between surface reaction and
transport [13]. Widely used cathode materials include strontium-doped lanthanum
manganite (LSM), strontium-doped lanthanum colbaltite (LSC) and other similar
mixed ionic/electronic conductors, eliminating the need for metal electrocatalysts
or current collectors [11]. Composite SOFC designs have allow a balance of the
thermal-mechanical-electrochemical properties of different materials used [9]. For
example, varying mixtures of LSM and YSZ have been examined for use in the
cathode with the intent of increasing the contact area between electronically and
ionically conductive phases. A full microstructural characterization by [14] proved

that the design space has not been completely established.
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Figure 1.3: Three-dimensional reconstruction of a Ni-YSZ anode using focussed
ion beam (FIB) and scanning electron microscrope (SEM) images. Ni is shown in
green, YSZ in gray, and pore space in blue. Connected TPB’s are shown on the right
as white segments. Off-white segments are disconnected, and therefore ineffective
reaction sites. From [3].

Similarly, the importance of microstructure on anode performance has also been
established [15, 16, 17, 18]. Efficient current generation relies on electron conductor
(metal), ion conductor (oxide), and reactants (in the pore space) coming together at
triple phase boundaries (TPB) [11]. Connectivity is a requirement in each of the
phases present: the pore must be well connected to the fuel stream, the Ni phase
to the external electrical circuit, and the YSZ phase to the bulk electrolyte [3]. A
typical anode is comprised of a ceramic-metallic composite such as YSZ and nickel
(Ni), and a typical arrangement can be seen in Fig. 1.3. The choice of these materials
depends on the electrolyte used, the operating conditions of the cell, as well as the

desired fuel, as reactivity is heavily dependent on all three [8].

The morphology of materials used in lithium ion batteries is of interest from both
the theoretical [19, 20, 21, 22] and experimental standpoint [23, 24, 6]. The
generalized battery structure takes a similar form to SOFCs, as with many material
design constraints. While a battery is being discharged, lithium atoms are oxidized
at the anode, releasing electrons to the current collector, leaving ions to travel
through an electrolyte and separation membrane to the cathode material where they
is reduced. Charging a battery requires external current to reverse the process,
requiring lithiation, or intercalation, of the anode material. Mass and ion transport
and interface measure in battery electrodes directly impact the storage capacity
and rate performance and is an ideal problem for optimization across many length
scales. Charge transport, heat conduction and mechanical stresses are all coupled

through the battery’s use and present complex obstacles in design and materials



development.

Graphite is traditionally used as the anode material because of its abundance, low-
cost and stability. The preferable electrochemical behavior of graphite stems from
the ability for lithium ions to intercalate in the graphene sheets, as well as mechani-
cal stability and electrical conductivity. However, the recent wave of alloying with
silicon in the anode to increase capacity, energy density, and rate has opened count-
less new design challenges because of the extreme anisotropic chemical expansion
upon lithiation, and its low conductivity compared to graphite. Thus, interesting
composite designs have been the most successful to ensure mechanical stability and

desirable conductivity [25].

Electrolytes are typically composed of lithium salts dissolved in a non-aqueous,
organic, solvent to allow for the transport of lithium ions. However, because of
interactions with either electrode, electrolyte development is very difficult. A pos-
sible solution framework lies in creating solid polymer electrolytes which present
ideal manufacturability and high energy density. Nanocomposites have been inves-
tigated as a method to increase the ionic conductivity of the solid-state components
by numerous additional phases are introduced into the matrix to optimize lithium

transport [26].

Cathodes are traditionally made up of transition metal oxides such as LiCoO;, whose
crystal structure allow for easy intercalation of guest ions. Current research is fo-
cused on cost reduction and heat management at the anode. In general, the design
considerations for lithium batteries can be reduced to dimension reduction, com-
posite formation, doping and functionalization, morphology control, coating and
encapsulation, and electrolyte modification [25]. Regardless of cathode or anode,
nanostructured materials based on carbon, metal/semiconductor, metal oxides and
metal phosphides/nitrides/sulfides show promising applications in lithium ion bat-
teries because of high surface area, low diffusion distance, high electrical and ionic

conductivity [27].

The tailoring of material microstructure and nanostructure is not new to energy
conversion and storage [7, 26]. Particular designs can range across length scales:
from nano-defects to microscale morphologies. Regardless of device, classical
synthesis methods usually involve randomized pore structure arriving from sintering
processes from a slurry mixture. The development of hierarchical structures and
directed porosity affords balancing interfacial reactions and chemical transport to

maximize efficiency. In SOFCs, development of new cell structures can reduce
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Figure 1.4: 3D mesoporous silicon anode material. From [24].

operating temperatures. For example, it has been shown that 100-nm-thick zirconia-
based electrolyte and 80-nm porous Pt electrodes (cathode and anode) could be
fabricated with the help of sputtering, lithography, and etching and produce high
energy density at a lower temperature [28]. SOFC’s implementing microtubular
designs have been proposed for low-temperature operation because of high thermal
stability under rapid heating, as well as high volumetric power density [16]. Battery
anodes can benefit from similar composite designs across a variety of length scales.
For example, nanostructured Si-composite materials can be prepared by dispersing
nanocrystalline Si in carbon aerogel followed by carbonization [29]. Additionally,
macroscopic carbon monoliths with both mesopores and macropores can be prepared

by using meso/macroporous silica as a template [23].

Advanced synthesis techniques commonly rely on forming seconding structures
as a precursor. For example, in Fig. 1.4, a mesoporous Si anode material was
fabricated using a scaffold-like framework. Li et al. [7] review a fascinating mix
of hierarchical techniques for application to energy conversion and storage. The
process of coating polymer scaffolds, whether they be a a collection of spheres or
printed network, with slurry before sintering is one route for increased control over
microstructure [30]. Direct laser sintering of ceramic materials and metal oxides
and other additive techniques has the possibility of designing complex structures
for electrodes [31]. An example of a silicon anode designed to accommodate the
strains involved with lithiation and produced by photolithography and etching can be
seen in Fig. 1.5. Other structures based on porous media, inverse templates, pillars
or nanowires with the intent of solid-state battery structures have been reviewed in
[33]. Combining design and synthesis methods at a variety of length scales using
cellular construction allows for hierarchical materials with prescribed behavior. The

design space for SOFCs, batteries, and thermochemical conversion devices goes well
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Figure 1.5: Honeycomb silicon: (a) before lithiation and (b) after lithiation. From
[32].
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Figure 1.6: Sample solar thermochemical reactor, from [34].

beyond the standard, intuitive, composite structures and is open for optimization.

Through this work, we study problems motivated by metal oxides used in solar-
driven thermochemical conversion devices. An example solar reactor, Fig. 1.6, has
been developed and tested for the conversion of H,O to hydrogen as a sustainable
fuel source [34]: These conversion devices consist of porous, two-phase, material
(solid oxide and pore) where reactions at the surface create oxygen in the carrier
gas in the pores and bound oxygen in the solid oxide; the oxygen diffuses through
the carrier gas in the porous region and bound oxygen diffuses through the solid

oxide. Various metal oxides are possible candidates for these processes, but nonsto-
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chiometric cerium oxide, especially when doped, display applicable thermodynamic
and kinetic traits [35]. Details of these materials and processes will be the focus
of Sec. 2.1. Alternate methods for generation of hydrogen from water using solar
radiation can be categorized generally by their procedure [36]: solar thermolysis,
solar thermochemical cycles, solar reforming, solar cracking, and solar gassification.
The latter three require input from fossil fuels, and the associated sequestration of
CO,. However, all offer preferable routes to energy production over the traditional,
combustion-based, methods. Similar effort has been put into developing photocat-
alytic cycles for the conversion of CO, into combustible hydrocarbons, as reviewed
by [37]. Solar-driven thermochemical approaches to CO, and H,O provide an at-
tractive path to solar fuel production at high rates and efficiencies in the absence of
precious metal catalysts, and the relatively simple reaction framework makes them

ideal candidates for modeling and optimization.

There is a common thread between these three examples: they all use nonstoichio-
metric, ionically conductive ceramic materials where the effectivity of the device
is largely dependent on the microstructural design of the material. We focus on
thermochemical conversion as a model energy conversion system to study because
of the relative ease of modeling, and the low complexity of material integration.
We seek to understand the arrangement of the solid and porous regions to maximize
the transport given sources and sinks for the gaseous oxygen and vacancies. Three
related problems are investigated with the common theme of understanding the role
of microstructure design of mixed conductors for their application to devices like
those depicted in Fig. 1.6. Our goal is develop a framework for designing materials
that is not specific to one application, but can be easily modified to optimize any

energy conversion device.

The first problem lies in exploring the applicability of strain-engineering as a way
to design systems to improve the behavior of thermochemical conversion devices.
Many of the mixed conductors mentioned, under reducing conditions, expand as
vacancy defects are introduced into the crystal structure, and there is a strong
coupling between the chemical, electrical, thermal, and mechanical environments
of the material. We find that inducing a strain into an ionic conductor allows
for the equilibrium vacancy concentration to be tailored. In Ch. 3 we derive a
thermodynamic potential describing the concentration of ionic and electronic species
in mixed conductors considering the environmental chemistry and coupling transport

with the associated strains associated with varying nonstoichiometry in the material.
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Then in Ch. 4, we look at an idealized thin film of mixed conductor attached to an
inert substrate with a thermal mismatch as a way to induce strain into the film. The
resulting impact on equilibrium non-stoichiometry is analyzed using data describing

non-stoichiometry in ceria as a function of oxygen pressure and temperature.

Then, the optimal design of material microstructure is addressed from two stand-
points: one is from the mathematical homogenization of the transport models asso-
ciated with thermochemical conversion, and the other is from topology optimization.
Homogenization is a mathematical technique in which studying a periodic, cellular,
structure with a fine length scale yields volume averaged behavior of the media at
the macroscale. We gain insight into the impact cell-design and pore shape has on
the behavior of materials in energy conversion devices. By understanding this con-
nection, the optimal design of cell-structures can be properly examined. In Ch. 5, we
present the homogenization of coupled transport through porous media consisting
of linearized Stokes flow, convective diffusion, and diffusion in the solid phase with
an interface reaction. Depending on the strength of the interface chemistry, different

forms of effective behavior are described at the macroscale.

Topology optimization is a broad description of methods to determine the best
arrangement of material to meet a prescribed measure of performance. An objective
function is chosen and instead of optimizing over parameters, we instead optimize
over designs. Chosen physical models are then implemented as constraints and
become the guide to designing materials, rather than intuition or synthesis. In Ch. 6,
we look at the topology optimization of a porous material, where two chemical
species each reside in separate phases (pore space and solid), and undergo an
interfacial conversion reaction. We analyze both the reactive-diffusive transport
model in this setting, as well as optimal design problem associated with maximizing
through-put through a generalized device. The optimization is then implemented

numerically to determine designs under varying parameters.

We start by presenting relevant background information on the metal oxides used in
these thermochemical conversion systems, the experimental and theoretical efforts
to studying them, and the current status of morphological studies in Ch. 2. An
introductory description to mathematical homogenization theory and other efforts
in studying transport problems follows. Finally, a description of the mathematical
theory of topology optimization is described, along with relevant examples and

previous studies.
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Chapter 2

BACKGROUND

2.1 Mixed conductors

The ability of various metal oxides to conduct ionically and electronically make
them invaluable for countless applications ranging from electrodes in fuel cells,
selective membranes, sensors, oxygen generators and catalysts because of their
unique electrochemical behavior [38]. For example, the 2020 Mars rover will
include a device, MOXIE, consisting of a "reverse fuel cell" utilizing a ceramic
mixed conductor to split CO, from the atmosphere for oxygen generation [39].
Oxygen separation membranes consisting of fluorite-based materials, like stabilized
zirconia, or perovskite structures utilize ionic conduction to pull oxygen from a
source gas [40]. In these applications, we have a fascinating interplay of different
transport regimes, chemical reactivity, thermal conduction, and mechanical behavior
all coming together for a specified task. The microscopic design of the metal oxides
is directly tied with its behavior, and subsequent application and efficiency. Large
temperatures, fluctuating chemical environments, electric fields and mechanical

stresses lead to varying degrees of oxidation or reduction in these materials.

For mixed conductors, low-oxygen, high-temperature reducing conditions translate
to a partial nonstoichiometry of the lattice structure where charged Schottky point
defects are created simultaneously with a charge-balancing electronic defect. The
vacancies are created at lattice sites in the matrix where an oxygen previously resided
that was removed through reduction. The shift in non-stoichiometry can result in
phase transitions in some metal oxides, or it can be a continuous change in chemical
composition where the lattice structure remains intact. The creation of these vacan-
cies aides in the diffusive transport of atoms (or vacancies) through the bulk resulting
in ionic conductivity, and the formation of electrons results in n-type electrical con-
ductivity. In n-type conductors, neutral levels near the conduction bands are ionized
to free an electron into a conduction band, acting as an electronic species. The
movement of atoms can be through a variety of mechanisms, see Fig. 2.1, but the
vacancy mechanism is most relevant in this behavior [40]. In vacancy mechanism,
the atom in question fills a vacancy, thereby creating a new one in its previous loca-

tion. Interstitial diffusion requires jumping between neighboring lattice-site atoms
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Figure 2.1: Lattice diffusion mechanisms (a) via vacancy, (b) via interstitial site and
(c) via interstitialcy mechanism.

to a neighboring interstitial, and thus requires overcoming a large energy barrier for
the the jump. Finally, it is possible for an interstitial atom to "bump" a neighboring
lattice atom to a near-by interstitial site through the interstitialcy mechanism, again
at the expense of a large energy barrier. Factors effecting a metal oxide’s ionic and
electronic conductivity are primarily based on the crystal structure and the bandgap
structure, respectively. Thus, dopants and non-stoichiometry impact the ionic and

electronic conductivity and constitutes a large portion of mixed conductor research.

This complex behavior and the stability of metal oxides over a wide range of
conditions is essential for many applications [41, 42, 15, 43]. Formulating relevant
mathematical models to explore this connection between physical behavior and
material morphology offers a method to engineer and tailor new materials, but to
also explore new applications and devices. Recent advances made in the materials
research community indicate many possible candidates for these applications, and
lend themselves to advanced synthesis techniques facilitating directed architecture,

where significant improvements can be made [44].

Energy conversion

Application of mixed ionic-electronic conductors (MIECs) to thermochemical en-
ergy conversion offers a feasible route of sustainable energy production [45, 34, 35,
46]. As depicted in Fig. 2.2, a porous, redox active oxide is cyclically exposed
to inert gas at high temperature, generating oxygen vacancies in the structure, and
reactant gas (H,O, CO,), at moderate temperature, releasing fuel upon reoxidation
of the oxide. The process for splitting water can be described as the combination of

the two reactions:
Higher Temperature %Moy - %MOy_(s + %02
Lower Temperature H,O + %Moy_g — %Moy + Hj 2.1
Net H,0 — 30, + H,
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Figure 2.2: A sample two-step solar thermochemical cycle using a generic
non-stoichiometric metal oxide, MO,. ¢ represents the degree of oxygen non-
stoichiometry. The right side half-reaction represents the high temperature reduc-
tion, and the left side is the subsequent low-temperature hydrolysis.

A similar set of half reactions describes the the process for CO,, albeit with many
different products. A mixture of hydrocarbons is produced when combining H,O
and CO; including CH4, CH30H, or CO for syn-gas, and opens this type of ther-
mochemical conversion to a variety of applications and post-processes for energy
production [47]. Similar processes were examined in the 1970’s with the intent
of using the heat from nuclear reactors to activate these reaction pathways. Since
then, research has centered on increasing the efficiency, longevity, and practical-
ity of thermochemical conversion and the materials involved. Metal-metal oxide
systems have been around since the initial research into these processes and have
theoretically large conversion rates, but because of the high temperatures required
and the low stability of the phases involved, many alternatives have become the
focus of research. One such alternative is the application of non-stoichiometric ox-
ides to these conversion processes. Despite the lower conversion rates (a complete
phase change isn’t required), the increased stability and electrochemical activity
make them an attractive energy source. The lack of complex and expensive catalyst
systems and full use of the entire solar spectrum separate these devices from many

other photo-based energy sources.

One such candidate is ceria, cerium oxide. Its electrochemical behavior is well-
suited to this application, and the relative abundance of cerium globally makes
scale-up and implementation feasible [34, 48]. Ceria, CeO,, takes on a cubic
flourite structure, with tetrahedral oxygen atoms residing within an FCC base lattice
of cerium in the +4 oxidation state. Under reducing conditions, i.e. low ambient

oxygen and temperatures above ~ 1000°C, the non-stoichiometry canreach 6 ~ 0.25
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[49]. The application of ceria to thermochemical conversion has been successfully
demonstrated on the material scale and the reactor scale, where productivity of
up to 11.8 ml of hydrogen per gram of ceria at 6.2 ml per gram per minute has
been recorded [45, 34]. Thermal losses from conductive and radiative heat transfer
limit the efficiency and cycling rates. Thermodynamic analysis based solely on the
material properties of CeO,, the higher heating value of one mole of hydrogen, and
the total heat input to the cycle indicate that 16 to 19% efficiency of converting
solar radiation and water to hydrogen are attainable, even without heat recovery
[35]. Steinfeld presents a similar analysis for reactor-scale processes, presenting
the ideal efficiency, Nexergy, ideal» depending on solar absorption and the ideal Carnot

efficiency:

Nexergy, ideal = T]absorption X T)Carnot

4
:[1—“337]41—&].
IC T

Here, C4 represents the mean solar flux concentration ratio, Ty is the temperature

of the thermal reservoir, and 0SB is the Stefan-Boltzmann constant. By maxi-
mizing this efficiency with respect to temperature, with C = 5000, they present
Toptimum = 1507 K, with a maximum theoretical efficiency of 75% [36]. However,
with experimental efficiencies found two order of magnitude less, ~ 0.7% [34],
much is left to be optimized at the material and reactor scale. Thermal stabil-
ity, cycleability, and mechanical stability are only some of the issues found in the

high-temperature application of metal oxides for thermochemical conversion.

Experimental efforts

Current research in the application of ceria-based materials to thermochemical
conversion processes centers around increasing the kinetic and thermodynamic re-
sponse of the materials. At the material level, investigations are being done in adding
dopants to increase the equilibrium vacancy concentration (thermodynamic behav-
ior) and the electrochemical conductivity (kinetic behavior). The non-stoichiometry
depends on the temperature and oxygen environment, and is controlled by the en-
thalpy and entropy change involved with the reduction, and measures the total fuel
productivity of material. Thermogravimetric analysis (TGA) consists of measuring
(by mass), the non-stoichiometry as a function of temperature and oxygen envi-
ronment at equilibrium. The kinetic behavior is determined by the diffusivity of
oxygen (and/or) vacancies through the bulk with a coefficient D¢per,, and a surface

exchange constant kg describing the ability to uptake and release oxygen. Dchen iS
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a material property dependent on the oxygen activity and temperature, whereas k;
also depends on the gas phase composition, surface morphology and surface com-
position. Electrical conductivity relaxation (ECR) experimentally provides these
intrinsic material properties [50, 51, 52]. The electrical conductivity of a known-
geometry of mixed conductor is dependent on the vacancy concentration, and by
fitting analytical transport models to an experimental set-up, the kinetic behavior
can be obtained by exposing samples to a step-change in oxygen environments [38].
The models associated with these experimental measurements will be presented in

a generalized framework in Ch. 3.

Improving the efficiency of the thermochemical conversion processes is an inter-
disciplinary task, and is a unique opportunity to explore new methods both experi-
mentally and theoretically at the material design scale. The efficiency of materials
in this setting is determined by the kinetic behavior described, where there is a
balance between bulk transport, and interface chemistry, and direct relation between
efficiency and morphology has been examined [4]. Thus, porous ceramics are being
used to increase the kinetic and thermal response of these materials by increasing
the specific surface area available for heterogenous reaction, the importance of the
material pore structure becomes a relevant problem. In theory, one should a balance
between gas flow, interface exchange, and bulk flow will be optimized for improving
the conversion efficiency. Varying degrees of controlled synthesis have been exam-
ined already, see Fig. 2.3. As-sintered ceramics are usually a random pore network
on the 10 um-mm scale with minimal surface area per volume, leaving significant
room for improvement. The directed-synthesis method of reticulated porous ce-
ramics (RPC) offers one degree more control of pore structure and specific surface
area. Work done in the Steinfeld group presents both direct pore level simulations
of transport and reactions, as well as an experimental framework for construction
of these ceramic foams [30]. A random polymer foam is coated in a ceramic slurry
so that during the sintering process, a skeleton of the foam is left behind comprised
of the desired metal oxide. They present a dual-scale, hierarchical, RPC where a
mm-size foam network is comprised of um scale porous ceramic [53]. The larger
strut structure offers good thermal conduction and mechanical support, whereas the
smaller length scale maximizes the specific surface area. Inverse opal designs offer
yet another method for directed synthesis, where PMMA beads are embedded in a
slurry, and thus sintering leaves a highly-ordered honeycomb ceramic structure with
tunable length scales [44, 4]. Additional shapes and construction methods have been

explored at differing length scales in all areas of energy conversion and storage, and



15

Figure 2.3: Example ceria microstructures: (a) as sintered at 1773K (top) and after
500 cycles between 1073K and 1773K (bottom), [35]; (b) inverse opal ceria, [4];
(c) dual-scale RPC ceria, [53].

couple well with the current attention to additive manufacturing methods [31, 54,
26,7, 13, 20, 14, 55, 5].

Modeling

There is a wide-spectrum of current modeling efforts in current research. One side of
the spectrum centers on both analytical and numerical ambipolar diffusion modeling
essential to ECR and other characterization methods. The classical of theory of
transport in mixed conductors is in-line with diffusional transport in solids, and is
usually described with electrochemical potentials describing the electronic and ionic
species in the material [56, 38]. The thermodynamic and kinetic behavior of these
materials are well-studied with application to ceria [52, 35, 57, 46], and the relevant
relations describing the mass and charge transport occurring through the bulk will
be reviewed in Ch.3. Smaller scale studies through density functional theory (DFT)
is a common theme in concurrent research as well [58]. Transport, and equilibrium
concentrations, can be explained using an electrochemical potential for the relevant
species. There is a variety of different methods for deriving these thermodynamic
potentials, and in the work presented in Ch. 3 we take the classical continuum
mechanics standpoint, following the rationalizations presented by Coleman and

Noll [59], with an extension to the relevant chemical behavior.
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On the other end of the spectrum is the full-scale coupled transport through porous
mixed conductors [60, 61, 62, 63, 64]. By considering fluid-flow, interface reaction,
and solid-state transport in reconstructed pore morphologies, the effective behavior
of known structures can be analyzed numerically, and the volume-averaged behav-
ior for various structures has indicated a strong connection between microstructure
and energy conference efficiency [65]. Tomographic reconstructions used in these
pore-level studies yield porosity, specific surface area, pore size distribution, ther-
mal conductivity, convective heat transfer coefficient, permeability, and tortuosity.
Haussener et al. go on to examine tailored foam designs over this parameter space,
as well as examine artificial structures of bimodal spherical distributions of pores
[63, 64, 62]. A formal extension of these modeling techniques is presented from
the homogenization viewpoint in Ch. 5 to address the averaged reactivity and multi-

physics transport through mixed conductors.

Strain engineering

As ceria and other transition metal oxides are reduced at high temperatures, the
decrease in oxygen content in the metal matrix and the formation of a vacancy
and electronic species changes the average lattice parameter of the material. As
the surrounding atoms relax around the vacancy, a continuous change in average
bond length occurs in the material, and a resulting macroscopic stress-free strain is

observed

that varies with both temperature (using the typical coefficient of thermal expan-
sion) and the surrounding oxygen environment as described through a coefficient
of chemical expansivity [66, 67, 68, 69]. At the strongly reducing conditions re-
quired for thermochemical conversion, high temperature and low po,, the stress-free
strains associated with thermo-chemical expansion can result in potentially large,
and detrimental, residual stresses in mixed conductors like ceria. Through their
seminal series of papers, Larche and Cahn established the theory behind these com-
positional stresses in metals [70, 71, 72, 73]. Both applied stresses, as well as
these "self"-stresses, are correlated with the diffusive transport of species through
the material, and can be described using thermodynamic potentials. Accordingly,
the interplay of stress and transport behavior of metal oxides and their mechani-
cal stability are relevant concerns for applications in thermochemical conversion
and solid oxide fuel cell systems [74]. The numerical values of this coefficient of

chemical expansion (a.), have been investigated experimentally [75, 76] as well as
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numerically through DFT studies, e.g. [41], and indicate a strong involvement of the
oxygen environment on the mechanical behavior of ceria. The associated Young’s
modulus also varies with composition significantly, and is commonly attributed to
weakening inter-atomic forces due to the increased concentration of point defects
[77, 67, 68]. The thermodynamic potentials describing this behavior are natural
extensions of the typical notion of chemical potential, as well as the electrochemical
potential commonly used in MIEC modeling [78, 79]. A derivation of these ther-
modynamic potentials, and the corresponding transport behavior is presented in by
Ch. 3.

The concept of strain engineering relies on using an induced strain in a material to
tailor its performance for a certain application. We can consider using the notion
chemical expansion to alter the behavior of nonstoichiometric metal oxides for
uses in thermochemical conversion devices. Inducing a mechanical stress can be
performed by attaching a film onto a substrate with a thermal expansivity mismatch,
a lattice mismatch, or by applying a local mechanical stress. On one side, using an
induced stress to increase the rate of hydrogen production and oxygen conductivity
offers a pathway to increase efficiency. Yildiz et al. [77] fully review the current
efforts examining the kinetic impacts of strain engineering, spanning molecular-scale
models to experimental measurements and material architectures [80]. In theory,
as the material is strained, the energetic barriers of reaction and diffusion kinetics
are altered as the inter-atomic potentials are shifted. The oxygen defect formation
enthalpy, migration energy barrier, adsorption energy, dissociation barrier, and
charge transfer barrier are all decreased as the strain increases. On the other side,
using the state of stress in the material to increase the equilibrium non-stoichiometry
in thermochemical conversion is yet to be investigated and offers a pathway to
increase the net fuel produced per cycle for energy conversion devices. We pose
the problem as a model problem where a thin-film of mixed conductor (ceria) is
attached to an inert substrate with a different thermal expansivity, and examine the
resulting impact on equilibrium non-stoichiometry using traditional TGA data [48].
This can be approached by just considering chemical equilibrium of the system (see

Ch. 4), or by exploiting the thermodynamic potentials described previously (Ch. 3).

2.2 Homogenization
The behavior of the observable continuum is governed by physics acting on a much
smaller (and larger) length scales. Considering the scene depicted in Fig. 2.4, we

see that a wood beam supporting a mass on a brick wall is actually comprised
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Figure 2.4: A matter of length scales. From [81].

of elemental units: the individual bricks, the sediment and grains comprising the
bricks, the mortar, the wood grains and fibers, the individual cells making up
wood. The mass itself is transferred over all over these elemental units, but at
our length scale, we see all of these entities as an averaged continuum. Studies in
homogenization seek to find a connection between these length scales; how does
the shape and composition of the bricks and wood cells impact their ability to hold
the mass at E? Homogenization theory seeks macroscopic descriptions of behavior
and material behavior, and has applications in countless areas including porous
media, composites, damaged material, and optimal design [82, 83]. The concept
of designing materials and composites hierarchically has the potential to open new
realms of applications and properties. For example, studies have been extended
to optimal design and homogenization in the thermomechanical setting with three
separate phases displaying metamaterial behavior and unique mechanical responses
[84, 85]. Coupling the microscale and macroscale designs through homogenization
and optimization is a key to advancing engineering and fabrication over a multitude
of length scales [86].

Studies are not limited to solely the structural problem, but instead, mathematical
models describing behavior at the microstructure are averaged to an "effective be-
havior" at the macroscale in the asymptotic sense, where a description length scale,
g, vanishes. In other words, as we consider multi-phase composites or materials with

finer and finer mixtures of the materials involved to the point of acting like an ideal
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homogenous material. Thus, in the mathematical sense, homogenization theory
focussed on the asymptotic analysis involved with ordinary and partial differential
models with fast-oscillating behavior in coefficients (such as electrical, thermal, or
chemical conductivity, elasticity coeflicients etc.) and thus, in solutions. In light of
studying mixed conductors and porous ceramics, we focus on the homogenization
of transport equations, namely combing conductive-diffusive transport and linear
fluid flow with reaction to address the problem of porous ceramics for energy con-
version. Tracking the gaseous species traveling through the pore space requires
a coupled problem of linear Stokes flow, and convective-diffusion with interface
reaction. In the solid matrix, bulk diffusion describes the movement of relevant ions
and/or electrons, both coupled to the gas phase through the interface. A goal of the
homogenization process is examining the coupling between these different models
that comes about through considering different scalings between each regime as the

effective behavior is obtained asymptotically.

Two-scale asymptotics

The primary tool we will implement is the mathematical rationalization of length
scales and convergence methods developed by [87, 88] and others, and made rigorous
by Allaire [89] and Tartar [90]. To illustrate the concept of two-scale asymptotics,
we consider a periodic PDE-system over a unit-cell of a periodic (or quasi-periodic)
medium in Q with the operator L. depending on the layout in the unitcell, with an
associated family of solutions u,:

Leug = fin Q,

with some appropriate boundary conditions. The process of homogenization [82,
88, 91] implies that there exists some macro-scale behavior that describes, in the the

limit of & — 0, that somehow u, — u and we have a homogenized operator L:
Lu= finQ.

The two-scale approach [92, 91, 87, 88] creates two coordinate systems: one tracking
the macroscopic behavior, x, and another for the microscopic behavior y = =. The

method is built on the ansatz that solutions can be written
X X X
Uus(x) = uo(x, -)+ 81/!1(X, -)+ 82u2(x, )+ ... 2.2)
£ £ £

with u'(x, y) periodic in y. Inserting this expansion into the governing problem

at hand, terms are collected depending on the order of €. Volume averaging, at
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some point in the process, leads to the desired homogenized behavior dependent,
u° on the microstructure seen at the y length scale in a cell problem. In general,
this asymptotic examining is strictly formal, and more advanced techniques are
required to prove the transition u, — u. In the problems presented in Ch. 5, we stick
to the formal examination as proofs explaining the desired convergence are well
documented. In addition to Allaire’s work on the subject, [89], the "energy-method"
of Tartar complements other convergence methods including G-convergence (and G-
closure), explaining the set of possible homogenized properties, H-convergence, and
H-measures [93], compensated compactness [94], and I'-convergence describing the
coupled convergence of energy functionals and associated minimizing sequences

[82].

In general, rigorous methods rely on analysis of the weak formulation of a prob-
lem. In a rudimentary sense, we can imagine multiplying the governing PDE but
a suitable, and creative, choice of test function and then integrating over the do-
main. The key is then passing to the limit & — 0, which is made possible for
the weakly converging sequences by exploiting the compensated compactness from
the test functions. The efforts mentioned previously, as well as Allaire’s two-scale
method provide ways in dealing with this convergence, and the assurance of the
homogenized behavior, and solutions. When dedicated to the periodic setting, two-
scale convergence allows for efficient analysis and is centered around the following

theorem.

Theorem 2.2.1 (From [89]). Let u, be a bounded sequence in L>(Q), with Q c RV,
open. There exists a subsequence, denoted by u,, and a functionu®(x, y) € L*(QxY)
(Y = (0, DV is the unit cube cell) such that

lim | wuc(x)y (x, i) dx = f fuo(x, YW (x,y)dx
-0 Jq & QJy

for any smooth test function W (x,y), which is Y —periodic in y. Such a sequence u,

is said to two-scale converge to u®(x, y).

For the convergence of the ansatz, Eq. 2.2, a corrector result is needed:

Theorem 2.2.2 (From [89]). Let u. be a sequence that two-scale converges to

u®(x, y). Then, u, weakly converges in L*(Q) to u(x) = fY u®(x, y) dy, and we have

. 0
tim sz > 1] 2 g = M2 2.3)

Furthermore, if equality is achieved in the left part of Eq. 2.3
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and if uo(x, y) is smooth, then we have

=0.
LX(Q)

Uus(x) — u® (x, f)

&

lim
e—0

These two theorems provide a rationalization of the ansatz that is used in many
formal studies on homogenization, and will only be presented here for validity of the
methods used in this work. The rest of the two-scale method proceeds by multiplying
the microscale PDE by a suitably smooth Y —periodic test function, integrating by
parts and then passing to the two-scale limit and obtaining the variational form of
u%(x,y). Volume averaging u’(x, y) leads to the macroscopic field as well as the
effective properties of the material as a function of the cell topology. These formal
methods can be extended to quasi-periodic oscillations in compositions, and there
are various convergence theorems examining such problems that offer more accurate

descriptions of real composites, or graded materials. [95]

Previous transport problems

Taking the problem addressed in Ch. 3 and looking at it from a homogenization
standpoint requires examining relevant transport models in porous media. One
class of problems lies in the convective-diffusion transport with chemical reaction
regime. Various formal and rigorous homogenization studies have examined these
problems in the past, and the most relevant results will be presented in Ch. 5.
The simple conductivity problem is well established [87, 96, 97] and provides a
framework for extending to the non-linear case and for involving multiple chemical
species and reactions. Competing processes of diffusion, convection, adsorption,
and reaction have all been analyzed in various settings and couplings, including

porous media, fractured material, multi-phase composites, etc. [98, 99].

The question of adding convective behavior has been addressed previously including
applications involving time-varying flow [100, 101, 102]. Most results presented
can be formally examined with the two-scale approximation technique, and to ac-
count for the time-dependence, a drift behavior is built into the asymptotic expansion
of solutions. Interfacial effects including adsorption, interfacial reaction, and in-
terfacial resistance rely on prescribing an internal boundary condition within the
unit cell, describing the flux and/or field value dependent on an arbitrary, possibly

non-linear, function. The interface kinetics discussed in Ch. 3 coincide with an "im-
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perfect interface" in the conduction problem, and in keeping track of separate fields
in the different phases, the selective diffusion process can be modeled accurately
[103, 104]. Here, the temperature of concentration fields are taken to be separate in
each material phase, as the interface can cause a jump in the temperature and flux.
In the electrical setting, the current has a discontinuity across the interface, whereas
the potential remains continuous [105]. Results carry over to studies of diffusion
under pressure in partially fissured material [106], and the homogenization results
couple well with traditional composite theory. Lipton and Talbot [107, 105] present
effective conduction behavior for fine-scale materials and the associated bounds on
effective behavior. A very similar asymptotic examination of two-species diffusion
described by generalized Poisson-Nernst-Planck (PNP) equations, and an unscaled
interfacial Bulter-Volmer exchange was examined by Ciucci and Lai for developing
a micro/macro model for lithium battery models [22]. These previous studies lay a
foundation of homogenization theory to build off, and the methods can be adapted

to the thermochemical system in question.

One of the classic derivations from homogenization theory is obtaining Darcy’s
Law from linearized Stokes-flow through periodic porous material. [87, 88] The
general framework relies on the same formal approach described: expanding all the
relevant fields in a series dependent on orders of € and collection the resulting array
of equations to determine the homogenized behavior. The Stokes equations for flow

through the pore space are denoted

-Vp+Ab+ f=0 inQ (2.4)
V-b=0 inQ (2.5)
b=0 onX (2.6)

where b (the velocity vector) and p (the pressure) are unknown functions defined
over our domain Qf, that is scaled with &, with interface X, and a possible body

force f. Following the traditional two-scale expansion method, Darcy’s law can be

- apo
0 _ .| £ - 2
bj = Kj; (f, aXi),

describing that the volume averaged (denoted by ~) velocity is proportional to the

derived:

gradient of the pressure at the macroscale. The tensor K;; describing the permeability
is dependent on the fine-scale structure of the unit cell, and is comprised of solutions
to the unit-cell problem obtained in the & ordered array of equations. A formal

derivation of this will be presented in Ch. 5.
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2.3 Optimal design

In considering the interplay between material microstructure and the electrochemical
behavior required for application to thermochemical conversion devices, synthesis
techniques and the resulting morphology are relatively uncontrolled. The various
attempts at controlling the porous topology are limited by random structure and
tunable parameters are chosen based on intuition and a prescribed pore shape.
Optimization methods of design exploit physical models describing the behavior
of a material under prescribed boundary conditions to determine the ideal material
arrangement with a given goal in mind. It leads to two widely used methods,
topology optimization (e.g. [108]) and shape optimization (e.g. [109]). Shape
optimization fixes the topology of a domain and determines the ideal morphology
of the inclusions or boundaries between phases. The resulting sensitivities used are
well established in theory and in numerical studies, but the common short-coming
is that the topology of an ideal arrangement is not known beforehand. For example,
in optimal design of elastic plates, the solution is to have an increasing number
of thinner plates for optimal behavior [86], which motivates the introduction of
microstructure into design. Homogenization theories similar to those presented in

Ch. 5 carry over to the optimal design realm seamlessly in this setting.

Topology optimization is the more generalized form of these approaches, and seeks
to address the limitations of shape optimization by allowing for optimization to
be carried out over both the shape of the material and the topology. Originally
established in the seminal paper from Bendsge and Kikuchi [86], there is a growing
body of literature applying the methods of topology optimization to new areas and
physical regimes. The traditional benchmark example of optimal design seeks to
minimize compliance for a prescribed load by arranging material in a fixed domain.
A sketch of this problem and the resulting configuration can be seen in Fig. 2.5.
Topology optimization uses finite element or finite difference analysis to discretize
the domain, where the material parameters vary over each voxel. Even with varying
degrees of filtering and post processing, there is still the possibility for intermediate
densities to arise in the result. This is seen in Fig. 2.5 as the gray regions, and
represents the formation of material with microstructure, or a composite of two base

materials.

Mathematical theory in the search for optimality
It is understood that the underlying problem of optimal design is ill-posed in that the

resulting designs often lie outside of the set of "classical admissible designs" and
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Figure 2.5: The benchmark optimal design problem. From [108].

one has to either relax the problem by homogenization [109, 110, 111] or regularize
it by the introduction of perimeter constraints [112, 113]. The general framework

for optimal design can be sketched as follows:

Reference domain: QcRV
Volume fractions: 0<6<1
Admissible designs: D cQ

|D| < 6|Q|

Optimal design problem: infp agmissible F (D)
Optimize iteratively: OpF (D).

Typically, the admissible designs described here form a discrete subset of the design
domain that we optimize over. The existence and nature of minimizers of our
objective F'(D) are notinsured, and sequential designs progressing to these infimums
often are outside of the relevant functional class. Additionally, iterative optimization
typically requires a notion of sensitivity with respect to designs, which become very
cumbersome in the "discrete” material setting. Relaxation allows for intermediate
densities, or areas of microstructure, to be considered through the optimization.
Objective functions can be an prescribed quantity using the field solved for in the
constraining PDE; mechanical compliance, total stored energy, conductivity, and
resonant frequency are just a small sample of the problems that have been explored
in this framework. Because of the complex structure of optional design problems,
they have a background rich in theory and analysis. Since the optimization is
coupled to solving a physical problem, the existence of minimizing solutions in the

design space and solutions to the physical problem are coupled. Studies seek to
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find a relation between these two as well as general existence theories, typically in
the variational setting [97]. The general mathematical analysis of these problems
is well established by the classic series from Kohn and Strang [111, 114, 115], and
guides the analysis presented in Ch. 6.

Optimization methods and applications

Numerical methods in design optimization can usually be broken down into two
steps: first is solving the underlying physical problem using finite element or finite
difference methods for a chosen initial design, secondly, the design is updated
using optimization method utilizing a notion of sensitivity of the objective function
with respect to the design field. Relaxation is commonly a key aspect in this
sensitivity analysis, and accordingly, the physical models have to be formulated
to accommodate intermediate densities. This relaxation of design space requires
interpolating material behavior between the phases in question. For example, if we
consider a topology optimization problem in linear elasticity, the elastic modulus of

the material will be interpolated as follows:

K(x) = Kip(x) + K2(1 = p(x)),

where K; represents the modulus in the i—phase, and p is our design field, or density.
Relaxing the problem in the optimization setting usually results in large areas of
intermediate, or composite, densities throughout the design domain. To enforce
manufacturability, or a minimum length scale for features, penalties are usually
enforced on these intermediate densities. Classically, topology optimization uses
the Solid Isotropic Material with Penalization (SIMP) approach, [108, 116] where
these intermediate densities are limited through the material response:

K(x) = K1p7(x) + K2 (1 = pP(x)),

where p is typically chosen based on the problem and typically takes values, 3 <
p < 10. The effective behavior is K is made unfavorable through the optimization
and thus, near discrete results are obtained. Different "phase functions" can be
used to describe how material parameters vary with the design field p. Additional,
heuristic, post-processing, filtering, and adjustments are made numerically in these
methods with the assumption that optimality is not severely impacted. The level
set approach is an alternative to relaxation, where material interfaces are tracked
implicitly through the computation as zero contours of a level set function and

thus lends itself more to shape optimization rather than topology optimization.
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Methods rely on different notions of sensitivity, commonly based on the Hamilton-
Jacobi equation to alter the material boundaries [117, 118, 119]. Although adaptive
numerical meshing is not always required, the method pays the cost of being very
dependent of the initial guess of the structure, and re-initialization does not always
lead to a solution. The level-set method has been found in other research areas
including fluid mechanics, where fluid-solid interfaces are important, and image

analysis for tracking boundaries.

In applying aregularization, specifically "perimeter-controlled" optimization, adding
a penalty of the surface area term to the objective functional solves the issues of not
obtaining admissible designs. By limiting the perimeter of the resulting designs,
sequences of solutions with rapid oscillations, or areas of fine-scale mixtures, are
penalized, and the resulting problem becomes well posed [112]:

inf  F(D)+ AH""1(8D),

D admissible

where HN=! is the Hausdorff measure, the length (are area) of 9D. However, the
theory lacks a viable numerical approach, and so it must be coupled with relaxation.
The approach that we take in our optimization (Ch. 6) grows from relaxation to
applying a phase-field model where intermediate densities and interfaces are nu-
merically penalized. We implement an energy form seen from work done in surface
dynamics modeling in phase transitions by Cahn-Hilliard [120] and Allen-Cahn
[121]. Phase-field methods have been numerically implemented in dendrite growth
[122], crack propagation [123], and grain evolution [124] and are well suited to the
typical frameworks in optimal design. This penalty relies on an artificial two-well
potential favoring each phase, and an interfacial term relying on the gradient of the

density p,
f W(p) + Vol dx,
Q

where W(p) « p*(1 — p)?. This method of penalization is an alternative to the
heuristic filtering techniques typically found in numerical topology optimization as
well as the assumed microstructural design found in homogenization techniques.
There is an associated length scale arising from the phase-field penalty that is
numerically controlled, and it has been found that in the limit, this reduces to
the same perimeter penalty. This affords minimal numerical filtering, relatively
unaltered optimization methods, mesh independent results, and allows for complete

generality in topology optimization without dependence on initial guesses. It has
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proved to be effective in various multi-physics settings, and also allows for rigorous

mathematical analysis of the resulting problems [113, 125, 126, 127].

Applying topology optimization techniques to the transport and reaction that occurs
in thermochemical conversion devices is a new endeavor, but similar applications
have been examined previously. In the mechanics problems commonly examined,
loads on a structure are applied externally, and are independent to the design field
and its fluctuations. However, when multi-physics problems are examined where
the "loads" placed on the system depend on the design field (i.e. a pressure force,
gravity, or a chemical source), a separate group of literature exists to address these
"design-dependent loads" [113, 128]. The presence of two species lends a vectorial
character to our problem, and the presence of the surface sources makes the problem
at hand different from those in the literature. The diffusive transport considered bears
the most resemblance to problems of heat conduction, where the task of optimizing
a thermal lens by designing a conducting body with the objective of maximizing
the heat flux through a sink in the domain [129, 130, 131]. This can be extended to
include convective behavior with similar results displaying a hierarchical, branched
arrangement of the conducting material [132]. The general topology optimization
approach can be extended to any multi-physics situation (e.g. MEMS), where a
consistent system of PDE’s can be used as constraints on the optimization [108].
Including fluid flow and reaction has been investigated as well, albeit in slightly
different settings than we propose here. Stokes flow has been investigated with the
goal of minimizing the dissipated power in a fluid flowing through a structure [133],
and chemical reaction in single-phase flow was investigated for optimizing reactive
fluid transport in microfluidic (bio-)reactors [134, 135, 136]. Osanov and Guest
have recently written an inspiring review presenting the application of topology
optimization for architected materials, where a variety of length scales are involved
in creating materials with unique, tailored, properties [137]. We apply topology
optimization techniques in combination with the phase-field method for designing

pore structure in an idealized thermochemical reactor setting in Ch. 6.
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Chapter 3

CONTINUUM TRANSPORT IN MIXED CONDUCTORS

We derive the transport equations for electrons and oxygen vacancies through ce-
ria under an externally-applied electric potential in an oxygen environment using
various balance laws and constitutive equations. From this, we obtain various
thermodynamic potentials that take into consideration the thermal, chemical, and
mechanical state of the material. Accordingly, we obtain a system of partial dif-
ferential equations describing ambipolar diffusion (or the diffusion-drift equation)
from the continuum mechanics framework. As a confirmation, the transport equa-
tions obtained are consistent with those used in experimental literature under certain

specific constitutive relations.

3.1 Formulation

We consider the transport of charged vacancies and the coupled electron movement
without considering possible polarization or inter-band electron transfer [52, 34,
35]. Additionally, we ignore phase transitions that could occur as a function of
the non-stoichiometry. Under reducing atmospheres (obtained here by mixing H;
and H,0O), cerium undergoes partial reduction from the 4+ to 3+ oxidation state,
giving rise to mixed ionic and electronic conduction. On the surface of the mixed

conductor, the formation of localized electrons and intrinsic oxygen vacancies can
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Po,

Mixed conductor
Q

81w

|
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Figure 3.1: Schematic arrangement of the mixed conductor.
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be expressed as

1
0§ < EOZ(g) +V§ +2¢

Consider a sample of ceria (or similar oxide-conducting ceramic) occupying a region
Q with boundary 9Q and outward normal /7. The metal electrodes it is connected
to are denoted by Cy, C; with boundaries dCy, 0C; respectively. Let 0QNIC| = §;
and 0Q N 9dC, = S>. We complete the circuit with a varying potential across the
system, V (¢), as well as expose the system to a partial pressure of oxygen, po,. Ad-
ditionally, we prescribe displacements over dyw boundary tractions t* over a portion
of the boundary drw. Now, noting the species in question, we denote:

Species Conc. Charge Flux
O vacancy Cion=¢ z=+2 J;
Electron Coon =€ Ze=-—-1 Jeo
Neutral oxygen co z20=0 Jo

We assume that the displacements, u, and displacement gradients are small. So, the
strain &€ = % = (Vu + Vu"), and we don’t distinguish between reference and current

configuration in writing the balance laws.

3.2 Balance laws
Conservation of mass

We start with the general formulation for a well-behaved subdomain D C Q:

2j‘cidx:—‘[ Ji - iids
ot Jp oD

0 .
— Codx = — J, - ids.
ot Jp oD

Localizing these equations yields the desired conservation equations

&G=-V-J
ée:_V'Je.

Here, the overdot represents a time derivative.
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Electrostatics
In the absence of polarization, the electrostatic potential ¢ solves Maxwell’s equa-
tion:

V- (-€0V9) = pxainR*\ (€U Gy)

¢ =0in C,
¢=Vin
with charge density p and yq as the indicator function for our mixed-conductor

domain:

1, ifxeQ
xo(x) =
0, otherwise.

The charge density can be represented by a combination of the electronic and ionic
charges:

p = e(zici + Z.Ce),
where e is the magnitude of the charge of an electron.
Conservation of momentum

We use the standard balance laws from continuum mechanics. Using the Cauchy

stress tensor, o-, we denote the conservation of linear momentum:
V.-o=0.
The conservation of angular momentum is simply written as the symmetry constraint
T

o =0.

Further,

t* = oM on hw.

Conservation of energy

We write the first law of thermodynamics, dU = dQ — dW, as follows:

d
_(fU+60|V¢|2dx):—f q-ﬁ1dA+fra’x
dt \Up 00 Q

—f (edo - 11 = s - ) dA
0Q

+f ¢(eV¢S-ﬁ1)dA+f o - 1 dA.
oD 0Q
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Here, U denotes the internal energy density, g the heat flux, r the radiative heat
transfer, ji refers to the typical electrochemical potential of the species in question,

and o, is the surface charge density:
o4 = [—€oVell - mond(C U Cy),

Here, [-]] denotes the jump across an interface: [£] = &* — &7, with £ being a
variable denoted in both domains; 71 is the unit norm of the interface, pointing to
our conductor, D, from D™, the rest of R3. Notice the surface charge density can

be simplified in terms of the potential outside of the conductors:

oq=[-€Vel - m
= —€o(Vop" = Vo) -m
= €gVo - m.

On the left hand side, terms denote the rate of change of total energy, taking
into account the internal energy stored in our body as well as the energy from the
electrostatic potential in space. We also consider the contribution due to the external
oxygen environment, measuring the capability for the fixed potential to do work on
the body, which is dependent on the potential and the maximum amount of exchange
that can occur, f cidx. On the right hand side, contributions due to the chemical
energy being transferred via the flux of species, the heat flux (g), and a body source
r, and finally the mechanical work done on the system. In this formulation, we
have neglected the surface free energy as well as blackbody-radiation and separate

contributions to the entropy (e.g. vibration and configurational).

Multiplying Maxwell’s law by the field ¢, and integrating over our subdomain D

feo|V¢|2dx—eof ¢(V¢-ﬁ)dA:fp¢dx.
D oD D

Taking the time derivative yields:

yields

. d .
260f Vé - Vo dx = —f eo¢(V¢-ﬁ)dA+f (p¢ + pg) dx.
D dt Jap D
Similarly, by multiplying Maxwell’s law by ¢ and integrating we obtain:

eofV¢-V¢dx—eof ¢5V¢'ﬁdA:fp¢5dx.
D oD D

Subtracting the second relation from the first yields:

d 1 .
— | =eo|Vh|?dx = Vé - i) dA b dx.
7 | Feolvordx faD¢(EO é- ) +po¢ x
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Using this, the first law becomes:
fU+p¢dx:f (-V-qg+r-V(@;J; + fi.J.) +V - (ow)) dx.
D D

Notice how we no longer have contributions from the boundary of D. Accordingly,

we can localize the first law of thermodynamics to obtain:
U+pp=-V-qg+r-V(aJ; + fic).) + o - Vi, (3.1)

where we have enforced mechanical equilibrium V - o0 = 0.

3.3 Constitutive equations
Entropy inequality

‘We now turn to the second law:

d
e ndxz—f g~ﬁdA+ffdx.

where 71 represents the specific entropy density, and 6 is being used a thermody-
namic temperature scale. The left hand side denotes the entropy production. The
contribution involving r represents any body sources, and ¢ measures any boundary

fluxes. Localizing yields,
On Z—V-q+$q-V@+r.
Applying the first law, 3.1, yields
On > U+p¢+V(,a,-J,-+,aeJe)—0'~Vbl