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ABSTRACT

The efficiency of fuel cells, batteries and thermochemical energy conversion devices
depends on inherent material characteristics that govern the complex chemistry and
transport of multiple species as well as the spatial arrangement of the various materi-
als. Therefore, optimization of the spatial arrangement is a recurrent theme in energy
conversion devices. Traditional methods of synthesis offer limited control of the
microstructure and there has been much work in advanced imaging for these uncon-
trolled microstructures and optimizing gross features. However, the growing ability
for directed synthesis allows us to ask the question of what microgeometries are op-
timal for particular applications. Through this work, we study problems motivated
by metal oxides used in solar-driven thermochemical conversion devices designed
to split water or carbon dioxide into fuels. We seek to understand the arrangement
of the solid and porous regions to maximize the transport given sources and sinks
for the gaseous oxygen and vacancies. Three related problems are investigated with
the common theme of understanding the role of microstructure design.

We derive the transport equations for electrons and oxygen vacancies through ce-
ria under an externally-applied electric potential in an oxygen environment using
various balance laws and constitutive equations. From this, we obtain various
thermodynamic potentials that take into consideration the thermal, chemical, and
mechanical state of the material. Accordingly, we obtain a system of partial dif-
ferential equations describing ambipolar diffusion. We present the applicability of
strain-engineering as a way to design systems to improve the behavior of thermo-
chemical conversion devices. We look at an idealized thin film of mixed conductor
attached to an inert substrate with a thermal mismatch as a way to induce strain
into the film. The resulting impact on equilibrium non-stoichiometry is analyzed
using data describing non-stoichiometry in ceria as a function of oxygen pressure
and temperature.

The optimal design of material microstructure for thermochemical conversion is
addressed from two standpoints: the mathematical homogenization of associated
transport models, and from topology optimization. We present the homogenization
of coupled transport through porous media consisting of linearized Stokes flow, con-
vective diffusion, and diffusion in the solid phase with interface reaction. Depending
on the strength of the interface chemistry, different forms of effective behavior are
described at the macroscale, and we gain insight into the impact cell-design and
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pore shape has on the behavior.

The topology optimization of a model energy-conversion reactor is then presented.
We express the problem of optimal design of the material arrangement as a saddle
point problem and obtain an effective functional which shows that regions with
very fine phase mixtures of the material arise naturally. To explore this further, we
introduce a phase-field formulation of the optimal design problem, and numerically
study selected examples. We find that zig-zag interfaces develop to balance mass
transport and interface exchange.
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C h a p t e r 1

INTRODUCTION

The scientific quest for developing novel ways to convert and store energy is an ever-
growing effort. It is undeniable that at some point in the not so distant future, the
planet as a whole will need to shift away from traditional energy sources to methods
that are economical, efficient, sustainable, and clean. Regardless of background,
there is no clear answer to solve this grand challenge and proposed solutions are
highly interdisciplinary and require collaboration across fields. Experimental and
theoretical studies spanning length scales from atoms, to microstructures, and up to
power plants continue in the search for changing the energy industry.

The high energy density found in the chemical bonds making up traditional hydro-
carbons is one of the most effective ways of storing energy. Contemporary energy
conversion and storage methods rely on chemical energy as a way to provide power
when necessary. Being that more energy from sunlight strikes the Earth in one hour
than the global energy consumed in one year [1], conversion methods utilizing this
unbounded energy source have an inherent advantage over other sustainable sources.
The conversion of solar energy into useful forms has reached a critical stage where
large-scale industrial applications are allowing it to be a relevant method in energy
conversion [2]. The conversion of solar energy to electricity via photovoltaic cells is
becoming extremely cheap and efficient, and with growing battery technologies the
problem of storage is becoming a more relevant issue. Solar energy can also be used
as a heat source for fuel cells, where it is converted to chemical energy in a storable
fuel, as an energy source for direct generation of fuels through the thermochemical
splitting of molecules, or through the combination of light harvesting techniques
and chemical energy conversion using a photoelectrochemical cell. Regardless of
the proposed solution, countless materials science challenges in these devices must
be overcome to shift away from traditional energy sources.

The efficiency of fuel cells, batteries and thermochemical energy conversion devices
depends on inherent material characteristics that govern the complex chemistry and
transport of multiple species as well as the spatial arrangement of the various
materials. Therefore, optimization of the spatial arrangement is a recurrent theme
in energy conversion devices. Traditional methods of synthesis offer limited control
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Figure 1.1: Schematic representation of a single solid oxide fuel cell, from [9].

of the microstructure and there has been much work in advanced imaging for these
uncontrolled microstructures (e.g., [3]) and optimizing gross features. However, the
growing ability for directed synthesis [4, 5, 6, 7] allows us to ask the question of
what microgeometries are optimal for particular applications. In this sense we direct
the problem to one of optimal design where we are not limited by the imagination
in determining new microstructures but instead allow for the underlying physical
behavior and optimization techniques to direct architecture and microstructure, and
eventually lead synthesis to unprecedented performance.

Solid oxide fuel cells (SOFCs) have been at the forefront of materials science
research since the early 2000’s because of their promise as a low-cost, clean, and
highly efficient energy source hosting a plethora of interesting research topics.
The flexible use of different fuels (such as hydrocarbons, biofuels, or coal-derived
syngas) and with CO2 production being marginal, and easily managed, compared
to other energy sources are highlights of why industrial scale-up or small-scale,
sub-grid, implementation of these devices is so attractive. Material challenges
associated with the devices span materials development, microstructural and phase
characterization, and multi-scale design and modeling with the goal of increasing
reliability at a lower cost [8]. SOFCs are one of many ways to convert chemical
energy to electrical energy without the combustion of fuels, and exemplify the
application of unique materials for energy production.

SOFC device architecture is sketched in Fig. 1.1. Oxygen enters the system on one
side of the membrane and is reduced at the porous cathode. The oxygen ions are then
transported through the dense supporting ion-conductive electrolyte to the porous
anode, where an oxidation reaction occurs with a reactant fuel to produce H2O and
CO2. The electrons released and consumed at the anode and cathode and conducted
through an external circuit. Electrode and electrolyte materials are commonly
perovskite- or fluorite-structured oxides that rely on large non-stoichiometry (oxygen
vacancy concentration) to afford ion conduction and various atomic impurities
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Figure 1.2: SOFC cathodes: (a) porous single-phase electronically conductive
oxide such as LSM; (b) porous single-phase mixed conductor; (c) porous two-phase
composite. From [9]

.

(dopants) to increase kinetic behavior [10]. Yttria-stabilized zirconia (YSZ) and
ceria-based metal oxides are commonly used as an electrolytes because of their
high-temperature stability, general compatibility with other materials used, and
ability to effectively transport oxygen ions with minimal electrical conduction [11,
12].

In both porous electrodes, microstructure must be chosen to provide an abundance of
electrochemical reaction sites (to promote charge-transfer) and high phase connec-
tivity (for electron and ion conduction, and mass transport in the gas phase). These
features are coupled with volume fractions, surface area densities, interfacial curva-
tures, and phase tortuosities to find the optimal balance between surface reaction and
transport [13]. Widely used cathode materials include strontium-doped lanthanum
manganite (LSM), strontium-doped lanthanum colbaltite (LSC) and other similar
mixed ionic/electronic conductors, eliminating the need for metal electrocatalysts
or current collectors [11]. Composite SOFC designs have allow a balance of the
thermal-mechanical-electrochemical properties of different materials used [9]. For
example, varying mixtures of LSM and YSZ have been examined for use in the
cathode with the intent of increasing the contact area between electronically and
ionically conductive phases. A full microstructural characterization by [14] proved
that the design space has not been completely established.
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Figure 1.3: Three-dimensional reconstruction of a Ni-YSZ anode using focussed
ion beam (FIB) and scanning electron microscrope (SEM) images. Ni is shown in
green, YSZ in gray, and pore space in blue. Connected TPB’s are shown on the right
as white segments. Off-white segments are disconnected, and therefore ineffective
reaction sites. From [3].

Similarly, the importance of microstructure on anode performance has also been
established [15, 16, 17, 18]. Efficient current generation relies on electron conductor
(metal), ion conductor (oxide), and reactants (in the pore space) coming together at
triple phase boundaries (TPB) [11]. Connectivity is a requirement in each of the
phases present: the pore must be well connected to the fuel stream, the Ni phase
to the external electrical circuit, and the YSZ phase to the bulk electrolyte [3]. A
typical anode is comprised of a ceramic-metallic composite such as YSZ and nickel
(Ni), and a typical arrangement can be seen in Fig. 1.3. The choice of these materials
depends on the electrolyte used, the operating conditions of the cell, as well as the
desired fuel, as reactivity is heavily dependent on all three [8].

The morphology of materials used in lithium ion batteries is of interest from both
the theoretical [19, 20, 21, 22] and experimental standpoint [23, 24, 6]. The
generalized battery structure takes a similar form to SOFCs, as with many material
design constraints. While a battery is being discharged, lithium atoms are oxidized
at the anode, releasing electrons to the current collector, leaving ions to travel
through an electrolyte and separation membrane to the cathode material where they
is reduced. Charging a battery requires external current to reverse the process,
requiring lithiation, or intercalation, of the anode material. Mass and ion transport
and interface measure in battery electrodes directly impact the storage capacity
and rate performance and is an ideal problem for optimization across many length
scales. Charge transport, heat conduction and mechanical stresses are all coupled
through the battery’s use and present complex obstacles in design and materials
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development.

Graphite is traditionally used as the anode material because of its abundance, low-
cost and stability. The preferable electrochemical behavior of graphite stems from
the ability for lithium ions to intercalate in the graphene sheets, as well as mechani-
cal stability and electrical conductivity. However, the recent wave of alloying with
silicon in the anode to increase capacity, energy density, and rate has opened count-
less new design challenges because of the extreme anisotropic chemical expansion
upon lithiation, and its low conductivity compared to graphite. Thus, interesting
composite designs have been the most successful to ensure mechanical stability and
desirable conductivity [25].

Electrolytes are typically composed of lithium salts dissolved in a non-aqueous,
organic, solvent to allow for the transport of lithium ions. However, because of
interactions with either electrode, electrolyte development is very difficult. A pos-
sible solution framework lies in creating solid polymer electrolytes which present
ideal manufacturability and high energy density. Nanocomposites have been inves-
tigated as a method to increase the ionic conductivity of the solid-state components
by numerous additional phases are introduced into the matrix to optimize lithium
transport [26].

Cathodes are traditionally made up of transition metal oxides such as LiCoO2 whose
crystal structure allow for easy intercalation of guest ions. Current research is fo-
cused on cost reduction and heat management at the anode. In general, the design
considerations for lithium batteries can be reduced to dimension reduction, com-
posite formation, doping and functionalization, morphology control, coating and
encapsulation, and electrolyte modification [25]. Regardless of cathode or anode,
nanostructured materials based on carbon, metal/semiconductor, metal oxides and
metal phosphides/nitrides/sulfides show promising applications in lithium ion bat-
teries because of high surface area, low diffusion distance, high electrical and ionic
conductivity [27].

The tailoring of material microstructure and nanostructure is not new to energy
conversion and storage [7, 26]. Particular designs can range across length scales:
from nano-defects to microscale morphologies. Regardless of device, classical
synthesis methods usually involve randomized pore structure arriving from sintering
processes from a slurry mixture. The development of hierarchical structures and
directed porosity affords balancing interfacial reactions and chemical transport to
maximize efficiency. In SOFCs, development of new cell structures can reduce
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Figure 1.4: 3D mesoporous silicon anode material. From [24].

operating temperatures. For example, it has been shown that 100-nm-thick zirconia-
based electrolyte and 80-nm porous Pt electrodes (cathode and anode) could be
fabricated with the help of sputtering, lithography, and etching and produce high
energy density at a lower temperature [28]. SOFC’s implementing microtubular
designs have been proposed for low-temperature operation because of high thermal
stability under rapid heating, as well as high volumetric power density [16]. Battery
anodes can benefit from similar composite designs across a variety of length scales.
For example, nanostructured Si-composite materials can be prepared by dispersing
nanocrystalline Si in carbon aerogel followed by carbonization [29]. Additionally,
macroscopic carbonmonolithswith bothmesopores andmacropores can be prepared
by using meso/macroporous silica as a template [23].

Advanced synthesis techniques commonly rely on forming seconding structures
as a precursor. For example, in Fig. 1.4, a mesoporous Si anode material was
fabricated using a scaffold-like framework. Li et al. [7] review a fascinating mix
of hierarchical techniques for application to energy conversion and storage. The
process of coating polymer scaffolds, whether they be a a collection of spheres or
printed network, with slurry before sintering is one route for increased control over
microstructure [30]. Direct laser sintering of ceramic materials and metal oxides
and other additive techniques has the possibility of designing complex structures
for electrodes [31]. An example of a silicon anode designed to accommodate the
strains involved with lithiation and produced by photolithography and etching can be
seen in Fig. 1.5. Other structures based on porous media, inverse templates, pillars
or nanowires with the intent of solid-state battery structures have been reviewed in
[33]. Combining design and synthesis methods at a variety of length scales using
cellular construction allows for hierarchical materials with prescribed behavior. The
design space for SOFCs, batteries, and thermochemical conversion devices goeswell
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(a) (b)

Figure 1.5: Honeycomb silicon: (a) before lithiation and (b) after lithiation. From
[32].

Figure 1.6: Sample solar thermochemical reactor, from [34].

beyond the standard, intuitive, composite structures and is open for optimization.

Through this work, we study problems motivated by metal oxides used in solar-
driven thermochemical conversion devices. An example solar reactor, Fig. 1.6, has
been developed and tested for the conversion of H2O to hydrogen as a sustainable
fuel source [34]: These conversion devices consist of porous, two-phase, material
(solid oxide and pore) where reactions at the surface create oxygen in the carrier
gas in the pores and bound oxygen in the solid oxide; the oxygen diffuses through
the carrier gas in the porous region and bound oxygen diffuses through the solid
oxide. Various metal oxides are possible candidates for these processes, but nonsto-
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chiometric cerium oxide, especially when doped, display applicable thermodynamic
and kinetic traits [35]. Details of these materials and processes will be the focus
of Sec. 2.1. Alternate methods for generation of hydrogen from water using solar
radiation can be categorized generally by their procedure [36]: solar thermolysis,
solar thermochemical cycles, solar reforming, solar cracking, and solar gassification.
The latter three require input from fossil fuels, and the associated sequestration of
CO2. However, all offer preferable routes to energy production over the traditional,
combustion-based, methods. Similar effort has been put into developing photocat-
alytic cycles for the conversion of CO2 into combustible hydrocarbons, as reviewed
by [37]. Solar-driven thermochemical approaches to CO2 and H2O provide an at-
tractive path to solar fuel production at high rates and efficiencies in the absence of
precious metal catalysts, and the relatively simple reaction framework makes them
ideal candidates for modeling and optimization.

There is a common thread between these three examples: they all use nonstoichio-
metric, ionically conductive ceramic materials where the effectivity of the device
is largely dependent on the microstructural design of the material. We focus on
thermochemical conversion as a model energy conversion system to study because
of the relative ease of modeling, and the low complexity of material integration.
We seek to understand the arrangement of the solid and porous regions to maximize
the transport given sources and sinks for the gaseous oxygen and vacancies. Three
related problems are investigated with the common theme of understanding the role
of microstructure design of mixed conductors for their application to devices like
those depicted in Fig. 1.6. Our goal is develop a framework for designing materials
that is not specific to one application, but can be easily modified to optimize any
energy conversion device.

The first problem lies in exploring the applicability of strain-engineering as a way
to design systems to improve the behavior of thermochemical conversion devices.
Many of the mixed conductors mentioned, under reducing conditions, expand as
vacancy defects are introduced into the crystal structure, and there is a strong
coupling between the chemical, electrical, thermal, and mechanical environments
of the material. We find that inducing a strain into an ionic conductor allows
for the equilibrium vacancy concentration to be tailored. In Ch. 3 we derive a
thermodynamic potential describing the concentration of ionic and electronic species
inmixed conductors considering the environmental chemistry and coupling transport
with the associated strains associated with varying nonstoichiometry in the material.
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Then in Ch. 4, we look at an idealized thin film of mixed conductor attached to an
inert substrate with a thermal mismatch as a way to induce strain into the film. The
resulting impact on equilibrium non-stoichiometry is analyzed using data describing
non-stoichiometry in ceria as a function of oxygen pressure and temperature.

Then, the optimal design of material microstructure is addressed from two stand-
points: one is from the mathematical homogenization of the transport models asso-
ciatedwith thermochemical conversion, and the other is from topology optimization.
Homogenization is a mathematical technique in which studying a periodic, cellular,
structure with a fine length scale yields volume averaged behavior of the media at
the macroscale. We gain insight into the impact cell-design and pore shape has on
the behavior of materials in energy conversion devices. By understanding this con-
nection, the optimal design of cell-structures can be properly examined. In Ch. 5, we
present the homogenization of coupled transport through porous media consisting
of linearized Stokes flow, convective diffusion, and diffusion in the solid phase with
an interface reaction. Depending on the strength of the interface chemistry, different
forms of effective behavior are described at the macroscale.

Topology optimization is a broad description of methods to determine the best
arrangement of material to meet a prescribed measure of performance. An objective
function is chosen and instead of optimizing over parameters, we instead optimize
over designs. Chosen physical models are then implemented as constraints and
become the guide to designing materials, rather than intuition or synthesis. In Ch. 6,
we look at the topology optimization of a porous material, where two chemical
species each reside in separate phases (pore space and solid), and undergo an
interfacial conversion reaction. We analyze both the reactive-diffusive transport
model in this setting, as well as optimal design problem associated with maximizing
through-put through a generalized device. The optimization is then implemented
numerically to determine designs under varying parameters.

We start by presenting relevant background information on the metal oxides used in
these thermochemical conversion systems, the experimental and theoretical efforts
to studying them, and the current status of morphological studies in Ch. 2. An
introductory description to mathematical homogenization theory and other efforts
in studying transport problems follows. Finally, a description of the mathematical
theory of topology optimization is described, along with relevant examples and
previous studies.
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C h a p t e r 2

BACKGROUND

2.1 Mixed conductors
The ability of various metal oxides to conduct ionically and electronically make
them invaluable for countless applications ranging from electrodes in fuel cells,
selective membranes, sensors, oxygen generators and catalysts because of their
unique electrochemical behavior [38]. For example, the 2020 Mars rover will
include a device, MOXIE, consisting of a "reverse fuel cell" utilizing a ceramic
mixed conductor to split CO2 from the atmosphere for oxygen generation [39].
Oxygen separation membranes consisting of fluorite-based materials, like stabilized
zirconia, or perovskite structures utilize ionic conduction to pull oxygen from a
source gas [40]. In these applications, we have a fascinating interplay of different
transport regimes, chemical reactivity, thermal conduction, andmechanical behavior
all coming together for a specified task. The microscopic design of the metal oxides
is directly tied with its behavior, and subsequent application and efficiency. Large
temperatures, fluctuating chemical environments, electric fields and mechanical
stresses lead to varying degrees of oxidation or reduction in these materials.

For mixed conductors, low-oxygen, high-temperature reducing conditions translate
to a partial nonstoichiometry of the lattice structure where charged Schottky point
defects are created simultaneously with a charge-balancing electronic defect. The
vacancies are created at lattice sites in thematrix where an oxygen previously resided
that was removed through reduction. The shift in non-stoichiometry can result in
phase transitions in some metal oxides, or it can be a continuous change in chemical
composition where the lattice structure remains intact. The creation of these vacan-
cies aides in the diffusive transport of atoms (or vacancies) through the bulk resulting
in ionic conductivity, and the formation of electrons results in n-type electrical con-
ductivity. In n-type conductors, neutral levels near the conduction bands are ionized
to free an electron into a conduction band, acting as an electronic species. The
movement of atoms can be through a variety of mechanisms, see Fig. 2.1, but the
vacancy mechanism is most relevant in this behavior [40]. In vacancy mechanism,
the atom in question fills a vacancy, thereby creating a new one in its previous loca-
tion. Interstitial diffusion requires jumping between neighboring lattice-site atoms
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(a)

(b)

(c)

Figure 2.1: Lattice diffusion mechanisms (a) via vacancy, (b) via interstitial site and
(c) via interstitialcy mechanism.

to a neighboring interstitial, and thus requires overcoming a large energy barrier for
the the jump. Finally, it is possible for an interstitial atom to "bump" a neighboring
lattice atom to a near-by interstitial site through the interstitialcy mechanism, again
at the expense of a large energy barrier. Factors effecting a metal oxide’s ionic and
electronic conductivity are primarily based on the crystal structure and the bandgap
structure, respectively. Thus, dopants and non-stoichiometry impact the ionic and
electronic conductivity and constitutes a large portion of mixed conductor research.

This complex behavior and the stability of metal oxides over a wide range of
conditions is essential for many applications [41, 42, 15, 43]. Formulating relevant
mathematical models to explore this connection between physical behavior and
material morphology offers a method to engineer and tailor new materials, but to
also explore new applications and devices. Recent advances made in the materials
research community indicate many possible candidates for these applications, and
lend themselves to advanced synthesis techniques facilitating directed architecture,
where significant improvements can be made [44].

Energy conversion
Application of mixed ionic-electronic conductors (MIECs) to thermochemical en-
ergy conversion offers a feasible route of sustainable energy production [45, 34, 35,
46]. As depicted in Fig. 2.2, a porous, redox active oxide is cyclically exposed
to inert gas at high temperature, generating oxygen vacancies in the structure, and
reactant gas (H2O, CO2), at moderate temperature, releasing fuel upon reoxidation
of the oxide. The process for splitting water can be described as the combination of
the two reactions:

Higher Temperature 1
δMOy →

1
δMOy−δ +

1
2O2

Lower Temperature H2O + 1
δMOy−δ →

1
δMOy + H2

Net H2O→ 1
2O2 + H2

(2.1)
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Figure 2.2: A sample two-step solar thermochemical cycle using a generic
non-stoichiometric metal oxide, MOy. δ represents the degree of oxygen non-
stoichiometry. The right side half-reaction represents the high temperature reduc-
tion, and the left side is the subsequent low-temperature hydrolysis.

A similar set of half reactions describes the the process for CO2, albeit with many
different products. A mixture of hydrocarbons is produced when combining H2O
and CO2 including CH4, CH3OH, or CO for syn-gas, and opens this type of ther-
mochemical conversion to a variety of applications and post-processes for energy
production [47]. Similar processes were examined in the 1970’s with the intent
of using the heat from nuclear reactors to activate these reaction pathways. Since
then, research has centered on increasing the efficiency, longevity, and practical-
ity of thermochemical conversion and the materials involved. Metal-metal oxide
systems have been around since the initial research into these processes and have
theoretically large conversion rates, but because of the high temperatures required
and the low stability of the phases involved, many alternatives have become the
focus of research. One such alternative is the application of non-stoichiometric ox-
ides to these conversion processes. Despite the lower conversion rates (a complete
phase change isn’t required), the increased stability and electrochemical activity
make them an attractive energy source. The lack of complex and expensive catalyst
systems and full use of the entire solar spectrum separate these devices from many
other photo-based energy sources.

One such candidate is ceria, cerium oxide. Its electrochemical behavior is well-
suited to this application, and the relative abundance of cerium globally makes
scale-up and implementation feasible [34, 48]. Ceria, CeO2, takes on a cubic
flourite structure, with tetrahedral oxygen atoms residing within an FCC base lattice
of cerium in the +4 oxidation state. Under reducing conditions, i.e. low ambient
oxygen and temperatures above∼ 1000◦C, the non-stoichiometry can reach δ ∼ 0.25
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[49]. The application of ceria to thermochemical conversion has been successfully
demonstrated on the material scale and the reactor scale, where productivity of
up to 11.8 ml of hydrogen per gram of ceria at 6.2 ml per gram per minute has
been recorded [45, 34]. Thermal losses from conductive and radiative heat transfer
limit the efficiency and cycling rates. Thermodynamic analysis based solely on the
material properties of CeO2, the higher heating value of one mole of hydrogen, and
the total heat input to the cycle indicate that 16 to 19% efficiency of converting
solar radiation and water to hydrogen are attainable, even without heat recovery
[35]. Steinfeld presents a similar analysis for reactor-scale processes, presenting
the ideal efficiency, ηexergy, ideal, depending on solar absorption and the ideal Carnot
efficiency:

ηexergy, ideal = ηabsorption × ηCarnot

=

[
1 −

σSBT4

IC̃

]
×

[
1 −

TL

T

]
.

Here, C̃4 represents the mean solar flux concentration ratio, TL is the temperature
of the thermal reservoir, and σSB is the Stefan-Boltzmann constant. By maxi-
mizing this efficiency with respect to temperature, with C̃ = 5000, they present
Toptimum = 1507 K, with a maximum theoretical efficiency of 75% [36]. However,
with experimental efficiencies found two order of magnitude less, ∼ 0.7% [34],
much is left to be optimized at the material and reactor scale. Thermal stabil-
ity, cycleability, and mechanical stability are only some of the issues found in the
high-temperature application of metal oxides for thermochemical conversion.

Experimental efforts
Current research in the application of ceria-based materials to thermochemical
conversion processes centers around increasing the kinetic and thermodynamic re-
sponse of thematerials. At thematerial level, investigations are being done in adding
dopants to increase the equilibrium vacancy concentration (thermodynamic behav-
ior) and the electrochemical conductivity (kinetic behavior). The non-stoichiometry
depends on the temperature and oxygen environment, and is controlled by the en-
thalpy and entropy change involved with the reduction, and measures the total fuel
productivity of material. Thermogravimetric analysis (TGA) consists of measuring
(by mass), the non-stoichiometry as a function of temperature and oxygen envi-
ronment at equilibrium. The kinetic behavior is determined by the diffusivity of
oxygen (and/or) vacancies through the bulk with a coefficient Dchem, and a surface
exchange constant ks describing the ability to uptake and release oxygen. Dchem is
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a material property dependent on the oxygen activity and temperature, whereas ks

also depends on the gas phase composition, surface morphology and surface com-
position. Electrical conductivity relaxation (ECR) experimentally provides these
intrinsic material properties [50, 51, 52]. The electrical conductivity of a known-
geometry of mixed conductor is dependent on the vacancy concentration, and by
fitting analytical transport models to an experimental set-up, the kinetic behavior
can be obtained by exposing samples to a step-change in oxygen environments [38].
The models associated with these experimental measurements will be presented in
a generalized framework in Ch. 3.

Improving the efficiency of the thermochemical conversion processes is an inter-
disciplinary task, and is a unique opportunity to explore new methods both experi-
mentally and theoretically at the material design scale. The efficiency of materials
in this setting is determined by the kinetic behavior described, where there is a
balance between bulk transport, and interface chemistry, and direct relation between
efficiency and morphology has been examined [4]. Thus, porous ceramics are being
used to increase the kinetic and thermal response of these materials by increasing
the specific surface area available for heterogenous reaction, the importance of the
material pore structure becomes a relevant problem. In theory, one should a balance
between gas flow, interface exchange, and bulk flow will be optimized for improving
the conversion efficiency. Varying degrees of controlled synthesis have been exam-
ined already, see Fig. 2.3. As-sintered ceramics are usually a random pore network
on the 10 µm-mm scale with minimal surface area per volume, leaving significant
room for improvement. The directed-synthesis method of reticulated porous ce-
ramics (RPC) offers one degree more control of pore structure and specific surface
area. Work done in the Steinfeld group presents both direct pore level simulations
of transport and reactions, as well as an experimental framework for construction
of these ceramic foams [30]. A random polymer foam is coated in a ceramic slurry
so that during the sintering process, a skeleton of the foam is left behind comprised
of the desired metal oxide. They present a dual-scale, hierarchical, RPC where a
mm-size foam network is comprised of µm scale porous ceramic [53]. The larger
strut structure offers good thermal conduction and mechanical support, whereas the
smaller length scale maximizes the specific surface area. Inverse opal designs offer
yet another method for directed synthesis, where PMMA beads are embedded in a
slurry, and thus sintering leaves a highly-ordered honeycomb ceramic structure with
tunable length scales [44, 4]. Additional shapes and construction methods have been
explored at differing length scales in all areas of energy conversion and storage, and
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(a) (b) (c)

Figure 2.3: Example ceria microstructures: (a) as sintered at 1773K (top) and after
500 cycles between 1073K and 1773K (bottom), [35]; (b) inverse opal ceria, [4];
(c) dual-scale RPC ceria, [53].

couple well with the current attention to additive manufacturing methods [31, 54,
26, 7, 13, 20, 14, 55, 5].

Modeling
There is a wide-spectrum of currentmodeling efforts in current research. One side of
the spectrum centers on both analytical and numerical ambipolar diffusion modeling
essential to ECR and other characterization methods. The classical of theory of
transport in mixed conductors is in-line with diffusional transport in solids, and is
usually described with electrochemical potentials describing the electronic and ionic
species in the material [56, 38]. The thermodynamic and kinetic behavior of these
materials are well-studied with application to ceria [52, 35, 57, 46], and the relevant
relations describing the mass and charge transport occurring through the bulk will
be reviewed in Ch.3. Smaller scale studies through density functional theory (DFT)
is a common theme in concurrent research as well [58]. Transport, and equilibrium
concentrations, can be explained using an electrochemical potential for the relevant
species. There is a variety of different methods for deriving these thermodynamic
potentials, and in the work presented in Ch. 3 we take the classical continuum
mechanics standpoint, following the rationalizations presented by Coleman and
Noll [59], with an extension to the relevant chemical behavior.
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On the other end of the spectrum is the full-scale coupled transport through porous
mixed conductors [60, 61, 62, 63, 64]. By considering fluid-flow, interface reaction,
and solid-state transport in reconstructed pore morphologies, the effective behavior
of known structures can be analyzed numerically, and the volume-averaged behav-
ior for various structures has indicated a strong connection between microstructure
and energy conference efficiency [65]. Tomographic reconstructions used in these
pore-level studies yield porosity, specific surface area, pore size distribution, ther-
mal conductivity, convective heat transfer coefficient, permeability, and tortuosity.
Haussener et al. go on to examine tailored foam designs over this parameter space,
as well as examine artificial structures of bimodal spherical distributions of pores
[63, 64, 62]. A formal extension of these modeling techniques is presented from
the homogenization viewpoint in Ch. 5 to address the averaged reactivity and multi-
physics transport through mixed conductors.

Strain engineering
As ceria and other transition metal oxides are reduced at high temperatures, the
decrease in oxygen content in the metal matrix and the formation of a vacancy
and electronic species changes the average lattice parameter of the material. As
the surrounding atoms relax around the vacancy, a continuous change in average
bond length occurs in the material, and a resulting macroscopic stress-free strain is
observed

ε =
∆L
L0
,

that varies with both temperature (using the typical coefficient of thermal expan-
sion) and the surrounding oxygen environment as described through a coefficient
of chemical expansivity [66, 67, 68, 69]. At the strongly reducing conditions re-
quired for thermochemical conversion, high temperature and low pO2 , the stress-free
strains associated with thermo-chemical expansion can result in potentially large,
and detrimental, residual stresses in mixed conductors like ceria. Through their
seminal series of papers, Larche and Cahn established the theory behind these com-
positional stresses in metals [70, 71, 72, 73]. Both applied stresses, as well as
these "self"-stresses, are correlated with the diffusive transport of species through
the material, and can be described using thermodynamic potentials. Accordingly,
the interplay of stress and transport behavior of metal oxides and their mechani-
cal stability are relevant concerns for applications in thermochemical conversion
and solid oxide fuel cell systems [74]. The numerical values of this coefficient of
chemical expansion (αc), have been investigated experimentally [75, 76] as well as
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numerically through DFT studies, e.g. [41], and indicate a strong involvement of the
oxygen environment on the mechanical behavior of ceria. The associated Young’s
modulus also varies with composition significantly, and is commonly attributed to
weakening inter-atomic forces due to the increased concentration of point defects
[77, 67, 68]. The thermodynamic potentials describing this behavior are natural
extensions of the typical notion of chemical potential, as well as the electrochemical
potential commonly used in MIEC modeling [78, 79]. A derivation of these ther-
modynamic potentials, and the corresponding transport behavior is presented in by
Ch. 3.

The concept of strain engineering relies on using an induced strain in a material to
tailor its performance for a certain application. We can consider using the notion
chemical expansion to alter the behavior of nonstoichiometric metal oxides for
uses in thermochemical conversion devices. Inducing a mechanical stress can be
performed by attaching a film onto a substrate with a thermal expansivity mismatch,
a lattice mismatch, or by applying a local mechanical stress. On one side, using an
induced stress to increase the rate of hydrogen production and oxygen conductivity
offers a pathway to increase efficiency. Yildiz et al. [77] fully review the current
efforts examining the kinetic impacts of strain engineering, spanningmolecular-scale
models to experimental measurements and material architectures [80]. In theory,
as the material is strained, the energetic barriers of reaction and diffusion kinetics
are altered as the inter-atomic potentials are shifted. The oxygen defect formation
enthalpy, migration energy barrier, adsorption energy, dissociation barrier, and
charge transfer barrier are all decreased as the strain increases. On the other side,
using the state of stress in the material to increase the equilibrium non-stoichiometry
in thermochemical conversion is yet to be investigated and offers a pathway to
increase the net fuel produced per cycle for energy conversion devices. We pose
the problem as a model problem where a thin-film of mixed conductor (ceria) is
attached to an inert substrate with a different thermal expansivity, and examine the
resulting impact on equilibrium non-stoichiometry using traditional TGA data [48].
This can be approached by just considering chemical equilibrium of the system (see
Ch. 4), or by exploiting the thermodynamic potentials described previously (Ch. 3).

2.2 Homogenization
The behavior of the observable continuum is governed by physics acting on a much
smaller (and larger) length scales. Considering the scene depicted in Fig. 2.4, we
see that a wood beam supporting a mass on a brick wall is actually comprised
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Figure 2.4: A matter of length scales. From [81].

of elemental units: the individual bricks, the sediment and grains comprising the
bricks, the mortar, the wood grains and fibers, the individual cells making up
wood. The mass itself is transferred over all over these elemental units, but at
our length scale, we see all of these entities as an averaged continuum. Studies in
homogenization seek to find a connection between these length scales; how does
the shape and composition of the bricks and wood cells impact their ability to hold
the mass at E? Homogenization theory seeks macroscopic descriptions of behavior
and material behavior, and has applications in countless areas including porous
media, composites, damaged material, and optimal design [82, 83]. The concept
of designing materials and composites hierarchically has the potential to open new
realms of applications and properties. For example, studies have been extended
to optimal design and homogenization in the thermomechanical setting with three
separate phases displaying metamaterial behavior and unique mechanical responses
[84, 85]. Coupling the microscale and macroscale designs through homogenization
and optimization is a key to advancing engineering and fabrication over a multitude
of length scales [86].

Studies are not limited to solely the structural problem, but instead, mathematical
models describing behavior at the microstructure are averaged to an "effective be-
havior" at the macroscale in the asymptotic sense, where a description length scale,
ε, vanishes. In other words, as we considermulti-phase composites ormaterials with
finer and finer mixtures of the materials involved to the point of acting like an ideal
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homogenous material. Thus, in the mathematical sense, homogenization theory
focussed on the asymptotic analysis involved with ordinary and partial differential
models with fast-oscillating behavior in coefficients (such as electrical, thermal, or
chemical conductivity, elasticity coefficients etc.) and thus, in solutions. In light of
studying mixed conductors and porous ceramics, we focus on the homogenization
of transport equations, namely combing conductive-diffusive transport and linear
fluid flow with reaction to address the problem of porous ceramics for energy con-
version. Tracking the gaseous species traveling through the pore space requires
a coupled problem of linear Stokes flow, and convective-diffusion with interface
reaction. In the solid matrix, bulk diffusion describes the movement of relevant ions
and/or electrons, both coupled to the gas phase through the interface. A goal of the
homogenization process is examining the coupling between these different models
that comes about through considering different scalings between each regime as the
effective behavior is obtained asymptotically.

Two-scale asymptotics
The primary tool we will implement is the mathematical rationalization of length
scales and convergencemethods developed by [87, 88] and others, andmade rigorous
by Allaire [89] and Tartar [90]. To illustrate the concept of two-scale asymptotics,
we consider a periodic PDE-system over a unit-cell of a periodic (or quasi-periodic)
medium in Ω with the operator Lε depending on the layout in the unitcell, with an
associated family of solutions uε:

Lεuε = f in Ω,

with some appropriate boundary conditions. The process of homogenization [82,
88, 91] implies that there exists some macro-scale behavior that describes, in the the
limit of ε → 0, that somehow uε → u and we have a homogenized operator L̄:

L̄u = f in Ω.

The two-scale approach [92, 91, 87, 88] creates two coordinate systems: one tracking
the macroscopic behavior, x, and another for the microscopic behavior y = x

ε . The
method is built on the ansatz that solutions can be written

uε (x) = u0(x,
x
ε

) + εu1(x,
x
ε

) + ε2u2(x,
x
ε

) + ... (2.2)

with ui (x, y) periodic in y. Inserting this expansion into the governing problem
at hand, terms are collected depending on the order of ε. Volume averaging, at



20

some point in the process, leads to the desired homogenized behavior dependent,
u0 on the microstructure seen at the y length scale in a cell problem. In general,
this asymptotic examining is strictly formal, and more advanced techniques are
required to prove the transition uε → u. In the problems presented in Ch. 5, we stick
to the formal examination as proofs explaining the desired convergence are well
documented. In addition to Allaire’s work on the subject, [89], the "energy-method"
of Tartar complements other convergencemethods includingG-convergence (andG-
closure), explaining the set of possible homogenized properties, H-convergence, and
H-measures [93], compensated compactness [94], and Γ-convergence describing the
coupled convergence of energy functionals and associated minimizing sequences
[82].

In general, rigorous methods rely on analysis of the weak formulation of a prob-
lem. In a rudimentary sense, we can imagine multiplying the governing PDE but
a suitable, and creative, choice of test function and then integrating over the do-
main. The key is then passing to the limit ε → 0, which is made possible for
the weakly converging sequences by exploiting the compensated compactness from
the test functions. The efforts mentioned previously, as well as Allaire’s two-scale
method provide ways in dealing with this convergence, and the assurance of the
homogenized behavior, and solutions. When dedicated to the periodic setting, two-
scale convergence allows for efficient analysis and is centered around the following
theorem.

Theorem 2.2.1 (From [89]). Let uε be a bounded sequence in L2(Ω), withΩ ⊂ RN,

open. There exists a subsequence, denoted byuε, and a functionu0(x, y) ∈ L2(Ω×Y )
(Y = (0, 1)N is the unit cube cell) such that

lim
ε→0

∫
Ω

uε (x)ψ
(
x,

x
ε

)
dx =

∫
Ω

∫
Y

u0(x, y)ψ(x, y) dx

for any smooth test function ψ(x, y), which is Y−periodic in y. Such a sequence uε
is said to two-scale converge to u0(x, y).

For the convergence of the ansatz, Eq. 2.2, a corrector result is needed:

Theorem 2.2.2 (From [89]). Let uε be a sequence that two-scale converges to
u0(x, y). Then, uε weakly converges in L2(Ω) to u(x) =

∫
Y u0(x, y) dy, and we have

lim
ε→0
‖uε‖L2(Ω) ≥




u0


L2(Ω)×Y
≥ ‖u‖L2(Ω)×Y (2.3)

Furthermore, if equality is achieved in the left part of Eq. 2.3
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lim
ε→0
‖uε‖L2(Ω) =




u0


L2(Ω)×Y
,

and if u0(x, y) is smooth, then we have

lim
ε→0





uε (x) − u0
(
x,

x
ε

)



L2(Ω)
= 0.

These two theorems provide a rationalization of the ansatz that is used in many
formal studies on homogenization, and will only be presented here for validity of the
methods used in this work. The rest of the two-scalemethod proceeds bymultiplying
the microscale PDE by a suitably smooth Y−periodic test function, integrating by
parts and then passing to the two-scale limit and obtaining the variational form of
u0(x, y). Volume averaging u0(x, y) leads to the macroscopic field as well as the
effective properties of the material as a function of the cell topology. These formal
methods can be extended to quasi-periodic oscillations in compositions, and there
are various convergence theorems examining such problems that offer more accurate
descriptions of real composites, or graded materials. [95]

Previous transport problems
Taking the problem addressed in Ch. 3 and looking at it from a homogenization
standpoint requires examining relevant transport models in porous media. One
class of problems lies in the convective-diffusion transport with chemical reaction
regime. Various formal and rigorous homogenization studies have examined these
problems in the past, and the most relevant results will be presented in Ch. 5.
The simple conductivity problem is well established [87, 96, 97] and provides a
framework for extending to the non-linear case and for involving multiple chemical
species and reactions. Competing processes of diffusion, convection, adsorption,
and reaction have all been analyzed in various settings and couplings, including
porous media, fractured material, multi-phase composites, etc. [98, 99].

The question of adding convective behavior has been addressed previously including
applications involving time-varying flow [100, 101, 102]. Most results presented
can be formally examined with the two-scale approximation technique, and to ac-
count for the time-dependence, a drift behavior is built into the asymptotic expansion
of solutions. Interfacial effects including adsorption, interfacial reaction, and in-
terfacial resistance rely on prescribing an internal boundary condition within the
unit cell, describing the flux and/or field value dependent on an arbitrary, possibly
non-linear, function. The interface kinetics discussed in Ch. 3 coincide with an "im-
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perfect interface" in the conduction problem, and in keeping track of separate fields
in the different phases, the selective diffusion process can be modeled accurately
[103, 104]. Here, the temperature of concentration fields are taken to be separate in
each material phase, as the interface can cause a jump in the temperature and flux.
In the electrical setting, the current has a discontinuity across the interface, whereas
the potential remains continuous [105]. Results carry over to studies of diffusion
under pressure in partially fissured material [106], and the homogenization results
couple well with traditional composite theory. Lipton and Talbot [107, 105] present
effective conduction behavior for fine-scale materials and the associated bounds on
effective behavior. A very similar asymptotic examination of two-species diffusion
described by generalized Poisson-Nernst-Planck (PNP) equations, and an unscaled
interfacial Bulter-Volmer exchange was examined by Ciucci and Lai for developing
a micro/macro model for lithium battery models [22]. These previous studies lay a
foundation of homogenization theory to build off, and the methods can be adapted
to the thermochemical system in question.

One of the classic derivations from homogenization theory is obtaining Darcy’s
Law from linearized Stokes-flow through periodic porous material. [87, 88] The
general framework relies on the same formal approach described: expanding all the
relevant fields in a series dependent on orders of ε and collection the resulting array
of equations to determine the homogenized behavior. The Stokes equations for flow
through the pore space are denoted

−∇p + ∆b + f = 0 in Ωεp (2.4)

∇ · b = 0 in Ωεp (2.5)

b = 0 on Σ (2.6)

where b (the velocity vector) and p (the pressure) are unknown functions defined
over our domain Ωεp that is scaled with ε, with interface Σ, and a possible body
force f . Following the traditional two-scale expansion method, Darcy’s law can be
derived:

b̃0j = Ki j

(
fi −

∂p0

∂xi

)
,

describing that the volume averaged (denoted by ·̃) velocity is proportional to the
gradient of the pressure at themacroscale. The tensorKi j describing the permeability
is dependent on the fine-scale structure of the unit cell, and is comprised of solutions
to the unit-cell problem obtained in the ε ordered array of equations. A formal
derivation of this will be presented in Ch. 5.
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2.3 Optimal design
In considering the interplay betweenmaterialmicrostructure and the electrochemical
behavior required for application to thermochemical conversion devices, synthesis
techniques and the resulting morphology are relatively uncontrolled. The various
attempts at controlling the porous topology are limited by random structure and
tunable parameters are chosen based on intuition and a prescribed pore shape.
Optimization methods of design exploit physical models describing the behavior
of a material under prescribed boundary conditions to determine the ideal material
arrangement with a given goal in mind. It leads to two widely used methods,
topology optimization (e.g. [108]) and shape optimization (e.g. [109]). Shape
optimization fixes the topology of a domain and determines the ideal morphology
of the inclusions or boundaries between phases. The resulting sensitivities used are
well established in theory and in numerical studies, but the common short-coming
is that the topology of an ideal arrangement is not known beforehand. For example,
in optimal design of elastic plates, the solution is to have an increasing number
of thinner plates for optimal behavior [86], which motivates the introduction of
microstructure into design. Homogenization theories similar to those presented in
Ch. 5 carry over to the optimal design realm seamlessly in this setting.

Topology optimization is the more generalized form of these approaches, and seeks
to address the limitations of shape optimization by allowing for optimization to
be carried out over both the shape of the material and the topology. Originally
established in the seminal paper from Bendsøe and Kikuchi [86], there is a growing
body of literature applying the methods of topology optimization to new areas and
physical regimes. The traditional benchmark example of optimal design seeks to
minimize compliance for a prescribed load by arranging material in a fixed domain.
A sketch of this problem and the resulting configuration can be seen in Fig. 2.5.
Topology optimization uses finite element or finite difference analysis to discretize
the domain, where the material parameters vary over each voxel. Even with varying
degrees of filtering and post processing, there is still the possibility for intermediate
densities to arise in the result. This is seen in Fig. 2.5 as the gray regions, and
represents the formation of material with microstructure, or a composite of two base
materials.

Mathematical theory in the search for optimality
It is understood that the underlying problem of optimal design is ill-posed in that the
resulting designs often lie outside of the set of "classical admissible designs" and
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Figure 2.5: The benchmark optimal design problem. From [108].

one has to either relax the problem by homogenization [109, 110, 111] or regularize
it by the introduction of perimeter constraints [112, 113]. The general framework
for optimal design can be sketched as follows:

Reference domain: Ω ⊂ RN

Volume fractions: 0 ≤ θ ≤ 1
Admissible designs: D ⊂ Ω

|D | ≤ θ |Ω|

Optimal design problem: infD admissible F (D)
Optimize iteratively: ∂DF (D).

Typically, the admissible designs described here form a discrete subset of the design
domain that we optimize over. The existence and nature of minimizers of our
objective F (D) are not insured, and sequential designs progressing to these infimums
often are outside of the relevant functional class. Additionally, iterative optimization
typically requires a notion of sensitivity with respect to designs, which become very
cumbersome in the "discrete" material setting. Relaxation allows for intermediate
densities, or areas of microstructure, to be considered through the optimization.
Objective functions can be an prescribed quantity using the field solved for in the
constraining PDE; mechanical compliance, total stored energy, conductivity, and
resonant frequency are just a small sample of the problems that have been explored
in this framework. Because of the complex structure of optional design problems,
they have a background rich in theory and analysis. Since the optimization is
coupled to solving a physical problem, the existence of minimizing solutions in the
design space and solutions to the physical problem are coupled. Studies seek to
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find a relation between these two as well as general existence theories, typically in
the variational setting [97]. The general mathematical analysis of these problems
is well established by the classic series from Kohn and Strang [111, 114, 115], and
guides the analysis presented in Ch. 6.

Optimization methods and applications
Numerical methods in design optimization can usually be broken down into two
steps: first is solving the underlying physical problem using finite element or finite
difference methods for a chosen initial design, secondly, the design is updated
using optimization method utilizing a notion of sensitivity of the objective function
with respect to the design field. Relaxation is commonly a key aspect in this
sensitivity analysis, and accordingly, the physical models have to be formulated
to accommodate intermediate densities. This relaxation of design space requires
interpolating material behavior between the phases in question. For example, if we
consider a topology optimization problem in linear elasticity, the elastic modulus of
the material will be interpolated as follows:

K (x) = K1ρ(x) + K2(1 − ρ(x)),

where Ki represents the modulus in the i−phase, and ρ is our design field, or density.
Relaxing the problem in the optimization setting usually results in large areas of
intermediate, or composite, densities throughout the design domain. To enforce
manufacturability, or a minimum length scale for features, penalties are usually
enforced on these intermediate densities. Classically, topology optimization uses
the Solid Isotropic Material with Penalization (SIMP) approach, [108, 116] where
these intermediate densities are limited through the material response:

K̃ (x) = K1ρ
p(x) + K2(1 − ρp(x)),

where p is typically chosen based on the problem and typically takes values, 3 <
p < 10. The effective behavior is K̃ is made unfavorable through the optimization
and thus, near discrete results are obtained. Different "phase functions" can be
used to describe how material parameters vary with the design field ρ. Additional,
heuristic, post-processing, filtering, and adjustments are made numerically in these
methods with the assumption that optimality is not severely impacted. The level
set approach is an alternative to relaxation, where material interfaces are tracked
implicitly through the computation as zero contours of a level set function and
thus lends itself more to shape optimization rather than topology optimization.
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Methods rely on different notions of sensitivity, commonly based on the Hamilton-
Jacobi equation to alter the material boundaries [117, 118, 119]. Although adaptive
numerical meshing is not always required, the method pays the cost of being very
dependent of the initial guess of the structure, and re-initialization does not always
lead to a solution. The level-set method has been found in other research areas
including fluid mechanics, where fluid-solid interfaces are important, and image
analysis for tracking boundaries.

In applying a regularization, specifically "perimeter-controlled" optimization, adding
a penalty of the surface area term to the objective functional solves the issues of not
obtaining admissible designs. By limiting the perimeter of the resulting designs,
sequences of solutions with rapid oscillations, or areas of fine-scale mixtures, are
penalized, and the resulting problem becomes well posed [112]:

inf
D admissible

F (D) + λH N−1(∂D),

where H N−1 is the Hausdorff measure, the length (are area) of ∂D. However, the
theory lacks a viable numerical approach, and so it must be coupled with relaxation.
The approach that we take in our optimization (Ch. 6) grows from relaxation to
applying a phase-field model where intermediate densities and interfaces are nu-
merically penalized. We implement an energy form seen from work done in surface
dynamics modeling in phase transitions by Cahn-Hilliard [120] and Allen-Cahn
[121]. Phase-field methods have been numerically implemented in dendrite growth
[122], crack propagation [123], and grain evolution [124] and are well suited to the
typical frameworks in optimal design. This penalty relies on an artificial two-well
potential favoring each phase, and an interfacial term relying on the gradient of the
density ρ, ∫

Ω

W (ρ) + |∇ρ|2 dx,

where W (ρ) ∝ ρ2(1 − ρ)2. This method of penalization is an alternative to the
heuristic filtering techniques typically found in numerical topology optimization as
well as the assumed microstructural design found in homogenization techniques.
There is an associated length scale arising from the phase-field penalty that is
numerically controlled, and it has been found that in the limit, this reduces to
the same perimeter penalty. This affords minimal numerical filtering, relatively
unaltered optimization methods, mesh independent results, and allows for complete
generality in topology optimization without dependence on initial guesses. It has
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proved to be effective in various multi-physics settings, and also allows for rigorous
mathematical analysis of the resulting problems [113, 125, 126, 127].

Applying topology optimization techniques to the transport and reaction that occurs
in thermochemical conversion devices is a new endeavor, but similar applications
have been examined previously. In the mechanics problems commonly examined,
loads on a structure are applied externally, and are independent to the design field
and its fluctuations. However, when multi-physics problems are examined where
the "loads" placed on the system depend on the design field (i.e. a pressure force,
gravity, or a chemical source), a separate group of literature exists to address these
"design-dependent loads" [113, 128]. The presence of two species lends a vectorial
character to our problem, and the presence of the surface sources makes the problem
at hand different from those in the literature. The diffusive transport considered bears
the most resemblance to problems of heat conduction, where the task of optimizing
a thermal lens by designing a conducting body with the objective of maximizing
the heat flux through a sink in the domain [129, 130, 131]. This can be extended to
include convective behavior with similar results displaying a hierarchical, branched
arrangement of the conducting material [132]. The general topology optimization
approach can be extended to any multi-physics situation (e.g. MEMS), where a
consistent system of PDE’s can be used as constraints on the optimization [108].
Including fluid flow and reaction has been investigated as well, albeit in slightly
different settings than we propose here. Stokes flow has been investigated with the
goal of minimizing the dissipated power in a fluid flowing through a structure [133],
and chemical reaction in single-phase flow was investigated for optimizing reactive
fluid transport in microfluidic (bio-)reactors [134, 135, 136]. Osanov and Guest
have recently written an inspiring review presenting the application of topology
optimization for architected materials, where a variety of length scales are involved
in creating materials with unique, tailored, properties [137]. We apply topology
optimization techniques in combination with the phase-field method for designing
pore structure in an idealized thermochemical reactor setting in Ch. 6.
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C h a p t e r 3

CONTINUUM TRANSPORT IN MIXED CONDUCTORS

We derive the transport equations for electrons and oxygen vacancies through ce-
ria under an externally-applied electric potential in an oxygen environment using
various balance laws and constitutive equations. From this, we obtain various
thermodynamic potentials that take into consideration the thermal, chemical, and
mechanical state of the material. Accordingly, we obtain a system of partial dif-
ferential equations describing ambipolar diffusion (or the diffusion-drift equation)
from the continuum mechanics framework. As a confirmation, the transport equa-
tions obtained are consistent with those used in experimental literature under certain
specific constitutive relations.

3.1 Formulation
We consider the transport of charged vacancies and the coupled electron movement
without considering possible polarization or inter-band electron transfer [52, 34,
35]. Additionally, we ignore phase transitions that could occur as a function of
the non-stoichiometry. Under reducing atmospheres (obtained here by mixing H2

and H2O), cerium undergoes partial reduction from the 4+ to 3+ oxidation state,
giving rise to mixed ionic and electronic conduction. On the surface of the mixed
conductor, the formation of localized electrons and intrinsic oxygen vacancies can

Mixed conductor
⌦

Metal
C1

Metal
C2

m̂

V (t)

@2!

@1!

Gaseous O2

pO2

t⇤

S1

S2

Figure 3.1: Schematic arrangement of the mixed conductor.
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be expressed as
O×O ↔

1
2
O2(g) + V··O + 2e

′

Consider a sample of ceria (or similar oxide-conducting ceramic) occupying a region
Ω with boundary ∂Ω and outward normal m̂. The metal electrodes it is connected
to are denoted by C1, C2 with boundaries ∂C1, ∂C2 respectively. Let ∂Ω∩ ∂C1 = S1
and ∂Ω ∩ ∂C2 = S2. We complete the circuit with a varying potential across the
system, V (t), as well as expose the system to a partial pressure of oxygen, pO2 . Ad-
ditionally, we prescribe displacements over ∂1ω boundary tractions t∗ over a portion
of the boundary ∂2ω. Now, noting the species in question, we denote:

Species Conc. Charge Flux
O vacancy cion = ci zi = +2 Ji
Electron ceon = ee ze = −1 Je
Neutral oxygen cO zO = 0 JO

We assume that the displacements, u, and displacement gradients are small. So, the
strain ε = 1

2 = (∇u + ∇uT ), and we don’t distinguish between reference and current
configuration in writing the balance laws.

3.2 Balance laws
Conservation of mass
We start with the general formulation for a well-behaved subdomain D ⊂ Ω:

∂

∂t

∫
D

cidx = −
∫
∂D

Ji · n̂ds

∂

∂t

∫
D

cedx = −
∫
∂D

Je · n̂ds.

Localizing these equations yields the desired conservation equations

ċi = −∇ · Ji

ċe = −∇ · Je.

Here, the overdot represents a time derivative.
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Electrostatics
In the absence of polarization, the electrostatic potential φ solves Maxwell’s equa-
tion:




∇ · (−ε0∇φ) = ρχΩ in R3 \ (C1 ∪ C2)

φ = 0 in C1

φ = V in C2

with charge density ρ and χΩ as the indicator function for our mixed-conductor
domain:

χΩ(x) =



1, if x ∈ Ω

0, otherwise.

The charge density can be represented by a combination of the electronic and ionic
charges:

ρ = e(zici + zece),

where e is the magnitude of the charge of an electron.

Conservation of momentum
We use the standard balance laws from continuum mechanics. Using the Cauchy
stress tensor, σ, we denote the conservation of linear momentum:

∇ · σ = 0.

The conservation of angularmomentum is simplywritten as the symmetry constraint

σT = σ.

Further,
t∗ = σm̂ on ∂2ω.

Conservation of energy
We write the first law of thermodynamics, dU = d̄Q − d̄W̃, as follows:

d
dt

(∫
D

U + ε0 |∇φ|2 dx
)
= −

∫
∂Ω

q · m̂ dA +
∫
Ω

r dx

−

∫
∂Ω

(
µ̃e Je · m̂ − µ̃i Ji · m̂

)
dA

+

∫
∂D
φ

(
ε∇φ̇ · m̂

)
dA +

∫
∂Ω
σm̂ · u̇ dA.
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Here, U denotes the internal energy density, q the heat flux, r the radiative heat
transfer, µ̃ refers to the typical electrochemical potential of the species in question,
and σq is the surface charge density:

σq = [[−ε0∇φ]] · m̂ on ∂(C1 ∪ C2),

Here, [[·]] denotes the jump across an interface: [[ξ]] = ξ+ − ξ−, with ξ being a
variable denoted in both domains; m̂ is the unit norm of the interface, pointing to
our conductor, D+, from D−, the rest of R3. Notice the surface charge density can
be simplified in terms of the potential outside of the conductors:

σq = [[−ε0∇φ]] · m̂

= −ε0(∇φ+ − ∇φ−) · m̂

= ε0∇φ · m̂.

On the left hand side, terms denote the rate of change of total energy, taking
into account the internal energy stored in our body as well as the energy from the
electrostatic potential in space. We also consider the contribution due to the external
oxygen environment, measuring the capability for the fixed potential to do work on
the body, which is dependent on the potential and the maximum amount of exchange
that can occur,

∫
cidx. On the right hand side, contributions due to the chemical

energy being transferred via the flux of species, the heat flux (q), and a body source
r , and finally the mechanical work done on the system. In this formulation, we
have neglected the surface free energy as well as blackbody-radiation and separate
contributions to the entropy (e.g. vibration and configurational).

Multiplying Maxwell’s law by the field φ, and integrating over our subdomain D

yields ∫
D
ε0 |∇φ|

2 dx − ε0

∫
∂D
φ

(
∇φ · n̂

)
dA =

∫
D
ρφ dx.

Taking the time derivative yields:

2ε0
∫

D
∇φ̇ · ∇φ dx =

d
dt

∫
∂D
ε0φ

(
∇φ · n̂

)
dA +

∫
D

(
ρ̇φ + ρφ̇

)
dx.

Similarly, by multiplying Maxwell’s law by φ̇ and integrating we obtain:

ε0

∫
D
∇φ̇ · ∇φ dx − ε0

∫
∂D
φ̇∇φ · n̂ dA =

∫
D
ρφ̇ dx.

Subtracting the second relation from the first yields:

d
dt

∫
D

1
2
ε0 |∇φ|

2 dx =
∫
∂D
φ

(
ε0∇φ̇ · n̂

)
dA +

∫
D
ρ̇φ dx.
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Using this, the first law becomes:∫
D

U̇ + ρ̇φ dx =
∫

D

(
−∇ · q + r − ∇

(
µ̃i Ji + µ̃e Je

)
+ ∇ · (σu̇)

)
dx.

Notice how we no longer have contributions from the boundary of D. Accordingly,
we can localize the first law of thermodynamics to obtain:

U̇ + ρ̇φ = −∇ · q + r − ∇
(
µ̃i Ji + µ̃e Je

)
+ σ · ∇u̇, (3.1)

where we have enforced mechanical equilibrium ∇ · σ = 0.

3.3 Constitutive equations
Entropy inequality
We now turn to the second law:

d
dt

∫
D
η dx ≥ −

∫
∂D

q
θ
· n̂ dA +

∫
D

r
θ

dx.

where η represents the specific entropy density, and θ is being used a thermody-
namic temperature scale. The left hand side denotes the entropy production. The
contribution involving r represents any body sources, and q measures any boundary
fluxes. Localizing yields,

θη̇ ≥ −∇ · q +
1
θ

q · ∇θ + r .

Applying the first law, 3.1, yields

θη̇ ≥ U̇ + ρ̇φ + ∇
(
µ̃i Ji + µ̃e Je

)
− σ · ∇u̇ +

1
θ

q · ∇θ.

Derivation of driving forces
We introduce theHelmholtz free energy density,W = U−θη, and apply the localized
mass conservation equations to obtain

0 ≥ Ẇ + θ̇η + ρ̇φ − µ̃i ċi − µ̃eċe + ∇µ̃i · Ji + ∇µ̃e · Je − σ · ε̇ +
1
θ

q · ∇θ.

At this point, there is no assumption made on the form of our free energy, but rather
its dependence on the desired variables:

W = W (ci, ce, θ, ε),

so that in computing Ẇ , we are left with

Ẇ =
∂W
∂ci

ċi +
∂W
∂ce

ċe +
∂W
∂θ

θ̇ +
∂W
∂ε

ε̇.
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Therefore, we obtain an expression resembling the local dissipation:

−

(
∂W
∂ci
+ zieφ − µ̃i

)
ċi −

(
∂W
∂ce
+ zeeφ − µ̃e

)
ċe

−

(
∂W
∂θ
+ η

)
θ̇ −

(
∂W
∂ε
− σ

)
ε̇

−∇µ̃i · Ji − ∇µ̃e · Je −
q · ∇θ
θ
≥ 0.

Notice that each of these terms is a product of a conjugate pair: generalized velocity
(time rate of change of some quantity or flux of some quantity) multiplied by a
generalized force (a quantity that depends on the state and not the rate of change of
the state). Following [59], we consider various processes that are in the same state
at an instant but have varying "velocities". Insisting that the second law holds for
these processes implies that:

µ̃i =
∂W
∂ci
+ zieφ

µ̃e =
∂W
∂ce
+ zeeφ

η = −
∂W
∂θ

σ =
∂W
∂ε

.

It follows that the non-conjugate pairs must be negative:

∇µ̃i · Ji ≤ 0

∇µ̃e · Je ≤ 0

q · ∇θ ≤ 0.

Note that the potentials µ̃i and µ̃e we have derived are the typical electrochemical
potentials.

Transport equations
In order to satisfy the negative quantities, we heuristically write that the flux is
the product of the particle concentration per volume, the particles mobility, and
the mean force per particle that we denote as the gradient of the electro-chemical
potential gradients,

Ji = −Kici∇µ̃i,

Je = −Kece∇µ̃e,
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with positive definite symmetric proportionality tensors Ki and Ke. For the tem-
perature behavior, we meet the requirements of the entropy inequality by assuming
Newton’s law of cooling:

q = −κ∇θ.

We assume there is no flux of electrons through the free surface of the sample, i.e.
Je = 0 on ∂Ω \ (S1 ∪ S2), and that there is no flux of oxygen vacancies through
the surfaces shared with the conductors, i.e. Ji = 0 on S1 ∪ S2. To consider
the influence of the oxygen environment, we enforce the Butler-Volmer[38] linear
exchange boundary condition for vacancies on the rest of the boundary, dependent
on an externally applied partial pressure of oxygen. For the flux of electrons through
the boundaries shared with the conductors, we use boundary conditions used in the
semiconductor community [138] dependent on the work function Φ1,2 and metal
potential. Compiling these yields the final equations; starting with the electrostatic
potential:

∇ · (−ε0∇φ) = ρχΩ in R3 \ (C1 ∪ C2)

φ = 0 in C1

φ = V in C2

φ→ 0 as |x | → inf .

The electron and vacancy transport is determined via:

ċi = ∇ ·

(
Kici∇

(
∂Wi
∂ci
+ zieφ

))
= in Ω

ċe = ∇ ·

(
Kece∇

(
∂We
∂n
+ zeeφ

))
= in Ω,

with the corresponding boundary conditions

Je · m̂ = k4(eβ(µe+Φ1) − 1) on S1

Je · m̂ = k5(eβ(µe+Φ2+eV ) − 1) on S2

Je · m̂ = 0 on ∂Ω \ (S1 ∪ S2)

Ji · m̂ = k (µi + µO2 ) on ∂Ω \ (S1 ∪ S2)

Ji · m̂ = 0 on S1 ∪ S2.
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For the aforementioned boundary condition on the flux of vacancies, we use the
following rationale. We assume that the normal flux of vacancies through the open
surface is dependent on the chemical potential of neutral oxygen in the matrix, µO,
and that at equilibrium this potential must match that of the externally prescribed
partial pressure of oxygen. Thus, linearizing about this equality we write:

JO · m̂ = k (µO − µO2 ).

However, from the conservation of oxygen in the lattice,

dci + dcO = 0

⇒µO =
∂W
∂cO
=
∂W
∂ci

∂ci

∂cO
= −µi,

Thus, we obtain the desired boundary condition

Ji · m̂ = −JO · m̂ = k (µi + µO2 ).

Prescribing a form of the Helmholtz free energy
To examine the form of these thermodynamic potentials, and the multi-physics
coupling, we assume the free energy density takes a prescribed additive form:

W (ci, ce, ε, θ, x) = Wi (ci)+We(ce)+
1
2

(ε−ε∗(ci, θ))·C·(ε−ε∗(ci, θ))−cpθ (ln θ + 1) .

Here, ε∗(ci, θ) describes the stress-free strain resulting from thermal and chemical
expansion of the material. This implies that:

µ̃i =
∂Wi

∂ci
+ zieφ − ε∗ · C · (ε − ε∗)

∂ε∗

∂ci
(3.2)

µ̃e =
∂We

∂ce
+ zeeφ (3.3)

η = ε∗ · C · (ε − ε∗)
∂ε∗

∂θ
+ cp (ln θ + 2) (3.4)

σ = C · (ε − ε∗). (3.5)

3.4 Consistency with previous literature
Single transport equation for neutral oxygen
To compare to models used in experimental work, e.g. [52, 34, 35], we derive
an expression for the diffusivity "Dchem," describing the mass transport of neutral
oxygen as a function of the concentrations of electrons and vacancies in the bulk.
Additionally, we re-derive the Nernst-Einstein relationship relating the conductivity
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and diffusivity of a species. To start, we define new electrical-equivalents of the
chemical and electro-chemical potential. We note that the charge flux due to a
certain species is related to the mass flux via:

Jchargei = zieJmass
i

= −zieKici∇µi − Kici∇φ.

We now define

µ∗i =
µi

zie
,

µ̃∗i = µ
∗
i + φ,

to represent the electrical equivalent of the chemical potential and the electro-
chemical potential, respectively. Thus, the charge flux becomes:

Jchargei = −Kici∇µ
∗
i − Kici∇φ

= −Kici∇µ̃
∗
i

= −σi∇µ̃
∗
i .

Here, we have defined our conductivity σi = Kici to match what is typically used
with Ohm’s law. In general, the conductivity of a charged species is the product of
its charge, mobility, and concentration. Now, we can re-derive the Nernst-Einstein
relation by noting that in the absence of a field, the charge flux can be written using
Fick’s first law:

Jchargei = −zieDi∇ci,

where we have used the traditional definition of diffusivity Di. Also, note that
without a field, µ̃∗i =

µi
zie

, and assuming ideal behavior, ∇µi = kBT/ci∇ci, we can
write the charge transport as

Jchargei = −
kBT
ci zie

σi∇ci .

To match the behavior described by Fick’s law, we require:

Di =
kBT

ci (zie)2
σi,

which is our desired relationship.
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Now, continuing towards Dchem, we impose inherent material behavior, noting that
the vacancy and electron transport are coupled:

Jchargeion + Jchargeeon = 0

⇒− Kici∇µ
∗
i − Kici∇φ − Kece∇µ

∗
e − Kece∇φ = 0

∇φ =
−σi∇µ

∗
i − σe∇µ

∗
e

σi + σe
.

Using this in the expression for the charge flux due to vacancy movement yields,

Jchargei = −σi∇µ
∗
i − σi

(
−σi∇µ

∗
i − σe∇µ

∗
e

σi + σe

)
=
−σiσe

σi + σe

(
∇µ∗i − ∇µ

∗
e

)
.

At this point, we enforce local charge neutrality ρ = zici + zece = 0, and assume
ideal behavior for the components

∇µ∗i =
kBT
zieci

∇ci .

From which it follows that we can relate the driving force of the two species through

∇µ∗e = −
kBT
zeece

zi

ze
∇ci .

Equipped with this, and returning to the charge flux,

Jchargei =
−σiσe

σi + σe

(
kBT
zieci

−
kBT
zeece

zi

ze

)
∇ci

=
−σiσe

σi + σe

(
kBT zie

e2

)
*
,

1
z2i ci
+

1
z2ece

+
-
∇ci .

Employing mass balance of the total oxygen in the domain (or, equivalently, the
number of oxygen lattice sites) in order to relate the movement of neutral oxygen to
the movement of vacancies,

dci + dcO = 0,

or equivalently,
Jmass

i + Jmass
O = 0.

As a result, we find the desired transport equation describing the net movement of
neutral oxygen through the domain,

Jmass
O =

−σiσe

σi + σe

(
kBT
e2

)
*
,

1
z2i ci
+

1
z2ece

+
-
∇cO

:= −Dchem∇cO.
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However, without ideal behavior, using the fact that the movement of neutral oxygen
requires the simultaneous movement of vacancies and electrons in ceria, we can
write the effective diffusivity as:

Dchem = −
σiσe

4e2(σi + σe)
∂µO
∂cO

,

where we have applied the charges of the species in question.

Experimental findings
Experimental results consist of data recording the thermodynamic behavior, equi-
librium concentration of vacancies under various oxygen environments and temper-
atures, as well as the kinetic behavior: the conductivities (σe and σi), and surface
reaction constant. The equilibrium data for non-stoichiometry is performed using
thermogravimetric analysis (TGA), which consists of fixing the oxygen environment
and temperature and yields data seen in Fig. 4.2. Through some technical assump-
tions, this data yields the thermodynamic behavior of the material. Additionally,
we can use it in-part to determine the form of our free energy. Primarily, from the
requirement for equilibrium, we can write the partial Gibb’s energy as:

∆ḠO = µO −
1
2
µ∗O2
=

1
2

RT ln PO2 .

Thus, we can convert this to

ln PO2 = 2∆H̄O/RT − 2∆S̄O/R.

So, one can obtain ∆H̄O and ∆S̄O from the slope/intercept of the ln PO2 vs. 1/T plot.

It is possible to use this data to find the contribution of the vacancy concentration of
the form of the free energy we prescribed earlier, W . In the absence of an electric
potential (i.e. setting φ = 0), at equilibrium we know that the chemical potential of
the neutral oxygen in the lattice matches that of the gaseous oxygen in the pores:

1
2
µO2 (ci, θ) = µO(ci, θ)

=
∂W
∂cO

(ci, θ)

⇒ W (ci, ce, pO2, θ) =
∫ ci

c∗i

1
2
µO2 (c)dc + W̄ (ce, pO2, θ).

The total conductivity is well recorded as a function of the ionic and electronic
conductivities:

σT = σion + σeon,
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which are both dependent on temperature and pO2 . Lai et al. [52] model this
dependence by assuming the form σT = σ0

np−1/4O2
+ σion + σ

0
pp1/4O2

, where σ0
p and

σ0
n are constants depending on the dopant concentration, the reduction equilibrium

constant, the electronic defect equilibrium constant, and the respective electron
defect mobilities: Under reducing conditions (low pO2), the total conductivity is

Figure 3.2: Total conductivity of samarium doped ceria, (SDC15), pesented by
[50]. Solid, cross-hair inscribed and open symbols respectively indicate data points
obtained usingH2/H2O, CO/CO2 and dryO2/Armixtures. Ionic conductivity shown
in inset.

predominantly electronic, showing the expected n-type behavior with a -0.25 power
law dependence on pO2 . With increasing pO2 , the conductivity remains a constant
value, reflecting the occurrence of the electrolytic regime. At the highest values
of pO2 , the total conductivity increases, indicating the onset of p-type conductivity,
which is more predominant in doped ceria materials [52].

The diffusivity also displays a similar trend as a function of oxygen environment:
For undoped ceria, the electron and oxygen ion vacancy concentrations are related
according to 2cion = ceon under relevant oxygen partial pressures and temperatures.
Accordingly, the ambipolar diffusion coefficient is independent of defect concentra-
tion under the ideal solution limit. At low oxygen non-stoichiometry, the chemical
diffusion coefficient in SDC15 is substantially higher than it is in undoped ceria.
The difference is about one order of magnitude at 923K and increases at lower
temperature owing to the larger enthalpy of vacancy ion migration than electron
migration [35]. The diffusivity of neutral oxygen in the bulk can be calculated to
yield the dependence of the free energy on the defect concentration. Finally, the
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Figure 3.3: Neutral oxygen ambipolar diffusivity samarium doped ceria, (SDC15),
as presented by [35].

surface reaction constant has been well documented over a range of temperature and
pO2 . Converting this data to involve the bulk concentrations in question (vacancies
or neutral oxygen, and electrons) as well as the gaseous concentrations is an open
question in MIEC modeling of ceria based metal oxides. More extensive explana-
tions of the electrochemistry and transport in ceria is described well by [35, 52] and
others, and a compilation of physical parameters over a variety of conditions can be
found in [139].
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C h a p t e r 4

STRAINED OXIDES

Elastic strain engineering has been investigated with the intent of altering the en-
ergetic landscape for metals and oxides to improve their applications as catalysts,
electrochemical energy conversion devices, separation membranes and memristors.
A complete description of these applications can be found in the reviews by Yildiz
and Bishop, [77, 140]. When variable valence oxides, such as ceria, become re-
duced, they undergo chemical expansion. Conversely, one would expect that if a
such an oxide is exposed to a tensile stress, it should relax the stress by undergoing
reduction. Induced stress could therefore be used as a means of lowering the tem-
perature at which reduction occurs. We examine the strength of this effect, using
experimental data describing the nonstoichiometry of ceria, CeO2−δ, [48].

H

h
⌦f : "0 = "0(n, T )⌦s : "s = "s(T )

pO2

Figure 4.1: Idealized mixed conductor thin film problem, with thermal mismatch.

4.1 Formulation
For examining the possibility of strain-engineering of ceria to alter the thermo-
dynamic (equilibrium) vacancy concentration, we neglect the electrostatic contri-
butions and pose the problem as an ideal thin-film perfectly attached to an inert
substrate. The idea is that upon inducing a strain in the oxide, the material relaxes
the resulting stress via chemical expansion in addition to its thermal expansion.
We formulate the mechanical problem as one resembling a bimetallic strip in two-
dimensions. We consider the energy of the entire system in a continuum mechanics
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setting, taking into account the thermomechanical contribution from the substrate,
the chemo-thermo-mechanical energy of the film, and the effective contribution of
the oxygen environment:

I (n,T, pO2 ) =
∫
Ωs

Ws (ε,T ) dx +
∫
Ω f

W f (ε,T, n) dx −
1
2
µO2

∫
Ω f

n dx, (4.1)

where ε denotes strain, T the temperature, n the vacancy mole fraction of oxygen
vacancies (note n = δ/3 for ceria, CeO2) and µO2 the chemical potential of atmo-
spheric oxygen. The factor of 1

2 reflects the fact that molecular oxygen yields two
neutral oxygen atoms into the lattice. We assume that the energy densities of the
substrate and film are of the form:

Ws (T, ε) = W0s (T ) +
1
2

(ε − εs (T )) : Cs : (ε − εs (T )) ,

W f (n,T, ε) = W0(n,T ) +
1
2

(ε − ε0(n,T )I) : C : (ε − ε0(n,T )I) ,

where εs (T ) denotes the temperature-dependent, stress-free, strain of the substrate
and ε f (n,T ) denotes the composition and temperature-dependent stress-free strain
of the film. We assume that ε f = ε0I.

We use the notion of equilibrium to determine our desired relations between the
strain of the film and the vacancy concentration. We assume that the film is extremely
thin, and thus n and ε are uniform throughout the film. By taking the first variation
with respect to the concentration, n, we find

∂W f

∂n
=

1
2
µO2, (4.2)

⇒
∂W0
∂n
−
∂ε0
∂n

I : C : (ε − ε0(n,T )) =
1
2
µO2, (4.3)

⇒
1
2
µO2 =

∂W0
∂n
− tr(σ)

∂ε0
∂n

. (4.4)

We have used the typical definition of stress in our material, as was derived formally
earlier. To find a relation between the vacancy fraction as a function of temperature
when the material is strained at a fixed pO2 , the mechano-chemical potential can be
exploited in the following way. We fix the potential µ for oxygen via the external
oxygen environment:

µO2 = RT ln pO2 .

When the stress is zero, we obtain,

∂W0
∂n

(n,T ) =
1
2

RT lnpO2 .
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This relation between n and pO2 has beenmeasured using thermogravimetric analysis
at various temperatures by Panlener [48] and reproduced in Fig. 4.2, (recall δ = 3n.

Figure 4.2: Oxygen non-stoichiometry, δ in CeO2−δ measured in 100K intervals
using thermogravimetry from [48].

We now turn to the mechanics problem of minimizing 4.1 with respect to the strain
ε. Again, if the film is very thin compared to the substrate, the substrate dominates
and we have

ε = εs (T ).

Using and Hooke’s law for plane stress, we find

tr(σ) =
E

1 − ν
(2εs (T ) − ε0(n,T )).

If we denote by Tre f and pO2,re f the temperature and environment at which the
stress-free substrate is bonded to the stress-free film (thereby creating a reference
composition nre f ), we can linearize around these conditions:

ε0(T, n) = αt
(
T − Tre f

)
+ αc

(
n − nre f

)
,

where αt is the coefficient of thermal expansion and αc is the coefficient of chemical
expansion. We use a similar form for the substrate’s thermal strain and combining
with the thermodynamic potential Eq. (4.2) yields:

ln pO2 =
∂W0
∂n

(n,T ) +
2Eαc

RT (1 − ν)

(
(2αs − αt )(T − Tre f ) +

αc

3
(δ − δre f )

)
.
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Figure 4.3: Equilibrium strain effect: log(δ) vs. T at pO2 = 10−11 atm for various
substrate thermal expansion coefficients.

Thus, upon fixing reference conditions (Tre f , pO2,re f ) that determine a starting non-
stoichiometry (δre f ), we can implicitly plot our log(δ) vs. T for various oxygen
environments. Considering attachment at an elevated temperature in a oxygen
environment akin to normal air, we examine the role the substrate has on the behavior
as the expansion coefficient is altered. The parameters used are as follows: 1

αT = 10−5[141, 139], αc = 3.3 × 10−1[41],

E = 2.6 × 108 kPa[67], ν = 0.3[139]

pO2,re f = 0.21 atm, Tre f = 1073 K → δre f = 10−6.44,

pO2 = 10−11 atm.

Under these conditions, we obtain Fig. 4.3. We examine the impact of the substrate
in Fig. 4.4, picking a variety of thermal expansivities representing possible substrate
candidates such as alumina or YSZ. If the substrate’s thermal expansion matches

1A range of physical parameters exist for undoped ceria, many of which are functions of temper-
ature and oxygen concentration. The elastic modulus is known to vary with composition [67], and we
use the uppermost value (at lowest nonstoichiometry). Thermal expansivity varies with temperature,
and so a lower-limit is chosen for the temperature ranges considered. It also varies minimally with
respect to amount of reduction [141]. Chemical expansivity (αc ) is typically defined with respect
to nonstoichiometry δ, and thus our definition will be a factor of 3 larger. Marrocchelli et al. [41]
compile values of chemical expansitivity for undoped ceria: 0.11, 0.1102, and 0.15 w.r.t. δ. The
value we use of 0.11 with respect to δ is found in other sources [76, 68, 140, 142].
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that of ceria, the effect acts in reverse due to the chemical expansion of the film.
The dependence on the reference configuration is investigated by changing reference
temperature and reference pressure. For each prescribed environment, we set the
reference non-sotichiometry in the film. Note that if we take a reference environment

(a) (b)

Figure 4.4: Equilibrium strain effect: log(δ) vs. T at pO2 = 10−11 atm for various
reference conditions: (a) varying Tre f ; (b) varying pO2,re f .

at the upper end of the temperature range, the effect is unfavorable since the substrate
is induces a compressive strain on the film, and a similar effect is observed by
choosing a low-oxygen bonding environment. Examining the residual stress found
in the sample leads to:

4.2 Conclusions
To recap, we have derived a generalized thermodynamic model describing the
coupling the mechanical and chemical state of mixed conductors. This model could
be extended to consider mass and charge transport in these materials, and could be
applied to time-dependent studies of this coupling. In doing so, we were able to
examine the effect of induced strain on a sample of ceria, and the subsequent change
in non-stoichiometry. Alternate geometries could be considered and optimized for
different applications. Instead of assuming an idealized thin-film problem, both the
equilibrium relation derived here, or the time-dependent behavior described in the
previous chapter, could be adapted to a finite element or finite difference scheme to
examine the kinetic behavior in an arbitrary material configuration.
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Figure 4.5: Residual stress in ceria film for different substrate thermal expansivities,
using the same conditions and parameters as in Fig. 4.3.

There are obvious limitations to this model as one considers potential bonding
issues and mismatch, as well as interaction between the film and substrate. The
maximum strain observed by the sample is 7%, suggesting that a more rigorous,
non-linear, mechanical model is necessary. The stress that the sample experiences
could possibly extend beyond the elastic regime, requiring a comprehensive me-
chanical consideration, with a more accurate constitutive model for the film. The
elastic modulus varies with the nonstoichiometry [67], but we only consider oxygen
pressures such that it is approximately constant, and the softening of the material
at higher nonstoichiometries only increases the desired effect. The chosen form of
stress-free strain in the film linearly depends on vacancy concentration n. Other
models have been investigated that suggest that the chemical expansion does not
only depend on this value, but also the concentration of dopants, dimers, and trimers
present in the material, eg. [68]. Finally, the additive form of the free energy could
easily be expanded and made rigorous, and would be necessary if this theory is
extended to other material classes, with more complicated physical considerations.
The method of equilibrium alteration of mixed conductors is very generalized in
this setting. Adaptation to battery components, fuel cells, and other multi-physics
systems could be treated in a similar manner.
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C h a p t e r 5

HOMOGENIZATION THEORY

The mathematical homogenization of transport problems connects the design of
microstructural features such as cell design in architected material or pore shape
and volume in periodic composites with the macroscale behavior essential for appli-
cation. When considering the optimal design of materials, homogenization theory
affords two length-scales to design over allows for the development of complex,
hierarchical structures to be developed. Through this chapter, we explore this in-
terplay when considering the transport through porous mixed conductors. We start
with a simpler problem of coupled diffusion as found in literature. The second
portion consists of deriving homogenized transport of two chemical species deter-
mined by Stokes flow through the pore space, convective-diffusion through the gas
phase, ionic diffusion through the bulk, and an interchange reaction at the interface.
The primary aspect of these studies lies in determining the role the interface and
reaction has on the overall behavior of the material. The results of this section
guide choices in phase-field modeling of mixed conductors (as in Ch. 6), and the
numerical calculation of effective behavior from reconstructed microstructures.

5.1 Reactive-Diffusion Formulation
We examine reactive diffusion through a porous material in which a gaseous species
is converted to a second species through surface reaction occurring at the interface
between the two phases. At the pore scale, we model the behavior of the gaseous
species and the adsorbed species via coupled steady-state diffusion equations. In
the subsequent section we also consider convection in the gaseous region. At
the interface, we prescribe a Robin-type boundary condition, where the flux of
each species is non-linear. We seek to find the macroscopic, or overall, transport
equations at a scale much larger than the pores. This problem has also been studied
by Auriault and Ene [103] and Peter and Böhm [143]. We include a discussion of
this problem for completeness.

We consider a generic domain of porous material,Ω, with a periodic microstructure
comprised of a characteristic unit cell, Y of dimension ε. In each of these unit
cells, we consider the collection of solid inclusions, Sεi = ε(ai + S), and divide the
domains and boundaries of interest as follows. In this framework, our pore-space
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Figure 5.1: Generic problem setting.

and solid domain are defined by:

Ω
ε
p = Ω \ ∪Sεi ,

Ω
ε
s = ∪Sεi ∩Ω,

thus, our reactive boundary can be written as

Σ
ε = ∂Ωεp \ ∂Ω

= ∂Ωεs \ ∂Ω,

or in the unit cell alone:

Σ = ∂S \ ∂Y

= ∂(Y \ S) \ ∂Y .

The transport model describing the concentration of solid species u1 and gaseous
species u2 and their interaction can be written:

−∇ · (k1(y)∇u1) = 0 in Ωεp,

−∇ · (k2(y)∇u2) = 0 in Ωεs,

−(k1(y)∇u1) · n̂ = −(k2(y)∇u2) · n̂ = ε f (u1, u2) on Σε .

Here, the diffusivities are set to vary with the pore length scale (y = x/ε), but could
be taken to be constant in each of the domains considered. Additionally, our normal
n̂ is defined as the outward normal to S on the reactive boundary Σ. We prescribe
the scaling on the interface following the intuition presented by [103], in that we
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wish to rationalize the model implemented in our optimization scheme in Ch. 6,
where we have the effective body source/sink resulting at intermediate densities,
corresponding to an homogenized interfacial reaction. Physically, this translates to
the flux through the interface being weak compared to the diffusive transport of each
species. Later, alternate scalings will be addressed.

The typical hypothesis for asymptotic behavior is that the resulting solutions uε1 and
uε2 can be written as series expansions in terms of our characteristic length scale that
are periodic over the unit cell:

uεi (x, x/ε) = uεi (x, y) =
∞∑

j=0
ε ju j

i (x, y).

We perform a similar expansion of the reaction term along the interface as a series
in ε:

f (u, v) = f (u0, v0) + ε fu(u0, v0)u1(x, y) + ε fv (u0, v0)v1(x, y) + ...

Noting the chain rule,

∇(·) = (∇x + ε
−1∇y)(·)

∆(·) = (∆x + ε
−1divx∇y + ε

−1divy∇x + ε
−2
∆y)(·),

we start breaking our governing PDE system into subproblems corresponding to
orders of ε. Starting withO(ε−2) terms from the PDE’s and the boundary conditions
of O(ε−1), we find

∇y · (k1∇yu01) = 0 in Y \ S,

∇y · (k2∇yu02) = 0 in S,

(k1∇yu01) · n̂ = (k2∇yu02) · n̂ = 0 on Σ.

From this set of equations, we obtain the typical macroscopic solutions u01 and
u02. We examine their behavior by looking at the weak formulation of this sys-
tem. Starting with the first equation and multiplying by a test function u ∈ V1 ={
u ∈ H1(Y ) : (k1∇yu) · n̂ = 0 on Σ, Y − periodic

}
, and integrate over the unit cell

Y . Continuing the solution in question, u0, to the entirety of the cell by zero via the
Hahn-Banach theorem, we write:∫

Y\S
u
(
∇y · k1∇yu01

)
dy = 0.
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Integrating by parts yields:

0 = −
∫

Y\S
∇yu · k1∇yu01 dy +

∫
∂(Y\S)

u
(
k1∇yu01

)
· m̂ dy,

where m̂ is the outward normal to Y \ S. Now, if we split the boundary integral
based on our definitions:

0 = −
∫

Y\S
∇yu · k1∇yu01 dy +

∫
Σ

u
(
k1∇yu01

)
· m̂ dy +

∫
∂Y

u
(
k1∇yu01

)
· m̂ dy,

we can eliminate the integral over ∂Y due to the periodicity of our functions.
Additionally, from the boundary conditions we can neglect the integral over Σ.
Since u01 ∈ V1,

0 = −
∫

Y\S
∇yu01 · k1∇yu01 dy.

Under the assumption that k1 is positive semi-definite, our solution must achieve

min
u∈V1

∫
Y\S
∇yu1 · k1∇yu01 dy.

Thus, we find our macroscopic relation stating that the homogenized solution is
independent of fine scale structure:

u01 = u01(x).

Performing an identical procedure for the solid phase species with v ∈ V2 = {v ∈

H1(Y ) : (k2∇yv) · n̂ = 0 on Σ, Y − periodic}:

0 =
∫

S
v
(
∇y · k2∇yu02

)
dy

= −

∫
S
∇yv · k2∇yu02 dy +

∫
∂S

v
(
k2∇yu02

)
· n̂ dy

= −

∫
S
∇yv · k2∇yu02 dy +

∫
Σ

v
(
k2∇yu02

)
· n̂ dy +

∫
∂Y

v
(
k2∇yu02

)
· n̂ dy

= −

∫
S
∇yv · k2∇yu02 dy.

Again, we have imposed our obtained boundary conditions and the periodicity
requirement on our solution u02. Via the same reasoning, we find the second macro-
scopic relation

u02 = u02(x).



51

Collecting the O(ε−1) terms from the governing PDE’s, and the O(ε0) terms from
the boundary conditions yields the local problem:

∇y ·
(
k1

(
∇xu01 + ∇yu11

))
= 0 in Y \ S

∇y ·
(
k2

(
∇xu02 + ∇yu12

))
= 0 in S

k1
(
∇xu01 + ∇yu11

)
· n̂ = 0 on Σ

k2
(
∇xu02 + ∇yu12

)
· n̂ = 0 on Σ.

We exploit the linearity of the system and the fact that u01, u
0
2 are independent of y.

Define Ui
1 and Ui

2 such that

− ∇y · (k1∇yUi
1) = ∇y · (k1êi) in Y \ S,

− ∇y · (k2∇yUi
2) = ∇y · (k2êi) in S,

(k1∇yUi
1) · n̂ = −k1êi on Σ,

(k2∇yUi
2) · n̂ = −k2êi on Σ

and are Y -periodic. We write the solution to our local problem as the superposition:

u11 =
n∑

i=1
Ui
1(∇xu01 · ê

i) + Ū1
1 (x),

u12 =
n∑

i=1
Ui
2(∇xu02 · ê

i) + Ū1
2 (x),

where Ū1
1 (x) and Ū1

2 (x) are arbitrary functions independent of y.

Equipped with our local solutions u11 and u12, we move on to the transport equations
at O(ε0) and boundary conditions at O(ε1) to obtain the compatibility conditions
for our homogenization and the homogenized form of the transport equations. We
find:

− ∇x · (k1∇xu01) + ∇x · (k1∇yu11) − ∇y ·
(
k1

(
∇xu11 + ∇yu21

))
= 0 in Y \ S,

− ∇x ·
(
k2

(
∇xu02 + ∇yu12

))
− ∇y ·

(
k2

(
∇xu12 + ∇yu22

))
= 0 in S,

− k1
(
∇xu11 + ∇yu21

)
· n̂ = f (u01, u

0
2) on Σ,

− k2
(
∇xu12 + ∇yu22

)
· n̂ = f (u01, u

0
2) on Σ.

The homogenized behavior is found by volume averaging over the unit cell Y . We
again rely on the zero-continuation of each of our solutions to restrict the integration
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to the separate domains in consideration. Rearranging the first terms and taking the
derivatives with respect to x out of the integral:∫

Y
∇x · (k1∇xu01) dy = ∇x ·

∫
Y\S

k1(y) dy ∇xu01,∫
Y
∇x · (k2∇xu02) dy = ∇x ·

∫
S

k2(y) dy ∇xu02.

With the set of second terms, we apply the local solutions. Starting with the terms
involving u1: ∫

Y
∇x · (k1∇yu11) dy = ∇x ·

∫
Y\S

k2∇yu11 dy

=
∂

∂xi

∫
Y\S

k1,i j *
,

∂U k
1

∂y j

∂u01
∂xk

+
-

dy,

and similarly: ∫
Y
∇x · (k2∇yu12) dy = ∇x ·

∫
S

k2∇yu12 dy

=
∂

∂xi

∫
S

k2,i j *
,

∂U k
2

∂y j

∂u02
∂xk

+
-

dy.

To integrate the last term over a period, Y , we apply the divergence theorem.
From the continuation of our solutions, these integrals are reduced to Y \ S or S.
From periodicity, the contributions from the external boundary vanish leaving the
contributions from the interface.∫

Y
∇y · (k1∇xu11 + k1∇yu21) dy =

∫
Y\S
∇y · (k1∇xu11 + k1∇yu21) dy

=

∫
Σ

(
k1∇xu11 + k1∇yu21

)
· m̂ ds

=

∫
Σ

f (u01, u
0
2) ds.

Rearranging yields a form similar to a diffusion equation with body reaction:

−
∂

∂xi
ke f f
1

∂u01
∂xk
= |Σ | f (u01, u

0
2)

−
∂

∂xi
ke f f
2

∂u02
∂xk
= −|Σ | f (u01, u

0
2).
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The effective transport and reaction behavior is calculated via

ke f f
1,ik =

∫
Y\S

k1,i j *
,
δ j k +

∂U k
1

∂y j
+
-

dy,

ke f f
2,ik =

∫
Y\S

k2,i j *
,
δ j k +

∂U k
2

∂y j
+
-

dy,

|Σ | =

∫
Σ

ds,

Note that the diffusivity of each species depends on the microstructure via the cell
problem, but is not dependent on the interfacial exchange. Instead, we end up with
a macroscopic body reaction source and sink for each species, taking the same
form, but scaled with the measure in surface area in the unit cell. As the effective
surface area increases, the reaction increases, but the conductivity would also be
reflective of the design of the unit cell. Various forms of this reaction contribution
are examined explicitly in the following section. Additionally, [103] presents a full
analysis of laminar structures.

Summary of other interfacial scalings
We return to the original problem statement with the intention of examining alternate
interfacial scalings, p:

−∇ · (k1(y)∇u1) = 0 in Ωεp,

−∇ · (k2(y)∇u2) = 0 in Ωεs,

−(k1(y)∇u1) · n̂ = −(k2(y)∇u2) · n̂ = εp f (u1, u2) on Σε .

The goal of this is to observe the extent to which the interface "strength" plays a role
in the effective transport. The corresponding effective behavior and cell problems
will be presented.

O(εp), p ≤ −2

Using the definition presented here, a scaling ofO(εp), p = −2 represents a classical
conduction problem in a composite with barrier resistance. The effective behavior
reduces to a single Poisson equation over Y , i.e. u1 = u2:

∂

∂xi
ke f f
α

∂u0

∂xk
= 0,

ke f f
α,ik =

∫
Y

kα,i j

(
δ j k +

∂U k

∂y j

)
dy,
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where α = 1 in Y \ S and α = 2 in S. U k is the solution Y-periodic solution to the
cell problem

∂

∂yi

[
kα,i j

(
δ j k +

∂U k

∂y j

)]
= 0 in Y

Ũ k = 0

k1,i j

(
δ j k +

∂U k

∂y j

)
ni = k2,i j

(
δ j k +

∂U k

∂y j

)
ni on Σ,

where ·̃ = 1
|Y |

∫
Y ·dx denotes a volume average. Situations where the interface

exchange is O(εp), p ≤ −2 follow the same derivation.

O(ε−1)

As the exchange is increased w.r.t. to ε, we find that we again have a single resulting
macroscopic field

u01(x) = u02(x) = u0(x),

that yields a similar cell-problem. However, the cell solutions are not the same
in each phase, namely they are linear functions with respect to the gradient of the
macroscopic field

u11 =
n∑

i=1
Ui
1(∇xu01 · ê

i) + Ū1
1 (x)

u12 =
n∑

i=1
Ui
2(∇xu02 · ê

i) + Ū1
2 (x).

Ū1(x) is an arbitrary function independent of y. The resulting cell problem is

− ∇y · (k1∇yUi
1) = ∇y · (k1êi) in Y \ S

− ∇y · (k2∇yUi
2) = ∇y · (k2êi) in S

(k1∇yUi
1) · n̂ − f (Ui

1,U
i
2) = −k1êi on Σ

(k2∇yUi
2) · n̂ − f (Ui

1,U
i
2) = −k2êi on Σ,

with Ui
1,U

i
2 being Y− periodic. Since the macroscopic fields are identical, we are

left with a single, classical, transport equation where the conductivity is dependent
on the interfacial exchange from the cell problem:

∂

∂xi
ke f f
α

∂u0

∂xk
= 0,

ke f f
α,ik =

∫
Y

kα,i j

(
δ j k +

∂U k

∂y j

)
dy,

where U k stands for U k
1 and U k

2 in Y \ S and S respectively.
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O(ε0)

At the next order, the process remains the same. However, the local problem forces
a single macroscopic concentration field

u01(x) = u02(x) = u0(x),

as in the previous example. From the increased scaling, the interfacial behavior
does not carry over to the cell problems, and so the resulting effective behavior is
independent of the interface. Accordingly,

− ∇y · (k1∇yUi
1) = ∇y · (k1êi) in Y \ S

− ∇y · (k2∇yUi
2) = ∇y · (k2êi) in S

(k1∇yUi
1) · n̂ = −k1êi on Σ

(k2∇yUi
2) · n̂ = −k2êi on Σ,

with Ui
1,U

i
2 being Y−periodic. Again we are left with a single, classical, transport

equation where the conductivity is now independent of the interfacial exchange:

∂

∂xi
ke f f
α

∂u0

∂xk
= 0.

ke f f
α,ik =

∫
Y

kα,i j

(
δ j k +

∂U k

∂y j

)
dy.

O(εp), p ≥ 1

For situations with p > 1, the procedure and cell problems are identical to p = 1,
but with the interface exchange being removed. Results can be obtained by simply
setting f = 0 in the relevant sub-problems.

Examples of effective interfacial contribution
The approach described uses an general interface reaction form f (u1, u2). If we
instead consider the typical interface adsorption condition or resistive interface
where

f (u1, u2) = ks (u1 − u2),

we can investigate the contribution of the interface to the homogenized behavior.
For the case discussed above where the interface is O(ε1), the macroscale field has
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a body source term

1
|Y |

∫
Σ

f (u01, u
0
2) ds =

1
|Y |

∫
Σ

ks (u01 − u02) ds

= ks (u01 − u02)
1
|Y |

∫
Σ

ds.

So, for various microstructures, we wish to examine the surface area/volume (S) as
a function of volume fraction of phase 1, V . The results of these are summarized in
Fig. 5.2, with comparison to the model implemented in Ch. 6 for the homogenized
reaction, ρ(1 − ρ), with ρ denoting the volume fraction in the unit cell.

Hexagonal arrangement of triangles

Centering a flipped isosceles triangle of dimension r in a unit isosceles, the surface
area between the two phases increases as r increases to a point and then decreases
as the second phase takes over:

V =



r2 r < 1/2
−1
3 (x(x − 4) + 1) r > 1/2

S =



4
√
3r r < 1/2

4/
√
3(2 − x) r > 1/2

Close packed disks

Centering a disks of dimension r at the corners of a unit isosceles, we approximate
a hexagonal packing of disks:

V =



2π√
3
r2 r < 1/2

1√
3

(
3
√
4r2 − 1 + 2r2(π − 6 arcsec (2r)

)
r > 1/2

S =



4√
3
πr r < 1/2

4√
3

(πr − 6r arccos (1 − 1/(2r)(2r − 1))) r > 1/2
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(a) (b)

(c) (d)

Figure 5.2: (a) Hexagonal arrangement of triangles; (b) close packed disks; (c)
single disk; (d) single diamond.

Single disk

Centering a disk of radius r in a unit square, the surface area between the two phases
increases as ε increases to a point and then decreases as the second phase takes over:

V =



πr2 r < 1/2

πr2 − 4(r2 arccos (1/(2r))) − 1
2

√
r2 − 1/4) r > 1/2

S =



2πr r < 1/2

2πr2 − 8r arccos (1/(2r)) r > 1/2

Single diamond

Centering a rotated square of length l in a unit square, the surface area between the
two phases increases as l increases to a point and then decreases as the second phase
takes over:

S(V ) =



4
√

V V < 1/2

4
√
1 − V V > 1/2
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Figure 5.3: Dashed plot corresponds to the rigid case (λ = 1), and solid is the fully
penetrable case (λ = 0).

Random collection of disks

Using the model of S. Torquato [144], we look at the collection of fully penetrable
spheres (λ = 0) and fully rigid spheres λ = 1:

V =



ρ43πr3 λ = 1

1 − exp
{
(−ρ43

}
πr3] λ = 0

S =



ρ4πr2 λ = 1

ρ4πr2 exp
{
(−ρ43

}
πr3] λ = 0

Here, ρ is the number of spheres per volume. For the plot generated, we use unit
disks in a 10×10 square domain. The volume fraction is controlled by the number
of spheres considered. For the rigid case, 0 to 25 disks are calculated, whereas
for the fully penetrable case (λ = 0), 200 spheres were necessary to completely
cover the domain. Notice that the fully rigid model is only applicable to 0.9,
or the hexagonal packing fraction of disks. For the penetrable case, the random
arrangement maximizes the surface area as the number of disks increases, but as
overlap increases, the effective interface between the two phases decreases.

5.2 Convection-Absorption-Diffusion
We expand on the previous problem to now address reactive flow through a porous
material involving two species with flow rates falling into the Stokes regime. The
goal is to work through the typical asymptotic analysis and homogenization of a
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coupled system of equations tracking the gas velocity field (through Stokes flow), the
gaseous species concentration at steady-state (convection-diffusion), and finally the
solid species concentration at steady-state (diffusion equation). For the interfacial
reaction, we now restrict ourselves to the case of linearized exchange, or absorption,
between phases.

As with the previous problem, scaling the transport behavior and contribution de-
termine the effective behavior observed after the asymptotic analysis. In particular,
we must properly choose these scalings to capture the coupling between each of
the transport regimes that we are considering and the included reaction. In this
particular case, we consider the transport of the gaseous species being dominated
by convective transport. Thus, we incorporate a ε−2 scaling for the convective term,
with ε representing the characteristic length scale of our porous medium. Different
scalings will be investigated as a way of looking at the influence of having surface-
limited reaction or diffusion-limited transport, and have been examined thoroughly
with having volumetric reaction but without the interfacial contributions [102, 100].
We start with the interfacial-scaling from the previous examination corresponding to
macroscopic reaction terms as well as a conductivity depending on the interface; the
boundary condition will be of order O(ε). In this problem, most of the techniques
are found in Sanchez-Palencia [88] and Allaire [109] for the homogenization of the
Stokes problem and convection-diffusion, respectively. We will work through each
of these separately, being that the homogenization of the Stokes equations remains
unchanged from Sanchez-Palencia’s presentation.

Coupled set of equations
We now consider the pressure p and velocity fields b, the concentration of gaseous
species u and solid species v, and their interaction through Stokes flow, convection-
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diffusion, and diffusion respectively:




−∇p + ∆b = 0 in Ωεp
∇ · b = 0 in Ωεp
b = 0 on Σ




1
ε2

b · ∇u1 − ∇ · k1(y)∇u1 = 0 in Ωεp
(−k1∇u1) · n̂ = εks (u1 − u2) on Σ




−∇ · k2∇u2 = 0 in Ωεs
(−k2∇u2) · n̂ = εks (u1 − u2) on Σ

Here, the diffusivities are set to vary with the pore length scale (y = x/ε), but could
be taken to be constant in each of the domains considered.

Asymptotics
The typical hypothesis for asymptotic behavior is that the resulting solutions bε, pε,
uε1 and uε2 can be written as series expansions in terms of our characteristic length
scale that are periodic over our unit cells. In this case we use a standard expansion
for most of the fields in question, except increase the powers of ε on our velocity
field, b, as per Sanchez-Pallencia [88]:

bε (x, y) =
∞∑

j=0
ε j+2b j (x, y),

pε = p0(x) +
∞∑

j=1
ε j p j (x, y),

uε1 (x, y) =
∞∑

j=0
ε ju j

1(x, y),

and a similar expansion for uε2. Now, noting the chain rule

∇(·) = (∇x + ε
−1∇y)(·),

∆(·) = (∆2x + ε
−1divx∇y + ε

−1divy∇x + ε
−2
∆
2
y)(·),

we can start breaking our governing PDE system into subproblems corresponding
to orders of ε.

Stokes homogenization
Since the homogenization of the Stokes equations is found in the work of Sanchez-
Palencia [88], we will just present the major results. From the chosen scaling,
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the fluid transport and corresponding velocity field have been (up to the orders
considered) uncoupled from the other transport models. We obtain the macroscopic
equation from our incompressibility requirement:

divxb0 + divyb1 = 0.

Averaging over the unit cell Y , we find:

divx b̄0 = 0.

Looking at the O(1), O(ε), O(ε2)

−
∂p1

∂yi + ∆yb0i + ( fi −
∂p0

∂xi ) = 0 in Y \ S,

divyb0 = 0 in Y \ S,

b0 = 0 on Σ.

Examining the local problem, we define a function space of Y -periodic functions:

VY = {u; u ∈ H1(Y \ S); u|Σ = 0; divyu = 0;Y − periodic},

(u,w)VY =

∫
Y\S

∂ui

∂yk

∂wi

∂yk
dy.

Now, to find a variational formulation of our local problem, we takew ∈ Vy, multiply
our local PDE and integrate over Yf to obtain

(v0,w)VY = ( fi −
∂p0

∂xi )
∫

Y\S
widy ∀w ∈ VY .

Thus, we reduce the local problem to finding b0 satisfying this condition. The
proposed solution b0(x, y) is given by fi (x) and ∂p0/∂xi as

b0 = ( fi −
∂p0

∂xi )bi,

with bi satisfying
(bi,w)VY =

∫
Y\S

widy ∀w ∈ VY .

When we average this over the unit cell, add in the contribution of viscosity, and
neglect the source contributionwe find the computed version of Darcy’s law yielding
the desired macroscopic velocity field:

b̄0j = −
Ki j

µ

∂p0

∂xi ; Ki j = b̄i
j .

The volume averaged permeability Ki j is dependent on the microstructure through
the volume-averaged cell solutions b̄i

j , and explicit calculation would require explicit
solving (either numerically or analytically) over a known microstructure.
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Coupled diffusion homogenization
Starting with the O(ε−2) terms from the PDE’s and the boundary conditions of
O(ε−1), we find

∇y · (k1∇yu01) = 0 in Y \ S,

∇y · (k2∇yu02) = 0 in S,

(−k1∇yu1) · n̂ = (−k2∇yu2) · n̂ = 0 on Σ.

As before, we find our macroscopic relation stating that our homogenized solution
is independent of our fine scale structure:

u01 = u01(x), u02 = u02(x).

Collecting the O(ε−1) terms from the governing PDE’s, and the O(ε0) terms from
the boundary conditions, we can write the local problem:

− ∇y ·
(
k1

(
∇xu01 + ∇yu11

))
= 0 in Y \ S,

− ∇y ·
(
k2

(
∇xu02 + ∇yu12

))
= 0 in S,

− k1
(
∇xu01 + ∇yu11

)
· n̂ = −k2

(
∇xu02 + ∇yu12

)
· n̂ = 0 on Σ.

The cell problems are therefore written as:

− ∇y · (k1∇yUi
1) = ∇y · (k1êi) in Y \ S,

− ∇y · (k2∇yUi
2) = ∇y · (k2êi) in S,

(k1∇yU1i) · n̂ = −k1êi on Σ,

(k2∇yU2i) · n̂ = −k2êi on Σ,

and are Y -periodic. We write the solution to our local problem as the superposition:

u11 =
n∑

i=1
Ui
1(∇xu01 · ê

i) + Ū1
1 (x),

u12 =
n∑

i=1
Ui
2(∇xu02 · ê

i) + Ū1
2 (x),

where Ū1
1 (x) and Ū1

2 (x) are arbitrary functions independent of y.

Equipped with our local solutions u11 and u12, we move on to the transport equations
at O(ε0) and boundary conditions at O(ε1) to obtain the compatibility conditions
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for our homogenization and the homogenized form of the transport equations:

b0 · ∇xu01 + b0 · ∇yu11 − ∇x · (k1∇xu01) + ∇x · (k1∇yu11) − ∇y · (k1∇xu11 + k1∇yu21) = 0 in Y \ S,

− ∇x · (k2∇xu02) − ∇x · (k2∇yu12) + ∇y · (k2∇xu12 + k2∇yu22) = 0 in S,

− k1
(
∇xu11 + ∇yu21

)
· n̂ = ks (u01 − u02) on Σ,

− k2
(
∇xu12 + ∇yu22

)
· n̂ = ks (u01 − u02) on Σ.

The homogenized behavior is found by volume averaging over the unit cell Y . We
again rely on the zero-continuation of each of our solutions to restrict the integration
to the separate domains in consideration. Rearranging the first terms and taking the
derivatives with respect to x out of the integral:∫

Y
∇x · (k1∇xu01) dy = ∇x ·

∫
Y\S

k1(y) dy ∇xu01,∫
Y
∇x · (k2∇xu02) dy = ∇x ·

∫
S

k2(y) dy ∇xu02.

With the set of second terms, we apply the local solutions. Starting with the terms
involving u1: ∫

Y
∇x · (k1∇yu11) dy = ∇x ·

∫
Y\S

k2∇yu11 dy

=
∂

∂xi

∫
Y\S

k1,i j *
,

∂U k

∂y j

∂u01
∂xk

+
-

dy,

and similarly for our other quantity:∫
Y
∇x · (k2∇yv

1) dy = ∇x ·

∫
S

k2∇yu12 dy

=
∂

∂xi

∫
S

k2,i j *
,

∂V k

∂y j

∂u02
∂xk

+
-

dy.

To integrate the last term over a period, Y , we apply the divergence theorem. From
the continuation of our solutions, these integrals are reduced to Y \ S or S. From
periodicity, the contributions from the external boundary vanish leaving the contri-
butions from the interface. Under the assumed interfacial boundary conditions, this
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becomes the exchange coefficient normalized by the measure of interface.∫
Y
∇y · (k1∇xu11 + k1∇yu21) dy =

∫
Y\S
∇y · (k1∇xu11 + k1∇yu21) dy

=

∫
Σ

(
k1∇xu11 + k1∇yu21

)
· m̂ ds

= −

∫
Σ

(
k1∇xu11 + k1∇yu21

)
· n̂ ds

=

∫
Σ

ks (u01 − u02) ds

= H n−1(Σ)ks (u01 − u02) = |Σ |ks (u01 − u02).

Rearranging these yields a form similar to a diffusion equation with body reaction:

be f f
k

∂u01
∂xk
−

∂

∂xi
ke f f
1

∂u01
∂xk
= ke f f

s (u01 − u02)

−
∂

∂xi
ke f f
2

∂u02
∂xk
= −ke f f

s (u01 − u02).

Here,

be f f
k =

∫
Y\S

b0j *
,
δ j k +

∂U k
1

∂y j
+
-

dx,

ke f f
1 =

∫
Y\S

k1,i j *
,
δ j k +

∂U k
1

∂y j
+
-

dy

ke f f
2 =

∫
Y

k2,i j *
,
δ j k +

∂U k
2

∂y j
+
-

dy,

ke f f
s =

∫
Σ

ks ds.

Thus, we notice that we have obtained an effective diffusivity for each species that
takes into account the solutions to the cell problem, as well as a body source term
that depends on the adsorption boundary conditions that we prescribe. In the case
of the porous species, we find that we take into account the averaged fluid velocity is
found only in the convective term, and does not factor into the chemistry. Thus, we
have effectively decoupled the Stokes-flow from the rest of the transport regimes.
At higher flows, a different scaling would be more realistic. At alternate scalings,
the convective behavior will find its way into the source term and conductivity, as
the cell problems become convective.
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Alternate interface scaling
As explored previously, the scaling of the interface changes the macroscopic behav-
ior. The convective contribution remains unchanged, and the results are nearly the
same as seen in 5.1.

O(εp), p ≤ −2

The corresponding effective behavior and cell problems will be presented. Using
the definition presented here, a scaling of O(εp), p = −2 represents a classical
conduction problem in a composite with barrier resistance. The effective behavior
reduces to a single Poisson equation over Y

be f f
k

∂u0

∂xk
−

∂

∂xi
ke f f
α,ik

∂u0

∂xk
= 0,

be f f
k =

∫
Y\S

b0j *
,
δ j k +

∂U k
1

∂y j
+
-

dx,

ke f f
α,ik =

∫
Y

kα,i j

(
δ j k +

∂U k

∂y j

)
dy,

where α = 1 in Y \ S and α = 2 in S. U k is the solution Y-periodic solution to the
cell problem

∂

∂yi

[
kα,i j

(
δ j k +

∂U k

∂y j

)]
= 0 in Y

Ũ k = 0

k1,i j

(
δ j k +

∂U k

∂y j

)
ni = k2,i j

(
δ j k +

∂U k

∂y j

)
ni on Σ,

where ·̃ = 1
|Y |

∫
Y ·dx denotes a volume average. Situations where the interface

exchange is O(εp), p ≤ −2 follow the same derivation.

O(ε−1)

As the exchange is increased with respect to ε, we find that we again have a single
resulting macroscopic field

u01(x) = u02(x) = u0(x),

that yields a similar cell-problem to what we examined. However, the cell solutions
are not the same in each phase, namely they are linear functions with respect to the
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gradient of the macroscopic field

u11 =
n∑

i=1
U1i (∇xu01 · ê

i) + Ū1
1 (x)

u12 =
n∑

i=1
U2i (∇xu02 · ê

i) + Ū1
2 (x).

Ū1(x) is an arbitrary function independent of y. The resulting cell problem is

− ∇y · (k1∇yUi
1) = ∇y · (k1êi) in Y \ S

− ∇y · (k2∇yUi
2) = ∇y · (k2êi) in S

(k1∇yUi
1) · n̂ + f (Ui

1,U
i
2) = −k1êi on Σ

(k2∇yUi
2) · n̂ − f (Ui

1,U
i
2) = −k2êi on Σ,

with Ui
1,U

i
2 being Y− periodic. Since the macroscopic fields are identical, we are

left with a single, classical, transport equation where the conductivity is dependent
on the interfacial exchange from the cell problem:

be f f
k

∂u01
∂xk
−

∂

∂xi
ke f f
α,ik

∂u0

∂xk
= 0,

be f f
k =

∫
Y\S

b0j *
,
δ j k +

∂U k
1

∂y j
+
-

dx,

ke f f
α,ik =

∫
Y

kα,i j

(
δ j k +

∂U k

∂y j

)
dy,

where U k stands for U k
1 and U k

2 in Y \ S and S respectively.

O(ε0)

At the next order, the process remains the same. However, the local problem forces
a single macroscopic concentration field

u01(x) = u02(x) = u0(x),

as in the previous example. From the increased scaling, the interfacial behavior
does not carry over to the cell problems, and so the resulting effective behavior is
independent of the interface. Accordingly,

− ∇y · (k1∇yUi
1) = ∇y · (k1êi) in Y \ S

− ∇y · (k2∇yUi
2) = ∇y · (k2êi) in S

(k1∇yUi
1) · n̂ = −k1êi on Σ

(k2∇yUi
2) · n̂ = −k2êi on Σ,
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with Ui
1,U

i
2 being Y− periodic. Again we are left with a single, classical, transport

equation where the conductivity is now independent of the interfacial exchange:

be f f
k

∂u01
∂xk
−

∂

∂xi
ke f f
α,ik

∂u0

∂xk
= 0,

be f f
k =

∫
Y\S

b0j *
,
δ j k +

∂U k
1

∂y j
+
-

dx,

ke f f
α,ik =

∫
Y

kα,i j

(
δ j k +

∂U k

∂y j

)
dy.

O(εp), p ≥ 1

For situations with p > 1, the procedure and cell problems are identical to p = 1,
but with the interface exchange being removed. Results can be obtained by simply
setting f = 0 in the relevant sub-problems.

5.3 Summary
Wehave examined the homogenization ofmass transport in porousmixed conductors
under two separate models: one dealing with diffusion through each phase coupled
through a nonlinear interface exchange, the other tracking fluid flow, convective-
diffusion, and bulk diffusion with a linearized interface exchange. In both situations,
we have found that the effective behavior depends strongly on the prescribed scaling
of the interface. When the interface exchange is very large with respect to diffusion,
the averaged behavior reduces to a single convective-diffusion equation over the
averaged material where the concentrations of each species are equal. At the
interface scaling order O(ε−1), we again find a single concentration field, but the
effective behavior is now dependent on the interface at the cell level. The final
"class" of effective behaviors results when the interface scales with O(ε1), where we
find two separate fields being described by a volume-averaged convective-diffusion
equation and a diffusive equation in the pore space and the bulk, respectively. Here,
the interface exchange carries through to the effective behavior as a volume-averaged
body source (or sink) dependent on the amount of interface between phases in each
cell. We have sketched this reaction contribution for a variety of simple cell designs
as a function of volume fraction, and found that the reaction is maximized for
intermediate densities. In the next chapter, we implement this behavior in a relaxed
optimal design problem for a similar transport model. Similar, more rigorous,
couplings between homogenization and optimal design are common in literature
[109], and offer a path to topology optimization at two separate length scales for the
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development of hierarchical materials.

We notice that because of the chosen scaling on the convective transport in the
second formulation, the fluid flow homogenization has been uncoupled from the
other transport regimes and yields the traditional form of Darcy’s law. Examining
additional convective scalings requires higher-order equations describing the fields
at the level of the cell-problem, i.e. additional sub-problems would need to be
introduced in order to fully compute the effective behavior. We have reduced the
problem to only studying the scaling between diffusion and interface exchange,
which explains the similarities with the first problem presented. We chose to
neglect a surface concentration, but similar analysis have addressed such a situation
[101, 98]. Additionally, we have assumed steady-state behavior in this analysis.
Introduction of drift into our two-scale expansions is a method to account for any
temporal effects on the process [102, 145].
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C h a p t e r 6

OPTIMAL DESIGN

6.1 Introduction
In this chapter, we study a model system motivated by metal oxides in solar-driven
thermochemical conversion devices. We have a two phase material (solid oxide and
pore) where reactions at the surface create (gaseous) oxygen in the carrier gas in the
pores and bound oxygen in the solid oxide; the oxygen diffuses through the carrier
gas in the porous region and bound oxygen diffuses through the solid oxide. We
seek to understand the arrangement of the solid and porous regions to maximize the
transport given sources and sinks for the gaseous oxygen and vacancies.

We begin with the formulation of the physical problem, shown in Figure 6.1, in
Section 6.2. We start with a sharp interface formulation. However, the optimal
design of the sharp interface model is mathematically ill-posed, and therefore we
study the analogous diffuse interface model. We also note that homogenization of
the sharp interface model leads to equations of the same form as the diffuse interface
equations. The transport of two chemical species with concentration u1 and u2 is
governed by the following reaction diffusion equations for i = 1, 2:




∇ · ki∇ui = fi, in Ω,

ki∇ui · n̂ = 0 on ∂Ω \ ∂iΩ

ui = u∗i on ∂iΩ,

(6.1)

where the isotropic conductivities are

k1(x) = k11 χ(x) + k12(1 − χ(x)), k2(x) = k21 χ(x) + k22(1 − χ(x)); (6.2)

with k11, k22 >> k12, k21 > 0, and the sources are

f1 = − f2 = χ(1 − χ)ks (u1 − u2) (6.3)

for ks > 0 and χ : Ω → [0, 1]. Briefly, we have a two-material system and χ

describes the volume fraction of material 1 (say solid phase). Chemical species 1
(say bound oxygen) diffuses preferentially in material 1 (χ = 1) while species 2 (say
oxygen gas) diffuses preferentially in material 2 (say pore, χ = 0). The species react
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@1⌦
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n̂

m̂

Figure 6.1: The physical setting: chemical species 1 enters through the source ∂1Ω,
diffuses throughΩ1, is converted to chemical species 2 through a surface reaction at
the interface S, chemical species 2 diffuses through Ω2 and leaves through the sink
∂2Ω.

and therefore there is a source at the interface χ , 0, 1. For future use, we write the
source as f = χ(1 − χ) Au where f = { f1, f2}, u = {u1, u2} and

A = ks *
,

1 −1
−1 1

+
-
.

This problem allows a variational formulation, and the direct method of the calculus
of variation allows us to prove existence of a solution.

We study the optimal design problem of maximizing the flux of species through
the reactor over all possible arrangements χ in Section 6.3. We show that this
gives rise to a saddle point problem. We then obtain an explicit characterization
which shows that the mixed phase regions arise naturally. To understand this further
through particular examples, we introduce a phase field formulation in Section 6.5.
Specifically, we add anAllen-Cahn type energy to that associatedwith the variational
formulation of the transport problem and then solve the gradient flow associatedwith
this energy. We solve this numerically in selected examples and conduct a parameter
study. These show that the optimal design can be quite intricate as it seeks to balance
transport and reaction.

6.2 Formulation
Sharp interface formulation
Consider an open, bounded region Ω ⊂ Rn with Lipschitz boundary separated into
two regions Ω1 and Ω2 by an interface S show in Figure 6.1. We consider the
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diffusion of one species with concentration u1 in regionΩ1 with isotropic diffusivity
K1 > 0, and a second species with concentration u2 in region Ω2 with isotropic
diffusivity K2 > 0. The two species meet at the interface and react with reaction
rate ks > 0. The boundary ofΩ is divided into three regions ∂Ω = ∂1Ω∪∂2Ω∪∂0Ω
where ∂iΩ ⊂ ∂Ωi. The concentration of species i is held at a prescribed value u∗i on
∂iΩwhile ∂0Ω is insulating. This is described by the following system of equations:




∇ · Ki∇ui = 0 in Ωi

−Ki∇ui · m̂ = ks (u1 − u2) on S

ui = u∗i on ∂iΩ

Ki∇ui · n̂ = 0 on ∂Ω \ ∂iΩ

(6.4)

for i = 1, 2 where m̂ represents the normal to S pointing from Ω1 pointing to Ω2,
and n̂ represents the outward normal to ∂Ω.

Diffuse interface formulation
It is often convenient to work with a smooth or diffuse interface formulation of the
problem above. We now show formally that the diffuse interface formulation in
(6.1)-(6.3) leads to the sharp interface formulation in (6.4) in an asymptotic limit.
Let χ be the characteristic function of Ω1 as defined in Section 6.2. Let χη be
the mollification of χ with a standard mollifier at length-scale η: χη = ϕη ∗ χ

where ϕη (x) = η−nϕ(x/η). Let kη1, kη2 be as in (6.2) with χ = χη and kη12 =

(1 − exp
(
−η

)
)k12, kη21 = (1 − exp

(
−η

)
)k21, and f ηi (x) = fi (x/η). Let uηi solve

∇ · kηi ∇uηi = η
2 f ηi , i = 1, 2 in Ω. (6.5)

First consider the outer expansion η → 0, and note that (6.5) formally gives (6.4)1,3,4
in Ω1,2. Further, note that u1 (respectively u2) is indeterminate on Ω2 (respectively
Ω1). However, this outer expansion does not give any condition on the interface S.
To obtain this condition, denote the limiting values on the interface to be ū1, ū2. We
seek to relate these to the flux as in (6.4)2.

Now consider the inner expansion. Pick a point x0 ∈ S and change variables
x 7→ (x − x0)/η. We obtain

∇ · ki∇ui = fi, i = 1, 2 (6.6)

where ki = k1i . Further, as η → 0, χ and hence the solution depend only on
one dimension that is normal to the interface. We take this direction to be x1 by
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changing variables if necessary. Let Ui solve (6.6) for the boundary conditions
(u1, u2)(x1) → (1, 0) as x1 → −∞ and (u1, u2)(x1) → (0, 1) as x1 → ∞, and
Vi solve (6.6) for the boundary conditions (u1, u2)(x1) → (1, 0) as x1 → −∞ and
(u1, u2)(x1) → (0,−1) as x1 → ∞. Note that

ui = αUi + βVi + γ

also solves (6.6) for any arbitrary scalars α, β, γ, and satisfies the boundary condi-
tions

u1 → α + β + γ as x1 → −∞, u2 → α − β + γ as x1 → ∞.

Further, by integrating (6.6), we find that the flux

J = [[−ki∇u1 · e1]]∞−∞ = K1u′1(−∞) = [[ki∇u2 · e1]]∞−∞ = −K2u′2(+∞) = αJU + βJV

where JU , JV are the fluxes associated with the solutions U and V respectively.
It is easy to verify that we can find α, β, γ to satisfy the boundary conditions
u1(−∞) = ū1, u2(∞) = ū2 as well as the flux condition J = ks (ū1 − ū2). We obtain
(6.4)2.

Homogenization of the sharp interface formulation
We briefly revisit the relevant results from Ch. 5. Consider the situation where the
domain Ω is made of a periodic microstructure at a scale ε << 1. Specifically, let
Y be the unit cube consisting of two subdomains Y1 and Y2 separated by an interface
Σ; Y = Y1 ∪ Y2 ∪ Σ. We assume that Ωε1 = ∪iε(ai + Y1), Ωε2 = ∪iε(ai + Y2), and
Sε = ∪iε(ai + Σ). We assume that the equations (6.4) hold in this domain with
the reaction coefficient of order ε: i.e., ks = εKs for some Ks > 0 independent of
ε. Peter and Böhm [146] (also see Auriault and Ene [103]) show that this periodic
system can be homogenized, and the homogenized equations are given by (6.1)
where k1, k2 are given by the usual unit cell problem of diffusion and

f1 = − f2 = KsArea(Σ)(ū1 − ū2)

where ūi is the solution to the unit cell problem. Therefore, ki, fi depend not only
on the volume fraction but also other aspects of the microstructure. However, we
may view (6.2) and (6.3) as simple models for these.

Variational formulation
The following theoremprovides a variational formulation of the problem (6.1) above.
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Theorem 6.2.1. Let Ω ⊂ Rn be a bounded, connected open set with Lipschitz
boundary,

χ ∈ X = { χ ∈ L2(Ω; [0, 1])}

be a given design and λ ∈ R. The problem

inf



L(u, χ) =
∫
Ω

1
2

∑
i=1,2

ki |∇ui |
2 +

1
2
χ(1 − χ)u · Au − λ χ dx : u ∈ V




where

V = {v ∈ H1(Ω;R2) : vi = u∗i on ∂iΩ, i = 1, 2}

attains its minimum. Further, the minimum is unique and satisfies the Euler-
Lagrange equation∫

Ω

*.
,

∑
i=1,2

ki∇ui · ∇ϕi + χ(1 − χ)ϕ · Au+/
-

dx = 0 (6.7)

for all ϕ ∈ V0 = {v ∈ H1(Ω;R2) : vi = 0 on ∂iΩ, i = 1, 2}.

Proof. Set
inf {L(u, χ) : u ∈ V} = m

and observe that because our integrand is finite and satisfies the growth conditions

−λ χ(x) ≤ f (x, v, ξ) ≤ c(1 + |v |2 + |ξ |2),

we have that −∞ < m < +∞. Let uν be a minimizing sequence, i.e. L(uν, χ) → m

as ν → ∞. For ν sufficiently large,

m + 1 ≥ L(uν, χ) ≥ γ1

∇uν

2L2 + γ2

uν

2L2 −

∫
Ω

|γ3(x) | dx ≥ γ1

∇uν

2L2 − γ4

with γk > 0 independent of ν since Ω is bounded. It follows that



uν

W1,2 ≤ γ5.

appealing to our version of Poincaré’s inequality (Lemma 6.2.2 below). We deduce
that there exists a ū ∈ V and a subsequence (still denoted uν) that converges
weakly in W1,2: uν ⇀ ū in W1,2 as ν → ∞. It follows from the convexity of
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the integrand (since k1, k2, ks > 0) that the functional is sequentially weakly lower
semicontinuous. Therefore,

lim inf
ν→∞

L(uν, χ) ≥ L(ū, χ)

and hence ū is a minimizer of (P).

A simple calculation shows that any minimizer satisfies the Euler-Lagrange equa-
tion (6.7). We prove the uniqueness of the minimum by contradiction. Suppose
L(u, χ) = L(v, χ) = m. Then,∫

Ω

*.
,

1
2

∑
i=1,2

ki (|∇ui |
2 − |∇vi |

2) +
1
2
χ(1 − χ)(u · Au − v · Av)+/

-
dx = 0.

Further, since u, v ∈ V , u − v ∈ V0. Therefore, from the Euler-Lagrange equation
(6.7) for v, we conclude∫
Ω

*.
,

∑
i=1,2

ki |∇vi |
2 + χ(1 − χ)v · Av −

∑
i=1,2

ki∇ui · ∇vi − χ(1 − χ)v · Au+/
-

dx = 0

Adding these two equations,

1
2

∫
Ω

*.
,

∑
i=1,2

ki |∇ui − ∇vi |
2 + χ(1 − χ)(u − v) · A(u − v)+/

-
dx = 0.

It follows that ∇ui = ∇vi a.e. and u − v = ψ(x){1, 1}. Together, we conclude that
ψ is constant and from the boundary condition that ψ = 0. Thus u = v, giving us a
contradiction.

We have used the following lemma.

Lemma 6.2.2. (Poincaré’s inequality, adapted from [147]) Let Ω and V be as in
the theorem above. There exists a constant c, depending only on n and Ω such that

‖u − ū‖L2 ≤ c‖∇u‖L2

for each function u ∈ V , where ū denotes the average over Ω.

6.3 Optimal design problem
We seek to find the arrangement of the two phases with a given volume of phase 1,
v, that maximizes the normalized flux through the material:

O := sup
{∫

∂1Ω
u∗1k1∇u1 · n̂ dA −

∫
∂2Ω

u∗2k2∇u2 · n̂ dA : χ ∈ X,
∫
Ω

χdx = v

}
.

(6.8)
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Note that ki∇ui · n̂ gives the inward flux per unit area of species i into Ω. We
normalize each flux by the prescribed concentration. Integrating by parts, using the
variational characterization of the governing equations, and introducing a Lagrange
multiplier to enforce the constraint on the given volume of phase 1, yields

O = sup
χ∈X

inf
u∈V




L(u, χ) =
∫
Ω

1
2

∑
i=1,2

ki |∇ui |
2 +

1
2
χ(1 − χ)u · Au − λ χ dx



. (P)

6.4 Characterization of the optimal design problem
Saddle point theorem
We begin by showing that we can exchange the order of finding the supremum and
infimum in the saddle point problem (P).

Theorem 6.4.1. There exists v̄ ∈ V , χ̄ ∈ X such that

L(v̄, χ̄) = sup
χ∈X

inf
v∈V

L(v, χ) = inf
v∈V

sup
χ∈X

L(v, χ).

for the saddle point problem (P).

The proof of this draws from the following theorem adapted from Ekeland and
Témam [148].

Theorem 6.4.2 (Proposition 2.4 of [148]). Suppose two reflexive Banach spaces V

and Z satisfy

(i) A ⊂ V is convex, closed and non-empty,

(ii) B ⊂ Z is convex, closed and non-empty.

Further let the function L : A × B 7→ R satisfy

(iii) ∀u ∈ A, p→ L(u, p) is concave and upper semicontinuous,

(iv) ∀p ∈ B, u → L(u, p) is convex and lower semicontinuous,

(v) there exists p0 ∈ B for B bounded such that

lim
u∈A
‖u‖→∞

L(u, p0) = +∞.

Then L possesses at least one saddle point on A × B.
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We apply this theoremwith L as in problem (P),V = W1,2(Ω;R2), Z = L2(Ω; [0, 1]),
A = V and B = X. Clearly, V and Z are reflexive Banach spaces as required by
the theorem above. We now show that these satisfy the rest of hypothesis (H).

Proposition 6.4.3. Both X andV are convex, closed, and non-empty.

Proof. The point of concern is showing that our space X is in fact closed. So
consider a sequence χi ∈ X such that χi⇀χ in L2. We seek to show that the
limit function χ ∈ X. From the definition of X, ‖ χi‖L∞ ≤ 1. Thus, we can pick
a subsequence χik of χi such that χik

∗
⇀ χ̄, in L∞ as k → ∞. It follows χik⇀χ̄,

in L2 as k → ∞. Therefore, χ = χ̄ and ess sup χ ≤ 1. Similarly we can show
ess inf χ ≥ 0. Thus, χ ∈ X and X is closed.

Proposition 6.4.4. For each χ ∈ X, v 7→ L(v, χ) is convex and lower semicontin-
uous.

Proof. This follows trivially from the fact that the integrand in L is a sum of a
positive definite quadratic term in ∇ui and a positive semidefinite quadratic form in
u.

Proposition 6.4.5. For each v ∈ V, χ 7→ L(v, χ) is concave and upper semicon-
tinuous.

Proof. This follows trivially from the fact that the integrand in L is a sum of a
negative definite quadratic term and two linear terms in χ.

Proof of Theorem 6.4.1. From the aforementioned propositions, we have satisfied
requirements (i) − (iv) of the theorem. To show (v), set χ(x) = 1/2. We have

L(u, 0.5) =
∫
Ω

*.
,

1
2

∑
i=1,2

k̄i |∇ui |
2 +

1
8

u · Au −
1
2
λ

+/
-

dx

≥

∫
Ω

*.
,

1
2

∑
i=1,2

k̄i |∇ui |
2 −

1
2
λ

+/
-

dx

≥ c1 | |∇u| |L2 − c2 ≥ c3 | |u| |H1 − c2

for suitable positive constants ci, where we use the derived form of Poincaré’s
inequality in the final step. The requirement (v) follows.
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Explicit characterization
We are now ready to obtain the explicit characterization of the optimal design
problem (P).

Theorem 6.4.6. We have

O = min
v∈V

∫
Ω

W (v,∇v) dx.

where

W (v, ξ) =




1
2

(
|ξ1 |

2k21 + |ξ2 |2k22
)

(v, ξ) ∈ R0,

(∑
i ∆ki |ξi |

2
)2
+ 2

∑
i |ξi |

2(kv (ki1 + ki2) − 2λ∆ki) + (kv − 2λ)2

8kv
(v, ξ) ∈ R,

1
2

(
|ξ1 |

2k11 + |ξ2 |2k12 − 2λ
)

(v, ξ) ∈ R1

with

R0 = {(v, ξ) :
∑

i

∆ki |ξi |
2 − 2λ ≤ −kv },

R = {(v, ξ) : −kv <
∑

i

∆ki |ξi |
2 − 2λ < kv },

R1 = {(v, ξ) :
∑

i

∆ki |ξi |
2 − 2λ ≥ kv },

and

∆ki = ki1 − ki2, kv = ks (v1 − v2)2.

The function W is shown in Figure 6.2 as a function of ξ for a fixed v with various
parameters. The shaded regions indicate the gradients for which mixed phases
(χ ∈ (0, 1)) occur. Note that mixed phases occur where the gradients of both
species are comparable in magnitude, and pure phases occur otherwise.

Proof. For v ∈ R2, ξ ∈ R2×2, χ ∈ R, set

W (v, ξ, χ) =
1
2

∑
i=1,2

( χki1 + (1 − χ)ki2) |ξi |
2 +

ks

2
χ(1 − χ)v · Av − λ χ

and

W (v, ξ) = max
χ∈[0,1]

W (v, ξ, χ). (6.9)
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Figure 6.2: Contour plot of W for fixed v, λ. The shaded regions indicate where
mixed phase ( χ ∈ (0, 1)) occurs. (a) k11 = k22 = ks = 1, k12 = k21 = 0.1, (v1 −
v2)2 = 1, λ = 0. (b) Parameters as in (a) except k11 = 5, (c) Parameters as in (a)
except λ = 1, (d) Parameters as in (a) except (v1 − v2)2 = 10.

In light of the saddle point theorem,

O = inf
v∈V

sup
χ∈X

∫
Ω

W (v,∇v, χ)dx = inf
v∈V

∫
Ω

W (v,∇v)dx.

It remains to compute W . To that end, note that for a fixed v, ξ, W (v, ξ, χ) is
quadratic in χ and

∂W
∂ χ

(v, ξ, χ) = 0

has an unique solution χ = χ∗. A simple calculation reveals

χ∗(v, ξ) =
∑

i ∆ki |ξi |
2 + ks (v1 − v2)2 − 2λ
2ks (v1 − v2)2

.
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Notice that

χ∗(v, ξ)




≤ 0 (v, ξ) ∈ R0,

∈ (0, 1) (v, ξ) ∈ R,

≥ 1 (v, ξ) ∈ R1.

A longer, but straightforward, calculation reveals that

W (v, ξ, χ∗) =

(∑
i ∆ki |ξi |

2
)2
+ 2

∑
i (|ξi |

2kv (ki1 + ki2) − 2λ∆ki) + (kv − 2λ)2

8kv
.

Similarly,

W (v, ξ, 0) =
1
2

(
|ξ1 |

2k21 + |ξ2 |2k22
)
,

W (v, ξ, 1) =
1
2

(
|ξ1 |

2k11 + |ξ2 |2k12 − 2λ
)
.

Now, we can verify by explicit calculation that

W (v, ξ, χ∗) −W (v, ξ, 0) =
kv
2

( χ∗(v, ξ))2

W (v, ξ, χ∗) −W (v, ξ, 1) =
1
4

( χ∗(v, ξ) − 1)2 (6.10)

W (v, ξ, 1) −W (v, ξ, 0) =
1
2

*
,

∑
i

∆ki |ξi |
2 − 2λ+

-

We obtain the desired result by recalling (6.9), rewriting

W (v, ξ) = max{Ψ(v, ξ)W (v, ξ, χ∗),W (v, ξ, 0),W (v, ξ, 1)}

where

Ψ(v, ξ) =



1 (v, ξ) ∈ R

−∞ else

and using (6.10).

6.5 Phase-field formulation of the optimal design problem
The min-max problem based on the functional L is difficult to solve numerically
due to the fact that χ is only in L2 and because of the constraint χ ∈ [0, 1]. The
relaxed functional is also difficult to solve numerically sinceW is not strictly convex.
Therefore, we now pursue an alternative approach to the optimal design problem
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that is amenable to numerical treatment. We regularize the functional L(u, χ) by
adding the L2 norm of ∇χ and requiring χ ∈ H1. We also replace the constraint
χ ∈ [0, 1] with a penalty. Finally, from a practical point of view, it would also be
beneficial to have solutions that prefer the pure phases χ ∈ {0, 1}. Therefore, we
add a term to the energy that penalizes any deviation from this set.

We consider the functional

L(u, χ) =
∫
Ω

*.
,

1
2

∑
i=1,2

ki |∇ui |
2 +

1
2
χ(1 − χ)u · Au − λ χ −

(
αW ( χ) + β |∇χ |2

)+/
-

dx,

(6.11)
where

W ( χ) = χ2(1 − χ)2,

has two wells at χ ∈ {0, 1}.

The additional terms in parenthesis form the integrand of the Allen-Cahn functional
[121]. Minimizers of this functional partition the domain into regions where χ ≈ 0
and χ ≈ 1 separated by transition layers with thickness ∼

√
β/α. In our setting, we

expect this to be modified by the transport energy.

We seek to find the saddle point by considering a gradient flow:∫
Ω

∂ χ

∂t
ϕ dx =

1
d χ

〈
δ χ, ϕ

〉
∫
Ω

∂u
∂t
ψ dx = −

1
du
〈δu, ψ〉

for every ϕ, ψ ∈ H1(Ω;RN ) subject to the appropriate boundary conditions where
〈·〉 denotes the L2 inner product and d χ, du > 0 are the inverse mobilities. We obtain
the following system of equations:

d χ
∂ χ

∂t
=

∑
i=1,2

k′i
2
|∇ui |

2 +
1
2

u · Au(1 − 2χ) − λ + β∇2 χ − αW ′( χ), (6.12)

du
∂ui

∂t
= ∇ · ki∇ui − χ(1 − χ)Ai ju j . (6.13)

6.6 Numerical study of the optimal design problem
We have implemented the phase field formulation of the optimal design problem
(6.12, 6.13) using the commercial software COMSOL [149]. All our simulations
are in two dimensions (n = 2). We work with non-dimensional units where the size
of the domain, the concentration at a boundary and the (diagonal components of the)
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(a) (b)

Figure 6.3: (a) Square reactor with a source of species 1 on the left and a sink of
species 2 on the right. (b) Optimal design (χ) for the parameters in (6.14)).

diffusion coefficient are O(1). We discretize the problem spatially using linear finite
elements generated by Delaunay triangulation, and integrate the resulting ordinary
differential equation in time by using the backward differentiation formula. We
impose the volume constraint as a global constraint that is built into COMSOL.
Additionally, we impose a point-wise constraint restricting χ ∈ [0, 1]. We typically
begin with an initial guess of uniform χ, and run the simulations until an apparent
steady state is reached (i.e., when the right hand sides of (6.12, 6.13) become small
compared to a given tolerance). The simulations can get stuck in local optima,
but we try to avoid this by doing parameter sweeps and studying additional initial
conditions.

Square reactor
We begin with a square domain, Ω = (0, 1)2, shown in Figure 6.3(a). We prescribe
u1 = 1 on the left face ∂1Ω = {0} × (0, 1) corresponding to a source of species 1,
u2 = 0 on the right face ∂2Ω = {1} × (0, 1) corresponding to a sink of species 2,
and zero-flux boundary conditions otherwise. We also impose a zero flux boundary
condition on our phase-field variable χ.



82

The resulting optimal design χ is shown in Figure 6.3(b) for the parameters

k11 = k22 = 1, k12 = k21 = 1 × 10−6, ks = 1 × 102,

α = 1, β = 2 × 10−5, d χ = 2 × 10−2, du = 2 × 10−3, (6.14)

v = 0.5.

This simulation had a mesh with 67068 elements, took 50 non-dimensional units of
time over 845 time steps and the L2 norm of the time derivative of χ is 3.945×10−4

at the end of the simulation. We have verified that the design does not change by
refining the mesh and driving the L2 norm of the time derivative of χ to 10−12.

The resulting design has a clear intuitive explanation. Given the boundary con-
ditions, the design seeks to draw in species 1 from the left, react it in the center
to convert species 1 to species 2, and expel species 2 at the right. Therefore, the
design puts material 1, which has a high diffusivity of species 1, on the left so that
it can easily transport species 1 from the source to the interface where the reaction
consumes it. Material 2, which has a high diffusivity of species 2, is placed on the
right so that it can easily transport species 2 from the interface, where the reaction
generates it, to the sink. The design maximizes the reaction by creating a zig-zag
interface between the two materials.

Wenowbegin a parameter study for the sameproblem. Figure 6.4 shows the resulting
designs for a volume fraction v = 0.5 for various diffusivities k11, k22. Figures 6.5
and 6.6 show the corresponding concentration fields u1 and u2 respectively while
Figure 6.7 shows the corresponding reactions.

We begin at the center for the case k11 = k22 = 1, which is what we described earlier.
Decreasing both diffusivities by moving up on the diagonal to k11 = k22 = 0.1 leads
to a similar segregation of the material but the interface is sharper and straight.
On the other hand, increasing both diffusivities by moving down the diagonal to
k11 = k22 = 10 still segregates the material, but in a very diffuse manner with an
almost constant gradient. Note that the interface width changes despite the fact that
length-scale,

√
β/α, predicted by the phase-field alone is held fixed. This is because

of the relative importance of the diffusion and the reaction. When the diffusivities
are both small, k11 = k22 = 0.1 as in the upper-left, the reaction is relatively easy
and diffusion difficult. Thus one only needs a narrow region for the reaction, saving
much of the pure material for optimal transport. Conversely, when the diffusivities
are both large, k11 = k22 = 10 as in the bottom-right, the reaction is relatively
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Figure 6.4: Designs with volume fraction v = 0.5 as we vary diffusion coefficients
with α = 0.1, β = 5 × 10−5, k12 = 10−3 × k11, k21 = 10−3 × k22, d χ = 1 × 10−2 −
1.5 × 10−2, du = 7 × 10−4 − 1 × 10−3, ks = 1 × 102.
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Figure 6.5: Concentration field u1 associated with the designs presented in Figure
6.4.
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Figure 6.6: Concentration field u2 associated with the designs presented in Figure
6.4.

Figure 6.7: Distribution of reaction zones associated with the designs presented in
Figure 6.4; normalized units.
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Table 6.1: Contributions to the energy functional L(u, χ), the phase field regular-
ization, the flux Ji of each species calculated at the boundary, and the reaction (right
hand side of Eq. (6.1)1) integrated on the domain for v = 0.5.

k11 k22 Transport Energy Reaction Energy Phase Field J1,in J2,out Reaction∫
1
2
∑

ki |∇ui |
2

∫
1
2 χ(1 − χ)u · Au

∫
k1∇u1 · n̂ −

∫
k2∇u2 · n̂

0.1 0.1 0.0451 0.0023 0.0203 0.0948 0.0948 0.0949
0.1 1 0.1706 0.0285 0.0748 0.3866 0.3977 0.3983
0.1 10 0.2952 0.2022 0.0779 0.9610 0.9947 0.9948
1 0.1 0.1706 0.0285 0.0550 0.3977 0.3864 0.3983
1 1 0.4276 0.0340 0.1070 0.9202 0.9201 0.9232
1 10 0.9044 0.3595 0.1502 2.5015 2.5256 2.5278
10 0.1 0.2953 0.2021 0.0574 0.9946 0.9602 0.9947
10 1 0.9044 0.3596 0.1150 2.5257 2.5011 2.5278
10 10 2.2730 0.9990 0.1699 6.5257 6.5254 6.5440

difficult and diffusion easy. Thus, one creates a very diffuse interface to optimize
the reaction.

We now turn to the situation when the diffusivities are different. Consider the case
when k11 = 1, k22 = 0.1 as shown on the top-center. The diffusion of species
1 is considerably easier than that of species 2. Therefore, it is advantageous to
have the reaction close to the sink. Species 1 is transported by the long arms of
material 1 (red) which protrude from the left to the right where it reacts very close
to the sink, thereby reducing the distance that species 2 has to be transported. The
excess material 2 (blue) is ‘hidden’ on the left in arms that do not participate in the
transport. The case k11 = 10, k22 = 0.1 shown on the top-right is similar with a
slightly wider interface since reaction is more difficult compared to the transport.
The case k11 = 10, k22 = 1 shown on the right-middle is also similar except the
interfacial region is even wider. The cases k11 = 0.1, k22 = 1; k11 = 0.1, k22 = 10
and k11 = 1, k22 = 10 are the analogous, with the roles of material 1 and 2 reversed.

The phase-field functional, the domain, and the boundary conditions have a symme-
try, and we examine if the resulting designs reflect this symmetry. Specifically, note
that if {u1, u2, χ} is a solution for a problem with k1, k2 on the square domain, then
{1 − u2, 1 − u1, 1 − χ} is a solution for a problem with k2, k1 on the square domain
obtained by changing x to 1 − x. We see that our designs reflect this symmetry.
Specifically, compare the case k11 = 0.1, k22 = 1 and the resulting design χ1 shown
in middle-left of Figure 6.4 and the case k11 = 1, k22 = 0.1 and the resulting design
χ2 shown in top-center of Figure 6.4. We see that χ1(x, y) ≈ 1 − χ2(1 − x, 1 − y).

Table 6.1 shows how the different contributions to the energy change for the various
cases. It also shows how the flux varies. Further, it shows the the flux at the source,
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Figure 6.8: Parameter sweep with v = 0.3, α = 0.1, β = 5 × 10−5, k12 = 10−3 ×
k11, k21 = 10−3×k22, d χ = 1×10−2−2×10−1, du = 7×10−4−2×10−2, ks = 1×102.

sink, and reaction zone all agree.

Figure 6.8 shows the designs for the same parameters, but for a volume fraction
v = 0.3. The designs are similar, except the interface is more to the left.

Cylindrical reactor
Many reactors designed for thermochemical conversion devices implement a cylin-
drical ceramic structure that allow for even heating and easy transport of reacant
gas. Thus, for the second example we look at an annular structure where the inner
edge with r = 0.2 is held as the source of the first chemical species (∂1Ω where
u1 = 1) and the outer at r = 1 is set as a sink for the second (∂2Ω where u2 = 0).
We consider the same parameters as (6.14). The resulting design is shown in Figure
6.9(b). The first species enters from the inside, reacts and converts to the second
species which exits from the outside. Thus, we see much of the first material on
the inside and the second on the outside. Further, to enable sufficient reaction, the
interface region is graded. If we decrease the phase field coefficients by an order of
magnitude, we obtain the design in Figure 6.9(a) where the mixed region increases
as the penalty for deviating from the pure materials is reduced. On the other hand,
increasing the phase field coefficients by an order of magnitude yields the design in
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α = 0.1, β = 2 × 10−6 α = 1, β = 2 × 10−5 α = 10, β = 2 × 10−4
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1,

k 2
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(a) (b) (c)

k 1
1
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k 2
2
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1
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2
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1

(g) (h) (i)

Figure 6.9: Designs for a cylindrical reactor with a source of the first species at
the inner edge and a sink for the second species at the outer edge. The parameters
are in (6.14) except as noted in the rows and columns of the figure. Further,
k12 = 10−2 × k11, k21 = 10−2 × k22.

Figure 6.9(c). Indeed, here, the penalty for deviation from the pure phases increases
and therefore the interface becomes corrogated allowing sufficient reaction.

The second row of Figure 6.9 show the analogous result when the diffusivity is
reduced by an order of magnitude. Transport is now harder compared to the reaction,
and therefore nearly pure phases dominate to ensure transport and complex interfaces
are avoid due to the phase field. Again, increasing the phase field parameters
promotes pure phases. The final row of Figure 6.9 show the results for unequal
conductivity. Since the transport of first species is easier, material 1 forms long
arms to transport the first species to close to the outlet where the reaction takes.
Further, increasing the phase field parameters promotes pure phases and leads to
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(a) (b)

(c)

Figure 6.10: Periodic square distribution of circular sources and sinks. (a) Unit
domain, (b) Resulting design on the unit domain, (c) Periodic design.

fewer arms.

Periodic cellular reactor
It is common to construct reactors as a periodic tubular array where the first species
enter the reactor through one set of tubes while the second species is extracted from
the reactor with a different set of tubes. Looking at a cross-section, one sees a square
array of inlets and a square array of outlets. This motivates our next example where
the reactor is taken to be periodic with the unit cell shown in Figure 6.10(a). The
source is at the corners of the cell while the outlet is at the center. We look for a
periodic design to optimize the transport as before. The resulting unit design for the
parameters shown in (6.14) is shown in Figure 6.10(b). It is repeated periodically
in Figure 6.10(c).
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C h a p t e r 7

CONCLUSIONS

The art of structure is where to put
the holes

Robert le Ricolais

Through this work, we have examined problems motivated by metal oxides used in
solar-driven thermochemical conversion devices. We focused on exploring the link
between microstructural material design and efficiency in energy conversion. Our
goal was to develop a framework for designing materials that is not specific to one
application, but instead can be modified to optimize any energy conversion device.

The mixed ionic and electronic transport behavior of ceria for its application in
thermochemical conversion was derived from the continuum mechanics standpoint.
This was achieved by considering a mixed conductor exposed to an externally-
applied electric potential in an oxygen environment with mechanical constraints
using various balance laws and constitutive equations. Local thermodynamic po-
tentials, transport laws, and associated boundary conditions capture the coupling
between the chemical, electrical, thermal, and mechanical environments of the ma-
terial. Accordingly, we obtain a system of partial differential equations describing
ambipolar diffusion (or the diffusion-drift equation) that are consistent with those
used in experimental literature under certain specific constitutive relations. The ex-
tension of this model to numerical implementation would allow for time-dependent
behavior of mixed conductors to be analyzed in the multi-physics setting, and for
reconstructed microstructures.

The applicability of strain-engineering as a way to improve the behavior of thermo-
chemical conversion devices was then explored. The chemical expansivity observed
with varying degrees of reduction of mixed conductors was exploited to increase the
amount of vacancies at equilibrium. By formulating the problem as a thin film of
ceria onto an inert substrate with a thermal mismatch, we find that equilibrium of the
system yields an implicit relationship between temperature, oxygen environment,
and non-stoichiometry in the film that is shifted from stress-free experimental data
because of the strain accommodation. Alternate geometries could be considered
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and optimized for different applications. Instead of assuming an idealized thin-
film problem, both the equilibrium relation derived here and the time-dependent
behavior described in the previous chapter could be adapted to a finite element or
finite difference scheme to examine the kinetic behavior in an arbitrary material
configuration.

In continuing towards optimal microstructure of mixed conductors in energy conver-
sion devices, we examine the pairing between microscale behavior and the volume-
averaged behavior when the pore scale is very small. We considered two-phase
transport through a porous mixed conductor using a coupled system of fluid flow
via Stokes-flow, convective-diffusion in the gas phase, and diffusion in the bulk
phase. At the interface between the two phases, we prescribe a non-linear exchange
term and then a linearized flux condition like those obtained in Ch. 3. By varying
the scaling (strength) of the interface reaction with respect to the other transport
properties and the unit cell size, we obtain different effective regimes. Most notably,
we obtain an intuitive volume-averaged system consisting of Darcy’s law for the
homogenized Stokes-flow independent of a system of coupled transport describing
the gaseous species and solid species. We obtain an averaged convective-diffusion
with reaction describing the averaged species previously residing in the pore space,
and a separate reactive-diffusion field associated with the species residing in the
solid phase. The interfacial exchange is shifted to becoming a body-source/sink
that is dependent on the amount of interface in the unit cells. Additionally, the
averaged fluid velocity and diffusivity are dependent on the pore-scale solutions to
the original transport models.

The main goal of this project was examining numerical methods of designing
optimal microstructures for energy conversion. We used a coupled, two-phase,
reactive-diffusion system describing the transport of two chemical species each
residing in separate phases (pore space and solid), and undergoing an interfacial
conversion reaction. We relax this problem two one allowing intermediate densities,
such that we obtain an equation form similar to the homogenized behavior derived
in Ch. 5, where we restrict the chemistry to areas of intermediate density. The
resulting system is formulated variationally and analyzed. We found that the optimal
design problem associated with maximizing the through-put through a device (or
cell structure) can be formulated as a saddle-point problem. Implementing the
relaxation requirement indicates that in most configurations, designs with large
areas of composite regions are preferred. We then investigate the optimal design



91

problem numerically using a phase field method, where these intermediate densities
are penalized to ensure manufacturability and an inherent length scale. Optimal
interface shapes are dependent on transport parameters, but in general, saw-tooth or
branched structures are obtained. These optimal structures effectively yield designs
with arbitrary length scales, and could be coupled well with additive manufacturing
techniques to be experimentally verified.

7.1 Future work
With advances in battery structures spanning a variety of length-scales, similar
optimal design questions can be investigated. Anode, cathode, and overall battery
architecture directly impact the charge/discharge ability and storage capacity of
batteries and can be improved with novel design. Additionally, new structures that
accommodate the volume change associated with intercolation-deintercolation of
lithium can be explored using optimal design using models describing the chemical
expansivity. Extending these models, especially those developed in Ch. 3 and
combining with optimal design would be an interesting extension of these methods.
Similar optimization possibilities are seen in fuel cells, separationmembranes, or any
system requiring a balance of interfacial measure and bulk transport in optimizing
material behavior.

The methods and models described here are far from optimal and complete. The
continuum mechanics presented in Ch. 3 could be verified using experimental data,
and transient studies using reconstructed microstructures would be of interest in
the experimental community. Additional considerations including radiative heat
transfer and a more thorough examination of entropy would benefit the rigor of
the model and could potentially elucidate new multi-physics coupling. Applica-
tion to other classes of mixed-conductors would be fairly straight-forward given the
necessary thermodynamic and kinetic data for validation. The strain engineering
presented could be easily combined with the optimization to explore new geometries
to maximize the strain-effect. Through the homogenization under different convec-
tive scalings, more advanced methods are required to fully describe the effective
behavior. Coupling the solutions obtained with bounds on conductivity and reactiv-
ity from the composites community would be of interest. Finally, the optimization
method presented was chosen because of its simplicity, and many techniques could
be developed or adapted to improve the implementation and computational cost.
Examining interface-tracking methods and three-dimension topology optimization
would be natural extensions to the general framework presented here. Finally, cou-
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pling with advances is directed synthesis and additive manufacturing for realization
of these optimal designs would be the ideal conclusion to this work.
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A p p e n d i x A

A Γ-CONVERGENCE RESULT

In this appendix, we wish to rationalize the transition from phase-field formulation
of the optimal design problem (6.11) to the original optimal design problem (P) in
Chapter 6. The optimal design problem using the phase-field model is written

sup
χ∈X2

{
inf
v∈V

L(v, χ) −
∫
Ω

Wε ( χ) + ε2 |∇χ |2 dx
}
,

:= sup
χ∈X2

{J ( χ) − Hε ( χ)} .

Instead of the normal two-well chemical potential, we use one that depends on our
prescribed length scale, ε :

Wε ( χ) =



1
ε2
χ2(1 − χ)2 if χ < [0, 1]

ε2 χ2(1 − χ)2 if χ ∈ [0, 1].

In the sense of Γ-convergence, we want to make sure that we obtain our original,
unaltered, optimal design problem when we force the interface penalty to 0. We
enforce the scaling on our two-well energy to rationalize taking this limit; instead of
looking at a sharp-interface limit, where a consideration along the lines of Modica-
Mortola would be more relevant. The scaling we choose effectively forces the
relaxation of the two-well energy in the limit in question.

As a reminder, we define Γ-convergence in the supremum setting directly from
Braides [82].

Definition A.0.1 (Γ-limit for supremum problems). We say that a sequence f j :
X → R Γ+-converges w.r.t to the weak L2 convergence in X to f : X → R if for all
x ∈ X , we have

1. (lim sup inequality) for every every sequence (x j) converging weakly in L2 to
x

f (x) ≥ lim sup
j

f j (x j );
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2. (lim inf inequality) there exists a sequence (x j ) converging weakly in L2 to x

such that
f (x) ≤ lim inf

j
f j (x j );

Considering the behavior of the typical phase-transition problem, we will eventually
be interested in the relaxation of our functional. Since we are maximizing our
objective function over the design space, we are after the upper semicontinuous
envelope for the through-put that we are concerned with.

Definition A.0.2 (Relaxed functional). (Adapted from Jöst) Let X satisfy the first
axiom of countability. Then F̄ is the relaxed+ function for F : X → R̄ iff the
following two conditions are satisfied:

1. whenever xn ⇀ x

F̄ (x) ≥ lim sup
n→∞

F (xn),

2. for every x ∈ X , there exists a sequence xn ⇀ x with

F̄ (x) ≤ lim
n→∞

F (xn).

Additionally, we have that

F̄ (x) = sup
{
lim sup F (xn) : xn ⇀ x ∈ X

}
,

satisfies both of these requirements.

Theorem A.0.3. We let Ω ∈ R2 be a rectangular domain and without loss of
generality we’ll define Ω = (0, 1) × (0, 1). We define the optimal design problem as
the functional

Fε ( χ) =



J ( χ) − Hε ( χ) if χ ∈ X2 and 1
|Ω|

∫
Ω
χ = v

−∞ otherwise.

The Γ+-limit of Fε ( χ) as ε → 0 with respect to the weak L2 convergence is

F ( χ) =



J̄ ( χ) if χ ∈ X2 and 1
|Ω|

∫
Ω
χ = v

−∞ otherwise.
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Proof. From the definition of the relaxed+ functional, and the fact that our volume
constraint is closed for the weak L2 convergence, we obtain our lim sup inequality.
Notice that

Fε ( χε ) ≤ J ( χε ) ≤ J̄ ( χε ),

thus, taking the necessary lim sup and noting that our relaxation is upper semicon-
tinuous, we find that

lim sup
ε→0

Fε ( χε ) ≤ J̄ ( χ).

For the lim inf inequality, we apply the definition of our relaxed+ functional. For
every χ ∈ X2, there exists a sequence χη s.t. χη ⇀ χ with respect to the L2

topology. Since χη ∈ H1 for any η, and that C∞(Ω̄) is dense in H1(Ω) for our
domainΩ, we can approximate each χη with a smooth function χ̄η,ε ∈ C∞(Ω̄) such
that




χη − χ̄η,ε



H1 ≤ ε,

for any ε > 0.

We wish to show that each of these χ̄η,ε can be approximated by a sequence of
piecewise affine functions that, in the limit, have a vanishing gradient. We break up
Ω = (0, 1) × (0, 1) into a square grid with spacing ε1/4. We separate each of these
elements further, where the interior region, I, takes on a constant value equal to
χ̄η,ε evaluated at the center point. On each of the four sides, we linearly interpolate
between the neighboring constant regions areas denoted by I I. For the corners,
we interpolate between three neighboring cells over triangular regions so that we
maintain continuity of our approximation.

⌦ij

�ij

I

II

III

II

II

II

III III

III

✏1/4

p
✏

4

Figure A.1: A division for the piecewise affine approximation of χ̄η,ε .
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There are two things that we must verify with this sequence χη,ε . One, we need to
confirm that 


χη,ε − χ̄η,ε




L2 −−−→
ε→0

0. Additionally, we must verify that in the limit
of ε → 0, the gradient contribution to the Allen-Cahn functional vanishes.

We start by examining∫
Ω

| χη,ε − χ̄η,ε |
2 dx =

∑
i, j

∫
Ωi j

| χη,ε − χ̄η,ε |
2 dx.

We know our continuously differentiable function χ̄η, χ̄ also satisfies a (local) Lips-
chitz condition, i.e. there exists a nonnegative constant C such that

| χ̄η,ε (x) − χ̄η,ε (y) | ≤ C‖x − y‖.

We apply this to a 3× 3 grouping of elements, so that from the definition of χη,ε we
determine that there exists another constant such that

| χη,ε (x) − χ̄η,ε (y) | ≤ C′‖x − y‖

for any x, y in this group of elements. By using the grid spacing we determine that∫
Ω

| χη,ε − χ̄η,ε |
2 dx =

∑
i, j

∫
Ωi j

| χη,ε − χ̄η,ε |
2 dx

≤
∑
i, j

∫
Ωi j

(
C′‖x − y‖

)2 dx

≤
∑
i, j

∫
Ωi j

C′′
(
ε1/4

)2
dx

= C′′
√
ε .

Thus, we have found that



χη,ε − χ̄η,ε




L2 → 0.

Now, we look at the gradient contribution of the piecewise affine approximation by
breaking up the domain into the various regions interpolations, I, I I, I I I. Obviously,
there is no contribution from region I, and then in regions I I, where we linearly
transition from the two neighboring cells, we end up with a contribution on the order
of (1/

√
ε )2 |I I |. The contribution of triangular regions I I I, where we interpolate

between three separate values, can be bounded from above by a similar measure of
the gradient. To aid in this, we combine the subdomains along each boundary of
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⌦ij

�ij

✏1/4

p
✏

4
II 0

Figure A.2: Grouping regions I I and I I I into linear transition regions I I′.

the element, denoting them by I′, I I′, I I I′, IV ′. These regions are extensions of the
regions I I that interpolate between the two neighboring cells.

We start with∫
Ω

ε2 |∇χη,ε |
2 dx =

∑
i, j

∫
Ωi j

ε2 |∇χη,ε |
2 dx

=
∑
i, j

(∫
I I
ε2 |∇χη,ε |

2 dx +
∫

I I I
ε2 |∇χη,ε |

2 dx
)

≤
∑
i, j

(∫
I ′
ε2 |∇χη,ε |

2 dx +
∫

I I ′
· · ·

)

=
∑
i, j

*
,

∫
I ′
ε2

�����
2( χi−1, j − χi, j )

√
ε

�����

2
dx +

∫
I I ′
· · · +

-

≤ 4M2ε
∑
i, j

(∫
I ′

dx +
∫

I I ′
dx + · · ·

)

= 4M2ε
1
√
ε

(
4
√
ε

4
∗ ε1/4

)
= 4M2ε5/4.

We have used the fact our continuous approximation, χ̄η,ε , that provides the grid
values χi j attains a maximum and minimum value over Ω and allows us to use the
uniform bound, M . Accordingly, we have found that our piecewise affine sequence
has a gradient contribution that vanishes in the limit ε → 0. At this point we have
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that




χη,ε − χ̄η,ε



L2 → 0

and



χη − χ̄η,ε




L2 → 0,

and thus, by the uniqueness of the L2 limit,




χη − χη,ε



L2 → 0.

We obtain our recovery sequence, still denoted χη,ε , by applying a diagonal argu-
ment using the fact that χη ⇀ χ and χη,ε → χη, so that χη,ε ⇀ χ, with respect to
the weak L2 topology.

To appeal to the prescribed volume constraint, we have to modify χη,ε . We denote
the volume average of our functions in question with

1
|Ω|

∫
Ω

χ dx = v

1
|Ω|

∫
Ω

χη,ε dx = vε

We can modify χη,ε only on Ωε = (1 − ε, 1) × (0, 1) by setting

χε (x, y) =



χη,ε (x, y) if 0 < x ≤ 1 − ε

χη,ε (x, y) + 2
ε (v − vε )(x − 1 + ε ) if 1 − ε < x ≤ 1.

Moreover, we can verify that the modified recovery sequence also has the desired
gradient behavior

lim
ε→0

ε2
�����

∫
Ω

(
|∇χη,ε |

2 − |∇χε |
2
)

dx
�����

= lim
ε→0

ε2
�����

∫
Ωε

(
|∇χη,ε |

2 − |∇χε |
2
)

dx
�����

≤ lim
ε→0

ε2
∫
Ωε

(
2
ε
|∇χη,ε | |v − vε | +

4
ε2
|v − vε |

2
)

dx = 0,

Since we have showed that our recovery sequence χε is suitable in that it has the
desired gradient contribution and satisfies the volume constraint, we examine the
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limit behavior of our function,

lim inf
ε→0

Fε ( χε ) = lim inf
ε→0

(
J ( χε ) −

∫
Ω

Wε ( χε ) +
ε2

2
|∇χε |

2 dx
)

≥ lim inf
ε→0

(
J ( χε ) −

∫
Ω

Wε ( χε ) dx
)
− lim sup

ε→0

(∫
Ω

ε2

2
|∇χε |

2 dx
)

= lim inf
ε→0

(
J ( χε ) −

∫
Ω

Wε ( χε ) dx
)

≥ lim inf
ε→0

J ( χε ) − lim sup
ε→0

(∫
Ω

Wε ( χε ) dx
)

≥ lim inf
ε→0

J ( χε ) −
∫
Ω

lim sup
ε→0

Wε ( χε ) dx

What remains is showing the continuity of J (·) with respect to our recovery se-
quences to obtain the desired form of the Γ−limit. We make use the definition of
χε from χη to show that J ( χε ) → J ( χη ) as ε → 0. We have

|J ( χε ) − J ( χη ) | = | inf
u∈V

L(u; χε ) − inf
u∈V

L(u; χη ) |.

With ūη ∈ V minimizing the latter of these functionals, we can use ūη as a test
function in the first functional to write
���J ( χε ) − J ( χη )��� ≤

���L(ūη ; χε ) − L(ūη ; χη )���

=

�������

∫
Ω

1
2

∑
i=1,2

(
ki ( χε ) − ki ( χη )

)
|∇ūη |2 +

ks

2
(
χε (1 − χε ) − χη (1 − χη )

)
ūη · Aūη

− λ
(
χε − χη

)
dx

�����

=

�������

∫
Ω

1
2

∑
i=1,2

(
χε − χη

)
∆ki |∇ūη |2 +

ks

2
(
χε − χη

) (
1 − ( χη + χε )

)
ūη · Aūη

− λ
(
χε − χη

)
dx

�����

≤



χε − χη




L2










1
2

∑
i=1,2
∆ki |∇ūη |2 +

ks

2
(
1 − ( χη + χε )

)
ūη · Aūη − λ








L2

.

The last inequality follows from Hölder’s inequality. Considering the properties of
ūη, χη and χε we can bound the second norm on the right hand side by a suitable
constant, c, independent of ε

���J ( χε ) − J ( χη )��� ≤ c


χε − χη



L2 .
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Passing directly through the limit ε → 0 yields the desired result. With the chosen
sequence χη , we can get arbitrarily close to the relaxation of J (·)

J̄ ( χ) ≤ J ( χη ) + 1/η

for any index η. With our modified sequence, χε , we can also get arbitrarily close
to any χη , and it follows from the continuity of J (·) that

J̄ ( χ) ≤ J ( χε ) + ξ

for any ξ > 0. Thus,
J̄ ( χ) ≤ lim inf

ε→0
J ( χε ).

Using the form of Wε in the limit of ε → 0, we find that

lim inf
ε→0

Fε ( χε ) ≥



J̄ ( χ) if χ ∈ [0, 1]

−∞ else.
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DFL >> DNF


