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ABSTRACT 

Computational modeling is an effective tool in studying complex biological systems.  

Docking of small molecule ligands in particular is useful both in understanding the 

functioning of proteins as well as in the development of pharmaceuticals.  Together with 

experiment, modeling can often provide a thorough picture of a given system.  

Computation can often provide details that are difficult or impossible to determine 

experimentally, while experiments provide guidance on what calculations are useful or 

interesting.  Our goal is to extend computational modeling, specifically ligand docking, to 

systems not previously possible, such as the challenging glycosaminoglycan (GAG) 

systems.  In order to do this it was first necessary to develop an automatic way of 

performing docking without extensive user input and experimental knowledge to narrow 

the list of candidate poses.  DarwinDock represents our efforts in this respect.  It is a 

method for small-molecule docking that separates pose generation and scoring into separate 

stages, which allows for complete binding site sampling followed by efficient, hierarchical 

sampling.  Our convergence criteria for complete sampling allows for diverse systems to be 

studied without prior knowledge of how large a set of poses needs to be to span a given 

binding site, making the procedure more automatic.  We also replace bulky, nonpolar 

residues with alanine, which we refer to as “alanization”.  This allows the ligand to interact 

more closely with polar sidechains, which help to orient the ligand.  Additionally, 

alanization reduces the impact of incorrect sidechain placement on ligand placement, a 

concern that sometimes requires user intervention.  With DarwinDock working for standard 

small molecules, it was then necessary to modify the procedure to work on challenging 

GAG ligands, which are large and have strong negative charges.  A modification to 

DarwinDock – GAG-Dock – allows the method to be applied to GAGs and protein surface 

interactions.  GAGs are large, linear polysaccharides with strong negative charge.  They 

typically interact with the surfaces of proteins, rather than the cavities favored by most 

small-molecule drugs.  GAG-Dock systematically samples the protein surface for unknown 

binding sites and modifies the pose generation to allow for large, surface-interacting 

ligands.  GAG-Dock allowed us to study several systems important for neuronal 

development and answer interesting questions posed by experiment.  Finally, we needed a 



 v 
way to validate our predictions for GAG binding sites.  We used a systematic approach to 

identify sets of beneficial mutations to the GAG binding sites by building up from 

individual in silico mutations.  Standard mutation experiments typically employ large 

mutations, such as arginine to alanine, which decrease or destroy binding.  However, such 

information is not always definitive, as large mutations can have wide-ranging effects 

beyond direct protein-ligand interactions.  Mutations that increase binding, however, are 

less ambiguous because they must form new interactions with the ligand in order to affect 

binding energies or affinity.  Therefore, we have identified and proposed sets of mutations 

for our GAG predictions for PTPs, NgR1, NgR3, and EphB3.  We encourage our 

experimentalist colleagues to try these mutations and validate our predictions. 
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C h a p t e r  1  

SMALL MOLECULE DOCKING 

Introduction 

Computational modeling has become an important part of studying complex biological 

systems.  It often provides details and information that either cannot or cannot easily be 

obtained via experiments.  Rather, computation and experiment often work hand-in-hand, 

with insights from one driving questions for the other.  A recent paper by Brian Shoichet1 

exemplifies this.  G-protein coupled receptors (GPCRs) produce signaling via two 

pathways: a G protein or β-arrestin.  The same GPCR can use both pathways to produce 

different effects.  Experiments suggest that while the primary analgesic effect of the µ-

opioid receptor (mOR) is carried out via G protein signaling, side effects such as the 

buildup of tolerance may be due to the β-arrestin pathway2-4.  This suggests that a drug 

capable of activating the G protein pathway and not the β-arrestin pathway would be an 

improvement on current opioid drugs.  While it may be possible to identify such a drug 

using an experimental approach, such an approach would be lengthy and expensive.  

Computation, on the other hand, is ideally suited to this sort of task.  Shoichet, et. al., used 

a virtual ligand screening (VLS) method to screen 3 million drug candidates against mOR 

to identify drug candidates that interact with the protein in a manner different than current 

opioid drugs.  After refinement of the candidates, one drug was identified for testing.  The 

result of the project was a drug that preferentially activates mOR G protein signaling over 

β-arrestin signaling.  This drug will now provide a starting point for development of better 

mOR analgesics as well as providing a tool for the study of the differences of G protein and 
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β-arrestin signaling.  Such a project likely would not have been successful without the use 

of computational methods for small-molecule docking. 

Purpose of the Study 

Our goal in this work is to tackle challenging computational problems, such as those related 

to glycosaminoglycan (GAG) docking, to answer questions raised by experiment, and to 

help guide new experiments.  GAGs are large, linear polysaccharides that are heavily 

negatively charged, which makes them difficult to treat computationally.  Furthermore, 

they typically interact with the surfaces of proteins, instead of the deeper cavities typically 

used by standard small-molecule ligands.  These surface-protein interactions are less well 

defined, which requires much more extensive sampling to identify a binding site than a 

protein with a known binding cavity.  We therefore need an automated docking method 

that is capable of identifying interesting poses and binding sites with little intervention by 

the user and little or no experimental information.  We further need to be able to account 

for the size and charge of GAG ligands, as well as the ability to predict ligand binding to 

protein surfaces.  And finally, we need a way to validate our predictions. 

Our strategy for automated docking is DarwinDock.  DarwinDock divides the problem of 

docking into two stages: geometry and scoring.  The geometry or “completeness” stage 

thoroughly samples a putative binding site without performing any energy calls or using 

any scoring methods.  Our method for generating a complete set of ligand poses differs 

from other docking methods in that the number of poses generated depends on the system, 

and not a default or assumed number of poses.  Instead, poses are generated until a 

convergence threshold is met.  This is important because each system – protein, ligand, or 
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binding site – is different.  There is no default number of poses that will work in all 

situations.  The scoring stage of DarwinDock efficiently and accurately evaluates the poses 

that are generated.  Efficiency is derived from our hierarchical scoring method.  Poses are 

clustered into families, and only the family head (centroid) pose is scored initially.  This 

family head score is used to eliminate 90% of the families from consideration, significantly 

reducing computational cost.  The children of the remaining 10% of families are then 

evaluated, and a final set of 120 best poses is output.  The goal of the method is for the final 

set of 120 poses to contain correct poses for further, more detailed evaluations.  We will 

describe the DarwinDock method and validate it against a set of known ligand-protein co-

crystals. 

We address the complexity of GAG ligand binding with GAG-Dock.  GAG-Dock is a 

variation of DarwinDock that is designed to work for an extremely challenging and 

interesting problem: the study of glycosaminoglycan (GAG) binding to proteins.  GAGs 

are linear polysaccharides that carry a strong negative charge.  Their size and charge makes 

them particularly difficult candidates for docking.  Furthermore, they typically interact with 

the surfaces of proteins.  Typical small-molecule ligands tend to bury into cavities in a 

protein, which provides a clear, contained region to sample during docking.  Interactions on 

the surface of a protein are less well defined and require much greater computational 

sampling.  However, the interactions between GAGs and proteins are also very interesting.  

For instance, GAGs have been shown to be involved in directing neuronal development via 

interactions with the PTPs, NgR1, and NgR3 receptors.  GAG-Dock is designed to study 

just these sorts of systems, for which structural data is often not known.  We will show that 
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GAG-Dock is effective for these challenging systems by validating it against crystal 

structures with bound GAG polysaccharides.  We will then apply it to the systems PTPs, 

NgR1, NgR3, and EphB3 in order to predict the binding sites of several GAG ligands and 

answer interesting questions posed by experimental evidence. 

Finally, we use a systematic approach to identify sets of beneficial mutations to validate 

our GAG binding sites.  Mutations that decrease or eliminate binding are often easy, but 

ambiguous.  Mutating an arginine to an alanine could simply be removing a contact with 

the ligand, or it could be fundamentally altering the protein structure.  Beneficial mutations 

that increase ligand binding energy/affinity, however, require that the mutation stabilize the 

binding site or provide new interactions with the ligand.  They provide a much clearer 

signal.  Therefore we identify sets of mutations for each of our predicted GAG cases where 

no crystal structure is known.  This is particularly important for our CS-E/EphB3 

predictions where even the general binding region of the protein was not known. 

Overall, we show that we have developed methods capable of handling challenging, 

relevant systems that could not be approached before.  Furthermore, we show that 

computational modeling and experiment can work together to guide and complement each 

other.  

Outline 

Chapter 2: Description of the DarwinDock method and validation against the DUD set, a 

set of protein-ligand co-crystals intended for testing small-molecule ligand docking 

methods. 
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Chapter 3: Description of GAG-Dock, validation against known GAG-protein co-crystals, 

and application to PTPs, NgR1, and NgR3 for the GAG ligands CS-A, CS-D, CS-E, and 

heparin. 

Chapter 4: Application of GAG-Dock to the novel system of EphB3.  We predict the 

binding site of CS-E to EphB3.  We also explain why CS-E and not CS-A binds to EphB3, 

and why neither binds to EphB2. 
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