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ABSTRACT 

Computational modeling is an effective tool in studying complex biological systems.  

Docking of small molecule ligands in particular is useful both in understanding the 

functioning of proteins as well as in the development of pharmaceuticals.  Together with 

experiment, modeling can often provide a thorough picture of a given system.  

Computation can often provide details that are difficult or impossible to determine 

experimentally, while experiments provide guidance on what calculations are useful or 

interesting.  Our goal is to extend computational modeling, specifically ligand docking, to 

systems not previously possible, such as the challenging glycosaminoglycan (GAG) 

systems.  In order to do this it was first necessary to develop an automatic way of 

performing docking without extensive user input and experimental knowledge to narrow 

the list of candidate poses.  DarwinDock represents our efforts in this respect.  It is a 

method for small-molecule docking that separates pose generation and scoring into separate 

stages, which allows for complete binding site sampling followed by efficient, hierarchical 

sampling.  Our convergence criteria for complete sampling allows for diverse systems to be 

studied without prior knowledge of how large a set of poses needs to be to span a given 

binding site, making the procedure more automatic.  We also replace bulky, nonpolar 

residues with alanine, which we refer to as “alanization”.  This allows the ligand to interact 

more closely with polar sidechains, which help to orient the ligand.  Additionally, 

alanization reduces the impact of incorrect sidechain placement on ligand placement, a 

concern that sometimes requires user intervention.  With DarwinDock working for standard 

small molecules, it was then necessary to modify the procedure to work on challenging 

GAG ligands, which are large and have strong negative charges.  A modification to 

DarwinDock – GAG-Dock – allows the method to be applied to GAGs and protein surface 

interactions.  GAGs are large, linear polysaccharides with strong negative charge.  They 

typically interact with the surfaces of proteins, rather than the cavities favored by most 

small-molecule drugs.  GAG-Dock systematically samples the protein surface for unknown 

binding sites and modifies the pose generation to allow for large, surface-interacting 

ligands.  GAG-Dock allowed us to study several systems important for neuronal 

development and answer interesting questions posed by experiment.  Finally, we needed a 



 v 
way to validate our predictions for GAG binding sites.  We used a systematic approach to 

identify sets of beneficial mutations to the GAG binding sites by building up from 

individual in silico mutations.  Standard mutation experiments typically employ large 

mutations, such as arginine to alanine, which decrease or destroy binding.  However, such 

information is not always definitive, as large mutations can have wide-ranging effects 

beyond direct protein-ligand interactions.  Mutations that increase binding, however, are 

less ambiguous because they must form new interactions with the ligand in order to affect 

binding energies or affinity.  Therefore, we have identified and proposed sets of mutations 

for our GAG predictions for PTPs, NgR1, NgR3, and EphB3.  We encourage our 

experimentalist colleagues to try these mutations and validate our predictions. 
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C h a p t e r  1  

SMALL MOLECULE DOCKING 

Introduction 

Computational modeling has become an important part of studying complex biological 

systems.  It often provides details and information that either cannot or cannot easily be 

obtained via experiments.  Rather, computation and experiment often work hand-in-hand, 

with insights from one driving questions for the other.  A recent paper by Brian Shoichet1 

exemplifies this.  G-protein coupled receptors (GPCRs) produce signaling via two 

pathways: a G protein or β-arrestin.  The same GPCR can use both pathways to produce 

different effects.  Experiments suggest that while the primary analgesic effect of the µ-

opioid receptor (mOR) is carried out via G protein signaling, side effects such as the 

buildup of tolerance may be due to the β-arrestin pathway2-4.  This suggests that a drug 

capable of activating the G protein pathway and not the β-arrestin pathway would be an 

improvement on current opioid drugs.  While it may be possible to identify such a drug 

using an experimental approach, such an approach would be lengthy and expensive.  

Computation, on the other hand, is ideally suited to this sort of task.  Shoichet, et. al., used 

a virtual ligand screening (VLS) method to screen 3 million drug candidates against mOR 

to identify drug candidates that interact with the protein in a manner different than current 

opioid drugs.  After refinement of the candidates, one drug was identified for testing.  The 

result of the project was a drug that preferentially activates mOR G protein signaling over 

β-arrestin signaling.  This drug will now provide a starting point for development of better 

mOR analgesics as well as providing a tool for the study of the differences of G protein and 
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β-arrestin signaling.  Such a project likely would not have been successful without the use 

of computational methods for small-molecule docking. 

Purpose of the Study 

Our goal in this work is to tackle challenging computational problems, such as those related 

to glycosaminoglycan (GAG) docking, to answer questions raised by experiment, and to 

help guide new experiments.  GAGs are large, linear polysaccharides that are heavily 

negatively charged, which makes them difficult to treat computationally.  Furthermore, 

they typically interact with the surfaces of proteins, instead of the deeper cavities typically 

used by standard small-molecule ligands.  These surface-protein interactions are less well 

defined, which requires much more extensive sampling to identify a binding site than a 

protein with a known binding cavity.  We therefore need an automated docking method 

that is capable of identifying interesting poses and binding sites with little intervention by 

the user and little or no experimental information.  We further need to be able to account 

for the size and charge of GAG ligands, as well as the ability to predict ligand binding to 

protein surfaces.  And finally, we need a way to validate our predictions. 

Our strategy for automated docking is DarwinDock.  DarwinDock divides the problem of 

docking into two stages: geometry and scoring.  The geometry or “completeness” stage 

thoroughly samples a putative binding site without performing any energy calls or using 

any scoring methods.  Our method for generating a complete set of ligand poses differs 

from other docking methods in that the number of poses generated depends on the system, 

and not a default or assumed number of poses.  Instead, poses are generated until a 

convergence threshold is met.  This is important because each system – protein, ligand, or 
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binding site – is different.  There is no default number of poses that will work in all 

situations.  The scoring stage of DarwinDock efficiently and accurately evaluates the poses 

that are generated.  Efficiency is derived from our hierarchical scoring method.  Poses are 

clustered into families, and only the family head (centroid) pose is scored initially.  This 

family head score is used to eliminate 90% of the families from consideration, significantly 

reducing computational cost.  The children of the remaining 10% of families are then 

evaluated, and a final set of 120 best poses is output.  The goal of the method is for the final 

set of 120 poses to contain correct poses for further, more detailed evaluations.  We will 

describe the DarwinDock method and validate it against a set of known ligand-protein co-

crystals. 

We address the complexity of GAG ligand binding with GAG-Dock.  GAG-Dock is a 

variation of DarwinDock that is designed to work for an extremely challenging and 

interesting problem: the study of glycosaminoglycan (GAG) binding to proteins.  GAGs 

are linear polysaccharides that carry a strong negative charge.  Their size and charge makes 

them particularly difficult candidates for docking.  Furthermore, they typically interact with 

the surfaces of proteins.  Typical small-molecule ligands tend to bury into cavities in a 

protein, which provides a clear, contained region to sample during docking.  Interactions on 

the surface of a protein are less well defined and require much greater computational 

sampling.  However, the interactions between GAGs and proteins are also very interesting.  

For instance, GAGs have been shown to be involved in directing neuronal development via 

interactions with the PTPs, NgR1, and NgR3 receptors.  GAG-Dock is designed to study 

just these sorts of systems, for which structural data is often not known.  We will show that 
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GAG-Dock is effective for these challenging systems by validating it against crystal 

structures with bound GAG polysaccharides.  We will then apply it to the systems PTPs, 

NgR1, NgR3, and EphB3 in order to predict the binding sites of several GAG ligands and 

answer interesting questions posed by experimental evidence. 

Finally, we use a systematic approach to identify sets of beneficial mutations to validate 

our GAG binding sites.  Mutations that decrease or eliminate binding are often easy, but 

ambiguous.  Mutating an arginine to an alanine could simply be removing a contact with 

the ligand, or it could be fundamentally altering the protein structure.  Beneficial mutations 

that increase ligand binding energy/affinity, however, require that the mutation stabilize the 

binding site or provide new interactions with the ligand.  They provide a much clearer 

signal.  Therefore we identify sets of mutations for each of our predicted GAG cases where 

no crystal structure is known.  This is particularly important for our CS-E/EphB3 

predictions where even the general binding region of the protein was not known. 

Overall, we show that we have developed methods capable of handling challenging, 

relevant systems that could not be approached before.  Furthermore, we show that 

computational modeling and experiment can work together to guide and complement each 

other.  

Outline 

Chapter 2: Description of the DarwinDock method and validation against the DUD set, a 

set of protein-ligand co-crystals intended for testing small-molecule ligand docking 

methods. 
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Chapter 3: Description of GAG-Dock, validation against known GAG-protein co-crystals, 

and application to PTPs, NgR1, and NgR3 for the GAG ligands CS-A, CS-D, CS-E, and 

heparin. 

Chapter 4: Application of GAG-Dock to the novel system of EphB3.  We predict the 

binding site of CS-E to EphB3.  We also explain why CS-E and not CS-A binds to EphB3, 

and why neither binds to EphB2. 
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  C h a p t e r  2  

THE DARWINDOCK ALGORITHM FOR SMALL MOLECULE 
DOCKING 

Adam R. Griffith, Ismet Caglar Tanrikulu, Ravinder Abrol, William A. Goddard III 

Introduction 

The first step in understanding how binding of a ligand to a protein affects its function is to 

determine its binding site, conformation, and binding energy.  The ultimate arbiter for the 

structure is the x-ray structure, and the arbiter for the binding energy uses radioisotopes to 

measure an equilibrium constant or competitive binding to obtain an IC50.  However, such 

experimental procedures are far too slow for broad searching for new ligand scaffolds (e.g. 

virtual ligand screening) or for optimizing hits from such a screening.  Here we use theory 

and computation to identify the most likely binding sites and configurations and to rank 

ligands in terms of binding (or, ideally, in terms of function).  This computational process 

is referred to as “docking”.  Various methods for docking have been developed over the 

last 50 years and are widely practiced in industry and academia.  A typical application 

involves a coupling of theory and experiment where a number of putative poses from 

energy minimization and molecular dynamics computations might be tested by doing 

mutation experiments to identify which poses are most likely correct, followed by 

computational modifications of the ligand to improve binding by competitive binding 

experiments to select the best ligand. 

My goal has been to develop a purely computational algorithm that can predict the best 

ligands and binding sites, without the intervention of experiments.  This requires a very 
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complete sampling of ligand poses throughout the possible binding region and requires an 

energy scoring that is accurate enough to discriminate the binding strength of various 

ligands to various binding sites.  But carrying out accurate calculations of binding strength 

generally involves extensive calculations for every possible pose and every possible ligand 

conformation, which is not practical.  DarwinDock is an algorithm that I in collaboration 

with others in the Goddard group have developed to solve this conundrum. 

The DarwinDock method is a new strategy for docking that we refer to as Complete 

Sampling-Hierarchical Scoring (CS-HS).  The idea is: 

1. Alanization – First, properly prepare the protein system to minimize the chances of 

bad contacts due to improper sidechain placement and maximize the interaction of 

the ligand with polar groups in the protein.  We achieve this via a process referred 

to as “alanization”, which is the replacing of bulky, nonpolar sidechains with 

alanine.  

2. Completeness – Then, a complete set of ligand poses is generated that completely 

samples the putative binding site, but is done so quickly by eschewing any energy 

calls.  Poses are generated in iterations of 5000 and clustered by RMSD into 

families.  When the number of new families reaches a convergence threshold we 

consider this to be a complete sampling of the binding site.  This typically yields 

~50,000 poses. 

3. Scoring – Finally, the poses are scored in a hierarchical manner in order to 

minimize the number of energy calls necessary.  We score each of the family heads 
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(as determined by RMSD) using a single energy calculation.  Based on these 

energies we eliminate 90% of the families.  The children of the remaining families 

are then scored and all remaining poses are ranked.  From this set we choose the 

best 120 poses based on the scoring energy and output them for detailed 

examination 

This overall procedure is referred to as DarwinDock.  DarwinDock is aimed at being 

automatic, relying on our scoring algorithms to select interesting ligand candidates without 

human intervention.  This makes DarwinDock useful for virtual ligand screening (VLS) 

applications where the DarwinDock method might be used to rank the output of a 

pharmacophore-driven VLS process. 

Indeed, as I have been developing and optimizing DarwinDock over the last few years, it 

has been used in the Goddard group for numerous successful applications.1-9 

The goal of this chapter is to document and explain the full DarwinDock procedure, in 

particular how the optimum settings for the procedure are determined.  That is, to identify 

the settings that provide the highest probability of success with minimal computational 

time. 

Evaluating the performance of such an algorithm is difficult since biological systems are 

complex; therefore, we use sets of pre-determined systems for validation.  Specifically, we 

use the Directory of Useful Decoys10 (DUD set), which is a selection of 40 diverse systems 
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based on high quality x-ray structures of ligand/protein co-crystals and is intended for 

validation of docking programs and methods. 

DarwinDock 

The first stage of DarwinDock – alanization – addresses a critical problem in docking a 

ligand to a protein.  The optimum binding site and conformation of the ligand depend on 

the conformations of the protein sidechains; simultaneously, the conformations of the 

protein sidechains depend on the binding site and conformation of the ligand.  Thus we 

need to dock the ligand simultaneously with optimized protein sidechain conformations.  

We have solved this “chicken-egg” problem by replacing the bulky, nonpolar sidechains 

with alanine prior to docking, which we refer to as “alanization”.  We consider valine, 

leucine, isoleucine, methionine, phenylalanine, tyrosine, and tryptophan to be primarily 

nonpolar in character and thus less likely to be essential to orienting a ligand in a binding 

site.  Furthermore, these residues are bulky enough that they might block significant 

portions of the binding site if placed incorrectly, eliminating what might be the ideal 

binding pose.  Alanizing these residues additionally opens up the binding site, allowing the 

ligand to sample a larger space in the binding site without being bumped so that it has the 

best chance of interacting more directly with polar sidechains.  The tradeoffs are that we 

miss a significant part of van der Waals (VDW) interactions with the ligand, and we must 

do greater sampling to span the more open binding site.  While not a required part of 

preparing a system for DarwinDock, it is recommended and we consider this as the default 

approach. 
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The second stage of DarwinDock addresses complete sampling of the binding.  Ligand 

poses are generated in iterations of 5000 using DOCK 611 and are clustered by RMSD into 

families with a diversity of 2Å.  When the number of new families falls below a threshold 

of 2% we consider the set of poses to be a complete sampling of the putative binding site.  

This procedure typically results in ~50,000 poses and ~5,000 families.  The only evaluation 

performed on poses during the “completeness” stage of DarwinDock is a bump test to 

ensure that the ligand does not clash with the protein.  No energy calls are made during this 

stage. 

The number of poses generated in the completeness stage is quite large, making evaluating 

accurate energies for each pose impractical.  Instead we use a hierarchical approach for 

scoring the poses in the final, scoring stage of DarwinDock, beginning with scoring of the 

family heads.  The head of each 2Å family from the completeness stage is selected as the 

centroid of the family based on the heavy-atom RMSD and then its energy is evaluated.  

We use the DREIDING12 forcefield in MPSim13 to evaluate the non-bond energy between 

the ligand and the rest of the protein.  Based on the energy of each family head, we 

eliminate 90% of the families and focus on the children of the remaining 10%.  Assuming 

that the family head is broadly representative of the children, this allows us to dramatically 

reduce the number of energy evaluations necessary to finally select the best pose.  At the 

end of the scoring stage we obtain 120 best poses for further, more accurate evaluations. 

We the use closest-neighbor seeded (CNS) algorithm to cluster poses based on heavy-atom 

RMSD.  The pairwise RMSDs for all ligand poses are calculated and the pairs are ordered 
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by increasing RMSD.  Each pose is initially placed in its own family.  The list of RMSDs 

is then traversed for each i, j pair of poses.  If the RMSD of each member of family i  to 

each member of family j is less than the cutoff value (2Å), then the families are merged.  

This builds up clusters of poses starting from the most closely related poses.  The centroid 

of the family is then labeled as the family head. 

It should be noted that our choices of DOCK for pose generation, the CNS algorithm for 

clustering, and DREIDING force field for energy evaluation are made for convenience in 

our implementation.  Any other methods of pose generation, clustering, and scoring could 

be used. 

Many of the parameters in DarwinDock can be adjusted in order to better suit a particular 

project.  For instance, the default completeness threshold of 2% can be increased to 

produce a faster, less complete calculation.  The clustering diversity can be increased from 

2Å so that the family head is more representative of the children.  The percent of families 

scored can be increased above 10% for a slower, but more thorough consideration of 

possible poses.  The polar and nonpolar components of the scoring energy can be adjusted 

based on the composition of the ligand.  Changing forcefield parameters such as the 

dielectric constant can also alter scoring.  The DUD set provides a straightforward test for 

identifying the default settings for DarwinDock.  Specifically, we will derive the defaults 

for: 

• Completeness threshold (2%) 

• Clustering diversity (2Å) 



 

 

12 
• Percent of families fully scored (10%) 

• Polar (100%) and nonpolar (10%) scaling for scoring 

• Dielectric constant (2.5, distance dependent) 

 

Figure 2-1 - Diagram of the DarwinDock algorithm.  Pose generation and scoring are partitioned into two completely 
separate stages.  The geometry or “completeness” stage generates 5000 poses, clusters them into 2Å families, and adds 5000 
additional poses until the completeness threshold has been reached.  The scoring stage initially only evaluates the 2Å family 
heads.  90% of the families are eliminated based on the family head energy, and the children of the remaining 10% are 
scored fully.  Typically, 120 interesting candidate poses are output from this final list. 
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The DUD Set 

The DUD set contains 40 systems for which accurate x-ray structures are available for a co-

crystal of a small molecule ligand bound to a protein.  It was intended to provide a 

reasonable test for docking programs and methods so that their accuracy can be assessed.  

Of these 40 systems we rejected three of the systems as inappropriate for small-molecule 

docking validation. 

1. The version of the system ‘thrombin’ (pdb: 1ba8) included in the DUD set contains 

a covalent ligand, which represents a wholly different class of ligands than standard 

small-molecules. 

2. The system ‘pdgfrb’ in the DUD set is in fact derived from a computational model 

and not an experimental structure; therefore, it cannot be used to provide accurate 

validation of another docking model. 

3. The ligand in ‘cdk2’ is not completely resolved, with several missing heavy atoms. 

4. Additionally, while we do not reject the ‘comt’ system, it should be noted that it 

contains two copies of the target ligand within the binding site.  The presence of the 

second ligand is only obvious when one includes neighboring unit cells from the 

crystal in the structure, which may explain why this system was included in the 

DUD set.  The positioning of the two ligands is shown in Figure 2. 
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Figure 2-2 - The system 'comt' contains two copies of the target ligand within the binding site, shown as spheres in magenta 
and orange.  This oddity is only obvious when one includes neighboring unit cells from the crystal in the structure. 
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Table 2-1 - DUD Systems used in validation with corresponding PDB ID number, the residue ID information of the 
ligand, and general system information.  Three of the forty systems have been rejected as inappropriate for inclusion in 
benchmarking, with reasons listed. 

 

System Preparation 

Despite being part of a curated set, the DUD systems required careful preparation before 

being used in validating our method.  While DUD provides pre-prepared files for each 

system, we found it useful to return to the original PDB source.  In particular this allowed 

Name PDB ID Lig ID Lig Num Lig Chn System Name System Class
ace 1o86 LPR 702 A Angiotensin-converting enzyme Metalloenzyme
ache 1eve E20 2001 A Acetylcholine esterase Other enzyme
ada 1ndw FR2 1001 A Adenosine deaminase Metalloenzyme
alr2 1ah3 TOL 320 A Aldose reductase Other enzyme
ampc 1xgj HTC 777 A AmpC beta lactamase Other enzyme
ar 2ao6 R18 1001 A Androgen receptor Nuclear hormone receptor
comt 1h1d BIA 335 A Catechol O-methyltransferase Metalloenzyme
cox1 1q4g BFL 701 A Cyclooxygenase 1 Other enzyme
cox2 1cx2 S58 701 A Cyclooxygenase 2 Other enzyme
dhfr 3dfr MTX 164 A Dihydrofolate reductase Folate enzyme
egfr 1m17 AQ4 999 A Epidernam growth factor receptor kinase Kinase
er_ag 1l2i ETC 600 A Estrogen receptor agonist Nuclear hormone receptor
er_ant 3ert OHT 600 A Estrogen receptor antagonist Nuclear hormone receptor
fgfr1 1agw SU2 1001 A Fibroblast growth factor receptor kinase Kinase
fxa 1f0r 815 401 A Factor Xa Serine protease
gart 1c2t NHS 222 A Glycinamide ribonucleotide transformylase Folate enzyme
gpb 1a8i GLS 998 A Glycogen phosphorylase beta Other enzyme
gr 1m2z DEX 301 A Glucocorticoid receptor Nuclear hormone receptor
hivpr 1hpx KNI 900 B HIV protease Other enzyme
hivrt 1rt1 MKC 999 A HIV reverse transcriptase Other enzyme
hmga 1hw8 114 3 D Hydroxymethylglutaryl-CoA reductase Other enzyme
hsp90 1uy6 PU3 1224 A Human heat shock protein 90 kinase Kinase
inha 1p44 GEQ 350 A Enoyl ACP reductase Other enzyme
mr 2aa2 AS4 201 A Mineralcorticoid receptor Nuclear hormone receptor
na 1a4g ZMR 466 A Neuraminidase Other enzyme
p38 1kv2 B96 391 A P38 mitogen activated protein kinase Kinase
parp 1efy BZC 201 A Poly(ADP-ribose) polymerase Other enzyme
pde5 1xp0 VDN 201 A Phosphodiesterase V Metalloenzyme
pnp 1b8o IMH 600 A Purine nucleoside phosphorylase Other enzyme
ppar 1fm9 570 200 D Peroxisome proliferator activated receptor gamma Nuclear hormone receptor
pr 1sr7 MOF 302 B Progesterone receptor Nuclear hormone receptor
rxr 1mvc BM6 200 A Retinoic X receptor alpha Nuclear hormone receptor
sahh 1a7a ADC 435 A S-adenosyl-homocysteine hydrolase Other enzyme
src 1y57 MPZ 600 A Tyroside kinase SRC Kinase
tk 1kim THM 2 B Thymidine kinase Kinase
trypsin 1bju GP6 910 A Trypsin Serine protease
vegfr2 1fgi SU1 1001 A Vascular endothelial growth factor receptor kinase Kinase

Rejected
thrombin 1ba8 0IT 1 B covalent ligand
pdgfrb computational model
cdk2 1ckp PVB 299 A incompletely resolved ligand
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us to use the full protein structures and symmetry information in order to generate the 

final systems used for docking.  The general procedure is as follows: 

1. Generate neighboring unit cells using the symmetry information 

2. Remove parts of the system that are distant from the target ligand (8Å cutoff) 

3. Add hydrogens 

4. Optimize ligand protonation states 

5. Optimize asparagine, glutamine, and histidine flips, as well as histidine protonation 

6. Minimize ligand separately and assign partial charges 

7. Assign forcefield types 

8. Perform conjugate-gradient energy minimization on the system 

9. Alanize bulky residues (V, L, I, M, F, Y, W) 

10. Generate sphere points for use with DOCK 

Steps 1 and 2 were performed using PyMol14.  Steps 3-5 were performed using the Maestro 

Protein Preparation Wizard15-17.  CHARMM18 charges were used for protein atoms.  

Ligands were minimized using the Maestro OPLS forcefield minimization19 before 

generating Mulliken charges.  Single-point energy calculations were performed using 

Jaguar20 and the B3LYP level of DFT with the 6-311G** basis set except for the ligand 

containing bromine, where the ERMLER**++ basis set was used.  Conjugate gradient 

energy minimization of the final system was performed using MPSim.  Sphere generation 

was performed using the standard DOCK sphgen parameters and methods, with the 

exception that the maximum sphere radius is set to be 12Å instead of 4Å.  This allows the 
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spheres to span larger binding sites without gaps or voids in the binding site.  All spheres 

within 5Å of the ligand were selected, and were then clustered using the “cns” algorithm to 

reduce the number of spheres to below 400 spheres.  This is necessary for the DOCK 

calculation to fit within available memory. 

Systems prepared thus represent the final pre-docking crystal structures; however, there are 

other considerations that must be made.  In a real-world use of DarwinDock there would be 

no pre-existing crystal structure containing both protein and ligand.  At best there would be 

an apo crystal structure or a structure containing a different ligand.  Thus we will not know 

the conformations of protein sidechains in a real-world application of any docking method.  

Therefore, in addition to testing DarwinDock against structures with crystal sidechains, our 

most important tests are for systems in which the sidechain conformations are predicted.  

Here we use the SCREAM21 method to predict the sidechain conformations of the apo-

protein.  This allows us to test how well DarwinDock would do in a real ligand discovery 

project.  Some sidechains were kept fixed during the predictions due to obvious strong 

interactions with ions or non-target ligands in the protein.  These are listed in Table 2.  

Alanization of the bulky, nonpolar residues was applied after sidechain placement with 

SCREAM.  It should be noted that while many of the structures showed waters present in 

the binding sites, we removed all waters prior to any calculations.  In a real-world test the 

placement of waters in the binding site would not be known before docking.  Coordinated 

ions and other ligands, however, might be known or inferred from related structures; 

therefore, these were left in place. 
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We tested several combinations of parameters in SCREAM in order to identify the best 

way to predict sidechains without the presence of the ligand.  Specifically, we considered 

flat dielectric constants of 2.5, 3.33, and 5.0, as well as distance-dependent dielectric 

constants of 1.0, 2.5, 3.33, and 5.0. 

The presence of histidines within the binding sites of some systems required special 

consideration.  No system had more than two histidines within 4Å of the ligand, excluding 

histidines that were fixed due to interactions with ions.  Therefore each possible 

combination of neutral and positively charged histidine (denoted as “B” instead of “H” in 

our terminology) was attempted.  We also tested an additional combination where all 

flexible histidines in the binding site were replaced with alanine.  The histidines treated in 

this way are listed in Table 2.  Using this approach up to five different sidechain 

predictions were made for each dielectric constant. 
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Table 2-2 - Residues in the binding site that are fixed due to interactions with ions or non-target ligands, and histidines 
in the binding site that are tested as both neutral and charged. 

 

 

Predicted Sidechain Sets 

We assessed predicted sidechains for each system using the dielectric constants and 

histidine considerations mentioned above, both with and without alanization of the 

nonpolar residues.  The calculations were performed in the absence of the ligand, but the 

System Fixed	Residues Histidines
ace H383_A	H387_A	E411_A H353_A	H513_A
ache H440_A
ada H15_A	H17_A	H214_A	H238_A	D295_A H157_A
alr2 H110_A
comt D141_A	D169_A H142_A
cox2 H90_A
dhfr H28_A
er_ag H524_A
er_ant H524_A
fxa H57_A
gart H108_A	H137_A
gpb H377_A
hivrt H235_A
p38 H148_A
parp H862_A
pde5 H617_A	H653_A	D654_A	D764_A H613_A
pnp S33_A	H64_A	R84_A	H86_A	S220_A H257_A
ppar H323_D	H449_D
rxr H435_A
sahh H55_A	H353_A
src R388_A
tk H58_B
trypsin H57_A
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ligand was replaced in order to evaluate the number of heavy atoms with close contacts 

to the ligand.  Based on these calculations we identified three sets of sidechains to dock to. 

The first set is referred to as the “best case”.  We identified the best sidechain predictions 

for each of the 37 systems using the number of close contacts and the sidechain RMSD for 

each combination of dielectric constant and histidine treatment.  The systems were 

alanized, therefore only polar sidechains were used in the bump and RMSD analysis.  

These predictions represent a “best case scenario” for predicted sidechains and are a 

reasonable set to use for identifying the optimum default settings for DarwinDock.  

However, this set doesn’t represent a true real-world test because information about the 

ligand and sidechains are used to identify which prediction method to use for each system.  

Table 3 shows the analysis of bumps for different settings.  It is obvious from the analysis 

of the bumps that there are clear cases where alanization of bulky residues dramatically 

decreases the number of bumps with the ligand. 

For real-world testing of DarwinDock we used two additional sets of sidechain predictions.  

The first used a constant dielectric of 2.5.  While not the best performer in terms of bumps, 

it represents the default settings that have been used in previous applications of 

DarwinDock.  The set with the fewest average number of bumps used a distance-dependent 

dielectric of 2.5.  Both sets were tested with and without alanization. 

For reference only we also tested DarwinDock against the systems using crystal sidechains 

with and without alanization. 
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Table 2-3 - This table shows the number of bumps with the ligand for each type of sidechain prediction using different 
dielectrics and with or without alanization.  The left half of the table shows results with alanization, the right without 
alanization.  The table has been color-coded with large numbers of bumps shown in red.  It is clear when comparing the left 
(alanized) and right (not alanized) portions of the table that alanization is key to reducing the number of bumps with the 
ligand.  Even small numbers of bumps can make it impossible for the ligand to be placed correctly during docking. 

 

“Best Case” Predicted Sidechain Results 

This set of sidechain predictions represents a “best case scenario” for predicted sidechains.  

Such a set allowed us to identify the best default settings for the percent of families scored, 

the composition of the scoring energy, the clustering diversity, and the completeness 

threshold.  For the percent of families scored we tested 10, 25, 33, 50, and 100%.  As with 

the sidechain predictions, we assessed both a flat dielectric of 2.5 and a distance-dependent 

dielectric of 2.5.  We also tried various scalings of the polar (Coulomb and hydrogen bond) 

component and the nonpolar (van der Waals) component of the scoring energy.  The 

best worst 2.50/flat 3.33/flat 5.00/flat 1.00/dist 2.50/dist 3.33/dist 5.00/dist best worst 2.50/flat 3.33/flat 5.00/flat 1.00/dist 2.50/dist 3.33/dist 5.00/dist
average 1.57 1.14 1.16 1.78 1.11 1.54 1.59 6.62 5.22 5.62 6.19 5.03 4.70 5.49
worst 26 10 10 14 10 22 29 35 21 35 19 20 24 29
ace 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 1 1
ache 0 0 0 0 0 0 0 0 0 7 12 7 8 7 8 11 12 12
ada 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
alr2 0 0 0 0 0 0 0 0 0 0 13 0 0 0 13 2 2 2
ampc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ar 2 6 2 2 2 2 2 6 2 10 23 23 17 22 16 18 10 16
comt 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
cox1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1
cox2 0 10 2 10 8 4 0 0 0 0 10 2 10 8 4 0 0 0
dhfr 0 6 0 0 0 3 6 6 6 6 20 14 15 14 17 20 6 6
egfr 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 2 2 5
er_ag 0 0 0 0 0 0 0 0 0 8 11 9 8 8 8 11 8 8
er_ant 0 0 0 0 0 0 0 0 0 0 7 0 1 4 1 6 6 7
fgfr1 0 0 0 0 0 0 0 0 0 0 6 0 4 0 6 0 0 6
fxa 0 0 0 0 0 0 0 0 0 3 7 7 3 3 3 7 7 3
gart 0 4 1 0 2 1 1 4 0 0 4 1 0 2 1 1 4 0
gpb 2 10 3 3 10 10 10 2 2 2 13 10 6 13 10 10 2 2
gr 1 8 2 2 2 8 1 1 1 12 24 24 21 21 19 12 12 12
hivpr 0 8 0 0 0 8 1 1 5 0 9 2 2 0 9 2 1 6
hivrt 0 0 0 0 0 0 0 0 0 2 17 14 14 3 17 3 2 3
hmga 0 2 2 2 1 0 0 1 1 2 7 7 3 2 5 5 6 6
hsp90 0 0 0 0 0 0 0 0 0 2 13 6 6 6 2 2 2 13
inha 0 0 0 0 0 0 0 0 0 12 35 35 20 35 12 20 20 20
mr 0 1 0 0 1 0 0 0 0 1 9 3 3 1 9 2 2 3
na 2 29 26 6 10 2 5 22 29 3 29 27 6 11 3 7 24 29
p38 1 14 10 5 1 14 4 2 2 4 17 11 8 4 17 5 5 5
parp 0 1 0 0 0 1 0 0 0 0 12 0 2 2 12 0 0 0
pde5 0 0 0 0 0 0 0 0 0 0 15 15 7 4 4 1 2 0
pnp 0 1 1 1 1 0 1 1 0 1 4 1 4 4 3 4 3 3
ppar 0 2 0 0 0 0 0 0 2 0 7 2 0 2 2 3 7 2
pr 0 0 0 0 0 0 0 0 0 0 3 3 2 3 0 1 0 0
rxr 0 3 3 3 0 1 0 0 0 2 10 10 4 7 2 8 8 8
sahh 0 6 3 2 0 6 3 4 3 0 6 3 2 0 6 5 4 3
src 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0
tk 0 4 0 3 3 4 4 4 4 0 15 0 8 15 12 9 9 15
trypsin 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0
vegfr2 0 0 0 0 0 0 0 0 0 4 5 5 5 5 5 5 4 5

alanized all	sidechains
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scalings tested were 100% polar with 0-100% phobic energy in 10% increments, and 

100% phobic with 0-100% polar energy in 10% increments.  In order to assess the accuracy 

of the docking calculations we consider how many of the final 120 poses are within a 2.0Å 

heavy-atom RMSD of the crystal ligand.  Through experience we have found that a pose 

within 2Å of the crystal ligand is sufficient to identify the pharmacophore.  It represents 

both the orientation of the ligand in the binding site as well as the key interactions with the 

protein.  While it is of course ideal to have as small an RMSD as possible, a 2Å RMSD is 

sufficient to have predictive value and acknowledges that the crystal structure is only a 

snapshot of what is really a dynamical system.. 

Figure 3 summarizes the average number of 2Å hits across all 37 DUD systems docked to, 

out of a possible 120 hits.  There was a clear preference for the scoring energy using 100% 

polar (Coulomb + hydrogen bonding) and 10% phobic (van der Waals), regardless of the 

dielectric constant used or the percent of families scored, therefore this was set as the 

default for remaining calculations. 

Figure 4 examines the impact of the percent of families scored and the dielectric constant 

when the 100% polar / 10% phobic scoring energy is used.  The average number of 2Å hits 

was slightly higher for the distance-dependent 2.5 dielectric than for the constant 2.5 

dielectric.  As one would expect, increasing the percent of families scored increased the 

average number of hits; however, the impact was not significant.  Increasing the percent of 

families scored from 10% to 100% yielded a little more than 1 extra hit on average while 

dramatically increasing the computational cost and calculation time.  As 25, 33, and 50% 
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yielded even smaller increases, there is no reason to set the default percent families 

scored above 10%.  Therefore, the default parameters for the remaining calculations were 

set at: 

• Scoring energy: 100% polar, 10% phobic 

• Distance-dependent dielectric, 2.5 

• 10% families scored 

 

Figure 2-3 - Analysis of docking to the "best" sidechain predictions.  The series show either flat or distance-dependent 
dielectric constants for varying percentages of families scored.  The left half of the chart shows scoring energies with 100% 
polar and the phobic energy scaled from 0 to 90%.  The right half of the chart shows scoring energies with 100% phobic 
energy and the polar energy scaled from 90 to 0%.  The center point has 100% polar and 100% phobic scaling.  There is a 
clear preference for 100% polar and 10% phobic regardless of dielectric and percent of families scored. 
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Figure 2-4 - Analysis of docking to the "best" sidechain predictions with the scoring energy set to 100% polar, 10% phobic.  
The red columns show a flat dielectric of 2.5 with the percent of families scored set to 10, 25, 33, 50, and 100%.  The blue 
columns show the distance-dependent dielectric for the same percent of families scored.  There is a clear, modest 
preference for the distance-dependent dielectric.  There is also a slight, but insignificant improvement from increasing the 
percent of families scored.  Due to the added computational cost, there is no reason to score more than 10% of the families 
for such insignificant improvement. 

Using these parameters we assessed different possible completeness thresholds and 

clustering diversities.  In addition to the accuracy of the calculations, these parameters can 

have a significant impact on the computational cost of the calculations.  Using the default 

clustering diversity of 2Å, we tested completeness thresholds of 1, 2, 5, 10, and 25%.  As 

expected, the accuracy of the calculations increases with the thoroughness of the 

calculations.  That is, a higher completeness threshold represents a more complete 

sampling of the binding site and is more likely to produce correct poses.  Conversely, a 
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looser completeness threshold is more likely to miss correct poses.  The 1% 

completeness threshold produced a higher number of average hits (33.4) compared to the 

2% completeness threshold (29.5), but had a much higher computational cost.  The 

maximum number of poses used by a system increased from 60,000 to 100,000 poses and 

the average number of poses increased from 39,000 to 60,000.  The number of systems that 

failed to produce any 2Å hits remained the same.  Decreasing the threshold to 5% 

significantly reduced the computational cost, but the number of failed systems increased 

from 3 to 4.  Therefore we feel that a completeness threshold of 2% represents a reasonable 

balance between accuracy and computational cost. 

Using the 2% completeness threshold we assessed clustering diversities of 1, 2, and 3Å.  

The clustering diversity determines how closely a family head resembles the rest of the 

family members, and thus how accurate our assumption is that the energy of the family 

head can be used to eliminate the family members from further consideration.  Clustering at 

1Å yielded ~6.5 additional hits than the 2Å clustering and one fewer completely failed 

systems.  However, the computational cost of clustering at 1Å was dramatically higher than 

that at 2Å.  1Å clustering had a maximum number of poses of 125,000 and an average of 

86,000, while 2Å clustering had a maximum of 60,000 and an average of 39,000.  

Increasing the clustering to 3Å reduced the average number of hits by ~3 and decreased the 

maximum and average number of poses to 40,000 and ~27,000, respectively.  However, 

despite the reduced number of poses, clustering at 3Å actually increased the number of 

energy calls.  This is because the average number of children per family increased from 5.6 

to 10.  Our default of clustering at 2Å represents an optimum, given the other settings used.  
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Table 4 summarizes the results for the completeness threshold and clustering diversity 

tests. 

Table 2-4 – Summary of results for various completeness thresholds and clustering diversities.  Smaller completeness 
thresholds and clustering diversities yield improved results, but at significantly increased computational cost.  The default 
settings are highlighted in green. 

 

 

Standard Predicted Sidechains 

Based on the results of the “best case” predicted sidechains, we performed tests on the two 

sets of standard sidechain predictions.  These sets used either a flat or distance-dependent 

dielectric of 2.5 for the sidechain predictions.  The scoring energy for the docking 

calculations used the settings identified above: 100% polar, 10% phobic, distance-

dependent dielectric of 2.5.  Additionally, these sets included all of the various histidine 

Threshold Avg	Hits #	Fails %	Fails Max	Poses Avg	Poses Avg	Fams Poses/Fam
1% 33.4 3 8.1 100000 60214.3 9124.3 6.6
2% 29.5 3 8.1 60000 39082.1 6986.2 5.6
5% 25.5 4 10.8 35000 23984.4 5052.2 4.7
10% 22.8 4 10.8 20000 16416.8 3879.8 4.2
25% 18.9 4 10.8 15000 11011.4 2941.9 3.7

Diversity Avg	Hits #	Fails %	Fails Max	Poses Avg	Poses Avg	Fams Poses/Fam
1	Å 36.1 2 5.4 125000 86025.1 30701.3 2.8
2	Å 29.5 3 8.1 60000 39082.1 6986.2 5.6
3	Å 26.4 3 8.1 40000 26784.8 2675.4 10.0

10%	of	Families

Clustering	Diversity:	2Å

Completeness	Threshold:	2%

Dielectric
Scoring	Energy

%	Scored

2.5,	Distance-Dependent
100%	Polar	/	10%	Phobic
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combinations mentioned above.  These calculations represent a more authentic real-

world approach to a docking problem.  The “best” predicted sidechains relied on 

knowledge of the crystal structure in order to identify which set to use.  The “standard” 

sidechain predictions only made use of the protein backbone from the crystal, the ligand 

position to identify the general binding site for sphere generation, and the crystal ligand 

conformation, thus making it much closer to a real-world scenario. 

These docking sets produced interesting results.  First, on average the systems with 

sidechains predicted using the distance-dependent dielectric outperformed those using the 

constant dielectric by about 8 hits on average, despite not having a large difference in the 

bindsite sidechain RMSD.  The number of bumps slightly favors the distance-dependent 

dielectric sidechains on average.  The true surprise is from the non-alanized results.  The 

non-alanized, flat dielectric sidechains outperformed the alanized sidechains by nearly 15 

hits on average.  The non-alanized, distance-dependent dielectric sidechains 

underperformed the alanized sidechains by about 20 hits on average.  This result is 

puzzling.  However, the average number of hits per system is not the only important 

criteria.  It is also important to identify the number of systems that produced no 2Å hits, 

which represents a complete failure of docking.  Flat dielectric with alanization had the 

fewest systems with no hits at 4 systems, followed by the distance-dependent dielectric 

with alanization at 7 systems.  Both non-alanized sets had 18 of 37 systems with zero 2Å 

hits. 
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As with the crystal sidechains, the loss of the van der Waals energy contribution to the 

binding energy and the increase in the volume to sample can clearly have a detrimental 

impact on some systems.  However, unless one can be supremely confident in their 

sidechain predictions, alanizing the binding site is the most reliable way to ensure that 

some number of good poses will be produced.  There are some systems where alanization 

is essential (e.g. “ppar”), some where it is detrimental (e.g. “pnp”), and some where it 

doesn’t make an impact (e.g. “trypsin”).  Similarly, some systems do better with the flat 

dielectric (e.g. “dhfr”) and some do better with the distance-dependent dielectric (e.g. 

“rxr”).  The ideal approach when working on an individual system is likely to dock to 

several sets of diverse sidechain predictions in order to cover multiple possibilities. 

Table 2-5 – Comparison of docking results for flat-dielectric and distance-dependent dielectric predicted sidechains with 
and without alanization.  The average number of 2Å hits per system looks encouraging for the flat-dielectric set without 
alanization, but half of the systems produce no 2Å hits. 

 

Avg	2Å	Hits	 #	Sys	With	0	2Å	Hits	
set	 flat,	ala	 flat,	full	 dist,	ala	 dist,	full	 flat,	ala	 flat,	full	 dist,	ala	 dist,	full	
33%	 45.8	 64.9	 53.4	 36.3	 3	 17	 6	 16	
25%	 45.8	 63.5	 53.2	 36.4	 3	 17	 6	 17	
10%	 45.7	 59.4	 53.3	 33.6	 4	 18	 7	 18	
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Table 2-6 – Average number of 2Å hits for flat dielectric and distance-dependent dielectric predicted sidechains, with 
and without alanization.  There are some systems where alanization is essential (e.g. “ppar”), some where it is detrimental 
(e.g. “pnp”), and some where it doesn’t make an impact (e.g. “trypsin”).  Similarly, some systems do better with the flat 
dielectric (e.g. “dhfr”) and some do better with the distance-dependent dielectric (e.g. “rxr”).  Note: “A” refers to a histidine 
replaced with alanine, “B” refers to a neutral histidine changed to protonated histidine. 

 

system flat,	ala flat,	full dist,	ala dist,	full system flat,	ala flat,	full dist,	ala dist,	full
ace.A353_A_A513_A 31 100 42 13 gr 8 0 45 0
ace.B353_A 74 30 15 11 hivpr 59 0 27 6
ace.B353_A_B513_A 106 0 17 16 hivrt.A235_A 17 0 27 0
ace.B513_A 115 69 61 73 hivrt.B235_A 20 0 25 0
ace 106 109 36 100 hivrt 18 0 26 0
ache.A440_A 1 0 0 0 hmga.A752_C 1 1 1 2
ache.B440_A 0 0 0 0 hmga.B752_C 3 2 8 3
ache 0 0 0 0 hmga 0 0 12 6
ada.A157_A 10 43 5 30 hsp90 7 3 9 0
ada.B157_A 10 31 5 23 inha 51 0 59 0
ada 5 50 9 11 mr 14 120 33 120
alr2.A110_A 0 0 0 0 na 0 0 0 0
alr2.B110_A 7 0 0 0 p38.A148_A 55 0 117 0
alr2 7 0 0 0 p38.B148_A 0 0 40 0
ampc 1 0 0 0 p38 44 0 10 0
ar 0 0 0 0 parp.A862_A 5 0 2 0
comt.A142_A 18 49 6 3 parp.B862_A 13 1 11 1
comt.B142_A 9 28 7 5 parp 12 0 4 1
comt 9 28 7 5 pde5.A613_A 0 0 0 11
cox1 30 120 36 120 pde5.B613_A 0 0 0 0
cox2.A90_A 12 116 0 0 pde5 0 0 0 0
cox2.B90_A 2 0 9 0 pnp.A257_A 11 120 23 0
cox2 3 90 2 63 pnp.B257_A 2 120 15 37
dhfr.A28_A 43 0 59 22 pnp 16 120 37 0
dhfr.B28_A 51 0 4 0 ppar.A323_D_A449_D 0 0 0 0
dhfr 51 0 4 0 ppar.B323_D 112 0 110 2
egfr 14 42 3 0 ppar.B323_D_B449_D 65 0 109 2
er_ag.A524_A 5 73 5 119 ppar.B449_D 65 0 109 2
er_ag.B524_A 0 0 1 120 ppar 112 0 110 2
er_ag 7 77 9 119 pr 26 0 24 3
er_ant.A524_A 2 115 10 0 rxr.A435_A 40 0 101 0
er_ant.B524_A 2 96 10 0 rxr.B435_A 13 0 96 0
er_ant 2 96 10 0 rxr 16 0 90 0
fgfr1 5 34 4 15 sahh.A55_A_A353_A 1 0 1 0
fxa.A57_A 0 0 49 0 sahh.B353_A 0 21 0 0
fxa.B57_A 14 0 58 0 sahh.B55_A 0 0 0 0
fxa 14 0 58 0 sahh.B55_A_B353_A 0 0 0 0
gart.A108_A_A137_A 0 19 0 0 sahh 0 21 0 0
gart.B108_A 0 1 0 0 src 6 7 11 54
gart.B108_A_B137_A 0 0 0 0 tk.A58_B 0 16 1 0
gart.B137_A 0 0 0 0 tk.B58_B 0 0 8 0
gart 0 1 0 0 tk 6 118 3 0
gpb.A377_A 0 0 2 13 trypsin 102 109 118 110
gpb.B377_A 2 0 0 0 vegfr2 3 0 6 0
gpb 0 0 0 0
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Crystal Sidechains 

Tests of DarwinDock were also performed using the crystal sidechains without alanization 

using the same range of scoring parameters as in the “best case” tests.  As it is not really 

possible to have crystal sidechains available in a real-world situation, these calculations are 

provided as a reference, not as guidance for future calculations.  Compared to the “best 

case” predicted sidechains, the crystal sidechains showed a preference for a higher phobic 

scoring scaling, but surprisingly not 100%.  Instead, when 100% of the families were 

scored, the best result was for 100% polar and 50% phobic, although 40 and 30% phobic 

provided nearly identical results.  At 10% of families scored 100% polar and 30% phobic 

was the best combination.  The shift toward higher phobic scoring was not surprising due 

to the lack of alanization.  The nonpolar residues, which were removed for the predicted 

sidechains test, interact with ligands predominantly via van der Waals energy.  What was 

surprising about these results is that including the full van der Waals energy was not the 

best.  These results are summarized in Figure 5. 
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Figure 2-5 – Analysis of docking to the crystal, non-alanized sidechains.  Unlike with the “best” predicted sidechains, these 
results show a preference for a higher phobic content, although not 100%.  The best result is for distance-dependent 
dielectric and 100% polar, 50% phobic when scoring 100% of the families.  This drops to 100% polar, 30% phobic when 
only scoring 10% of the families. 

Docking calculations for crystal sidechains with alanization using 100% polar, 10% phobic 

and distance-dependent dielectric showed many fewer 2Å hits than the crystal, non-

alanized results, but still more than the “best” predicted sidechains.  Two factors explain 

the lost hits in the crystal, alanized case.  First, removing the nonpolar residues obviously 

removed whatever van der Waals contributions those sidechains make to the binding 

energy.  Second, alanization dramatically increased the size of the binding site for many 

systems.  This allows ligands to make spurious interactions with polar sidechains that 

wouldn’t be possible if they were blocked by the nonpolar residues.  It also increased the 
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number of poses necessary for complete sampling of the binding site, meaning that the 

final 120 poses represented a smaller percentage of all the poses generated and scored. 

Table 2-7 - Number of 2Å hits when using full crystal sidechains.  
(Columns are split for compactness.) 

 

Conclusions 

The results in Table 5 and Table 6 show that DarwinDock is broadly successful when 

tested against the DUD set.  Only two systems completely fail to produce any 2Å hits 

across all four sidechain predictions (flat- or distance-dependent dielectric, with or without 

alanization).  Several other systems only have small numbers of hits.  This is in contrast to 

system xtl,	full system xtl,	full
ache 120 hivpr 117
cox1 120 vegfr2 116
cox2 120 gpb 99
dhfr 120 er_ant 98
er_ag 120 hmga 92
gr 120 pde5 92
hivrt 120 ada 87
inha 120 fxa 75
mr 120 na 64
p38 120 comt 54
pnp 120 parp 49
ppar 120 fgfr1 45
pr 120 egfr 37
rxr 120 src 25
sahh 120 hsp90 16
tk 120 ampc 9
trypsin 120
ace 119 failed 0
ar 119 avg 97.0
alr2 118 max 120
gart 118
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Table 7, which shows that nearly half of the systems have a full set of 120 2Å hits when 

the full, crystal sidechains are used.  This comparison illustrates that the difficulty is not 

with DarwinDock, but rather the inaccuracy of sidechain predictions.  Here the 

fundamental problem is that in the apo-protein the best sidechain conformations often 

invade the binding site. 

The ideal starting point for a docking calculation would be a crystal structure with a related 

ligand already bound.  In such a situation it should be possible to identify what residues are 

likely to move and which are not.  A crystal structure without a ligand would also provide 

some insight.  Both of those situations would relieve some of the uncertainty of the 

sidechain positions and yield good docking results with DarwinDock. 

Of course a most interesting case is where there is no crystal structure for the protein.  

Indeed, most applications of DarwinDock have been for cases where the protein structure 

was predicted.  With such ab initio starting structures things are more challenging.  Clearly 

the tests discussed above show that some predicted sidechains are reliable and some are 

not.  If one has the time to focus on a single system it may be possible to improve the odds 

of getting good docking results by trying multiple combinations of sidechain conformations 

and by using available experimental knowledge of the system. 

These results show that DarwinDock is a reliable method for generating docked poses for 

small molecule ligands.  The primary improvements necessary to the docking process are 

not with DarwinDock itself, but obtaining a good structure to dock to.  As such, 
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DarwinDock is a useful tool for investigating the interactions between proteins and small 

molecules. 
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Abstract 

Glycosaminoglycan (GAG)-protein interactions play important roles in the development 
and maintenance of the nervous system, angiogenesis, spinal cord injury, viral invasion, 
and immune response. Unfortunately, little structural information is available for these 
complexes; indeed, for such important GAGs as the highly sulfated chondroitin sulfate 
motifs, CS-E and CS-D, there are no structural data. This is due to the structural 
heterogeneity of GAGs and the difficulty of obtaining sufficient quantities of material of 
consistent length and sulfation pattern. Here, we describe the development and validation 
of the GAG-Dock computational method to accurately predict the binding poses of protein-
bound GAGs. We validate that GAG-Dock accurately reproduces (< 1 Å RMSD) the 
crystal structure poses for four known heparin-protein structures. Further, we predict the 
pose of heparin and chondroitin sulfate derivatives bound to the axonal guidance proteins: 
protein tyrosine phosphatase σ (RPTPσ) and the Nogo receptor (NgR). Such predictions 
should be useful in understanding and interpreting the role of GAGs in axonal growth and 
other processes. 
 
Keywords: docking | chondroitin sulfate | heparin | RPTPσ | NgR | axonal growth  

Abbreviations: CS, chondroitin sulfate, GAG, glycosaminoglycan; HS, heparin sulfate; 
LRR, leucine-rich repeat; RMSD, root-mean-square deviation 

 



 

 

37 
Introduction 

The glycosaminoglycans (GAGs) heparin sulfate (HS) and chondroitin sulfate (CS) are 

involved in a diverse array of physiological processes, such as cell proliferation, migration, 

differentiation, morphogenesis, angiogenesis, blood coagulation, axon guidance, and spinal 

cord injury through interactions with a wide variety of proteins (1-4). Despite the 

importance of GAG-protein interactions, there is remarkably little structural information 

for these complexes. This is due in part to the inherent heterogeneity of GAGs both in 

length and degree of sulfation, and the lack of tools required to obtain homogeneous 

oligosaccharides. GAGs form a family of linear polysaccharides composed of alternating 

uronic acid and hexosamine units. The polysaccharides can vary in length, net charge, 

disaccharide composition, and the pattern and degree of sulfation. The biosynthesis leads to 

distinct sulfation motifs for both CS and HS (Fig. 3-1). Recent studies have shown that 

biological activity is often dependent on the sulfation sequence, with specific, highly 

sulfated sequences directing the interactions of GAGs with growth factors and other 

signaling proteins (5-11). 
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Figure 3-6 – Structures of glycosaminoglycans: heparin, heparin analog, chondroitin sulfates CS-A, CS-C, CS-D, and CS-E 

Obtaining oligosaccharides with defined length and sulfation sequence is a difficult and 

specialized task for highly sulfated HS/heparin, and even more difficult with over-sulfated 

CS motifs such as CS-D and CS-E. As a result, structural data is available for only a 

handful of heparin-protein complexes, and no structural information is available for the CS-

D and CS-E motifs. Recent work has shown that over-sulfated CS and HS interact directly 

with transmembrane receptors such as Nogo receptor (NgR) and type IIa receptor protein 

tyrosine phosphatase s (RPTPs) (11-14). However, it is unclear how GAGs engage and 

activate these receptors.  
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An alternative approach to in vitro structural determination is computational modeling of 

GAG-protein complexes. However, modeling GAG-protein interactions is extremely 

challenging because of the conformational flexibility of GAGs, the high charge density of 

GAGs and GAG-binding sites, and the weak surface complementarity of GAG-protein 

interactions. Despite these challenges, we (7) and others (15-18) have used molecular 

modeling successfully to predict the site at which GAGs engage their target proteins (7, 15-

18). Some of these methods have limited accuracy in predicting the bound pose of the 

ligand or have limited robustness across different systems. Moreover, most of these 

methods have not been applied to systems other than the known heparin-protein structures.  

Herein, we report the GAG-Dock method, that we developed to model accurately GAG-

protein interactions, and we validate this method against known GAG-protein systems.  We 

further apply the method to predict the protein-bound pose of various GAGs, including 

over-sulfated CS, to systems without known structures. 

Summary of the GAG-Dock Method 

Unlike small molecule ligands often docked successfully with various techniques (19-25, 

44), even the truncated GAGs are large (the CS-A 4-mer has 60 heavy atoms and a net 

charge of -4; the CS-E 8-mer has 137 heavy atoms, a net charge of -12). Additionally, they 

bind to protein surfaces rather than in pockets, and engage proteins primarily through 

electrostatic interactions.  

Our new GAG-Dock method is based on the DarwinDock and GenDock methodology (19, 

20) with modifications to accommodate bulky, highly charged, surface-binding ligands 



 

 

40 
characteristic of GAGs. The GAG-binding site is generally not known; hence, it is 

necessary to examine systematically all possible binding regions. To do this, we complete 

two rounds of docking. First, we perform “coarse-level” docking to identify the best 

regions for further study. Second, we carry out “fine-level” docking on the best coarse 

regions to identify specific, strongly bound poses. 

DarwinDock/GenDock  

The DarwinDock/GenDock docking method applied here (19, 20) has been applied 

recently to predict ligand binding sites for GPCRs such as CB1 (21), GLP1-R (22), OR1G1 

(23), TAS2R38 (42), AA3R (24), and 5HT2b-R (25). Briefly it consists of four parts: 

(1) System Preparation. Starting with target protein structures (usually with no hydrogen 

atoms), we prepare the systems as follows: (a) add hydrogens to various heavy atoms using 

standard bond distances and hydrogen binding criteria; (b) assign partial charges to all 

protein atoms based on general force field criteria and to all heteroatoms based on Mulliken 

charges; (c) optimize the protein structure using the force field to minimize the energy; (d) 

replace the 7 bulky, nonpolar residues (V/L/I/M/F/Y/W) with alanine (“alanization”) to 

allow more complete sampling of the binding site; and (e) generate and select regions to be 

sampled by the ligand. 

Generally the conformations of the protein side chains at the ligand binding site depend on 

the location and the conformation of the ligand (the pose), while the location and 

conformation of the ligand depends on the side chain conformations. Our solution to this 

“chicken-egg” problem is to alanize the bulky, nonpolar sidechains in step d (mentioned 
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above) to allow the ligand to fully sample available sites on the protein surface in the 

presence of the polar interactions. After selecting the best poses, the original nonpolar 

sidechains are replaced and reoptimized for each pose using SCREAM (45) in a process we 

call “dealanization”. This allows a different set of protein side chains for each ligand pose. 

To select poses that are close enough to the protein to interact favorably, while not too 

close to clash with protein atoms, we generate spheres to describe the space available for 

the ligand. This is done with the sphgen program (26), modified to work with protein 

surfaces. The spheres are partitioned into overlapping boxes (“sphere regions”) for 

docking. 

(2) Generation of a Complete Set of Poses. Prior to evaluating interaction energies between 

the ligand and protein, we want to sample the complete set of all possible poses. We do this 

by iteratively generating poses and then clustering them into Voronoi-like families using 

RMSD as the distance metric. This is done until the number of families stops changing as 

additional poses are added. For the cases considered here, we used an RMSD criterion of 2 

Å in defining families, which generally leads to ~50,000 poses partitioned into ~2000 

families, for each of which we select the “family head” as the central pose. During the 

pose-generation process no energies are calculated. To choose the best binding region, a 

quick but systematic “coarse” docking is first done using 10,000 poses without attempting 

the iterative, complete sampling. 

(3) Scoring. To reduce computational cost, we want to minimize the number of poses for 

which an energy must be evaluated. Thus, scoring of the poses is broken into two steps. 
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First, the protein-ligand interaction energy of each family head is calculated, and the 

families ranked. Then, 90% of the families are eliminated based on the energy of the family 

head. Finally, the binding energies are calculated for all of the family members (children) 

in these 10% best families, and the poses are ranked with only the best 100 poses selected 

for further analysis. This hierarchical scoring procedure allows for a majority of the poses 

from the complete set (~50,000) to be eliminated without energy calculations. 

(4) Optimization and Refinement. The 100 best poses from step 3 are further optimized and 

refined to identify the best poses. The first step is to de-alanize, i.e., replace and reoptimize 

the “alanized” residues with the full hydrophobic side chains. Simultaneously, all 

sidechains in the binding site are re-optimized (SCREAMed) using the SCREAM side-

chain optimization method (45), in the presence of the specific ligand pose. Thus we end up 

with 100 different sets of side chain conformations, a different set for each ligand pose. 

Then, each of these 100 systems is energy minimized for 10 conjugate gradient steps. At 

this point the 100 poses are rescored and 50% eliminated. Then, another 50 steps of 

minimization are performed for these 50, with the poses again rescored. This final round of 

minimization is skipped during “coarse” docking. 

GAG-Dock Modifications 

The small-molecule docking methodology (DarwinDock/GenDock) was adapted to GAG 

structures through the following changes: 

Sphere generation for flat protein surfaces requires alterations to the standard sphgen 

procedure (26). First, all spheres are generated with the ‘dotlim’ parameter in sphgen set to 
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-0.9, which allows spheres to be generated for flat surfaces. Second, in order to prevent 

the generation of deeply buried spheres that would be inaccessible to GAG ligands, a 

second set of spheres is generated using a probe radius of 2.8 Å instead of the normal 1.4 

Å. The normal (1.4 Å probe radius) set of spheres is compared to the restricted (2.8 Å set), 

and only spheres within 2.8 Å of the restricted set sphere are kept. This procedure allows 

for spheres to be generated for the protein surface, while preventing those spheres from 

being so close to the surface to cause a large number of clashes with the protein during 

pose generation. These spheres are then partitioned into overlapping boxes/regions with 20 

Å sides and 5 Å overlap. 

System Preparation 

All proteins studied here were prepared from PDB structures, with the exception of NgR1, 

NgR2, and NgR3, which required homology modeling from related systems with x-ray 

derived structures.  

GAG Ligand Preparation 

For the four validation systems, a ligand was already present in the crystal structure. 

For the three systems without x-ray structures, no specific binding site is known, and hence 

we selected ligand structures based on the isolated ligands. Thus, the CS-A, CS-D, and CS-

E structures used for docking to the non-validation systems were based on a CS-A 

hexasaccharide crystal structure (28), while the heparin structures for docking to the non-

validation systems are based on a heparin 18-mer NMR structure. For CS-A and heparin, it 
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was only necessary to extend or truncate the structure to the appropriate length. We 

prepared CS-D and CS-E by extending the CS-A structure to a 12-mer, modifying the 

sulfation pattern, optimizing the sidechains, and performing Molecular Dynamics (MD) in 

solution. The structure closest to the average during MD was selected as the conformation 

for docking. This conformation was then truncated to a hexa- or octasaccharide by 

removing sugars from both the reducing and non-reducing ends. This step was necessary 

because the terminal saccharides display high variability in torsion angles during MD that 

are unphysical (inconsistent with possible movements) for an extended polysaccharide. 

Heparin and the other GAGs adopt a helical conformation that distributes charge radially 

along the length of the polysaccharide (31-33). 

Results and Discussion 

In order to validate the GAG-Dock method for such complex ligands and binding sites, we 

applied it to two sets of systems. The first set consists of the four validation systems for 

which a crystal structure including the ligand bound to the specific binding site was known. 

The second set of systems consists of three proteins known to bind to one or more GAG 

ligands, but for which the specific binding site was not known (although the general region 

of binding may be known). In each case, we followed the procedure of (1) coarse docking 

to identify the best regions, and (2) fine docking to identify the best ligand poses. In both 

cases the predicted binding energy was the criterion for selection. 
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Case 1: Validation of systems for which there are x-ray structures of the co-crystal 

Five heparin-protein crystal structures have been solved, providing a means to validate our 

method. We applied GAG-Dock to four of these cases. We did not consider the 5th system, 

FGF1-FGFR2 (PDB: 1E0O (29)), because this 10-mer ligand is significantly more 

demanding computationally, but similar otherwise to the other validation cases.  The 

RMSD comparisons for the predicted and crystal ligands for the validation systems are 

summarized in Table 3-1, showing that GAG-Dock reproduces the ligand positions with 

good accuracy.  Figure S3-13 compares the nonbond interactions between the ligands and 

sidechains within the binding sites of the validation systems.  As can be clearly seen from 

the plots in Fig. S3-13, most of the ligand-sidechain interactions were faithfully 

reproduced.  A major source of error in the sidechain placement and interaction energies 

was the lack of waters in our validation systems.  For structures without known binding 

sites, such as RPTPs and NgR, the placement of waters in an apo-protein crystal structure 

cannot be assumed to be correct for a ligand-bound structure, and even that information is 

lacking if homology modeling is used to generate the protein structure.  Therefore, for a 

realistic assessment of the validation systems, any waters present in the crystal structures 

were removed.  As waters often play a role in ligand binding, removing the waters allows 

sidechains in the protein to interact more strongly with the ligand. 

FGF1 

We validated our method using the crystal structure of the heparin hexasaccharide bound to 

two molecules of fibroblast growth factor 1 (FGF1, PDB: 2AXM (30)). 
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GAG-Dock correctly identified the binding site, with both molecules of FGF1 interacting 

with heparin at the same site, but with different specific residues interacting with the ligand 

for the proteins. The lowest-energy pose was within 0.70 Å root-mean-square deviation 

(RMSD) of the crystal structure ligand (Fig. 3-2A, S3-5, S3-6), calculated by comparing all 

atoms in the docked ligand to all atoms (including added hydrogen atoms) in the x-ray 

ligand. 

Since the crystal structure is available, we docked the protein with all side chains in their 

experimental conformation. In this case we predict the lowest energy (strongest binding) 

ligand pose to have an RMSD error of 0.70 Å. Optimizing the residues for the heparin-

binding site of the FGF1 molecules led to the lowest energy structure with an RMSD of 

2.08 Å for the sidechains compared to the x-ray structure (Fig. S3-5). We consider that this 

is a success. Comparing to the x-ray pose, we find some minor differences in the energy 

contributions (Table S3-5). For example, K112 and K113 in chain A and K128 in chain B 

made stronger Coulomb and hydrogen bonding interactions with the ligand in the docked 

pose than in the x-ray (possibly because the water plays a role in the x-ray structure but not 

in ours). On the other hand, R119 was positioned farther from the ligand in the docked pose 

leading to weaker Coulomb interactions with the ligand. Overall the predicted energy 

contributions for the ligand interacting with each residue were consistent between the 

docked and crystal structures, indicating that these energy contributions can be used to 

understand the relative contributions to binding for each residue of the protein. Our 

conclusion is that our GAG-Dock methodology accurately predicts both the ligand pose 

and the relative importance of residues on the protein toward binding. Our analysis 
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suggests that K112, K113, K118, R122, and K128 make the most important 

contributions to heparin binding.  

FGF2 

For the complex of a heparin tetrasaccharide with FGF2 (PDB: 1BFB (34)), heparin makes 

contacts primarily with a single molecule of FGF2. However, in the crystal there are 

additional contacts with three nearby FGF2 molecules that appear to influence the 

conformation of the ligand. Thus, we docked the heparin tetrasaccharide to the central 

protein while including the three nearby FGFs to describe the conditions of the crystal 

structure. Again, GAG-Dock correctly predicts the binding site and the optimum pose of 

the crystal ligand (0.70 Å RMSD, Fig. 3-2B, S3-7).  

For FGF2, the side chains of the active site differ from the x-ray structure by 2.09 Å 

RMSD. In particular, GAG-Dock predicts conformations of K120, R121, and K130 that 

lead to stronger hydrogen bond and Coulombic contributions to binding than in the x-ray 

structure (Table S3-6).  However for FGF2, no residues had less favorable conformations 

in the docked structure compared to the crystal structure. Again, GAG-Dock correctly 

predicts the relative importance of all residues involved in binding, showing that residues 

K120, R121, K126, K130, and K136 contribute most strongly to heparin binding.  

FGF2-FGFR1 

Heparin is known to form a ternary complex with FGF and its receptor FGFR2. The crystal 

structure of the FGF2-FGFR1-heparin complex features a 2:2:2 stoichiometry (PDB: 1FQ9 
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(35)). In this structure, each heparin molecule (an 8-mer and a 6-mer) binds to the 

positively charged groove formed at the junction of the proteins, making contacts with an 

FGF2 molecule and with the D2 domains of both FGFR1 molecules. Interestingly, this 

structure is very similar to the FGF2-FGFR1 complex without heparin (0.37 Å RMSD 

(36)), suggesting that in this case GAG-Dock correctly predicts the multimeric protein-

receptor-GAG complex (7). We docked both heparin molecules to regions near the FGF1 

molecule and to both FGFR2 molecules. For both heparin molecules, the predicted pose 

correctly identifies the binding pose (with RMSD of 0.75 Å (8-mer) and 1.51 Å (6-mer); 

Fig. 3-2C, S3-8 – S3-11). The RMSD of the side chains in the binding site was 1.76 (8-

mer) and 2.28 Å (6-mer). Again, the predicted pose accounts for the relative importance of 

residues involved in binding, leading to the same pharmacophore identified in the crystal 

structure (Table S3-7 – S3-11).  

α-Antithrombin III 

The interaction between heparin and α-antithrombin III (ATIII) is one of the most studied 

GAG-protein complexes due to its role in blood coagulation (37). The structure of ATIII 

bound to a heparin analog (PDB: 1E03 (38)) provided a more challenging test than the 

other validation cases. With no other protein species making significant contacts to the 

ligand, this structure lacked the constraints of the other validation systems. Even without 

such constraints, GAG-dock predicts the crystal structure pose with 0.60 Å RMSD (Fig. 3-

2D, S3-12). The protein side chains in the binding site have an RMSD of 1.96 Å compared 

to the crystal structure. Again, our predicted pose accounts for the relative importance of 
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residues involved in binding, with residues R13 and K125 contributing more to binding 

in the docked pose (Table S3-12). 

 

Figure 3-7 – Comparison of predicted binding sites for heparin (magenta) to the x-ray crystal ligand positions. (A) FGF1 
[RMSD: 0.70Å], (B) FGF2 [RMSD: 0.70Å], (C) FGF2-FGFR1 [RMSD: 1.51Å, 0.75Å], (D) α-antithrombin III [RMSD: 
0.60Å] 

Table 3-7 – Summary of docking validations.  The resolution of the x-ray structure is given along with the heavy-atom 
RMSD between the predicted and x-ray position of the ligand. 
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Case 2: Predictions for systems for which no co-crystal structure is available  

Unlike heparin, no structural information is available for over-sulfated chondroitin sulfate 

motifs, despite increasing evidence of their biological importance (5, 7, 11, 12, 14). This is 

due to the difficulty in obtaining CS molecules that are purely one type (e.g. CS-E) for use 

in generating crystals.  The recent identification of RPTPs and NgR as mediators of CS-

induced axon inhibition, and the discovery that HS and CS have opposing effects on axon 

morphology (13), highlight the critical need for structural data to facilitate a mechanistic 

understanding of GAG function. Interestingly, both RPTPs and NgR bind to 

polysaccharides enriched in the CS-D, CS-E, or heparin sulfated epitopes, but not the lower 

sulfated motifs, such as CS-A. Thus, these proteins are ideal first systems to test how 

consistent our docking predictions are with in vitro binding data. To this end, we predicted 

docked structures of various GAGs to RPTPs, NgR1, NgR2, and NgR3. 

RPTPs 

While structural data for an RPTPs-GAG complex has not been reported, the GAG binding 

site on the protein is well understood. A defined GAG-binding site lies on the Ig1 domain 

of the protein, mediated by the K67, K68, K70, K71, R96, and R99 residues (13). This 

region forms a shallow electropositive cavity on the surface of the protein between b 

strands C-D and E-F (Fig. S3-14). The quadruple mutation of K67, K68, K70, K71 to 

alanine has been shown to impair binding to both CS and HS (12, 39). ELISA binding data 

to natural GAG polysaccharides indicate that RPTPs binds strongly to the CS-D and CS-E 

motifs and to heparin, but not to CS-A (11,14). To better understand RPTPs-GAG binding, 

we docked CS-E, CS-D, and heparin hexasaccharides to the protein (PDB: 2YD2). We also 
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docked CS-A hexasaccharide but did not find significant binding, which is consistent 

with the lack of binding observed experimentally.  The docked CS-E and heparin structures 

are shown in Fig. 3-3, with detailed structures shown in Fig. S3-15 (CS-E) and S3-16 

(heparin). 

Indeed, GAG-Dock predicts that the GAG ligands bind to the previously identified GAG-

binding site. That is, CS-E and heparin both bound to K67, K68, K71, N73, Q75, R76, 

R96, and R99 (Table S3-14). Additionally, CS-E made contacts with K71 and S74, and 

heparin made contacts with T97. Motifs with lower charge density, such as CS-A, had a 

poor docked scoring energy with the protein compared to CS-E and heparin, suggesting a 

weak interaction in vitro. A continuous tetrasaccharide makes contacts with RPTPs in the 

case of CS-E, while the entire heparin hexasaccharide makes contacts. These data are 

consistent with a single GAG-binding site; however, CS and HS have opposing effects on 

axon growth in DRG neuron cultures. HS promotes axonal growth whereas CS is growth 

inhibitory (13). This raises the question: How is it possible for these structurally related 

ligands to affect such drastically different signaling outcomes? 

Based on size-exclusion chromatography coupled with multi-angle light scattering (SEC-

MALS) using heparin fragments of various lengths and using a CS-A-enriched 

polysaccharide, Coles et al. (13) suggested that the difference between the glycans is that 

HS is capable of clustering RPTPs but CS is not. This is consistent with our GAG-Dock 

predictions (based on docked scoring energies). Later experimental studies demonstrated 

that CS-A has poor affinity to the protein compared to other CS sulfation motifs, especially 
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CS-E (11, 14). Unfortunately, CS-E oligosaccharides of suitable and defined length are 

not readily available to make the appropriate comparison. Nevertheless, it is plausible that 

CS-E polysaccharides should also be capable of simultaneously binding to multiple RPTPs 

molecules. 

However, our docking data suggests another possibility. Because of the higher charge 

density and steeper helical twist of heparin/HS, our predicted pose for heparin 

hexasaccharide exposes several charged groups to the solvent. In contrast, the charged 

groups of CS-E are all engaged with the protein. Therefore, the mechanistic difference 

between heparin and CS-E may be that heparin is able to dimerize RPTPs, just as heparin 

does with FGFs, rather than merely clustering the receptor. Indeed, the SEC-MALS data in 

Coles et al. show that a decasaccharide is capable of binding two molecules of RPTPs, 

suggesting that bound heparin may be able to engage both proteins simultaneously (13). 
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Figure 3-8 – (A) CS-E and (B) heparin bound to RPTPs.  Dotted lines indicate hydrogen bonds to the protein. 

NgR 

The NgRs are myelin-associated inhibitors that restrict axonal growth after injury. A recent 

study demonstrated that NgR1 and NgR3, but not NgR2, are involved in GAG-induced 

axonal inhibition (14). NgRs are comprised of 8.5 leucine-rich repeat (LRR) domains 
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flanked by N-terminal and C-Terminal LRR capping domains and a C-terminal stalk that 

connects the protein to the membrane via a glycosylphosphatidylinositol (GPI) anchor (40). 

Compared to RPTPs, less information is known about how NgR binds to GAGs; however, 

domain deletion studies suggest that the C-terminal capping domain and stalk are required 

for CS binding (14). C-terminal regions of NgR, such as the stalk, have not been resolved 

in the reported crystal structures of the protein (41, 42).  

To better understand the role of the C-terminal domains, we generated homology models of 

NgR isoforms using the ROSETTA software (43). We carried out 5 ns of MD in the 

presence of explicit water and counter ions to allow the 5 models per isoform to relax. We 

then selected the structure nearest to the average conformation for each model, minimized 

it, and then selected the lowest energy structure for each isoform to use in further studies. 

The electrostatic potential surfaces of these homology models of the extracellular domain 

of NgR isoforms 1–3 suggest an electrostatic basis for the difference in activity between 

NgR2 and NgRs 1 and 3 (Fig. S3-17). Unlike the GAG-binding isoforms, NgR2 lacks 

significant regions of electropositive potential. Our predicted binding energies from coarse-

level docking with a CS-E tetrasaccharide to NgR2 led to much weaker interactions (–

297.67 kcal/mol), relative to NgR1 and 3 (–641.27 and –985.46 kcal/mol, respectively), 

consistent with experimental findings. 

Based on fine-level docking with CS-A, -D, -E, and heparin hexasaccharides, followed by 

5 ns MD relaxation in a full water box with counterions, we predict that GAGs bind to 

regions of electropositive potential on the C-terminal cap of both NgR1 and NgR3 (Fig. 3-
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4, S3-18, S3-23). GAG-Dock studies predict that the GAG-binding domains of NgR1 

and NgR3 are on different faces of the C-terminal cap, although this could be due to the 

structural flexibility of this region of the protein and to discrepancies between the model 

and the natural state of the protein. We predict that the GAGs make polar or electrostatic 

contacts with residues R399, R414, R415, R416, R421, K422, R424, R426, and R430 on 

NgR1 (Table S3-15) and with residues R346, R350, K354, N355, N358, R360, K364, 

K399, R400, K401, K403 and R406 on NgR3 (Table S3-16). Many of these residues, 

particularly residues 414–426 on NgR1 and 399–406 on NgR3, were shown by 

mutagenesis studies to be important for GAG binding (14). Together, these results validate 

that GAG-Dock can be used both to understand the structural basis for extreme differences 

in GAG-binding activity between related proteins and to identify reliably the 

pharmacophore even in cases where the protein structure is ill defined.  Detailed structures 

for CS-A, CS-D, CS-E, and heparin bound to NgR1 are shown in Fig. S3-19 – S3-22.  

Detailed structures for those ligand bound to NgR3 are shown in Fig. S3-24 – S3-27. 
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Figure 3-9 – (A) CS-E and (B) heparin bound to NgR1.  (C) CS-E and (D) heparin bound to NgR3. 

Suggested Post-Prediction Validations 

Experimental validation of our novel RPTPs and NgR binding sites may be possible via 

mutation experiments.  We carried out in silico mutations for our predicted CS-A, CS-D, 

CS-E, and heparin binding sites for RPTPs, NgR1, and NgR3 in order to identify 

reasonable suggestions for experimental validation.  Rather than the more common alanine 

mutations, we employed a more subtle mutation to asparagine or glutamine.  As noted 

above, the key interactions between the GAG ligands and the proteins involve arginines 

and lysines.  Mutation of these residues to alanine represents a drastic change in character 
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and could result in significant disruption of the system beyond affecting binding.  

Mutation to asparagine or glutamine allows the possibility of maintaining some polar 

contact with the ligand, but without the benefit of strong charged interactions.  

Additionally, while the standard method is to identify mutations that decrease binding, we 

consider this approach to be ambiguous, as binding can be lost for many reasons.  

Therefore, in addition to the standard loss-of-binding mutations, we identified mutations 

that could potentially increase binding of the ligand to the protein. 

We first employed single-residue mutations of all residues within the binding sites to either 

asparagine or glutamine while simultaneously optimizing the remaining sidechain 

conformations in the binding site using SCREAM, followed by 50 steps of conjugate 

gradient energy minimization.  From these calculations we identified mutations that either 

resulted in additional or lost hydrogen bonding to the ligands.  Based on these individual 

mutations, sets of mutations to either increase or decrease ligand binding were identified 

for each ligand/protein combination.  It should be noted that some mutations of arginine or 

lysine may result in increased hydrogen bonding if the arginine or lysine was initially too 

constrained to make a hydrogen bond to the ligand.  However, such a mutation still remains 

a net loss of overall binding energy due to the lost Coulomb interactions.  Therefore, we 

only considered mutations of arginine or lysine to asparagine or glutamine for our loss-of-

binding mutation sets. 

For RPTPs we identified three sets of mutations that increased binding to CS-A, CS-D, or 

CS-E, but interestingly not to heparin.  It is possible that RPTPs is already optimized for 
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heparin binding, but not for CS binding.  Mutation set “G1” is specific for CS-E, while 

“G2” is specific for CS-D, and “G3” is nonspecific with the exception of decreasing 

heparin binding.  Based on the single residue mutations we generated four sets of mutations 

to decrease binding.  As all of these mutations affect the key arginine and lysine residues, 

they all unsurprisingly result in significant reductions in binding energy.  The mutation sets 

for RPTPs are summarized in Table 3-2, and the single mutations are summarized in Table 

S3-17. 

Table 3-8 – Predicted sets of mutations to either increase (left) or decrease (right) binding of ligands to RPTPs.  Note that 
none of the sets show improved binding for heparin.  Changes in binding energy are shown relative to the wildtype 
structures in both absolute change (kcal/mol) and in terms of percent change. 

 

For NgR1 we identified four sets of mutations to increase binding by building up from the 

single mutation information.  Surprisingly one of the mutation sets (“G3”) did not show 

any improvement in binding when tested.  Set “G1” improved CS-A and CS-D binding, but 

not CS-E or heparin.  Set “G2” improved CS-D and heparin binding.  Set “G4” improved 

binding for every ligand except CS-E.  It is again interesting that none of the mutation sets 

improved CS-E binding.  As with RPTPs, the four loss-of-binding mutation sets were all 

effective in reducing ligand binding, but were non-specific for any ligand.  The mutation 

Set CSA CSD CSE HEP Mutations Set CSA CSD CSE HEP Mutations

G1 -1.7 -0.3 -34.2 30.5 V73N	S75N	Q76N	F78Q	 L1 565.5 719.2 709.8 1059.6 K68Q	K69N	K71Q	R77N	R97N	R100N	

G2 -6.2 -35.0 12.6 29.7 N74Q	S75N	 L2 386.0 528.2 481.5 705.1 K71N	R77Q	R97N	R100Q	

G3 -17.8 -23.8 -29.0 21.2 V73Q	S75N	Q76N	F78N	N103Q	 L3 383.5 472.6 458.7 657.3 K68N	K69Q	R77N	R100N	

L4 468.6 629.7 603.3 891.1 K68N	K71Q	R77N	R97N	R100Q	

Set CSA CSD CSE HEP Mutations Set CSA CSD CSE HEP Mutations

G1 0.3 0.0 4.2 -2.9 V73N	S75N	Q76N	F78Q	 L1 -97.3 -92.8 -87.8 -101.0 K68Q	K69N	K71Q	R77N	R97N	R100N	

G2 1.1 4.5 -1.6 -2.8 N74Q	S75N	 L2 -66.4 -68.1 -59.6 -67.2 K71N	R77Q	R97N	R100Q	

G3 3.1 3.1 3.6 -2.0 V73Q	S75N	Q76N	F78N	N103Q	 L3 -66.0 -61.0 -56.7 -62.7 K68N	K69Q	R77N	R100N	

L4 -80.6 -81.2 -74.6 -84.9 K68N	K71Q	R77N	R97N	R100Q	

PTPS	-	Increased	Binding	(Relative	Energy) PTPS	-	Loss	of	Binding	(Relative	Energy)

PTPS	-	Increased	Binding	(Percent	Change) PTPS	-	Loss	of	Binding	(Percent	Change)
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sets for NgR1 are summarized in Table 3-3, and single mutations are summarized in 

Table S3-18. 

Table 3-9 – Predicted sets of mutations to either increase (left) or decrease (right) binding of ligands to NgR1.  Note that 
none of the sets show improved binding for CS-E.  Changes in binding energy are shown relative to the wildtype structures 
in both absolute change in binding energy (kcal/mol) and in terms of percent change. 

 

Each of the mutation sets to increase binding for NgR3 show improved binding to at least 

one of the ligands.  None of the ligands is completely missed as heparin was for RPTPs or 

CS-E for NgR1.  The mutation sets for NgR3 are summarized in Table 3-4, and single 

mutations are summarized in Table S3-19. 

Set CSA CSD CSE HEP Mutations Set CSA CSD CSE HEP Mutations
G1 -15.8 -14.0 2.7 -3.6 C395Q	C405N	 L1 481.3 607.0 649.0 850.0 R390N	R391N	R392Q	R402N	R406N	
G2 10.6 -30.8 4.2 -38.0 S396N	N399Q	C405N	 L2 471.5 627.0 597.9 813.1 R390Q	R391Q	R400N	R402N	R406N	
G3 -0.1 0.4 10.5 -1.1 C395Q	S396N	S403Q	C405Q	 L3 382.4 463.0 580.7 610.0 R391N	R392Q	R402Q	R406Q	
G4 -20.9 -19.6 9.8 -27.1 S396Q	C405N	 L4 473.2 629.9 642.9 834.1 R390N	R392Q	R400N	R402Q	R406N	

Set CSA CSD CSE HEP Mutations Set CSA CSD CSE HEP Mutations
G1 2.2 1.4 -0.3 0.3 C395Q	C405N	 L1 -65.3 -62.0 -71.3 -75.8 R390N	R391N	R392Q	R402N	R406N	
G2 -1.5 3.1 -0.5 3.4 S396N	N399Q	C405N	 L2 -64.0 -64.1 -65.7 -72.5 R390Q	R391Q	R400N	R402N	R406N	
G3 0.0 0.0 -1.2 0.1 C395Q	S396N	S403Q	C405Q	 L3 -51.9 -47.3 -63.8 -54.4 R391N	R392Q	R402Q	R406Q	
G4 2.9 2.0 -1.1 2.4 S396Q	C405N	 L4 -64.2 -64.3 -70.6 -74.4 R390N	R392Q	R400N	R402Q	R406N	

NGR1	-	Increased	Binding	(Relative	Energy) NGR1	-	Decreased	Binding	(Relative	Energy)

NGR1	-	Increased	Binding	(Percent	Change) NGR3	-	Decreased	Binding	(Percent	Change)
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Table 3-10 – Predicted sets of mutations to either increase (left) or decrease (right) binding of ligands to NgR3. Changes 
in binding energy are shown relative to the wildtype structure in both absolute change (kcal/mol) and in terms of percent 
change. 

 

Conclusions 

Predicting the binding sites of highly charged GAG ligands with multiple independent 

charge sites and numerous possible conformations seems a formidable challenge. The very 

large number of charged sites on the ligands and in the binding site likely leads to 

redistributions of the water and ions in the solvent making polarization likely of great 

importance. Nevertheless, we show for eight independent systems that the simple GAG-

Dock modifications of the DarwinDock general docking approach accounts well for the 

enormous importance of electrostatic interactions, leading to plausible structures and 

relative binding energies that help distinguish the strength of binding for various GAG 

ligands to a wide variety of receptors likely to play essential roles in axonal growth. Given 

the difficulty of obtaining high quality co-crystals for x-ray studies, this simple GAG-Dock 

computational methodology may provide the best means for predicting the structure 

sufficiently accurately to help design experimental probes to elucidate the issues 

controlling axonal growth, perhaps suggesting modified ligands that might be more 

selective and controllable. 

Set CSA CSD CSE HEP Mutations Set CSA CSD CSE HEP Mutations
G1 -15.9 6.9 -9.9 -10.1 I345Q	A348N	 L1 230.6 271.2 327.7 396.5 K331N	K334Q	R342N	
G2 -3.1 0.8 -10.2 -0.1 I345Q	 L2 321.9 537.6 545.0 802.2 K331N	R342N	R380N	R381N	R383N
G3 -12.9 -5.1 -5.8 -12.2 A348N	 L3 470.9 771.7 858.4 1054.7 R330N	K331N	K334N	R342N	R380Q	K381N	K383N
G4 -7.7 1.9 7.9 -23.7 N338Q	A348N	 L4 238.0 413.9 425.4 644.0 R340N	R379N	R380N	R383N

Set CSA CSD CSE HEP Mutations Set CSA CSD CSE HEP Mutations
G1 2.2 -0.6 0.8 0.7 I345Q	A348N	 L1 -31.3 -23.6 -27.0 -25.9 K331N	K334Q	R342N	
G2 0.4 -0.1 0.8 0.0 I345Q	 L2 -43.7 -46.8 -44.9 -52.4 K331N	R342N	R380N	R381N	R383N
G3 1.8 0.4 0.5 0.8 A348N	 L3 -63.9 -67.1 -70.7 -68.9 R330N	K331N	K334N	R342N	R380Q	K381N	K383N
G4 1.0 -0.2 -0.6 1.5 N338Q	A348N	 L4 -32.3 -36.0 -35.0 -42.1 R340N	R379N	R380N	R383N

NGR3	-	Increased	Binding	(Relative	Energy) NGR3	-	Decreased	Binding	(Relative	Energy)

NGR3	-	Increased	Binding	(Percent	Change) NGR3	-	Decreased	Binding	(Percent	Change)
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Supplementary Information 

System Preparation 

Crystal structures & PTPσ . Protein molecules within 5 Å of the GAG ligand, if present, 

were selected from the PDB. Hydrogen atoms were added with tleap (S23) and CHARMM 

(S1) charges were assigned to each atom. The system was minimized using the DREIDING 

force field (S2). 

NgR. Five homology models for full-length NgR1, 2, and 3 were obtained using 

ROSETTA (S3). Each model was minimized (5000 steps) and allowed to relax in the 

presence of water and counterions with 5 ns of MD. MD was performed using NAMD in 

four steps, as described later in the MD section. Briefly, first, a water box bounding the 

protein was minimized with the protein kept fixed. Second, 0.5 ns of NPT MD were 

performed on the water box. Third, the entire systems were minimized. Finally, 5 ns of 
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NPT MD were performed on the entire system. For each initial conformation, the 

conformation closest to the average structure from the 5 ns MD was minimized and the 

lowest-energy conformation was selected for each isoform.  

DarwinDock 

The concept behind DarwinDock (S4-S12) is (1) to generate a complete set of poses for the 

binding site while minimizing the number of energy evaluations, (2) then to collect these 

into a smaller sets containing all poses likely to be important, (3) then to evaluate the 

binding energy of this relatively small set to find the best poses, while ensuring that no 

poses are missed that might prove to be important.  

Pose generation is accomplished by iteratively generating poses (but no energies) using 

DOCK 6 (S13) and clustering them into families using our Closest-Neighbor Seeded 

clustering algorithm (described below). Our usage of DOCK 6 is very simplistic, utilizing 

only the bump filter. We follow the default settings for generating the bump grid for 

DOCK 6 and set the bump cutoff to 5. Two calls to DOCK 6 are generally made. First, a 

request for 40,000 poses is made to determine the approximate percentage of poses that 

will pass the DOCK bump filter. Then a second request for poses is made, based on the 

percent of poses passing the bump test so that enough poses are returned to be sufficient for 

the iterative completeness cycle. Initially the first 5000 poses are clustered with a 2 Å 

diversity, then the next 5000 poses are added and reclustered, leading an increased number 

of families. This process is continued in increments of 5000 poses until the number of new 

families represents less than 5% of the total number of families at that point. 
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Due to the computational difficulty of dealing with GAG ligands – which are 

considerably larger than normal small-molecule ligands for which DarwinDock was 

developed – leading to correspondingly increased search volumes, we restrict the number 

of poses during this iterative completeness cycle to 50,000. Furthermore, it is generally not 

possible to request more than 15 million poses (sometimes fewer) from DOCK6 before 

memory limitations intercede. As a result, most regions reach the 50,000 pose limit before 

reaching the 5% new families threshold. Other regions may fall well short of 50,000 poses 

due to their geometry and memory limitations. 

After generating a complete set of poses, or the largest set within our computational limits, 

we score all family heads (generally ~2000). For each family the central pose (based on the 

RMSD) is denoted as the family head. The protein-ligand interaction energy of each family 

head is evaluated using the DREIDING forcefield (S2) with MPSim (S14). DREIDING 

partitions non-bond energies into Coulomb, hydrogen-bond, and Van Der Waals (VDW). 

For GAG-Dock the interaction energy is the sum of all ligand-protein Coulomb and 

hydrogen-bond energies plus 10% of the (VDW) energy. Including only 10% of the VDW 

energy allows for strong polar interactions with the protein with moderate clashes that can 

be resolved during sidechain optimization. Not including the VDW energy results in poses 

with severe, unresolvable clashes with the protein, while including the full VDW energy 

results in poses that are too far from the protein and make poor contact. 

After evaluating the interaction energy for the family heads, we eliminate the worst 90% of 

the families. Next, we evaluate the interaction energy for all children in the remaining 10% 

of families. From these children we select best 100 based on binding energy. Eliminating 
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90% of the families without evaluating all of their child poses allows for a large fraction 

of the complete set of poses to be eliminated without the time-consuming energy 

evaluation. 

The 100 selected poses are then further refined with sidechain optimization using 

SCREAM (S15). Any sidechain that was alanized prior to docking is now restored and 

optimized (“de-alanized”) by SCREAM. Simultaneously, any polar or charged sidechain in 

the binding site is also optimized by SCREAM, resulting in 100 unique sets of sidechain 

conformations each adapted to a specific ligand pose. Each complex is then energy 

optimized for 10 steps of conjugate gradient minimization. The minimized complexes are 

then scored using the “snap” binding energy, which is the total energy of the protein and 

the total energy of the ligand subtracted from the total energy of the complex, all calculated 

using DREIDING and MPSim. We then eliminated half of these complexes based on these 

energies. The remaining half was optimized with an additional 50 steps of conjugate 

gradient minimization. These fully-minimized complexes were rescored again, and the top 

one or two poses identified for analysis. 

Closest-Neighbor Seeded Ligand Clustering 

The Closest-Neighbor Seeded (CNS) ligand clustering algorithm uses a RMSD-based 

metric to cluster ligands into families and to assign family heads. First, all pairwise ligand 

RMSDs were calculated (ignoring hydrogen atoms). These pairwise RMSDs were placed 

in a list ordered from smallest RMSD to largest. The pair of ligands with the smallest 

RMSD constitutes the seed for the first family/cluster. Proceeding down the list of pairs i 

and j, the following operations were carried out: 
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1. If pose i and pose j do not belong to a pre-existing family, then a new family is 

seeded 

2. If pose i belongs to family A and pose j does not belong to a family (or vice versa): 

If the RMSD of pose j to all members of family A is less than the diversity RMSD, 

then pose j is added to family A 

3. If pose i belongs to family A and pose j belongs to family B: If the RMSD of pose i 

to all members of family B is less than the diversity RMSD, and if the RMSD of 

pose j to all members of family A is less than the diversity RMSD, then the two 

families are merged into a single family 

The pose with the lowest RMSD to the rest of the members is designated as the family 

head. If a family only has two members then the family head is chosen randomly. 

Forcefield 

All forcefield calculations during docking – with the exception of sidechain optimizations – 

were performed using the DREIDING (S2) forcefield and the MPSim (S14) molecular 

dynamics code. DREIDING uses a three body hydrogen bond term that allows a more 

precise analysis of the energetics. It also eliminates the need of SHAKE constraints that 

must be used with the 2-body hydrogen bonds used in most force fields 

Sidechain Optimization 

Sidechain optimization was performed using the SCREAM program (using the DREIDING 

forcefield. 

Sphere Generation 
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Spheres were generated using a modified sphgen program (S13). Specifically, two sets of 

spheres were generated for each protein: 

The “normal” set: 

• Use a 1.4 Å probe radius in the dms molecular surface program (44) 

• Use dotlim=–0.9 in sphgen 

• Use 1.4 Å minimum and 10 Å maximum sphere radii in sphgen 

The “restriction” set: 

• Use 2.8 Å probe radius in dms 

• Use dotlim=–0.9 ’ in sphgen 

• Use 2.8 Å minimum and 10 Å maximum sphere radii in sphgen 

The final set of spheres is taken from the “normal” set with the criteria that a sphere must 

be within 2.8 Å of a sphere from the “restriction” set. 

The final set of spheres was partitioned into overlapping boxes having 20 Å sides and 

allowing 5 Å overlap.  

As mentioned above, we assign electrostatic potential values to the spheres. The 

electrostatic potential for the protein is generated using APBS (S16-S18) and mapped onto 

the generated spheres. The electrostatic potential for a given sphere is taken from the value 

from the nearest APBS grid point. 

Sphere Clustering 

In order to reduce the number of spheres in each region to a computationally-manageable 

number, the spheres are clustered using the CNS algorithm, with each sphere treated as a 

single-atom ligand. The clustering diversity is set at 0.25 and increased until the total 
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number of families is less than 150, or until the diversity is 3.00. For sphere families with 

3 or more spheres, the family head is kept to represent the family. For sphere families of 2 

spheres, the coordinates are averaged. 

Ligand Preparation  

All crystal structure ligands were prepared by identifying the appropriate DREIDING atom 

types and assigning Mulliken charges from Density Functional Theory (DFT) calculations 

using the B3LYP level of theory and the 6-311G** basis set in Jaguar (S19, S27).  

Heparin and CS ligands for the predicted systems (RPTPs, NgR, EphB2, and EphB3) were 

generated from available 18-mer heparin NMR structures (S20) and a 6-mer CS-A (S21) 

crystal structure as mentioned above. The heparin and CS-A structures were truncated or 

extended as needed for docking. Generating CS-D and CS-E required modifying the 

sulfation pattern of an extended 12-mer CS-A structure. 

The sulfation pattern was modified using the Maestro software, Mulliken charges were 

calculated, and the MacroModel (S22) Conformational Search tool was used to sample the 

sidechain torsions (the sugar backbone was kept fixed). The resulting conformations were 

minimized using DREIDING and MPSim with Surface Generalized Born (SGB) solvation. 

The lowest-energy conformation was then selected for MD. 

The AMBER (S23) package was used to place the 12-mer in a water box with a number of 

sodium ions added to neutralize the ligand charge. Dynamics was performed using NAMD 

(S24) in four steps as described in the next section. Briefly, first, the water box was 

minimized with the ligand kept fixed. Second 0.5 ns of MD were performed on the water 

box. Third, the entire system was minimized. Finally, 5 ns of MD were performed on the 
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entire system. The final ligand conformation for docking was the conformation closest to 

the average structure from the 5 ns MD. The 12-mer was truncated for docking by 

removing the terminal sugars. 

Molecular Dynamics (MD) 

The MD simulations were carried out using NAMD (S24), a parallel MD code designed for 

computationally demanding biomolecular systems. The CHARMM (S1) force field was 

used for the protein and ligands. The TIP3P (S25) force field was used for water. NAMD 

employs periodic boundary conditions to remove surface effects. The full electrostatic 

interactions within this periodic system is calculated using the particle-mesh Ewald 

summation method (S26). The long-range electrostatic and van der Waals interactions were 

cut off at 12 Å (with spline smoothing). 

The calculations were performed under isothermal-isobaric conditions (NPT) at 310 K and 

1 atm. The temperature was controlled using Langevin dynamics (with a coupling 

coefficient of 5 ps-1) and the pressure is maintained using a Langevin-Hoover barostat. A 

time step of 1 fs was used throughout this study. 

Simulations. The MD is carried out in 4 steps: 

a) The water atoms and counter-ions were conjugate gradient minimized for 5000 steps 

while keeping the protein and ligand atoms fixed. This allows for the water and counter 

ions to remove any bad contacts with each other and the protein or the ligand, prior to 

MD. 

b) Then the water and counter-ion atoms were equilibrated under NPT conditions (310 K 

and 1 atm) for 0.5 ns, while keeping the protein and ligand fixed. This allows the lipids 
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and waters to equilibrate in the presence of the protein and to fill any gaps around the 

protein created due to system setup. 

c) Next, the full system (protein-ligand-water) was minimized for 5000 steps, allowing the 

protein and ligand to adjust to the equilibrated water and counter ions. 

d) Finally, the full system is equilibrated for at least 5 ns under NPT conditions, of which 

only the last 5 ns is used for dynamical analysis. Snapshots are saved every 1 ps. 
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Supplemental Figures & Tables 

 
Figure S3-10 – Structure of FGF1 [PDB: 2AXM, resolution 3.00 Å] with predicted and crystal heparin hexamer ligands 
(magenta: predicted, green: crystal).  Residues in the binding site with significant deviations from the crystal are labeled 
(cyan: predicted, orange: crystal). Ligand RMSD is 0.70 Å. 
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Figure S3-11– Structure of FGF1 [PDB: 2AXM, res. 3.00 Å] with predicted heparin hexamer ligand (magenta) and 5 Å 
binding site shown (cyan).  Dashed lines indicate hydrogen bonding and salt bridges between ligand and protein.  The 
predicted ligand has excellent agreement with the crystal ligand, RMSD: 0.70 Å. 
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Figure S3-12 – Structure of FGF2 [PDB: 1BFB, res. 1.90 Å] with predicted heparin tetramer ligand (magenta) and 5 Å 
binding site shown (cyan).  Dashed lines indicate hydrogen bonding and salt bridges between ligand and protein.  The 
predicted ligand has excellent agreement with the crystal ligand, RMSD: 0.70 Å. 
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Figure S3-13 – Structure of FGF2-FGFR1 [PDB: 1FQ9, res. 3.00 Å] chain A with predicted heparin hexamer ligand 
(magenta) and 5 Å binding site shown (cyan).  Dashed lines indicate hydrogen bonding and salt bridges between ligand 
and protein.  The predicted ligand has excellent agreement with the crystal ligand, RMSD: 1.51/0.75 Å. 
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Figure S3-14 – Structure of FGF2-FGFR1 [PDB: 1FQ9, res. 3.00 Å] chain B with predicted heparin hexamer ligand 
(magenta) and 5 Å binding site shown (cyan).  Dashed lines indicate hydrogen bonding and salt bridges between ligand and 
protein.  The predicted ligand has excellent agreement with the crystal ligand, RMSD: 1.51/0.75 Å. 
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Figure S3-15 – Structure of FGF2-FGFR1 [PDB: 1FQ9, res. 3.00 Å] chain C with predicted heparin hexamer and octamer 
ligands (magenta) and 5 Å binding site shown (cyan).  Dashed lines indicate hydrogen bonding and salt bridges between 
ligand and protein.  The predicted ligand has excellent agreement with the crystal ligand, RMSD: 1.51/0.75 Å. 
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Figure S3-16 – Structure of FGF2-FGFR1 [PDB: 1FQ9, res. 3.00 Å] chain C with predicted heparin hexamer and octamer 
ligands (magenta) and 5 Å binding site shown (cyan).  Dashed lines indicate hydrogen bonding and salt bridges between 
ligand and protein.  The predicted ligand has excellent agreement with the crystal ligand, RMSD: 1.51/0.75 Å. 

Heparin 1 

Heparin 2 
K160D 

K172D 

K177D 

K175D 
R209D 

Y210D 

K163D 

T173D 

D218D 

D200D 

H166D 

Y206D 



 

 

82 

 

Figure S3-17 – Structure of α-Antithrombin-III [PDB: 1E03, res. 2.90 Å] with predicted heparin analog pentamer ligand 
(magenta) and 5 Å binding site shown (cyan).  Dashed lines indicate hydrogen bonding and salt bridges between ligand and 
protein.  The predicted ligand has excellent agreement with the crystal ligand, RMSD: 0.60 Å. 
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Figure S3-18 – Plots of nonbond energies for residues in the (A) FGF1, (B) FGF2, (C) FGF2-FGFR1 Chain A complex, 
(D) FGF2-FGFR1 Chain B complex, and (E) α-Antithrombin-III binding sites in complex with a heparin ligand in the 
crystal versus docked structure. Residues with significant deviations from the trend are labeled. 
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Table S3-11 – Per-residue energetic contributions in the FGF1/heparin predicted (left) and crystal (right) structures. 
[PDB: 2AXM, res. 3.00 Å, RMSD: 0.70 Å]. 

 

Table S3-12 – Per-residue energetic contributions in the FGF2/heparin predicted (left) and crystal (right) structures. [PDB: 
1BFB, res. 1.90 Å, RMSD: 0.70 Å]. 

 

Docked Crystal 
  Residue VdW Coulomb H Bond NonBond   VdW Coulomb H Bond NonBond ΔNonBond 

C
ha

in
 A

 

LYS 113 17.56 -204.76 -15.75 -202.95   2.77 1.19 -2.00 1.96 -204.91 
LYS 118 3.22 -189.23 -5.96 -191.97 -0.56 4.09 0.00 3.54 -195.51 
LYS 112 3.29 -183.50 -3.81 -184.01 -0.33 -143.67 0.00 -144.00 -40.01 
ARG 122 7.16 -169.14 -9.33 -171.31 3.14 -153.18 -3.12 -153.17 -18.14 
LYS 128 3.06 -148.57 -1.85 -147.37 -0.41 4.77 0.00 4.37 -151.74 
ARG 119 -0.11 -91.00 0.00 -91.11 -0.06 -3.21 0.00 -3.27 -87.84 
GLN 127 -2.00 -8.03 0.00 -10.03 -1.99 -186.44 -1.59 -190.03 180.00 
ALA 129 5.47 -10.00 -4.60 -9.14 -0.38 -122.47 0.00 -122.86 113.72 
ASN  18 2.01 -1.44 -5.71 -5.13 -1.52 -165.54 -1.67 -168.72 163.59 
ILE 130 -0.32 -3.07 0.00 -3.39 -0.88 5.58 0.00 4.70 -8.08 
GLY 115 -0.04 -3.22 0.00 -3.27 -0.13 -6.95 0.00 -7.08 3.81 
GLY 126 -0.87 3.54 0.00 2.66 -4.08 -140.24 -1.57 -145.89 148.55 
LEU 111 -0.48 3.51 0.00 3.03 3.28 -8.41 -1.05 -6.18 9.21 
ASN 114 -0.23 3.33 0.00 3.10   -0.30 -2.97 0.00 -3.28 6.38 

C
ha

in
 B

 

LYS 113 4.89 -197.61 -9.67 -202.39 1.11 -215.76 -5.84 -220.49 18.10 
LYS 112 4.24 -198.73 -5.46 -199.96 2.69 -190.94 -0.44 -188.69 -11.26 
LYS 118 11.00 -197.81 -5.73 -192.53 -4.61 -181.97 0.00 -186.58 -5.96 
ARG 122 4.88 -176.18 -10.38 -181.68 2.69 -175.17 -1.89 -174.37 -7.31 
LYS 128 10.38 -181.92 -6.98 -178.52 2.06 -135.42 0.00 -133.36 -45.16 
ARG 119 7.42 -125.16 -5.83 -123.58 -2.11 -111.44 0.00 -113.55 -10.03 
ASN 114 5.11 -22.15 -10.47 -27.51 -0.34 -7.68 -1.92 -9.94 -17.57 
GLN 127 2.94 -13.43 -1.56 -12.05 -0.60 -5.77 0.00 -6.37 -5.68 
ALA 129 6.73 -10.22 -4.49 -7.99 -0.14 -3.90 0.00 -4.04 -3.94 
GLY 115 -0.14 -4.03 0.00 -4.17 -0.27 -2.84 0.00 -3.11 -1.07 
ILE 130 -0.37 -3.13 0.00 -3.50 -1.63 2.88 -3.24 -1.99 -1.50 
ASN  18 0.24 2.05 -5.05 -2.76 -2.38 1.24 -0.18 -1.32 -1.44 
GLY 126 -0.24 2.42 0.00 2.18 -0.56 2.92 0.00 2.36 -0.17 
LEU 111 -0.72 2.97 0.00 2.25 -0.25 2.86 0.00 2.61 -0.36 

Docked Crystal 
  Residue VdW Coulomb H Bond NonBond   VdW Coulomb H Bond NonBond ΔNonBond 

C
ha

in
 A

 

ARG 121 17.30 -158.68 -12.19 -153.56   -0.27 -150.23 -0.96 -151.45 -2.11 
LYS 126 9.10 -156.65 -0.36 -147.92 -3.44 -119.39 -2.31 -125.14 -22.78 
LYS 130 10.15 -144.73 -8.56 -143.15 -5.00 -107.74 -1.75 -114.49 -28.65 
LYS 120 8.16 -140.09 -5.58 -137.52 -2.88 -101.57 0.00 -104.45 -33.07 
LYS 136 6.73 -135.14 -5.78 -134.19 -0.75 -85.16 0.00 -85.91 -48.28 
LYS  27 -0.42 -87.54 0.00 -87.96 -0.28 -75.32 0.00 -75.60 -12.37 
GLN 135 2.17 -18.79 -6.09 -22.72 -2.77 -2.99 0.00 -5.76 -16.96 
ALA 137 7.94 -9.51 -3.59 -5.16 5.61 -8.31 -2.66 -5.37 0.21 
ILE 138 -0.28 -2.34 0.00 -2.62 -2.44 1.25 -1.53 -2.72 0.10 
ASN  28 3.07 -1.79 -3.76 -2.47 -0.28 -2.29 0.00 -2.57 0.10 
THR 122 -0.40 0.02 0.00 -0.37 -0.31 -1.32 0.00 -1.63 1.26 
GLY 134 -0.37 2.18 0.00 1.81 -0.43 2.34 0.00 1.92 -0.11 
LEU 119 -0.62 4.44 0.00 3.82 -0.45 4.03 0.00 3.57 0.25 
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Table S3-13 – Per-residue energetic contributions in the FGF2-FGFR1/heparin predicted (left) and crystal (right) 
structures for chains A and B. [PDB: 1FQ9, res. 3.00 Å, RMSD: 1.51/0.75 Å]. 

Docked Crystal 
Residue VdW Coulomb H Bond NonBond   VdW Coulomb H Bond NonBond ΔNonBond 

C
ha

in
 A

 

ARG 120 -2.28 -149.49 -5.26 -157.04 1.52 -152.06 -7.27 -157.81 0.77 
LYS 135 1.54 -139.58 -5.91 -143.95 4.60 -153.99 -3.79 -153.18 9.24 
LYS 119 0.67 -131.00 -4.78 -135.12 3.14 -130.93 -0.25 -128.04 -7.08 
LYS 125 5.84 -131.09 -5.87 -131.11 0.62 -116.95 -0.65 -116.98 -14.13 
LYS  26 4.39 -120.65 -5.68 -121.94 -1.02 -109.45 0.00 -110.47 -11.47 
LYS 129 4.99 -114.65 -5.58 -115.25 -1.24 -107.92 -0.68 -109.84 -5.41 
ALA 136 -0.53 -3.71 0.00 -4.24 2.86 -6.00 -4.60 -7.74 3.51 
GLY  28 -0.37 -2.08 0.00 -2.45 -2.02 1.97 -3.62 -3.67 1.22 
ILE 137 -0.12 -1.95 0.00 -2.07 -0.66 -1.95 0.00 -2.61 0.53 
GLN 134 -1.91 0.68 0.00 -1.23 -0.29 -2.08 0.00 -2.36 1.14 
ASN  27 -1.89 2.20 0.00 0.31 -0.48 -1.59 0.00 -2.08 2.39 
THR 121 -0.20 0.54 0.00 0.34 -0.17 -1.53 0.00 -1.70 2.04 
TYR  24 -0.14 1.63 0.00 1.49 4.63 -4.77 0.00 -0.14 1.63 
LEU 118 -0.15 2.35 0.00 2.20 -0.31 2.16 0.00 1.85 0.35 
GLY 133 -0.32 2.55 0.00 2.23 -0.50 2.69 0.00 2.19 0.04 
LEU 126 -0.14 2.56 0.00 2.42   -0.28 2.62 0.00 2.34 0.08 

C
ha

in
 B

 

LYS 135 1.19 -212.03 -6.46 -217.30 -8.49 -203.03 -1.48 -212.99 -4.31 
ARG 120 -6.58 -199.88 -1.36 -207.81 31.40 -208.27 -3.53 -180.39 -27.41 
LYS 125 5.60 -182.56 -6.84 -183.80 38.12 -175.56 -3.61 -141.05 -42.75 
LYS 119 12.36 -181.40 -10.45 -179.49 -2.14 -138.68 0.00 -140.82 -38.67 
LYS 129 -1.92 -141.31 -0.25 -143.48 -1.59 -130.86 0.00 -132.44 -11.04 
LYS  26 -2.18 -138.89 0.00 -141.07 37.15 -138.94 0.00 -101.78 -39.29 
GLN 134 -2.27 -6.73 0.00 -9.00 9.71 -20.50 -3.13 -13.92 4.92 
ALA 136 -1.24 -7.10 0.00 -8.34 -1.58 -6.76 0.00 -8.33 -0.01 
GLY  28 -0.34 -3.40 0.00 -3.74 -0.40 -2.89 0.00 -3.29 -0.45 
THR 121 -1.70 2.18 0.00 0.48 -0.16 -1.81 0.00 -1.97 2.44 
ASN  27 -2.39 4.25 0.00 1.86 3.82 -3.11 -0.03 0.68 1.18 
TYR  24 -0.15 2.25 0.00 2.10 -2.71 5.94 -0.05 3.18 -1.08 
GLY 133 -0.21 3.30 0.00 3.09 -0.25 3.55 0.00 3.30 -0.22 
LEU 118 -0.33 3.65 0.00 3.32 -0.52 3.96 0.00 3.44 -0.12 
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Table S3-14 – Per-residue energetic contributions in the FGF2-FGFR1/heparin-A predicted (left) and crystal (right) 
structures for chain C. [PDB: 1FQ9, res. 3.00 Å, RMSD: 1.51/0.75 Å]. 

 

Docked Crystal 

  Residue VdW Coulomb H Bond NonBond   VdW Coulomb H Bond NonBond ΔNonBond 

C
ha

in
 C

 

LYS 177 7.03 -159.17 -8.16 -160.30 5.72 -158.41 -1.26 -153.95 -6.35 
LYS 175 0.73 -149.86 -4.69 -153.82 2.31 -130.03 -5.88 -133.60 -20.22 
LYS 163 6.37 -132.42 -6.11 -132.16 1.23 -132.09 -0.39 -131.25 -0.91 
LYS 160 0.37 -131.48 0.00 -131.12 -1.30 -129.72 -0.02 -131.03 -0.08 
ARG 209 -0.44 -117.34 -4.40 -122.18 -0.82 -120.14 0.00 -120.97 -1.21 
LYS 172 -0.78 -118.38 0.00 -119.16 -0.04 -70.04 0.00 -70.08 -49.08 
LYS 207 -0.04 -71.70 0.00 -71.75 -0.04 -61.48 0.00 -61.53 -10.22 
HSE 166 5.52 -12.11 -4.86 -11.44 -1.33 -3.41 0.00 -4.74 -6.70 
VAL 174 -0.99 -3.05 0.00 -4.04 -0.41 -2.90 0.00 -3.30 -0.74 
ILE 216 -0.52 -3.02 0.00 -3.54 -0.02 -1.90 0.00 -1.92 -1.62 
SER 219 -0.02 -1.90 0.00 -1.92 -0.02 -1.66 0.00 -1.68 -0.24 
TYR 206 -0.02 -1.58 0.00 -1.60 -0.01 -0.82 0.00 -0.83 -0.76 
VAL 208 -0.02 -0.86 0.00 -0.87 0.00 0.29 0.00 0.29 -1.16 
PRO 199 0.00 0.24 0.00 0.24 0.00 1.09 0.00 1.09 -0.85 
THR 173 -1.59 2.37 0.00 0.79 0.00 1.64 0.00 1.64 -0.85 
GLY 204 0.00 1.13 0.00 1.13 -1.28 3.00 0.00 1.72 -0.59 
GLY 205 0.00 1.63 0.00 1.63 -1.73 3.49 0.00 1.76 -0.13 
TYR 210 -0.02 2.19 0.00 2.18 -0.01 1.86 0.00 1.84 0.33 
ASP 200 0.00 41.39 0.00 41.39 0.00 41.11 0.00 41.10 0.28 
ASP 218 -0.09 78.09 0.00 78.01 -0.08 77.16 0.00 77.08 0.93 
GLU 159 -0.71 115.33 0.00 114.62 -0.45 107.49 0.00 107.04 7.59 
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Table S3-15 – Per-residue energetic contributions in the FGF2-FGFR1/heparin-A predicted (left) and crystal (right) 
structures for chain D. [PDB: 1FQ9, res. 3.00 Å, RMSD: 1.51/0.75 Å].   

 

Table S3-16 – Per-residue energetic contributions in the FGF2-FGFR1/heparin-B predicted (left) and crystal (right) 
structures for chain C. [PDB: 1FQ9, res. 3.00 Å, RMSD: 1.51/0.75 Å]. 

 

Docked Crystal 

  Residue VdW Coulomb H Bond NonBond   VdW Coulomb H Bond NonBond ΔNonBond 

C
ha

in
 D

 

LYS 207 7.45 -180.81 -6.56 -179.92 17.13 -171.90 -0.35 -155.12 -24.79 
ARG 209 3.65 -146.18 -5.18 -147.70 -0.83 -117.34 0.00 -118.16 -29.54 
LYS 175 5.98 -126.60 -6.24 -126.87 -0.40 -94.29 0.00 -94.69 -32.18 
LYS 172 -0.12 -79.28 0.00 -79.40 -0.12 -78.00 0.00 -78.11 -1.29 
LYS 177 -0.04 -72.16 0.00 -72.20 -0.03 -70.11 0.00 -70.14 -2.06 
LYS 160 -0.01 -56.66 0.00 -56.66 0.00 -55.42 0.00 -55.42 -1.25 
LYS 163 -0.01 -56.16 0.00 -56.16 -0.01 -55.17 0.00 -55.17 -0.99 
THR 173 3.72 -10.80 -3.54 -10.63 5.19 -10.69 -4.75 -10.26 -0.37 
TYR 210 -0.96 -5.72 0.00 -6.69 -0.25 -5.06 0.00 -5.30 -1.38 
PRO 199 -1.08 -2.70 0.00 -3.77 -0.45 -2.77 0.00 -3.23 -0.55 
HSE 166 -0.01 -2.21 0.00 -2.22 -0.01 -2.10 0.00 -2.11 -0.12 
GLY 205 -0.32 0.09 0.00 -0.23 -0.12 -1.83 0.00 -1.95 1.72 
ILE 216 0.51 -0.44 0.00 0.07 -0.22 0.36 0.00 0.14 -0.07 
TYR 206 -0.82 1.99 0.00 1.18 -0.69 3.14 0.00 2.45 -1.28 
SER 219 -0.10 2.54 0.00 2.44 -0.30 2.83 0.00 2.53 -0.08 
GLY 204 -0.30 2.82 0.00 2.52 -0.14 3.05 0.00 2.91 -0.39 
VAL 174 -0.15 3.01 0.00 2.86 -1.07 4.05 0.00 2.98 -0.12 
VAL 208 -1.09 5.42 -0.55 3.78 20.87 -0.03 0.00 20.85 -17.07 
GLU 159 0.00 43.02 0.00 43.02 0.00 42.22 0.00 42.22 0.80 
ASP 200 -0.29 88.12 0.00 87.83 -0.18 89.15 0.00 88.97 -1.14 
ASP 218 -2.17 129.70 0.00 127.53 -1.74 120.80 0.00 119.06 8.47 

Docked Crystal 

  Residue VdW Coulomb H Bond NonBond   VdW Coulomb H Bond NonBond ΔNonBond 

C
ha

in
 C

 

ARG 209 1.18 -211.75 -4.98 -215.55 -5.88 -198.45 -3.76 -208.09 -7.46 
LYS 207 12.57 -210.11 -9.85 -207.39 38.55 -204.68 -1.08 -167.22 -40.17 
LYS 175 7.82 -136.79 -5.80 -134.77 -0.95 -127.70 0.00 -128.65 -6.12 
LYS 177 -0.07 -88.11 0.00 -88.18 -0.06 -87.73 0.00 -87.79 -0.39 
LYS 172 -0.05 -79.78 0.00 -79.83 -0.04 -79.56 0.00 -79.60 -0.23 
LYS 160 -0.01 -76.48 0.00 -76.49 -0.01 -76.64 0.00 -76.65 0.16 
LYS 163 -0.01 -63.13 0.00 -63.14 -0.01 -63.12 0.00 -63.12 -0.02 
TYR 210 1.90 -7.94 -3.75 -9.79 -0.36 -6.01 0.00 -6.37 -3.42 
THR 173 -0.99 -7.60 0.00 -8.59 -0.78 -5.25 0.00 -6.03 -2.56 
VAL 168 -0.01 -1.12 0.00 -1.13 -0.01 -1.10 0.00 -1.11 -0.02 
SER 214 -0.31 0.98 0.00 0.68 -0.25 -1.54 0.00 -1.79 2.47 
HSE 166 -0.01 1.28 0.00 1.28 -0.01 1.35 0.00 1.34 -0.07 
ILE 216 2.12 -0.30 0.00 1.82 51.25 -0.18 0.00 51.07 -49.25 
VAL 174 -0.12 3.36 0.00 3.24 -0.10 3.33 0.00 3.24 0.01 
THR 212 -0.65 4.14 0.00 3.49 -0.55 -1.10 0.00 -1.65 5.14 
VAL 208 -1.18 8.37 0.00 7.19 -0.79 8.04 0.00 7.24 -0.05 
ASP 218 -0.99 148.97 0.00 147.98 -0.74 142.16 0.00 141.42 6.56 
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Table S3-17 – Per-residue energetic contributions in the FGF2-FGFR1/heparin-B predicted (left) and crystal (right) 
structures for chain D. [PDB: 1FQ9, res. 3.00 Å, RMSD: 1.51/0.75 Å]. 

 

Docked Crystal 

  Residue VdW Coulomb H Bond NonBond   VdW Coulomb H Bond NonBond ΔNonBond 

C
ha

in
 D

 

LYS 177 8.65 -171.98 -6.19 -169.52 0.20 -174.51 -3.33 -177.64 8.12 
LYS 175 1.59 -162.42 -4.93 -165.76 -2.60 -161.79 -0.16 -164.55 -1.22 
LYS 172 -0.28 -159.18 -0.78 -160.24 -1.62 -158.79 -0.63 -161.05 0.80 
LYS 163 6.54 -157.81 -4.80 -156.06 -1.33 -141.73 -0.02 -143.09 -12.98 
LYS 160 -1.22 -138.51 0.00 -139.73 3.52 -146.18 0.00 -142.67 2.94 
LYS 207 -0.03 -75.10 0.00 -75.13 -0.04 -75.73 0.00 -75.77 0.64 
ARG 209 -0.04 -71.55 0.00 -71.58 -0.05 -72.21 0.00 -72.25 0.67 
HSE 166 5.13 -14.03 -4.53 -13.43 -0.83 -6.97 0.00 -7.80 -5.63 
SER 214 -0.07 -5.85 0.00 -5.92 -0.10 -2.00 0.00 -2.09 -3.82 
VAL 174 -0.95 -3.15 0.00 -4.10 -1.09 -3.17 0.00 -4.26 0.17 
ILE 216 -0.31 -3.34 0.00 -3.64 -0.44 -3.31 0.00 -3.75 0.11 
VAL 168 -0.27 -2.77 0.00 -3.03 -0.33 -2.64 0.00 -2.97 -0.06 
VAL 208 -0.01 -0.83 0.00 -0.84 -0.02 -0.93 0.00 -0.94 0.10 
THR 212 -0.10 1.83 0.00 1.74 -0.13 0.41 0.00 0.28 1.46 
TYR 210 -0.01 1.78 0.00 1.77 -0.01 2.20 0.00 2.19 -0.41 
THR 173 -1.69 7.34 0.00 5.65 -1.89 3.99 0.00 2.10 3.56 
ASP 218 -0.06 83.76 0.00 83.70 -0.07 83.74 0.00 83.68 0.02 



 

 

89 
Table S3-18 – Per-residue energetic contributions in the Antithrombin-III/heparin analog predicted (left) and crystal 
(right) structures. [PDB: 1E03, res. 2.90 Å, RMSD: 0.60 Å]. 

 

Docked Crystal 
  Residue VdW Coulomb H Bond NonBond   VdW Coulomb H Bond NonBond ΔNonBond 

C
ha

in
 I 

ARG  47 5.37 -206.85 -10.73 -212.21 5.88 -194.99 -4.73 -193.85 -18.36 
LYS 114 12.38 -211.46 -10.33 -209.40 -5.92 -219.34 -6.42 -231.68 22.28 
LYS  11 3.13 -202.41 -7.42 -206.70 -6.64 -175.36 0.00 -182.00 -24.70 
ARG  46 9.21 -187.90 -8.44 -187.12 0.31 -171.42 -1.86 -172.98 -14.15 
ARG  13 9.47 -177.67 -12.91 -181.11 -0.70 -117.01 -1.69 -119.39 -61.71 
LYS 125 -1.21 -134.22 0.00 -135.43 176.01 -192.82 -0.26 -17.07 -118.36 
ARG 129 4.95 -129.62 -8.03 -132.71 -0.61 -120.34 -2.08 -123.03 -9.68 
ARG  24 -0.29 -95.38 0.00 -95.67 -0.16 -99.79 0.00 -99.95 4.29 
ARG 132 -0.15 -93.62 0.00 -93.77 -0.36 -100.85 0.00 -101.21 7.44 
ASN  45 -2.51 -17.11 -5.46 -25.08 -4.27 -15.33 -4.67 -24.27 -0.81 
SER 112 -1.18 -11.59 0.00 -12.77 -1.47 1.62 0.00 0.16 -12.93 
PRO  12 -1.66 -8.21 0.00 -9.87 3.69 -10.49 0.00 -6.80 -3.07 
THR  44 -4.47 -3.49 0.00 -7.96 -2.79 0.12 0.00 -2.67 -5.29 
ALA  43 -3.12 -4.65 0.00 -7.77 -3.92 -1.74 0.00 -5.66 -2.12 
VAL  48 -1.15 -5.49 0.00 -6.64 0.26 -6.05 0.00 -5.79 -0.86 
PHE 122 -1.04 -1.68 0.00 -2.72 0.26 -1.98 0.00 -1.71 -1.01 
ILE  40 -0.40 -1.93 0.00 -2.33 -0.29 -2.29 0.00 -2.57 0.25 
PHE 121 -0.37 -1.23 0.00 -1.60 -0.72 -1.42 0.00 -2.14 0.54 
LEU 126 -0.17 -0.39 0.00 -0.56 -0.31 0.04 0.00 -0.27 -0.29 
LEU 417 -0.20 -0.32 0.00 -0.53 -0.24 -0.48 0.00 -0.72 0.20 
GLN 118 -0.23 0.24 0.00 0.01 -0.50 -4.03 0.00 -4.53 4.55 
THR 115 -0.42 0.54 0.00 0.12 -0.42 3.03 0.00 2.61 -2.49 
PRO  41 -0.26 5.91 0.00 5.65 -0.17 4.70 0.00 4.53 1.12 
GLU  42 -0.54 79.06 0.00 78.53 -0.39 89.43 0.00 89.04 -10.51 
GLU 113 1.90 92.68 -1.04 93.55 11.78 97.20 0.00 108.98 -15.43 
ASP  14 -0.11 107.49 0.00 107.38 -0.30 116.97 0.00 116.66 -9.29 
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Figure S3-19 – RPTPσ.  (A) Ig1 and Ig2 domains of RPTPσ. (B) Electrostatic potential surface. (C-F) Predicted structures 
of CS-A, CS-D, CS-E, and heparin after docking and molecular dynamics. 
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Figure S3-20 – Predicted structure of CS-E hexamer (magenta) bound to RPTPσ with 5 Å binding site shown (cyan).  
Dashed lines indicate hydrogen bonding and salt bridges between ligand and protein. 
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Figure S3-21 – Predicted structure of heparin hexamer (magenta) bound to RPTPσ with 5 Å binding site shown (cyan). 
Dashed lines indicate hydrogen bonding and salt bridges between ligand and protein. 

N103 

K69 

K68 

K71 

R100 R97 

R77 

P99 T98 

S75 



 

 

93 
Table S3-19 – Per-residue energetic contributions in the predicted RPTPσ/CS-A (left) and RPTPσ/CS-D (right) 
structures. 

 

CS-A CS-D 
Residue VdW Coulomb H Bond NonBond VdW Coulomb H Bond NonBond 
ARG  77 2.59 -109.82 -8.26 -115.50 2.85 -152.95 -10.80 -160.91 
LYS  68 9.11 -108.48 -12.32 -111.69 -0.54 -100.52 0.00 -101.06 
ARG 100 -2.41 -90.30 -2.04 -94.75 11.00 -174.16 -25.17 -188.33 
ARG  97 9.71 -89.82 -11.85 -91.97 -0.68 -134.41 -4.42 -139.50 
LYS  71 -1.67 -85.86 0.00 -87.54 14.25 -141.64 -11.80 -139.20 
LYS  69 2.01 -99.90 -6.62 -104.51 -0.19 -76.14 0.00 -76.33 
LYS  72 -- -- -- -- -0.46 -75.57 0.00 -76.03 
GLN  76 -1.67 -7.74 -4.48 -13.89 1.86 -16.06 -8.45 -22.65 
ASN  74 -0.86 2.13 0.00 1.27 -0.30 -0.29 -5.86 -6.45 
SER  75 4.90 -12.36 -4.75 -12.21 -2.31 -6.93 0.00 -9.24 
ASN 103 -1.20 -2.24 0.00 -3.44 -0.15 -1.06 0.00 -1.20 
GLU 102 -0.23 48.03 0.00 47.80 -- -- -- -- 
GLY  70 -- -- -- -- -- -- -- -- 
PRO  95 -- -- -- -- -1.05 1.32 0.00 0.27 
PRO  99 -- -- -- -- -- -- -- -- 
THR  98 -- -- -- -- -0.19 1.83 0.00 1.65 
VAL  73 -0.82 -2.94 0.00 -3.77 -0.30 -1.35 0.00 -1.65 
TYR 105 -- -- -- -- -0.09 -2.46 0.00 -2.55 
PHE  78 -3.66 -1.37 0.00 -5.03 -- -- -- -- 
ASP 101 -0.63 75.50 0.00 74.88 -- -- -- -- 
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Table S3-20 – Per-residue energetic contributions in the predicted RPTPσ/CS-E (left) and RPTPσ/heparin (right) 
structures. 

 

 

Figure S3-22 – Electrostatic potential surfaces of (A) NgR1, (B) NgR2, and (C) NgR3.  Note the lack of positive charge on 
NgR2, but strong positive charge on NgR1 and NgR3. 

CS-E heparin 
Residue VdW Coulomb H Bond NonBond VdW Coulomb H Bond NonBond 
ARG  77 11.74 -158.46 -17.21 -163.92 0.89 -180.82 -7.26 -187.18 
LYS  68 10.98 -158.86 -10.24 -158.12 -0.60 -170.34 -1.68 -172.61 
ARG 100 -0.66 -139.54 -9.43 -149.63 3.44 -208.70 -9.97 -215.23 
ARG  97 1.84 -137.33 -5.15 -140.64 2.01 -180.78 -8.27 -187.04 
LYS  71 -2.11 -131.74 0.00 -133.86 4.10 -223.34 -3.40 -222.65 
LYS  69 3.46 -115.00 -5.67 -117.21 -1.69 -127.16 0.00 -128.85 
LYS  72 -0.37 -65.91 0.00 -66.28 -- -- -- -- 
GLN  76 5.83 -20.07 -12.97 -27.22 -0.17 -5.26 0.00 -5.43 
ASN  74 2.57 -15.72 -10.33 -23.48 -0.22 -1.46 0.00 -1.68 
SER  75 -1.95 -10.28 -0.59 -12.83 -0.85 -7.68 -0.18 -8.71 
ASN 103 -1.49 -9.18 0.00 -10.67 -0.26 -9.19 0.00 -9.45 
GLU 102 -- -- -- -- -- -- -- -- 
GLY  70 -- -- -- -- -0.15 0.74 0.00 0.59 
PRO  95 -- -- -- -- -0.54 4.62 0.00 4.08 
PRO  99 -- -- -- -- -1.04 -2.44 0.00 -3.47 
THR  98 -- -- -- -- -0.28 3.73 0.00 3.45 
VAL  73 -2.38 -5.93 0.00 -8.31 -- -- -- -- 
TYR 105 3.55 -6.81 -4.76 -8.02 -- -- -- -- 
PHE  78 -3.37 1.18 0.00 -2.19 -1.31 -0.46 0.00 -1.77 
ASP 101 -1.75 97.79 0.00 96.04 -- -- -- -- 

A – NgR1 B – NgR2 C – NgR3 
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Figure S3-23 – NgR1.  (A) Structure of NgR1. (B) Electrostatic potential surface showing strong positive charge. (C-F) 
Predicted structures of CS-A, CS-D, CS-E, and heparin after docking and molecular dynamics. (G-H) Detailed view of CS-
E and heparin predicted structures. 
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Figure S3-24 – Detail of predicted NgR1/CS-A structure after docking and dynamics with CS-A hexamer (magenta) and 5 
Å binding site (cyan) shown.  Dashed lines indicate hydrogen bonding and salt bridges between ligand and protein.  Overall 
placement on protein shown in inset. 
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Figure S3-25 – Detail of predicted NgR1/CS-D structure after docking and dynamics with CS-D hexamer (magenta) and 5 
Å binding site (cyan) shown.  Dashed lines indicate hydrogen bonding and salt bridges between ligand and protein. 

 

Figure S3-26 – Detail of predicted NgR1/CS-E structure after docking and dynamics with CS-E hexamer (magenta) and 5 
Å binding site (cyan) shown.  Dashed lines indicate hydrogen bonding and salt bridges between ligand and protein. 
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Figure S3-27 – Detail of predicted NgR1/heparin structure after docking and dynamics with heparin hexamer (magenta) 
and 5 Å binding site (cyan) shown.  Dashed lines indicate hydrogen bonding and salt bridges between ligand and protein. 
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Table S3-21 – Per-residue energetic contributions in the predicted NgR1 structures for CS-A, CS-D, CS-E, and heparin. 

 

 

Figure S3-28 – NgR3.  (A) Structure of NgR3. (B) Electrostatic potential surface. (C-F) Predicted structures of CS-A, CS-D, 
CS-E, and heparin after docking and molecular dynamics. (G-H) Detailed view of CS-E and heparin predicted structures. 

CS-A	 CS-D	 CS-E	 Heparin	
Residue	 VdW	 Coulomb	 H	Bond	 NonBond	 VdW	 Coulomb	 H	Bond	 NonBond	 VdW	 Coulomb	 H	Bond	 NonBond	 VdW	 Coulomb	 H	Bond	 NonBond	
ARG	 390	 6.94	 -90.88	 -13.23	 -97.17	 2.15	 -136.95	 -11.48	 -146.28	 -1.11	 -61.48	 0.00	 -62.59	 5.12	 -213.83	 -16.07	 -224.78	
ARG	 392	 -2.73	 -107.51	 -5.79	 -116.04	 -2.26	 -126.71	 -8.96	 -137.93	 -0.19	 -158.71	 -14.92	 -173.82	 2.77	 -191.60	 -10.23	 -199.06	
ARG	 406	 -2.67	 -96.20	 -7.45	 -106.33	 4.79	 -116.69	 -8.19	 -120.09	 2.55	 -131.51	 -12.53	 -141.50	 -1.21	 -176.87	 -6.87	 -184.95	
ARG	 402	 -3.57	 -69.97	 0.00	 -73.53	 0.76	 -120.34	 -4.53	 -124.10	 3.02	 -147.77	 -12.85	 -157.59	 0.82	 -151.54	 -9.09	 -159.81	
ARG	 400	 -0.48	 -96.72	 -5.19	 -102.39	 8.97	 -144.72	 -15.76	 -151.51	 -0.73	 -98.90	 0.00	 -99.63	 4.04	 -142.10	 -5.53	 -143.59	
ARG	 391	 -2.06	 -111.17	 -8.33	 -121.56	 1.17	 -142.38	 -7.89	 -149.09	 -1.38	 -105.45	 0.00	 -106.83	 -1.06	 -134.39	 0.00	 -135.44	
ARG	 397	 -0.25	 -56.79	 0.00	 -57.04	 -1.74	 -101.89	 -0.03	 -103.66	 -0.15	 -72.85	 0.00	 -73.00	 -0.06	 -96.30	 0.00	 -96.36	
LYS	 398	 -0.40	 -40.49	 0.00	 -40.89	 -0.78	 -81.71	 0.00	 -82.49	 -0.14	 -58.40	 0.00	 -58.54	 -0.06	 -68.64	 0.00	 -68.70	
PRO	 389	 -4.08	 -5.91	 0.00	 -9.99	 -4.13	 -4.22	 0.00	 -8.34	 -0.33	 -3.98	 0.00	 -4.31	 -0.36	 -4.12	 0.00	 -4.48	
GLY	 408	 -1.82	 -0.24	 0.00	 -2.06	 -0.81	 -5.51	 0.00	 -6.32	 -0.09	 -4.24	 0.00	 -4.33	 -0.07	 -4.17	 0.00	 -4.24	
GLY	 388	 -0.62	 -3.62	 0.00	 -4.24	 -0.96	 -6.68	 0.00	 -7.64	 -0.04	 -3.15	 0.00	 -3.19	 -0.03	 -4.10	 0.00	 -4.13	
CYS	 405	 -1.71	 0.31	 -2.35	 -3.75	 -0.20	 -5.66	 -2.02	 -7.88	 -0.01	 -8.79	 0.00	 -8.80	 -3.89	 -0.16	 0.00	 -4.05	
ASN	 399	 -1.35	 -5.54	 0.00	 -6.89	 -1.93	 1.27	 0.00	 -0.65	 -0.19	 -4.50	 0.00	 -4.70	 -0.31	 -3.64	 0.00	 -3.95	
PHE	 384	 -0.69	 -1.25	 0.00	 -1.94	 -0.23	 -2.07	 0.00	 -2.30	 -0.03	 -1.51	 0.00	 -1.55	 -0.07	 -2.90	 0.00	 -2.97	
LEU	 407	 -0.98	 0.71	 0.00	 -0.27	 -0.25	 -1.87	 0.00	 -2.12	 -0.27	 -1.86	 0.00	 -2.14	 -0.07	 -1.97	 0.00	 -2.04	
GLY	 394	 1.03	 -2.84	 0.00	 -1.81	 -0.56	 0.65	 0.00	 0.09	 -0.50	 0.68	 0.00	 0.18	 -0.05	 -1.33	 0.00	 -1.38	
CYS	 395	 -2.02	 -1.44	 0.00	 -3.46	 -0.43	 -9.15	 0.00	 -9.58	 -2.79	 -12.58	 0.00	 -15.37	 -0.65	 -0.26	 0.00	 -0.91	
SER	 344	 -0.83	 -0.23	 0.00	 -1.07	 -0.11	 -0.55	 0.00	 -0.66	 -0.01	 -1.48	 0.00	 -1.49	 -0.02	 -0.19	 0.00	 -0.21	
THR	 444	 0.00	 -0.53	 0.00	 -0.53	 -0.01	 1.78	 0.00	 1.78	 0.00	 -0.46	 0.00	 -0.46	 0.00	 0.64	 0.00	 0.64	
ALA	 410	 -0.17	 -0.76	 0.00	 -0.93	 -0.24	 0.61	 0.00	 0.37	 -0.02	 -0.05	 0.00	 -0.07	 -0.03	 1.06	 0.00	 1.03	
THR	 386	 -0.20	 0.59	 0.00	 0.39	 -0.06	 1.06	 0.00	 1.00	 -0.01	 1.22	 0.00	 1.21	 -0.01	 1.16	 0.00	 1.15	
HSE	 404	 -0.48	 1.27	 0.00	 0.79	 -0.60	 2.33	 0.00	 1.73	 -0.29	 0.25	 0.00	 -0.04	 -0.23	 1.87	 0.00	 1.63	
GLN	 409	 -0.49	 1.79	 0.00	 1.30	 -1.17	 9.18	 0.00	 8.01	 -0.07	 3.92	 0.00	 3.85	 -0.07	 2.02	 0.00	 1.95	
PRO	 345	 -0.13	 0.77	 0.00	 0.64	 -0.04	 1.85	 0.00	 1.82	 0.00	 1.29	 0.00	 1.29	 -0.01	 2.08	 0.00	 2.08	
GLY	 342	 -0.99	 -1.11	 0.00	 -2.10	 -0.04	 2.58	 0.00	 2.55	 -0.01	 1.93	 0.00	 1.93	 -0.02	 2.20	 0.00	 2.18	
THR	 401	 -0.66	 2.74	 0.00	 2.08	 -0.46	 4.98	 0.00	 4.52	 -0.37	 3.92	 0.00	 3.55	 -0.72	 3.17	 0.00	 2.45	
SER	 396	 -0.18	 3.43	 0.00	 3.25	 0.59	 5.47	 -3.85	 2.21	 3.30	 -2.21	 -4.89	 -3.80	 -0.18	 2.69	 0.00	 2.51	
PRO	 393	 -3.03	 4.64	 0.00	 1.61	 -0.79	 7.05	 0.00	 6.26	 -0.40	 7.33	 0.00	 6.92	 -0.24	 5.85	 0.00	 5.61	
SER	 403	 -0.18	 3.43	 0.00	 3.25	 -0.19	 2.81	 0.00	 2.61	 -1.02	 1.80	 0.00	 0.78	 -0.35	 6.34	 0.00	 5.99	
ASP	 343	 -1.62	 48.13	 0.00	 46.51	 -0.07	 71.82	 0.00	 71.74	 -0.01	 61.99	 0.00	 61.98	 -0.02	 82.58	 0.00	 82.56	
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Figure S3-29 – Detail of predicted NgR3/CS-A structure after docking and dynamics with CS-A hexamer (magenta) and 5 
Å binding site (cyan) shown.  Dashed lines indicate hydrogen bonding and salt bridges between ligand and protein. 

NgR3/CS-A 
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Figure S3-30 – Detail of predicted NgR3/CS-D structure after docking and dynamics with CS-D hexamer (magenta) and 5 
Å binding site (cyan) shown.  Dashed lines indicate hydrogen bonding and salt bridges between ligand and protein. 

NgR3/CS-D 
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Figure S3-31 – Detail of predicted NgR3/CS-E structure after docking and dynamics with CS-E hexamer (magenta) and 5 
Å binding site (cyan) shown.  Dashed lines indicate hydrogen bonding and salt bridges between ligand and protein. 

NgR3/CS-E 
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Figure S3-32 – Detail of predicted NgR3/heparin structure after docking and dynamics with heparin hexamer (magenta) 
and 5 Å binding site (cyan) shown.  Dashed lines indicate hydrogen bonding and salt bridges between ligand and protein. 

NgR3/Heparin 
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Table S3-22 – Per-residue energetic contributions in the predicted NgR3 structures for CS-A, CS-D, CS-E, and 
heparin. 

 

VdW Coulomb H	Bond NonBond VdW Coulomb H	Bond NonBond VdW Coulomb H	Bond NonBond VdW Coulomb H	Bond NonBond
LYS 383 4.11 -102.12 -2.70 -100.71 0.45 -152.91 -4.15 -156.61 6.52 -162.33 -9.44 -165.24 7.58 -206.62 -11.23 -210.27
ARG 380 -0.04 -40.12 0.00 -40.16 -1.06 -102.20 0.00 -103.26 -1.20 -119.85 -5.80 -126.85 3.48 -182.45 -7.59 -186.56
LYS 381 -0.17 -52.67 0.00 -52.84 0.75 -138.39 -4.12 -141.76 4.02 -139.02 -10.71 -145.71 7.81 -180.38 -6.68 -179.25
ARG 330 -0.84 -63.93 0.00 -64.77 -2.80 -102.67 0.00 -105.47 -0.31 -153.39 -11.01 -164.70 2.79 -158.26 -5.44 -160.90
ARG 340 -2.65 -68.57 0.00 -71.22 1.84 -118.19 -5.24 -121.59 -0.29 -83.03 0.00 -83.32 -1.34 -156.72 -2.65 -160.71
LYS 331 -0.27 -98.70 -4.75 -103.72 3.13 -123.36 -5.79 -126.02 -0.63 -74.84 0.00 -75.48 -0.71 -153.93 -0.76 -155.40
LYS 334 -1.13 -89.69 -4.68 -95.50 -2.39 -97.83 0.00 -100.22 -2.53 -141.48 -1.46 -145.47 -3.30 -134.35 0.00 -137.65
LYS 379 -0.84 -81.40 -0.02 -82.25 -0.17 -67.58 0.00 -67.74 -0.37 -84.61 0.00 -84.99 -1.05 -130.60 0.00 -131.66
ARG 342 2.01 -72.80 -6.37 -77.17 -2.08 -104.32 -3.28 -109.68 -0.09 -68.84 0.00 -68.93 -0.81 -118.99 0.00 -119.80
ARG 326 -1.18 -62.89 0.00 -64.07 -0.84 -92.99 0.00 -93.83 -2.41 -72.84 0.00 -75.25 -0.08 -97.25 0.00 -97.33
ASN 335 -1.84 0.07 0.00 -1.77 2.32 -9.47 -4.60 -11.75 -1.99 -9.78 -3.64 -15.41 -0.19 -12.30 -6.78 -19.27
ASN 338 -1.39 -2.82 -0.16 -4.37 -1.61 -2.72 -0.08 -4.41 -1.12 -2.24 0.00 -3.37 -1.17 -3.49 0.00 -4.66
PRO 362 -0.25 -0.75 0.00 -1.00 -0.20 -2.05 0.00 -2.25 -0.02 -1.54 0.00 -1.57 -0.02 -2.42 0.00 -2.44
PRO 327 -0.88 -3.14 0.00 -4.01 -0.87 -3.83 0.00 -4.70 -3.57 0.38 0.00 -3.18 -0.22 -1.95 0.00 -2.17
GLY 333 0.34 -0.67 -4.29 -4.63 -1.59 -1.25 -3.92 -6.77 -2.38 4.27 0.00 1.89 -1.51 -0.23 0.00 -1.74
GLY 382 -0.09 0.75 0.00 0.66 -0.12 2.17 0.00 2.05 -1.28 1.34 0.00 0.06 -0.25 -1.36 0.00 -1.61
ILE 345 -0.85 -0.11 0.00 -0.96 -1.88 -0.42 0.00 -2.30 -0.12 -0.55 0.00 -0.67 -0.08 -0.78 0.00 -0.86
ALA 350 -0.30 -2.38 0.00 -2.68 -0.12 -1.27 0.00 -1.39 -0.13 -0.71 0.00 -0.84 -0.02 -0.79 0.00 -0.81
ASN 341 -1.36 0.73 0.00 -0.63 -0.15 2.42 0.00 2.27 -0.04 0.79 0.00 0.75 -0.06 0.00 0.00 -0.07
GLY 349 -0.16 -2.75 0.00 -2.91 -0.45 -4.02 0.00 -4.47 -1.21 -2.14 0.00 -3.35 -0.06 0.43 0.00 0.37
PRO 332 -2.68 -0.11 0.00 -2.79 -1.95 -2.37 0.00 -4.32 -0.92 4.48 0.00 3.55 -0.59 1.27 0.00 0.68
PRO 339 -4.19 5.10 0.00 0.92 -0.55 8.20 0.00 7.65 -0.28 5.86 0.00 5.59 -0.26 1.69 0.00 1.43
ALA 348 -0.46 -3.28 0.00 -3.74 -0.29 -2.64 0.00 -2.93 -1.34 -2.64 0.00 -3.97 -0.44 2.12 0.00 1.69
HSE 309 -0.02 -0.37 0.00 -0.40 -0.02 0.60 0.00 0.58 -0.65 -1.57 0.00 -2.21 -0.02 1.89 0.00 1.87
HSE 329 -0.06 0.65 0.00 0.58 -0.27 0.00 0.00 -0.26 -1.25 -1.38 0.00 -2.63 -0.26 3.43 0.00 3.18
PRO 325 -0.44 3.13 0.00 2.69 -0.19 3.21 0.00 3.03 -2.53 -1.17 0.00 -3.70 -0.03 3.36 0.00 3.33
ASP 359 -0.30 64.07 0.00 63.78 -0.04 79.36 0.00 79.32 -0.03 69.11 0.00 69.09 -0.08 100.87 0.00 100.79

Heparin
Residue

CS-A CS-D CS-E
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Table S3-23 – Single residue mutation data for RPTPs.  Values show change in binding energy (kcal/mol) relative to 
wildtype structures.  Values are shown both for the change in hydrogen bonding for the specific mutated residue as well as 
the overall change in the full cavity binding energy.  The cavity binding energy is further separated into hydrogen bonding + 
van der Waals or Coulomb energy. 

 

 

Table S3-24 – Single residue mutation data for NgR1.  Values show change in binding energy (kcal/mol) relative to 
wildtype structures.  Values are shown both for the change in hydrogen bonding for the specific mutated residue as well as 
the overall change in the full cavity binding energy.  The cavity binding energy is further separated into hydrogen bonding + 
van der Waals or Coulomb energy. 

num from to CSA CSD CSE HEP ∆Cav ∆(HB+VDW) ∆Cou ∆Cav ∆(HB+VDW) ∆Cou ∆Cav ∆(HB+VDW) ∆Cou ∆Cav ∆(HB+VDW) ∆Cou
73 V N -1.48 0.00 -6.17 0.00 1.56 -6.53 8.09 5.03 7.96 -2.93 -28.66 3.08 -31.75 -1.41 -2.47 1.07
73 V Q -1.82 0.00 0.00 0.00 -2.36 -5.15 2.78 -3.85 5.70 -9.56 -32.20 -6.47 -25.73 -5.87 -0.20 -5.66
74 N Q 0.00 -4.29 5.91 0.00 -11.00 -3.44 -7.56 13.75 1.60 12.14 14.66 10.45 4.21 2.97 -3.06 6.03
75 S N -1.22 -4.66 -1.17 0.31 -7.17 7.22 -14.40 -35.76 -4.34 -31.41 11.00 1.23 9.78 24.41 0.73 23.69
75 S Q 4.75 -1.11 4.44 0.31 26.31 29.85 -3.54 -28.87 -6.92 -21.96 21.53 24.46 -2.94 21.00 2.33 18.68
76 Q N -1.61 1.19 -1.50 0.00 -9.37 -2.33 -7.04 0.44 -0.59 1.02 2.28 5.24 -2.97 6.07 -1.82 7.89
78 F N -4.58 0.00 0.00 0.00 3.34 0.46 2.89 5.48 5.98 -0.50 -3.23 3.50 -6.73 6.58 1.98 4.60
78 F Q 0.00 0.00 -3.07 0.00 -11.05 -4.91 -6.15 -8.99 4.79 -13.79 -6.42 6.54 -12.97 2.47 -2.04 4.51

103 N Q -1.14 0.00 5.15 -0.04 -13.39 -0.59 -12.80 -22.49 -8.02 -14.47 -6.56 0.38 -6.94 -6.77 -3.88 -2.88

num from to CSA CSD CSE HEP ∆Cav ∆(HB+VDW) ∆Cou ∆Cav ∆(HB+VDW) ∆Cou ∆Cav ∆(HB+VDW) ∆Cou ∆Cav ∆(HB+VDW) ∆Cou
68 K N 7.58 0.00 5.88 9.87 95.67 8.45 87.22 79.75 -5.99 85.73 119.99 -3.28 123.26 137.68 1.17 136.51
68 K Q 7.60 0.00 0.43 9.87 103.11 7.80 95.31 77.89 -4.12 82.01 116.16 -0.89 117.05 160.96 3.13 157.83
69 K N 8.27 0.00 -0.43 0.41 109.55 12.56 96.99 87.95 5.61 82.35 84.90 -3.08 87.97 123.59 -1.29 124.88
69 K Q 8.27 0.00 5.12 0.41 97.91 5.28 92.63 75.40 4.98 70.41 90.73 -5.27 95.99 135.29 -6.80 142.10
71 K N 4.58 4.29 1.68 5.71 78.37 4.92 73.44 84.49 -3.90 88.39 74.38 -1.00 75.38 172.64 -0.70 173.34
71 K Q 6.15 -2.56 0.20 11.24 89.01 13.20 75.81 74.24 -11.41 85.65 72.17 -1.89 74.06 185.03 13.95 171.08
77 R Q 6.96 6.37 6.84 14.14 100.48 5.10 95.38 128.38 3.40 124.98 107.04 -9.98 117.03 163.36 0.66 162.70
77 R N 7.01 0.96 11.82 14.14 94.89 2.33 92.57 130.30 -1.43 131.72 108.53 -10.16 118.69 165.41 0.61 164.81
97 R N 4.59 9.78 -0.96 12.05 100.76 0.66 100.09 123.99 1.22 122.76 121.08 11.91 109.17 189.16 -0.56 189.72
97 R Q 4.59 9.78 -0.05 6.35 91.62 -0.55 92.18 116.85 2.75 114.09 114.11 1.33 112.78 188.49 0.66 187.84

100 R N 12.01 18.70 3.81 15.24 98.76 2.89 95.88 150.09 5.51 144.58 139.31 0.52 138.79 219.62 -1.39 221.02
100 R Q 12.01 23.01 0.71 15.53 91.91 2.23 89.69 132.35 2.97 129.37 112.37 3.65 108.72 221.74 1.56 220.19

PTPS	Increased	Binding
PTPS	Residue Per-Res	∆HBond CSA	Cavity CSD	Cavity CSE	Cavity HEP	Cavity

PTPS	Decreased	Binding
PTPS	Residue Per-Res	∆HBond CSA	Cavity CSD	Cavity CSE	Cavity HEP	Cavity

num from to CSA CSD CSE HEP ∆Cav ∆(HB+VDW) ∆Cou ∆Cav ∆(HB+VDW) ∆Cou ∆Cav ∆(HB+VDW) ∆Cou ∆Cav ∆(HB+VDW) ∆Cou
395 C Q -5.33 0.00 -4.87 0.00 -7.24 2.09 -9.33 3.60 -1.74 5.34 8.95 0.38 8.57 6.30 -3.63 9.93
396 S N 0.00 -1.73 -6.06 0.00 -3.19 3.57 -6.76 -15.44 -3.64 -11.80 9.88 3.95 5.93 10.94 -3.36 14.31
396 S Q 0.00 4.38 -0.05 -4.85 -6.51 3.69 -10.21 -0.97 1.83 -2.81 15.97 5.70 10.27 -13.35 -5.15 -8.19
399 N Q 4.67 -3.26 0.00 0.00 2.86 2.29 0.58 -7.57 -2.71 -4.86 2.18 -0.67 2.85 -47.06 -1.26 -45.80
403 S Q 0.00 0.00 -5.22 0.00 4.39 4.40 0.00 -3.76 -2.31 -1.45 5.82 2.99 2.84 -1.31 -4.93 3.62
405 C N -6.52 -4.36 -0.79 -3.27 -8.64 5.99 -14.62 -24.39 -5.79 -18.61 -0.64 -0.16 -0.47 -0.03 -7.67 7.65
405 C Q 0.00 -1.60 -6.10 0.00 -4.76 8.05 -12.81 -4.87 5.03 -9.90 -3.39 -0.36 -3.04 -0.92 -5.56 4.64

num from to CSA CSD CSE HEP ∆Cav ∆(HB+VDW) ∆Cou ∆Cav ∆(HB+VDW) ∆Cou ∆Cav ∆(HB+VDW) ∆Cou ∆Cav ∆(HB+VDW) ∆Cou
390 R Q 0.86 8.12 0.00 14.17 83.82 3.55 80.28 127.85 4.00 123.84 74.90 -2.34 77.24 216.92 -6.24 223.17
390 R N 3.65 7.85 0.00 20.17 91.45 4.43 87.03 129.28 7.46 121.83 103.46 1.07 102.40 214.66 5.94 208.73
391 R N 12.39 1.33 4.80 0.00 111.02 12.01 99.03 117.11 -3.64 120.74 133.74 3.22 130.51 104.52 -5.12 109.65
391 R Q 12.39 5.69 4.80 0.00 81.87 1.91 79.96 108.81 6.44 102.37 130.43 2.71 127.72 116.57 -6.14 122.71
392 R N 5.47 -0.86 10.62 6.61 87.18 6.33 80.86 120.25 11.02 109.24 165.18 11.93 153.25 176.91 4.80 172.12
392 R Q 5.93 -0.64 10.64 7.72 88.87 5.06 83.81 111.70 3.80 107.91 165.48 10.73 154.75 175.74 3.43 172.31
400 R N 0.88 15.38 0.00 5.59 75.35 3.35 72.00 140.99 10.79 130.20 95.87 -1.00 96.87 141.97 -4.20 146.17
400 R Q 0.95 11.95 0.00 5.57 88.95 9.99 78.97 135.65 8.85 126.80 93.43 -0.12 93.56 108.39 -2.58 110.97
402 R Q 7.41 5.08 12.90 4.13 78.45 8.42 70.03 107.96 -4.30 112.26 147.99 4.21 143.78 142.76 -4.02 146.78
402 R N 7.47 6.67 0.70 2.92 84.77 9.26 75.52 110.69 -4.12 114.81 144.72 3.64 141.08 149.66 -3.21 152.87
406 R Q 6.16 2.32 13.46 5.97 91.65 9.39 82.27 86.91 -5.04 91.95 136.94 2.12 134.82 167.79 2.68 165.11
406 R N 7.34 4.44 12.49 5.97 103.23 11.66 91.57 97.02 3.78 93.24 135.69 1.72 133.98 181.99 -1.47 183.46

CSD	Cavity CSE	Cavity HEP	Cavity

NGR1	Decreased	Binding
NGR1	Residue Per-Res	∆HBond CSA	Cavity CSD	Cavity CSE	Cavity HEP	Cavity

NGR1	Residue Per-Res	∆HBond
NGR1	Increased	Binding

CSA	Cavity
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Table S3-25 – Single residue mutation data for NgR3.  Values show change in binding energy (kcal/mol) relative to 
wildtype structures.  Values are shown both for the change in hydrogen bonding for the specific mutated residue as well as 
the overall change in the full cavity binding energy.  The cavity binding energy is further separated into hydrogen bonding + 
van der Waals or Coulomb energy. 

 

num from to CSA CSD CSE HEP ∆Cav ∆(HB+VDW) ∆Cou ∆Cav ∆(HB+VDW) ∆Cou ∆Cav ∆(HB+VDW) ∆Cou ∆Cav ∆(HB+VDW) ∆Cou
338 N Q 1.43 0.06 3.53 -5.31 -4.84 2.39 -7.23 6.70 0.74 5.96 18.28 -2.09 20.37 0.10 1.74 -1.64
345 I Q -4.24 -5.59 0.00 0.00 -3.12 -0.93 -2.20 0.80 -3.97 4.78 -10.18 -7.76 -2.41 -0.10 -0.19 0.08
348 A N -4.60 0.00 -0.78 -2.15 -12.91 -2.87 -10.04 -5.07 -2.65 -2.42 -5.76 -1.24 -4.51 -12.19 -3.71 -8.48

num from to CSA CSD CSE HEP ∆Cav ∆(HB+VDW) ∆Cou ∆Cav ∆(HB+VDW) ∆Cou ∆Cav ∆(HB+VDW) ∆Cou ∆Cav ∆(HB+VDW) ∆Cou
330 R N 0.74 -1.09 9.03 0.08 84.09 9.33 74.77 49.41 -4.51 53.92 149.89 2.24 147.65 125.52 -3.79 129.32
330 R Q 0.74 -2.10 7.54 -0.17 84.81 10.32 74.49 28.03 -5.77 33.80 152.89 2.27 150.63 127.01 -5.33 132.33
331 K Q 4.31 5.31 1.87 -2.08 92.34 0.99 91.35 25.97 -7.63 33.60 105.28 6.51 98.78 155.28 -2.14 157.42
331 K N 7.53 5.75 1.87 -6.82 101.31 7.32 94.00 31.23 -5.72 36.95 100.70 6.15 94.55 148.88 -1.89 150.77
334 K N 2.01 -6.09 9.00 0.00 70.93 -2.08 73.02 70.93 -6.27 77.20 154.48 -2.05 156.53 119.55 -2.40 121.96
334 K Q 6.57 0.00 3.57 0.00 53.70 1.07 52.63 93.72 -3.94 97.67 102.98 -2.46 105.44 130.15 -0.69 130.84
340 R N 0.00 -1.29 0.00 5.17 64.44 1.69 62.74 117.17 -4.79 121.96 73.59 -5.51 79.09 112.55 -10.32 122.87
340 R Q 0.00 -1.28 0.00 5.17 64.45 0.34 64.11 72.83 -7.89 80.72 77.98 -11.87 89.85 120.72 -7.44 128.16
342 R N 8.86 16.64 5.66 0.00 71.30 4.52 66.77 128.14 0.11 128.03 95.01 -5.88 100.89 108.88 -8.34 117.22
342 R Q 8.86 16.07 5.66 0.00 63.84 3.86 59.98 126.70 -0.15 126.85 92.95 -4.70 97.65 108.36 -6.29 114.65
379 K N 0.00 0.00 0.00 5.58 3.64 -4.34 7.99 76.86 -2.33 79.19 82.12 -1.28 83.39 158.63 2.23 156.40
379 K Q 0.00 0.00 0.00 5.58 11.27 2.03 9.24 72.12 -1.96 74.08 84.91 -0.05 84.96 158.55 -1.94 160.48
380 R N 0.00 5.43 0.59 3.93 42.61 -0.06 42.68 51.23 0.39 50.85 66.95 -3.91 70.86 188.74 -3.93 192.67
380 R Q 0.00 5.43 2.81 1.21 35.33 0.26 35.08 45.62 -0.61 46.23 69.83 -10.08 79.91 196.39 -3.00 199.40
381 K N 0.00 4.69 8.58 1.68 56.14 2.87 53.27 84.96 -2.92 87.89 119.97 -5.89 125.86 146.31 -14.85 161.17
381 K Q 0.00 4.69 8.27 -7.65 47.50 0.85 46.65 110.48 -0.09 110.57 120.14 -4.00 124.14 137.24 -17.81 155.05
383 K Q -5.14 6.10 2.09 6.77 42.26 2.69 39.58 63.75 -7.34 71.09 95.05 -3.91 98.96 154.07 -9.80 163.87
383 K N 0.00 6.10 10.92 7.95 42.16 1.41 40.75 60.25 -2.41 62.66 92.99 -2.73 95.71 176.79 -5.68 182.47

HEP	Cavity

NGR3	Increased	Binding
NGR3	Residue Per-Res	∆HBond CSA	Cavity CSD	Cavity CSE	Cavity HEP	Cavity

NGR3	Decreased	Binding
NGR3	Residue Per-Res	∆HBond CSA	Cavity CSD	Cavity CSE	Cavity
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Introduction 

Recent work in the Hsieh-Wilson group has identified chondroitin sulfate-E (CS-E) binds 

to the EphB3 receptor with high specificity and physiologically relevant affinity and is 

responsible for the direction of retinal neuron growth.1  However, CS-A, which is less 

sulfated than CS-E, does not bind to EphB3, nor does it direct neuronal growth.  

Furthermore, while EphB2 shares ~60% sequence identity (extracellular region) with 

EphB3, experiments show that it does not bind any glycosaminoglycans (GAGs).  We have 

previously applied computational methods (GAG-Dock) to similar GAG-protein systems 

with great success, both for systems with known crystal structures and for identifying novel 

interactions with the protein tyrosine phosphatase σ (RPTPs) and Nogo receptors (NgR).2  

We believe that predictions of the interaction between CS-E and EphB3 will be useful in 

studying and understanding the role of this interaction in neuron growth. 

Using the GAG-Dock method, we explain the differential binding of CS ligands to the 

EphB3 and EphB2 receptors.  Our results identify the previously unknown binding site for 
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CS-E on the EphB3 receptor and suggest experiments that can be used to validate our 

predictions. 

GAG-Dock Overview 

GAG-Dock2 is a docking method based on the DarwinDock3-11 and GenDock methodology 

that has been accommodated to work with large, highly charged, surface-binding ligands 

characteristic of GAGs.  Because the binding sites for proteins that bind GAGs are 

typically not known, it is necessary to sample the entire surface of the protein.  The surface 

of the protein is broken into regions, which are then evaluated using a “coarse” level of 

docking, which generates 10,000 ligand poses for each region.  Based on the ranking of 

these regions by energy, a subset is docked to using a “fine” level of docking.  The “fine” 

docking is carried out to a completeness threshold of 5%; however, due to the 

computational difficulty of these systems, a limit of 50,000 ligand poses is placed on the 

completeness. 

Modifications to GAG-Dock 

GAG-Dock is used almost identically to the way that it was used in our work on RPTPs 

and NgR.  The key difference has to do with the way in which regions of the protein were 

sampled.  The extracellular domains of EphB3 and EphB2 are very large and the location 

of the CS binding site was not previously known.  It was therefore necessary to sample the 

majority of the protein surface.  As in our previous work, spheres were generated that cover 

the entire surface of the protein.  These spheres were divided into overlapping 

boxes/regions, however at a smaller size: 15Å/side (instead of 20Å) with 3Å overlap 



 

 

109 
(instead of 5Å).  This was done to reduce the computational cost of working with an 

octasaccharide ligand.  However, this resulted in an excessive number of boxes to test.  

Knowing that the CS binding site must be positively charged to match the negative charge 

of the ligand, we used electrostatics to eliminate most of the sphere regions.  Specifically, 

we calculated the electrostatic potential for the proteins (Fig. 4-1A) using the Adaptive 

Poisson-Boltzmann Solver (APBS12-14) method and mapped the potential onto the spheres.  

Regions were ordered based on the number of positively charged spheres, and the 25% 

with the largest number of positive spheres were kept for docking.  This resulted in 45 

regions (238-1108 positive spheres) for EphB3 and 47 regions (180-1211 positive spheres) 

for EphB2.  (Fig. S4-11) 

All other parts of the GAG-Dock procedure were the same.  Because CS ligands of 

sufficient size had already been prepared for our prior work, we used the same CS-A, CS-

D, and CS-E octasaccharides. 

“Coarse” docking was applied using CS-A, CS-D, and CS-E to the 45 EphB3 regions and 

47 EphB2 regions.  The top 13 EphB3 regions for CS-E binding were reexamined using 

“fine” docking for CS-A, CS-D, and CS-E. 

EphB2 and EphB3 Models 

Because no crystal structures of the full EphB3 or EphB2 extracellular regions exist, it was 

necessary to use homology modeling to generate the protein structures.  EphB3 (PDB: 

3P1I15) and EphB2 (PDB: 2QBX16) ephrin ligand binding domain crystal structures were 
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used with a crystal structure of the EphA2 ectodomain (PDB: 2X1117) to generate the 

homology models for EphB3 and EphB2 using SWISS-MODEL18-21. 

The human EphB2 model was constructed for the sequence corresponding to protein 

residues 20-529 by using the 2.3 Å resolution structure for human EphB2 (PDB: 2QBX) 

for protein residues 20-194 and combining it with a homology structure for residues 195-

529 based on a lower resolution (4.3 Å) human Ephrin type-A receptor 2 (EphA2) structure 

(PDB: 2X11). This required aligning 2QBX structure to the full 2X11 homology structure 

and extracting residues 195-529 to attach to 2QBX structure. This was followed by 

minimizing hinge residues 192-197 using the DREIDING22 force field in MPSIM23 while 

keeping all other residues fixed and then minimizing all the residues. 

The human EphB3 model was constructed for the sequence corresponding to protein 

residues 39-544 by using the 2.1 Å resolution structure for human EphB3 (PDB: 3P1I) for 

protein residues 39-209 and combining it with a homology structure for residues 210-544 

based on human Ephrin type-A receptor 2 (EphA2) structure (PDB: 2X11). This required 

aligning 3P1I structure to the full 2X11 homology structure and extracting residues 210-

544 to attach to 3P1I structure. This was followed by minimizing hinge residues 207-212 

using the DREIDING force field in MPSim, while keeping all other residues fixed and then 

minimizing all the residues.  A schematic of the domains present in our EphB2 and EphB3 

models is shown in Fig. 4-1A. 
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Results 

We observed significant differences in the amount and placement of positive charge on the 

electrostatic potential surfaces of the EphB2 and EphB3 models (Fig. 4-1B, S4-11). Since 

CS-E is a highly sulfated GAG, we expected this to provide a structural basis for the 

selectivity of CS-E toward EphB3. This was verified by the GAG-Dock predictions for the 

CS-E octa-saccharide bound to each of the two proteins. We found from coarse docking 

that CS-E bound to EphB3 (–345 kcal/mol) more strongly than to EphB2 (–119 kcal/mol). 

We also docked two other CS octa-saccharides, CS-A and CS-D, to EphB3 and EphB2. 

The binding energies from coarse binding for these ligands also indicated better binding to 

EphB3 than to EphB2 (Fig. 4-2). 

Comparisons of the binding energies from fine docking of the three CS octasaccharides 

(Fig. 4-3) showed that CS-E bound strongly to EphB3 (–381 kcal/mol) while CS-A did not 

(–280 kcal/mol). This is in agreement with experimental results for CS-E and CS-A 

binding to EphB3 found by the Hsieh-Wilson group. In our calculations CS-D (–374 

kcal/mol) bound comparably to CS-E; however, there are no experimental results for CS-D 

binding as it is difficult to obtain pure molecules of CS-D for ligand binding experiments. 

Overall GAG-Dock predicts binding sites and energies that correspond well with the 

known experimental data for CS binding to EphB2 and EphB3. The predicted CS-E 

binding region on EphB3 contains eight arginines (R309, R344, R363, R391, R408, R420, 

R440, and R478) as well as two lysines (K378, K434).  However, no single binding pose 

can access more than six of these attractive positive residues.  Furthermore, distinct binding 
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motifs were apparent in the docking output.  Therefore, for CS-E bound to EphB3, we 

identified five different binding motifs (Modes 1-5), all in the area of the first fibronectin 

III domain (Fig 4-1E, S4-10).  Modes 1 and 2 (Fig 4-1C, 4-1D) are predicted to have 

comparable binding energy (-377.5 kcal/mol and -381 kcal/mol, respectively) and each is 

found 10 times in the best 25 poses making them the most likely candidates for the actual 

ligand binding site.  Detailed images for Mode 1 and Mode 2 are shown in Fig. 4-1D/E.  

Mode 3 has an energy of -380.5 kcal/mol, making it comparable in energy to Modes 1 and 

2, but is only represented by 3 poses.  Modes 4 and 5 each have one pose, with energies of -

351.9 kcal/mol, and -318.7 kcal/mol, respectively.  Given the presence of multiple 

competing binding sites and the inability of any one pose to interact with all of the charged 

residues in the region, it is possible that more than one position of the ligand is biologically 

relevant.  Furthermore, it is possible that the less represented binding modes might leave 

available charged sites that could allow dimerization of two EphB3 proteins, which is a 

possible mechanism for activation. 

Per-residue nonbond energies for each of the five binding modes is shown in Table S4-1.  

Table S4-2 focuses on the arginine and lysine residues in the binding sites and clearly 

shows that, while each of these charge residues contributes to the binding energy, the 

pattern of interactions with these residues differs between the binding modes. 

While the best pose from Mode 1 is ~3 kcal/mol worse in energy than the best pose from 

Mode 2, the poses from Mode 1 are very consistent in their placement (Fig S4-14) and 

make very good contact with the protein (Fig S4-13).  A detailed image of the best Mode 1 
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pose is shown in Fig S4-12.  The poses for Mode 2 are less consistent in their placement 

(Fig S4-15B).  The best pose for Mode 2 (detailed, Fig S4-15A) shows that while the mode 

generally fits to the protein well (Fig S4-15C), the middle part of the ligand loses contact 

with the protein (Fig S4-15D).  Similar analysis for Modes 3-5 are shown in Fig S4-16 – 

S4-20.  Pharmacophores for all five binding modes are shown in Fig 4-4 – 4-8. 

Suggested Post-Prediction Validations 

To provide a means for experimentally validating our novel CS-E/EphB3 binding site, we 

propose several targeted mutations of key residues involved in CS-E binding. The most 

significant contributions for ligand binding come from eight arginines (R309, R344, R363, 

R391, R408, R420, R440, R478) and two lysines (K378, K434) in the binding site, as 

expected for a highly negatively charged ligand. (Table S4-2) We suggest that mutation of 

these residues to glutamine (or asparagine) should dramatically reduce the binding while 

minimizing the risk of large structural changes that more severe mutations (e.g., to alanine) 

could cause.  Our methodology in determining suggested mutations is described in the 

supplemental information. 

The differences in the orientations of our five predicted binding modes suggests that 

specific residues may play a larger role in binding, leaving others to play a lesser role. 

Since Modes 1 and 2 represented 80% of the top 25 poses, we will focus our results on 

mutations for these two modes. While all ten positively charged residues contributed to the 

overall binding energies, the strongest five contributions for Mode 1 were R440 (-174.5 

kcal/mol), R363 (-137.7 kcal/mol), R309 (-128.0 kcal/mol), K434 (-125.7 kcal/mol), and 
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R344 (-120.9 kcal/mol). The strongest six contributions for Mode 2 were R440 (-167.1 

kcal/mol), K434 (-142.9 kcal/mol), K378 (-130.6 kcal/mol), R363 (-120.6 kcal/mol), R420 

(-115.5 kcal/mol), and R309 (-98.4 kcal/mol). R440 was the strongest contributor for both 

Mode 1 and Mode 2, suggesting that it should be the first target for specific mutations. 

R309 and R344 both contributed more strongly to Mode 1, and K378 and R420 both 

contributed more strongly to Mode 2. Mutation of these residues may be able to provide 

experimental evidence for which Mode is best. Since R391, R408, and R478 did not 

contribute strongly to either Mode 1 or Mode 2 mutations of these residues could provide 

experimental information on whether Modes 3-5 are relevant.  Contributions for all 

residues are presented in Table S4-1. 

We carried out in silico mutations of the key Mode 1 residues to glutamine, which led to 

the following changes to the binding energy (positive indicates weaker interactions): 

R440Q +165.9 kcal/mol, R363Q +131.0 kcal/mol, R309Q +122.7 kcal/mol, R344Q +120.6 

kcal/mol, K434Q +114.5 kcal/mol. For Mode 2 the changes to binding energy were: 

R440Q +160.7 kcal/mol, K434Q +133.8 kcal/mol, K378Q +111.2 kcal/mol, R363Q +100.4 

kcal/mol, R420Q +95.2 kcal/mol, R309Q +94.0 kcal/mol. 

We recommend that numerous simultaneous mutations be done for tests of our predictions. 

The reason is that because a large number of charged residues contribute to the binding, 

mutation to a single residue may be insufficient to significantly alter binding.  Moreover 

since other positive residues are available in the same regions, the ligand might find new 

interactions in the absence of just one or two key residues.  
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A more rigorous validation of our predicted binding modes would be to perform 

mutations that unambiguously increase binding affinity.  Consequently we identified 

mutations of several residues that GAG-Dock suggests should increase binding affinity. 

We selected these mutations to allow additional contacts with the charged and polar groups 

on CS-E. Again we considered mutations to glutamine, since the mutated structures may be 

more likely to fold to the proper structure, than say mutations to alanine. Eight individual 

mutations for Mode 1 predicted to make new contacts with the ligand are (negative 

indicates stronger binding): T448Q (-18.77 kcal/mol), V339Q (-13.65 kcal/mol), I446Q (-

12.48 kcal/mol), A442Q (-11.97 kcal/mol), N445Q (-11.42 kcal/mol), T319Q (-11.20 

kcal/mol), N323Q (-4.23 kcal/mol), and N322Q (-0.78 kcal/mol).  Seven individual 

mutations for mode 2 predicted to make new contacts are: E424Q (-117.08 kcal/mol), 

V339Q (-16.14 kcal/mol), T422Q (-16.14 kcal/mol), T338Q (-14.13 kcal/mol), N445Q (-

7.44 kcal/mol), N323Q (-2.97 kcal/mol), and S341Q (-0.92 kcal/mol).  These single residue 

mutations are summarized in Table S4-3 for Mode 1 and Table S4-5 for Mode 2.  (Modes 

3-5 in Tables S4-7, -8, -10) 

Based on their individual predicted contributions to binding, we suggest the following set 

of 7 mutations for the first experiments to test Mode 1: T319Q, N322Q, V339Q, A442Q, 

A443N, I446Q, and T448Q.  We predicted that this set of mutations for Mode 1 improves 

binding energy by 66.03 kcal/mol, or 16.5% better than binding to the wild-type.  The 

predicted binding site for this set of mutations for Mode 1 is shown in Fig 4-9A.  Energies 

for all sets of mutations tested for Mode 1 are shown in Table S4-4. 
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The presence of E424 in the neighborhood of Mode 2 is puzzling, since it has a 

repulsive interaction with the ligand.  Mutating E424 to glutamine resulted in a significant 

increase in binding energy, but might also modify the binding site. Therefore, we propose 

two sets of mutations for Mode 2.  The first set is: N323Q, T338N, V339Q, S341Q, 

T422Q, and N445Q.  This improved binding energy by 46.64 kcal/mol or 11.4% better 

than the wild-type.  The second set for mode 2 adds the E424Q mutant, resulting in an 

improvement of 163.84 kcal/mol or 40%.  The predicted binding site for the non-E424Q set 

for Mode 2 is shown in Fig 4-9B.  Energies for all sets of mutations tested for Mode 2 are 

shown in Table S4-6. 

We applied this same procedure also to Modes 3-5, with the results reported in Tables S4-

7, S4-9, and S4-11.  Detailed images and pharmacophores of the predicted mutant binding 

sites for the selected sets of mutations are shown in Figures S4-21 to S4-28. 

Since we found five competitive binding modes for CS-E/EphB3, it may be that CS-E 

binding recognizes a binding region or ensemble of binding sites rather than a specific 

binding site that is typical for binding of small molecules. We selected CS-E 

octasaccharide as a representative of the natural, extended polysaccharide. The 

experimental system may well be more complicated with interactions beyond a single 

octasaccharide binding mode. Indeed none of our five predicted binding modes interacts 

with all 10 positively charged residues within the binding region. We suggest that these 

additional charged residues may serve two purposes. First, the extra, non-shared residues 

could allow for a single polysaccharide to bind to two proteins using one mode for the first 



 

 

117 
protein and a different mode for the second protein, possibly allowing for dimerization 

and activation of the proteins. Second, the presence of extra positive residues could allow 

for the ligand to migrate within the binding region without losing adhesion to the protein. 

To test this second possibility we suggest mutations expected to increase binding affinity. 

A single mutation from arginine or lysine to glutamine or asparagine might not change the 

binding as much as we predict, because the CS-E might move its preferred binding region 

slightly to account for the reduced arginines. This suggests that validation be done with 

multiple simultaneous mutations. Of course, mutating multiple residues simultaneously 

may increase the likelihood of misfolding, rendering the study useless. For a single 

beneficial mutation, such misfolding is less likely, although the change in binding affinity 

may be less dramatic. 

Conclusions 

Studying the CS-E/EphB3 system computationally was a difficult challenge: a large, highly 

negatively charged ligand, and a protein with a completely unknown binding site.  

Furthermore, the related CS-A ligand was shown not to bind experimentally, and neither 

CS-A nor CS-E bound to the similar EphB2 protein.  Our goal was to identify structural 

explanations for these differences.  In both cases we successfully identified the cause to be 

related to the charges on the ligand and/or the protein.  EphB2 lacks the positively-charged 

region of EphB3 and thus cannot bind the negatively-charged CS ligands.  Similarly, the 

reduced negative charge of CS-A relative to CS-E means that it does not bind with 

sufficient strength to EphB3.  The pattern of sulfation does not appear to be a significant 

factor, as CS-D binds comparably to CS-E.  This is likely due to flexibility of the sulfate 
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groups on the ligand and the arginine and lysine sidechains on the protein.  Specific 

patterns are not needed for such a general interaction. 

We have further used our predicted structural information to suggest mutation experiments 

that would validate one or more of our binding modes for CS-E.  As mentioned previously, 

we consider mutations from arginine/lysine to alanine to lack subtlety.  Loss of binding 

from such mutations could be due to larger structural changes than simple binding site 

modification.  Instead, we have suggested sets of mutations to improve binding, which 

would validate our binding modes with much less ambiguity.  We encourage our 

experimental colleagues to attempt these sets of mutations: 

• T319Q, N322Q, V339Q, A442Q, A443N, I446Q, and T448Q 

• N323Q, T338N, V339Q, S341Q, T422Q, and N445Q (optionally E424Q) 

The first set should increase binding affinity for CS-E if our predicted Mode 1 is the correct 

binding pose, and the second set should increase binding affinity for Mode 2. 

This project highlights the role that computation can have in studying complicated 

biological systems, and in complementing and directing experiment.  The specificity of the 

binding site predictions suggests clear follow-up experiments to further understanding of 

the role of CS-E in EphB3 activation, which, hopefully, will suggest new directions for 

computation. 
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Figures & Tables 

 

Figure 4-33 – (A) Model of EphB3. (B-C) Electrostatics mapped onto the surfaces of EphB3 and EphB2. Circled region 
denotes binding region for top five EphB3/CS-E binding modes (cyan region in D-E). (D) Predicted best EphB3/CS-E 
binding mode. (E) Overlay of predicted Top five EphB3/CS-E binding modes. The general orientation of binding 
modes shown in yellow. 
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Figure 4-34 –Plot of the energy of the best pose in each region after coarse docking for CS-A, CS-D, and CS-E docked to 
EphB2 and EphB3.  It is clear from the chart that the binding energies are much worse for EphB2 than EphB3.  
Additionally, CS-A has a much worse binding energy to EphB3 than CS-D and CS-E. 

 

Figure 4-35 – Plot of the energy of the best pose in each region after fine docking for CS-A, CS-D, and CS-E docked to 
EphB3.  After fine-level docking, CS-E binds slightly better than CS-D, and both bind significantly better than CS-A. 

-400 

-300 

-200 

-100 

0 

100 

200 

300 

B
in

d
in

g
 E

n
er

g
y 

EphB2 vs. EphB3 Coarse Docking: Best Energy Per Region 

EphB2/CS-A 
EphB2/CS-D 
EphB2/CS-E 
EphB3/CS-A 
EphB3/CS-D 
EphB3/CS-E 

EphB2/CS-A	

EphB2/CS-D	&	CS-E	

EphB3/CS-A	

EphB3/CS-D	&	CS-E	

-400 

-350 

-300 

-250 

-200 

-150 

-100 

B
in

d
in

g
 E

n
er

g
y 

EphB3 Fine Docking: Best Energy Per Region 

CS-A 
CS-D 
CS-E 

EphB3/CS-A	

EphB3/CS-D	

EphB3/CS-E	



 

 

123 

 

Figure 4-36 – Pharmacophore for best pose in EphB3/CS-E mode 
1. 

 

Figure 4-37 – Pharmacophore for best pose in EphB3/CS-E mode 
2. 
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Figure 4-38 – Pharmacophore for best pose in EphB3/CS-E mode 
3. 
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Figure 4-39 – Pharmacophore for best pose in EphB3/CS-E mode 
4. 
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Figure 4-40 – Pharmacophore for best pose in EphB3/CS-E mode 
5. 
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Figure 4-41 – Mutations to Gln predicted to increase EphB3/CS-E binding. Mutated residues are colored orange. Red 
hydrogen bond markers denote new hydrogen bonds with the ligand due to mutations and blue markers denote hydrogen 
bonds to the ligand that are common to both mutant and wild type. (A) Mutations for binding mode 1: T448Q, V339Q, 
I446Q, A442Q, T319Q, A443N, N322Q. Binding energy improved by 66.0 kcal/mol or 16.5% over wild type. (B) 
Mutations for binding mode 2: V339Q, T422Q, T338N, N445Q, N323Q, S341Q. Binding energy improved by 46.6 
kcal/mol or 11.4% over wild type. 
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Supplemental Information 

Mutation Methodology 

In order to identify mutations that could validate our predicted CS-E/EphB3 binding modes 

we performed in silico mutations.  Each residue – excluding proline and glycine – in the 5Å 

binding site was individually mutated to glutamine using SCREAM24.  Simultaneously, the 

rest of the sidechains were also optimized to allow them to accommodate the mutated 

sidechain’s position.  The binding site and ligand were then minimized for 50 steps of 

conjugate gradient minimization using DREIDING22 in MPSim23.  At the end of this 

procedure mutations were identified that increased the binding energy of the ligand, 

summarized in Tables S4-3, S4-5, S4-7, S4-8, and S4-10.  Based on these single mutants, 

sets of combined mutants that should increase binding were identified and tested.  Again, 

SCREAM was used to perform the mutations as well as optimize the remaining sidechains 

in the binding site, followed by 50 steps of minimization.  In some cases two mutant 

sidechains would clash, resulting in non-optimal interactions with the ligand.  Thus 

additional sets that omitted some mutations were tested.  Additionally, glutamine proved to 

be too large to make a good interaction with the ligand in some cases, thus asparagine was 

tried instead.  In the end, one set of mutants was identified for each mode that maximized 

ligand binding and resulted in each mutated residue making a new hydrogen bond with the 

ligand.  An additional set was generated each for Mode 2 and Mode 5.  These modes have 

nearby glutamic acids (E424 and E361, respectively).  We are wary of mutating these 

residues because they may have a special role in the structure or function of the EphB3 

receptor or binding site.  However, sets of mutations were generated for Mode 2 and Mode 
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5 that included the respective E424Q and E361Q mutations.  The binding energies for 

the sets of mutations are summarized in Tables S4-4, S4-6, S4-7, S4-9, and S4-11. 

Supplemental Figures & Tables 

 

Figure S4-42 – Schematic showing placement of CS-E binding modes bound to EphB3. 



 

 

130 

 

Figure S4-43 – Electrostatic surfaces of (A) EphB3 and (B) EphB2.  Sphere regions used for coarse docking are shown in 
green for (C) EphB3 and (D) EphB2.  Note that the regions sampled cover the positively charged regions of the proteins. 

A C

B D

EphB2	 EphB2	

EphB3	EphB3	



 

 

131 

 

Figure S4-44 – Detailed view of the best CS-E/EphB3 Mode 1 binding pose. 
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Figure S4-45 - The best CS-E/EphB3 Mode 1 binding pose, with the VDW surface of the protein shown to illustrate how 
well the ligand fits to the protein. 
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Figure S4-46 – The placement of all CS-E/EphB3 Mode 1 poses.  The top pose in this mode is the #3 pose overall (-
377.46 kcal/mol), but this mode shows the most consistency in placement. 
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Figure S4-47 – (A) Detailed view of CS-E docked to EphB3 in top pose from binding mode 2.  (B) Placement of all CS-E 
poses docked to EphB3 in binding mode 2.  The top pose in this mode is the #1 pose overall (-380.80 kcal/mol), but 
shows less consistency in pose placement than Mode 1.  (C) Top view of the best Mode 2 pose appears to fit closely to the 
protein surface, but the rotated view (D) shows that the middle section of the octasaccharide is separated from the surface. 
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Figure S4-48 – (A) Detailed view of CS-E docked to EphB3 in top pose from binding mode 3.  (B) Placement of all CS-E 
poses docked to EphB3 in binding mode 3.  The top pose in this mode is the #2 pose overall (-380.53).  This mode shows 
less contact with the surface of the protein..  (C) Top view of the best Mode 3 pose appears to fit closely to the protein 
surface, but the rotated view (D) shows that the much of the octasaccharide is separated from the surface. 
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Figure S4-49 – Placement of only CS-E pose docked to EphB3 in binding mode 4.  This mode contains only one pose in 
the top 25 poses.  This pose is #6 overall (-351.91 kcal/mol). 
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Figure S4-50 – Placement of the only CS-E pose docked to EphB3 in binding mode 4, with the protein surface shown. 
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Figure S4-51 – Placement of the only CS-E pose docked to EphB3 in binding mode 5. This mode contains only one pose 
in the top 25 poses.  This pose is #22 overall (-318.65 kcal/mol). 
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Figure S4-52 – Placement of the only CS-E pose docked to EphB3 in binding mode 5, with the protein surface shown. 



 

 

140 
Table S4-26 – Nonbond interactions by residue for the top pose in each of the five binding modes.  As expected, 
favorable interactions are dominated by arginines and lysines (green), unfavorable interactions are dominated by glutamic 
acids (red). Ordered by nonbond energy for Mode 1. 

 

Res	 Num	 Mode	1	 Mode	2	 Mode	3	 Mode	4	 Mode	5	 Res	 Num	 Mode	1	 Mode	2	 Mode	3	 Mode	4	 Mode	5	
ARG	 440	 -174.5	 -167.1	 -128.4	 -137.4	 -57.1	 THR	 448	 -0.9	 -5.6	 -2.0	 -1.4	 -0.3	
ARG	 363	 -137.7	 -120.6	 -57.8	 -127.1	 -138.0	 GLY	 530	 -0.9	 -1.4	 -2.3	 -1.0	 -4.1	
ARG	 309	 -128.0	 -98.4	 -40.8	 -45.4	 -38.8	 GLY	 382	 -0.7	 -1.3	 -7.2	 -0.2	 -9.7	
LYS	 434	 -125.7	 -142.9	 -48.7	 -61.4	 -54.9	 ALA	 383	 -0.7	 -1.2	 -6.3	 -0.8	 -6.9	
ARG	 344	 -120.9	 -71.5	 -50.8	 -115.5	 -143.2	 CYX	 389	 -0.7	 -1.8	 -2.2	 -0.3	 -1.0	
LYS	 378	 -85.9	 -130.6	 -167.5	 -175.6	 -92.9	 ALA	 452	 -0.2	 -0.5	 -1.0	 -0.5	 -2.2	
ARG	 420	 -59.6	 -115.5	 -149.5	 -72.9	 -162.5	 GLN	 450	 -0.1	 -6.8	 -16.2	 -2.8	 -10.1	
ARG	 391	 -57.7	 -69.6	 -139.1	 -158.2	 -56.5	 ALA	 388	 -0.1	 0.1	 -1.1	 -6.0	 2.3	
ARG	 408	 -56.3	 -55.9	 -46.9	 -55.7	 -124.8	 SER	 390	 0.0	 1.1	 0.6	 -8.3	 1.9	
ARG	 478	 -40.6	 -47.1	 -120.7	 -48.4	 -121.1	 VAL	 339	 0.0	 1.4	 -0.9	 0.4	 0.2	
ASN	 323	 -17.0	 -6.2	 1.8	 2.3	 0.5	 GLY	 345	 0.1	 -0.1	 -0.6	 0.2	 -5.4	
ASN	 322	 -10.5	 -14.5	 -1.5	 -1.4	 0.2	 ILE	 347	 0.1	 -0.1	 -0.6	 0.2	 -3.4	
ALA	 443	 -9.2	 -8.0	 -1.6	 -3.8	 -0.7	 CYX	 380	 0.2	 0.2	 -2.3	 -0.3	 -0.4	
THR	 319	 -7.0	 -2.9	 -0.6	 -0.4	 0.2	 SER	 360	 0.2	 0.3	 0.6	 0.9	 -7.1	
TYR	 325	 -6.4	 -5.0	 0.1	 0.3	 0.8	 TYR	 531	 0.3	 0.2	 -1.8	 0.1	 -5.7	
THR	 338	 -6.4	 -10.4	 -0.5	 0.1	 0.1	 PRO	 439	 0.7	 0.8	 1.1	 2.7	 0.8	
SER	 341	 -6.3	 -5.0	 -0.2	 -4.0	 0.6	 GLY	 385	 0.7	 1.1	 1.8	 2.5	 0.5	
PRO	 342	 -3.8	 -2.5	 -2.0	 -2.2	 0.6	 GLY	 384	 0.8	 1.3	 2.9	 1.3	 2.4	
ASN	 449	 -3.3	 -3.8	 -4.2	 0.4	 -8.0	 CYX	 320	 0.8	 -0.1	 -0.2	 -0.7	 -0.6	
ALA	 442	 -3.1	 -2.9	 0.6	 0.9	 0.4	 VAL	 346	 0.8	 0.8	 0.7	 0.5	 1.4	
THR	 422	 -2.7	 -9.5	 -10.6	 -2.3	 -5.5	 HSE	 381	 1.0	 1.9	 -1.8	 -0.8	 -3.2	
TRP	 359	 -2.2	 -1.7	 -0.8	 -1.8	 -0.7	 VAL	 444	 1.5	 2.8	 0.3	 0.5	 0.5	
SER	 435	 -2.1	 -2.3	 -0.7	 -0.1	 -0.4	 TYR	 441	 2.0	 3.1	 -5.0	 -4.6	 -0.1	
THR	 447	 -1.7	 -0.1	 -0.3	 0.6	 -6.3	 SER	 387	 2.0	 4.1	 0.4	 0.9	 -0.7	
PRO	 438	 -1.6	 -1.3	 0.0	 0.8	 0.4	 ILE	 446	 2.2	 1.3	 -0.5	 0.7	 0.6	
LEU	 437	 -1.6	 -2.1	 1.4	 1.0	 0.2	 PRO	 436	 2.9	 -5.5	 1.2	 0.6	 0.0	
ASN	 445	 -1.5	 -2.4	 -1.0	 -2.3	 0.2	 PHE	 324	 3.2	 2.4	 0.2	 -0.1	 -0.7	
ALA	 529	 -1.0	 -0.8	 -0.1	 -0.8	 -2.8	 GLU	 361	 65.7	 64.1	 48.1	 62.9	 98.6	
HIS	 321	 -0.9	 -1.1	 0.8	 -0.3	 1.1	 GLU	 424	 79.6	 100.8	 103.3	 108.3	 92.6	
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Table S4-27 – Comparison of the arginine and lysine interactions with the five binding modes.  Note that the best 
interactions differ for each binding mode.  Ordered by nonbond energy for Mode 1.  For instance, R344 contributes much 
more strongly to mode 1 than to mode 2.  Similarly, R420 contributes much more strongly to mode 2 than to mode 1.  
Mutations targeting mode-specific residues could be used to identify which mode is correct. 

 

Res	 Num	 Mode	1	 Mode	2	 Mode	3	 Mode	4	 Mode	5	
ARG	 440	 -174.5	 -167.1	 -128.4	 -137.4	 -57.1	
ARG	 363	 -137.7	 -120.6	 -57.8	 -127.1	 -138.0	
ARG	 309	 -128.0	 -98.4	 -40.8	 -45.4	 -38.8	
LYS	 434	 -125.7	 -142.9	 -48.7	 -61.4	 -54.9	
ARG	 344	 -120.9	 -71.5	 -50.8	 -115.5	 -143.2	
LYS	 378	 -85.9	 -130.6	 -167.5	 -175.6	 -92.9	
ARG	 420	 -59.6	 -115.5	 -149.5	 -72.9	 -162.5	
ARG	 391	 -57.7	 -69.6	 -139.1	 -158.2	 -56.5	
ARG	 408	 -56.3	 -55.9	 -46.9	 -55.7	 -124.8	
ARG	 478	 -40.6	 -47.1	 -120.7	 -48.4	 -121.1	



 

 

142 

 

Figure S4-53 – Structure with proposed mutations for Mode 1: T319Q, N322Q, V339Q, A442Q, A443N, I446Q, and 
T448Q.  We predict that this set of mutations for Mode 1 improves binding energy by 66.03 kcal/mol, or 16.5% better than 
binding to the wild-type. 

 

Figure S4-54 – Pharmacophore with proposed mutations for Mode 1: T319Q, N322Q, V339Q, A442Q, A443N, I446Q, 
and T448Q.  We predict that this set of mutations for Mode 1 improves binding energy by 66.03 kcal/mol, or 16.5% better 
than binding to the wild-type. 
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Figure S4-55 – Structures with proposed mutations for Mode 2. (A) Mutations: N323Q, T338N, V339Q, S341Q, T422Q, 
and N445Q.   This improves binding energy by 46.64 kcal/mol or 11.4% better than the wild-type.  (B) Adds the E424Q 
mutant, resulting in an improvement of 163.84 kcal/mol or 40%.  

A	

B	
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Figure S4-56 – Pharmacophores for proposed mutations for Mode 2. (A) Mutations: N323Q, T338N, V339Q, S341Q, 
T422Q, and N445Q.   This improves binding energy by 46.64 kcal/mol or 11.4% better than the wild-type.  (B) Adds the 
E424Q mutant, resulting in an improvement of 163.84 kcal/mol or 40%. 

A	

B	
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Figure S4-57 – Structure and pharmacophore for Mode 3 mutation: S387Q.  This improves binding energy by 7.84 
kcal/mol or 1.53% better than the wild-type. 
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Figure S4-58 – Structure and pharmacophore for Mode 4 mutations: S341Q, A388Q, I446Q.  This improves binding 
energy by 25.71 kcal/mol or 6.43% better than the wild-type. 
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Figure S4-59 – Structures with proposed mutations for Mode 5. (A) Mutations: A383Q, T448Q, A529Q.   This improves 
binding energy by 29.11 kcal/mol or 8% better than the wild-type.  (B) Adds the E361Q mutant, resulting in an 
improvement of 133.82 kcal/mol or 37%. 

A	

B	
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Figure S4-60 – Pharmacophores with proposed mutations for Mode 5. (A) Mutations: A383Q, T448Q, A529Q.   This 
improves binding energy by 29.11 kcal/mol or 8% better than the wild-type.  (B) Adds the E361Q mutant, resulting in an 
improvement of 133.82 kcal/mol or 37%. 

A	 B	
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Table S4-28 - Binding energies for all mutations to glutamine that improve binding energy for the best pose in mode 1.  
Note that most mutations do not make new hydrogen bonds (highlighted in red).  The increase in binding energy for those 
mutations can be attributed to Coulomb energy.  We only wish to use mutants that make new contacts with the ligand 
(highlighted in green). 

 

 

 

residue	 energy	 rel.	to	wt	 %	incr.	 new	hbond?	
E361	 -477.71	 -76.57	 16.03	 no	
E424	 -473.64	 -72.49	 15.18	 no	
T448	 -419.91	 -18.77	 3.93	 yes	
V339	 -414.79	 -13.65	 2.86	 yes	
I446	 -413.62	 -12.48	 2.61	 yes	
A442	 -413.11	 -11.97	 2.50	 yes	
N445	 -412.56	 -11.42	 2.39	 yes	
T319	 -412.34	 -11.20	 2.34	 yes	
L437	 -408.68	 -7.54	 1.58	 no	
A529	 -407.92	 -6.78	 1.42	 no	
A443	 -406.67	 -5.53	 1.16	 no	
A452	 -406.09	 -4.95	 1.04	 no	
N323	 -405.37	 -4.23	 0.89	 yes	
A383	 -405.12	 -3.98	 0.83	 no	
N449	 -404.09	 -2.95	 0.62	 no	
T338	 -403.90	 -2.76	 0.58	 no	
I347	 -403.35	 -2.20	 0.46	 no	
S435	 -403.08	 -1.94	 0.41	 no	
S341	 -402.80	 -1.66	 0.35	 no	
T422	 -402.79	 -1.64	 0.34	 no	
Y531	 -402.41	 -1.27	 0.27	 no	
F324	 -402.13	 -0.99	 0.21	 no	
H381	 -401.95	 -0.81	 0.17	 no	
N322	 -401.93	 -0.78	 0.16	 yes	
Y441	 -401.87	 -0.73	 0.15	 no	
W359	 -401.70	 -0.56	 0.12	 no	
S360	 -401.61	 -0.47	 0.10	 no	
V444	 -401.52	 -0.38	 0.08	 no	
wt	 -401.14			 		 		
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Table S4-29 – Binding energies in kcal/mol for different sets of mutations for best pose in binding mode 1.  Sets are 
ranked by binding energy.  Set 8.2 (66 kcal/mol or 16.5% improvement in binding energy) is the best set where all mutated 
residues make a new contact with the ligand. 

 

set	 round	 energy	 rel.	to	wt	 %	incr.	 muta4ons	
set7	 1	 -476.91	 -75.77	 18.89	 Q319	 Q323	 Q322	 Q339	 Q442	 N443	 Q445	 Q446	 Q448	
set5	 1	 -472.46	 -71.32	 17.78	 Q319	 Q323	 Q322	 Q339	 Q442	 		 Q445	 Q446	 Q448	
set8	 1	 -471.38	 -70.24	 17.51	 Q319	 		 Q322	 Q339	 Q442	 N443	 Q445	 Q446	 Q448	
set3	 1	 -471.34	 -70.20	 17.50	 Q319	 Q323	 		 Q339	 Q442	 N443	 Q445	 Q446	 Q448	
set8.2	 2	 -467.18	 -66.03	 16.46	 Q319	 		 Q322	 Q339	 Q442	 N443	 		 Q446	 Q448	
set2	 1	 -464.81	 -63.66	 15.87	 Q319	 		 		 Q339	 Q442	 		 Q445	 Q446	 Q448	
set7.2	 2	 -463.32	 -62.17	 15.50	 Q319	 Q323	 Q322	 Q339	 Q442	 N443	 		 Q446	 Q448	
set3.2	 2	 -462.70	 -61.55	 15.34	 Q319	 Q323	 		 Q339	 Q442	 N443	 		 Q446	 Q448	
set4	 1	 -462.00	 -60.86	 15.17	 Q319	 		 		 Q339	 Q442	 N443	 Q445	 Q446	 Q448	
set1	 1	 -460.38	 -59.24	 14.77	 Q319	 Q323	 		 Q339	 Q442	 		 Q445	 Q446	 Q448	
set4.2	 2	 -459.85	 -58.70	 14.63	 Q319	 		 		 Q339	 Q442	 N443	 		 Q446	 Q448	
set6	 1	 -459.00	 -57.86	 14.42	 Q319	 		 Q322	 Q339	 Q442	 		 Q445	 Q446	 Q448	
set6.2	 2	 -448.17	 -47.03	 11.72	 Q319	 		 Q322	 		 Q442	 		 		 Q446	 Q448	
set5.2	 2	 -446.28	 -45.14	 11.25	 Q319	 Q323	 Q322	 		 Q442	 		 		 Q446	 Q448	
set2.2	 2	 -444.95	 -43.81	 10.92	 Q319	 		 		 		 Q442	 		 		 Q446	 Q448	
set1.2	 2	 -435.31	 -34.17	 8.52	 Q319	 Q323	 		 		 Q442	 		 		 Q446	 Q448	
wt	 		 -401.14			 		 T319	 N323	 N322	 V339	 A442	 A443	 N445	 I446	 T448	
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Table S4-30 - Binding energies for all mutations to glutamine that improve binding energy for the best pose in mode 2.  
Note that most mutations do not make new hydrogen bonds (highlighted in red).  The increase in binding energy for those 
mutations can be attributed to Coulomb energy.  We only wish to use mutants that make new contacts with the ligand 
(highlighted in green). 

 

residue	 energy	 rel.	to	wt	 %	incr.	 new	hbond?	
E424	 -525.91	 -117.08	 22.26	 yes	
E361	 -468.11	 -59.28	 11.27	 no	
V339	 -424.97	 -16.14	 3.07	 yes	
T422	 -424.27	 -15.44	 2.94	 yes	
T338	 -422.96	 -14.13	 2.69	 yes	
A442	 -417.47	 -8.64	 1.64	 no	
N445	 -416.27	 -7.44	 1.42	 yes	
S435	 -415.01	 -6.18	 1.17	 no	
Y325	 -414.43	 -5.60	 1.06	 no	
I446	 -412.76	 -3.93	 0.75	 no	
T319	 -412.71	 -3.88	 0.74	 no	
N323	 -411.80	 -2.97	 0.56	 yes	
Y441	 -411.07	 -2.24	 0.43	 no	
I347	 -410.22	 -1.39	 0.26	 no	
S341	 -409.75	 -0.92	 0.17	 yes	
A388	 -409.66	 -0.83	 0.16	 no	
Y531	 -409.30	 -0.47	 0.09	 no	
S360	 -408.96	 -0.13	 0.02	 no	
A452	 -408.86	 -0.03	 0.00	 no	
wt	 -408.83			 		 		
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Table S4-31 - Binding energies in kcal/mol for different sets of mutations to best pose from binding mode 2.  Sets are 
ranked by binding energy.  Set 4 (163.5 kcal/mol or 40% improvement in binding energy) and Set 11 (46.6 kcal/mol or 
11.4% improvement in binding energy) are both selected for mode 2 due to the presence of residue E424.  It is interesting 
to find E424 in such close proximity to a negatively charged ligand like CS-E and we are unsure of what other role E424 
may be playing in the protein.  Thus, mutations to E424 may have unexpected consequences, even with a relatively close 
mutant such as glutamine. 

 

set	 energy	 rel.	to	wt	 %incr		 muta3ons	
set4	 -572.31	 -163.48	 39.99	 Q323	 N338	 Q339	 Q341	 N422	 Q424	 Q445	
set8	 -571.53	 -162.70	 39.80	 		 N338	 Q339	 Q341	 N422	 Q424	 Q445	
set2	 -571.27	 -162.44	 39.73	 Q323	 Q338	 Q339	 Q341	 N422	 Q424	 Q445	
set6	 -568.59	 -159.76	 39.08	 		 Q338	 Q339	 Q341	 N422	 Q424	 Q445	
set3	 -546.79	 -137.96	 33.74	 Q323	 N338	 Q339	 Q341	 Q422	 Q424	 Q445	
set1	 -544.24	 -135.41	 33.12	 Q323	 Q338	 Q339	 Q341	 Q422	 Q424	 Q445	
set7	 -542.07	 -133.24	 32.59	 		 N338	 Q339	 Q341	 Q422	 Q424	 Q445	
set5	 -540.38	 -131.54	 32.18	 		 Q338	 Q339	 Q341	 Q422	 Q424	 Q445	
set11	 -455.47	 -46.64	 11.41	 Q323	 N338	 Q339	 Q341	 Q422	 		 Q445	
set9	 -455.03	 -46.20	 11.30	 Q323	 Q338	 Q339	 Q341	 Q422	 		 Q445	
set10	 -451.95	 -43.12	 10.55	 Q323	 Q338	 Q339	 Q341	 N422	 		 Q445	
set13	 -448.74	 -39.91	 9.76	 		 Q338	 Q339	 Q341	 Q422	 		 Q445	
set15	 -448.39	 -39.56	 9.68	 		 N338	 Q339	 Q341	 Q422	 		 Q445	
set12	 -447.20	 -38.37	 9.38	 Q323	 N338	 Q339	 Q341	 N422	 		 Q445	
set14	 -443.97	 -35.14	 8.59	 		 Q338	 Q339	 Q341	 N422	 		 Q445	
set16	 -441.47	 -32.64	 7.98	 		 N338	 Q339	 Q341	 N422	 		 Q445	
wt	 -408.83			 		 N323	 T338	 V339	 S341	 T422	 E424	 N445	
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Table S4-32 - Binding energies for all mutations to glutamine that improve binding energy for the best pose in mode 3.  
Note that only one residue was able to make a new contact with the ligand.  This is a strong indicator that binding mode 3 is 
not a reliable result.  The increase in binding energy for those mutations can be attributed to Coulomb energy. 

 

 

 

residue	 energy	 rel.	to	wt	 %	incr.	 new	hbond?	
E424	 -511.04	 -104.87	 20.52	 no	
E361	 -471.32	 -65.16	 12.75	 no	
I446	 -419.60	 -13.44	 2.63	 no	
T338	 -415.66	 -9.50	 1.86	 no	
A388	 -415.12	 -8.96	 1.75	 no	
V346	 -415.10	 -8.94	 1.75	 no	
S435	 -414.11	 -7.95	 1.56	 no	
S387	 -414.00	 -7.84	 1.53	 yes	
T447	 -413.63	 -7.47	 1.46	 no	
S390	 -413.47	 -7.31	 1.43	 no	
I347	 -413.13	 -6.97	 1.36	 no	
Y325	 -412.65	 -6.48	 1.27	 no	
N445	 -412.47	 -6.31	 1.23	 no	
Y531	 -411.85	 -5.69	 1.11	 no	
A529	 -411.72	 -5.56	 1.09	 no	
S360	 -411.18	 -5.02	 0.98	 no	
F324	 -410.95	 -4.78	 0.94	 no	
L437	 -410.48	 -4.32	 0.85	 no	
S341	 -408.40	 -2.24	 0.44	 no	
T319	 -408.29	 -2.12	 0.42	 no	
A443	 -408.18	 -2.02	 0.39	 no	
N323	 -408.08	 -1.91	 0.37	 no	
V339	 -407.77	 -1.61	 0.31	 no	
V444	 -407.03	 -0.87	 0.17	 no	
W359	 -406.77	 -0.61	 0.12	 no	
N322	 -406.33	 -0.16	 0.03	 no	
Y441	 -406.20	 -0.04	 0.01	 no	
wt	 -406.16			 		 		
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Table S4-33 - Binding energies for all mutations to glutamine that improve binding energy for the only pose in mode 4.  
Note that most mutations do not make new hydrogen bonds (highlighted in red).  The increase in binding energy for those 
mutations can be attributed to Coulomb energy.  We only wish to use mutants that make new contacts with the ligand 
(highlighted in green). 

 

Table S4-34 - Binding energy in kcal/mol for the only set of mutations to the only pose from binding mode 4. Mutation 
results in 25.7 kcal/mol or 6.4% improvement in binding energy. 

 

residue	 energy	 rel.	to	wt	 %	incr.	 new	hbond?	
E424	 -495.76	 -95.77	 19.32	 no	
E361	 -465.02	 -65.03	 13.12	 no	
A443	 -419.46	 -19.46	 3.93	 no	
A388	 -412.03	 -12.04	 2.43	 yes	
S341	 -411.02	 -11.03	 2.22	 yes	
N449	 -410.33	 -10.33	 2.08	 no	
Y531	 -410.20	 -10.21	 2.06	 no	
I446	 -407.81	 -7.82	 1.58	 yes	
T338	 -407.64	 -7.64	 1.54	 no	
I347	 -405.08	 -5.08	 1.03	 no	
W359	 -402.47	 -2.48	 0.50	 no	
T422	 -402.32	 -2.33	 0.47	 no	
Y441	 -402.25	 -2.25	 0.45	 no	
S435	 -401.01	 -1.01	 0.20	 no	
wt	 -399.99			 		 		

set	 energy	 rel.	to	wt	 %	incr.	 muta3ons	
set1	 -425.70	 -25.71	 6.43	Q341	 Q388	 Q446	
wt	 -399.99			 		 S341	 A388	 I446	
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Table S4-35 - Binding energies for all mutations to glutamine that improve binding energy for the only pose in mode 5.  
Note that most mutations do not make new hydrogen bonds (highlighted in red).  The increase in binding energy for those 
mutations can be attributed to Coulomb energy.  We only wish to use mutants that make new contacts with the ligand 
(highlighted in green). 

 

Table S4-36 - Binding energy in kcal/mol for mutations to the only pose from binding mode 5.  Set 1, which includes a 
mutation to E361, improves binding energy by 133.8 kcal/mol or 37%.  Set 2, which skips the mutation to E361, improves 
binding by 29.1 kcal/mol or 8.1%.  Similarly to binding mode 2, it is interesting to find E361 (a different glutamic acid) in 
such close proximity to a negatively charged ligand like CS-E and we are unsure of what other role E361 may be playing in 
the protein.  Thus, mutations to E361 may have unexpected consequences, even with a relatively close mutant such as 
glutamine. 

 

 

residue	 energy	 rel.	to	wt	 %	incr.	 new	hbond?	
E361	 -464.85	 -103.36	 22.23	 yes	
E424	 -462.29	 -100.79	 21.68	 no	
A383	 -378.48	 -16.98	 3.65	 yes	
T448	 -369.95	 -8.46	 1.82	 yes	
A388	 -369.66	 -8.17	 1.76	 no	
A529	 -369.62	 -8.13	 1.75	 yes	
S390	 -369.57	 -8.08	 1.74	 no	
I347	 -368.36	 -6.87	 1.48	 no	
H381	 -366.63	 -5.13	 1.10	 no	
V444	 -365.92	 -4.42	 0.95	 no	
S435	 -365.33	 -3.83	 0.82	 no	
T422	 -364.86	 -3.37	 0.72	 no	
Y325	 -364.47	 -2.98	 0.64	 no	
T338	 -362.17	 -0.67	 0.14	 no	
N323	 -361.95	 -0.45	 0.10	 no	
I446	 -361.70	 -0.20	 0.04	 no	
wt	 -361.50			 		 		

set	 energy	 rel.	to	wt	 %	incr.	 muta3ons	
set1	 -495.32	 -133.82	 37.02	Q361	 Q383	 Q448	 Q529	
set2	 -390.61	 -29.11	 8.05	 		 Q383	 Q448	 Q529	
wt	 -361.50			 		 E361	 A383	 T448	 A529	


