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ABSTRACT

Oxidation is one of the most fundamental and important processes in nature. It would be
advantageous to chemically replicate the high substrate specificity and selectivity observed in
oxidative enzymes. Several such synthetic processes have been developed that involve the
transfer of a heteroatom to a substrate in an asymmetric fashion. Enantioselective oxidative
dehydrogenations, which do not involve transfer of a heteroatom, are much less common.
Reactions of this type have recently been developed for the oxidative kinetic resolution of
secondary alcohols using palladium(II) catalysis, dioxygen, and the chiral ligand (-)-sparteine.

This general approach (palladium(Il), dioxygen, ligand) was applied to the development of
oxidative heteroatom/olefin cyclizations to form dihydrobenzofurans, cyclic ethers, lactones and
lactams. The nonenantioselective reaction employs pyridine as a ligand. These conditions could
be extended to the enantioselective cyclization of allyl-appended phenols through the use of
(-)-sparteine as a ligand.

The mechanism of the oxidative heteroatom/olefin cyclizations was explored via
stereospecifically deuterium-labeled substrates. These studies indicate that the stereochemistry of
oxypalladation for primary alcohol substrates is syn, whether a mono- or bidentate ligand is used.
In contrast, cyclizations of deuterium-labeled carboxylic acid substrates undergo anti
oxypalladation.

The origins of stereoselectivity in the oxidative kinetic resolution of secondary alcohols using
the C; symmetric ligand (-)-sparteine were investigated through structural and reactivity studies
of a variety of ((—)-sparteine)palladium(Il) complexes. A model for the observed selectivity was
developed, and is supported by theoretical calculations. Experiments with the C, symmetric
diastereomers of (—)-sparteine highlight the special properties of (-)-sparteine that make it a

uniquely effective ligand in the kinetic resolution.
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CHAPTER 1

Palladium(Il)-Catalyzed Oxidase-Type Oxidation Reactions

1.1 INTRODUCTION AND BACKGROUND

Oxidation is one of the most fundamental and important processes in nature. A
constant supply of oxygen is essential to most living organisms, and plays an essential
role in redox processes catalyzed by metalloenzymes. In oxidative processes, O, can be
the source of an oxygen atom that is transferred to a substrate (Figure 1.1.1, left). The
metalloenzymes that catalyze this process often do so via a metal-oxo species in the
metalloenzyme, and are classified as oxygenases. Members of this class include the
cytochrome P-450 enzymes, which are essential to the initial phase of animal
metabolism. A cofactor is required to supply protons and electrons. On the other hand, a
substrate can act as the proton and electron donor, with O, as the acceptor, with no
transfer of an oxygen atom to the substrate (Figure 1.1.1, right). Metalloenzymes of this

type are classified as oxidases, an example of which is cytochrome oxidase, the final
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component of the electron transfer chain that enables the body to use O, to generate
energy. The atoms of O, are converted to water or hydrogen peroxide, as protons and
electrons are removed from the substrate in a dehydrogenative process.

Figure 1.1.1 Oxygenase and oxidase enzymes.

| Oxygenase enzymes I : Oxidase enzymes

Oxygen-atom transfer : Dehydrogenation
ﬁ H
M(n+2)+ E H,0 M2+
H,O Substrate H or Substrate(H,)
H H0,
2e” < : 2e” 2e”
+ ' +
0, ; :_H Substrate(0) : 12 Oz:- 2H Substrate(ox)
: +2H*
M+ H Oy +2H* M+
X
N
) : H ;
(CH,),CO,™  (CH),CO, ! (CHy),C0O,~  (CH),CO,
1 2
cytochrome P-450- H Heme A of cytochrome
containing enzymes . oxidase

Organic chemists have sought to replicate the high substrate specificity and
selectivity exhibited by oxidative metalloenzymes using small molecule catalysis.
Through this effort, oxidation has become one of the most effective ways for chemists to
induce asymmetry in organic transformations for the production of enantioenriched
materials." Most enantioselective oxidations involve the transfer of a heteroatom,
commonly oxygen, to a substrate in a manner analogous to that of oxygenase
metalloenzymes. Some of the most important examples of reactions of this type are the
Sharpless-Katsuki asymmetric epoxidation (3 — 4) and the Sharpless asymmetric

dihydroxylations (4 — 5), or mono- and dioxgenase-type reactions (Figure 1.1.2).>*
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Figure 1.1.2 Asymmetric oxygenase-type reactions.

Asymmetric epoxidation — monooxygenase-type : Asymmetric dihydroxylation — dioxygenase-type
Ti(Oi-Pr), : K,080,-2H,0
(S,S)-diethyl tartrate H (DHQ@D),PHAL, K3Fe(CN)g
R! OH +BuOH RO /OH : Rl R K,CO3, +BuOH, H,0 HO  OH
— A vl
R? R® R? R® : R? H R2 H
3 4 H 5 6

In contrast, there is a significant lack of asymmetric two-electron oxidations that do
not involve heteroatom transfer, or which are analogous to the oxidase enzymes.
Although racemic reactions of this type, such as alcohol oxidations, alkane
dehydrogenations, and aromatic oxidations, are prevalent, there are few asymmetric

examples.’

1.2 PALLADIUM(II) AS A CATALYST FOR ENANTIOSELECTIVE OXIDASE-TYPE
REACTIONS.

Since its inception, the Stoltz laboratory at the California Institute of Technology has
been interested in developing asymmetric oxidase-type reactions, in other words,
catalytic enantioselective dehydrogenations. Some reactions of this type are shown in
Figure 1.2.1. For example, an enantioselective alcohol oxidation would effect a kinetic
resolution of a secondary alcohol (7) by selective conversion of one enantiomer to ketone
(8). Oxidative oxygen, nitrogen, or carbon atom cyclizations with appended olefins
could occur to produce enantioenriched heterocycles or carbocycles (9 — 10 or 11 —
12). Asymmetric aromatic oxidation might also be possible for the synthesis of

interesting products or reactive intermediates.
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Figure 1.2.1 Potential asymmetric oxidase-type reactions.

Kinetic resolution of racemic alcohols ! Oxidative carbo yclization:
HO H [0] o HO, H - [0] { ‘//
+ A N T e
R' R? R! R? R! R2 : N N\
7 8 (87 11 R 12 R
Oxidative heterocyclizations | Aromatic oxidations
OH OH
Ve oL & e da
Z
XH X=0, NR X :
9 10 13 14

Ideally, a variety of enantioselective dehydrogenations would be carried out by a
similar catalyst system, a criterion that would dictate our choice of catalyst. Fortunately,
a range of achiral dehydrogenation reactions had been known for several decades for the
same transition metal: palladium(II). In the well-known Wacker process, ethylene (15)
is oxidized to acetaldehyde (16) by palladium(II) chloride in the presence of O, and a
copper cocatalyst (Figure 1.2.2).° 1In 1977, Blackburn and Schwartz reported
palladium(II)-catalyzed alcohol oxidation in the presence of sodium acetate and O,.’
Because oxidized metal is required for substrate oxidation in these cases, a stoichiometric
oxidant is necessary. Both of the above reactions use O, as the terminal oxidant in a
manner analogous to oxidase enzymes, although the Wacker process requires a copper
cocatalyst. Several other reoxidants have been employed, such as peroxides,
benzoquinone, and DMSO/O,, that have enabled the execution of the remainder of the
reactions shown in Figure 1.2.2, among others.*” Thus palladium(II) appeared to be an
optimal candidate for the development of a suite of asymmetric oxidase-type reactions.
This catalyst offered the further advantage of being able to employ O, as a stoichiometric
oxidant, just as enzymes activate O,, N, and other small molecules as powerful redox

reagents.



Chapter 1 — Introduction 5

Figure 1.2.2 Palladium(ll)-cataylzed oxidase-type reactions.

Wacker process : o
H [O]
PdCl, : HX I
CuCl,, 0, o : X =0, NR [Pd']
HO0 + Xy - H ’ o)
W
15 16
[O]
—_—
Blackburn and Schwartz

Is

10

19 20
: _oNR [P O\/
: XH X=0,NR X =
: 9 10

PdCI :

j)\H NaOAc,zoz, j])\ ' M { /
E Il

R” R R” R 5 N [Pd"] N
: R R

0
17 Eo>=0 18

11 12
[O] = Benzoquinone, Cu/O,, O,/DMSO, O,

Indeed, over the past six years, our group has realized the potential of palladium(II) to
carry out several enantioselective oxidase-type reactions. The kinetic resolution of
secondary alcohols, the desymmetrization of meso-diols, and oxidative heterocyclizations
have been developed using the same catalytic system: palladium(II) salt, O,, the chiral
ligand (-)-sparteine (22), base, and molecular sieves in toluene (Figure 1.2.3). In the
course of this work, several interesting questions have arisen regarding the mechanism
and selectivity of these processes. Such questions, and the development of oxidative

heterocyclizations, are the topic of this thesis.

Figure 1.2.3 Asymmetric palladium(ll)-catalyzed oxidase-type reactions.

Kinetic resolution of racemic alcohols

OH o]

A\ s
OH :
(-)-sparteine :
_— H
Pd(nbd)Cl, : N )
MS3A, toluene : = (-)-sparteine
(@)-21 0,,80°C (-)-21 23 5 22 m\
""""""""""""""""""""""""""""""""""""""""""""""" : OH Pd(TFA),, Na,CO;, o

Desymmetrization of meso-diols H MS3A, toluene
: 26 0,,80°C (+)-27

OH (o]

H (-)-sparteine

22

_—

Pd(nbd)Cl,
T MS3A, toluene Y

OH 0,,80°C OH
24 25
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