CHAPTER 2

The Development of Palladium(II)-Catalyzed Oxidative Cyclizations in a Nonpolar Solvent Using Molecular Oxygen

2.1 INTRODUCTION AND BACKGROUND

2.1.1 Introduction

The oxidative kinetic resolution of secondary alcohols was the first stage of our program to develop asymmetric dioxygen-coupled palladium-catalyzed oxidation reactions. As a next step, we pursued oxidative heteroatom/olefin cyclization reactions of the types shown in Figure 2.1.1. Described herein is the development of cyclization reactions for several heteroatom nucleophiles and the extension to an asymmetric version for one type of substrate. This work demonstrates the need for highly specific conditions to carry out enantioselective aerobic palladium-catalyzed oxidative cyclization reactions.

Figure 2.1.1 Oxidative cyclization reactions.

2.1.2 Background

As described in Chapter 1, palladium(II) was selected for its versatility with the hope that it would be able to catalyze a number of different oxidative transformations. Indeed, the use of palladium(II) along with a variety of oxidants to catalyze heteroatom/olefin cyclizations has been known for several decades. Larock, Bäckvall and others have demonstrated that in DMSO solvent, it is possible to carry out racemic O_{2}-coupled palladium(II)-catalyzed oxidative cyclizations of olefin-appended nucleophiles such as phenols, alcohols, acids and tosylamides, as well as alcohol oxidations to ketones and aldehydes (Scheme 2.1.1). ${ }^{1}$

Scheme 2.1.1

Racemic cyclization reactions have also been developed that use copper $/ \mathrm{O}_{2}$ and benzoquinone reoxidation systems. In an early example, Hosokawa showed that palladium(II) could be used to cyclize olefin-appended phenols stoichiometrically (Scheme 2.1.2), and that the reaction could be made catalytic in the presence of copper and $\mathrm{O}_{2}{ }^{2}$ Other substrates such as alcohols and amides have been reacted under similar conditions or with benzoquinone reoxidation by Murahashi, Hegedus, and others. ${ }^{3}$

Scheme 2.1.2

Although these examples constitute significant advances in racemic palladium(II)catalyzed oxidation reactions, the conditions vary for different substrate types and many do not meet the ideal conditions for asymmetric reactions, i.e., that O_{2} be used as the only stoichiometric oxidant in a noncoordinating solvent. Instead, the necessary use of cocatalysts, organic oxidants or DMSO has complicated the development of enantioselective oxidase-type cyclizations. For example, the use of the traditional copper $/ \mathrm{O}_{2}$ reoxidation system introduces a secondary catalytic cycle and another metal that could compete with palladium for the coordination of a chiral ligand. The use of benzoquinone requires the removal of stoichiometric amounts of organic compounds at
the end of a reaction, ${ }^{4}$ and benzoquinone can itself act as a ligand. ${ }^{5,6}$ DMSO is a highly donating solvent that could also interfere with the coordination of a chiral ligand to palladium.

Despite the obstacles presented by the traditional oxidation systems, some important enantioselective examples have been reported and are illustrated in Scheme 2.1.3. ${ }^{7}$ As early as 1981, Hosokawa and Murahashi described an asymmetric oxidative cyclization with a pinene-derived palladium complex (42). ${ }^{8}$ More recently, Hayashi and Sasai have employed novel ligand frameworks (such as 44 and 47) and benzoquinone as a reoxidant to obtain cyclized products with high enantioselectivity. ${ }^{9,10}$ In an example from Bäckvall, a chiral benzoquinone generated in situ from $\mathbf{5 0}$ acts as ligand in an asymmetric dialkoxylation of 49.5 Although few in number, these examples established the potential for enantioselective palladium(II)-catalyzed oxidative cyclizations and dialkoxylations with copper and benzoquinone reoxidation systems. Nevertheless, the difficulties associated with the use of traditional reoxidants are borne out by the limited number of enantioselective reactions of this type.

Scheme 2.1.3

With the requirement that O_{2} be the only stoichiometric oxidant, our palladium(II)catalyzed asymmetric dehydrogenation of secondary alcohols (Scheme 2.1.4) provided a strong foundation for other asymmetric oxidation reactions. ${ }^{11,12}$ This oxidation effects a kinetic resolution to yield enantioenriched alcohol, and was the first example of an asymmetric oxidase-type reaction in that it employs O_{2} as the terminal oxidant.

Scheme 2.1.4

The basis for this chemistry was a racemic palladium(II)-catalyzed alcohol oxidation system reported in 1999 by Uemura and co-workers. ${ }^{13}$ In Uemura's proposed mechanism, intermediate palladium alkoxide 55 is generated from 54, which then undergoes β hydrogen elimination to form a palladium hydroacetate (56) and the ketone product of oxidation (18, Figure 2.1.2). According to Uemura, dioxygen insertion directly into the palladium-hydride bond provides a palladium hydroperoxide intermediate (57). Protonation by alcohol generates a new palladium alkoxide (55) and completes the catalytic cycle.

Figure 2.1.2 Uemura's proposed mechanism for the oxidation of secondary alcohols.

Stahl and co-workers have carried out extensive studies on the oxidation of alcohols by Uemura's system as well as by conditions that employ DMSO and $\mathrm{O}_{2} \cdot{ }^{14}$ To model the catalyst reprocessing steps after β-hydrogen elimination in systems that use amine ligands, this group oxidized a bathrocuproine-ligated palladium(0)(58) with O_{2} to obtain a palladium(II) peroxo species (59) that was characterized crystallographically (Scheme 2.1.5, top). Reaction of this complex with acetic acid rapidly produces the
bathrocuproine palladium(II) acetate (60) and hydrogen peroxide, which demonstrates that an amine-ligated palladium(0) species can be regenerated to an active palladium(II) complex via a peroxo intermediate. Whereas Uemura's proposed mechanism avoids palladium(0) altogether, Stahl's work provides evidence that a palladium(0) pathway is viable (Scheme 2.1.5, bottom).

Scheme 2.1.5

Significantly, Uemura's work provided an ideal platform for the development of an O_{2}-coupled enantioselective oxidation because it uses O_{2} as the only reoxidant in a noncoordinating solvent (toluene), and requires the presence of a ligand (pyridine). We subsequently initiated an effort to apply our enantioselective alcohol oxidation to the development of asymmetric versions of reactions such as those shown in Figure 2.1.1. We envisioned that it would be possible to apply Uemura's conditions to the cyclization of heteroatoms onto pendant olefins.

A modified version of Uemura's mechanism provided a reasonable starting point for reaction development. In this scenario, a substrate such as $\mathbf{6 5}$ could displace a neutral (or anionic, not shown) ligand on palladium catalyst $\mathbf{6 4}$ to form an activated olefin complex (66). Nucleophilic attack to give 67 followed by β-hydrogen elimination leads to cyclized product (68) and a palladium hydride intermediate (61) analogous to that in the
alcohol oxidation mechanism (Figure 2.1.3). A wide range of substrates potentially could react in this manner to form a variety of heterocycles. ${ }^{15}$

Figure 2.1.3 A potential mechanism for the cyclization of heteroatoms with pendant olefins.

This chapter describes the application of Uemura's conditions to the cyclizations of heteroatoms onto pendant olefins and the development of an asymmetric version of the reaction. ${ }^{16}$ This work establishes a proof-of-concept that heteroatom-olefin cyclizations that use O_{2} as the sole stoichiometric oxidant are amenable to aerobic asymmetric catalysis. In the context of our program to develop enantioselective oxidase-type reactions, this work represented a crucial second phase of research beyond the groundbreaking initial developments.

2.2 THE DEVELOPMENT OF NONENANTIOSELECTIVE PALLADIUM(II)CATALYZED OXIDATIVE HETEROATOM/OLEFIN CYCLIZATIONS

2.2.1 The effect of palladium X^{-}ligand.

Our initial aim was to establish conditions for palladium(II)-catalyzed racemic aerobic cyclizations to which a chiral ligand eventually could be introduced. Thus, we began our investigation of aerobic oxidative cyclizations with 2-(E-2-methyl-2-
butenyl)phenol (26) using a variety of palladium(II) salts, pyridine, O_{2}, and MS3 \AA in toluene at $80^{\circ} \mathrm{C}$ (Table 2.2.1). These conditions are modeled after Uemura's alcohol oxidation conditions, ${ }^{13 a}$ which, as stated above, were also employed as a starting point for our oxidative kinetic resolution chemistry. ${ }^{11 a}$ Surprisingly, $\mathrm{Pd}(\mathrm{nbd}) \mathrm{Cl}_{2}$, which is the most effective catalyst for the kinetic resolution chemistry, was ineffective for the cyclization of $\mathbf{2 6}$ to dihydrofuran 27 (entry 1). Treatment of $\mathbf{2 6}$ with a range of palladium(II) salts (entries 1-4) led to the discovery that the electron-deficient palladium(II) trifluoroacetate $\left(\operatorname{Pd}(\mathrm{TFA})_{2}\right)$ was most effective for producing 27 in good yield after reasonable reaction time (entry 4). Sources of palladium(0) were found to be poor catalysts for the reaction: $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ resulted in the formation of palladium black and a small amount of product, (entry 5), and palladium black itself gave no reaction (entry 6). A control experiment (entry 7) indicated that palladium was necessary for cyclization.

Table 2.2.1 Optimization of palladium (II) source. ${ }^{\text {a }}$

Pd source, pyridine MS3Å, toluene$\xrightarrow{\mathrm{O}_{2}, 80^{\circ} \mathrm{C}}$			
entry	Pd source	time	yield ${ }^{\text {c }}$
1.	$\mathrm{Pd}(\mathrm{nbd}) \mathrm{Cl}_{2}{ }^{\text {b }}$	24 h	7\%
2.	PdCl_{2}	24 h	27\%
3.	$\mathrm{Pd}(\mathrm{OAc})_{2}$	24 h	76\%
4.	$\mathrm{Pd}(\mathrm{TFA})_{2}$	60 min	87\%
5.	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	24 h	25\%
6.	Pd Black	24 h	NR
7.	None	24 h	NR

${ }^{a} 5 \mathrm{~mol} \% \mathrm{Pd}$ source, $20 \mathrm{~mol} \%$ pyridine, 500 mg $\mathrm{MS} 3 \AA / \mathrm{mmol}$ substrate, $1 \mathrm{~atm} \mathrm{O}_{2}$, toluene $(0.1 \mathrm{M}), 80^{\circ} \mathrm{C}$. ${ }^{b}$ nbd = norbornadiene. ${ }^{c}$ Isolated yield.

2.2.2 The effect of exogenous base.

The effect of a range of exogenous bases was examined with the hope that proton consumption would accelerate the reaction (Table 2.2.2). Cesium carbonate, which
accelerated our oxidative kinetic resolution of secondary alcohols, in this case provided no benefit (entry 3). Sodium acetate presumably displaces $\mathrm{CF}_{3} \mathrm{COO}^{-}$from the palladium atom to give a less active catalyst (entry 2). Sodium carbonate exerts the most positive effect to give 95% yield in under 30 minutes (entry 4). The absence of pyridine causes a pronounced rate deceleration, along with the precipitation of palladium black. Although the ligand pyridine is itself basic, a molecule that can act as both a base and a ligand without inhibiting reactivity has not yet been identified. O_{2} is also necessary for reaction to occur in high yield, although there appears to be a background reaction that leads to cyclization since the product is formed in greater than 5% yield in the absence of O_{2} (entry 6). The presence of 30 equivalents of elemental mercury slowed the cyclization, but did not prevent reaction altogether, which contraindicates colloidal palladium or palladium nanoparticles as the relevant catalytic species (entry 7). ${ }^{17}$

Table 2.2.2 Optimization of basic additive. ${ }^{\text {a }}$

 26		$\xrightarrow[\substack{\mathrm{MS} 3 \AA \AA, \text { toluene } \\ \mathrm{O}_{2}, 80^{\circ} \mathrm{C}}]{\substack{\mathrm{Pd}(\mathrm{TFA})_{2}, \text { pyridine } \\ \text { additie }}}$		 27
entry	ligand	additve	time	yield ${ }^{\text {b }}$
1.	pyridine	NaOAc	5 h	46\%
2.	pyridine	KOAc	6 h	42\%
3.	pyridine	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	5 h	42\% ${ }^{\text {c }}$
4.	pyridine	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	20 min	95\%
5.	none	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	24 h	39\%
6.	pyridine	none, no O_{2}	24 h	24\% ${ }^{\text {d }}$
7. ${ }^{\text {e }}$	pyridine	$\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{Hg}^{0}$	5 h	84\% ${ }^{\text {f }}$

[^0]
2.2.3 The effect of the nitrogen-containing ligand.

Although our optimization studies revealed pyridine to be a competent ligand, we carried out a small ligand screen of other nitrogen-containing ligands. ${ }^{18}$ Each $\mathrm{L}_{\mathrm{n}} \mathrm{Pd}(\mathrm{TFA})_{2}$ complex was synthesized separately and characterized, rather than generated in situ, in order to limit uncertainty regarding the catalyst or catalyst precursor. Reactions were performed with either no additive, $40 \mathrm{~mol} \%$ excess ligand, or both excess ligand and $\mathrm{Na}_{2} \mathrm{CO}_{3}$. As shown in Table 2.2.3, the use of substituted pyridyls less coordinating than pyridine, whether due to electronic (70, 72, and 73) or steric (71) reasons, result in the precipitation of palladium black in the absence of excess ligand. Bidentate nitrogencontaining ligands such as dipyridyl (74), 4,7-dimethyl-1,10-phenanthroline (75), TMEDA (78), or TMPDA (79) significantly slow the rate of reaction (entries 6-7, 10-11). The use of weak alkyl amine donors (76, 77, and 79) results in the precipitation of palladium black, even in the presence of excess ligand (entries 8-9, 11). Although some rate enhancement was observed for the nicotinate derivatives (72 and 73), pyridine offered the best combination of reactivity, catalyst stability, and availability.

Table 2.2.3 Oxidative cyclizations with substituted pyridyl and alkyl amine ligands. ${ }^{a}$
(igand
${ }^{a} 5 \mathrm{~mol} \% \mathrm{~L}_{\mathrm{n}} \mathrm{Pd}(\mathrm{TFA})_{2}, 500 \mathrm{mg} / \mathrm{mmol}$ MS3 \AA, $1 \mathrm{~atm} \mathrm{O}_{2}$, toluene $(0.1 \mathrm{M}), 80^{\circ} \mathrm{C} .{ }^{b}$ Conversion determined by GC. ${ }^{c}$ Palladium black precipitate was observed in the reaction mixture. ${ }^{d}$ For entries 6, 7, 10 and 11, $20 \mathrm{~mol} \%$ excess ligand was added.

2.2.4 Cyclizations of para-substituted allyl-appended phenols.

Under our optimized conditions, oxidative cyclization of a variety of para-substituted phenols occurs readily with $5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{TFA})_{2}, 20 \mathrm{~mol} \%$ pyridine, 2 equiv $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and $500 \mathrm{mg} 3 \AA$ molecular sieves $/ \mathrm{mmol}$ substrate at 0.1 M concentration in toluene under a balloon of oxygen (Table 2.2.4). Workup involves simple filtration through a pad of silica gel. Cyclizations of electron-rich phenols are especially facile and provide excellent yields in under 30 min (entries 1-4). An electron deficient phenol (86) serves as an excellent substrate as well, albeit with slower reaction time (entry 5). In contrast, a p-bromo-substituted substrate (88, entry 6) appears to react via alternate pathways that lead to decomposition, possibly via oxidative addition of palladium(0). ${ }^{19}$ Finally, high yields and reasonable rates persist with reduced catalyst loading ($2 \mathrm{~mol} \%$, entry 7).

Table 2.2.4 Oxidative cyclizations of phenols with para substitution. ${ }^{2}$
entry substrate
${ }^{a} 5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{TFA})_{2}, 20 \mathrm{~mol} \%$ pyridine, 2 equiv $\mathrm{Na}_{2} \mathrm{CO}_{3}, 500 \mathrm{mg} \mathrm{MS3}$ 號 $/ \mathrm{mmol}$ substrate, 1 atm O_{2}, toluene $(0.1 \mathrm{M}), 80^{\circ} \mathrm{C} .{ }^{b} 2 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{TFA})_{2}, 8 \mathrm{~mol} \%$ pyridine.

2.2.5 Cyclizations of multiply substituted allyl-appended phenols.

Electron-rich phenols with additional substitution are also good substrates (entries 1-
3, Table 2.2.5). Substitution ortho to the phenolic moiety is tolerated, with a slight
decrease in reaction rate (entry 4). Six-membered ring closure can also occur to give a dihydropyran product (99) under identical conditions (entry 5).

Table 2.2.5. Oxidative cyclizations of multiply substituted phenols. ${ }^{\text {a }}$
entry
${ }^{a} 5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{TFA})_{2}, 20 \mathrm{~mol} \%$ pyridine, 2 equiv $\mathrm{Na}_{2} \mathrm{CO}_{3}, 500 \mathrm{mg}$
$\mathrm{MS} 3 \AA / \mathrm{mmol}$ substrate, $1 \mathrm{~atm} \mathrm{O}_{2}$, toluene $(0.1 \mathrm{M}), 80^{\circ} \mathrm{C} .{ }^{b} \mathrm{The}$
starting material was used as a $3.6: 1$ mixutre of olefin isomers.

2.2.6 Cyclizations of phenols with different olefin substitution patterns.

Cyclization onto a tetrasubstituted olefin (45) proceeds in good yield (Table 2.2.6, entry 1), as does cyclization of a disubstituted olefin (28, entry 2). For terminal olefin substrate 100, reaction does not take place, presumably because exo cyclization occurs that leaves no β-hydrogens to be eliminated from the presumed palladium alkyl intermediate (similar to 67, Figure 2.1.3).

Table 2.2.6. Oxidative cyclizations of phenols with different olefin substitution patterns. ${ }^{\text {a }}$
entry
a $5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{TFA})_{2}, 20 \mathrm{~mol} \%$ pyridine, 2 equiv $\mathrm{Na}_{2} \mathrm{CO}_{3}$,
$500 \mathrm{mg} \mathrm{MS} \AA \AA / \mathrm{mmol}$ substrate, 1 atm O_{2}, toluene $(0.1 \mathrm{M})$,
$80^{\circ} \mathrm{C}$.
2.2.7 Oxidative cyclizations of primary alcohols with olefins.

In addition to phenols, we have investigated primary alcohol/olefin oxidative cyclizations. Remarkably, these reactions proceed to the heterocyclic ethers with, in most cases, little or no oxidation to the aldehyde under our optimized conditions (Table 2.2.7). In addition to benzyl alcohol 101, cyclopentene ($\mathbf{1 0 3}$ and $\mathbf{1 0 5}$) and cyclohexene (107) derivatives provide moderate to excellent yields of a spirocycle (104) and fused ring systems $(\mathbf{1 0 6}, \mathbf{1 0 8})$. The mode of oxidative reactivity - cyclization versus alcohol oxidation - appears dependent not only on the substrate (i.e., primary vs secondary alcohols) but also on the specific palladium source (cf. Uemura's work ${ }^{13}$).

Table 2.2.7 Oxidative cyclization of primary alcohols with pendant olefins. ${ }^{\text {a }}$
entry
${ }^{a} 5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{TFA})_{2}, 20 \mathrm{~mol} \%$ pyridine, 2 equiv $\mathrm{Na}_{2} \mathrm{CO}_{3}$,
$500 \mathrm{mg} \mathrm{MS} \AA \mathrm{Mg} / \mathrm{mmol}$ substrate, 1 atm O_{2}, toluene
$(0.1 \mathrm{M}), 80{ }^{\circ} \mathrm{C} .{ }^{b}$ The starting material was used as a
mixture of E and Z olefins. ${ }^{c}$ Isolated with 7% of the
aldehyde. ${ }^{d}$ Isolated with 7% of an olefin isomer.
${ }^{e}$ Isolated as a $5: 2.3: 1$ mixture of $\mathbf{1 0 8}$ /olefin
isomer/aldehyde.
2.2.8 Oxidative cyclizations of carboxylic acids and acid derivatives onto olefins.

To determine their viability as substrates, a range of carboxylic acids and carboxylic acid derivatives were synthesized and subjected to our optimized conditions. The synthesis and study of substrates $\mathbf{1 0 9}, \mathbf{1 1 1}, \mathbf{1 1 2}, \mathbf{1 1 5}$, and 117 were carried out by postdoctoral scholar Dr. Yeeman Ramtohul. For some carboxylic acid derivatives (109, $111,112,117$), the addition of an external stoichiometric base was found to be unnecessary, and exposure to $5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{TFA})_{2}, 20 \mathrm{~mol} \%$ pyridine, 500 mg $\mathrm{MS} 3 \AA / \mathrm{mmol}$ substrate and $1 \mathrm{~atm} \mathrm{O}_{2}$ in toluene at $80^{\circ} \mathrm{C}$ led to a variety of oxidatively cyclized products (Table 2.2.8, entries 1-3,5). Benzoic acids (109) and amides (111, 112) are cyclized in good to excellent yields (entries 1-3). A β-keto ester (115) undergoes cyclization as a vinylogous acid to form a heterocycle (116) rather than a carbocycle (entry 4). Primary acid derivatives react to form spirocycles (118) or fused
bicyclic systems ($\mathbf{1 2 0}$ and 122), depending on the position of the olefin (entries 5-7). The cyclization of derivatives $\mathbf{1 1 9}$ and $\mathbf{1 2 1}$ is more facile with $10 \mathrm{~mol} \%$ catalyst loading and is accelerated by the presence of 2 equiv $\mathrm{Na}_{2} \mathrm{CO}_{3}$.

Table 2.2.8 Oxidative cyclization of carboxylic acids and carboxylic acid derivatives. ${ }^{a}$
entry
${ }^{a} 5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{TFA})_{2}, 20 \mathrm{~mol} \%$ pyridine, MS3 $\AA, 1$ atm O_{2}, toluene,
$80^{\circ} \mathrm{C} .{ }^{b} \mathrm{The}$ starting material was used as a mixture of $E: Z$ olefins.
${ }^{c} 10 \mathrm{~mol} \%$ pyridine, 2 equiv $\mathrm{LiOAc} .{ }^{d} 3: 1 \mathrm{Z}: E .{ }^{e} 10 \mathrm{~mol} \%$
$\mathrm{Pd}(\mathrm{TFA})_{2}, 40$ mol $\%$ pyridine. $40 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{TFA})_{2}, 40 \mathrm{~mol} \%$
pyridine, 2 equiv $\mathrm{Na}_{2} \mathrm{CO}_{3} .{ }^{g}$ Isolated with 6% of an olefin isomer.

2.2.9 Reaction scope and limitations.

The high yields, usually brief reaction times, and range of substrates that are characteristic of this aerobic palladium(II)-catalyzed oxidative cyclization demonstrate the utility of the nonenantioselective conditions - palladium, ligand, base, O_{2}, and solvent. Nearly identical conditions are applicable to five different types of nucleophiles: phenols, primary alcohols, carboxylic acids, a vinylogous acid, and amides. Electron-rich
phenols are excellent substrates, and multiple olefin substitution patterns are tolerated. Primary alcohols undergo oxidative cyclization without significant oxidation to the aldehyde, a fact that illustrates the range of reactivity available from various palladium(II) salts under differing conditions. In addition to the cyclization of a benzylic alcohol, non-benzylic alcohols can form both fused and spirocyclic ring systems; the same is true of acid derivatives. Undoubtedly the range of alcohol substrates could be increased. ${ }^{20}$ While phenol/olefin, alcohol/olefin, ${ }^{\text {1a, } 2,21}$ and carboxylic acid/olefin ${ }^{1 \mathrm{c}, 22,23}$ cyclizations have been achieved before under palladium(II)/oxidant catalysis, our conditions differentiated themselves by meeting the criteria for extension to an asymmetric version: simplicity (i.e., one transition metal), capacity to accommodate a chiral ligand, acceleration by a ligand, and active catalysis in a noncoordinating solvent. Without a system of this type the development of a direct aerobic asymmetric cyclization has been shown to be limited.

2.3 THE ELABORATION OF THE NONENANTIOSELECTIVE CONDITIONS TO AN ASYMMETRIC VERSION

2.3.1 Chiral ligand screen.

A number of chiral ligands were screened with the conditions established for the racemic cyclizations, including typical chiral ligands such as bisoxazolines (123, $\mathbf{1 2 4}$ and 125, Table 2.3.1), as well as ligands less commonly used in catalysis such as brucine (129). The substitution of several different ligands in place of pyridine in the racemic conditions resulted in a nearly complete lack of reactivity (entries 1-4, 9); most of these ligands are bidentate. Other ligands, in particular, those expected to coordinate in a monodentate fashion ($\mathbf{1 2 8}, \mathbf{1 2 9}$ and $\mathbf{1 3 0}$), led to high conversion but with no selectivity
(entries 6-8). These general trends were in accordance with our observations of the performance of achiral mono- and bidentate nitrogen-containing ligands (Table 2.2.3). As we observed during the development of our oxidative kinetic resolution chemistry, ${ }^{11 a}$ the natural product (-)-sparteine (22) was by far the most successful at inducing asymmetry in the cyclization reaction (entry 11). Treatment of $\mathbf{2 6}$ with $\operatorname{Pd}(\mathrm{TFA})_{2}$ in the presence of (-)-sparteine (22), MS3 \AA and O_{2} in toluene provided 72% conversion to dihydrobenzofuran (+)-27 in 76% ee after 24 h . The chiral bidentate ligand (R)-(+)BINAP (133) produced the next highest level of enantioselectivity, but the reaction was marked by catalyst decomposition and low reactivity (entry 12). (S)-(-)-BINOL (132), like (-)-sparteine (22), remained an interesting exception to the generally unreactive bidentate ligands (entry 10).

Table 2.3.1 ${ }^{\text {a }}$ Chiral ligand screen for the oxidative cyclization of $\mathbf{2 6}$.

[^1]
2.3.2. Optimization of the asymmetric reaction - screen of palladium sources.

With (-)-sparteine (22) as the best ligand for the induction of enantioselectivity in the cyclization, we set out to increase selectivity through an optimization of reaction conditions, namely palladium(II) source and basic additive. This seemed essential in light of what we had observed during the development of the nonenantioselective
reaction (cf. Tables 2.2.1 and 2.2.2), as well as with the kinetic resolution chemistry. ${ }^{11224}$ Palladium(II) halide sources provided product in some cases, but with degradation of enantiomeric excess (Table 2.3.2, entries 1-2, 4-5). $\mathrm{Pd}(\mathrm{OAc})_{2}$ is more effective at inducing asymmetry than palladium halides, but at the expense of conversion (entry 6). The extent of asymmetric induction varied surprisingly in the presence of different palladium(II) sources. For example, $\mathrm{Pd}(\mathrm{COD}) \mathrm{Cl}_{2}$ results in only 10% ee (entry 2), whereas $\mathrm{Pd}(\mathrm{TFA})_{2}$ provides 76% ee (entry 7). It is remarkable that a seemingly minor change has such a large effect on enantioselectivity. ${ }^{25} \mathrm{Pd}(\mathrm{TFA})_{2}$ remained the optimal palladium source, and it was found that the preformed complex of $\operatorname{Pd}(\mathrm{TFA})_{2}$ and $\mathbf{2 2}$ $\left((\mathrm{sp}) \mathrm{Pd}(\mathrm{TFA})_{2}, 134\right)$ gave slightly improved and more reliable results than the in situgenerated complex (entry 8). Generally, more electron-deficient palladium sources were more selective in the cyclization. However, switching the anion from trifluoroacetate to triflate resulted in degradation of the catalyst (formation of palladium black).

Table 2.3.2 Optimization of palladium source for the asymmetric oxidative cyclization of 26. ${ }^{\text {a }}$

${ }^{a} 10 \mathrm{~mol} \%$ palladium source, $40 \mathrm{~mol} \%$ (-)-sparteine, $500 \mathrm{mg} \mathrm{MS} 3 \AA / \mathrm{mmol}$ substrate, 1 atm O_{2}, toluene $(0.1 \mathrm{M}), 80^{\circ} \mathrm{C}$. ${ }^{b}$ Conversion measured by GC or by ${ }^{1} \mathrm{H}$ NMR. ${ }^{c} 30 \mathrm{~mol} \%(-)$-sparteine. ${ }^{d} \mathrm{sp}=(-)$-sparteine.
2.3.3 Optimization of the asymmetric reaction - effect of basic additives on the asymmetric oxidative cyclization.

Like the identity of the palladium source, a basic additive can affect reaction rate and selectivity. As in the nonenantioselective reaction, we have found that the addition of some exogenous inorganic bases can promote the catalytic activity (Table 2.3.3). There appears to be no obvious trend for rate enhancement or the effects on selectivity. The addition of NaOAc (entry 4) diminishes activity and selectivity to levels similar to those observed with $\mathrm{Pd}(\mathrm{OAc})_{2}$ (Table 2.3.2, entry 6), presumably because acetate displaces trifluoroacetate to give the less selective acetate catalyst. The best results are obtained with $\mathrm{Ca}(\mathrm{OH})_{2}$, the presynthesized complex, $(\mathrm{sp}) \mathrm{Pd}(\mathrm{TFA})_{2}(\mathbf{1 3 4})$, and 1 equiv of (-)-sparteine (22, entry 7) to provide 83% conversion and $\mathbf{7 7 \%}$ ee.

Table 2.3.3 Basic additives in the asymmetric oxidative cyclization of 26. ${ }^{\text {a }}$

entry	Pd source	additive	time	conv ${ }^{\text {b }}$	ee ${ }^{\text {b }}$
1.	$\mathrm{Pd}(\mathrm{TFA})_{2}$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	3 d	56\%	63\%
2.	$\mathrm{Pd}(\mathrm{TFA})_{2}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	3 d	58\%	21\%
3.	$\mathrm{Pd}(\mathrm{TFA})_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	3 d	26\%	64\%
4.	$\mathrm{Pd}(\mathrm{TFA})_{2}$	NaOAc	3 d	18\%	46\%
5. ${ }^{\text {c }}$	(sp) $\operatorname{Pd}(\text { TFA })_{2}$ (134)	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	36 h	53\%	76\%
$6 .{ }^{\text {c }}$	(sp) $\operatorname{Pd}(\text { TFA })_{2}$ (134)	CaCO_{3}	3 d	75\%	61\%
7. ${ }^{\text {c }}$	(sp)Pd(TFA) 2 (134)	$\mathrm{Ca}(\mathrm{OH})_{2}$	36 h	87\%	81\%

${ }^{a} 5 \mathrm{~mol} \% \mathrm{Pd}$ source, $20 \mathrm{~mol} \%(-)$-sparteine (22), 2 equiv additive, $500 \mathrm{mg} \mathrm{MS} 3 \AA / \mathrm{mmol}$ substrate, $1 \mathrm{~atm} \mathrm{O}_{2}$, toluene $(0.1 \mathrm{M}), 80^{\circ} \mathrm{C}$. ${ }^{b}$ Measured by GC. ${ }^{c} 10 \mathrm{~mol} \%(\mathrm{sp}) \mathrm{Pd}(\mathrm{TFA})_{2}(\mathbf{1 3 4}), 100 \mathrm{~mol} \%$ (-)-sparteine.
2.3.4 Enantioselective oxidative cyclization of phenol substrates.

Under the optimized conditions, phenol 26 was cyclized to provide dihydrobenzofuran (+)-27 in 81% ee and 87% isolated yield (Table 2.3.4, entry 1). ${ }^{26}$ Application of these conditions to other substrates that reacted well under the
nonenantioselective conditions proved less successful. ${ }^{27} \quad p$-Methoxyphenol $\mathbf{8 4}$ is transformed with high selectivity to give (+)-85 in 90% ee and 57% yield (entry 2). t-Butylphenol $\mathbf{8 2}$ and p-methylphenol $\mathbf{8 0}$ do not react quickly but the corresponding products are obtained with good enantiomeric excess (entries 3 and 4). p-Acylphenol 86 cyclizes, but with low \%ee, perhaps indicative of a change in mechanism for this electron-poor substrate.

Table 2.3.4 Enantioselective cyclization of olefin-appended phenols. ${ }^{\text {a }}$
entry
${ }^{a} 10 \mathrm{~mol} \%(\mathrm{sp}) \mathrm{Pd}(\mathrm{TFA})_{2}(\mathbf{1 3 4}), 100 \mathrm{~mol} \%(-)$-sparteine $(\mathbf{2 2}), 2$ equiv
$\mathrm{Ca}(\mathrm{OH})_{2}, 500 \mathrm{mg} \mathrm{MS} 3 \AA / \mathrm{mmol}$ substrate, $1 \mathrm{~atm} \mathrm{O}_{2}$, toluene $(0.1 \mathrm{M}), 80$
${ }^{\circ} \mathrm{C} .{ }^{b}$ Isolated yield. ${ }^{c}$ Measured by GC.

Unfortunately, in the cyclization of substrate $\mathbf{8 4}$, enantioenriched p-methoxy dihydrobenzofuran (+)-85 is produced along with a dimeric aryl ether byproduct (135, Table 2.3.5). Although we have no direct evidence, this interesting byproduct could form via palladation ortho to the phenol, followed by coupling to another molecule of substrate. ${ }^{28}$ The addition of various acids suppressed the formation of the byproduct, perhaps by protonolysis of the postulated palladium aryl species, but also depressed the
enantioselectivity of the cyclization (entry 3). Many of the substrates for the racemic reaction such as $\mathbf{9 0}, \mathbf{9 2}$, and 96 (Table 2.2.5) were designed to prevent dimerization by blocking the C 2 position of the starting material, but most did not react under the slower enantioselective conditions.

Table 2.3.5 Attempted suppression of dimerization of $\mathbf{8 4} .^{\text {a }}$

${ }^{a} 10 \mathrm{~mol} \%(\mathrm{sp}) \operatorname{Pd}(\mathrm{TFA})_{2}(\mathbf{1 3 4}), 100 \mathrm{~mol} \%(-)$-sparteine (22), $500 \mathrm{mg} \mathrm{MS} 3 \AA / \mathrm{mmol}$ substrate $1 \mathrm{~atm} \mathrm{O}_{2}$, toluene $(0.1 \mathrm{M}), 80^{\circ} \mathrm{C}$.
${ }^{b}$ Measured by ${ }^{1} \mathrm{H}$ NMR. ${ }^{c}$ Measured by GC.

2.4 PROPOSED RATIONALE FOR THE OBSERVED STEREOCHEMISTRY

2.4.1 Rationale based on external nucleophilic attack.

In one possible mechanism for the asymmetric cyclization, ligand substitution of a trifluoroacetate anion by the olefin could occur to afford an activated olefin complex. Shown in Figure 2.4.1 are four possible diasteromeric configurations of the proposed (sp)Pd-bound olefin. For reasons to be discussed in Chapter 4, we have chosen to describe coordination of the olefin as limited to one coordination site at the metal center. Nucleophilic attack by phenol or phenoxide would occur anti to the palladium atom, from the external face of the coordinated olefin. Given this mode of attack, diastereomers $\mathbf{1 3 6}$ and $\mathbf{1 3 7}$ do not lead to the observed absolute stereochemistry of the major enantiomer of product. 136 and 137 may be disfavored due to steric clashing of the methyl groups on
the olefin with the $(-)$-sparteine (22) backbone, as in 136, or with the trifluoroacetate ligand, as in 137. For the diastereomers that do lead to the major observed enantiomer, it is difficult to predict which steric factors would cause $\mathbf{1 3 8}$ or $\mathbf{1 3 9}$ to be favored.

Figure 2.4.1 Stereochemical rationale for external nucleophilic attack.

2.4.2. Rationale based on internal $\mathrm{C}-\mathrm{O}$ bond formation.

In another possible mechanism, both trifluoroacetate anions are displaced by the substrate to give a palladium-phenoxide-olefin chelate complex. Shown in Figure 2.4.2 are four possible diasteromeric configurations of the proposed (sp)Pd-bound substrate. Diastereomers 140 and 141 may be disfavored due to steric interactions between the methyl groups and the (-)-sparteine (22) backbone, and possibly between the phenoxide moiety and 22. Of the two diasteromers that give the major enantiomer, we propose that $\mathbf{1 4 2}$ is most likely the favored disatereomer, with the fewest number of destabilizing steric interactions.

Figure 2.4.2 Stereochemical rationale for internal C-O bond formation.

2.5 CONCLUSION

Oxidase-type cyclizations of several different nucleophiles onto pendant olefins occur in excellent yield under simple conditions: palladium(II), pyridine, oxygen, inorganic base, and toluene. Reactivity is highly dependent on palladium source, basic additive, and ligand. The reaction can produce several different types of cyclic systems, including aryl and alkyl bicycles, and fused and spirocyclic motifs. These cyclizations are part of an ongoing effort in the Stoltz group to develop oxidase-type reactions that employ palladium(II) catalysis with molecular oxygen. To this end, the pyridine-based conditions we developed were suitable for extension to an enantioselective cyclization in the presence of the chiral ligand (-)-sparteine (22). While the asymmetric oxidative cyclization conditions are not yet general, we have established that it is possible to adapt a direct dioxygen-coupled reaction to aerobic asymmetric catalysis, which had not before been achieved for this class of reaction. The versatility and sensitivity to reaction conditions of this and other palladium(II)-catalyzed oxidations prompted us to investigate the mechanism of this reaction. These investigations are the subject of Chapter 3.

2.6 EXPERIMENTAL SECTION

2.6.1 Materials and Methods

Unless stated otherwise, reactions were conducted in flame-dried glassware under a nitrogen atmosphere with freshly distilled solvents. All commercially obtained reagents were used as received. Reaction temperatures were controlled by an IKAmag temperature modulator. Thin-layer chromatography (TLC) was conducted with E. Merck silica gel 60 F254 precoated plates $(0.25 \mathrm{~mm})$ and visualized via UV and anisaldehyde or potassium permanganate staining. ICN silica gel (particle size $0.032-0.063 \mathrm{~mm}$) was used for flash column chromatography. Analytical chiral GC was carried out on a Chiraldex G-TA column (30.0 mx 0.25 mm) from Bodman Industries. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Mercury 300 spectrometer (at 300 MHz and 75 MHz respectively) and are reported relative to $\mathrm{Me}_{4} \mathrm{Si}(\delta 0.0)$. Some ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Inova 500 spectrometer (at 500 MHz and 125 MHz , respectively) and are reported relative to $\mathrm{Me}_{4} \mathrm{Si}(\delta 0.0)$. Data for ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift ($\delta \mathrm{ppm}$), multiplicity, coupling constant (Hz) and integration. Data for ${ }^{13} \mathrm{C}$ NMR spectra are reported in terms of chemical shift. IR spectra were recorded on a Perkin Elmer Paragon 1000 FT-IR spectrometer or a Perkin Elmer BXII FT-IR spectrometer and are reported in frequency of absorption (cm^{-1}). High resolution mass spectra were obtained from the UC Irvine Mass Spectral Facility and from the California Institute of Technology Mass Spectral Facility. Optical rotations were recorded with a Jasco P-1010 polarimeter (Na lamp, 589 nm). X-Ray crystallographic data were obtained from the California Institute of Technology Beckman

Institute X-Ray Crystallography Laboratory. Elemental analyses were carried out by Desert Analytics Laboratory, Tuscon, AZ. $\operatorname{Pd}(\mathrm{TFA})_{2}$ and other palladium salts were purchased from Strem Chemicals, Inc., Newburyport, MA. All other chemicals were purchased from the Sigma-Aldrich Chemical Company, Milwaulkee, WI.
2.6.2 General procedure for the oxidative cyclization of 26. Palladium(II) source and additive optimization reactions shown in Tables 2.2.1 and 2.2.2.

A thick-walled oven-dried 25 mL 15 cm long tube equipped with magnetic stir bar was charged with powdered molecular sieves (MS3Å, $125 \mathrm{mg}, 500 \mathrm{mg} \mathrm{MS} 3 \AA / \mathrm{mmol}$ substrate), palladium source ($0.0125 \mathrm{mmol}, 0.05$ equiv), and additive ($0.50 \mathrm{mmol}, 2.0$ equiv), followed by toluene (2.5 mL), pyridine ($4.0 \mu \mathrm{~L}, 0.050 \mathrm{mmol}, 0.20$ equiv), and phenol 26 ($40.6 \mathrm{mg}, 0.25 \mathrm{mmol}, 1.0$ equiv). The tube was evacuated and back-filled with O_{2} (3x, balloon), heated to $80^{\circ} \mathrm{C}$, and allowed to stir under O_{2} (1 atm, balloon). The reaction was monitored by TLC. Upon complete conversion, the crude reaction mixture was chromatographed on silica gel ($1.5 \times 10 \mathrm{~cm}$, hexanes \rightarrow 19:1 hexanes/EtOAc eluent). The filtrate was concentrated in vacuo to provide dihydrobenzofuran 27.
2.6.3 General procedure for the oxidative cyclization of 26. Ligand optimization reactions shown in Table 2.2.3.

A thick-walled oven-dried 10 mL 15 cm -long tube equipped with magnetic stir bar was charged with powdered molecular sieves (MS3 $\AA, 50 \mathrm{mg}, 500 \mathrm{mg} \mathrm{MS} 3 \AA / \mathrm{mmol}$ substrate), palladium complex ($0.005 \mathrm{mmol}, 0.05$ equiv), and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (when indicated in Table 2.2.3, $4.2 \mathrm{mg}, 0.040 \mathrm{mmol}, 0.40$ equiv), followed by toluene (1.0 mL), monodentate ligand (when indicated in Table 2, $0.040 \mathrm{mmol}, 0.40$ equiv) or bidentate ligand (when indicated in Table $2.2 .3,0.020 \mathrm{mmol}, 0.20$ equiv), pentadecane (GC
internal standard, $5.0 \mu \mathrm{~L}, 0.18 \mathrm{mmol})$ and phenol $26(16.2 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv). The tube was evacuated and back-filled with O_{2} (3 x , balloon), heated to $80^{\circ} \mathrm{C}$, and allowed to stir under O_{2} (1 atm, balloon). The reaction was monitored by GC for conversion to dihydrobenzofuran 27.
2.6.4 Preparation of $L_{n} P d(T F A)_{2}$ complexes.

Bis(pyridine)bis(trifluoroacetate)palladium(II) 144. $\mathrm{Pd}(\mathrm{OAc})_{2}(250 \mathrm{mg}, 1.11 \mathrm{mmol}$, 1.0 equiv) was dissolved in benzene ($15 \mathrm{~mL}, 0.07 \mathrm{M}$) and treated with pyridine ($180 \mu \mathrm{~L}$, $2.22 \mathrm{mmol}, 2.0$ equiv) under argon at $23^{\circ} \mathrm{C}$. The orange solution gradually became lighter with the formation of a nearly white precipitate. After 6 h , the volatiles were removed in vacuo to give (pyridine) ${ }_{2} \mathrm{Pd}(\mathrm{OAc})_{2}$ as a light colored powder ($385 \mathrm{mg}, 1.01$ $\mathrm{mmol}, 91 \%)$. (Pyridine $)_{2} \mathrm{Pd}(\mathrm{OAc})_{2}(380 \mathrm{mg}, 0.993 \mathrm{mmol}, 1.0$ equiv) was combined with trifluoroacetic acid ($2.06 \mathrm{~mL}, 26.8 \mathrm{mmol}, 27$ equiv) in methanol ($15 \mathrm{~mL}, 0.66 \mathrm{M}$) open to the atmosphere at $23^{\circ} \mathrm{C}$. The solution gradually became yellow with the formation of a precipitate after stirring for 1.5 h , which was subsequently isolated via filtration (filtrate was reserved). The yellowish-gray solid was taken up in methanol and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL each) and filtered to remove Pd black. The two yellow filtrates were combined and concentrated in vacuo to give 144 as a light yellow powder ($402 \mathrm{mg}, 0.819 \mathrm{mmol}, 83 \%$ yield): mp $168{ }^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.55-8.53(\mathrm{~m}, 4 \mathrm{H}), 7.87$ (dddd, J $=7.8,7.7,1.6,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.1\left({ }^{2} J_{\mathrm{CF}}\right.$
$=37.5 \mathrm{~Hz}), 151.1,139.8,125.7,114.1\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=289 \mathrm{~Hz}\right) ; \operatorname{HRMS}\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}$ calc'd for [$\left.\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~F}_{6} \mathrm{Pd}\right]^{+}: 489.9680$, found: 489.9573 .

Bis(4-methoxypyridine)palladium(II)bis(trifluoroacetate) 145. $\mathrm{Pd}(\mathrm{OAc})_{2}(100 \mathrm{mg}$, $0.445 \mathrm{mmol}, 1.0$ equiv) was dissolved in benzene ($9 \mathrm{~mL}, 0.49 \mathrm{M}$) under argon at $23{ }^{\circ} \mathrm{C}$ and 4-methoxypyridine ($90.3 \mu \mathrm{~L}, 0.890 \mathrm{mmol}, 2.0$ equiv) was added, upon which a pale yellow solid precipitated. After standing for 30 min , the solids were isolated via filtration and washed with additional benzene (5 mL) affording (4-methoxypyridine) ${ }_{2} \mathrm{Pd}(\mathrm{OAc})_{2}$ ($160 \mathrm{mg}, 0.361 \mathrm{mmol}, 81 \%$ yield). (4-Methoxypyridine) $)_{2} \mathrm{Pd}(\mathrm{OAc})_{2}(82 \mathrm{mg}, 0.184 \mathrm{mmol}$, 1.0 equiv) was taken up in trifluoroacetic acid ($355 \mu \mathrm{~L}, 4.6 \mathrm{mmol}, 25$ equiv) and methanol ($5 \mathrm{~mL}, 0.037 \mathrm{M}$). After stirring for 1.5 h , the light yellow solution was concentrated to dryness to give an oily residue. Benzene and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added (5 mL each), and the solvents removed in vacuo to afford $\mathbf{1 4 5}$ as a yellow powder ($78 \mathrm{mg}, 0.124$ mmol, 78% yield): $\mathrm{mp} 179-180^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.26$ (dd, $J=6.1$, $1.1 \mathrm{~Hz}, 4 \mathrm{H}), 6.87(\mathrm{dd}, J=6.1,1.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.91(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 168.0, 151.7, 111.7, 56.2; Anal. calc'd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Pd}: \mathrm{C}, 34.90 ; \mathrm{H}, 2.56 ; \mathrm{N}, 5.09$. Found: C, 34.87; H, 2.64; N, 4.83.

Bis(2-picoline)palladium(II)bis(trifluoroacetate) 146. $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($100 \mathrm{mg}, 0.445$ mmol, 1.0 equiv) was dissolved in benzene ($9.0 \mathrm{~mL}, 0.49 \mathrm{M}$) under argon at $23^{\circ} \mathrm{C}$ and 2picoline ($71,88 \mu \mathrm{~L}, 0.890 \mathrm{mmol}, 2.0$ equiv) was added. The dark orange solution gradually became light orange-yellow, along with the formation of a light precipitate. After 1 h the solids were isolated via filtration to afford (2-picoline) $)_{2} \mathrm{Pd}(\mathrm{OAc})_{2}$ as yellow powder ($148 \mathrm{mg}, 0.36 \mathrm{mmol}, 81 \%$ yield). (2-Picoline) $)_{2} \mathrm{Pd}(\mathrm{OAc})_{2}(70 \mathrm{mg}, 0.170 \mathrm{mmol}$, 1.0 equiv) was dissolved in methanol ($5 \mathrm{~mL}, 0.034 \mathrm{M}$) at $23^{\circ} \mathrm{C}$ in air and trifluoroacetic acid ($328 \mu \mathrm{~L}, 4.3 \mathrm{mmol}, 25$ equiv) was added. The mixture was allowed to stand for 12 h during which time a light colored precipitate formed. The solids were isolated via filtration to provide 146 as a light yellow powder ($77 \mathrm{mg}, 0.158 \mathrm{mmol}, 93 \%$ yield). The complex was further purified by recrystallization from a saturated acetone solution that was layered with pentane and allowed to stand: mp $189{ }^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.99(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{ddd}, J=7.7,7.7,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.23$ (comp. $\mathrm{m}, 4 \mathrm{H}), 3.51(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.1\left(\mathrm{q},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=37 \mathrm{~Hz}\right), 161.4,152.3$, 139.3, 126.3, 122.5, $113.9\left(\mathrm{q},{ }^{1} J_{\text {CF }}=290 \mathrm{~Hz}\right), 25.1$; Anal. calc'd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Pd}: \mathrm{C}$, 37.05; H, 2.72; N, 5.40. Found: C, 37.27; H, 2.84; N, 5.29.

Bis(iso-ethylnicotinate)palladium(II)bis(trifluoroacetate) 147. $\mathrm{Pd}(\mathrm{OAc})_{2}(100 \mathrm{mg}$, $0.445 \mathrm{mmol}, 1.0$ equiv) was dissolved in benzene ($10.0 \mathrm{~mL}, 0.40 \mathrm{M}$) under argon at 23 ${ }^{\circ} \mathrm{C}$ and iso-ethylnicotinate ($\mathbf{7 2}, 122 \mu \mathrm{~L}, 0.891 \mathrm{mmol}, 2.0$ equiv) was added. The orange solution became yellow upon addition of the ligand. After stirring for 2 h , the solution was concentrated in vacuo to give (iso-ethylnicotinate) $)_{2} \mathrm{Pd}(\mathrm{OAc})_{2}$ as a light yellow powder ($216 \mathrm{mg}, 0.410 \mathrm{mmol}$, 92% yield). (iso-Ethylnicotinate) $)_{2} \mathrm{Pd}(\mathrm{OAc})_{2}(100 \mathrm{mg}$, $0.190 \mathrm{mmol}, 1.0$ equiv) was dissolved in methanol (8 mL) in air at $23{ }^{\circ} \mathrm{C}$ and trifluoroacetic acid ($366 \mu \mathrm{~L}, 4.74 \mathrm{mmol}, 25$ equiv) was added. No color change was observed. After 1 h the solution was concentrated under reduced pressure to give $\mathbf{1 4 7}$ as a yellow powder ($114 \mathrm{mg}, 0.189 \mathrm{mmol}, 99 \%$ yield $)$. The complex was further purified by recrystallization from a saturated solution in acetone that was layered with pentane: mp $163-164{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.70(\mathrm{dd}, J=5.2,1.7 \mathrm{~Hz}, 4 \mathrm{H}), 8.00(\mathrm{dd}, J=$ $5.2,1.7 \mathrm{~Hz}, 4 \mathrm{H}), 4.46(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.42(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 163.3,163.1,151.8,141.1,125.1,114.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=29 \mathrm{~Hz}\right), 63.0$, 14.3; Anal. calc'd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Pd}$: C, 37.84; H, 2.86; N, 4.41. Found: C, 37.86; H, 3.04; N, 4.33.

Bis(ethylnicotinate)palladium(II)bis(trifluoroacetate) 148. $\mathrm{Pd}(\mathrm{OAc})_{2}(100 \mathrm{mg}, 0.445$ mmol, 1.0 equiv) was dissolved in benzene ($10.0 \mathrm{~mL}, 0.40 \mathrm{M}$) under argon at $23^{\circ} \mathrm{C}$ and ethylnicotinate ($\mathbf{7 3}, 122 \mu \mathrm{~L}, 0.891 \mathrm{mmol}, 2.0$ equiv) was added. After 30 min , the yellow solution was concentrated to ca. 5 mL , upon which needles formed. The solids were isolated by filtration to give (ethylnicotinate $)_{2} \mathrm{Pd}(\mathrm{OAc})_{2}$ as a pale yellow crystalline material (118 mg, $0.223 \mathrm{mmol}, 50 \%$ yield). (Ethylnicotinate) $)_{2} \mathrm{Pd}(\mathrm{OAc})_{2}(60 \mathrm{mg}, 0.114$ mmol, 1.0 equiv) was taken up in methanol (5 mL) in air at $23^{\circ} \mathrm{C}$ and trifluoroacetic acid ($220 \mu \mathrm{~L}, 2.85 \mathrm{mmol}, 25$ equiv) was added. The solvents were removed in vacuo after 45 min to give an orange oily residue. Benzene (1 mL) was added, and the solvent was removed under reduced pressure to provide 148 as a pale yellow powder ($53 \mathrm{mg}, 0.083$ mmol, 73% yield): mp $133-135{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.13(\mathrm{~d}, J=1.7 \mathrm{~Hz}$, $2 \mathrm{H}), 8.68(\mathrm{dd}, J=5.5,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.52(\mathrm{ddd}, J=8.0,1.7,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.57$ (ddd, 8.0 , $5.8,0.55 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.44(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 163.0\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=37.6 \mathrm{~Hz}\right), 162.7,153.7,152.0,140.8,129.0,125.4,114.0\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}\right.$ $=289 \mathrm{~Hz}), 62.8$, 14.3; Anal. calc'd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Pd}: \mathrm{C}, 37.84 ; \mathrm{H}, 2.86 ; \mathrm{N}, 4.41$. Found: C, 37.88; H, 2.91; N, 4.29.

(Dipyridyl)palladium(II)bis(trifluoroacetate) 149. $\mathrm{Pd}(\mathrm{OAc})_{2}(200 \mathrm{mg}, 0.891 \mathrm{mmol}$, 1.0 equiv) was dissolved in acetone (20 mL) at $25^{\circ} \mathrm{C}$ in air. Acetic acid $(10 \mu \mathrm{~L})$ was added to the solution, followed by dipyridyl $(\mathbf{7 4}, 167 \mathrm{mg}, 1.07 \mathrm{mmol}, 1.2$ equiv). The mixture was allowed to stand at $25^{\circ} \mathrm{C}$ for 1 h , during which time a yellow precipitate formed. The solid was isolated via filtration and washed with acetone to provide (dipyridyl) $\operatorname{Pd}(\mathrm{OAc})_{2}$ as a pale yellow powder ($330 \mathrm{mg}, 0.867 \mathrm{mmol}, 97 \%$ yield). (Dipyridyl) $\mathrm{Pd}(\mathrm{OAc})_{2}\left(330 \mathrm{mg}, 0.867 \mathrm{mmol}, 1.0\right.$ equiv) was dissolved in MeOH at $25^{\circ} \mathrm{C}$. An excess of trifluoroacetic acid ($1.67 \mathrm{~mL}, 21.7 \mathrm{mmol}, 25$ equiv) was added to the yellow solution, upon which a pale yellow precipitate formed immediately. This precipitate was isolated by filtration to afford $\mathbf{1 4 9}$ ($359 \mathrm{mg}, 0.735 \mathrm{mmol}, 85 \%$ yield). Spectroscopic data were in accordance with that reported by Randaccio. ${ }^{29}$

(4,7-Dimethyl-1,10-phenanthroline)palladium(II)bis(trifluoroacetate) 150. $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($100 \mathrm{mg}, 0.445 \mathrm{mmol}, 1.0$ equiv) was dissolved in acetone at $25^{\circ} \mathrm{C}$ in a flask open to air. 4,7-Dimethyl-1,10-phenanthroline (75, $94 \mathrm{mg}, 0.449 \mathrm{mmol}, 1.01$ equiv) was added as a solid, and the solution was allowed to stir for 10 min . The mixture was then allowed to
stand for 30 min during which time a crystalline solid appeared. This solid, (4,7-dimethyl-1,10-phenanthroline $) \mathrm{Pd}(\mathrm{OAc})_{2}$, was isolated via filtration ($75 \mathrm{mg}, 0.173 \mathrm{mmol}$, 39% yield). (4,7-Dimethyl-1,10-phenanthroline $) \operatorname{Pd}(\mathrm{OAc})_{2}(50 \mathrm{mg}, 0.139 \mathrm{mmol}, 1.0$ equiv) was dissolved in methanol (5 mL) in air at $25^{\circ} \mathrm{C}$. Trifluoroacetic acid ($267 \mu \mathrm{~L}$, $3.47 \mathrm{~mL}, 25$ equiv) was added to the orange solution which led immediately to the formation of a yellow precipitate. The mixture was allowed to stand for 15 min after which $\mathbf{1 5 0}$ was isolated by filtration as a yellow powder ($59 \mathrm{mg}, 0.110 \mathrm{mmol}, 79 \%$ yield). Spectroscopic data were in agreement with that reported by Randaccio. ${ }^{29}$

Bis(quinuclidine)palladium(II)bis(trifluoroacetate) 151. A solution of quinuclidine (76, $67 \mathrm{mg}, 0.602 \mathrm{mmol}, 2.0$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added dropwise to a stirring suspension of $\mathrm{Pd}(\mathrm{TFA})_{2}\left(100 \mathrm{mg}, 0.301 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(13 \mathrm{~mL})$. The brown mixture was heated to reflux under argon for 6 h , then cooled to $25^{\circ} \mathrm{C}$, filtered, and concentrated in vacuo to provide a light brown powder. The powder was washed with pentane and dried under vacuum to provide 151 as a tan solid ($98 \mathrm{mg}, 0.177 \mathrm{mmol}, 59 \%$ yield): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.01-2.95(\mathrm{~m}, 12 \mathrm{H}), 1.77$ (sept, $J=3.2 \mathrm{~Hz}, 2 \mathrm{H}$) $1.63-1.57(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.1,114.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=290 \mathrm{~Hz}\right), 51.8$, 26.2, 19.7. Anal. calc'd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Pd}: \mathrm{C}, 38.97 ; \mathrm{H}, 4.72$; $\mathrm{N}, 5.05$. Found: C, 38.41; H, 4.67; N, 4.86.

Bis(N-methylpiperidine)palladium(II)bis(trifluoroacetate) 152. A solution of N methylpiperidine ($77,73 \mu \mathrm{~L}, 0.602 \mathrm{mmol}, 2.0$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added dropwise to a stirring suspension of $\operatorname{Pd}(\mathrm{TFA})_{2}\left(100 \mathrm{mg}, 0.301 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(13 \mathrm{~mL})$. The brown mixture was heated to reflux under argon for 6 h , then cooled to $25^{\circ} \mathrm{C}$, filtered, and concentrated in vacuo to provide a brown residue. Benzene (2 mL) was added, and the volatiles were removed under reduced pressure to provide $\mathbf{1 5 2}$ as a light brown powder ($84 \mathrm{mg}, 0.158 \mathrm{mmol}, 53 \%$ yield): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.77-2.72$ (comp. m, 10H), 2.63-2.47 (m, 4H), 2.01-1.73 (comp. m, 6H), 1.40-1.27 (comp. m 6H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.1\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=37 \mathrm{~Hz}\right), 114.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=290 \mathrm{~Hz}\right), 61.2,52.7$, 25.1, 23.2; Anal. calc'd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Pd}: \mathrm{C}, 36.20$; $\mathrm{H}, 4.94$; N, 5.28. Found: C, 36.17; H, 4.69; N, 5.13.

(TMEDA)palladium(II)bis(trifluoroacetate) 153. A solution of TMEDA (78, $45 \mu \mathrm{~L}$, $0.301 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added dropwise to a stirring suspension of $\operatorname{Pd}(\mathrm{TFA})_{2}\left(100 \mathrm{mg}, 0.301 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(13 \mathrm{~mL})$. The brown mixture was heated to reflux under nitrogen for 4 h during which time a precipitate formed. The mixture was cooled to $25^{\circ} \mathrm{C}$ and the solids isolated via filtration to provide $\mathbf{1 5 3}(102 \mathrm{mg}$,
$0.227 \mathrm{mmol}, 75 \%$ yield): $\mathrm{mp} 175-178{ }^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 2.85(\mathrm{~s}$, $4 \mathrm{H}), 2.66(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 164.1\left({ }^{2} J_{\mathrm{CF}}=37.5 \mathrm{~Hz}\right), 116.1\left({ }^{1} J_{\mathrm{CF}}=\right.$ $289 \mathrm{~Hz})$, 63.8, 51.1; HRMS $\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\left[\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{PdNa}\right]^{+}$: 470.9947, found: 470.9972.

(N,N-tetramethylpropylenediamine)palladium(II)bis(trifluoroacetate) 154. A solution of N, N-tetramethylpropylenediamine ($\mathbf{7 9}, 50 \mu \mathrm{~L}, 0.301 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{Et}_{2} \mathrm{O}$ (2 mL) was added dropwise to a stirring suspension of $\operatorname{Pd}(\mathrm{TFA})_{2}(100 \mathrm{mg}, 0.301 \mathrm{mmol}$, 1.0 equiv) in $\mathrm{Et}_{2} \mathrm{O}(13 \mathrm{~mL})$, Upon heating to reflux under nitrogen, the brown mixture became a brown-orange solution with a brown precipitate. After 2 h , the mixture was cooled to $25^{\circ} \mathrm{C}$ and the solids were isolated by filtration to afford $\mathbf{1 5 4}$ as a light brown powder ($111 \mathrm{mg}, 0.241 \mathrm{mmol}, 80 \%$ yield). The compound could be further purified from a saturated solution in acetone that was layered with pentane: $\mathrm{mp} 135^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathrm{H}$ NMR (300 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) \& $2.60(\mathrm{~s}, 12 \mathrm{H}), 2.34(\mathrm{~m}, 4 \mathrm{H}), 1.84(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta$ 63.7, 52.2, 23.5; HRMS $\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\left[\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~F}_{6} \mathrm{PdNa}\right]^{+}: 485.0103$, found: 485.0107.

2.6.5 Synthesis of substituted phenols.

General procedure for the preparation of substituted phenols. Phenols 26, 80, 82, 84, 88, 90, 92, 94, 96 and 28 were synthesized by the modified procedure of Hurd and Hoffman. ${ }^{30}$ To a stirring suspension of $\mathrm{NaH}(17.5 \mathrm{mmol}, 1.1$ equiv) in benzene (25 mL)
at $0{ }^{\circ} \mathrm{C}$ was added a benzene $(15 \mathrm{~mL})$ solution of the phenol $(15.9 \mathrm{mmol}, 1$ equiv). The mixture was charged with (E)-1-bromo-2-methyl-but-2-ene (156, $17.5 \mathrm{mmol}, 1.1$ equiv, prepared according to literature procedure ${ }^{31}$) and allowed to warm to $23^{\circ} \mathrm{C}$. After 24 h stirring, benzene was removed under reduced pressure and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and petroleum ether (50 mL) were added. The mixture was extracted with 20% aqueous $\mathrm{NaOH}(3 \times 20$ mL) and "Claisen's alkali" ($20 \mathrm{~mL} ; 6 \mathrm{~g} \mathrm{KOH}$ in $5 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ diluted with 25 mL MeOH). The combined alkali extracts were acidified with $6 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x}$ 50 mL). Combination of the organics, drying over MgSO_{4}, concentration in vacuo and purification by flash column chromatography on silica gel (19:1 hexanes/EtOAc eluent) provided the o-substituted phenol.

Phenol 26. 87% yield colorless oil: $\mathrm{R}_{\mathrm{F}} 0.46$ (4:1 hexanes/EtOAc eluent); ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.19-7.07$ (comp. m, 2H), 6.91-6.83 (comp. m, 2 H), $5.51(\mathrm{qq}, J=6.6,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H}),, 3.34(\mathrm{~s}, 2 \mathrm{H}), 1.66(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.61(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.1,135.1,131.1,128.0,125.2,121.4,120.8,116.1$, 41.7, 15.7, 13.6; IR (film) 3459, 2916, 1454, $1219 \mathrm{~cm}^{-1}$; HRMS (EI^{+}) m / z calc'd for $\left[\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}\right]^{+}: 162.1045$, found 162.1044.

p-Methylphenol 80. 71% yield colorless oil: $\mathrm{R}_{\mathrm{F}} 0.40$ (4:1 hexanes/EtOAc eluent); ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}) $\delta 6.95(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}),, 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.49$ (app. qd, $J=6.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~d}, J$ $=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.1,135.3,131.7$, 129.9, 128.6, 124.8, 121.4, 116.0, 42.1, 20.7, 15.8, 13.7; IR (film) 3457, 2918, 1501, 1260, 1196, $1108 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{EI}^{+}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\left[\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}\right]^{+}: 176.1201$, found 176.1199.

p-t-Butylphenol 82. 47% yield colorless oil: $\mathrm{R}_{\mathrm{F}} 0.51$ (4:1 hexanes/EtOAc eluent); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.16(\mathrm{dd}, J=8.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.77$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 1.66(\mathrm{dd}, J=6.6,1.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.62(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 153.3, 143.8, 135.7, 128.4, 125.2, 124.6, 121.7, 116.0, 43.0, 34.7, 32.3, 16.4, 14.2; IR (film) 3463, 2964, 2909, 2865, 1504, 1364, $1271 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{NH}_{3} \mathrm{CI}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\left[\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}\right]^{+}$: 218.1671, found 218.1677.

p-Methoxyphenol 84. 52% yield colorless oil: $\mathrm{R}_{\mathrm{F}} 0.46$ (4:1 hexanes/EtOAc eluent); ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}) $\delta 6.78-6.65$ (comp. m, 3 H), $5.48(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~s}, 2 \mathrm{H}), 1.65(\mathrm{dq}, J=6.6,1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.61(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.7,149.2,134.9,126.3,121.6,116.7,112.7,55.9,42.2$, 15.8, 13.7; IR (film) 3426, 2915, 1504, 1434, 1230, $1206 \mathrm{~cm}^{-1} ; \operatorname{HRMS}\left(\mathrm{NH}_{3} \mathrm{CI}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\left[\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}\right]^{+}: 192.1150$, found 192.1153.

p-Acylphenol 86. Bromophenol 88 ($100 \mathrm{mg}, 0.42 \mathrm{mmol}, 1.0$ equiv) was dissolved in THF and cooled to $-78{ }^{\circ} \mathrm{C}$. Upon dropwise addition of t - BuLi (1.7 M in pentane, 782 $\mu \mathrm{L}, 1.33 \mathrm{mmol}, 3.2$ equiv), the stirring solution became yellow. After 1.5 h , exchange was complete by TLC and as N-methoxy- N-methyl acetamide $\mathbf{(1 6 0}, 88 \mu \mathrm{~L}, 0.83 \mathrm{mmol}$, 2.0 equiv) was introduced, the yellow color dissipated. The mixture was allowed to stir at $-78{ }^{\circ} \mathrm{C}$ for 1 h , then was quenched with $1: 1 \mathrm{H}_{2} \mathrm{O} /$ saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, warmed to $23{ }^{\circ} \mathrm{C}$, and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash column chromatography on silica gel (4:1 hexanes/EtOAc eluent) gave the p-acyl phenol
$86\left(40 \mathrm{mg}, 0.20 \mathrm{mmol}, 47 \%\right.$ yield) as a white crystalline solid: $\mathrm{R}_{\mathrm{F}} 0.23$ (4:1 hexanes/EtOAc eluent); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81-7.76$ (comp. m, 2H), 6.87 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 5.55(\mathrm{qq}, J=6.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 2 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H})$, $1.67(\mathrm{dd}, J=6.4,1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.4,160.1$, $134.8,131.9,130.5,129.6,125.0,122.5,116.1,42.1,26.6,15.7,13.7$; IR (film) 3264, 2917, 1655, 1589, $1280 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{EI}^{+}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\left[\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}\right]^{+}: 204.1150$, found 204.1152.

p-Bromophenol 88. 49\% yield pale green oil: $\mathrm{R}_{\mathrm{F}} 0.51$ (4:1 hexanes/EtOAc eluent); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.12-7.09$ (comp. m, 2H), $6.61(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{q}, J$ $=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 2 \mathrm{H}), 1.56(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) $\delta 154.5,134.5,133.5,130.9,127.3,122.3,118.0,112.8,41.8$, 15.7, 13.7; IR (film) 3453, 2916, 1403, 1411, 1263, 1216, $1108 \mathrm{~cm}^{-1} ; \operatorname{HRMS}\left(\mathrm{NH}_{3} \mathrm{CI}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\left[\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}\right]^{+}: 240.0150$, found 240.0151.

4,6-Dimethylphenol 90. 48% yield colorless oil: $\mathrm{R}_{\mathrm{F}} 0.72$ (4:1 hexanes/EtOAc eluent); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 5.54(\mathrm{qq}, J=6.6,1.7 \mathrm{~Hz}, 1 \mathrm{H})$,
$5.33(\mathrm{~s}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{dd}, J=6.6,1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.62$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.4,135.6,130.2,129.3,124.6,124.1,121.5$, $76.5,42.6,20.6,16.0,15.7,13.7$; IR (film) $3493,2917,1485,1213,1204 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{NH}_{3} \mathrm{CI}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\left[\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}\right]^{+}: 190.1358$, found 190.1355.

163

45\% yield

92

4,6-Dimethoxyphenol 92. Phenolic starting material (163) was synthesized by the procedure of Helquist and Bäckvall. ${ }^{32} 45 \%$ yield colorless oil: $\mathrm{R}_{\mathrm{F}} 0.52$ (4:1 hexanes/EtOAc eluent); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.38(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J$ $=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.28-5.27($ comp. m, 2H), $3.87(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~s}, 2 \mathrm{H}), 1.62-$ 1.60 (comp. m, 6H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.8,147.0,138.0,134.6,126.1$, 120.2, 106.1, 97.1, 56.2, 55.9, 39.5, 16.1, 13.8; IR (film) 3521, 2916, 1613, 1497, 1227, $1199 \mathrm{~cm}^{-1} ;$ HRMS $\left(\mathrm{NH}_{3} \mathrm{CI}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\left[\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}\right]^{+}: 222.1256$, found 222.1255.

4,5,6-Trimethoxyphenol 94. 18% yield white crystalline solid: $\mathrm{R}_{\mathrm{F}} 0.25$ (4:1 hexanes/EtOAc eluent); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.26(\mathrm{~s}, 1 \mathrm{H}), 5.50-5.40(\mathrm{~m}, 1 \mathrm{H})$, $5.41(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H}), 3.37(\mathrm{~s}, 2 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) $\delta 152.6,152.3,151.9,136.4,135.5,120.8,110.5,96.6,61.4,61.2$,
56.0, 33.9, 15.9, 13.6; IR (film) 3417, 2937, 1607, 1462, 1414, $1126 \mathrm{~cm}^{-1} ;$ HRMS (EI $)$ m / z calc'd for $\left[\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4}\right]^{+}: 252.1361$, found 252.1352.

p-Methoxy-bis(alkyl)phenol 96. 30% yield yellow oil: $\mathrm{R}_{\mathrm{F}} 0.82$ (4:1 hexanes/EtOAc eluent); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.54(\mathrm{~s}, 2 \mathrm{H}), 5.38(\mathrm{qq}, J=6.6,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.19$ $(\mathrm{s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~s}, 4 \mathrm{H}), 1.64(\mathrm{dd}, J=5.5,1.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.31(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) $\delta 153.1,147.7,135.1,126.9,121.0,114.3,55.8,41.4,15.9,13.7$; IR (film) $3490,2915,1604,1478,1440,1234,1193 \mathrm{~cm}^{-1} ;$ HRMS $\left(\mathrm{NH}_{3} \mathrm{CI}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\left[\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{2}\right]^{+}: 242.1307$, found 242.1310.

Tetrasubstituted olefin 45. Conversion of known 2,3-dimethyl-but-2-en-1-ol ${ }^{33}$ to 1 -chloro-2,3-dimethyl-but-2-ene (165) followed Corey's procedure. ${ }^{34}$ Dimethyl sulfide ($0.63 \mathrm{~mL}, 8.55 \mathrm{mmol}, 1.6$ equiv) was added to a solution of N-chlorosuccinimide (1.14 g , $8.55 \mathrm{mmol}, 1.6$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(45 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 30 min and cooled to $-20^{\circ} \mathrm{C}$. A solution of 2,3-dimethyl-but-2-en-1-ol ($537 \mathrm{mg}, 5.34 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) was introduced dropwise over 5 min . The resulting clear, colorless solution was warmed to $0^{\circ} \mathrm{C}$ and allowed to stir for 1 h , then poured into ice-
cold brine $(20 \mathrm{~mL})$. The layers were separated, and the aqueous portion extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The organics were combined, washed with ice-cold brine ($2 \times 30 \mathrm{~mL}$), dried over MgSO_{4}, filtered, and concentrated in vacuo. The crude, unstable 1-chloro-2,3-dimethyl-but-2-ene (165) was used immediately without further purification. NaH (60% in mineral oil, $214 \mathrm{mg}, 5.34 \mathrm{mmol}, 1.0$ equiv) was suspended in benzene (5 mL), cooled to $0^{\circ} \mathrm{C}$, and subjected to a benzene $(5 \mathrm{~mL})$ solution of phenol ($401 \mathrm{mg}, 4.27 \mathrm{mmol}, 0.8$ equiv). The prepared allylic chloride was transferred to the phenoxide with additional benzene (10 mL). The mixture was allowed to warm to $23{ }^{\circ} \mathrm{C}$ and stirred for 12 h . Benzene was removed by rotary evaporation from the opaque, pink mixture, and $\mathrm{H}_{2} \mathrm{O}$ (50 mL) and petroleum ether (50 mL) were added. The mixture was extracted with 20% aqueous $\mathrm{NaOH}(3 \times 20 \mathrm{~mL})$ and "Claisen's alkali" ($10 \mathrm{~mL} ; 6 \mathrm{~g} \mathrm{KOH}$ in $5 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ diluted with 25 mL MeOH$)$. The combined alkali extracts were acidified with $6 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 x 50 mL). The organics were combined, dried over MgSO_{4}, filtered, and concentrated in vacuo. Flash column chromatography on silica gel (19:1 hexanes/EtOAc eluent) afforded $\mathbf{4 5}(286 \mathrm{mg}, 1.62 \mathrm{mmol}, 38 \%$ yield from phenol) as a slightly unstable, clear, colorless oil: $\mathrm{R}_{\mathrm{F}} 0.52$ (4:1 hexanes/EtOAc eluent); ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.16-6.98($ comp. $\mathrm{m}, 2 \mathrm{H}), 6.83(\mathrm{ddd}, J=7.7,7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 2 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.6,130.7,128.0,127.4,126.6,126.5,121.2,116.1,35.7$, 21.2, 20.9, 18.6; IR (film) $3440,2917,2860,1488,1454,1218 \mathrm{~cm}^{-1} ; \operatorname{HRMS}\left(\mathrm{NH}_{3} \mathrm{CI}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\left[\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}\right]^{+}: 176.1201$, found 176.1206.

Phenol 28. Synthesized using the above procedure ${ }^{30}$ for 26 from phenol ($500 \mathrm{mg}, 5.3$ mmol) and crotyl chloride (166, predominantly trans, 4% 3-choloro-1-butene, $621 \mu \mathrm{~L}$, 6.37 mmol). 71% yield of a colorless oil: $\mathrm{R}_{\mathrm{F}} 0.41$ ($4: 1$ hexanes/EtOAc eluent); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) § 7.16-7.08 (comp. m, 2H), 6.90-6.80 (comp. m, 2H), 5.66-5.62 (comp. m 2H), $5.06(\mathrm{~s}, 1 \mathrm{H}), 3.35(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.72-1.70(\mathrm{~m}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.6,130.5,129.1,128.1,127.8,126.1,121.1,116.1,34.5,18.1 ;$ IR (film) $3451,2916,1454,752 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{EI}^{+}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\left[\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}\right]^{+}: 148.0888$, found: 148.0883.

Homoallylic phenol 98. A solution of $\mathrm{MeONHMe} \cdot \mathrm{HCl}(4.88 \mathrm{~g}, 50.0 \mathrm{mmol}, 2.5$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was cooled to $-5^{\circ} \mathrm{C}$ in an acetone/ice bath. $\mathrm{AlMe}_{3}(2.0 \mathrm{M}$ in toluene, 25.0 mL 50.0 mmol , 2.5 equiv) was introduced dropwise over 15 min , and the mixture allowed to stir for 1 h . Bubbling commenced upon addition of dihydrocoumarin (167, $2.53 \mathrm{~mL}, 20.0 \mathrm{mmol}, 1.0$ equiv) to the clear, colorless solution and the mixture was quenched after 10 min with saturated aqueous $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$. After extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$, the organics were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to toluene. Following redissolution in THF (40 mL), $\mathrm{MeMgBr}\left(3 \mathrm{M} \mathrm{in}^{2} \mathrm{Et}_{2} \mathrm{O}, 16.7 \mathrm{~mL}, 50.0\right.$ $\mathrm{mmol}, 2.5$ equiv) was added dropwise at $0^{\circ} \mathrm{C}$ and the mixture allowed to stir for 15 min .

After quenching with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and extraction with $\mathrm{Et}_{2} \mathrm{O}$, the combined organics were dried over MgSO_{4} and concentrated under reduced pressure to yield a pale yellow oil which was purified by flash column chromatography on silica gel (9:1 hexanes/EtOAc eluent) to give methyl ketone 168 ($2.56 \mathrm{~g}, 15.6 \mathrm{mmol}, 78 \%$ yield) as a colorless oil. Dry potassium t-butoxide $(4.72 \mathrm{~g}, 42.1 \mathrm{mmol}, 2.7$ equiv) was added slowly to a suspension of $\mathrm{EtPP}_{3} \operatorname{Br}(15.6 \mathrm{~g}, 42.1 \mathrm{mmol}, 2.7$ equiv $)$ in toluene (15 mL) at $0^{\circ} \mathrm{C}$. The mixture became viscous and turned from colorless to yellow to orange. The flask was supplied with additional toluene (15 mL), warmed to $23^{\circ} \mathrm{C}$, and allowed to stir for 2 h . The now red reaction mixture was re-cooled to $0^{\circ} \mathrm{C}$ and subjected to a toluene $(10 \mathrm{~mL})$ solution of the methyl ketone $(2.56 \mathrm{~g}, 15.6 \mathrm{mmol}, 1$ equiv). After warming to 23 ${ }^{\circ} \mathrm{C}$ and stirring for 3 h , consumption of the starting material was observed by TLC. The mixture was re-cooled to $0{ }^{\circ} \mathrm{C}$, quenched with $1: 1 \mathrm{H}_{2} \mathrm{O}$ /saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with EtOAc ($3 \times 75 \mathrm{~mL}$). The organic layers were combined, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. Column chromatography of the yellow residue on silica gel (19:1 hexanes/EtOAc eluent) and removal of the solvents by rotary evaporation provided $\mathbf{9 8}(1.15 \mathrm{~g}, 6.52 \mathrm{mmol}, 42 \%$ yield) as a colorless oil, and as a mixture of olefin isomers: $\mathrm{R}_{\mathrm{F}} 0.40$ (4:1 hexane/EtOAc eluent); ${ }^{1} \mathrm{H}$ NMR (data for 3.6:1 mixture of olefin isomers based on the relative integration of peaks at $\delta 1.64$ and 1.54; $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.18-7.09 (comp. m, 2H), 7.18-7.09 (comp. m, 2H), 6.94-6.89 (comp. m, 1H), 6.94-6.89 (comp. m, 1H), 6.79 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, 1H), 5.35-5.27 (comp. m, 1H), 5.35-5.27 (comp. m, 1H), 5.09-5.05 (comp. m, 1H), 5.095.05 (comp. m, 1H), 2.78-2.71 (comp. m, 2H), 2.78-2.71 (comp. m, 2H), 2.41-2.29 (comp. m, 2H), 2.41-2.29 (comp. m, 2H), $1.79(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}$,
$3 \mathrm{H}), 1.54(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.7,153.6,135.9,130.5$, $130.3,128.7,127.4,127.3,121.0,120.2,119.2,115.5,39.9,31.9,29.2,28.7,23.8,16.1$, 13.6, 13.3; IR (film) $3441,2964,2928,2860,1591,1502,1456,1235 \mathrm{~cm}^{-1} ;$ MS m / z calc'd for $\left[\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}\right]^{+}$HRMS $\left(\mathrm{NH}_{3} \mathrm{CI}\right)$: 176.1201 , found 176.1199.

Phenol 100. Synthesized according to the method of Goering. ${ }^{35} \quad \mathrm{R}_{\mathrm{F}} 0.48$ (4:1 hexanes/EtOAc); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) \& 7.19-7.09 (comp. m, 2H), 6.92-6.83 (comp. m, 2H), $5.20(\mathrm{~s}, 1 \mathrm{H}), 4.90$ (app.d, $J=20.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.20(\mathrm{~s}, 2 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.9,144.9,131.2,128.2,125.0,121.0,116.3,112.6,40.1$, 22.3; IR (film) 3468, 2971, 2914, 1489, 1454, 1214, $753 \mathrm{~cm}^{-1}$; HRMS (EI+ m / z calc'd for $\left[\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}\right]^{+}: 148.0888$, found: 148.0894.
2.6.6 General procedure for the racemic oxidative cyclization of phenols shown in Tables 2.2.4, 2.2.5, and 2.2.6.

A thick-walled oven-dried 25 mL 15 cm long tube equipped with magnetic stir bar was charged with powdered molecular sieves (MS3 $\AA, 125 \mathrm{mg}, 500 \mathrm{mg} / \mathrm{mmol}$), $\operatorname{Pd}(\mathrm{TFA})_{2}$ ($4.2 \mathrm{mg}, 0.0125 \mathrm{mmol}, 0.05$ equiv), and $\mathrm{Na}_{2} \mathrm{CO}_{3}(53 \mathrm{mg}, 0.50 \mathrm{mmol}, 2.0$ equiv), followed by toluene (2.5 mL), pyridine ($4.0 \mu \mathrm{~L}, 0.050 \mathrm{mmol}, 0.20$ equiv), and phenolic substrate ($0.25 \mathrm{mmol}, 1.0$ equiv). The tube was evacuated and back-filled with $\mathrm{O}_{2}(3 \mathrm{x}$, balloon), heated to $80^{\circ} \mathrm{C}$, and allowed to stir under O_{2} (1 atm, balloon). The reaction was monitored by TLC. Upon complete conversion, which varied by substrate, the crude
reaction mixture was filtered over silica gel $(1.5 \times 10 \mathrm{~cm}$, hexane \rightarrow 19:1 hexanes/EtOAc eluent). Concentration of the filtrate in vacuo provided the cyclized product.

Dihydrobenzofuran 27. $20 \mathrm{~min}, 95 \%$ yield clear, colorless oil: $\mathrm{R}_{\mathrm{F}} 0.67$ (4:1 hexanes/EtOAc eluent); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.16-7.11 (comp. m, 2H), 6.876.79 (comp. m, 2H), $6.06(\mathrm{dd}, J=17.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{dd}, J=17.6,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.11(\mathrm{dd}, J=11.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 15.7$ (s, 3H) ; ${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) $\delta 158.8,141.7,128.1,126.5,125.2,120.4,112.9$, 109.6, 87.7, 42.3, 26.4; IR (film) 1481, $1245 \mathrm{~cm}^{-1}$; HRMS (EI $) ~ m / z$ calc'd for $\left[\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}\right]^{+}$: 160.0888 , found 160.0888 .

p-Methyldihydrobenzofuran 81. $20 \mathrm{~min}, 99 \%$ yield clear, colorless oil: $\mathrm{R}_{\mathrm{F}} 0.66$ (4:1 hexanes/EtOAc eluent); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.70(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{dd}, J=17.3,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dd}, J=17.3,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.10(\mathrm{dd}, J=10.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~d}, J=15.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.9,142.0,129.7,128.6$, $126.6,125.9,112.9,109.2,87.7,42.3,26.3,21.0$; IR (film) $2975,2925,1492,1249 \mathrm{~cm}^{-1}$; HRMS (EI') m/z calc'd for $\left[\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}\right]^{+}: 174.1045$, found: 174.1047.

p-t-Butyldihydrobenzofuran 83. $25 \mathrm{~min}, 90 \%$ yield clear, colorless oil: $\mathrm{R}_{\mathrm{F}} 0.74$ (4:1 hexanes/EtOAc eluent); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.17-7.14 (comp. m, 2H), 6.72 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{dd}, J=17.3,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, 11.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.18(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) § 156.8, 143.4, 142.1, 126.2, 125.0, 122.3, 112.9, 108.8, 87.7, $42.5,34.4,32.0,26.4$; IR (film) $2964,1494,1250 \mathrm{~cm}^{-1} ;$ HRMS $\left(\mathrm{NH}_{3} \mathrm{CI}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\left[\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}\right]^{+}: 216.1514$, found: 216.1515 .

p-Methoxydihydrobenzofuran $85.15 \mathrm{~min}, 89 \%$ yield clear, colorless oil: $\mathrm{R}_{\mathrm{F}} 0.57$ (4:1 hexanes/EtOAc eluent); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 6.74-6.65 (comp. m, 3 H), 6.04 $(\mathrm{dd}, J=17.3,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{dd}, J=17.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{dd}, J=10.4,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.0,153.0,141.8,127.5,113.0,112.9,111.5,109.5,87.8$, 56.2, 42.7, 26.3; IR (film) $1488,1226,1140 \mathrm{~cm}^{-1} ;$ HRMS $\left(\mathrm{NH}_{3} \mathrm{CI}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\left[\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}\right]^{+}: 190.0994$, found: 190.0999.

p-Acyldihydrobenzofuran 87. $25 \mathrm{~h}, 93 \%$ yield clear, colorless oil: $\mathrm{R}_{\mathrm{F}} 0.30$ (4:1 hexanes/EtOAc eluent); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83-7.81$ (comp. m, 2H), 6.81 (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{dd}, J=17.4,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}$, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 1.58$ (s, 3H) ; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.9,163.3,141.1,130.8,130.7,127.5,126.0$, 113.5, 109.3, 89.7, 41.5, 26.6, 26.4; IR (film) 2976, 1675, 1608, 1488, $1271 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{EI}^{+}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\left[\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2}\right]^{+}: 202.0994$, found 202.0995.

p-Bromodihydrobenzofuran 89. $24 \mathrm{~h}, 33 \%$ yield: $\mathrm{R}_{\mathrm{F}} 0.65$ (4:1 hexanes/EtOAc); ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}) $\delta 7.27-7.20($ comp. m, 2 H$), 6.67(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{dd}$, $J=17.3,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~d}$, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.2,141.3,131.0,129.2,128.2,113.4,112.2,111.3,88.66,42.0,26.2$; IR (film) 1474, 1244; ; HRMS $\left(\mathrm{NH}_{3} \mathrm{CI}\right) m / z$ calc'd for $\left[\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BrO}\right]^{+}: 237.9993$, found: 237.9991.

4,6-Dimethyldihydrobenzofuran 91. $20 \mathrm{~min}, 85 \%$ yield clear, colorless oil: $\mathrm{R}_{\mathrm{F}} 0.75$ (4:1 hexanes/EtOAc eluent); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H})$, 6.03 (dd, $J=17.3,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{dd}, J=17.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dd}, J=10.4$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}$, 3H), $1.55(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) $\delta 155.5,142.2,130.0,129.5,125.9,123.0$, 119.3, 112.6, 87.2, 42.6, 26.4, 20.9, 15.5; IR (film) 2973, 2922, 1482, $1233 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{EI}^{+}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\left[\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}\right]^{+}: 188.1201$, found 188.1198.

4,6-Dimethoxydihydrobenzofuran 93. $40 \mathrm{~min}, 80 \%$ yield clear, colorless oil: $\mathrm{R}_{\mathrm{F}} 0.57$ (4:1 hexanes/EtOAc eluent); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.36(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.35(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dd}, J=17.2,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{dd}, J=17.2,1.20 \mathrm{~Hz}$, $1 \mathrm{H}), 5.09(\mathrm{dd}, J=10.3,1.20 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~d}, J=15.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.05(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.7,154.7$, 144.7, 141.6, 141.4, 127.3, 112.9, 101.3, 99.2, 56.2, 56.1, 43.0, 26.4; IR (film) 2972, 2938, 2837, 1617, 1498, 1217, $1150 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{NH}_{3} \mathrm{CI}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\left[\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}\right]^{+}$: 220.1099, found 220.1101.

3,4,5-Trimethoxydihydrobenxofuran $95.10 \mathrm{~min}, 86 \%$ yield clear, colorless oil: R_{F} 0.30 (4:1 hexanes/EtOAc eluent); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27$ (s, 1H), 6.04 (dd, J $=17.4,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dd}, J=17.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{dd}, J=10.5,0.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.92(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~d}, J=14.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.5,154.0,150.3,141.8,135.1,113.0$, $108.5,90.2,88.5,61.5,60.2,56.3,40.6,26.4$; IR (film) 2935, 1616, 1472, 1196, 1120 $\mathrm{cm}^{-1} ;$ HRMS $\left(\mathrm{EI}^{+}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\left[\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4}\right]^{+}: 250.1216$, found 250.1205 .

p-Methoxy-6-allyldihydrobenzofuran 97. $2 \mathrm{~h}, 93 \%$ yield, clear, yellow oil: $\mathrm{R}_{\mathrm{F}} 0.45$ (19:1 hexanes/EtOAc eluent); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.58(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.49(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{dd}, J=17.0,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.34-5.26(\mathrm{comp} . \mathrm{m}, 2 \mathrm{H}), 5.06$ $(\mathrm{dd}, J=10.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{~d}, J=15.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.03(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.60$ (comp. m, 6H), $1.53(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.1,151.8,142.3,134.4,126.8,122.7,120.4,114.0,112.6,108.7,87.2$, 56.1, 43.0, 39.5, 26.5, 16.0, 13.7; IR (film) 2931, 1479, 1440, $1233 \mathrm{~cm}^{-1} ;$ HRMS $^{\left(\text {EI }^{+}\right) ~ m / z}$ calc'd for $\left[\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{2}\right]^{+}: 258.1620$, found 258.1613.

2'-Methyldihyrdobenzofuran 47. $25 \mathrm{~min}, 80 \%$ yield clear, colorless oil: $\mathrm{R}_{\mathrm{F}} 0.63$ (4:1 hexanes/EtOAc eluent); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.16-7.11 (comp. m, 2H), 6.79$6.87($ comp. m, 2H), $5.10(\mathrm{~s}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~d}, J=$ $15.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.1$, 147.9, $128.2,126.8,125.2,120.3,110.2,109.7,90.0,41.6,26.3,19.0$; IR (film) 1402, 1462, $1249 \mathrm{~cm}^{-1} ;$ HRMS $\left(\mathrm{NH}_{3} \mathrm{CI}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\left[\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}\right]^{+}: 173.0967$, found 173.0968.

3'-H-dihydrobenzofuran 29. $3.5 \mathrm{~h}, 74 \%$ yield clear, colorless oil: $\mathrm{R}_{\mathrm{F}} 0.70$ (4:1 hexanes/EtOAc eluent); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.18-7.09 (comp. m, 2H), 6.876.79 (comp. m, 2H), 6.03 (ddd, $J=17.1,10.2,6.61 \mathrm{~Hz}, 1 \mathrm{H}), 5.39$ (ddd, $J=17.1,1.4,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.25-5.15(\mathrm{comp} . \mathrm{m}, 2 \mathrm{H}), 3.38(\mathrm{dd}, J=15.4,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=15.4,7.7$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 159.6,137.6,128.3,126.7,125.1,120.7,117.1$, 109.6, 83.7, 36.1; IR (film) 2961, 1597, 1480, $1230 \mathrm{~cm}^{-1} ;$ HRMS m / z calc'd for $\left[\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}\right]^{+}: 146.0732$, found: 146.0721 .

Dihydrobenzopyran 99. $75 \mathrm{~min}, 85 \%$ yield clear, colorless oil: $\mathrm{R}_{\mathrm{F}} 0.62$ (4:1 hexanes/EtOAc eluent); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.13-7.01 (comp. m, 2H), 6.876.78 (comp. m, 2H), $5.86(\mathrm{dd}, J=17.6,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dd}$, $J=11.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.68($ comp. m, 2H), 1.97-1.78 (comp. m, 2H), 1.46 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) $\delta 154.2,141.4,129.5,127.5,121.5,119.9,117.0,114.1$, $76.8,31.9,27.3,22.7$; IR (film) 1582, 1487, $1456,1238 \mathrm{~cm}^{-1} ;$ HRMS $\left(\mathrm{NH}_{3} \mathrm{CI}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\left[\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}\right]^{+}: 174.1045$, found 174.1041.
2.6.7 Synthesis of primary alcohol substrates.

Benzyl alcohol 101. Lithium aluminum hydride ($140 \mathrm{mg}, 3.69 \mathrm{mmol}, 2.6$ equiv) was suspended in $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{~mL})$ in a two-necked flask equipped with reflux condenser and cooled to $0{ }^{\circ} \mathrm{C}$. A solution of benzoic acid $109(250 \mathrm{mg}, 1.42 \mathrm{mmol}, 1.0$ equiv $)$ in $\mathrm{Et}_{2} \mathrm{O}$ (6 mL) was added dropwise to the stirring suspension over 5 min . Bubbling was observed, and the mixture was allowed to warm to $23{ }^{\circ} \mathrm{C}$. After 5 h the reaction was recooled to $0{ }^{\circ} \mathrm{C}$, quenched with 5:1 $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH}(20 \mathrm{~mL})$ followed by $3 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$, and allowed to stir for 12 h . Extraction with $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{~mL})$ was followed by combination of the organics, drying over MgSO_{4} and removal of the solvents under
reduced pressure to provide yellow oil $101(173 \mathrm{mg}, 1.07 \mathrm{mmol}, 75 \%$ yield $)$ as a mixture of olefin isomers: $\mathrm{R}_{\mathrm{F}} 0.29$ (4:1 hexanes/EtOAc eluent); ${ }^{1} \mathrm{H}$ NMR (data for 2.7:1 mixture of olefin isomers based on the relative integration of peaks at $\delta 5.60$ and $5.41 ; 300 \mathrm{MHz}$, CDCl_{3}) δ 7.48-7.41 (comp. m, 1H), 7.48-7.41 (comp. m, 1H), 7.31-7.23 (comp. m, 2H), 7.31-7.23 (comp. m, 2H), 7.12-7.09 (m, 1H), 7.12-7.09 (m, 1H), $5.60($ app. qdd, $J=6.9$, $3.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.41 (app. qdd, $J=6.9,3.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.60$ $(\mathrm{d}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.98-1.95(\mathrm{~m}, 3 \mathrm{H}), 1.98-1.95(\mathrm{~m}, 3 \mathrm{H}), 1.77(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.36$ $(\mathrm{dq}, J=6.9,1.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.0,145.1,141.1,138.0,137.8$, $136.5,135.9,128.8,128.2,127.9,127.8,127.7,127.2,127.0,124.6,122.9,63.6,63.4$, 26.1, 18.5, 15.0, 14.1; IR (film) 3317, 2967, 2914, 1434, $1029 \mathrm{~cm}^{-1} ;$ HRMS $^{\left(E I^{+}\right) ~} \mathrm{~m} / \mathrm{z}$ calc'd for $\left[\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}\right]^{+}: 162.1045$, found 162.1051.

Primary alcohol 103. The methyl ester 169 ($500 \mathrm{mg}, 3.24 \mathrm{mmol}, 1.0$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ and cooled to $-78{ }^{\circ} \mathrm{C}$. As neat DIBAL ($1.27 \mathrm{~mL}, 7.13 \mathrm{mmol}$, 2.2 equiv) was slowly added to the mixture, the solution became yellow in color. After 1 h, the reaction was quenched with saturated aqueous $\mathrm{Na}^{+} / \mathrm{K}^{+}$tartrate, allowed to warm to $23{ }^{\circ} \mathrm{C}$ and stirred for 12 h . The phases were separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \times 15 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}\right)$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude residue was purified by flash column chromatography on silica gel (19:1 hexanes/EtOAc eluent) to afford the known 103 ($90 \mathrm{mg}, 0.71 \mathrm{mmol}, 22 \%$ yield) as a volatile, clear, colorless oil.

Primary alcohol 105. Known 105 was received as a generous gift from the group of Robert H. Grubbs.

Primary alcohol 107. A suspension of LAH ($70 \mathrm{mg}, 1.85 \mathrm{mmol}, 2.6$ equiv) in $\mathrm{Et}_{2} \mathrm{O}$ (7 mL) was cooled to $0^{\circ} \mathrm{C}$ in an ice bath under argon. Carboxylic acid $\mathbf{1 2 1}(100 \mathrm{mg}, 0.71$ mmol, 1 equiv) was added to the cold suspension, dropwise, over 5 min, after which the mixture was allowed to warm to $23{ }^{\circ} \mathrm{C}$. Upon consumption of the starting material after 10 h , the reaction was cooled to $0^{\circ} \mathrm{C}$ and quenched by the addition of a solution of 5:1 $\mathrm{Et}_{2} \mathrm{O}: \mathrm{MeOH}(0.93 \mathrm{~mL})$ then 3 M aq. $\mathrm{HCl}(2.8 \mathrm{~mL})$. After warming to $23^{\circ} \mathrm{C}$, the layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The organic extracts were combined, dried over MgSO_{4}, filtered and concentrated in vacuo to give 107 as a colorless oil ($81 \mathrm{mg}, 0.64 \mathrm{mmol}, 90 \%$ yield) which was used without further purification: $\mathrm{R}_{\mathrm{F}} 0.47$ (2:1 hexanes/EtOAc); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.69$ (ddd, $J=$ $9.8,6.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{ddd}, J=10.0,3.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{ddd}, J=6.9,6.6,1.7$ $\mathrm{Hz}, 2 \mathrm{H})$, 2.29-2.17 (m, 1H), 2.01-1.94 (m, 1H), 1.85-1.46 (comp. m, 7H), 1.31-1.20 (m, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 131.7,127.6,61.2,39.3,32.0,29.2,25.5,21.6$; IR (film) 3326, 2927, $1049 \mathrm{~cm}^{-1}$; HRMS (EI^{+}) m / z calc'd for $\left[\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}\right]^{+}: 126.1045$, found: 126.1039.
2.6.8 General procedure for the oxidative cyclizations of primary alcohols shown in Table 2.2.7.

A thick-walled oven-dried 25 mL 15 cm long tube equipped with magnetic stir bar was charged with powdered molecular sieves (MS3Å, $125 \mathrm{mg}, 500 \mathrm{mg} / \mathrm{mmol}$), $\operatorname{Pd}(\mathrm{TFA})_{2}$ ($4.2 \mathrm{mg}, 0.0125 \mathrm{mmol}, 0.05$ equiv), and $\mathrm{Na}_{2} \mathrm{CO}_{3}(53 \mathrm{mg}, 0.50 \mathrm{mmol}, 2.0$ equiv), followed by toluene (2.5 mL), pyridine ($4.0 \mu \mathrm{~L}, 0.050 \mathrm{mmol}, 0.20$ equiv), and primary alcohol substrate ($0.25 \mathrm{mmol}, 1.0$ equiv). The tube was evacuated and back-filled with O_{2} (3 x , balloon), heated to $80^{\circ} \mathrm{C}$, and allowed to stir under O_{2} (1 atm , balloon). The reaction was monitored for conversion by TLC. Upon complete conversion, the crude reaction mixture was filtered over silica gel. Concentration in vacuo provided the cyclized product.

Dihydro-iso-benzofuran 102. $3 \mathrm{~h}, 87 \%$ yield clear, colorless oil: $\mathrm{R}_{\mathrm{F}} 0.54$ (4:1 hexanes/EtOAc eluent); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.30-7.13 (comp. m, 3 H), 6.06 (dd, $J=17.0,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{dd}, J=17.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.08(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{dd}, J=10.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.7,142.1,139.0,127.7,127.5,121.6,121.3,112.6,87.8,71.4,26.4 ;$ IR (film) 2976, 2848, $1029 \mathrm{~cm}^{-1}$; HRMS (EI') m / z calc'd for $\left[\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}\right]^{+}: 160.0884$, found 160.0888.

Spirocyclopentene 104. $10 \mathrm{~h}, 93 \%$ yield volatile, clear, colorless oil: $\mathrm{R}_{\mathrm{F}} 0.46$ (4:1 hexanes/EtOAc eluent); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.92-5.89(\mathrm{~m}, 1 \mathrm{H}), 5.71-5.68(\mathrm{~m}$, $1 \mathrm{H}), 3.85(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.54-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.84$ (comp. m, $6 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 135.1,133.8,94.3,67.4,37.0,36.8,31.2,26.6 ;$ HRMS $\left(\mathrm{EI}^{+}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\left[\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}\right]^{+}: 124.0888$, found 124.0889.

Fused cyclopentene 170. Cyclization was carried out with (pyridine) ${ }_{2} \operatorname{Pd}(\mathrm{TFA})_{2}(\mathbf{1 4 4}$, $6.1 \mathrm{mg}, 0.0125 \mathrm{mmol}, 0.05$ equiv), pyridine ($2.0 \mu \mathrm{~L}, 0.025 \mathrm{mmol}, 0.10$ equiv). The MS3Å were flame dried immediately prior to use. After 7.5 h , flash column chromatography of the crude reaction mixture on silica gel topped with Celite (pentane $\rightarrow 4: 1$ pentane $/ \mathrm{Et}_{2} \mathrm{O}$ eluent) provided $\mathbf{1 0 6}$ as a volatile clear colorless oil ($19 \mathrm{mg}, 0.17$ $\mathrm{mmol}, 69 \%$ yield) that contained 7% of the olefin isomerized one position (170). Spectroscopic data for 33 was equivalent to that reported by Nicolaou. ${ }^{36}$

Fused cyclohexene 108. Cyclization was carried out with (pyridine) ${ }_{2} \operatorname{Pd}(\mathrm{TFA})_{2}(144,6.1$ $\mathrm{mg}, 0.0125 \mathrm{mmol}, 0.05$ equiv), pyridine ($2.0 \mu \mathrm{~L}, 0.025 \mathrm{mmol}, 0.10$ equiv). The MS3 \AA were flame dried immediately prior to use. After 24 h , flash column chromatography of the crude reaction mixture on silica gel topped with Celite (pentane $\rightarrow 4: 1$ pentane/Et2O eluent) gave a volatile clear, colorless oil ($21 \mathrm{mg} .0 .169 \mathrm{mmol} .68 \%$ yield) that was a mixture of $\mathbf{1 0 8}$, olefin isomer 171 and aldehyde 172 (5:2.3:1). 108 was spectroscopically identical to data reported by Andersson. ${ }^{37} 171$ was spectroscopically identical to data reported by Cossy. ${ }^{38}$

2.6.9 Synthesis of carboxylic acid and carboxylic acid derivative substrates.

Benzoic acid 109. To a suspension of potassium t-butoxide $(1.12 \mathrm{~g}, 10.0 \mathrm{mmol}, 2.7$ equiv) in toluene (37 mL) was added $\mathrm{EtPPh}_{3} \mathrm{Br}(3.71 \mathrm{~g}, 10.0 \mathrm{mmol}, 2.7$ equiv) and the mixture stirred at $0^{\circ} \mathrm{C}$ for 10 min . The resulting orange suspension was warmed to $23{ }^{\circ} \mathrm{C}$ and stirred for an additional 1 h . The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and subjected to dropwise addition of 2-bromoacetophenone ($\mathbf{1 7 3}, 0.5 \mathrm{~mL}, 3.71 \mathrm{mmol}, 1.0$ equiv). The mixture was heated at reflux for 8 h , then cooled to $23^{\circ} \mathrm{C}$ and quenched with saturated
aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated in vacuo. The resulting white solid was triturated with $\mathrm{Et}_{2} \mathrm{O}$ and hexane $(1: 1,50 \mathrm{~mL})$ to separate $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}$ which was removed by filtration. The filtrate was concentrated under reduced pressure. Purification by flash column chromatography on silica gel (hexanes as eluent) afforded the bromostyrene (174) as a colorless oil (99% yield). A solution of the bromostyrene $(\mathbf{1 7 4}, 223 \mathrm{mg}, 1.06 \mathrm{mmol}, 1.0$ equiv) in anhydrous $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ was treated dropwise with $n-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexane, $0.51 \mathrm{~mL}, 1.28 \mathrm{mmol}, 1.2$ equiv) at $0^{\circ} \mathrm{C}$. After 10 min , anhydrous CO_{2} gas was bubbled through the reaction mixture for 5 min . The mixture was allowed to warm to $23^{\circ} \mathrm{C}$ and stirred for an additional 30 min . The reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The aqueous layer was then acidified with 2 N HCl to pH 1 and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to furnish benzoic acid 109 as a white solid ($131 \mathrm{mg}, 0.74 \mathrm{mmol}, 79 \%$ yield): $\mathrm{R}_{\mathrm{F}} 0.23$ (4:1 hexanes/EtOAc eluent); ${ }^{1} \mathrm{H}$ NMR (data for a 1.1:1 mixture of olefin isomers based on the relative integration of peaks at $\delta 1.79$ and $1.40 ; 300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.08(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 12.08(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.31$ (comp. $\mathrm{m}, 2 \mathrm{H}), 7.58-7.31$ (comp. m, 2H), $7.25(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 5.56-5.46 (comp. m, 1H), 5.56-5.46 (comp. m, 1H), 2.08-2.02 (comp. m, 3H), 2.08-2.02 (comp. m, 3H), $1.79(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 174.0,173.1,148.1,144.8,137.6,133.0,132.6,131.2,130.8,130.4,130.2$,
$128.7,126.9,126.7,123.3,121.3,25.6,18.3,14.7,14.3$; IR (film) $2979,1693,1408 \mathrm{~cm}^{-1}$;
HRMS $\left(\mathrm{NH}_{3} \mathrm{CI}\right) m / z$ calc'd for $\left[\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2}\right]^{+}: 176.0837$, found 176.0835.

Tosyl amide 111. To a solution of acid $109(2.0 \mathrm{~g}, 11.3 \mathrm{mmol}, 1.0$ equiv) in THF (28 mL) was added p-toluenesulfonyl isocyanate ($2.6 \mathrm{~mL}, 17.0 \mathrm{mmol}, 1.5$ equiv) followed by dropwise introduction of $\mathrm{Et}_{3} \mathrm{~N}(2.4 \mathrm{~mL}, 17.0 \mathrm{mmol}, 1.5$ equiv). The mixture was then stirred at $60^{\circ} \mathrm{C}$ for 1 h . After cooling to $23^{\circ} \mathrm{C}$, The solvent was removed in vacuo and the residue diluted with EtOAc $(50 \mathrm{~mL})$ and washed with $2 \mathrm{~N} \mathrm{HCl}(20 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvents were removed by rotary evaporation. Purification by flash column chromatography on silica gel (1:2 hexanes/ $\mathrm{Et}_{2} \mathrm{O}$ eluent) afforded tosyl amide $\mathbf{1 1 1}$ as a white foam ($3.4 \mathrm{~g}, 10.3 \mathrm{mmol}, 91 \%$ yield): $\mathrm{R}_{\mathrm{F}} 0.15$ (1:1 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ eluent); ${ }^{1} \mathrm{H}$ NMR (data for a $1: 1$ mixture of olefin isomers based on the relative integration of peaks at $\delta 5.72$ and $5.50 ; 300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 9.18$ (br s, 1H), $7.94(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.76(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.44-7.13 (comp. m, 4H), 7.44-7.13 (comp. m, 4H), 7.08 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{app} . \mathrm{qd}, J=5.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.50($ app. qd, $J=5.5 .1 .1 \mathrm{~Hz}, 1 \mathrm{H}), 2.36$ $(\mathrm{s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.9,164.6,144.9,144.8,144.1,140.5,136.9$, $136.8,136.0,135.3,135.2,132.5,131.7,130.5,129.7,129.6,129.4,129.3,129.1,128.8$, $128.3,128.3,127.3,126.9,126.8,125.6,25.9,21.6,18.1,14.8,14.1$; IR (film) 3241,

1699, 1426, $1168 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{NH}_{3} \mathrm{CI}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\left[\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}+\mathrm{H}\right]^{+}: 330.1164$, found 330.1157.

Benzyl hydroxamate 112. To a solution of acid 109 ($200 \mathrm{mg}, 1.13 \mathrm{mmol}, 1.0$ equiv) in THF (6 mL) was added oxalyl chloride ($0.50 \mathrm{~mL}, 5.67 \mathrm{mmol}, 5$ equiv) followed by catalytic DMF (1 drop). After 2 h , the volatiles were removed in vacuo. The residue was diluted with THF (6 mL) and then treated with o-benzylhydroxylamine $\bullet \mathrm{HCl}(362 \mathrm{mg}$, $2.27 \mathrm{mmol}, 2.0$ equiv) followed by $\mathrm{Et}_{3} \mathrm{~N}(0.8 \mathrm{~mL}, 5.67 \mathrm{mmol}, 5$ equiv $)$. The mixture was stirred for 2 h , quenched by the addition of $2 \mathrm{~N} \mathrm{NaOH}(10 \mathrm{~mL})$, and extracted with EtOAc ($2 \times 10 \mathrm{~mL}$). The combined organic layers were washed with $2 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. Evaporation of the solvents under reduced pressure followed by purification by flash column chromatography on silica gel (4:1 hexanes/EtOAc eluent) afforded 112 ($273 \mathrm{mg}, 0.95 \mathrm{mmol}, 86 \%$ yield) as an oil: $\mathrm{R}_{\mathrm{F}} 0.63$ (2:1 hexanes/EtOAc eluent); ${ }^{1} \mathrm{H}$ NMR (data for $3: 1$ mixture of olefin isomers based on the relative integration of peaks at $\delta 1.61$ and $\left.1.25 ; 300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.23(\mathrm{~s}, 1 \mathrm{H}), 9.08$ $(\mathrm{s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.10(\mathrm{comp} . \mathrm{m}, 7 \mathrm{H}), 7.37-$ 7.10 (comp. m, 7H), 7.06 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.50-5.37$ (comp. $\mathrm{m}, 1 \mathrm{H}), 5.50-5.37($ comp. m, 1H), $4.93(\mathrm{~s}, 2 \mathrm{H}), 4.93(\mathrm{~s}, 2 \mathrm{H}), 1.82$ (comp. m, 3H), 1.82 (comp. m, 3H), $1.61(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.25$ (app. dd, $J=7.1,1.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.3,166.1,143.9,140.0,137.3,136.3,135.4,131.0,130.8,130.4$,
$129.2,129.1,128.7,128.6,128.4,127.0,126.7,125.4,124.1,77.8,77.7,25.8,17.9,14.7$, 14.2; IR (film) 3189, 1652, 1496, $1023 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{NH}_{3} \mathrm{CI}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\left[\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2}+\right.$ $\mathrm{H}]^{+}: 282.1494$, found 282.1497.

Ketoester 115. Prepared according to the modified procedure of Barco et al. ${ }^{39}$ To a solution of acid 109 ($1.4 \mathrm{~g}, 7.90 \mathrm{mmol}, 1.0$ equiv) in THF (79 mL) was added $N, N^{\prime}-$ carbonyldiimidazole ($1.45 \mathrm{~g}, 8.74 \mathrm{mmol}, 1.1$ equiv) and the resulting solution was stirred for 1 h . Magnesium monoethyl malonate $(\mathbf{1 7 5}, 2.87 \mathrm{~g}, 11.9 \mathrm{mmol}, 1.5$ equiv, prepared according to literature procedure ${ }^{6}$) was introduced and the mixure heated at $80^{\circ} \mathrm{C}$ for 24 h. After cooling to $23^{\circ} \mathrm{C}$, the solvent was removed under reduced pressure. The residue was diluted with 5% aqueous citric acid (75 mL) and extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. Purification by flash column chromatography on silica gel (4:1 hexanes/EtOAc eluent) gave ketoester 115 ($1.44 \mathrm{~g}, 5.8 \mathrm{mmol}, 74 \%$ yield) as an oil: $\mathrm{R}_{\mathrm{F}} 0.50$ (2:1 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ eluent); ${ }^{1} \mathrm{H}$ NMR (isolated as 2.1:1 mixture of olefin isomers and ketoenols, data for the major keto-ester only; $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.62-7.09 (comp. m, 4H), 5.45-5.38 (comp. m, 1H), $4.14(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~d}, J=$ $6.7 \mathrm{~Hz}, 3 \mathrm{H}$), $1.22(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (data for carbonyl carbons of major ketoester only; $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.6$, 167.5; IR (film) 2980, $1743,1692 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{EI}^{+}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\left[\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}\right]^{+}: 246.1256$, found 246.1256.

Carboxylic acid 117. See Lokensgard and references therein. ${ }^{40} \quad R_{F} 0.35$ (2:1 hexanes/EtOAc eluent); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.36-5.32(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.20$ (comp. m, 8H), 1.84-1.79 (comp. m, 2H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 180.2, 142.7, 124.3, 35.5, 33.0, 32.8, 26.4, 23.7; IR (film) 2957, 2895, 2843, 1705, $1446 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{EI}^{+}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\left[\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{2}+\mathrm{H}\right]^{+}: 140.0837$, found 140.0836.

Cyclopentene acid 119. Known 119 was synthesized according to a route described by Andersson. ${ }^{37}$ A mixture of $\mathrm{Pd}(\mathrm{OAc})_{2}(247 \mathrm{mg}, 1.1 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, benzoquinone (2.85 $\mathrm{g}, 26.4 \mathrm{mmol}, 120 \mathrm{~mol} \%)$ and $\mathrm{MnO}_{2}(383 \mathrm{mg}, 4.4 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ in acetic acid (50 mL) was stirred for 30 min at $50^{\circ} \mathrm{C}$. Cyclopentene ($\mathbf{1 7 6}, 1.95 \mathrm{~mL}, 22.0 \mathrm{mmol}, 1.0$ equiv) was added, the flask was equipped with a reflux condenser, and the mixture was allowed to stir at $50^{\circ} \mathrm{C}$ under argon. After 20 h , the flask was cooled to $23^{\circ} \mathrm{C}, 1: 1 \mathrm{Et}_{2} \mathrm{O}$:pentane was added (25 mL), and the mixture was allowed to stir for 30 min , during which time the brownish orange reaction mixture became black. The suspension was filtered over Celite with $1: 1$ pentane: $\mathrm{Et}_{2} \mathrm{O}$ and water. The aqueous layer was separated from the
filtrate and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{~mL})$. The organic layers were combined and washed with $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL}), 1 \mathrm{M} \mathrm{NaOH}(25 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}$ again $(25 \mathrm{~mL})$ and finally 1 M $\mathrm{NaOH}(25 \mathrm{~mL})$. The organic extracts were then dried over MgSO_{4}, filtered, and concentrated in vacuo to give a yellow residue, which was distilled under reduced pressure to give cyclopent-2-enyl-acetate (177) as a yellow oil $(1.09 \mathrm{~g}, 8.63 \mathrm{mmol}, 39 \%$ yield). ${ }^{41}$

To a suspension of NaH ($342 \mathrm{mg}, 8.56 \mathrm{mmol}, 1.2$ equiv) in THF (35 mL) under argon at $23^{\circ} \mathrm{C}$ was added dimethylmalonate ($\mathbf{1 7 8}, 978 \mu \mathrm{~L}, 8.56 \mathrm{mmol}, 1.2$ equiv). The mixture was stirred for 10 min . To this was added $\mathrm{Pd}(\mathrm{OAc})_{2}(48 \mathrm{mg}, 0.214 \mathrm{mmol}, 3 \mathrm{~mol} \%)$ and $\mathrm{PPh}_{3}(187 \mathrm{mg}, 0.713 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, followed by cyclopent-2-enyl acetate $(\mathbf{1 7 7}, 900$ $\mathrm{mg}, 7.13 \mathrm{mmol}, 1.0$ equiv). The resulting bright yellow-green solution was heated under reflux for 10 h . The mixture was then partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was separated, and the aqueous extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The organic extracts were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. Purification of the resulting brown residue on silica gel (9:1 hexanes/EtOAc eluent) gave dimethyl-2-(cyclopent-2-enyl)malonate (179, $1.27 \mathrm{~g}, 6.39 \mathrm{mmol}, 90 \%$ yield). ${ }^{42}$

Dimethyl-2-(cyclopent-2-enyl)malonate (179, $755 \mathrm{mg}, 3.81 \mathrm{mmol}, 1.0$ equiv), NaCN ($373 \mathrm{mg}, 7.62 \mathrm{mmol}$, 2.0 equiv) and $\mathrm{H}_{2} \mathrm{O}(137 \mu \mathrm{~L}, 7.62 \mathrm{mmol}$, 2.0 equiv) were combined in DMSO $(9 \mathrm{~mL}, 0.4 \mathrm{M})$. The flask was sealed and heated to $130^{\circ} \mathrm{C}$ in an oil bath for 8 h , during which time the colorless solution became yellow and opaque. The mixture was cooled to $23{ }^{\circ} \mathrm{C}$, quenched by the addition of $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, and then extracted with $\mathrm{E}_{2} \mathrm{O}$ $(4 \times 30 \mathrm{~mL})$. The organics were combined, washed with brine $(20 \mathrm{~mL})$, dried over MgSO_{4}, filtered, and concentrated in vacuo to afford methyl ester $\mathbf{1 6 9}$ as a yellow oil
($511 \mathrm{mg}, 3.64 \mathrm{mmol}, 96 \%$ yield), which was used without further purification. The methyl ester ($198 \mathrm{mg}, 1.41 \mathrm{mmol}, 1.0$ equiv) was hydrolyzed by dissolution in $10 \% \mathrm{aq}$. $\mathrm{NaOH}(7 \mathrm{~mL}, 0.2 \mathrm{M})$ and $\mathrm{MeOH}(7 \mathrm{~mL}, 0.2 \mathrm{M})$. After one hour of stirring at $23^{\circ} \mathrm{C}, 1 \mathrm{M}$ aq. HCl was added. The mixture was extracted with $\mathrm{EtOAc}(4 \times 25 \mathrm{~mL})$. The organics were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo to provide cyclopentene carboxylic acid $\mathbf{1 1 9}$ as a light yellow oil ($105 \mathrm{mg}, 0.83 \mathrm{mmol}, 59 \%$ yield). Spectroscopic data was in accordance with that reported by Helmchen. ${ }^{43}$

Cyclohexene carboxylic acid 121. Known 121 was synthesized in a manner identical to that described above for 119. A mixture of $\mathrm{Pd}(\mathrm{OAc})_{2}(34 \mathrm{mg}, 0.152 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, benzoquinone ($329 \mathrm{mg}, 3.04 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and $\mathrm{MnO}_{2}(2.90 \mathrm{mg}, 33.4 \mathrm{mmol}, 110$ $\mathrm{mol} \%)$ in acetic acid $(75 \mathrm{~mL})$ was stirred for 30 min at $60^{\circ} \mathrm{C}$. Cyclohexene (180, 3.09 $\mathrm{mL}, 30.4 \mathrm{mmol}, 1.0$ equiv) was added, the flask was equipped with a reflux condenser, and the mixture was allowed to stir at $60^{\circ} \mathrm{C}$ under argon. After 52 h , the flask was cooled to $23{ }^{\circ} \mathrm{C}, 1: 1 \mathrm{Et}_{2} \mathrm{O}$:pentane was added (50 mL), and the mixture was allowed to stir for 30 min , during which time the brownish orange reaction mixture became black. The suspension was filtered over Celite with $1: 1$ pentane $/ \mathrm{Et}_{2} \mathrm{O}$ and water. The aqueous
layer was separated from the filtrate and extracted with $1: 1 \mathrm{Et}_{2} \mathrm{O} /$ pentane $(4 \times 50 \mathrm{~mL})$. The organic layers were combined and washed with $\mathrm{H}_{2} \mathrm{O}(45 \mathrm{~mL}), 1 \mathrm{M} \mathrm{NaOH}(45 \mathrm{~mL})$, $\mathrm{H}_{2} \mathrm{O}$ again $(45 \mathrm{~mL})$ and finally $1 \mathrm{M} \mathrm{NaOH}(45 \mathrm{~mL})$. The organic extracts were then dried over MgSO_{4}, filtered, and concentrated in vacuo to give a brown oil, which was distilled under reduced pressure to give cyclohex-2-enyl-acetate (181) as a yellow oil (3.13 g, $22.3 \mathrm{mmol}, 73 \%$ yield). ${ }^{41}$

To a suspension of NaH ($924 \mathrm{mg}, 23.1 \mathrm{mmol}, 1.2$ equiv) in THF (80 mL) under argon at $23{ }^{\circ} \mathrm{C}$ was added dimethylmalonate ($\mathbf{1 7 8}, 2.66 \mathrm{~mL}, 23.1 \mathrm{mmol}, 1.2$ equiv). The mixture was stirred for 10 min . To this was added $\mathrm{Pd}(\mathrm{OAc})_{2}(130 \mathrm{mg}, 0.58 \mathrm{mmol}, 3$ $\mathrm{mol} \%)$ and $\mathrm{PPh}_{3}(506 \mathrm{mg}, 1.93 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, followed by cyclohex-2-enyl acetate ($\mathbf{1 8 1}, 2,7 \mathrm{~g}, 19.3 \mathrm{mmol}, 1.0$ equiv). The resulting bright yellow-green solution was heated at $60^{\circ} \mathrm{C}$ for 3 h . The mixture was then partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was separated, and the aqueous extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The organic extracts were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. Purification of the resulting brown residue on silica gel (9:1 hexanes/EtOAc eluent) gave dimethyl-2-(cyclohex-2-enyl)malonate (182, $2.93 \mathrm{~g}, 13.8 \mathrm{mmol}, 71 \%$ yield).

Dimethyl-2-(cyclohex-2-enyl)malonate (182, $200 \mathrm{mg}, 0.94 \mathrm{mmol}, 1.0$ equiv), NaCN ($92 \mathrm{mg}, 1.88 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{H}_{2} \mathrm{O}(34 \mu \mathrm{~L}, 1.88 \mathrm{mmol}$, 2.0 equiv) were combined in DMSO ($2.5 \mathrm{~mL}, 0.4 \mathrm{M}$). The flask was sealed and heated to $130^{\circ} \mathrm{C}$ in an oil bath for 2 h , during which time the colorless solution became yellow and opaque. The mixture was cooled to $23^{\circ} \mathrm{C}$, quenched by the addition of $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, and then extracted with $\mathrm{E}_{2} \mathrm{O}$ $(4 \times 10 \mathrm{~mL})$. The organics were combined, washed with brine $(10 \mathrm{~mL})$, dried over MgSO_{4}, filtered, and concentrated in vacuo to afford the methyl ester of $\mathbf{1 2 1}$ as a yellow
oil ($71 \mathrm{mg}, 0.46 \mathrm{mmol}, 49 \%$ yield), which was used without further purification. The methyl ester ($70 \mathrm{mg}, 0.46 \mathrm{mmol}, 1.0$ equiv) was hydrolyzed by dissolution in 10% aq. $\mathrm{NaOH}(2 \mathrm{~mL}, 0.2 \mathrm{M})$ and $\mathrm{MeOH}(2 \mathrm{~mL}, 0.2 \mathrm{M})$. After one hour of stirring at $23^{\circ} \mathrm{C}, 1 \mathrm{M}$ aq. HCl was added. The mixture was extracted with EtOAc $(4 \times 10 \mathrm{~mL})$. The organics were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo to provide cyclohexene carboxylic acid $\mathbf{1 2 1}$ as a light yellow oil ($60 \mathrm{mg}, 0.43 \mathrm{mmol}, 93 \%$ yield). Spectroscopic data was in accordance with that reported by Helmchen. ${ }^{44}$
2.6.10 General procedure for the carboxylic acid and acid derivative oxidative cyclizations shown in Table 2.2.8.

In a thick-walled oven-dried 25 mL 15 cm -long tube equipped with magnetic stir bar, to a mixture of $\operatorname{Pd}(\mathrm{TFA})_{2}(4.2 \mathrm{mg}, 0.0125 \mathrm{mmol}, 0.05$ equiv $)$ and powdered molecular sieves (MS3 $\AA, 125 \mathrm{mg}, 500 \mathrm{mg}$ MS3 \AA / mmol substrate) in toluene $(1.0 \mathrm{~mL})$ was added pyridine ($4.0 \mu \mathrm{~L}, 0.050 \mathrm{mmol}, 0.20$ equiv). The flask was evacuated and back-filled with $\mathrm{O}_{2}\left(3 \mathrm{x}\right.$, balloon) and the mixture heated at $80^{\circ} \mathrm{C}$ for 10 min . The substrate $(0.25 \mathrm{mmol}$, 1.0 equiv) was introduced and the reaction mixture heated at $80^{\circ} \mathrm{C}$ under $\mathrm{O}_{2}(1 \mathrm{~atm}$, balloon) until completion of the reaction as indicated by TLC. The solvent was removed in vacuo and the residue purified directly by flash column chromatography on silica gel (hexane/EtOAc or hexane/ $\mathrm{Et}_{2} \mathrm{O}$ eluent) to give the cyclized product.

Lactone 110. 8 h . Purification by flash column chromatography on silica gel (2:1 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ eluent) afforded the desired product as an amorphous solid (90% yield): R_{F} 0.27 (4:1 hexanes/EtOAc eluent); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86(\mathrm{~d}, J=7.2, \mathrm{~Hz}$, $1 \mathrm{H}), 7.66(\mathrm{dd}, J=7.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J=7.1,6.6, \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.03(\mathrm{dd}, J=17.6,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=10.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 169.7,152.7,137.9,134.3,129.2,125.9$, 125.3, 121.7, 115.6, 86.8, 25.6; IR (film) $1762,1267 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{NH}_{3} \mathrm{CI}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\left[\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{2}\right]^{+}: 174.0681$, found: 174.0680.

Tosylamide 113. 8 h . Purification by flash column chromatography on silica gel (2:1 hexanes/EtOAc eluent) gave a colorless foam (88% yield): $\mathrm{R}_{\mathrm{F}} 0.24$ ($1: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ eluent); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.62(\mathrm{dd}, J=7.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.27($ comp. m, 3H), $6.07(\mathrm{dd}, J=17.7,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.40 (s, 3H), $2.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.3,150.3,145.0,138.8$, $136.8,134.4,129.5,129.1,128.9,128.0,124.9,122.7,117.0,71.3,24.9,22.1$; IR (film)

1730, 1466, 1360, $1169 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{NH}_{3} \mathrm{CI}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\left[\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{3}+\mathrm{H}\right]^{+}$: 328.1007, found: 328.1008 .

Benxyloxyamide 114. 4 h . Purification by flash column chromatography on silica gel (4:1 hexanes/EtOAc eluent) furnished the cyclized product as a colorless oil (82% yield): $\mathrm{R}_{\mathrm{F}} 0.48$ (2:1 hexanes/EtOAc eluent); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.58-7.35$ (comp. m, 7 H), 7.25 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.76$ (dd, $J=17.6,10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.41(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J$ $=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.9,146.9,138.3$, 135.3, $132.5,129.7,128.9,128.7,128.6,128.5,123.9,122.0,117.1,79.3,66.9,21.3$; IR (film) 3070, 2979, 1711, $1460 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{NH}_{3} \mathrm{CI}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\left[\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}:$280.1337, found: 280.1330.

iso-Benzofuran 116. A thick-walled oven-dried 25 mL 15 cm -long tube equipped with magnetic stir bar was charged with $\operatorname{Pd}(\mathrm{TFA})_{2}(8.4 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.10$ equiv) and powdered molecular sieves (MS3Å, $125 \mathrm{mg}, 500 \mathrm{mg} / \mathrm{mmol}$), to which toluene (1.0 mL) and pyridine ($8.0 \mu \mathrm{~L}, 0.100 \mathrm{mmol}, 0.40$ equiv) were added. The flask was evacuated and back-filled with $\mathrm{O}_{2}\left(3 \mathrm{x}\right.$, balloon) and the mixture heated at $80^{\circ} \mathrm{C}$ for 10 min .
β-Ketoester 115 ($61.5 \mathrm{mg}, 0.25 \mathrm{mmol}, 1.0$ equiv) and anhydrous LiOAc ($33 \mathrm{mg}, 0.50$ $\mathrm{mmol}, 2$ equiv) were introduced, and the reaction mixture heated at $80^{\circ} \mathrm{C}$ under $\mathrm{O}_{2}(1$ atm, balloon) until completion of the reaction as indicated by TLC. After 48 h , the solvent was removed in vacuo and the residue purified directly by flash column chromatography on silica gel ($4: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ eluent) to afforded the E-isomer (116a, 16% yield) and Z-isomer (116b, 47% yield) as oils. 116a: $\mathrm{R}_{\mathrm{F}} 0.53$ (2:1 hexanes/ $\mathrm{Et}_{2} \mathrm{O}$ eluent); ${ }^{1} \mathrm{H}$ NMR (300 MHz , acetone- d_{6}) $\delta 9.19(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.58(\mathrm{~m}, 1 \mathrm{H})$, 7.54-7.46 (m, 2H), $6.13(\mathrm{dd}, J=17.4,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 5.34(\mathrm{dd}, J=17.4,0.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.13(\mathrm{dd}, J=10.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , acetone- d_{6}) $\delta 169.5,167.6,150.6,140.2,132.7$, $130.5,129.2,128.9,122.1,114.2,92.0,90.3,59.8,25.8,14.9$; IR (film) 2978, 1703, 1633 $\mathrm{cm}^{-1} ;$ HRMS $\left(\mathrm{EI}^{+}\right) m / z$ calc'd for $\left[\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3}\right]^{+}: 244.1099$, found 244.1090. 116b: $\mathrm{R}_{\mathrm{F}} 0.19$ (2:1 hexanes/ $\mathrm{Et}_{2} \mathrm{O}$ eluent); ${ }^{1} \mathrm{H}$ NMR (300 MHz , acetone- d_{6}) $\delta 7.82$ (dd, $J=7.7,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.61-7.46($ comp. m, 3 H$), 6.17(\mathrm{dd}, J=17.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 5.40(\mathrm{dd}, J$ $=17.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{dd} J=11.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\operatorname{app} . q \mathrm{~d}, J=7.1,1.7 \mathrm{~Hz}, 2 \mathrm{H})$, $1.71(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , acetone- d_{6}) $\delta 166.2$, 165.5, $148.1,140.0,132.9,132.3,129.6,122.5,122.4,114.2,93.4,86.5,59.3,26.0,14.9$; IR (film) 2980, 1706, $1645 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{EI}^{+}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\left[\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3}\right]^{+}: 244.1099$, found 244.1106.

Spirolactone 118. A thick-walled oven-dried 25 mL 15 cm -long tube equipped with magnetic stir bar was charged with $\operatorname{Pd}(\mathrm{TFA})_{2}(8.4 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.10$ equiv) and powdered molecular sieves (MS3Å, $125 \mathrm{mg}, 500 \mathrm{mg} / \mathrm{mmol}$). Toluene (1.0 mL) and pyridine ($8.0 \mu \mathrm{~L}, 0.100 \mathrm{mmol}, 0.40$ equiv) were added. The flask was evacuated and back-filled with $\mathrm{O}_{2}\left(3 \mathrm{x}\right.$, balloon) and the mixture heated at $80^{\circ} \mathrm{C}$ for 10 min . Acid $\mathbf{1 1 7}$ ($35 \mathrm{mg}, 0.25 \mathrm{mmol}, 1.0$ equiv) was introduced and the reaction mixture heated at $80^{\circ} \mathrm{C}$ under O_{2} (1 atm, balloon) until completion of the reaction as indicated by TLC. After 48 h, the solvent was removed in vacuo and the residue purified directly by flash column chromatography on silica gel (2:1 hexanes/EtOAc eluent) provided the spiro lactone $(118,22 \mathrm{mg}, 0.16 \mathrm{mmol}, 62 \%$ yield $)$ as a colorless oil: $\mathrm{R}_{\mathrm{F}} 0.29$ (2:1 hexanes/EtOAc eluent); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 6.10-6.04 (m, 1H), 5.74-5.66 (m, 1H), 2.64-1.98 (m, 8H) ${ }^{13}{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \& ~ 176.8, ~ 137.7,131.9,98.0,36.4,33.6,31.3,29.9 ;$ IR (film) 2938, $1769 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{EI}^{+}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\left[\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}\right]^{+}: 138.0681$, found 138.0685.

Fused cyclopentenelactone 120. A thick-walled oven-dried 25 mL 15 cm -long tube equipped with magnetic stir bar was charged with powdered molecular sieves (MS3Å,
$125 \mathrm{mg}, 500 \mathrm{mg} / \mathrm{mmol}$), which were flame dried immediately prior to use. (Pyridine) $)_{2} \operatorname{Pd}(\mathrm{TFA})_{2}(\mathbf{1 4 4}, 12.3 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.10$ equiv) was added, followed by $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($53 \mathrm{mg}, 0.50 \mathrm{mmol}, 2.0$ equiv), pyridine ($4.0 \mu \mathrm{~L}, 0.050 \mathrm{mmol}, 0.20$ equiv) toluene (1.0 mL) , acid $\mathbf{1 1 9}(31.5 \mathrm{mg}, 0.25 \mathrm{mmol})$ and more toluene $(1.5 \mathrm{~mL})$. The tube was purged with $\mathrm{O}_{2}\left(3 \mathrm{x}\right.$, balloon), and heated to $80^{\circ} \mathrm{C}$ in an oil bath under a balloon of O_{2}. After 2 h , the crude reaction mixture was loaded onto a short column of silica gel and chromatographed (pentane $\rightarrow 2: 1$ pentane $/ \mathrm{Et}_{2} \mathrm{O} \rightarrow \mathrm{Et}_{2} \mathrm{O}$ eluent) to provide the fused lactone (120, $24 \mathrm{mg}, 0.19 \mathrm{mmol}, 77 \%$ yield) as a colorless oil: $\mathrm{R}_{\mathrm{F}} 0.45$ (1:1 hexanes/EtOAc eluent). Spectroscopic data was in agreement with that reported by Griengl. ${ }^{45}$

Fused cyclohexenelactone 183. A thick-walled oven-dried 25 mL 15 cm -long tube equipped with magnetic stir bar was charged with powdered molecular sieves (MS3 \AA, $100 \mathrm{mg}, 500 \mathrm{mg} / \mathrm{mmol}$), which were flame dried immediately prior to use. (Pyridine $)_{2} \operatorname{Pd}(\mathrm{TFA})_{2}(\mathbf{1 4 4}, 9.8 \mathrm{mg}, 0.020 \mathrm{mmol}, 0.10$ equiv) was added, followed by $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($42 \mathrm{mg}, 0.40 \mathrm{mmol}, 2.0$ equiv), pyridine ($3.2 \mu \mathrm{~L}, 0.040 \mathrm{mmol}, 0.20$ equiv) toluene (1.0 mL), acid $\mathbf{1 2 1}(28.0 \mathrm{mg}, 0.20 \mathrm{mmol})$ and more toluene $(1.0 \mathrm{~mL})$. The tube was purged with O_{2} (3 x , balloon), and heated to $80^{\circ} \mathrm{C}$ in an oil bath under a balloon of O_{2}. After 12 h , the crude reaction mixture was loaded onto a short column of silica gel and chromatographed (pentane $\rightarrow 4: 1$ pentane/ $\mathrm{Et}_{2} \mathrm{O} \rightarrow 2: 1$ pentane/ $\mathrm{Et}_{2} \mathrm{O}$ eluent) to afford
the fused lactone $\left(\mathbf{1 2 2}, 24 \mathrm{mg}, 0.17 \mathrm{mmol}, 86 \%\right.$ yield) as a colorless oil: $\mathrm{R}_{\mathrm{F}} 0.52(1: 1$ hexanes/EtOAc eluent). The product contained 6% of the olefin isomer in which the olefin is shifted one position further from the ring fusion (183). Spectroscopic data was in agreement with that reported by Pearson et al. ${ }^{46}$
2.6.11 General procedure for asymmetric oxidative cyclization of 26. Ligand screening trials shown in Table 2.3.1.

A thick-walled oven-dried 10 mL 15 cm long tube equipped with magnetic stir bar was charged with powdered molecular sieves (MS3Å, $50 \mathrm{mg}, 500 \mathrm{mg} / \mathrm{mmol}$), and $\operatorname{Pd}(\mathrm{TFA})_{2}(3.3 \mathrm{mg}, 0.010 \mathrm{mmol}, 0.10$ equiv $)$, followed by toluene $(1.0 \mathrm{~mL})$, chiral ligand ($0.040 \mathrm{mmol}, 0.40$ equiv), and tridecane as a GC internal standard ($10.0 \mu \mathrm{~L}, 0.041 \mathrm{mmol}$, 0.41 equiv). The tube was evacuated, back-filled with $\mathrm{O}_{2}(3 \mathrm{x}$, balloon), and heated to 80 ${ }^{\circ} \mathrm{C}$ for 10 min . Phenol $26(16.2 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) was added, and the mixture was allowed to stir under $\mathrm{O}_{2}\left(1 \mathrm{~atm}\right.$, balloon) at $80^{\circ} \mathrm{C}$. The reaction was monitored for conversion and enantiomeric excess by achiral and chiral GC. Aliquots $(0.10 \mathrm{~mL})$ of the reaction mixture were collected, filtered through a pad of silica gel (EtOAc eluent), and analyzed (see below for details).
2.6.12 General procedure for asymmetric oxidative cyclization of 26. Palladium source and basic additive screening trials shown in Tables 2.3.2 and 2.3.3.

A thick-walled oven-dried 10 mL 15 cm -long tube equipped with magnetic stir bar was charged with powdered molecular sieves (MS3 $\AA, 50 \mathrm{mg}, 500 \mathrm{mg} / \mathrm{mmol}$), and palladium source ($0.010 \mathrm{mmol}, 0.10$ equiv), followed by basic additive (for reactions shown in Table 2.3.3 only, $0.20 \mathrm{mmol}, 2.0$ equiv), toluene (1.0 mL), (-)-sparteine ($\mathbf{2 2}$, $9.2 \mu \mathrm{~L}, 0.040 \mathrm{mmol}, 0.40$ equiv), and pentadecane as a GC internal standard ($3.0 \mu \mathrm{~L}$,
$0.011 \mathrm{mmol}, 0.11$ equiv). The tube was evacuated, back-filled with $\mathrm{O}_{2}(3 \mathrm{x}$, balloon), and heated to $80^{\circ} \mathrm{C}$ for 20 min . Phenol $26(16.2 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) was added, and the mixture allowed to stir under $\mathrm{O}_{2}\left(1 \mathrm{~atm}\right.$, balloon) at $80^{\circ} \mathrm{C}$. The reaction was monitored for conversion and enantiomeric excess by chiral GC or ${ }^{1} \mathrm{H}$ NMR. Aliquots $(0.10 \mathrm{~mL})$ of the reaction mixture were collected, filtered through a plug of silica gel (EtOAc eluent), and analyzed.
2.6.13 The synthesis of (sp)Pd(TFA) ${ }_{2}$ (134).

((-)-Sparteine)palladium(II)bis(trifluoracetate) (134) (sp)Pd(TFA) $)_{2}:^{47}$ $((-)-S p a r t e i n e) \operatorname{PdCl}_{2}^{48}(\mathbf{1 8 4}, 200 \mathrm{mg}, 0.49 \mathrm{mmol}, 1.0$ equiv $)$ and $\mathrm{Ag}\left(\mathrm{OCOCF}_{3}\right)_{2}(215 \mathrm{mg}$, 0.97 mmol , 2.0 equiv) were taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}, 0.05 \mathrm{M})$ under argon. The mixture was allowed to stir for 50 min , during which time a light colored precipitate formed in the orange solution. The solids (AgCl) were removed by filtration in air, and the filtrate was diluted with hexane (2 mL). The solvents were removed under reduced pressure to provide 134 as a bright yellow-orange powder ($260 \mathrm{mg}, 0.46 \mathrm{mmol}, 94 \%$ yield). X-ray quality crystals were grown by slow diffusion of hexanes into a concentrated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the complex (see Appendix 2.2): ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 4.55(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=12.6,3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.23(\mathrm{t}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.76$ $(\mathrm{d}, J=13.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.36-1.26($ comp. $\mathrm{m}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 70.2,65.7$,
$65.6,63.7,59.7,49.0,34.9,34.7,30.2,27.5,26.5,24.2,24.0,23.4,20.6$; IR (film) 2942, 1683, 1409, 1194, $1138 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}$ calc'd for $\left[\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F}_{3} \mathrm{Pd}-\mathrm{C}_{2} \mathrm{O}_{2} \mathrm{~F}_{3}\right]^{+}$: 453.0988, found 453.0974.
2.6.14 General procedure for the asymmetric oxidative cyclization of phenols shown in Table 2.3.4.

A thick-walled oven-dried 25 mL 15 cm long tube equipped with magnetic stir bar was charged with powdered molecular sieves (MS3 $\AA, 125 \mathrm{mg}, 500 \mathrm{mg} / \mathrm{mmol}$), $(\mathrm{sp}) \operatorname{Pd}(\mathrm{TFA})_{2}(\mathbf{1 3 4}, 14.2 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.10$ equiv $)$, and oven-dried $\mathrm{Ca}(\mathrm{OH})_{2}(37 \mathrm{mg}$, 0.50 mmol , 2.0 equiv), followed by toluene (2.5 mL), (-)-sparteine ($60 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$, 1.0 equiv), and phenolic substrate ($0.25 \mathrm{mmol}, 1.0$ equiv). The tube was evacuated and back-filled with $\mathrm{O}_{2}\left(3 \mathrm{x}\right.$, balloon), heated to $80^{\circ} \mathrm{C}$, and allowed to stir under $\mathrm{O}_{2}(1 \mathrm{~atm}$, balloon). The reaction was monitored for conversion by TLC. Upon complete conversion, which varied by substrate, the crude reaction mixture was filtered over silica gel ($1.5 \times 10 \mathrm{~cm}$, hexane $\rightarrow 19: 1$ hexanes/EtOAc eluent). Removal of the solvents in vacuo afforded the cyclized product. Enantiomeric excess was determined by chiral GC (see below for details).

Dihydrobenzofuran (+)-27. $36 \mathrm{~h}, 87 \%$ yield: $81 \% \mathrm{ee} ;[\alpha]_{\mathrm{D}}{ }^{23}+9.4\left(c 1.0, \mathrm{CHCl}_{3}\right)$. Remainder of spectroscopic data is identical to that reported above for ($\mathbf{\pm} \mathbf{)} \mathbf{- 2 7}$.

p-Methoxydihydrobenzofuran (+)-85. For reaction at $80^{\circ} \mathrm{C}: 24 \mathrm{~h}, 64 \%$ yield, 1.3:1 dihydrofuran (+)-85/135: 88% ee. For reaction at $55^{\circ} \mathrm{C}: \mathbf{6 0} \mathrm{h}, 57 \%$ yield, $1: 1(+)-\mathbf{8 5} / \mathbf{1 3 5}$: $90 \% \mathrm{ee} ;[\alpha]_{\mathrm{D}}^{22}+0.13\left(c 0.86, \mathrm{CHCl}_{3}\right)$. The remainder of spectroscopic data is identical to that reported above for $\mathbf{(\pm) - 8 5}$.

p-t-Butyldihydrobenzofuran (-)-83. $36 \mathrm{~h}, 47 \%$ yield, 50% recovered starting material: 85% ee; $[\alpha]_{\mathrm{D}}{ }^{25.4}-3.55\left(c 0.85, \mathrm{CHCl}_{3}\right)$. Remainder of spectroscopic data is identical to that reported above for ($\mathbf{\pm} \mathbf{)} \mathbf{- 8 3}$.

p-Methyldihydrobenzofuran (+)-81. $36 \mathrm{~h}, 47 \%$ yield, 43% recovered starting material: 86% ee; $[\alpha]_{\mathrm{D}}^{24.1}+1.05\left(c 0.39, \mathrm{CHCl}_{3}\right)$. Remainder of spectroscopic data is identical to that reported above for $(\mathbf{\pm}) \mathbf{- 8 1}$.

p-Acyldihydrobenzofuran (-)-87. $24 \mathrm{~h}, 60 \%$ yield: 20% ee; $[\alpha]_{\mathrm{D}}{ }^{26.0}-5.20$ (c 0.42 ,
$\left.\mathrm{CHCl}_{3}\right)$. Remainder of spectroscopic data is identical to that reported above for ($\mathbf{\pm} \mathbf{)} \mathbf{- 8 7}$.
2.6.15 Methods for the determination of \% conversion and \% enantiomeric excess in the asymmetric oxidative cyclization of phenols.

Table 2.6.1 Methods employed for the determination of $\%$ conversion and $\%$ enantiomeric excess.
entry
${ }^{a}$ Assays conducted on Bodman Chiraldex GT-A column. ${ }^{b}$ Assay conducted on CP Chirasil Dex CB column. ${ }^{c}$ Assays conducted on Agilent DB-WAX column.
2.6.16 General procedure for cyclization of $\mathbf{8 4}$ and attempted suppression of $\mathbf{1 3 5}$ as shown in Table 2.3.5.

A thick-walled oven-dried 10 mL 15 cm -long tube equipped with magnetic stir bar was charged with powdered molecular sieves (MS3Å, $50 \mathrm{mg}, 500 \mathrm{mg} / \mathrm{mmol}$), and $(\mathrm{sp}) \operatorname{Pd}(\mathrm{TFA})_{2}(134,5.6 \mathrm{mg}, 0.010 \mathrm{mmol}, 0.10$ equiv $)$, followed by acidic additive $(0.01$ mmol or 0.10 mmol , as indicated in Table $11,0.10$ or 1.0 equiv), toluene (1.0 mL), (-)sparteine (22, $23.9 \mu \mathrm{~L}, 0.10 \mathrm{mmol}, 1.0$ equiv) and phenol $84(19.2 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv). The tube was evacuated and backfilled with $\mathrm{O}_{2}(3 \mathrm{x}$, balloon), and the mixture allowed to stir under $\mathrm{O}_{2}\left(1 \mathrm{~atm}\right.$, balloon) at $80^{\circ} \mathrm{C}$. The reaction was monitored for conversion and enantiomeric excess by chiral GC or ${ }^{1} \mathrm{H}$ NMR. The crude reaction mixture was loaded onto silica gel and filtered (19:1 hexanes/EtOAc eluent). Enantiomeric excess was determined by analysis by chiral GC; product ratios were determined by analysis of the ${ }^{1} \mathrm{H}$ NMR spectrum of the product mixture.

Aryl ether dimer 135. $\mathrm{R}_{\mathrm{F}} 0.48$ ($4: 1$ hexanes/EtOAc eluent); ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.70(\mathrm{comp} . \mathrm{m}, 3 \mathrm{H}), 6.37(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.11(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 5.32(\mathrm{~m}, 1 \mathrm{H}), 5.24(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}$, $3 \mathrm{H}), 3.35(\mathrm{~s}, 2 \mathrm{H}), 3.25(\mathrm{~s}, 2 \mathrm{H}), 1.65-1.56$ (comp. m, 6 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $156.3,152.8,147.7,145.3,139.0,134.6,134.2,133.1,127.7,121.0,120.5,120.4,116.8$, $112.4,109.2,101.2,55.9,55.8,40.2,39.5,16.1,16.0,13.7,13.6$; IR (film) 3458, 2913,

1607, 1492, 1439, $1202 \mathrm{~cm}^{-1}$; HRMS (EI') m / z calc'd for $\left[\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{4}\right]^{+}: 382.2141$, found: 382.2144.

2.7 NOTES AND REFERENCES

${ }^{1}$ (a) For examples of phenol cyclizations, see: Larock, R. C.; Wei, L.; Hightower, T. Synlett. 1998, 522-524. (b) For examples of alcohol cyclizations, see: Rönn, M.; Bäckvall, J.-E.; Andersson, P. G. Tetrahedron Lett. 1995, 36, 7749-7752. (c) For examples of acid cyclizations, see: Larock, R. C.; Hightower, T. R. J. Org. Chem. 1993, 58, 5298-5300. (d) For examples of tosylamide cyclizations, see: Larock, R. C.; Hightower, T. R.; Hasvold, L. A.; Peterson, K. P. J. Org Chem. 1996, 61, 3584-3585, and references therein. (e) For examples of primary and secondary alcohol oxidation to aldehydes and ketones, see: Peterson, K. P.; Larock, R. C. J. Org. Chem. 1998, 63, 3185-3189.
${ }^{2}$ Hosokawa, T.; Ohkata, H.; Moritani, I. Bull. Chem. Soc. Japan 1975, 48, 1533-1536.
${ }^{3}$ For examples of racemic alcohol cyclizations that employ the copper $/ \mathrm{O}_{2}$ system, see: (a) Hosokawa, T.; Hirata, M.; Murahashi, S.-I.; Sonoda, A. Tetrahedron Lett. 1976, 21, 1821-1824. (b) For examples of racemic systems that employ benzoquinone, see: Aniline cyclizations: Hegedus, L. S.; Allen, G. F.; Bozell, J. J.; Waterman, E. L. J. Am. Chem. Soc. 1978, 100, 5800-5807. (c) For oxidative carbon-carbon bond forming aryl/olefin cyclizations: Zhang, H.; Ferreira, E. M.; Stoltz, B. M. Angew. Chem., Int. Ed. 2004, 43, 6144-6148.
${ }^{4}$ In contrast, reactions that are solely aerobic produce only $\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{H}_{2} \mathrm{O}_{2}$ as byproducts.
${ }^{5}$ (a) Thorarensen, A.; Palmgren, A.; Itami, K.; Bäckvall, J.-E. Tetrahedron Lett. 1997, 38, 8541-8544. (b) Itami, K.; Palmgren, A.; Thorarensen, A.; Bäckvall, J.-E. J. Org. Chem. 1998, 63, 6466-6471. (c) Cotton, H. K.; Verboom, R. C.; Johansson, L.; Plietker, B. J.; Bäckvall, J.-E. Organometallics 2002, 21, 3367-3375.
${ }^{6}$ Chen, M. S.; Prabagaran, N.; Labenz, N. A.; White, M. C. J. Am. Chem. Soc. 2005, 102, 6970-6971.
${ }^{7}$ For examples of non-oxidative $\operatorname{Pd}(\mathrm{II})$-mediated enantioselective catalysis, see: (a) Fuiji, A.; Hagiwara, E.; Sodeoka, M. J. Am. Chem. Soc. 1999, 121, 5450-5458. (b) ElQisairi, A.; Hamed, O.; Henry, P. M. J. Org. Chem. 1998, 63, 2790-2791. (c) Zhang, Q.; Lu, X. J. Am. Chem. Soc. 2000, 122, 7604-7605. (d) Overman, L. E.; Remarchuk, T. P. J. Am. Chem. Soc. 2002, 124, 12-13.
${ }^{8}$ (a) Hosokawa, T.; Uno, T.; Inui, S.; Murahashi, S. J. Am. Chem. Soc. 1981, 103, 23182323. (b) Hosokawa, T.; Okuda, C.; Murahashi, S. J. Org. Chem. 1985, 50, 12821287.
${ }^{9}$ (a) Uozumi, Y.; Kato, K.; Hayashi, T. J. Am. Chem. Soc. 1997, 119, 5063-5064. (b) Uozumi, Y.; Kato, K.; Hayashi, T. J. Org. Chem. 1998, 63, 5071-5075. (c) Uozumi, Y.; Kyota, H.; Ogasawara, M.; Hayashi, T. J. Org. Chem. 1999, 64, 1620-1625.
${ }^{10}$ Arai, M. A.; Kuraishi, M.; Arai, T.; Sasai, H. J. Am. Chem. Soc. 2001, 123, 2907-2908.
${ }^{11}$ (a) Ferreira, E. M.; Stoltz, B. M. J. Am. Chem. Soc. 2001, 123, 7725-7726. (b) Bagdanoff, J. T.; Ferreira, E. M.; Stoltz, B. M. Org. Lett. 2003, 5, 835-837. (c) Caspi, D. D.; Ebner, D. C.; Bagdanoff, J. T.; Stoltz, B. M. Adv. Synth. Catal. 2004, 346, 185189. (d) For conditions employing chloroform and air, see: Bagdanoff, J. T.; Stoltz, B. M. Angew. Chem., Int. Ed. 2004, 43, 353-357. (e) Trend, R. M.; Stoltz, B. M. J. Am. Chem. Soc. 2004, 126, 4482-4483.
${ }^{12}$ For a similar system, see: (a) Jensen, D. R.; Pugsley, J. S.; Sigman, M. S. J. Am. Chem. Soc. 2001, 123, 7475-7476. (b) Mueller, J. A.; Jensen, D. R.; Sigman, M. S. J. Am. Chem. Soc. 2002, 124, 8202-8203. (c) Jensen, D. R.; Sigman, M. S. Org. Lett. 2003, 5, 63-65. (d) Mandal, S. K.; Jensen, D. R.; Pugsley, J. S.; Sigman, M. S. J. Org. Chem. 2003, 68, 4600-4603. (e) Mueller, J. A.; Sigman, M. S. J. Am. Chem. Soc. 2003, 125, 7005-7013. (f) Mandal, S. K.; Sigman, M. S. J. Org. Chem. 2003, 68, 7535-7537.
${ }^{13}$ (a) Nishimura, T.; Onoue, T.; Ohe, K.; Uemura, S. J. Org. Chem. 1999, 64, 6750-6755. (b) Uemura has used similar conditions for the ring cleavage of tert-cyclobutanols, see: Nishimura, T.; Ohe, K.; Uemura, S. J. Am. Chem. Soc. 1999, 121, 2645-2646. (c) Related heterogeneous conditions that use a hydrotalcite solid support have been developed: Kakiuchi, N.; Maeda, Y.; Nishimura, T.; Uemura, S. J. Org. Chem. 2001, 66, 6620-6625.
${ }^{14}$ (a) Stahl, S. S.; Thorman, J. L.; Nelson, R. C.; Kozee, M. A. J. Am. Chem. Soc. 2001, 123, 7188-7189. (b) See also: Steinhoff, B. A.; Stahl, S. S. Org. Lett. 2002, 4, 41794181.
${ }^{15}$ For a carbon/olefin cyclization of indole derivatives, see: Ferreira, E. M.; Stoltz, B. M. J. Am. Chem. Soc. 2003, 125, 9578-9579.
${ }^{16}$ Major portions of this research have been described in two publications: (a) Trend, R. M.; Ramtohul, Y. K.; Ferreira, E. M.; Stoltz, B. M. Angew. Chem., Int. Ed. 2003, 42,

2892-2895. (b) Trend, R. M.; Ramtohul, Y. K.; Stoltz, B. M. J. Am. Chem. Soc. 2005, 127, 17778-17788.
${ }^{17}$ (a) Anton, D. R.; Crabtree, R. H. Organometallics 1983, 2, 855-859. (b) Foley, P.; DiCosimo, R.; Whitesides, G. M. J. Am. Chem. Soc. 1980, 102, 6713-6725.
${ }^{18}$ For an example of a Pd-catalyzed phenol/olefin cyclization using an N-heterocyclic carbene ligand, see: Muñiz, K. Adv. Synth. Catal. 2004, 346, 1425-1428.
${ }^{19}$ If palladium(0) is involved in catalyst reprocessing.
${ }^{20}$ For a recent review of Pd-catalyzed reactions of alcohols to form ether linkages, see: Muzart, J. Tetrahedron 2005, 61, 5955-6008.
${ }^{21}$ Semmelhack, M. F.; Kin, C. R.; Dobler, W.; Meier, M. Tetrahedron Lett. 1989, 30, 4925-4928.
${ }^{22}$ Åkermark, B.; Larsson, E. M.; Oslob, J. D. J. Org. Chem. 1994, 59, 5729-5733.
${ }^{23}$ A similar cyclization of sulfonamides was recently reported, see: Fix, S. R.; Brice, J. L.; Stahl, S. S. Angew. Chem. Int. Ed. 2002, 41, 164-166.
${ }^{24}$ Attempted cyclization under the chloroform-based rate-enhanced conditions for oxidative kinetic resolution $\left((\mathrm{sp}) \mathrm{PdCl}_{2}(5 \mathrm{~mol} \%)\right.$, (-)-sparteine (22) ($\left.7 \mathrm{~mol} \%\right), \mathrm{Cs}_{2} \mathrm{CO}_{3}$ (0.4 equiv), $\mathrm{CHCl}_{3}(0.1 \mathrm{M}), \mathrm{O}_{2}\left(1 \mathrm{~atm}\right.$, balloon), $\left.25^{\circ} \mathrm{C}\right)$ resulted in no reaction.
${ }^{25}$ A similar, albeit less dramatic counterion effect was observed in the oxidative kinetic resolution of secondary alcohols; see Ref. 11a and Nielsen, R. J.; Keith, J. M.; Stoltz, B. M.; Goddard, W. A., III. J. Am. Chem. Soc. 2004, 126, 7967-7974.
${ }^{26}$ The absolute stereochemistry was determined by comparison of the optical rotation with that reported for (-)-27, by Uozumi and Hayashi, Ref. 9c (see Section 2.6.14 for rotation data). We report the absolute stereochemistry of (+)-85, (-)-83, (+)-81, and $(-)-87$ by analogy to this substrate.
${ }^{27}$ For example, tetrasubstituted olefin-containing phenol 45, which is Hayashi's most selectively cyclized substrate (see Ref. 9a), fails to cyclize under our optimized conditions.
${ }^{28}$ For an intramolecular version of this reaction, see Ref. 3c.
${ }^{29}$ Milani, B.; Alessio, E.; Mestroni, G.; Sommazzi, A.; Garbassi, F.; Zangrando, E.; Besciani-Pahor, N.; Randaccio, L. J. Chem. Soc. Dalton Trans. 1994, 1903-1912.
${ }^{30}$ Hurd, C. D.; Hoffman, W. A. J. Am. Chem. Soc. 1940, 62, 212-222.
${ }^{31}$ Haynes, R. K.; Katsifis, A. G.; Vonwiller, S. C.; Hambley, T. W. J. Am. Chem. Soc. 1988, 110, 5423-5433.
${ }^{32}$ Nikaido, M.; Aslanian, R; Scavo, F.; Helquist, P.; Åkermark, B.; Bäckvall, J.-E. J. Org. Chem. 1984, 49, 4740-4741.
${ }^{33}$ McCullogh, J. J.; MacInnis, W. K.; Lock, C. J. L; Faggiani, R. J. Am. Chem. Soc. 1982, 104, 4644-4658.
${ }^{34}$ Corey, E. J.; Kim, C. U.; Takeda, M. Tetrahedron Lett. 1972, 42, 4339-4342.
${ }^{35}$ Goering, H. L.; Jacobson, R. R. J. Am. Chem. Soc. 1958, 80, 3277-3285.
${ }^{36}$ Nicolaou, K. C.; Magolda, R. L.; Sipio, W. J.; Barnette, W. E.; Lysenko, Z.; Joullie, M. M. J. Am. Chem. Soc. 1980, 102, 3784-3793.
${ }^{37}$ Rönn, M.; Bäckvall, J.-E.; Andersson, P. G. Tetrahedron Lett. 1995, 36, 7749-7752.
${ }^{38}$ Cossy, J.; Tresnard, L.; Gomez Pardo, D. Eur. J. Org. Chem. 1999, 1925-1933.
${ }^{39}$ Barco, A.; Benetti, S.; Pollini, G. P. J. Org. Chem. 1985, 50, 5223-5230.
${ }^{40}$ Lokensgard, J. P.; O'Dea, J.; Hill, E. A. J. Org. Chem. 1974, 39, 3355-3357.
${ }^{41}$ Hansson, S.; Heumann, A.; Rein, T.; Åkermark, B. J. Org. Chem. 1990, 55, 975-984.
${ }^{42}$ Franzen, J.; Bäckvall, J.-E. J. Am. Chem. Soc. 2003, 125, 6056-6057.
${ }^{43}$ Seemann, M.; Schöller, M.; Kudis, S.; Helmchen, G. Eur. J. Org. Chem. 2003, 21222127.
${ }^{44}$ Bergner, E. J.; Helmchen, G. Eur. J. Org. Chem. 2000, 419-423.
${ }^{45}$ Kapeller, H.; Baumgartner, H.; Marschner, C.; Pucher, R.; Griengl. Monats. Chem. 1997, 128, 953-906.
${ }^{46}$ Pearson, A. J.; Khan, N. I. M.; Clardy, J. C.; He, C.-h. J. Am. Chem. Soc. 1985, 107, 2748-2757.
${ }^{47}$ Cystallographic data have been deposited at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition number 192101.
${ }^{48}$ Trend, R. M.; Stoltz, B. M. J. Am. Chem. Soc. 2004, 126, 4482-4483.

APPENDIX 2.1

Figure $A 2.1 .1{ }^{1} \mathrm{H}$ NMR spectrum ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 6}$.

Figure $\mathrm{A} 2.1 .2{ }^{13} \mathrm{C}$ NMR spectrum $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 6}$.

Figure A2.1.3 IR spectrum (thin film/NaCl) of $\mathbf{2 6}$.

Figure A2.1.4 ${ }^{1} \mathrm{H}$ NMR spectrum ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 27.

Figure $\mathrm{A} 2.1 .5{ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 7}$.

Figure A2.1.6 IR spectrum (thin film/NaCl) of $\mathbf{2 7}$.

Figure A2.1.7 ${ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{8 0}$.

Figure $A 2.1 .8{ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{8 0}$.

Figure $A 2$.1.9 IR spectrum (thin film/NaCl) of $\mathbf{8 0}$.

Figure $\mathrm{A} 2.1 .10{ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{8 1}$.

Figure A2.1.11 ${ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{8 1}$.

Figure A2.1.12 IR spectrum (thin film/NaCl) of $\mathbf{8 1}$.

Figure A2.1.13 ${ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{8 2}$.

Figure $A 2.1 .14{ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{8 2}$.

Figure A2.1.15 IR spectrum (thin film/NaCl) of $\mathbf{8 2}$.

Figure $\mathrm{A} 2.1 .16{ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{8 3}$.

Figure A2.1.17 ${ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\boldsymbol{8 3}$.

Figure A2.1.18 IR spectrum (thin film/NaCl) of $\mathbf{8 3}$.

Figure $\mathrm{A} 2.1 .19{ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{8 4}$.

Figure $A 2.1 .20{ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{8 4}$.

Figure A2.1.21 IR spectrum (thin film/NaCl) of 84.

Figure A2.1.22 ${ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{8 5}$.

Figure $A 2.1 .23{ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\boldsymbol{8 5}$.

Figure A2.1.24 IR spectrum (thin film/NaCl) of $\mathbf{8 5}$.

Figure A2.1.25 ${ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{8 6}$.

Figure A2.1.26 ${ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{8 6}$.

Figure A2.1.27 IR spectrum (thin film/NaCl) of $\mathbf{8 6}$.

Figure $\mathrm{A} 2.1 .28{ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{8 7}$.

Figure A2.1.29 ${ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{8 7}$.

Figure A2.1.30 IR spectrum (thin film/NaCl) of $\mathbf{8 7}$.

Figure $A 2.1 .31^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\boldsymbol{8 8}$.

Figure A2.1.32 ${ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\boldsymbol{8 8}$.

Figure A2.1.33 IR spectrum (thin film/NaCl) of $\boldsymbol{8 8}$.

Figure $\mathrm{A} 2.1 .34{ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{8 9}$.

Figure $A 2.1 .35{ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\boldsymbol{8 9}$.

Figure A2.1.36 IR spectrum (thin film/NaCl) of $8 \mathbf{8 9}$.

Figure $\mathrm{A} 2.1 .37{ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{9 0}$.

Figure A2.1.38 ${ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{9 0}$.

Figure A2.1.39 IR spectrum (thin film/NaCl) of 90.

Figure A2.1.40 ${ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 91 .

Figure A2.1.41 ${ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 91 .

Figure A2.1.42 IR spectrum (thin film/NaCl) of 91.

Figure A2.1.43 ${ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 92.

Figure A2.1.44 ${ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 92.

Figure A2.1.45 IR spectrum (thin film/NaCl) of 92.

Figure $\mathrm{A} 2.1 .46{ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 93.

Figure $A 2.1 .47{ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{9 3}$.

Figure A2.1.48 IR spectrum (thin film/NaCl) of 93.

Figure A2.1.49 ${ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 94.

Figure A2.1.50 ${ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 94.

Figure A2.1.51 IR spectrum (thin film/NaCl) of 94.

Figure A2.1.52 ${ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 95.

Figure $A 2.1 .53{ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{9 5}$.

Figure A2.1.54 IR spectrum (thin film/NaCl) of 95.

Figure $\mathrm{A} 2.1 .55{ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 96.

Figure $A 2.1 .56{ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 96.

Figure A2.1.57 IR spectrum (thin film/NaCl) of 96.

Figure $\mathrm{A} 2.1 .58{ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 97 .

Figure A2.1.59 ${ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 97.

Figure A2.1.60 IR spectrum (thin film/NaCl) of 97.

Figure A2.1.61 ${ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{9 8}$.

Figure $A 2.1 .62{ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{9 8}$.

Figure $A 2$ 2.1.63 IR spectrum (thin film/NaCl) of $\mathbf{9 8}$.

Figure $\mathrm{A} 2.1 .64{ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 99.

Figure $A 2.1 .65{ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 99.

Figure A2.1.66 IR spectrum (thin film/NaCl) of 99.

Figure $A 2.1 .67{ }^{1} \mathrm{H}$ NMR spectrum ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4 5}$.

Figure A2.1.68 ${ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 45 .

Figure A2.1.69 IR spectrum (thin film/NaCl) of 45.

Figure A2.1.70 ${ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 47 .

Figure $\mathrm{A} 2.71{ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 47.

Figure A2.1.72 IR spectrum (thin film/NaCl) of 47.

Figure $\mathrm{A} 2.1 .73{ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 8}$.

Figure $A 2.1 .74{ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 8}$.

Figure A2.1.75 IR spectrum (thin film/NaCl) of $\mathbf{2 8}$.

Figure A2.1.76 ${ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 29.

Figure $A 2.1 .77{ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 9 .}$

Figure A2.1.78 IR spectrum (thin film/NaCl) of 29.

Figure $\mathrm{A} 2.1 .79{ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 0 0}$.

Figure $A 2.1 .80{ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 0 0}$.

Figure A2.1.81 IR spectrum (thin film/NaCl) of $\mathbf{1 0 0 .}$

Figure A2.1.82 ${ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 101.

Figure A2.1.83 ${ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 0 1}$.

Figure A2.1.84 IR spectrum (thin film/NaCl) of 101.

Figure $\mathrm{A} 2.1 .85{ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 0 2}$.

Figure $\mathrm{A} 2.1 .86{ }^{13} \mathrm{C}$ NMR spectrum $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 0 2}$.

Figure A2.1.87 IR spectrum (thin film/NaCl) of $\mathbf{1 0 2 .}$

Figure $\mathrm{A} 2.1 .88{ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 0 4}$.

Figure A2.1.89 ${ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 0 4}$.

Figure A2.1.90 IR spectrum (thin film/NaCl) of 104.

Figure $\mathrm{A} 2.1 .91{ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 0 7}$.

Figure A2.1.92 ${ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 0 7}$.

Figure A2.1.93 IR spectrum (thin film/NaCl) of $\mathbf{1 0 7}$.

Figure A2.1.94 ${ }^{1} \mathrm{H}$ NMR spectrum ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 0 9 .}$

Figure $\mathrm{A} 2.1 .95{ }^{13} \mathrm{C}$ NMR spectrum $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 0 9 .}$

Figure A2.1.96 IR spectrum (thin film/NaCl) of 109.

Figure A2.1.97 ${ }^{1} \mathrm{H}$ NMR spectrum ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 1 0}$.

Figure $A 2.1 .98{ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 1 0}$.

Figure A2.1.99 IR spectrum (thin film/NaCl) of $\mathbf{1 1 0}$.

Figure A2.1.100 ${ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 111.

Figure $A 2.1 .101{ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 111.

Figure A2.1.102 IR spectrum (thin film/NaCl) of 111.

Figure A2.1.103 ${ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 113.

Figure $A 2.1 .104{ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 1 3}$.

Figure A2.1.105 IR spectrum (thin film/NaCl) of $\mathbf{1 1 3 .}$

Figure A2.1.106 ${ }^{1} \mathrm{H}$ NMR spectrum ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 1 2}$.

Figure $\mathrm{A} 2.1 .107{ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 1 2}$.

Figure A2.1.108 IR spectrum (thin film/NaCl) of 112.

Figure A2.1.109 ${ }^{1} \mathrm{H}$ NMR spectrum ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 1 4}$.

Figure $A 2.1 .110{ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 114.

Figure A2.1.111 IR spectrum (thin film/NaCl) of 114.

Figure A2.1.112 ${ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right)$ of $\mathbf{1 1 5 .}$

Figure A2.1.113 ${ }^{13} \mathrm{C}$ NMR spectrum (75 MHz , acetone- d_{6}) of $\mathbf{1 1 5 .}$

Figure A2.1.114 IR spectrum (thin film/NaCl) of 115.

Figure A2.1.116 ${ }^{13} \mathrm{C}$ NMR spectrum (75 MHz , acetone $-\mathrm{d}_{6}$) of $116 \mathbf{a}$.

Figure A2.1.117 IR spectrum (thin film/NaCl) of 116a.

Figure A2.1.118 ${ }^{1} \mathrm{H}$ NMR spectrum (300 MHz , acetone- d_{6}) of $\mathbf{1 1 6 b}$.

Figure $A 2.1 .119{ }^{13} \mathrm{C}$ NMR spectrum $\left(75 \mathrm{MHz}\right.$, acetone- $\left.\mathrm{d}_{6}\right)$ of $\mathbf{1 1 6 b}$.

Figure A2.1.120 IR spectrum (thin film/NaCl) of $\mathbf{1 1 6 b}$.

Figure $A 2.1 .121{ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 1 7 .}$

Figure $\mathrm{A} 2.1 .122{ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 1 7}$.

Figure A2.1.123 IR spectrum (thin film/NaCl) of $\mathbf{1 1 7 .}$

Figure A2.1.124 ${ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 1 8}$.

Figure $A 2.1 .125{ }^{13} \mathrm{C}$ NMR spectrum $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 1 8}$.

Figure A2.1.126 IR spectrum (thin film/NaCl) of $\mathbf{1 1 8 .}$

Figure A2.1.127 ${ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 3 4}$.

Figure $A 2.1 .128{ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 3 4}$.

Figure $\mathrm{A} 2.1 .129{ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 3 5}$.

Figure $A 2.1 .130{ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 3 5}$.

Figure A2.1.131 IR spectrum (thin film/NaCl) of 135.

Figure A2.1.132 ${ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 4 4}$.

Figure A2.1.133 ${ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 4 4}$.

Figure $\mathrm{A} 2.1 .134{ }^{1} \mathrm{H}$ NMR spectrum ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 4 5}$.

Figure $A 2.1 .135{ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 4 5}$.

Figure A2.1.136 ${ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 4 6}$.

Figure $A 2.1 .137{ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 4 6}$.

Figure A2.1.138 ${ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 4 7}$.

Figure $A 2.1 .139{ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 4 7}$.

Figure A2.1.140 ${ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 4 8}$.

Figure $A 2.1 .141{ }^{13} \mathrm{C}$ NMR spectrum $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 4 8}$.

Figure $\mathrm{A} 2.1 .142{ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 151.

Figure A2.1.143 ${ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 5 1 .}$

Figure A2.1.144 ${ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 5 2 .}$

Figure A2.1.145 ${ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 5 2}$.

Figure A2.1.146 ${ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, C D_{3} O D\right)$ of 153.

Figure $A 2.1 .147{ }^{13} \mathrm{C}$ NMR spectrum ($75 \mathrm{MHz}, C D_{3} O D$) of 153.

Figure $\mathrm{A} 2.1 .148{ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of 154.

Figure A2.1.149 ${ }^{13} \mathrm{C}$ NMR spectrum $\left(75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of $\mathbf{1 5 4 .}$

APPENDIX 2.2

X-ray Crystallographic Data for (sp) $\operatorname{Pd}(T F A)_{2}(134)$

Figure A 2.2 .1 (sp) $\mathrm{Pd}(\text { (TFA) })_{2}$ (134)..1,2

Top view:

Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$			
$\mathrm{Pd}-\mathrm{N} 1$	$2.038(2)$	$\mathrm{N} 1-\mathrm{Pd}-\mathrm{N} 2$	$88.67(9)^{\circ}$
$\mathrm{Pd}-\mathrm{N} 2$	$2.066(2)$	$\mathrm{Cl1-Pd}-\mathrm{Cl} 2$	$80.73(8)^{\circ}$
$\mathrm{Pd}-\mathrm{O} 1$	$2.0491(18)$	$\mathrm{N} 2-\mathrm{Pd}-\mathrm{O} 1$	$175.95(9)^{\circ}$
$\mathrm{Pd}-\mathrm{O} 2$	$2.0615(17)$	$\mathrm{N} 1-\mathrm{Pd}-\mathrm{O} 2$	$172.03(8)^{\circ}$
		$\mathrm{N} 1-\mathrm{Pd}-01$	$95.01(8)^{\circ}$
		$\mathrm{N} 2-\mathrm{Pd}-\mathrm{O} 2$	$95.81(8)^{\circ}$
		$\mathrm{\Sigma} \angle$	708.20°

Side view:

[^2]Crystal data and structure refinement for 134 (CCDC 192101).

Empirical formula	$\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Pd}$
Formula weight	566.82
Crystallization solvent	Not stated
Crystal habit	Blade
Crystal size	$0.21 \times 0.21 \times 0.05 \mathrm{~mm}^{3}$
Crystal color	Golden yellow

Data collection

Preliminary photos
Type of diffractometer
Wavelength
Data collection temperature
θ range for 27174 reflections used
in lattice determination
Unit cell dimensions

Volume
Z
Crystal system
Space group
Density (calculated)
F(000)
Data collection program
θ range for data collection
Completeness to $\theta=28.28^{\circ}$
Index ranges
Data collection scan type
Data reduction program
Reflections collected
Independent reflections
Absorption coefficient
Absorption correction
Max. and min. transmission

Rotation
Bruker SMART 1000
$0.71073 \AA$ MoK α
98(2) K
2.20 to 28.16°
$\mathrm{a}=11.5600(6) \AA$
$b=10.8671(5) \AA \quad \beta=93.2600(10)^{\circ}$
$\mathrm{c}=16.7099(8) \AA$
2095.76(18) \AA^{3}
4
Monoclinic
P2 1
$1.796 \mathrm{Mg} / \mathrm{m}^{3}$
1144
Bruker SMART v5.054
1.76 to 28.28°
95.4 \%
$-15 \leq \mathrm{h} \leq 15,-14 \leq \mathrm{k} \leq 14,-21 \leq 1 \leq 21$
ω scans at 7ϕ settings
Bruker SAINT v6.022
42557
$9696\left[\mathrm{R}_{\mathrm{int}}=0.0525\right]$
$0.968 \mathrm{~mm}^{-1}$
None
0.9532 and 0.8225

Structure solution and refinement
Structure solution program
Primary solution method
Secondary solution method
Hydrogen placement
Structure refinement program
Refinement method
Data / restraints / parameters
Treatment of hydrogen atoms
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I}), 9061$ reflections]
R indices (all data)
Type of weighting scheme used
Weighting scheme used
SHELXS-97 (Sheldrick, 1990)
Direct methods
Difference Fourier map
Geometric positions
SHELXL-97 (Sheldrick, 1997)
Full matrix least-squares on F^{2}
9696 / 1 / 607
Riding
1.329
$\mathrm{R} 1=0.0254, w \mathrm{R} 2=0.0473$
$\mathrm{R} 1=0.0290, w \mathrm{R} 2=0.0480$
Sigma
$w=1 / \sigma^{2}\left(\mathrm{Fo}^{2}\right)$

Max shift/error	0.002
Average shift/error	0.000
Absolute structure parameter	$-0.015(12)$
Largest diff. peak and hole	0.788 and $-0.420 \mathrm{e} . \AA^{-3}$

Special refinement details

The unit cell contains two molecules per asymmetric unit. The two molecules are different from each other in the orientation of the carboxyl oxygen of the tri-fluoro acetate ligands. In one molecule the oxygens are cis to each other and in the second they are trans to each other (see Figures A2.2.2 and A2.2.3).

Refinement of F^{2} against ALL reflections. The weighted R -factor ($w \mathrm{R}$) and goodness of fit (S) are based on F^{2}, conventional R-factors (R) are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \sigma\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R -factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Figure A2.2.2 Molecule A of(sp)palladium(II)(TFA) $)_{2}$ (134) showing trans orientation of the carboxyl oxygen atoms.

Figure A2.2.3 Molecule B of(sp)palladium(II)(TFA) (134) showing cis orientation of the carboxyl oxygen atoms.

Figure A2.2.4 Unit cell contents of $(s p) P d(T F A)_{2}(134)$.

Figure A2.2.5. Stereo view of unit cell contents of (sp)Pd(TFA) 2 (134).

Table A.2.2.1. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times$ $\left.10^{3}\right)$ for $\mathbf{1 3 4}$ (CCDC 192101). $U(\mathrm{eq})$ is defined as the trace of the orthogonalized $U^{i i j}$ tensor.

	X	y	Z	$\mathrm{U}_{\text {eq }}$
$\operatorname{Pd}(1)$	4989(1)	6179(1)	6286(1)	13(1)
$\mathrm{F}(1 \mathrm{~A})$	5664(2)	1918(2)	6438(1)	33(1)
$\mathrm{F}(2 \mathrm{~A})$	6117(2)	2099(2)	7696(1)	35(1)
$\mathrm{F}(3 \mathrm{~A})$	7292(2)	2730(2)	6830(1)	36(1)
$\mathrm{F}(4 \mathrm{~A})$	8701(1)	4859(2)	5885(1)	30(1)
$\mathrm{F}(5 \mathrm{~A})$	8941(1)	6233(2)	4999(1)	38(1)
F(6A)	9078(1)	6698(2)	6248(1)	43(1)
$\mathrm{O}(1 \mathrm{~A})$	5403(2)	4345(2)	6276(1)	15(1)
$\mathrm{O}(2 \mathrm{~A})$	5496(2)	4462(2)	7620(1)	22(1)
$\mathrm{O}(3 \mathrm{~A})$	6771(1)	6317(2)	6359(1)	18(1)
$\mathrm{O}(4 \mathrm{~A})$	6675(2)	6424(2)	5009(1)	27(1)
N(1A)	3230(2)	5908(2)	6068(1)	14(1)
$\mathrm{N}(2 \mathrm{~A})$	4683(2)	8023(2)	6346(1)	15(1)
C(1A)	5620(2)	3954(2)	6983(2)	16(1)
$\mathrm{C}(2 \mathrm{~A})$	6158(3)	2650(3)	6991(2)	23(1)
C(3A)	7169(2)	6295(3)	5660(2)	18(1)
C(4A)	8488(2)	6037(3)	5700(2)	20(1)
C(5A)	3010(2)	4536(2)	6032(2)	20(1)
C(6A)	1790(3)	4182(3)	5718(2)	25(1)
C(7A)	1546(3)	4701(3)	4890(2)	30(1)
C(8A)	1728(2)	6090(4)	4900(2)	27(1)
C(9A)	2924(2)	6489(2)	5263(2)	19(1)
C(10A)	3005(3)	7899(3)	5324(2)	22(1)
C(11A)	4210(3)	8397(3)	5528(2)	22(1)
$\mathrm{C}(12 \mathrm{~A})$	5758(3)	8764(3)	6547(2)	25(1)
C(13A)	6274(3)	8523(3)	7379(2)	27(1)
C(14A)	5412(3)	8706(3)	8022(2)	26(1)
C(15A)	4324(3)	7967(3)	7797(2)	19(1)
C(16A)	3838(2)	8345(3)	6974(2)	17(1)
C(17A)	2625(2)	7843(3)	6750(2)	19(1)
C(18A)	2553(2)	6452(2)	6718(2)	18(1)
C(19A)	2190(3)	8379(3)	5948(2)	23(1)
$\operatorname{Pd}(2)$	8900(1)	5505(1)	274(1)	15(1)
F(1B)	11387(2)	5575(2)	2662(1)	41(1)
$\mathrm{F}(2 \mathrm{~B})$	10546(2)	3972(2)	3049(1)	66(1)
$\mathrm{F}(3 \mathrm{~B})$	9646(2)	5683(3)	2985(1)	64(1)
$\mathrm{F}(4 \mathrm{~B})$	8047(2)	7835(2)	2390(1)	48(1)
$\mathrm{F}(5 \mathrm{~B})$	6367(2)	7864(2)	1801(2)	64(1)
F(6B)	6695(2)	6726(2)	2830(1)	50(1)
$\mathrm{O}(1 \mathrm{~B})$	9902(2)	5660(2)	1319(1)	17(1)
$\mathrm{O}(2 \mathrm{~B})$	9803(2)	3625(2)	1557(1)	25(1)
$\mathrm{O}(3 \mathrm{~B})$	7790(2)	6487(2)	935(1)	19(1)
$\mathrm{O}(4 \mathrm{~B})$	7526(2)	5036(2)	1873(1)	24(1)
N(1B)	10200(2)	4852(2)	-414(1)	16(1)
N(2B)	7778(2)	5383(2)	-722(1)	20(1)

C(1B)	$9980(2)$	$4691(2)$	$1752(2)$	$17(1)$
C(2B)	$10376(3)$	$4982(3)$	$2619(2)$	$24(1)$
C(3B)	$7520(2)$	$6077(3)$	$1615(2)$	$19(1)$
C(4B)	$7139(3)$	$7128(3)$	$2166(2)$	$32(1)$
C(5B)	$11292(2)$	$4741(3)$	$113(2)$	$19(1)$
C(6B)	$12390(3)$	$4495(3)$	$-323(2)$	$26(1)$
C(7B)	$12578(2)$	$5527(3)$	$-920(2)$	$27(1)$
C(8B)	$11506(2)$	$5684(3)$	$-1477(2)$	$25(1)$
C(9B)	$10375(3)$	$5817(2)$	$-1048(2)$	$21(1)$
C(10B)	$9337(3)$	$5836(2)$	$-1668(2)$	$22(1)$
C(11B)	$8205(2)$	$6255(3)$	$-1330(2)$	$25(1)$
C(12B)	$6558(2)$	$5770(3)$	$-557(2)$	$26(1)$
C(13B)	$5957(3)$	$4896(3)$	$-5(2)$	$27(1)$
C(14B)	$5983(3)$	$3570(3)$	$-298(2)$	$29(1)$
C(15B)	$7232(3)$	$3223(3)$	$-456(2)$	$24(1)$
C(16B)	$7715(3)$	$4093(3)$	$-1059(2)$	$22(1)$
C(17B)	$8863(3)$	$3700(3)$	$-1383(2)$	$22(1)$
C(18B)	$9876(3)$	$3626(3)$	$-772(2)$	$19(1)$
C(19B)	$9156(3)$	$4579(3)$	$-2055(2)$	$24(1)$

Table A2.2.2 Selected bond lengths [Å] and angles [º] for 134 (CCDC 192101).

$\mathrm{Pd}(1)-\mathrm{N}(2 \mathrm{~A})$	2.038(2)	$\mathrm{N}(2 \mathrm{~A})-\mathrm{Pd}(1)-\mathrm{O}(1 \mathrm{~A})$	175.95(9)
$\mathrm{Pd}(1)-\mathrm{O}(1 \mathrm{~A})$	2.0491(18)	$\mathrm{N}(2 \mathrm{~A})-\mathrm{Pd}(1)-\mathrm{O}(3 \mathrm{~A})$	95.81(8)
$\mathrm{Pd}(1)-\mathrm{O}(3 \mathrm{~A})$	2.0615(17)	$\mathrm{O}(1 \mathrm{~A})-\mathrm{Pd}(1)-\mathrm{O}(3 \mathrm{~A})$	80.73(8)
$\operatorname{Pd}(1)-\mathrm{N}(1 \mathrm{~A})$	2.066(2)	$\mathrm{N}(2 \mathrm{~A})-\mathrm{Pd}(1)-\mathrm{N}(1 \mathrm{~A})$	88.67(9)
		$\mathrm{O}(1 \mathrm{~A})-\mathrm{Pd}(1)-\mathrm{N}(1 \mathrm{~A})$	95.01(8)
		$\mathrm{O}(3 \mathrm{~A})-\mathrm{Pd}(1)-\mathrm{N}(1 \mathrm{~A})$	172.03(8)
$\mathrm{Pd}(2)-\mathrm{O}(3 \mathrm{~B})$	2.0411(18)	$\mathrm{O}(3 \mathrm{~B})-\mathrm{Pd}(2)-\mathrm{O}(1 \mathrm{~B})$	80.69(7)
$\mathrm{Pd}(2)-\mathrm{O}(1 \mathrm{~B})$	2.0461(17)	$\mathrm{O}(3 \mathrm{~B})-\mathrm{Pd}(2)-\mathrm{N}(2 \mathrm{~B})$	94.88(8)
$\mathrm{Pd}(2)-\mathrm{N}(2 \mathrm{~B})$	2.055(2)	$\mathrm{O}(1 \mathrm{~B})-\mathrm{Pd}(2)-\mathrm{N}(2 \mathrm{~B})$	175.32(8)
$\operatorname{Pd}(2)-\mathrm{N}(1 \mathrm{~B})$	2.069(2)	$\mathrm{O}(3 \mathrm{~B})-\mathrm{Pd}(2)-\mathrm{N}(1 \mathrm{~B})$	168.20(8)
		$\mathrm{O}(1 \mathrm{~B})-\mathrm{Pd}(2)-\mathrm{N}(1 \mathrm{~B})$	96.24(8)
		$\mathrm{N}(2 \mathrm{~B})-\mathrm{Pd}(2)-\mathrm{N}(1 \mathrm{~B})$	88.41(9)

Table A2.2.3 Bond lengths [Å] and angles [ํ] for 134 (CCDC 192101).

$\mathrm{Pd}(1)-\mathrm{N}(2 \mathrm{~A})$	$2.038(2)$	$\mathrm{F}(4 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$	$1.337(3)$
$\mathrm{Pd}(1)-\mathrm{O}(1 \mathrm{~A})$	$2.0491(18)$	$\mathrm{F}(5 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$	$1.326(3)$
$\mathrm{Pd}(1)-\mathrm{O}(3 \mathrm{~A})$	$2.0615(17)$	$\mathrm{F}(6 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$	$1.322(3)$
$\mathrm{Pd}(1)-\mathrm{N}(1 \mathrm{~A})$	$2.066(2)$	$\mathrm{O}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$	$1.267(3)$
$\mathrm{F}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	$1.324(3)$	$\mathrm{O}(2 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$	$1.215(3)$
$\mathrm{F}(2 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	$1.324(3)$	$\mathrm{O}(3 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$	$1.279(3)$
$\mathrm{F}(3 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	$1.356(4)$	$\mathrm{O}(4 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$	$1.208(3)$

Appendix 2.2 - X-ray Crystallographic Data for 134

$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(18 \mathrm{~A})$	1.497(3)	$\mathrm{F}(2 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})$	1.320(4)
N(1A)-C(9A)	1.510(3)	$\mathrm{F}(3 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})$	1.313(3)
$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	1.513(3)	F(4B)-C(4B)	1.337(4)
$\mathrm{N}(2 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$	1.499(4)	F(5B)-C(4B)	1.321(4)
$\mathrm{N}(2 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})$	1.504(4)	F(6B)-C(4B)	1.323(4)
$\mathrm{N}(2 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})$	1.515(3)	$\mathrm{O}(1 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})$	1.278(3)
$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	1.547(4)	$\mathrm{O}(2 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})$	1.218(3)
$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$	1.549(4)	$\mathrm{O}(3 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})$	1.276(3)
$\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$	1.525(4)	$\mathrm{O}(4 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})$	1.210(3)
$\mathrm{C}(5 \mathrm{~A})-\mathrm{H}(5 \mathrm{~A} 1)$	0.9833	$\mathrm{N}(1 \mathrm{~B})-\mathrm{C}(18 \mathrm{~B})$	1.500(3)
$\mathrm{C}(5 \mathrm{~A})-\mathrm{H}(5 \mathrm{~A} 2)$	0.9833	N(1B)-C(5B)	1.503(4)
C(6A)-C(7A)	1.506(5)	N(1B)-C(9B)	1.512(3)
$\mathrm{C}(6 \mathrm{~A})-\mathrm{H}(6 \mathrm{~A} 1)$	0.9647	$\mathrm{N}(2 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})$	1.494(4)
$\mathrm{C}(6 \mathrm{~A})-\mathrm{H}(6 \mathrm{~A} 2)$	0.9647	$\mathrm{N}(2 \mathrm{~B})-\mathrm{C}(16 \mathrm{~B})$	1.511(4)
C(7A)-C(8A)	1.524(4)	$\mathrm{N}(2 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})$	1.512(4)
$\mathrm{C}(7 \mathrm{~A})-\mathrm{H}(7 \mathrm{~A} 1)$	0.9631	$\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})$	1.528(4)
$\mathrm{C}(7 \mathrm{~A})-\mathrm{H}(7 \mathrm{~A} 2)$	0.9631	$\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})$	1.547(4)
$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})$	1.540(4)	$\mathrm{C}(5 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})$	1.523(4)
$\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{~A} 1)$	0.9189	$\mathrm{C}(5 \mathrm{~B})-\mathrm{H}(5 \mathrm{~B} 1)$	0.9599
$\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{~A} 2)$	0.9189	$\mathrm{C}(5 \mathrm{~B})-\mathrm{H}(5 \mathrm{~B} 2)$	0.9599
C(9A)-C(10A)	1.537(4)	C(6B)-C(7B)	1.525(4)
$\mathrm{C}(9 \mathrm{~A})-\mathrm{H}(9 \mathrm{~A})$	0.9915	$\mathrm{C}(6 \mathrm{~B})-\mathrm{H}(6 \mathrm{~B} 1)$	0.9586
$\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$	1.516(4)	$\mathrm{C}(6 \mathrm{~B})-\mathrm{H}(6 \mathrm{~B} 2)$	0.9586
C(10A)-C(19A)	1.536(4)	C(7B)-C(8B)	1.516(4)
$\mathrm{C}(10 \mathrm{~A})-\mathrm{H}(10 \mathrm{~A})$	0.9403	C(7B)-H(7B1)	0.9092
$\mathrm{C}(11 \mathrm{~A}) \mathrm{H}(11 \mathrm{~A})$	0.9527	$\mathrm{C}(7 \mathrm{~B})-\mathrm{H}(7 \mathrm{~B} 2)$	0.9092
$\mathrm{C}(11 \mathrm{~A}) \mathrm{H}(11 \mathrm{~B})$	0.9527	$\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})$	1.533(4)
$\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})$	1.504(4)	C(8B)-H(8B1)	0.9403
$\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{~A})$	0.9306	$\mathrm{C}(8 \mathrm{~B})-\mathrm{H}(8 \mathrm{~B} 2)$	0.9403
$\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{~B})$	0.9306	C(9B)-C(10B)	1.540(4)
C(13A)-C(14A)	1.520(4)	$\mathrm{C}(9 \mathrm{~B})-\mathrm{H}(9 \mathrm{~B})$	0.9304
C(13A)-H(13A)	0.8949	C(10B)-C(19B)	1.521(4)
$\mathrm{C}(13 \mathrm{~A})-\mathrm{H}(13 \mathrm{~B})$	0.8949	C(10B)-C(11B)	1.524(4)
$\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})$	1.522(4)	$\mathrm{C}(10 \mathrm{~B})-\mathrm{H}(10 \mathrm{~B})$	0.8391
$\mathrm{C}(14 \mathrm{~A})-\mathrm{H}(14 \mathrm{~A})$	0.8992	$\mathrm{C}(11 \mathrm{~B})-\mathrm{H}(11 \mathrm{C})$	0.9431
$\mathrm{C}(14 \mathrm{~A})-\mathrm{H}(14 \mathrm{~B})$	0.8992	$\mathrm{C}(11 \mathrm{~B})-\mathrm{H}(11 \mathrm{D})$	0.9431
$\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})$	1.512(4)	$\mathrm{C}(12 \mathrm{~B})-\mathrm{C}(13 \mathrm{~B})$	1.519(4)
$\mathrm{C}(15 \mathrm{~A})-\mathrm{H}(15 \mathrm{~A})$	0.9319	$\mathrm{C}(12 \mathrm{~B})-\mathrm{H}(12 \mathrm{C})$	0.9966
$\mathrm{C}(15 \mathrm{~A})-\mathrm{H}(15 \mathrm{~B})$	0.9319	$\mathrm{C}(12 \mathrm{~B})-\mathrm{H}(12 \mathrm{D})$	0.9966
$\mathrm{C}(16 \mathrm{~A})-\mathrm{C}(17 \mathrm{~A})$	1.531(4)	$\mathrm{C}(13 \mathrm{~B})-\mathrm{C}(14 \mathrm{~B})$	1.522(4)
C(16A)-H(16A)	0.9875	C(13B)-H(13C)	0.9184
C(17A)-C(18A)	1.515(4)	$\mathrm{C}(13 \mathrm{~B})-\mathrm{H}(13 \mathrm{D})$	0.9184
C(17A)-C(19A)	1.520(4)	C(14B)-C(15B)	1.530(4)
$\mathrm{C}(17 \mathrm{~A})-\mathrm{H}(17 \mathrm{~A})$	0.9316	$\mathrm{C}(14 \mathrm{~B})-\mathrm{H}(14 \mathrm{C})$	0.9940
$\mathrm{C}(18 \mathrm{~A})-\mathrm{H}(18 \mathrm{~A})$	0.9431	$\mathrm{C}(14 \mathrm{~B})-\mathrm{H}(14 \mathrm{D})$	0.9940
$\mathrm{C}(18 \mathrm{~A})-\mathrm{H}(18 \mathrm{~B})$	0.9431	C(15B)-C(16B)	1.511(4)
C(19A)-H(19A)	0.9047	$\mathrm{C}(15 \mathrm{~B})-\mathrm{H}(15 \mathrm{C})$	0.9242
$\mathrm{C}(19 \mathrm{~A})-\mathrm{H}(19 \mathrm{~B})$	0.9047	C(15B)-H(15D)	0.9242
$\mathrm{Pd}(2)-\mathrm{O}(3 \mathrm{~B})$	2.0411(18)	C(16B)-C(17B)	1.523(4)
$\mathrm{Pd}(2)-\mathrm{O}(1 \mathrm{~B})$	2.0461(17)	$\mathrm{C}(16 \mathrm{~B})-\mathrm{H}(16 \mathrm{~B})$	0.8711
$\mathrm{Pd}(2)-\mathrm{N}(2 \mathrm{~B})$	2.055(2)	C(17B)-C(18B)	1.511(4)
$\mathrm{Pd}(2)-\mathrm{N}(1 \mathrm{~B})$	2.069(2)	C(17B)-C(19B)	1.526(4)
$\mathrm{F}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})$	1.333(3)	$\mathrm{C}(17 \mathrm{~B})-\mathrm{H}(17 \mathrm{~B})$	0.9574

C(18B)-H(18C)	0.9088	C(5A)-C(6A)-H(6A2)	109.7
$\mathrm{C}(18 \mathrm{~B})-\mathrm{H}(18 \mathrm{D})$	0.9088	H(6A1)-C(6A)-H(6A2)	108.2
C(19B)-H(19C)	0.9394	$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$	110.0(3)
$\mathrm{C}(19 \mathrm{~B})-\mathrm{H}(19 \mathrm{D})$	0.9394	$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{H}(7 \mathrm{~A} 1)$	109.7
		$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{H}(7 \mathrm{~A} 1)$	109.7
$\mathrm{N}(2 \mathrm{~A})-\mathrm{Pd}(1)-\mathrm{O}(1 \mathrm{~A})$	175.95(9)	$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{H}(7 \mathrm{~A} 2)$	109.7
$\mathrm{N}(2 \mathrm{~A})-\mathrm{Pd}(1)-\mathrm{O}(3 \mathrm{~A})$	95.81(8)	$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{H}(7 \mathrm{~A} 2)$	109.7
$\mathrm{O}(1 \mathrm{~A})-\mathrm{Pd}(1)-\mathrm{O}(3 \mathrm{~A})$	80.73(8)	H(7A1)-C(7A)-H(7A2)	108.2
$\mathrm{N}(2 \mathrm{~A})-\mathrm{Pd}(1)-\mathrm{N}(1 \mathrm{~A})$	88.67(9)	$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})$	113.8(3)
$\mathrm{O}(1 \mathrm{~A})-\mathrm{Pd}(1)-\mathrm{N}(1 \mathrm{~A})$	95.01(8)	$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{~A} 1)$	108.8
$\mathrm{O}(3 \mathrm{~A})-\mathrm{Pd}(1)-\mathrm{N}(1 \mathrm{~A})$	172.03(8)	$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{~A} 1)$	108.8
$\mathrm{C}(1 \mathrm{~A})-\mathrm{O}(1 \mathrm{~A})-\mathrm{Pd}(1)$	110.64(17)	$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{~A} 2)$	108.8
$\mathrm{C}(3 \mathrm{~A})-\mathrm{O}(3 \mathrm{~A})-\mathrm{Pd}(1)$	110.81(16)	$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{~A} 2)$	108.8
$\mathrm{C}(18 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})$	112.1(2)	$\mathrm{H}(8 \mathrm{~A} 1)-\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{~A} 2)$	107.7
$\mathrm{C}(18 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	108.9(2)	$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$	110.4(2)
$\mathrm{C}(9 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	110.3(2)	$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$	113.1(2)
$\mathrm{C}(18 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{Pd}(1)$	111.42(16)	$\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$	110.9(2)
$\mathrm{C}(9 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{Pd}(1)$	106.03(15)	$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{H}(9 \mathrm{~A})$	107.4
$\mathrm{C}(5 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{Pd}(1)$	108.01(15)	$\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{H}(9 \mathrm{~A})$	107.4
$\mathrm{C}(11 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})$	108.2(2)	$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{H}(9 \mathrm{~A})$	107.4
$\mathrm{C}(11 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})$	110.7(2)	$\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})$	108.5(3)
$\mathrm{C}(12 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})$	106.2(2)	$\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})$	115.0(2)
$\mathrm{C}(11 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})-\mathrm{Pd}(1)$	106.09(17)	C(19A)-C(10A)-C(9A)	110.2(2)
$\mathrm{C}(12 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})-\mathrm{Pd}(1)$	113.19(17)	$\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{H}(10 \mathrm{~A})$	107.6
$\mathrm{C}(16 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})-\mathrm{Pd}(1)$	112.48(16)	$\mathrm{C}(19 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{H}(10 \mathrm{~A})$	107.6
$\mathrm{O}(2 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{O}(1 \mathrm{~A})$	129.6(3)	$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{H}(10 \mathrm{~A})$	107.6
$\mathrm{O}(2 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	118.4(3)	$\mathrm{N}(2 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$	113.0(2)
$\mathrm{O}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	112.0(2)	$\mathrm{N}(2 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{~A})$	109.0
$\mathrm{F}(2 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{F}(1 \mathrm{~A})$	108.3(2)	$\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{~A})$	109.0
$\mathrm{F}(2 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{F}(3 \mathrm{~A})$	106.8(2)	$\mathrm{N}(2 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{~B})$	109.0
$\mathrm{F}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{F}(3 \mathrm{~A})$	106.5(2)	$\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{~B})$	109.0
$\mathrm{F}(2 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$	112.8(2)	$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{~B})$	107.8
$\mathrm{F}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$	112.7(2)	$\mathrm{N}(2 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})$	113.1(2)
$\mathrm{F}(3 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$	109.4(2)	$\mathrm{N}(2 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{~A})$	109.0
$\mathrm{O}(4 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{O}(3 \mathrm{~A})$	130.1(2)	$\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{~A})$	109.0
$\mathrm{O}(4 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$	118.3(2)	$\mathrm{N}(2 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{~B})$	109.0
$\mathrm{O}(3 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$	111.6(2)	$\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{~B})$	109.0
$\mathrm{F}(6 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{F}(5 \mathrm{~A})$	108.1(2)	$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{~B})$	107.8
$\mathrm{F}(6 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{F}(4 \mathrm{~A})$	106.2(2)	$\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})$	112.9(3)
$\mathrm{F}(5 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{F}(4 \mathrm{~A})$	106.3(2)	$\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{H}(13 \mathrm{~A})$	109.0
$\mathrm{F}(6 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$	113.6(2)	$\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{H}(13 \mathrm{~A})$	109.0
$\mathrm{F}(5 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$	111.7(2)	$\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{H}(13 \mathrm{~B})$	109.0
$\mathrm{F}(4 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$	110.6(2)	$\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{H}(13 \mathrm{~B})$	109.0
$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$	114.3(2)	$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{H}(13 \mathrm{~B})$	107.8
$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{H}(5 \mathrm{~A} 1)$	108.7	$\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})$	108.8(3)
$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{H}(5 \mathrm{~A} 1)$	108.7	$\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})-\mathrm{H}(14 \mathrm{~A})$	109.9
$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{H}(5 \mathrm{~A} 2)$	108.7	$\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})-\mathrm{H}(14 \mathrm{~A})$	109.9
$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{H}(5 \mathrm{~A} 2)$	108.7	$\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})-\mathrm{H}(14 \mathrm{~B})$	109.9
$\mathrm{H}(5 \mathrm{~A} 1)-\mathrm{C}(5 \mathrm{~A})-\mathrm{H}(5 \mathrm{~A} 2)$	107.6	$\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})-\mathrm{H}(14 \mathrm{~B})$	109.9
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	110.0(3)	$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})-\mathrm{H}(14 \mathrm{~B})$	108.3
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{H}(6 \mathrm{~A} 1)$	109.7	$\mathrm{C}(16 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})$	109.9(2)
$\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{H}(6 \mathrm{~A} 1)$	109.7	$\mathrm{C}(16 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})-\mathrm{H}(15 \mathrm{~A})$	109.7
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{H}(6 \mathrm{~A} 2)$	109.7	$\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})-\mathrm{H}(15 \mathrm{~A})$	109.7

$\mathrm{C}(16 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})-\mathrm{H}(15 \mathrm{~B})$	109.7	$\mathrm{F}(3 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})$	113.3(2)
$\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})-\mathrm{H}(15 \mathrm{~B})$	109.7	$F(2 B)-C(2 B)-C(1 B)$	111.8(3)
$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})-\mathrm{H}(15 \mathrm{~B})$	108.2	$\mathrm{F}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})$	111.5(2)
$\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})$	110.2(2)	$\mathrm{O}(4 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})-\mathrm{O}(3 \mathrm{~B})$	130.3(3)
$\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})-\mathrm{C}(17 \mathrm{~A})$	114.4(2)	$\mathrm{O}(4 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})$	118.3(3)
$\mathrm{N}(2 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})-\mathrm{C}(17 \mathrm{~A})$	111.4(2)	$\mathrm{O}(3 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})$	111.4(3)
$\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})-\mathrm{H}(16 \mathrm{~A})$	106.8	$\mathrm{F}(5 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})-\mathrm{F}(6 \mathrm{~B})$	107.7(3)
$\mathrm{N}(2 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})-\mathrm{H}(16 \mathrm{~A})$	106.8	$\mathrm{F}(5 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})-\mathrm{F}(4 \mathrm{~B})$	106.3(3)
$\mathrm{C}(17 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})-\mathrm{H}(16 \mathrm{~A})$	106.8	$\mathrm{F}(6 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})-\mathrm{F}(4 \mathrm{~B})$	106.9(3)
$\mathrm{C}(18 \mathrm{~A})-\mathrm{C}(17 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})$	109.7(2)	$\mathrm{F}(5 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})$	112.3(3)
$\mathrm{C}(18 \mathrm{~A})-\mathrm{C}(17 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})$	114.3(2)	$\mathrm{F}(6 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})$	113.1(3)
$\mathrm{C}(19 \mathrm{~A})-\mathrm{C}(17 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})$	109.3(2)	$\mathrm{F}(4 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})$	110.2(2)
$\mathrm{C}(18 \mathrm{~A})-\mathrm{C}(17 \mathrm{~A})-\mathrm{H}(17 \mathrm{~A})$	107.8	$\mathrm{N}(1 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})$	115.4(2)
$\mathrm{C}(19 \mathrm{~A})-\mathrm{C}(17 \mathrm{~A})-\mathrm{H}(17 \mathrm{~A})$	107.8	$\mathrm{N}(1 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})-\mathrm{H}(5 \mathrm{~B} 1)$	108.4
$\mathrm{C}(16 \mathrm{~A})-\mathrm{C}(17 \mathrm{~A})-\mathrm{H}(17 \mathrm{~A})$	107.8	$\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})-\mathrm{H}(5 \mathrm{~B} 1)$	108.4
$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(18 \mathrm{~A})-\mathrm{C}(17 \mathrm{~A})$	113.0(2)	$\mathrm{N}(1 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})-\mathrm{H}(5 \mathrm{~B} 2)$	108.4
$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(18 \mathrm{~A})-\mathrm{H}(18 \mathrm{~A})$	109.0	$\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})-\mathrm{H}(5 \mathrm{~B} 2)$	108.4
$\mathrm{C}(17 \mathrm{~A})-\mathrm{C}(18 \mathrm{~A})-\mathrm{H}(18 \mathrm{~A})$	109.0	$\mathrm{H}(5 \mathrm{~B} 1)-\mathrm{C}(5 \mathrm{~B})-\mathrm{H}(5 \mathrm{~B} 2)$	107.5
$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(18 \mathrm{~A})-\mathrm{H}(18 \mathrm{~B})$	109.0	$\mathrm{C}(5 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})$	109.7(2)
$\mathrm{C}(17 \mathrm{~A})-\mathrm{C}(18 \mathrm{~A})-\mathrm{H}(18 \mathrm{~B})$	109.0	$\mathrm{C}(5 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})-\mathrm{H}(6 \mathrm{~B} 1)$	109.7
$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18 \mathrm{~A})-\mathrm{H}(18 \mathrm{~B})$	107.8	$\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})-\mathrm{H}(6 \mathrm{~B} 1)$	109.7
C(17A)-C(19A)-C(10A)	106.5(2)	$\mathrm{C}(5 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})-\mathrm{H}(6 \mathrm{~B} 2)$	109.7
$\mathrm{C}(17 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})-\mathrm{H}(19 \mathrm{~A})$	110.4	$\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})-\mathrm{H}(6 \mathrm{~B} 2)$	109.7
$\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})-\mathrm{H}(19 \mathrm{~A})$	110.4	$\mathrm{H}(6 \mathrm{~B} 1)-\mathrm{C}(6 \mathrm{~B})-\mathrm{H}(6 \mathrm{~B} 2)$	108.2
$\mathrm{C}(17 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})-\mathrm{H}(19 \mathrm{~B})$	110.4	$\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})$	110.0(2)
$\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})-\mathrm{H}(19 \mathrm{~B})$	110.4	$\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})-\mathrm{H}(7 \mathrm{~B} 1)$	109.7
$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})-\mathrm{H}(19 \mathrm{~B})$	108.6	$\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})-\mathrm{H}(7 \mathrm{~B} 1)$	109.7
$\mathrm{O}(3 \mathrm{~B})-\mathrm{Pd}(2)-\mathrm{O}(1 \mathrm{~B})$	80.69(7)	$\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})-\mathrm{H}(7 \mathrm{~B} 2)$	109.7
$\mathrm{O}(3 \mathrm{~B})-\mathrm{Pd}(2)-\mathrm{N}(2 \mathrm{~B})$	94.88(8)	$\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})-\mathrm{H}(7 \mathrm{~B} 2)$	109.7
$\mathrm{O}(1 \mathrm{~B})-\mathrm{Pd}(2)-\mathrm{N}(2 \mathrm{~B})$	175.32(8)	$\mathrm{H}(7 \mathrm{~B} 1)-\mathrm{C}(7 \mathrm{~B})-\mathrm{H}(7 \mathrm{~B} 2)$	108.2
$\mathrm{O}(3 \mathrm{~B})-\mathrm{Pd}(2)-\mathrm{N}(1 \mathrm{~B})$	168.20(8)	$\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})$	114.4(2)
$\mathrm{O}(1 \mathrm{~B})-\mathrm{Pd}(2)-\mathrm{N}(1 \mathrm{~B})$	96.24(8)	$\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})-\mathrm{H}(8 \mathrm{~B} 1)$	108.7
$\mathrm{N}(2 \mathrm{~B})-\mathrm{Pd}(2)-\mathrm{N}(1 \mathrm{~B})$	88.41(9)	$\mathrm{C}(9 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})-\mathrm{H}(8 \mathrm{~B} 1)$	108.7
$\mathrm{C}(1 \mathrm{~B})-\mathrm{O}(1 \mathrm{~B})-\mathrm{Pd}(2)$	115.68(17)	$\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})-\mathrm{H}(8 \mathrm{~B} 2)$	108.7
$\mathrm{C}(3 \mathrm{~B})-\mathrm{O}(3 \mathrm{~B})-\mathrm{Pd}(2)$	119.50(18)	$\mathrm{C}(9 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})-\mathrm{H}(8 \mathrm{~B} 2)$	108.7
$\mathrm{C}(18 \mathrm{~B})-\mathrm{N}(1 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})$	110.1(2)	$\mathrm{H}(8 \mathrm{~B} 1)-\mathrm{C}(8 \mathrm{~B})-\mathrm{H}(8 \mathrm{~B} 2)$	107.6
$\mathrm{C}(18 \mathrm{~B})-\mathrm{N}(1 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})$	112.2(2)	$\mathrm{N}(1 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})$	114.4(2)
$\mathrm{C}(5 \mathrm{~B})-\mathrm{N}(1 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})$	109.0(2)	$\mathrm{N}(1 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})$	110.5(2)
$\mathrm{C}(18 \mathrm{~B})-\mathrm{N}(1 \mathrm{~B})-\mathrm{Pd}(2)$	110.70(17)	$\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})$	109.9(2)
$\mathrm{C}(5 \mathrm{~B})-\mathrm{N}(1 \mathrm{~B})-\mathrm{Pd}(2)$	108.31(16)	$\mathrm{N}(1 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})-\mathrm{H}(9 \mathrm{~B})$	107.2
$\mathrm{C}(9 \mathrm{~B})-\mathrm{N}(1 \mathrm{~B})-\mathrm{Pd}(2)$	106.40(16)	$\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})-\mathrm{H}(9 \mathrm{~B})$	107.2
$\mathrm{C}(11 \mathrm{~B})-\mathrm{N}(2 \mathrm{~B})-\mathrm{C}(16 \mathrm{~B})$	110.3(2)	$\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})-\mathrm{H}(9 \mathrm{~B})$	107.2
$\mathrm{C}(11 \mathrm{~B})-\mathrm{N}(2 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})$	107.2(2)	$\mathrm{C}(19 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})$	109.0(3)
$\mathrm{C}(16 \mathrm{~B})-\mathrm{N}(2 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})$	107.5(2)	$\mathrm{C}(19 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})$	110.9(2)
$\mathrm{C}(11 \mathrm{~B})-\mathrm{N}(2 \mathrm{~B})-\mathrm{Pd}(2)$	107.00(17)	$\mathrm{C}(11 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})$	114.0(2)
$\mathrm{C}(16 \mathrm{~B})-\mathrm{N}(2 \mathrm{~B})-\mathrm{Pd}(2)$	112.13(17)	C(19B)-C(10B)-H(10B)	107.6
$\mathrm{C}(12 \mathrm{~B})-\mathrm{N}(2 \mathrm{~B})-\mathrm{Pd}(2)$	112.68(17)	$\mathrm{C}(11 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})-\mathrm{H}(10 \mathrm{~B})$	107.6
$\mathrm{O}(2 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{O}(1 \mathrm{~B})$	128.9(3)	$\mathrm{C}(9 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})-\mathrm{H}(10 \mathrm{~B})$	107.6
$\mathrm{O}(2 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})$	119.2(3)	$\mathrm{N}(2 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})$	112.7(2)
$\mathrm{O}(1 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})$	111.9(2)	$\mathrm{N}(2 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})-\mathrm{H}(11 \mathrm{C})$	109.0
$F(3 B)-C(2 B)-F(2 B)$	108.0(3)	$\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})-\mathrm{H}(11 \mathrm{C})$	109.0
$\mathrm{F}(3 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{F}(1 \mathrm{~B})$	106.2(3)	$\mathrm{N}(2 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})-\mathrm{H}(11 \mathrm{D})$	109.0
$\mathrm{F}(2 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{F}(1 \mathrm{~B})$	105.6(3)	$\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})-\mathrm{H}(11 \mathrm{D})$	109.0

$\mathrm{H}(11 \mathrm{C})-\mathrm{C}(11 \mathrm{~B})-\mathrm{H}(11 \mathrm{D})$	107.8	$\mathrm{N}(2 \mathrm{~B})-\mathrm{C}(16 \mathrm{~B})-\mathrm{C}(17 \mathrm{~B})$	111.6(2)
$\mathrm{N}(2 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})-\mathrm{C}(13 \mathrm{~B})$	113.6(2)	C(15B)-C(16B)-C(17B)	115.1(2)
$\mathrm{N}(2 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})-\mathrm{H}(12 \mathrm{C})$	108.8	$\mathrm{N}(2 \mathrm{~B})-\mathrm{C}(16 \mathrm{~B})-\mathrm{H}(16 \mathrm{~B})$	106.5
$\mathrm{C}(13 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})-\mathrm{H}(12 \mathrm{C})$	108.8	C(15B)-C(16B)-H(16B)	106.5
$\mathrm{N}(2 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})-\mathrm{H}(12 \mathrm{D})$	108.8	$\mathrm{C}(17 \mathrm{~B})-\mathrm{C}(16 \mathrm{~B})-\mathrm{H}(16 \mathrm{~B})$	106.5
$\mathrm{C}(13 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})-\mathrm{H}(12 \mathrm{D})$	108.8	C(18B)-C(17B)-C(16B)	115.6(2)
$\mathrm{H}(12 \mathrm{C})-\mathrm{C}(12 \mathrm{~B})-\mathrm{H}(12 \mathrm{D})$	107.7	C(18B)-C(17B)-C(19B)	109.6(2)
$\mathrm{C}(12 \mathrm{~B})-\mathrm{C}(13 \mathrm{~B})-\mathrm{C}(14 \mathrm{~B})$	112.3(3)	$\mathrm{C}(16 \mathrm{~B})-\mathrm{C}(17 \mathrm{~B})-\mathrm{C}(19 \mathrm{~B})$	108.7(2)
$\mathrm{C}(12 \mathrm{~B})-\mathrm{C}(13 \mathrm{~B})-\mathrm{H}(13 \mathrm{C})$	109.1	C(18B)-C(17B)-H(17B)	107.6
$\mathrm{C}(14 \mathrm{~B})-\mathrm{C}(13 \mathrm{~B})-\mathrm{H}(13 \mathrm{C})$	109.1	$\mathrm{C}(16 \mathrm{~B})-\mathrm{C}(17 \mathrm{~B})-\mathrm{H}(17 \mathrm{~B})$	107.6
$\mathrm{C}(12 \mathrm{~B})-\mathrm{C}(13 \mathrm{~B})-\mathrm{H}(13 \mathrm{D})$	109.1	C(19B)-C(17B)-H(17B)	107.6
$\mathrm{C}(14 \mathrm{~B})-\mathrm{C}(13 \mathrm{~B})-\mathrm{H}(13 \mathrm{D})$	109.1	$\mathrm{N}(1 \mathrm{~B})-\mathrm{C}(18 \mathrm{~B})-\mathrm{C}(17 \mathrm{~B})$	112.8(2)
$\mathrm{H}(13 \mathrm{C})-\mathrm{C}(13 \mathrm{~B})-\mathrm{H}(13 \mathrm{D})$	107.9	$\mathrm{N}(1 \mathrm{~B})-\mathrm{C}(18 \mathrm{~B})-\mathrm{H}(18 \mathrm{C})$	109.0
C(13B)-C(14B)-C(15B)	109.0(3)	C(17B)-C(18B)-H(18C)	109.0
$\mathrm{C}(13 \mathrm{~B})-\mathrm{C}(14 \mathrm{~B})-\mathrm{H}(14 \mathrm{C})$	109.9	$\mathrm{N}(1 \mathrm{~B})-\mathrm{C}(18 \mathrm{~B})-\mathrm{H}(18 \mathrm{D})$	109.0
$\mathrm{C}(15 \mathrm{~B})-\mathrm{C}(14 \mathrm{~B})-\mathrm{H}(14 \mathrm{C})$	109.9	C(17B)-C(18B)-H(18D)	109.0
$\mathrm{C}(13 \mathrm{~B})-\mathrm{C}(14 \mathrm{~B})-\mathrm{H}(14 \mathrm{D})$	109.9	$\mathrm{H}(18 \mathrm{C})-\mathrm{C}(18 \mathrm{~B})-\mathrm{H}(18 \mathrm{D})$	107.8
$\mathrm{C}(15 \mathrm{~B})-\mathrm{C}(14 \mathrm{~B})-\mathrm{H}(14 \mathrm{D})$	109.9	C(10B)-C(19B)-C(17B)	106.3(2)
$\mathrm{H}(14 \mathrm{C})-\mathrm{C}(14 \mathrm{~B})-\mathrm{H}(14 \mathrm{D})$	108.3	C(10B)-C(19B)-H(19C)	110.5
C(16B)-C(15B)-C(14B)	110.4(3)	C(17B)-C(19B)-H(19C)	110.5
$\mathrm{C}(16 \mathrm{~B})-\mathrm{C}(15 \mathrm{~B})-\mathrm{H}(15 \mathrm{C})$	109.6	C(10B)-C(19B)-H(19D)	110.5
$\mathrm{C}(14 \mathrm{~B})-\mathrm{C}(15 \mathrm{~B})-\mathrm{H}(15 \mathrm{C})$	109.6	C(17B)-C(19B)-H(19D)	110.5
C(16B)-C(15B)-H(15D)	109.6	$\mathrm{H}(19 \mathrm{C})-\mathrm{C}(19 \mathrm{~B})-\mathrm{H}(19 \mathrm{D})$	108.7
$\mathrm{C}(14 \mathrm{~B})-\mathrm{C}(15 \mathrm{~B})-\mathrm{H}(15 \mathrm{D})$	109.6		
$\mathrm{H}(15 \mathrm{C})-\mathrm{C}(15 \mathrm{~B})-\mathrm{H}(15 \mathrm{D})$	108.1		
$\mathrm{N}(2 \mathrm{~B})-\mathrm{C}(16 \mathrm{~B})-\mathrm{C}(15 \mathrm{~B})$	110.1(2)		

[^0]: ${ }^{a} 5 \mathrm{~mol} \% \mathrm{Pd}, 20 \mathrm{~mol} \%$ ligand, 2 equiv additive, 1 atm O_{2}. ${ }^{b}$ Isolated yield. ${ }^{c}$ Isolated along with a complex mixture of unidentified products. ${ }^{d}$ Recovered starting material was isolated in 57% yield. e $5 \mathrm{~mol} \%$ (pyridine) ${ }_{2} \mathrm{Pd}(\mathrm{TFA})_{2}, 10 \mathrm{~mol} \%$ pyridine. ${ }^{f}$ Conversion determined by GC.

[^1]: ${ }^{a} 10 \mathrm{~mol} \mathrm{Pd}(\mathrm{TFA})_{2}, 40 \mathrm{~mol} \%$ ligand, $500 \mathrm{mg} \mathrm{MS3} \AA / \mathrm{mmol}$ substrate, 0.41 equiv tridecane internal GC standard, $1 \mathrm{~atm} \mathrm{O}_{2}$, toluene $(0.1 \mathrm{M}), 80{ }^{\circ} \mathrm{C}$. ${ }^{b}$ Conversion determined by GC. ${ }^{c}$ Enantiomeric excess determined by chiral GC.

[^2]: ${ }^{1}$ The numbering in Figure A2.2.1 differs from that in the X-ray crystallographic report.
 ${ }^{2}$ The crystallographic data have been deposited at the Cambridge Database (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition number 192101.

