
Error-Correcting Codes for Networks, Storage and
Computation

Thesis by
Wael Halbawi

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2017
Defended June 5, 2017

ii

© 2017

Wael Halbawi
ORCID: 0000-0001-5951-7002

All rights reserved

To my beloved family:

my mama and baba, Alia & Iyad,

and my brother, Anas.

iv

ACKNOWLEDGEMENTS

I would like to express my utmost gratitude and appreciation to my advisor Prof.
Babak Hassibi. Babak’s constant support has been essential for the completion of
this journey. I will always remember our first meeting in early 2014; what was
scheduled to be a thirty-minute meeting ended up being a two-hour discussion
touching on a variety of topics – both technical and non-technical – and a soothing
dose of encouragement. Thank you, Babak, for the freedom, trust and all the
interesting conversations.

My sincere thanks go to my thesis committee: Prof. Shuki Bruck, Prof. Alexandros
Dimakis, Dr. Dariush Divsalar and Prof. Victoria Kostina. Thank you for taking
the time to provide feedback on this thesis. Special thanks are also due to Prof. P.
P. Vaidyanathan who was part of my candidacy committee.

I would also like to expressmy gratitude toDr. TraceyHo, whowasmy advisor when
I first joined Caltech; I thank Tracey for giving me the opportunity to study at this
wonderful place. The motivation and encouragement of Prof. Joseph Jean Boutros
were never absent throughout my undergraduate and graduate studies. Thank you,
Joseph, for the many afternoons we spent in your office discussing coding theory,
art, music and other things.

During the last few years, I had the pleasure of interacting and working with incred-
ibly talented people: Hongyi Yao, Iwan Duursma, Matthew Thill, Anatoly Khina,
Zihan Liu, Son Hoang Dau, Navid Azizan and Fariborz Salehi. A lot of the results
reported in this thesis are a direct consequence of our collaborative efforts.

The warmth and friendliness of the Hassibi Lab is solely due to its members: Wei,
Matt, Kishore, Christos, Ramya, Ehsan, Navid, Toli, Philipp, Fariborz, Ahmed and
Hikmet. Thank you all for maintaining a stimulating and exciting atmosphere in
Moore 155. I am lucky to have shared an office first with Christos and then with
Fariborz, with whom I became good friends, enjoyed many discussions and shared
lots of laughs. The efforts of Shirley and Katie ensured that the group functioned
smoothly; thank you for your help and patience.

International orientation is where I met my friends Alex, Carlos, Ruby, Christos and
Krishna, with whom I got to discover and enjoy beautiful Pasadena. Thank you for
your friendship throughout this journey. I will always cherish the fun times we spent
together and will never forget our adventures in different parts of the world.

v

The last six years would’ve been very different without George, Noor and Sami. I
will always be grateful for your friendship and everything that comes with it: good
memories, lots of laughter, lengthy conversations and terrific company. My dearest
friends, you have been an integral part of this journey and I cannot emphasize this
strongly enough.

At the very end, I owe it all to my family: my mom Alia, my dad Iyad and my
brother Anas. Your love and care, during both joyous and tough times, is the reason
that I was able to complete this endeavor. Your eternal support is my strength and
without it none of this would’ve been possible. I will never be able to give back
what you gave me, but the least that I can do, and I hope I can do more in the future,
is to dedicate my work to you.

vi

ABSTRACT

The advent of the information age has bestowed upon us three challenges related to
the way we deal with data. Firstly, there is an unprecedented demand for transmit-
ting data at high rates. Secondly, the massive amounts of data being collected from
various sources needs to be stored across time. Thirdly, there is a need to process
the data collected and perform computations on it in order to extract meaningful
information out of it. The interconnected nature of modern systems designed to
perform these tasks has unraveled new difficulties when it comes to ensuring their
resilience against sources of performance degradation. In the context of network
communication and distributed data storage, system-level noise and adversarial er-
rors have to be combated with efficient error correction schemes. In the case of
distributed computation, the heterogeneous nature of computing clusters can poten-
tially diminish the speedups promised by parallel algorithms, calling for schemes
that mitigate the effect of slow machines and communication delay.

This thesis addresses the problem of designing efficient fault tolerance schemes for
the three scenarios just described. In the network communication setting, a family of
multiple-source multicast networks that employ linear network coding is considered
for which capacity-achieving distributed error-correcting codes, based on classical
algebraic constructions, are designed. The codes require no coordination between
the source nodes and are end to end: except for the source nodes and the destination
node, the operation of the network remains unchanged.

In the context of data storage, balanced error-correcting codes are constructed so that
the encoding effort required is balanced out across the storage nodes. In particular,
it is shown that for a fixed row weight, any cyclic Reed–Solomon code possesses a
generator matrix in which the number of nonzeros is the same across the columns.
In the balanced and sparsest case, where each row of the generator matrix is a
minimum distance codeword, the maximal encoding time over the storage nodes
is minimized, a property that is appealing in write-intensive settings. Analogous
constructions are presented for a locally recoverable code construction due to Tamo
and Barg.

Lastly, the problem of mitigating stragglers in a distributed computation setup is
addressed, where a function of some dataset is computed in parallel. Using Reed–
Solomon coding techniques, a scheme is proposed that allows for the recovery of the

vii

function under consideration from the minimum number of machines possible. The
only assumptionmade on the function is that it is additively separable, which renders
the scheme useful in distributed gradient descent implementations. Furthermore, a
theoretical model for the run time of the scheme is presented. When the return time
of the machines is modeled probabilistically, the model can be used to optimally
pick the scheme’s parameters so that the expected computation time is minimized.
The recovery is performed using an algorithm that runs in quadratic time and linear
space, a notable improvement compared to state-of-the-art schemes.

The unifying theme of the three scenarios is the construction of error-correcting
codes whose encoding functions adhere to certain constraints. It is shown that in
many cases, these constraints can be satisfied by classical constructions. As a result,
the schemes presented are deterministic, operate over small finite fields and can be
decoded using efficient algorithms.

viii

TABLE OF CONTENTS

Acknowledgements . iv
Abstract . vi
Table of Contents . viii
List of Illustrations . ix
Chapter I: Introduction . 1

1.1 Motivation . 1
1.2 Background and Literature Review 4
1.3 Summary of Contributions . 17

Chapter II: Distributed Reed–Solomon Codes 21
2.1 Introduction . 21
2.2 Preliminaries . 22
2.3 Construction . 25
2.4 Examples . 42
2.5 Discussion . 44

Chapter III: Distributed Gabidulin Codes . 47
3.1 Introduction . 47
3.2 Preliminaries . 48
3.3 Construction . 55
3.4 Code Construction for Networks with Two Messages 57
3.5 Code Construction for Networks with Three Messages 58
3.6 Discussion . 68

Chapter IV: Coding with Constraints: Systematic Constructions 72
4.1 Introduction . 72
4.2 Problem Setup . 73
4.3 Minimum Distance . 75
4.4 Systematic Construction . 76
4.5 Minimum Distance for Systematic Linear Codes 78
4.6 Example . 81
4.7 Discussion . 81

Chapter V: Balanced Reed–Solomon and Tamo–Barg Codes 83
5.1 Introduction . 83
5.2 Preliminaries . 85
5.3 Balanced Reed–Solomon Codes . 93
5.4 Balanced Tamo–Barg Codes . 96
5.5 Discussion . 105

Chapter VI: Reed–Solomon Codes for Distributed Computation 107
6.1 Introduction . 107
6.2 Problem Setup . 108
6.3 Construction . 112

ix

6.4 Decoding Vectors . 118
6.5 Delay Model . 120
6.6 Numerical Results . 123
6.7 Discussion . 125
6.8 Appendix . 126

Chapter VII: Concluding Remarks and Future Directions 131

x

LIST OF ILLUSTRATIONS

Number Page
1.1 The butterfly network. 7
1.2 Single-source and multi-source multicast networks. 8
1.3 A simple multi-source multicast network. 10
1.4 Graph representation of a code’s generator matrix. 14
2.1 An example of an SMAN with 3 source nodes and 10 relay nodes. . . 23
2.2 Generic form a simple multiple access network with three sources. . . 33
3.1 A schematic of a multi-source multicast network. 49
3.2 A rank deficient multi-source multicast network. 70
4.1 A bipartite graph specifying a code with encoding constraints. 75
4.2 Graph configuration used to prove Proposition 4.1. 76
6.1 Schematic representation of a parallel computing cluster 109
6.2 Expected computation time in a distributed cluster with offline decoding123
6.3 Performance of distributed training of a softmax classifier 125

1

C h a p t e r 1

INTRODUCTION

1.1 Motivation
The rate at which we are amassing data is unprecedented. Today, sources of data
are ubiquitous, and interconnected in complex networks. With that arises a demand
requiring us to ensure that data is communicated efficiently, stored reliably and
processed robustly. Traditionally, networked solutions allow us to utilize this data
in better ways but today, this has become a necessity. For these networks to scale,
one would like to employ cheap and low-power devices that are potentially less
reliable, while maintaining an effective and predictable overall system. The use of
fault-tolerance schemes, such as error-correcting codes, in such settings is necessary
to mitigate the performance degradation resulting from these devices, or from the
natural consequences that accompany large-scale networked systems.

The notion of error-correcting codes was first formally conceived in late 1940s by
Richard Hamming [Ham47; Ham48; Ham50] as a means of introducing redundancy
into information to protect it from errors. In his seminal work [Sha48], Shannon
showed that arbitrarily reliable communication at the highest possible rates is (in
principle) achievable through the use of such error-correcting codes. The setting
considered by Shannon is one in which a single transmitter sends a message through
a noisy channel to a single receiver. This model is well studied and has found use
in modern practice, which also led to the development of efficient error correction
techniques throughout the second half of the twentieth century. Such techniques
have also served as a basis for network management protocols in which a network
of communicating nodes is viewed as a collection of point-to-point links, where
data is routed across this network with the potential use of an error-correcting code
between nodes if necessary. Such methodology is relatively simple to implement,
but far from optimal. Indeed, new paradigms revolve around the basic idea that it is
beneficial for the nodes in a network to operate on – or code across – the information
they receive rather than simply route it.

But as with any new invention, new challenges arise when one adopts a sophisticated
scheme such as the one described. Indeed, the fact that nodes code across the data
packets they receive leads to catastrophic performance in the presence of errors.

2

As a result, it is necessary to devise new error correction techniques that are suited
to these networks. Furthermore, efficient schemes are always desirable and one
would hope for those that minimally affect the underlying operation of the network.
Indeed, such properties are essential for them to find place in practice.

In the context of data storage, reliable data centers, each comprising many storage
nodes, are central to the operation of modern internet services such as online social
networks, cloud computing services, etc. Today, it is common to utilize multiple
data centers, possibly spread across geographic distances, to support a single service.
Companies resort to several techniques to prevent data loss occurring from events
such as disk failures and natural disasters. Replicating information across nodes
is one method that is attractive due to its simplicity and efficiency. Nonetheless,
replication requires a large storage overhead in that guaranteeing a certain level
of robustness requires the most redundancy; one node holds data while the rest
are mere copies of it. Using error-correcting codes for data storage, however, is an
attractive choice that first appeared in themid eighties with the introduction of RAID
systems1. Since then, more and more companies are relying on coding as a solution
to combat data loss. In the event of disk/node failure, the lost data is reconstructed
by contacting an appropriate set of surviving nodes. Key metrics involved in the
design of error-correcting codes for a storage system include:

• Capacity: The amount of information that can be stored.

• Level of resilience: The number of storage nodes allowed to fail before data
loss occurs.

• Read complexity: The amount of resources required to read the data stored,
in the absence of node failures.

• Write complexity: The amount of resources required to encode the data and
store it on the storage nodes.

• Recovery complexity: The amount of resources required to reconstruct erro-
neous/erased data.

The optimization of these metrics is heavily dependent on the implementation sce-
nario. For some applications, fast read speeds are essential, while in others it is

1RAID stands for Redundant Array of Inexpensive Disks. Various modes of this method exist
where RAID1 employs replication while RAID2 through RAID6 employ error-correcting codes.

3

worth sacrificing that for an added level of protection. In another example, nodes
might fail at a very low rate allowing the use of a higher capacity coding scheme
capable of handling only a small number of errors. Data centers storing frequently
read data, “hot data" in modern parlance, require error-correcting codes with high
recovery speeds. In archival storage systems such as Amazon Glacier [Ama] and
Google Coldline [Goo], one can potentially opt for codes that optimize write com-
plexity thereby reducing energy consumption while ensuring that the code used
offers high levels of resilience.

The third area of consideration is that of distributed computation. The growing
number of computation problems involving massive datasets is rendering the use
of distributed algorithms deployed on computer clusters necessary. In such setup,
a job is divided into many tasks which are distributed across many machines to
be performed in parallel. Frameworks such as Hadoop [Apaa] and Spark [Apab]
have facilitated the adoption of this paradigm in various domains. In principle, the
expected gain from parallelizing an algorithm should scale linearly in the number of
processors being used. However, there are several factors that usually prohibit this
gain. Modern clusters are shared resources that can potentially serve multiple users
simultaneously. In this case, the response time for a job submitted by a user heavily
depends on the jobs submitted by others. This is especially prevalent in cloud
computing services such as Amazon EC2, where lower-tier machines are known
to have variable performance. Network congestion and background maintenance
services [DB13], amongst others, also contribute to the latency observed in these
clusters.

Machines that require a longer-than-expected time to respond after being assigned
a task are known as stragglers, and different solutions to alleviate their effect are
available. The simplest is that of initiatingmultiple replicas of the same task and then
waiting for the first response. While seemingly simple and attractive, this solution
does lead to a waste of resources. Recent methods, inspired by error-correcting
codes, preprocess the tasks in a way such that a predetermined number of them
are sufficient to recover the solution of problem being solved. Such preprocessing
methods have to be efficient so that their utility does not end up eliminating the gains
achievable from parallel processing.

In summary, the three scenarios just considered call for the design of error-correcting
codes with the following properties:

4

• Efficient: The complexity required for implementing and using the error-
correcting code should be low enough not to affect the performance of the
underlying sytem, whether it is a communication network, a storage system
or a cluster of computers.

• Predictable: The fault-tolerance level guaranteed by a code should be con-
sistent. In particular, deterministic guarantees are often desirable in practice.

• Optimal: Error-correcting codes that optimally trade-off their design param-
eters ensure the best utilization of resources.

Main Message
The three scenarios of network communication, data storage and distributed com-
putation considered in this thesis are unified by the problem of constructing linear
error-correcting codes with certain structure that are efficient, predictable and op-
timal. In some cases, this structure arises from constraints inherent to the problem
itself. For example, we will see that in the case of network error correction, the
topological structure of the network translates to constraints on the encoding func-
tions that define the error-correcting code. In other cases, we find that imposing a
certain structure can optimize particular metrics pertinent to the code’s performance.
This will become evident in the data storage scenario, where structure can be used
to speed up the encoding process and facilitate its implementation in a distributed
manner. In the case of distributed computation, this structure will provide us with
schemes that offer significant speedups compared to traditional parallel comput-
ing. We provide explicit constructions of error-correcting codes, based on classical
algebraic error-correcting codes, that enjoy efficient encoding and decoding, have
deterministic guarantees on their error-correcting capabilities and are optimal given
their parameters.

1.2 Background and Literature Review
This section formally introduces the problems considered in this thesis along with
some mathematical preliminaries necessary for their treatment.

Error-Correcting Codes
An error-correcting code C is simply a subset of Fnq , where Fq is the finite field
of q elements. The parameter n is known as the length of the code and |C| is its
cardinality. If we letM = {M1, . . . ,M|C|} be a set of messages, one can define an
error-correcting code through an encoding function f that maps a messageMi to a

5

codeword ci ∈ C. The goal then is to conveyMi to a receiver through some noisy
channel by transmitting ci. Formally, one would like to find a decoding function g
such that if the receiver sees a corrupted version of ci,

y = ci + e,

it is able to reconstruct an estimate ofMi via

M̂i = g(ci). (1.1)

Let wt(x) = |{i : xi 6= 0}| denote the Hamming weight of the vector x. This
function induces a metric on Fnq via

d(x,y) := wt(x− y).

Guarantees on the code’s error correction capabilities are defined in terms of the
maximum weight of any e, such that for anyMi, the estimate in (1.1) is equal to the
transmitted message. This quantity is a function of what is known as the minimum
distance of the code, defined as

d(C) = min
x 6=y∈C

d(x,y),

where at least one of the arguments is nonzero. It follows that if wt(e) ≤
⌊
d−1

2

⌋
,

then one can recoverMi uniquely.

We consider error-correcting codes that are subspaces of Fnq . In this case, we can
define k as the dimension of C when viewed as a vector space over Fq. Here, the
message setM can be taken as Fkq and one can define the function f through the
generator matrix of the codeG ∈ Fk×nq . Amessagem is nowmapped to a codeword
by the relation

c = mG.

Generator matrices in which some k columns form an identity matrix are called sys-
tematic. These are desirable in certain applications as the message m appears
explicitly in its encoding.

The minimum distance of a linear code C reduces to

d(C) = min
06=c∈C

wt(c).

A fundamental bound due to Singleton is one that relates n, k and d(C) via

d(C) ≤ n− k + 1.

6

Codes that achieve this bound with equality are known as maximum-distance sepa-
rable (MDS) and can correct the largest numbers of errors/erasures. A construction
due to Reed and Solomon is one of the most famous [RS60].

Reed–Solomon Codes
We will heavily rely on Reed–Solomon codes in various parts of this thesis. For
this reason, we devote this section to describing them and stating properties that are
relevant to the results presented.

A Reed–Solomon code RS[n, k] is defined as the image of the set of polynomials
in Fq[x] of degree less than k evaluated at n distinct elements in Fq, called the
coordinates of the code. Formally, we have

RS[n, k] = {(m(α1), . . . ,m(αn)) : deg (m(x)) < k},

where each m(αi) is a codeword symbol and deg (m(x)) denotes the degree of
m(x). With every message m = (m0, . . . ,mk−1), we associate the polynomial
m(x) =

∑k−1
i=0 mix

i, which is then evaluated at the code’s coordinates. Indeed, this
mapping is linear and so the code’s generator matrix is given by

G =


1 1 · · · 1

α1 α2 · · · αn
...

...
αk−1

1 αk−1
2 · · · αk−1

n

 .
A Reed–Solomon code is MDS. This is readily seen from the fact that a polynomial
of degree k− 1 cannot have more than k− 1 roots and so d(RS[n, k]) ≥ n− k+ 1.
Combining this with the Singleton bound establishes the claim. For this reason, and
many others, they are widely adopted in practice. Sample applications range from
consumer technologies such as CDs, DVDs and Blu-ray Discs, to industry standards
such as RAID6 and Digital Video Broadcasting (DVB).

More details on error-correcting codes can be obtained by consulting classical texts
such as [MS77] and [McE02].

Network Error Correction
Network coding was introduced as a paradigm for operating networks in the seminal
work [Ahl+00], where it was shown that traditional routing is insufficient to achieve
the capacity of certain networks: the maximum throughput theoretically possible.
Their solution, termed Network Coding, allows intermediate nodes in a network to

7

M1 M2

M1 M2

M1 fM1;M2g

M
1

M
1

S1 S2

R1

R2

T1 T2

M1 M2

M1

(a) Routing: Relay node R1 has to
decide whether to forward M1 or
M2. In this case, only one of the two
receivers will obtain both messages.

M1 M2

M1 M2

fM1;M2g fM1;M2g

M
1
+
M

2

M
1
+
M

2

M
1
+
M

2

S1 S2

R1

R2

T1 T2

(b) Coding: Relay node R1 can sum
its incoming messages, which en-
ables both receivers to obtainM1 and
M2.

Figure 1.1: The butterfly network is the canonical example for which network coding
is necessary to achieve capacity. Sources S1 and S2 carry messages M1 and M2,
respectively, and each destination node Ti is interested in receiving both messages.
Both messages are unit sized and the links in the network can carry one unit of
information per time instant. The packet traversing a link is indicated by its label.

operate on the packets they receive before forwarding them to other nodes in the
network. For an example, refer to Figure 1.1. From there, significant effort was
dedicated to the study of multicast networks (Figure 1.2). In such a network, a single
source node is interested in communicating a message to a collection of destinations.
It was shown in [LYC03] that linear network coding suffices to achieve the capacity
of these networks. Since then several frameworks have been developed to construct
capacity-achieving network codes and two results that stand out are those of Ho et
al. [Ho+06] and Jaggi et al. [Jag+07].

The extension of the single source multicast problem to one with multiple sources
was studied in [Ho+06], where it was shown that if all nodes in the network forward
random linear combinations of the packets they receive, the destination nodes can
recover the original set of messages with high probability. In a network with
L messages, we can model each message Mi as a collection of Ri data packets
organized in a matrix Mi ∈ FRi×nq , where Ri is the rate of message Mi in Fq
symbols per unit time. Due to the linearity of the network code, a receiver collects

8

S

M

Network

T1 Tm

(a) Single-source multicast network.

S1 S2
Sn

MLM1

T1 Tm

Network

(b) Multi-source multicast network.

Figure 1.2: In a single-source multicast network, a collection of receivers are
interested in recovering the source’s single message. In the multi-source multicast
setting, a collection of source nodes jointly hold a set of messages which is to be
recovered at each receiver.

N packets obtained through

Y =
L∑
i=1

TiMi,

whereTi ∈ FN×Riq captures the aggregate effect of the network code on the message
Mi.

Naturally, one is interested in scenarios where a network operates in the presence of
errors resulting from faulty links or due to an adversary, say. In this case, attainable
communication rates are characterized by the capacity (capacity region in the multi-
source case) of the network in the presence of z erroneous links. In the single-source
multicast setting, where the messageM is of size R symbols, the result is known as
the network Singleton bound and was presented in [YC06] as

R ≤ C − 2z.

Here, the quanity C denotes the size of the min-cut2 between the source node and
any receiver. The work of Dikaliotis et al. [Dik+10] characterizes the capacity
region of multi-source multicast with L messagesM = {M1, . . . ,ML}, each of

2In graph theory, the min-cut between two subsets of vertices is the set of edges of smallest
cardinality which, once removed, separates them.

9

rate Ri, as ∑
Mi∈M′

Ri ≤ CM′ − 2z, ∀M′ ⊆M. (1.2)

where CM′ is the size of min-cut that separatesM′ from any receiver Tj .

Here, the network transfers the messages from sources to a destination node accord-
ing to

Y =
L∑
i=1

TiMi + Z,

where the matrix Z captures the effect of the z error packets introduced into the
network. By linearity of the network code, we have that rank (Z) ≤ z.

The pioneering work of Kötter and Kschischang [KK08] introduced the notion of
subspace coding to the realm of single-source multicast network error correction. It
was noticed that by encoding the messageM in a choice of subspace V rather than a
particular basis representing it, the receiver can decodeM if the intersection between
V and the rowspace ofY is large enough. Silva et al. built on top of this framework
and provided constructions in [SKK08] based on Gabidulin codes [Gab85]. A
Gabidulin code can be viewed as a linear subspace of matrices C ⊆ Fn×mq where
the distance between two codewords is measured using the usual rank function. In
particular, the distance between two codewords C1,C2 is given by

dR(C1,C2) = rank (C1 −C2) .

Hence, the source node maps its message to a codeword C in a Gabidulin code
of dimension R and length n, where n is the min-cut of the network, so that the
receiver observes,

Y = TC + Z.

Successful decoding occurs if dR(Y,C) ≤ z. A variety of efficient decoders for
Gabidulin codes are known to exist [SK09a; WAS13; Loi06] which allows the
receiver node to decode the message M efficiently. Furthermore, the construction
just presented is essentially optimal in terms of the field size required. Gabidulin
codes exist only whenm ≥ n and this requirement suffices in this setting.

The picture is a little bit less rosy in the multi-source setting. The direct application
of single-source codes as proposed in [JFD09] provides a practical and distributed
coding scheme but can only attain a strict subregion of (1.2). On the other hand, a
carefully crafted capacity-achieving construction was developed in [Dik+10]. The
construction is defined as follows: Source Si encodes its message using a z-error

10

correction Gabidulin code of length ni and dimension Ri, over a finite field Fpi .
Here ni = Ri + 2z and pi = p

∏i
j=1 nj for prime p. It is shown that this finite field

nesting technique along with a recursive decoding algorithm allows any receiver to
recover all messages. Unfortunately, the exponentially growing finite field and the
recursive decoding algorithm deem this construction impractical.

This gap between single-source and multi-source network error correction is ad-
dressed in the first two chapters of this thesis. In particular, we aim to construct a
distributed network error-correcting code that achieves the capacity of multi-source
multicast networks. By distributed, we mean that the source nodes encode the
message they have independently of others. By carefully selecting the encoding
functions at the sources, one would want the packets obtained by the receiver to
appear as

Y = TC̃ + Z,

where C̃ comes from a single-sourceGabidulin code capable of correcting z errors in
the rank metric. Furthermore, one would hope for a construction whose underlying
field scales slowly in CM, the min-cut of the network. In this way, the receiver,
through a single use of aGabidulin code decoder, can efficiently recover allmessages.

The source-message relations (as depicted by Figure 1.2b) dictate certain constraints
on the encoding functions that one is allowed to use. Suppose we restrict ourselves
to linear encoding functions and consider the example whereby the communication
network is depicted in Figure 1.3, where the rate of eachMi is Ri = 1.

M1 M2 M3

S1 S2 S3 S4 S5 S6

T

Figure 1.3: In this multi-source multicast network, each source node Si is connected
directly to the receiver T . We assume that the rate of each messageMi is Ri = 1.

A distributed error-correcting code possesses a generator matrix of the following
form,

G =

g1,1 g1,2 g1,3 g1,4 0 0

0 0 g2,3 g2,4 g2,5 g2,6

g3,1 g3,2 0 0 g3,5 g3,6

 .

11

Here, we associate the ith row ofGwithMi and the j th column with Sj . In effect, the
node Sj encodes the messages it has access to by linearly combining them using the
coefficients in the corresponding column. The destination node receives a collection
of six elements of Fq of which z are corrupted by an adversary. For the destination
node to decode correctly, the variables gi,j are carefully selected from Fq so that the
code generated byG can correct z errors.

The way we select the gi,j’s heavily affects the decoding complexity of the code,
and so a careful choice is required to accomplish this and ensure optimal error
correction capabilities. In chapters 2 and 3, we formalize this framework and provide
constructions for certain classes of multicast networks so that efficient decoders can
be used at the destination node to recover the messages.

Distributed Data Storage
The introduction of error-correction techniques to the data storage realm beganwhen
Patterson et al. invented RAID [PGK88]. In the simplest form of the scheme, known
as RAID5, one uses n disks where n − 1 of them carry information while the last
one stores their exclusive-OR (XOR). Such scheme can tolerate any single failure.
RAID6 on the other hand, which is based on Reed–Solomon codes, employs two
parity disks to tolerate any two failures. In addition to minimum distance, figures
of merit by which a code’s performance is judged include encoding complexity, de-
coding complexity and repair complexity. Encoding complexity measures the effort
required to compute the parity symbols when the data is encoded. Furthermore,
it is also of interest to measure the computation required to modify code symbols
when a single data symbol is updated, known as the update complexity. Decoding
complexity measures the computational effort exerted when the information stored
in the storage system is to be read. Indeed, this depends on whether errors/erasures
have occurred, in which case a decoder must be utilized to recover the data. Repair
complexity, also commonly known today as locality, quantifies the smallest number
of code symbols from which any other code symbol can be computed.

With an eye toward constructions with low encoding complexity, Blaum and coau-
thors introduced the commonly used EVENODD codes in [Bla+95] as array codes3
that can correct any two erased columns. EVENODD codes are known to have
low encoding and decoding complexity; both require O(m2) additions in Fp when
the codewords are in F(m−1)×m

p . A generalization of EVENODD was presented
3An array code is one in which every codeword can be viewed as a matrix.

12

in [BBV96] to handle, under some assumptions, up to eight column erasures.

Today’s distributed storage systems also use Reed–Solomon codes, given their wider
range of parameters. See [Mur+14] and [Clo] for practical examples. Even though
these codes can tolerate an arbitrary number of erasures, practitioners have noticed
that while storage nodes fail regularly, a small number of them fail at a time. This
has led researchers to view error-correcting codes from the lens of repair. The first
framework proposed to address this problem is that of regenerating codes. Here,
one assumes that a error-correcting code is used to encode a data filem ∈ Fkq , where
q is a prime power, to a codeword c = (c1, . . . , cn) ∈ Fnq , where each ci is placed on
a storage node Si. This leads to the natural association between the columns of the
code’s generator matrix and the storage nodes. Now, suppose that a single storage
node fails; a question asked is the following: What is the total amount of data that
needs to be retrieved from surviving nodes to enable the repair of the failed node? In
principle, one can encode the file using an MDS code and then repair a failed node
by retrieving data from k other surviving nodes. In the seminal work of Dimakis
et al.[DPR06], it was shown that, using certain codes, one can contact more than
k nodes but download less data overall, less than the size of the whole data file in
particular. This work formulated what became to be known as the storage versus
repair-bandwidth trade-off, which characterizes the balance that needs to be struck
between the amount of data that needs to be stored per node, versus the amount
that needs to be downloaded when a repair job is invoked. Several contributions
followed in [Ras+09; RSK11; Sha+12a; Sha+12b]. Due to their ubiquity, recent
efforts have been dedicated to the study of repairing Reed–Solomon codes [GW15].

A parallel line of work focuses on the notion local repair. First formulated in [OD11]
and [Gop+12], the notion of local repair aims to address a similar problem as that
of regenerating codes. However, it focuses on the following question: Given an
error-correcting code C of length n and dimension k, what is the smallest number r
such that for any codeword, any code symbol can be recovered by accessing r other
code symbols? Codes that address this problem are known as locally repairable
codes (LRCs). Formally, an LRC C ⊂ Fnq has locality r if for each i ∈ {1, . . . , n},
there is a subset Ii ⊂ {1, . . . , n}\ i, where |Ii| ≤ r such that ci = fi({cj : j ∈ Ii}).
The coordinates ci ∪ {cj : j ∈ Ii} form what is known as a local repair group. A
Singleton-type bound of the form

d ≤ n− k −
⌈
k

r

⌉
+ 2 (1.3)

13

was derived for linear codes in [Gop+12] and later generalized in [PD12] to all
codes4. The works [Raw+12; Sil+13] provided optimal constructions (with re-
spect to (1.3)) based on Gabidulin codes, where the underlying finite field scales
exponentially in n. Tamo and Papailiopoulos presented in [TPD13] a concatenated
code construction whose underlying field scaled exponentially in the code dimen-
sion. Tamo and Barg [TB14; TB15] presented elegant constructions, which can be
viewed as subcodes of Reed–Solomon codes, over finite fields that scale linearly in
n.

Once an error-correcting code for a storage system is fixed, it is preferred to have
its generator matrix in systematic form. Indeed, in the absence of erasures/errors, a
systematic code allows the data collector to read off the message symbols directly
without any added read complexity. It is well known, though, that the parity columns
in a systematic generatormatrix of anMDScode are completely dense, i.e. all entries
in these columns have to be nonzero. As an example, a systematic MDS code of
length 6 and dimension 4 has a generator matrix of the following mask:

G =


1 0 0 0 × ×
0 1 0 0 × ×
0 0 1 0 × ×
0 0 0 1 × ×

 . (1.4)

The structure of this mask can be captured by a graph as depicted in Figure 1.4a.
While systematic codes are essential in “read" intensive applications, they do require
the parity disks to exert maximal encoding effort when computing their symbols.
But what if “reads" are not very common? Can we relieve this stress from the parity
nodes without sacrificing the code’s error correction capabilities? This question
was first considered by Dau et al. [Dau+13] in an abstract context where the authors
were interested in constructing balanced and sparsest generator matrices for MDS
codes. For anMDS code of length n and dimension k, this translates to having every
row be of weight n− k + 1 and every column of weight

⌊
k(n−k+1)

n

⌋
or
⌈
k(n−k+1)

n

⌉
.

The authors showed that a random construction over a large field is possible with
high probability. A balanced and sparse generator matrix of an MDS code is indeed
suitable for distributed storage systems responsible for “cold" data [Goo; Ama; Fac].
In this setting, the data being stored is of archival nature so it’s barely read. Given
this observation, one might consider employing a balanced and sparsest MDS code

4In the case of nonlinear codes, it was assumed that the code was of cardinality qk, where q is
the order of the underlying finite field.

14

m1 m2 m3 m4

c1 c2 c3 c4 c5 c6

(a) Systematic Code: The two parity symbols
are connected to all message symbols, as nec-
essary for the code to be MDS.

m1 m2 m3

c1 c2 c3 c5

m4

c4 c6

(b)BalancedCode: Every code symbol is con-
nected to the same number of message sym-
bols, and vice versa.

Figure 1.4: A code’s generator matrix can be represented by a bipartite graph on the
set of message symbols and the set of code symbols, where an edge betweenmi and
cj implies that cj is (potentially) a function ofmi. The converse to this statement is
also true: the absence of an edge implies that cj cannot be a function ofmi.

in an archival storage system to balance out the encoding effort across all storage
nodes. As an example, the generator matrix of an MDS code of length 6 and
dimension 4 is given by

G =


× × × 0 0 0

0 0 0 × × ×
0 × × × 0 0

× 0 0 0 × ×

 ,
and is represented pictorially in Figure 1.4b. It turns out that, with a careful choice
of the nonzero entries, the matrix G can be made to generate a Reed–Solomon
code over F7. In Chapter 5, we describe this process in detail and prove that it is
always possible to construct a balanced and sparsest generator matrix for any cyclic
Reed–Solomon code. Furthermore, an analogous result for Tamo–Barg codes is
provided.

Distributed Computation
Mitigating the effect of straggling machines in a distributed computation setup
by utilizing error-correcting codes is a relatively new concept. In comparison to
replication-based techniques [WJW14; WJW15], Lee et al. showed in [Lee+16]
how substantial speed-ups can be realized by using MDS codes to perform coded
computation. Formally, suppose that one is interested in computing a function of
the form

f(X) := f(x1, . . . , xN), (1.5)

where thexi ∈ Fp comprise the given datasetX = {x1, . . . , xN} andF is an arbitrary
field. Certain forms of f facilitate its computation in parallel. In particular, suppose

15

that one can find functions h and g so that

f(X) = h(g(X1), . . . , g(Xk)), (1.6)

where the sets X1, . . . ,Xk form a disjoint partition of X . To evaluate f(X) using
a cluster of n machines, a taskmaster paritions X into n disjoint partitions and
assigns the computation of g(Xi) to each machine Si. The machines perform their
computation in parallel and send back the results to the taskmaster, which applies the
function h on {g(Xi)}ni=1 and recovers f(X). In a practical scenario, the taskmaster
has to wait for all n machines to return before it can evaluate f(X). Due to the
heterogeneous nature of shared computing clusters, some of the n machines might
experience severe delay before their results are sent back to the taskmaster [DB13].
In this case, one can utilize coding by asking the machines to compute the functions
in a redundant fashion. In particular, we partition the dataset into k < n partitions
and assign to each machine Si the computation of {g(Xij)}wj=1, where 2 ≤ w ≤ k.
Then, each Si sends back to the taskmaster a prescribed linear combination of the
form

ci =
w∑
j=1

bi,jg(Xij).

The coefficients bi,j are chosen in a way such that once a total of f machines indexed
by l1, . . . , lf return, the task master can decode {g(Xij)}wj=1 from cl1 , . . . , clf and
apply the function h to compute f(X). Suppose that the computation of interest
is the multiplication of the matrix X, corresponding to X , by a vector y. For this
application, the functions f , g are

f(X) =


— xt1 —

...
— xtn —



y1

...
yp

 ,

g(Xj) =


— xt(j−1)N/k+1 —

...
— xtjN/k —



y1

...
yp

 ,
and h is simply the identity function. In [Lee+16], it was shown that the function
f can be recovered from any k machines by choosing the bi,j as the entries of the
generator matrix of an MDS code of length n and dimension k over F. Furthermore,
due to the linearity of f , the scheme can be implemented in way such that the

16

taskmaster encodes the matrices {Xj}kj=1 corresponding to {Xj}kj=1 as

Ci =
k∑
j=1

bi,jXj

and providesCi to Si along with the vector y. Once Si returnsCiy, the taskmaster
can recover Xy from any k such products. The work of [DCG16] presented a
scheme in which the resulting matrices Cj are sparse, hence speeding up the com-
putation at each machine. In this way, each machine performs a single matrix-vector
multiplication compared to w of them. In [LMA16a], Li et al. consider coded dis-
tributed matrix multiplication in the context of aMapReduce framework, where they
established a trade-off between the computational latency and the communication
load of such scheme. They further proposed a coding scheme whose performance
comes within a multiplicative gap of the fundamental tradeoff. In [Rei+17], coded
matrix multiplication is considered in a heterogeneous setting where the machines
comprising the cluster are of different capabilities. A coding scheme is proposed
that achieves logarithmic (in the total number of machines) speedup when compared
to other schemes.

In the context of machine learning, Tandon et al considered in [Tan+16] a distributed
gradient descent scenario in the presence of stragglers. Formally, suppose one is
interested in fitting a vector of parameters β ∈ Rp to a dataset D = {(xi, yi)}Ni=1,
where xi ∈ Rp and yi ∈ R, subject to a loss function L that is separable in data, i.e.

L(D; β) =
N∑
i=1

`(xi, yi, β),

where ` is the loss function evaluated at (xi, yi). The separability of the function
L in the data allows us to write its gradient with respect to β as ∇L(D; β) =∑N

i=1∇`(xi, yi, β). The fitting problem can now be solved using gradient descent
in a distributed fashion. In [Tan+16], a similar coding-theoretic framework was
proposed for the recovery of the full gradient∇L(D; β) in the presence of stragglers.
The proposed scheme, which is based on random MDS codes over R, partitions the
dataset D into n partitions and each machine is provided with a specific subset of
size w, determined by the maximum number of stragglers s to be tolerated. For a
given s, their scheme achieves a theoretical lower bound on w, thereby minimizing
the workload per machine. The taskmaster recovers the full gradient from the fastest
f := n − s machines by inverting a matrix of order f , with complexity O(f 3). In
such a setting, it is natural to assume a probabilistic model for the response time

17

of each machine and then choose w so that the expected time required to compute
∇L(D; β) is minimized. Toward this end, we adapt the framework of [Tan+16] and
present in Chapter 6 a deterministic coding scheme, along with anO(f 2) complexity
decoder, that tolerates the largest number of stragglers for a fixed amount of data
assigned to each machine. Furthermore, we introduce a delay model that serves as
a guide for selecting the scheme’s parameters so that the expected time required to
compute∇L(D, β) is minimized.

1.3 Summary of Contributions
This thesis aims to provide deterministic and efficient code constructions for three
scenarios that are inherently distributed, whilemaintaining the highest error-correction
guarantees theoretically permissible. Technically speaking, we are presented with
the challenge of designing error-correcting codes whose encoding functions satisfy
certain constraints. In some cases, such as network error correction, these constraints
are dictated by the underlying topology, while in others, such as distributed data
storage and distributed computation, designing these constraints carefully can result
in desirable computational properties. A detailed outline of these contributions are
presented in the sequel.

Network Error Correction
In Chapter 2, we study the problem of network error correction in the context of
simplemultiple access networks (SMANs). In such network, a group of source nodes
collectively hold a set of messages and are directly connected, via unit-capacity relay
links, to a receiver node. The network operates in the presence of z erroneous relay
links. An example of this network is given in Figure 1.3. When the number of
messages is L = 3, we show that the capacity region of this network, given by (1.2),
is achieved by a construction we call distributed Reed–Solomon codes. These
are subcodes of classical Reed–Solomon codes whose generator matrices obey the
encoding constraints imposed by the SMAN in consideration. Being subcodes of
Reed–Solomon codes, they can be decoded by a variety of efficient decoders [WB86;
Mas69; GS99]. Furthermore, the finite field over which the codes operate scales
linearly in the number of source nodes and so in that respect they are optimal.

In Chapter 3, we provide analogous constructions, based on Gabidulin codes, for
general multiple-source multicast networks, when the number of messages isL = 3.
In particular, this provides the first construction for this setting that is both capacity-
achieving and efficient. The proposed scheme requires decoding complexity that is

18

polynomial in the network size and constant in the number of messages, compared to
existing techniques where the decoding complexity was exponential in the number
of messages. The code is fully distributed and is oblivious to the underlying network
code; only the source nodes need to perform additional computation. The decoder at
the receiver node remains unchanged and can be chosen as one of the many efficient
Gabidulin code decoders [SKK08; SK09a; WAS13; Loi06].

Distributed Data Storage
In Chapter 4, we formalize the problem of coding with encoding constraints, where
a given bipartite graph (see Figure 1.4) describes the feasible relations between
message symbols and code symbols. A upper bound on the minimum distance
of any error-correcting code that obeys the encoding constraints is presented and
is shown to be achievable under certain technical conditions. We show that it is
possible to achieve this bound using a carefully constructed subcode of any MDS
code, and in particular Reed–Solomon codes. When the code is required to be
systematic, we refine our bound and show that it is achievable, also using MDS
codes.

In Chapter 5, we construct generator matrices for Reed–Solomon codes that are
balanced. In this setting, we are provided with the flexibility of designing the mask
of the generator matrix so that it exhibits desirable properties. In particular, for any
desired row weight w where n− k + 1 ≤ w ≤ n− 1, we show how to construct a
generator matrix G for a cyclic Reed–Solomon code of length n and dimension k
so that the following two properties hold:

• Every row is of weight w.

• Every column is of weight
⌈
kw
n

⌉
or
⌊
kw
n

⌋
.

Such matrix is called a balanced matrix. We emphasize the usefulness of such a
construction by advocating a distributed storage system in which the encoding is
done distributedly, i.e. every storage node in the system encodes a preallocated set of
message symbols independently of the rest. Furthermore, a generator matrix of the
form just described ensures that, for any fixedw, the maximal encoding time over all
storage nodes is minimized. As a result, such a scheme is computationally balanced
as no storage node behaves like a bottleneck. While our codes are not systematic,
the update complexity is still minimal for any chosen w, i.e. updating one message
symbol impacts exactly w storage nodes. From a theoretical standpoint, it is worth

19

mentioning that our results generalize the setup of [Dau+13] and provide efficient
constructions for it. We also present balanced Tamo–Barg codes for cyclic versions
of the code, where w can be selected from a wide range of parameters. All of the
presented constructions operate over the same finite field of the underlying codes,
namely Fq where q ≥ n, and so the computational efficiency remains intact.

Distributed Computation
In Chapter 6, we consider a cluster of n machines assigned the task of computing
the gradient ∇L(D; β) of a loss function L with respect to a parameter vector β,
where the dataset D is partitioned into k disjoint sets {Di}ki=1. We construct a
deterministic coding scheme, based on Reed–Solomon codes, that facilitates this
computation in the presence of stragglers. Our scheme differs from others in that
it is determined by a pair (w, k), where w is the number of data partitions assigned
to each machine. Given such a pair, we carefully construct a balanced matrix that
prescribes the coding coefficients for each machine. For every (w, k), our scheme
achieves a lower bound, due to Tandon et al. [Tan+16], on the number of machines
f(w, k, n) needed for recovering ∇L(D; β). An algorithm is developed to recover
∇L(D, β) in O(f 2) time and, contrary to previous works, avoids computing an
entire matrix inverse; our decoder is also efficient in space.

Furthermore, we propose a delay model that incorporates the decoding complexity
and from there, we provide an expression in terms of w, k and n for the expected
time required to compute ∇L(D; β). The expression accounts for the time spent
by each machine for computation (and encoding), the delay in the response time
modeled as a Pareto random variable, and the decoding time. The expression
can be numerically optimized to find the minimizing w and k. Since w and k
determine the fraction of data given to a machine, our setup provides a practical way
to design schemes that ensure minimal response time, when the machines utilized
have to adhere to a memory constraint. We supplement our theoretical findings with
numerical simulations and validate the effectiveness of the proposed scheme.

20

C h a p t e r 2

DISTRIBUTED REED–SOLOMON CODES

2.1 Introduction
We consider the problem of error correction in multi-source multicast networks. In
general, such network is one where a set of source nodes are to communicate, with
the aid of a network, a set of messages to a collection of destination nodes. We
restrict ourselves to simple multiple access networks (SMAN), a family of networks
which we formalize in this chapter and can capture various network error correction
and key distribution scenarios. In a SMAN, a single destination node wishes to
reconstruct a set of messages available at the source nodes with the aid of a single
layer of relay nodes (see Figure 2.1). Each relay node can communicate with a
subset of the source nodes, and is connected to the destination by a unit1 capacity
link. We wish to design a distributed code that can correct arbitrary errors on up to z
links that connect the relay nodes to the destination. Equivalently, one wishes to be
resilient to z erroneous relay nodes. This problem has been considered previously
by [YHN11] in the context of decentralized distribution of keys from a pool, where
it was shown to be a special case of the general multiple-access network error-
correction problem, whose capacity region was established in [Dik+10]. It also
applies generally to other distributed data storage/retrieval scenarios where different
nodes store different subsets of the source messages.

In this chapter, we introduce a framework for constructing a computationally efficient
coding scheme, based on Reed–Solomon codes, for correcting errors in SMANs.
Specifically, the relay nodes encode the messages they have access to in a distributed
fashion such that the destination node receives a set of code symbols which, when
viewed as a single vector, form a codeword from a single Reed–Solomon code.
This permits the destination node to recover the desired messages efficiently using
standard decoders designed for Reed–Solomon codes [Mas69; WB86]. This scheme
obviates the need for encoding over successively larger nested finite fields at each
source as in the prior construction of [Dik+10]. We prove that the proposed coding
scheme achieves the full capacity region for such networks with up to three sources.

1We are considering an algebraic setting so a unit corresponds to the size of one element from
the underlying finite field.

21

Related Work
Themulti-sourcemulticast problemwasfirst introduced byDikaliotis et al. in [Dik+10].
Under the assumption of adverserial errors, the capacity region for such networks
was established, and an error correction scheme based on Gabidulin codes [Gab85].

Closer to the realm of this work, the work of [Dau+13], motivated by distributed
sensor networks, introduced the notion of balanced and sparsest MDS codes. There,
one is interested in construction MDS codes with generator matrices that are sparse
and have balanced column weights. The work of Dau et al. in [DSY14; DSY15]
analyzes, amongst others, the problem considered in this chapter and conjecture
that Reed–Solomon codes attain the capacity region of SMANs for any number of
sources.

Also closely related is the work of Yan et al. in [YS11; YSZ14], in which the data
exchange problem under weak security is considered. In the network considered,
the nodes, each of which holds a subset of messages, communicate cooperatively,
via error-free broadcast transmissions, in order to disseminate all messages subject
to the presence of an eavesdropper. The existence of a secure transmission scheme
is proven, using probabilistic arguments, by showing how to construct an MDS code
subject to sparsity constraints, similar to the ones we consider, over an exponentially
growing finite field.

2.2 Preliminaries
We begin this section by presenting a formal definition of an SMAN. Next, we show
how the problem of constructing a linear error-correcting code for such a network is
algebraically equivalent to building a structured generator matrix for a code capable
of correcting z errors. The required structure is identified by the graph defining
the SMAN. We will consider algebraic codes, Reed–Solomon codes in particular,
defined over Fq, the finite field of q elements.

Simple Multiple Access Networks

Definition 2.1. A simple multiple access network is represented by a bipartite graph
G = (S,V , E), where the set of source nodes is S = {S1, . . . , Sm}, the set of relay
nodes is V = {v1, . . . , vn} and the edge set is given by E . A source node Si is
connected to a relay node vj , via a relay link, if and only if (i, j) ∈ E . Each Si
carries a message Mi of size ri symbols from Fq and the destination node D is
interested in retrieving allMi’s by connecting to all relay nodes.

22

D

S1 S2 S3

v2 v5 v7v6v3v1 v4 v8 v9 v10

Figure 2.1: An example of an SMAN with 3 source nodes and 10 relay nodes.

An adjacency matrix A is associated with an SMAN, where the rows and columns
represent S and V , respectively, and Ai,j = 1 if and only if (i, j) ∈ E . An example
of an SMANwith three source nodes and ten relay nodes is given in Figure 2.1. The
corresponding adjacency matrix is

A =

1 0 0 0 0 1 1 1 1 1

0 1 0 1 1 0 0 1 1 1

0 0 1 1 1 1 1 0 0 1

 . (2.1)

We consider an SMAN inwhich z of the links connecting the relays to the destination
are erroneous. For each S ′ ⊆ S, the minimum cut capacity (min-cut) from S ′ to D
is denoted by CS′ . From [Dik+10], the capacity region R of an SMAN is given by
cut set bounds for each subset of sources.

Theorem 2.1 (Dikaliotis et al. [Dik+10]). The capacity region of an SMAN is the
set of all rate vectors r = (r1, r2, . . . , rm) such that∑

Si∈S′
ri ≤ CS′ − 2z,∀S ′ ⊆ S. (2.2)

Furthermore, it suffices to carry out linear coding at internal network nodes, where
each vi transmits linear combinations of received symbols over Fq.

It is easy to see that in a SMAN, the min-cut CS′ is given by the number of
relay nodes that are connected to at least one node in S ′. Formally, we have
CS′ = |{vj ∈ V : ∃Si ∈ S ′, (i, j) ∈ E}|.

Having characterized the capacity region of an SMAN, we are interested in con-
structing codes that can achieve every rate vector in this region. The main result

23

of this chapter ensures that Reed–Solomon codes can be used to do so when the
network has three sources.

Problem Formulation
Given an SMAN defined by G = (S,V , E), one is interested in constructing a
distributed error-correcting code that can achieve the capacity region of the network
in the presence of z erroneous relay links. Here, a distributed code is one in which
each relay node encodes the information symbols it has access to independently of
the others. Since each Si carries an ri sized message, this can be represented a
vectormi ∈ F1×ri

q . The encoding symbol associated with vj is now given by

cj =
∑

i:(i,j)∈E

migi,j, (2.3)

where gi,j ∈ Friq is the encoding vector that vj uses to encode mi. Collectively,
these vectors can organized in a matrix

G =


G1

G2

...
Gm

 =


g1,1 g1,2 · · · g1,n

g2,1 g2,2 · · · g2,n

...
...

gm,1 gm,2 · · · gm,n

 . (2.4)

Some of these vectors will necessarily be equal to the zero vector of appropriate
size. In particular, if [A]i,j = 0, then gi,j = 0. As an example, the generator matrix
corresponding toA in (2.1) is given below.

G =

 g1,1 0 0 g1,4 g1,5 g1,6 g1,7 0 0 g1,10

0 g2,2 0 g2,4 g2,5 0 0 g2,8 g2,9 g2,10

0 0 g3,3 0 0 g3,6 g3,7 g3,8 g3,9 g3,10

 .
This formulation captures the entire coding operation performed in the network.
Indeed, ifwe collect themessage vectors asm = (m1, . . . ,mm), then the destination
node receives

y = c + e,

where c = mG ∈ Fnq is the concatenation of the code symbols transmitted by the
relay nodes. The goal now is to recover m from y when the weight of e is at most
z. Furthermore, we would like to do this for any rate vector (r1, . . . , rm) in the
capacity region of G. The main result of this chapter shows that when m = 3,
the matrix G can be specified in a way such that it spans a subcode of a z-error

24

correcting Reed–Solomon code. The underlying field Fq of the code is size-optimal,
meaning we require q to be the smallest prime power greater than n. As a result,
the destination node can efficiently recover the the source messages using classical
Reed–Solomon decoders.

Distributed Reed–Solomon Codes
To construct a distributedReed-Solomon code for a givenSMANwithn intermediate
relay nodes and z corrupt relay links/nodes, we start with a Reed–Solomon code
RS[n, k] of length n and minimum distance 2z + 1, so that the dimension of this
code is k = n − 2z. As described earlier, the adjacency matrix of the network
specifies constraints on the generator matrix of the distributed code. Each row of
Gi ∈ Fri×nq in (2.4) has the sparsity pattern of Ai, the ith row of A. For each Si,
the main task then is to find ri codewords in RS[n, k] that have the same support as
Ai. Once these codewords are collected in Gi for each i, we would like the overall
matrix in (2.4) to be of rank r :=

∑m
i=1 ri. This will imply that these codewords

span an r-dimensional subcode of RS[n, k] which is also z-error correcting.

Main Result
Themain result of this chapter is proving the existence of distributed Reed–Solomon
codes, over a small finite field, for any SMAN with three source nodes. More
precisely, we prove the following theorem.

Theorem 2.2 (Main Result). Let G = (S,V , E) be an SMAN with three sources, in
which z relay links are erroneous. Then, a distributed Reed–Solomon code over Fq
exists capable of correcting z errors, where q ≥ |V| is sufficient.

The theorem is proved via a series of results presented in the next section. In
particular, we will characterize three cases under which any SMAN is categorized.
Each case is treated separately and a code construction is provided. Together, three
main propositions unite to form the basis of the main theorem.

2.3 Construction
By relying on the polynomial nature of Reed–Solomon codes, we can identify each
codeword with a polynomial of degree less than k. Let α ∈ Fq be a primitive
element and associate the j th column of A with αj . One can form a polynomial
pi(x) that vanishes on αj whenever Ai,j = 0. Once this polynomial is sampled at
A = {α, . . . , αn}, the resulting codeword has the same support asAi.

25

Observation 2.1. Suppose that [A]i,j = 0 for j ∈ Ri and let pi(x) =
∏

j∈Ri(x−αj).
Then pi(α

j) = 0 if and only if [A]i,j = 0. In other words, the codeword c

corresponding to pi(x) has the same support asAi.

This observation allows us to focus on polynomials rather than codewords, and
reformulate the capacity region (2.2). Therefore, for each i = 1, . . . ,m, our goal is
to find a set of ri polynomials Ti each of degree less than k and each of which has
pi(x) as a factor. Furthermore, the polynomials in ∪mi=1Ti are linearly independent
over Fq.

Reformulating the Capacity Region of an SMAN

Definition 2.2. The set of polynomials of degree less than k in which each element
vanishes onR ⊆ {α, . . . , αn} is denoted by polyk (R).

Since this set is a linear space over Fq, we state its dimension.

Lemma 2.1. The dimension of polyk (R) over Fq is dim (polyk (R)) = (k− |R|)+.

Proof. Indeed, when |R| ≥ k, the only element in polyk (R) is the zero polynomial.
Otherwise, observe that any p(x) ∈ Pi can be written as c(x)gj(x) where c(x) is the
minimal polynomial of Ri. Then, deg (gi(x)) < k − |Ri|. Any set of polynomials
{b1(x), . . . , br(x)} is linearly independent if and only if {g1(x), . . . , gr(x)} is lin-
early independent. When considered as vectors of k − |Ri| entries, the maximum
number of linearly independent such vectors is then precisely k − |Ri|, and in this
case achieved by taking gi(x) = xi, for i ∈ {0, . . . , k − |Ri| − 1}.

Given an SMAN defined by G = (M,V , E), we can associate every vj ∈ V with
the αj . With this association, we require a polynomial corresponding to a row ofGi

(see (2.4)) to vanish on all those αj’s for which Si is not connected to vj , i.e. with
every Si we associate a set of roots Ri, corresponding to those relay nodes that are
not connected to Si. Note that Ci can now be expressed as

Ci = |{vj : (i, j) ∈ E}| = |V| − |{vj : (i, j) /∈ E}| = n− |Ri|.

Similarly, we have

CS′ = n− |{vj : ∀Si ∈ S ′, (i, j) /∈ E}| = n− | ∩Si∈S′ Ri|.

26

As a result, the capacity region of an SMAN is given by∑
Si∈S′

ri ≤ k − | ∩Si∈S′ Ri|,∀S ′ ⊆ S, (2.5)

where we have used the fact that k = n − 2z. We can now formulate the problem
of finding a capacity-achieving code for an SMAN with z erroneous links to one
where we require m subsets of polynomials T1, . . . , Tm where |Ti| = ri and ∪mi=1Ti
is a linearly independent set over Fq, and the cardinalities obey (2.5). Furthermore,
each polynomial in Ti vanishes on Ri = {αj : [A]i,j = 0} and is of degree less
than k. We will study how the linear spaces generated by the Ti’s interact and then
provide the main results. To this end, we define Pi := polyk (Ri).

Fact 2.1. Given Pi,Pj , we have Pi ∩ Pj = polyk (Ri ∪Rj).

Proposition 2.1. Let k ≥ | ∪ni=1 Ri|. Then 〈P1, . . . ,Pn〉 = polyk (R1 ∩ · · · ∩ Rn).

Proof. We demonstrate the proof using induction. For the base case, fix n = 2.
Clearly, we have 〈P1,P2〉 ⊆ polyk (R1 ∩R2). Let k ≥ |R1 ∪R2| and express
dim (〈P1,P2〉) as follows,

dim (〈P1,P2〉) = dim (P1) + dim (P2)− dim (P1 ∩ P2)

= k − |R1|+ k − |R2| − (k − |R1 ∪R2|)+

= k − (|R1|+ |R2| − |R1 ∪R2|)
= k − |R1 ∩R2|
= dim (polyk (R1 ∩R2)) .

Thus, we assert that 〈P1,P2〉 = polyk (R1 ∩R2). For the inductive step, let
k ≥ | ∪n+1

i=1 Ri| and assume that 〈P1, . . . ,Pn〉 = polyk (R1 ∩ · · · ∩ Rn). We know
that

dim (〈〈P1, . . . ,Pn〉 ,Pn+1〉) = dim (polyk ((R1 ∩ · · · ∩ Rn) ∩Rn+1)) ,

so we conclude that 〈P1, . . . ,Pn+1〉 = polyk (R1 ∩ · · · ∩ Rn + 1).

Corollary 2.1. Suppose k ≥ | ∪ni=1 Ri|. Then, we have that

Pn ∩ 〈P1, . . . ,Pn−1〉 = 〈P1 ∩ Pn, . . . ,Pn−1 ∩ Pn〉.

Proof. Fact 2.1 implies Pn ∩ 〈P1, . . . ,Pn−1〉 = polyk
(
Rn ∪ (∩n−1

i=1Ri)
)
. This is

exactly 〈P1 ∩ Pn, . . . ,Pn−1 ∩ Pn〉 after interpreting it as a polynomial space using
Proposition 2.1.

27

Definition 2.3. Let P1,P2 be subspaces. Define P1\P2 as the unique subspace that
is a direct sum complement of P1 ∩ P2 in P1, i.e. P1 = (P1\P2)⊕ (P1 ∩ P2).

The following two facts follow easily from the definition.

Fact 2.2. Let 〈P1,P2〉 denote the Minkowski sum of P1 and P2. Then, 〈P1,P2〉 =

(P1\P2)⊕ P2.

Fact 2.3. 〈P1,P2〉 = (P1\P2)⊕ (P2\P1)⊕ (P1 ∩ P2).

Let us see how these observations allow us to construct a distributed Reed–Solomon
code for an SMAN with two sources.

Code Construction for SMAN with Two Source Nodes

Proposition 2.2 (two-source distributed Reed–Solomon code). Let G(S,V , E) de-
fine an SMAN with two source nodes in which z relay links are erroneous. Let Ri

correspond to the relay nodes in V not connected to Si. Then, for any rate pair
(r1, r2) such that

r1 ≤ k − |R1|,
r2 ≤ k − |R2|,

r1 + r2 ≤ k − |R1 ∩R2|,

there exists a distributed Reed–Solomon code capable of correcting up to z errors.

Proof. Let k = n − 2z. First, assume that k < |R1 ∪R2|. By Lemma 2.1 and
Fact 2.1, we have that P1 ∩P2 is trivial. Furthermore, we have dim (Pi) = k− |Ri|
so ri ≤ dim (Pi). Let Ti be a set of ri linearly independent polynomials chosen from
Pi. Let Fq be such that q ≥ n. Let A = {α, . . . αn} where α ∈ Fq is primitive.
Consider the set of vectors Gi = {(p(α), . . . , p(αn)) : p(x) ∈ Ti} ⊆ RS[n, k]. By
Observation 2.1, for each vector in Gi, the entries corresponding to Ri are equal
to 0. As a result, when organized as the rows Gi, each row of this matrix has the
support of Ai. Since P1 ∩ P2 is trivial, we know that T1 ∪ T2 span an Fq-linear
space of dimension r1 + r2 and so rank (G) = r1 + r2.

Now consider the case when k ≥ |R1 ∪R2|. Here, we can utilize Fact 2.1 to infer
that 〈P1,P2〉 = polyk (R1 ∩R2), so dim (〈P1,P2〉) = k − |R1 ∪R2|. We can

28

write the cut-set bounds as

r1 ≤ dim (P1\P2) + dim (P1 ∩ P2) ,

r2 ≤ dim (P2\P1) + dim (P1 ∩ P2) ,

r1 + r2 ≤ dim (P1\P2) + dim (P2\P1) + dim (P1 ∩ P2) .

For the first two bounds, we have utilized Definition 2.3 whereas the last bound
follows from Fact 2.3. Assume that both r1 > dim (P1\P2) and r2 > dim (P2\P1).
Otherwise, if for example r1 ≤ dim (P1\P2) holds, then we can choose T1 as a set of
r1 linearly independent polynomials from P1\P2 and T2 as a set of r2 polynomials
from P2 and guaranteeing that T1 ∪ T2 span a linear space of dimension r1 + r2.
Now let r1 = dim (P1\P2) + δ1 and r2 = dim (P2\P1) + δ2. It follows from
the third cut-set bound that δ1 + δ2 ≤ dim (P1 ∩ P2). As a result, we let T1 be
a set of polynomials comprising a basis for P1\P2 and δ1 linearly independent
polynomials from P1 ∩ P2. Similarly, the set T2 comprises a basis for P2\P1 and
set of δ2 linearly independent polynomials from dim (P1 ∩ P2) not chosen in T2. By
Fact 2.3, it follows that T1 ∪ T2 is a linearly independent set of polynomials. The
generator matrix G is built analogously as earlier and is full rank, so the proof is
complete.

While it might seem that method used to construct a distributed Reed–Solomon code
for two-source SMANs is more complicated that possibly necessary, the technique
used to handle the three-source case heavily relies on it.

Code Construction for SMANs Where k ≥ |R1 ∪R2 ∪R3|
We prelude by presenting key results that generalize Facts 2.1 and 2.3. In particular,
we will show how to decompose all possible Minkowski sums of P1, P2 and P3

in a way that allows us to formulate the code construction problem into one based
on resource allocation. The decompositions will further allow us to express the
capacity region 2.5 in a form that is directly related to the dimensions of the derived
spaces.

Lemma 2.2. Let Pi = polyk (Ri) and suppose k ≥ |R1 ∪R2 ∪R3|. Then,

〈P1,P2,P3〉 =P1\ 〈P2,P3〉 ⊕ P1\ 〈P2,P3〉 ⊕ P3\ 〈P1,P2〉
⊕(P1 ∩ P2)\P3 ⊕ (P1 ∩ P3)\P2 ⊕ (P2 ∩ P3)\P3

⊕(P1 ∩ P2 ∩ P3).

29

Proof. By Fact 2.3, we have P1 = P1\ 〈P2,P3〉 ⊕ P1 ∩ 〈P2,P3〉. Furthermore,
Proposition 2.1 implies P1 ∩ 〈P2,P3〉 = 〈P1 ∩ P2,P1 ∩ P3〉, where another appli-
cation of Fact 2.3 yields

〈P1 ∩ P2,P1 ∩ P3〉 = (P1∩P2)\(P1∩P3)⊕ (P1∩P3)\(P1∩P2)⊕P1∩P2∩P3.

Furthermore, note that P1 ∩ P2 = (P1 ∩ P2)\(P1 ∩ P3) ⊕ (P1 ∩ P2 ∩ P3) and
P1∩P2 = (P1∩P2)\P3⊕(P1∩P2∩P3)which implies that (P1∩P2)\(P1∩P3) =

(P1 ∩ P2)\P3. Likewise, we have (P1 ∩ P3)\(P1 ∩ P2) = (P1 ∩ P3)\P2. This
allows us to conclude that

P1 = P1\ 〈P2,P3〉 ⊕ (P1 ∩ P2)\P3 ⊕ (P1 ∩ P3)\P2 ⊕ (P1 ∩ P2 ∩ P3).

Similarly, one obtains

P2 = P2\ 〈P1,P3〉 ⊕ (P1 ∩ P2)\P3 ⊕ (P2 ∩ P3)\P1 ⊕ (P1 ∩ P2 ∩ P3);

P3 = P3\ 〈P1,P2〉 ⊕ (P1 ∩ P3)\P2 ⊕ (P2 ∩ P3)\P1 ⊕ (P1 ∩ P2 ∩ P3).

It now follows that

〈P1,P2,P3〉 =P1\ 〈P2,P3〉+ P1\ 〈P2,P3〉+ P3\ 〈P1,P2〉
+(P1 ∩ P2)\P3 + (P1 ∩ P3)\P2 + (P2 ∩ P3)\P3

+(P1 ∩ P2 ∩ P3),

(2.6)

where it remains to prove that this decomposition is a direct sum. Let pI denote
an element in (∩i∈IPi)\ 〈{Pi′}i′ /∈I〉. For example, p1 ∈ P1\ 〈P2,P3〉 and p1,2,3 ∈
(P1 ∩ P2 ∩ P3) Suppose that the polynomial p(x) ∈ 〈P1,P2,P3〉 can be expressed
in two different ways. This implies that

∑
I⊆{1,2,3} pI = 0 where not all pI are zero.

Without loss of generality, suppose p1 6= 0. Note that all the remaining pI’s are such
that I∩{2, 3} 6= ∅. As a result, we conclude that p1 = −∑I∩{2,3}6=∅ pI ∈ 〈P1,P2〉.
Thus we obtain a contradiction since p1 ∈ P1\ 〈P2,P3〉, so it must be that p1 = 0.
Similarly, we have p2 = 0 and p3 = 0. Now suppose, again without of generality,
that p1,2 6= 0. Then, we have−p1,2 = p1,3 + p2,3 + p1,2,3 ∈ P3, again a contradiction
since p1,2 /∈ P3. Theremore, we deduce p1,2 = p1,3 = p2,3 = 0. Lastly, it follows
that p1,2,3 = 0 so we conclude that the decomposition in (2.3) is indeed a direct
sum.

This lemma allows us to express the polynomial spaces of interest as decompositions
of subspaces that will aid us in constructing distributed Reed–Solomon codes.

30

Proposition 2.3. Let Pi = polyk (Ri) and suppose k ≥ |R1 ∪R2 ∪R3|. For each
I ⊆ {1, 2, 3}, define DI = (∩i∈IPi)\ 〈{Pi′}i′ /∈I〉 with dI = dim (DI). Then,

P1 = D1 ⊕D1,2 ⊕D1,3 ⊕D1,2,3,

P2 = D2 ⊕D1,2 ⊕D2,3 ⊕D1,2,3,

P3 = D3 ⊕D1,3 ⊕D2,3 ⊕D1,2,3,

〈P1,P2〉 = D1 ⊕D2 ⊕D1,2 ⊕D1,3 ⊕D2,3 ⊕D1,2,3,

〈P1,P3〉 = D1 ⊕D3 ⊕D1,2 ⊕D1,3 ⊕D2,3 ⊕D1,2,3,

〈P2,P3〉 = D2 ⊕D3 ⊕D1,2 ⊕D1,3 ⊕D2,3 ⊕D1,2,3,

〈P1,P2,P3〉 = D1 ⊕D2 ⊕D3 ⊕D1,2 ⊕D1,3 ⊕D2,3 ⊕D1,2,3.

Furthermore, the capacity region (2.5) can be written as

r1 ≤ d1 + d1,2 + d1,3 + d1,2,3, (2.7)

r2 ≤ d2 + d1,2 + d2,3 + d1,2,3, (2.8)

r3 ≤ d3 + d1,3 + d2,3 + d1,2,3, (2.9)

r1 + r2 ≤ d1 + d2 + d1,2 + d1,3 + d2,3 + d1,2,3, (2.10)

r1 + r3 ≤ d1 + d3 + d1,2 + d1,3 + d2,3 + d1,2,3, (2.11)

r2 + r3 ≤ d2 + d3 + d1,2 + d1,3 + d2,3 + d1,2,3, (2.12)

r1 + r2 + r3 ≤ d1 + d2 + d3 + d1,2 + d1,3 + d2,3 + d1,2,3. (2.13)

Proof. Proving the validity of each listed subspace decomposition follows directly
from Lemma 2.2. As for the the new form of the capacity region, the first three
bounds follow by definition since di = k − |Ri|. Since we have assumed that
k ≥ |R1 ∪R2 ∪R3|, the remaining bounds follow by invoking Proposition 2.1.

The statement of Proposition 2.3 provides intuition for choosing the polynomials
Ti (and hence the codewords) for eachGi to construct a distributed Reed–Solomon
code. The main idea is to start by allocating a basis for Di to each Ti, then linearly
independent polynomials from Di,j are shared by Ti and Tj , if necessary, and so on.

The rest of this section is devoted to proving the main result of this chapter. First,
we will use the machinery developed thus far to provide a proof for the case where
k ≥ |R1 ∪R2 ∪R3|. Later on, a separate technique will be used to handle the
complementary case.

31

Proposition 2.4. Let G = (S,V , E) be an SMAN with three sources, in which z
relay links are erroneous. LetRi be the set of nodes not connected to Si, and assume
that k ≥ |R1 ∪R2 ∪R3|. Then, a distributed Reed–Solomon code exists capable
of correcting z errors.

Proof. First, assume without loss of generality that r1 + r2 ≤ d1 + d2 + d1,2.
Using Proposition 2.2, we can choose linearly independent sets T1, T2 from D1,
D2 and D1,2, so that |Ti| = ri and the Fq-span of T1 ∪ T2 is of dimension r1 + r2.
What remains is to select a set of r3 linearly independent polynomials T3 from
P3. Note that the previous allocations intersect trivially with P3 so we can select
from it r3 linearly independent polynomials to form T3. Furthermore, the fact that
r1 + r2 ≤ d1 + d2 + d1,2 and (2.9) imply (2.11), (2.12) and (2.13) ensuring that
the bounds are not violated. We conclude that the Fq-span of T1 ∪ T2 ∪ T3 is of
dimension r1 + r2 + r3 and so the the corresponding codewords form a generator
matrix for a distributed Reed–Solomon code.

Henceforth, we assume ri + rj > di + dj + di,j for i, j ∈ {1, 2, 3}. The allocation
now is straightforward. Let ρ1,2 = r1 + r2 − (d1 + d2 + di,j) be the number of
polynomials still needed for T1 and T2 after allocating a basis of D1 to T1, a basis
of D2 to T2, and splitting a basis of D1,2 (arbitrarily) amongst both T1 and T2.
Furthermore, let ρ3 = r3 − d3 be the number of polynomials still needed for T3

after allocating to it a basis ofD3. We can express the relevant cut-set bounds (2.9),
(2.12) and (2.13) now as

ρ3 ≤ d1,3 + d2,3 + d1,2,3,

ρ1,2 ≤ d1,3 + d2,3 + d1,2,3,

ρ1,2 + ρ3 ≤ d1,3 + d2,3 + d1,2,3.

After allocating enough polynomials from D1,3, D2,3 and D1,2,3 to T3 so that |T3| =
r3, the third inequality ensures that both T1 and T2 can be completed to bases of
sizes ri and r2, respectively. As previously seen, this can be done while ensuring
that the dimension of the Fq-span of T1 ∪ T2 ∪ T3 is r1 + r2 + r3. This concludes
the proof for this special case.

A remark is in order. The assumption that k ≥ |R1 ∪R2 ∪R3| is critical for
this part of the proof. Indeed, it allowed us to establish Proposition 2.1 and relate
the dimensions of the constituent spaces in each decomposition to the capacity

32

S1 S2 S3

V2 V1;3V3V1 V1;2 V1;2;3V2;3

Figure 2.2: A condensed representation of an SMANwith three source nodes. Here,
relay nodes connected to the same subset of source nodes are coalesced together
and indexed by that subset. For example, the vertex V1,3 includes all relay nodes
connected to S1 and S3 only.

region (2.5). We resort to different techniques that enable us to construct a distributed
Reed–Solomon code for an SMAN in which k < |R1 ∪R2 ∪R3|.

Code Construction for SMANs Where k < |R1 ∪R2 ∪R3|
When restricted to those with three sources, any SMAN can be represented by a
graph of the form in Figure 2.2. Here, the relay nodes are considered as subsets of
V , where they are grouping according to how they are connected to the sources. In
particular, each relay node in V1 is connected only to S1, each relay node in V2,3

is connected only to both S2 and S3, and so on. With this view in mind, we can
express the generator matrix of any SMAN with three sources as follows:

G =

G1

G2

G3

 =

 × 0 0 0 × × ×
0 × 0 × 0 × ×
0 0 × × × 0 ×

 . (2.14)

The various subsets of the relays correspond naturally to the columns of G. The
relays in V1 are indentified with the first block of columns. Indeed, these are the
relays that have access to S1’s message only. The fifth block of columns identifies
V1,3 as these are the relays that have access to both S1 and S3, only.

Remember that eachGi comprises ri rows. The form of the matrix in (2.14) allows
us to make the following observation. If, without loss of generality, we have that
r1 ≤ |V1|, then one can construct a distributed Reed–Solomon code by placing
an identity matrix (of size r1) in the columns of G1 correponding to V1. In this
way, the matrix G2 and G3 can be populated with appropriate codewords using
Proposition 2.2.

33

Proposition 2.5. Let G = (S,V , E) be an SMAN with three sources, in which z
relay links are erroneous. Let Vi ⊆ V be the set of relay nodes connected to Si only.
If for some i ∈ {1, 2, 3} we have ri ≤ |Vi|, then a distributed Reed–Solomon code
exists capable of correcting z errors.

Proof. For ease of exposition, let nI = |VI |. Without loss of generality, suppose
r1 ≤ n1. Identify the j th column ofG with αj . Now, letR1 = {j : [A]1,j = 0} and
define p(x) =

∏
j∈R1

(x−αj) where α is primitive in Fq. In words, the polynomial
p(x) vanishes on those powers of α that correspond to the relay nodes not connected
to S1. Finally, consider the set of polynomials

T1,b =

tj(x) := p(x)

r1∏
i=1
i 6=j

(x− αi) : j = 1, . . . , r1

 . (2.15)

When the polynomials in T1,b are evaluated on A = {α, . . . , αn}, the resulting
codewords can be organized in a matrix to form

G1 =


t1(α) · · · t1(αn)

t2(α) · · · t2(αn)
...

tr1(α) · · · tr1(αn)

 =


? 0 · · · 0 × 0 0 0 × × ×
0 ? · · · 0 × 0 0 0 × × ×
...

...
...

0 0 · · · ? × 0 0 0 × × ×

 .
(2.16)

Here, the symbol ? represents some nonzero element from Fq, and the symbol ×
represents a vector of such elements. When confined to {α, . . . , αr1}, the polynomial
tj(x), by construction, is nonzero only when evaluated at αj . Hence, the first r1

columns ofG1 form a diagonal matrix of the presented form and so it is immediate
that G1 is full rank. Now the columns indexed by R1 are those corresponding to
V2 ∪ V3 ∪ V2,3. These zeros are put in place since p(x), a factor of each tj(x), was
constructed to vanish onR1. As a result, every row ofG1 adheres to the constraints
imposed by the SMAN. Next, we verify that the polynomials are at most of degree
k − 1. This is established by the following reasoning:

deg (tj(x)) = |R1|+ r1 − 1

= n− C1 + r1 − 1

≤ n− 2z − 1

= k − 1.

34

Here, we have used the fact that C1 = |V| − |R1| = n − |R1|. Furthemore, the
cut-set bounds (2.2) imply the inequality and k is defined as k = n− 2z.

Next, we argue that G2 and G3 can be treated using Proposition 2.2. It suffices
to show a global solution for G1, G2 and G3 constitutes a solution for G1 as just
described, along with any valid solution forG2 andG3 subject to

r2 ≤ C2 − 2z,

r3 ≤ C3 − 2z,

r2 + r3 ≤ C2,3 − 2z,

not violating the global cut-set bound

r1 + r2 + r3 ≤ n− 2z.

Indeed, it is easily verified that n − n1 = n − |R2 ∩R3|, which by definition is
equal to C2,3. As a result, the fact that r1 ≤ n1 and r2 + r3 ≤ C2,3− 2z hold for any
valid solution forG2 andG3 proves the claim.

Given this proposition, it remains to prove the existence of distributed Reed–
Solomon codes for the case where ri > ni. With an eye toward that goal, we
restate, for the reader’s convenience, the classical BCH bound.

Fact 2.4 (BCH bound). Let p(x) be a polynomial in Fq[x] (not divisible by xq−1− 1

and suppose p(x) vanishes at αb+1, . . . , αb+t, where α ∈ Fq is primitive. Then, all
the coefficients of p(x) are nonzero.

A proof can be found in [McE86, p.238] The roots of p(x) are consecutive powers
of α which allows us to make the following observation.

Lemma 2.3. Suppose p(x) =
∏t

j=1(x − αj). Then, the roots of p(α−lx) are
precisely {αl+1, . . . , αl+t}.

Proof. Note that p(α−lx) =
∏t

j=1(α−lx−αj) = α−lt
∏t

j=1(x−αl+j), andα−it 6= 0,
as we are working in a field.

A very useful application of the BCH bound is to construct a set of linearly inde-
pendent polynomials from one whose roots are consecutive powers of α.

35

Lemma 2.4. Let p(x) be the annihilator of {αb+1, . . . , αb+t} and construct the set
of polynomials P = {p(αjx) : j ∈ J }, where all the elements of J are distinct,
and r := |J | ≤ t+ 1. Then, the polynomials in P are linearly independent over Fq.

Proof. Write p(x) =
∑t

l=0 plx
l and p(αjx) =

∑t
l=0 plα

jlxl and consider the matrix
P formed by the coefficients of the p(αjx)’s,

P =


p0 p1α

j1 . . . ptα
j1t

p0 p1α
j2 . . . ptα

j2t

...
...

p0 p1α
jr . . . ptα

jrt

 .

This matrix is never tall, by assumption, and so we consider the matrix P̂ formed
from the first r columns of P. We have

det(P̂) =

∣∣∣∣∣∣∣∣∣∣
p0 p1α

j1 . . . pr−1α
j1(r−1)

p0 p1α
j2 . . . pr−1α

j2(r−1)

...
...

p0 p1α
jr . . . pr−1α

jr(r−1)

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
1 αj1 . . . αj1(r−1)

1 αj2 . . . αj2(r−1)

...
...

1 αjr . . . αjr(r−1)

∣∣∣∣∣∣∣∣∣∣
r−1∏
i=0

pi.

Using the BCH bound from Fact 2.4, we establish that all pi’s are nonzero. Therefore
det(P̂) is equal to the determinant of the Vandermonde matrix with defining set
{αj1 , . . . , αjr}, multiplied by a non-zero scalar. The elements {αj1 , . . . , αjr} are all
distinct in Fq, by assumption, which implies that the matrix P̂ is full rank which, in
turn, proves that the polynomials P are linearly independent.

We now show the existence of distributed Reed–Solomon codes for SMANs with
three sources under the assumption ri > ni for all i.

Proposition 2.6. Let G = (S,V , E) be an SMAN with three sources, in which z
relay links are erroneous. Let Vi ⊆ V be the set of relay nodes connected to Si only.
Assume that ri > |Vi| for i = 1, 2, 3. Then, a distributed Reed–Solomon code exists
capable of correcting z errors.

36

Proof. As was done in the proof of Proposition 2.5, we place a diagonal matrix Di

of size ni in the submatrix that corresponds to the columns represented by Vi and
the blockGi, and the remaining ρi := ri − ni rows have all zeros in those columns.
As an example, the matrixG1 is given by

G1 =

[
G1,a

G1,b

]
=



? 0 · · · 0 0 0 0 × × ×
0 ? · · · 0 0 0 0 × × ×
...

...
...

0 0 · · · ? 0 0 0 × × ×
0 0 · · · 0 0 0 0 × × ×
0 0 · · · 0 0 0 0 × × ×
...

...
...

0 0 · · · 0 0 0 0 × × ×


. (2.17)

Here Gi,a ∈ Fni×nq and Gi,b ∈ Fρi×nq . The polynomials Ti,a corresponding to Gi,a

are chosen according to (2.15), where now ri is replaced with ni. The remainder of
the proof is to show how to select the polynomials Ti,b corresponding toGi,b.

First, we permute the rows of ofG so that it is the form given below.

G =

[
Ga

Gb

]
=



D1 0 0 0 × × ×
0 D2 0 × 0 × ×
0 0 D3 × × 0 ×
0 0 0 0 × × ×
0 0 0 × 0 × ×
0 0 0 × × 0 ×


. (2.18)

The blocks of columns ofG (in the given order) have sizesn1, n2, n3, n2,3, n1,3, n1,2, n1,2,3,
while the blocks of rows have sizes n1, n2, n3, ρ1, ρ2, ρ3. The matrix Ga is taken
care of as just described, so we focus on Gb. We need to pin down some relations
between the various parameters in order to customize the construction appropriately.

First, it is useful to note that the condition k < |R1 ∪R2 ∪R3| is equivalent to
n1,2,3 − 2z < 0. This is readily seen by noting that n1,2,3 = n − |R1 ∪R2 ∪R3|.
Before proceeding, let us consider the inequalities

r1 ≤ n1 + n1,3, (2.19)

r2 ≤ n2 + n1,2, (2.20)

r3 ≤ n3 + n2,3, (2.21)

37

and suppose that at least two of them hold. In particular, and without loss of
generality2, we assume that

r1 ≤ n1 + n1,3, (2.22)

r2 ≤ n2 + n1,2. (2.23)

Wewill first present a construction under those assumptions and then for the comple-
mentary case. As usual, let the j th column ofG be associated with αj . Furthermore,
define n̄ = n1 +n2 +n3 and let c(x) =

∏n̄
i=1(x−αi). This polynomial will produce

the all-zero columns ofGa, namely those corresponding to V1∪V2∪V3. Now define
p(x) that vanishes on a set of powers of αj with cardinality t := k − n̄− 1, i.e.,

p(x) =
t∏

j=1

(x− αj). (2.24)

This polynomial will be used to appropriately place zeros in the columns corre-
sponding to V2,3 ∪ V1,3 ∪ V1,2. Lemma 2.3 enables us to construct the polynomials
forGb from shifts of p(x). To do so, let us define the following sets,

J1 = {n̄+ n2,3 − t, . . . , n̄+ n2,3 − t+ ρ1 − 1} , (2.25)

J2 = {n̄+ n2,3 + n1,3 − t, . . . , n̄+ n2,3 + n1,3 + ρ2 − 1} , (2.26)

J3 = {n̄+ n2,3 + n1,3 + n1,2 − t, . . . , n̄+ n2,3 + n1,3 + n1,2 − t+ ρ3 − 1} .
(2.27)

The polynomials corresponding toGi,2 are now given by

Ti,b =
{
c(x)p(α−jx) : j ∈ Ji

}
. (2.28)

Let us see why this assignment is valid. First, the polynomial c(x) produces the
zeros required in the columns of G2 corresponding to V1 ∪ V2 ∪ V3. Now, con-
sider the polynomials in T1,b. By Lemma 2.3, the polynomial p(α−(n̄+n2,3−t)x)

vanishes on {αj : j = n̄ + n2,3 − t + 1, . . . , n̄ + n2,3}, which clearly contains
{αj : j = n̄ + 1, . . . , n̄ + n2,3}. As a result, this codeword resulting from evalu-
ating c(x)p(α−(n̄+n2,3−t)x) on A will have zero coordinates; amongst others, those
corresponding to V1 ∪V2 ∪V3 ∪V2,3. Now we have to show that this is true for any
polynomial in T1,b. In particular, we want to show that for any 0 ≤ j ≤ ρ1 − 1, one
has

{n̄+ 1, . . . , n̄+ n2,3} ⊆ {n̄+ n2,3 − t+ 1 + j, . . . , n̄+ n2,3 + j}.
2No loss of generality is incurred when one interprets the labels 1, 2 and 3 as some labeling of

the three sources S1, S2 and S3.

38

Assuming the contrary means that there is a smallest j in the prescribed range for
which n̄ + n2,3 − t + 1 + j > n̄ + 1. Using the cut-set bound r1 ≤ C1 − 2z, one
can deduce

ρ1 − 1 ≥ k − n̄− n2,3 − 1

= n− 2z − n̄− n2,3 − 1

= n1,2 + n2,3 + n1,2,3 − 2z − 1.

Furthermore, we note that ρ = r1 − n1 yields

r1 > n1 + n1,2 + n2,3 + n1,2,3 − 2z = C1 − 2z,

a contradiction. As a result, we establish every polynomial in T1,b evaluates to a
valid codeword forG1. The same claim holds for both T2,b and T3,b and the proof is
identical.

What remains now is to prove that T1,b ∪ T2,b ∪ T3,b is a linearly independent set of
polynomials over Fq. To this end, we start by showing that the sets J1,J2 and J3

are pairwise disjoint, to rule out the possibility that a polynomial amongst the Ti,b’s
is repeated. Working toward a contradiction, suppose J1 ∩ J2 6= ∅. Given that the
elements in theJi’s are consecutive, there is a smallest j in the range 0 ≤ j ≤ ρ1−1

such that n̄+n2,3− t+ j = n̄+n2,3 +n1,3− t. This implies that n1,3 = j ≤ ρ1−1.
Similarly, if J2 ∩ J3 6= ∅, then ρ2 − 1 ≥ n1,2. Both these cases contradict the
assumptions (2.22), (2.23). By the ordering of the elements in the sets, it follows
now that J1 ∩ J3 = ∅. As a result, the elements in J1 ∪ J2 ∪ J3 are all distinct.

This distinctness will help us show that the polynomials in T1,b ∪ T2,b ∪ T3,b are
linearly independent. In view of (2.28), this is true if and only if the polynomials
p(αjx) are linearly independent, for j ∈ J1 ∪ J2 ∪ J3. Therefore, we focus on the
latter. Note that the total number of polynomials under consideration is ρ1 +ρ2 +ρ3,
which is less that t := k− n̄− 1, by the cut-set bound on r1 + r2 + r3. Applying the
BCH bound to the coefficients of p(x), followed by invoking Lemma 2.4, implies
that T1,b ∪ T2,b ∪ T3,b are linearly independent, and so rank (Gb) = ρ1 + ρ2 + ρ3 and
as a result the matrixG is full rank.

Let us revisit the inequalities (2.19), (2.20) and (2.21). Now suppose that exactly
one holds3. Without loss of generality, suppose that the first two are false, i.e.

r1 > n1 + n1,3, (2.29)

r2 > n2 + n1,2. (2.30)
3It can be shown that at least one of the inequalities has to hold.

39

In this case, we mimic the previous construction but choose the sets J1,J2 and J3

in a different way. The reason is that (2.22) and (2.23) are necessary for the sets
J1,J2 and J3 defined earlier to be pairwise distinct. Nonetheless, we can mend the
construction by choosing the sets J1,J2 and J3 as

J1 = {n̄+ n23 − t, . . . , n̄+ n23 − t+ ρ1 − 1}, (2.31)

J2 = {n̄+ n23 − t+ ρ1, . . . , n̄+ n23 − t+ ρ1 + ρ2 − 1}, (2.32)

J3 = {n̄+ n23 − t+ ρ1 + ρ2, . . . , n̄+ n23 − t+ ρ1 + ρ2 + ρ3 − 1}. (2.33)

Note that these three sets form the integer interval {n̄ + n23 − t, . . . , n̄ + n23 −
t + ρ1 + ρ2 + ρ3 − 1}. As a result, pairwise distinctness is immediate. It remains
to show that Ti,b in (2.28), defined using the new Ji, vanishes on the powers of α
corresponding to V{1,2,3}\i. Note that the set J1 is unchanged from the previous case
so its evaluations are valid for G1. Now consider p(α−jx) for an arbitrary j ∈ J2.
We want this polynomial to vanish on {αl : l ∈ V1,3}, or equivalently, on the powers
of α indexed by

{n̄+ n2,3 + 1, . . . , n̄+ n2,3 + n1,3}. (2.34)

Consider p(α−(n̄+n23−t+ρ1+j)x), where 0 ≤ j ≤ ρ2 − 1. This polynomial vanishes
on the powers of α indexed by

{n̄+ n2,3 − t+ 1 + ρ1 + j, . . . , n̄+ n2,3 + ρ1 + j}. (2.35)

Suppose that the set (2.34) is not contained in the set (2.35). First, let us assume
that n̄+ n2,3 − t+ 1 + ρ1 + j > n̄+ n2,3 + 1. This is equivalent to ρ1 + j > t. By
definition, we have

r1 − n1 + r2 − n2 − 1 ≥ r1 − n1 + j > k − n̄− 1.

This implies that r1 + r2 > k−n3 = C1,2− 2z, which a contradiction to the cut-set
bound on r1 + r2. Now suppose that n̄+ n2,3 + n1,3 > n̄+ n2,3 + ρ1 + j, which is
equivalent to

r1 < n1 + n1,3. (2.36)

This is in contradiction with (2.29). Thus every polynomial in T2,b vanishes on V1,3

and so it is valid forG2.

What is left is to prove a similar claim for T3,b. Any polynomial in this set must
vanish on the powers of α indexed by

{n̄+ n2,3 + n1,3 + 1, . . . , n̄+ n2,3 + n1,3 + n1,2}, (2.37)

40

whereas an arbitrary polynomial in T3,b vanishes on the powers of α indexed by

{n̄+ n2,3 − t+ 1 + ρ1 + ρ2 + j, . . . , n̄+ n2,3 + ρ1 + ρ2 + j}. (2.38)

Similar to the earlier case, assuming that n̄ + n2,3 + n1,3 − t + 1 + ρ1 + ρ2 + j <

n̄+ n2,3 + n1,3 + 1 yields a contradiction to the cut-set bound on r1 + r2 + r3. On
the other hand, suppose that

n̄+ n2,3 + ρ1 + ρ2 + j < n̄+ n2,3 + n1,3 + n1,2.

This supposition along with j ≥ 0 implies that

r1 + r2 < n1 + n1,3 + n2 + n1,2.

The sum of the inequalities (2.29) and (2.23) contradicts this statement. Hence, the
polynomials Ti,b are valid for the respectiveGi, and by construction, are all distinct.
An application of the BCH bound from Fact 2.4 proves that the polynomials in
T1,b ∪ T2,b ∪ T3,b are linearly independent.

Having handled the two separate cases, one in which at least two of the three
inequalities in (2.19), (2.20) and (2.21) are true, and the other in which exactly one
is true, and having also ruled out the possibility of all three being false, as a result,
the proof of this proposition is complete.

Propositions 2.4, 2.5 and 2.6 together form the fabric of the main result. Indeed,
any SMAN falls under the assumptions of one of the three propositions for which a
corresponding distributed Reed–Solomon code can be constructed. The main result
of this chapter, Theorem 2.2 is proved.

Alternative Constructive for Two-Source SMANs
In this section, we present an alternate construction to the one given in Proposi-
tion 2.2.

Proposition 2.7. Let G(S,V , E) represent an SMAN where |S| = 2. LetRi = {j :

(i, j) /∈ E} (both not empty), i.e. the set of relay nodes not connected to Si. Suppose,
without loss of generality, that R1 ∩ R2 = ∅. Now define zi(x) =

∏
j∈Ri(x − αj)

and let s1(x), s2(x) be polynomials such that either deg (s1(x)) = C1 − 2z − r1

or deg (s2(x)) = C2 − 2z − r2 and gcd (s1(x), z2(x)) = gcd (s2(x), z1(x)) = 1.
Finally, for i = 1, 2, define the transformation polynomials

Ti = {xjsi(x)zi(x), j = 0, . . . , ri − 1}.

We have that T1 ∪ T2 is a linearly independent set of polynomials over Fq.

41

Proof. Working towards a contradiction, suppose that for a particular choice of λ(j)
i ,

where some are non-zero, it holds that
r1−1∑
j=0

λ
(j)
1 xjs1(x)z1(x) +

r2−1∑
j=0

λ
(j)
2 xjs2(x)z2(x) = 0. (2.39)

Let
∑r1−1

j=0 λ
(j)
i xj = qi(x), where deg (q)i (x) ≤ ri− 1. Then we can express (2.39)

as
q1(x)s1(x)z1(x) = q2(x)s2(x)z2(x). (2.40)

Since gcd (si(x), zl(x)) = 1, it must be the case that q1(x) = s2(x)z2(x)c(x). By
the degree constraint on q1(x), we have

deg (c(x)) = deg (q1(x))− deg (s2(x))− deg (z2(x)) (2.41)

≤ r1 − 1− (C2 − 2z) + r2 − |R2| (2.42)

= r1 + r2 − (C1,2 − 2z)− 1 (2.43)

≤ −1 (2.44)

since C2 + |R2| = C1,2 and the last inequality follows from (2.2). Thus, c(x) =

q1(x) = 0 and so we arrive at a contradiction.

The proposition provides an easy way to construct solutions for SMANS with
two sources. Indeed, the polynomials s1(x) and s2(x) can be constructed easily
over Fq[x] where q > n. First, it must be that either C1 − 2z − r1 ≤ C2 or
C2 − 2z − r2 ≤ C1 hold since otherwise we arrive at r1 + r2 < 0. Suppose without
loss of generality thatC2−2z−r2 ≤ C1 . Out of the n code coordinates, z1(x) does
not vanish onC1 of them. Thus, s2(x) can be chosen such that itsC2−2z− r2 roots
are contained in these C1 coordinates. Now set s1(x) = 1. By construction, both
s1(x) and z2(x) are separable but do not share a common root and so are coprime
as required.

2.4 Examples
We offer in this section a series of examples to portray the different constructions
presented in this chapter.

Example 2.1. Consider the SMAN in Figure 2.1, with adjacency matrix

A =

1 0 0 0 0 1 1 1 1 1

0 1 0 1 1 0 0 1 1 1

0 0 1 1 1 1 1 0 0 1

 .

42

Assume r = (2, 2, 2) and z = 1. It follows that the construction from Proposi-
tion 2.1 should be used. The constituent code is a [10, 8, 3] RS code over F11 with
primitive element α = 2. The polynomials and sets of interest, chosen according to
(2.25),(2.26) and (2.27), are tabulated below:

c(x) = (x− α)(x− α2)(x− α3),

p(x) = (x− α1)(x− α2)(x− α3)(x− α4),

J1 = {1},
J2 = {3},
J3 = {5}.

We have ni = ρi = 1 for all i, so the setsT1,a,T1,b andT3,a each consist of a single
polynomial.

t1,a(x) = (x− α2)(x− α3)(x− α4)(x− α5),

t2,a(x) = (x− α)(x− α3)(x− α6)(x− α7),

t3,a(x) = (x− α)(x− α2)(x− α8)(x− α9).

The remaining polynomials are given by

t1,b(x) = c(x)p(α−1x) = α−4c(x)(x− α2)(x− α3)(x− α4)(x− α5),

t2,b(x) = c(x)p(α−3x) = α−12c(x)(x− α4)(x− α5)(x− α6)(x− α7),

t3,b(x) = c(x)p(α−5x) = α−20c(x)(x− α6)(x− α7)(x− α8)(x− α9).

Note how the polynomial t1,b(x) has repeated roots at α2 and α3. The resulting
generator matrix in the form of (2.18) is given by

G =



2 0 0 0 0 2 7 4 5 8

0 1 0 5 4 0 0 1 9 6

0 0 9 5 2 3 5 0 0 8

0 0 0 0 0 3 1 4 6 6

0 0 0 0 0 0 0 2 4 3

0 0 0 1 1 0 0 0 0 7


.

The required zeros are depicted in boldface.

The second example is pertinent to the second variant that can arise in Proposi-
tion 2.6.

43

Example 2.2. Consider an SMAN whose adjacency matrix is given by

A =

0 0 0 0 1 1 1 1

1 1 1 1 0 1 1 1

1 1 1 1 1 0 0 1

 .
Suppose that (r1, r2, r3) = (2, 3, 1) and z = 1. Here, the assumptions (2.29) and
(2.30) hold. As a result, one has to choose the index sets chosen according (2.31),
(2.32) and (2.33),

J1 = {−1, 0},
J2 = {1, 2, 3},
J3 = {4}.

The resulting generator matrix is given by

G =



0 0 0 0 2 6 7 0

0 0 0 0 0 2 6 7

7 0 0 0 0 0 2 6

6 7 0 0 0 0 0 2

2 6 7 0 0 0 0 0

0 2 6 7 0 0 0 0


.

2.5 Discussion
The main contribution of this chapter is a constructive proof of the existence of
a distributed Reed–Solomon code for any point in the capacity region (2.2) of a
simple multiple access network with three sources. The proof of existence relies
on a methodical way of partitioning the problem instance space. In particular, if
we let Ri be the set of relay nodes not connected to Si, then the main technical
condition (k ≶ | ∪mi=1 Ri|) has an operational meaning. If k ≥ | ∪mi=1 Ri| holds,
then the generator matrix of the desired distributed Reed–Solomon code can be
constructed as a systematic one. Indeed, the techniques presented in Section 2.3
can be generalized to handle any number of sources m. Nonetheless, we present a
cleaner approach in Chapter 4 to handle this scenario that utilizes results from graph
theory.

On the other hand, if k < | ∪mi=1 Ri| then one has to rely on the construction from
Section 2.3. Whilst the approach presented here might seem complex, the basic idea
is quite intuitive. First, we ensure than any relay nodes connected to a single source

44

node Si are fully utilized and, together, they carry linearly independent symbols.
This effectively decouples those nodes from the rest of the network. Once that is
done, the special case of networks with three sources allow for utilizing techniques
pertinent to cyclic codes. Indeed, this assumption allowed us to construct the
codewords from a single polynomial. At this point, this technique does not appear
to be generalizable to SMANs with more than three source nodes. However, let us
emphasize that meaningful networks with k < | ∪mi=1 Ri| can be constructed. The
most straightforward example is one in which a cyclic structure is enforced, i.e.

G =


× × · · · · · · × 0 0 · · · 0

0 × × · · · · · · × 0 · · · 0
... ...
0 · · · 0 × × · · · · · · × 0

 .
One can verify that the network corresponding to such matrix falls under this case.
The fact that the zeros are consecutive to one another allows us to use the technique
based on Lemma 2.4 to pepper this matrix in a way that renders is full rank.
Nonetheless, it is when more complex structures are considered that this technique
fails. The BCH bound was critical in proving that the polynomials chosen using
this approach were linearly independent and so more complicated scenarios might
require more sophisticated bounds such as the ones due to Roos [Roo82; Roo83]
and Hartmann & Tzeng [HT72].

It is also worth mentioning the special structure of the coordinates of the underlying
Reed–Solomon code was heavily used in Proposition 2.6. The following example
shows why the choice cannot be arbitrary.

Example 2.3. Consider a SMAN with z = 1 and adjacency matrix given by

A =

0 0 1 1 1 1

1 1 0 0 1 1

1 1 1 1 0 0

 . (2.45)

Fix the underlying Reed–Solomon to be length 6 and dimension 3 over F7. Suppose
we associate the columns of the required generator matrix withA = {1, 6, 2, 5, 3, 4}.
The polynomials corresponding to the rows of the generator matrix are

t1(x) = (x− 1)(x− 6) = x2 + 6,

t2(x) = (x− 2)(x− 5) = x2 + 3,

t3(x) = (x− 3)(x− 4) = x2 + 5.

45

Given that the underlying code is of dimension 3, any other set of polynomials valid
for A are scalar multiples of the ones provided. Note that the particular ordering
of A results in a set of polynomials that spans a space of dimension 2.

46

C h a p t e r 3

DISTRIBUTED GABIDULIN CODES

3.1 Introduction
In this chapter, we develop the results presented in Chapter 2 to codes designed for
multi-source multicast networks employing linear network coding. The pioneering
work of Kötter and Kschischang in [KK08] introduced subspace coding for error
control in single-source multicast networks employing random linear network cod-
ing. The source node encodes its information in a choice of a subspace and then
transmits packets corresponding to basis vectors of that subspace. The packets are
transmitted over the network, using random linear network coding, and a number
of packets being transmitted in the network may be arbitrarily corrupted. If the re-
ceived packets span a subspace that intersects the transmitted subspace sufficiently,
the destination node can decode correctly. Silva et al. [SKK08] further showed that a
constant dimension subspace code can be built by lifting an appropriate rank-metric
code such as a Gabidulin code [Gab85], where lifting preserves the code distance
properties under the rank metric.

In the multi-source multicast scenario, two or more source nodes seek to transmit a
set of messages to one or more destinations, over a network of arbitrary topology.
Each destination is interested in receiving all the messages, and an omniscient
adversary can arbitrarily corrupt a bounded number of packets/links in the network.
The capacity region for the case where the source nodes have independent messages
was established in [Dik+10], and is given by the cut-set bounds for each subset
of messages. In this chapter, we consider the scenario in which each source node
has access to a subset of messages. The capacity region follows from [Dik+10]
by considering the cut-set bounds from each subset of messages to the destination
nodes. The results of this chapter show that the actual source nodes can encode
independently in a distributed manner such that the overall subspace codewords
form a subcode of a single-source lifted Gabidulin code, with no reduction in the
capacity region for up to three messages. The special case in which the destination
is directly connected to each source node was considered in the previous chapter;
where it suffices to employ Reed–Solomon codes. In this chapter, we consider the
more general setting and construct distributed Gabidulin codes that can be employed

47

in an arbitrary topology. It is worth mentioning that a distributed Gabidulin code
can be designed for those networks whose structure doesn’t introduce deletions, i.e.
the total number of degrees of freedom injected into the network is preserved at the
destination node. More details on this scenario will be given in the discussion.

Related Work
Network error-correcting codes for single-source multicast networks were presented
in [Jag+07], where a rate-optimal (given an adversary’s limits) polynomial time
construction was presented. The paper [KK08] introduced subspace coding as a
paradigm that suffices to achieve the capacity of a network employing non-coherent
network coding.

The multisource multicast problem was first fully studied by Dikaliotis et al.
in [Dik+10]. Under the assumption of a bounded number of adverserial errors,
the capacity region for such networks was established and a capacity-achieving
error-correction scheme based on Gabidulin codes [Gab85] was constructed. The
main drawback of this construction is the reliance on a technique that requires a se-
ries of nested finite fields, which resulted in a coding complexity that is exponential
in the number of sources.

The papers [JFD09; SFD08; Moh+] consider a similar case albeit in the absence of
adversarial errors. The network is modeled as a time-varying channel problem and
its capacity is derived. Several code constructions based on subspace coding are
presented. In particular, the one given in [JFD09] extends the result of [KK08] to
the multisource multicast setting.

3.2 Preliminaries
We begin by giving a quick overview of error correction in network coded communi-
cation networks. We review the basics of rank-metric codes and focus on Gabidulin
codes. We then described the ring of linearized polynomials, which is crucial to the
code construction presented in this chapter. Lastly, we close this section with some
useful facts and terminology that will be used in the subsequent sections.

Network model
We consider a general network with n source nodesS = {S1, . . . , Sn} each of which
has access to a subset of a set of messagesM = {M1,M2, . . . ,ML}. We consider a
multicast scenario in which a destination node is interested in retrieving all available
messages. Figure 3.1 provides a pictorial representation of this setup. MessageMi

48

S1 S2 Sn

MLM1

D

Network

Figure 3.1: A multisource multicast network consists of a set of L messages jointly
held by a set of sources. Each vertex SJ represents the set of sources nodes that can
access messages {Mj : j ∈ J }.

is of rate ri symbols of Fqm . An omniscient adversary injects erroneous packets on
up to z links in the network.

Without loss of generality, we assume that each source node has one outgoing edge.
Let SJ be the set of source nodes with access to messages {Mj : j ∈ J }, and
define nJ := |SJ |. Each source node in SJ injects a packet into the network on its
outgoing edge, where each packet is a linear combination of the messages indexed
by J ⊆ {1, . . . , L}, i.e. the messages it has access to. Throughout this chapter, we
will consider the case when L = 3.

Let I(M′) denote the index set of elements inM′, i.e. I(M′) = {i : Mi ∈M′}.
Also define I := I(M) and rI(M′) :=

∑
i∈I(M′) ri. In particular, we define

R := rI . The minimum cut capacity (min-cut) fromM′ to destinationD is denoted
by mI(M′), ∀M′ ⊆ M. From [Dik+10], the capacity region R is given by cut set

49

bounds for each subset of messages, i.e. the capacity region is the set of all vectors
r = (r1, r2, . . . , rL) such that

rI(M′) ≤ mI(M′) − 2z,∀M′ ⊆M. (3.1)

We will assume that all min-cuts defining the capacity region of a multiple source
multicast network can be assumed to be in the layer between the messages and the
source nodes1. In particular, we will assume that these quantities can be computed
from the bipartite graph describing the relationship between themessages and source
nodes. Indeed, the capacity region can now be expressed using the various quantities
nJ similar to what was done in Chapter 2.

Single-source subspace codes
Let Fq be the finite field with q elements, where q is a power of a prime. In single-
source subspace coding, the source node generates a batch of n packets, each of
length m, which are treated as vectors over some finite field Fq, and arranged as
the rows of a matrix X ∈ Fn×mq . The source node then injects the packets into the
network. In the presence of linear network coding [Ho+06], the destination node
collects a set of N packets that constitute linear combinations of the rows of X.
The overall network transformation from the source node to a destination node is
represented by a matrix H ∈ FN×nq , meaning that the destination node receives the
packets corresponding to rows of matrix Y = HX ∈ FN×mq . Thus, the network
can be thought of as a matrix-valued channel in which the input alphabet is the
set of matrices Fn×mq and the output alphabet is the set FN×mq . To quantify the
impact of erroneous packets being injected into the network, a suitable metric has
to be introduced. The rank metric is a natural candidate [SKK08; KK08] for such
scenarios2.

The rank distance between two matrices X1 and X2 is given by dR(X1,X2) :=

rank (X2 −X1). If we assume that erroneous packets are injected into up to z links
in the network, then the destination node receives

Y = HX + Z, (3.2)

where rank (Z) ≤ z.

We begin by presenting a useful fact that will be heavily relied on.
1In particular, we require that the sum of outgoing edges from S to the network is equal to mI .

For more details, please refer to Section 3.6.
2Indeed, this metric was considered long before by Delsarte in [Del78]

50

Fact 3.1. Let Fqm be an mth degree extension of Fq with a fixed basis β1, . . . βm.
The field Fqm is isomorphic to the vector space Fmq via the mapping ϕ, where for a
fixed γ ∈ Fqm given by γ =

∑m
i=1 ciβi for ci’s ∈ Fq, the evaluation is given by

ϕ : γ 7→ (c1, . . . , cm).

The two representations will be interchanged frequently, and the one chosen in each
instance of appearance will be specified clearly. This notion is useful for considering
vector data packets as symbols over a larger finite field, which will be the defining
field for the error-correcting code being used.

Gabidulin Codes
A useful observation is one that allows us to extend the isomorphism from Fact 3.1
to one that handles vectors over Fqm .

Fact 3.2. Let Γ = (γ1, . . . , γn)t ∈ Fnqm , where γi =
∑m

j=1 ci,jβj , for ci,j’s ∈ Fq. The
vector spaces Fnqm and Fn×mq are isomorphic by the mapping Φ;

Φ : Γ 7→


c1,1 · · · c1,m

...
cn,1 · · · cn,m

 =


ϕ(γ1)

...
ϕ(γn)

 .
Indeed, the mapping Φ is just the mapping ϕ applied component-wise.

A Gabidulin code of length n and dimension k over Fqm is a linear space of column
vectors CGC ⊆ Fnqm . The previous fact allows us to regard any codeword c ∈ CGC as
a matrix C ∈ Fn×mq . Unless otherwise stated, a boldface symbol in lowercase will
denote a column vector in Fnqm , while the same boldface symbol in uppercase will
denote the same element when represented as a matrix in Fn×mq . Furthermore, the
rank of a codeword c will be defined as rank (C). Gabidulin codes are maximum
rank distance (MRD) codes, i.e. dR = n − k + 1. The generator matrix of a
Gabidulin code resembles that of a Reed–Solomon code quite closely. Choose the
coordinates of the code g1, . . . , gn ∈ Fqm to be linearly independent over Fq, so that
n ≤ m. For ease of notation, let [i] = qi. The generator matrix of a Gabidulin code
of length n, dimension k and minimum rank distance dR = n− k + 1 is given by:

GGC =


g

[0]
1 g

[1]
1 · · · g

[k−1]
1

g
[0]
2 g

[1]
2 · · · g

[k−1]
2

...
...

g
[0]
n g

[1]
n · · · g

[k−1]
n

 . (3.3)

51

The code CGC is given by the right-image of this matrix. In particular, a messagem
is encoded asGGCm. To use this code in a multicast setting, a source node arranges
its information packets in a matrix M ∈ Fk×mq , and then computes c = GGCm,
wherem is obtained via the inverse mapping Γ−1. The transmitted (coded) packets
are the rows of C, obtained by applying Γ to c.

Linearized Polynomials
A set of polynomials intimately related to Gabidulin codes is the set of linearized
polynomials.

Definition 3.1. A linearized polynomial P (x) over Fqm with q-degree d is one that
can be expressed as P (x) =

∑d
i=0 pix

qi .

Analogous to Reed–Solomon codes, Gabidulin codes can be viewed as the image
of a special set of polynomials when evaluated at linearly independent elements of
a field Fqm .

Definition 3.2. Let A = {α1, . . . , αn} be a set of elements in Fqm that are linearly
independent over Fq. A Gabidulin code of length n and dimension k is the set of
linearized polynomials with q-degree less than k evaluated at A.

C =

{
(m(α1), . . . ,m(αn)) : m(x) =

d∑
i=0

mix
qi , d < k

}
. (3.4)

Furthermore, the set of linearized polynomials equipped with conventional poly-
nomial addition along with the composition operation C(x) = A(x) ⊗ B(x) :=

A(B(x)) form a non-commutative ring, with no zero-divisors. It can be shown that
the roots of a linearized polynomial P (x) form a vector space over Fq.

Fact 3.3. Let P (x) be a linearized polynomial over Fqm and suppose α, β are two
roots of P (x), then for any γ ∈ Fq, one has P (γα + β) = 0.

Using this fact, one can characterize the minimal linearized polynomial with a
prescribed root space.

Fact 3.4. Let 〈T 〉 ⊆ Fqm be spanned by linearly independent T = {α1, . . . , αt}.
The minimal polynomial of 〈T 〉, given byMT (x) =

∏
β∈〈T 〉(x− β), is a linearized

polynomial with q-degree degq MT (x) = t.

52

We heavily rely on this characterization. Indeed, we will design the target generator
matrix by constructing linearized polynomials that vanish on particular subsets of the
code’s coordinates. Another useful result is one that deals with factoring linearized
polynomials. Note that, however, the non-commutative nature of the composition
operation allows us to make a one-sided claim.

Fact 3.5. Any linearized polynomial P (x) whose root space contains 〈T 〉 can be
written as P (x) = Q(x)⊗MT (x), for some linearized polynomial Q(x).

Interestingly, one can show that the reverse factorization P (x) = MT (x) ⊗ Q(x)

holds when the coefficients ofP (x) lie inFq. Nonetheless, the standard factorization
over the ring Fqm [x] clearly holds,

Fact 3.6. Any linearized polynomial P (x) whose root space contains 〈T 〉 can be
written as P (x) = V (x)MT (x), for some polynomial V (x).

An expected consequence of the composition of two linearized polynomials is given
below.

Fact 3.7. Let degq A(x) = a, degq B(x) = b and C(x) = A(x) ⊗ B(x). Then
degq C(x) = a+ b.

A standard reference on linearized polynomials is [LN97], where proofs for all facts
presented in this subsection are given.

Distributed Gabidulin Codes
We have restricted ourselves to the networks with three messages and assumed that
the set of source nodes is given by

S = {S1,S2,S3,S2,3,S1,3,S1,2,S1,2,3},

where each of the source nodes in SJ can inject a total of nJ packets into the
network. Since the source nodes in SJ can code across the same set of messages
{Mj : j ∈ J }, these coded symbols can be organized into a length nJ column
vector given by

cJ =
∑
j∈J

Gj
Jmj.

Here, the vector mj ∈ Frj×1
qm is the vector representation of the messageMj , which

has rate rj . Furthermore, the matrix Gj
J is the coding matrix that SJ employs to

53

encode mj . As a result, the overall linear transformation is represented by,

G =
[
G1 G2 G3

]
=



G
(1)
1 0 0

0 G
(2)
2 0

0 0 G
(3)
3

0 G
(2)
2,3 G

(3)
2,3

G
(1)
1,3 0 G

(3)
1,3

G
(1)
1,2 G

(2)
1,2 0

G
(1)
1,2,3 G

(2)
1,2,3 G

(3)
1,2,3


. (3.5)

Each message mi, i = 1, 2, 3 is a length ri column vector over Fqm , i.e., the overall
codeword is computed by the source nodes in a distributed fashion as c = Gm,
wherem = (mt

1,m
t
2,m

t
3)t. The transmitted packets are the rows ofC, as obtained

by applying Γ from Fact 3.2 to c.

Following [SKK08], we lift the overall codeword, which preserves the distance of
the underlying code and provides side information to the decoder at the destination.

Definition 3.3. A codeword C ∈ Fn×mq is lifted to C̄ by appending to its left an
identity matrix of size n, i.e.

C̄ = [I C].

To emulate this operation at the global level of the network, the source nodes in
SJ will lift its portion of the overall codeword by appending its codeword with an
identity matrix along with additional zeros as necessary. To facilitate this process,
let us fix an ordering of the the power set of {1, 2, 3} (excluding the empty set) as
A = {{1}, {2}, {3}, {2, 3}, {1, 3}, {1, 2}, {1, 2, 3}}. For J ∈ A, J − 1 denotes
the element less than J while J + 1 denotes the element greater than J , with
respect to the ordering on A. A source SJ will lift its codeword according to the
following mapping:

CJ 7→
[
0n1 · · ·0nJ−1

InJ 0nJ+1
· · ·0n1,2,3 CJ

]
. (3.6)

Let HJ ∈ FN×nJq encapsulate the effect of the random linear network code on the
packets C̄J transmitted by SJ . The overall linear transformation, along with the
injected error packets, can now be described in terms of individual lifted codewords
as

Y =
[
H1 · · · H1,2,3

]
C̄1

...
C̄1,2,3

+ Z = HC̄ + Z. (3.7)

54

We would like the destination to decode received packets using a low-complexity
algorithm. Our approach is to let G be the generator matrix of a subcode of a
Gabidulin code. As mentioned earlier, Gabidulin codes are well-studied and a
variety of low-complexity decoders exist [Loi06; WAS13; SK09a]. We construct
such a subcode, which we call a distributed Gabidulin code, using the techniques of
Chapter 2. The main result of this chapter is given by the following theorem.

Theorem 3.1 (Main Result). Let N be a multiple-source multicast network of
arbitrary topology with source nodes S, and messagesM = {M1,M2,M3}. Let
an adversary corrupt up to z links of this network. For any rate vector r in the
capacity region R given by (3.1), a distributed network error-correcting code can
be constucted as subcode of a suitable Gabidulin code.

To prove the theorem, we derive linearized polynomial analogs of Propositions 2.4,
2.5 and 2.6 and show how, with a few extra technical steps, any point in the capacity
region of a multiple-source multicast network can be achieved. The next section is
devoted to constructing distributed Gabidulin codes and proving Theorem 3.1.

3.3 Construction
The set of linearized polynomials of q-degree less than k can be viewed as a k-
dimensional vector space over Fqm . With this view in mind, we start by deriving
analogs of various facts and propositions presented in Section 2.3.

Definition 3.4. Let R ⊂ Fqm be a set of linearly independent elements. The set
of linearized polynomials of q-degree less than k whose root space contains the
subspace 〈R〉 is denoted by polyk (〈R〉).

Fact 3.8. The dimension of polyk (〈R〉) is (k − |R|)+.

Proof. Note that the claim on the dimension follows from the fact that any polyno-
mial P (x) ∈ polyk (〈R〉) can be written as P (x) = V (x)⊗MR(x) using Fact 3.5.
From there, it follows that the q-degree of V (x) is at most k − |R|.

Let us consider the intersection of two spaces polyk (〈R1〉) and polyk (〈R2〉). For
the sake of clarity, define Pi := polyk (〈Ri〉).

Fact 3.9. P1 ∩ P2 = polyk (〈R1 ∪R2〉).

55

Proof. Let 〈R〉 denote the root space of p(x) ∈ P1∩P2. It follows that 〈Ri〉 ⊆ 〈R〉
for i = 1, 2, and being a linear space, the root space 〈R〉 contains the Minkowski
sum 〈R1〉+ 〈R2〉 = 〈R1 ∪R2〉. The reverse inclusion is immediate.

Now let us consider the Minkowski sum of two spaces P1 and P2. We have the
following lemma.

Lemma 3.1. Let the Minkowski sum of the spaces P1 and P2 be defined as

〈P1,P2〉 = {δ1P1(x) + δ2P2(x) : P1(x) ∈ P1, P2(x) ∈ P2, δ1, δ2 ∈ Fqm}.

Suppose that k ≥ |R1 ∪R2|. Then, we have that 〈P1,P2〉 = polyk (R1 ∩R2).

Proof. Let us first show that 〈P1,P2〉 ⊆ polyk (R1 ∩R2). Denote by B the root
space 〈R1 ∩R2〉. For anyP1(x) ∈ P1 andP2(x) ∈ P2, Fact 3.5 tells us thatP1(x) =

Q1(x) ⊗MB(x) and P2(x) = Q2(x) ⊗MB(x), where the Qi(x)’s are linearized
polynomials of q-degree less than k. Since the set of linearized polynomials is a
ring, we conclude that

δ1P1(x) + δ2P2(x) = δ1Q1(x)⊗MB(x) + δ2Q2(x)⊗MB(x)

= (δ1Q1(x) + δ2Q2(x))⊗MB(x)

= Q(x)⊗MB(x),

where we have definedQ(x) := (δ1Q1(x)+δ2Q2(x)). By definition, the polynomial
δ1P1(x) + δ2P2(x) lives in polyk (B) = polyk (〈R1 ∩R2〉). Furthermore, we can
express dim(〈P1,P2〉) as follows,

dim(〈P1,P2〉) = dim(P1) + dim(P2)− dim(P1 ∩ P2)

= k − |R1|+ k − |R2| − (k − |R1 ∪R2|)+

= k − (|R1|+ |R2| − |R1 ∪R2|)
= k − |R1 ∩R2|
= dim(polyk (〈R1 ∩R2〉)).

Thus, we assert that 〈P1,P2〉 = polyk (R1 ∩R2).

An inductive argument leads to the following proposition:

Proposition 3.1. Letk ≥ | ∪ni=1 Ri|. Then 〈P1, . . . ,Pn〉 = polyk (〈R1 ∩ · · · ∩ Rn〉).

56

Up until now, the Fqm-subspaces of linearized polynomials defined as polyk (〈Ri〉)
behave very similarly to classical sets of polynomials. Indeed, a comparison between
Proposition 2.1 and the one presented in this chapter reveals this intimacy. This last
corollary will endow us with the final building block required to use Proposition 2.1.

Corollary 3.1. Suppose k ≥ | ∪ni=1 Ri|. Then, we have that

Pn ∩ 〈P1, . . . ,Pn−1〉 = 〈P1 ∩ Pn, . . . ,Pn−1 ∩ Pn〉.

Proof. Using Fact 3.9 and Proposition 3.1, we know that Pn ∩ 〈P1, . . . ,Pn−1〉 =

polyk
(〈
Rn ∪ (∩n−1

i=1Ri)
〉)
. Let R′i = R1 ∪Rn. Since Rn ∪ (∩n−1

i=1Ri) = ∩n−1
i=1R′i,

we define P ′i = P1 ∩ Pn = polyk (R′i) and apply the same proposition again to
obtain the result.

As argued earlier, we assume that the min-cuts dictating the capacity region (3.1)
are due to the bipartite graph describing the relationship between the messages and
the source nodes. As a result, the problem of constructing a capacity-achieving
distributed Gabidulin code becomes completely analogous, in principle, to that of
a distributed Reed–Solomon code from Chapter 2. Hence, we identify with each
network a bipartite graph G = (M,S, E) in which (i, j) ∈ E if and only if Sj
can access message Mi. The capacity region can then be immediately read the
corresponding adjacency matrix or equivalent from (3.5). We can now state the first
result.

3.4 Code Construction for Networks with Two Messages

Proposition 3.2 (Two-Source Distributed Gabidulin Code). Let G = (M,S, E)

be a multiple source multicast network with two messages, in which z links are
corrupted by an omniscient adversary. Let Ri be the set of source nodes with no
access toMi. Then, for any rate pair (r1, r2) such that

r1 ≤ k − |R1|,
r2 ≤ k − |R2|,

r1 + r2 ≤ k − |R1 ∩R2|,

there exists a distributed Gabidulin code capable of correcting up to z rank errors.

Proof. The proof of this proposition is identical to that of Proposition 2.2. The
polynomial spaces considered are replaced with linearized polynomial spaces for
which Definition 2.3 and Fact 2.3 apply.

57

3.5 Code Construction for Networks with Three Messages
Having established the existence of distributed Gabidulin codes for multiple source
multicast networks with two messages, we now present the first result pertinent to
networks with three messages. On a high level, we consider two different cases.
The first is one in which a purely algebraic solution is possible similar to that of
Proposition 2.4.

Code Construction: k ≥ |R1 ∪R2 ∪R3|.

Proposition 3.3. Let G = (M,S, E) be a multiple source multicast network with
three message, in which z links are corrupted by an omniscient adversary. LetRi be
the set of source nodes with no access toMi, and assume that k ≥ |R1 ∪R2 ∪R3|,
where k = |S| − 2z. Then, a distributed Gabidulin code exists for any point in the
capacity region of G, capable of correcting z rank errors.

Proof. First, let A = {α1, . . . , αn} ⊆ Fqm be a set of linearly independent field
elements. Furthermore, identify αi with the ith row of G in (3.5). Since k ≥
|R1 ∪R2 ∪R3|, Fact 3.9, Proposition 3.1 and Corollary 3.1 render Lemma 2.2 and
Proposition 2.3 fromChapter 2 valid for linearized polynomials, when definingPi :=

polyk (〈Ri〉). This allows us to express the capacity region of the network in terms of
the bounds from the Proposition since the capacity region is completely determined
by G. With this observation, the allocation of transformation polynomials can be
done as required and so the proof is complete.

Code Construction: k < |R1 ∪R2 ∪R3| and ri ≤ ni.
Remember the definition ni = |Si|, the number of source nodes with access to
messageMi. Let us now present the counterpart of Proposition 2.5. In this case, we
are able to construct distributed Gabidulin codes by reducing the problem in hand
to two subproblems and then relying on Proposition 3.2.

Proposition 3.4. Let G = (M,S, E) be a multiple source multicast network with
three messages, in which z links are corrupted by an omniscient adversary. Let Si
be the set of source nodes with access toMi only. If for some i ∈ {1, 2, 3} we have
ri ≤ |Si|, a distributed Gabidulin code exists for any point in the capacity region of
G, capable of correcting z rank errors.

Proof. Remember that nI = |SI |. Without loss of generality, suppose r1 ≤ n1. As
usual identify the j th row ofG with αj . Choose α1, . . . , αn so that they are linearly

58

independent in Fqm . LetR1 = {j : [A]1,j = 0} and define for each j = 1, . . . , r1

Dj = {αj : j ∈ R1} ∪ {α1, . . . , αr1} \ {αj}.

Finally, let Tj(x) be the minimal linearized polynomial of 〈Dj〉;

Tj(x) =
∏

γ∈〈Dj〉

(x− γ).

The evaluation of the Tj(x)’s forms a set of codewords which, when organized as a
matrix, have the following form.

G1 =


T1(α1) · · · Tr1(α1)

T1(α2) · · · Tr1(α2)
...

T1(αn) · · · Tr1(αn)

 =



? 0 · · · 0

0 ? · · · 0
...

...
0 0 · · · ?

× × · · · ×
0 0 · · · 0

0 0 · · · 0

0 0 · · · 0

× × · · · ×
× × · · · ×
× × · · · ×



. (3.8)

As before, the symbol ? represents a nonzero element from Fqm , and the symbol
× represents a column vector of such elements. The blocks of rows correspond to
{S1,S2,S3,S2,3,S1,3,S1,2,S1,2,3}. We have made it pictorially evident that r1 ≤
|S1|. Since the αi’s are linearly independent, we are guaranteed that αj is not a root
of Pj(x), ensuring that the first diagonal entries are indeed nonzero and so G1 has
full column rank.

From here, the allocation for G2 and G3 follows immediately from Proposition 3.2
and the concatenation of G1, G2 and G3 as the columns of the matrix G forms a
full rank generator matrix , as in (3.5), for a distributed Gabidulin code.

Code Construction: k < |R1 ∪R2 ∪R3| and ri > ni.
The last outstanding case is that of k < |R1 ∪R2 ∪R3| in which a decomposition
like the one used in Proposition 3.4 is not possible. It is at this point that an analog
of Proposition 2.6 requires slightly more effort.

59

In this case, we assume that ri > ni for all i. Similar to the approach of Chapter 2,
each matrixGi is partitioned into two blocks, where for example

G1 =
[
G1,a G1,b

]
=



? 0 · · · 0

0 ? · · · 0
...

...
0 0 · · · ?

0 0 · · · 0

0 0 · · · 0

0 0 · · · 0

× × · · · ×
× × · · · ×
× × · · · ×

0 0 · · · 0

0 0 · · · 0
...

...
0 0 · · · 0

0 0 · · · 0

0 0 · · · 0

0 0 · · · 0

× × · · · ×
× × · · · ×
× × · · · ×



. (3.9)

The blocks Gi,a can be chosen as described earlier in the proof of Proposition 3.4.
At this point, it might be tempting to mimic the construction of Propositions 2.5 and
2.6 when construction the Gi,b’s . We argue now that this method does not carry
through immediately and use this opportunity to motivate the correct construction.
Define n̄ := n1 + n2 + n3 and t := k − n̄− 1.

Depending on whether assumptions (2.22),(2.23) or assumptions (2.29),(2.30) hold,
define the sets J1,J2 and J3 according to (2.25),(2.26) and (2.27) or (2.31), (2.32)
and (2.33), respectively. The techniques presented henceforth do not rely on which
case is true. For the sake of clarity, we list these sets when, without loss of generality,
the assumptions (2.29),(2.30) hold.

J1 = {n23 − t, . . . , n23 − t+ ρ1 − 1}, (3.10)

J2 = {n23 − t+ ρ1, . . . , n23 − t+ ρ1 + ρ2 − 1}, (3.11)

J3 = {n23 − t+ ρ1 + ρ2, . . . , n23 − t+ ρ1 + ρ2 + ρ3 − 1}, (3.12)

where ρi = ri − ni. Next, define the sets

N := {γ1, . . . , γn̄}, (3.13)

Bj := {βj+1, . . . , βj+t}. (3.14)

We associate the first n̄ rows of the desired G with N = {γ1, . . . , γn̄} and the
rest with B = {β1, . . . , βn−n̄}. The sets N and B are chosen to be jointly linearly
independent. Furthermore, the subscripts of the βi’s are taken modulo n− n̄, after

60

which we add one. One potentially choice for the set of polynomials that defineGi,b

is
Ti,b = {MN∪Bj(x) : j ∈ Ji}. (3.15)

The polynomial MN∪Bj(x) ensures that the entries of Gi,b corresponding to S1 ∪
S2 ∪ S3 all evaluate to zero as required by (3.9). Furthermore, if we consider G1,b,
the entries corresponding to S2,3 also evaluate to zero since, given the way J1 was
chosen, the set Bj ensures that as guaranteed by the proof of Propositions 2.5 and
2.6. The same claim holds forG2,b andG3,b.

By Fact 3.5, we can express the polynomials in Tb as

Tb = {Qj(x)⊗MN (x) : j ∈ J1 ∪ J2 ∪ J3}. (3.16)

Lemma 3.2. The polynomials Tb from (3.16) are linearly independent if and only if
the Qj(x)’s are so.

Proof. The polynomials are linearly dependent if and only if
∑

j cjQj(x)⊗MN (x) =

0 for some non zero cj ∈ Fqm . This is equivalent to(∑
j

cjQj(x)

)
⊗MN (x) = 0.

Given that the ring of linearized polynomials has no zero-divisors, this holds when∑
j cjQj(x) = 0, i.e. if and only if the Qj(x)’s are linearly dependent.

Unlike the case of regular polynomials, it is not immediately clear what theQj(x)’s
are. In the case of Reed–Solomon codes, they were precisely the counterparts of
theMBj(x)’s, which were constructed to be linearly independent. Since we cannot
make the same claim here, we will choose the sets in (3.13) and (3.14) carefully so
that we can assert their linear independence. Toward this end, we present a series
of technical results that culminate in a choice of N and B so that the Qj(x)’s are
linearly independent.

Let P (x) be the minimal linearized polynomial of {αb+1, . . . , αb+t}, where α is
primitive in Fqm . It turns out that even though P (x) is linearized, its coefficients3
are all nonzero.

3The coefficients of a linearized polynomials are those corresponding to monomials of the the
form xqi .

61

Lemma 3.3. Let P (x) be the minimal linearized polynomial of {αb+1, . . . , αb+t},
where α is primitive in Fqm . Then, all coefficients of P (x) are nonzero.

Proof. The polynomial P (x) is of q-degree t since its root space is spanned by t
linearly independent elements in Fqm . Furthermore, it has at most t+ 1 coefficients
since it is linearized. An application of the BCH bound 2.4 tells us all these
coefficients are nonzero.

Proposition 3.5. LetP (x) be theminimal linearized polynomial of {αb+1, . . . , αb+t}
and consider the set of polynomials {P (α−jx) : j ∈ J1∪J2∪J3}. The polynomials
are linearly independent over Fqm if and only if the elements in {α−j : j ∈ J1 ∪
J2 ∪ J3} are linearly independent over Fq.

Proof. Define s := |J1 ∪ J2 ∪ J3| = ρ1+ρ2+ρ3. WriteP (αjx) =
∑t

i=0 piα
j[i]x[i]

and consider the matrix P whose columns are the coefficients of P (α−jx) for
j ∈ J1 ∪ J2 ∪ J3,

P =


p0α

j1 p0α
j2 · · · p0α

js

p1α
j1[1] p1α

j2[1] · · · p1α
js[1]

...
...

ptα
j1[t] ptα

j2[t] · · · ptα
js[t]

 .

By the cut-set bounds we know that s ≤ k, which enables us to form P̂ from the
first s rows of P. Writing out the determinant yields

det(P̂) =

∣∣∣∣∣∣∣∣∣∣
p0α

j1 p0α
j2 · · · p0α

js

p1α
j1[1] p1α

j2[1] · · · p1α
js[1]

...
...

ps−1α
j1[s−1] ps−1α

j2[s−1] · · · ps−1α
js[s−1]

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
αj1 αj2 · · · αjs

αj1[1] αj2[1] · · · αjs[1]

...
...

αj1[s−1] αj2[s−1] · · · αjs[s−1]

∣∣∣∣∣∣∣∣∣∣
s−1∏
i=0

pi. (3.17)

The polynomial P (x) has t cyclically consecutive roots and so by the BCH bound
all t + 1 pi’s are non-zero. The Vandermonde-like matrix in (3.17) has non-
zero determinant if and only if {αj1 , αj2 , . . . , αjs} are linearly independent over Fq
[LN97, p.109]. Hence, det(P̂) 6= 0 and P has full column rank and in turn the

62

polynomials P (α−jx), j ∈ J1 ∪ J2 ∪ J3 are linearly independent over Fqm if and
only if the elements in {α−j : j ∈ J1 ∪ J2 ∪ J3} are pairwise distinct.

With regards to their evaluation , the linearized polynomial P (α−lx) behaves the
same way as in the case for regular polynomials described in Lemma 2.3.

Lemma 3.4. Let P (x) =
∏

β∈〈U〉(x− β), where U = {α, . . . , αt}. Fix a number l,
then P (α−lx) = α−lq

t
MU ′(x), where U ′ = {αl+1, . . . , αl+t}.

Proof. By definition, we have

P (α−lx) =
∏

c1,...,ct∈Fq

(
α−lx−

t∑
i=1

ciα
i

)

=
∏

c1,...,ct∈Fq

α−l

(
x−

t∑
i=1

ciα
i+l

)
= α−lq

t
∏

γ∈〈αl+1,...,αl+t〉
(x− γ).

Lemma 3.5. Let Bj = {βj+1, . . . , βj+t}, N = {γ1, . . . , γn̄} where βi, γi ∈ Fqm .
Now define δj = MN (βj) and let B′j = {δ1, . . . δt}. Then the elements in B′j are
linearly independent overFq if and only if the elements inBj are linearly independent
over Fq and 〈Bj〉 ∩ 〈N〉 = 0.

Proof. Bydefinition, if the elements inB′j are linearly independent then for c1, . . . , ct ∈
Fq not all equal to zero, we have

t∑
i=1

ciMN (βj+i) = MN

(
t∑
i=1

ciβj+i

)
6= 0.

This implies that
∑t

i=1 ciβj+i /∈ 〈N〉, the root space of MN (x), implying that
〈Bj〉 ∩ 〈N〉 = 0. In particular, we also have

∑t
i=1 ciβj+i 6= 0, so the elements in Bj

are linearly independent. On the other hand, if any element
∑t

i=1 ciβj+i does not
lie in 〈N〉, and is not equal to zero, we have

0 6= MN

(
t∑
i=1

ciβj+i

)
=

t∑
i=1

ciMN (βj+i) =
t∑
i=1

ciδi.

As a consequence, the elements of B′j are linearly independent thus the proof is
complete.

63

The lemma asserts thatMN (x) defines an isomorphism between Bj and B′j . This is
readily seen when one views the polynomial as an Fq-linear map from Fqm to Fqm
defined by its kernel 〈N〉 and restricts its domain to a space that intersects trivially
with this kernel. Lemma 3.5 allows us to characterize the Qj(x)’s from (3.16).

Lemma 3.6. Consider an arbitrary polynomial in (3.16) given by Pj(x) = Qj(x)⊗
MN (x). Let Bj = {βj+1, . . . , βj+t} and B′j = {δ1, . . . , δt}, where δi = MN (βj+i).
If 〈Bj〉 ∩ 〈N〉 = 0, then one has Qj(x) = MB′j(x).

Proof. An application of Lemma 3.5 reveals that dim(〈Bj〉) = dim(
〈
B′j
〉
). Further-

more, we have

degq Qj(x) = degq MN∪Bj(x)− degq MN (x) = dim(〈Bj〉),

by Fact 3.7 and the fact that 〈Bj〉 ∩ 〈N〉 = 0. Lastly, for any element γ ∈
〈
B′j
〉
,

one has Qj(γ) = 0. Hence, the root space of
〈
B′j
〉
is contained in the root space of

Qj(x) and as a consequence, they are in fact equal.

Suppose now that we can choose the sets N and Bj in (3.13) and (3.14) so that for
j ∈ J1 ∪ J2 ∪ J3, the polynomialMN (x) maps Bj to {αj+1, . . . , αj+t}. This will
ensure that Qj(x) from (3.16) is nothing but P (α−jx) (up to scaling), where P (x)

is the minimal linearized polynomial of {α, . . . , αt}. By Proposition 3.5, we can
conclude that the Qj(x)’s are linearly independent. We are in a position that allows
to state the main result of this section.

Proposition 3.6. Let G = (M,S, E) be a multiple source multicast network with
three messages, in which z links are corrupted by an omniscient adversary. Let
Si ⊆ S be the set of source nodes with access to Mi only. Suppose that for
i ∈ {1, 2, 3} we have ri > |Si|. Then, for any point in the capacity region of G, a
distributed Gabidulin code exists, for a special choice of code coordinates, capable
of correcting z rank errors.

Allow us to emphasize the fact that the choice of code coordinates is not arbitrary.
Indeed, a major component of the proof of this proposition is devoted to crafting the
defining elements of the constituent Gabidulin code.

Proof. Identify the first n̄ rows of G in (3.9) with N = {γ1, . . . , γn̄} and the
remaining rows with B = {β1, . . . , βν}, where ν := n− n̄. Let A = {α, . . . , αν}.

64

Furthermore, define Bj as in (3.14). For j ∈ J1 ∪ J2 ∪ J3 from (3.10), (3.11)
and (3.12), the polynomialsMN∪Bj(x), when evaluated onN ∪B, form a generator
matrixG that obeys themask given in (3.9). This is immediate fromProposition 2.6.
Now by Lemma 3.5, the polynomialMBj∪N (x) factors as

MBj∪N (x) = Qj(x)⊗MN (x).

Suppose that there is a choice of jointly linearly independent N and B so that
MN (x) maps Bj to Aj = {αj+1, . . . , αj+t}. By Lemma 3.6, we have Qj(x) =

MAj(x) which, by construction, is equal (up to a constant) to MA(α−jx). We
conclude by Proposition 3.5 that the MA(α−jx)’s, and hence the Qj(x)’s, are
linearly independent over Fqm . As a result, the the set of polynomials

Tb = {MBj∪N (x) : j ∈ J1 ∪ J2 ∪ J3}

corresponds to a full rank generator matrix of a distributed Gabidulin code designed
for G.

In the next section, we provide a recipe that constructs the sets N and B with the
prescribed properties.

Choosing the Coordinates of the Constituent Code
For simplicity, let ν := n − n̄. From Lemma 3.5, we are to simultaneously find
N = {γ1, . . . , γn̄} and B = {β1, . . . , βν}, jointly linearly independent over Fq, so
that MN (x) maps βi to αi. In this section, we provide a recipe that does exactly
this using standard techniques from abstract algebra. First, let us introduce the trace
map.

Definition 3.5. The trace map Tr : Fqm → Fq is defined by Tr (a) =
∑m−1

i=0 a[i].

The following lemma shows how to find a member of the dual basis of a set of
linearly independent elements in Fqm .

Lemma 3.7. Let = {u1, . . . , ut} be linearly independent elements over Fq and
t < m. Then there exists λ ∈ Fqm such that Tr (λui) = 0 for all ui ∈ U .

65

Proof. The equations Tr (λui) = 0 can be expressed as the following linear system
over Fqm . 

u1 u
[1]
1 · · · u

[m−1]
1

...
...

ut u
[1]
t · · · u

[m−1]
t




λ

λ[1]

...
λ[m−1]

 =


0

0
...
0

 .
Let b1, . . . , bm be a basis for Fqm , and set λ =

∑m
i=1 aibi, where ai ∈ Fq. Also, note

that λ[j] =
∑m

i=1 aib
[j]
i . The linear system can now be expressed as

UBa =


u1 u

[1]
1 · · · u

[m−1]
1

...
...

ut u
[1]
t · · · u

[m−1]
t




b1 b2 · · · bm

b
[1]
1 b

[1]
2 · · · b

[1]
m

...
...

b
[m−1]
1 b

[m−1]
2 · · · b

[m−1]
m



a1

a2

...
am

 =


0

0
...
0

 .
This can be further developed to

UBa =


Tr (u1b1) Tr (u1b2) · · · Tr (u1bm)

...
...

Tr (utb1) Tr (utb2) · · · Tr (utbm)



a1

a2

...
am

 =


0

0
...
0

 .
Note that matrix U has rank t and matrix B is invertible and so UB is of rank t
over Fqm . By properties of the trace map, the matrix lives in the space of matrices
with entries in Fq; the solution to this system is a linear space over Fq of dimension
m− t.

Lemma 3.8. Tr (a) = 0 if and only if there exists b ∈ Fqm such that a = bq − b.

Proof. Suppose a = bq − b, then by definition,

Tr (a) =
m−1∑
i=0

a[i]

=
m−1∑
i=0

(bq − b)[i]

=
m−1∑
i=0

b[i+1] − y[i]

= b[m] − b = 0.

On the other hand, let b be a root of xq − x − a in some extension of Fq. Then
Tr (a) = Tr (βq − β) = β[m] − β = 0 and β[m] = β implying that β ∈ Fqm .

66

The last building block is a proposition that enlarges a set of linearly independent
elements from Fqm .

Lemma 3.9. Let U = {u1, . . . ut} be a linearly independent set in Fqm and suppose
λ is such that Tr (λui) = 0 for all i. Furthermore, put yi such that λui = yqi − yi.
The elements inY = {y1, . . . , yt, 1} are linearly independent over Fq. Furthermore,
the factorizationMY(x) = MU(x)⊗ (xq − x)/λ holds.

Proof. Let c0 +
∑τ

i=1 ciyi = 0. Then c0 +
∑τ

i=1 ciy
q
i = 0. Subtracting the first

expression from the second yields
∑τ

i=1 ci(y
q
i − yi) =

∑τ
i=1 ci(λui) = 0. Thus

c1 = . . . = cτ = 0 since the ui are linearly independent by assumption, and
consequently one has c0 = 0. To prove the factorization of MY(x), note that
MY(a) = 0 for all a ∈ Fq. Furthermore, one has

∏
a∈Fq(x − a) = xq − x and so

MY = P (x)⊗ (xq − x). Let P (x) =
∑t

i=0 pix
[i]. It follows that

MY(x) =
t∑
i=0

pi(x
q − x)[i]

=
t∑
i=0

piλ
[i]

(
xq − x
λ

)[i]

=

(
t∑
i=0

piλ
[i]x[i]

)
⊗
(
xq − x
λ

)
.

Let Q(x) =
∑t

i=0 piλ
[i]x[i]. Then, for all yi, we have

0 = MY(yi) = Q(x)⊗
(
yqi − yi
λ

)
= Q(ui).

By Fact 3.7, we conclude that Q(x) = MU(x).

This proposition suggests an iterative approach to constructing N and B.

Proposition 3.7. Let U0 = {u0,1, . . . u0,t} be a linearly independent set. For i =

0, . . . , n̄− 1, choose λi such that Tr (λiui,j) = 0 for all j = 1, . . . , t+ i and define
the set Ui+1 recursively via

Ui+1 = {bi,1, . . . , bi,t+i, 1}, (3.18)

where bi,j is such that bqi,j − bi,j = λiui,j . Then, it holds that

MUn̄(x) = MU0(x)⊗
(
xq − x
λ0

)
⊗ · · · ⊗

(
xq − x
λn̄−1

)
. (3.19)

67

Proof. We demonstrate the proof by induction. For i = 0, the result for MU1(x)

follows from Lemma 3.9. Now suppose that for j < n̄− 1, we have

MUj(x) = MU0(x)⊗
(
xq − x
λ0

)
⊗ · · · ⊗

(
xq − x
λj−1

)
. (3.20)

By Lemma 3.9, the following factorization holds.

MUj+1
(x) = MUj(x)⊗ xq − x

λj
. (3.21)

Plugging in 3.20 into 3.21 completes the proof.

We can now build N by applying Proposition 3.7 to U0 = {α, . . . , αν}. The
resulting set is

Un̄ = {un̄,1, . . . , un̄,ν , un̄,ν+1, . . . , un̄,ν+n̄−1, 1},

which can be partitioned into N and B as

N = {un̄,ν+1, . . . , un̄,ν+n̄−1, 1},
B = {un̄,1, . . . , un̄,ν}.

For clarity, the procedure for building B and N is outlined in Algorithm 1.

Algorithm 1 Computing coordinates of constituent Gabidulin code
procedure Coordinates(ν, n̄)

u0,j ← αj , ∀j ∈ {1, . . . , ν}
U0 ← {u0,1, . . . , u0,ν}
for i← 0, n̄− 1 do

λi ← λ such that Tr (λui,j) = 0, ∀ui,j ∈ Ui
ui+1,j ← aj such that λiui,j = aqj − aj , ∀ui,j ∈ Ui
Ui+1 ← {ui+1,1, . . . , ui+1,ν+i, 1}

end for
return Un̄

end procedure

As a result, the two sets N and B now define the coordinates of the constituent
Gabidulin code from which a distributed code for a multisource multicast network
can be extracted.

3.6 Discussion
In this section, we allude to a variety of topics pertinent to the topic of the current
chapter. First, we discuss decoding aspects of distributed Gabidulin codes.

68

Decoding Distributed Gabidulin Codes
In [SKK08], Silva et al. showed how the concept of lifting a rank-metric code
(Definition 3.3) provides the destination node with side information when decoding
the received packets. The method of [SKK08] for decoding lifted Gabidulin codes
can be used to decode our construction, which is essentially a subcode of a lifted
Gabidulin code. The complexity of the decoding process is O(dm) operations in
Fqm , where d is the minimum rank distance of the constituent code.

Rank Deficiency of the Network
While designing distributed Gabidulin subject to a mask constraint on the generator
matrix is interesting on its own, it is essential that we revisit the structure of the
multiple-source multicast network that dictates this constraint. In particular, we
justify our assumption that mI = n, where n is the total number of source nodes
in the network. Indeed, under our assumption, we ensure that the network is one
where the matrix H from 3.2 has full column rank. Let us now justify why this
assumption is critical to our framework. Suppose that rank (H) = n−ρ and let z be
the total number of adverserial errors introduced in the network. The result [SK09a,
Theorem 11] deems it necessary and sufficient to use a Gabidulin code of minimum
distance d > 2z + ρ to account for the rank-deficiency of H. As a result, there
are examples of networks for which designing a distributed Gabidulin code that is
capacity achieving might not be possible. Note that in our setup, we are requiring
that the symbols being transmitted by the source nodes, when viewed together as a
signal codeword, live in a Gabidulin code.

Example 3.1. Consider the cartoon depicted in Figure 3.2. Suppose r1 = r2 = 1

and the adversary injects a single erroneous packet at the outgoing link of V1.

69

M1 M2

S1 S2 S3 S4 S5 S6

V4V3V2V1

D

Figure 3.2: A multi-source multicast network that inherently introduces rank-
deficiency into H, the transformation describing the random linear network code.
For eachMi, the min-cut betweenMi andD is equal to 3 while the mincut between
{M1,M2} is equal to 4. Under the presence of a single erroneous link, the rate pair
(r1, r2) is achievable.

The rank deficiency here is ρ = 2. By [SK09a, Theorem 11], a code of minimum
distance 5 is necessary. The code length is n = 6, the total number of sources. Any
distributed linear network error-correcting code must have the following generator
matrix.

G =



a1 0

a2 0

a3 0

0 b1

0 b2

0 b3


. (3.22)

The first three rows correspond to the outgoing links of S1, S2, S3 and the rest
correspond to S4, S5, S6. Since every column of G is of weight at most 3, it
is impossible to construct the distributed Gabidulin code. The example could
potentially be motivating to consider other metrics, and in particular the injection
metric from [SK09b], for the construction. Indeed, the achievability scheme of
Dikaliotis et al. in [Dik+10] heavily depends on the injection metric.

70

The Constituent Code’s Coordinates
Note that the construction of Proposition3.6 heavily relies on a particular choice
of coordinates that was constructed in Section 3.5. On the other hand, all other
constructs were valid for a general choice of linearly independent elements. For the
sake of elegance, it is worth exploring a unified choice of coordinates that is suitable
for all given constructions. In Chapter 2, it was possible to naturally choose the
coordinates as powers of a primtive element. It is worth mentioning that elements
of a normal basis of Fqm over Fq could potentially be used in the setting considered
in this chapter.

With regards to the finite fieldFqm overwhich our constructions operate, we have that
m > n is sufficient. Propositions 3.3, 3.6 require n linearly independent elements
in Fqm . Furthermore, Proposition 3.7 extends a basis of size n− n̄ to one of size n.
The bound m > n is optimal for Gabidulin codes when the min-cut of the network
n is interpreted as the blocklength of the code.

71

C h a p t e r 4

CODING WITH CONSTRAINTS: SYSTEMATIC
CONSTRUCTIONS

4.1 Introduction
We examine in this chapter an error-correcting coding framework in which we must
encode smessage symbols using a length n error-correcting code subject to a set of
encoding constraints. Specifically, each coded symbol is a function of only a subset
of the message symbols. This setup generalizes the one considered in Chapter 2
and arises in various situations. One such case is that of a sensor network in which
each sensor can measure a certain subset of a set of parameters. The sensors would
like to collectively encode the readings to allow for the possibility of measurement
errors. Another scenario is one in which a client wishes to download data files from
a set of servers, each of which stores information about a subset of the data files.
The user should be able to recover all of the data even in the case when some of the
file servers fail. Ideally, the user should also be able to download the files faster in
the absence of server failures. To protect against errors, we would like the coded
symbols to form an error-correcting code with reasonably high minimum distance.
On the other hand, efficient download of data is permitted when the error-correcting
code is of systematic form. We present an upper bound on the minimum distance of
an error-correcting code when subjected to encoding constraints, reminiscent of the
cut-set bounds of [Dik+10]. Under a certain technical condition, we provide a code
construction that achieves this bound. It turns out that this condition is sufficient for
a systematic construction based on Reed–Solomon codes. Furthermore, we refine
our bound in the case that we demand a systematic linear error-correcting code,
and present a construction that achieves the bound. In both cases, the codes can
be decoded efficiently due to the fact that our construction utilizes Reed-Solomon
codes.

Related Work
The problem of constructing error-correcting codes with constrained encoding has
been addressed by a variety of authors. Dau et al. [Dau+13; DSY14; DSY15]
considered the problem of finding linear MDS codes with constrained generator
matrices. They have shown that, under certain assumptions, such codes exist over

72

large enough finite fields, as well as over small fields in a special case. A simi-
lar problem, known as the weakly secure data exchange problem, was studied in
[YS11],[YSZ14]. The problem deals with a set of users, each with a subset of
messages, who are interested in broadcasting their information securely when an
eavesdropper is present. In particular, the authors of [YSZ14] conjecture the ex-
istence of secure codes based on Reed-Solomon codes and present a randomized
algorithm to produce them. In the context of multi-source multicast network coding,
we cite the relevant papers [Dik+10; Hal+14; HHD14].

4.2 Problem Setup
Consider a bipartite graph G = (M,V , E) with s = |M| ≤ |V| = n. The set E is
the set of edges of the graph, with (mi, cj) ∈ E if and only ifmi ∈M is connected
to cj ∈ V . This graph defines a code where the verticesM correspond to message
symbols and the vertices V correspond to codeword symbols. A bipartite graph
with s = 3 and n = 7 is depicted in figure 4.1. Thus, if eachmi and cj are assigned
values in the finite field Fq with q elements, then our messages are the vectors
m = (m1, . . . ,ms) ∈ Fsq and our codewords are the vectors c = (c1, . . . , cn) ∈ Fnq .
Each codeword symbol cj will be a function of the message symbols to which it is
connected, as we will now formalize.

Henceforth, [c]I is the subvector of c with elements indexed by I ⊆ {1, ..., n}, and
[A]i,j is the (i, j)th element of a matrix A. Let N (cj) denote the neighborhood of
cj ∈ V , i.e. N (cj) = {mi ∈ M : (mi, cj) ∈ E}. Similarly, define N (mi) =

{cj : (mi, cj) ∈ E}. We will also consider neighborhoods of subsets of the vertex
sets, i.e. for V ′ ⊆ V , N (V ′) = ∪cj∈V ′N (cj). The neighborhood of a subset ofM
is defined in a similar manner. Let mi take values in Fq and associate with each
cj ∈ V a function fj : Fsq −→ Fq. We restrict each fj to be a function ofN (cj) only.
Now consider the set C = {(c1, . . . , cn) : cj = fj(m),m ∈ Fsq}. The set C is an
error-correcting code of length n and size at most qs. We will denote the minimum
distance of C as d(C). If we restrict fj to be linear, then we obtain a linear code with
dimension at most s.

The structure of the code’s generator matrix can be deduced from the graph G. Let
gj ∈ Fs×1

q be a column vector such that the ith entry is zero ifmi /∈ N (cj). Defining
fj(N (cj)) = mgj yields a linear function in which cj is a function of N (cj) only,

73

as required. A concatenation of the vectors gj forms the following matrix:

G =

 | |
g1 · · · gn

| |

 , (4.1)

whereG ∈ Fs×nq is the generator matrix of the code C.

We associate with the bipartite graph G = (M,V , E) an adjacency matrix A ∈
{0, 1}s×n, where [A]i,j = 1 if and only if (mi, cj) ∈ E . For the example in figure
4.1, this matrix is equal to

A =

1 0 0 1 1 1 1

1 1 1 0 1 1 1

0 0 1 1 1 1 1

 . (4.2)

A valid generator matrixG (in generic form) is built fromA by replacing non-zero
entries with indeterminates. The choice of indeterminates (from a suitably-sized
finite field Fq) determines the dimension of the code and its minimum distance.
For general linear codes, the Singleton bound (on minimum distance) is tight over
large alphabets. In the presence of encoding constraints, the Singleton bound can
be rather loose. In the next section, we derive an upper bound on the minimum
distance of any code (linear or non-linear) associated with a bipartite graph. This
bound is reminiscent of the cut-set bounds of Dikaliotis et al. in [Dik+10].

Subcodes of Reed-Solomon Codes
We will utilize Reed–Solomon codes as described in Section 1.2. Contrary to the
some of the results in Chapter 2, we will not restrict the coordinates of RS[n, k]

to be powers of a primitive element in Fq. This process is very similar to that
presented in Chapter 2. For the reader’s convenience, we restate it here. First, let
Fq be a finite field with cardinality q ≥ n. Associate to each cj ∈ V a distinct
element αj ∈ Fq. Consider the ith row of the adjacency matrix A of G, and let
ti(x) =

∏
j:[A]i,j=0(x − αj). For example, t3(x) = (x− α1)(x− α2) corresponds

to the the third row of A in (4.2). Choose k such that k > deg (ti(x)), ∀i. If
ti ∈ Fkq is the (row) vector of coefficients of ti(x) and GRS is the generator matrix
of a Reed-Solomon code with defining set {α1, . . . , αn} and dimension k, then
tiGRS = (ti(α1), . . . , ti(αn)) is a vector that is valid for the ith row of G, i.e. if
[A]i,j = 0 then [tiGRS]j = 0. A horizontal stacking of the vectors ti results in a

74

m1 m2 m3

c2 c5 c7c6c4c3c1

Figure 4.1: A bipartite graph representing an error-correcting code subject to encod-
ing constraints. The code comprises seven code symbols that encode three message
symbols.

transformation matrix T that will produce a valid generator matrixG from GRS:

G = TGRS =


t1

...
ts




1 · · · 1

α1 · · · αn
...

α
(k−1)
1 · · · α

(k−1)
n

 . (4.3)

The rank of G will be equal to the rank of T, and the resulting code C will have a
minimum distance d(C) that is determined by CRS. Indeed, d(C) ≥ d(CRS).

4.3 Minimum Distance
In this section, an upper bound on the minimum distance of a code defined by a
bipartite graph G = (M,V , E) is derived. The bound closely resembles the cut-set
bounds of [Dik+10]. In most cases, this bound is tighter than the Singleton bound
for a code of length n and dimension s. For eachM′ ⊆M define nM′ := |N (M′)|.
This is the number of code symbols cj in V that are a function of the information
symbolsM′. The following proposition characterizes the minimum distance of any
code defined by G.

Proposition 4.1. Fix a field Fq. For any code C with |C| = qs defined by a fixed
graph G = (M,V , E), the minimum distance d(C) obeys

d(C) ≤ nM′ − |M′|+ 1, ∀M′ ⊆M. (4.4)

Proof. Working toward a contradiction, suppose d(C) > nI − |I| + 1 for some
I ⊆ M. Let C ′ be the encoding of all message vectors m where [m]Ic ∈ F|I

c|
q

has some arbitrary but fixed value. Note that [c]N (I)c is the same for all c ∈ C ′,
since the symbols N (I)c are a function of Ic only. Since |I| > nI − d(C) + 1,

75
IcI

N (I) N (I)c

· · ·

· · ·

· · ·

· · ·

Figure 4.2: Partitions ofM and of V used in the proof of Proposition 4.1. The set
N (I) is a function of both I and Ic, while the set N (I)c is a function of Ic only.

then by the pigeonhole principle there exist c1, c2 ∈ C ′ such that, without loss of
generality, the first nI − d(C) + 1 symbols of [c1]N (I) and [c2]N (I) are identical.
Furthermore, [c1]N (I)c = [c2]N (I)c . Finally, since N (I) and N (I)c partition V , we
obtain dH(c1, c2) ≤ n− (nI − d(C) + 1 + (n− nI)) = d(C)− 1, a contradiction.
Figure 4.2 illustrates the relation between I and the corresponding partition of
V .

As a direct corollary, we obtain the following upper bound on d(C):

Corollary 4.1.
d(C) ≤ min

M′⊆M
{nM′ − |M′|}+ 1. (4.5)

Our next task is to provide constructions of codes that achieve this bound.

4.4 Systematic Construction
In this section, we provide a code construction that achieves the minimum distance
bound stated in corollary 4.1. We appeal to Hall’s Theorem, a well-known result
in graph theory that establishes a necessary and sufficient condition for finding a
matching in a bipartite graph. Some terminology needed from graph theory is
defined in the following subsection.

Graph Theory Preliminaries
Let G = (S, T , E) be a bipartite graph. A matching is a subset Ẽ ⊆ E such that no
two edges in Ẽ share a common vertex. A vertex is said to be covered by Ẽ if it is
incident to an edge in Ẽ . An S-covering matching is one by which each vertex in S
is covered. We will abuse terminology and say that an edge e ∈ Ẽ is unmatched if
e /∈ Ẽ . We can now state Hall’s Theorem.

Theorem 4.1. Let G = (S, T , E) be a bipartite graph. There exists an S-covering
matching if and only if |S ′| ≤ |N (S ′)| for all S ′ ⊆ S.

76

For a proof of the theorem, see e.g. [VW11, p.53].

Set dmin = minM′⊆M{nM′ − |M′|} + 1. In order to construct a generator matrix
G ∈ Fs×nq for a code C with minimum distance dmin, we will use an [n, n−dmin + 1]

Reed-Solomon code with generator matrixGRS. We will then extract C as a subcode
using an appropriately built transformation matrix T to form G = TGRS such that
G is in systematic form, which implies that the dimension of C is s. Finally, we will
show that d(C) = dmin.

Our construction is as follows: consider a graph G = (M,V , E) defining C, and
define the set A = {cj : N (cj) = M}, i.e. A is the set of code symbols that are
a function of every message symbol. Note that A ⊆ N (M′) for everyM′ ⊆ M.
Therefore, if a = |A| then the size of the neighborhood ofN (M′) can be expressed
as nM′ = rM′ + a, where rM′ is the cardinality of the setR(M′) = N (M′) \ A.

Theorem 4.2. Let G = (M,V , E). Set dmin = minM′⊆M{nM′ − |M′|} + 1 and
kmin = n− dmin + 1. A linear code C with parameters [n, s, dmin] valid forG can be
constructed with a systematic-form generator matrix provided that kmin ≥ rM.

Proof. First, we establish a bound on a, the number of code symbols that are
(potentially) a function of everymessage symbol. Note that since n = nM = rM+a

and kmin ≥ rM, then we have a ≥ dmin − 1. Fix an arbitrary subset A∗ ⊆ A of
size a∗ = a − (dmin − 1), which is guaranteed to exist by virtue of the bound on
a, and let B = A \ A∗. Now, we focus on a particular subgraph of G defined by
G∗ = (M,V∗, E∗) where V∗ = V \ B, and E∗ = {(mi, cj) ∈ E : cj ∈ V∗} is
the edge set corresponding to this subgraph. Since nM′ = rM′ + a, then from the
definition of dmin we have

|M′| ≤ rM′ + a− (dmin − 1), ∀M′ ⊆M. (4.6)

The neighborhood of every subsetM′ when restricted to V∗ is exactly N ∗(M′) =

R(M′) ∪ A∗, with cardinality n∗M′ = rM′ + a∗. The bounds (4.6) can now be
expressed in a way suitable for the condition of Hall’s theorem:

|M′| ≤ n∗M′ , ∀M′ ⊆M. (4.7)

AnM-covering matching in G∗ can be found by letting S = M and T = V∗ in
theorem 4.1. Let Ẽ = {(mi, cj(i))}si=1 ⊆ E∗ be such a matching, and Ṽ the subset
of V∗ that is covered by Ẽ . Let AẼ be the adjacency matrix of G when the edge
set {(mi, cj) ∈ E : cj ∈ Ṽ , j 6= j(i)} is removed. The number of zeros in any

77

row of AẼ is at most n − dmin. To see this, note that the edges in E incident to
B are not removed by the matching, and every mi ∈ M is connected to at least
one vertex in V∗. Next, we build a valid G for G using AẼ , utilizing the method
described in Section 5.3. Fix a [n, n− dmin + 1] Reed-Solomon code with generator
matrix GRS and defining set {α1, . . . , αn}. The ith transformation polynomial is
ti(x) =

∏
j:[AẼ]i,j=0(x − αi). Since the number of zeros in any row of AẼ is at

most n − dmin, we have deg (ti(x)) ≤ n − dmin = k − 1 for all i. We use the
ti(x), after normalizing by ti(αj(i)), to construct a transformation matrixT and then
G = TGRS is valid for G. Note that G is in systematic form due the fact that the
columns of AẼ indexed by {j(i)}si=1 form a permutation of the identity matrix of
size s. Lastly, d(C) = dmin since d(C) ≤ dmin by (4.5), and d(C) ≥ dmin since C is a
subcode of a code with minimum distance dmin.

The inequality a ≥ dmin − 1 provides a sufficient condition for a given graph G to
accommodate a system generator matrix without sacrificing the minimum distance.
A natural question to ask is whether this condition is necessary. It turns out that it
is not: there exist bipartite graphs for which a systematic construction achieves the
upper bound on minimum distance (4.5) but a ≤ dmin. A simple example is one
whose adjacency matrix is given below:

A =

1 0 0 0 1 1

0 1 0 1 1 1

0 0 1 1 0 1

 .
It can be checked that dmin = 3 whereas a = 1. Clearly, a systematic construction
exists by using a subcode of RS[6, 4].

In the next section, we consider the scenario where the code designed for a particular
constraint graph is required to be systematic. We will show that this requirement can
potentially decrease the largest achievable minimum distance. We will characterize
this quantity and call it the systematic minimum distance of the graph.

4.5 Minimum Distance for Systematic Linear Codes
We will restrict our attention to the case where a code valid for G is linear, so that
each cj ∈ V is a linear function of the message symbols mi ∈ N (cj). We seek
to answer the following: What is the greatest minimum distance attainable by a
systematic linear code valid for G?

78

Any systematic code must correspond to a matching Ẽ ⊆ E which identifies each
message symbol mi ∈ M with a unique codeword symbol cj(i) ∈ V , where j(i) ∈
{1, . . . , n}. Explicitly, Ẽ consists of s edges of the form (mi, cj(i)) for i = 1, . . . , s

such that cj(i1) 6= cj(i2) for i1 6= i2. As before, Ṽ is the subset of vertices in V which
are involved in the matching: Ṽ = {cj(i)}si=1. Our code becomes systematic by
setting cj(i) = mi for i = 1, . . . , s, and choosing each remaining codeword symbol
cj /∈ Ṽ to be some linear function of its neighboring message symbolsmi ∈ N (cj).

Definition 4.1. For G = (M,V , E), let Ẽ ⊆ E be anM-covering matching so that
Ẽ = {(mi, cj(i))}si=1. Let Ṽ = {cj(i)}si=1 be the vertices in V which are covered by
Ẽ . Define the matched adjacency matrix AẼ ∈ {0, 1}s×n so that [AẼ]i,j = 1 if and
only if either (mi, cj) ∈ Ẽ , or cj /∈ Ṽ and (mi, cj) ∈ E . In other words, AẼ is the
adjacency matrix of the bipartite graph formed by starting with G and deleting the
edges {(mi, cj) ∈ E : cj ∈ Ṽ and j 6= j(i)}.

Definition 4.2. Let Ẽ ⊆ E be a matching for G = (M,V , E) which covers M.
Let zẼ be the maximum number of zeros in any row of the corresponding matched
adjacency matrix AẼ , and define kẼ := zẼ + 1. Furthermore, define ksys = minẼkẼ
where Ẽ ranges over all matchings for G which coverM, and dsys = n− ksys + 1.

Lemma 4.1. For a given bipartite graph G = (M,V , E) which merits a matching
that coversM, we have

s ≤ kmin ≤ ksys ≤ n (4.8)

and
dsys ≤ dmin. (4.9)

Proof. LetA be the adjacency matrix of G.

For any subsetM′ ⊆ M we have dmin ≤ nM′ − |M′| + 1, and likewise kmin =

n − dmin + 1 ≥ |M′| + (n − nM′). Taking M′ = M (and noting that in our
framework, every cj ∈ V is connected to at least one vertex inM, hence nM = n)
we obtain kmin ≥ s.

Now choose a set M′ for which the above relation holds with equality, that is,
kmin = |M′| + (n − nM′). Since N (M′) is simply the union of the support sets
of the rows of A corresponding toM′, the quantity n− nM′ = n− |N (M′)| is at
most equal to the largest number of zeros in any row of A. On the other hand, for
any matching Ẽ which coversM, the zeros of A are a subset of the zeros of AẼ ,
so from its definition we must have that kẼ is greater than or equal to kmin, hence

79

ksys ≥ kmin. It follows directly that dsys ≤ dmin. Finally, it is clear from definition
that for anyM-covering matching Ẽ we must have that kẼ is less than the length of
the adjacency matrixA, which is n, hence ksys ≤ n.

Corollary 4.2. Let G = (M,V , E) be a bipartite graph which merits a systematic
linear code. The largest minimum distance obtainable by a systematic linear code
is dsys.

Proof. Let C be a systematic linear code which is valid for G. Then C must have a
codeword containing at least ksys − 1 zeros, i.e. a codeword of Hamming weight at
most n− ksys + 1 = dsys. Since the code is linear, this Hamming weight is an upper
bound for its minimum distance, so d(C) ≤ dsys.

It remains to see that there are systematic linear codes which are valid for G and
achieve a minimum distance of dsys. Let Ẽ be anM-covering matching for G such
that kẼ = ksys. Then for any k ≥ ksys, we claim that an [n, k] Reed-Solomon code
contains a systematic linear subcode that is valid for G. Indeed, choose a set of n
distinct elements {αi}ni=1 ⊆ Fq as the defining set of our Reed-Solomon code. Then,
to form our subcode’s generator matrix G, note that (as mentioned before) G must
have zero entries in the same positions as the zero entries ofAẼ , and indeterminate
elements in the remaining positions. There are at most ksys − 1 zeros in any row
of AẼ (and at least s − 1 zeros in each row, since there must be s columns that
have nonzero entries in exactly one row). For each row i ∈ {1, . . . , s} of AẼ , let
Ii ⊆ {1, . . . , n} be the set of column indices j such that [AẼ]i,j = 0. Then form the
polynomial ti(x) =

∏
j∈Ii(x − αj) and normalize by ti(αj(i)), which accordingly

has degree at most ksys (and at least s − 1). We now set the ith row of G to be
(ti(α1), . . . , ti(αn)), and we see that by construction this row has zeros precisely at
the indices j ∈ Ii as desired.

The rows of G generate a code with minimum distance at least that of the original
Reed-Solomon code, which is n − k + 1. Furthermore, by setting k = ksys for
our Reed-Solomon code, we see this new code C has minimum distance at least
n − ksys + 1 = dsys. Since by our previous argument, d(C) ≤ dsys, the minimum
distance of C must achieve dsys with equality.

Compared to the result of Theorem 4.2, the systematic minimum distance dsys is
always achievable. In the next section, we present an example inwhich the systematic
minimum distance is strictly less than the bound provided by (4.5).

80

4.6 Example
In this section, we construct a systematic linear code that is valid for the graph in Fig-
ure 4.1. The bound of 4.5 asserts that d(C) ≤ 5 for any C valid forG. However, corol-
lary 4.2 shows that d(Csys) ≤ 4 for any valid systematic linear code Csys. A matching
achieving this bound is given by the edges Ẽ = {(m1, v1), (m2, v2), (m3, v3)} and
so the edges removed from the graph are {(m2, v1), (m2, v3)}. The new adjacency
matrix AẼ is given by

AẼ =

1 0 0 1 1 1 1

0 1 0 0 1 1 1

0 0 1 1 1 1 1

 , (4.10)

where boldface zeros refer to those edges removed from G because of the matching
Ẽ .

A generator matrix which is valid for AẼ can be constructed from that of a [7, 4]

Reed-Solomon code overF7 with defining set {0, 1, α, . . . , α5}whereα is a primitive
element in F7, using the method described in 5.3.

The polynomials corresponding to the transformation matrix are given by

t1(x) = α5(x− 1)(x− α), (4.11)

t2(x) = α4x(x− α)(x− α2), (4.12)

t3(x) = α3x(x− 1). (4.13)

Finally, the systematic generator matrix for Csys is

Gsys =

1 0 0 α2 α5 1 α5

0 1 0 0 1 α4 1

0 0 1 α5 α5 α2 1

 . (4.14)

4.7 Discussion
We comment in this section on two aspects related to the results presented. The first
one addresses the issue of constructing good codes as subcodes of general MDS
codes while the second relates to computational issues.

Achievability Using MDS Codes
We have utilized Reed-Solomon codes to construct systematic linear codes, valid
for a particular G = (M,V , E), that attain the highest possible distance. It is worth
mentioning that this choice is not necessary and in fact, the Reed-Solomon code
utilized can be replaced with any linear MDS code with the same parameters.

81

Lemma 4.2. Fix an arbitrary [n, k] linear MDS code C. For any I ⊆ [n] where
|I| ≤ k − 1 , there exists c ∈ C such that [c]I = 0.

Proof. Let G = [gi]
n
i=1 be the generator matrix of C and let GI = [gi]i∈I . Since

|I| ≤ k − 1, GI has full column rank and so it has a non-trivial left nullspace of
dimension k − |I|. If h is any vector in that nullspace then c = hG is such that
[c]I = 0.

Therefore, to produce a valid linear code C for G = (M,V , E) with d(C) = d∗,
where d∗ ≤ nmi for all mi ∈ M, we fix an arbitrary [n, n − d∗ + 1] MDS code
and then select vectors h1, . . . ,hs such that hi is in the left nullspace ofGIi , where
Ii = {j : Ai,j = 0}. Note that the specific selection of the hi determines the
dimension of C. For a systematic construction, in which the dimension of the code
is guaranteed to be s, some extra care has to be taken when choosing the hi. We
must choose each hi such that its not in the nullspace of gj(i), which the column
corresponding to the systematic coordinate cj(i).

Computational Aspects
It is worth addressing the computational complexities of computing dmin and dsys.
Indeed, Proposition 1 in [Dau+15b] provides a polynomial-time algorithm to com-
pute dmin. The authors show that for a particular G = (M,V , E), the largest d(C)
satisfying

d(C) ≤ |N (M′)| − |M′|+ 1, ∀M′ ⊆M (4.15)

can be found in polynomial time. Their strategy relies on verifying a min-cut
condition for a particular graph constructed from G. They show that this graph is
polynomially sized inG and thus themin-cut condition can be verified in polynomial
time using the Ford-Fulkerson Algorithm [FF56].

In comparison, the upper bound on the systematic minimum distance of a graph
G(M,V , E) given in Section 4.5 assumes the enumeration of all M-covering
matchings, which is exponentially large in the size of the graph. An algorithm
that computes dsys and provides the corresponding the matching without resorting to
such enumeration would be of great benefit. Indeed, such an algorithm, if it runs in
polynomial time, would provide optimal systematic codes in an efficient manner. In
addition, such algorithm can also be used to compute dmin for those graphs in which
the technical condition of Theorem 4.2 holds, since the construction that achieves
dmin in that case is a systematic one.

82

C h a p t e r 5

BALANCED REED–SOLOMON AND TAMO–BARG CODES

5.1 Introduction
The ubiquity of Reed–Solomon (RS) codes in the industry is in part due to their
optimality on the rate-distance curve, i.e. they can correct a fixed number of errors
with optimal redundancy. Companies such as Facebook are known to utilize RS
codes in their production clusters [Mur+14]. They have also been incorporated in
modern distributed file systems such as HDFS by Apache Hadoop [Apaa; Clo].

The problem with RS codes (MDS codes in general) is that the complexity of de-
coding is independent of the number of errors/erasures present. To tackle this prob-
lem, locally recoverable codes (LRCs) were recently developed [Gop+12; Kam+14;
Sil+13; PD12; HCL07; TB14; TB15; Sat+13]. The central problem these codes
aim to solve is minimizing the number of code symbols needed to recover a few -
with respect to the number of data symbols stored - erased ones. This number is
known as the locality of the code. Naturally, the redundancy required to protect
against a fixed number of errors/erasures is larger than that of RS codes.

Having considered optimal redundancy, fast decoding and low locality as metrics
for efficient error-correcting codes, the encoding speed is an important metric that
is worth pondering over. This is especially important when recognizing the fact that
a lot of the data currently being gathered is stored but barely read again [Mur+14].
Modern data archiving services[Ama; Goo; Fac] call for schemes that are robust,
low-cost and low-powered. This viewpoint allows us to optimize the encoding
process at the expense of, perhaps, other benefits. Let us illustrate with an example.

Consider a group of n storage nodes that jointly encode a message vector m ∈ Fkq
using an error-correcting code C, with generator matrix G ∈ Fk×nq . In particular,
every storage node Si encodes the message symbols using gi, the ith column of G,
to produce a code symbol ci. The time required to compute ci is a function of the
weight - the number of nonzero entries - of gi. If C is chosen as an MDS code,
then it can be argued the average encoding time required when using a systematic
G is minimal. If we consider the maximal encoding time, where the maximization
is over Si, then systematic encoding is as slow as using a generator matrix that has
no zeros.

83

What about a solution that lives in between these two extremes? In this work,
we consider balanced generator matrices in which the rows of are of fixed, but
tunable, weight and the columns have essentially the same weight. The benefit of a
balanced generator matrix G is that every code symbol ci is computed in roughly
the same amount of time. This ensures that the computational load is balanced
across the storage system, i.e. there are no storage nodes that behave as bottlenecks.
Furthermore, if we fix each row of G to have weight s, then updating a single
message symbol impacts exactly s storage nodes. When s = d, where d is the
minimum distance of the code, we obtain a balanced and sparsest generator matrix.
In general, for G to be balanced, the weight of each column has to be either

⌊
k
n
s
⌋

or
⌈
k
n
s
⌉
. This is seen from the fact the total number of nonzeros in G is ks, which

is to be distributed equally among the n columns.

The problem of constructing balanced and sparsest generator matrices for error-
correcting codes was first considered in [Dau+13], where it was shown, through
a probabilistic argument, that such matrices exist for maximum distance separable
(MDS) codes. While probabilistic constructions are easily to implement, decoding
random codes is known to be hard. In [HLH16a; HLH16b], it was shown that any
cyclic Reed–Solomon (RS) code possesses such a sparsest and balanced generator
matrix. The codes are optimal in terms of the finite field size required and can
be decoded using standard RS decoding algorithms. With the growing interest in
LRCs, balanced and sparse Tamo–Barg (TB) codes were introduced in [Hal+17].
In that work, a cyclic TB code [TB15] with minimum distance d and locality r
is shown to exhibit a balanced generator matrix where each row is a codeword of
weight d+ r − 1.

The contributions of this work are as follows. First, we generalize the results
in [HLH16a; HLH16b] and present a general construction for balanced Reed–
Solomon codes, where each row is a codeword of weightw, such that d ≤ w ≤ n−1.
Second, we extend the results of [Hal+17] in a similar direction to accommodate a
wider variety of row weights, and handle all cyclic TB codes.

While these generalizations result in denser generator matrices, the proof techniques
could be of potential use when one is interested in enforcing different types of
structure in a codes generator matrix. For related problems, see [HTH15; DSY15;
YSZ14].

In the next section, we present an overview of TB codes, along with the key concepts
necessary for the results presented in the rest of the chapter. The main results are

84

given in Sections 5.3 and 5.4. We conclude with a discussion of the results and
remark on future directions.

5.2 Preliminaries
Reed–Solomon Codes
In this chapter, we will work with Reed–Solomon codes that are cyclic, i.e. those
where the defining set is chosen as {1, α, . . . , αn−1}, where α is a primitive element
in Fq. A generator matrix for this code is given by

GRS =


1 1 · · · 1

1 α · · · αn−1

...
...

1 α(k−1) · · · α(n−1)(k−1)

 . (5.1)

Viewing Reed–Solomon codes through the lense of polynomials allows us to easily
characterize codewords with a prescribed set of coordinates required to be equal to
0. It is known that if we interpolate a degree k− 1 polynomial t(x) that vanishes on
a prescribed set of k− 1 points, then t(x) is unique up to multiplication by a scalar.
Suppose we would like to specify a minimum weight codeword c ∈ RS[n, k] for
which ci0 = · · · = cik−2

= 0. We let t(x) =
∏k−1

j=0(x− αij) =
∑k−1

i=0 tix
i, and form

the vector of coefficients of t(x) as t = (t0, t1, . . . , tk−1). The codeword resulting
from encoding of t usingGRS is a codeword cwith zeros in the desired coordinates.
Indeed, the vector tGRS is the evaluation of the polynomial t(x) at {1, α, . . . , αn−1}.
Since t(x) has {αi1 , . . . , αil} as roots, it follows that [tGRS]i1 = · · · = [tGRS]il = 0.
This correspondence between codewords and polynomials will allow us to focus on
the latter when constructing generator matrices with the prescribed structure.

A key result that is used to lower bound the minimum distance of cyclic codes is the
BCH bound.

Fact 5.1 (BCH bound). Let p(x) be a nonzero polynomial (not divisible by xq−1−1)
with coefficients in Fq. Suppose p(x) has t (cyclically) consecutive roots, i.e.
p(αj+1) = · · · = p(αj+t) = 0, where α is primitive in Fq. Then at least t + 1

coefficients of p(x) are nonzero.

For a proof of this fact, see e.g. [McE86, p.238]. The BCH bound ensures that all the
coefficients of a degree t polynomial with exactly t consecutive roots are nonzero,
a result that we will heavily rely on.

85

Tamo–Barg Codes
We begin by presenting a formal definition of LRCs after which we specialize our
presentation to the family of codes developed in [TB14; TB15]. An LRC C ⊂ Fnq
has locality r if every symbol of a codeword c ∈ C can be recovered by accessing
at most r other symbols of c. Formally, for each i ∈ {1, . . . , n}, there is a subset
Ii ⊂ {1, . . . , n}\i, where |Ii| ≤ r such that ci = fi({cj : j ∈ Ii}). The coordinates
ci ∪ {cj : j ∈ Ii} form what is known as a local repair group. The notion of local
recovery in error-correcting codeswas first introduced in [HCL07]with the invention
of Pyramid Codes. The work of Gopalan et al. [Gop+12] established a Singleton-
type bound for linear LRCs, and was later generalized to all codes by Papailiopoulos
& Dimakis in [PD12]. The bound states that the minimum distance of an [n, k, r]

LRC obeys

d ≤ n− k −
⌈
k

r

⌉
+ 2. (5.2)

Unless otherwise stated, assume henceforth that r + 1 | n and r | k. A Tamo–Barg
code TB[n, k, r] of length n, dimension k and locality r is the set of evaluations
of a special subset of polynomials of degree at most k + k

r
− 2. We will say

that a polynomial m(x) is valid for TB[n, k, r] whenever it satisfies (5.3). The
codeword c corresponding tom(x) is then given by c = (m(α1), . . .m(αn)), where
α1, . . . , αn ∈ Fq. A message polynomial is represented by

m(x) =

k+µ−2∑
i=0

i 6=rmod r+1

mix
i, (5.3)

where the mi’s are the k information symbols. The n evaluation points are chosen
as the union of an order subgroup of F×q , the multiplicative group of Fq, along with
its cosets. Formally, let H be a subgroup of F×q , of order r + 1. Furthermore, let H
be generated by β := αν , where α is a primitive element in Fq, and ν := n

r+1
, i.e.

H = {1, β, . . . , βr}.

For i = 0, 1, . . . , ν − 1, let Hi be the coset of H represented by αi, i.e.

Hi = {αi, αiβ, . . . , αiβr}. (5.4)

The code can now be viewed as the evaluation of polynomials as in (5.3) on
H0, . . . ,Hν−1. In particular, we have

m(Hi)↔ (m(αi),m(αiβ), . . . ,m(αiβr)). (5.5)

86

The codeword c corresponding to m(x) is given by c = (m(H0), . . . ,m(Hν−1)).
Each set of symbolsm(Hi) is a local group.

The code just described can can be viewed as a carefully crafted subcode ofRS[n, k+

µ − 1]. To characterize its generator matrix, note that an element of the set of
polynomials mapped to TB[n, k, r] can be expressed as

m(x) =
r−1∑
i=0

(
µ−1∑
j=0

mi,jx
j(r+1)

)
xi. (5.6)

This adopted view allows us to express the generator matrix of the code as

GTB =


GTB,0

GTB,1
...

GTB,r−1

 ,
where each submatrixGTB,i ∈ Fµ×nq is given by

GTB,i =


αi1 · · · αin

α
(r+1)+i
1 · · · α

(r+1)+i
n

...
α

(µ−1)(r+1)+i
1 · · · α

(µ−1)(r+1)+i
n

 . (5.7)

The rows of the required balanced matrix G will be codewords whose zero coordi-
nates coincide with entire cosets. Furthermore, the corresponding polynomials will
vanish on consecutive cosets, where by consecutive we mean that the representa-
tives of the cosets in question are consecutive powers of α. To this end, we need to
characterize the annihilator polynomial of a coset Hi.

Fact 5.2. LetHi be the coset ofH represented by αi. The annihilator polynomial of
Hi is given by

zi(x) =
∏
h∈Hi

(x− h) = xr+1 − αi(r+1).

Now consider a polynomial that annihilates consecutive cosets, i.e.

p(x) =
t−1∏
i=0

zi(x). (5.8)

Note that p(x) is a polynomial in x(r+1) so it is valid for TB[n, k, r] when t ≤
µ. Furthermore, it has t nonzero coefficients, as demonstrated by the following
proposition.

87

Proposition 5.1 (Coset BCH bound). Let zi(x) be the annihilator of Hi and define
p(x) =

∏t−1
i=0 zi(x). The polynomial p(x) has t nonzero coefficients.

Proof. First, note that p(x) can be written as p(x) =
∑t−1

i=0 pix
i(r+1). As a result,

p(x) has at most t nonzero coefficients. Furthermore, the polynomial p(x) vanishes
on {1, α, . . . , αt−2}, a set of t−1 consecutive roots. Applying the BCH bound from
Fact 5.1 on p(x) yields the result.

Next, we formalize the notion of balanced matrices and present a construction to
realize them. Formally, we identify a matrixA ∈ {0, 1}k×n in which, for a fixed row
weight w, the weights of any two columns differ by at most 1, making it a balanced
matrix. Each row a ofA prescribes a mask for some c for the code of interst. When
RS[n, k] is considered, the support of c is identical to that of a. However, in the TB
code setting, the vector a prescribes the cosets that the polynomial corresponding
to c vanishes on. At this point, a referral to (5.5) is handy.

w-Balanced Matrices
We start this subsection by presenting a method that produces a w-balanced matrix
which can serve our needs. Then, we show how this scheme enables us to construct
a w-balanced generator matrix for Reed–Solomon codes. Later on, we develop the
techniques further and present results for Tamo–Barg Codes.

Definition 5.1 (w-balanced matrix). A matrixA of size k by n is called w-balanced
if the following conditions hold:

P(1) Every row ofA has the same weight w.

P(2) Every column is of weight
⌈
wk
n

⌉
or
⌊
wk
n

⌋
.

A w-balanced error-correcting code is one that is generated by a matrix obeying the
properties of Definition 5.1. Let us emphasize that not just any w-balanced matrix
can serve as a mask for a target generator matrix. Suppose that for our choice of
parameters k, w and nwe have that n | wk. In this case, one can takeA ∈ {0, 1}k×n
as the adjacency matrix of a (w, wk

n
) biregular bipartite graph on k left vertices and

n right vertices. Consider the following example.

Example 5.1. Let n = 8, k = 5 and w = 4, where we are interested in finding a
balanced generator matrix for RS[8, 5]. One possible realization of of a matrix A

88

that obeys the conditions of Definition 5.1 is

A =


1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0

 . (5.9)

Note that the first and last rows are identical, and are of weight 4, which is the
minimum distance of RS[8, 5]. As alluded to earlier, any two codewords of minimum
weight with the same support are scalar multiples of one another. This immediately
rules out the possibility of A serving as a mask for a generator matrix of RS[8, 5].
Indeed, the distinctness of the rows ofA is necessary and sufficient.

Having shown the necessity of carefully constructing a mask matrix for the sought-
after generator matrix, the first contribution of this work is to provide a simple
algorithm that does this. When the code of interest is RS[n, k], we present a
construction of a w-balanced generator matrix where n − k + 1 ≤ w ≤ n − 1.
For TB[n, k, r] with minimum distance d, we require w = d+ δ(r + 1)− 2, where
1 ≤ δ ≤ k

r
. In particular, choosing δ = 1 results in a generator matrix where each

row is of weight d+ r − 1.

Let a be a vector of length n composed of w consecutive ones followed by n − w
consective zeros, i.e. a = (1, . . . , 1, 0, . . . 0). In addition, let aj denote the right
cyclic shift of a by j positions1. To simplify notation, we use (x)n to denote
xmodn. Furthermore, we extend this notation to sets by letting {x1, . . . , xl}n
denote {(x1)n, . . . , (xl)n}. For example, if n = 8 and w = 4, then we have
a6 = (1, 1, 0, 0, 0, 0, 1, 1). Roughly speaking, the desired matrix A is built by
setting its first row to a and then choosing the next row by cyclically shifting a

by w positions to the right. As mentioned earlier, duplicate rows in A are to be
avoided, and the way to do so is outlined in Construction 5.1.

Construction 5.1. Let both k and w be strictly less than n. Define the quantities
g := gcd(w, n), η := n

g
, ϕ =

⌊
k
η

⌋
and ρ = k − ηϕ. Define the index sets

I1 = {jw + i : 0 ≤ j ≤ η − 1, 0 ≤ i ≤ ϕ− 1},
I2 = {jw + ϕ : 0 ≤ j ≤ ρ− 1},

1Clearly, a shift by j ≥ n is equivalent to one where j is taken modulo n.

89

and I = I1 ∪ I2. The matrixA whose rows are given by

{al : l ∈ I}

satisfies P(1) and P(2). Furthermore, the rows ofA are pairwise distinct.

Proof. First, consider the rows indexed by I1, and in particular, the subset cor-
responding to i = 0. For ajw, the entries equal to 1 are those indexed by
{jw, . . . , (j + 1)w − 1}n while the rest are equal to 0. As a result, for {ajw}η−1

j=0 ,
the entries equal to 1 are those indexed by

{0, . . . , w − 1, . . . , (η − 1)w, . . . , ηw − 1}n.

The elements in this set are all distinct before reducing modulo n and furthermore,
there are ηw of them, which is a multiple of n. This implies that each residue
modulo n appears in the set exactly γ := w

g
times. The same reasoning applies for

each subset of I1 corresponding to each i = 1, . . . , ϕ− 1 and as a result, the matrix
formed by {al}l∈I1 is such that each column has weight ϕγ.

Now consider those rows indexed by I2. If wk
n

is an integer then so is k
η
, implying

that I2 is empty, and so P(2) holds by the assertion made earlier since ϕγ =
wk
n
. Otherwise, note that |I2| ≤ η − 1 since ρ = k − ηϕ = (k)η, which we

will assume to be greater than or equal to 1. Since ϕ is a common additive
factor to all terms in I2, it can be ignored for now. Thus, we focus on the set
{0, . . . , w − 1, . . . , (ρ − 1)w, . . . , ρw − 1}. We can partition the set according to
the following relabeling

{0, . . . ,
⌊ρw
n

⌋
n− 1} ∪ {

⌊ρw
n

⌋
n . . . , ρw − 1},

and then reduce the elements modulo n. We conclude that each of the residues
0, . . . , (ρw − 1)n appears

⌊
ρw
n

⌋
+ 1 times, whereas each of the remaining ones

appears a total of
⌊
ρw
n

⌋
times. Combining this with I1 and adding ϕ to all indices

results in the following conclusion. The columns ofA indexed by {ϕ, ϕ+1, . . . , ϕ+

ρw − 1}n have the following weight

1 +

⌊
(k − ϕη)w

n

⌋
+ ϕγ =

⌈
wk

n

⌉
,

where we have used the fact that ϕηw
n

is an integer. The remaining columns have
weight equal to

⌊
kw
n

⌋
. This proves that P(2) holds. Property P(1) is immediate.

90

Let us show that the rows are pairwise distinct. Suppose that the rows indexed
by j1w + i1 and j2w + i2 are identical, where 0 ≤ j ≤ η − 1 and 0 ≤ i ≤ ϕ.
This occurs if and only if j1w + i1 ≡ j2w + i2 modn, which is equivalent to
(j1 − j2)w ≡ i2 − i1 modn. The quantity g by definition divides both w and n so it
must divide i2 − i1. Note that for i1 ≤ i2,

1 ≤ |i2 − i1| ≤ ϕ =

⌊
k

n
g

⌋
< g.

Thus, we must have i1 = i2 and so (j1−j2)w ≡ 0modn. This implies that repeated
rows cannot correspond to elements for which one is in I1 and the other is in I2.
By definition, we have that η | n but gcd (η, w) = 1 so it must be the case that
η | (j1 − j2). For distinct j1 and j2, we can also bound |j1 − j2| by

1 ≤ |j1 − j2| ≤ η − 1,

so we must have j1 = j2, which proves that the rows ofA are distinct.

The construction allows us to identify which columns are of weight
⌈
wk
n

⌉
.

Proposition 5.2. The columns of A as obtained by Construction 5.1 with weight⌈
wk
n

⌉
are those indexed by

H = {ϕ, ϕ+ 1, . . . , ϕ+ wk − 1}n.

Proof. It suffices to show that (ρw)n = (wk)n. By definition, we know that
ρ = k −

⌊
k
η

⌋
η and so ρw = kw −

⌊
kw
ηw

⌋
ηw. Now consider (ρw)n,

(ρw)n = ρw −
⌊ρw
n

⌋
n

= kw −
⌊
kw

ηw

⌋
ηw −

⌊
kw

n
−
⌊
kw

ηw

⌋
ηw

n

⌋
n

= kw −
⌊
kw

n

⌋
n

= (wk)n.

To deduce the third statement from the second, we have use the fact that bx+ yc =

bxc+ y when y is an integer. Here, x = kw
n

and y =
⌊
kw
ηw

⌋
ηw
n
.

Construction 5.1 provides a remedy to the matrix in (5.9).

91

Example 5.2. Let n = 8, k = 5 and w = 4. A 4-balanced matrix A is given by
Construction 5.1 with parameters are given by g = 4, η = 2, ϕ = 2 and ρ = 1. The
index sets are given by I1 = {0, 4, 1, 5} and I2 = {2} which give rise to

A =


1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

0 1 1 1 1 0 0 0

1 0 0 0 0 1 1 1

0 0 1 1 1 1 0 0

 . (5.10)

It turns out that this matrix can serve as a mask matrix for a 4-balanced generator
matrix of RS[8, 5] defined over F9. The rows are taken as the evaluations of the
following polynomials on {1, α, . . . , α8}, where α generates F×9 .

p(0)(x) =
7∏
i=4

(x− αi),

p(4)(x) = 2
7∏
i=4

(x− αi+1),

p(1)(x) =
7∏
i=4

(x− αi+4),

p(5)(x) = 2
7∏
i=4

(x− αi+5),

p(2)(x) =
7∏
i=4

(x− αi+2).

The resulting 4-balanced generator matrix is given by

G =


α3 α2 α4 α 0 0 0 0

0 0 0 0 α3 α2 α4 α

0 α3 α2 α4 α 0 0 0

α 0 0 0 0 α3 α2 α4

0 0 α3 α2 α4 α 0 0

 .

One can check thatG is full rank over F9 for α whose minimal polynomial over F3

is x2 + 2x+ 2. The way we chose the polynomials is determined by the set I from
Construction 5.1. In the next section, we formalize this procedure and demonstrate
that the polynomials are linearly independent over the code’s field, implying that the
corresponding codewords span the code.

92

5.3 Balanced Reed–Solomon Codes
We will motivate the procedure by which we select the codewords of our generating
matrix by revisiting the previous example. We start of byfixing p(x) =

∏7
i=4(x−αi).

Then, we form the set of polynomials

P = {p(α−ilx) : il ∈ I}. (5.11)

Now consider corresponding to an arbitrary il ∈ I. This polynomial can be ex-
pressed as

p(αilx) =
7∏
i=4

(α−ilx− αi) = α−4il

7∏
i=4

(x− αi+il).

When evaluated on {1, α, . . . , α8}, this polynomial vanishes on and only on the
subset {α4+il , . . . , α7+il}. Let us record this observation.

Fact 5.3. The polynomial p(α−lx) is the annihilator of αl+d, . . . , αl+n−1 if and only
if p(x) is the annihilator of αd, . . . , αn−1.

Thus, the coordinates of the corresponding codeword that are equal to 0 are precisely
those indexed by {4 + il . . . 7 + il}n, which is in agreement with aj . Hence, the
codewords corresponding to the polynomials in (5.11) form a 4-balanced generator
matrix whose support is determined by A in (5.10). In turns out that these polyno-
mials are linearly independent over the underlying field if and only if the elements
of I are pairwise distinct and w = n− k + 1. To that end, we present a lemma that
formalizes this claim.

Lemma 5.1. Let p(x) =
∑z

i=0 pix
i ∈ Fq[x] and define P = {p(αjlx)}zl=0. The

polynomials in P are linearly independent over Fq if and only if the elements of
{αjl}zl=0 are distinct in Fq, and pi 6= 0 for i = 0, 1 . . . , z.

Proof. Let us express p(αjlx) as

p(αjlx) =
z∑
i=0

piα
jlixi.

We collect the coefficients of p(αjlx) in a row vector and form the following matrix,

M =


p0 p1α

j0 . . . pzα
j0z

p0 p1α
j1 . . . pzα

j1z

...
...

p0 p1α
jz . . . pzα

jzz

 .

93

The determinant ofM can be written as

det (M) =

∣∣∣∣∣∣∣∣∣∣
p0 p1α

j0 . . . pzα
j0z

p0 p1α
j1 . . . pzα

j1z

...
...

p0 p1α
jz . . . pzα

jzz

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
1 αj0 . . . αj0z

1 αj1 . . . αj1z

...
...

1 αjz . . . αjzz

∣∣∣∣∣∣∣∣∣∣
z∏
i=0

pi.

The Vandermonde matrix has a nonzero determinant if and only if {αjl}zl=0 are
distinct in Fq. Thus the determinant is nonzero if and only if that holds and all the
coefficients of p(x) are nonzero.

The lemma in its current form provides a tool to constructing d-balanced Reed–
Solomon codes, where d is the minimum distance of RS[n, k].

Theorem 5.1. For d = n − k + 1, let A be a d-balanced matrix obtained from
Construction 5.1 with index set I. Fix p(x) =

∏n−1
i=d (x−αi) and letP = {p(α−ilx) :

il ∈ I}. Then, thematrixGwhose lth row is the codeword corresponding to p(α−ilx)

is a d-balanced generator matrix for RS[n, k].

Proof. By construction, the zero coordinates of ail , the lth row ofA, are indexed by

{il + d, il + d+ 1, . . . , il + n− 1}n.

Furthermore, the polynomial p(αilx) = α−(k−1)il
∏n−1

i=d (x− αi+il) vanishes on

{αil+d, αil+d+1, . . . , αil+n−1}.

Now collect the evaluations of the polynomials P as the rows of G. Once we
associate the j th column of G with αj , the support of G is that of A, which is
d-balanced.

To prove thatG is full rank, it suffices to show the the polynomials in P are linearly
independent over the underlying field. We apply Lemma 5.1 to p(x) and {αil}il∈I .
By the BCH bound, we are guaranteed that the coefficients of p(x) are all nonzero.
Construction 5.1 ensures that all the elements of I are distinct modulo n, which
implies that all the elements of the set {α−il}k−1

l=0 are distinct in Fq. As a result, the
polynomials P are linearly independent over Fq and soG spans RS[n, k].

Theorem 5.1 provides a method to construct what is known as sparsest and balanced
Reed–Solomon codes [HLH16a; HLH16b]. They are sparsest in the sense that each
row of the generator matrix is a minimum distance codeword.

94

Now suppose that for the same code RS[8, 5], we are interested in a 6-balanced
generator matrix. Even though Construction 5.1 provides a 6-balanced mask ma-
trix, it is not possible to use the set of polynomials immediately as prescribed by
Theorem 5.1. In particular, Lemma 5.1 doesn’t apply since the polynomial p(x) is
of degree 2 while the number of polynomials in P is 5. Luckily, the case when the
desired row weight need not be d is attainable with little effort.

Theorem 5.2. For n− k+ 1 ≤ w ≤ n− 1, letA be a w-balanced matrix obtained
from Construction 5.1 with index set I = {i0, . . . , ik−1}. Fix p(x) =

∏n−1
i=w(x−αi)

and let

P1 = {p(α−ilx) : l = 0, 1, . . . , n− w},
P2 = {xl−n+wp(α−ilx) : l = n− w + 1, . . . k − 1}.

Then, the matrix G whose lth row is the codeword corresponding to p(α−ilx) is a
w-balanced generator matrix for RS[n, k].

Proof. The fact that G is w-balanced is immediate from the proof of Theorem 5.1.
The next task is to prove that G is full rank. First, we apply Lemma 5.1 to the set
P1 since all n− w + 1 coefficients of p(x) are nonzero by the BCH bound and the
elements {α−il}n−wl=0 are distinct in Fq. Furthermore, all polynomials in P1 are of
degree n− w and so the degree of a polynomial in their Fq-span is upper bounded
by the same quantity. Now note that the polynomials inP2 are all of different degree
and so they are linearly independent over Fq. Finally, the fact that the degree of
any polynomial in P2 is lower bounded by n − w + 1 ensures that P1 and P2 are
jointly linearly independent. The fact that all polynomials are of degree at most
k − 1 allows us to conclude that their evaluations live in RS[n, k] and so they span
the code.

Let us revisit the example that was suggested just before the statement of the theorem.
It is possible to verify the following matrix does indeed generate RS[8, 5].

G =


α5 α3 α2 α3 α6 α2 0 0

α2 α3 α6 α2 0 0 α5 α3

α6 α2 0 0 α5 α3 α2 α3

0 0 α7 α6 α6 1 α4 α

0 α7 α7 α8 α3 1 α6 0

 .

95

The matrix G corresponds to the index set I = {0, 6, 4, 2, 1}. The polynomials
corresponding to the rows ofG are derived from p(x) = (x− α6)(x− α7) and are
given by

p(0)(x) = (x− α6)(x− α7),

p(6)(x) = α−4(x− α4)(x− α5),

p(4)(x) = (x− α2)(x− α3),

p(2)(x) = α−4x(x− 1)(x− α),

p(1)(x) = α−2x2(x− α)(x− α7).

The idea behind the construction is the exploitation of the fact the we are interested
in a generator matrix whose rows are high-weight codewords. The codewords
correspond to low-degree polynomials, which allows us to use the extra degrees of
freedom available in constructing the set P2. In fact, one can select P2 as any set of
polynomials whose degrees are all different, and are between n−w + 1 and k − 1.
This will still guarantee that the resulting generator matrix is full rank albeit not
w-balanced. Nonetheless, one can potentially use this technique to enforce other
patterns in the structure ofG.

5.4 Balanced Tamo–Barg Codes
The theme of the construction is as follows. First we will assume that r | k, We
will construct a w-balanced generator matrix Gi for each subcode generated by a
particular GTB,i as defined (5.7). Arranging these Gi’s as the rows of a matrix G

will result in a w-balanced generator matrix for TB[n, k, r]. We will build a mask
matrix Ai ∈ {0, 1}µ×ν for each Gi, i = 0, 1, . . . , r − 1, by focusing on the cosets
associated with each local group in the code. As in the construction of balanced
Reed–Solomon codes, a fact along the lines of Fact 5.3 will allow us to form the
rows of Gi from a single polynomial p(x).

Fact 5.4. The polynomial p(α−lx) is the annihilator ofHl+δ, . . . ,Hl+ν−1 if and only
if p(x) is the annihilator of Hδ, . . . ,Hν−1.

Let us focus on buildingG0 fromA0 and motivate the construction by the following
example. The row weight of choice is w = n− (µ− 1)(r + 1).

Example 5.3. Consider TB[15, 6, 2] for which we would like to construct a 9-
balanced generator matrix. Note that ν = 5 and µ = 3, and define δ := ν−µ+1 =

96

3. The first step is to use Construction 5.1 to build a 3-balancedA0 ∈ {0, 1}µ×ν ,

A0 =

1 1 1 0 0

1 0 0 1 1

0 1 1 1 0

 .
This mask matrix prescribes the following set of polynomials defined using p(x), the
annihilator of H3 and H4.

p0,0(x) = p(x) = z3(x)z4(x),

p0,1(x) = p(α−3x) = α−18z1(x)z2(x),

p0,2(x) = p(α−6x) = α−36z0(z)z4(x).

Each p0,j(x) is a polynomial in x3 with degree 6. The evaluations result in the
following matrix.

G0 =

 α3 α3 α3 α11 α11 α11 α9 α9 α9 0 0 0 0 0 0

α9 α9 α9 0 0 0 0 0 0 α3 α3 α3 α11 α11 α11

0 0 0 α3 α3 α3 α11 α11 α11 α9 α9 α9 0 0 0

 .
Proposition 5.3. Fix δ = ν − µ + 1 and let A0 be a δ-balanced matrix obtained
from Construction 5.1 along with index set I. Define the set of polynomials using
p(x) from (5.8) as

P0 = {p(α−ilx) : il ∈ I}. (5.12)

The evaluations of P0 at F×q result in a set of codewords from TB[n, k, r] that form
a δ(r + 1)-balanced matrix.

Proof. First, we have that p(α−ilx) annihilates the cosets {Hil+δ, . . . ,Hil+ν−1} as
guaranteed by Fact 5.4, which is in correspondence with the lth row of A0. After
relabeling the polynomials in P0 as P0 = {p0,i(x)}µ−1

i=0 , consider the matrix P0

formed by the evaluation of P0 on F×q ,

P0 =
[
P0,0 P0,1 · · · P0,r

]
,

where

P0,i =


p0,0(βi) p0,0(αβi) · · · p0,0(αν−1βi)

...
...

p0,µ−1(βi) p0,µ−1(αβi) · · · p0,µ−1(αν−1βi)

 .
Note thatP0,i andA0 have the samedimensions. Furthermore, since the polynomials
in P0 are coset annihilators, the entry [P0,i]j,l = p0,j(α

lβi) is equal to zero if and

97

only if [A0]j,l is equal to zero. Therefore, the fact thatA0 is δ-balanced implies that
P0 is also so. Finally, the weight of each row of P0 is equal to δ(r + 1) since the
size of each coset is r + 1.

The proposition portrays the correspondence between the mask matrix A0 and G0.
Indeed, the matrix G0 is obtained by a column permutation of P0, so that columns
corresponding to the same local group are adjacent. As a result, the matrix G0 is
balanced. Furthermore, similar to the Reed–Solomon case, the matrix G0 is full
rank if and only if the elements of the index set I are distinct.

Lemma 5.2. Let p(x) =
∑z

i=0 pix
i(r+1) ∈ Fq[x] and define P = {p(αjlx)}zl=0. The

polynomials in P are linearly independent over Fq if and only if the elements of
{αjl(r+1)}zl=0 are distinct in Fq, and pi 6= 0 for i = 0, 1 . . . , z.

Proof. By expressing p(αjlx) as
∑z

i=0 piα
jli(r+1)xi(r+1), we can apply the proof

idea of Lemma 5.1 to obtain the result.

Let us complete the construction intiated in Example 5.3. The mask matrix A1 is
identical toA0 but the polynomials are now given by

p1,0(x) = xp0,0(x) = xp(x),

p1,1(x) = xp0,1(x) = xp(α−3x),

p1,2(x) = xp0,2(x) = xp(α−6x).

Note that each p1,j(x) annihilates the same cosets as p0,j(x). As a result, the
evaluations of these polynomials form a matrix G1 with the same mask as G0.
Once we put G0 and G1 in a single matrix G, we obtain the follow 9-balanced
generator matrix for TB[15, 6, 2].

G =



α3 α3 α3 α11 α11 α11 α9 α9 α9 0 0 0 0 0 0

α9 α9 α9 0 0 0 0 0 0 α3 α3 α3 α11 α11 α11

0 0 0 α3 α3 α3 α11 α11 α11 α9 α9 α9 0 0 0

α3 α8 α13 α12 α2 α7 α11 α α6 0 0 0 0 0 0

α9 α14 α4 0 0 0 0 0 0 α6 α11 α α15 α5 α10

0 0 0 α4 α9 α14 α13 α3 α8 α12 α2 α7 0 0 0


.

98

Indeed, one can verify that rank (G) = 6. This is guaranteed by the multiplicative
factor x appearing in each p1,j(x).

Allow us to comment on the previous example. By the choice of parameters it
turned out that the same mask matrix can be used for allGi’s since µw

ν
happened to

be an integer and so all columns ofAi are of the same weight. This is not the case in
general, calling for the need to modify the way the mask matrices are chosen. The
following example illustrates this modification.

Example 5.4. ConsiderTB[15, 8, 2] so that ν = 5 and µ = 4, and setw = 6. Again,
we require two mask matrices A0,A1 ∈ {0, 1}4×5, each of which are 2-balanced.
We obtainA0 through Construction 5.1:

A0 =


1 1 0 0 0

0 0 1 1 0

1 0 0 0 1

0 1 1 0 0

 .
Now construct A1 via cyclically shifting each row of A0 by three positions, which
is the number of columns of weight 2 in A0.

A1 =


0 0 0 1 1

1 1 0 0 0

0 0 1 1 0

1 0 0 0 1

 .
Consider thematrixA by vertically stackingA0 andA1 and associate the j th column
with Hj . Once we form the generator matrix G, similar to what was done in the
previous example, we notice that each column in the local group corresponding to
H0 is of weight 4, while all the rest are of weight 3.

Indeed, the process of obtaining A1 from A0 through cyclic shifts to produce a
w-balanced A can be generalized. Before we formalize this claim, we need the
following proposition.

Proposition 5.4. Suppose τ < ν and let w be the length ν vector where [w]i = b

for i ∈ B = {ϕ, . . . , ϕ+ τ − 1}ν and [w]i = s such that s ∈ {b, b− 1}, otherwise.
Let wj be a right cyclic shift of w by j positions. Consider the matrix W whose
rows are {wl}l∈L where L = {iτ : 0 ≤ i ≤ r − 1}. Let wi be the sum of the entries
of the ith column ofW. It holds that |wi − wj| ≤ 1 for any i and j.

99

Proof. First, we can subtract ϕ from the elements of B and add ϕ to L without
changing W. The way we obtain W now is by choosing I1 = ∅ and I2 = L in
Construction 5.1. Following the same proof, we see that each of the columns indexed
by {ϕ, ϕ+ 1, . . . , ϕ+ rτ − 1}ν has

⌈
rτ
ν

⌉
entries equal to b, while the remaining

r−
⌈
rτ
ν

⌉
entries are equal to s. The sum of entries in any of those columns is given

by,
ub =

⌈rτ
ν

⌉
b+

(
r −

⌈rτ
ν

⌉)
s.

In an analogous fashion, the sum across each of the remaining columns ofA is

us =
⌊rτ
ν

⌋
b+

(
r −

⌊rτ
ν

⌋)
s.

Using b− s ∈ {0, 1}, we conclude that for any two columns,

|wi − wj| ≤ ub − us =
(⌈rτ

ν

⌉
−
⌊rτ
ν

⌋)
(b− s) ≤ 1.

We can use this proposition to provide a flexible method of constructing balanced
mask matrices for any cyclic TB code.

Lemma 5.3. Let both δ and µ be strictly less than ν. Let A0 ∈ {0, 1}µ×ν be
δ-balanced obtained using Construction 5.1 and let τ = (δµ)ν be the number of
columns of weight

⌈
µδ
ν

⌉
. For each i = 1, . . . , r − 1, construct Ai by cyclically

shifting each row of A0 by iτ positions to the right. Then, the matrixA given by

A =


A0

...
Ar−1


is w-balanced.

Proof. Let w be a weight vector associated with A0, where [w]i =
⌈
δµ
ν

⌉
for i ∈

{ϕ, ϕ+ 1, . . . , ϕ+ τ − 1}ν , and [w]i =
⌊
δµ
ν

⌋
otherwise. By construction, the

weight vector of Ai is given by wiτ . Collecting the weight vectors in W and
applying Proposition 5.4 gives the required result.

Armed with Lemma 5.3, we can now show how to construct a (d+ r− 1)-balanced
generator matrix for TB[n, k, r].

100

Theorem 5.3. ConsiderTB[n, k, r] defined over Fq where q = n+1, δ = ν−µ+1.
LetA0 be a δ-balanced mask matrix obtained from Construction 5.1 with index set
I = {i0, . . . , iµ−1}. Fix p(x) =

∏ν−1
i=δ (xr+1 − αi(r+1)) and define the base set of

polynomials P = {p(α−ilx) : l = 0, 1, . . . , µ − 1}. Set τ = (δµ)ν and define the
transformation polynomials Pi = {xiq(α−iτx) : q(x) ∈ P} for i = 0, 1, . . . , r − 1.
The evaluations of ∪r−1

i=0Pi form a (d + r − 1)-balanced matrix G that generates
TB[n, k, r].

Proof. Consider an arbitrary set Pi. As per Fact 5.4, the polynomial q(α−iτx) anni-
hilates Hiτ+il+δ, . . . ,Hiτ+il+ν−1 if and only if q(x) annihilates Hil+δ, . . . ,Hil+ν−1.
Furthermore, the multiplicative factor of xi appearing in each element of Pi has no
effect on the nonzero roots and so the same claim holds on xiq(α−iτx). As a result,
the lth row of Gi is a right cyclic shift of the lth row of G0 by iτ positions to the
right. This implies that Ai is obtained from A0 by the same operation and so it is
the mask matrix corresponding to Gi. Lemma 5.3 now proves that the matrix A is
(d+ r − 1)-balanced and Proposition 5.3 ensures thatG is also so.

Let us analyze the rank ofG. Lemma 5.2 ensures thatG0 is of rank µ. First, we have
that p(x) =

∑µ−1
i=0 pix

i(r+1) and all pi’s are nonzero by virtue of Proposition 5.1.
Furthermore, the elements {α−il(r+1) : il ∈ I} are all distinct in Fq since the il’s
are all distinct modulo ν, meaning that −il(r + 1)modn is unique for each l. To
see why the same claim holds for an arbitrary Gi, note that all the elements in
the corresponding set {α−il(r+1)−iτ : il ∈ I} are also distinct in Fq, since the
added exponent is common to all of them, and the multiplicative term xi has no
effect on linear independence over Fq. Having shown that rank (Gi) = µ for all
i = 0, . . . , r − 1, we need to complete the proof by demonstrating rank (G) = k.
To do so, observe that a polynomial ti(x) in the Fq-span of Pi is of the form

t(x) =

µ−1∑
j=0

tjx
j(r+1)+i.

Hence, the polynomials ti(x) and tj(x) are never equal thanks to the fact that they do
not have common monomials. We conclude that ∪r−1

i=0Pi is a linearly independent
set of polynomials and rank (G) = µr = k.

The results presented until now rely on two important assumptions. Firstly, we
required that r | k and used this crucially when partition the generator matrix
of TB[n, k, r] into µ = k

r
blocks. Secondly, the fact that w = d + r − 1 =

101

(ν − µ + 1)(r + 1) was used in proving the linear independence of ∪r−1
i=0Pi. The

next result relaxes this second assumption to allow forw of the form δ(r+1), where
δ > ν −µ+ 1. The method used to achieve such values of w closely resembles that
of Theorem 5.2. In particular, larger values of w provide more degrees of freedom
that can help generate linearly independent sets of polynomials.

Theorem 5.4. Consider TB[n, k, r] defined over Fq where q = n+1. Fix δ ≤ ν−1

and letA0 be a δ-balanced mask matrix obtained from Construction 5.1 with index
set I = {i0, . . . , iµ−1}. Fix p(x) =

∏ν−1
i=δ (xr+1− αi(r+1)) and define the base set of

polynomials P = P(1) ∪ P(2) where

P(1) = {p(α−ilx) : l = 0, 1, . . . , ν − δ},
P(2) = {x(l−ν+δ)(r+1)p(α−ilx) : l = ν − δ + 1, . . . , µ− 1}.

Set τ = (δµ)ν and, for i = 0, . . . , r−1, define the set of transformation polynomials
Pi = P(1)

i ∪ P(2)
i where

P(1)
i = {xiq(α−iτx) : q(x) ∈ P(1)},
P(2)
i = {xiq(α−iτx) : q(x) ∈ P(2)}.

The evaluations of ∪r−1
i=0Pi form a δ(r + 1)-balanced matrix G that generates

TB[n, k, r].

Proof. First, note that the term xl−ν+δ appearing inP(2) has no effect on the structure
of the resulting generator matrixG. As a result, the fact that thematrixG is δ(r+1)-
balanced is a consequence of Proposition 5.4 and Lemma 5.3.

To prove thatG is full rank, we first show thatP is a set of linearly independent poly-
nomials. As before, Lemma 5.1 ensures that the coefficient of each xi(r+1) in p(x) is
nonzero, and Lemma 5.2 guarantees thatP(1) is a linearly independent set of polyno-
mials. The degree of p(x) is (ν−δ)(r+1) so this quantity is an upper bound on any
polynomial in the Fq-span ofP(1). Next, we have that the degrees of the polynomials
in P(2) are (ν − δ + 1)(r + 1), (ν − δ + 2)(r + 1), . . . , (µ− 1)(r + 1), and are all
different. This ensures that P(2) is also a linearly independent set of polynomials
and so is P . Finally, the same argument used in the proof of Theorem 5.3 ensures
that ∪r−1

i=0Pi are linearly independent over Fq and so rank (G) = k.

As mentioned earlier, Theorems 5.3 and 5.4 assume that r | k. In the next section,
we lift this assumption and present results of similar flavor.

102

Construction w-balanced Tamo–Barg codes with no restriction on r and k
In [TB14, p.4], the authors show how to slightly modify their construction to
accomodate any r and k. Let µ̄ =

⌊
k
r

⌋
and s = kmod r. The form of a message

polynomial now becomes

m(x) =
r−1∑
i=0

(
µ̄−1∑
j=0

mi,jx
j(r+1)

)
xi +

s−1∑
i=0

mi,µ̄x
µ̄(r+1)xi = m1(x) +m2(x). (5.13)

Note that m1(x) is in the form of (5.6). Therefore, the subset of all polyno-
mials (5.13) with m2(x) = 0 correspond to TB[n, µ̄r, r], which is a subcode of
TB[n, k, r]. This motivates the following idea. For a fixed w = δ(r + 1), where
δ ≥ ν − µ̄+ 1, the first µ̄r rows of the desiredG are obtained as a w- balancedG1

through either Theorem 5.3 or Theorem 5.4. The remaining s rows, collected inG2,
are chosen according to a mask matrix A2 ∈ {0, 1}s×ν which is (δ + 1)-balanced,
and soG2 ends up being (δ + 1)(r+ 1)-balanced. The particular choice ofA2 will
ensure that the columns ofG differ in weight by at most 1. Let us formally put this
description in a definition.

Definition 5.2 ((w1, w2)-Balanced Matrix). A matrix A of size k by n is called
(w1, w2)-balanced if the following conditions hold:

• Every row ofA is of weight w1 or w2.

• Any two columns of A differ in weight by at most 1.

Theorem 5.5. Consider TB[n, k, r] and let µ̄ =
⌊
k
r

⌋
.Fix, δ ≥ ν − µ̄ + 1. Let

G1 be a δ-balanced generator matrix for TB[n, µ̄r, r], Let p(x) be the annihilator
of Hδ+1, . . . ,Hν−1. Fix s = kmod r, z = µ̄ − (ν − δ − 1) and define the set of
transformation polynomials

P = {xz(r+1)+ip(α−ω−i(δ+1)x) : i = 0, . . . , s− 1}. (5.14)

Organize the evaluations ofP inG2 and formG as the vertical concatenation ofG1

andG2. For a suitable value ofω, the matrixG is (δ(r+1), (δ+1)(r+1))-balanced
and generates TB[n, k, r].

Proof. Let us start by characterizing the support of G2. Let ã be a mask vector
for p(x), where [ã]i = 0 if and only if p(Hi) = 0. Thus, the first δ + 1 entries of
a are equal to 1 and the rest are equal to zero. If we set a = ãω, then Fact 5.4
tells us that the mask vector for xz(r+1)+ip(α−ω−i(δ+1)x) is given by ai(δ+1). We

103

can now apply Proposition 5.4 to matrix A with rows {ai(δ+1)}s−1
i=0 with ϕ = ω and

τ = δ + 1. This implies that A is (δ + 1)-balanced which, in turn, implies that G2

is (δ + 1)(r + 1)-balanced.

We now turn to G. If all columns of G1 happen to be of the same weight, then
we automatically have that any two columns of G differ in weight by 1. The same
reasoning applies by considering G2. Therefore, let us assume that the column
weights in both G1 and G2 are different. Suppose that the columns of G1 with the
larger weight b1 correspond to the cosets indexed by {ϕ, ϕ + 1, . . . , ϕ + τ + 1}ν ,
while the rest are of weight s1 := b1 − 1. We claim that setting ω = (ϕ + τ − 1)ν

ensures that G is as required. Without loss of generality, we can assume ϕ = 0

as this is equivalent to shifting each row of G by ϕ positions to the left. With this
assumption in hand we can identify the “heavier" columns ofG1 with the set

B1 = {0, 1, . . . , τ − 1}ν ,

and the ”lighter" columns with

S1 = {τ, τ + 1, . . . , τ + ν − 1}ν ,

An application of Proposition 5.2 toA yields a similar identification forG2:

B2 = {τ, τ + 1, . . . , τ − 1 + s(δ + 1)}ν .

where each column corresponding to an element of B2 is of weight b2, whereas the
rest are of weight s2 := b2 − 1. The sets S1 and B2 can interact in two different
ways. First, suppose that S1 ⊆ B2, as depicted in the following diagram, where the
vertical rule marks (τ)ν ; [

B1 S1

B2 S2 B2

]
.

The columns of G corresponding to S1 are of weight s1 + b2, while the remaining
ones are of weight b1 + b2 or b1 + s2. It is immediate that the difference between
any two of those three quantities is at most 1.

The other scenario corresponds to B2 ⊆ S1,[
B1 S1

S2 B2 S2

]
.

In this case, the columns ofG corresponding to B2 are of weight s1 + b2, while the
remaining ones are of weight s1 + s2 or b1 + s2. The claim on the column weights
also holds.

104

The proof is incomplete unless we assert that rank (G) = k. First, we have
rank (G1) = µ̄r as guaranteed by the theorem that provided G1. Keeping in
mind that deg (p(x)) = (ν − δ − 1)(r + 1), it is immediate that

deg
(
xz(r+1)+ip(α−ω−i(δ+1)x)

)
= µ̄(r + 1) + i.

Furthermore, we know that the degree of any polynomial corresponding to a row
of G1 is at most (µ̄ − 1)(r + 1) + r − 1, which is strictly less that µ̄(r + 1) + i,
guaranteeing thatG is full rank.

5.5 Discussion
The main results presented in this chapter provide a somewhat flexible method to
construct generator matrices from error-correcting codes that are balanced. Theo-
rem 5.1 provides us with a way to construct sparsest and balanced Reed–Solomon
codes. The fact that each row ofG is of minimal weight implies that when a single
message symbol is updated, the least number of code symbols possible need to
be modified. This feature can be appealing in the context of distributed storage
systems since the number of storage nodes contacted during an update is minimal.
As discussed, the balanced property ensures that all storage nodes finish computing
their respective code symbols in the same amount of time. A slight drawback of
sparsest and balanced generator matrix is the fact that it is non-systematic. Indeed,
this could be a serious hindrance to read-intensive applications, such as data centers
accommodating “hot" data. However, the target of our work is those applications
that are “write-intensive" which, as mentioned, are caterers to massive amounts of
data.

The fact that the row weight w is arbitrary could potentially be useful when opti-
mizing some performance measure other than the encoding speed. Furthermore,
the techniques utilized in the proofs of Theorems 5.2 and 5.4 did not use the fact
that all k rows of G are of weight w. This could potentially shed light on general-
izing techniques for the construction of Chapter 2 in which a generator matrix of a
Reed–Solomon code is required to be of a particular structure. Relevant works that
could be benefit from such technique are [DSY14; Dau+15a; YS11; YSZ14].

Extending the concept of balanced generator matrices to Tamo–Barg codes is natural
given their target application and theoretical significance as generalizations of Reed–
Solomon codes. When the locality parameter r is small, the result presented in
Theorem 5.3 realizes a matrixG that is close to being sparsest.

105

A general notion of LRCs is one in which every local group corresponds to a
(r + ρ− 1, r) MDS code, i.e. any local group can withstand ρ− 1 erasures. These
codes are said to have (r, ρ) locality, and the construction in [TB14] is naturally
extended to those codes by letting the defining subgroupH be of order r+ρ−1, with
n = ν(r+ρ−1). The code TB[n, k, r, ρ] is obtained by modifying the polynomials
in (5.6) to

m(x) =
r−1∑
i=0

(
µ−1∑
j=0

mi,jx
j(r+ρ−1)

)
xi. (5.15)

With this view in mind, we can extend the results of Section 5.4 where one can now
construct w-balanced TB codes with (r, ρ) locality for w = d + δ(r + ρ − 1) + 2,
where 1 ≤ δ ≤ k

r
. Theorem 5.5 can also be generalized in the same manner.

106

C h a p t e r 6

REED–SOLOMON CODES FOR DISTRIBUTED
COMPUTATION

6.1 Introduction
The size of today’s datasets have made it necessary to often perform computations
in a distributed manner. For this reason, parallel and distributed computing has at-
tracted a lot of attention in recent years from bothmachine learning and optimization
communities [Boy+11; Rec+11; Zin+10; Gem+11].

The parallel nature of distributed computation promises significant speedups. Yet,
the speedups observed in practice [DB13] fall far behind. Indeed, in the face of
substantial or heterogeneous delays, distributed computing may suffer from being
slow, which defeats the purpose of the exercise. There are several approaches to
address this problem. One naive way to tackle this issue, especially when the
task consists of many iterations, is to ignore the straggling machines and hope that
on average the taskmaster receives enough information to be able to compute the
required function accurately. However, it is clear that in this case the performance
of the learning algorithm may be significantly impacted due to the lost updates.
An alternative and more appropriate way to resolve this issue is to introduce some
redundancy in the data provided to the machines, in order to efficiently trade off per-
machine computation time for less overallwait time, and be able to recover the correct
update using only a fewmachines. Redundancy on its own, however, can incur severe
communication costs, as the machines not only have to compute additional tasks,
but also communicate the results. The challenge then is to design a clever scheme
for distributing the task among the machines, such that the computation can be
recovered efficiently using a few machines, independent of which machines they
are. As a result, a scheme in which the machines not only compute additional tasks,
but code across them seems appropriate for combating stragglers, and ensuring that
redundant computations are communicated efficiently; straggler mitigation schemes
based on coding theory are starting to gain traction.

Related Work
Coding-theoretic straggler mitigation schemes were first introduced by Lee et
al. [Lee+16] where it was shown that distributed matrix multiplication can be sped-

107

up significantly by relying on MDS codes. Dutta et al. [DCG16] proposed a coding
technique for introducing redundancy in computation, instead of simple repetition,
for speeding up computing linear transformations by sparsifying the matrices pro-
vided to the machines. A coded MapReduce framework was introduced by Li et al.
in [LMA16b], which is used for facilitating data shuffling in distributed computing.
The first work to consider schemes for distributed gradient descent is that of Tandon
et al. [Tan+16], where it was shown that an optimal distribution scheme exists along
with efficient encoding and decoding functions that can recover the full gradient
from the least number of machines theoretically possible. It was shown that this can
be accomplished by a careful distribution of the subtasks across the machines and
then employing an MDS code to specify the coding coefficients. Furthermore, this
allowed for the recovery of the full gradient at the task master by using an algorithm
that runs in cubic time.

6.2 Problem Setup
We consider the problem of straggler mitigation in a distributed gradient descent
setting. We focus on the task of fitting a vector of parameters β ∈ Rp to a dataset
D = {(xi, yi)}Ni=1, where xi ∈ Rp and yi ∈ R, where the goal is minimizing a loss
function of form

L(D; β) =
N∑
i=1

`(xi, yi; β), (6.1)

where `(xi, yi; β) is the loss function of the model when evaluated at xi. Gradient
descent algorithms are usually used for solving such machine learning problems.
The gradient of the loss function, with respect to β is given by

∇L(D; β) =
N∑
i=1

∇`(xi, yi; β). (6.2)

The model β evolves as a function of time according to the gradient descent rule:

βt+1 = βt − ηt∇L(D; β),

where ηt is known as the learning rate and is allowed to depend on time.

We assume the setting where the computation is distributed equally amongst n
machines and the master is to recover the gradient from any n− smachines in order
to update the model βt, where s depends on the computational load. See Fig. 6.1 .

More formally, consider the partition of the dataset into {D1, . . . ,Dk} where the
Di’s are disjoint subsets of D of size N

k
(assume k divides N). This allows us to

108

Master

W1

W2

WnWn

Figure 6.1: Schematic representation of the taskmaster and the n workers.

rewrite (6.2) as

∇L(D; β) =
k∑
i=1

∑
(x,y)∈Di

∇`(x, y; β). (6.3)

Define gi :=
∑

(x,y)∈Di ∇`(x, y; β) and g := [gt1, g
t
2, . . . , g

t
k]

t, where gi is a row
vector of size p. Let 1 denote the all-one column vector of length k. The goal is
to recover ∇L(D; β) = 1tg in a distributed fashion. We have a set of n workers
{W1,W2, . . . ,Wn}. Also define the taskmaster, M , as the entity responsible for
computing the gradient from the (partial) result of computations done by workers.

In principle, eachWi can compute a partial gradient and send it back toM . OnceM
receives {g1, . . . , gk}, it computes the gradient by simply adding the results. In order
to avoid the impact of stragglers, designing a flexible scheme which can compute the
gradient using the result of computations of some (but not all) machines is crucial.

In order to have a scheme that can tolerate any set of stragglers of size at most s,
the taskmaster should be able to recover the gradient vector given the result of any
f := n − s machines. This set of machines can vary from iteration to iteration
and so our scheme should accommodate this fact. Suppose each worker Wi is
provided with w data partitions, {Di1 , . . . ,Diw}, on which it computes the partial
gradients {gi1 , gi2 , . . . , giw}. Here, we assume that the workers are doing same
amount of computations, i.e., w is fixed for all workers. It is here where we see that
redundancy is introduced, as the quantity wn is usually greater than (or equal to) k.

The following proposition indicates the upper bound for the number of stragglers in
terms of system parameters. We refer the reader to [Tan+16] for the proof.

109

Proposition 6.1. In a distributed system with n workers, if we partition the data into
k disjoint sets and each worker computes the gradient on exactly w sets, the number
of stragglers, s, must satisfy

s ≤
⌊wn
k

⌋
− 1. (6.4)

After computing the corresponding partial gradients, {gi1 , gi2 , . . . , giw}, eachworker
Wi can send all these vectors to M . However, there is benefit in Wi sending
a linear combination of {gi1 , . . . , giw}. Indeed, the amount of data being sent
(communication load) is reduced by a factor of w, and we can show that with an
appropriate choice of the encoding coefficients, there is no loss in the number of
stragglers that can be tolerated.

This choice amounts to a careful distribution of the data partitions among the n
workers, and prescribing a linear combination to eachWi. Mathematically, this can
be expressed as designing a matrix B ∈ Cn×k such that:

• Each row of B contains exactly w nonzero entries.

• The linear space generated by any f rows ofB contains the all one vector, 1t.

The nonzero locations inbt
i, the ith row ofB, determine the indices of data partitions

assigned to worker i. The first property ensures that each worker computes partial
gradients on exactly w chunks of data.

Furthermore, the values of these nonzero entries prescribe the linear combination.
The coded partial gradient sent byWi is given by

ci =
k∑
j=1

Bi,jgj = bt
ig, (6.5)

where ci ∈ C1×p is a row vector which denotes the linear combination of the partial
gradient sent from Wi to M . Since bi has sparsity w each worker essentially
computes a weighted sum of the gradients of w chunks of the data. Define the
encoded computation matrix C ∈ Cn×p as

C = [ct1, c
t
2, . . . , c

t
n]t = Bg, (6.6)

110

where the i th row of C is equal to ci. The goal is design matrix B in such a way
that the taskmaster be able to recover the gradient∇L(D; β) = 1tg from any f rows
ofC. In particular, let F = {i1, . . . , if} be the index set of surviving machines and
let BF be the sub-matrix of B indexed by F . If 1t is in the linear space generated
by the rows of BF , there is a corresponding vector, aF such that:

at
FCF = at

FBFg = 1tg = ∇L(D; β). (6.7)

This has to hold for any set of indices F ⊂ [n] of size f . Using the theory of
maximum-distance separable (MDS) codes, the authors of [Tan+16], construct an
encoding matrix B, along with the set of decoding vectors {aF : F ⊂ [n], |F| =

f}. The encoding matrix they designed must satisfy w ≥ k
n
(s + 1) according to

Proposition 6.1.

Preliminaries
In a distributed scheme that does not employ redundancy, the taskmaster has to wait
for all the workers to finish in order to compute the full gradient. However, in the
scheme outlined above, the taskmaster needs to wait for the fastest f machines to
recover the full gradient. Clearly, this requires more computation by each machine.
Note that in the uncoded setting, the amount of computation that each worker does is
1
n
of the total work, whereas in the coded setting each machine performs a w

k
fraction

of the total work. From (6.4), we know that if a scheme can tolerate s stragglers,
the fraction of computation that each worker does is

w

k
≥ s+ 1

n
. (6.8)

Therefore, the computation load of each worker increases by a factor of (s + 1).
At this point, it is not immediately clear what the optimal value for w

k
is. This

optimization will be analyzed in detail in Section 6.5.

It is worth noting that it is often assumed [Tan+16; Lee+16; DCG16] that the decod-
ing vectors are precomputed for all possible combinations of returning machines,
and the decoding cost is not taken into account in the total computation time. In a
practical system, however, it is not very reasonable to compute and store all the de-
coding vectors, especially as there are

(
n
f

)
such vectors, and this grows quickly with

n. A contribution of this chapter is the design of an online algorithm for computing
the decoding vectors on the fly, for the indices of the f workers that respond first.
The approach is based on the idea of inverting Vandermonde matrices, which can be

111

done very efficiently. In the sequel, we show how to construct an encoding matrixB
for anyw, k and n, such that the system is resilient to

⌊
wn
k

⌋
−1 stragglers, along with

an efficient algorithm for computing the decoding vectors {aF : F ⊂ [n], |F| = f}.

6.3 Construction
The basic building block of our encoding scheme is a matrixM ∈ {0, 1}n×k, where
each row is of weight w, which serves as a mask for the matrix B. Each column
of B will be chosen as a codeword from a suitable Reed–Solomon Code over C,
with support dictated by the corresponding column in M. Whereas the authors
of [Tan+16] choose the rows of B as codewords from a suitable MDS code, this
approach does not immediately work when k is not equal to n.

Balanced Mask Matrices
Wewill utilize techniques from [HLH16a; HLH16b] to construct the matrixM (and
then B). For that, we present the following definition.

Definition 6.1 (Balanced matrix). A matrix M ∈ {0, 1}n×k is column (row)-
balanced if for fixed row (column) weight, the weights of any two columns (rows)
differ by at most 1.

Ultimately, we are interested in a column-balanced matrix M with row weight w
that prescribes a mask for the encoding matrix B. As an example, let n = 8, k = 4

and w = 3. ThenM is given by

M =



1 1 1 0

1 1 1 0

1 1 0 1

1 1 0 1

1 0 1 1

1 0 1 1

0 1 1 1

0 1 1 1


, (6.9)

where each column is of weight nw
k

= 6. Note that for this choice of parameters,M
is both row and column-balanced. Now consider another set of parameters n = 8,
k = 5 and w = 4. The quantity nw

k
is not an integer so clearly the weights of the

columns ofM have to be different. A particular column-balancedM is given below.

112

M =



1 1 1 1 0

1 1 1 1 0

1 1 1 0 1

1 1 1 0 1

1 1 0 1 1

1 1 0 1 1

1 0 1 1 1

0 1 1 1 1


. (6.10)

Note that the first two columns form a row-balanced matrix with column weight
equal to seven, and the last three columns form another row-balanced matrix with
column weight equal to six. This example serves as an inspiration for an algorithm
that constructs column-balancedmatrices for fixed rowweight from two constituents
each of which are row-balanced. The following algorithm produces a row-balanced
mask matrix. For a fixed column weight d, each row has weight either

⌊
kd
n

⌋
or
⌈
kd
n

⌉
.

Let (x)n denote the remainder from dividing x by n so that 0 ≤ (x)n ≤ n− 1.

Algorithm 2 Row-Balanced Mask MatrixM
Input:
n: Number of rows
k: Number of columns
d: Weight of each column
t: Offset parameter

Output: Row-balancedM ∈ {0, 1}n,k
function RowBalancedMaskMatrix(n,k,d,t)

M← 0n,k
for i = 0 to k − 1 do

for j = 0 to d− 1 do
r = (id+ j + t)n
Mr,i = 1

end for
end for
returnM

end function

The intuition behindAlgorithm2 is best demonstrated through an example. Consider

113

the first two columns of the matrix in (6.10) as

Mh =



1 1

1 1

1 1

1 1

1 1

1 1

1 0

0 1


. (6.11)

We obtain Mh by calling RowBalancedMaskMatrix(8,2,7,0). The first column
of the required matrix is set to be a length seven vector whose first six entries are
equal to one and whose remaining entries are equal to zero. The second column
is built by taking the first column and cyclically shifting its entries downwards by
d positions. In general, the j th column is chosen as a downward cyclic shift of the
first column by (j− 1)d positions. The parameter t determines the starting position
of the sequence of ones in the first column, which in this case is position 0. More
generally, it determines which rows are of weight

⌊
kd
n

⌋
and which are of weight⌈

kd
n

⌉
. Now consider the last 3 columns of the matrix in (6.10) as

Ml =



1 1 0

1 1 0

1 0 1

1 0 1

0 1 1

0 1 1

1 1 1

1 1 1


, (6.12)

which is obtained by running RowBalancedMaskMatrix(8,3,6,6). Choosing
t = 6 indicates that the starting position of the sequence of ones in the first column
begins at position 6 and cyclically continues for d positions. The particular value
of this parameter will be selected carefully when constructing a column-balanced
matrix with fixed row weight. For a proof of correctness of Algorithm 2, please
refer to the appendix.

Once the row weight w is fixed, if d = wk
n
∈ Z, then Algorithm 2 can be used to

generate a matrix M which in turn, allows us to design the encoding matrix B: the

114

nonzero entries ofB will be chosen appropriately so that the ith row of the resulting
matrix B specifies the encoding coefficients for Wi. The j th column of B will be
chosen as a Reed–Solomon codeword whose support is that of the j th column ofM.
This procedure will be described in detail in the upcoming section.

In the case d = wk
n

/∈ Z, the chosen row weight w prevents the existence of M
where each column weight is minimal. We have to resort to Algorithm 3 that yields
M comprised of two matricesMh andMl according to

M =
[
Mh Ml

]
. (6.13)

The matrices Mh and Ml are constructed using Algorithm 2. Each column of Mh

has weight dh :=
⌈
nw
k

⌉
and each column of Ml has weight dl :=

⌊
nw
k

⌋
. Note

that according to (6.4), we require dl ≥ 2 in order to tolerate a positive number of
stragglers.

Algorithm 3 Column-balanced Mask MatrixM
Input:
n: Number of rows
k: Number of columns
w: Weight of each row

Output: Row-balancedM ∈ {0, 1}n,k.
procedure MaskMatrix(n,k,w)

kh ← (nw)k
dh ←

⌈
nw
k

⌉
kl ← k − kh
dl ←

⌊
nw
k

⌋
t← (khdh)n
Mh ← RowBalancedMaskMatrix(n, kh, dh, 0)
Ml ← RowBalancedMaskMatrix(n, kl, dl, t)
M←

[
Mh Ml

]
returnM

end procedure

A proof of the correctness of this algorithm is given in the appendix.

Complex Reed–Solomon Codes
This subsection introduces Reed–Solomon codes defined over the field of complex
numbers. For an nth root of unity α ∈ C, the Reed–Solomon code RS[n, f] of length

115

n and dimension f over C is given by the generator matrix

G =


1 1 · · · 1

1 α · · · αf−1

...
...

1 αn−1 · · · α(n−1)(f−1)

 . (6.14)

As described in Section 1.2, we can view the code as the image of a set of polynomials
when evaluated at powers of α. In particular, the evaluation of the polynomial
t(x) =

∑f−1
i=0 tix

i on {1, α, . . . , αn−1} corresponds to
t(1)

t(α)
...

t(αn−1)

 =


1 1 · · · 1

1 α · · · αf−1

...
...

1 αn−1 · · · α(n−1)(f−1)



t0

t1
...

tf−1

 . (6.15)

Building B fromM

Once a matrix M has been determined using Algorithm 3, the encoding matrix B

can be built by picking appropriate codewords from RS[n, f]. Consider M in (6.9)
and the following polynomials

t1(x) = κ1(x− α6)(x− α7), (6.16)

t2(x) = κ2(x− α4)(x− α5), (6.17)

t3(x) = κ3(x− α2)(x− α3), (6.18)

t4(x) = κ4(x− 1)(x− α). (6.19)

The constant κj is chosen such that the constant term of tj(x), i.e. tj(0), is
equal to 1. The evaluations of tj(x) on {1, α, . . . , α7} are collected in the vec-
tor (tj(1), tj(α), . . . , tj(α

7))t which sits as the j th column of B to form

B =



t1(1) t2(1) t3(1) t4(1)

t1(α) t2(α) t3(α) t4(α)

t1(α2) t2(α2) t3(α2) t4(α2)

t1(α3) t2(α3) t3(α3) t4(α3)

t1(α4) t2(α4) t3(α4) t4(α4)

t1(α5) t2(α5) t3(α5) t4(α5)

t1(α6) t2(α6) t3(α6) t4(α6)

t1(α7) t2(α7) t3(α7) t4(α7)


=



∗ ∗ ∗ 0

∗ ∗ ∗ 0

∗ ∗ 0 ∗
∗ ∗ 0 ∗
∗ 0 ∗ ∗
∗ 0 ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗


, (6.20)

116

where the ∗ symbol denotes a nonzero complex number. The generalization of this
process now follows. First, we index the rows of M from 0 to n − 1. We then fix
the polynomial tj(x) as

tj(x) = κj
∏

i:[M]i,j=0

(x− αi), (6.21)

i.e., the polynomial whose roots are those powers of α for which the corre-
sponding entries of Mj are equal to 0. Lastly, the j th column of B is set as
Bj = (tj(1), tj(α), . . . , tj(α

n−1))t. This procedure is outlined in the algorithm
below.

Algorithm 4 Encoding Matrix B
Input:
n: Number of rows
k: Number of columns
w: Row weight
α: nth root of unity

Output: Row-balanced encoding matrix B.
procedure EncodingMatrix(n,k,w)

M← MaskMatrix(n, k, w)
B← 0n×k
for j = 0 to k − 1 do

tj(x)←∏
r:Mr,i=0(x− αr)/(−αr)

for i = 0 to n− 1 do
Bi,j = tj(α

i)
end for

end for
return B

end procedure

Once the matrix B is specified, the corresponding decoding vectors required for
computing the gradient at the master server have to be characterized.

6.4 Decoding Vectors
In this section, we exploit the fact that B is constructed using Reed–Solomon
codewords and show that each decoding vector aF can be computed in O(f 2) time.
Recall that the master server should be able to compute the gradient from any f
surviving machines, indexed by F ⊆ [n], according to (6.7). The j th column of B

117

is determined polynomial tj(x), which is written as

tj(x) =

f−1∑
i=0

tj,ix
i, (6.22)

where tj,0 = 1. We can write B as

B =


1 1 · · · 1

1 α · · · αf−1

...
...

1 αn−1 · · · α(n−1)(f−1)



t1,0 · · · tk,0

t1,1 · · · tk,1
...

t1,f−1 · · · tk,f−1

 . (6.23)

Now considerCF , thematrix of coded partial gradients received from {Wi : i ∈ F}.
The rows of B corresponding to F are now given by

BF = GFT =


1 αi1 · · · αi1(f−1)

1 αi2 · · · αi2(f−1)

...
...

1 αif · · · αif (f−1)




1 · · · 1

t1,1 · · · tk,1
...

t1,f−1 · · · tk,f−1.

 . (6.24)

We require a vector aF such that at
FBF = 1t. This equivalent to finding a vector

aF such that
at
FGF = (1, 0, . . . , 0). (6.25)

Indeed, the matrix in the above product is a Vandermonde matrix is defined by f
distinct elements and so it is invertible in O(f 2) time [BP70]. In particular, this
allows the master server to compute the required decoding vectors online, a feature
that is appealing in scenarios where n is large. Thus, the gradient∇L(D; β) can be
recovered in the presence of any s stragglers in O(f 2) time. This an improvement
compared to previous works [Tan+16] where the decoding time isO(f 3). A careful
inspection of inverses of Vandermonde matrices built from an nth root of unity
allows us to compute the required decoding vector in a space-efficient manner. This
is demonstrated in the next subsection.

Space-Efficient Algorithm
Note that at

F is nothing but the first row of the inverse of GF , which can be
built from a set of polynomials {v1(x), . . . , vf (x)}. Let the lth column of G−1

F be
vl = (vl,0, . . . , vl,f−1)t and associate it with vl(x) =

∑f−1
i=0 vl,0x

i. The condition
G−1
F vl = el, where el is the lth elementary basis vector of length f , implies that

118

vl(x) should vanish on {αi1 , . . . , αif} \ {αil}. Specifically,

vl(x) =

f∏
j=1
j 6=l

x− αij
αil − αij . (6.26)

The first row of G−1
F is given by (v1,0, . . . , vf,0), where vl,0 is the constant term

of vl(x). Indeed, we have vl,0 = vl(0), which can be computed in closed form
according to the following formula,

vl,0 = (−1)f−1

f∏
j=1
j 6=l

αij

αil − αij =

f∏
j=1
j 6=l

(1− αil−ij)−1. (6.27)

By choosing α as a primitive nth root of unity, one is guaranteed that there are only
n − 1 distinct values of (1 − αil−ij)−1. This observation proposes that taskmaster
should precompute and store those {(1− αi)−1}n−1

i=1 , and then compute each vl,0 by
utilizing lookup operations. The following algorithm outlines this procedure.

Algorithm 5 Compute Decoding Vector
Input:
F : Ordered set of surviving machines - {i1, . . . if}
α: nth root of unity

Output: Decoding vector a associated with F .
procedure DecodingVector(F)

a← 0f
for l = 0 to f − 1 do

al ←
∏f−1

j=0,j 6=l(1− αil−ij)−1

end for
return a

end procedure

As described earlier, the assignment al ←
∏f−1

j=0,j 6=l(1 − αil−ij)−1 now reduces
to computing {(il − ij)n}f−1

j=0,j 6=l and then performing f lookups to retrieve the
constituents of the required product.

6.5 Delay Model
In this section, we provide a theoretical model which can be used to optimize the
choice of parameters that define the encoding scheme. For this purpose, we model
the response time of a single computing machine as

T = Tdelay + Tcomp. (6.28)

119

Here, the quantity Tcomp is the time required for the machine to compute its portion
of the gradient. This quantity is equal to cg Nwk , where cg = cg(`, p) is a constant that
indicates the time of computing the gradient for a single data point which depends
on the dimension of data points, p, as well as the loss function, `. The second term
Tdelay reflects the random delay incurred before the machine returns with the result
of its computation. We model this delay as a Pareto distributed random variable
with distribution function

F (t) = Pr(Tdelay ≤ t) = 1−
(
t0
t

)ξ
for t ≥ t0, (6.29)

where the quantity t0 can be thought of the fundamental delay of the machine, i.e.
the minimum time required for a machine to return in perfect conditions. Previous
works [Lee+16; LK14] model the return time of a machine as a shifted exponential
random variable. We propose using this approach since the heavy-tailed nature of
CPU job runtime has been observed in practice [LO86; Har99; HD97].

Let Tf denotes the expected time of computing the gradient using the first f ma-
chines. As a result we have

Tf = E[T
(f)
delay] + Tcomp + Tdec(f), (6.30)

where T (f)
delay is the f th ordered statistic of Tdelay, and Tdec(f) is the time required at

the taskmaster for decoding. Here we assume n is large and define α := w
k
as the

fraction of the dataset assigned to each machine. The corresponding number of
machines for this value of α is given by

f(α) = d(1− α)ne+ 1. (6.31)

We can show the following result which approximates E[T
(f)
delay] for large values of

n. For a proof, please refer to the appendix.

Proposition 6.2. The expected value of the f th order statistic of the Pareto distribu-
tion with parameter ξ will converge as n grows, i.e.,

lim
n→∞

E[T
(f)
delay] = lim

n→∞
E[T

(1−α)n
delay] = t0α

− 1
ξ . (6.32)

Proof. From [Vän76], the expected value of the f th order statistic of the Pareto
distribution is:

E[T
(f)
delay] = t0

Γ(n− f + 1− 1/ξ)Γ(n+ 1)

Γ(n− f + 1)Γ(n+ 1− 1/ξ)
,

120

where Γ(x) is the gamma function given by Γ(x) =
∫∞

0
tx−1e−tdt. We now assume

that n is large and make the standard approximation

Γ(x) ∼
√

2π

x

(x
e

)x
.

Furthermore, (6.4) implies that the number of machines we wait for is f = (1−α)n,
for some α < 1 which leads to

E[T
(f)
delay] = t0

(
1− 1

ξ(αn+ 1)

)αn+ 1
2
(

1− 1

ξ(n+ 1)

)−n− 1
2

(
1− (1− α)n

n+ 1− 1
ξ

)−1/ξ

.

By letting n → ∞, the first two terms in the product converge to e−ξ and eξ,
respectively, which yields

lim
n→∞

E[T
(f)
delay] = t0α

− 1
ξ .

Using this result, we can approximate Tf , for n� 1,

Tf ≈ t0α
− 1
ξ + cgNα + cm(1− α)2n2, (6.33)

wherewe assume that the taskmaster usesAlgorithm5 for decoding. Ifwe assume cm
is the time required for one FLOP, the total decoding time is given by cm(f − 1)f ≈
cm(1−α)2n2. Since α is bounded from above by the memory of each machine, one
can find the optimal computation time, subject tomemory constraints, byminimizing
Tf with respect to α.

Offline Decoding
In the schemes where the decoding vectors are computed offline, the quantity Tdec
does not appear in total computation time Tf . Therefore, for large values of n, we
can write:

Tf = t0α
− 1
ξ + cgNα. (6.34)

This function can be minimized with respect to α by standard calculus to give

α∗ =

(
t0

cgNξ

) ξ
1+ξ

. (6.35)

Note that this quantity is valid (less than one) if and only if one has t0
cgNξ

< 1.
It has been observed in practice that the parameter ξ is close to one. Therefore,

121

this assumption holds because N is assumed to be large. For illustrative purposes,
we plot the function Tf from (6.34) for a given set of parameters and indicate the
optimal point. This plot is given in Figure 6.2.

α

0 0.2 0.4 0.6 0.8 1

T
f

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 6.2: This plot shows the expected computation time in a setup where the
number of training examples is N = 12000 and cg = 3 × 10−6 to give Ncg =
0.035. The parameters of the Pareto distribution corresponding to the delay are
characterized by t0 = 0.001 and ξ = 1.1. The optimizer of this function as
predicted by (6.35) is α∗ = 0.1477. This point is denoted by the star symbol.

6.6 Numerical Results
To demonstrate the effectiveness of the scheme, we performed numerical simula-
tions, usingMATLAB, of a distributed gradient descent implementation for training
a softmax classifier1. The model is trained on a cluster composed of n = 80 ma-
chines to classify 10000 handwritten digits from the MNIST database [LCB98]. To
account for the delay, we add a random variable sampled from a Pareto distribution
according to (6.29) with parameters ξ = 1.1 and t0 = 0.001. We fix k = n and
find the optimal wRS for our scheme by numerically optimizing (6.30). The optimal
number of machines to wait for is fRS = 68, according to (6.31). The results are
aggregated and then decoded using Algorithm 5.

We compare the performance of our scheme with that proposed in [Tan+16]. We
1Please refer to the appendix for a quick note on the basics of softmax regression.

122

find the optimalwMDS for this scheme by setting Tdec = (1−α)3n3 since the decoder
requires inverting a random matrix corresponding to an MDS matrix. The optimal
number of machines to wait for in this scheme is fMDS = 33. The knowledge of the
entire gradient allows us to employ accelerated gradient methods such as the one
proposed by Nesterov [Nes13]. In summary, we compare the performance of the
following four schemes:

• Coded - RS: Each machine gets wRS
k

of the data. Wait for fRS machines.

• Coded - MDS [Tan+16]: Each machine gets wMDS
k

of the data. Wait for fMDS

machines.

• Wait(n): Data is distributed equally amongst n machines - Wait for all n
machines to return.

• Wait(fRS): Data is distributed equally amongst n machines - Wait for fRS
machines.

• Wait(fMDS): Data is distributed equally amongst n machines - Wait for fMDS

machines.

We compare several schemes by running each of them on the same dataset for a fixed
amount of time (in seconds) and then measuring the test error. The results depicted
in Figure 6.3 demonstrate that the scheme proposed in this chapter outperforms the
four other schemes.

123

Time (s)
0 0.5 1 1.5 2 2.5 3

T
es
t
E
rr
o
r

10
-1

10
0

Uncoded - Wait for fRS
Uncoded - Wait for fMDS
Uncoded - Wait for all
Coded - RS
Coded - MDS

Figure 6.3: This plot shows the test error as a function of time for a softmax
regression model trained using distributed gradient descent. The model was trained
on n = 80 machines using 12000 examples from the MNIST database [LCB98] and
was validated on a test set of size 10000. The Reed–Solomon based scheme (Coded -
RS) waits for fRS = 68 machines, while the one corresponding to [Tan+16] (Coded
- MDS) waits for fMDS = 33. These quantities were obtained by numerically
optimizing (6.30). For comparison, we plot the performance of three uncoded
schemes: one waits for all 80 machines, another waits for fRS machines and the
third waits for fMDS of them.

6.7 Discussion
As mentioned, recent work in coding for coded distributed computation mostly
focuses on performingmatrix multiplication robustly. Indeed, the work of [Tan+16],
and therefore our results here can also handle this case. Suppose we are interested
in computing the product y = Ax, where A ∈ Cr×c. By partitioning A along the
column dimension, the product can be expressed as

y =
[
A1 · · · Ak

]
x1

...
xk

 =
k∑
i=1

Aixi, (6.36)

whereAi ∈ Cr× c
k . The coding scheme from Algorithm 4 can now be used directly.

In particular, machine i is given the data {(Ail ,xil)}wl=1, where i1, . . . , iw is the
support of the ith row of the encoding matrix B. The machine computes the

124

individual products yil = Ailxil , for a cost of O(rc
k

) and then linearly combines the
yil using the coding coefficients it was provided. As a result, the total computational
cost per machine is O(rc

k
w). Recovery of the desired product y is accomplished at

the master by computing the required decoding vector using Algorithm 5.

We now compare our scheme to that of Dutta el al. [DCG16], which is somewhat
similar in flavor to ours but is specialized to matrix multiplication. For a fixed
number of survivors f > r, the scheme in [DCG16] transforms the matrix of
interest A ∈ Rr×c into a matrix F ∈ Rn×c, with the property that any f rows of F
can recover A. In addition, each of its rows is of sparsity c(n−(f−r))

n
. Machine i is

handed the ith row f ti so that it computes ỹi = f tix for a cost of O(c− cf
n

+ rc
n

). The
master can now recover the desired product y from any f elements of {ỹi}ni=1. The
condition f > r imposes n > r. In the case where this doesn’t hold, the authors
suggest partitioning A into k blocks along the row dimension, each of which is
composed of r′ < f rows. The scheme is applied to each block, Ai, separately and
each machine is given k rows, one from each block, which in turn computes k inner
products. The sparsity of each row now is c(n−(f−r′))

n
, so the total computation cost

per machine is O(kc− kcf
n

+ rc
n

).

For the same number of survivors f , the scheme proposed in this chapter requires
O(rc− rcf

n
+ rc

n
) operations per machine. The complexities are asymptotically equal

if k scales in r. A major advantage of our scheme is the fact that the encoding is
oblivious to the the matrix A. This provides huge savings in the encoding process
especially when the application is iterative in nature, and the matrixA is a function
of time.

6.8 Appendix
Correctness of Algorithm 2
To lighten notation, we prove correctness for t = 0. The general case follows
immediately.

Proposition 6.3. Let k, d and n be integers where d < n. The row weights of matrix
M ∈ {0, 1}n×k produced by Algorithm 2 for t = 0 are

wi =


⌈
kd

n

⌉
, i ∈ {0, . . . , (kd− 1)n},⌊

kd

n

⌋
, i ∈ {(kd)n, . . . , n− 1}.

(6.37)

125

Proof. The nonzero entries in column j of M are given by

Sj = {jd, . . . , (j + 1)d− 1}n, (6.38)

where the subscript n denotes reducing the elements of the set modulo n. Collec-
tively, the nonzero indices in all columns are given by

S = {0, . . . d− 1, . . . , (k − 1)d, . . . kd− 1}n. (6.39)

In case n | kd, each element inS, after reducingmodulo n, appears the same number
of times. As a result, those indices correspond to columns of equal weight, namely
kd
n
. Hence, the two cases of wi are identical along with their corresponding index

sets.

In the case where n - kd, each of the first
⌊
kd
n

⌋
n elements, after reducing modulo n,

appears the same number of times. As a result, the nonzero entries corresponding
to those indices are distributed evenly amongst the n rows, each of which is of
weight

⌊
kd
n

⌋
. The remaining indices {

⌊
kd
n

⌋
n, . . . , kd− 1}n contribute an additional

nonzero entry to their respective rows, those indexed by {0, . . . , (kd−1)n}. Finally,
we have that the first (kd)n rows are of weight

⌊
kd
n

⌋
+1 =

⌈
kd
n

⌉
, while the remaining

ones are of weight
⌊
kd
n

⌋
.

Now consider the case when t is not necessarily equal to zero. This amounts to
shifting (cyclically) the entries in each column by t positions downwards. As a
result, the rows themselves are shifted by the same amount allowing us to conclude
the following.

Corollary 6.1. Let k, d and n be integers where d < n. The row weights of matrix
M ∈ {0, 1}n×k produced by Algorithm 2 are

wi =


⌈
kd

n

⌉
i ∈ {t, . . . , (t+ kd− 1)n},⌊

kd

n

⌋
i ∈ {0, t− 1} ∪ {(t+ kd)n, . . . , n− 1}.

(6.40)

Correctness of Algorithm 3
According to the algorithm, the condition k | nw implies that kh = 0 leading to
M = Ml, which is constructed using Algorithm 2.

Moving on to the general case, the matrixM given by[
Mh Ml

]
, (6.41)

126

where each matrix is row-balanced. The particular choice of t in Ml aligns the
“heavy” rows of Mh with the “light" rows of Ml, and vice-versa. The algorithm
works because the choice of parameters equates the number of heavy rows nh ofMl

to the number of light rows nl ofMh. The following lemma is useful in two ways.

Lemma 6.1.
⌊
khdh
n

⌋
+
⌈
kldl
n

⌉
=
⌈
khdh
n

⌉
+
⌊
kldl
n

⌋
= w.

Proof. Note that the following holds:

khdh
n

+
kldl
n
− 1 <

⌈
khdh
n

⌉
+

⌊
kldl
n

⌋
<
khdh
n

+
kldl
n

+ 1. (6.42)

Furthermore, we have that

khdh
n

+
kldl
n

=
kh(dl + 1)

n
+

(k − kh)dl
n

(6.43)

=
kh
n

+
kdl
n

(6.44)

=
wn−

⌊
wn
k

⌋
k

n
+
kdl
n

(6.45)

=
wn− dlk

n
+
kdl
n

(6.46)

= w. (6.47)

We combine the two observations in one:

w − 1 <

⌈
khdh
n

⌉
+

⌊
kldl
n

⌋
< w + 1, (6.48)

and conclude that
⌈
khdh
n

⌉
+
⌊
kldl
n

⌋
= w.

We have shown the concatenation of a “heavy” row ofMh along with a “light” row
of Ml results in one that is of weight w. It remains to show that the concatenation
ofMh andMl results in rows of this type only.

Wewill assume thatn - khdh holds. FromProposition 6.3, we havenl = n−(khdh)n

and nh = (kldl)n. We will show that the two quantities are in fact equal. Indeed,

127

we can express nl as

n− (khdh)n = n− khdh +

⌊
khdh
n

⌋
n (6.49)

= −khdh +

⌈
khdh
n

⌉
n (6.50)

= −(k − kl)(dl + 1) +

⌈
khdh
n

⌉
n (6.51)

= −(dlk + kh) + kldl −
⌊
kldl
n

⌋
n+ nw (6.52)

= kldl −
⌊
kldl
n

⌋
n (6.53)

= (kldl)n. (6.54)

Hence nl = nh and by the choice of t, the “light" rows ofMh align with the “heavy"
rows of Ml, and vice-versa. Furthermore, Lemma 6.1 guarantees that each row of
M is of weight

⌈
khdh
n

⌉
+
⌊
kldl
n

⌋
= w. The same holds for the remaining rows, using

the fact that dxe+ byc = bxc+ dye when both x and y are non-integers.

Softmax Regression
Softmax regression is a technique used to train a classifier that assigns a label
y ∈ {1, . . . , K} to each feature vector x ∈ Rp. Th classifier accomplishes this by
estimating the probability P (y = i|x) for i = 1, . . . , K. In this case, we assume
that the parameter β ∈ Rp×K can be written as

β =

 | |
β1 · · · βK

| |

 ,
where each vector βi ∈ Rp corresponds to the label i. We assume that P (y = i|x, β)

takes the form
P (y = i|x, β) ∝ e−β

t
ix,

which allows us to form the probability vector

P (x; β) =


P (y = 1|x, β)

...
P (y = K|x, β)

 = c


e−β

t
1x

...
e−β

t
Kx

 .

128

The quantity c = (
∑K

j=1 e
−βt

jx)−1 is a normalization constant. For a specific training
example (x, y), the loss is given by

`(x, y; β) = − log
e−β

t
yx∑K

j=1 e
−βt

jx

= −
K∑
i=1

1[y = i] log
e−β

t
ix∑K

j=1 e
−βt

jx
,

where 1[·] is the indicator function that returns 1 when its argument is true and
0 otherwise. Hence, for a given data set of examples D = {(xi, yi)}Ni=1, the loss
function is given by,

L(D; β) = −
∑

(x,y)∈D

K∑
i=1

1[y = i] log
e−β

t
ix∑K

j=1 e
−βt

jx
.

The gradient with respect to each βi is given by

∇βiL(D; β) = −
∑

(x,y)∈D

x

(
1[y = i]− e−β

t
ix∑K

j=1 e
−βt

jx

)
.

These partial gradients are collected in a matrix as

∇L(D; β) =

 | |
∇β1L(D; β) · · · ∇βKL(D; β)

| |

 ,
which can be used to update the model β at time t+ 1 as βt+1 = βt− ηt∇L(D; βt),
where ηt is the learning rate at time t.

129

C h a p t e r 7

CONCLUDING REMARKS AND FUTURE DIRECTIONS

The main goal of this thesis was to present code constructions with structured gen-
erator matrices. In chapters 2, 3 and 4, the structure was imposed by the underlying
network in the form of encoding constraints. In Chapter 5, it was shown that impos-
ing certain structure results in an encoding scheme that is computationally balanced.
In Chapter 6, the same balanced structure resulted in an optimal distribution of the
subtasks running on a computing cluster suffering from straggling machines. In the
sequel, we lay out some future directions that we think are natural extensions of the
results that were presented.

Network Error Correction
Chapters 2 and 3 described distributedReed–Solomon codes and distributedGabidulin
codes, respectively, as error-correcting codes suited for multi-source multicast net-
works. The codes presented are distributed in the sense that the source nodes operate
independently of one another. Furthermore, they are efficient since they operate over
small finite fields and can be decoded using classical polynomial-time algorithms.
While they are capacity-achieving, the constructions provided are specific to net-
works with three messages and it is of extreme interest to generalize the results to
handle an arbitrary number of messages.

Such generalization will allow us to construct an optimal code (in terms of minimum
distance) when subjected to encoding constraints. In particular, Theorem 4.2 from
Chapter 4 provided an upper bound on the minimum distance of any code with
specified encoding constraints, and it was shown that, under a technical assumption,
this bound is achievable by subcodes of Reed–Solomon codes.

While the solutions presented in chapters 2, 3 and 4 rely on different approaches, a
unified framework would probably rely on the algebraic construction of Section 2.3,
where it was shown that certain subcodes of Reed–Solomon codes can be decom-
posed into well-behaved constituents, again when certain technical assumptions
hold. The problem was then shown to be equivalent to an allocation problem of
basis vectors of these constituents to each of the source nodes in the network. We
also remark that any unification of the construction would probably rely on existence

130

(rather than constructive) arguments as we have seen that the choice of the underly-
ing code matters. In particular, sections 2.3 and 3.5 show how the underlying code,
through its coordinates, has to be chosen carefully; the authors of [Dau+15a] have
taken steps in that direction.

Data Storage
In Chapter 4, minimum distance boundswere presented for codes that obey encoding
constraints. The bounds are a function of the bipartite graph that specified the
encoding constraints of every code symbol. A natural extension of that result is one
that incorporates the notion of locality [Gop+12]. In particular, a locality-aware
family of bounds similar in flavor to (4.4) can be of use in practical scenarios. This,
in effect, leads to a characterization of the region of minimum distance - locality
pairs (d, r) that can possibly be attained by an error-correcting code subject to
encoding constraints determined by a given bipartite graph. From there, one would
hope for a code construction that achieves every point in this region, and it would
be interesting to see if the Tamo–Barg construction is one such family.

Another result presentedwas the systematicminimumdistance bound of Section 4.5.
There, a code specified by the encoding constraints is required to be systematic and it
was shown that those can lead to a strict loss in theminimumdistancewhen compared
to that nonsystematic case. The construction presented to achieve the systematic
bound requires the enumeration of a set of matchings for the underlying graph,
whose cardinality is exponential in the code length. As a result, this construction,
along with computing the systematic minimum distance of a given graph, requires
exponential complexity. One would hope for an efficient algorithm that returns the
optimal matching, which, in effect, results in an efficient construction of systematic
codes subject to encoding constraints.

We mention two points regarding the results presented of Chapter 5, where it was
shown that both Reed–Solomon codes and Tamo–Barg codes possess generator
matrices that are balanced, i.e. for a fixed row weight, the number of nonzero
entries is the same across the columns. The balanced construction pertinent to
Reed–Solomon codes can accommodate any required row weight, in particular rows
corresponding to minimum distance codewords which resulted in a sparsest and
balanced generator matrix. The situation is slightly more brittle when Tamo–Barg
(TB) codes are considered, where it was only possible to realize row weights that are
multiples of r+ 1, the size of each local group. From both practical and theoretical

131

perspectives, it remains a priority to present sparsest and balanced generatormatrices
for these codes. We also mention constructions for codes that are not necessarily
cyclic, TB codes defined using additive subgroups and locally recoverable codes
with multiple recovery sets.

Distributed Computation
Mitigating stragglers in computing clusters by resorting to coding-theoretic based
schemes is a young paradigm. The setup we have studied in Chapter 6 considers
a distributed gradient descent implementation in which the full gradient is to be
recovered from a subset of the machines that can change from iteration to iteration
as long as their number f is fixed.

A natural scheme to ask for is one that provides an approximation of the gradient
when the number of machines that return is strictly less than f . For any scheme
which was designed for a target f , the approximation is known and can be computed
as follows. Suppose that the dataset D = {(xi, yi)}Ni=1 is partitioned into k disjoint
sets D1, . . . ,Dk, each with gradient gi ∈ R1×p that are collected in the matrix

g =

− g1 −
· · ·

− gk −

 .
Let the encoding matrix beB ∈ Cn×k which is designed so that the rowspace of any
f rows contains 1t, the all-one vector of length k, where the number of machines
in the cluster is n. Now suppose that the coded data returned from f ′ = f − δ

machines is used to approximate the gradient and the rows of B corresponding
to these machines are given by Bδ. One can compute the vector v? such that it
selects an element of the rowspace of Bδ that is closest to 1, which approximates
the gradient by v?g (as opposed to 1tg). This vector v? can be found through the
following optimization problem,

v? = argmin
v
||vBδ − 1||2,

whose optimizer is given by the standard least squares solutionv? = 1tBt
δ(BδB

t
δ)
−1,

when k > f . This formulation inspires an optimzation over the choice of encoding
coefficients, i.e. the matrix B. In principle the following optimization problem
allows for the construction of a scheme that recovers the best approximation of the
gradient when f − δ machines return, over all schemes B which allow the exact
recovery of the gradient from any f machines.

132

B? = argmin
B∈B

max
Bδ

min
v
||vBδ − 1t||2.

We have seen that the innermost optimization can be performed analytically. The
maximization characterizes aworst case behavior of the scheme over all (f−δ)-sized
subsets of the n machines, which one would hope is equivalent over these subsets.
Note that this optimization problem is for a fixed δ, and a desirable property of an
optimal scheme is that it is optimal for any δ. Natural starting points for this approach
is to characterize the performance of the code construction based on random MDS
codes presented in [Tan+16], and the Reed–Solomon-based scheme presented in
Chapter 6 when are they used to compute approximations of the gradient.

133

BIBLIOGRAPHY

[Ahl+00] Rudolf Ahlswede et al. “Network information flow”. In: IEEE Trans-
actions on information theory 46.4 (2000), pp. 1204–1216.

[Ama] Amazon. Amazon Glacier. url: https : / / aws . amazon . com /
glacier/.

[Apaa] Apache. Apache Hadoop. url: http://hadoop.apache.org/.

[Apab] Apache. Apache Spark. url: http://spark.apache.org/.

[BBV96] Mario Blaum, Jehoshua Bruck, and Alexander Vardy. “MDS array
codes with independent parity symbols”. In: IEEE Transactions on
Information Theory 42.2 (1996), pp. 529–542.

[Bla+95] Mario Blaum et al. “Evenodd: an efficient scheme for tolerating double
disk failures in raid architectures”. In: IEEE Transactions on Comput-
ers 44.2 (1995), pp. 192–202.

[Boy+11] Stephen Boyd et al. “Distributed optimization and statistical learning
via the alternating direction method of multipliers”. In: Foundations
and Trends® in Machine Learning 3.1 (2011), pp. 1–122.

[BP70] Ake Björck and Victor Pereyra. “Solution of Vandermonde systems of
equations”. In: Mathematics of Computation 24.112 (1970), pp. 893–
903.

[Clo] Cloudera. Introduction to HDFS Erasure Coding in Apache Hadoop.
url:https://blog.cloudera.com/blog/2015/09/introduction-
to-hdfs-erasure-coding-in-apache-hadoop/.

[Dau+13] Son Hoang Dau et al. “Balanced Sparsest generator matrices for MDS
codes”. In: Information Theory Proceedings (ISIT), 2013 IEEE Inter-
national Symposium on. 2013, pp. 1889–1893.

[Dau+15a] Son Hoang Dau et al. “Constructions of MDS Codes via Random
Vandermonde and Cauchy Matrices over Small Fields”. In: Communi-
cation, Control, andComputing (Allerton), 2015 53nd Annual Allerton
Conference on. 2015.

[Dau+15b] Son Hoang Dau et al. “Locally encodable and decodable codes for
distributed storage systems”. In: Global Communications Conference
(GLOBECOM), 2015 IEEE. IEEE. 2015, pp. 1–7.

[DB13] Jeffrey Dean and Luiz André Barroso. “The Tail at Scale”. In: Com-
munications of the ACM 56.2 (2013), p. 74.

https://aws.amazon.com/glacier/
https://aws.amazon.com/glacier/
http://hadoop.apache.org/
http://spark.apache.org/
https://blog.cloudera.com/blog/2015/09/introduction-to-hdfs-erasure-coding-in-apache-hadoop/
https://blog.cloudera.com/blog/2015/09/introduction-to-hdfs-erasure-coding-in-apache-hadoop/

134

[DCG16] Sanghamitra Dutta, Viveck Cadambe, and Pulkit Grover. “Short-Dot:
Computing Large Linear Transforms Distributedly Using Coded Short
Dot Products”. In: Advances In Neural Information Processing Sys-
tems. 2016, pp. 2092–2100.

[Del78] Ph Delsarte. “Bilinear forms over a finite field, with applications to
coding theory”. In: Journal of Combinatorial Theory, Series A 25.3
(1978), pp. 226–241.

[Dik+10] Theodoros K. Dikaliotis et al. “Multiple access network information-
flow and correction codes”. In: Information Theory, IEEETransactions
on 57.2 (2010), pp. 1067–1079.

[DPR06] Alexandros G. Dimakis, Vinod Prabhakaran, and Kannan Ramchan-
dran. “Decentralized Erasure Codes for Distributed Networked Stor-
age”. In: IEEE/ACM Transactions on Networking (TON) - Special
issue on networking and information theory 52.6 (2006), pp. 2809–
2816. arXiv: 0606049 [cs.IT].

[DSY14] Son Hoang Dau, Wentu Song, and Chau Yuen. “On the existence of
MDS codes over small fields with constrained generator matrices”. In:
Information Theory (ISIT), 2014 IEEE International Symposium on.
June 2014, pp. 1787–1791.

[DSY15] Son Hoang Dau, Wentu Song, and Chau Yuen. “On Simple Multiple
Access Networks”. In: IEEE Journal on Selected Areas in Communi-
cations 8716.0733 (2015).

[Fac] Facebook. Facebook’s Cold Storage System. url: https://code.
facebook.com/posts/1433093613662262/-under-the-hood-
facebook-s-cold-storage-system-/.

[FF56] Lester R Ford and Delbert R Fulkerson. “Maximal flow through a
network”. In: Canadian journal of Mathematics 8.3 (1956), pp. 399–
404.

[Gab85] Ernest Mukhamedovich Gabidulin. “Theory of codes with maximum
rank distance”. In: Problemy Peredachi Informatsii 21.1 (1985), pp. 3–
16.

[Gem+11] Rainer Gemulla et al. “Large-scale matrix factorization with dis-
tributed stochastic gradient descent”. In: Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data
mining. ACM. 2011, pp. 69–77.

[Goo] Google. Google’s Archival Cloud Storage. url: https://cloud.
google.com/storage/archival/.

[Gop+12] Parikshit Gopalan et al. “On the Locality of Codeword Symbols”.
In: IEEE Transactions on Information Theory 58.11 (Nov. 2012),
pp. 6925–6934.

http://arxiv.org/abs/0606049
https://code.facebook.com/posts/1433093613662262/-under-the-hood-facebook-s-cold-storage-system-/
https://code.facebook.com/posts/1433093613662262/-under-the-hood-facebook-s-cold-storage-system-/
https://code.facebook.com/posts/1433093613662262/-under-the-hood-facebook-s-cold-storage-system-/
https://cloud.google.com/storage/archival/
https://cloud.google.com/storage/archival/

135

[GS99] Venkatesan Guruswami and Madhu Sudan. “Improved decoding of
Reed-Solomon and algebraic-geometry codes”. In: IEEE Transactions
on Information Theory 45.6 (1999), pp. 1757–1767.

[GW15] VenkatesanGuruswami andMaryWootters. “RepairingReed-Solomon
Codes”. In: arXiv preprint arXiv:1509.04764 (2015).

[Hal+14] Wael Halbawi et al. “Distributed reed-solomon codes for simple mul-
tiple access networks”. In: 2014 IEEE International Symposium on
Information Theory. IEEE, June 2014, pp. 651–655.

[Hal+17] Wael Halbawi et al. “Balanced and Sparse Tamo–Barg Codes”. In:
2017 IEEE International Symposium on Information Theory (ISIT).
2017.

[Ham47] Richard Hamming. “Self-Correcting Codes - Case 20878”. In: Bell
TelephoneLaboratories -Memorandum1130-RWH-MFW (July 1947).

[Ham48] Richard Hamming. “A Theory of Self-checking and Self-correcting
Codes - Case 20878”. In: Bell Telephone Laboratories - Memorandum
48-110-31 (June 1948).

[Ham50] Richard W Hamming. “Error detecting and error correcting codes”.
In: Bell Labs Technical Journal 29.2 (1950), pp. 147–160.

[Har99] Mor Harchol-Balter. “The Effect of Heavy-Tailed Job Size Distribu-
tions on Computer System Design.” In: Proc. of ASA-IMS Conf. on
Applications of Heavy Tailed Distributions in Economics, Engineering
and Statistics. 1999.

[HCL07] Cheng Huang, Minghua Chen, and Jin Li. “Pyramid Codes: Flexible
Schemes to Trade Space for Access Efficiency in Reliable Data Stor-
age Systems”. In: Sixth IEEE International Symposium on Network
Computing and Applications (NCA 2007). IEEE, July 2007, pp. 79–
86.

[HD97] MorHarchol-Balter andAllen BDowney. “Exploiting process lifetime
distributions for dynamic load balancing”. In: ACM Transactions on
Computer Systems (TOCS) 15.3 (1997), pp. 253–285.

[HHD14] Wael Halbawi, Tracey Ho, and Iwan Duursma. “Distributed gabidulin
codes for multiple-source network error correction”. In: 2014 Inter-
national Symposium on Network Coding (NetCod). IEEE, June 2014,
pp. 1–6.

[HLH16a] WaelHalbawi, ZihanLiu, andBabakHassibi. “BalancedReed-Solomon
codes”. In: 2016 IEEE International Symposium on Information The-
ory (ISIT). July 2016, pp. 935–939.

[HLH16b] WaelHalbawi, ZihanLiu, andBabakHassibi. “BalancedReed-Solomon
codes for all parameters”. In: 2016 IEEE Information Theory Work-
shop (ITW). Sept. 2016, pp. 409–413.

136

[Ho+06] T. Ho et al. “A Random Linear Network Coding Approach to Multi-
cast”. In: IEEE Transactions on Information Theory 52.10 (Oct. 2006),
pp. 4413–4430.

[HT72] Carlos R P Hartmann and Kenneth K Tzeng. “Generalizations of the
BCH bound”. In: Information and control 20.5 (1972), pp. 489–498.

[HTH15] Wael Halbawi, Matthew Thill, and Babak Hassibi. “Coding with con-
straints: Minimum distance bounds and systematic constructions”. In:
Information Theory (ISIT), 2015 IEEE International Symposium on.
June 2015, pp. 1302–1306.

[Jag+07] Sidharth Jaggi et al. “Resilient network coding in the presence of
byzantine adversaries”. In: INFOCOM 2007. 26th IEEE International
Conference onComputerCommunications. IEEE. IEEE. 2007, pp. 616–
624.

[JFD09] Mahdi Jafari, Christina Fragouli, and Suhas Diggavi. “Code Construc-
tion for Multiple Sources Network Coding”. In: Proceedings of the
2009 MobiHoc S3 Workshop on MobiHoc S3. MobiHoc S3 ’09. New
York, NY, USA: ACM, 2009, pp. 21–24.

[Kam+14] G M Kamath et al. “Codes With Local Regeneration and Erasure
Correction”. In: IEEE Transactions on Information Theory 60.8 (Aug.
2014), pp. 4637–4660.

[KK08] Ralf Koetter and Frank R. Kschischang. “Coding for Errors and Era-
sures in Random Network Coding”. In: IEEE Transactions on Infor-
mation Theory 54.8 (Aug. 2008), pp. 3579–3591.

[LCB98] Yann LeCun, Corinna Cortes, and Christopher J C Burges. TheMNIST
database of handwritten digits. 1998.

[Lee+16] Kangwook Lee et al. “Speeding up distributed machine learning us-
ing codes”. In: Information Theory (ISIT), 2016 IEEE International
Symposium on. IEEE. 2016, pp. 1143–1147.

[LK14] Guanfeng Liang and Ulas C Kozat. “TOFEC: Achieving optimal
throughput-delay trade-off of cloud storage using erasure codes”. In:
INFOCOM, 2014 Proceedings IEEE. IEEE. 2014, pp. 826–834.

[LMA16a] Songze Li, Mohammad Ali Maddah-Ali, and A Salman Avestimehr.
“A unified coding framework for distributed computingwith straggling
servers”. In: arXiv preprint arXiv:1609.01690 (2016).

[LMA16b] Songze Li, Mohammad Ali Maddah-Ali, and A Salman Avestimehr.
“Fundamental tradeoff between computation and communication in
distributed computing”. In: Information Theory (ISIT), 2016 IEEE
International Symposium on. IEEE. 2016, pp. 1814–1818.

[LN97] R Lidl and HNiederreiter. Finite Fields. Encyclopedia ofMathematics
and its Applications v. 20, pt. 1. Cambridge University Press, 1997.

137

[LO86] Will Leland and Teunis J Ott. Load-balancing heuristics and process
behavior. Vol. 14. 1. ACM, 1986.

[Loi06] Pierre Loidreau. “A Welch–Berlekamp Like Algorithm for Decod-
ing Gabidulin Codes”. In: Coding and Cryptography: International
Workshop, WCC 2005, Bergen, Norway, March 14-18, 2005. Revised
Selected Papers. Ed. by Øyvind Ytrehus. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006, pp. 36–45.

[LYC03] S-YR Li, RaymondWYeung, and Ning Cai. “Linear network coding”.
In: IEEE transactions on information theory 49.2 (2003), pp. 371–381.

[Mas69] J Massey. “Shift-register synthesis and BCH decoding”. In: IEEE
Transactions on Information Theory 15.1 (1969), pp. 122–127.

[McE02] Robert J. McEliece. The Theory of Information and Coding. Cam-
bridge University Press, 2002.

[McE86] Robert J. McEliece. Finite Fields for Computer Scientists and Engi-
neers. The Springer International Series in Engineering and Computer
Science. Springer, 1986.

[Moh+] Soheil Mohajer et al. “On the capacity of multisource non-coherent
network coding”. In: Networking and Information Theory, 2009. ITW
2009. IEEE Information Theory Workshop on. IEEE, pp. 130–134.

[MS77] Florence Jessie MacWilliams and Neil James Alexander Sloane. The
theory of error-correcting codes. Elsevier, 1977.

[Mur+14] Subramanian Muralidhar et al. “f4: Facebook’s Warm BLOB Storage
System”. In: 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14). 2014, pp. 383–398.

[Nes13] Yurii Nesterov. Introductory lectures on convex optimization: A basic
course. Vol. 87. Springer Science & Business Media, 2013.

[OD11] Frédérique Oggier and Anwitaman Datta. “Self-repairing homomor-
phic codes for distributed storage systems”. In: Proceedings - IEEE
INFOCOM (2011), pp. 1215–1223. arXiv: 1008.0064.

[PD12] Dimitris S. Papailiopoulos and Alexandros G. Dimakis. “Locally re-
pairable codes”. In: 2012 IEEE International Symposium on Informa-
tion Theory Proceedings. IEEE, July 2012, pp. 2771–2775.

[PGK88] David A Patterson, Garth Gibson, and Randy H Katz. “A Case for
Redundant Arrays of Inexpensive Disks (RAID)”. In: Proceedings of
the 1988 ACM SIGMOD International Conference on Management of
Data. SIGMOD ’88. New York, NY, USA: ACM, 1988, pp. 109–116.

http://arxiv.org/abs/1008.0064

138

[Ras+09] K V Rashmi et al. “Explicit construction of optimal exact regenerat-
ing codes for distributed storage”. In: Communication, Control, and
Computing, 2009. Allerton 2009. 47th Annual Allerton Conference on.
IEEE. 2009, pp. 1243–1249.

[Raw+12] Ankit Singh Rawat et al. “Optimal Locally Repairable and Secure
Codes for Distributed Storage Systems”. In: (Oct. 2012). arXiv: 1210.
6954.

[Rec+11] Benjamin Recht et al. “Hogwild: A lock-free approach to paralleliz-
ing stochastic gradient descent”. In: Advances in Neural Information
Processing Systems. 2011, pp. 693–701.

[Rei+17] Amirhossein Reisizadehmobarakeh et al. “Coded computation over
heterogeneous clusters”. In: arXiv preprint arXiv:1701.05973 (2017).

[Roo82] Cees Roos. “A generalization of the BCH bound for cyclic codes,
including the Hartmann-Tzeng bound”. In: Journal of Combinatorial
Theory, Series A 33.2 (1982), pp. 229–232.

[Roo83] Cornelis Roos. “A new lower bound for the minimum distance of
a cyclic code”. In: IEEE Transactions on Information Theory 29.3
(1983), pp. 330–332.

[RS60] Irving Reed andGus Solomon. “Polynomial Codes Over Certain Finite
Fields”. In: Journal of the Society for Industrial and Applied Mathe-
matics 8.2 (1960), pp. 300–304.

[RSK11] KV Rashmi, Nihar B Shah, and P Vijay Kumar. “Enabling node repair
in any erasure code for distributed storage”. In: Information Theory
Proceedings (ISIT), 2011 IEEE International Symposium on. IEEE.
2011, pp. 1235–1239.

[Sat+13] Maheswaran Sathiamoorthy et al. “XORing Elephants: Novel Erasure
Codes for Big Data”. In: 39th international conference on Very Large
Data Bases, VLDB 6.5 (2013), pp. 325–336. arXiv: 1301.3791.

[SFD08] Mahdi Jafari Siavoshani, Christina Fragouli, and SuhasDiggavi. “Non-
coherent multisource network coding”. In: Information Theory, 2008.
ISIT 2008. IEEE International Symposium on. IEEE. 2008, pp. 817–
821.

[Sha+12a] N B Shah et al. “Distributed Storage Codes With Repair-by-Transfer
and Nonachievability of Interior Points on the Storage-Bandwidth
Tradeoff”. In: IEEE Transactions on Information Theory 58.3 (2012),
pp. 1837–1852.

[Sha+12b] Nihar B Shah et al. “Interference alignment in regenerating codes
for distributed storage: Necessity and code constructions”. In: IEEE
Transactions on Information Theory 58.4 (2012), pp. 2134–2158.

http://arxiv.org/abs/1210.6954
http://arxiv.org/abs/1210.6954
http://arxiv.org/abs/1301.3791

139

[Sha48] C. E. Shannon. “A Mathematical Theory of Communication”. In:
Bell System Technical Journal 27.3 (1948), pp. 379–423. url: http:
//dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x.

[Sil+13] Natalia Silberstein et al. “Optimal locally repairable codes via rank-
metric codes”. In: IEEE International Symposium on Information The-
ory - Proceedings. 2013, pp. 1819–1823. arXiv: 1312.3194.

[SK09a] Danilo Silva and Frank R Kschischang. “Fast encoding and decoding
of Gabidulin codes”. In: Information Theory, 2009. ISIT 2009. IEEE
International Symposium on. IEEE. 2009, pp. 2858–2862.

[SK09b] Danilo Silva and Frank R Kschischang. “On metrics for error correc-
tion in network coding”. In: IEEE Transactions on Information Theory
55.12 (2009), pp. 5479–5490.

[SKK08] Danilo Silva, Frank R. Kschischang, and Ralf Koetter. “ARank-Metric
Approach to Error Control in Random Network Coding”. In: IEEE
Transactions on Information Theory 54.9 (Sept. 2008), pp. 3951–
3967.

[Tan+16] RashishTandon et al. “GradientCoding”. In: arXiv preprint arXiv:1612.03301
(2016). arXiv: 1612.03301.

[TB14] Itzhak Tamo and Alexander Barg. “A family of optimal locally re-
coverable codes”. In: IEEE International Symposium on Information
Theory - Proceedings. Vol. 60. 8. IEEE, Aug. 2014, pp. 686–690.
arXiv: 1311.3284.

[TB15] Itzhak Tamo and Alexander Barg. “Cyclic LRC codes and their sub-
field subcodes”. In: Information Theory (ISIT), IEEE International
Symposium on (June 2015), pp. 1262–1266. arXiv: 1502.01414v1.

[TPD13] Itzhak Tamo, Dimitris S. Papailiopoulos, and Alexandros G. Dimakis.
“Optimal locally repairable codes and connections to matroid theory”.
In: 2013 IEEE International Symposium on Information Theory. IEEE,
July 2013, pp. 1814–1818.

[Vän76] Kerstin Vännman. “Estimators based on order statistics from a Pareto
distribution”. In: Journal of theAmerican Statistical Association71.355
(1976), pp. 704–708.

[VW11] Jacobus Hendricus Van Lint and Richard Michael Wilson. A Course
in Combinatorics. Cambridge University Press, 2011.

[WAS13] Antonia Wachter-Zeh, Valentin Afanassiev, and Vladimir Sidorenko.
“Fast decoding of Gabidulin codes”. In: Designs, Codes and Cryptog-
raphy 66.1 (2013), pp. 57–73.

[WB86] Lloyd Welch and Elywn Berlekamp. Error Correction for Algebraic
Codes. 1986.

http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://arxiv.org/abs/1312.3194
http://arxiv.org/abs/1612.03301
http://arxiv.org/abs/1311.3284
http://arxiv.org/abs/1502.01414v1

140

[WJW14] Da Wang, Gauri Joshi, and Gregory Wornell. “Efficient task replica-
tion for fast response times in parallel computation”. In: ACM SIG-
METRICS Performance Evaluation Review. Vol. 42. 1. ACM. 2014,
pp. 599–600.

[WJW15] Da Wang, Gauri Joshi, and Gregory Wornell. “Using straggler repli-
cation to reduce latency in large-scale parallel computing (extended
version)”. In: arXiv preprint arXiv:1503.03128 (2015).

[YC06] Raymond W Yeung and Ning Cai. “Network error correction, I: Basic
concepts and upper bounds”. In: Communications in Information &
Systems 6.1 (2006), pp. 19–35.

[YHN11] Hongyi Yao, Tracey Ho, and Cristina Nita-Rotaru. “Key agreement
for wireless networks in the presence of active adversaries”. In: 2011
Conference Record of the Forty Fifth Asilomar Conference on Signals,
Systems and Computers (ASILOMAR) (Nov. 2011), pp. 792–796.

[YS11] Muxi Yan and A Sprintson. “Weakly Secure Network Coding for
Wireless Cooperative Data Exchange”. In: Global Telecommunica-
tions Conference (GLOBECOM 2011), 2011 IEEE. 2011, pp. 1–5.

[YSZ14] MuxiYan,Alex Sprintson, and Igor Zelenko. “Weakly SecureData Ex-
change with Generalized Reed Solomon Codes”. In: 2014, pp. 1366–
1370.

[Zin+10] Martin Zinkevich et al. “Parallelized stochastic gradient descent”. In:
Advances in neural information processing systems. 2010, pp. 2595–
2603.

	Acknowledgements
	Abstract
	Table of Contents
	List of Illustrations
	Introduction
	Motivation
	Background and Literature Review
	Summary of Contributions

	Distributed Reed–Solomon Codes
	Introduction
	Preliminaries
	Construction
	Examples
	Discussion

	Distributed Gabidulin Codes
	Introduction
	Preliminaries
	Construction
	Code Construction for Networks with Two Messages
	Code Construction for Networks with Three Messages
	Discussion

	Coding with Constraints: Systematic Constructions
	Introduction
	Problem Setup
	Minimum Distance
	Systematic Construction
	Minimum Distance for Systematic Linear Codes
	Example
	Discussion

	Balanced Reed–Solomon and Tamo–Barg Codes
	Introduction
	Preliminaries
	Balanced Reed–Solomon Codes
	Balanced Tamo–Barg Codes
	Discussion

	Reed–Solomon Codes for Distributed Computation
	Introduction
	Problem Setup
	Construction
	Decoding Vectors
	Delay Model
	Numerical Results
	Discussion
	Appendix

	Concluding Remarks and Future Directions

