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ABSTRACT

We will explore how understanding and controlling electromagnetic fields can pro-
vide significant impact across a multitude of applications throughout the whole
frequency spectrum from DC to daylight. Starting from the DC end of the electro-
magnetic spectrum, we motivate the design of a new integrated magnetic biosensing
design as well as various improvements to the initial design based on spatial and tem-
poral manipulations of the magnetic fields. Next, we look into the RF domain and
develop maximal performance bounds for antennas and other electromagnetic struc-
tures. We develop rapid simulation techniques which when coupled with heuristic
optimization algorithms can quickly and effectively produce new antenna structures
with little to no manual intervention. We demonstrate the efficacy of these tech-
niques in the context of on-chip antenna designs and a 3D printed coupling antenna
for a dielectric waveguide communication link. We present the design of a 120GHz
dual-channel 100Gbps QPSK/64QAM transceiver IC developed in a standard 28nm
bulk CMOS process. Finally, we explore the higher THz regime in the context of
photonic device optimization. We optimize compact photonic multiplexer devices
which are fabricated in a standard foundry process and evaluate their performance
against simulation results.
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Chapter I: Introduction

In this work, we will explore how understanding and controlling electromagnetic
fields can lead to significant improvements in functionality and performance in a
variety of different engineering applications.

There was much interest in the nineteenth century in the study of electromagnetism
and electromagnetic fields, which were not well understood at that point. Starting
with experimental observations and leading to the development of many mathemeti-
cal equations by numerous scientists including Charles-Augustin de Coulomb, Hans
Christian Ørsted, Carl Friedrich Gauss, Jean-Baptiste Biot, Félix Savart, André-
Marie Ampère, and Michael Faraday. [53] These equations were seemingly discon-
nected but were integrated into a concise, simple set of partial differential equations
by James Clerk Maxwell. Maxwell was further able to show that this set of equations
implies that light propagates in the form of electromagnetic waves. [70, 71, 36, 21]

Perhaps one of the most amazing aspects of Maxwell’s equations is that they ac-
curately describe the electromagnetic field across many orders of magnitude of
frequency (Fig. 1.1)—essentially from DC (electro/magnetostatics) to visible light
and even all the way up to Xrays and beyond. [1] In this work, we will actually
traverse the electromagnetic frequency spectrum and demonstrate how careful de-
sign and manipulation of the fields can lead to advances in many different areas of
engineering including biosensing [76, 107, 37, 56, 113, 115, 112, 93, 94], antenna
design [6, 87, 95, 92, 91], and photonic device design [83, 55, 68] .

Figure 1.1: Illustration of the Electromagnetic Spectrum from "DC to Daylight".

We will begin with static magnetic fields and develop a novel magnetic biosensing
principle [113]. By taking advantage of the spatial field profile, we will design a
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magnetic sensor with spatially uniform transducer gain response across its active
sensing area. [112] Furthermore, by taking advantage of the differing magnetiza-
tion properties of different types of magnetic nanoparticle materials, we design a
magnetic spectrometer sensor capable of differentiating among multiple types of
magnetic labels concurrently on the sensing surface, enabling previously impossi-
ble magnetic-multiplexing biological experiments. [93, 94] Finally, we motivate the
design of the latest version magnetic biosensor which utilizes a new frequency drift
cancellation approach.

Next, we delve higher into the electromagnetic frequency spectrum and explore the
design of antennas as well as other RF electromagnetic structures such as dielectric
waveguide couplers. [95] We first develop an optimal maximum performance bound
for arbitrary parameters of electromagnetic structures such as the directivity, gain,
or radiation efficiency of antennas. [92] We also look into the optimization of real
metallic antenna and coupling structures. We develop an ultrafast technique for eval-
uating new iterations of electromagnetic structure designs on millisecond timescales
with modest computational power, achieving several orders of magnitude faster per-
formance than optimized, commercial electromagnetic simulation software. [91]
We present examples of optimizing an on-chip metal antenna on a realistic, lossy
Silicon dielectric substrate. Finally, we present a design example of a waveguide
coupling antenna which is optimized using the techniques developed, fabricated by
3D printing, and compared against simulation results. [95] We conclude the RF
part of the thesis by presenting a 120GHz 100Gbps dual-channel QPSK/64-QAM
transceiver IC designed in a 28nm bulk CMOS process with the intent of driving
both optimized dual-polarization antenna structures for wireless communication and
optimized dual-mode dielectric waveguides for a wireline communication modality.

Finally, we reach the Terahertz regime and explore photonic device optimization.
We utilize a Binary Particle Swarm Optimization (BPSO) algorithm [52] for opti-
mizing small footprint multiplexer devices which are designed for and fabricated in
a standard photonics process. We present measurement results for the optimized
devices, compare against simulations, and study the causes for deviation between
the results by taking and analyzing SEM scans of the fabricated chip. [68]
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Chapter II: Biosensors

2.1 Introduction to Biosensing
Biology is one of the most rapidly expanding fields in science today. It is a huge field
with many subfields and much interest and funding has recently been invested into
biology due to various advancements which have made the field considerably more
quantitative. [76, 107, 37, 56, 113, 115, 112, 93, 94] Furthermore, fields such as
mathematics, physics, and classical engineering (mechanics, circuit design, signal
processing, communications, etc.) are quickly becoming mature while biology
leaves countless questions and dilemmas left to be answered and solved.

Biology mainly deals with a study of all things living or organic and attempts to
understand and explain how they work. It was not until recently that a quantitative
aspect of biology began to emerge. Many of the recent quantitative discoveries are
largely thanks to the new subfield of bioengineering. Bioengineering attempts to use
the well formed traditional principles of engineering to invent and solve problems
relating to any aspect of biology. Instead of simply studying biological phenomena,
bioengineering allows engineers to design their own systems inspired by biology or
using biology as their tool. [11]

One area of bioengineering which has become very prevalent due to its practical
applications is biosensing. Although biosensing is a very broad term, the field
essentially encompasses any method for detection (and often quantification) of
biological molecules [116]. Biosensing approaches can allow a scientist to detect
the presence of a specific strand of nucleotides (DNA/RNA) in a solution full of
many contaminants or even to detect presence of larger and more complicated
biomolecules such as proteins, antibodies, and even cells. The more sophisticated
forms of biosensing allow the scientist to take these measurements several steps
further and actually discover (to a certain degree of accuracy) the concentrations of
these target biomolecules in a solution.

There are seemingly countless potential real-world applications for molecular biosens-
ing. Applications which appear the most important today include:

Biomedical: detecting pathogens such as viruses from a blood sample.

Genetics: detecting predispositions to various genetic diseases by matching gene
markers to sample DNA from a patient.
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Criminal Forensics: matching trace amounts of (often contaminated) crime-scene
DNA to suspects in a crime investigation.

These three areas are all multibillion dollar industries and their advancement directly
benefits society.

Biosensors: From Transducers to Beyond
As described, the general problems to be solved in biosensing are detecting the
presence of a biomolecular structure amidst contaminants and quantifying the con-
centration of such a structure present in a sample. The biomolecule being targeted
is generally referred to as the analyte. The sensor which can detect and quantify the
analyte is called the transducer. This name is given due to the fact that the sensor
essentially converts signal from one form of information into another, such as from
a biomolecule into an electrical signal carrying information about it. Ideally, a
transducer would have a direct one-to-one linear mapping from input to output so
that the information is trivially encoded and none is lost. However, this is never the
case with real world transducers. Fig. 2.1 is a simulated diagram of a typical sensor
response with respect to concentration of signal being measured (the signal region
is still ideal since it is drawn as perfectly linear, which is again never the case for a
real transducer):

Figure 2.1: Simulated Transfer Function for an Ideal Fluorescent Imaging Sensor

This figure is not based on real data and is just meant for illustrative purposes.
There are generally three main regions to note in the fluorescent imager response:
the dead-zone, the linear region, and the saturation region. The dead-zone is due to
the sensor’s inherent noise floor. Every real world sensor or device suffers from a
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variety of noise sources, such as Johnson (thermal) noise, Flicker noise, and drift.
In order for a signal to be detectable by the sensor, it must have greater strength
than these noise sources, which create what is often called the sensor noise floor.
Signals above the noise floor generate a visible response and in general one hopes
that the response is linear with respect to amount of signal above the noise floor.
Furthermore, careless chemistry often results in parts of the background in a sample
fluorescing that do not represent signal. This background fluorescence also directly
contributes to the noise and degrades the signal-to-noise ratio (SNR). When too
much signal is present, the sensor response can become saturated. This means
that the sensor due to some physical limitation (such as reaching maximum camera
luminosity for a fluorescent imager or reaching the maximum voltage supply rail
for an amplifier circuit) cannot generate a larger output in response to more signal.
Thus, it corresponds to a flattening of the response curve. The linear or active region
is the only one of the three which allows recovery of the original signal based on the
sensor output.

It is important to realize that all of this terminology is introduced in the most
general sense possible since it applies to many different modes of biosensing and
transduction. The signal input and sensor output can be arbitrary. For example,
for a fluorescent imager, the signal input is light in a specific wavelength band
and the output is a luminosity reading. A CCD based fluorescent imager with an
appropriate fluorescent filter uses photodetector devices which convert incoming
light at the correct frequency into charge stored onto a capacitor. The simulated
figure above shows the response region as being perfectly linear. Perfect linearity
is desirable, although it is generally not the case due to physical limitations such as
nonlinearities of active devices in the sensing chain. The slope of the response line
is labeled K. K is called the transducer gain. The units of K are the units of the
type of sensor response over the units of the type of signal measured. For example,
the CCD transducer may have volts / candela as the units for K. An initial intuition
may tell us to maximize the value of K, since this means that we will get as large of
a sensor response as possible for the same level of input signal, making the signal
easier to discern from the noise floor. However, increasing K also makes the sensor
saturate quicker, since multiplying K by a fixed value m implies that a signal which
is m times weaker than before will now produce the same response. This means
that the signal level which will put the sensor into saturation, making it useless for
further measurements, has now become m times smaller for the system with K*m
transducer gain than what it was for the original K system. Thus, varying K trades
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off minimum detectable signal for maximum detectable signal. If the increase in
minimum detectable signal exactly matches the decrease in maximum detectable
signal, then the systems dynamic range remains the same. Dynamic range is defined
as the ratio between the largest detectable signal to the smallest detectable signal.
As can be seen in the example above, the dynamic range primarily depends on the
noise floor and saturation strength. When the system is highly nonlinear and cannot
be approximated accurately with a linear curve, K must become a function of s,
the amount of fluorescent response, and we would write the transducer gain in the
active/sensing region as K(s)*s instead of simply K*s.

A Specific Biosensing Approach: Fluorescent Imaging
In the 1960s, the GFP (green fluorescent protein) was isolated in jellyfish [90].
Since then, scientists have successfully been able to replicate this gene and the
protein itself to create customized fluorescent proteins as well as fluorescent tags
or markers at the molecular scale. Fluorescent markers are very useful due to their
ability to absorb light of one wavelength and reemit light at a different wavelength.
An imaging setup irradiates the sample with light of the excitation wavelength
and concurrently detects light in the emission wavelength. The detection is often
realized with a camera and a sharp filter blocking any wavelengths outside of the
detection wavelength. The amount of emission wavelength light detected is directly
proportional to the quantity and size of fluorescent markers present in the sample. If
there are no markers present, then one expects to not receive any return signal in the
emission band. Furthermore, since the fluorescent effect happens at the molecular
level, single molecule structures can be designed which fluoresce [73]. These
molecules can be as small as individual DNA nucleotides, and technology has even
been developed for creating synthetic DNA strands that can have fluorescent markers
inserted at any point within the strand including at the 5 and 3 terminal ends [41].
This is extremely powerful as it enables debugging or probing of biological systems
and reactions down to the nucleotide level. Various types of fluorescent markers
have been developed in the past decade, including markers which act as quenchers
and can absorb the fluorescent emission of normal markers when in close proximity,
effectively providing the bioengineer with an off switch element for debugging.

While the introduction and development of fluorescent imaging has largely been
responsible for bringing about quantitative bioengineering in the past two decades,
fluorescent methods suffer various drawbacks. First of all, fluorescent imagers and
microscopes are physically large machines which can consume significant amounts
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of lab space. Furthermore, fluorescent imaging systems can be extremely cost
prohibitive and can range from a few $100K to over $1million [45]. These two
drawbacks essentially take fluorescent imaging out of the picture for Point of Care
(PoC) home diagnostics and may even hinder small research institutions or hospitals
without ample funding from having access to state of the art imaging resources.
Finally, most fluorescent markers suffer from signal decay, have a short lifespan,
and must be primarily handled in dark environments.

Bioengineering meets Electrical Engineering: A Beautiful Union
CMOS chip fabrication processes have been around for decades. Barring a steep
initial startup cost, modern CMOS chips generally cost on the order of a few cents
per chip. CMOS technology has become so mature that billions of transistors can
be fit on a chip of few square millimeters of area, all of which function properly.
This allows for enormous, reliable computational power in a form factor smaller
than a penny. Finding an effective way to design a CMOS chip which can be used
as a biosensor would therefore solve both the cost and space issues mentioned in the
previous section.

Just as markers in the form of beads exist which can fluoresce under light excitation,
beads made up of a ferrous inner material have recently been developed which can
become polarized under an external magnetic field [43]. Polarization implies that
the beads can generate their own magnetic field when they are in the presence of
an external magnetic field, but do not retain magnetization in the absence of an
external field. These beads are not quite as small yet as fluorescent markers, but
can be currently produced as small as 10nm in diameter. For comparison, a DNA
nucleotide is 1-2nm wide and approximately 0.3nm long. The outer surface of these
beads can also be manufactured to express many different kinds of functional groups.
Common groups are amines (R-NH2), aldehydes (R-C(=O)H), and carboxyls (R-
COOH). These functional groups allow for the beads to be readily attached to target
biomolecules such as proteins and even the 5 or 3 ends of single or double stranded
DNA. Thus, if a way to sense the presence of these magnetic beads exists, then they
can essentially be as effective for detection of target biomolecules as fluorescent
markers are today.

The workflow of medical diagnostics today requires patient sample collection at
specialized facilities, followed by analysis at large, centralized labs. This process,
however, is not very time or cost effective. Because of the inefficiencies of this
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time consuming system, which can lead to delays in care, there is high demand for
fast, low-cost, personalized medicine via at-home and point-of-care (PoC) medical
diagnostics [106, 57]. By enabling on-site sample collection and analysis, PoC
systems promise to play a crucial role in numerous biomedical applications, such as
epidemiological disease control, biohazard detection, and environmental monitoring
[47].

There has been a fair amount of progress on optical microarray technology for
biomolecular assays [100]. Implementation of optically driven systems involves
utilizing optical sources and filter setups, both of which greatly increase the cost
and complexity of the system [49]. Alternatively, integrated biosensors based on
magnetic labeling schemes offer higher sensitivity and lower cost due to elimination
of optics, and have emerged as a viable alternative to assays that use fluorescence for
biomolecular detection [113, 115, 112, 93, 94, 78, 33, 27, 102]. For instance, the
frequency-shift sensor of [113] demonstrates an example of a highly sensitive, cost-
effective magnetic particle biosensor in CMOS with no need for external magnets.
The use of such a magnetic sensor for nucleic acid and protein targets has been
successfully demonstrated recently [78].

We will first introduce and motivate the base magnetic biosensing approach. Next we
will develop and analyze the design of a uniform gain magnetic biosensor. Finally,
we will extend the magnetic sensing idea to a modality capable of concurrent multi-
probe multiplex detection experiments.

2.2 II. Magnetic Biosensing Approach
We have designed a new kind of transducer which is capable of detecting (and
recently also quantifying) these paramagnetic beads. The transducer can be imple-
mented in a completely standard CMOS process, with absolutely no custom features
or any post-processing beyond printing a surface chemistry of probe biomolecules
[113]. The transducer we employ for detecting the presence of magnetic beads is
a simple spiral on-chip inductor. As explained above, the beads to be sensed are
made of paramagnetic material which becomes temporarily polarized in the pres-
ence of an external magnetic field. Passing any sort of current (whether it be static
or alternating) through a spiral coil inductor generates a magnetic field due to Am-
père’s Law. This field magnetizes all beads sitting over the inductor surface, which
causes an increase in the total magnetic energy stored in the system. Since effective
inductance is proportional to the magnetic flux through the inductor surface, we can
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deduce that the total inductance of the coil will also increase in the presence of these
beads. We can mathematically quantify this physical process. Assume a magnetic
particle with effective susceptibility and volume Vp is placed close to the sensing
inductor. When a current I conducts through the inductor spiral, a local polarization
magnetic field is produced. Assuming that the magnetic particle is of negligible size
in comparison to that of the whole inductor, it will not alter this polarization field
appreciably. Thus, the total magnetic energy increases by ∆Em after introducing the
magnetic particle:

∆Em = (Em′ − Em) =
1
2

$
H⃗ · B⃗′dv − 1

2

$
H⃗ · B⃗dv

=
µ0
2

$
Vp

[
| |H⃗ | |2(1 + χe f f ) − ||H⃗ | |2

]
dv =

χe f f

2µ0

$
V p
| |B⃗ | |2dv

≈
χe f f

2µ0
| |B⃗ | |2V p

Furthermore, we know that:

∆L =
2∆Em

I2

So change in inductance can be quantified as:

∆L =
2∆Em

I2 =
χe f f

I2µ0
| |B⃗ | |2V p

Thus, a magnetic bead over an inductor will induce a change in inductance which is
directly proportional its effective magnetic permittivity and volume [112]. Simpli-
fied steps for a viable magnetic biosensing approach are presented in Fig. 2.2:

Figure 2.2: Magnetic Biosensing Scheme
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The rest of the technique involves measuring this very tiny change in inductance as
accurately as possible in order to maximize the signal to noise ratio (SNR). The sim-
plest technique which can be implemented for measuring inductance involves adding
a fixed known capacitance to the tank and characterizing the resulting impedance
function. The complex impedance of an ideal inductor in parallel with a capacitor
is: Ztank = jωL | | 1

jωC =
jωL

1−ω2LC

We notice that when ω = ωres =
1√
LC

, the magnitude of Ztank is maximized and
approaches infinity. Thus, if we experimentally find ωres by sweeping frequency,
measuring impedance magnitude, and finding the absolute maximum, we can deduce
the inductance as: L = 1

w2
resC

.

Earlier, we derived that the change in inductance due to a tiny magnetic bead is
∆L = 2∆Em

I2 =
χe f f
I2µ0
| |B⃗ | |2V p. Thus, taking as being the inherent device inductance

before any perturbation, the new inductance is Ln = Lo + ∆L.

We wish to find out what shift in resonance frequency this corresponds to, so we
substitute into the ωres equation:

ωresN =
1

√
(Lo + ∆L)C

=
1√

(1 + ∆L
L )L0C

=
1

√
L0C

√
1 + ∆L

L

≈ 1
√

LoC

(
1 − ∆L

2L

)
using a first order Taylor expansion since ∆L << Lo = ωres0 − ωres0

∆L
2L

Thus, the frequency difference is: ∆ω = ωresN − ωres0 = ωres0
∆L
2Lo

.

Substituting and expanding further we are left with the frequency shift ∆ω =

ωres0

χe f f

I2µ0
| |B⃗ | |2V p

2Lo
in the impedance transfer function of the LC tank with the addition

of a single bead. Assuming all the beads are identical and the | |B⃗ | | is relatively
uniform across the whole inductor surface (as we will see in a later section, induc-
tor uniformity is NOT a well founded assumption!), then we can approximate the
resonance frequency shift as a linear function of N:

∆ω(N ) = ωres0

χe f f
I2µ0
| |B⃗ | |2V p

2Lo
N = K ∗ Nwith K = ω)res0

χe f f
I2µ0
| |B⃗ | |2V p

2Lo

We have thus derived the transducer gain K for an ideal LC tank sensor device
which has a uniform magnetic field distribution across its whole surface. For
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identical beads (all with volume Vp), this results in a K which is constant meaning
that our transfer function is perfectly linear. As we will later, for any standard
inductor design, the planar XY magnetic field is extremely nonuniform and varies
extensively, resulting in a position dependent K:

K (x, y) = ωres0

χe f f
I2µ0
| |B⃗(x, y) | |2Vp

2L0

Due to the structural complexity of a real inductor, | |B⃗(x, y) | |2 should be computed
by using numerical 3D EM simulations of the target inductor structure. This can be
accomplished relatively easily by using popular simulation packages such as Ansoft
HFSS or IE3D [39].

Using an Oscillator to Measure Frequency Shift
So far we have only considered the case of an ideal LC tank. In reality, inductors
cannot be made out of perfect conductors and thus have considerable amounts of
series resistance. A more realistic LC tank model looks like this:
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Figure 2.3: LC tank circuit model with parasitic series resistance Rs.

The complex impedance of this system is Z = jωL0+Rs

1+ jωC( jωL0+Rs ) =
jωL0+Rs

1−ω2L0C+ jωRsC . We
are interested in the frequency where the system presents zero phase shift (a com-
pletely real impedance), which happens when omega = f rac1

√
L0C

√
1 − R2C

L =

1
L0C

√
1 − 1

Q . With Q defined as the quality factor of the inductor at the ideal reso-

nance frequency: Q = ωresL0
Rs
= 1

Rs

√
L0
C

In CMOS, a reasonable value of Q for operating frequencies around 1GHz is 10.
For a Q of 10, the resonant frequency will be downshifted by approximately 5%
from the ideal Rs=0 situation. This shift does not really concern us much, since
it just means that the starting point in frequency is different and we are primarily
concerned with relative frequency shifts. The major effect of series resistance on
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the LC tank which does create concern is the widening of the impedance transfer
function:

Figure 2.4: Magnitude of LC tank impedance around resonant frequency for various
quality factors (Q).

As can be seen in this simulation, the smaller Q becomes, the wider the peak of
the magnitude of the impedance becomes around its center point. This widening
is highly undesirable as it makes small changes in resonant frequency (left or right
shifts in that peak) much more challenging to detect in the presence of noise. Thus,
we wish to have a transfer function to measure which has a very narrow resonance
with respect to frequency. One way to achieve this is by maximizing Q. While
maximizing Q is indeed an important design goal, achieving a quality factor in
a typical CMOS process of greater than 10 at a resonant frequency of 1GHz is
highly unlikely. Depending on the process type, even Qs as low as 5 may not
be unreasonable. Near the frequency of resonance, we can perform an impedance
transformation and convert the nonideal tank into an approximate parallel RLC tank:



14

Figure 2.5: LC tank transformation to parallel parasitic resistance Rp.

with Rp = (1 + Q2)Rs being an equality at exactly the resonance frequency and
deviating beyond that. If we can introduce a negative resistance in parallel with this
RLC tank, we can effectively make Rp arbitrarily large, narrowing the impedance
profile around the resonance frequency. This has been thoroughly studied in [32].
Incorporating the LC sensor tank into an oscillator configuration not only signif-
icantly narrows this profile, but also causes the tank to naturally oscillate at its
resonant frequency (roughly the resonant frequency, in reality the parasitics of the
active device and the other elements in the loop provide some additional phase
shift, although it is usually negligible compared to that of the LC tank.) Since the
oscillator causes the tank to oscillate at its resonant frequency, all we have to do
to be able to approximate the value of the inductor in the tank (knowing all of the
other parameters) is tap the oscillator voltage and measure the frequency. Fig. 2.6
is a simulated plot comparing the impedance profile of the nonideal LC tank with
the line-width narrowed phase noise profile of the oscillator using the same tank:
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Figure 2.6: Comparison of LC tank impedance profile with LC oscillator phase
noise profile.

We are close to describing a fully viable system, so it is a good idea to present a
system block diagram at this point of what has been covered so far:

Figure 2.7: Simplified Magnetic Biosensor chip block diagram.

Noise Reduction Techniques
The main disadvantage brought about by using an oscillator sensing configuration
is the considerable noise added to the system by the active devices of the oscillator.
CMOS processes due to the imperfect junctions created between different materials
(silicon, oxide, etc.) generally have very poor Flicker (1/f) noise performance.
Although 1/f noise is dominant in lower frequencies (with Johnson/thermal noise
being dominant at higher frequencies), the low frequency phase noise becomes
upconverted and centered around the carrier tone (ωres) due to nonlinearities in
the system and the nonlinear Impulse Sensitivity Function (ISF) which is a time-
sensitive transfer function from a noise source to phase or amplitude noise in the
oscillator (treated by Hajimiri and Lee in [31].)
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Figure 2.8: Oscillator Noise Profile.

As can be seen in fig. 2.8 above, thermal noise follows a flat noise power profile
across all frequencies of interest. Below a certain frequency called the device 1/f
corner, the Flicker noise becomes dominant and has noise power roughly propor-
tional to 1/f. Since thermal noise is flat across all frequencies, it has an impulse as
its autocorrelation function and therefore subsequent samples are not correlated at
all. Thermal noise is zero-mean, which means that its effects can be largely reduced
by taking enough samples of the signal with thermal noise and averaging them.
Flicker noise, on the other hand, has a constantly rising noise profile as frequency
decreases, so no matter how much averaging is done, the biggest contributors to the
noise (lowest frequency components) will still remain untouched. Furthermore, all
realistic systems are prone to frequency drift due to thermal and electrical fluctua-
tions. Thus, there is a limit to how much averaging can be done since after a certain
point significant drifting effects will become noticeable, offsetting the measurements
and introducing considerable error into the results.

In our magnetic biosensing system, averaging can be effectively realized and con-
trolled by varying the counting time per measurement. The oscillation frequency is
estimated by counting the number of rising edges of the oscillator signal for a time
window of predetermined length T. The predicted frequency is thus the number of
edges divided by T. The fact that frequency counting using digital counters is being
utilized to measure the frequency of the oscillator implies that we will experience
frequency uncertainty with a 1/T noise profile due to the fact that the initial phase
difference between the reference clock used for counting and the oscillator being
counted is unknown. Counting for long enough divides this initial segment (which
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stays constant length) by increasing values of T, making its effects negligible after
a certain T in comparison to the oscillators internal noise sources. Fig. 2.9 is a plot
(actually taken from real chip measurements), demonstrating these principles:

Figure 2.9: Frequency uncertainty comparison of Correlated Double Counting vs.
Normal Differential over varying counting time intervals.

The decreasing thermal noise profile due to increasing T (counting window and
effective averaging time period) cannot be seen since it is essentially completely
dominated by the counting frequency uncertainty. As expected, past a certain T
the noise profile flattens out due to having reached the region where the device
Flicker noise becomes the dominant noise source. Longer counting intervals are
unnecessary, but had they been measured one would expect the noise profile to
eventually start increasing again due to the effects of drift. Drift is extremely difficult
to model since it is heavily dependent on the specifics of the circuit, process, and
environment, and thus we always avoid operating our circuit in that region. To
further reduce the effects of drift, a realistic sensor implementation should always
have a reference LC tank which is operated concurrently with the actual sensor tank.
The reference LC oscillator should be strategically placed in very close proximity
on-chip to the sensor oscillator so that thermal fluctuations affect the dynamics of
both tanks (and more importantly the active devices in both circuits) roughly in the
same manner causing big contributors of drift to be correlated between sensor and
reference. Leaving the reference inductor always clear of magnetic beads, we can
cancel out significant thermal drifting effects by counting the frequency of each
oscillator and dividing the reference frequency by the sensor frequency. Assuming
that thermal fluctuation mainly affects the parasitic capacitances of the active devices
and for the most part leaves the inductance unchanged, we can mathematically show
the effectiveness of this approach:
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∆ f sense =
1

2π
√

(L0 + ∆L) ∗ (Ctank + ∆Cdri f t )

∆ fre f =
1

2π
√

(L0) ∗ (Ctank + ∆Cdri f t )

X =
∆ fre f

∆ f sense
=

√
L0 + ∆L

L0
=

√
1 +
∆L
L0
≈ 1 +

∆L
2L0

which cancels out fluctuations in the effective tank capacitance. It is important to
note that this exact cancellation is achieved due to both the reference and sensor tanks
having exactly the same intrinsic capacitance, Ctank . If we have a slight variation,
between the two tanks in tank capacitance due to process variation (let the difference
between the two Ctanks be Cmismatch), then the result X becomes:

X =
∆ fre f

∆ f sense
≈ (1 +

∆L
2L0

)

√
Ctank + Cmismatch + ∆Cdri f t

Ctank + ∆Cdri f t

≈ (1 +
∆L
2L0

) *,1 + Cmismatch

2(Ctank + ∆Cdri f t )
+-

which shows that the larger the mismatch in tank capacitance, the more one will
notice the effects of thermal capacitance fluctuation. Although this has not been
verified experimentally yet, mismatch in tank capacitance can be measured by using
both inductors as references (no magnetic beads on either) and used as a compen-
sation factor for achieving almost the same (the accuracy of cancellation depends
on the accuracy by which the difference in tank capacitance can be quantified)
cancellation as in the perfect match scenario. It is important to keep in mind that
this approach can ONLY be used to cancel capacitive mismatch between the sensor
and reference cells due to systematic process variation and cannot account for other
variations such as electrical and thermal drift gradients which may not affect both
cells in the same manner.

2.3 Uniform Transducer Gain Sensor
The main issue with the sensor design presented in [115] is nonuniformity of the
transducer gain. The design in [115] makes use of a standard spiral inductor,
rendered as a 3D model here:
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Figure 2.10: Top-view of standard on-chip spiral inductor (rendered using Ansoft
HFSS 10.)

In order to understand the effect of the surface magnetic field of the sensing inductor
on the uniformity of the sensor gain, we recap the expression for the sensor transducer
gain. The physical process, which relates the presence of magnetic particles with
frequency down-shift, can be modeled as follows. As before, assume a magnetic
particle with effective susceptibility χe f f and a volume V p is placed close to the
on-chip sensing inductor.

When a current I conducts through the coil, the local polarization magnetic field is
H⃗ . Assuming the presence of the magnetic particle will not alter this H⃗ , the total
magnetic energy therefore increases by ∆Em after placing the particle,

∆Em = (Em′ − Em) =
1
2

$
H⃗ · B⃗′dv − 1

2

$
H⃗ · B⃗dv

=
µ0
2

$
Vp

[
| |H⃗ | |2(1 + χe f f ) − ||H⃗ | |2

]
dv =

χe f f

2µ0

$
V p
| |B⃗ | |2dv

≈
χe f f

2µ0
| |B⃗ | |2V p

where B⃗′ and B⃗ are the local magnetic flux density with and without the magnetic
particle. The approximation holds when the particle is small enough so that the
polarization field is homogenous across its volume.
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The sensor transducer gain can be defined as the relative frequency-shift (due to the
inductance change) per particle as:

TransducerGain =
(
∆ f
f0

)
perparticle

= − ∆L
2L0
= −1

2
· 2∆Em/I2

L0

= −1
2
·

2 χe f f
2µ0
| |B⃗ | |2V p/I2

L0
= −1

2
·
χe f f V p
µ0L0

· | |B⃗ | |
2

I2

This expression shows that the sensor transducer gain is location-dependent on the
sensor surface and is proportional to the field quantity | |B⃗ | |2/I2.

The inductor of [115] has been optimized for high quality factor at an operating
frequency of 1GHz with nominal inductance of approximately 2nH. A heat-plot
generated with HFSS 3D electromagnetic simulation software reveals the strength
of the magnetic field along the surface of the sensor:

Figure 2.11: Simulated heat map plot of standard spiral inductor magnetic field
profile normalized to 1.0.

As can be seen, the center region of the inductor (inside all of the spirals) has
relatively uniform gain. However, outside of this small center region, the transducer
gain varies drastically, even when traversing small distances in the radial direction.



21

It can be seen that the sensitivity varies almost 10:1 from the most to the least
sensitive regions. This directly implies that while we may have good sensitivity in
select regions of the sensor inductor, at the same time other regions suffer from very
poor sensitivity. Thus, when using this system as a method to detect magnetic beads
bound onto target DNA strands, we may get varying levels of signal depending
on where the bead-bound DNA strands happen to pass over the sensor physically.
This is certainly not an ideal situation as we wish to have the ability of receiving a
consistent electrical response for fixed solutions with DNA molecules. Receiving
varying responses with the same input stimulus easily leads to erroneous data and
based on calibration may either lead to false positives or false negatives depending
on where the threshold of detection has been adjusted.

Furthermore, this nonuniform sensor is completely nonviable if we wish to incorpo-
rate a sensing scheme which can not only sense the presence or absence of a specific
target DNA strand but is also capable of detecting approximate concentration of the
strand in the solution. This is that due to the fact that we do not know where the
beads travel over the sensor, and that each bead may produce drastically different
electrical responses. Thus, we cannot simply divide the overall sensor response by
a normalized response per unit bead factor (as mentioned in an earlier section, the
transducer gain, K, is now position dependent instead of being constant across the
sensor area) to determine approximately how many beads are present over the sensor
area. A sensor with very good uniformity is required for this purpose.

To design a uniform gain sensor we must first analyze which aspects of the inductor
lead to the varying sensitivity with location. As derived previously, the square of
the magnitude of the magnetic field right above the sensor surface (approximately
the same vertical location of the beads) is directly proportional to the sensitivity.
This implies that in order to design a sensor with uniform gain across its whole
surface, we must now not only be concerned with the quality factor and inductance
of the inductor but also with the magnetic field profile. The main challenge is the
fact that we are restricted to relatively planar structures since the inductor is on-chip
and each metal layer is at most a couple microns thick. We must first comprehend
why the original sensor has largely nonuniform magnetic field. Studying an overlay
of the inductor layout with a heat-map of the magnetic (B) field strength, we notice
that the greatest variations in field strength are due to some of the area being above
the inductor metal and some being above empty silicon dioxide. From classical
electromagnetics we know that the interior of an ideal solenoid contains a very
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uniform B field. Being confined to an almost completely planar structure, we can
only create an extremely crude approximation to the solenoid in CMOS. We call
this approximation the "bowl" shaped inductor due to its resemblance to a bowl:

Figure 2.12: 3D rendering of "bowl" shaped inductor topology.

As can be seen, we essentially have two interleaved vertical layers of spiral which
work to compensate each other’s weak" spot regions. Furthermore, almost the
whole area of the inductor is now covered with metal from either the top or bottom
layer. The fields also add constructively creating an effective mutual inductance so
that the total inductance of the sensor is greater than just the individual sum of the
inductance of the each of the two spirals. While this drastically helps the uniformity
of the sensor, we can still do better.

Noticing that the main problem region in uniformity of the stacked inductor now is
an arc over which neither of the two spiral layers covers, we see that the uniformity
can be greatly improved by increasing the metal width of the inner, top spiral to
cover this area of weaker B-field. After performing this modification, we indeed
notice a major smoothing out of the B-field strength as can be seen in design 1 of
Fig. 2.13.
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Figure 2.13: Uniform gain inductor design process.

Two small regions are now left with non-uniform B-field. One has considerably
weaker sensitivity than the rest of the inductor (which can be seen as the blue area in
the heat-map of design 1), whereas the second has considerably stronger sensitivity
(red area in the heat-map.) We realize that these two regions are mainly due to
the sharp corner bend in the inductor metal in that position, so we smooth this out
and are left with design 2 in Fig. 2.13. We now realize that the main problem area
now is exactly over the transition from the upper layer metal spiral to the lower
layer, as shown with a red circle in design 2. We move the transition point further
back and add an intermediate layer in an effort to distribute out the effect of the
B-field directional change to reach design 3 shown in Fig. 2.13 As can be seen in
design 3, this results in much improved field uniformity, leaving only a small spot
of stronger B-field. We correct for this by inserting a small segment of floating
metal directly above this area. Eddy currents can now form in the floating metal,
directly over the stronger B-field region of the sensor, causing the magnetic field
of that specific region to become degraded. The overall effect is a tiny degradation
in overall inductance and quality-factor (due to shielding a small fraction of the
inductor), but a substantial improvement in linearity. The final design along with its
corresponding field magnitude heat-map implemented in the sensor chip is shown
in Fig. 2.13 as design 4.

Fig. 2.14 illustrates the slight degradation in inductance and quality factor versus
frequency resulting from adding the floating piece of metal:
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Figure 2.14: Comparison of inductance and quality factor before and after addition
of floating metal.

Measurement Results
Fig. 2.15 shows a system diagram of our uniform gain magnetic biosensor chip.
This project was done in collaboration with Professor Hua Wang. [112]

Figure 2.15: Block diagram of uniform gain biosensor chip.

Fig. 2.16 is an actual die photograph of the chip manufactured in IBMs 45nm SOI
process:
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Figure 2.16: Uniform gain biosensor chip die photograph.

The sensing oscillator operates at a nominal frequency of 1.13GHz. Its phase noise
profile is measured with an RDL phase noise analyzer, achieving -47.2dBc/Hz and
-120.3dBc/Hz at 1kHz and 1MHz offsets, respectively. To verify the Correlated
Double Counting (CDC) noise cancellation functionality, the frequency counting
results for two different arrangements (both with counting duration of 0.1s) are
shown in Fig. 2.17 The normal differential measurement approach described earlier
suppresses the common-mode frequency drift, while an additional noise reduction
(from σ=1179Hz to σ=391Hz) is achieved after enabling CDC. This is tested by
taking measurements from two cores which are right next two each other but do
not share common active devices (no CDC), followed by taking measurements from
two cores which are approximately the same distance apart as the no-CDC scenario
but do share an active oscillator core (CDC):
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Figure 2.17: Time domain frequency stability comparison between CDC and Normal
Differential schemes.

Fig. 2.18 shows measurements taken which portray the frequency uncertainty for
both CDC and no-CDC schemes with respect to counting interval time. As expected,
due to frequency counting uncertainty, we see a 20dB/decade drop in uncertainty for
short counting times. The frequency uncertainty curve overshadows the theoretical
noise floor caused by thermal noise so this is not seen in the results. However, after
a certain point, increasing the counting time of each sensor does not yield better
results. This is due to the fact that we have hit the region where we have averaged
out a significant amount of frequency uncertainty and thermal noise causing the
upconverted Flicker noise to become dominant. Furthermore, we notice a 10.6dB
reduction in the noise-floor when enabling Correlated Double Counting due to
the 1/f noise cancellation. This is actually better than the theoretical maximum
improvement. We believe that this is because the original 1/f noise profile model
used for the theoretical derivation may not accurately represent this IBM process.

Figure 2.18: Frequency uncertainty comparison of Correlated Double Counting vs.
Normal Differential over varying counting time intervals.

To verify the sensor gain uniformity, two sets of magnetic sensing experiments were
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performed. Magnetic particles, DynaBeadső M450-Epoxy (Diameter=4.5µm), are
used as the test samples in both measurements due to their ease of handling. First,
a single particle is randomly placed onto the sensing surface and the normalized
sensor responses together with the particles positions are recorded and plotted:

Figure 2.19: Measuring sensor uniformity by evaluating frequency shift for a single
4.5u magnetic bead placed in varying locations.

The consistent frequency-shift reading with an average value of 18.2kHz per parti-
cle verifies the uniform sensor transducer gain. In the second experiment, different
numbers of magnetic particles are deposited onto the sensor surface and their cor-
responding output frequency-shifts are shown:

Figure 2.20: Sensor Linearity and Dynamic Range Measurement.

Note that with a noise floor of 388Hz after CDC operation, a single 4.5µm magnetic
particle is still far above our sensing limit. The measured linear response (up to 409
beads) indicates an effective dynamic range of at least 85.4dB. The sensor surface
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area is 80 x 80 µm, so we were not physically able to carry out measurements with
more than 409 beads.

2.4 Multiplexed Magnetic Biosensor: A Magnetic Spectrometer

Figure 2.21: A frequency-shift magnetic biosensor functionalized with a two-probe
affinity-based sandwich assay. The sensor used in this experiment must be capable of
differentiating between the two types of magnetic beads utilized in order to correctly
quantify concentration of each target analyte.

The frequency-shift sensor of [112] demonstrates an example of a highly sensitive,
cost-effective magnetic particle biosensor in CMOS with no need for external mag-
nets. The use of such a magnetic sensor for nucleic acid and protein targets has been
successfully demonstrated recently [78]. Despite their cost and sensitivity advan-
tages, however, the magnetic biosensors mentioned lack multi-probe diagnostics in
contrast to the different color fluorophores which are available and can be utilized
for simultaneous single-site multiple target differentiation in fluorescent-based ap-
proaches. Multi-probe detection schemes not only significantly increase the amount
of targets which can be detected in a given sensing area, but are crucial for experi-
ments requiring signal colocation such as detecting multiple biomarkers on a single
cell. The lack of multi-probe magnetic diagnostics is primarily due to the current
approaches simply measuring changes in the magnetic susceptibility, either at low
frequencies [33, 27, 12, 102] or at fixed RF frequency [113, 115]. Consequently,
these approaches do not provide a clear path for differentiating between a large num-
ber of small magnetic particles and a smaller number of larger size magnetic particles
with similar total magnetic content (or anything in between). Recent developments
in the field of magnetic biosensing have begun paving the way for enabling efficient
multi-probe diagnostics. Namely, [48, 82] utilize Hall effect magnetic sensors and
strong external biasing magnets to differentiate among different magnetic markers.
This is accomplished by measuring the sensor signal response at different external
biasing field conditions and making use of the fact that different magnetic labels ex-
hibit unique magnetization profiles. [48, 82] show promising results, however, they
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require very strong external biasing fields which can only be provided by expensive
permanent magnets. Furthermore, the field strength must be varied, implying that
a mechanical system must be employed to modify the relative distance between the
permanent biasing magnet and the sensing apparatus. [79] presents an alternate
approach to distinguish among different magnetic marker types by using AC sus-
ceptometry to characterize the frequency response of the magnetic susceptibility of
the markers. This approach does not require an external magnet, however, [79] use
a discrete setup with separate excitation and sensing coils and bulky and expensive
test equipment for driving and detection such as an RF frequency synthesizer and a
lock-in amplifier.

We propose, design, implement, and demonstrate a frequency shift magnetic sensor
capable of multi-probe detection by designing our chip to differentiate between dif-
ferent kinds of magnetic material that can be used as labels for tagging biomolecules
of interest. Similar to [79], our chip achieves this differentiation by performing AC
susceptometry. However, our approach is fully integrated in a standard CMOS
process and does not require any external test equipment or external biasing fields
for operation. This is unlike GMR sensors which require exotic post-fabrication
steps and Hall effect sensors which require external magnets and/or suffer sensi-
tivity issues due to saturation of the sensor by the biasing field [110]. In Section
Section II, we extend the frequency-shift methodology to a novel technique capable
of performing multiplexed detection by way of magnetic spectroscopy. Section IV
analyzes critical design areas and tradeoffs for sensor optimization. Finally, the
results of a proof-of-concept implementation of such a multiplex-capable magnetic
sensor design implemented in a standard CMOS 65 nm process are presented in
Section V.

II. Multiplexed Operation
As mentioned previously, magnetic material placed over the inductor of the sensing
LC tank causes a shift in inductance, ∆L. It is instructive to repeat expression for
∆L here in order to arrive at subsequent developments in the analysis: Assume a
magnetic particle placed on the inductor surface has an effective magnetic suscepti-
bility χ and a volume Vp. A current I flowing through the inductor generates a local
magnetic field, H⃗ . Under the assumption that the magnetic particle is small enough
so as to not significantly perturb this H⃗ , the difference in total magnetic energy ∆Em

can be computed:
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Note that the volume integration is performed only over the volume of the magnetic
particle (Vp) since the fields remain unchanged elsewhere. B⃗′ and B⃗ represent the
local magnetic flux density in the volumetric region Vp in the presence of the bead
and without the bead respectively. The approximation made is that the magnetic
bead is small enough such that the magnetic field is uniform inside its whole volume.
As before, substituting ∆Em into the expression for inductance yields:

∆L =
2∆Em

I2 ≈ χ

µ0

| |B⃗ | |2
I2 Vp

Finally, substituting the expression for ∆L into the frequency-shift equation, we
arrive at the expression for the transducer gain (as derived in the previous sections):

∆ f
f0
= − ∆L

2L0
= − χ

2L0µ0

| |B⃗ | |2
I2 Vp

It can be readily seen from this expression that the transducer gain is proportional
to the magnetic susceptibility of the particle χ, the local magnitude of the magnetic
field squared | |B⃗ | |2, and the inverse of the current through the inductor squared, I2.

B⃗ = µ0N I/l for an infinite solenoidal inductor and to first order B⃗ ∝ I for finite
solenoids as well [16]. Therefore, we expect | |B⃗ | |2 and I2 in (4) to generally cancel
each other out when the transducer gain is spatially averaged over the whole inductor
surface area. The local changes in | |B⃗ | |2 on the other hand are highly critical for
sensor gain uniformity as will be discussed in the subsequent section on sensor
optimization.

Of note in (4) is the direct dependence of the transducer gain on the magnetic sus-
ceptibility of the material present over the sensor surface, χ. For low frequency
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measurements, it is often assumed that χ does not exhibit any frequency depen-
dency. However, this is not the case at radio frequency (RF), where for typical
magnetic beads used in biosensing experiments, χ actually shows strong frequency
dependence [22]. Beads used in magnetic biosensing experiments consist of an
outer polystyrene matrix encasing single-domain super-paramagnetic nanoparticles
(Fig. 2.22). The outer matrix is nonmagnetic, and any measurable magnetic behavior
of the beads is completely due to the single domain particles inside [22].

Figure 2.22: Construction of super-magnetic beads from encased iron oxide nanopar-
ticles. The nanoparticles are single-domain and super-paramagnetic.

The paramagnetic property of the particles implies that they become magnetized
and exhibit a magnetization field only when subjected to an external magnetic field.
Different magnetic beads suitable for biomolecular tagging utilize different size
single-domain magnetic nanoparticles in their matrices. The magnetic activity of
the nanoparticles is caused by their magnetic domains rotating to align with the
external magnetic field.

Indeed, in the presence of an external alternating magnetic field, the rate at which
magnetic domains can reorient to align with the external field is dependent on the
temporal response of the domain, with larger domains typically reorienting more
slowly than smaller ones. This effect leads to the frequency-dependent response in
the magnetic susceptibility, χ. As the frequency increases, the dipoles are limited
by their finite reorientation speed, resulting in a decrease in the real part of χ due to
a phase mismatch between the magnetic polarization vector M(t), and the external
magnetic field vector, H(t). In fact, there exists a null frequency fnull , at which
the delay of the magnetic dipole is such that it completely cancels the field effect,
resulting in Re( χ) = 0. This is not due to Néel or Brownian relaxation, both of which
are typically low frequency phenomena [22]. The null is caused by the magnetic
dipole orientation always being in time-quadrature with respect to the external field
at that frequency. Interestingly, beyond fnull , the real part of χ becomes negative
and it asymptotically approaches 0. Fig. 2.23 shows the shape of the real part of χ
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for a typical superparamagnetic nanoparticle along with magnetization state of the
particle in each frequency range.

Figure 2.23: Typical frequency dependence curve of magnetic susceptibility, χ,
for magnetic nanoparticles. The frequency shift of the sensor at each frequency is
directly proportional to χ at that frequency. The phase of the magnetization vector
in each frequency range for the nanoparticle is also shown.

A crucial observation for extending the frequency-shift sensor is that fnull and the
magnetic frequency spectrum (signature) of the magnetic domains depend on the
domains size and hence can be used as a spectroscopic means of differentiating
between different kinds of beads that could be used for detecting different analytes.
The sensitivity of the resonance-based sensor was derived as being directly propor-
tional to χ. Therefore, if the LC tank can be tuned to vary its center frequency,
f0, across a wide range, measuring the relative frequency shift caused by magnetic
material on the surface at each frequency in the range yields spectroscopic informa-
tion on the magnetic susceptibility. This phenomenon provides an effective means
of single-site multiplexing in a CMOS magnetic sensor by using the spectroscopic
data to discern between various beads, similarly to optical systems.

The center frequency of the sensing LC resonator can be shifted by tuning either
the inductance or the capacitance of the tank. Integrated inductors are very difficult
to tune electrically, however. Furthermore, the transducer gain would not only be
changing due to χ at each frequency but would also be affected by the absolute value
of the inductance as L is in the derived expression for transducer gain. This com-
plicates the measurement process, as the measured data would have to be adjusted
to remove the dependency on the varying inductance. Tuning the capacitance to
achieve frequency shifting is a more viable option. As shown by the susceptibility
measurements in [22], an interesting range for obtaining spectroscopic data of χ is
between 1 GHz and 6 GHz. Varactor tuning can only provide minimal amounts of
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extra capacitance and therefore the preferred technique is one where a switchable
passive capacitor bank is used. Fig. 2.4 shows a schematic representation of a
simplified sensor cell in which biasing and switch circuitry have been omitted.

Figure 2.24: Sensor cell schematic. The switchable capacitor bank for tuning the
frequency between 1.1 GHz and 3.3 GHz is thermometer encoded and layed out
symmetrically for minimum variability among the frequencies switched. Switched
resistors are used to control oscillator current optimized for maximum phase noise
performance.

III. Sensor Optimization
Depending on the target application, there are various parameters that should be
taken into consideration when designing a magnetic sensor cell. Perhaps the most
important parameter is the sensor Signal-to-Noise Ratio (SNR), which directly
quantifies the sensitivity of the cell. The overall sensor SNR is determined by a
combination of the electrical SNR and the biochemical SNR (determined by the
biological experimental assay and the surface chemistry involved). The goal of
the circuit designer should be to optimize the electrical SNR such that the overall
SNR is dominated by biochemical SNR. The biochemical SNR is independent of
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the multiplexing to first order and is addressed elsewhere empirically with bioassay
experiments [78]. In the rest of this section, we focus only on the factors determining
the electrical SNR component of the overall SNR.

As derived in (4) of Section II, the frequency shift of the resonant LC tank used for
sensing is proportional to −( χe f f /2Loµ0)( | |B⃗ | |2/I2)Vp. The sensor measurement
is performed by counting the electrical oscillation frequency and detecting shifts
in frequency. Thus, the frequency shift directly corresponds to the signal part of
the electrical SNR. The noise is determined by the frequency instability (phase
noise) of the oscillator, which in turn is determined by the electrical noise of the LC
resonator and of the CMOS transistor active devices. Specifically, the inductor has
an effective real series wiring resistance that contributes thermal noise to the system.
The majority of the oscillator phase-noise, however, is due to the active devices.
Thus, in order to maximize our effective electrical SNR, we aim to maximize
the frequency shift at each frequency point as well as concurrently minimize the
oscillation phase-noise.

As discussed previously, perhaps the most effective method which is controllable
by the designer for maximization of the frequency shift is to minimize the total
inductance. Assuming that a typical spiral configuration is used for the inductor
design, there is a strong correlation between inductor physical area and amount of
inductance. Thus, to achieve a smaller inductance, the active sensor area must be
reduced. This poses a disadvantage for the subset of biological experiments that
seek to detect large quantities of bigger biomolecules such as cells. The target bio-
experiments must therefore also be taken into consideration when determining the
inductor to use. Simply picking the smallest inductance possible that allows for good
phase-noise performance and provides enough oscillator loop gain is therefore not
necessarily the best option since a sensor which has a sensor area that is physically
too small for large-object detection can negatively impact the biochemical SNR
significantly.

To make matters more quantitative, a simple analysis making several simplifying
assumptions is done regarding the electrical SNR. Per the analysis of [111], the
majority of the 1/ f 2 noise is averaged out by the counting measurement process,
leaving 1/ f 3 noise as the main contributor to the oscillator phase-noise. For a given
process technology, assuming a fixed biasing current density for the core devices and
a constant tank voltage amplitude VDD (limited by the supply rail), the transistors
DC current Id and width W are related to the inductance L by the following relation:
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Id ∝ W ∝ VDD

Rtank
=

VDD
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with Rtank and Q as the equivalent parallel resistance and quality factor of the LC tank
respectively at the tank resonant frequency ω0, Id ∝ VDD/Rtank is derived assuming
that the oscillator has been designed for biasing at the onset of the voltage-limited
operating regime [31]. At fixed biasing current density, the current Id is directly
proportional to the device width W , and therefore the Power Spectral Density (PSD)
of the drain flicker noise current can be modeled as i2n,1/ f (ω) = β/ω. Using the
Linear Time-Varying (LTV) phase-noise model from [31], the 1/ f 3 jitter coefficient
can be determined as
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where c0 is the DC term of the Impulse Sensitivity Function (ISF), Γ(t), and qmax is
the maximum tank charge swing. Thus, the noise floorσ2

∆ f / f0
is directly proportional

to the quantity L/Q which is completely determined by the sensing inductor design.
It was earlier derived that the sensitivity ∆ f / f0 ∝ ¯| |B | |2/I2Lo where ¯| |B | |2 is
the spatially averaged magnetic field over the inductor surface squared. Thus, for
an optimally biased cross coupled CMOS oscillator with 1/ f 3 phase noise being
dominant, the SNR can be computed:

SNR =
∆ f
f0

σ∆ f / f0

∝
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As discussed earlier, the spatially averaged ¯| |B | |2 is proportional to I2 to first order
for most inductor topologies and thus the two quantities mostly cancel each other out,
resulting in: SNR ∝

√
Q/L3. This expression confirms the intuition that inductor

quality factor (Q) should be maximized and also reveals a strong dependence on
the value of the inductor. Namely, the inductance should be minimized in order to
achieve the highest SNR possible. As mentioned before, there are various reasons,
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however, why a designer would not want to select the smallest inductor possible such
as reduced biological SNR and degradation of quality factor of on-chip inductors
which are too small. Fig. 2.25 plots simulated SNR values for different spiral
inductor configurations of a standard 3-turn differential inductor. Three turns were
selected to achieve a large enough inductance within reasonable area constraints
and with acceptable quality factor. Furthermore, an odd number of turns forces the
center tap to be on top of the inductor, allowing for easier layout of the VCO and
power distribution.

Figure 2.25: Simulated sensor SNR values for a 3-turn symmetric spiral inductor
with different inner diameters (effective sensing area) and trace width sizes ( f0 =
1GHz). The plotted SNR is normalized by the maximum achieved SNR.

As detailed in the previous section on improving the gain uniformity of the sensor
cell design, another important factor that must be considered is the uniformity of
the cells sensitivity. Looking again at the expression for the sensor frequency
shift, the shift is also directly proportional to the local magnitude of the spatial
magnetic field squared, | |B⃗ | |2. Thus, if the magnetic field profile across the surface
of the sensing inductor varies significantly, the same magnetic material will result in
different frequency shifts depending on its physical location. This detection behavior
is highly undesirable because the only sensing mechanism is measurement of the
frequency shift which indicates that one would not be able to differentiate between
more magnetic material in a weaker sensitivity spot versus less material in a stronger
spot. Therefore, an inductor with irregular magnetic field magnitude profile, while
suitable for qualitative biological experiments (detection of presence vs. absence of
signal), is unsuitable for quantitative biological experiments which require accurate
quantification of the amount of magnetic material present over the sensing surface.
In the previous section [112], a custom inductor layout was designed, starting from
a "bowl" shape, modifying trace spacing and thicknesses, and adding a shimming
piece of metal with the objective of minimizing the change of | |B⃗ | |2 over the whole



37

inductor area. Defining a uniformity metric as the ratio of the largest | |B⃗ | |2 within
the sensing area to the smallest | |B⃗ | |2, a 200:1 improvement in the uniformity was
achieved over the initial design with minimal degradation in inductance and quality
factor as a tradeoff.

The major causes of abrupt changes in the magnetic field profile over the area of
the inductor occur in proximity to current carrying traces. On the other hand, the
center region inside the traces of a spiral inductor exhibits fairly uniform magnetic
field strength throughout the whole region due to spatial averaging of the fields
generated from the outer circular wires. This is shown in Fig. 2.26 along with a
linearity measurement performed using 4.5µm Dynabeads and the sensor presented
in Section IV.

Figure 2.26: (a) Simulated magnetic field distribution over surface of the on-chip
spiral inductor used in the implemented magnetic spectrometer prototype. The
strongest points in field occur over and next to metal wires with the center of
the inductor having uniform field strength. Thus, the center of this inductor is
apt for use as the effective sensing region of the magnetic biosensor. (b) Log-
log plot of measured frequency shift vs. number of beads for 4.5µm Dynabeads
over sensor surface using the prototype spectrometer with corresponding linear
regression. Great linearity is achieved throughout the whole measured range that
spans over two orders of magnitude indicating that the sensing uniformity is adequate
for quantitative experiments.

Therefore, another approach for achieving sensor cell uniformity is to use a spiral
inductor with a sufficiently large empty center opening that can effectively be used as
a sensor capable of quantification provided that magnetic material is only permitted
to be located within this center region and not over the outer traces. This approach
suffers from slightly reduced total effective sensing area, but significantly simplifies
the design process by not requiring special layout modifications such as extra or
thinner wiring and shimming pieces of metal that result in Eddy currents and can
possibly reduce the quality factor.
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IV. Multi-Frequency Operation
The sensor SNR and uniformity performance metrics have been discussed thus far.
These two metrics apply to all resonance shift magnetic biosensors and are not spe-
cific to our magnetic spectrometer. In order to measure the magnetic susceptibility
spectrum of magnetic content with a resonance shift sensor, it must be capable of
operating across a range of different center oscillation frequencies. A wide tuning
range with many operating points in between is desirable for maximizing the amount
of magnetic information that can be measured by the device. The magnetic field
profile remains unchanged across the whole operating range, since the sensor size
is physically very small compared to the operating wavelength. The SNR, on the
other hand, is a strong function of frequency since both the sensitivity and noise
change at different frequencies. The frequency shift is proportional to the mag-
netic susceptibility at the sensing frequency, and the phase noise performance of
the oscillator can be significantly different from the lowest to the highest operating
frequency. The phase noise is mainly affected due to addition of extra capacitance
to the resonant tank, the switch transistors being in different operating states, and
the changing bias conditions of the active cross-coupled devices. Therefore, de-
signing a multi-frequency sensor can be considerably more challenging than its
single-frequency counterpart since close attention must be paid to the SNR at all
operating frequencies rather than at a single point.

Such a wide tuning range can be very challenging to implement in practice for a
single oscillator due to the nature of the parasitics of the switching devices required
for tuning. As described in Section III, the most interesting frequency range for
typical magnetic nanoparticles used in biological experiments is between 1 GHz
and 6 GHz. Varactor tuning is therefore inadequate for such a broad range, and
passive capacitances must be switched in order to achieve tuning. In a standard
CMOS process, CMOS transistors must be used as the switching elements, which
are subject to an on-resistance vs parasitic capacitance tradeoff. Therefore, great
care must be taken in designing the switching network in order to achieve a wide
tuning range while maintaining acceptable phase noise performance across the whole
range. Furthermore, dynamic DC biasing techniques should be used for biasing the
switch transistors in order to ensure that they are fully turned on or off and do not
experience overvoltage conditions. Keeping the switching devices fully in the on or
off states is crucial to prevent distortion of the oscillator ISF, which can very easily
led to signifi cant phase noise degradation. Fig. 2.27 shows the schematic of a single
switching branch utilizing inverters with custom supply voltages for setting the DC
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voltages of the drain and gate nodes of the switch transistors.

Figure 2.27: Zoom-in of switching cell of magnetic spectrometer sensing circuit.
The drain/source nodes of the switching transistor must be biased to 0 V DC when
ON and 0.6 V DC when off and the gate at 1.2 V DC when ON and 0 V DC when
OFF to ensure full turn on and turn off of the switch transistor. The switch transistor
not fully turning on or not being fully off when required results in a distorted large
signal oscillation, which in turn can severely degrade the ISF of the oscillator leading
to inferior phase noise performance. Inverter circuits with custom supplies are used
to achieve these biasing conditions.

V. Sensor Implementation and Results
To enable multi-color magnetic sensing schemes and to take full advantage of the
rich frequency-dependent information available, we have designed and demonstrated
a CMOS magnetic spectrometer operating between 1.1 GHz and 3.3 GHz [93, 94].
Similarly to the single-frequency sensor presented in [115], the spectrometer does
not require an external biasing magnet or any exotic post-fabrication processing.
Unlike previous integrated designs, the sensor operates at multiple frequencies over
a diverse range. Furthermore, under certain conditions and where at least one
degree of freedom (number of different bead types which can be differentiated)
can be sacrificed, a self-referencing scheme can be implemented with some simple
signal processing. This relies on the fact that the same oscillator core is being used
for all operating frequencies and therefore the sensor noise and thermal variation is
strongly correlated among all of the frequencies. Therefore, if more measurement
points exist than number of beads to be separated, the resulting system is over-defined
and information can be extracted about the noise and used for drift stabilization.
The information can either be extracted using black-box methods such as machine
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learning or linear regression or by modeling the circuit in order to determine how
variations in one frequency af fect the other frequencies of operation. Operating the
device in this self referencing mode further increases its spatial multiplex density.
Alternatively, the traditional approach of designating one sensor as a dedicated
reference may be used as well, taking care that this cell remains clear of magnetic
content over its surface.

As described in Sections II and III, a frequency-shift sensing scheme is used to
detect and measure magnetic materials. The sensor core is a stable free-running
oscillator with an on-chip LC resonator. The inductor of the LC tank is the magnetic
sensing cell, where its value changes due to the changes of the χ of the magnetic
material. Thus, the full frequency dependent information of χ is preserved by
measuring frequency shift due to magnetic materials on the sensor at frequencies of
interest. As discussed in Section III, the center region of a spiral inductor exhibits
the greatest magnetic field uniformity, and therefore the effective useable sensing
area of the 260µm x 260µm inductor in our implementation is 150µm x 150µm.
The frequency tuning from 1.1 to 3.3 GHz is achieved with a thermometer-coded
switched capacitor bank, which allows for 16 unique frequencies of operation within
the range. Thermometer coding is implemented to guarantee uniform frequency
steps across the range (Fig. 2.28)

Figure 2.28: The blue curve plots all 16 operating frequencies from 1.1 to 3.3 GHz
of the prototype magnetic spectrometer. The red curve plots 1/ f 2

0 ( f in GHz) which
should be completely linear with respect to switch setting since each step adds a fixed
amount of capacitance. The great linearity shows the efficacy of using thermometer
encoding for the passive capacitor bank.

An NMOS-only differential cross-coupled topology was chosen and optimized for
phase-noise and power efficiency at 1.1 GHz, since beads generally exhibit the
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largest response at this frequency [22]. The oscillator phase-noise was optimized
by appropriately sizing the LC tank and active devices as well as the DC biasing
points [31]. Care was taken to ensure that acceptable phase noise performance was
achieved throughout the whole range up to 3.3 GHz, however. Furthermore, the chip
has two on-board 36-bit frequency counters and a digital divide-by-64 multiplexed
output. We have implemented a 4-sensor cell array as a demonstration of the ease
of scalability of the system to a larger array. Extending a frequency-shift system to
a large array has already been demonstrated by [115, 78] and would incur almost
no extra area overhead since the sensor outputs are buffered and can be readily
combined in the current domain. As also shown by [115], sensing cells can be
placed at the same spacing as cell size or less without cross-coupling issues. This is
due to the fact that the magnetic field rolls off very rapidly outside the vicinity of the
sensing cell. Fig. 2.29 [93, 94] shows a block diagram of one half of the prototype
sensing system.

Figure 2.29: Block diagram of magnetic spectrometer prototype. The fabricated
chip consists of two copies of this core unit and has a total of 4 sensing cells.

The oscillator achieves a state-of-the-art phase-noise of -133.7 dBc/Hz and -66.4
dBc/Hz at 1MHz and 1kHz offsets respectively at 1.1 GHz, and -124.8 dBc/Hz and
-43.2 dBc/Hz at 1 MHz and 1kHz offsets respectively at 3.3 GHz (Fig. 2.30).

The sensor core draws between 3 and 10 mA depending on the adjustable current
bias setting from a 0.6 V supply in order to allow optimal biasing for good phase
noise performance. The cell consumes as little as 1.8 mW at the lowest current
setting. The frequency signature of 1µm and 4.5µm Dynabeads magnetic beads
from Invitrogen [42] and 1µm beads from Bangs Laboratories [40] were measured,
as shown in Fig. 2.31 [93, 94].
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Figure 2.30: Plot of oscillator phase-noise performance at lowest (1.1GHz) and
highest (3.3 GHz) frequencies of operation. The oscillator achieves a phase-noise
of -133.7 dBc/Hz and -66.4 dBc/Hz at 1 MHz and 1 kHz offsets respectively at 1.1
GHz, and -124.8 dBc/Hz and -43.2 dBc/Hz at 1 MHz and 1 kHz offsets respectively
at 3.3 GHz.

Figure 2.31: Frequency response measurement of three different kinds of beads.
Data is normalized to the lowest frequency (1.1 GHz) to be independent of con-
centration. Three measurements have been done for each bead type. Error bars
represent one standard-deviation around the mean.

As explained previously, these magnetic beads are composed of magnetic nanopar-
ticles within a polystyrene matrix and coated with a biologically relevant functional
group. These magnetic bead sizes are suitable for performing many different bio-
logically relevant assays including DNA [78], protein [78], and cell [114] detection
experiments. The sensor can be used with any paramagnetic nanoparticles, however,
including ones with considerably smaller outer diameter. The shape of the mea-
sured frequency response depends on the type of bead being used and the scale of
the measured curve depends on the quantity of beads present on the sensor surface.
Thus, measuring 100 1µm Dynabeads will result in the same curve as measuring a
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single 1µm Dynabead multiplied up by 100. The response at each frequency was
normalized to that of the lowest frequency (1.1GHz) in order to render the mea-
sured data scale-invariant for establishing a concentration-independent standardized
scale. Bead samples were prepared by washing aliquots from stock bead solution
with deionized water followed by resuspending them in deionized water at a con-
centration of 10 mg/ml. They were deposited over the surface of the sensor by using
a sharp pick and allowed to dry before taking measurements. No reference was
used for these measurements as each reading was taken over a short time period
during which the sensor drift was negligible. The reference techniques described
earlier may be applied, however, to further improve the SNR. Fig. 2.31 [93, 94]
plots the mean of three measurements for each type of bead and demonstrates that
there is greater variability in response at the higher frequencies mainly due to larger
phase noise leading to a lower electrical SNR for these frequencies. Of note is that
the frequency response of each bead is dependent on the size and configuration of
nanoparticles inside the polymer matrix, and not on the external size of the bead it-
self. Thus, it is not surprising that the 1µm Bangs beads have a significantly different
response from the 1µm Dynabeads. Since larger magnetic domains are expected to
move slower and thus crossover the null point at lower frequencies, this suggests that
the Bangs Laboratories beads have the largest internal nanoparticle size, while the
1µm Dynabeads have the smallest. This is consistent with the known nanoparticle
sizes: Bangs Laboratories estimates that their bead nanoparticle size is between 15
and 20 nm [7], which is considerably larger than the Dynabeads, which contain 78
nm nanoparticles [24]. The Dynabeads exhibit less than 2% standard deviation in
their outside diameter [24] whereas variability in the properties of the Bangs beads
is unknown. The variability in the diameter of the internal nanoparticles is also
unknown, however, each 1µm bead contains hundreds of thousands to millions of
nanoparticles, so minimal deviations in nanoparticle size become spatially averaged
out on a per bead basis. Furthermore, two different batches of Dynabeads were
used throughout the measurement process and the bead measurements were done
over a time period of several days. All measurements were taken at standard room
temperature conditions and no temperature control was used. Nanoparticle size
variability and thermal effects are therefore both taken into account in the error bars
of the measurement curves.

Multiplexed detection may be readily achieved by using beads with frequency sig-
natures that are sufficiently orthogonal. An evaluation of the sensors multiplexing
capability was performed by measuring the frequency responses of a series of
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density-constant colloids containing differing ratios of 1µm Dynabeads to 1µm

Bangs Laboratories beads. Seven mixtures of Dynabeads and Bangs beads prepared
at a concentration of 10 mg/ml were evaluated at the following proportions: [D% :
B%]: 100:0, 87.5:12.5, 75:25, 50:50, 25:75, 12:87.5, 0:100. Three measurements
were taken of each sample and averaged to reduce the effects of variability in spotting
of beads on the sensor cells. Fig. 2.32 [23] shows the averaged frequency signatures
of all the mixtures.

Figure 2.32: Frequency response measurements of mixtures of various proportions
of Dynabeads and Bangs 1µm beads. Three measurements have been done for each
mixture. Error bars represent one standard-deviation around the mean.

Using the data from Fig. 2.31 as basis vectors and taking the different standard
deviations at each frequency into account, we performed an inverse-σ weighted
least squares analysis to predict the proportions of each bead present in each sample
and plot the results against the known exact proportions in Fig. 2.33 [93, 94].

In the absence of noise the number of different beads which can be used is equal to
the rank of the V matrix. Therefore, up to 16 different bead types can theoretically
be distinguished by the prototype sensor since it can take measurements at 16
distinct frequency points. However, in the presence of noise, systems which are
more over-determined (number of measurements exceeds number of bead classes)
tend to yield more accurate results. Intuitively, this is due to the fact that the extra
degrees of freedom can be utilized to learn more information regarding the noise
rather than to differentiate extra bead types. Furthermore, all bead types used in
a multiplex experiment must exhibit sufficiently orthogonal frequency signatures
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Figure 2.33: Weighted least squares analysis of measured solutions from Fig. 2.32
with errorbars. The y-axis represents the exact proportion of Dynabeads of the
mixture of Dynal and Bangs beads and the x-axis represents the best estimate of
a simple weighted least squares algorithm based on the measurement data. The
weights used are the inverse of the variance of the control measurements of pure
Dynabeads and pure Bangs solutions. This demonstrates the viability of the sensor
for multiplexed biosensing.

in order to minimize reconstruction error. In an ideal, noiseless system, the only
criterion necessary for successful reconstruction is that the V matrix which contains
the frequency signatures of each of the two beads is full column rank. However,
the presence of noise, the rank of V alone may not be enough to guarantee an
acceptable reconstruction. In this case, the matrix condition number provides a
good indicator of how close the matrix is to being singular, with larger condition
numbers indicating higher likelihood of larger reconstruction error. The condition
number of the V matrix in our experiment was computed to be 5.28 implying that
the relative error in the bead reconstruction was bound at most by roughly a factor
of 5 times the error in the measurements of the sample solutions. Finally, a chip
die photo is shown in Fig. 2.34 [93, 94] next to a USB powered handheld PCB
test bed for performing in-vitro bio-experiments. The results clearly demonstrate
the sensor’s ability to concurrently detect different magnetic beads, indicating the
viability of the sensor for complicated bioassays requiring multiple marker types.
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Figure 2.34: Chip die photo of the full 2 x 2 magnetic spectroscopy system with
prototype USB powered handheld testbed system.

Conclusion
The frequency-shift based magnetic detection methodology was reviewed and ex-
tended to magnetic spectroscopy in order to enable multiplex experiments with
magnetic beads. The technique is fully compatible with the standard CMOS pro-
cesses of today and is capable of achieving high sensitivity while maintaining
ultra-portability and low power consumption. Furthermore, important design pa-
rameters that should be optimized when designing frequency-shift sensors such as
the electrical SNR and transducer gain uniformity were analyzed. Finally, a mag-
netic spectrometer prototype was implemented in a 65 nm CMOS process as a
proof of-concept. Each sensing sites occupies 260 µm x 260 µm (with 150 µm x
150 µm active sensing area), a surface area sufficient for protein or DNA detection
experiments w ith detectable bead binding capacity. The full size of the four sensor
chip is 1.2 x 1.2mm and the whole system can be powered from a laptop USB port
to demonstrate portability of the design. Previous work in magnetic multiplexing
[48, 82, 79] significantly bridged the gap between optical and magnetic sensing
technologies. Our work further narrows this gap by utilizing a standard CMOS
process, consuming ultra-low power, and not requiring any extra mechanical parts
such as moving rare-earth magnets.

2.5 Next Generation Design: A Drift Cancellation Approach
In the previous sections of this chapter, we have developed a magnetic biosensing
methodology capable of quantifying magnetic nanoparticles with uniform trans-
ducer gain and have extended it to a multiplex-capable system by utilizing magnetic
spectroscopy.
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One major remaining issue is longterm frequency-drift of the sensor due to electrical
and thermal changes. The resonant frequency of the sensor LC tank depends on both
the values of the tank inductance and capacitance. As described earlier, magnetic
material within the vicinity of the inductor’s magnetic field causes a shift in the
effective inductance which results in a change in the resonant frequency.

Under the base assumption that the capacitance remains constant and the induc-
tance varies only due to magnetic nanoparticles on its surface, simply measuring the
resonant frequency of the tank (or similarly the oscillation frequency of the tank em-
bedded in an LC oscillator configuration) allows direct quantification of the magnetic
material. Unfortunately, the tank reactances may vary also due to thermal and elec-
trical fluctuations causing corresponding shifts or drifts in the resonant/oscillation
frequency.

Many realistic biological experiments occur over time periods of hours and thus
these electrical/thermal frequency instabilities present a series issue to the sensor
SNR. In this section, we develop a solution to these issues in the form of a new
sensor design with a frequency drift cancellation loop.

A Fourth-Order Transformer Based Tank
We analyze the following circuit:

Figure 2.35: Fourth order transformer-based LC Tank

Assuming ideal reactive components, the system in Fig. 2.35 has two possible
resonant frequencies [4]:

ω2
1,2 =

1 +
(
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LpC1

)
±

√
1 +

(
LsC2
LpC1

)2
+

(
LsC2
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)
(4k2
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2LsC2(1 − k2
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Our first remark is that the ratio ω2
1

ω2
2

depends only on the ratios Ls

Lp
and C2

C1
. Thus, if

the tank is layed out in such a way where process variation or thermal changes affect
Ls / Lp and C1 / C2 in the same way, such external fluctuations will not have much
of an effect on the ratio ω2

1
ω2

2
.

Furthermore, if we design the tank such that LsC2 = LpC1, the expression for the
resonant frequencies simplifies to:

ω2
1,2 =

1 ± km

LsC2(1 − km)(1 + km)

and thus: ω2
1

ω2
2
=

1+km
1−km

.

Now, we examine what happens to first order if only one of the capacitances (C2)
varies while all the other components remain the same (again with Ls = Lp = L

and C1 = C2 = C):
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And thus, the ratio:

ω2
1∆

ω2
2∆
=

1 + km

1 − km

remains exactly the same as before (to first order), even though only one of the two
capacitances was perturbed. This implies that even if the parasitics do not drift
completely in the same way, the ratio of the two frequencies still remains constant
to first order.



49

The next key to the puzzle is the fact that the effect of the magnetic particles on
the inductance of the sensor is frequency dependent, as explained in the previous
section on multiplexing and magnetic spectroscopy. If the operating frequency is
high enough, in fact, the magnetic beads appear transparent and do not modify the
effective inductance of the sensor. The optimal operating point for maximizing
signal is ω1 = 2π 1GHz and the second operating frequency should ideally be
above 6 GHz for obtaining electrical drift information without being affected by the
magnetic material present.

For ω1
ω2
= 6, we would need km to be: 1+km

1−km
= 36, or km = 35/37 ≈ 0.945 which is

an unrealistically large coupling factor for planar on-chip transformers.

Assuming a maximum realistic coupling factor km = 0.8 can be achieved, this
would force ω2 = 3ω1 or 3GHz if the lower frequency is set to 1GHz. Looking
at our measured magnetic bead data from the magnetic spectrometer chip, we
observe that in most cases the response of the beads at 3GHz is in the opposite
direction, i.e. the effective inductance decreases instead of increasing. This actually
works to our advantage and serves to increase the effective signal when the two
measured frequencies are divided while still canceling out (at least to first order)
electrical/thermal drift effects.

2.6 Concluding Remarks
Biosensing is a crucial and rapidly expanding research field. New advancements in
detection technology and electronics has allowed the miniaturization and significant
cost reduction of detection modalities.

In this chapter, we have motivated and demonstrated several versions of a biosensing
device capable of quantifying magnetic nanoparticles which can be conjugated onto
a variety of different biomolecules for developing biosensing assays. Every version
of the magnetic biosensor is developed in a standard CMOS process without any
post-process modifications required besides surface chemistry functionalization for
biological experiments.

We have studied the spatial, static magnetic fields over the sensing inductor’s surface
to build insight and design a new inductor with modified shape and fields which are
200 times more uniform than the original, spiral based design. Furthermore, we
have studied the temporal dependence of the polarization of magnetic nanoparticles
(due to their finite size magnetic domains) and have taken advantage of the effect in
order to design and demonstrate a multiplex-capable magnetic sensing system able
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to differentiate among 16 different types of magnetic labels concurrently present on
the transducer active sensing area.

Finally, we have analyzed a new approach for solving the sensor frequency drift issue
due to electrical noise and thermal fluctuations. We are currently in the process of
designing the latest iteration of the magnetic biosensor with the new frequency
drift cancellation approach. Once implemented and verified, this approach will
significantly improve the longterm frequency stability of the sensor by several orders
of magnitude, making longer-run biological experiments viable.
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Chapter III: Introduction to Electromagnetic Structure Design

In the previous sections, we developed and discussed the concept of magnetic
biosensing and how judicious manipulation of the magnetic fields in the vicinity of
a sensor can lead to significant improvements in sensitivity as well as functionality.
In the following sections of this thesis, we will continue exploring the potential
unlocked by "designing" electromagnetic field distributions in the RF, millimeter-
wave, and even photonics frequency regimes.

3.1 Maximum Performance Bounds: Introduction
Electromagnetic structure design has been a very important area of research over
the past century. Analytical solutions to Maxwell’s equations, with the exception of
simple examples [6, 87, 103], often do not exist making designing structures to meet
given target specifications a very difficult problem. As an example, experienced
antenna designers usually begin with a canonical design such as a dipole or loop
antenna and make adjustments or tweaks to the structure in an effort to meet desired
performance metrics. While these "tweaks" are often guided by experience and
understanding of the large-scale effects on the electromagnetic fields, they are ulti-
mately heuristic based efforts and no generalized approach for designing antennas
in arbitrary environments exists.

In fact, even designing electromagnetic structures computationally is usually ex-
tremely challenging due to the fact that most relevant design optimization problems
are NP-hard with complex solution spaces that admit many local maxima. Thus, for
the structure design problem, a good heuristic algorithm must be employed which
can hopefully converge to an acceptable solution. [81, 85] We will show, however,
that if various constraints of the optimization problem are relaxed, a global optimum
can be readily found for many different systems which represents a maximum per-
formance bound for the original system. While the relaxed system may not lead to
a feasible solution of the original system, it can provide considerable design insight
such as maximum achievable performance as well as possibly an initial seed solution
for a heuristic solver of the constrained (realistic) system.

The examples presented will be in the context of antennas, however, it is important to
note that the framework developed is general and can be applied to numerous areas
in electromagnetics. To motivate the derivation of the relaxation and the bound, we
will begin with a typical metal antenna structure design problem:
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Suppose we wish to design a planar, metal antenna structure on a dielectric substrate
(such as a printed circuit board or silicon IC). We must define a design region over the
substrate inside which the antenna will be fabricated as well as a minimum feature
size. The minimum feature size is typically determined by the design rules of the
fabrication process or by the total amount of computational power/time available to
the designer. This is due to the fact that a finer feature size will result in a finer design
grid within the constrained design region which directly translates to a larger amount
of unknowns that must be determined. Without loss of generality, we also assume
that the design grid is square and size NxN. Each square can either be left empty or
filled with a solid patch of metal (which at RF frequencies is well approximated by
a Perfect Electrical Conductor [PEC] boundary condition.) (Fig. 3.1)

The center point of the grid will be forced empty as this will be the feed-point for the
antenna and will have a fixed current value across it in order to excite the designed
metal structure surrounding it. The design objective will be set as maximizing the
gain in the far-field for θ = 0, ϕ = 0 or in the +z direction. It is important to
note that specific conditions are being presented in order to arrive at a well defined
design problem– the method presented is general and can deal with any number of
antenna feed points or optimization objectives (such as maximizing overall radiation
efficiency instead of directional gain, for example.)

Figure 3.1: A representative dielectric substrate with antenna design grid indicated
on its surface

Before writing down the description of the problem in mathematical terms, it is
instructive to observe that there are N2 − 1 design unknowns each which can take
a binary value of empty or metal. Due to the binary or 0-1 nature of the problem,
it is known to be an NP-hard problem [75] which implies that there are no known
polynomial time algorithms for arriving at the globally optimum solution and in
order to determine the global optimum, every single feasible solution in the design
space must be evaluated. In this design example, there are 2N2−1 possible designs
which can be implemented. Even for a small N, such as N = 10, which would
lead to a rather modestly sized antenna problem, this results in 299 = 6.3x1029
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possible designs. Assuming it takes 5 minutes for a powerful CPU to complete an
electromagnetic simulation [39] of a single design variation, it would take 299 ∗ 5 =
6x1024 years to evaluate the whole solution space, which is clearly not a feasible
approach! In a later chapter, we will develop heuristics for attacking the design
problem directly, but as stated, we will first develop a relaxation in the constraints
which makes the global solution of the new (relaxed) problem easily solvable.

Due to the well known current-equivalence theorems for Maxwell’s equations [88,
84], given fixed excitation/source conditions, any dielectric (or metal) material can
be replaced with an equivalent current distribution which generates the same electric
(E) and magnetic (H) fields everywhere in space. Furthermore, a boundary condition
enforcing zero tangential E-field is equivalent to a PEC or perfect metal material.
Utilizing these two insights, we can write the design problem as a quadratically
constrained quadratic programming (QCQP) problem in terms of surface currents
as the unknowns:

max
J (x)

U(0,0) (J (x))
Pin(J (x))

subject to:

J ( f eed) = 1

J∗(x) ∗ E(x) = 0 ∀x ∈ A

where:

J (x) is the surface current distribution to be designed over the antenna design region
A.

U0,0(J (x)) is a function which maps the surface current distribution J (x) over the
design region A to the radiation intensity in the far-field at θ = 0, ϕ = 0 by way of
Maxwell’s equations.

Pin(J (x)) computes the total input power from the surface current distribution
J (x) over the region A into the system. Note that because of the PEC enforcing
constraint (J∗(x)∗E(x) = 0) that only the feed source current element can contribute
nonzero input power since any other surface region with nonzero current must
correspondingly have zero tangential electric field. Thus, for this design problem
Pin(J (x)) is equivalent to the incident power from the feed source into the antenna.
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J ( f eed) = 1 defines an excitation condition for the antenna.

J∗(x) ∗ E(x) = 0 which must be satisfied over the whole design surface A ensures
that any nonzero area of current J (x) is on a PEC (metal) boundary condition.

To show that the design problem that we defined above is actually a QCQP, we must
elaborate on the specific expressions for the radiation intensity (U(θ,ϕ)) and input
power (Pin).

Radiation Intensity of a current distribution is a quadratic form
From [103] we have the following expression for the Radiation Intensity (U) of a
current distribution:

U (θ, ϕ) =
k2

32π2η0

( [
Lϕ + η0Nθ

]2
+
[
Lθ − η0Nϕ

]2)
Nθ =

"
S

(
Jxcosθcosϕ + Jycosθsinϕ − Jzsinθ

)
e+ j kr ′cosψds′

Nϕ =

"
S

(
−Jx sinϕ + Jycosϕ

)
e+ j kr ′cosψds′

Lθ =
"

S

(
Mxcosθcosϕ + Mycosθsinϕ − Mzsinθ

)
e+ j kr ′cosψds′

Lϕ =
"

S

(
−Mx sinϕ + Mycosϕ

)
e+ j kr ′cosψds′

WLOG we assume that the magnetic current terms (Mx , My, and Mz are 0), which
makes Lθ = 0 and Łϕ = 0. Further, it can be seen that Nθ and Nϕ are both linear
in the driving terms Jx , Jy, and Jz, so we assume Jx = 0 and Jy = 0 making Jz the
only non-zero term for the purposes of cleanliness of the proof. This makes Nϕ = 0
and leaves the expression for Nθ as:

Nθ =

"
S

(−Jzsinθ
)

e+ j kr ′cosψds′

Substituting into the expression for the radiation intensity, U (θ, ϕ), we have:
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U (θ, ϕ) =
k2η0

32π2
*..,
"

S

(−Jzsinθ
)

e+ j kr ′cosψds′
+//-
*..,
"

S

(−Jzsinθ
)

e+ j kr ′cosψds′
+//-

=
k2η0

32π2
*..,
"

S

"
S

(
J∗z (ds)Jz (ds′)sin2θ

)
e− j krcosψe+ j kr ′cosψdsds′

+//-
=
*..,
"

S

"
S

J∗z (ds)K (ds, ds′)Jz (ds′)dsds′
+//-

with K (ds, ds′) =
k2η0sin2θ

32π2 e− j krcosψe+ j kr ′cosψ

Incident/Input Power is a quadratic form
It is well known that the total power in a system with only electric sources (J) can
be computed as a volume integral over the region containing non-zero J of J∗ · E,
where E is the collocated electric field:

Pin = real
*..,
$

V

J∗ · EdV
+//-

= real
*..,
"

S

J∗ · EdS
+//- for a surface current distribution

Due to the linearity of Maxwell’s equations, there exist Green’s functions for any
system mapping the electric (J) and magnetic (M) currents to the electric (E) and
magnetic (H) fields:

E(r) =
$

V

(
J (r′)GEE (r, r′) + M (r′)GEH (r, r′)

)
dV

H (r) =
$

V

(
J (r′)GHE (r, r′) + M (r′)GHH (r, r′)

)
dV
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In the expression above for Pin, we assume that we only have electric currents that
are nonzero and the magnetic field is not required, so we have:

E(r) =
$

V

J (r′)GEE (r, r′)dV

and substituting into Pin:

Pin = real
*..,
"

S

"
S

J∗(r)J (r′)GEE (r, r′)dSdS′
+//-

=

"
S

"
S

J∗(r)J (r′)real[GEE (r, r′)]dSdS′

=

"
S

"
S

J∗(r)G(r, r′)J (r′)dSdS′

with G(r, r′) = real[GEE (r, r′)]

Now we can rewrite the optimization problem, substituting for the radiation intensity
and incident power:

max
J (x)

"
S

"
S

J∗(r)K (r, r′)J (r′)dsds′

subject to:"
S

"
S

J∗(r)G(r, r′)J (r′)dsds′ = 1

J∗(x) ∗
"

S

J (x′)GEE (x, x′)dV = 0 ∀x ∈ S

J ( f eed) = 1 (excitation source condition)

If we could solve this optimization problem for the globally optimal J (x) distribution
over the design surface S, we would equivalently have the metal antenna structure
which maximizes the gain in the upwards (θ = 0, ϕ = 0) direction. Unfortunately,
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the J∗(x) ∗
!
S

J (x′)GEE (x, x′)dV = 0 ∀x ∈ S constraint is a "0 - 1" type of

constraint and leads to the problem being NP-hard [75]. In the following section,
we will show that if we ignore this constraint, the globally optimum solution to the
resulting problem can be found. Since the solution space of the problem without the
constraint is a superset of the original problem, the resulting solution will always
be a maximum performance bound for the original design problem. The constraint
is important in the sense that it enforces that any region of the surface with non-
zero electric current flowing must have 0 tangential electric field and therefore be
metallic. Without the constraint, we allow for arbitrary current distributions to
be designed. Due to the current equivalence of Maxwell’s equations, just as any
dielectric can be represented by equivalent current source distributions, currents
can be replaced with dielectrics which will scatter in such a way that the resulting
electromagnetic field distribution is identical. Theoretically, if we could design
antennas containing arbitrary dielectrics (as opposed to just metals, for instance)
then we could realize the solution found from the relaxed problem. Unfortunately,
most real dielectrics are lossy and the dielectric equivalent formulation may require
dielectrics with gain rather than loss depending on relative signs of the currents
and their collocated electric fields. Nonetheless, the optimal solution found for the
relaxed problem may serve as a guide for the real design problem both as a sense
of maximum performance that can be expected as well as providing insight as to
the structure or current distribution that may be required in order to approach that
performance bound.

Now we derive the solution to the optimization problem without the troublesome "0
- 1" constraint.

3.2 Statement of the Problem
Most generally, we pose an integral equation optimization problem:

min /max
J (x)

∫
V

∫
V

J∗(x)K (x, x′)J (x′)dxdx′

subject to:

∫
V

∫
V

J∗(x)G(x, x′)J (x′)dxdx′ = 1

where K must have the property: K (x, x′) = K∗(x′, x) and the function J (x) is the
unknown and must be determined over some surface S or volume V .
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3.3 Derivation
We begin by forming the Lagrangian and taking derivative with respect to λ and the
functional J (x):

L(J (x), λ) =
∫

V

∫
V

J∗(x)K (x, x′)J (x′)dxdx′−λ
(
1−

∫
V

∫
V

J∗(x)G(x, x′)J (x′)dxdx′
)

∂L
∂λ
= 0 = 1 −

∫
V

∫
V

J∗(x)G(x, x′)J (x′)dxdx′

∂L
∂J (x)

=

∫
V

K (x, x′)J (x′)dx′ − λ
∫

V
G(x, x′)J (x′)dx′ = 0

3.4 Discretization / Numerical Solution
The resulting expression is a continuous eigenvalue expression similar to a Fredholm
integral equation of the second kind. Except in very special circumstances (such
as when the limits of the integral extend to infinity and a Fourier transform can
be taken), closed form solutions do not exist and a numerical approach must be
taken for arriving at a solution. The two most common methods for discretizing and
solving the problem are the method of moments and the Nystrom method. In this
work, we focus on the method of moments as it is typically more suitable for design
problems defined on a fixed grid or mesh.

Method of Moments
In this section we briefly review the method of moments. We can approximate the
unknown current function J(x) as an expansion of known basis functions:

J (x) =
N−1∑
k=0

αkϕk (x)

substituting into our eigenvalue integral equation:

∫
V

K (x, x′)
N−1∑
k=0

αkϕk (x′)dx′ = λ
∫

V
G(x, x′)

N−1∑
k=0

αkϕk (x′)dx′

and switching order of integration and summation (which is allowed in all cases
because the summation is over a finite number of terms and each of the individual
integrals of the basis functions against the kernels K and G are assumed to be finite):



59

N−1∑
k=0

αk

∫
V

K (x, x′)ϕk (x′)dx′ = λ
N−1∑
k=0

αk

∫
V

G(x, x′)ϕk (x′)dx′

This expression is still continuous in the x variable, so we must test with a set of
weighting functions, ψm(x), in order to arrive at a linear system of N equations with
N unknowns:

∫
V
ψm(x)

N−1∑
k=0

αk

∫
V

K (x, x′)ϕk (x′)dx′dx = λ
∫

V
ψm(x)

N−1∑
k=0

αk

∫
V

G(x, x′)ϕk (x′)dx′dx

(Note: The weighted integral approach against a "testing" function is named as such
because the solution is being evaluated N times in order to arrive at N independent
equations for solving for the α coefficients.)

Again we switch the order of summation and integration:

N−1∑
k=0

αk

∫
V

∫
V
ψm(x)K (x, x′)ϕk (x′)dx′dx = λ

N−1∑
k=0

αk

∫
V

∫
V
ψm(x)G(x, x′)ϕk (x′)dx′dx

for m=0,...,N-1, which results in N equations.

We can clean this up further by defining matrices A and B as follows:

Am,k =

∫
V

∫
V
ψm(x)K (x, x′)ϕk (x′)dx′dx

Bm,k =

∫
V

∫
V
ψm(x)G(x, x′)ϕk (x′)dx′dx

and the problem in more concise can equivalently be written as:

Aα = λBα

which is known in mathematics as a generalized eigenvalue problem.

This can be solved using any standard numerical method. The smallest eigenvalue,
λmin represents the minimum of the initial objective function with its corresponding
eigenfunction αmin representing the coefficients for the basis expansion approxima-
tion of the optimal current distribution, Jmin(x), which achieves the global minimum
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of the problem. Similarly, the largest eigenvalue, λmax represents the maximum of
the objective with αmax being the coefficients of the basis expansion approxima-
tion of the globally maximizing current distribution, Jmax (x). The proof that the
extremal eigenvalues and their respective eigenvectors correspond to the optimal
minimizing and maximizing solutions of the QCQP presented is beyond the scope
of this work; however, it is readily available in the literature about generalized
Rayleigh quotients. [8]

The testing functions, ψm(x) are usually picked to be the same as the basis expansion
functions ϕk (x), which results in minimizing the error of the approximation to the
continuous solution in a least-squares sense and is known in the mathematical
literature as the Galerkin method. [46]

In the most general case, the A and B matrices can be computed by performing
a numerical electromagnetic simulations for each basis function utilized. i.e. N
basis functions would require N separate simulations to gather the data required
for computing A and B. Fortunately, each of these simulations is independent
from the rest and therefore this step can be completely parallelized without any
communication. Recently large virtual compute clusters (such as Amazon Elastic
Compute Cloud [38] and Google) are available for affordable hourly rates which
allow the instantiation of thousands of compute cores simulataneously. Since this
computation step can be completely parallelized, the computation time of the A and
B matrices can be linearly reduced with increasing number of CPU cores.

In many cases, there are considerably faster approaches to computing the extremal
eigenvalues λmax and λmin and their corresponding eigenvectors. For example,
in the situation where G(x, x′) = δ(x − x′), B reduces to the identity matrix and
the generalized eigenvalue problem becomes a standard eigenvalue problem: Aα =

λ∗α. The well known Power Iteration method can be used in this situation for solving
for λmax by starting with a random α vector and applying the A matrix operator to
it (matrix-vector multiplication) until it converges to the maximal eigenvector αmax .
At this point, λmax =

αH
max Aαmax

αH
maxαmax

. Computation of Ax usually does not require the
A matrix to be fully computed. Indeed, Ax for arbitrary vector x usually involves a
single electromagnetic simulation step since the x vector corresponds to excitation
current sources. Thus, if the Power Iteration method converges to a satisfactory
approximation of λmax in fewer than N steps, where N is the number of basis
expansion functions being used, then it can potentially be significantly faster than
fully computing A and solving the eigenvalue problem with a standard approach.
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Often the A matrix turns out to be extremely low rank compared to its size. For
example, if the K and G kernels are chosen such that the optimization is maximizing
the gain of an antenna at a given far-field position (θ, ϕ), the rank of A is at most 2.

In the next section, we will touch on linear current distributions in free-space. Fol-
lowing this, we will explore linear current distributions on lossy dielectric substrates
as well as arbitrary current distributions on lossy dielectric substrates. The utility
of this bound and how closely it can be approached with real antenna designs will
also be explored.

3.5 Linear Current Distributions
In this section we will explore linear current distributions and identifying optimal
distributions for maximizing various different objective functions.

Maximum Directivity of Linear Current Distribution
It has been well known since 1948 [105, 58, 14] that in the absence of loss or other
constraints, a linear current distribution can be designed which yields arbitrarily
large directivity in the far-field. This is a phenomenon known as superdirectivity.
For realistic antennas, superdirective current distributions are almost never practical
due to the huge opposing currents required which require extremely accurate phase
control and result in unacceptably low radiation efficiencies due to the finite loss
of metals and I2R resistive losses. Since the directivity rapidly approaches infinity
as the order of basis functions is increased (as expected), the problem is poorly
conditioned and it is difficult to perform an accurate numerical analysis. Instead, we
briefly touch on superdirective line current distributions working with the analytical
expressions. In the next section, we will present a brief sketch of a proof that an
arbitrary length line current distribution can achieve infinite directivity in the far-
field. Although this has been known for over half a century [14], most of the proofs
that exist in the literature are considerably more complex.

Proof: Superdirectivity of a Linear Wire Distribution
We assume an arbitrary line current distribution Jz (z) on the Z-axis which can be
nonzero from −z0 to z0. (Fig. 3.2)

Due to judicious alignment of the current distribution along the z-axis, the far-field
pattern of the antenna is invariant of ϕ and only depends on θ. Thus, the far-field
RCS for the distribution is given exactly by [6]:
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Figure 3.2: Line current distribution Jz (z) from −z0 to z0 centered on the z-axis

RCS(θ) =
η0k2

32π2


∫ z0

−z0

Jz (z)sin(θ)exp( j k zcos(θ))dz


2

To calculate all of the power radiated into the far-field, we must integrate across the
surface of the far-field sphere:

Prad = 2π
∫ π

0
RCS(θ)sin(θ)dθ = 2π

η0k2

32π2

∫ π

0


∫ z0

−z0

Jz (z)sin(θ)exp( j k zcos(θ))dz


2

sin(θ)dθ

Factoring out the sin(θ) term from the inner integral:

Prad = 2π
η0k2

32π2

∫ π

0


∫ z0

−z0

Jz (z)exp( j k zcos(θ))dz


2

sin3(θ)dθ

We are interested in maximizing the gain (or directivity since the system is lossless)
for θ = 90 degrees which is defined as:
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D(π) =
4πRCS(π)

Prad

Writing out the expression explicitly:

D(π) =
2
∫ z0
−z0

Jz (z)dz
2

∫ π

0
∫ z0
−z0

Jz (z)exp( j k zcos(θ))dz
2

sin3(θ)dθ

The exp( j k zcos(θ)) term is troublesome because it does not allow for easy sep-
aration of the z and θ variables. However, we consider the case where z0 is very
small (i.e. the antenna is electrically small). The maximum achievable gain of an
electrically small antenna intuitively is a lower bound for that of a longer distribution
since the longer current distribution (larger z0) is a superset of the solution space of
the small one.

cos(θ) ≤ 1, so for kz0 << 1, we can approximate exp( j k zcos(θ)) ≈ 1+ j k zcos(θ).

Let’s now work with the denominator of D(π):

∫ π

0


∫ z0

−z0

Jz (z)exp( j k zcos(θ))dz


2

sin3(θ)dθ ≈
∫ π

0


∫ z0

−z0

Jz (z)(1 + j k zcos(θ))dz


2

sin3(θ)dθ

=

∫ π

0


∫ z0

−z0

Jz (z)dz + j kcos(θ)
∫ z0

−z0

Jz (z)zdz


2

sin3(θ)dθ

=

∫ π

0

*.,

∫ z0

−z0

Jz (z)dz


2

− k2cos2(θ)

∫ z0

−z0

Jz (z)zdz


2+/- sin3(θ)dθ

+

∫ π

0

*.,2kcos(θ)Re *, j
∫ z0

−z0

∫ z0

−z0

J∗z (z′)Jz (z)zdzdz′+-+/- sin3(θ)dθ (3.1)

cos(θ)sin3(θ) integrates to 0 from 0 to π, so the cross-term falls out and we are left
with:
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∫ π

0

*.,

∫ z0

−z0

Jz (z)dz


2

− k2cos2(θ)

∫ z0

−z0

Jz (z)zdz


2+/- sin3(θ)dθ

=

∫ π

0
sin3(θ)dθ


∫ z0

−z0

Jz (z)dz


2

− k2
∫ π

0
sin3(θ)cos2(θ)dθ


∫ z0

−z0

Jz (z)zdz


2

=
4
3


∫ z0

−z0

Jz (z)dz


2

− k2 4
15


∫ z0

−z0

Jz (z)zdz


2

(3.2)

We can now rewrite our expression for directivity as:

D(π) =
2
∫ z0
−z0

Jz (z)dz
2

4
3
∫ z0
−z0

Jz (z)dz
2
− k2 4

15
∫ z0
−z0

Jz (z)zdz
2

We first note that if the function Jz (z) is purely even, then
∫ z0
−z0

Jz (z)zdz = 0 and

D(π) =
3
2
= 1.5

which agrees with the known directivity for a Hertzian dipole antenna which is
assumed to have a uniform current distribution. It is interesting to note that as long
as Jz (z) is symmetric across z = 0 that the directivity of the resulting antenna in the
(0, 0) solid angle will approach 1.5 as the the length approaches 0, regardless of the
actual distribution. On the other hand, if Jz (z) is odd, then

∫ z0
−z0

Jz (z)dz = 0 and
thus:

D(π) = 0

Let’s now assume Jz (z) = a + bz, which has both an odd and even component:

∫ z0

−z0

Jz (z)dz =
∫ z0

−z0

a + bzdz = 2az0

∫ z0

−z0

Jz (z)zdz =
∫ z0

−z0

az + bz2dz =
2bz3

0
3

We now see that if we judiciously choose the coefficients a and b, we can make the
denominator of D(π) go to 0 while maintaining a finite, nonzero numerator:
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4
3

(
2az0

)2 − k2 4
15

*.,
2bz3

0
3

+/-
2

= 0

4
3

(4a2z2
0) − k2 4

15
(
4b2z6

0
9

) = 0

b =
3
√

(5)a
kz2

0

Thus, if we let Jz (z) = a(1 + 3
√

(5)
kz2

0
z), the denominator of D(π) is 0 while the

numerator is nonzero, making D(π) tend to infinity as z0 gets smaller. Note that the
magnitude of the odd term of Jz (z) increases with the square of z0 as the length of
the antenna is made smaller. This implies that while indeed there is no theoretical
bound for the directivity of a linear current antenna of any length, the currents must
be made larger and of opposing phase to achieve superdirectivity. In practice, this
highly impractical due to ohmic (resistive) wire losses and difficulty and controlling
the precision of the phases of adjacent currents.

In the next section, we introduce a resistive loss term and compute a theoretical
bound for the maximum radiation efficiency and gain achievable for such a realistic
antenna.

Maximum Radiation Efficiency of Lossy Linear Current Distribution
As before, we begin with an arbitrary line current distribution Jz (z) on the Z-axis
which can be nonzero from −z0 to z0. Ohmic loss is proportional to I2 ∗ R, so given
a loss resistivity R (Ohm/m), the total power burned due to resistive losses can be
computed:

Pres = R
∫ z0

−z0

I2
z (z)dz =

R
dx2

∫ z0

−z0

J2
z (z)dz

Again, due to judicious alignment of the current distribution along the z-axis, the
far-field pattern of the antenna is invariant of ϕ and only varies with θ. Thus, the
far-field RCS for the distribution is given exactly by:

RCS(θ) =
η0k2

32π2


∫ z0

−z0

Jz (z)sin(θ)exp( j k zcos(θ))dz


2
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and

Prad = 2π
η0k2

32π2

∫ π

0


∫ z0

−z0

Jz (z)exp( j k zcos(θ))dz


2

sin3(θ)dθ

The radiation efficiency of the antenna is now defined as:

ηrad =
Pout

Pin
=

Prad

Prad + Pres
=

1
1 + Pres

Prad

Thus, maximizing ηrad is equivalent to maximizing the ratio Prad

Pres
. Unfortunately,

in its current state, the integral for computing Prad cannot be computed in closed
form for arbitrary distribution Jz (z) due to the exp( j k zcos(θ) term. We proceed
by Taylor expanding this term:

exp( j k zcos(θ)) ≈ 1 + j k zcos(θ) − k2z2cos2(θ)
2!

+ ...

In fact, if we assume that the line current distribution Jz (z) is an even function
(which is a valid assumption in maximizing radiation efficiency due to symmetry),
only the even terms of the expansion are important since the odd ones cancel out of
the integration:

exp( j k zcos(θ)) ≈ 1 − k2z2cos2(θ)
2!

+
k4z4cos4(θ)

4!
+ ...

We will later provide a more accurate expression, but to obtain a simple closed-form
bound, we proceed by using the triangle inequality:

Prad = 2π
η0k2

32π2

∫ π

0


∫ z0

−z0

Jz (z)exp( j k zcos(θ))dz


2

sin3(θ)dθ

<= 2π
η0k2

32π2

∫ π

0

∫ z0

−z0

Jz (z)2exp( j k zcos(θ))2 dzsin3(θ)dθ (3.3)

Thus:

Prad <= 2π
η0k2

32π2

∫ π

0

∫ z0

−z0

Jz (z)2 sin3(θ)dzdθ = 2π
η0k2

32π2

∫ z0

−z0

Jz (z)2 dz
∫ π

0
sin3(θ)dθ
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Further:

∫ π

0
sin3(θ)dθ =

4
3

so:

Prad <= 2π
η0k2

32π2
4
3

∫ z0

−z0

Jz (z)2 dz

Thus, we can easily compute an upper bound to the ratio Prad

Pres
:

Prad

Pres
<=

2π η0k2

32π2
4
3

∫ z0
−z0

Jz (z)2 dz
R

dx2

∫ z0
−z0

Jz (z)2 dz
= 2π

η0k2

32π2
4
3

dx2

R

And therefore we have an upper bound to the radiation efficiency:

ηe f f <=
1

1 + 1
2π η0k2

32π2
4
3
dx2
R

ηe f f <=

η0k2dx2

12π
η0k2dx2

12π + R

12πR
η0k2dx2

It turns out this bound is quite loose, so we go back to get a better bound:

Prad = 2π
η0k2

32π2

∫ π

0


∫ z0

−z0

Jz (z)exp( j k zcos(θ))dz


2

sin3(θ)dθ


∫ z0

−z0

Jz (z)exp( j k zcos(θ))dz


2

≈

∫ z0

−z0

Jz (z)(1 − k2z2cos2(θ)
2!

+
k4z4cos4(θ)

4!
+ ...)dz


2

and: Real(exp( j k zcos(θ)) <= 1, so:


∫ z0

−z0

Jz (z)exp( j k zcos(θ))dz


2

<=


∫ z0

−z0

Jz (z)dz


2
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and thus we have another upper bound for Prad:

Prad <= 2π
η0k2

32π2

∫ π

0


∫ z0

−z0

Jz (z)dz


2

sin3(θ)dθ = 2π
η0k2

32π2
4
3


∫ z0

−z0

Jz (z)dz


2

Note that since
∫ z0
−z0

Jz (z)dz
2
<=

∫ z0
−z0

Jz (z)2 dz, this is a tighter bound than the
first one.

As before, we assemble Prad

Pres
:

Prad

Pres
<=

2π η0k2

32π2
4
3
∫ z0
−z0

Jz (z)dz
2

R
dx2

∫ z0
−z0

Jz (z)2 dz

Unfortunately the top and bottom integrals do not cancel out in this case, but it is

well known that the function which maximizes the ratio
∫ z0
−z0

Jz (z)dz
2

∫ z0
−z0
∥ Jz (z)∥2dz

is the constant

function Jz (z) = α0. Substituting that in:

∫ z0
−z0

α0dz
2

∫ z0
−z0
∥α0∥2 dz

=
4z2

0
2z0
= 2z0

Thus, substituting in:

Prad

Pres
<=

2π η0k2

32π2
4
32z0

R
dx2

and:

ηe f f <=

η0k2z0dx2

6π
η0k2z0dx2

6π + R

This bound actually turns out to be quite tight as can be seen in Fig. 3.3 which
compares the bounds against the globally optimal current distribution for varying
values of R computed numerically using the aforementioned generalized eigenvalue
optimization technique without any approximation.
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Figure 3.3: Max Radiation Efficiency Bound of Linear Current Distributions vs
Optimal Maximizing Current Distribution

Note that this bound is more accurate for small z0 because the approximation made
for the exp( j k zcos(θ) term becomes more accurate as z0 approaches 0; however,
the error in the bound remains acceptable for reasonable lengths (such as λ

2 .)

3.6 Optimizing the Gain of a Linear Current Distribution over a Lossy Silicon
Substrate

Up until this point, we have focused our attention on the performance and efficiency
of line current distributions in free-space. Most modern embedded systems involve
some sort of dielectric substrate on which the antenna sits. For example, this
substrate can be a Printed Circuit Board (PCB) made of FR-4, Rogers [44], or
other ceramic laminate materials or even silicon in the case of integrated on-chip
antennas. In this section, we will study maximum performance bounds of a line
current distribution on such a dielectric substrate (Fig. 3.4). In all of the following
numerical examples, a silicon substrate (ϵr = 11.9, conductivity [σ] = 10 S/m)
of dimensions 1.74 x 1.74 x 0.217 mm is utilized with a PEC ground plane on
its bottom (-ẑ) face and a current distribution is optimized sitting on the top (+ẑ)
surface. A custom Finite Difference Frequency Domain (FDFD) [103, 101] solver
is used and all of the numerical results are computed at an operating frequency
of 100GHz. This makes the effective size of the silicon substrate 2λ x 2λ x λ

4 in
terms of the wavelength λ in silicon, which is c0

4
√

11.9
≈ 869µm. Note that any type
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of substrate of arbitrary dimensions could have been used as well as any operating
frequency. In fact, had a time-domain solver (such as Finite Difference Time Domain
[FDTD]) been used, judicious use of Fourier Transforms could yield rich broadband
frequency information with a single simulation. We chose 100GHz as the frequency
of interest because it is a typical design frequency for on-chip silicon radiators and
used the dimensions specified as they are also common silicon IC dimensions used
in standard bulk CMOS processes. Finally, a PEC ground plane is used on the
bottom surface of the substrate since most IC’s are soldered against a PCB on top
of a ground plane. Since the index of silicon is much larger than air, most of the
radiated energy is absorbed into the silicon substrate and the bottom ground plane
serves to reflect that back out through the top surface into free-space in the +ẑ

direction.

Figure 3.4: Illustration of a hypothetical line current centered on a dielectric substrate

For our first experiment, we will study the maximum gain of a line current distribu-
tion along the x̂-axis on the surface of the silicon dielectric descrbed above centered
at the origin. Since a closed-form Green’s function does not exist for the finite, lossy
silicon substrate with PEC back-plate grounding, we must use a computational elec-
tromagnetic simulation method to obtain numerical approximations to the required
Green’s functions. For the current experiment, and everything that follows in this
thesis, we will be using Finite-Difference methods as our simulation workhorse. In
order to ensure 2nd order convergence, all of the E and H fields for the FD method
are located in different positions on a lattice called the Yee cell (Fig. 3.5). The Yee
cell is the unit cell building block for the full system which consists of a cascade of
cells in the 3D dimensions [103, 101]. Often fields must be collocated to a central
position and this can be done with simple linear interpolation (averaging.)

An absorbing boundary condition named the Perfectly Matched Layer (PML, Fig. 3.6)
[10] is used on the outer boundaries of the Yee cell simulation domain lattice to
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Figure 3.5: A single Yee cell illustrating the relative positions of th E and H fields

absorb any incident electromagnetic fields. This is required due to the fact that the
numerical simulation must be truncated to a finite domain size, however, the initial
antenna problem is an open-boundary problem. In order to convert the problem to a
feasible closed-boundary problem, a PML is used which is a fictitious lossy material
that is perfectly impedance matched to free-space around the outer boundaries of
the simulation domain in order to absorb incident radiation instead of erroneously
scattering it back inside the volume.

The fields on the surfaces of a virtual cube within the simulation domain (Fig. 3.7)
are used to perform a Near-Field to Far-Field (NF2FF) transformation to obtain the
far-fields of the antenna structure being simulated. The NF2FF makes use of Love’s
equivalence principle (ref) and the free-space Green’s function to project the E/H
fields on this virtual surface onto the far-field sphere. [103]

Once the silicon dielectric geometry and PEC ground are defined within the con-
structs of the numerical FDFD simulation, electric current excitations (Jsrc) can be
defined and the resulting electromagnetic fields can be resolved everywhere in the
computational domain. In order to optimize for maximizing the gain of a current
distribution within this setup, the far-field data is required for each discrete excitation
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Figure 3.6: Cartoon illustrating the Perfectly Matched Layer surrounding the com-
putational domain to absorb incident EM radiation

Figure 3.7: Diagram showing virtual surface used within computational domain for
calculation of far-fields
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source as well as the electric field data collocated with every electric current source
that may be nonzero. The need for the far-field data is apparent, and the near-field
collocated electric field data is required for computing the incident (input) power
by calculating and summing the quantities E∗ ∗ J (proportional to V ∗ I, which is
voltage times current and has units of power) for every nonzero source J.

Fig. 3.8 illustrates a simplified top down view of the substrate surface with X and
Y directed sources as they are located on the Yee lattice. The actual simulated
surface is discretized at λ

40 and so there are 80x81 X directed sources and 81x80
Y directed sources. The line of sources which need to be computed for evaluating
maximum gain of a centered line distribution on the substrate surface is highlighted
in cyan. This implies that 80 separate FDFD simulations need to be performed in
order to compute the Numerical Green’s Function (NGF) from each current source
element on the line to the resulting EM fields which will then be used to solve the
optimization problem. However, because the problem is symmetric about the Y
axis (as well as the X axis), only half of the excitations need to be simulated and
the other half can be computed simply by appropriately flipping and mirroring the
resulting fields.

For each simulation, the electric fields collocated with every electric current source
position on the line segment of interest are saved and due to linearity an impedance
matrix, Z , can be formed mapping current densities to electric fields.

Further, it is well known that:

V = −
∫

E · dl

so over one Yee cell of dimensions dx x dy x dz, the voltage due to a Jx excitation
would be: V x = −Exdx.

Similarly, current is defined as:

I =
∫

JdA

and thus over one Yee cell, the current due to a Jx excitation is defined as I x =

Jxdydz, so the impedance matrix mapping currents to voltages is defined as:

Z̃ = Zdxdydz
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Figure 3.8: Diagram showing virtual surface used within computational domain for
calculation of far-fields

Complex power is defined as Pcomplex =
V∗I∗

2 thus the quantity xH Z dxdydz
2 x repre-

sents the complex (real input power + reactive energy stored) power produced by
the current source excitations defined by the discrete vector x. In order to maxi-
mize antenna gain, we require the real part of this quantity and it is apparent that:
real (xH Ax) = xH A+AH

2 x so by defining the new matrix Ẑ = (Z+ZH )dxdydz
2 the

quantity xH Ẑ x now represents the real input power into the system from the electric
current source excitations represented by the vector x.

Next, we store the tangential surface E and H field data on the faces of a virtual cube
surrounding the substrate and sources in another matrix B. Again, due to linearity,
Bx represents the E and H tangential surface fields on this virtual surface due to
any arbitrary current excitation vector x. As mentioned in the previous derivation
section:

U (θ, ϕ) =
k2

32π2η0

( [
Lϕ + η0Nθ

]2
+
[
Lθ − η0Nϕ

]2)
=

k2η0

32π2

(
N2
θ + N2

ϕ

)
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for zero values magnetic current sources. Nθ and Nphi are both linear integrals with
respect to the electric current excitation Jx and by using an appropriate approxima-
tion rule for integration (we use Simpson rule in this work; however, any suitable
integration rule can be utilized) we can relate the quantitites as follows:

Nθ = c1 ∗ B ∗ x

Nϕ = c2 ∗ B ∗ x

*.,
Nθ

Nϕ

+/- =
*.,
c1

c2

+/- ∗ B ∗ x = C ∗ x

C = *.,
c1

c2

+/- ∗ B

and thus, directivity at a specific solid angle on the far-field sphere can be defined
as:

Dθ,ϕ = xH 4πk2

32π2η0
CHCx = xHĈHĈx

with Ĉ =
√

4πk2

32π2η0
C, where Ĉ is a 2 x N matrix with N representing the number of

individual current source excitations on the line of interest.

Now, we must solve the optimization problem:

max
x

xHĈHĈx

xH Ẑ x

As derived in the previous section, this is a standard, generalized Rayleigh quotient
and the globally optimal solution can be found by solving the generalized eigenvalue
problem:

ĈHĈx = λ Ẑ x

for the maximal eigenvalue λmax . λmax corresponds to the maximum gain achievable
with the ideal line current distribution on the dielectric substrate and its correspond-
ing eigenvector xmax contains the coefficients for the electric current sources on that
line which achieves that gain.
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Since the matrix Ĉ has two rows, the N x N square matrix ĈHĈ is at most rank 2.
We can define a projection matrix:

W = ˆZ−1ĈH

and then multiply the generalized eigenvalue problem on the left by W and use a
change of variables: x = W y

W HĈHĈW y = λW H ẐW y

W HĈHĈW and W H ẐW are now both 2x2 and the generalized eigenvalue problem
is trivially solvable. The eigenvalues do not change under this transformation, and
xmax = W ymax where ymax is the 2x1 eigenvector of the transformed problem
corresponding to the largest eigenvalue λmax .

Results
First we optimize the max gain possible for a line current of varying length from
2dx to 80dx where dx is the unit step and is λ

40
√

11.9
( λSi40 ) = 21.7 µm:

Figure 3.9: Diagram showing virtual surface used within computational domain for
calculation of far-fields
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As expected, the plot is monotonically increasing since current distributions which
are longer have a solution set which is a superset of all short length ones. At this
point, it’s instructive to compare the maximum gain achievable of an ideal line
current distribution against the gain of an equivalent length PEC dipole antenna fed
by a current source excitation of length 2dx in the center:

Figure 3.10: Diagram showing virtual surface used within computational domain
for calculation of far-fields

Looking at the plot of the gain of the metal dipole (which is a real antenna) it is
apparent that up to around an antenna of length 600 µm the gain of the dipole antenna
approaches the maximum possible gain of a line current very closely. Beyond around
600 µm of length, the gain of the metal dipole starts falling significantly short of the
predicted optimal bound. In fact, the gain of the metal dipole is non-monotonic and
begins to decrease beyond a length of 800 µm.

To better understand why this phenomenon is occuring, it is useful to observe the
current distributions of both the optimal line current as well as the metal antenna.
Here we plot the real part of the current distribution of the optimal current for
varying line lengths:
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Figure 3.11: Optimal line current distributions for increasing line lengths

To better understand why the gain of the metal dipole antenna starts to fall short of
the optimal gain, we compare the optimal current distribution against the current
distribution generated by the realistic metal dipole for increasing lengths of line
length:

Figure 3.12: Optimal line current distributions for increasing line lengths
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Figure 3.13: Optimal line current distributions for increasing line lengths

Figure 3.14: Optimal line current distributions for increasing line lengths
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Figure 3.15: Optimal line current distributions for increasing line lengths

As can be seen, the current distribution of the real metal dipole for the 478 µm length
antenna matches up very closely with the optimal current distribution, and thus the
gain achieved by the metal dipole is quite close to the maximum gain achievable for
any arbitrary current distribution along that length of line.

As the length of antenna becomes longer, the deviations between the optimal current
and current along the metal dipole become increasingly evident. Most importantly,
the the bottom "lobes" of the ideal current distribution dive deeper and deeper with
increasing length compared to the metal antenna.

Thus, a simple metal dipole antenna cannot achieve close to the maximum gain
possible of a line current on the substrate when it is longer than around 600 µm

in this example. In order to obtain better performance (closer to the maximum
bound) for a real antenna, multiple excitation sources at different points along the
line should be investigated.

Before we shift our focus to 2D current distributions, we also plot the max gain
achievable for varying lengths (centered on the X axis) of current versus position of
the line on the Y axis:
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Figure 3.16: Optimal line current distributions for increasing line lengths

The max achievable gain of an optimal line current is symmetric about the Y-axis
as expected since the silicon substrate exhibits mirror symmetry across the X and Y
axes. Further, the max achievable gain is a strictly increasing function with respect
to the length of current distribution allowed due to the fact that the design space of
a longer length line current is a superset of all currents which are shorter since any
arbitrary current distribution is allowed along the line.

Next, we plot the gain achieved in the broadside direction of a real PEC dipole
antenna and sweep the same parameters as before: position on Y-axis along substrate
surface and length of dipole antenna (it is always centered on X-axis):
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Figure 3.17: Optimal line current distributions for increasing line lengths

As discussed and analyzed earlier, beyond a certain length of dipole antenna, the
maximum gain begins to decrease. This is due to the fact that the current distribution
imposed by the PEC material begins to significantly deviate from the optimal current
distribution for maximizing broadside gain beyond a certain length of antenna.

3.7 Bounding the Maximum Possible Achievable Gain of any Abritrary An-
tenna Structure over a given design region on a Lossy Silicon Substrate

Now we shift our focus to 2D patches of current on the silicon substrate surface. A
real on-chip antenna or group of antennas does not have to be confined to a single
dimension and thus we explore the maximum gain achievable by patches of current
on the same lossy, grounded silicon substrate as in the previous section.

Fig. 3.18 plots the maximum gain achievable in the broadside (θ = 0, ϕ = 0)
direction of an optimal square patch of current centered on the silicon surface vs
the edge length of the patch. As expected, the plot is monotonically increasing
with increasing patch size. The maximum gain achievable for this substrate in the
broadside direction (by utilizing the whole substrate surface area) is 5.17 (or 7.1dBi).
Note that this is a maximum bound and cannot necessarily be achieved by a real
metallic antenna.
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Figure 3.18: Maximum Broadside Gain Achievable by Increasing Size of Optimized
Square Patch of Current Centered on Origin of Lossy Silicon Substrate Surface

Now we plot 2D heatmaps of the optimal current distributions for patch edge sizes
435µm, 869µm, 1.3mm, and 1.74mm:

Figure 3.19: Heatmap of Square Current Distribution of Size 435µm x 435µm
centered on Silicon Surface which Maximizes Broadside Gain
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Figure 3.20: Heatmap of Square Current Distribution of Size 869µm x 869µm
centered on Silicon Surface which Maximizes Broadside Gain

Figure 3.21: Heatmap of Square Current Distribution of Size 1.3mm x 1.3mm
centered on Silicon Surface which Maximizes Broadside Gain
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Figure 3.22: Heatmap of Square Current Distribution of Size 1.74mm x 1.74mm
centered on Silicon Surface which Maximizes Broadside Gain

It is quite interesting to observe that all of the optimal distributions consist mainly of
two horizontal strips of current on opposing edges of the square patch. The substrate
is 90 degree rotationally symmetric, so there are actually two optimal distributions
(90 degree rotated versions of each other) which achieve the maximum broadside
gain.
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Chapter IV: Optimization for the Design of Real Metallic Antenna Structures

Up until this point we have been solving the relaxed optimization problem for
optimal current distributions over a given surface or volume that maximize a de-
sired performance metric (such as antenna directivity, gain, or radiation efficiency.)
While, as demonstrated with various examples, the results from this exercise often
provide useful and tight upper performance bounds as well as good initial design
insight, they unfortunately do not directly lead to a manufacturable antenna solu-
tion. In this chapter, we attack the design problem of real antennas. We will see
that one of the most critical factors of a successful antenna optimization lies within
the electromagnetic simulation step– specifically how rapidly it can be performed.
After developing an extremely efficient and fast simulation framework, we close
the loop with an optimization algorithm and show the performance of the algo-
rithm on designing radiating antennas on lossy dielectric slabs as well as coupling
antennas for dielectric waveguides (in the following chapter.) In the case of the
waveguide coupler, we compare simulation results of the best resulting design with
real measurements of the fabricated coupler. Finally, we describe the design of a
dual-channel 50Gbps (per channel) 120GHz transceiver developed in a bulk CMOS
28nm process that will be used to demonstrate the complete multi-mode waveguide
link.

4.1 Introduction to Heuristic Optimization Approaches
The most simplistic flow-chart of operations which characterizes any structure op-
timization algorithm is shown in Fig. 4.1. The electromagnetic simulation step is
usually performed numerically by utilizing any number of methods such as the Fi-
nite Difference Time Domain (FDTD) [101], Finite Difference Frequency Domain
(FDFD) [103], Finite Element Method (FEM) [108], and Integral Equation (IE)
[109] techniques. Solving Maxwell’s equations computationally in three dimen-
sions is quite challenging and processing intensive, however, so the EM simulation
step is almost always the rate-limiting step in the whole process. Almost all opti-
mization algorithms require numerous iterations to converge to a solution, making
the speed efficiency of the inner EM simulation + optimization loop critical for the
success of the overall structure design problem. Therefore, we will mainly focus on
the EM simulation block in the following sections of this chapter, but we will first
touch briefly on the optimization block.
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Figure 4.1: Simplified Flow Chart of Typical Structure Optimization Process

As mentioned in the previous chapter, the real antenna design problem is NP-hard
[75] and the globally optimal solution unfortunately cannot be guaranteed to be
found without an exhaustive search of the whole design space. Since even in the
simplest of scenarios, an exhaustive search would be completely time prohibitive,
we must look towards alternative, "heuristic" based, techniques to use in order to
optimize real designs.

Most of these techniques can be classified under two distinct categories: local or
global methods. Local methods begin with an initial (usually randomized) solution
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and perform a variation of gradient descent to arrive at the closest local minimum
(or maximum).

A local method will improve on the solution with every iteration until the local
min (or max) is reached; however, once it has reached that point it will stagnate.
Therefore, local methods often need to be seeded with many different initial solutions
and run to completion in an attempt to explore the design space as thoroughly as
possible. Due to this, the quality of the solution often depends on the initial guess and
local methods tend to perform best when given reasonable or decently performing
initial starting points.

On the other hand, global methods employ various heuristics to avoid getting "stuck"
in local minima/maxima. Well known global methods include Genetic Algorithms
(GA) [81, 85] and Particle Swarm Optimization (PSO) [85, 54, 13, 52, 67]. Although
global methods may not always get stuck within local optima like local methods, they
are less principled in their approach and rarely have any mathematical theoretical
guarantees on their convergence or performance. Furthermore, they often contain
critical internal parameters which may require meticulous fine-tuning in order to
produce worthwhile optimization results– such as number of generations, number of
mutations per generation, and cross-over approach for GA’s and number of particles
and particle velocity for PSO’s. Due to these shortcomings, local methods are often
preferred over global methods. Another common approach that some designers
may take is to use a global method for the initial optimization stage in order to
reach a decently performing initial solution, followed by a local optimizer to further
optimize and finetune the design. [80]

In the next sections we will give a brief overview of local gradient descent and
even simpler local method which we have named random coordinate ascent as
well as the two global methods described: Genetic Algorithms and Particle Swarm
Optimization.

Local Methods
The most common local method is first order gradient descent/ascent. Sensitivities
of every pertubable unknown must be determined at each iteration. The sensitivity
is essentially a gradient and quantifies the change of the objective function with
respect to a physical perturbation of a parameter. Optimizing the "tooth" spacing of
a grating coupler for maximizing light coupled into a waveguide from an external
fiber provides a good example of this. Fig. 4.2 illustrates a simplified grating coupler
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with four adjustable parameters (d0, d1, d2, and d3.)

Figure 4.2: Simplified Grating Coupler Diagram with 4 Perturbable Parameters for
Adjusting Tooth Spacing

To use a local method for optimizing the spacings, the effect of perturbing each of
the dk parameters on the coupling efficiency must be determined. The most basic
approach would be to slightly adjust each parameter, one at a time, and simulate
the effect on the objective function (coupling efficiency.) Then, the sensitivity is
computed as follows (η is coupling efficiency):

∂η

∂dk
≈

ηdk−perturbed − ηorig

dk − perturbed − dk

This effectively computes the gradient of the parameters numerically by using finite
differences. Once the sensitivities have been approximated for all of the parameters,
a small (a linear assumption is being made by taking only the first derivative into
account, so care must be taken to adjust the step size as to not lead to approximation
error) step can be taken in the direction of the gradient for each parameter to arrive
at a new solution with improved coupling efficiency. This process is repeated until a
local maximum is reached where all the sensitivities compute to 0 and the algorithm
stagnates. This algorithm forms the foundation of most local based search methods.

The main fallback of the method as described is the fact that the simulation complex-
ity scales linearly with the number of parameters. For a structure design problem
with N perturbable parameters, N+1 electromagnetic simulations must be performed
at each optimization step. As mentioned in the introduction of this chapter, 3D elec-
tromagnetic simulation can be quite time consuming even with the availability of
significant computational power. A clever technique called the Adjoint Sensitivity
Method exists which overcomes this issue and requires only 2 simulations (the for-
ward simulation + the adjoint system simulation) per optimization step regardless
of the number of perturbable unknowns. This technique was first discovered in the
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context of Computational Fluid Dynamics [29, 30] and more recently was applied
to Maxwell’s equations for electromagnetic structure optimization [ref]. The details
of the Adjoint approach are beyond the scope of this thesis; however, the reader may
refer to [29, 30, 2, 60, 74, 28, 19, 17, 18, 50, 62, 77, 59, 51, 34] for an in-depth
derivation.

Global Methods
There are numerous different heuristic-based global algorithms for structure op-
timization. Two of the most common ones are Genetic Algorithms (GA) and
Particle Swarm Optimization (PSO). We utilized Binary Particle Swarm Optimiza-
tion (BPSO) to optimize photonic multiplexer devices in Chapter VII. The reader is
referred to the following references for in-depth analysis and discussion on the GA,
PSO, and BPSO algorithms: [81, 85, 85, 54, 13, 52, 67].

4.2 Ultrafast Electromagnetic Structure Evaluation
As mentioned in the introduction, the success of any optimization approach strongly
depends on the speed and efficiency of the forward (electromagnetic simulation)
step. In this section, we develop an approach which allows the evaluation of any
arbitrary solution within the optimization design space orders of magnitude faster
than any standard electromagnetic simulation approach. In fact, many designs can be
evaluated on a single CPU core of a standard machine in the millisecond timescale.

We first develop the approach for designs which can consist only of perfect metal
(PEC) material and then extend it more generally to support electromagnetic struc-
tures designed with any dielectric materials.

Ultrafast PEC Structure Evaluation
While superposition of the resulting electromagnetic fields works for electric and
magnetic current excitations, this approach does not work unfortunately for dielectric
materials or metal conductors as illustrated in Fig. 4.3. This is due to the fact that
dielectrics and metals can scatter fields and therefore have interdependence on each
other. Thus, simply summing the resulting fields from two different pieces of metal
cannot capture the interaction which would occur from the effect of the metals on
each other. This interaction may actually be captured fairly readily, however, using
an impedance matrix which maps currents to fields (similar to the previous chapter
on current optimization).
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Figure 4.3: Simplified Antenna Design Diagram Illustrating the Failure of Super-
imposing the Resulting Fields from Two Pieces of Metal

Assume we have a design surface grid made of X and Y directed Yee cells in our
simulation domain as in Fig. 3.4. In order to enforce a PEC condition on a Yee
cell element, its collocated tangential electric field component (Ex for a Jx current
and Ey for a Jy current) must be forced to 0. Instead of doing this at this point,
we calculate the transfer function numerically (i.e. Numerical Green’s Function)
from each current source element on the grid to all of the Ex and Ey fields. For an
NxN square substrate, this would normally require N2 individual electromagnetic
simulations. However, due to symmetry across the X and Y axes as well as 90 degree
rotational symmetry, the number of simulations required can be cut by a factor of
8 to N2

8 . As with the current optimization problem, ALL of these simulations are
completely independent of each other and can be run on separate cores/machines
completely in parallel without any communication.

Once the data has been acquired from the simulations, we organize it into a matrix
structure mapping J’s to E’s:

*.,
Ex

Ey

+/- = x = Z y =
*.,

Jx

Jy
+/-

There are M = N2 total E and J elements since the substrate grid is NxN as described
earlier and thus Z is an M xM matrix.

Now, we assume one element in the grid is a source which provides input power for
the antenna: Jp = 1 with 0 ≤ p ≤ M − 1, and so:

J src
k = 1 for k = p, 0 otherwise.

The resulting E fields on the substrate surface due to this source element are now:
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Esrc = Z J src

In order to enforce a PEC condition, the tangential E field must be 0 wherever
there is PEC. This condition must be enforced by surface currents flowing on these
PEC surfaces which generate their own fields. Thus, if we can find a current
distribution over the locations where there should be PEC that exactly cancels the
electric fields produced by the source element over the locations where there is PEC
by the uniqueness property of Maxwell’s equations we will have arrived at the same
solution as if we had ran the initial simulation with PEC materials and the source.

To accomplish this, we define a matrix P which is used to extract the columns and
rows of the Z matrix corresponding to the indices on the grid which should be
PEC. Assume there are q PEC elements out of the M total elements and the set
representing all of the indices of PEC elements is defined in a vector vpec.

In Matlab notation:

Jpec = Z (vpec, vpec)\Esrc(vpec)

And the fields of the full system with the PEC and the source together are simply:

Etotal = Z Jtotal

where

Jtotal
k = Jpec

k if k ∈ vpec, J srcif k = p, 0 otherwise

Again, because of uniqueness, the fields Etotal are identical to the ones that would
have been computed by performing an electromagnetic simulation with J src and all
of the indices defined by vpec forced to be perfect conductors.

However, after the calculation of the Z matrix, only a single matrix solve of a
small, dense matrix is required per evaluation of any arbitrary structure within the
optimization design space. The largest that this matrix can be is M xM , which
happens in the extreme case where every possible element on the design grid is
forced to be a PEC material. Even in this situation, the system which needs to be
solved is much smaller than the huge system which must be solved for determining
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the solution to the full 3D Electromagnetic problem. In practice, standard solution
techniques take on the order of milliseconds on a personal computer for each design
evaluation, allowing an optimization loop to perform many iteration passes very
rapidly.

Ultrafast Arbitrary Dielectric Structure Evaluation
In this section, we generalize the previous approach to allow the evaluation of
arbitrary dielectric elements within the design grid. We begin by going back to the
differential form of Maxwell’s equations:

∇ × E = − jωµH

∇ ×H = jωϵE + J (4.1)

These are continuous-space time-harmonic equations. In order for them to be solved
numerically they must be discretized. Thus, E and H , and ϵ and J become vectors
and the curl operators are also discretized into matrices:

∇ × E −→ DE xE

∇ ×H −→ DH xH

where DE represents the discretized curl operator on the electric fields and DH the
discretized curl operator acting on the magnetic fields. In the case of the finite-
difference method, these are usually simple centralized differencing operators. We
can rewrite Maxwell’s equations now as a linear system of equations:

DE xE = − jωdiag(µ)xH

DH xH = jωdiag(ϵ )xE + bJ (4.2)

Solving the first equation of eq.4.2 for xH and substituting into the second one, we
are left with a single equation for xE:

DH diag(µ)−1

jω
DE + jωdiag(ϵ )

 xE = −bJ
(4.3)
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Dividing every term by jω:

−DH diag(µ)−1

ω2 DE + diag(ϵ )
 xE = −

bJ

jω (4.4)

Eq. 4.4 is a linear system of equations to solve for the electric fields, xE , for
a given electric current source excitation vector, bJ , for the system with per-
mittivity and permeability vectors, ϵ and µ respectively. The system matrix
A = −DH diag(µ)−1

ω2 DE +diag(ϵ ) and thus the electric fields can be found by solving:
xE = A−1 bJ

jω .

Let’s start with the assumption that the system matrix A can be directly inverted.
This assumption is usually not true as the system matrix A tends to be extremely
large and sparse, but its inverse is usually dense, often making direct methods such
as LU or LDL factorization intractable for even moderately sized 3D problems.
However, starting with the assumption that we can obtain A−1 will motivate the
approach for dealing with the situation where only iterative solves are feasible.

Assume now that B = −DH diag(µ)−1

ω2 DE and thus
[
B + diag(ϵ )

]
xE = AxE = − bJ

jω .
Now we have:

xE =
[
B + diag(ϵ )

]−1
(
− bJ

jω

)
In a typical optimization loop, a small amount of dielectric is changed from one step
to the next, mathemtically implying that only a few elements of the ϵ vector must
be modified. This motivates the use of the Woodbury Matrix Identity [ref], which
efficiently allows small rank corrections to be applied to the inverse of a matrix:

(A +UCV )−1 = A−1 − A−1U (C−1 + V A−1U)−1V A−1

Define a matrix U which is a tall indicator matrix that maps the elements of the ϵ
vector that we wish to modify (let’s name this vector ϵ∆ to the full-size ϵ vector
which contains all of the values of permittivity for the full system (including the
ones which remain unchanged.) Note that now: A−1

new = (A +Udiag(ϵ∆)UT )−1 and
thus substituing into Woodbury’s matrix identity we have:
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(A +Udiag(ϵ∆)UT )−1 = A−1 − A−1U (diag(ϵ∆)−1 +UT A−1U)−1UT A−1

Note that this correction or update to the matrix inverse for the modified ϵ vector
only requires a matrix inverse of a matrix the size of the number of elements being
modified. Assuming this number of elements is much smaller than the total size
of the original system matrix (which for any realistic system should be a valid
assumption), this approach allows updatingthe original solution to the new solution
for the updated permittivity vector extremely efficiently as compared to re-solving
the full system.

Now we consider the case where we can only obtain iterative solutions to the
system of equations, i.e. we know xE for a finite number of right hand side (RHS)
excitation vectors, bJ . In the case of the current optimization and ultrafast PEC
optimization algorithm, if we have N unknowns on the design grid, we would
need to perform N individual solves (as mentioned before, these can all be run
completely in parallel without communication) in order to obtain the Numerical
Green’s Functions required for defining arbitrary current distributions on the design
grid or forming perfect metals. This same simulation data can also be used to define
any arbitrary dielectric material over the same design region.

We define a matrix G which contains the set of column vectors
[
bJ0, bJ1, ..., bJN−1

]
solved for the optimization problem at hand. Thus, by performing N iterative solves
of the original system, we have the matrix:

A−1G =
[
xE0, xE1, ..., xEN−1

]
In the case of the impedance matrix required for determining quantities such as input
power into the system for an antenna structure, only the field quantities collocated
with the excitations are required and thus: Z = GT A−1G is a square matrix.

Now, we revisit Woodbury’s identity:

(A +Udiag(ϵ∆)UT )−1 = A−1 − A−1U (diag(ϵ∆)−1 +UT A−1U)−1UT A−1

Multiplying by G from the right and GT from the left we have:

GT (A+Udiag(ϵ∆)UT )−1G = GT A−1G−GT A−1U (diag(ϵ∆)−1+UT A−1U)−1UT A−1G
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U was defined as being a subset of the ϵ elements which can be modified, so by
definition it can be written as a product of G multiplied by another arbitrary matrix,
W : U = GW and substituting back in:

GT (A+Udiag(ϵ∆)UT )−1G = GT A−1G−GT A−1GW (diag(ϵ∆)−1+WT GT A−1GW )−1WT GT A−1G

and since Z = GT A−1G:

Znew = Z − ZW (diag(ϵ∆)−1 +WT ZW )−1WT Z

And we have thus derived an update to the impedance matrix for any arbitrary
change in the dielectric vector, ϵ∆ which does not require ever having the inverse of
the full system A−1 and just works on the original impedance matrix, Z .

Note that in the case of a perfect metal, ϵ∆ → ∞ and thus diag(ϵ∆) → 0, so the
expression simplifies to:

Znew = Z − ZW (WT ZW )−1WT Z

which is the same expression derived in the previous section for PEC’s.

Design of a Real Metal Antenna Structure for Maximizing Broadside Gain on
a Lossy Silicon Substrate
In this section, we use the ultrafast PEC structure simulation technique coupled with
the coordinate ascent optimization algorithm to optimize an antenna on a realistic
lossy silicon substrate for maximizing gain in the broadside direction. The same
1.74 x 1.74 x 0.217 mm 10 S/m silicon substrate with metal ground plane used
for the current optimization examples in the previous chapter is utilized. This is
because all of the Numerical Green’s Function data acquired for those calculations
can be reused here without any modication and also for comparison purposes to
determine how close our heuristic optimization algorithm can approach the optimal
maximum bound predicted. We will see that the resulting design closely approaches
the maximum bound, especially when multiple excitation drive points are allowed.

The coordinate ascent algorithm [3] is perhaps one of the simplest local optimization
algorithms, yet in many situations can yield very effective results. The algorithm
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has the advantage of being very simple and fast. A random pixel on the optimization
grid is selected at the beginning of each iteration and flipped. If the performance of
the objective function increases, the change is accepted otherwise it is flipped back
to the original position. The algorithm is run until stagnation, which occurs once
no single flip of any element on the optimization grid results in an improvement in
performance.

Figure 4.4: Flow Chart Illustrating Coordinate Ascent Optimization Algorithm

Improvement Factor
In our implementation of the coordinate ascent algorithm, we add an extra parameter
named the "improvement factor." The improvement factor starts at 1 and is decreased
by 1% every iteration. When it is 1, flipping a grid cell must improve the gain by
100% (2x) in order for the change to be accepted. Once it has reached 0, any
change which improves the gain, even slightly, is taken. The motivation behind
the improvement factor parameter is to reduce noise in the resulting design by first
preferring design choices which improve the objective function the most.
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Source/Drive Point Selection
From the current optimization section, we observed that the maximum possible
broadside gain for this silicon substrate configuration was achieved with two hori-
zontal line current distributions on the top and bottom edge of the substrate. The
maximum current magnitude is in the center of each of these horizontal line currents
and they are both in the same phase with respect to each other, so we postulate that
these two points would be good feed points for a real metallic antenna design. Thus,
we start the optimization code with an empty design grid and these two sources at
the prescribed points as shown:

Figure 4.5: Top View Illustration of Si Substrate Surface Indicating Initial Empty
Design Grid with Two Antenna Feed Sources

We run the coordinate ascent with improvement factor modification optimization
algorithm with two different approaches for selecting grid cells to flip:

1) Uniform distribution: Every cell on the grid has exactly the same probability of
being selected to be flipped.

2) Weighted by globally optimal current distribution: The globally optimal current
distribution is first determined using the approach in the previous chapter and the
grid cell to be flipped is drawn from a probability distribution weighted by the
magnitude of the optimal current strength at each point.
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(1) is simply the "base" algorithm and the intuition behind (2) is that areas with
higher current density in the optimal current distribution are more likely to have a
larger effect on the objective function than low or empty areas.

Fig. 4.6 compares these two random cell selection approaches:

Figure 4.6: Absolute Broadside Gain vs Iteration Number for Metallic Antenna
Optimization Utilizing Coordinate Ascent Algorithm with Two Different Random
Cell Selection Approaches

It is readily apparent that the selection approach which weighs the probability distri-
bution with the magnitude of the optimal current distribution converges much faster
(about 4 times or 200 iterations vs 800) than the uniformly distributed approach.
Both approaches eventually approach almost the same performance before algorithm
stagnation and the resulting structures appear very similar in shape:
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Figure 4.7: Result of Coordinate Ascent Algorithm Used to Optimize Metal An-
tenna over Lossy Silicon Substrate for Maximizing Broadside Gain using Uniformly
Distributed Random Cell Selection Approach

Figure 4.8: Result of Coordinate Ascent Algorithm Used to Optimize Metal An-
tenna over Lossy Silicon Substrate for Maximizing Broadside Gain using Optimal-
Current-Distribution Weighted Random Drawing Approach
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Antenna Cleanup Algorithm
While the antenna designs generated by the coordinate ascent algorihtm in the
previous section can yield impressive performance, the resulting structures often
look "noisy" and may contain superfluous blocks of metal which are not critical
towards the performance of the final design. This was the main motivation behind the
introduction of the "improvement factor" parameter; however, even the improvement
factor does not completely solve the issue.

In order to clean up the final solution of an antenna structure designed using the
algorithm in the previous section, we implement a simple post-processing algorithm.
Unlike the design algorithm, the cleanup algorithm is only allowed to remove pieces
of metal and cannot flip cells or insert more metal into the design. The algorithm
proceeeds by selecting a random piece of metal to remove each iteration. If the
performance of the objective function degrades by less than a prescribed amount
(we found empirically that 0.1% works well) by removing the metal, the change is
kept and the algorithm proceeeds. The algorithm stagnates when there are no more
pieces of metal in the design grid which can be removed that lead to a reduction in
performance of less than the desired amount (0.1% in our work.)

Fig. 4.9 illustrates the slight degradation in the gain due to running the cleanup
algorithm. The gain starts at 2.74 (4.4dBi) and drops to 2.67 (4.3dBi) after the
cleanup process has been completed:

Figure 4.9: Objective Function vs Iteration Number
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For only a slight penalty in gain, the resulting antenna structure is significantly
simpler, consumes considerably less chip surface area, and is more readily fabricated
as seen in Fig. 4.10:

Figure 4.10: Result of Metal Cleanup Algorithm

Realtime Painting of Real Metal Antenna Structures with Instant Gain Evalu-
ation
In this section, we develop a tool which allows designing metal antennas on a
dielectric substrate surface with instantaneous evaluation of performance metrics
after each structural change. This tool ultimately demonstrates the speed of the
Ultrafast PEC Structure Evaluation method as compared to standard electromagnetic
simulation techniques and allows rapid design insight to be developed by a human
designer by allowing them to quickly iterate and experiment with many different
design iterations.

The tool displays a top view of the antenna dielectric substrate and allows both PEC
material and current sources (antenna feed points) at any point on the design grid
in realtime by using the mouse. After each change to the design, the peformance of
the modified antenna is computed in realtime and displayed to the human designer
on a millisecond timescale. Furthermore, the algorithm computes the resulting
gain of the antenna for the situation where all of the sources are driven with the
same amplitude and phase and also when the sources are all driven at their optimal
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amplitude and phase conditions (the optimal drives are computed using the approach
in the previous chapter.)

We take the final resulting, clean antenna structure from the cleanup algorithm of the
previous section and manually adjust it and add extra antenna feed points to improve
the performance further. The resulting antenna has a gain of 6dBi in the broadside
direction and a radiation efficiency of 60% (verified with Ansys HFSS) which is
quite close to the theoretical maximum gain achievable (7dBi.) The optimal drive
amplitudes are the same for all of the antenna ports and phases of 0, 45, and 90
degrees are required, which can be readily generated on-chip using phase-rotator
circuitry. Fig. 4.11 illustrates this design:

Figure 4.11: Manually Realtime Adjusted Multi-Port Metal Antenna Achieving a
Broadside Gain of 6dBi and Radiation Efficiency of 60%.

Up to this point, we have focused all of our efforts on on-chip metallic antenna design
and optimization. In the next chapter, we explore the versatility of the techniques
and algorithms developed in this chapter by applying them to optimize metallic
coupling antennas for coupling energy into and out of dielectric waveguides.
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Chapter V: Automated Design of 3D Printed Plastic Waveguide Surface Coupling
Antenna

Utilizing the optimization techniques developed in the previous chapters, we imple-
ment an automated optimization algorithm which generates de-novo electromagnetic
structures under specified design objectives. We demonstrate a particular design
of a surface coupling antenna which is capable of launching energy efficiently into
the main mode of a plastic waveguide. We use a standard 3D printer to print the
designed system in order to verify our simulation results. The maximum available
power gain of the system was measured as 0.128, implying that the coupler achieves
an efficiency of at least 36% at the designed center frequency of 9.6GHz. The actual
coupler efficiency is believed to be much higher because the polymer used is very
lossy in this frequency range.

5.1 Introduction
Plastic waveguide based serial links are recently emerging as efficient, cost-effective
alternatives to traditional copper wire based systems. [26, 104] Wireline links
typically become extremely inefficient for distances approaching and surpassing
1m. While optical fibers can be efficient over long distances, optical links can be
very expensive, do not integrate easily with standard CMOS processes, and require
expensive alignment protocols. In contrast, plastic waveguides offer the advantages
of low loss across medium distances (1-10m) and low integration costs since they
can be excited electrically with metal coupling antennas. Unless the link is very
long, the majority of the loss is dominated by the transmit and receive coupling
losses. Furthermore, the overall power efficiency is the square of the individual
coupler efficiency due to the TX and RX couplers. Therefore, it is crucial to
utilize efficient couplers to transfer incident power effectively into the fundamental
waveguide mode. In this chapter, we discuss the design of a custom, optimized
surface coupler, which is 3.5x more efficient than a standard dipole antenna, leading
to a greater than 10x improvement in link efficiency.

5.2 Optimization Algorithm
Our optimization algorithm works on a structured grid of unit cells which can either
be filled in to represent a patch of metal or left empty. Due to mode profile symmetry,
a good coupler should also be symmetric. We reduce the design space by optimizing
one “wing” of the coupler and mirroring it for the other side. Since each cell can
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Figure 5.1: Model of Waveguide Link with Zoomed-in Diagram of Coupler Design

either be filled with metal or left empty, there are 2N possible configurations for a grid
of N cells. Given fixed waveguide dimensions, the number of cells that can be used
is ultimately limited by the fabrication resolution. For our specific implementation
we utilized a 13 × 5 cell grid per coupler wing which results in 265 ≈ 3.8 × 1019

possible configurations. Due to the 0 − 1 nature of the problem, it can be shown
that it is NP hard, meaning that no known algorithms exist which can guarantee
finding a global minimum faster than an exhaustive search. Even for our relatively
“small” design problem, going through 265 designs would require an intractable
number of EM simulations. Although it is a very difficult problem, many heuristic
algorithms exist for attacking 0 − 1 problems including gradient based approaches
and genetic algorithms. For our specific problem, finding a suitable gene crossover
mechanism is tough and while we tried various techniques, none performed nearly
as well as an even simpler optimization strategy: random coordinate ascent. At each
iteration, we flip a random cell and keep the change if the performance improves,
otherwise we revert the flip and repeat until convergence has been reached. We
found that seeding the algorithm with a random solution performs best, although
starting with “empty” and “full” designs yields acceptable results as well. We
used our own custom FDTD-based 3D EM simulator coupled with the ultra-fast
PEC simulation technique designed specifically for the specific problem at hand to
optimize the ratio of the power coupled into the fundamental waveguide mode to the
input coupler power at a single frequency. The resulting coupler is resonant because
the optimization metric was enforced at a single frequency. Broadband couplers can
be generated with multi-frequency objective functions. Fig. 5.2 shows the ascent of
the coupling efficiency vs. iteration for a typical run.
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Figure 5.2: Coupler Efficiency vs Iteration with Intermediate Designs Overlayed

Figure 5.3: Photograph of 3D Printed Design

5.3 Design Implementation
We used a Projet HD 3000 3D printer to print the link including the guide polymer
(VisiJet Crystal EX 200) and the grooves for the coupler, which were filled with
silver paste (σ ≈ 2.6 × 106) as described in [118]. We optimized for a guide
with cross-section close to λ × λ/2 where λ is the wavelength inside the material.
The max resolution of the printer is ∼ 200µm, so we chose guide dimensions of
18.8 × 9.4mm. This corresponds to a center frequency near 9GHz in a guide with
ϵr = 3.2. The dielectric properties are not provided by the manufacturer for the
polymer used, but we were able to achieve a good match between measurement and
simulation data by assuming values of ϵr = 3.2 and tan δ = 0.04. These values seem
reasonable according to measurements of other printer polymers at 10GHz. [20]
4-port S-parameters were measured with calibrated RF GSSG differential probes
from 25MHz to 25GHz using a Agilent N5242A VNA.

5.4 Measurement Results
The final design measured 19.2 × 9.5 × 56mm and the couplers were spaced 4mm

from each end and measured 18.8 × 4.7mm. Short feedlines connect the GSSG
pads to the coupler feed-points. The measured S-parameters are converted to 2-port
differential parameters and plotted in Fig. 5.4. Since we targeted only coupling
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Figure 5.4: Measured S-Parameters of 3D Printed Device
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Figure 5.5: Measured and Simulated Maximum Available Power

efficiency at 9.6GHz in our algorithm, we compute the maximum available power
gain at each measured frequency from the measurements and compare against HFSS
simulation (Fig. 5.5) The peaks between measurement and simulation line up closely.
Discrepancies can be explained by uncertainty in the material properties. The link
efficiency peaks to 13% at 9.65GHz. In a lossless system, this corresponds to a 36%
coupling efficiency. However, the polymer and silver paste used are very lossy and
we have noticed from our simulations that the majority of the losses come from the
guide material, suggesting that the coupler itself is significantly more efficient and
that a different plastic should be used for the next prototype. HDPE, for example,
has been measured to have tan δ < 0.002 at these frequencies and would make a
good candidate for a second prototype.

5.5 Conclusion
We have developed a fast, yet simple optimization algorithm to design surface
coupling antennas for dielectric waveguides de-novo and briefly detailed the main
loop of the algorithm. In order to test the validity of the generated designs, we
used a 3D printer to print the waveguides using polymer material and deposited
silver paste for the coupler structures. Our measurement results match well with the
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HFSS simulated data, and based on our simulations we expect that we can achieve
significantly improved link efficiency simply by switching to a different polymer
material for the waveguide.
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Chapter VI: Design of a 120GHz Dual Channel QPSK+64QAM 100Gs/s
Transceiver in 28nm bulk CMOS

In this chapter, we discuss the implementation of a 120GHz center frequency
transceiver in TSMC’s 28nm bulk CMOS process. This is an on-going work in
progress and is being designed in collaboration with Prof. Ali Niknejad, Andrew
Townley, and Sashank Krishnamurthy of the Berkeley Wireless Research Center
(BWRC). The transceiver is designed to be capable of driving off-chip antennas
for wireless communication as well as waveguide couplers for a wireline based
link. Two identical Transmit(TX)+Receive(RX) channels are included per chip to
enable multi-polarization (for antennas) and multi-mode (for waveguides) commu-
nication. Using multiple modes or polarizations essentially enables doubling of
the communication rate within the same form-factor. More than two modes can
be utilized for waveguides, although care must be taken to avoid mode to mode
coupling/interference and this has not been studied much yet or covered within this
work. The chip design has not yet been completed or fabricated and thus this chap-
ter contains information detailing the design architecture fundamentals and a few
simulation results.

6.1 Design Architecture
Fig. 6.1 shows a system level block diagram of the whole chip design. A direct
conversion approach is used for both upconversion and downconversion. An injec-
tion locking frequency chain generates a 120GHz oscillator signal for both TX and
RX modules which is locked to an external 30GHz reference input. The following
sections will describe the design of the TX, the RX, and the frequency locking
network.
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Figure 6.1: System Level Block Diagram of Dual Channel 120GHz Transceiver IC

Frequency Locking Network

Figure 6.2: 3D Rendering of Frequency Chain Layout

An off-chip, nominally 30GHz single-ended reference signal is brought in externally
through a bump. Fig. 6.2 shows a circuit level diagram of the locking network from
input to 120GHz output. A 1:2 transformer is used as a balun to convert the input
reference to a differential signal and to obtain some voltage gain. The secondary
also has a center-tap for biasing the gate inputs of the 30GHz amplifier stage directly
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after the input transformer. The 30GHz amplifier is a simple capacitively neutral-
ized common source differential amplifier with a drain inductor for resonating and
maximizing the gain at 30GHz. The 3dB bandwidth of this amplifier is +-5GHz
around the center point (Fig.[bleh]) and it consumes 5mW of DC power.

The outputs of the 30GHz input amplifier stage drive a differential push-push doubler
circuit which produces a 60GHz output. The gates of the doubler devices are DC
biased at 275mV, below their threshold, and sized optimally to maximize second
harmonic output current. A 1:1 transformer is used to resonate the drain capacitance
of the doubler circuit, provide a differential 60GHz output, and match to the inputs
of the injection devices of the next stage. The 30 to 60GHz doubler consumes 6mW
of DC power and generates nominally a 500mVpp differential 60GHz signal.

The 60GHz differential signal generated by the doubler is fed into the gates of a
differential pair which injects current into a 60GHz differential cross-coupled VCO.
The 60GHz uses a 90pH inductor and 4 bits of a digitally switched capacitors
for tuning the frequency from 57GHz to 65GHz. The injection differential pair
injects the 60GHz reference current into the VCO tank in order to injection lock the
oscillation frequency to the input reference.

The VCO differential output signal is fed into another doubler circuit, which is
identical to the first doubler, that doubles the 60GHz input to 120GHz. An output
transformer is used, as before, to resonate the drain capacitance of the doubler and
generate a differential 120GHz signal to be fed to LO buffers and distributed to
the TX and RX blocks of the transceiver system. A 200mVpp 120GHz signal is
nominally generated at this point across the expected LO buffer input.

Transmitter
Fig. 6.3 illustrates a circuit level block diagram of the transmitter section. A 120GHz
differential LO signal is taken from the output of the frequency locking chain,
buffered with a common-source differential pair and fed into a passive differential
quadrature hybrid.
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Figure 6.3: Circuit Level Block Diagram of 120GHz Transmitter

The quad hybrid (Fig. 6.4 generates 0 and 90 degree differentially and uses some
lumped capacitance so that the design can be shrunk and fit into a smaller layout
form factor.
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Figure 6.4: Differential Quadrature Hybrid for 0 and 90 Degree LO Phase Generation

The resulting 0 and 90 degree phase differential LO signals are fed into the sources
of segmented modulator switch devices. The modulator devices are segmented to
support QPSK, 16QAM, and 64QAM operating modalities based on the patterns
provided by the PRBS circuit block. Finally, the modulated 120GHz output signal
is transformer coupled into a 2-stage 120GHz Power Amplifier (PA) circuit. The
two PA stages are identical and are common-source differential pairs which are
capacitively neutralized to maximize stability. The output of the first PA stage
is transformer coupled into the input of the second stage and the transformer is
designed to resonate the parasitic cap of the devices at 120GHz and provide adequate
inter-stage impedance matching. Finally, the output of the second PA stage is
transformer coupled to differential SGS bump pads designed to drive an off-chip
100ohm differential load. Again, the output transformer is designed to resonate
the drain parasitics of the second PA stage and provide good impedance matching
conditions for maximizing power transfer to the output load. The PA consumes
16mW of total DC power off a 1V supply, and provides 13dB of nominal gain with
a 3dB bandwidth of 40GHz centered around 120GHz. The nominal output power
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of the TX block is 5dBm.

Receiver
The first stage of the receiver block after the input is the Low Noise Amplifier
(LNA). The 100 ohm differential input is transformer coupled into the gates of the
first LNA stage. The LNA consists of two capacitively-neutralized common source
differential amplifier stages with resonated drain capacitance for centering the gain
at 120GHz. As with the PA stage of the TX block, the output of the first stage is
transformer coupled into the gate inputs of the second LNA stage. The transformer
enables impedance matching the output of the first stage to the input of the second
stage in a compact manner and further simplifies biasing of the stages by utilizing a
center-tap tied to the supply rail. The LNA has a small signal gain of 18dB centered
at 120GHz with a 40GHz 3dB bandwidth. Both stages together consume 33mW of
power from a 1V supply. The second stage as can be seen in Fig. 6.5 is segmented
into two separate stages with the inputs tied together but with separate drain outputs.
This is to generate and provide isolation for the I and Q signals which feed into the
demodulator/downconverter circuit.

Figure 6.5: Circuit Level Block Diagram of 120GHz Receiver

The outputs of the I and Q LNA input stages are transformer coupled into the sources
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of the I and Q mixer switches respectively. In this case, transformer coupling allows
for the sources of the mixer devices to be DC grounded. The same differential
quadrature hybrid design is used as in the TX block for generating 0 and 90 degree
120GHz LO signals from the LO buffer and fed into the gates of the demodulator
switch devices.

The downconverted output is then amplified by a cascade of Cherry-Hooper broad-
band baseband amplifiers. The final amplifier stage is a buffer capable of driving an
off-chip 100 ohm differential load. Each Cherry-Hooper stage is AC coupled to the
subsequent one in order to avoid common-mode offset issues and to avoid the need
of a common-mode offset cancellation feedback loop.
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Chapter VII: Binary Particle Swarm Optimized 2 × 2 Power Splitters in a Standard
Foundry Silicon Photonic Platform

Compact power splitters designed ab initio using binary particle swarm optimization
in a two dimensional mesh for a standard foundry silicon photonic platform are
studied. Designs with a 4.8 µm × 4.8 µm footprint composed of 200 nm × 200 nm
and 100 nm × 100 nm cells are demonstrated. Despite not respecting design rules,
the design with the smaller cells had lower insertion losses and broader bandwidth
and showed consistent behaviour across the wafer. Deviations between design and
experiment point to the need for further investigations of the minimum feature
dimensions. This work has been done in collaboration with Prof. Joyce Poon and
Jason Mak from the University of Toronto.

7.1 Introduction
Foundry fabricated silicon (Si) photonics seeks to implement highly sophisticated
photonic integrated circuits (PICs) at low cost by using the mature manufacturing
process of microelectronics [99, 61, 5]. The high refractive index contrast in Si
photonic platforms not only allows for compact device footprints, but also makes
possible device concepts that can take advantage of the strong optical confinement
and scattering (e.g., grating couplers, micro-resonators, photonic crystals) [35, 23,
64]. The growing availability of foundry Si photonics, in combination with expanded
computation capabilities for detailed electromagnetic simulations, increases the
opportunity to explore device designs that cannot be implemented in traditional,
lower index contrast PIC platforms such as silica and compound semiconductors,
and are yet volume manufacturable.

Device design performed by topology optimization without any a priori assumptions
on the geometry has recently generated much interest [98, 25, 89, 65]. As opposed
to conventional design methodologies in which a few critical geometric parameters
are tuned on a fixed geometry, topology optimization can find unexpected solutions
with good performance within demanding constraints by exploring much larger
parameter spaces. An example is the polarization beam splitter of [89], which
had a design footprint constraint of 2.4 Œ 2.4 µm2. However, usual optimization
approaches (e.g., in [25, 89, 65]) rely on high resolution rendering of intricate
geometric features, such as through electron-beam lithography, which can result in
designs that are incompatible with the design rules and minimum feature sizes in
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foundry processes which use deep ultraviolet (DUV) photolithography.

In this work, we investigate foundry fabrication of an optimization designed 2
Œ 2 3-dB power splitter. Power splitters area common building block in PICs,
and in Si photonic platforms are typically implemented as multi-mode interference
(MMI) couplers, directional couplers, and adiabatic couplers. Typical footprints in
a standard Si photonic platform have footprints around 39 Œ 5.2 µm2 for a 3-dB
directional coupler, and 158 Œ 4.1 µm2 for an MMI coupler [66]. Because power
splitters may be instantiated many times in a PIC, a size reduction of the 2 Œ 2 splitter
can save substantial circuit area. Here, we explore the design and implementation
of 2 Œ 2 power splitters with a footprint constraint of 4.8 µm Œ 4.8 µm designed
through optimization that accounted for the minimum feature size of the foundry
process. We will first briefly describe the Si photonic platform and the optimization
problem setup. Two device variants and their measurements are presented, followed
by discussions on directions for improvement.

7.2 Process Description
The designs to be described were implemented in the A*STAR IME Baseline
Silicon photonics platform [63, 86], which provides a 220 nm thick silicon layer
with a 2.1 µm top oxide cladding and a 2 µm buried oxide, and partial etches for
rib waveguides and grating couplers. The process uses 248 nm DUV photolithogra-
phy on 8" silicon-on-insulator (SOI) wafers. The 2 Œ 2 power splitter is designed
for the fully etched 220 nm thick Si layer. To impose the symmetry expected of a 2
Œ 2 3-dB power splitter, the design region is a quadrant of the device with a feed
waveguide which is reflected horizontally and vertically to constitute the complete
device with 4 ports, as illustrated in Fig. 7.1(a).
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Figure 7.1: (a) Schematic of the design problem. The design area (highlighted, top
left) is reflected vertically and horizontally along the dotted white lines along with
an input port. Black and grey cells represent the presence and absence of material
respectively. In FDTD simulations, a TE0 mode is launched into IN2 and the TE0
mode power is monitored at OUT1 and OUT2. (b) Initial configurations for the
optimization of the 200 nm cell design. The initial population is based on these
shapes with randomly initialized particle swarm velocity.

A square mesh is applied on the design region and a binary variable is assigned
to each square mesh cell to indicate the presence of Si or SiO2 in the cell. This
parameterization of the design region is commonly used in structural optimization
[9, 96], and has also been applied to electromagnetic design problems [98, 89, 95].
Because the smallest feature in such a design will be a single cell, we use the heuristic
of taking the cell side length to be the minimum manufacturable feature/spacing size.
The platform had design rules similar to [35], which had a nominal minimum feature
size of 180 nm. Therefore, we first chose to optimize based using a mesh composed
of cells with a size of 200 nm Œ 200 nm to satisfy design rules.

7.3 Optimization and Design Approach
We used the binary particle-swarm optimization (BPSO) algorithm [54] to optimize
the binary-valued configurations of the cells. The particle swarm is transformed
from a continuous configuration space to a discrete configuration space through
treating each binary variable as a dimension and applying thresholding. BPSO was
chosen for its ease of implementation, and for its reported applicability to similar
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problems [13, 52, 67]. To design the device, we used BPSO to optimize the figure
of merit:

f (x) = min
[
P1(x, 1550nm), P2(x, 1550nm)

]
where x is the configuration of cells of the design and P1(x, λ) and P2(x, λ) are the
transmitted power in the fundamental mode of the transverse electric polarization
(TE0) at the output ports, OUT1 and OUT2, for a TE0 input at IN2 for a given
configuration and wavelength, λ. This is shown in Fig. 7.1(a). Eq. 1 heuristically
encourages 3-dB power splitting and minimization of the insertion loss by improving
the worse performing output. Each evaluation of the objective function entailed a
three dimensional (3D) finite difference time domain (FDTD) simulation of the
design. A FDTD simulation mesh size of 50 nm Œ 50 nm Œ 40 nm with a power
cutoff condition of 0.001% of initial energy was used. As a compromise between
the size of the configuration space and tractability of the simulations, we constrained
the optimization to a 4.8 µm Œ 4.8 µm area, using 12 Œ 12 cells. Each iteration
required approximately 10 seconds on an Intel i7-3770 CPU computer with 16 GB
of RAM.



120

Figure 7.2: (a) The figure of merit at each iteration for the device with the 200 nm
cells. Red dots are the individual values, and the blue line is the best value obtained
by that iteration. (b) The device design with the highest figure of merit value of
0.174. (c) Simulated transmission and loss spectra of (b). (d) Normalized intensity
profile of the device.

The design for 200 nm cells was optimized based on an initial population of 21
using 3 repetitions of the heuristic configura- tions in Fig. 7.1(b) with randomized
velocities and run over 500 iterations. Fig. 7.2(a) shows the convergence to a figure
of merit value of 0.174 and the resulting design is shown in Fig. 7.2(b).
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7.4 Results
The transmission spectrum of the simulated device in Fig. 7.2(c) shows a wavelength
dependent splitting ratio, crossing over at 1531 nm with insertion loss of 3.56 dB
and worst insertion loss of 4.11 dB. The optimization resulted in a design with an
unconventional geometry, confined within the 4.8 µm Œ 4.8 µm design region. The
normalized power profile in Fig. 7.2(d) shows that the device did not operate as an
purely as an MMI or a directional coupler. This design is highly compact since extra
bend-in waveguides are not required because of the large spacing between the input
ports.



122

Figure 7.3: (a) Measured through (blue) and cross (red) port trans- mission spectra
and the insertion loss of the 200 nm cell device for input from IN1 (solid) and IN2
(dashed). (b): Measured spectra from several devices from across the wafer. The
die locations are shown in the inset wafer-map. (c) Backscattered electron SEM
of the device with most of the cladding removed. (d) Trace of (c) used for FDTD
simulations. (e) Simulated transmission spectram based on (d).
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This design was implemented in the A*STAR IME Baseline Si photonics process,
with the input/output ports connected to a row of TE grating couplers for coupling
out of chip with a fiber array with an 8◦ angle polish. An additional pair of grating
couplers connected with a waveguide was included in the row to optimize the fiber-
to-chip alignment. A swept tunable laser and optical power monitor were used
for spectral measurements. The measured spectra Fig. 7.3(a) show a symmetric
response as expected from the symmetry of the device. Fig. 7.3(b) shows the
spectra of a few devices from across the wafer were similar, confirming inter-die
fabrication reproducibility.

However, these measurements greatly differed from the simulation, with insertion
loss now at best around 6 dB, and less balanced power splitting. To determine the
cause of the discrepancy, we obtained the scanning electron micrographs (SEMs)
of the fabricated devices, shown in Fig. 7.3(c), by partially etching away the SiO2

cladding layer in a hydrofluoric acid solution. We imaged with back-scattered
electrons to view the features under the residual SiO2. The SEMs revealed that many
of the smaller isolated features in the nominal design were absent and the features
were rounded. Although the rounding was expected [117], it was unanticipated that
the smaller features would be absent since the minimum feature size design rule was
nominally satisfied.

To simulate the expected transmission of the fabricated device, we traced the SEM
as in Fig. 7.3(d) and imported as 220 nm thick Si with the corresponding planar
geometry into a 3D FDTD simulation. The computed transmission is plotted in
Fig. 7.3(e). Insertion losses were closer to that of measurements, and the difference
suggests other manufacturing non-idealities, such as sloped side-walls or partial
etching, were present. In our measurements, light which is converted into the
transverse magnetic (TM) polarization (due to sloped side walls) would have been
filtered out by the TE grating couplers.



124

Figure 7.4: (a) Plot of the figure of merit at each iteration for the 100 nm cell
device. Red dots are the individual values, and the blue line is the best value at
each iteration. (b) The device with the best figure merit of 0.223. (c) Simulated
transmission and insertion loss (IL) spectra of (b). Insertion loss is calculated as
the sum of transmitted powers of the two arms with respect to input power. (d)
Normalized intensity profile of the device.

We also implemented a second design using 100 nm Œ 100 nm cells, which are
smaller than the allowed minimum feature size of the foundry process. The design
was a variant of the 200 nm cell design and used 24 Œ 24 cells. The design was
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developed through BPSO with an initial population size of 10 initialized to the
nominal 200 nm cell design with random velocities and run over 478 iterations.
Convergence is shown in Fig. 7.4(a), with improvement of the figure of merit from
0.174 to 0.223. The design is shown in Fig. 7.4(b). The simulated transmission
spectrum Fig. 7.4(c) shows a more constant power splitting ratio without a crossover
point with a lower worst case insertion loss of 2.9 dB than the 200 nm cell design.

Figure 7.5: (a) Measured through (blue) and cross (red) port trans- mission, and
insertion loss (green) of the 100 nm cell device for input from IN1 (solid) and IN2
(dashed). (b) Measured through and cross port spectra from a few dies across the
wafer. The die locations are indicated in the inset wafer-map. (c) Backscattered
electron SEM of the fabricated device with most of the oxide cladding removed.
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Measurements in Fig. 7.5(a) show that the splitter had improved insertion loss and
power splitting behavior compared to the measurement results of the 200 nm design.
Although the spectra did not match the simulation, the cross port received power
comparable with the through port and an equal power splitting ratio was obtained at
wavelengths of 1535 nm and 1560 nm, and worst insertion loss was around 3.5 dB.

The SEM of the fabricated device, Fig. 7.5(c), is similar to the 200 nm cell device
but has larger openings in holes which were enlarged during the optimization. This
suggests that having a refinement in the mesh is useful for improving performance by
allowing the boundaries of larger features to be re-positioned and not be constrained
by the original mesh grid, even if the smaller features are not fabricated. Thus,
in future designs, if small features could be filtered out of the design during the
optimization, such as with filters proposed in [97], a minimum feature size may not
necessarily need to be linked with the mesh size and having a larger problem space
to work with may improve designs.

Our work highlights directions for improving ab-initio optimized photonic devices
in foundry platforms. First, to overcome the high insertion losses of the devices
demonstrated here, rather than fixing an area for the optimization, one may start with
a conventional design and apply optimization while attempting to shrink the area in a
multi-objective optimization [69]. It is possible that there is no physical mechanism
to perform the power splitting within the imposed areal constraint. Second, to
address the problem that using cells slightly above the minimum allowable feature
size was insufficient to guarantee manufacturability, further studies on the minimum
cell size are needed. In conventional devices, the minimum feature size are usually
applicable to edges along one dimension, for waveguide gaps, tapers, and gratings.
However, the optimization based device has features which approach the minimum
feature size in two dimensions. Systematic characterization of the feature sizes
using two-dimenionsal patterns, such as checkerboards, can provide better bounds
for the minimum cell size. In addition, lithography simulation [117] can be included
during the optimization. Finally, transformations to the device mask to compensate
for lithography effects, as in [72], can enable more accurate fabrication.

7.5 Concluding Remarks
In conclusion, we have presented the first foundry Si photonic 2 x 2 power splitters
designed by binary particle swarm optimizaton of a design area of 4.8 µm x 4.8 µm

parameterized by square cells that have sizes chosen according to design rules. Power
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splitting is demonstrated but to reduce the insertion loss and to have better match
with the design, multi-objective optimization, deeper studies of the 2D minimum
feature size, and lithography simulations can be incorporated in future work.
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