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ABSTRACT 

Representations for the high-frequency response of a 

suddenly loaded infinite plate are obtained from the modal 

form of the exact solution. The method of approach is pre­

sented by treating a linearly elastic, homogeneous, iso­

tropic plate subjected to a normal impulsive line load on 

one face. 

An investigation of the branches of the governing 

Rayleigh-Lamb frequency equation is given. These branches 

are closely related to the modes of propagation, the sum 

of which is the modal solution. The relationship between 

the hi gh-frequency portions of the underlying frequency 

spectra and the high-frequency response is brought out. 

Series representations for the branches are used to 

facilitate a surrunation over the branch (or mode) numbers. 

This results in convenient high-frequency representations, 

which exhibit all of the expected singular wave fronts in 

the plate. 

The method appears to be applicable to a broader 

class of problems than other methods which have been used 

for the high-frequency response of a plate. 
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CHAPTER 1 

INTRODUCTION 

This work is concerned with representations for the 

high-frequency response of a suddenly loaded infinite plate 

governed by the equations of motion from linear elasticity 

theory. The problem has been given attention in the liter-

ature only recently. The method of attack has almost ex-

elusively exploited Cagniard's method , geometric ray theory, 

and wave front approximations, as the most recent of these 

works, that by Rosenfeld and Miklowitz [l] 1
, exhibits. On 

the other hand, the present work is an investigation which 

logically asks whether high-frequency representations can 

be extracted from the modal form of the solution to the 

problem, which is based on the underlying frequency spectra. 

Indeed, it is shown here that such representations can be 

written, and the method appears to be applicable to a 

broader class of problems than those that Cagniard's method 

can handle. 

The method, and representations, are brought forth 

here by treating the problem of an infinite plate, sub-

jected to an impulsive line load applied normal to one of 

1 Numbers in brackets designate references in the 
bibliography. 
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the faces, which are otherwise free. The plate is assumed 

to be homogeneous and isotropic. 

The modal form of the exact solution is a sum over an 

infinite number of integrals, each of which represents a 

mode of propagation. The modes are directly related to 

the branches, or roots, of the Rayleigh-Lamb frequency 

equation giving a functional relationship between the fre­

quency and wave number of straight-crested waves propagat­

ing in the plate. The frequency spectrum of an infinite 

plate is then the plot of frequency versus wave number. 

The branches of the Rayleigh-Larr~ frequency equation are 

now quite well understood, chiefly through the recent ef­

forts of Mindlin and his coworkers (see [2]). 

Most of the previous work on evaluating the modal solu­

tion has been limited to relatively low-frequency, long­

wavelength calculations so as to limit consideration to a 

few of the lowest modes or just to the lowest mode of 

propagation. For example, Miklowitz [3] considered a plate, 

t h e faces of which were subjected to symmetrical normal 

point loads having a step dependence on time. Calculations 

were t h en based on the low-frequency portion of the lowest 

mode of p ropagation. 

Such approaches are very useful when only the low­

freque n cy response of the plate is of interest , however, 
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they cannot possibly predict the multitude of wave fronts, 

which are expected to be present in a · plate subjected to 

an impulsive loading. The reason for this is that discon­

tinuities identified as wave fronts must necessarily be 

composed of a superposition of high-frequency, short-wave­

length waves. 

To obtain the high frequency response of the plate, 

Rosenfeld and Miklowitz [l] used Cagniard's method which 

deals initially with a double-integral representation 

rather than with the modal solution. This representation 

results from use of integral transforms. The double­

integral representation is expanded in a series, each term 

of which is finally warped into a single Laplace transform 

on time, then inverted by inspection to obtain wave front 

expansions. The wave front expansions are very accurate 

near the fronts, but they diverge quite rapidly away from 

them. Earlier uses of Cagniard's method of inversion for 

plate problems were given by Mencher [4], Broberg [5] and 

Davids 16]. Further studies on the high- and low-frequency 

response of plates are pointed out by Miklowitz [7]. 

Implicit in the problem of finding the high-frequency 

response of a plate is the need of a method of solution 

which is valid both at the wave fronts and for some dis­

tance behind the fronts. Also, there are two other very 
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important aspects of this problem. First, a clear indica­

tion of the relationship between the high-frequency por­

tions of the frequency spectrum and the high-frequency 

response of the plate including possible singular wave 

fronts is needed. This will open the way for the investi-

. gation of the high-frequency response of other wave propa­

. gation problems whose solution can be formulated as a sum 

over modes of propagation. Such problems include other 

loading configurations on plates as well as wave propaga­

tion in anisotropic plates, circular rods, and layered 

media. Second, a method of solution for the high-frequency 

response which does not depend on Cagniard's method of 

inversion is needed since some of the problems just men­

tioned are apparently not solvable by his method. 

In Chapter 2 the modal solution for the response of 

the plate is derived. The frequency and wave number are 

then replaced by new variables which allow a much more 

direct investigation of the high-frequency response of the 

plate. 

An extension of Mindlin's [2] investigation of the 

branches of the Rayleigh-Lamb frequency equation is con­

tained in Chapter 3. The most important new result found 

here, which relates to the high-frequency response, is the 

existence of analytic continuations of the branches which 
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are closely associated with the dilatational waves in the 

plate. These continuations are called the dilatational 

branches and they are found in a region where both the 

frequency and wave number are pure imaginary. The impor­

tance of these branches cannot be overemphasized in the 

context of this work. Series representations of the dila­

tational branches and of the usual branches of the Rayleigh­

Lamb frequency equations, which are called the equivoluminal 

branches here, are given in Chapter 3. These series repre­

sentations are extremely accurate for high frequency, mak­

i n g them the device which can be used to obtain representa­

tions of the high-frequency response of the plate. These 

series representations for the branches are quite unique 

since the individual terms in the series · are found, in 

Chapter 4, to be closely related to the individual wave 

fronts in the plate. Also contained in Chapter 3 are de­

scriptions of analytic continuations of the branches of the 

Rayleigh-Lamb frequency equations. These continuations are 

essential for manipulating the integrals involved in the 

modal solution. 

In Chapter 4 , the modal solution is shown to be 

equivalent to sums of integrals over the dilatational 

branches and over the equivolurninal branches. This equiva­

lence is the key point in the solution method used in this 
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work. This is true since the series representations of 

Chapter 3 can then be used to derive representations of the 

response of the plate which are valid for high frequency 

and which exhibit all of the expected wave fronts. The 

series representations of Chapter 3 are used as if they 

were exact representations of the branches, and this makes 

t h e method approximate. However, the series representa­

tions for the branches are very good approximations and the 

validity of the final representations for the response of 

the plate does not diminish rapidly away from the wave 

fronts, as is the case for wave front expansions. 
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CHAPTER 2 

STATEMENT OF THE PROBLEM AND THE 

MODAL SOLUTION 

2.1. STATEMENT OF THE PROBLEM 

An infinite plate subjected to an impulsive line load 

is considered in this work . The loading configuration, 

which makes this a plane strain problem, is shown in 

Fig. 1 with the space coordinates x and z indicated . The 

load is applied in the form of a stress normal to the 

upper face z=H (the uniform plate thickness being 2H) and 

it is concentrated on the line x=O. Otherwise the faces 

of the plate are traction-free. The plate material is 

linearly elastic, homogeneous and isotropic with no body 

forces acting. 

The object is to obtain a representation which is 

capable of exhibiting the high-frequency response of the 

plate in terms of the displacement components. 

It is convenient to define the material constants 

and wave velocities at this point . 

c = s 
(2 . 1-1) 

are the dilatational and equivoluminal body wave velocities 

respectively where A andµ are the Lame constants and p' is 
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the material density. The ratio of the velocities is 

a = = c s 
~= 

where \! is Poisson's ratio. 

~2 (l-\!) 
1-2\) (2.1-2) 

The notation in the following work is simplified by 

writing this problem in terms of the dimensionless space 

and time coordinates 

x 
~ = H 

z 
l; = H T = 

c t s 
H 

(2.1-3) 

This problem is governed by the equation of motion 

(2.1-4) 

for -oo<~<oo,-l<l;<l,-r>O where ~=(u~,O,uz;) is the displace­

ment vector and V is the del-operator with respect to the 

rectangular Cartesian coordinates ~ and z;. (2.1-4) is 

homogeneous with respect to ~ and hence the dimensions are 

arbitrary. However, it is advantageous to take 

(2.1-5) 

where u and u are the original displacement components x z 

in the x,z coordinate system. Thus, the displacement 

components, u~ and uz;, have length squared dimensions. 
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The pertinent stress-strain relations are 

au au~ 
ass = (A+2µ) ass + A---aT 

(2.1-6) 

a~s ('u< 5-) = ]J -- + a s a~ 

The boundary conditions on the faces ~=±1 now take 

the form 

ass(~ ,-1,T) = o (2.1-7) 

where I is a positive constant, o (~) is the Dirac delta 

function and o+(T) is the one-sided delta function. For 

example , 

o (U = . (N)~ -N~ 2 
11m - e . 7T 

N-++oo 

O+(T) 
{ 

0,T <O 

- 2 -NT 
limN Te , T~O 

N-++oo 

(N real and positive) are possible definitions of these 

generalized functions. Hence, from (2.1-7) and these 
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definitions, a quantity measuring the impulse is 

unit length along the line of loading. 

The initial condition of quiescence at T=O and the 

radiation condition (quantities vanish as J~J+00 ) are 

imposed on all independent variables and their derivatives. 

An important consideration is that (2.1-4) and (2.1-6) 

are physically accurate only if the strains are infinitesi-

mal, which cannot be expected to be the case for the severe 

boundary conditions (2.1-7). This problem is justified on 

the grounds that any solution can be used in conjunction 

with convolution integrals to solve other more realistic 

problems in which only infinitesimal strains are expected. 

2.2. THE MODAL SOLUTION 

This problem is easily solved, formally at least, by 

first representing the displacement vector in terms of 

displacement potentials and then solving the resulting 

differential equations by means of integral transforms. 

This results in a double-integral representation or an 

infinite sum of single integrals (the modal solution) for 

the displacement components. 
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The representation 

u \7¢ + Vx (O,\j!,O) (2.2-1) 

where ¢ is the scalar displacement potential associated 

with dilatational motion and (O,\j!,O) is the vector dis-

placement potential associated with equivoluminal motion 

(l/J is a scalar), reduces the equation of motion (2.1-4) 

to 

a 2 <D a 2¢ 1 a 2¢ 
---'- + 

a c;; 2 
= --2 

as 2 2 a OT 

(2.2-2) 

a 2 
r a 21/J a 21/J __ \j! + = 

as 2 a c;;2 
-2 
OT 

(2.2-2) applies on the same domain as was indicated follow-

ing (2.1-4). The boundary conditions on¢ and \j! are given 

by (2.1-7) through (2.1-6) and (2.2-1) . The required 

quiescence and radiation conditions are 

(2 . 2-3) 

and 

lirn[ ¢ (s,1;;,T),l/J(s,c:::,T), ... J = o (2 . 2-4) 
lsl+00 

where (2.2-4) contains derivatives of¢ and~ up to and 

including the second order. 
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A Fourier transform with respect to the propagation 

coordinate ~ and a Laplace transform with respect to T 

are applied to ¢ and ~ to reduce (2.2-2) to a pair of 

ordinary differential equations with s being the indepen-

dent variable. Solution of these transformed equations 

subject to the boundary, initial and radiation conditions 

and also to the inversion integrals given by the pairs 

00 

2;i~F(p)eP"dp F(p) = ~ f (T)e-pTdT f (T) = 
0 Brl 

and (2.2-5) 

00 00 

F( K) =~~ ( < )ei K <d< f (~) = _!_~F(K)e-iK<dK 2TI · 
-oo 

gives double-integral representations of the displacement 

components u~ and us . Br1 is the Bromwich contour in 

the ri ght half of the p-plane. 

Th e following derivation of the modal solution was 

done for the symmetrical case by Miklowitz [3] and the 

double-integral representation appears in the work of 

Rosenfeld and Miklowitz [l]. Some of the derivation and 

the results are repeated here so that they can be used 

later in this work. 
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Without indicating the intervening algebraic calcula-

tions, the double-integral representations for the dis-

placement components take the form 

(2.2-6) 

w=-ip is a dimensionless frequency, which is obviously real 

when p is pure imaginary, and K is a dimensionless wave 

number for propogation in the ~ direction. The functions 

(2.2-7) 

are the dilatational and equivoluminal thickness wave 

numbers respectively and the functions 

(2.2-8) 
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will be called the symmetrical and asymmetrical Rayle~gh­

Lamb functions respectively. The functions 

US~ ( W 1 K 1 (;) = (w
2

-2K
2

)cosaz;;sinS - 2aSsinacosSz;; 

uA~(w,K,1;;) = (w
2

-2K
2
)sinaz;;cosS - 2aScosasinSz;; 

(2.2-9) 

US(;(w,K,i;;) (w
2

-2K
2
)sinaz;;sinS + 2K 2 sinasinSz;; = 

U.Az;;(w,K,(;) (w
2

-2K
2

)cosa1;;cosS + 2K 2 
cosacosSi;; = 

are proportional to components of the transformed displace­

ment. They are written so that the first term in each 

results from the dilatational potential~ through (2.2-1) 

and the second term in each results from the equivoluminal 

potential ~· The decomposition into symmetrical and 

asymmetrical parts, denoted by the S and A subscripts 

respectively in (2.2-8) and (2.2-9), results from a con­

venient separation into two problems both with loadings 

on the upper and lower faces of the plate. In one problem 

the load is symmetrical with respect to z;;=O ( oz;;z;;(~,±1,l) = 

-~Io(~)o+(L) from the loading (2.1-7)) and in the other 

the load is asymmetrical with respect to i;;=O ( oz;;z;; (~,±1 ,l) = 

+~I o (~)o+(L)) . Superposition of the two problems gives the 

problem posed in this work. Actually the purpose of this 
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decomposition is to separate the Rayleigh-Lamb functions 

(2.2-8) as they appear in (2.2-6). 

The integrands in (2.2-6) are even with respect to 

both a and B; hence the radicals in (2.2-7) do not give 

rise to branch points. 

It is well known that each of the functions F8 (w,K) 

and FA(w,K) in (2.2-8) have doubly infinite sets of simple 

zeros and no others for 0<K< 00 • Even though the symmetrical 

and asymmetrical sets of zeros are distinct, the zeros of 

both cases will be denoted by w=±w (K) with n=0,1,2, ... 
n 

and it will be clear from the context whether they are 

symmetrical or asymmetrical zeros. For 0<K< 00 the zeros 

are ordered as O<w 0<w1<w2 ... The zeros were shown to 

be simple by Scott and Miklowitz [8] for the symmetrical 

case and it will become evident for both cases in this 

work. The zeros B=O for F8 (w,K) and a=O for FA(w,K) are 

superficial since they are seen to be removable in (2.2-6~ 

Thus, the integrands in (2.2-6) have doubly infinite 

sets of simple poles located on the imaginary p-axis for 

0<K<oo and residue theory is used to carry out the integra-

tion over p. A detailed analysis of the representation 

(2.2-6) or the simple observation that (2.2-2) are hyper-

bolic differential equations leads to the conclusion that 

u=o for T<!'1~ 2 +(1-s) 2 . - - a 
l~ 2 2 . For T2a ~ +(1-s) the residue 

calculation results in 
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U.;(.;,s,T) 
I f: i=sinK[,sinwT 

us.; 
dK = Trµ n=O 3FS 

0 3W F =0 s 
w=w (K) 

n 

I f: f sinK[,sinwT 
UA.; 

dK + -
3FA Trµ n=O 

0 3W F =O A 
w=w (K) 

n 
00 

(2.2-10) 

Us(.;,s,T) 
I t JacosK[,sinwT 

USs 
dK = 

Trµ n=O 3FS 
0 aw F =0 s 

w=wn (K) ~-

I t 1:cosK[,sinwT 
UAs 

dK Trµ 3FA n=O 0 3W F =O A 
w=w (K) n 

The modal representation of the solution is precisely 

(2.2-10) with each of the terms n=0,1,2, . .. called a mode 

of propagation. The integrands represent residues and are 

evaluated at the simple poles resulting from F8 =0 or FA=O 

or equivalently at w=w (K) where w (K) are the zeros of 
n n 

the appropriate function F8 or FA. Thus, the residue 

calculation has g{ven rise to the Rayleigh-Lamb frequency 

equations . F8 =0 or from (2.2-8) 



tanB + 
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2 4K 0'.(3 

( 2 2)
2 

W -2K 

= 0 (2.2-11) 

is the symmetrical Rayleigh-Lamb frequency equation for a 

plate which admits branches wn(K), n=0,1,2, .... FA=O or 

from (2.2-8) 

tan(3 + 
tano: 

(2.2-12) 

is the asymmetrical Rayleigh-Lamb frequency equation for a 

plate which admits branches w (K), n=0,1,2, .... 
n 

An important point is that the integration over K and 

the summation over n have been interchanged in the repre-

sentations (2.2-10) without mathematical justification. 

The singular loading (2.1-7) is expected to produces~gular 

wave fronts; hence either the integration or the summation 

in (2.2-10) must diverge at these points. If theorems 

requiring uniform convergence with respect to the parameters 

are to be used to justify this interchange, either the 

loading must be made more smooth or the generalized func-

tions in (2.1-7) must be replaced by their defining 

sequences with the limit to the generalized function 

taken after these summations and integrations are carried 

out. The latter is the most direct way to justify (2.2-10) 

as the response to the loading (2.1-7) and this can be 
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done in a manner similar to that which Lighthill [9] used 

to treat generalized functions. 

2.3. CHANGE OF VARIABLES IN THE MODAL SOLUTION 

Much of the high-frequency response of a plate, which 

must be contained in the representation (2.2-10), has 

apparently been inaccessible through direct integration 

and summation even when approximations such as asymptotic 

expansions are employed. The independent variable K in 

(2.2-10) will be replaced by a new variable in an effort 

to make the modal solution and especially the frequency 

spectrum (made up of the branches w (K) as functions of 
n 

K) more easily handled with tools such as analytic func-

tion theory. 

Various properties of the branches w (K) of the sym­
n 

metrical and asymmetrical Rayleigh-Lamb frequency equa-

tions (2.2-11) and (2.2-12) respectively, which were given 

by Mindlin [2] or are implicit in his work, are useful to 

recount at this point. It is assumed throughout that K 

is real and nonnegative. The properties are applicable to 

both the symmetrical and asymmetrical branches unless 

specified otherwise. 

(1) The branches are ordered O<w
0

<w 1 <w 2 < ... for 

0<K<00 with wn(O)>O for n=l,2,3, ... and w0 (0)=0 (w 0 (K) will 

be called the Rayleigh branch in this work; however, it is 
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usually called the lowest branch of the Rayleigh-Lamb fre-

quency equation). Also,wn_ 1 (0)<wn(O)=wn+l(O)<wn+ 2 (0) for 

certain integers n~l when Poisson's ratio v is such that a 

in (2.1-2) is a rational number. Otherwise, w (0), 
n 

n=l,2,3, ... , are ordered just as for O<K<oo. 

W (K) 
( 2) The ratio n 

K 
is a strictly decreasing 

W (K) 
function of K> O as K increases from O++oo with lim n =l 

K+OO K 

for n=l,2,3, ... . Als~ for the Rayleigh branches n=O, 

Wo (K) 
is a strictly decreasing function of K>O for the 

K 

synunetrical case and a strictly increasing function of K>O 

for the asynunetrical case as K increases from 0++00 with 

w
0

(K) 
lim 
K+oo K 

CR 
= c < 1 for both cases (cR being the Rayleigh 

s 

surface wave velocity for a half-space). The preceding 

remarks depend on the well-known fact that c >c in the 
p g 

intervals mentioned (except for the asymmetrical Rayleigh 

branch n=O on which c <c for K>O) where p g 

wn (K) 
c = c p K S 

(2.3-1) 

are the phase and group velocities respectively for waves 

propagating in the s direction. These inequalities on cp 



-20-

and c will be seen to be related to the fact that the 
g 

branches in the new variables have no singular points on 

the path of integration except possibly at the endpoints. 

It is also useful to state the results 

(2.3-2) 

for the symmetrical Rayleigh branch and 

(2.3-3) 

for the asymmetrical Rayleigh branch as K~O in each case. 

The order symbol O, as in (2.3-2) and (2.3-3), will be 

understood to mean the following in this work: if f (K)= 

(3) For any change of variables, wn(K) and K 

range through the values 

0 < w0 (K) < oo for 0 < K < oo and 

0 < w ( K) < oo for 0 < K < oo (n=l, 2, 3, .•. ) • 
n 

The new variables are defined as 

= [3-a 
x [3+o:. t ( 2. 3-4 I 

n = S+a ) 
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where x will replace K as the independent variable in the 

integrals (2.2-10) and n will play the role of w (K) in 
n 

that it is a function of x through the Rayleigh-Lamb fre -

quency equations. a and S are the thickness wave numbers 

defined by (2.2-7). 

Holden [10] used a and S as variables to replace w 

and K in the Rayleigh-Lamb frequency equations, thus 

making the frequency spectrum simpler in some respects. 

The choice of the variables x and n to replace w and K is 

not unlike using a and S and can be considered as a map-

ping of the frequency spectrum into yet another set of 

variables . However, the x,n variables differ from the w,K 

and a,S variables in several respects one of which is that 

all infinities (cases where K-ro:> or w+00 ) map into the 

finite x-plane. 

The thickness wave numbers have the inverses 

\ 

(2.3-5) 

in terms of x and n. The particular branches of the radi-

cals defining a and S in (2.2-7) were unimportant in the 

preceding integrals, however, now a definite branch must 

be assigned to each so that x and n will be uniquely de-

fined . This is arbitrary and the result of other choices 
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will be clear later. The branches of a and S are com-

pletely defined by requiring that 

a > 0 for 0 < K < lw (K) - a n 

a = -iJaJ for lw (K) < K a n 

S > 0 for 0 < K < W (K) 
n 

S = -i J S J for w ( K) < K n 

(2.3-6) 

The inverses of (2.3-4) giving w and K as functions 

of x and n are 

1 
a 2 

w = nx 
-Va 2-l 

1 

1 G( a-l)(a+l )]2 
K = 2 n C X - a+ 1 a -1 -x 

(2.3-7) 

where the branches of the radicals are chosen so that w 

and K are always real and nonnegative in the integrals 

(2. 2-10) (unless the integration path is deformed). 

The following remarks about x result from (2.3-4) and 

the . definitions (2.2-7) and (2.3-6) of a and s. 
W ( K) 

( 1) is real positive function of n 
x a 

K 

W ( K) 

n=l,2,3,. • • / n which is strictly increasing on oo> >a - K -
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a-1 wn(K) 
from x=a+l -++l as K decreases from +co-+a. In this case 

and in the cases to follow, the strictly increasing or 

decreasing property of the functions does not necessarily 

include the endpoints of the intervals. The point 

= +oo(K=O) maps into x a-1 = a+l 

and the point 

= a (K=!w (K)) maps into x = +l. a n . 

( 2) x=ei 8 with 8=2tan- 1 (1%1), 0~8~TI, where 8 

W ( K) 
is a real positive function of n 

~~~, n=l,2,3, •.. , on 
K 

wn(K) 
a2 K 21, which is strictly increasing from 8=0-+n as 

decreases from a+l. 
W ( K) 

h . t n T e poin K =a maps into 

8=0 or x=+l as given above and the point 

= 1 (K=+oo) maps into x = -1. 

(3) For the symmetrical Rayleigh branch n=O, 

x=ei 8 with 8=2tan- 1(1%1), 80~8~TI, where 8 is a real posi-

tive function of 
w

0 
( K) 

K 
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W Q (K) 
which is strictly increasing from e=e 0+n as K de-

creases from ~ + 1 . e 0 is defined by 

= 1 - 2v 2 + 2iv..J1-v 2 (2.3-8) 

7T 1 so that O::_e 
0
<2 for O::_v~2 . The point 

= ~ (K=O) maps into x = x 0 

and the point 

= 1 maps into x = - 1. 

(4) For the symmetrical Rayleigh branch n=O, X 

W Q ( K) W Q ( K) CR 

is a real negative function of on l> > -
K K - C ' s 

w0 (K) 
which is strictly increasing from x=-l+xR as K de-

cR 
creases from l+- where C I 

s 

( cR

2J -(1- ::: ) 1--
2 

Cd 
(2.3-9) XR = -

(1- :: :)~ ( 2) + 1-::2 
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1 with all of the radicals positive and O>xR>-1 for O~v~2 . 

WO (K) 
The point =l maps into x=-1 as given above and the 

K 

point 

CR 
= c (K=+oo) maps into x = XR· 

s 

(5) For the asymmetrical Rayleigh branch n=O, x 

w0 (K) w0 (K) CR 
is a real negative function of on O<--- < - , 

K K - C s 

w0 (K) 
which is strictly decreasing from x=O+xR as K in-

cR 
creases from 0+-. The point 

cs 

= O(K=O) maps into x = 0 

and the point 

= 

The preceding remarks and the remarks at the first of 

W ( K) 
this section about the variation of n as K increases 

K 

on the various branches specify a continuous one-to-one 

mapping of the real positive K-axis, which is the integra-

tion path in the integrals (2.2-10), into the x-plane for 



each branch w (K). 
n 

In the following work 

0 < K < 
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l:w - - a (2.3-10) 

will be called "the dilatational sector" of the w,K-plane 

and 

1 -uJ<K<W a - - (2.3-11) 

will be called "the equivoluminal sector" of the w,K-

plane . This terminology is not physically precise and is 

only used for identification purposes. 

The mapping of the integration path on the real K-axis 

0<K< 00 in the integrals (2.2-10) onto the integration path C 

in the x-plane for the branches n=l,2,3, ... is shown in 

Fig . 2. In that 

sector maps onto 

figure it is seen that the dilatational 

a-1 
the segment a+l~X~l of the real x-axis and 

that the equivoluminal sector maps onto the upper half unit 

· 1 ie o e ClrC e x=e I 2 2TI• The direction on C in the x-plane is 

a-l 1 1 d' 0 h · · 1 · a+l + +- correspon ing to ++oo on t e positive rea K-axis 

with :~i+l on the positive real x-axis and l+-1 on the unit 

i8 circle x=e I 02 e 2TI. The numbers 1 , 2 I 3 in Fig. 2 denote speci fie 

points on a given branch w (K), with 3 meant to indicate 
n 

the limiting point K+00 , and they also indicate the mapping 

of these points into the x-plane . The integration path C 

is valid for all branches n=l,2,3, . . .. 

The corresponding integration paths for the Rayleigh 

branches n=O are shown in Fig. 3 . For the symmetrical 
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Rayleigh branch the real K-axis with the direction O++oo 

maps onto the integration path c0s in the x-plane with the 

direction x 0+-l+xR· x 0 is given by (2.3-8) and xR by 

(2.3-9). The portion x 0+-l of COS is on the upper half 

unit circle and the portion -l+xR is on the negative real 

axis. The numbers 1, 2, 3 in Fig. 3 denote points on the 

symmetrical Rayleigh branch and their mapping into the 

x-plane with 3 indicating the limiting point K+00 • For the 

asymmetrical Rayleigh branch the real K-axis with the 

direction 0++00 maps onto the integration path c0A in the 

x-plane with the direction O+xR on the negative real x-axi& 

The numbers I, II in Fig. 3 denote points on the asymmet-

rical Rayleigh branch and their mapping into the x-plane. 

The w and K scales in Fig. 3 are expanded with respect to 

those in Fig. 2 so that the details of the Rayleigh 

branches can be seen more clearly. 

If branches other than those defined by (2.3-6) are 

chosen for a and B, the integration path C in Fig. 2 and 

also the paths c0S and c0A in Fig. 3 are changed as fol­

lows: the paths of integration are reflected about the 

real x-axis if the sign of a (or B) is changed only when 

it is pure imaginary; the paths of integration are re­

flected about the unit circle JxJ=l by the mapping x+l if x 
the sign of a (or B) is changed throughout. In the latter 

case all points interior to JxJ=l map to the exterior like 
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a-1 a+l 1 
a+l + a-l' xR+xR' etc., and the points on the unit circle 

are just reflected about the real x-axis. Any of these 

three other choices represents the mapping of the positive 

real K-axis into the x-plane equally well. 

It is significant that the mapping determined by 

(2.3-4) and (2.3-6) for this work has mapped all of the 

infinity points in the original w,K-plane, that is, the 

points where K+oo or w (K)+oo for any branch n=0,1,2, •.. , 
n 

into the finite x-plane with !xl~l. Also, from the fore-

going, it appears that all of the complex K-plane, taken 

as a projection from the w,K-space with w and K related by 

one of the Rayleigh-Lamb frequency equations, has been 

mapped onto the unit disk lxl~l. Likewise, the mapping 

can be onto lxl~l by choosing other branches of a or$. 

Expressions required to change the integrals (2.2-10) 

from the K independent variable to the x independent vari-

able are listed below in terms of x and n. The Rayleigh-

Lamb functions (2.2-8) become 

(2.3-12) 

where 



and 
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= 1 (l+x) 
3 

- a (1-v) (l+vx)x 

X ( 1 +x) 3 - a ( 1-v) ( v+x) x 

D (x) = (l+x) 3 - a (1-v) (v+x) x 

(2.3-12a) 

(2.3-12b) 

Hence, the symmetrical Rayleigh-Lamb frequency equation 

(2.2-11) becomes 

sinn = -R(x)sinxn (2.3-13) 

and the asymmetrical Rayleigh-Lamb frequency equation 

(2.2-12) becomes 

sinn = R(x)sinxn (2.3-14) 

These equations give the branches n=n (x), n=0,1,2, ... , 
n 

which are identified with w (K) through (2.3-4). Hence­
n 

forth (2.3-13) and (2.3-14) will just be called the sym-

metrical and asymetrical frequency equations respectively. 

In the preceding forms of the frequency equations, 

use has been made of the fact that 
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is precisely the equation whose zero gives the Rayleigh 

surface wave velocity. It is easy to show that, for a and 

S defined by (2.2-7) and (2 . 3-6), this equation has only 

w CR 
the zero -= -, that is, the asymptote of the Rayleigh 

K CS 

branches, on 0<K~00 • Hence, all of the branches of the 

Rayleigh-Lamb frequency equations (2.2-11) and (2.2-12) 

are contained in (2.3-13) and (2.3-14) respectively as 

branches defined in the x-plane. It should be noted that 

x=xR from (2.3-9) is a zero of D(X) and that, D(X) being 

a cubic, the other two zeros are usually discarded as 

being identified with physically meaningless Rayleigh 

velocities. 

There are other expressions such as ~~(;~ F=O)-l• 

which are required as functions of x and n for the inte-

grals; however, they will not be listed here. This par-

ticular expression requires the chain rule of differentia-

CJ F tion to calculate 3W from (2.3-12) and (2.3-7) and requires 

the derivative ~~ from (2.3-13) or (2.3-14) to calculate 

dK 
dx from (2 . 3-7). 

In terms of x and n, the modal solution (2.2-10) 

becomes 
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US (i; , I'; 1 T ) = aI 2 ~ (usi; n +uAi;n) 
47TJJ..J"Ti n-0 

(2.3-15) 
()() 

Ul';(/; 1 1';,T) = 0 ~o (us1;n -uA1;n) 
4TIµ n-

where 

usi;n =I (l-x
2 )sin(Ki;)sin(w-r)u8 ~ 

x 3 
c 

x 
2

D <x) (cosn+xRcosxn) 

UAl;n = 1 (l-x 2 )sin(K~)sin(w-r)UA~ 
x 3 

c 2 (cosn-xRcosxn) X D(X) 

i (l-x) 2 (l+x)cos(K~)sin(w-r)U8 s 
ussn = c -=-3~~~~~~~~~~~1~~~~~~~-ax 

x 
2

D <x) [ ( x-:~i)( :~i-x) J 2 
( cosn+xRcosxn) 

, ' 

- [ . (l-x)
2

(1+x)cos(Ki;)sin(w-r)UAI'; 
UAl';n - 3 1 X 

c /o (x) [ (x-::i) (:~ i-x)]2~ (cosn-xRcosxn) 

(2.3-15a) 

In (2.3-lSa) w and K are given by (2.3-7) with n=n (X), 
n 

n=0,1,2, . .. , understood to be branches of the symmetrical 

frequency equation (2.3-13) for integrals with an S sub-

script and branches of the asymmetrical frequency equation 
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(2.3-14) for integrals with an A subscript. C is the inte-

gration path shown in Fig . 2 for n=l,2,3, ... and it is 

replaced by c0S and c0A shown in Fig. 3 for the symmetrical 

and asymmetrical Rayleigh branches n=O respectively. The 

radicals in (2.3-15a) are defined just as in (2.3-7) so 

that w and K are real and nonnegative. 

The two factors cosn±xRcosxn in (2.3-15a) will be 

found to play a very important role in determining the 

properties of the branches n=n (X). They result from the 
n 

term ~~ which is required for calculating ~~ in the change 

of variables. These factors replace the rather complicated 

oF s oF A 
functions of w and K , 8w- and --aw' in the representation 

(2.2-10). 

The functions 
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+ ( 
a-l)(a+l ) . n (1-x) . n (l+x) c:.; 

x- a+l a-l -x sin 2 sin 2 

+ ( 
a-l)(a+l ) n (1-x) n (l+x) r; 

x-a+l a-1-x cos 2 cos 2 (2.3-16) 

are proportional to the functions u in (2.2-9) and are also 

written with the first term in each deriving from the 

dilatational potential ¢ through (2.2-1) and the second 

term from the equivoluminal potential~· 

The integrals (2.3-lSa) actually offer no computa-

tional advantages over those in (2.2-10). Neither form 

can be integrated explicitly and they exhibit no charac-

teristics which make numerical computation seem useful. 

These remarks should be qualified for the Rayleigh modes 

of propagation n=O where a wave singularity arises from 

the single branches and no summation is involved if only 

this contribution to the response is sought. Also, the 

equivoluminal asymptotes, 
W (K) 

n +las K++oo for n=l,2,3, .. • , 
K 

may lend themselves to computation which would yield some 

wave fronts traveling with the equivoluminal body wave 

velocity. The frequency spectrum is well understood due 

to Mindlin [2] and others; however, the complexity of much 
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of the high-frequency portion of the spectrum is not at all 

conducive to integration . Hence, any advantage which can 

be derived from the form (2.3-lSa) must be obtained by 

manipulation of the integrals such as deforming the con­

tours of integration, expanding functions, etc. As will be 

shown later, it is by these methods that the integrals in 

(2.3-lSa) can be evaluated for the high-frequency response 

for the present problem. 
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CHAPTER 3 

THE BRANCHES n=n (x) n 

A great deal must be known about the branches n=n (X) n 

satisfying the symmetrical frequency equation (2.3-13) and 

the asymmetrical frequency equation (2.3-14) before the 

integrals (2.3-lSa) can be evaluated even in an approxi-

mate sense. In this chapter, existence of the branches on 

the real x-axis and on the unit circle JxJ=l is shown and 

properties of these brances which may be useful in evalu-

ating the integrals (2.3-lSa) are developed. 

The branches which map into the real w, real K- or the 

real w, imaginary K-plane by (2.3-7) were completely 

explained by Mindlin [2] and that work is repeated here 

only to show how these branches map into the x,n-space. 

The branches on which w is real and K is complex (K being 

.neither pure real nor pure imaginary) map into the x,n-

space with both x and n complex and are not convenient to 

examine in these variables. Other than for these real w, 

complex K branches, this chapter is a limited extension 

of Mindlin's work in that branches are considered on which 

both w and K are complex. 

The function R(x) defined by (2.3-12a) is obviously 

important in determining the properties of the branches n. 

R(x) is treated in Appendix A and the results contained 
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there will be referred to throughout this chapter. Also, 

Figs. 4, 5 and 6 refer to R(x). Fig. 4 shows some special 

points where R=O or [R]- 1=0, Fig. 5 shows a sketch of R 

and of [R]-l on -l~x~l and Fig. 6 shows a sketch of 

ie ie 
y(8)=ArgR(e ) on x=e I 0~8~TI. 

Appendix B supplements Section 3.2 and Appendix C 

pertains to the analytic continuations of the branches, 

which are discussed in Section 3.4. 

3.1. ANALYTICITY OF THE BRANCHES 

Perhaps the most important property of the branches 

is that they are analytic functions of the complex vari-

able x except at certain singular points in the x-plane. 

Thus, the powerful tools of analytic continuation and the 

Cauchy-Goursat theorem for integration in the complex x-

plane are available for use on the modal solution inte-

grals (2.3-lSa). If a branch can be identified and under-

stood on a subregion such as a segment of the real x-axis 

or of the unit circle lxl=l, then the branch can be con-

tinued into any part of the x-plane where it is known to 

be analytic. Analyticity of the branches is shown and an 

investigation of the singular points is given in this 

section. 
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3.1.1. Proof of Analyticity and the Criteria for Singular 

Points of the Branches. 

The frequency equations, (2.3-13) and (2.3-14), can 

be written in the form 

(3.1-1) 

where F is analytic with respect to both x and n except at 

a few isolated subregions of the x,n-space. For example, 

F(x,n) can be taken as one of the Rayleigh-Lamb functions 

defined in (2.3-12), which are analytic functions of x and 

n except at n=oo and at x=00 • Hence, the derivative of n 

with respect to x exists and is given by 

8F 
= _ 8x 

8F 
3r1 

(3.1-2) 

and, by definition, n is an analytic function of x in any 

domain where F(x,n) is analytic and where ~~~O. The 

derivative (3.1-2) is written explicitly as 

dn = _nRcosxn + R'sinxn 
dX cosn + xRcosxn 

(3.1-3) 

for the branches satisfying the symmetrical frequency 

equation (2.3-13) and as 

dn = nRcosxn + R'sinxn 
dx cosn - xRcosxn 

(3.1-4) 
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for the branches satisfying the asyrrunetrical frequency 

equation (2.3-14) where R'=~~ in each case. 

Singular points where the branches are not analytic 

because the derivatives (3.1-3) or (3.1-4) fail to exist 

may occur at any point where 

(1) R + 00 

~ (2) n + 00 (3.1-5) 

( 3) cosn ± xRcosxn = 0 

The first case only occurs at x=O and x=xR in Ix Isl as can 

be seen from Appendix A and the second case will be found 

to occur only at a few isolated points. In fact, it can 

be shown directly from the frequency equations and the 

properties of R(x) given in Appendix A that the branches 

n are always bounded on lxl~l except possibly on the real 

x-axis. This is done by assuming that n+00 and showing 

that both sides of the frequency equations cannot be 

balanced regardless of the manner in which n becomes 

unbounded as long as x is not real. The cases on the real 

x-axis where n+00 will be considered in a later section. 

The third case in (3.1-5) occurs at many isolated points 

in the x-plane which will be shown to be branch points 

common to pairs of branches. 

A useful property of the branches is that they are 

also analytic with respect to Poisson's ratio v as can be 
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seen by extending the foregoing argument. R(x)=R(x,v) in 

(2.3-12a) is analytic with respect to both x and v except 

at isolated poles. Hence, the frequency equations can be 

written as in (3.1-1) with F also analytic with respect to 

v. This property makes it possible to observe the branches 

as v varies and to reach conclusions about n=nn(X) for v 

fixed. 

The third case of (3.1-5) is now considered in more 

detail. If this case is satisfied for the symmetrical 

branches, then some pairs x,n (these are not yet known to 

be isolated points in the x,n-space) must simultaneously 

satisfy 

sinn = -Rsinxn 
} (3.1-61 

cosn = -xRcosxn 

the first of these relations being the symmetrical fre-

quency equation (2.3-13). Simultaneous satisfaction of 

these two equations is equivalent to requiring n to 

satisfy 

n = .12£. 
x 

simultaneously where 

(3.1-7) 
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1 

r = r(x) = (1-x 2~2)2 
i-x 

(3.l-7a) 

j and k are arbitrary integers except that j+k must be odd. 

The choice of the ± signs must be consistent for both equa-

tions . The pair (3.1-7) is derived by squaring both equa-

tions in (3 . 1-6) and adding to give the second equation in 

2 (3.1-7) and by squaring both, multiplying the first by x , 

and adding to give the first of (3.1-7) . Requiring that 

j+k be odd insures that (3.1-7) are equivalent to (3.1-6). 

This is seen by taking n from the first of (3 . 1-7) for the 

left side of each of (3.1-6) and xn from the second of 

(3 . 1-7) for the right side of each of (3.1-6). Then it is 

'+k 
seen that (-l)J =-1 is required to make (3.1-6) and 

(3.1-7) equivalent. 

r is a single-valued, analytic function of x in a cut 

x -plane (meaning that the branch points resulting from the 

radical in (3.l-7a) are located and connected by branch 

cuts in such a way that r is single-valued on all of the 

x-plane e x cepting the branch points and branch cuts). r 

* * only has branch points at x=0, 00 ,x 0 and x 0 (x 0 is the com-

plex conjugate of x
0

) as can be deduced from Appendix A. 

A branch cut can be taken on the negative imaginary x-axis 

connecting x =O and x=-i00 and another branch cut can con­

* nect x=x 0 and x=x
0 

so that it is not interior to the unit 
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circle lxl=l. For definiteness, r is taken to be real and 

l-x2R2 
positive when - 2 is real and positive. Hence, the two 

1-x 

possible branches resulting from the radical are denoted by 

±f which accounts for the ± signs in (3.1-7). 

The inverse sine functions in (3.1-7) are also de-

fined as single-valued, analytic functions of x in a cut 

x-plane and they approach zero as x approaches zero. 

The functions n defined by (3.1-7) have all of the 

branch points and branch cuts of r plus branch points at 

a-1 a+l 
x=a+l' a-l where R=l and f=l, which produces square root 

branch points in the inverse sine functions. Also, n 

given by the first equation 

branch points at x=xR' ~1-, 
Xo1 

of (3.1-7) has logarithmic 

1 where R=oo and f =00 and n 
Xo2 

given by the second equation of (3.1-7) has logarithmic 

1 1 
branch points at x=x 01 , x 02 , X-' 00 where R=O and Rr=00

• 

R 

Appendix A defines these points. 

The multitude of combinations of ±,j,k in (3.1-7) 

then represents the various branches n (not to be confused 

with the branches n=nn(x) satisfying the frequency equa­

tion). A point x where any branch n given by the first 

expression in (3.1-7) is common with any branch n given by 

the second expression is a possible singular point of some 

branch n=n (x) of the symmetrical frequency equation. The n 

point x=-1 is an exception for the symmetrical branches 



-42-

since (3.1-7) are satisfied simultaneously at this point 

for some combinations of ±,j,k, but it will be shown not to 

be a singularity of the branches. This occurs only at x=-1 

where the pair (3.1-6) reduces to the identities sinn=sinn 

and cosn=cosn. These equations appear to be satisfied by 

any value n(-1) and certainly (3.1-7) are satisfied simul­

taneously at x=-1 with the proper choice of ±,j,k. This 

is a special case on the symmetrical branches which is 

treated in B.l of Appendix B where it is shown that the 

symmetrical branches are analytic at x=-1. 

For the asymmetrical branches, simultaneous satisfac­

tion of 

sinn = Rsinxn 

cosn = xRcosxn 
} (3.1-B) 

the first being the asymmetrical frequency equation 

(2.3-14) and the second being the third case of (3.1-5), 

is analogous to the pair (3.1-6) for the symmetrical 

branches. This is equivalent to requiring n to satisfy 

(3.1-7) simultaneously with j+k even. Thus, simultaneous 

satisfaction of (3.1-7) locates singularities of both the 

symmetrical and asymmetrical branches with j+k determining 

the particular case. 

Th e point x=l is an exception for the asymmetrical 

branches for the same reason that x=-1 was for the 



-43-

symmetrical branches. For x=l, (3.1-8) reduces to 

sinn=sinn and cosn=cosn allowing any value n(l) as a solu-

tion and (3.1-7) are satisfied for certain choices of 

±,j,k. However, in B. l of Appendix Bit is shown that the 

asymmetrical branches are analytic at x=l. 

In discussing these singular points, it is more natu-

ral to consider the zeros of the difference between the 

functions n defined by (3.1-7). This being done, the 

singular points of the branches arising from the third 

case of (3.1-5) are identified as zeros of the function 

(3.1-9) 

with j+k odd for the symmetrical branches and j+k even for 

the asymmetrical branches. For each fixed combination of 

j,k and either the plus or minus signs in (3.1-9) (again 

+ + 
these distinguish a given branch 6jk), 6jk is a single-

valued, analytic function of x in a cut x-plane. The func-

+ 
tion 6jk has all of the branch points and branch cuts of 

the two functions n defined in (3.1-7). 

The singular points of the branches n=n (x) , which n 
+ 

are identified as zeros of 6jk' are certainly isolated 

because the zeros of an analytic function are isolated 

(see Alfors (11], p. 102). Furthermore, it is obvious 

that if each of these zeros is identified by a pair, say 
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+ 
Xc'nc where Xe is a zero of 6jk for a fixed combination 

±,j,k and nc corresponds to Xe through either of (3.1-7) 

then this pair determines a point in the four-dimensional 

x,n-space which is distinct from any other point corres-

ponding to another pair x ,n identified with a different c c 

combination ±,j,k. 

3.1.2. The Nature of the Singular Points. 

Knowing that the singular points are isolated, it is 

advantageous to investigate the nature of these points 

before proceeding to determine their number and location. 

For this purpose the symmetrical branches are considered, 

and it is assumed that a singular point is given by the 

pair Xc'nc' which is identified with a zero of 6~k' as in 

the foregoing, for a fixed combinatiqn ±,j,k with j+k odd. 

For the moment it is assumed that 

n R(x )cosx n + R' (x )sinx n t- o c c c c c c c (3.1-10) 

so that the derivative ~~ in (3.1-3) truly does not exist. 

Based on an argument analogous to that given for the 

branches n=nn(x)' an inverse function x=x(n) with xc=x(nc) 

exists, which is analytic in a tieighborhood of and includ-

ing the point nc in the n-plane. The derivative of this 

ax(n > 
function is given by the inverse of (3.1-3) with dn c =O 
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by the definition of the pair xc,nc and the second deriva­

tive is 

= 

2 

nRcosxn + R'sinxn 
x=xc 

n=n c 

d X (nc) 
Hence, dn 2 10 unless xc=±l or sinnc=O. 

(3.1-11) 

The points x=±l 

have already been seen to be exceptions and from (3.1-7) 

* sinnc=O implies that r=O which only occurs at x=O,~,x 0 ,x 0 
so that all of these are special points, which can be 

examined separately. Other than at these exceptional 

points, the local Taylor's series development of x(n) 

about nc is 

which can be inverted locally to give 

n + c 

(3.1-12) 

(3.1-13) 

This behavior of n(x) near x=xc shows clearly the 

nature of the singularity at this point, and it is a 

square root branch point with the function n(x) being 
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Thus, x is a branch point common to two c 

branches, say n (x) and n , (x), which are defined locally n n 

by (3.1-13) if they are identified with the two branches 

of the radical defined to be single-valued in the x-plane 

with a branch cut emanating from Xe· 

The case where (3.1-10) does not hold and dn in 
dx 

(3.1-3) takes the 0 indeterminant form at is 0 x=x now c 

considered. This gives another relation, in addition to 

the two in (3.1-6), since the numerator of dn also van­
dx 

ishes and these three conditions can be shown to cause 

+ 
+ d ll jk dn 0 

lljk and to vanish at x=xc. Hence, if takes the -
dx dx 0 

+ 
form, Xe is a zero of order higher than one of lljk· This 

can also be interpreted as a point of tangency between the 

functions n defined by (3.1-7). Such a case is like the 

+ 
end result of a merging of two or more zeros of lljk to the 

single point Xe· For all of the points satisfying this 

situation, other than some of the exceptional points 

already mentioned, this merging can be made to occur by 

varying Poisson's ratio \). If this involves the merging 

of only two branch points, as will be shown later to be 

the case, and if they are common to the same pair of 

branches, say n (x) and n , (x ), then the branch points 
n n 

merge to cancel each other and the branches become analytic 

at the point x . A simple example illustrating this local c 
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behavior of two merging branch points is given by the 

~ 
double-valued function (x 2-s 2 ) as s+O. This can be shown 

to be precisely the behavior of the branches n=n (X) as v n 

varies when the case under discussion occurs. 

It will soon become apparent that this is a very re-

stricted case. In fact, it is precisely the case which was 

investigated by Onoe, McNiven and Mindlin [12] for the 

similar circular rod frequency equation. In that work this 

critical point was called a saddle point in the w,K,v-

space. 

The asynunetrical branches have branch points which are 

exactly analogous to those just discussed for the symmetri-

cal branches. 

3.1.3. The Number of Branch Points and Their Location. 

With the exception of the points x=O and x=x 0 , it can 

be shown that there are no branch points resulting from 

~1 
the third case of (3.1-5) on the segments a+l<x~l and 

i6 
-l~x~O or on the unit circle x=e for 0<6<TI. This is 

done by using the inequalities (A-5) and the form (A-6) 

from Appendix A and just showing that the frequency equa-

tions and the equations in the third case of (3.1-5) cannot 

be satisfied simultaneously on these segments. The excep-

tions inciude the w=K=O points of the Rayleigh branches 
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ie 
0 where x=x 0=e and n=O, with x 0 given by (2.3-8), for the 

symmetrical Rayleigh branch and x=n=O for the asymmetrical 

Rayleigh branch. 

a-1 
On the segment O<x<--

1
, there are zeros of the func­a+ 

+ 
tions 6jk in (3.1-9) and, hence, there are branch points 

common to pairs of branches n=n (x). This is shown in Fig. 
n 

7 by indicating the intersection points of the functions n 

given in (3.1-7). The functions n are sketched, rather 

+ 
than the functions 6jk' so that the branch points occur in 

the Rex ,Ren-plane and they are actually points common to 

pairs of branches n=n (x) which will be considered in the 
n 

next section (Re and Im are used to denote the real and 

imaginary parts respectively of the quantities in question~ 

+ 
Each function 6 jk can be deduced from Fi.g. 7 as the differ-

ence between two of the functions n, the two being given 

by (3.1-7) for a fixed choice of ±,j,k. 

Each branch point in Fig. 7 is designated by the 

+ 
triplet (±,j,k) indicating that it is a zero of 6jk given 

+ 
by (3.1-9). A given function 6jk has either one zero or 

a-1 a-1 
no zeros at all on O<x<a+l except possibly near x=a+l 

where some functions 6~k with ±(-l)k=+l and j,k>l may have 

two zeros. Two such zeros of 6
3111 

corresponding to branch 

points of asymmetrical branches are shown in Fig. 7 between 

a-1 
n=llrr and n=l2n and near x=a+l· 

+ 
If a function 6jk does 

have two distinct zeros, then a slight increase in 
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Poisson's ratio v causes these to merge into a double zero 

and then vanish completely from the real x-axis. This is 

the case of branch points merging to cancel each other that 

was spoken of earlier. Alternatively, decreasing v causes 

branch points to migrate onto the real x-axis for O<x<:~i 

and they apparently come from the complex x-plane. 

The point x=:~i is a singular point of the function 

+ 
6jk· Specifically, it is a branch point through the in-

verse sine functions since R=l and f=l at this point; how-

ever, it is possible for this point to also be a branch 

point of the branches n=n (x) for some integers n. This 
n 

will be the case if (3.1-6) or (3.1-8) are simultaneously 

· f' d a-l 'f satis ie at x =a+l or i 

k 
kTI - J.Tia+l + (-1) TI = Q 

a-1 a-1 

where ~ has been taken for the value of the inverse sine 

functions at this point. This equation can be solved for 

a to give the rational number 

a = k+j±(-l)k 
k-j 

which indicates that these branch points are precisely the 

mapping into the x-plane of the points on K=O where 

wn(O)=wn+l(O) is possible as was discussed in Chapter 2. 
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These points are not singular in the w,K-space and they 

have become branch points in the x,n-space as a result of 

the particular mapping (2.3-4) introduced in this work. 

The question of branch points interior to the upper 

half unit disk (lxl<l and Imx>O) is now investigated. This 

is accomplished by use of the argument principle (see 

Alfors [11], p. 123). The argument principle is applicable 

. + 
since each branch, 6jk' is analytic and single-valued in-

terior to the upper half unit disk except for a logarithmic 

branch point at x=x 01 due to the fact that R(x 01 )=0 (XOl is 

interior only if vc<v~~ with vc defined following (A-3) in 

Appendix A). This logarithmic branch point can be excluded 

a-1 by a branch cut from x 01 to the boundary a+l<x<l, which 
+ 

avoids any of the zeros of 6jk· The point x01 is not a 

branch point of the branches n=nn(X) since neither (3.1-6) 

nor (3.1-8) can be satisfied simultaneously at this point. 

+ 
Actually, knowledge of 6jk interior to the upper half 

unit disk, other than the property of analyticity, is not 

required for application of the argument principle; how-

+ 
ever 6jk must be known on the boundary of this region. As 

mentioned before, the functions 6~k are implicit in Fig. 7 

a-1 for O<x<~-1 . a+ 
+ 

The form of 6jk is not complicated on the 
+ 

remainder of the real x-axis. On the unit circle, ~jk 

takes a simple form due to (A-6) in Appendix A. With the 

form of 6~k known, the real and imaginary parts of ~jk and, 
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+ 
hence, the change in the argument of 6jk can be deduced for 

one traversal of the boundary in the positive direction. 

Once this is done for a fixed combination ±,j,k, it is a 

simple matter to deduce the results for other combinations 

due to the simple dependence of 6jk on ±,j,k in (3.1-9). 

+ 
The number of zeros of the functions 6jk<x) in (3.1-9) 

or, equivalently, the number of branch points of the 

branches n=nn(x), as calculated by the argument principle, 

is given below. 

Case I: 
k ± (-1) =+l. 

(a) The function 6jk (X) =kTI-?+sin-1 (r)-~ sin- 1(~r) 
has one simple zero interior to the upper half unit disk 

for each pair j,k with j=l,2,3, .•• and k=l,2,3, ..• provided 

that 

(j-2)7T < k1T < min[? -1 1 -1(1 )] - sin (f) + Xsin Rf 

a-1 
O<x<--1 a+ 

(these will be called "the set of positive branch points" 

henceforth) . The upper bound on k involves a minimum over 

a-1 
O<x<a+l 

+ 
kTI-6jk· 

violated 

as shown 

of a quantity in brackets which is actually just 

This bound is explained by saying that when it is 

. + 
0 

a-1 
the function 6jk has one or two zeros on <x<a+l 

in Fig. 7. Hence, this bound on k defines the 

transition between branch points on the real x-axis and 
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branch points in the complex x-plane off the real axis. 

The bound j-2<k has no obvious explanation, but it can be 

shown to distinguish between branch points exterior to and 

those interior to the unit circle lxl=l. 

At these branch points the bounds 

kTI < Ren < (k+l)TI 

on Ren result from (3.1-7) and knowledge of the range of 

sin- 1 (r) on the upper half unit disk. 

+ 
(b) 6jk has one simple zero interior to the 

upper half unit disk for each pair j,k with k=l,2,3, ••• 

and j=-1,-2,-3, ... provided that 

k > -(j+l) 

(these will be called "the set of negative branch points" 

henceforth). Again, the bound on k has no obvious expla-

nation, but it can be shown to distinguish between branch 

points exterior to and those interior to the unit circle. 

The value of Ren at these branch points satisfies 

kTI < Ren < (k+l)TI 

with the bounds explained just as in (a). 

This includes all of the zeros of Case I for 

k=0,1,2, ... and j=0,±1,±2, .... 
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Case II: k 
± (-1) =-1. 

+ -i TI -1 1 -1( 1 ) The function lljk(x)=kn-7-sin (f)+Xsin Rr has no 

zeros interior to the upper half unit disk for any pair j,k 

with k=0,1,2, . .. and j=0,±1,±2, •... A natural analytic 

continuation of this function into the lower half unit disk 

does have zeros which are complex conjugates of the zeros 

found in Case I . 

Negative values of the integer k have not been con-

sidered since they only lead to branch points for branches 

with Ren<O which are simple reflections of the branches 

whose branch points were just considered . 

In sununary, all of the branch points or singularities 

due to the three cases in (3.1-5) have been identified for 

those branches with Ren~O at the point ~ith some exceptions 

on the real x-axis . These exceptions will be examined when 

the branches n=n (x) are understood in more detail. 
n 

It is interesting to examine the mapping of these 

branch points back into the w,K-space by (2.3-7). With 

the exception of the branch points which may occur at 

a-1 into K=O with wlO, all branch points with x=-- and map a+l 

the local behavior (3.1-13) give the local behavior 

in the w,K-space with wc,Kc (both may be complex) being 
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t n e mapping of the branch point xc,nc. This is equivalent 

to requiring that 

K=K c 

which means that the phase and group velocities defined in 

(2.3-1) are equal at K=Kc in the special case where both 

w and K are real . Thus, absence of branch points of the c c 

branches n =n (X) on the integration paths c in Fig. 2 and 
n 

c0S a nd c0A in Fig. 3, as has been shown in all but a few 

e x ceptional cases, guarantees that the phase and group 

velocities are not equal on the real positive K-axis for 

any of the branches w=w (K), n=0,1,2, ..•. 
n 

3.2. THE BRANCHES ON THE REAL x-AXIS AND ON THE UNIT 

CIRCLE Jx J=l 

One result of the change to the variables x ,n in 

Chapter 2 is that the frequency equations (2.3-13) and 

(2. 3-1 4 ) are satisfied by simple forms of the branches 

n=nn (X) on the real x -axis and on the unit circle JxJ=l. 

Th is section contains verification of the existence and 

form of n=n (x ) on which both w and K are real from 
n 

(2 . 3-7), plus other branches on these subregions . These 

other branches will be shown in a later section to be 
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analytic continuations of n=n (x); however the notation n 

n (x) is reserved for the branches on which w and K are 
n 

real with n ,n , etc., denoting other branches. m q 

The discussion is restricted to values of n with 

Ren~O since it is obvious that if n satisfies either of 

the frequency equations then -n does also. 

3.2.1. The Real Branches on the Real x-Axis. 

In this subsection the branches n which are real on 

the real x-axis are considered and most of the results are 

shown in Fig. 8. Only the segment -l~x~l of the real 

x-axis is considered since B.2 in Appendix B gives the 

1 mapping of the branches under x+-. 
x 

A convenient form of the symmetrical frequency equa-

a-1 
tion (2.3-13) on a+l<x<l is 

(3.2-1) 

n=l,2,3, .... If n is assumed to be real, the inverse 

sine function is defined by requir~ng that 

TI . -1( ( ) . ) TI 
2 < sin R x sinxn < 2 

as can be done on this interval since -l<R(x)<l by (A-5) 

in Appendix A. The form (3.2-1) does not yield explicit 

solutions n; however it immediately shows the existence 
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of the branches n=n (x) and also it provides a method of 
n 

finding solution points if they are required. This is seer 

by considering the simultaneous solution of the two para-

metric equations 

n = nn + (-l)n+lsin- 1 IR(x)sinPn] 

} (3.2-2) 
Pn 

n = 
x 

where P is a positive, constant parameter. This pair is 

equivalent to (3.2-1) as can be seen by setting xn=Pn. As 

P is varied continuously, the solution points of (3.2-2) 

form a branch n=n (x), which is a real, analytic function 
n 

of x in this interval for each n=l,2f3, •..• 

The bounds 

(3.2-3) 

result from (3.2-1) and (3.2-2) by setting sinxn=±l to 

make I (-l)n+lsin- 1 [R(x)sinxn] J a maximum. Thus, one of 

the equalities in (3.2-3) is taken by a branch nn(x) at a 

(2m+l)TI 
2x 

m=0,1,2, ... , so that sinxn =(-l)m (or equivalently, if 
n 

P= 2m;l in (3.2-2)) with the upper equality taken in the 

m+n case where (-1) R(x)~O and the lower equality in the 

case where (-l)m+nR(x)~O. These requirements on the sign 
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of (-l)m+nR(x) merely indicate whether the plus or minus 

sign precedes sin- 1 jR(x) I in (3.2-3). 

All of the results to this point apply equally well to 

the asymmetrical frequency equation (2.3-14) and to its 

branches n=n (x), n=l,2,3, ... , if R(X) is replaced by -R(x) 
n 

throughout. 

a-1 
Analogous to (3.2-1), on the interval -l<x<a+l' a con-

venient form of the symmetrical frequency equation is 

mrr ( -1) . -1 1 . m+l [ ] 
n = X- + ~x~ sin R(x)sinn (3.2-4) 

m=0,±1,±2, ... , where, if n is assumed to be real, 

TI . -1[ 1 . ] rr · -2 < sin R(x)sinn < 2 

1 
defines the inverse sine function since -l<R(x)<l from 

(A-5) in Appendix A. It should be stressed that (3.2-1) 

and (3.2-4) are equivalent and, in turn, are both equiva-

lent to the symmetrical frequency equation (2.3-13). The 

new forms are introduced only because they are open to 

each interpretation in the respective intervals mentioned. 

The form (3.2-4) lends itself to a parametric solution 

just as did (3.2-2). However, the interpretation of con-

tinuing branches of the frequency equations is not so 

a-1 obvious because of the branch points on O<x<a+l' which were 

found in Section 3.1 and sketched in Fig. 7. These branch 
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points show up as vertical tangents of the functions n in 

Fig. 8. This only means that, if a continuous function is 

to be traced through solution points from the parametric 

solution, multiple-valued functions must be accepted. This 

is certainly not a difficulty and the presence of branch 

points does not hinder the parametric method of finding 

solution points which form continuous functions be they 

multiple- or single-valued. Further analysis will be done 

later to identify analytic continuations of single branche~ 

but that is not important here. 

The bounds 

I mn I 11 . -1 ( 1 ) I -x - Xsin R(x) 

(3.2-5) 

result from (3.2-4) and are valid on the whole range 

a -1 
-l<x<~- These bounds are derived J0 ust as (3.2-3) was a+1· 

derived from (3 . 2-1). One of the equalities in (3.2-5) is 

t k . 1 ' f 1 . f' (2n+l)TI a e n at a point x on y i n a so satis ies n 2 , 

n=O, 1, 2, . . . , with 

(-l ) m+n 
<0 and the 

x R( x ) -

For the case m=O, 

the upper equality being taken if 

(-l)m+n 
lower equality being taken if XR(x) ~0. 

O~n(x)~J~sin-l(Rfx))I can be used as an 

improved bound to replace (3.2-5). 

a-1 
Again, all of the results for -l<x<a+l apply to the 

asymmetrical branches if R(x) is replaced by -R(x). 
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The hyperbolas n= 1~~' p=l,2,3, ... , and n=r+~' 

q=l,2,3, ... , are curves of constant a and 8 by (2.3-5) and 

they form a grid in the x 1 n-plane, which can be used as an 

aid for sketching the real branches. This grid is pre-

cisely the mapping of Mindlin's [2] "grid of bounds," which 

also consists of hyperbolas, but in the w,K-plane. 

The real n branches are sketched on the real x-axis in 

Fig. 8 by using the bounds (3.2-3) and (3.2-5) and the 

special solution pairs from B.l in Appendix B. The symmet-

rical branches are shown in heavy solid lines and the asym-

metrical branches are shown in dashed lines in Fig. 8. 

1 h h b 1 . 'd . . f ~ d _-9..:!!_ . A so, t e yper o ic gri consisting o n=l-x an n-1+x is 

shown in Fig. 8. 

a-1 The branches, shown in Fi.·g. 8 on ~-1<x<l, are denoted a+ - -

by n , n=l,2,3, ... , for both the symmetrical and asymmetri­
n 

cal branches and they are one-to-one mappings of the real 

branches w (K), n=l,2,3, ... , from the dilatational sector 
n 

(2.3-10) of the Rew,ReK-plane into the x,n-plane by 

a-1 (2.3-4). The branches on O<x<~-1 are one-to-one mappings 
-M 

of the branches in the Rew,ImK-plane, which were discussed 

by Mindlin [2]. The branches on -l~x<O give both w and K 

pure imaginary by (2.3-7) and apparently these branches of 

the Rayleigh-Lamb frequency equation have not been con-

sidered before. 

All of these branches will play a role in the analytic 
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continuation of the branches n=n (X). Those with w and K 
n 

pure imaginary seem to have no special physical signifi-

cance except that they add to the overall understanding of 

the branches of the frequency equations. 

A t . d b f th b h · t on O<x<a-
1
1 

s men ione e ore, e ranc poin s -a+ 

appear in Fig. 8 as vertical tangents on the branches and 

they can be identified with the branch points shown in 

Fig. 7 by comparing the two figures. The scale of the real 

x-axis in Fig.7 is expanded five times that of Fig. 8, 

however, the vertical scale for real n is the same in both 

figures. 

3.2.2. The Branches on the Unit Circle Jxl=l. 

In Chapter 2 it was found that the portions of the 

branches w (K), n=l,2,3, ... , and the portion of the symmet­
n 

rical Rayleigh branch w0 (K) which occur in the equivolumi-

nal sector (2.3-11) map onto the upper half unit circle 

ie x=e I o~e~n. The definition (2.3-6) of a and B determines 

the particular mapping given by (2.3-4). It is sufficient 

to consider the upper half of the circle since simple rela-

tions in B.2 of Appendix B give the continuations onto the 

lower half of the circle. 

In this subsection these branches n=n (x) are investi­n 
ie gated as functions of e through x=e o Also, a second set 

of branches are found on the upper half unit circle which 
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map into the w,K-space with both w and K pure imaginary. 

The former set of branches, which map into the usual real 

branches w (K), is shown in Fig. 9 as continuations of the 
n 

real branches n=nn(X) on the real x-axis (shown in Fig. 8 

and discussed in Subsection 3.2.1) through the point x=l or 

e=O. The latter set of branches, which map into branches 

with w and K imaginary, is shown in Fig. 10 as continuations 

of the real branches on the real x-axis through the point 

X =-1 or 8 =TI • 

In B.l of Appendix B, it is shown that all of the 

branches of the frequency equations which are bounded at 

x=l and x=-1 are analytic at these points. 

The function n satisfying either of the frequency equa-

tions, (2.3-13) or (2.3-14), is just an unknown complex 

f · f i 8 h · · · 11 k unction o eon x=e ; .ence, it is JUSt as we to ta e 

(3.2-6) 

where y is another unknown complex function of e. n is 

taken in the form (3.2-6) to simplify the frequency equa­

ie tions on x=e 

(3.2-6) and the form (A-6) of R(ei 8 ) from Appendix A 

are used to write the synunetrical frequency equation 

(2.3-13) in the form 
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iy_[ _iy_ ( -iQ) 2 2 . 2 
= e e sin ye 

+ e i): sin 0e i ~)] = 2e i): [cos):s in (ycos~) co sh (ys in~) 

- s in):cos (ycos~) s in+s in~)] = 0 

ie 
on x=e Thus, the symmetrical frequency equation can be 

written as 

ie on the unit circle x=e . 

If (3.2-7) is written as 

tanY 
2 

( 3. 2-7) 

the right side of this equation is real since y in (A-6a) 

in Appendix A is real and it is a simple matter to show 

that the left side is real only if y is either pure real 

or pure imaginary. Thus, using (3.2-6), n must take one 

of the forms 

.e 
n(eie) 

-1-

( 1) JnJe 
2 

= 

(3.2-8) 
.e 

n(eie) 
-1-

( 2) iJnJe 
2 

= 
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These £orms are chosen so that Ren~O. As mentioned previ-

ously, -n is also a solution if n given by either of 

(3.2-8) satisfies the symmetrical frequency equation. 

The form (1) of n in (3.2-8) maps into w and K real 

1 . e 
2 1 2 and nonnegative by (2 . 3-7) by taking x =e , etc., and 

branches of this description map into the branches wn(K) in 

the equivoluminal sector (2.3-11) which were discussed in 

Chapter 2. Likewise, the form (2) of n in (3.2-8) maps 

into w and K both pure imaginary by (2.3-7). For reasons 

wh ich will become apparent shortly, branches n(ei8 ) of the 

form (1) in (3.2-8) are called "the equivolurninal branches" 

and t h ose of the form (2) are called "the dilatational 

branches." 

The symmetrical frequency equation , {2.3-13) or 

(3.2-7), takes the form 

(3.2-9) 

.e 
. 8 -i2 

for the symmetrical equi volurninal branches nn (e
1 

) =Inn I e 

n=0,1,2, . . . , and the form 

(3.2-10) 



-64-

.e 
· e - 1 2 

for the symmetrical di1atationa1 branches n (e
1 

> =i In I e , m m 

m=0,1,2, .... 

Just as the real branches in the preceding subsection 

satisfied the form (3.2-1) or (3.2-4) of the symmetrical 

frequency equation, the symmetrical equivoluminal branches 

.e 
· e - 1 2 

nn(e
1 

>=lnnle , n=0,1,2, ••. , satisfy the form 

(3.2-11) 

of (3.2-9) and the symmetrical dilatational branches 

.e 
-1-

nm (ei8)=il nml e 2 , m=0,1,2, .•. , satisfy the form 

of (3.2-10). From knowledge of the function y=y(8) defined 

by (A-6a) in Appendix A and sketched in Fig. 6, the ranges 

0 ~ tan~coth (I nm I cos~) :S +00 

apply on o~e~n; thus (3.2-11) and (3.2-12) are completely 

defined by requiring that 
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O < tan -l [tan}tanh(I nnl sin~)] ~ i 

O < tan- 1 [tan~oth(1nm1 cos~)] '.: i 

The forms (3.2-11) and (3.2-12) lend themselves to 

easy solution for In! by considering simultaneous solutions 

of equivalent parametric equations as was done in (3.2-2) 

for (3.2-1). 

It should be indicated that the branches n=O in 

(3.2-11) and m=O in (3.2-12) can be shown, by solving for 

In! using parametric equations or otherwise, to terminate 

i8 0 in a branch point at the point xo=e given by (2.3-8). 

The behavior of these branches near the branch point x0 is 

given by (B.1-1) in Appendix B, and this can also be de-

rived from either (3.2-11) or (3.2-12) . The branch n=O 

defined by (3.2-11) is the synunetrical Rayleigh branch and 

it only exists on the portion 8 0 ~8~TI of the upper half unit 

circle. Likewise, the branch m=O, defined by (3.2-12), is 

a continuation of the synunetrical Rayleigh branch about 

i8 0 x0=e and it exists only on the portion 0<8~8 0 of the 

upper half unit circle. The termination of these branches 

in a branch point at 8=8 0 is seen in Figs. 9 and 10. 

From (3.2-11) the moduli of the synunetrical equivo­

. 8 
. i8 -i2 

luminal branches n (e )=jn je , n=0,1,2, ••• , have the n n 
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8 cos-2 

(3.2-13) 

with the upper equality occurring only at 8=8_ 1 where 

y( 8 _1 )=rr and the lower equality occurring only at 8=0 (the 

branch n=O does not extend to 8=0) . The bounds (3.2-13) 

result from the allowable range of the inverse tangent 

function in (3.2-11) 

Likewise, from (3.2-12) the moduli of the dilatational 

.8 
i8 . -i2 

branches n (e )=iln le I m=0,1,2, ••• , have the bounds m m 

. 8 sin-2 

with t h e lower equality occurring only at 8_ 1 for 

(3.2-14) 

m=l,2,3, ... and the upper equality never occurrin9. These 

branch es satisfy (B.1-10) in Appendix B at 8=n and they 

approach the upper equality in (3.2-14) form large as can 

b e seen from the asymptotic expansion for n (-1) following m 

(B. 1-10). 

The solution points at x=l or 8=0, x=x_ 1 or 8=8_ 1 , 

and x=-1 or e=n are listed in B.l in Appendix B where the 
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subscripts n and m refer to equivoluminal and dilatational 

branches respectively. These solution points can also be 

deduced from (3.2-11) and (3.2-12) and they make up some of 

the points where the bounds (3.2-13) and (3.2-14) are 

taken. These points are evident in Figs. 9 and 10. 

It is apparent from the bounds (3.2-13) that the syrn-

metrical equivoluminal branches n=l,2,3, ... become un-

bounded as 8+TI or x+-1 on the unit circle (the symmetrical 

Rayleigh branch n=O is an exception since it is bounded at 

x =-1, yet it is natural to call it an equivolurninal branch 

in the present context). Also, from (3.2-14) the syrnrnetri-

cal dilatational branches are unbounded as 8+0 or x+l on 

the unit circle. As was mentioned in Chapter 2, the phase 

velocity c in (2.3-1) takes the value c , the equivolumi-
p s 

nal body wave velocity, at x=-1 and the value cd' the dila-

tational body wave velocity, at x=l. Hence, the names 

equivoluminal and dilatational branches have been used 

since these branches give the equivoluminal and dilata-

tional phase velocities at their singular points ~=-1 and 

x=l respectively. 

The equivoluminal branches are well known and are 

just the mapping of the usual real w, real K branches from 

the equivoluminal sector (2.3-11) into the x,n-space. 

The dilatational branches apparently have not been 

investigated because they map into the w,K-space with both 



-68-

w and K pure imaginary. However, these branches are highly 

significant since they have an asymptote (point where 

lnl~00 ) where the phase velocity takes the value of the 

dilatational body wave velocity in the limit. Also, they 

are smooth monotonic functions of e as contrasted with the 

terraced portion of the frequency spectrum in the dilata­

tional sector (2.3-10) or on a-l<x<l in Fig. 8, which is a+l- -

the only place that the dilatational body wave velocity is 

approached in the Rew,ReK-plane. Thus, if analytic contin-

uations can be found onto these branches, an improved rep-

resentation for the dilatational waves in the plate may be 

possible by manipulating the integrals (2.3-lSa). 

The branches · satisfying the asymmetrical frequency 

t . (2 3 14) th h lf · · 1 ie equa ion . - on e upper a unit circ e x=e , 

O~ e~n , are now considered. Just as in the symmetrical 

case, the asymmetrical branches must take one of the forms 

(3.2-8) with those of the first form called the equivolumi-

nal branches and those of the second form called the dila-

tational branches. In the same manner as (3.2-9) and 

(3 .2-10) were derived, the asymmetrical frequency equation 

(2.3-14) takes the form 

cot (1 n I cos~) = -tan~oth (1 n I sin!) (3.2-15) 
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.e 
·e - 1 2 

far the asymmetrical equivoluminal branches nn (e
1 

) =I nn·I e , 

n=l,2,3, ... , and the form 

tan (1 n I sin~) = -tan}tanh (1 n I cos~) (3.2-16) 

.e 
·e - 1 2 

fortheasymmetrical dilatational branches n (e
1 

)=iln le ' m m 

m=l,2,3, .... Analogous to (3.2-11) and (3.2-12), (3.2-15) 

and (3.2-16) can be written as 

n=l, 2, 3 , ... , and 

m=l,2,3, ... , respectively. 

The inverse tangent functions in (3.2-17) and (3.2-18) 

have the same ranges as those given following (3.2-12), 

which results in the bounds 

(n-!)TI 
cos£ 

2 

nTI 
e cos-2 

(3.2-19) 
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n= l ,2,3, ... , for the moduli of the asymmetrical equivolumi­

.e 
·e -i2 

nal branGhes nn(e
1 

)=lnnle and the bounds 

. e sin-2 

(3.2-20) 

m=l,2,3, ... , for the moduli of the asymmetrical dilata­

.e 
-i-

tional branches n (eie)=iln le 2 . m m 

The upper equality in (3 . 2-19) is taken only at the 

point e_ 1 where y(e_ 1 )=n and the lower equality is not 

taken. At 8=0 or x=l, (3.2-17) takes a limiting form which 

is equivalent to (B.1-4) in Appendix B; hence In I in 
n 

(3.2-19) approaches the lower equality at 8=0 for n very 

large. This can be seen from the asymptotic expansion for 

nn(l) following (B . 1-4). 

The lower equality in (3.2-20) is taken only at the 

point e _ 1 and the upper equality is taken only at the point 

e =n or x=-1 . 

These as ymmetrical equivoluminal and asymmetrical 

dila tational branches are also unbounded at x=-1 and x=l 

respectively and the description of the symmetrical 

branches also applies here. 

The 
. ie_ 1 point x _1=e defined by (A-la) in Appendix A 

maps into the Lame point w=l2K and the special solutions 



-71-

(B.1-12) and (B.1-14) in Appendix B taken by the equivo-

luminal branches at this point are identified with the Lame 

modes of harmonic wave propagation. These consist of 

equivoluminal waves meeting and reflecting from a boundary 

at an angle of 45° with no mode conversion to dilatational 

waves. This is expected since R(x_ 1 )=-l and R is the re­

flection coefficient as stated in Appendix A. 

Both the symmetrical (in heavy solid lines) and the 

asymmetrical (in dashed lines) equivoluminal branches are 

sketched in Fig. 9 with the continuations through the point 

8=0 or x=l onto the real branches of Fig. 8 shown at the 

left side. Likewise, the symmetrical (in heavy solid line~ 

and the asymmetrical (in dashed lines) dilatational 

branches are sketched in Fig. 10 with the continuations 

through the point 8=TI or x=-1 onto the real branches of 

Fig. 8 shown at the right side. The hyperbolas In I- qn e 
2cos2 

or n= 1~~, q=l,2,3, ... , are also shown in Fig. 9 and the 

. hyperbolas In I PTI or _.E!!_ 1 2 3 h · e n-
1 

, p= , , , •.. ,ares own in 
2 . -x · sin2 

Fig. 10. These branches can be calculated approximately 

by a few simple iterations on equations (3.2-11) / (3.2-12), 

( 3 . 2-1 7) and ( 3 . 2-18) . This is done by taking Inn I= n7T e 
cos2 

as a first try in the expression of the right side of 

(3.2-11) to give an improved value of In I, etc. n 



-72-

3.2.3. The Complex Branches on the Real X-Axis. 

These complex branches serve to complete the picture 

of the branches of the Rayleigh-Lamb frequency equations 

on the real x-axis and on the unit circle lxl=l. In prin­

ciple at least, analytic continuations of the branches can 

then be made to the interior of the unit circle and the 

mappings to the exterior are given by (B.2-2) and (B.2-4) 

in Appendix B. 

Actually, a detailed description of these branches 

serves no other purpose than to complete the understanding 

of the branches so that such continuations can be made with 

more confidence. The method to be employed in this work 

for evaluating the high-frequency response of the plate 

does not depend on the complex branches. Hence, the com­

plex branches are treated in B.3 of Appendix B and only a 

description of the branches is given here by referring to 

B.3 and to Figs . 11 and 12. 

The complex loops in the w,K-space with w real and K 

complex as given by Mindlin [2] are somewhat like the 

branches which are described here, however, they are not 

the same since both w and K will be complex by (2.3-7) for 

branches with n complex (not pure imaginary) and x real. 

Such complex branches must surely be analytic continuations 

of the real w, complex K branches. 
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n
1

=Imn, the imaginary part of n, is determined by 

(B.3-3) and nR=Ren, the real part of n, is determined by 

(B.3-4) by the method described in B.3 of Appendix B. 

Fig. 11 shows the upper and lower bounds of n 1 =Imn 

. given by (B.3-7) where the lower bound is the asymmetrical 

Rayleigh branch on xR<x~O and it is a portion of the sym­

metrical Rayleigh branch on -l~X<XR· The remaining portion 

ie of the symmetrical Rayleigh branch .is on x=e and it is 

shown in Fig. 9. 

A sketch of some of the complex branches is shown in 

Fig. 12 as a perspective in the Rex,Ren,Imn-space along 

with the projections onto the Rex,Ren- and Rex,rmn-planes. 

Only branches with Imn~O are shown, but the complex conju-

gates, n*, are also branches satisfying the frequency 

equations. Portions of the real branches on x>O from Fig. 

8 are shown at the right of Fig. 12 to illustrate that the 

a-1 
branch points on O~x~a+l are common points of the real and 

complex branches. Loops between branch points occur above 

the level Ren=5TI in this figure and they become very numer-

ous for Ren large. All of the projections onto the 

Rex ,Ren-plane up to the level included in Fig . 12 are 

sketched, but only a few of the projections onto the 

Rex 1 Imn-plane are shown since these fall on top of each 

other and just become confusing. Only the lowest asymmet-

rical complex branch (the branch with the smallest value 
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of Ren=nR) is sketched as x+-1 where nR+00 and Imn=n 1 

oscillates more and more rapidly as shown in the projection 

onto the Rex 1 Imn-plane. All other complex branches behave 

in the same manner and their general form can be deduced 

from their projections onto the Rex,Ren-plane in Fig. 12 

and by the limited variation of Imn=n
1 

allowed by its 

bounds. The real part of n jumps by an amount ±1: as 
XR 

the complex branches are continued about the logarithmic 

branch point at x=xR· This can be seen in Fig. 12 or from 

the asymptotic approximation (B.3-9) in Appendix B. 

In general, the imaginary part of n consists of loops 

a-1 
between the branch points on O<x~a+l where Imn=O, and the 

loops are tangent to the upper bound given by the second 

equation in (B.3-7) with the equality. ~he branch points 

on this interval are shown as points in the Rex,Ren-plane 

in Fig. 7. A final loop from a branch point near x=O 

fails to return to the Rex 1 Ren-plane with Imn=O and, 

instead, it crosses x=O with a value of n satisfying 

(B.1-7) of Appendix B if it is a symmetrical complex 

branch or (B.1-8) if it is an asymmetrical complex branch. 

On -l~x<O, n1 oscillates between the upper and lower 

bounds given by (B.3-7) and shown in Fig. 11 and becomes 

unbounded as x+xR· The approximation to the complex 

branches near x=xR is given by (B.3-9). Since nI takes 
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the lower bound when sin
2
nR=sin

2
(l+x)nR=O and the upper 

bound when sin2nR=l and sin2 Cl+x)nR=O, it oscillates more 

and more rapidly as x=-1 is approached with the frequency 

of oscillation going to infinity at x=-1. As is mentioned 

following (B.3-8) of B.3 in Appendix B, the separation of 

the bounds remains finite as x=-1 is approached. The 

oscillation of n 1 is a result of an essential singularity 

at x=-1 on all of the complex branches except the symmetri-

cal Rayleigh branch, which is analytic at x=-1. 

The unexpected feature of all complex branches having 

a singularity at x=xR seems to have little physical signif­

icance. The Rayleigh branches are unique in this respect 

simply because they are pure imaginary and, of course, w 

and K given by (2.3-7) are real. All other complex 

branches have a finite real part, nR' as x+xR with the 

imaginary part, n 1 , unbounded. Then by (2.3-7), w and K 

have real parts which become unbounded just as do the 

Rayleigh branches, but they also have finite imaginary 

parts which are usually identified with a disturbance that 

decays in time and space and does not give rise to wave 

fronts. More important is the fact that analytic continua-

tions of the Rayleigh branches are now known about the 

infinity point (w,K+00 ) and the continuation goes onto 

other neighboring complex branches all of which are inter-

connected by a common logarithmic branch point at x=xR. 
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This gives further information needed to make analytic 

continuations in the complex x-plane. 

With regard to analytic continuations, there is a 

striking similarity between the singularity of the complex 

branches at x=-1 and the singularity of the equivolurninal 

branches on JxJ=l at the same point x=-1 or 8=TI. This is 

seen by solving (B.3-4) in Appendix B for nR so that it 

has the leading term r:x' q=l,2,3, •.. , and comparing this 

with (3.2-11) and (3.2-17). Then the dominate term of n 

in each case is ;+; or r+; and this makes it seem likely 

that the complex branches continue about x=-1 onto the 

equivoluminal branches. A comparison of Figs. 9 and 12 

also indicates this possibility. 

The fact that there are no complex branches on the 

real x-axis near x=l which can be considered as analytic 

continuations of the dilatational branches onJxJ=l and 

shown in Fig. 10 poses a difficult problem which can be 

answered only by investigating the analytic continuations 

about the branch points near x=l. 

3.3. SERIES REPRESENTATIONS OF THE BRANCHES n ABOUT THE 

POINTS x=l AND x=~l 

All of the preceding work in Section 3.2 concerning 

the existence and form of the branches on certain sub-

regions in the x-plane is not sufficient to allow even a 
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good approximate evaluation of the integrals (2.3-15). The 

infinite sums of integrals and the complicated relationship 

between n and x present the same difficulties that were 

present in the integrals (2.2~10) with w and K as the 

variables. 

In this section representations of the branches n as 

explicit functions of x are derived in the form of a series 

of functions of X· These series are derived by expanding 

the frequency equations about the points x=l and x=-1, 

which are singular points of the dilatational and equivo-

luminal branches respectively of Subsection 3.2.2. The 

fact that n+oo on these branches as x+l,-1 or as 8+0,TI on 

x=eie means that w+oo and K+oo from (2.3-7). 

These singular points are expected to be very signifi-

cant with regard to their contribution to the high-fre-

quency wave fronts in the plate. The reason for this is 

that ~ and dw both approach 1 as x+-1 or as 8+TI on the 
K dK 

equivoluminal branches, other than on the synunetrical 

Cd 
Rayleigh branch, and they both approach a=~ as x+l or as . c 

s 

e+O on the dilatational branches. ~c and dwc are the 
K S dK S 

phase and group velocities respectively as defined by 

(2.3-1) when both w and K are real, which is the case on 

the equivoluminal branches. It is recalled from Subsec-

tion 3.2.2 that both w and K are pure imaginary on the 
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dilatational branches and it remains to be seen if these 

branches contribute to the response of the plate. 

For much the same reason as was given in Subsection 

3.2 . 2 for using the names equivoluminal and dilatational 

branches, the points x=-1 and x=l are assumed to be identi-

fied with equivoluminal and dilatational wave fronts 

respective . 

Apparently, the only convenient series representa-

tions, such as was a function of K, have been about points 

where both w and K are finite. These usually consist of 

Taylor's series . Obviously such representations are of 

very little use for high-frequency calculations where w may 

become unbounded. It is true that a few terms are apparent 

in an asymptotic approximation as K+00 on the Rayleigh 

branches or on any of the other branches. For example, 

CR 
w

0 
( K )"'cK on the Rayleigh branches as K+co and (3 :: 

s 
1 

( 
2 2)2 1 wn (K)-K "'~TI as K700 on all other branches with m=2n 

and n=l,2,3, .. . on the symmetrical branches and w°ith 

m=2n-l and n=l,2,3, ... on the asymmetrical branches. 

Attempts to find more than a few succeeding terms or to 

find an expression for a general term in these expansions 

appear to be doomed to failure . The reason for this is 

the complicated functional relationship between w and K in 

the frequency equations (2 . 2-11) and (2.2-12). It seems 
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to be practical to seek asymptotic expansions only if the 

variables w and K are grouped into convenient functional 

forms such as x and n. 

The symmetrical branches nn' which are identical to 

the equivoluminal branches of the form (1) of (3.2-8) when 

x =eie, will be considered first. x will not necessarily be 

restricted to the unit circle x=eie, however, the branches 

considered are analytic continuation~ of the equivoluminal 

branches. 

As has been the usual practice, the form (2 . 3-13) of 

the symmetrical frequency equation is altered to obtain 

the more convenient form 

t (l+x )n an 2 
R-1 (1-x)n 

= R+ltan 2 (3.3-1) 

This can be recognized as the original form (2.2-11) of the 

symmetrical frequency equation by using (2.3-5) and 

(2.3-12a) to return to the w,K variables. 

Series representations are now sought for the syrnmet-

rical branches n which satisfy (3.3-1) and are singular as 

x+-1 in some sector about that point. The sector must in­

ie elude the path x=e , 0~8<TI , as 8+TI since the equivoluminal 

branches are on this circle. Also this sector may include 

the real x-axis as x+-1 from the right where the complex 

branches on the real x-axis of Subsection 3.2.3 were found 
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to be singular. It was speculated there that these 

branches might be analytic continuations of the equivolumi-

nal branches. The singular nature of the equivoluminal 

branches is shown in Fig. 9 and that of the complex 

branches in Fig. 12 as x+-1 in each case. 

It is convenient to examine the case x=ei 6 first, 

realizing that by means of analytic continuations most of 

the results will extend to neighboring portions of the 

x-plane. n takes the form (1) of (3.2-8) and the fre­

i8 quency equation (3.3-1) becomes (3.2-9) on x=e where 

R(ei 6 )=eiy(S) by (A-6) in Appendix A. Further, (3.2-9) 

can be written as (3.2-11) which has the obvious approxi-

ma ti on 

as 8+n where 

mr + y(6) --e e 
cos2 2cos2 

(3.3-2) 

(3.3-2a) 

The subscript e refers to equivoluminal branches. (3.3-2) 

is valid for n=l,2,3, ..• since lnnl+oo and tanh(innlsin~)+l 
as 8+n. 

This result is extended to the general x-plane by 

i6 replacing e with x and y(8) with -iLogR(x) and recalling 
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.LogR(x) 
i l+x (3.3-3) 

is taken for the first term in the series expansion for 

nn(x) as x+-1. The term is well-defined by taking LogR(x)= 

ie 
iy(8) When x=e I 0~8~7fo h . . . ( ) 2nrr . T e approximation nn x - 1+x gives 

1 
s=2(l+x)nn-nrr, which was mentioned as an asymptotic approx-

imation to the symmetrical branches relating wn(K) to K as 

K+oo. The second term in (3.3-3) is finite as x+-1 with 

1 . LogR(x) 
im l+ = 

x+-1 x 
(3.3-4) 

by (A-4) in Appendix A. The single term In~~) (ei 8 ) I in 

(3.3-2a) gives an excellent approximation to the equivolu-

. 1 b h ie b · o d 8 mina ranc es on x=e eing exact at 8= ,e_ 1 an as +rr. 

e_ 1 is defined by (A-la) in Appendix A. The approximation 

is so accurate that, on the scale shown in Fig. 9, no 

apparent difference exists between lnn(ei
8

) I and 

In~~) (ei 8 ) I for the symmetrical branches. By comparing 

Figs . 6 and 9, it is seen that the fact that y(e_1 )=rr gives 

the exact solution at 8=8_ 1 since 

= 
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in agreement with (B.l-12) in Appendix B. Another result 

of this good approximation is that succeeding terms in the 

ie series representation must be very small on x=e . 

The one-term approximation n (x)~n (O) (x) given by n en 

(3.3-3) also has many of the characteristics of the complex 

branches on the real x-axis of Subsection 3.2.3. This is 

true both as x+-1 and near the point x=xR as can be seen 

by comparing (3.3-3) with (B.3-9) in Appendix B. 

The question of a region or sector of convergence of 

the series representation is discussed at the end of this 

section and it is only assumed here that such a region will 

ie include the Circular path x=e I o~e~TII aS 8+TI. 

For the purpose of deriving a series representation, 

it is convenient to define another variable, gn(X), re­

placing nn(X) by setting 

where n (O) (x) is 
en 

= n (O) (x) + 2gn (x) 
en l+x 

given by (3.3-3). 

(3.3-5) 

There is no reason to 

exclude the Rayleigh branch n=O, and (3.3-5) will be taken 

for the definition of gn(X) for n=0,1,2, ••• with gn(X) 

expected to vanish as x+-1. 

The form (3.3-1) of the symmetrical frequency equa-

tion then becomes 
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e 
- i ( 1-x h1 ( o ) ( x ) 

en = 
-2Rsingn 2ii~~gn 

2 2 e 
(R +l)sing - i(R -l)cosg · n n 

(3.3-6) 

by using (3.3-5). The left side of (3.3-6) approaches zero 

exponentially fast as x+-1 in O<Arg(l+x)<TI and, since 

2 gn 
R -l=O(jl+xJ) as x+-1 from (A-1), l+x must also approach 

zero exponentially fast as x+-1 in this sector. The 

-i Cl-x)n~~) <x> 
Rayleigh branch n=O is an exception with e + 

4 
1-v e as x+-1 regardless of Arg(l+x), but this exception 

is of very little concern in this work. 

The definitions 

= e 
-i (1-x>n (O) Cx) 

en 

with n (O) (x) given by (3.3-3), reduce (3.3-6) to 
en 

(3.3-7a) 

(3.3-7b) 

(3.3-8) 

For the present En' gn and x are thought of as three com­

pletely independent complex variables except that they are 
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related by the functional relationship (3.3-8). That is, 

the fact that £ is a function of x by (3.3-7a) is not 
n 

critical in this derivation. F(gn 1 x), defined by (3.3-7b), 

is an analytic function of both gn and x with three obvious 

2 
t . 1 d t .R -l ' h ' ~o ' excep ions: g =oo, x=- / an ang =i~2~ wit sing / in 

n n R +l n 

the last two cases. 

The inverse of (3.3-8) must then exist in any domain 

of the x 1 s -space in which ~F ;fO and Fis an analytic func-
n gn 

tion of g and X· Furthermore, the representation of the 
n 

analytic function g can be taken as a Taylor's series in . n 

sn about sn=O with the coefficients being functions of X· 

Thus, a representation of the form 

(3.3-9) 

which satisfies (3.3-8) will be sought. The question of 

the existence of an explicit inverse function has been 

answered by the analytic properties of the functional 

relationship (3.3-8) an~ it is left to find the coeffi­

cients g~j) (X) in (3.3-9). 

It simplifies the algebra of finding these coef fi­

ie cients to consider the special case x=e , o:::e:::1T, and then 

i8 
return to the x-plane in general. The form of En(e ) is 

not important since it is still considered to be an 



-85-

independent complex variable, however, it is listed here 

along with F(gn,eie) and from (3.3-7a) and (3.3-7b) they 

take the forms 

= e 

e - ( 2mr+y) tan2 

. 2 e sing g tan-2 n n ie F(g ,e ) 
n = -sin(y+g ) 0 

n 

(3.3-lOa) 

(3.3-lOb) 

· e · ( e) 
R(e 1 )=e1 Y from (A-6) has been used again. The symmet-

rical frequency equation (3.3-8) then becomes 

e 
singn 2gntan2 

-----"""' sin(y+g ) 
n 

which can also be written as 

I 

= -g cotg siny - g cosy 
n n n 

(3.3-11) 

(3.3-11) is expanded in powers of gn and (3.3-9) is 

substituted for g to give relationships for the coeffi­
n 

cients g(j) by equating the coefficients of Ej. The 
n n 

first few of these coefficients are easy to find , but i t 

becomes increasingly more difficult as more coefficients 

are sought . A general recurrence relation can be 
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determined which gives (j+l) gn in terms of g(j) g(j-l) 
n ' n ' 

(1) 
... , g for j=l,2,3, ... , however, the form of the general 

n 

term as a function only of 8 has not been found. Further 

work on the integrals (2.3-15a) will show that only a 

finite number of the terms in this series are required to 

represent a finite numbe.r of wave fronts in the plate; 

hence it is not so important to find all of the coeffi-

cients g(j) n . An interesting feature of these coefficients 

is that they are independent of the branch number n. 

Thus, the coefficients are denoted by g(j)~g(j) with the 
e n 

subscript e added to distinguish these as equivoluminal 

coefficients as opposed to the dilatational case, which 

will be considered. A few of these coefficients, derived 

by the procedure just described, are 

-siny 

1 . 2 2 . 2 t e 
2sin y - sin y an2 

(3) i . 3 3 . . 2 e 6 . 3 t 2 e ge = - 3sin y + sinysin ytan2 - sin y an 2 

(4) i . 4 4 . ( . 3 i . 3) e ge = 4sin y - siny\sin y+3sin y tan2 

16 . 2 . 2 t 2 e 6 4 . 4 t 3 e + sin ysin y an 2 - --r-sin y an 2 (3.3-12) 
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A pattern does emerge in the form of g(j) and it is . e 

clear that g ( j) = O (n-e) as 
e 

e+n for fixed j since y(6)= 

-iLogR(ei 6 )=~1 2 (n-e)+O(n-e) 2 from (A-4). Also, the first -v 
and last terms in g ( j) can be written in general as 

e 

( -1) j 
--.- sinjy and 

J 

(2')j-l · ·-1e 
-~ sinJytanJ 2 respectively, however, 

the other terms become more numerous and complicated as j 

increases. It is true that the last term in g(j) domi-
e 

nates for j very large and it becomes unbounded as j+00 for 

a general point 6; however this is of very little conse-

quence in the power series (3.3-9) since the magnitude of 

En greatly influences convergence. 

ie 
The symmetrical branches on x=e , 0S6STI, were de-

scribed in Subsection 3. 2. 2 by the modulus Inn ( eie) I where 

.e 
i e j ie j -i2 nn(e )= nn(e ) e from (1) of (3.2-8) for the equivo-

luminal branches. Thus, from (3.3-2a), (3.3-5), (3.3-9) 

and (3.3-lOa), the series representation for the symmetri-

cal equivoluminal branches is 

oo (.) -j (2mr+y (6)) tan~] 
+ I::gJe 

. 1 e J= . 

n=0,1,2, ... , where the first four coefficients g(j) 
e 

given in (3.3-12). 

(3.3-13) 

are 

Before the series representations are derived for the 
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asymmetrical equivoluminal, symmetrical dilatational and 

asymmetrical dilatational branches; it is useful to write 

the series representation for the symmetrical equivoluminal 

branches nn(x) for a point x not necessarily on the unit 

ie circle x=e . From (3.3-5) and (3.3-9), this series is 

written as 

(3.3-14) 

n=0,1,2, . . . , where n(O) (x) is given by (3.3-3) and n(j) (x)= 
en · e 

2 ( j) 
l+x ge (x). The form (3.3-7a) of £n(X) has been used. The 

first four coefficients result directly from {3.3-12) by 

replacing eie with x and eiy with R(x) to give g(j) (x) and 
e 

then n ( j) (X) = - 2-g ( j) ( x) These coefficients are 
e l+x e • 

ne(2) (x) = _ _i_R2-l[!(R2+1) - (l-x)R2-1] 
R2 l+x 2 i+x 

+ _l ( 1- ) 2 (R 2 -1 )2 J 
2 x l+x 
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n (4 ) (x) 
e 

3] 8 3 R2-l 
- -(1-x) (-) 3 l+x (3.3-15) 

R2-l 
The term l+x is bounded, except at points where R is un-

R2-l 4 
bounded, and lim1+ -l-v from (A-3) and (A-4) in Appendix A. 

x+-1 x 

The series representation for the asymmetrical equivo-

luminal branches n (X), n=l,2,3, . . • , is obtained by simply 
n 

replacing R(x) with -R(X) in all of the foregoing expres-

sions. This is valid because the sign of R(x) is the only 

difference between the frequency equations (2.2-13) and 

(2.2-14). In this case the Rayleigh branch n=O is not 

expected to occur in the domain of interest which includes 

ie 
x=e , o,:::e_:::TI. In order to have Ren (x)>O on all branches 

n -

n=l,2,3, ... , it is necessary to take Log(-R)=LogR-iTI which 

is equivalent to replacing n with n-! in the definition 

(3.3-3) of n(O)(x). Therefore, y(8) is replaced with 
en 
i8 y (8)-TI on x=e . In summary, the series representation 

for the asymmetrical equivoluminal branches n Cx) v n=l,2 , 
n 

3 t • o • I is 
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-i j ( 1-x) n ( 0 > 
1 

(x) 

= n ( o) 1 (x) 
en-2 

oo en--
+ L (-l)jn (j) (x)e 2 (3.3 - 16) 

. 1 e J= 

where n (O) (x)-( 2n-l) -i Lol~~x) results directly from the 
en-1 l+x 

2 

definition (3.3-3) for n (O) <x>, and the first four coeffi­
en 

( . ) . e 
cients n J (x) are given by (3.3-15) . On x=e

1 
I o::e<7r I e 

oo • (.) -j ( (2n-l) TI+y (8)) tan~] 
+ 2: (-1) Jg J e ( 3. 3-17) 

. 1 e J= 

.e 
i8 I i8 I -i.2 with nn(e )= nn(e ) e from (1) of (3.2-8), and the 

first four coefficients g(j) are given by (3.3-12) . 
e 

The symmetrical dilatational branches are now consid-

ered. The series representation of these branches can be 

derived in much the same way as was done for the equivo-

luminal branches. However, due to the unusual symmetry of 

t h e frequency equations, these representations for both 

the symmetrical and asymmetrical cases can be derived 

directly from the equivoluminal representations by simple 

changes of variables. 
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This comes about as follows for the symmetrical case: 

The representation (3.3-14) is an explicit function of x 

and R which satisfies the symmetrical frequency equation 

(2.3-13). This, of course, assumes that all of the co­

efficients n(j) can be found and that the series converges 
e 

to n in some domain. Hence, that function can be written 
n 

as 

n = f(x,R) (3.3-18) 

and it is incidental that R is a function of X· It will 

be assumed for the time being that x and R are independent 

complex variables and then n given by (3.3-18) satisfies 

the equation 

sinn = -Rsinxn (3.3-19) 

on some domain D in the x,R-space. (3.3-19) includes the 

symmetrical frequency equation as the special case where 

R=R(x) given by (2.3-12a). 

1 

'f h . 1 d Now, i t e mappings x~-- an . x 
R~-R are carried out, 

sin[f(x,R)) = -Rsin[xf(x,R)] 

becomes 

!sin [-lf (-! -l)] R X X' R 
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which can be written as 

Thus, the function 

n = _l:_f (-! _!) 
X X' R 

(3.3-20) 

satisfies the same equation (3.3-19) as does f(x,R). In 

this case, n given by (3.3-20) satisfies (3.J-19) on the 

-1 1 1 domain D which is the mapping of D under x+-- and R+--X R 

in the x ,R-space. Setting R=R(x), this means that n given 

by (3.3-20) is an equally good solution of the symmetrical 

frequency equation. 

ie For the special case when x=e , O~e~rr, (3.3-18) for 

the symmetrical equivoluminal branches becomes 

.e 
n(eie) = f(eie ,eiy) = e-i2jf(ei8 ,eiy) I (3.3-21) 

where form (1) of (3.2-8) has been used. The cha~ges 

indicated by (3.3-20) are applied to (3.3-21) for 

f (ei e ,eiy) , with x+-l and R+-l: being equivalent to 8+rr-e 
X R . 

and y+rr-y respectively , to give new solutions 
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. TI-8 
-i8 -i~2~lf( i(TI-8) i(TI-y)) I = -e e e ,e = 

(3.3-22) 

i8 
on x=e Hence, the new set of branches obtained in this 

manner must be the symmetrical dilatational branches since 

(3.3-22) is identical with form (2) of (3.2-8). 

The changes indicated by (3.3-20) are carried out on 

(3.3-14) where the right side of that equation is taken to 

be f (x ,R) . Replacing n with m and using the subscript d 

to distinguish these as dilatational branches, this opera-

tion gives the series representation 

(3 . 3-23) 

for the symmetrical dilatational branches n (X), m=0,1,2, . m 

... ,where n~~)(x)=-~ln~~)(x)J _ 1 with the indicated 
L x+-x 

R+-1 
R 

n+m 

changes applying only to n{U) (X) given by (3.3-3). By 
en 

taking Log(-~)=iTI-LogR , this gives 

= (2m+l)TI + iLogR(x) 
1-x 1-x 

(3 . 3-24) 
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The coefficients ndk) (x) are obtained by performing the 

same operations indicated by (3.3-20) on the coefficients 

n~j) (x) given by (3.3-15). Thus, the first four coeffi­

cients ndk) (x) to be used in (3.3-23) are 

+ l ( 1 + ) 2 (1-R 2 )2 J 2 x 1-x 

2 3] 
+ ~(l+ )3(1-R) . 

3 x i-x (3.3-25) 

The series for Jnm(ei 8 ) I, the modulus of the symmetri­

cal dilatational branches on x=eie, can be obtained from 
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(3.3-13) by simply making the changes 8+rr-e and y+rr-y in 

that expression. This is true since the term -!=-e-ie 
x 

multiplying f in (3.3-20) has unity modulus. Thus, since 

· 1 · th 8 · 8 d t 8 t 8 d e+n-e imp ies at co~+sin2 an an~co 2,an y+rr-y 

implies that sinjy+(-l)j+lsinjy, the series representation 

for the symmetrical dilatational branches, nm(ei8 )= 

.e 
-i2 ie 

i nm e / m=0,1,2, ... , On x=e is 

= - 1
-[(m+!). TI - ~ (8) . e 2 2 sin-
' ·2 

(3.3-26) 

as obtained from (3.3-13). The first four coefficients 

g~k) in (3.3-26) result from (3.3-12) in the same manner 

.and they are 

( 1) 
gd = -siny 

g~3 ) = -~sin3y - 3sinysin2ycot~ - 6sin3ycot2 ~ 
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( 4) 1 . 4 4 . ( . 3 1 . 3 ) t8 gd = - 4sin y - siny sin y+3sin y co 2 

16 
. 2 . 2 2 8 6 4 . 4 3 8 

sin y sin ycot 2 - ~sin ycot 2 (3 . 3-27) 

The series representation for the asymmetrical dilata-

tional branches, n (x ), m=l,2,3, . . • , is obtained by replac­
m 

ing R( x ) with -R( x ) in all of the expressions for the sym-

metrical dilatational branches. In this case Log(-R)= 

LogR+iTI is taken so that all branches with Ren (x)>O for m -

1 2 3 · 1 d d o i 8 (8) · 1 d ·th m= , , , . . . are inc u e • n x=e , y is rep ace wi 

y (8 )+TI. Thus, the series representation for the asymmetri-

cal dilatational branches is 

ik(l+x)n(O) 
1

<x> 
00 dm--
L: (--1) kn~k) (x) e 2 
k=l 

(3.3-28) 

m=l, 2 , 3 , .. . , with n(o) ( x ) 
dm given by (3.3-24) and the first 

four coefficients ndk) (x) given by (3.3-25). Likewise , on 

i8 
x=e ' o:::.8:5.TI , 

jnm(ei8) j _l [m~ _ 1 
= 2Y (8) . 8 sin-2 

(3.3-29) 
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.e 
. e J . e J -12 

where nm(e
1 

)=i nm(e
1 

) e by form (2) of (3.2-8) and the 

first four coefficients g~k) are given by (3.3-27). 

The forms of the representations (3.3-23) and (3.3-28) 

for the symmetrical and asymmetrical dilatational branches 

respectively show that there is no chance of convergence on 

the real x-axis. In fact, these series are complex for x 
a-1 

real and only real branches are possible on ~-1<x<l. Also, a+ - -

the individual terms in the series seem to increase in mag-

nitude as k increases. This is contrasted with the repre-

sentations for the equivoluminal branches which seem to 

converge to the complex branches on some of the interval 

-lsxsO. This difference can be shown to be closely related 

to the distribution of branch points near the points x=l,-L 

The derivation of these representations has revealed a 

very significant symmetry of the branches of the Rayleigh-

Lamb frequency equations. This symmetry is evident in the 

close relationship between the equivoluminal and dilata-

tional branches as demonstrated by (3.3-18) and (1.3-20), 

and it is not necessary to derive the series representa-

tions to find this relationship . Symmetries have long been 

known to exist between the symmetrical and asyrr~etrical 

branches, shown in this work by replacing R(x) with -R(X) , 

but the lack of any equivoluminal-dilatational symmetry 

has been a troublesome aspect .in modal solutions . The 
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only part of the frequency spectrum with both w and K real 

which seems to be related to dilatational waves is a por-

tion in the dilatational sector (2.3-10) where the branches 

are terraced and very dissimilar to the branches in the 

shear sector (2.3-11). However, this symmetry between 

branches with an equivoluminal singularity and those with 

a dilatational singularity is not really surprising. Once 

the dilatational branches have been identified and sketched, 

it is almost obvious in Figs. 9 and 10 that the equivolumi-

nal and dilatational branches are closely related. Also, 

on physical grounds, there is a great similarity between 

the geometry and form of the dilatational and equivoluminal 

wave fronts, which will be found to be closely identified 

with the dilatational and equivoluminal branches. 

Convergence of the series representations that were 

derived in this section can be shown on certain regions in 

the x-plane by a lengthy method, which is not included 

here. Instead, the method is described briefly and the 

results are listed. 

Uniform convergence of the series representations can 

be shown on certain regions by taking advantage of the 

similarity between series such as (3.3-9) and a Taylor's 

series in powers of £ • Actually, (3.3-9) is not a 
n 

Taylor's series since both £n and the coefficients g~j) (X) 

are functions of X· 
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As might be expected, the region of convergence of the 

series is determined by the location .of the branch points 

and other singular points of the branches n. The region of 

convergence is then determined by locating the singularity 

"nearest" to E =O. However, since both E and g(j) (X) in 
n n n 

(3.3-9) are functions of x 1 the term "nearest" must be 

interpreted very carefully. This fact makes the problem 

quite difficult and too lengthy to include here. 

Convergence of the series representations is only con­

ie sidered on x=e 1 0~8~TI, and on the path C1 , which is de-

scribed at the end of Appendix A. These paths are good 

choices for possible alternate integration paths for the 

modal solution (2.3-15), and they are convenient to investi-

gate due to the simple forms of R(x) given by {A-6) and 

(A-8) in Appendix A. 

The results for convergence are listed below. 

The series (3.3-14) for the symmetrical equivoluminal 

branch n=O (the symmetrical Rayleigh branch) converges 

· f 1 · h ie 1 d t · uni orm y wit respect to x=e on any c ose segmen in-

terior to 8 0 <8~TI. e
0 

is defined by (2.3-8). 

The series (3.3-23) for the symmetrical dilatational 

ie branch m=O converges uniformly with respect to x=e on 

any closed segment interior to o~e<e 0 . In B.l of Appendix 

B it is shown that the symmetrical Rayleigh branch n=O and 

the symmetrical dilatational branch m=O share a branch 
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i60 
point at x 0=e This branch point determines the limit 

6=6 0 of these regions of uniform convergence. 

The series (3.3-14) for the symmetrical equivoluminal 

branches n=l,2,3, ... and the series (3.3-16) for the asym-

metrical equivoluminal branches m=l,2,3, ... converge uni­

i6 formly with respect to x=e on any closed segment interior 

to 0<8 <TI. 

The series (3.3-23) for the symmetrical dilatational 

branches m=l,2,3, ... and the series (3.3-28) for the asym-

metrical dilatational branches -m=l,2,3, .•. converge uni­

i8 formly with respect to x=e on any closed segment interior 

to 0<8<TI. 

None of the series representations converge on all of 

the path c1 , which has the endpoints x=:~~ and x_ 1 given 

by (A-la) in Appendix A. However, as the branch number, n 

for the equivoluminal branches and m for the dilatational 

branches, increases the series representations converge 

uniformly with respect to x (: c1 on a larger and larger 

closed segment of c1 which includes the endpoint x_ 1 and 

h th d · a-l 1 · h' h approac es e en point x=a+l" A cone usion, w ic. can 

a-1 
verified by investigating the branch points near x=a+l' 

that the extent of the region of uniform convergence is 

be 

is 

determined by the location of branch points on or near c1 

which are common to the branch n in question. 
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This result for uniform convergence on c1 is precisely 

that which is required since this work involves the high­

frequency response of a plate. As such, calculations are 

necessary which require an approximation that improves in 

accuracy as the branch number and, hence, the frequency 

increases. 

3.4. ANALYTIC CONTINUATIONS OF THE BRANCHES 

The purpose of this section is to incor~orate the in­

formation already derived about the branches in this chap­

ter. Specifically, analytic continuations will be used to 

continue the branches n on a closed curve consisting of the 

boundary of the upper half unit disk (ixl<l, Imx>O) with 

the singularities on the boundary being excluded. Also, by 

excluding the branch points which are interior to the half 

disk, the branches become single-valued, analytic functions 

of x on the closed curve. The branches as a function of x 
are described in Section 3.2 for all of this boundary and 

the branch points are described in Section 3.1. Analytic 

continuations about each of the particular classes of 

branch points and continuations about the aforementioned 

closed curve are described in this section. Reference is 

made to Appendix C where supplementary material is given 

for the continuations and continuations for specific 

branches are described. 
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3.4.1 . Analytic Continuations About the Branch Points. 

In this subsection the nature of the analytic continu­

ations of the branches of the frequency equations about 

their branch points is investigated by varying Poisson's 

ratio v. This causes many of the branch points to migrate 

onto the real x-axis where they are much easier to under­

stand. In this context, the nature of the analytic contin­

uations about the branch points merely means the knowledge 

of which branches are common to the particular branch 

points. It is recalled from Subsection 3.1.2 that each 

branch point is common to only two branches. 

An argument was given in Subsection 3.1 . 1 showing that 

the branches n are analytic functions of Poisson's ratio v 

as well as being analytic functions of X· Hence, v is 

varied and the fact that the position of all the branch 

points, except the branch point of the asynunetrical 

Rayleigh branch at x=O, are functions of n makes it pos­

sible to bring many of these points into view on the real 

x-axis. The analyticity of the branches n with respect to 

v insures that the nature of the branches remains generally 

the same as v is varied. Specifically, given branch points 

continue to be shared by the same two branches. 

From Subsection 3.1.3 and from Figs. 7 and 8 1 branch 

points are plainly visible and easily understood on the 
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t 0 a-l f th real · segmen ~X~a+l o e x-axis . Also, from (2.1-2) 

. giving a as a function of v, the point 

a-1 
a+l 

= 12(1-v) - II=2V = 
/2(1-v) + ./l-2v 

3 - 4v - 212(1-v)(l-2v) (3.4-1) 

is an increasing 

1 ing n to 2 causes 

. 1 
function of v for O~v~2 . Hence, increas-

:~i to increase to 1 and the interval 

containing branch points on the real x-axis becomes O~x~l. 

The branches are sketched on the interval O~x~l for 

1 v=2 in Fig. 13. The general behavior of the branches re-

ie 
mains essentially the same on -l~x~O and on x=e , 0~6~TI, 

for all of the range O~v~~ with no change in the number of 

branch points. 

The transition of the branches which occurs as v in-

1 creases toward 2 is caused by the merging of the branch 

points from "the set of positive branch points 12 of Subsec-

tion 3.1.3 with their complex conjugates. As v continues 

to increase, the complex conjugate pairs then separate and 

a-1 
remain on O<x~a+l· This can be visualized in Fig. 8 for 

various pairs of branches. For example, the symmetrical 

branches n4 and n5 approach in a maximum on n4 and a mini­

a-1 mum on n5 near x=a+l" A slight increase in v over the 

value v=0.3 in Fig. 8 will cause branch points common to 

a-1 n4 and n5 to merge on the real x-axis near x=a+l; hence, 
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n4 and n5 also merge at this point and, as described in 

Subsection 3.1 . 2, the branch points cancel and leave the 

branches analytic at this point. A further increase in v 

will cause these branch points to separate and remain on 

a-1 
O< x :'.:a+l on the real x -axis. n4 and n5 will then be left 

connected by one of the branch points, as are the symmetri­

a-1 
cal branches n9 and n 10 near x =a+l in Fig. 8 . By this 

method, branch points common to n4 and n5 are identified as 

(+,1,4) from "the set of positive branch points 11 and as 

(+,2,5) which is the complex conjugate of (+,1,4) for 

v=0.3 . The triplets (±,j,k) identify these branch points 

+ 
as zeros of the function ~jk in (3.1-9). 

The transition just described has occurred for all of 

the branch points which are seen on O<x<l in Fig. 13 as v 

increased to v=1· These branch points are ident ified as 

the vertical tangents where ~~-00 in Fig. 13 and they are 

circled and labeled with the triplets (±,j,k) to identify 

them as zeros of the functions 
+ 

~;k in (3.1-9). 

For 1 of the branch points from "the set of v=- all 
2 

positive branch points" have migrated onto the segment 

O<x <l of the real x-axis with the exception of an infinite 

subset of branch points . Before discussing this subset , 

the nature of the branch points which do migrate onto the 

real x-axis can be described by comparing Figs. 8 and 13 . 
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All of the branch points (±,j,k) with ±(-l)k=+l, which 

. h 1 . . t 1 migrate onto t e rea x-axis as v increases o v=2 , are 

common to the real branches nk and nk+l· Referring to 

Subsection 3.1.3, ±(-l)k=+l identifies these as branch 

points from "the set of positive branch points" and they 

are common to symmetrical branches if j+k is odd while they 

are common to asymmetrical branches if j+k is even. 

The previously mentioned subset of branch points which 

remains off the real x-axis is just "the set of positive 

branch points" for v=!· The identification of these branch 

points by the triplets (±,j,k) depends on the definition of 

+ 
the functions 6jk from (3.1-9). This definition is made 

precise by specifying the branch cut to the logarithmic 

branch point at x 01 which is common to all of the functions 

+ 1 
6jk· x 01 is located as shown in Fig. 4 for v=2 . In Fig. 

13 for v=! the choice of this branch cut is indicated by a 

vertical line at x=0.6 which represents the intersection of 

the real x-axis and the branch cut to x 01 . This is chosen 

quite arbitrarily so as to avoid the lower branch points 

on O<x<l. This being the case, "the set of positive branch 

points" for v=! which remain off the real x-axis are 
2 

identified by the triplets (-,2,1), (+ 1 3,2), (-,2,3), 

(+,3,4), (-,4,5), etc., for the symmetrical branches and 

by ( - 'l , 1) ' ( + I 2 I 2) I ( - ' 3 I 3) ' ( +, 4 I 4) y ( - y 3 , 5) , etc. , for 

the asymmetrical branches. 
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"The set of negative branch points" of Subsection 

1 3.1.3 does not appear on the real x-axis for v=2 . These 

branch points are investigated in the following by letting 

1 v exceed 2 . 

There is no physical reason to consider values of 

Poisson's ratio v exceeding !, however, the branches are 

analytic functions of v for v>! and they can be studied 

for any range of v. For ~<v<l the branches remain essen­

tially the same as they were for v=~ with no more branch 

points appearing on the real x-axis or on lxl=l. The point 

a-1 ie 
~-given by (3.4-1) does move onto x=e with 0<8<n caus­a+l 

ing some change in the branches. 

The limiting case v=l causes many things to happen to 

the branches. . a-1 
All of the points a+l' xR' x 01 , x_ 1 and x 0 

and their inverses and complex conjugates have merged to 

x=-1 leaving R=~ from (2.3-12a). The frequency equations 

then become sinn=±isinxn. The first obvious result is that 

the branches n are now even functions of X· 

The branches are sketched in Fig. 13 for v=l on O~x~l 

beside the case v=! for comparison. The sketch is also 

valid for -l~x~o by just replacing x by -x because the 

branches are even functions of X· 

A result, which is of no importance here, is that the 

asymmetrical Rayleigh branch n0 <x> and the asymmetrical 

branch n1 (x), which shared the branch point at x=O, have 
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become identically zero for v=l. 

The reason for looking at the branches for v=l is 

apparent from Fig. 13. The branch points on 0SXS1 for 

1 
2~v<l have merged together in pairs to form third order 

d d 2 d 3 
branch points with dX-~=O~~ at the points. For example, 

n dn dn 

the two synunetrical branch points (+,1,2) and (-,1,2) in 

1 1 Fig. 13 for v=2 have merged at x=2 and n=2TI for v=l, the 

two asynunetrical branch points (-,1,3.) and (+,1,3) have 

1 merged at x=j and n=3TI, etc. More importantly, the situa-

tion is the same on -l~x~O for v=l since the branches are 

even functions of x; therefore, "the set of negative branch 

points" have merged with their complex conjugates on that 

segment of the real x-axis. 

Now all of the branch points have been located since 

the branches have no 

real x-axis for v=l. 

(3.l-7a) to give f=O 

branch points other than those on the 

This can be seen by setting R=! in x 
+ ; 7T 

and b. -:k=k - . ..L:.:.... from ( 3 .1-9) so that 
J x 

+ 
zeros of b.jk' which are also branch points of the branches, 

occur only at x=~ with n=kTI resulting from (3.1-7). This 

value of n causes sinn to vanish in (3.1-11) to explain how 

2 
d ~-O comes about at the branch points. 
dn 

This discussion has not explained what has happened to 

"the set of positive branch points" for v=~, which remained 

off the real x-axis as v~. These branch points have _ 
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migrated toward x=-1 as v+l and at v=l they merge with their 

complex conjugates at x=-1 to cancel each other and leave 

the branches n analytic except for the branch points al-

ready discussed. 

The nature of the branch points belonging to "the set 

of negative branch points" is not apparent even though they 

have migrated onto the real x-axis for v=l. These branch 

points are investigated in C.l of Appendix C where the fre-

quency equations are approximated under the assumption that 

Poisson's ratio v is slightly less than V=l. 

The result of great importance which is found in C.l 

is that only the complex branches with Imn>O have branch 

points belonging to "the set of negative branch points" and 

these branch points are shared with real branches on -l<x<O. 

The complex branches with Imn<O have no branch points from 

''the set of negative branch points" and, in fact, these 

complex branches share branch points with the real branches 

on -l<x<O which are the complex conjugates of branch points 

from this set . 

It is interesting that the form of the branch points, 

which occur on the real x-axis or in complex conjugate 

pairs adjacent to the real x-axis, is related to the bounds 

on R(x) and xR(x) given by (A-5) in Appendix A. That is, 

a-1 on ~-1 <x<l where -l<R<l and -l<xR<l, the branch points are a+_ 
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in complex conjugate pairs which are common to neighboring 

real branches. On O< <a-1 
X-a+l where R>l and -l<xR21, the 

branch points are in pairs on the real x-axis and they are 

common to complex loops and real branches. On -l<x<O where 

-l<fRJ- 1<1 and -l<[xRJ- 1<1, the branch points are in com-

plex conjugate pairs with the upper branch points (Imx>O) 

common to the real branches and only the complex branches 

with Imn>O. 

Continuations about the singular points x=-1 and x=l 

of the equivoluminal and dilatational branches respectively 

are described in C.2 of Appendix C. There it is found that 

th · i · 1 b h i 8 o · ab e equivo umina ranc es on x=e , 2e2n, continue out 

x=-1 onto the complex branches with Imn<O on -l<x<O. The 

complex branches with Imn>O continue about x=-1 onto the 

dilatational branches on x=eie ~ 0~82TI· This difference is 

a result of the nature of the branch points from "the set 

of negative branch points," which was just discussed. 

Not surprisingly, the dilatational branches continue 

a-1 about x=l onto the real branches on a+l<x<l since these are 

the only branches on this segment of the real x-axis. 

These continuations of the equivoluminal and dilata-

tional branches provide information about the branch points 

near x=-1 and x=l. 

Additional information about the branch points can be 

. gained by approximating the function ~jk in (3.1-9) in a 
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Taylor's series about x=-1 and x=l. The zeros of the 

+ 
approximated function 6jk then gives the approximate loca-

tion of branch points near these points. Sets of branch 

points corresponding to j fixed and k large and varying are 

found corresponding to the triplets (±,j,k). Obviously, 

these sets become infinite as k++00 and it is found that 

they have limit points at x=l. For ±(-l)k=+l and the 

appropriate requirements on j and k, these branch points 

belong to "the set of positive branch points," which were 

found to be common to neighboring real branches, nk and 

nk+l' fork fixed and j varying. These branch points are 

also common to the dilatational branch n. for j fixed and 
J 

k varying. 

Likewise, "the set of negative branch points," repre­

sented by (±,j,k) with ±(-l)k=+l and j=-1,-2,-3, ... , was 

found to be common to real and complex branches as de-

scribed. For j fixed and k varying, the approximate loca-

tion of these branch points shows that the infinite sets as 

k+oo have limit points at x=-1. The abundance of these 

branch points near the real x-axis as x+-1 is reflected by 

the rapid oscillation of the imaginary part of n on the 

complex branches. 

The details of the local analytic continuation about 

dx_o a2x 1 a branch point where d and ----'27'0, which includes all but 
n an 
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a few branch points, is given by (3.1-13); thus, the nature 

of any branch point can now be understood so that analytic 

continuations can proceed. 

3.4.2. Analytic Continuations on a Closed Path. 

A discussion of analytic continuations of a general 

branch of either frequency equation is given in this sub­

section. In C.3 of Appendix C, "the set of positive branch 

points" for v=!, which were not satisfactorily explained in 

Subsection 3.4.1, are examined by using these analytic con­

tinuations on a closed path. The conclusions of the present 

subsection are based on the ahalytic continuations of three 

specific branches of the frequency equations corresponding 

to a closed path in the x-plane, which are described in C.4 

of Appendix C. 

The continuations of the branches are conformal map­

pings since the branches n are analytic functions of x and 

they are single-valued mappings if no singular points of n 

are interior to or on the closed path in the x-plane. 

The paths for the analytic continuations described 

here and in C.4 of Appendix C consist of the boundary of 

the upper half unit disk ( j x I <l , Imx>O) taken in a counter­

clockwise direction with all of the branch points of the 

branch in question excluded by making indentions about the 
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points and their branch cuts . The branch cuts can be taken 

perpendicular to the real x-axis for convenience. 

The continuation illustrated by Figs. 14 and 15 in­

a-1 
valves the symmetrical branch n1 at x=a+l' the symmetrical 

i8 
dilatational branch no on x=e , 0<8<80, and the symmetri-

cal equivoluminal branch n0 (the symmetrical Rayleigh 

ie 
branch) on x=e , 8 0 <8~TI. This analytic continuation is 

i80 
explained in C.4 of Appendix C. The point x 0=e is de-

fined by (2.3-8) and it is a branch point common to these 

i8 two branches on x=e as is seen from (B.l-1) in Appendix 

B. 

Similarly, Figs. 16 and 17 illustrate a continuation 

a-1 which involves the asymmetrical branch nl at x=a+l and the 

i8 asymmetrical dilatational branch n 1 on x=e , 0<8<n; and 

Figs. 18 and 19 illustrate a continuation which involves 

a-1 
the symmetrical branch ns at x=a+l and the symmetrical 

i8 equivoluminal branch n2 on x=e , 0~8<n. These analytic 

continuations are also explained in C.4 of Appendix C. 

Continuations involving branches with higher branch 

numbers follow from the last two examples in C.4 of Appen-

dix . c with the only difference being that more branch 

points are involved. However, the details of continuations 

about individual branch points is the same. 

It is noted that the continuation described by Figs. 

16 and 17 is called a dilatational continuation while ~he 
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continuation described by Figs. 18 and 19 is called an 

equivoluminal continuation. These names for the continua-

tions are explained as follows: If a given real branch is 

continued in the x-plane, as shown in Figs. 16 and 18, so 

that the path circles all of the branch points from "the 

set of positive branch points 11 which are common to this 

continuation of the branch, then it is called a dilata-

tional continuation if the branch continues onto a dilata­

i8 tional branch on x=e , 0~8~TI. Likewise 1 it is called an 

equivoluminal continuation if the branch continues onto an 

ie equivoluminal branch on x=e , 0~8~TI . These names are used 

both for continuations on closed paths, as in Figs. 16 and 

18, and also for unclosed paths. 

The continuation described by Figs. 14 and 15 is not 

designated in this manner simply because it involves both a 

ie dilatational and an equivoluminal branch on x=e , 0~8~TI. 

However, this is the only such case since only these 

ie branches share a branch point on x=e , 0<8<TI. 

A point of interest is that equivoluminal continua-

tions involve branch points from 11 the set of positive 

branch points" which have j+k constant while dilatational 

continuations involve those with k-j constant. This 

assumes that the branch points are designated by the tri-

plets (±,j,k) so that they are also zeros of the functions 

+ l:ijk in (3.1-9). 
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In Fig. 20 the branch points from "the set of positive 

branch points," which are common to neighboring real 

a-1 
branches, are shown on a+l~x<l. The branch points in Fig. 

20 are designated by points on vertical lines connecting 

the real branches which share the branch points. Some of 

the points are labeled by the triplets (±,j,k) identifying 

them as zeros of the functions ~~k in (3.1-9). 

Fig. 20 serves to illustrate the equivoluminal and 

dilatational continuations. If continuations about the 

branch points, as in Figs. 16 and 18, are visualized, an 

equivoluminal continuation involves starting at x=:~i on a 

real branch nn(X), such as the symmetrical branches n 3 ,n 5 , 

n 6 ,n 8 , ... or the asymmetrical branches n 2 ,n 4 ,n 5 ,n 7 ,n 8 , ... , 

and stair-stepping down a branch at every branch point 

encountered by continuing toward x=l on the real x-axis. 

Similarly, a dilatational continuation involves starting 

a-1 
at x=a+l on a real branch nn(X), such as the symmetrical 

branches n 1 ,n 2 ,n 4 ,n
7

, ... or the asymmetrical branches 

n1 ,n 3 ,n 6 , ... , and stair-steppin~ up a branch at every 

branch point encountered by continuing toward x=l on the 

real x-axis. 

A close relationship exists between the type of con-

tinuation just described and the value of the real branch 

a-1 
at x=a+l" For all but a few of the lowest branches (this 
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depends on the value of v) , those branches which take the 

a-1 values at x=a+l given by the first of (B.1-5) in Appendix B 

or by the first of (B.1-6) lead to equivoluminal continua-

tions. Likewise, those branches which take the values at 

a-1 
x=a+l given by the second of (B.1-5) or by the second of 

(B.1-6) lead to dilatational continuations. 
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CHAPTER 4 

THE APPROXIMATE REPRESENTATION OF THE 

HIGH-FREQUENCY RESPONSE 

The modal solution (2.3-15) can now be replaced by an 

equivalent representation which makes the high-frequency 

response much more accessible. By utilizing the analytic 

continuations of Section 3.4, the modal solution is found 

to be equivalent to integrals over the integration paths 

CE and c0 in Fig. 21, and these integrals involve the 

equivoluminal and dilatational branches from Subsection 

3.2.2 respectively. The series representations in Section 

3.3 for the equivoluminal and dilatational branches are 

then used in these integrals to obtain approximations to 

the high-frequency response of the plate. The geometry of 

the resulting wave fronts in the plate is shown in Fig. 22 

and a discussion is given relating the various wave fronts 

to the frequency spectrum in the x,n-space or in the w,K­

space. 

This method requires expansions of the integrands, 

which are much like those used by Rosenfeld and Miklowitz 

[l] to obtain wave front expansions. However, relatively 

convenient representations of the high-frequency response 

are found here, which appear to be valid without the 
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restriction of nearness to the wave front as is required 

for wave front expansons . 

A specific representation is further approximated near 

a wave front to make a comparison with an amplitude in the 

wave front expansion given by Rosenfeld [13]. 

4.1. THE MODAL SOLUTION ON THE EQUIVOLUMINAL AND 

DILATATIONAL BRANCHES 

In this section the modal solution (2 . 3-15), with the 

exception of the Rayleigh modes n=O, is shown to be equi­

valent to a sum of integrals over the equivoluminal 

branches plus a sum of integrals over the dilatational 

branches of Subsection 3.2.2. This is done so as to make 

use of the series representations in Section 3.3 to approx­

imate the high-frequency response of the plate. The 

Rayleigh modes are not included because this method offers 

no advantage over the usual w1 K representation for these 

modes. 

The integrals (2 . 3-lSa) separate into two parts con­

sisting of that part which results from the dilatational 

potential ¢ through the first term in each of the func­

tions U in (2.3-16) and that part which results from the 

equivoluminal potential ~ through the second term in each 

of the functions u. 
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With some foresight about the task of identifying the 

wave fronts, it is helpful, and perhaps necessary, to write 

those parts of the integrals (2.3-lSa} which result from 

the dilatational potential ~ a~ the imaginary part of 

integrals of the form 

(4.1-la} 

Similarly , those parts of (2.3-lSa} which res.ult from the 

equivoluminal potential \jJ are written as the imaginary part 

of integrals of the form 

1 [sin (Ks}] . lWT 
F\jJ(X,nn(X},1';} e dx 

c cos(Ks} 
(4.1-lb) 

In both (4.1-la} and (4.1-lb}, C is the integration path 

shown in Fig. 2 and K and w are given by (2.3-7) with 

n=nn(X}, n=l,2,3, .... The bracket term in (4.1-lb} just 

means that either sin(Ks} or cos(Ks} may occur in the 

integrand as in (2.3-lSa) . These forms are to be used to 

examine the response of the right half of the plate , s>O. 

As was mentioned, the representation (2.3-15) is not 

a form which readily yields information about the wave 

fronts or about the high-frequency response in general. 

Thus, it is expected to be advantageous to write the re-

sponse as a sum of integrals over the equivoluminal and 
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dilatational branches since these branches seem closely 

related to the equivoluminal and dilatational wave fronts 

respectively. 

By using the forms (4.1-la) and (4.1-lb) v either the 

symmetrical or asymmetrical parts of the representation 

(2.3-15) can be written as the imaginary part of 

F e1WT ax 
[

sin (Kl;)] . ] 
1jl COS (Kl;) 

oo f [ . [sin (Kl;)] . ] + L F ¢sin (WT) e 1
Kl; + F \jJ e 1

WT ax 
m=O,l C COS(Kl;) 

D 

(4.1-2) 

where the integration paths CE and CD are shown in the 

first sketch of Fig. 21. The justification of the equiva-

lence of (4.1-2) and the modal solution (2.3-15) will be 

given shortly. On CE' Fcp=Fcp (x,nn(X) ,r;) and Fl/J= 

F,,,(x,n (x) ,r;) where n (x), n=l,2,3, •.. , are the equivo-
'I' n n 

luminal branches shown in Fig. 9 or analytic continuations 

of these branches. On CD' Fcp=Fcp(x,nm(X) ,r;) and F~= 

Fl/J(x vnm(X) ,r;) where nm(X) are the dilatational branches 

shown in Fig. 10 or analytic continuations of these 

branches . The lower limit on the sum in the second term 

of (4.1-2) is from m=O for the symmetrical case and from 

m=l for the asymmetrical case. Again, w and K are given 
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by (2.3-7) with n=nn(X) being the equivoluminal branches in 

the first integral of (4.1-2) and n=nm(X) being the dila­

tational branches in the second integral. 

a-1 
The first sketch of Fig. 21 shows CE going from x=a+l 

ie_
1 to x_ 1=e given by (A-la) on the path c1 on which IRl=l 

as discussed in Appendix A. From x_ 1 , CE proceeds counter­

clockwise on the unit circle lxl=l to the point x=-1. CE 

is meant to be such that all of the branch points common to 

the particular equivoluminal branch n (x) which belong to 
n 

"the set of positive branch points" of Subsection 3.1.3 are 

a-1 
to the right of the portion of CE from x=a+l to x=x_ 1 . 

Likewise, all of the branch points common to the particular 

branch which belong to "the set of negative branch points" 

should be to the left of this portion of CE. If this is 

not possible due to the location of some of the branch 

points, small indentions can be. made in CE so as to leave 

all of these branch points on the proper side of the inte-

gration path. 

The first sketch of Fig. 21 also shows the integration 

th c . f a-l tl d ' d c and the pa D going rom x=a+l to x_ 1 exac y as i E 

same comments hold for those branch points common to the 

particular dilatational branch nm(X). c0 then continues 

clockwise on the unit circle lxl=l toward the point x=l. 

A small indention in c0 about x=l must be included because 
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the integrals in (4.1-2) fail to exist for certain values 

i8 of ;,s,T as 8+0 on x=e , 0<8<n. This difficulty can be 

seen from (2.3-7), (3.2-8) and Fig. 10 showing that on the 

dilatational branches w=ilwl and K=ilKI with both wand K 

i8 unbounded as 8+0 on x=e , 0<8<TI, and limw-a. a is the 
8+0K 

ratio of velocities gi~en by (2.1-2). The indention in c
0 

passes above all of the branch points from "the set of 

positive branch points" which are common to the particular 

dilatational branch nm(X). Yet C0 approaches x=l tangent 

to the real x-axis. This is possible since the locus of 

this infinite set of branch points is also tangent to the 

real x-axis. 

Justification of the equivalence of the representa-

tions (4.1-2) and (2.3-15) still require~ considerable 

explanation. This is not done rigorously since it involves 

rearranging infinite series which are not expected to con-

verge everywhere due to the presence of singular wave 

fronts. However, the representation (4.1-2) can be shown 

to involve precisely the same integrals over the same 

branches as does (2.3-15) and that is done in the follow:ing. 

For each equivoluminal branch, the path CE is de­

i8 
formed onto the real x-axis and the unit circle x=e 

0<8<TI . This is done as in Fig. 18 so that the deformed 

a-1 path goes from x=a+l along the real x-axis in a positive 
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direction with vertical indentions for the branch points 

from "the set of positive branch points" which are common 

to this particular equivoluminal branch. Finally, x=l is 

ie reached and the deformed path remains on x=e , o~e~rr, to 

the end point x=-1. 

Likewise, the integration path c
0 

is deformed onto the 

segment a-l<x<l of the real x-axis for each dilatational a+l- -

branch with similar vertical indentions for the branch 

points common to the particular branch. Examples of these 

d f t' f C h · F' 14 and 16 from a-l e orma ions o D are s own in igs. x=a+l 

to x=l. 

By the Cauchy-Goursat theorem, these deformations of 

the integration paths CE and c0 do not change the values 

of the integrals. 

(4.1-2) is then equivalent to sums of integrals over 

all equivoluminal and dilatational continuations of the 

branches n (x) / n=l,2,3, . . . , with the equivoluminal contin­
n 

uations extending from x=:~i to x=l and then to x=-1 while 

h d · 1 · 1 · · t d f a-l t 1 t e i atationa continuations ex en rom x=a+l 0 x= . 

The equivoluminal and dilatational continuations are de-

fined in Subsection 3.4.2 and example~ are shown in Figs. 

19 and 17 respectively. 

(4.1-2) then involves integrals over all of the 

equivoluminal branches on x=eie, 0<8<rr, which is identical 

on both C in (2.3-15) and the path CE deformed as described 
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for (4.1-2). This portion of the integrals is then identi-

cal in (2.3-15) and (4.1-2). 

The remaining portion of (4.1-2) involves integrals 

over the equivoluminal and dilatational continuations of 

all branches n (x), n=l,2,3, ... , on a-l
1

<x<l plus the branch n a+ - -

line integrals around the various branch points from "the 

set of positive branch points." Referring to Fig. 20 and 

to the description of equivoluminal and dilatational con­

tinuations from x=:~i to x=l which is given in Subsection 

3.4.2, it is seen that (4.1-2), with the paths CE and c
0 

deformed, covers every portion of every real branch on 

a-1 
a+l~x~l. This fact along with the fact that the equivo-

luminal branches are COVered On x=eie I osesnl means that 

the same branches have been covered in (4.1-2) as have been 

in (2.3-15). 

Only the integrals on the indentions about the branch 

. t d. a-1 1 poin s a Jacent to a+lSX~ as shown in Figs. 14, 16 and 18 

remain. Every branch point belonging to "the set of posi-

tive branch points" is easily seen from Fig. 20 to be in-

volved twice in these integrals--once on an equivoluminal 

branch and once on a dilatational branch. It is then a 

simple matter to show that the two branch line integrals 

about a particular branch point cancel each other. The 

integrals on the small circular paths can also be shown 

to cancel. Also, by making a simple expansion about the 
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branch points and by using (3.1-13) it is seen that cosn± 

1 

XRcosxn=o(jx-xcj
2 ) near a branch point x=xc· Since 

-1 
(cosn±xRcosxn) are the only singular terms at the branch 

points in the integrands of (2.3-lSa), the integrals on the 

small circular paths give zero contribution as the paths 

are shrunk to the branch point. 

Thus, (4.1""'.2) results from (2.3-15) by a rearrangement 

of the series representation. The representation (4.1-2) 

is taken as the response of the plate to the loading 

(2.1-7). To justify this form as a solution of the govern-

ing equations of motion (2.1-4) requires the procedure dis-

cussed at the end of Section 2.2. 

4.2. THE HIGH-FREQUENCY APPROXIMATION 

4.2.1. The High-Frequency Expansion of the Modal Solution. 

The representation (4.1-2) is to be approximated by 

using the series representations for the equivoluminal and 

dilatational branches from Section 3.3. 

Before proceeding with this approximation, it is con-

venient to write portions of the integrands of (4.1-2) or 

(2. 3-lSa) as sums of exponential functions. A product of 

the terms sin {un) eiK~ and the first terms of u in .(2.3-16) [sin (Kl;)] . 
and 1WT 

of u are required. of e . and the second terms 
cos (KO 
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In order to write these products, the phase functions 

¢i and ~i' i=l,2, .•. ,8, are defined as 

1 

~ 1, (f; ,q •X) = ~I; [ ( x-:~i) (:~i-x) r 
(4.2-1) 

1 

[( )( )]
2 1 i a-1 a+l 

-(-1) ~ x-- --x 2 a+l a-1 

where the upper sign applies for i=l,2,3,4, the lower sign 

applies for i=S,6,7,8 and ~ is replaced with -~ for i=3,4, 

7,8. ~i is called the dilatational phase function and ~i 

is called the equivoluminal phase function since they are 

to be related to the dilatational potential ¢ and the 

equivoluminal potential ~ respectively through (2.2-1) and 

(2.3-16) defining the functions U. The spatial and time 

dependence of the response depends strongly on ~i and ~i 

and the geometry of the wave fronts is determined entirely 

by these functions since they will contain all of the de-

pendence of the integrals on the variables ~, T and ~. 

The phase functions (4.2-1) are now used to write the 
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required products in two parts where the first and second 

terms in the expressions (2.3-16) for the functions U are 

separated to give 

sinn ( 1-x) z; cosn ( l+x) 
2 2 

icosn (l-x)z;cosn (l+x) 
2 2 

sin(Kt;)sinn (l-x)cosn (l+x)r; 
2 2 

sin(Kt;)cosn(l-x)sinn (l+x}l; 
2 2 

( 4. 2-2) 

where 

-1 1 -1 1 1 -1 1 -1 

-1 1 1 -1 -1 1 1 -1 
(Ski) = (4.2-2a) 

-1 1 1 -1 1 -1 -1 l 

1 -1 1 -1 l -1 l -1 

The form (4.2-2) is deduced by simply writing the trigono-

metric functions in their exponential forms. 
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The portion of the integrands in (4.1-2) or (2.3-15) 

which contain the branches n can be expanded by using the 

series representations in Section 3.3. From (2.3-lSa) and 

(4.2-2), the only portion of the integrands which involve n 

in~R- _ 1 is composed of the expressions e (cosn±xRcosxn) and 

in~R- -1 
e (cosn±xRcosxn) . Expansions of these . expressions are 

required for the four sets of branches: the symmetrical 

and asymmetrical equivoluminal branches and the symmetrical 

and asymmetrical dilatational branches. The expansion 

-2in (O) 
which exhibits the wave fronts is a power series in e 

'(l) (0) 
and e-i. -x n for the equivoluminal branches and in 

e
2in(O) ei(l+x)n(O) for 

and the dilatational branches . 

n(O) is the first term in the series representation for n 

given by (3.3-14) , (3.3-16), (3.3-23) and (3.3-28) respec-

tively. These expansions leave the branch numbers n and m 

as a linear multiple in the argument of the exponential 

functions making it an easy matter to sum over the branch 

numbers. The expansions are then simple in form and the 

only difficulty is in calculating the coefficients in the 

power series. 

It is necessary to write the expressions cosn±xRcosxn 

from the denominators of the integrals in the forms 
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cosn±xRcosxn 

(4.2-3a) 

cosn±xRcosxn = 1 -in(1+ R i(l-x>n)·(1+l±xRe-i(l-x)n 2in) 
~ -X e i(l- ) e 

l±xRe x n 

(4.2-3b) 

for these expansions where (4.2-3a) is to be used when n is 

on an equivoluminal branch and (4.2-3b) is to be used when 

n is on a dilatational branch. 

The expansion 

( 

-i(l-x)n(O) -2in(O) )
4

] 
+ O le en I ,je en I (4.2-4) 

is for the symmetrical equivoluminal branches nn' n=l,2,3, 

h (O) . . b (3 ') 3) d "' . . b ... ,were nen is given y .J~ an ~£is given y 

(4.2-1) . The error term in (4.2-4) means that there are 

( 

-in (O) ( (l-x)p+2q) ) 
possible errors o le en I for any combination 

of p and q such that p+q=4 . The coeffici ents A in pq 

(4.2-4) result from the series representation (3.3-14) for 

the symmetrical equivoluminal branches and from the form 

(4.2-3a) . The first ten of these coefficients are 
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AlO = i (qi i -1+x)n~ 1 
> 

AOl = l+xR2 
l+x 

A20 = _ _1+2 - 2c1-xl~t + 1 - 3x + x 2](n~1 l)
2 

+ i (qi R- -l+x> n~2> 2 9, 

-·[l+xR\ _ 
2 + R2] (1) 

All = ( 3_ 2 )l+xR 
i i+x i x l+x X ne 

2 

A02 = (l+xR
2

) 
l+x 

A30 = -~H - 3(1-xl~; + 3Cl-3x+x2l~t - Cl-xl c1-6x+x2i](n!1l)
3 

- [qi~ - 2(1-x)qin + l-3x+x2]n( 1 )n( 2 ) + i(qi -1+x>n< 3
> 

N N · e e ~ e 

= l[l+xR2qi2-2((3-2 )l+xR2 - R2)~ + (9-14 +4 2)l+xR2 
2 i+x i x l+x x i x x l+x 

- s (1- )R2J(, (1))2 - i[1+xR2 qi - (3-2 ) l+xR2 + xR2]ne(2) 
x x \ne l+x i x l+x 

2 
( 3 -S)l+xR 

x l+x 

( 4.2-5) 

where the terms n~j) are given by (3.3-15) . The same 
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expansion is obviously valid with ~i from (4.2-1) replacing 

<l>i throughout (4.2-4) and (4.2-5). 

From (4.2-3a), (4.2-5) and (3.3-i6), it is apparent 

that the expansion (4.2-4) is also valid for the expression 

inn<l>i -1 
e (cosn -xRcosxn ) where n , n=l,2,3, ..• , are the n n n 

asymmetrical equivoluminal branches if the coefficients 

are replaced by (-l)PA and n(O) is replaced by n(O) 
1

. 
pq en en-2 

n (O)l results from (3.3-3) for n (O). 
en en-2 

A pq 

The expansions involving the dilatational branches are 

derived in the same manner as for those involving the 

equivoluminal branches, however, they can also be deduced 

from (4.2-4) due to the similarity between (4.2-3a) and 

(4.2-3b). As a result of this, the expansion 

2 [p+q=3 , in~> [<l>i+1+(1+x>p+2q] 
= - L A e · 

1-x p,q=O pq 

( 

i ( 1 +x > n ( 
0

) 2 in ( 
0 

> ) 
4 

] 
+ 0 je dm I ,je dm I ( 4. 2-6) 

is for the symmetrical dilatational branches nm(X), m=O,l, 

2, ... , where n:) is given by (3.3-24) and 9i is given by 
i 

(4.2-1). The coefficients A are given by (4.2-5) with x 
pq . 

and <l>i replaced by -x and -<l>i respectively and with n~j) 

replaced by -n~j). The terms n~k) are given by (3.3-25). 
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R=R(x) remains unchanged. Again the expansion is obviously 

valid with ~i replacing ¢t throughout. 

As for the equivoluminal branches, the expansion 

in ¢i 
(4.2-6) is also valid for the expression e m (cosnm 

-1 
-xRcosxn ) where n m=l,2,3, ... , are the asymmetrical m m, 

I 

branches if the coefficients A are replaced pq dilatational 

by (-1)PA
1 

and n(O) is replaced by n(0)
1

. 
pq dm dm--

( 0) 
from (3.3-24) for ndm . 

2 

(O) results n 1 
dm-2 

The expansions (4.2-4) and (4.2-6) and the similar 

expansions for the asymmetrical branches are expected to 

converge uniformly with respect to x on the same regions 

in the x-plane as did the series representations in Section 

3.3 for the equivoluminal and dilatational branches. This 

is true in part because those series representations were 

used to develop these expansions, but, it is also true 

because a geometric series was used to expand the expres-

sions (4.2-3a) and (4.2-3b). An additional condition for 

1± Rei(l+x)n -2i 
X . e n < 1 on the 

l±xRe-i(l+x)n 
convergence is then that 

equi voluminal branches, and the analogous condition with x 

and n replaced by their negatives as in (4.2-3b) on the 

dilatational branches. These conditions are certainly not 

satisfied at a branch point since cosn±xRcosxn=O as was 

found in Section 3.1, however, the presence of the factors 

-2in 2in e and e in (4.2-3a) and (4.2-3b) insures that th~se 
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geometric series converge uniformly on practically the same 

regions as do the series representations of Section 3.3. 

Also, the same comments hold here as did in Section 3.3 

about the regions of convergence becoming larger as the 

branch numbers n and m are increased . Obviously, the ex­

pansion (4.2-6) involving the symmetrical dilatational 

branch n0 (x) cannot be valid on all of the integration path 
ie 0 CD since this branch has a branch point at x0=e given 

1 by (2.3-8) where 0<8 0<e_ 1 for O<v22· 

Very little can be claimed about convergence of the 

dilatational expansions on the small indention of c0 about 

x=l in the first sketch of Fig. 21. The series of Section 

3.3 were not shown to converge here. Also, c0 approaches 

the locus of a set of branch points whose limit point is 

x=l. However, it is a reasonable assumption that the 

series do converge on this indention since this locus of 

branch points probably determines the boundary of the 

domain of convergence. 

The fact that the expansioris (4.2-4) and (4.2-6) and 

the similar expansions for the asymmetrical branches fail 

to converge to the desired functions on all of the integra­

a-1 
tion paths CE and CD as x=a+l is approached is the error 

which makes this method approximate. 

The expansions (4.2-4) and (4.2-6) suggest yet another 

set of phase functions to simplify the notation. These. are 
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(4.2-7) 

<P d.Q,pq 

where <Pi and ~i are defined by (4.2-1). In (4.2-7) the 

subscripts e and d refer to the fact that these phase func-

tions will be used in the equivoluminal and dilatational 

expansions respectively. The remaining subscripts refer 

to integers with i=l,2, .•. ,8 and p,q=0,1,2, .•.• 

The phase functions (4.2-7), the expansions (4.2-4) 

and (4.2-6), the forms (4.2-2) and the representations 

(4.1-2) make it possible to write (2.3-15) for the dis-

placement component u~ as 

16rrµ~ ,...., Im~ ;. 
aI u~ = L., w 

n=l p,q=O 

2 2 <P i LogR inrr<P t 

{ 

1 . 

x rx -2(1-2v)x+l]e e pq . e e pq 

(1 2) 2 e.Q,pq . e.Q,pq d !~ LogR inTI~ } 
- -x e e X 



-134-

()() ()() 

+ Im L: L: 
m=O p,q=O 

{ 

-~ LogR i(m+!)n~ 
X Ix 2-2(1-2v)x+l]e 2 dtpq e 2 ~pq 

2 -!~at LogR i(m+!)n~dt } 
- (1-x )e pq e pq ax 

+ Im i: f t 1 (-1) PA s l-x 
Pq 2t 3 n=l p,q=O t=l -

CE x 2o<x> 

~ LogR 1 n-- n ... 

{ 
1 . ( 1) ;f,. 

x rx 2-2 ( l-2v >x +l] e 2 ell pq . e 2 e.tpq 

()() 

+ rmL: 
m=l 

{
. -:k LogR imn qi 

x rx 2-2(1-2v)x+l]e 2 d.tpq e dtpq 

2 -!~ai LogR imn~dt } 
- (1-x )e pq e pq ax (4.2-8) 

The Rayleigh modes, n=O, are not included in (4.2-8). 

Also, the expression is approximate in the sense that the 
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expansions (4.2-4) and (4.2-6) have been used as exact 

representations. The sum over p and q has been written as 
I 

if all of the coefficients A and A were known. The pq pq 

summation and integration order has been changed. This 

can be justified rigorously only on the portions of the 

integration paths CE and c
0 

where {4.2-4) and (4.2-6) can 

be shown to converge uniformly 

appropriate expressions. n(O) 
en 

with respect to x to the 

and n(O) from (3.3-3) and 
1 en-2 

n~) and n(O) 1 from (3.3-24) have been used in (4.2-8). 
dm-2 

The four integrals in (4.2-8) represent integrations over 

the symmetrical equivoluminal branches, the symmetrical 

dilatational branches, the asymmetrical equivoluminal 

branches and the asymmetrical dilatational branches respec-

tively. The terms Sk~ are given by (4.2-2a). As can be 

seen from (2.3-15), a similar representation holds for the 

displacement component u~. 

The symmetrical and asymmetrical integrals for each 

of the equivoluminal and dilatational cases can be added 

in (4.2-8) to give 
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167Tµ~ ~ 
ar u~ 

()() ()() 

rm}: L: 
n=l p,q=O 

()() ()() 

+ Im :E 'E 
m=l p,q=O 

(4.2-9) 

and similarly for u~. 

This operation of adding the symmetrical and asymmetr.i:-

cal terms is expected to cancel all of the extra wave 

fronts which would have resulted from a singular loading 

applied at the bottom face of the plate (~=O, ~=-1). It is 

recalled that such a loading is present in a purely symmet-

rical or asymmetrical loading. The cancellation must occur 
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. TI"' 
- i 2'*' Q, 

as a result of the terms like s
1

Q,+(-l)Ps 2Q,e e pq' etc., 

vanishing for certain combinations of Q,, p and q and for 

certain values of the variables~' T, ~ and X· 

The phase functions in (4.2-9), which are defined by 

(4.2-7), are complex on the integration paths CE and c0 and 

the integrals are more convenient to handle if these paths 

are deformed so that these phase functions are either real 

or appear in a simpler form. This will make it possible to 

sum over the branch numbers n and m and then to recognize 

singular wave fronts. 

It is very important to realize that (4.2-9} is now a 

term-by-term integration and the integrands possess none of 

the branch points which were of concern before. In fact, 

the only branch point of interest here is x 01 where R=O, so 

that it is a branch point of the function LogR. The locus 

of x 01 as Poisson's ratio v varies is shown in Fig. 4 and 

the point is described following (A-3) in Appendix A. 

With the preceding in mind, the integration paths CE 

and c0 of (4.2-9) and shown in the first sketch of Fig . 21 

are deformed as shown in the second and third sketches of 

Fig. 21. The path CE is deformed back onto the original 

integration path C shown in Fig. 2 except for a vertical 

indention about the branch point at x 01 . The path c0 is 

just collapsed onto the real x-axis on a-l<x<l with an 
a+l- -
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identical vertical indention for the branch point at x 01 . 

The point x 01 where R=O causes difficulties in the 

representation (4.2-9) with CE and c0 deformedasdescribed. 

The integrands in (4.2-9) may be singular at this point 

depending on the values of the phase functions as can be 

1 -24 i LogR 
seen from the functions e e pq , etc. Actually, it 

would be desirable to demonstrate mutual cancellation of 

the branch line integrals about this point as was done in 

Section 4.1 about the original branch points. It is true 

that the integrals along the branch cut to x 01 cancel by 

mutual cancellation when the sum over the branch number is 

taken with the exception of one line integral belonging to 

the lowest branch. However, cancellation of the integrals 

on the small circular path about the branch point x 01 is 

well concealed in (4.2-9) if it is present at all. The 

intention here is not to investigate these branch line 

integrals in detail, but to look at the remainder of the 

1 ie inte. grals on a- <x<l and on x=e , 0<8<rr, and to try to a+l- -

locate physically meaningful results. 

The approach to be used is to bring the summation over 

the · mode or branch numbers n and m inside the integrands of 

(4.2-9) and to sum over the terms 
inrr¢ n eNpq e , etc. These 

are the only quantities in (4.2-9} which contain the branch 

numbers . This interchange of the sununation and integration 
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order is again done without justification. The summations 

yield generalized functions if the phase functions (4.2-7) 

are real and they yield ordinary functions by a simple 

geometric series if the phase functions are complex with 

positive imaginary parts. 

The phase functions (4.2-7) can be examined more con-

veniently in terms of the variable 

1 . e 

B = _!_ '1a2-l 
2a 

i+x 

1 
2 x 

(4.2-10) 

2 i2 ie 
with x =e on x=e , 0<8<rr. Bis real on all of the inte-

gration path C of Fig. 2. From (2.3-5) and (2.3-7), B=~ in w 

terms of the original variables. On a-
1
1<x<l, l>B>! Va 2-l 

a+ - - - -a 

ie 1-~ 1-~ e and on x=e I o~e~rr, a va--1 ~B~O where B=ava--1 cos2· 

The phase functions (4.2-7) then become 

~ etpq = i [l;~l-B2 - (-1) tT_ (2p+2q+l-i;) ~B2-~]-2q-l±l 

'I' etpq = i [T- (-1) tl;~l-B2 - (2p+2q+l:;:l) ~B2-a:;1]-2q-l+I; 
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l [~-V1-B2 - (-1) i-c + ( 2p+2q+ 1± 1) B] +2q+ l+r,; 

~B2_a2;1 
a 

( 2p+2q+l+r;) B] +2q+l± 1 

(4.2-11) 

where the upper sign still applies for i=l,2,3,4, the lower 

sign applies for R.=5,6,7,8 and r; is replaced by -r; for £=3, 

4,7,8. In (4.2-11) all of the terms are real and the radi-

cals are nonnegative on the integration path C except for 

1-x 
--1- which is pure imaginary with the 

x2 
ie imaginary part being negative on x=e 

~ 2 a2
-1 . ya2

-l 2 i -~ . e B --- = -1~-B = -- Va--1 sm-. 
a2 a a 2 

0<8~7T, where 

Thus, <P n and e)Vpq 

. i6 
'¥eipq have nonnegative imaginary parts on x=e , oses7T, and 

a-1 · 
are real on a+l~xsl. The phase functions ~dipq and '¥dipq 

are only involved on a-1< <l 
a+l-X- where they are also real. 

It is seen from (4.2-11) that '¥eipq is real on all of 

the integration path c including ie 
x=e I osesTI, only for the 

special cases where 2p+2q+l+l=O, which means that p=q=O and 

i=l,2,3,4 using the fact that p,q~O. These cases will be 

seen to be identified with the circular equivoluminal wave 
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front. Likewise, ~ n is real on all of C for the special eivpq 

cases where 2p+2q+l-s=O, which means that p=q=O for Q,=1,2, 

5,6 and s=l or p=q=O for Q,=3,4,7,8 and s=-1. 

When the phase functions (4.2-11) are real, the repre-

sentation 

co • L eimr~ = 
n=l 

1 + 
2 

co 
~ i TT 
L..J o (~-2m) + ~ot~ (4.2-12) 

m=-co 

can be used where o (~-2m) is the Dirac delta function. 

This is just a Fourier series representation of periodic 

generalized functions and it results from the representa-

tions given by Lighthill r9J. Also, (4.2-12) can be de-

rived by differentiating the Fourier series representations 

co co 
L ~cosnTT<P=-log I 2sin~<P I and L ~sinnTT<P which represents a 
n=l n=l 

sawtooth function. A geometric series gives 

= 
iTT~ e 

1 iTTcl> -e 
(4.2-13) 

when the phase functions have positive imaginary parts. 

(4.2-13) is also valid when the phase functions are real if 

the limiting process is carried out carefully so as to pro-

duce the generalized functions in (4.2-12). 

The portion of the integrals (4.2-9) which result from 

1 ie 
integration on :~ 1~x~l and on x=e f 0~0~TT1 as shown in the 
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second and third sketches of Fig. 21 can now be written 

with the sums over the branch numbers, n and m, having been 

performed. These consist of Cauchy principal value inte-

grals due to the presence of the generalized functions 

cot~ and csc~. The integrals are separated into four 

distinct sets of integrals, each identified with one of the 

four phase functions (4.2-11). Thus, by using (4.2-12) and 

(4.2-13), the quantity in (4.2-9) can be represented as 

32TIµ~ ~ I + I + I + I 
a I u~ de ee dd ed (4.2-14) 

where 

00 

:E 
p,q=O 

81 fl 2 ~ ~~ " . A (1-x>rx -2c1-~,»x+11e2 etpq 
L.J p. v. pq 3 
i=1 -

. a-1 X2D{X) 
· a+l 

+ 8Im A . eNpq s 1TI sin~2(cose-1+2v) iL2(~ n +l)[ 
o pq I D { e i e) I 11 

·'.!0i, ~ iTI~ 0 ! -J."'°' eNpq 
+ (-l)Ps e 2 e1pq e . ae 

21 l.TI~ R, 
1-e e pq 

(4.2-14a) 



I ee 

00 

= L: 
p,q=O 

-143-

a l 11 2 k LogR L _ P • v . A ( 1-x ) ( 1-x ) e 2 e1 pq 
1=1 pq ~ 

a-1 2 
a+l X D(X) 

+ 8Re A . e eNpq s J
TI sin~sin8 i~(~ n +l)[ 

o pqlD(eie)I 11 

· TI iTI~ ~ -i-~ e1pq 
+ ( -1) P s e 2 el pq~ e . de 

21 1TI~ l 
1-e e pq 

I (4.2-14b) 

00 

L: 
p,q=O 

8 1 2 . -~ Lo R L: P.vf A' (l+x) [x -2(1-2\))x+l]e 2 d1pq g 
1=1 pq ~ 

a-1 2 
a+l x D(x) 

I (4.2-14c) 

00 

= - L: 
p,q=O 

1 1 
8 1 · 1 (l+ ) (l- 2) --2~dn LogR L P • V. A x . x e N pq 

1=1 pq ~ 
a-1 2 
a+l x DCx> 

(4.2-14d) 

In these integrals the form (A-6) in Appendix A defining 

·(e Y) . . 1 . -2 
y=y(8) has been used along with D(e18 >=1D(e18 ) le 
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from (A-6a). The terms sk1 are defined by (4.2-2a) and the 

coefficients A are given by (4.2-5) for p+q=0,1,2,3. The pq 
I 

coefficients A result from A as described following pq pq 

(4.2-6). The phase functions ~e!pq' ~e!pq' td!pq and 'dtpq 

are defined by (4.2-11). The subscripts on these integrals 

are meant to indicate their origin such as Id for the . e 

integral resulting from the dilatational potential ¢ with 

the integration over the equivoluminal branches and simi-

larly for the other three integrals. 

The Dirac delta functions from (4.2-12) are not 

present in (4.2-14a) , ... , (4.2-14d) simply because only the 

imaginary parts of the integrals in (4.2-9) are required 

and the delta functions always multiply the real parts of 

a-1 the integrands on a+l~x~l. A special case is described in 

the following where the Dirac delta functions do remain. 

The second inte. gral in (4.2-14b) for I must be rnodi­ee 

fied for the cases p=q=O and 1=1,2,3,4 since ~e!OO is real 

ie on x=e , O~e~n, and the representation (4.2-12) must be 

used rather than (4.2-13). Thus, using A00=1 from (4.2-5), 

the second term in (4.2-14b) for Iee must be replaced with 
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(4.2-15) 

for p=q=O and £=1,2,3,4. The second term in (4.2-14a) for 

Ide does not need to be modified even though its integrand 

is singular for some points on the boundaries s=±l for 

p=q=O. It is just necessary to interpret the integral as a 

Cauchy principal value at these points and to realize that 

(4.2-12) is a limiting form of (4.2-13). 

A similar representation for the displacement compo-

nent us can be written by making very simple changes in 

(4.2-14a) , ... y (4.2-14d) and in (4.2-15) as suggested by 

(2.3-lSa) and (2.3-16). 

4.2.2. The Geometry of the Wave Fronts. 

As usual, when dealing with generalized functions, the 

integrals (4.2-14a) , ... , (4.2-14d) and (4.2-15) are most 

conveniently investigated when the phase functions ¢ 0 , . e)(,pq 

~e£pq' ¢d£pq and ~d£pq replace x or 6 as the independent 

variable. This makes it possible to identify wave fronts 
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as singularities in the integrals resulting from a singular 

point of the generalized function coinciding with a singu-

lar point of the remainder of the integrand. 

For the change of variables to the phase functions, 

the factor 

dX = ~ dBd<l> 
dB d<I> 

replaces dx in the integrals where <I> is any one of the 

phase functions (4.2-11) and B is defined by (4.2-10). A 

singular point in the integrands occurs if 

From ( 4 . 2-10) , 

dB = _!_ '1a2_1 
dx 2a 

i-x 
3 
2 

x 

and from (4.2-11) , 

d¢ etpq = _ _!__[ $ _ 
dB B2 -~ 

Vl-B-

dB d<I> 
dx dB = O 

2p+2q+l-1'.,;l 

~B2_a2;1 
a 

(4.2-16) 
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2 a -1 +--2 a 

d'l'd.R, - pq 
dB (-1).R, B~ + a2;1(2p+2q+l+1;)] 

a2~1-B2 a 

(4.2-18) 

ddB-o at x=l or at B= 1~a 2-l from (4.2-17), however, 
X a 

this singularity is removed by the factor 
1-x 

3 
2 x 

in all of 

the integrals, except (4.2-14c) for Idd' giving 
1-x dx_ 

3 dB 

2a 

'1a2-l 

For Idd' the factor 

3 2 - x 

( 2 a2-1)2, . B _
7 

1 'n (4.2-18) for 

d<I>d.R, d dB 
- pq makes ~ - nonsingular. 
dB dB d<I>d.R,pq 

The point B=!~a2-l is a 

special, however, since it will be seen to be identified 

with the head wave. The head wave is not singular in the 

displacements for the loading (2.1-7) used here. 
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Thus, since each of the generalized functions in 

(4.2-14a) , ... , (4.2-14d) and in (4.2-15) is singular at 

<I>=2m for any integer m, the condition for a singular wave 

front is the simultaneous satisfaction of the equations 

<I> = 2m 

d<I> = 0 
dB 

~ ( 4. 2-19) 

for any integer m where <I> represents any one of the four 

phase functions (4.2-11). (4.2-19) represents four sets 

of simultaneous equations resulting from (4.2-11) and 

(4.2-18) each of which can be solved for~ and ~ to give 

the spatial geometry of the wave fronts as a function of T. 

From (4.2-18), it is obvious that ~:-o is not possible 

for ~>O if t=l,3,5,7 since p,q~O and -1~~~1. These phase 

functions occur in terms which are singular only for ~<O 

and, therefore, are associated with wave fronts traveling 

in the negative ~ direction. The phase functions identi-

fied by t=l,3,5,7 and the accompanying terms in the inte-

. grals are set aside for now and only those identified by 

t=2 , 4,6,8 are considered. 

It is helpful to define the normalized coordinates 

and parameters 
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~ 
T 

= 2p+2q+l-l; 
T 

= 2p+2q+l+l; 
T 

= 2p+2q+l+l 
T 

= 2p+2q+l±l 
T 

(4.2-20) 

where the upper sign applies for £=2,4, the lower sign 

applies for £=6,8 and l; is replaced by -s for i=4,8. 

Then from (4.2-11) and (4.2-18), simultaneous satis-

faction of (4.2-19) gives the following parametric descrip-

tions of the singular wave fronts: 

for the phase functions ¢e£pq' 

L = a2 --J1-B2 (B+a2-1Qe ) 
B 2 mq 

a 

(4.2-2la) 
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for the phase functions ~e£pq' 

(4.2-2lb) 

for the phase functions ~d£pq' 

(4.2-21c) 

and for the phase functions ~d£pq' 

(4.2-2ld) 
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where t=2,4,6,8 throughout. These wave fronts can be 

sketched in the L,Z-space by taking a fixed value of Q and 

letting B vary in the range l~B~~ -Va 2-l corresponding to 

a-1 
a+l~X~l. Also, there are singular wave fronts in (4.2-15) 

in the range ~ '1a2-l>B>O corresponding to x=eie, 0<8<rr. 
a - - . - -

There is some restriction on the quantities involved in 

(4.2-21a) , ... , (4.2-2ld) since all of the quantities de-

fined by (4.2-20) are nonnegative as a result of p,q~O, 

c;>O, T>O and -1::,C";::,l. However, when p is replaced by the 

integers ±m, as in z:q' Q~mq' etc., the quantity may be 

negative since the integers m are only restricted by the 

fact that (4.2-19) must be satisfied. 

Fig. 22 shows the equivoluminal wave fronts in dashed 

lines and they are present in lee given by (4.2-14b), and 

they result from~ n as described by (4.2-2lb). The ex,pq 

dilatational wave fronts are shown in solid lines and they 

are present in Idd given by (4.2-14c), resulting from 

~dtpq as described by (4.2-2lc). The sketch is at the 
Cd 

time T=6.3 for v=0.3 which gives a=05-13:'5~1 . 871 from 

(2 . 1-2). T=6 . 3 means that an equivoluminal wave has had 

time to cross the plate ~T=3.15 times while a dilatational 

wave has had time to cross the plate !aT~S.89 times . The 

top sketch of Fig. 22 is essentially the wave fronts in 

the L,Z-space with L=~ measured on the same axis as ~ and 
T 
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Z=Ze zd measured downward from the horizontal line on mq' -mq 

which a particular wave front terminates. Actually, this 

sketch just shows the right half of the plate, s~O, with 

the thickness -l~s~l successively repeated so that all wave 

fronts appear as continuous lines. The geometry of the 

wave fronts is exactly like that for a layered half-space 

made up of identical layers with refraction but no reflec-

tion at the junctions. The second sketch in Fig. 22 shows 

the superposition of these wave fronts as they appear in 

the plate. The superposition just consists of folding the 

first sketch as an accordian at each horizontal line repre-

senting the edges of the plate to form a single thickness. 

The only case in which the 1-~ i8 range -va--l>B>O or x=e , . a - -

05e5n, produces a wave front is for Qe =0 in (4.2-2lb), or pq 

p=q=O and 1=2,4 from (4.2-20), so that 

This is obviously 

since L
2

+ (z:0)
2 

=1 

L = 

= B 

the circular equivoluminal 

2 [ i ] 2 
or s + 2m+l+(~l) s . =T for 

wave front 

1=2,4 and 

m=0,1,2, ••.• This wave front is labeled 1 1 ,2' ,3' in Fig. 

22 with the singularity on the portion l' ,2~ contained in 
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the representation (4.2-15) where ! "Va 2-l>B>O or x=ei
8 

a - -

0<8<n. The singularity on the remaining portion 2' ,3' is 

contained 

and i=2,4 

in the first term of 

where l>B>!Va 2-l or - -a 

I in (4.2-14b) ee 
a-1 
=---;;:.<l x < 1. a+ - -

for p=q=O 

The preceding is significant because the result indi­

cates that only the portion l' ,2' of the circular equivolu-

minal wave front l' ,2' ,3' in Fig. 22 comes from "the equivo-

luminal sector" of the w,K-plane as defined by (2.3-11) 

while all other wave fronts, equivoluminal and dilatational, 

come from "the dilatational sector 11 of the w,K-plane as de-

fined by (2.3-10) 

The straight equivoluminal wave front 2 1 ,4' in Fig. 22 

is the head wave and it is tangent to the circular equivo-

luminal wave front l' ,2' ,3'. This wave front results from 

the same terms, (4.2-14b) with p=q=O and i=2,4 and (4.2-15), 

as did l' ,2' ,3'. However, it comes about for different 

reasons than the simultaneous satisfaction of the equa-

tions (4.2-19). In this case, the 

the integrand, as the point x=l or 

change in the form of 

B=!..Ja2-l is crossed on a 

the integration path, produces the head wave. This is seen 

by comparing the first term in (4.2-14b) for p=q=O and 

i=2,4 with (4.2-15) where the Dirac delta functions 

o(~ei00-2m) are present. Thus, the head wave is associated 

with the line w=K which separates "the dilatational sector" 
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from "the equivoluminal sector." The geometry of the head 

wave can be deduced by setting B=~ Va
2
-l and ~eioo=2m for 

i=2,4 to obtain 

ze = 1 (a-L) 
mo va2-1 

i 

from (4.2-11) and (4.2-20) giving 2m+l+(-1) 2~ 1 (aT-~) 
'1a2-l 

for m=0,1,2, .... 

The remaining equivoluminal wave fronts shown in Fig. 

22 are contained in the first term of I in (4.2-14b) as ee 

described by (4.2-2lb) for Q~q=f,¢ 1 % 1 % 1 ~0 as labeled in 

the figure. Obviously, from (4.2-20), these values of Qe pq 

specify p+q and, since only A with p+q=0,1,2,3 are given pq 

in (4.2-5), only the wave fronts Q~q=O,~'*'* are provided 

for. 

The dilatational wave fronts shown in Fig. 22 result 

from singularities contained in Idd given by (4.2-14c) and 

they are described by (4.2-2lc) corresponding to Q~q=o,;, 

!,~ as labeled in the figure. From (4.2-20) and (4.2-2lc), 
'T 'T 

Q~q-O implies that p=q=O and i=6,8 so that 

L = a 2 V1-B 2 

' 
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which is the circular dilatational wave front L2+(z~mo) 2=a 2 

Q, 

2[ 2] 2 
22 or t; + -2m+l- (-1) r; =a T for Q,=6, 8 and m=O ,-1,-2 , • .•. 

This wave front is 1,2 in Fig . 22 and it, along with 3,4 

d 2 d 4 from Q =- and 5 ,6 from Q =-, is perpendicular to one of pq T pq T 

the boundaries r;=±l so that these are conditions of grazing 

incidence at these points . The dilatational wave front 7,8 

is not at graz i ng incidence at point 7 (r;=-1) since it is a 

reflection of the portion 2' ,3' of the circular equivolurni-

nal wave front which meets the boundary at an angle of 

-1 1 
incidence which is less than the critical angle tan va2-1 

I 

Again , the coefficients A for p+q=0 , 1,2 , 3 are sufficient pq 

to describe the dilatational wave fronts identified by 

Qd =O ~ ! §. 
pq 1 T 1 T 1 T

0 

For all of the wave fronts shown in Fig . 22, the points 

a-1 
at t;=O or L=O come from B=l , x=a+l or K=O . The point l' on 

the circular equivoluminal wave front l' ,2',3' comes from 

B=O, x=-1 or w_l where both w and K are unbounded on the 
K 

equivoluminal branches. The point 2' comes from B=;Va2-l, 

x=l or w=a with w and K bounded on the equi voluminal branches. 
K 

The points 5' , 7' ,9' , 11 1 and 13' on the reflected equivolu-

minal wave fronts each come from a point i n the range l>B> 

! Va2-l , :~~<x<l or from " the dilatational sector'' of the 

w, K-plane . The points 1 , 3 and 5 on the dilatational wave 
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fronts also come from B=l ..Ja 2-l, x=l or w_a but with w and a K 

K unbounded on the dilatational branches. The point 7 on 

the dilatational wave front 7,8 is not at grazing incidence 

and it comes from a point in the range l>B>~Va2-l, 
:~i>x>l or "the dilatational sector 1

' of the w ,K-plane. 

It is interesting, yet certainly expected, that the 

number of equivoluminal wave fronts present in the plate 

is related directly to the number of times that the circu-

lar dilatational wave front has crossed the plate at ~=0 

and vice versa as seen in the top sketch of Fig. 22. The 

finite number of wave fronts which are present in the plate 

at any finite time has the desirable effect of only requir-

ing a finite number of the coefficients A in (4.2-5) to pq 

account for all of the wave fronts. 

number of the coefficients n(j) and 
e 

Then only a finite 

n(k} for the series 
d 

representations in Section 3.3 are required. In (4.2-5) it 

is seen that coefficients A with p+q fixed involve n(j) pq e 

with j=l,2,3, ... ,p+q, and likewise for A
1 

and na(k). Thus, 
pq 

while the series representations (4.2-14a) , ... , (4.2-14d) 

involve infinite sums over p,q=0,1,2, ... f only a finite 

number of singular terms in (4.2-14b) for I and (4.2-14c) 
ee 

for Idd are identified as the representations of the wave 

fronts. The remaining terms do not vanish, however, they 

can be shown to be small until the singular wave front 
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with which they are identified is present in the plate. 

There are wave fronts, other than those shown in Fig. 

22, which are predicted by (4.2-2la) , ... , (4.2-2ld), how-

ever, they cancel when the superposition of integrals 

(4.2-14) is taken. These cancellations occur in pairs. 

(4.2-2la) and (4.2-2lc) predict wave fronts associated with 

~e£pq and ~d£pq respectively, which obviously have the same 

geometry. However, a detailed examination of the integral 

sum Ide+Idd in (4.2-14) shows that the singularities cor­

responding to these wave fronts cancel leaving only the 

dilatational wave fronts shown in Fig. 22. Likewise, 

(4.2-2lb) and (4.2-2ld) predict wave fronts from ~e£pq and 

~d£pq respectively, which have the same geometry. These 

wave fronts also cancel due to the integral sum I +I d in ee e 

(4.2-14) leaving only the equivoluminal .. wave fronts shown 

in Fig. 22. 

If only the wave fronts are of interest in the re-

sponse, the only function of the terms Ide and Ied in 

(4.2-14) is to cancel the extraneous wave fronts. 

4.2.3. Discussion of Specific Terms Yielding Wave Fronts. 

An Example of a Solution Approximated Near a Wave 

Front. 

In the representation (4.2-15), the terms containing 

the Dirac delta functions o(~e~00-2m) are very easy to 
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integrate and they yield an explicit expression, which is 

singular like an inverse square root in the spatial vari-

ables. These terms are singular on the portion l' ,2' of 

the circular equivoluminal wave fron l' ,2' ,3' in Fig. 22 

and they are identically zero on the interior of 1 1 ,2' ,3', 

being nonzero only on certain regions on the exterior. 

Hence, this is the part of the representation (4.2-14) which 

proceeds the circular wave front and, along with the remain-

ing terms in (4.2-15), this makes 1 1 ,2' the only wave front 

in the plate which is singular as the front is approached 

from both sides. This is usually called the two-sided 

equivoluminal (or shear) wave. 

All of the remaining terms in (4.2-14), other than the 

delta function terms in (4.2-15), are Cauchy principal value 

integrals due to the presence of the generalized functions 

TI TI 
cot-2 ~ n , csc-2~ n , etc., and they are not so convenient eNpq eNpq 

to evaluate. An example is considered here to illustrate 

the Cauchy principal value integrals, and also to make a 

check with the amplitudes of the wave front expansions 

. given by Rosenfeld [13]. 

The circular dilatational wave front 1 , 2 in Fig. 22 is 

considered. The singularity corresponding to this wave 

front has been found to be present in (4.2-14c) for Idd 
i 

with p=q=O and i=6,8. Therefore, with A00=1 and the 



-159-

particular values of 8l£ and 8 2£ from (4.2-2a), the terms 

in the representation (4.2-14) for u~ which contain the 

circular dilatational wave front are 

327fµ~ I 

al u~ = 

1 2 ~ -k Lo R -P v{ (l+x) Ix -2(1-2v)x+l] 2 d600 gt 'IL. 
• · 3 e an4'*'d600 

a-1 2 
a+l x D(x) 

(4.2-22) 

The prime on u~ is a reminder that this term is only the 

part of u~ which contains this particular singularity. The 

7f 7f 7f 
term cot4~dSOO results from s 18csc~dSOO+s 28cot2~dSOO in 

(4.2-14c) and s 18=s 28=1 from (4.2-2a). The fact that the 

term is not singular at ~daoo=4m+2 merely shows that no 

wave front is present as a result of a loading at ~=O 

and l,;=-1. 7f Likewise, for the term tan4~d600 . 

(4.2-22) is only a part of the total response given 

approximately by (4.2-14), however, no further approxima-

tions have been made and this single term is expected to 

be valid well behind each reflection of the circular dila-

tational wave front. Of course, convergence of the series 
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representation (4.2-14) is assumed here. Also, other terms 

in (4.2-14) are identified with singular wave fronts and 

they must be included to account for the response associ-

ated with these wave fronts. 

From (4.2-11) the phase functions involved in (4.2-22) 

take the form 

<I>aioo = (4.2-23) 

for t=6,8, and it is clear that <I>aioo-+-oo as B-+;Va2-1 (x-+l) 

if ~<aT. Also, from (4.2-18), d<I>dtOO=O at B=_!_
2 

Va4T 2-~ 2 
dB a T 

£ 

where <I>aioo=l-(-1) 2~-Va2T 2-~ 2 from (4.2-23), and this is 

easily ·verified to be a maximum of the phase functions. 

The portion of (4.2-22) containing <I>dBOO can be 

written as 

1 

P.V.~F(xlcoti•dx 
. a-1 
a+l 

-co 

(4.2-24) 
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where x 1 (~) and x 2 (~) are the appropriate inverses of 

(4.2-23). For 4m+2~1-r;-~a2T 2 -E;. 2 ~4m-2 for a particular 

integer m, the second integral in (4.2-24) must be inter-

preted as 

-4m'-2 

+ m '~-mp. V .J F <x 2 (ii))(:: 2)cot~dil = 
-4m'-6 

'1 2 2 2 

11-r;-a T(~~ 2) TI 
P.V. F(x 2 (~)) d~ cot4~a~ 

4m-2 

( 4. 2-25) 

-oo 

The last term in (4 . 2-25) is obtained by integrating by 

parts so that the result is an ordinary integral. 

The interpretation of the principal value integrals 

suggested by (4.2-25) must be used on all of the 
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representations (4.2-14a) , ... , (4.2-14d) and (4.2-15) when 

the phase functions become unbounded since an infinite num-

ber of singularities are then present. 

(4.2-25) is a convenient form since the first term 

along with the first term in (4.2-24) contain the singular-

ity identified as a portion of the circular dilatational 

wave front. The part of the integral (4.2-22) containing 

<l>d600 contains the remaining portion of this wave front. 

If only the wave front expansion is required, these terms 

can be combined and approximated with the nonsingular part 
i 

of the integrand being evaluated at <l>=l-(-1)-z'l;_'\/ a 2-r 2-E 2 

where x1(<l>)=x2(<1>). 

As a specific example, the unreflected portion of the 

circular dilatational wave front is considered. This is 

seen in Fig. 22 continuing from the point 1 through the 

first thickness -l~'f;~l on 1,2, and it is associated with 

the phase function <l>=<l>dBOO and the singularity of cot~ at 

<1>=2m=O. The approximation of (4.2-22) suggested in the 

preceding is 

(1+ ) r 2_2 (l-2 ) +lJ (V 2 2_E 2 -! (1-'l;-Va
2

-r 
2

-E:. 
2

)LogR . 
-2 xx \)x a-r e I(f:,,-r,'l;) 

! Vc42 2 
x2D(x) fil a L -E . 

(4.2-26) 
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where 

(4.2-26a) 

and 

x = (4.2-26b) 

1 

[ 
2 2 2 2]-2 

The singular term (¢-1+~) +~ -a T 

dx 
from the derivative d¢l in the first 

in (4.2-26a) results 

term of (4.2-24) and 

the derivative in the first term of (4.2-25). The 

integral (4.2-26) is an approximation of the sum of these 

two terms. 

It is worth mentioning that, while ~~-0 identifies the 

2 
wave front, ~O at the point where ddx¢-O or at any other 

dx2 

point except for the wave fronts where cancellation occurs 

between the wave fronts of ¢etpq and ¢dtpq· 

The Cauchy principal value integral (4.2-26a) can be 

evaluated approximately by expanding cot%¢ about ¢=0 and 
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point ~,i; is near the wave front, to give 

I (~ ,-r , i; ) ~ ____ -_4 ___ H (a2T 2_~ 2_ (l-i;) 2) 

va2"[ 2_~ 2_ <i-i; > 2 

~ · - 4 H (T-T ) 
a f2T Q y'T -T Q Q 

where H(T-T 0 ) is the Heaviside step function. Then 

(4.2-26), under the same approximation, becomes 

I 

where 

(l+x) Ix 2-2 (l-2v)x+l] 
1 
2 

X D (x) 

( 4. 2-27) 

(4.2-27a) 

is the arrival time of the wave front and x is given by 

(4.2-26b) with T replaced by To· 

H(T-TO) 
The coefficient of in (4.2-27) is similar to 

yT-TQ 

the quantities that Rosenfeld [13] calculated except that 

the loading cri;i;=-Io(~)H(T) at i;=l replaces (2.1-7) in that 

work and the coefficient of the singular term of the dila­

ta tional potential ~ is calculated rather than a 
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displacement term. 

, H ('r--r 
0

) 
With u ~A representing (4.2-27), us~ 

S tT-T 
0 

2Av'-r--r 0 H(-r--r 0 ) is the approximate displacement for the 

loading ass=-Io (s)H(-r) by using the convolution theorem of 

Laplace transforms. Also, us~~ from (2.2-1) is valid near 

the wave front since ~ is not singular and this can be 

2 3 
4 a TQ 2 

integrated to give ¢~-3 ~s~A(-r--r 0 ) H(-r-T
0
). This coeffi-

3 
2 cient of (-r--r

0
) H(-r--r

0
) checks with the data points given 

by Rosenfeld [13] for v=0.3 and a-r
0

=8 within the accuracy 

indicated in that work. 

Detailed work on the dilatational wave fronts is 

11 · · f h · bl aa 1 ~ r-;:--1 a y more convenient i t e varia e w-=2 va--1 
1-x 

1 
2 x 

actu-

f rorn 

(2.3-5) and (2.3-7) is used rather than x or B defined by 

(4 . 2-10). B is best suited for study of the equivoluminal 

wave fronts. 

The first reflection of the dilatational wave front 

1,2 in Fig . 22 results from the part of (4.2-22) which con-

tains ~d600 . This wave front results from the singularity 

1 
-21Pd600LogR 

at ¢d600=2m=-2 where e =R. The fact that one 

reflection has introduced the factor R in the integrand at 

the wave front is consistent with the interpretation of R 
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as the reflection coefficient as suggested in Appendix A. 

Subsequent reflections of this circular wave front result 

from the singularities at ~daoo=-4, ~d600=-6, etc., in 

. 2 3 
(4.2-22) and this introduces R ,R , ..• in the integrands at 

the wave fronts. The same is true for all of the factors 

1 1 
2~ £ LogR -°21'd£ LogR 

e e pq and e pq in the representations 

(4.2-14b) and (4.2-14c) since, at the wave fronts, they 

result in the factors Rm, m=0,1,2, •.. , in the integrands. 

Thus, in the preceding discussion about the geometry of the 

wave fronts as shown in Fig. 22, the integers m from ~=2m 

in (4.2-19) are associated with the reflections of wave 

fronts. 

These interpretations point out the importance of the 

term Log: R (;).(} in (3.3-3) for ( 0) 
and Log:R(2() in (3.3-24) 

l+x nen 1-x 
for n (O) 

dm since they are the terms which give an accurate 

representation of the reflection process. In contrast, the 

first terms in (3.3-3) and (3.3-24) contain the branch num-

bers n and m and the summation over the branch numbers pro-

duce the generalized functions which lead to the wave 

fronts. 

An interesting feature of the representation (4.2-14) 

is that the second term in (4.2-14a) on x=eie, 0~8~Tif 

involves the terms e 

v 2 a -1 2 
-TI (2p+2q+l±7.;) - 2--B 

a which result 
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i7T¢ 9, 
from e e pq and the definition (4.2-11) for ¢ n • This e)(,pq 

is obviously an exponential dependence on the thickness 

variable s and it is related to the usual form of the dila-

tational potential ¢ which is associated with harmonic 

equivolurninal waves reflecting from a plane boundary at an 

angle of incidence greater than the critical angle 

tan-l --1-­

V a 2-1 

The terms 9-=l,3,5,7 in (4.2-9) have not entered this 

discussion, however, they cannot be neglected. It is re-

called that these terms are identified with singular wave 

fronts only for s<O. The terms could be estimated on the 

deformed paths shown in the second and third sketches of 

Fig. 21, however, it seems more practical to deform the 

integration paths 

a-1 
onto -l~X~a+l 

CE and CD as follows: CE is deformed 

a-1 ie 
and CD onto -l~X~a+i plus x=e , 0~8~7T. 

There are no difficulties at the singularities x=±l due to 

the form of the phase functions for 9-=l,3,5,7 and the fact 

that s>O has been specified . 

The representation (4.2-14) is quite complex, however, 

it only involves explicit functions of x and it offers 

direct access to the high-frequency response and the accom-

panying singular wave fronts. This is contrasted with the 

modal solution (2.3-15) in which the complete details of 
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the high-frequency response is all but invisible. In. addi­

tion, the representation (4.2-14) is apparently consider­

ably more accurate than wave front expansions, which are 

only valid near the fronts. 
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FIGURE 1 

The Line Load Problem. 
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Symmetrical Rayleigh Branch 

Asymmetrical Rayleigh 
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FIGURE 3 

Mapping of the Real K-Axis, 0++00 , onto the Integration Path 
c0s for the Symmetrical Rayleigh Branch, and the Integra-

tion Path c0A for the Asymmetrical Rayleigh Branch in the 
x-Plane. 
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FIGURE 4 

The Loci of x01 and x02 , where R(x)=O, and of xR ' where 

R(x)=oo, in the x-Plane as Poissonws Ratio v Varies. The 
Variation of xR with v. 
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FIGURE 5 

-1 i R(x) and (R(x)l versus Xv -l<x<lv for v=0,0.3,2. 
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;'IT 1 . -1(1 ) ""----sin -r 
X X R 

l!+lsin -l(lr) 
X X R 

FIGURE 7 
a-1 

Branch Points of the Branches n on O~X~a+l (v=0.3). The 

Triplets (±,j,k) Identify the Branch Points as Zeros of the 
+ . 

Functions ~;k<x>. 
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FIGURE 8 
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The Real Branches on the Real x-Axis for -l~X~l (v=0.3). 
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FIGURE 9 
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FIGURE 10 
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ie The Dilatational Branches on the Unit Circle x=e 
for 0<8<'1T (v=0.3). 
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IR I sinh (Ix I Imn) 

-1 XR 

FIGURE 11 

Imn 

0 
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a+l x 

The Bounds on Imn (v=0.3). The Lower Bound is a Portion of 

the Symmetrical Rayleigh Branch on -l~x<xR and it is the 

Asymmetrical Rayleigh Branch on XR<x~O. 
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FIGURE 13 
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The Real Branches on O~x~l for the Special Cases v=2 and 
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FIGURE 14 
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A Path in the x-Plane for a Continuation Over Symmetrical 
Branches. 
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FIGURE 16 
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A Path in the x-Plane for a Continuation Over Asymmetrical 
Branches. 
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A Path in the x-Plane for a Continuation Over Symmetrical 
Branches. 
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n n 
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A Schematic Representation of the Branch Points Conunon to 
a-1 

Pairs of Real Branches on a+l~x~l (v=0.3}. 
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APPENDIX A 

THE FUNCTION R(X) 

The response of a plate to the loading (2.1-7) or to 

other loadings is completely characterized by the branches 

n=n (x) through the modal solution (2.3-15). In turn, the n . 

branches n are completely characterized by the function 

R(x) in (2.3-12a) through the frequency equations (2.3-13) 

and (2.3-14). Hence , it is necessary to know the behavior 

of R at all points where the behavior of n is required. 

R is the same function which occurred in the wave 

front expansions given by Rosenfeld and Miklowitz [l] . It 

is interesting, in the context of that work and of the 

present work, that R is identical to the . reflection coeffi-

cient giving the ratio of reflected to incident amplitudes 

of harmonic waves reflecting from a free boundary. R is a 

function of the angle of incidence by writing (2.3-12a) as 

a function of the phase velocity (2.3-1), which is given 

by c - c where c is the velocity of the body wave in 
P sine. 
- i 

question and e. is the angle of incidence measured from 
l 

the . normal of the boundary. 

R is a rational function of both x and v and, there~ 

fore , it is analytic with respect to x and v except at the 

zeros of [R]-l (inspection shows that R is bounded and, 
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hence, analytic as x+oo or as v+00 ). 
-1 

These zeros of [R] 

and the points where R=0,1,-1, etc., are given in this 

appendix along with the behavior of R on the real x-axis 

and on the unit circle lxl=l. 

R(x) can be written in several different forms each 

of which exhibits points in the x-plane where it takes on 

special values. The notation which will be used for these 

points requires some explanation. Two points, x 0 in 

(2 . 3-8) and XR in (2 . 3-9), have already been defined and 

the zero subscript means that this is the n=O point of the 

synunetrical Rayleigh branch (the complex conjugate of x 0 

is also such a point) . The R subscript refers to the fact 

that xR is the singular point of both Rayleigh branches 

where both w and K are unbounded (also, n is unbounded 

here) . With respect to the function R (X) , it will be 

shown that xR (x) =-1 and that 
-1 

at x=xo [R(x}J =0 at x=xR. 

Other than for these two points , when a notation is re-

quired for a point, subscripts will refer to values taken 

by R(x). For example, it will be seen that R(x)=O at 

* * x=x 01 ,x 02 and that R(x)=-1 at x=x_ 1 ,x_ 1 (the notation x 

is used for the complex conjugate of x). 
The forms taken by R(x) are 
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R (X) = xo ~x) <x-xo1) <x-xo2) ( x-x~) 

R-1 = 1 · 2 ( a-l)(a+l ) xD(x)(X -l) x-a+l a-1)( 

R+l 1 2 * 2 = xD <x) <x-x_ 1 ) <x-x_ 1) (A-1) 

2 
xR-1 = 8 ( 1-v ) ( 1 ) 

- D (x) -x X 

2 * xR+l = DTXT"c1+x) <x-x 0) <x-x 0) 

where 

ie -1 
X_l = e = 1 - 2v + 2ilv(l-v) (A-la) 

th 0 e TI f 0 l ( . h ~ . so at s -1S2 or svs2 x=x-1 maps into t e Lame point 

where w=l2K), a is given by (2.1-2) with 3-212s:~is1 for 

O~vs~ and D(X) is given by (2.3-12b). Comparing the form 

of R(x) in (A-1) with that in (2.3-12a), the points 

x=x 01 ,x 02 , _!_ are obviously the zeros of (l+x) 3-8(1-v)(l+vx)x 
XR 

and they will be discussed in more detail presently. 

A useful property of R, which can be used in conjunc-

tion with the forms (A-1)~ is given by 

·(1) 1 RX = [R(X)]- (A-2) 
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and this results directly from (2.3-12a). 

From (A-1) and (A-2), points in the x-plane where R 

takes on special values are listed as follows: 

R = 1 at 

R = -1 at 

R = 0 at 

a+l a-1 
X = a-1' l, a+l' -l 

1 
x = Xo1' Xo2' X-' oo 

R 

IRJ-l = O at 1 1 0 
x = XR' Xo1' Xo2' 

XR = l at X = 0, +l 

XR = -1 at X = -1, Xo 

(A-3) 

1 1 
The three points x=xR' ~-, are roots of D(x)=O with 

Xo1 Xo2 

xR defined by (2.3-9). The loci of xR' x 01 and x 02 in the 

x-plane and the variation of xR with v for O~v~~ are shown 

in Fig . 4. The points x 01 and x 02 are identified by stat­

ing . that l~Rex01~Rex 02 >o and that l>Imx01=rmx 02~o with the 

points being complex conjugates if v <v< 2
1 , real and equal c -

if v=vc' and real and unequal if O<v<v where v ~0.2631. - c c 

It is also true that l~lx 01 1~1x 02 j>O, the modulus being 
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equal to one only for x 01 with v=O. One exception to (A-3) 

occurs for v=O in which case x 01=x_ 1=+1 and R(l)=-1. 

Derivatives of R with respect to x at certain points 

are useful and they result directly from (A-1). Letting 

RI ( 1) l-2v = --2- for 0 < \) 
\) 

R' ( 1) = O for v = 0 

R'(:~i) = 

2 = 

8 (a+l) 
2 a (a-1) 

RI (-1) 
1-v 

R' (x_l) = 0 , 

~x (i) x=o = 1 

L(!) = 16(1-v) 
dx2 R 

x=O 

d 
ax <xR> = -8(1-v) 

x=O 

2 

2 

1 
< 2 

(A-4) 
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The forms in (A-1) and knowledge of the zeros of D(x) 

determine the inequalities 

-1 < R < 1 if 

-1 < [R] -l < 1 

a-1 
a+l < X < 1 

if a-1 
-1 < X < a+l 

-1 < xR < 1 if 0 < X < 1 

-1 < [XR)-l < 1 if -1 < X < 0 

(A-5) 

The inequalities are evident in Fig. 5 where R(x) and 

-1 
[R(x)J are sketched on the real x-axis, -l~x~l, for the 

1 values v=0,0.3,2 of Poisson's ratio. 

0 th · · i ie ( > k h · 1 f n e unit circ e x=e , R x ta es t e simp e orm 

where 

i8 y(8) = 2[8-ArgD(e )] 

with D(x) given by (2.3-12b). 

(A-6) 

(A-6a) 

satisfies y(-8)=-y(8) and O~y(8)~'IT with the equalities 

being taken only at 8=0,8_
1

,TI where 

y(O) = y(TI) = 0, y(8_ 1 ) ='IT (A-7) 
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For the special case v=O and the same range Os_8s_TI, y(6) 

satisfies y(-8)=2TI-y(8) and 0S,y(8)S,7T with the equalities 

being taken only at 8=0,7T where y(O)=TI, y(TI)=O. The func-

1 tion y(e) is sketched in Fig. 6 for v=0,0.3,2 and the 
-1 angle e_ 1=cos (l-2v) is identified as the point where 

y(e_ 1 )=7T in each case . 

There is an additional path, other than the unit 

ie circle x=e , on which IRl=l. A portion of this path will 

a-1 be called c1 and it connects the two points x=a+l and 

ie_
1 x=x_ 1=e . given by (A-la). This can be shown by making 

a-1 
local expansions of R(x) about x=a+l and x=x_ 1 using 

R(:~i)=l and R(x_ 1 )=-l from (A-3) and R' (x_ 1 )=0 from (A-4). 

The path Cl lies entirely interior to the quarter disk 

Rex> 0 , Imx > 0 , I x I < 1, with the exc.eption of its endpoints , 

for Poisson's ratio in Os.vs.;. Thus, since jR(x) l=l, 

R (X) = (A-8) 

will be taken for the form of R(x) when xCc1 • The exact 

forms of c1 and of the real function y1 (x) are very diffi­

cult to calculate, but, they are not important for this 

work. It can be stated with certainty that c 1 is a smooth 

path and that 
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(A-9) 

Also, y 1 (x) is a monatonic increasing function of x for 

dR (x_ 1 ) dy 
1 

(x_ 1 ) 
x E: c1 (except at x_ 1 where dx =dx =O from (A-4)) 

a-1 
as x moves from x_ 1 to a+l on c 1 . y 1 (x) is monatonic on 

c1 since, if it were not, there would be some point x E.::: c
1 

dR ( ) dy 1 (X) 
(x1x ) where~ X =~- =0. However, from the form 

-1 dx ax 

(2.3-12a) of R(x), there can be no more than six points 

where dR(x)=O and it is obvious from Figs. 5 and 6 and dx , 

from (A-2) and (A-6) that four such points are on the real 

* x-axis and that two more, x_ 1 and x_ 1 , are on the unit 

circle lxl=l. Hence, there are no other points where 

~~(x)=O. One other aspect which clarifies (A-9) andhelps to 

explain c
1 

and y 1 (x) is that, if x traverses the closed 

a-1 
path a+l+l on the real x-axis, l+x_ 1 on the unit circle 

I I a-1 
x =l and x_ 1+a+l on c1 , then the argument of R(x) in-

creases by an amount 2TI due to the presence of one simple 

zero of R(x) at x 01 , which then must be interior to the 

closed path. This, of course, is with v <v< 2
1 so that 

c -

Imx 01>0 as shown in Fig. 4. 

It is evident from the form (2.3-12a), showing that 

* * R(x)=R (x), and from - (A-2) that if xis any point on c1 

* then also jRj=l at the points x 1 1 and __... 
x x 

c1 into a closed curve on which jR(x) l=l. 

This completes 
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APPENDIX B 

ADDITIONAL INFORMATION ABOUT THE BRANCHES n=n {x) 
n 

B.l. THE BRANCHES AT SPECIAL POINTS 

It is possible to find exact solution pairs x,n of the 

frequency equations at some points in the x-plane or for 

certain values of n. Such solution pairs will be helpful 

in understanding the branches n as continuous analytic 

functions of X· The results for several points are listed 

here without indicating the simple calculations. Use has 

been made of the properties of the function R(X) given in 

Appendix A and the property of analyticity of the branches 

as shown in Section 3.1. 

(1) The case n=O. 

The trivial solution n=O for all x is not inter-

esting since it implies that w=K=O from (2.3-7). However, 

expansion of the symmetrical frequency equation shows that 

* lnl<<l is possible only near the points x=x
0

,x
0 

where 

XR(x)=-1 from (A-3). The expansion about x=xo is 

~2i80 
n2 3ie _[f+V (1 12) = - v(l-v) lr::v<x-xo> + 0 x-xo 

-ie 
= 3e 

0 
_fI+Vce-e > + o(le-e 12 ) v(l-v) lI=V O 0 

(B.1-1) 
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the second expression being specialized to x=ei8 with 8~8 0 • 

For 8>8 0 this is obviously an expansion of the symmetrical 

Rayleigh branch n 0 (x) about the n=O,x=xo (or w=K=O) point 

and, indeed, the branch has a square root branch point at 

x=x 0 . For 8<8 0 , (B.1-1) gives a continuation of the sym­

metrical Rayleigh branch about the branch point. 

Likewise, the asymmetrical frequency equation only 

admits branches with In I<< 1 near the point x=O. The expan­

sion about x=O takes the form 

2 
n (B.1-2) 

For x<O this is an expansion of the asymmetrical Rayleigh 

branch n 0 (x) about the n=x=O (or w=K=O) point and this 

branch has a square root branch point · at x=O. 

(2) The point x=l. 

Directly from the symmetrical frequency equation 

(2.3-13), the branches take the values 

n (1) = mr n n=l, 2 t 3 t • • • I (B.1-3) 

and the branches are analytic at x=l since the derivative 

dnn(x) 
(3.1-3) exists with dx 

The asymmetrical frequency equation (2.3-14) can be 

rearranged and written as 
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tann = f (x , n ) 

f (x , n > = Rsin(x-l)n 
1-Rcos (x-1) n 

Assuming that bounded solutions n exist in a neighborhood 

of x=l and using (A-4), results in 

f(l,n) = n v2 
= -l-2\!T) I 

R ( 1) 

Hence, asymmetrical solutions nn(l), n=lv2,3, ••• , exist and 

they satisfy 

2 
tann ( 1) = '--v-n ( 1) l-2v (B.1-4) 

from which n (1) can be shown to be real. Only the posi­
n 

tive set of solutions nn(l) satisfying ( 2 n;l)rr~nn(l)<nrr 
1 for 0<v~2 are takenv and 

( ) = (2n-l)rr + 2(1-2v) + O(n-3) 
nn 1 2 (2n-l)rrv2 

1 for n>>l and O<v<2· 

dnn(X) 
The expression (3.1-4) for the derivative dx 

x=l 



-204-

of the asymmetrical branches takes the ~ indeterminant form 

due to (B.1-4) and (A-4) and the derivative cannot be shown 

to exist from this form. However, the form tann=f(x,n) of 

the asymmetrical frequency equation gives 

and this expression for the derivative does exist at x=l 

with the assumption that bounded solutions n (x) exist in 
n 

a neighborhood of x=l with n (1) satisfying (B.1-4). 
n 

dnn (x) 
Carrying out this calculation gives dx 

hence, the branches are analytic at x=l and they are tan­

nn ( 1) 
gent to the hyperbolas n l+x at this point as were the 

nTI 
symmetrical branches tangent to the hyperbolas n=l+x at 

x=L 

These preceding values of the symmetrical and asymmet­

w rical branches at x=l map into the -=a points on the 
K 

branches in the w,K-plane. 

(3 ) h 
. . a-1 

Te point x=a+l" 

The symmetrical solutions nn(:~i)• n=l,2,3, •.• , 

with O<n 1<n 2< ••• , comprise the two sets 
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~ 
i+x a-1 

x=a+l 

(2p-1)7T 
1-x a-1 

x=a+l 

q=l,2,3, .•• , 

(B.1-5) 

p=l, 2, 3, . • • • 

The asymmetrical solutions nn(:~i), n=l,2,3, • • . , with 

O<n 1<n 2< ••• , comprise the two sets 

n(:~i) = 

n(:~i) = 

( 2q-l) 7T 
i+x a-1 

x=a+l 

~ 
i-x a-1 

x=a+l 

q=l, 2 f 3 f • • • I 

(B.1-6) 

p=l,2,3, ••.• 

a-1 
The point x=a+l corresponds to cut-off K=O and, just 

as in the w,K variables, the branches have separated into 

two sets at this point; those in .(B.1-5) and (B.l-6) with 

1-x in the denominator correspond to motions of the 

plate which were called the simple thickness-stretch modes 

and those with i+x in the denominator correspond to 

motions which were called the simple thickness-shear modes 

by Mindlin [ 2] • 

( 4) The point x=O . 

The symmetrical frequency equation admits 
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solutions n (O), m=l,2,3, ..• , satisfying 
m 

sinn(O) = -n(O) 

n (O) can be taken with Ren (O)>O, Imn (O)>O, and m m m 

(B.1-7) 

O<ln 0 1<1n 1 1< . .. , however, the complex conjugates are 

equally good solutions. The first ten roots of (B.1-7) 

are tabulated by Robbins and Smith [14), and for m>>l 

nm(O) = ( 4m;l)TI + iLog(4m-l)TI + o(~Logm) 

The asymmetrical frequency equation admits solutions 

nm(O), m=0,1,2, . •• , satisfying 

sinn (O) = n (O) (B . l-8) 

which can also be taken with Ren (O)>O, Iron (0)>0 for m m 

m=l,2,3, ... , and O=ln 0 1<1n 1 1<1n 2 1< . . . . n 0 (0)=0 is the 

x=O point of the asymmetrical Rayleigh branch which was 

just discussed. The first ten roots of (B.1-8) are tabu-

lated by Hillman and Salzer £15], and for m>>l 

nm ( 0) = ( 4m~ 1 ) TI + iLog ( 4m+ 1) TI + o ( ~Logm) 

These solutions at x=O map into w=O and K complex by 

(2.3-7) and they are related to the degenerate case of the 

static solution in the plate . 
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(5) The point x=XR· 

Both frequency equations admit solutions 

m=l, 2, 3, • . . • (B.1-9) 

(6) The point x=-1. 

As in the case of the asymmetrical branches at 

x=l, the symmetrical frequency equation (2.3-13) can be 

written as 

tann = _ Rsin(l+x>n 
1-Rcos(l+x>n 

which allows solution values at x=-1 for the symmetrical 

branches nm(-1), m=0,1,2, .•. , satisfying 

tann (-1) = 1-vn (-1) 
2 

{B.1-10) 

The root n 0 (-l)=-iJn 0 (-l) J is pure imaginary and it is 

identified as the point on the symmetrical Rayleigh branch 

where it crosses the equivoluminal tangent (x=-1 or w=K). 

Other than for the conjugate of n
0

(-l), all other roots of 

(B.1-10) are real, and the positive set which satisfies 

m'""<n (-l)<( 2m+l)'IT f 1 2 3 · t, h " m 2 or m= , , , ..• ,is aKen were 

(2m+l) 'IT = 2 
4 + O(m-3) 

(2m+l) 'IT (1-v) 
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for rn>> 1. 

Analogous to the point x=l on the asynunetrical 

0 branches, the derivative (3.1-3) takes the 0 form at x=-1 

for the synunetrical branches and cannot be shown to exist. 

However, the form given above for the synunetrical frequency 

equation allows calculation of the derivative giving 

x=-1 
=~2 (-1) where n (-1) satisfies (B.1-10). m m 

Hence, these symmetrical brances are analytic at x=-1. 

The asymmetrical branches ·take the values 

nm (-1) = m'IT ffi=l, 2 I 3 f • • • t (B.l-11) 

and they are analytic at x=-1 with the derivative (3.1-4) 

dnm 1 
taking the value dx -"T117T· 

(7) The point x=x_ 1 • 

At this point, the synunetrical frequency equation 

is satisfied by each of the sets 

= (2n+l)7T 
l+x_1 = (2n+l) 7T 

2 v'l-v 

. e_1 
-1--

ffi'JT. 2 2m7T 
1-x -1 

= -ie 
IV 

n=O, 1, 2, •.. , 

m=l, 2, 3, • • • • 

(B.1-12) 

(B.1-13) 
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The asynunetrical frequency equation is satisfied.by 

each of the sets 

2mr 
l+x_1 

. e _1 
mr -i-2-

= --e 
v'l-v 

n=l, 2, 3 v • •• , (B.1-14) 

= ( 2m-l) TI 

l-x-1 

. e_l 
( 2m-l) TI. -J.-2-

= ie 1 m= 1 , 2 , 3 , . • . • ( B . 1-15 ) 
2lv 

This separation of the branches into two sets at 

x=x-1 is closely related to the separation which occurs at 

a-1 
x= a+l. 

(8) The points x=x 01 ,x 02 . 

These points are not on the real x-axis unless 

O<v<v (v is described in Appendix A), however, they are - - c c 

interesting points since both frequency equations admit 

solutions 

n=l,2,3, ••.. (B. l-16) 

These points can be made to move off the real axis, as in 

Fig. 4, by increasing v, and the same values are retained 

by n(x 01 > and n(x 02 >. 

(9) Points x which are real and rational. 

Exact solution pairs, x,n, satisfying the fre-

quency equations can be found at these particular points 
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by finding the zeros of polynomials. Such results are im-

portant since they give exact solution pairs at points 

o t her than those already considered. 

m This case is illustrated by taking x=- where n=2,3, 
n 

4 I • • • f 
m m=±l,±2,±3, . . . , and - 1<~1 . n The symmetrical fre-

quency equation (or, likewise, the asymmetrical equation} 

reduces to 

m at x=- where P 1 Cz) is a polynomial of degree n-1 in z. n n-

Further, if both m and n are odd, the frequency equation 

takes the simpler form 

n-1 where Qn-l is a polynomial of degree ~2-. An obvious solu-
-2-

tion of these equations , which is of considerable impor­

tance for sketching the branches, results from sin(~~=O . 

Therefore 1 the pair 

m n = nTI (B . 1-17) x = n 

for n=2,3,4, • .. and m=±l,±2,±3, .•• satisfies both the sym-

metrical and asymmetrical frequency equations. The points 
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(B . 1-17) can also be recognized as the common points of the 

hyperbolas n=~l TI and n=~ for p=n-m and q=m+n. These are -x l+x 

the hyperbolas which form the grid as discussed in Subsec-

tion 3 . 2 . 1 . 

The remaining solution points, for x real and rationaL 

are given by the roots of the polynomials Pn-l(cos(~)) or 

Qn _ 1 (cos 
2 

( ~n)) . Thus , by solving nothing more difficult 

2 

than for the roots of quadratic equations , the frequency 

1 1 1 equations can be so l ved exactly at the points x=±5,±3,±2, 

±~,±~,and, by solving for the roots of cubic equations, at 

1 1 3 5 3 the Pol.. nts x=+- +- +- +- +- etc -71-41-71-7 1-41 . 
3 For example, at the point x=- 5 , the symmetrical fre-

quency equation reduces to 

sinn + Rsin(-;n) = 

where R=R(-~)>1 for O~v~~- This equation has the solutions 

n (-~) = SmTI , m=l, 2, 3 , ... 

n (-~) = Sm TI ± -1{ 1 [ 2 ~]!} 5cos 
212 

3+R-(5+2R+R) , 
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m=0,1,2, ... , (only the plus sign for m=O), 

m=O , 1, 2, ... , 

where all of the radicals are positive and the inverse 

functions take their smallest real positive values. These 

solutions indicate a great deal about the branches n in 

the interval -l<x<XR· For instance, in the example chosen 

exact solution points of the synunetrical frequency equation 

are found both for w and K pure imaginary and for w and K 

complex through (2.3-7). 

B.2. THE BEHAVIOR OF THE BRANCHES UNDER THE MAPPING x+! 
x 

The properties of the equivoluminal and dilatational 

branches, which are derived in Subsection 3.2.2, make pos-

sible some general statements about the branches n in the 

complex x-plane. Use can also be made of the fact that in 

B.l the branches are shown to be analytic functions of x 
at x=l and x=-1 for the cases where the branches are bound-

ed at these points. 

From (3.2-11) and (3.2-17) and from tany(-e) -tan~ 2 2 
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(y(-8)=-y(8) from Appendix A), the moduli of the equivolu-

minal branches are even functions of e. That is, if In I= n 

fn(8) satisfies either (3.2-11) or (3.2-17) for n=l,2,3, ..• , 

then fn(-8)=fn(e) . Thus, the form of the branches nn(x) on 

. e 
ie ie - 1 2 

the unit circle x=e is nn(e )=fn(8)e from (1) of 

(3.2-8). Using the fact that fn(8) is an even function of 

e results in the interesting property 

or 

-ie -ie 
e nn (e ) 

.e 
1-

= fn(8)e 
2 

. e 
-1-

= f (8)e 2 = n 
n (eie) 

n 

for 0~8<TI (fn(8) is singular as 8+n) . 

(B.2-1) 

The analytic continuations of the equivoluminal 

branches onto the lower half unit circle are given by 

(B.2-1). More significantly, the property (B.2-1) also 

must be valid for continuations off the unit ci~cle x=eie 

since the equality of these analytic functions on the unit 

circle implies equality everywhere in their domain of an-

alyticity. This being the case , the equivoluminal branches 

have the property 

(B . 2-2) 
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which just defines the behavior of the branches nn(x) . under 

the mapping x~!. . x 
The property (B.2-2) makes it possible to show that w 

and K defined by (2.3-7) are invariant under the mapping 

1 
x~X. That is, if n in (2.3-7) is an equivoluminal branch 

then w(i)=w(x) and K(i)=K(X). This depends on the defini­

tion of the radicals in (2.3-7). A suitable definition 

which leaves the point x=l and the x-plane near x=l free 

l 
2 of branch cuts is to take x as real and positive on x>O 

with the branch cut on the negative real x-axis. Simi-

larly, the radical in K is taken to be real and positive 

th · 1 a-l a+l · h h b h th on e interva a+l<x<a-l wit t e ranc cut on ere-

mainder of the real x-axis. These also are definitions 

which make w and K real and positive on the integration 

path c shown in Fig. 2 for n=n (x), n=l,2,3, .... 
n 

1 This invariance of w and K under the mapping x+-- lends x 
support to the statement in Section 2.3 to the effect that 

if w and K are completely known as a function of x on the 

unit disk lxl~l then they are known everywhere. 

Likewise, the moduli of the dilatational branches 

given by (3.2-12) and (3.2-18) are even functions of 8 

with respect to the point 8=n. Hence, from (2) of (3.2-8), 

the dilatational branches have the property 
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-e -ien (e -ie) = n (eie) (B. 2-3) 

for 0<8~rr which gives the analytic continuations onto the 

lower half unit circle . (B . 2-3) becomes 

(B.2-4) 

when the dilatational branches are continued off the unit 

circle. w and K in (2.3-7) are again invariant under the 

mapping 1 'f the positive real x-axis is taken for the x-+- i 
x 

1 

branch cut of 2 and the segment a-1 a+l is taken for the x ~x<--a+l- -a-1 

branch cut of the radical in K. 

The property (B.2-2) can be used to verify the value 

of the derivative of the equivoluminal branches at x=l as 

found in B .1. =-ln (-1) results directly from 
x=l 2 m 

(B.2-2) and the fact that both the symmetrical and asymmet-

rical equivoluminal branches are analytic at x=l. Like-

wise, 
dnm(x) 

from (B.2-4), dx =~nm(-1) for the symmetrical 
x=-1 

and asymmetrical dilatational branches. 

B.3. THE COMPLEX BRANCHES ON THE REAL x-AXIS 

For the purpose of examining the complex branches on 

the real x-axis, n is written as 
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(B.3-1) 

where nR=Ren and n
1

=Imn. The symmetrical frequency equa­

tion (2.3-13) becomes 

~ (B. 3-2) 

where the real parts have been equated using the fact that 

x and R(x) are real. As usual, the asymmetrical frequency 

equation is obtained from (B.3-2) by replacing -R(X) with 

R (X) • 

A simple case results from setting nR=O in (B.3-2) and 

in the corresponding asymmetrical frequency equation. 

These solutions, n=in 1 , are identified as the Rayleigh 

branches and they will be discussed in the context of the 

entire set of complex branches. 

By using the fact that -l<R(x)~l on the interval 

:~i~x<l (from (A-5) in Appendix A), it is possible to show 

that no complex solution of the form (B.3-1) exists with 

n
1

IO which satisfies (B . 3-2) on this interval. This is 

done by assuming that a solution with n1 IO exists and then 

using the inequalities 1Rsinhxn1 l<lsinhn 1 1 and jRcoshxn 1 1< 

coshn 1 to obtain a contradiction . The same proof is also 

valid for the asymmetrical branches. 
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The existence and form of the complex branches are 

1 a-l 1' f h · ( 3 2) more apparent on - ~X<a+l t e equations B. - are 

rearranged so that nR and n
1 

can be discussed as separate 

functions. The first equation of (B.3-2) is multiplied by 

sinhxn 1 and squared, the second equation is multiplied by 

coshxn 1 and squared, and the results are added to give 

(B.3-3) 

This equation is a result of forcing (B.3-2) into a form 

which is very similar to the original frequency equations 

(2.3-13) and (2 . 3-14) with n1 =Imn replacing n and the radi­

cal replacing ±R(x). Actually, the sign of R(x) has been 

lost in the squaring operations so that (B . 3-3) is valid 

for both the symmetrical and asymmetrical complex branches, 

and (B . 3-2) or the analogous asymmetrical frequency equa-

tions must be used to identify the particular branches . 

Similarly , the pai r (B.3-2) can be manipulated to give 

which can be combined with (B.3-3) to eliminate sin2 2nR= 

4sin2nR(l-sin2nR) 1 resulting in 
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sin2 (l+X)nR = 

(B.3-4) 

The pair (B.3-3) and (B.3-4) are especially convenient 

forms from which to determine both the symmetrical and 

asymmetrical sets of complex branches. 

The following approach can be used to find exact solu-

tion points on the complex branches or to verify the exist­

ence and form of the branches: (1) sin2nR is considered as 

a constant parameter (O~sin2nR~l) in (B.3-3), which can 

then be solved for n
1 

as a function of x and the parameter; 

(2) this result is substituted into (B . 3-4) to give nR as a 

function of x and the parameter; (3) the common points of 

this function nR and the constant values of nR from sin
2

nR= 

constant give exact solution points x,nR' and n 1 is then 

. given by evaluating the function n1 i n (1) at this point X· 

The preceding procedure depends on the fact that there 

exists a solution n
1 

of (B.3-3) for a fixed value of sin
2

nR 

and such a solution may not exist. If (B.3-3) is written 

as 
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the left side of this equation is a strictly increasing 

function of n
1 

and the right side is a nonincreasing func­

a-1 
tion of n1 for -l<x<a+l· x=O is an exceptional point with 

complex solutions already known to exist satisfying (B.1-7) 

and (B.1-8) in Appendix B. Also, the point x=-1 gives a 

limiting case which cannot be included here. Thus, a single 

solution n
1

>0 exists if, and only if, 

1 < 
fil 

n =O I 

which is equivalent to requiring that 

. 2 l-x 2R2 
sin nR > 

1 2 -x 
(B. 3-5) 

From the first of (B.3-2) r this also gives a bound on 

. 2 h ' ...... 
Sl.n XnR W l.CH lS 
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for n
1

>0, and this can be combined with (B.3-5) to give 

. 2 1 1-x 2R2 
sin xnR > ~2 2 

R 1-x 
(B.3-6) 

On -l<x<O, both (B.3-5) and (B.3-6) are always satis­

fied since x 2R2>1 by (A-5); hence, complex branches exist 

on this interval by this criterion. a-1 
However, on O<x<a+l 

the inequalities (B.3-5) and (B.3-6) are not satisfied for 

all x and nR~O. The limiting case n 1+0 on the complex 

branches can only occur at points x,nR determined by 

(B . 3-5) and (B.3-6) with equalities replacing the inequal-

ities. This is not meant to include all of the points on 

the real branches considered in Subsection 3.2.1 where 

n
1
=o, but only the limiting points of the complex branches . 

But, (B.3-5) and (B . 3-6) with equalities are identical to 

the two equations (3.1-7) with no distinction between the 

symmetrical and asymmetrical cases. Thus, just as is ex-

pected from a local approximation like (3.1-13), the branch 

a-1 points on O<x~a+l are common points of the real and complex 

branches. 

Bounds on the functions n
1 

result directly from 

(B . 3-3) by observing that the radical on the right side of 

that equation is a nondecreasing function of sin2nR for 

O_<sin2nR_<l if R2_>1 , which is the case on -l<x<a-l. Hence , 
- -a+l 
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evaluating the right side of (B.3-3) for sin2nR=O and 

sin2nR=l results in the lower and upper bounds respectively 

for sinhn 1 , and also for n 1 since sinhn 1 is an increasing 

function of n1 • The bounds are then defined by the in­

equalities 

which is equivalent to the pair of inequalities 

sinhn 1 > jRjsinh!xln 1 , 

~ (B.3-7) 

with n 1~o throughout. 

The bounds (B.3-7) are taken (the equalities hold) by 

the imaginary part of the complex branches at various points 

in the Rex,Ren-plane; hence, the bounds are also envelopes 

with n 1=Imn being tangent to the curves at these points. 

h 1 b d . k b 'f . 2 0 d T e ower oun is ta en y n 1 1 sin nR= an 

sin2 (l+x)nR=O, which results from (B.3-4) under the condi­

tion that the first of (B.3-7) with the equality, or 

sinhn
1
=jRjsinhlxln 1 , is satisfied. Actually, a solution 

n
1

>0 of the first of (B.3-7) with the equality exists only 

on -l~x<O where lxRl~l by (A-5) in Appendix A. Hence, the 
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· t 1 b d f O a-l · · t -o appropria e ower oun or n 1 on '.S_X'.S.a+l is JUS n 1= • 

The upper bound is taken by n 1 if sin2nR=l and 

sin2 (l+x)nR=O, which results from (B.3-4) and the second of 

(B.3-7) with the equality, or coshn
1
=1Rlcoshxn

1
. This 

equation has a solution n
1

>0 on all of the interval -l~x< 

a-1 
a+l where I RI :::_l. 

The envelopes or bounds defined by (B.3-7) are shown 

in Fig. 11. Both the upper and lower bounds are obviously 

unbounded as x+xR where R(x) is also unbounded by (A-3). 

The asymptotic approximations of the bounds n
1 

are easily 

derived and they both take the form 

(B.3-8) 

as x+xR on the real x-axis. Hence, the imaginary part of 

every branch must have this approximation. The equations 

(B.3-7) for the bounds can be expanded near x=-1 by using 

R(-1)=1 from (A-3) and R' (-1)= 1~~ from (A-4) in Appendix A 

to show that n
1 

for the lower bound satisfies 

at x=-1, and that n1 for the upper bound satisfies 
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1-v 
~I = cothn 1 

at x=-1. The lower bound equation at x=-1 is identical to 

(B.1-10) with n=in 1 . The solutions, n 1 (-l), of these equa­

tions can easily be shown to fall above and below the value 

l~v with a finite separation that depends on Poisson's 

ratio v. 

The Rayleigh branches are a special case where sin2nR= 

sin
2

(l+x)nR=O due to nR=o and the lower bound is an exact 

solution of the frequency equations. This can also be seen 

by setting n=in 1 in the frequency equations (2.3-13) and 

(2.3-14). To be precise, the symmetrical Rayleigh branch 

n=in 1 with n 1IO only exists on -1sx<xR where xR(x)~-1, and 

the asymmetrical Rayleigh branch n=in 1 with n 1IO only 

exists on xR<x<O where xR(x)>l. These comments result from 

the forms of the frequency equations and they are a re-

minder that the lower bound in (B.3-7) has resulted from 

squaring operations which obscure the differe.nce between 

the symmetrical and asymmetrical frequency equations. The 

lower bound in Fig. 11 is then a sketch of a portion of the 

syrnmetrical Rayleigh branch on -l~x<xR and of the asymmet­

rical Rayleigh branch on xR<x~O. If the negative solution 

n1 is taken in each case and if the radicals in (2.3-7) are 

taken as positive imaginary, then both w and K are real and 

positive. The positive imaginary values of the radicals 
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result from a natural continuation above their respective 

. a-1 
branch points, x=O and x=a+l· 

The asymptotic approximation of n 1 =Imn as x+xR is 

. given by (B.3-8) for all of the complex branches and the 

complete approximation for n=nR+in
1

, as derived from the 

frequency equations (2.3-13) and (2.3-14), is 

l ~ -~:~R) 
n - l+x[qn+iLog(R(xl>J + o\x-xRI (B.3-9) 

as x+xR with q=0,2,4, •.• for the symmetrical branches and 

q=l,3,5, ... for the asymmetrical branches. In this approxi-

1 I 
TI 3TI mation, Log(R(x))=Log R(x) +iArg(R(x)) with - 2 Arg(R(x))<-r-· 

(B.3-9) includes the approximation to the symmetrical 

Rayleigh branch q=O as x+xR on -l~x<xR where Arg(R(x))=O, 

and to the asymmetrical Rayleigh branch q=l as x+xR on 

xR<xsO where Arg(R(x))=rr. Every complex branch has a loga­

rithmic branch point at x=xR and this feature is not unique 

to the Rayleigh branches. 

(B.3-9) indicates the nature of an analytic continua-

tion about the logarithmic branch point xR for every com­

plex branch. Any symmetrical complex branch, including the 

Rayleigh branch 1 can be continued onto any other symmetri-

cal complex branch by encircling the branch point x=xR· 

This is equivalent to passing through the branch cut and 



-225-

onto other sheets of the Riemann surface. The same holds 

true for the asymmetrical complex branches. 

A few of the complex branches are sketched in Fig. 12 

in the Rex,Ren,Imn-space. This figure and other details 

about the complex branches are discussed in Subsection 

3.2.3. 
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APPENDIX C 

ADDITIONAL MATERIAL FOR ANALYTIC-CONTINUATIONS 

C.l. AN EXPANSION OF THE FREQUENCY EQUATIONS FOR 1-v 

SMALL 

The function R(x)=R(x 1 v) in (2.3-12a) is expanded in 

powers of 1-v, where the assumption must be made that l+x 

is not small since both R and the branches n undergo dras-

tic changes near x=-1 as v+l. Then the frequency equations 

(2.3-13) and (2.3-14) can be approximated, under the 

assumpt~o·ns that 1-v, x-t and n-k'IT are small where k=2, 3, 

4, .•. , j=±l,±2,±3, ••• and XR<t<l, to give 

(C.1-1) 

(C . 1-1) is an approximation to the symmetrical branches for 

j+k odd and to the asymmetrical branches for j+k even. The 

requirement xR<t, with xR defined by (2.3-9), only serves 

to avoid the vicinity of x=-1, but this is not very re-

strictive since xR+-1 as v+l. Thus, {C.1-1) is valid near 

x=-1 if 1-v is sufficiently small. 

In addition, (C.1-1) is valid even if 1-v is not 

small provided that k>>j which means this approximate 



-227-

frequency equation is useful to examine the upper branches 

near x=O. 

The simple cubic (C.1-1) vividly illustrates the 

nature of the branch points, which merge as v+l, both on 

-l<x<O for j~l and on O<x<l for j~l. If (C.1-1) is taken 

to be exact, the branch points are identified by requiring 

that dx_O· thus, the branch points are located at 
dn ' 

n = kTI ± 4(1-v) k IJk 
(k+j)2 

so that if j is negative both x and n are complex at the 

branch points. The very important feature of this is that 

when Imx>O at the branch points, identifying these as the 

approximate location of branch points from "the set of 

negative branch points," it is also true that Imn>O. 

Therefore, branch points belonging to "the set of negative 

branch points" are common only to pairs of branches con-

sisting of a real branch on -l<x<O and a complex branch 

with Irnn>O. The preceding statement requires a very simple 

examination of the continuations about the branch points as 

predicted by (C.1-1). Likewise, it is seen that complex 

conjugates of these branch points are common to pairs of 
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branches consisting of a real branch on -l<x<O (the same 

real branches as those just mentioned) and a complex branch 

with Irnn<O. 

The simple cubic {C.1-1) has solutions which illus-

trate the nature of the complex branches as V+l. On 0SXS1 

1 
for ~v<l, the complex branches have complex loops between 

a-1 pairs of branch points just as shown in Fig. 12 on O<x<~-1 . - -a+ 

v=l causes the branch points and, hence, the base points of 

neighboring loops to merge. On -lsxso for v<l, each corn-

plex branch has an imaginary part which oscillates but is 

never zero as is also shown in Fig. 12. v=l causes these 

minimums in Iron to reach Imn=O at the branch points and the 

branches become identical with those on osxsl. 

C.2. CONTINUATIONS OF THE EQUIVOLUMINAL AND DILATATIONAL 

BRANCHES ABOUT THEIR SINGULAR POINTS, x=-1 AND x=l 

In Subsection 3.3.3 , the equivolurninal and dilata-

tional branches were found to ~e singular at x=-1 and x=l 

respectively . Continuations of these branches about their 

singular points is required and this presents a problem 

since none of the representations in Section 3.3 were 

shown to be valid except as the singular points were 

ie approached on x=e , 0<8<TI. 

To resolve this problem, it is easy to show that the 

approximation 
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(C. 2-1) 

n=l,2,3, ... , taken directly from the series representation 

(3.3-14), is valid for the symmetrical equivoluminal 

branches, with the error indicated, for O<Arg(l+x)<n. The 

verification of this approximation is contained in the dis-

cussion following the form (3.3-6) of the symmetrical fre-

quency equation. Thus, since the complex branches with 

Imn<O were found to have no branch points adjacent to the 

real x-axis with Imx>O, they can be continued slightly off 

the real x-axis. This continuation for a complex branch 

2nn with the dominant term l+x must lead to the equivoluminal 

branch with the approximation (C.2-1). This argument uses 

the fact that ~~ must remain finite since no branch points 

are present, and the continuation must take place away from 

the singular point x=-1. Also, · it is observed from (3.3-4) 

that the imaginary part of the approximation (C.2-1) is 

negative on the real x-axis, which is in good agreement 

with the imaginary part of the complex branches since they 

oscillate about -~12 on the real x-axis near x=-1. 
-\) 

The complex branches with Ren>O and Imn>O continue 

ie about x=-1 Onto the dilatational branches On x=e 1 0<8~TI. 

The reason for the difference between the continuations of 

complex branches with imaginary parts of different signs 
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is that only those branches with Imn>O have branch points 

with Imx>O adjacent to the real x-axis on -l<x<O. 

Similarly, the asymmetrical equivoluminal branches 

continue about x=-1 onto the asymmetrical complex branches 

with Imn<O. 

Also, from the approximations consisting of the lead-

ing terms of (3.3-23) and (3.3-28), the dilatational 

branches continue about x=l onto the only branches avail­

able on the real x-axis, the real branches. 

C.3. THE NATURE OF "THE SET OF POSITIVE BRANCH POINTS" FOR 

l 
v=2· 

1 "The set of positive branch points" for v=2 , defined 

in Subsection 3.4.1, has not been explained yet. The na-

ture of these branch points is easily resolved by making 

analytic continuations about the closed paths described in 

Subsection 3.4.2, except that these branch points are ig-

nored and remain interior to the closed paths. In doing 

so, it is found that none of the branches have a single-

valued continuation on the closed path. Hence, one branch 

point from this subset must be common to each pair of 

neighboring real branches on :~isxSl since this is required 

for a single-valued continuation. Also, the details of the 

continuation about each of these branch points must be the 
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same as for the other members of "the set of positive 

a-1 
branch points" which are adjacent to a+l2X2_1. To be pre-

cise, this argument only insures that an odd number of 

these branch points be common to neighboring branches, 

however, it was found in Subsection 3.1.3 that the branch 

points are also zeros of ~~k given by (3.1-9) with ±(-l)k= 

+l where krr<Ren<(k+l)rr at the branch point. Consequently, 

it is not a reckless assumption to assign the branch point 

+ 
of this subset which is a zero of ~jk to the neighboring 

pair of real branches nk and nk+l on the real x-axis. This 

gives the required number of branch points to make every 

branch continue as a single-valued, analytic function on a 

closed path with none of its branch points interior to or 

on the path. 

C.4. EXAMPLES OF ANALYTIC CONTINUATIONS ON CLOSED PATHS 

A closed path in the x-plane is shown in Fig. 14 and 

it corresponds to the analytic continuation of the symmetri-

cal branch shown in Fig. 15. Both the path and the corres-

ponding values of Tl are indicated by a heavy 1 directed line. 

The dashed, directed lines in Fig. 15 represent transitions 

caused by the path going around branch points. Two axes for 

·e 
the modulus Jn ( e 1 

) J versus e , 0 .Se ,S1T, are used on the left of 
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Fig. 15 to emphasize the transition from the dilatational 

.e 
·e ·e -i2 

branch n
0
(e

1 
) =i In 0 (e

1 
) I e to the symmetrical Rayleigh 

.e 
ie ie -i2 

branch no(e )=lno(e )le caused by their common branch 

ie 
point at eo, where the point xo=e 

0 
is given by (2.3-8). 

The numbers 1,2, .•• ,6 label certain corresponding points in 

both figures. Branch points are indicated in Fig. 14 by 

dots. 

A description of this continuation is now given by be-

ginning at point 1 or x=O. Point 1 is on a symmetrical 

complex branch with Imn<O (Fig. 12 shows the complex conju-

gate of this branch). n(O)=Ren(O)+iimn(O) satisfies 

(B.1-7) and it is the root with the smallest positive real 

part. On 1, 2, n remains on this complex branch with Iron 

vanishing at 2, which is the branch point identified as 

(-,0,1) in Fig. 7. The continuation about the branch point 

at 2 takes n onto a real branch identified as the symmetri-

cal branch n 1 (x) in Fig. 8. Beyond 2, branch points from 

"the set of positive branch points" are encountered adja-

cent to the real x-axis. The continuations about these 

branch points are indicated by dashed lines in Fig. 15 on 

a-l
1

<x<l. These continuations have the effect of stair­
a+ 

stepping up the real branches. These branch points form 

an infinite set with a . limit point at x=l and they are 
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zeros of 6~+l,k given by (3.1-9) for ±(-l)k=+l and k=l,2, 

3, •... These become too numerous to show near x=l in Fig. 

14 and the path just passes above all of them and onto the 

· t · 1 ie o Unl ClrC e x=e / <8~TI. In Fig. 15 this continuation 

connects the right and left extremes which are both labeled 

3 for x=l or 8=0. On the unit circle, n goes onto the 

lowest dilatational branch described by (3.2-12) with rn=O, 

which is shown in Fig. 10. This branch shares the branch 

ie 0 point at 4 or x=x 0=e . given by (2.3-8) with the synunetri-

cal Rayleigh branch which is described by (3.2-11) with n=O 

and is shown in Fig. 9. The branch is analytic at 5 (x=-1, 

8=n) and it continues onto the real x-axis still on the 

synunetrical Rayleigh branch where n is pure imaginary with 

Imn<O on -l~x<xR · The branch point at 6 or x=xR given by 

(2.3-9) is avoided by a small indention which causes n to 

change as predicted by the complex conjugate of (B.3-9) 

with q=O. The real part of n jumps from zero to 1: and 
XR 

its imaginary part is unbounded at XR· This puts n back on 

the same complex branch as the beginning point 1 and the 

continuation to that point is uneventful. 

A similar closed path in the x-plane is shown in Fig . 

16 corresponding to the dilatational continuation (as de-

fined in Subsection 3.4.2) of the asymmetrical branch shown 

in Fig. 17. In this case, there is a branch point at 1 
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(x=O) which is conunon to the asymmetrical Rayleigh branch 

and to the asymmetrical real branch n 1 (x) shown in Fig. 8. 

The continuation from 1 to 2 (x=l) only encounters branch 

points adjacent to :~i<x<l and these form another infinite 

+ 
set with a limit point at x=l. These are zeros of 6kk 

. k 
given by (3.1-9) for ±(-1) =+land k=l,2,3, .... The de-

tails of the continuation about these branch points are the 

same as just described for the symmetrical continuation 

shown in Figs. 14 and 15. At 2, n goes onto the asymmetri­

cal dilatational branch described by (3.2-18) with m=l, 

which is shown in Fig. 10. This branch has no branch 

· t th · t · 1 i 8 o e d i· t t · poin s on e uni circ e x=e , < ~TI , an con inues 

onto the lowest asymmetrical real branch at 3 (x=-1) . From 

3 to 4 on the real x-axis, n remains on this real branch 

and then at 4 a branch point is encountered and n goes onto 

a complex branch with Imn>O which has the dominant term 

i:x as x~-1 and is shown in Fig. 12 . This branch point is 

a zero of 6_ 11 and it belongs to "the set of negative 

branch points." At 5 (x=xR), n leaves the complex branch 

and continues onto the asymmetrical Rayleigh branch as 

predicted by (B.3-9) with q=l. The real part of n de­

creases from ~TI~ to zero on the Rayleigh branch with the 
· l+xR 

imaginary part of n unbounded at XR · The continuation 

then proceeds on the asymmetrical Rayleigh branch from 5 
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to 1 (x=O), which was the starting point. 

In Figs. 18 and 19, an equivoluminal continuation (as 

defined in Subsection 3.4.2) is shown and it involves the 

.e 
ie ie - 12 

symmetrical equivoluminal branch n 2 (e )=!n 2 (e ) je , de-

scribed by (3.2-11) with n=2 and shown in Fig. 9. The con-

tinuation is much like the two iust described except that 

only three branch points from "the set of positive branch 

points" are involved on :~i~x<l. The branch points are 

+ - + zeros of ~ 14 , ~ 23 and 6 32 respectively as x=l is approached. 

The continuation then goes onto the equivolurninal branch 

( ie) h' h . 1 . 1 d -f ' 11 1 n 2 e w 1c 1s ana yt1c at x= an ~ina y onto a comp ex 

branch at x=-1 which has Imn<O. The complex branch has no 

branch points from "the set of negative branch points" as 

was found in C.l. The continuation about x=xR is given by 

the complex conjugate of (B.3-9) with q=4. 


