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ABSTRACT

Representations for the high-frequency response of a
suddenly loaded infinite plate are obtained from the modal
form of the exact solution. The method of approach is pre-
sented by treating a linearly elastic, homogeneous, iso-
tropic plate subjected to a normal impulsive line load on
one face.

An investigation of the branches of the governing
Rayleigh-Lamb frequency equation is given. These branches
are closely related to the modes of propagation, the sum
of which is the modal solution. The relationship between
the high-frequency portions of the underlying frequency
spectra and the high-frequency response is brought out.

Series representations for the branches are used to
facilitate a summation over the branch (or mode) numbers.
This results in convenient high-frequency representations,
which exhibit all of the expected singular wave fronts in
the plate.

The method appears to be applicable to a broader
class of problems than other methods which have been used

for the high-frequency response of a plate.
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NOMENCLATURE
refers to asymmetrical part when used as
a subscript

see equations (4.2-4) and (4.2-5)

see equation (4.2-6)

argument of a complex quantity

ratio of wave velocities, see equation
(2.1-2)

see equation (4.2-10)

integration path in the x-plane,; see
equation (2.3-15a) and Fig. 2

path in x-plane on which|R|=1, see
Appendix A

integration paths in y-plane, see
equation (4.1-2) and Fig. 21

integration paths in yx-plane, see
equation (2.3-15a) and Fig. 3

refers to critical point or branch point
when used as subscript

wave velocities, see equation (2.1-1)
group velocity, see equation (2.3-1)
phase velocity, see equation (2.3-1)
Rayleigh surface wave velocity

see equation (2.3-12b)

refers to dilatational when used as
subscript or superscript



e refers to equivoluminal when used as
subscript or superscript

F(gn,x) see equation (3.3-7b)
Fps Fgq see equations (2.2-8) and (2.3-12)
F¢ see equation (4.l1l-1la)
FW see equation (4.1-1b)
gék) see equations (3.3-26) and (3.3-27)
(53 .. 632 : - -
95" 9. see equations (3.3-9) and (3.3-12)
gn(x) see equation (3.3-5)
H half plate thickness
H(~) Heaviside step function
I see equation (2.1-7)
LLE T} see equation (4.2-26a)
Im(~) imaginary part of complex quantity
Ao, §
L=% normalized propagation coordinate
0 order symbol, see following equation
' (2.3-3)
P used as Laplace transform variable only
in Chapter 2
oS ’ Qd see equation (4.2-20)
Pg rq

Ri{x)I=R{y ,v) see equation (2.3-12a) and Appendix A
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real part of complex quantity

refers to symmetrical part when used as
a subscript

see equation (4.2-2a)

time

see equation (2.3-16)

displacement vector
see equation (2.1-5)

components of displacement vector, see
equation (2.1-5)

see equation (2.2-9)
propagation coordinate
see equation (3.2-6)

normalized thickness coordinates, see
equation (4.2-20)

thickness coordinate

dilatational thickness wave number

equivoluminal - thickness wave number

see equation (3.1-7a)
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see equation (3.1-9)

delta functions, see equation (2.1-7)
used as a small quantity

see equation (3.3-7a)

dimensionless thickness coordinate

new variable replacing the dimensionless
frequency

see equation (3.3-24)
see equations (3.3-23) and (3.3-25)
see equation (3.3-3)

see equations (3.3-14) and (3.3-15)

branches of the frequency equation

see equation (2.3-8) and Appendix A

see equation (A-la) in Appendix A
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dimensionless propagation coordinate
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(2.2-1)
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see Appendix
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CHAPTER 1
INTRODUCTION

This work is concerned with representations for the
high-frequency response of a suddenly loaded infinite plate
~governed by the equations of motion from linear elasticity
theory. The problem has been given attention in the liter-
ature only recently. The method of attack has almost ex-
clusively exploited Cagniard's method, geometric ray theory,
and wave front approximations, as the most recent of these
works, that by Rosenfeld and Miklowitz [1]?, exhibits. On
the other hand, the present work is an investigation which
logically asks whether high-frequency representations can
be extracted from the modal form of the solution to the
problem, which is based on the underlying frequency spectra.
Indeed, it is shown here that such representations can be
written, and the method appears to be applicable to a
broader class of problems than those that Cagniard's method
can handle.

The method, and representations, are brought forth
here by treating the problem of an infinite plate, sub-

jected to an impulsive line load applied normal to one of

!Numbers in brackets designate references in the
bibliography.



the faces, which are otherwise free. The plate is assumed
to be homogeneous and isotropic.

The modal form of the exact solution is a sum over an
infinite number of integrals, each of which represents a
mode of propagation. The modes are directly related to
the branches, or roots, of the Rayleigh-Lamb frequency
equation giving a functional relationship between the fre-
gquency and wave number of straight-crested waves propagat-
ing in the plate. The frequency spectrum of an infinite
plate is then the plot of frequency versus wave number.

The branches of the Rayleigh-Lamb frequency equation are
now quite well understood, chiefly through the recent ef-
forts of Mindlin and his coworkers (see [2]).

Most of the previous work on evaluating the modal solu-
tion has been limited to relatively low-frequency, long-
wavelength calculations so as to limit consideration to a
few of the lowest modes or just to the lowest mode of
propagation. For example, Miklowitz [3] considered a plate,
the faces of which were subjected to symmetrical normal
point loads having a step dependence on time. Calculations
were then based on the low-frequency portion of the lowest
mode of propagation.

Such approaches are very useful when only the low-

frequency response of the plate is of interest, however,



they cannot possibly predict the multitude of wave fronts,
which are expected to be present in a plate subjected to
an impulsive loading. The reason for this is that discon-
tinuities identified as wave fronts must necessarily be
composed of a superposition of high-frequency, short-wave-
length waves.

To obtain the high freguency response of the plate,
Rosenfeld and Miklowitz [l] used Cagniard's method which
deals initially with a double-integral representation
rather than with the modal solution. This representation
results from use of integral_transforms. The double-
integral representation is expanded in a series, each term
of which is finally warped into a single Laplace transform
on time, then inverted by inspection to obtain wave front
expansions. The wave front expansions are very accurate
near the fronts, but they diverge quite rapidly away from
them. Earlier uses of Cagniard's method of inversion for
plate problems were given by Mencher [4], Broberg [5] and
Davids [6]. Further studies on the high- and low-frequency
response of plates are pointed out by Miklowitz [7].

Implicit in the problem of finding the high-frequency
response of a plate is the need of a method of solution
which is wvalid both at the wave fronts and for some dis-

tance behind the fronts. Also, there are two other very



important aspects of this problem. First, a clear indica-
tion of the relationship between the high-frequency por-
tions of the frequency spectrum and the high-frequency
response of the plate including possible singular wave
fronts is needed. This will open the way for the investi-
~gation of the high-frequency response of other wave propa-
~gation problems whose solution can be formulated as a sum
over modes of propagation. Such problems include other
loading configurations on plates as well as wave propaga-
tion in anisotropic plates, circular rods, and layered
media. Second, a method of solution for the high-frequency
response which does not depend on Cagniard's method of
inversion is needed since some of the problems just men-
tioned are apparently not solvable by his method.

In Chapter 2 the modal solution for the response of
the plate is derived. The frequency and wave number are
then replaced by new variables which allow a much more
direct investigation of the high-frequency response of the
plate.

An extension of Mindlin's [2] investigation of the
branches of the Rayleigh-Lamb frequency equation is con-
tained in Chapter 3. The most important new result found
here, which relates to the high-frequency response, is the

existence of analytic continuations of the branches which



are closely associated with the dilatational waves in. the
plate. These continuations are called the dilatational
branches and they are found in a region where both the
frequency and wave number are pure imaginary. The impor-
tance of these branches cannot be overemphasized in the
context of this work. Series representations of the dila-
tational branches and of the usual branches of the Rayleigh-
Lamb frequency equations, which are called the equivoluminal
branches here, are given in Chapter 3. These series repre-
sentations are extremely accurate for high frequency, mak-
ing them the device which cah be used to obtain representa-
tions of the high-frequency response of the plate. These
series representations for the branches are gquite unique
since the individual terms in the series-are found, in
Chapter 4, to be closely related to the individual wave
fronts in the plate. Also contained in Chapter 3 are de-
scriptions of analytic continuations of the branches of the
Rayleigh-Lamb frequency equations. These continuations are
essential for manipulating the ihtegrals involved in the
modal solution.

In Chapter 4, the modal solution is shown to be
equivalent to sums of integrals over the dilatational
branches and over the equivoluminal branches. This equiva-

lence is the key point in the solution method used in this



work. This is true since the series representations of
Chapter 3 can then be used to derive representations of the
response of the plate which are valid for high frequency
and which exhibit all of the expected wave fronts. The
series representations of Chapter 3 are used as if they
were exact representations of the branches, and this makes
the method approximate. However, the series representa-
tions for the branches are very good approximations and the
validity of the final representations for the response of
the plate does not diminish rapidly away from the wave

fronts, as is the case for wave front expansions.



CHAPTER 2

STATEMENT OF THE PROBLEM AND THE

MODAL SOLUTION
2.1. STATEMENT OF THE PROBLEM

An infinite plate subjected to an impulsive line load
is considered in this work. The loading configuration,
which makes this a plane strain problem, is shown in
Fig. 1 with the space coordinates x and z indicated. The
load is applied in the form of a stress normal to the
upper face z=H (the uniform plate thickness being 2H) and
it is concentrated on the line x=0. Otherwise the faces
of the plate are traction-free. The plate material is
linearly elastic, homogeneous and isotropic with no body
forces acting.

The object is to obtain a representation which is
capable of exhibiting the high-frequency response of the
plate in ﬁerms of the displacement components.

It is convenient to define the material constants

and wave velocities at this point.

_ ?/X_t%li - gli -
cy = = N (2.1=1)

are the dilatational and equivoluminal body wave velocities

respectively where X and u are the Lamé constants and p' is



the material density. The ratio of the velocities is

- ke Lol 1 8 (2.1-2)

where v 1s Poisson's ratio.
The notation in the following work is simplified by
writing this problem in terms of the dimensionless space

and time coordinates

= = & M - -
E =5 4 g ! T 5 - (2:1-3)
This problem is governed by the equation of motion

(A+u)VVeu + uvzg = p'c§§4% (2.1-4)

for -—ow<f<eo,-1<g<l,t>0 where u=(u ,O,uC) is the displace-

g
ment vector and V is the del-operator with respect to the
rectangular Cartesian coordinates £ and C. (2.1-4) is

homogeneous with respect to u and hence the dimensions are

arbitrary. However, it is advantageous to take

ug = HuX - u_ = Hu (2.1-5)

where U and u, are the original displacement components '’
in the x,2z coordinate system. Thus, the displacement

components, u, and uc, have length squared dimensions.

g
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The pertinent stress-strain relations are

ou au

(A+2p)aCC + A aé ’

ou ou
_& . _¢t
35 ‘“<ac ¥ aa)

The boundary conditions on the faces f=*1 now take

Q
|

e
(2.1-6)

o

the form

O€C(£I+11T) ‘IG(€)6+(T) 7

Occ(g l_llT)

|
o
~

{241=7)

Il
o

OEC(glil’T)

where I is a positive constant, §(£) is the Dirac delta
function and 6+(T) is the one-sided delta function. For

example,

5(£) = 1im<—17§> g NeT
N>+
QA o <[0)
§ (t) = "
i limNzTe NT,TKO
N0

(N real and positive) are possible definitions of these

generalized functions. Hence, from (2.1-7) and these
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definitions, a quantity measuring the impulse is

j{ ./‘cgc(£,+l,r)drd£ = -I so that I is the impulse per
g=-cv1=0
unit length along the line of loading.

The initial condition of gquiescence at t=0 and the
radiation condition (guantities vanish as |£]|-») are
imposed on all independent variables and their derivatives.

An important consideration is that (2.1-4) and (2.1-6)
are physically accurate only if the strains are infinitesi-
mal, which cannot be expected to be the case for the severe
boundary conditions (2.1-7). This problem is justified on
the grounds that any solution can be used in conjunction
with convolution integrals to solve other more realistic

problems in which only infinitesimal strains are expected.
2.2. THE MODAL SOLUTION

This problem is easily solved, formally at least, by
first representing the displacement vector in terms of
displacement potentials and then solving the resulting
differential equations by means of integral transforms.
This results in a double-integral representation or an
infinite sum of single integrals (the modal solution) for

the displacement components.
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The representation

u = Ve + Vx(0,9,0) |, (2.2-1)

where ¢ 1s the scalar displacement potential associated
with dilatational motion and (0,y,0) is the vector dis-
placement potential associated with equivoluminal motion

(V is a scalar), reduces the equation of motion (2.1-4)

to

96 L, 86 1 979
- 4
3&2 8@2 a2 8T2
(2.2-2)
0%y , 8%y _ a%y
3E2 8C2 8T2

(2.2-2) applies on the same domain as was indicated follow-
ing (2.1-4). The boundary conditions on ¢ and Yy are given
by (2.1-7) through (2.1-6) and (2.2-1). The required
quiescence and radiation conditions are

6(£,2,0) = v(,,0) = _g_%(ng,O) - %%(E,C,O) -0

(2.2-3)
and

lim{¢ (E,z,T) ,0(E,C,T)sec.] =0 , (2.2-4)

IE]—>00

where (2.2-4) contains derivatives of ¢ and ¥ up to and

including the second order.
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A Fourier transform with respect to the propagation
coordinate £ and a Laplace transform with respect to T
are applied to ¢ and Yy to reduce (2.2-2) to a pair of
ordinary differential equations with ¢ being the indepen-
dent variable. Solution of these transformed equations
subject to the boundary, initial and radiation conditions

and also to the inversion integrals given by the pairs

0

F (p) =][ £(r)e Pfar , £(1) = 5%;][F<p>ePpo
0 B:L‘l

e (2.2-5)

[oe) oo}

F () =j[f<a>eiK5ds , £(8) = g%][F<K)eTiKEdK

o [ee]

gives double-integral representations of the displacement
components ug and uc s Brl is the Bromwich contour in
the right half of the p-plane.

The following derivation of the modal solution was
done for the symmetrical case by Miklowitz [3] and the
double-integral representation appears in the work of
Rosenfeld and Miklowitz [l]. Some of the derivation and

the results are repeated here so that they can be used

later in this work.
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Without indicating the intervening algebraic calcula-
tions, the double-integral representations for the dis-

placement components take the form

= . 1 1~1S ﬁA
ug (E,z,T) = é—% KS1nkg [ZWi[ < = 3 + Fg>ePpo:]dl< "

k=0 Brl

u 4
uC (g /G IT) = 2—,”% COSKE [:mfa(—?—g— - %>eppo]d»< )
S A
k=0 Brl

(2:2-6)
w=—1ip is a dimensionless frequency, which is obviously real
when p is pure imaginary, and Kk is a dimensionless wave

number for propogation in the £ direction. The functions

1
<1 2 2>?
"-2-(1) =K ’
a
(2.2-7)

L
e (wz_K2>2

are the dilatational and equivoluminal thickness wave

numbers respectively and the functions

2
<w2—2K2> cosasinB + 4K2aBsinacosB "

Fs(w,K)
(2.2-8)

2
Fo(w,k) = <w2—2K2> sinacosf + 4k2aBcosasing



Y.

will be called the symmetrical and asymmetrical Rayleigh-

Lamb functions respectively. The functions

., (W,k,g) = <w2—2K2>cosucsinB - 20B8sinocosBtz

S¢

., (w,k,t) = <w2—2K2>sinuccosB - 20Bcosoasinfz

AE; 4 ’ r

(2.2-9)

ﬁSC(w,K,c) = <w2—2K2>sinacsinB + 2K2sinasin8c .

- 2 2 2

uAg(w’K’C) = <w = 2K )cosaccosﬁ + 2K “cosacosBg

are proportional to components of the transformed displace-
ment. They are written so that the first term in each
results from the dilatational potential ¢ through (2.2-1)
and the second term in each results from the equivoluminal
potential Y. The decomposition into symmetrical and
asymmetrical parts, denoted by the S and A subscripts
respectively in (2.2-8) and (2.2-9), results from a con-
venient separation into two problems both with loadings

on the upper and lower faces of the plate. 1In one problem
the load is symmetrical with respect to =0 (OCE(E,il,T) =
-%IS(E)6+(T) from the loading  (2.1-7)) and in the other

the load is asymmetrical with respect to =0 (GCC(E,il,T) =
$%IS(£)S+(T)). Superposition of the two problems gives the

problem posed in this work. Actually the purpose of this
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decomposition is to separate the Rayleigh-Lamb functions
(2.2-8) as they appear in (2.2-6).

The integrands in (2.2-6) are even with respect to
both o and B; hence the radicals in (2.2-7) do not give
rise to branch points.

It is well known that each of the functions Fs(w,K)
and FA(w,K) in (2.2-8) have doubly infinite sets of simple
zeros and no others for O<k<w. Even though the symmetrical
and asymmetrical sets of zeros are distinct, the zeros of
both cases will be denoted by w=iwn(K) with n=0,1,2,...
and it will be clear from the context whether they are
symmetrical or asymmetrical zeros. For 0<k<» the zeros
are ordered as O<w0<wl<w2... . The zeros were shown to
be simple by Scott and Miklowitz [8] for the symmetrical
case and it will become evident for both cases in this

work. The zeros R=0 for F_.(w,k) and a=0 for FA(w,K) are

S
superficial since they are seen to be removable in (2.2-6).
Thus, the integrands in (2.2-6) have doubly infinite
sets of simple poles located on the imaginary p-axis for
O<k<e and residue theory is used to carry out the integra-
tion over p. A detailed analysis of the representation

(2.2-6) or the simple observation that (2.2-2) are hyper-

bolic differential equations leads to the conclusion that

u=d for T<%V£2+(l—€)2. . For T2%V£2+(l—g)2 the residue

calculation results in
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(o 0]

© u
ug(g,;,r) = #% 2;%]fKSinK£Sian_§%§— dk
0 -
ow F =
3
w=wn(K)

[ee]

© u
I : ‘ 3
+ e Z/KSUIKESlan a3 dk 7
n=0 0 A
oW Fo=
A
w=w_ (k)
0 (2.2-10)
I X g,
uC(E,E,T) = = g;% acoskEsinwt an dk
< ow F o=
S
w=wn(K)
I ) ﬁAC
= Fﬂ z; ACOSKESLINWT 5F dk
n=0 0 A
UJ —
FA—
w=wn(K)

The modal representation of the solution is precisely
(2.2-10) with each of the termé n=0,1,2,... called a mode
of propagation. The integrands represent residues and are
evaluated at the simple poles resulting from FS=O or FA=0
or equivalently at w=wn(K) where wn(K) are the zeros of
Thus, the residue

the appropriate function F, or F

S A

calculation has given rise to the Rayleigh-Lamb freqguency

equations. FS=O or from (2.2-8)
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tanf " 4K2a8

tano <w2_2K2>2

=0 (2.2=11)

is the symmetrical Rayleigh-Lamb frequency equation for a
plate which admits branches wn(K), n=0;1;2;e5% = FA=0 or

from (2+2-8)

2

tanp & <w2—2K2>

tano, 4K2a6

=0 (2.2=12)

is the asymmetrical Rayleigh-Lamb frequency equation for a
plate which admits branches wn(K), n=0 .l 250 v s

An important point is that the integration over k and
the summation over n have been interchanged in the repre-
sentations (2.2-10) without mathematical justification.
The singular loading (2.1-7) is expected to produce singular
wave fronts; hence either the integration or the summation
in (2.2-10) must diverge at these points. If theorems
requiring uniform convergence with respect to the parameters
are to be used to justify this interchange, either the
loading must be made more smooth or the generalized func-
tions in (2.1-7) must be replaced by their defining
sequences with the limit to the generalized function
taken after these summations and integrations are carried
out. The latter is the most direct way to justify (2.2-10)

as the response to the loading (2.1-7) and this can be
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done in a manner similar to that which Lighthill [9] used

to treat generalized functions.
2.3. CHANGE OF VARIABLES IN THE MODAL SOLUTION

Much of the high-frequency response of a plate, which
must be contained in the representation (2.2-10), has
apparently been inaccessible through direct integration
and summation even when approximations such as asymptotic
expansions are employed. The independent variable k in
(2.2-10) will be replaced by a new variable in an effort
to make the modal solution and especially the frequency
spectrum (made up of the branches wn(K) as functions of
k) more easily handled with tools such as analytic func-
tion theory.

Various properties of the branches wn(K) of the sym-
metrical and asymmetrical Rayleigh-Lamb frequency equa-
tions (2.2-11) and (2.2-12) respectively, which were given
by Mindlin [2] or are implicit in his work, are useful to
recount at this point. It is assumed throughout that «
is real and nonnegative. The properties are applicable to
both the symmetrical and asymmetrical branches unless
specified otherwise.

(1) The branches are ordered O<wo<wl<w2<... for
O<k<eo with wn(0)>0 for n=1,2,3,... and w0(0)=0 (wO(K) will

be called the Rayleigh branch in this work; however, it is
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usually called the lowest branch of the Rayleigh-Lamb fre-

quency equation). Also,wn (0)<w (0)=wn+l(0)<w (0) for

=1 n n+2
certain integers n>1 when Poisson's ratio v is such that a
in (2.1-2) is a rational number. Otherwise, wn(O),

n=1,2,3,..., are ordered just as for 0O<k<w.

w_ (k)
(2) The ratio

is a strictly decreasing

w_ (k)

function of k>0 as k increases from 0>+~ with lim =]

K —>co

for n=1,2,3,... . Also, for the Rayleigh branches n=0,

wO(K)

” is a strictly decreasing function of k>0 for the

symmetrical case and a strictly increasing function of k>0

for the asymmetrical case as kK increases from 0-++~ with

wo(K) Cr
lim = E—-<l for both cases (cR being the Rayleigh
s

Koo K
surface wave velocity for a half-space). The preceding
remarks depend on the well-known fact that cp>cg in the
intervals mentioned (except for the asymmetrical Rayleigh

branch n=0 on which cp<c§ for «k>0) where

wn(K)
a8 = c ,
o) K s
(2.3-1)
B dwn(K)
g T dx s

are the phase and group velocities respectively for waves

propagating in the & direction. These inequalities on Cp
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and cg will be seen to be related to the fact that the
branches in the new variables have no singular points on
the path of integration except possibly at the endpoints.

It is also useful to state the results

wy (k) = Vi%;+:+ O(]K|3) (2.3-2)

for the symmetrical Rayleigh branch and

wo(K)=<@§7%;KﬁfK2 +o(lelh (2.3-3)

for the asymmetrical Rayleigh branch as k»0 in each case.
The order symbol O, as in (2.3-2) and (2.3-3), will be

understood to mean the following in this work: 1f f(k)=

g(K)+O<]K-KO]Y> as Krk, then f;K)— fi) is bounded as K>Kg.
K=K
0

(3) For any change of variables, wn(K) and K

range through the values

0 < wylk) <= for 0 < k < = and
0 < wn(K) < o for 0 < k < » (n=1,2,3,...).

The new variables are defined as

x = B8-a
B+a (9. 3=4}

n = R+o
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where x will replace k as the independent variable in the
integrals (2.2-10) and n will play the role of wn(K) in
that it is a function of X through the Rayleigh-Lamb fre-
guency equations. o and B are the thickness wave numbers
defined by (2.2-7).

Holden [10] used o and B as variables to replace w
and k in the Rayleigh-Lamb frequency equations, thus
making the frequency spectrum simpler in some respects.
The choice of the variables y and n to replace w and K is
not unlike using o and B and can be considered as a map-
ping of the frequency spectrum into yet another set of
variables. However, the x,n variables differ from the w,K
and o,B variables in several respects one of which is that
all infinities (cases where k+« or w»>«) map into the
finite y-plane.

The thickness wave numbers have the inverses

= L )
O{.—ET‘I(J-X) ’
(2.+3-5)
= &
B - 2n(l+X)
in terms of y and n. The particular branches of the radi-

cals defining o and B in (2.2-7) were unimportant in the
preceding integrals, however, now a definite branch must
be assigned to each so that y and n will be uniquely de-

fined. This is arbitrary and the result of other choices
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will be clear later. The branches of o and B are com-

pletely defined by requiring that

o > 0 for 0 £ ¥ < iw (k) ;
- - - an
o = -i|la| for L, (k) < Kk
an 4
(2.3-6)
g > 0 for 0 £ Kk < wn(K) ¢
B = -i|B| for wn(K) < K .

The inverses of (2.3-4) giving w and k as functions

of x and n are

N

a
w = nx 7

Va2-1
< = %n [(x-fi%)(%"xﬂ

where the branches of the radicals are chosen so that w

1 (2.3~7)
2

and Kk are always real and nonnegative in the integrals
(2.2-10) (unless the integration path is deformed).
The following remarks about X result from (2.3-4) and

the definitions (2.2-7) and (2.3-6) of & and B.
w, (k)

(1) x is a real positive function of o
w_ (k)
>a which is strictly increasing

n=1,2,3,..., On ®>
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_ w_ (k)
from X=§—l~++l as

=i decreases from +»+a. In this case

and in the cases to follow, the strictly increasing or
decreasing property of the functions does not necessarily

include the endpoints of the intervals. The point

= +o (k=0) maps into yx = S;—i

and the point

wy (k) 1 .
” = a <K=5wn(K)> maps into y = +1l.
(2) X=ele with e=2tan_l<l%l>, 0<6<m, where 6
w_ (k)

y 3 3 s n
is a real positive function of P n=l;2;3;65:7 ON

w_ (k)
a> 2 >1, which is strictly increasing from 06=0->m1 as
w, (k) w_ (k)
= decreases from a+l. The point =a maps into

6=0 or yx=+1 as given above and the point

wn(K)

K

= 1 (k=+») maps into y = -1.

(3) For the symmetrical Rayleigh branch n=0,

X=ele with 6=2tan_l<l%1>, eosegn, where 6 is a real posi-
wO(K) 5 wO(K)
tive function of on > >1 (see (2.3-2)),

l-v = K
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w4 (K)
which is strictly increasing from 6=60+ﬂ as = de-
creases from i%;~+l. 60 is defined by
18 2 "
Xg = © =1 - 2v" + 2ivN1-v (2.3-8)

so that O§QO<% for Ogyg%—. The point

g ) [2 .
= = Yi=y (k=0) maps into yx = Xo

and the point

wg (k)
1 maps into x = -1.

K

(4) For the symmetrical Rayleigh branch n=0, X

wa (K) wo(K) Cr
1s a real negative function of on 1> 226—,
S
wy (k)
which is strictly increasing from x=—l+xR as de-
°r
creases from l+E—, where
S
1
. 2\? . 2
R R
tt 2 -3 |
d s
= = 2;3—9
& o
R R
l_——i # l——f

Q
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with all of the radicals positive and 0>xp>-1 for 05v5%.

wn (K)

The point =1 maps into xy=-1 as given above and the
point

wO(K)

°R
= E—'(K=+w) maps into x = Xp-.

. s

(5) For the asymmetrical Rayleigh branch n=0, ¥

wa (k) wO(K)
on 0<

c

. . ; R

is a real negative function of fET"
s

wy (k)
10~

which is strictly decreasing from X=O+XR as 3

o)
creases from 0+EB. The point
s

wO(K)

= = 0(k=0) maps into x = 0

and the point

(k)

K

0 (k=+%) maps into ¥ =

Ol()
el

XR‘

n

The preceding remarks and the remarks at the first of

wn(K)
as Kk increases

this section about the variation of
on the various branches specify a continuous one-to-one
mapping of the real positive k-axis, which is the integra-

tion path in the integrals (2.2-10), into the y-plane for
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each branch wn(K).
In the following work

0<x< %@ (2.3-10)

will be called "the dilatational sector" of the w,k-plane
and

<Kk < w (2.3-11)

S

will be called "the equivoluminal sector" of the w,k-
plane. This terminology is not physically precise and is
only used for identification purposes.

The mapping of the integration path on the real k-axis
O<k<~ in the integrals (2.2-10) onto the integration path C
in the y-plane for the b:anches n=1,2,3,... is shown in
Fig. 2. In that figure it is seen that the dilatational
sector maps onto the segment %%%stl of the real y-axis and
that the equivoluminal sector maps onto the upper half unit

circle X=ele
a-1

EIT+1+—1 corresponding to 0>+~ on the positive real k-axis

. 0<6<m. The direction on C in the x-plane is

with %%%+l on the positive real x-axis and 1l+-1 on the unit
0

circle X=ei , 0<6<m. The numbers 1, 2,3 in Fig. 2 denote specific
points on a given branch wn(K), with 3 meant to indicate
the limiting point k-»«, and they also indicate the mapping
of these points into the y-plane. The integration path C
is valid for all branches n=1,2,3,... .

The corresponding integration paths for the Rayleigh

branches n=0 are shown in Fig. 3. For the symmetrical
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Rayleigh branch the real k-axis with the direction 0+

maps onto the integration path C S in the x-plane with the

0
direction XO+-1+XR. Xo is given by (2.3-8) and XR by
(2.3-9). The portion XO+—1 of COS is on the upper half
unit circle and the portion —1+XR is on the negative real
axis. The numbers 1, 2, 3 in Fig. 3 denote points on the
symmetrical Rayleigh branch and their mapping into the
x—-plane with 3 indicating the limiting point k-+x. For the
asymmetrical Rayleigh branch the real k-axis with the
direction 0O-++« maps onto the integration path COA in the
¥x—-plane with the direction O+XR on the negative real x-axis.
The numbers I, II in Fig. 3 denote points on the asymmet-—
rical Rayleigh branch and their mapping into the x-plane.
The w and k scales in Fig. 3 are expanded with respect to
those in Fig. 2 so that the details of the Rayleigh
branches can bé seen more clearly.

If branches other than those defined by (2.3-6) are
chosen for o and B, the integration path C in Fig. 2 and
also the paths C and C

0s 0A
lows: the paths of integration are reflected about the

in Fig. 3 are changed as fol-

real y-axis if the sign of a (or B) is changed only when
it is pure imaginary; the paths of integration are re-
flected about the unit circle |x|=1 by the mapping X*% if
the sign of a (or B) is changed throughout. In the latter

case all points interior to |x|=1 map to the exterior like
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2%%-+§§%, XR+§§’ etc., and the points on the unit circle
are just reflected about the real x-axis. Any of these
three other choices represents the mapping of the positive
real k-axis into the y-plane equally well.

It is significant that the mapping determined by
(2.3-4) and (2.3-6) for this work has mapped all of the
infinity points in the original w,k-plane, that is, the
points where k-» or wn(K)—>°° for any branch n=0,1,2,...,
into the finite y-plane with |x|<l. Also, from the fore-
going, itiappears that all of the complex k-plane, taken
as a projection from the w,K—space‘with w and Kk related by
one of the Rayleigh-Lamb fregquency equations, has been
mapped onto the unit disk ]xigl. Likewise, the mapping
can be onto |x|>1 by choosing other branches of a or B.

Expressions required to change the integrals (2.2-10)
from the k independent variable to the Y independent vari-
able are listed below in terms of y and n. The Rayleigh-

Lamb functions (2.2-8) become

Fy = %n‘lxD(x)[sinn + R(x)sinyn] .

(2:3+12)

Fp = %n4XD(X)[sinn - R(x)sinyn]

where
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3
R(x) = R(x,v) = 1 (l+x)3 - 8(1-v) (1+vx)x
X (1+x)° = 8(1-v) (v+x)X
2
2 2 2
- (w — 2K ) - 4k “aB (2.3-12a)

2
(wz—ZKz) % 4K2a6

and

D(x) = (1+x)> = 8(1-v) (v+x)¥
= 2 (42 2)2 4c? 2.3-12b
= n—4>-(‘ -2K + K oR N (2% )

Hence, the symmetrical Rayleigh-Lamb frequency equation

(2.2-11) becomes
sinn = -R(x)sinyn (2.3-13)

and the asymmetrical Rayleigh-Lamb frequency equation

(2.2-12) becomes

sinn = R(x)sinyn . (2.3-14)

These equations give the branches n=nn(x), N=04;1;2s 604

which are identified with wn(K) through (2.3-4). Hence-

forth (2.3-13) and (2.3-14) will just be called the sym-

metrical and asymetrical frequency equations respectively.
In the preceding forms of the frequency equations,

use has been made of the fact that
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2
%H4XD(X) = (w2—2K2> + 4c?ap

is precisely the equation whose zero gives the Rayleigh
surface wave velocity. It is easy to show that, for a and
B defined by (2.2-7) and (2.3-6), this equation has only
_r
e

S

the zero , that is, the asymptote of the Rayleigh

~le

branches, on 0<k<x. Hence, all of the branches of the
Rayleigh-Lamb frequency equations (2.2-11) and (2.2-12)
are contained in (2.3-13) and (2.3-14) respectively as
branches defined in the x-plane. It should be noted that
X=Xg from (2.3-9) is a zero of D(x) and that, D(yx) being
a cubic, the other two zeros are ‘usually discarded as

being identified with physically meaningless Rayleigh

-4
7
F=0

which are required as functions of x and n for the inte-

velocities.

There are other expressions such as %§<%§

grals; however, they will not be listed here. This par-
ticular expression requires the chain rule of differentia-

tion to calculate %g from (2.3-12) and (2.3-7) and requires

the derivative %% from (2.3-13) or (2.3-14) to calculate

dk
ai from (2.3-7).

In terms of X and n, the modal solution (2.2-10)

becomes



e T

u(nglT)::———_'Z(u > ’
g sgn Yatn
4wuVa2—l n=0
(2.3-15)
I [oe]
u (£ICIT) =_—a——_ Z (u -u >
c - Sgn “Agn
4ﬂuVa2—l n=0
where

u =

Stn

{ L=y )sin(KE)sin(wT)USE
3 X
7

¥ "D (x) (cosn+yxRcosyn)

(l—xz)sin(KE)sin(wT)U
3
X2D(X)(cosn—chosxn)

4

Ag
Afn dx

o
o

(1= X) (1+x) cos (k&) sin(wT)U

u = =2 dy
Stn 3 T

E 2D :+i <a+i )}2(cosn+chosxn)

j{ (1- X) (1+x) cos (k&) sin (wt) Uy
u & dy
Azn 3 1

C

X2D(x)[< g;%)(éi%— >}§kcosn-chosxn)

(2.3-15a)

In (2.3-15a) w and k are given by (2.3-7) with n=nn(x),
n=0,1,2,..., understood to be branches of the symmetrical
frequency equation (2.3-13) for integrals with an S sub-

script and branches of the asymmetrical frequency equation
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(2.3-14) for integrals with an A subscript. C is the inte-
gration path shown in Fig. 2 for n=1,2,3,... and it is
replaced by COS and Coa shown in Fig. 3 for the symmetrical
and asymmetrical Rayleigh branches n=0 respectively. The
radicals in (2.3-15a) are defined just as in (2.3-7) so
that w and Kk are real and nonnegative.

The two factors cosnixRcosyn in (2.3-15a) will be

found to play a very important role in determining the

properties of the branches n=nn(x). They result from the

term %%—which is required for calculating g% in the change

of variables. These factors replace the rather complicated
aFS BFA

functions of w and «, T and T in the representation

(2,2=18) -

The functions

2 1= : 1+
USg = [x —2(1—2v)x+l]cosn< ZX)C51nn( ZX)
- (l—Xz)Slnn(l;X)COSn(l;X)C ,
2 ; L= 1¥
Upe = Ix ~2(1-2v) x+1] sinD! ZX)Ccosn( 2X)

n(l—x)sinn(l+x)§

2
(1-x") cos—= 5 ;
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2 ; 1- : 1+
USC = [x -2(1—2v)x+l]51nn( 2X)§51nn( ZX)
a~1\{a+l . 1- : 1+
+ (-357) (2 ) sinl X snl 00 E
— [v2_9(1- n(l-x)zg . .n(l+x)
UAC = [x"-2(1-2v)yx+1l]cos 5 cos 5

+

() (E ) cost i eos BR0E 2.3-16)

are proportional to the functions U in (2.2-9) and are also
written with the first term in each deriving from the
dilatational potential ¢ through (2.2-1) and the second
term from the equivoluminal potential y.

The integrals (2.3-15a) actually offer no computa-
tional advantages over those in (2.2-10). Neither form
can be integrated explicitly and they exhibit no charac-
teristics which make numerical computation seem useful.
These remarks should be qualified for the Rayleigh modes
of propagation n=0 where a wave singularity arises from
the single branches and no summation is involved if only

this contribution to the response is sought. Also, the

w, (k)

equivoluminal asymptotes, +1 as k—++» for n=1,2,3,...,
may lend themselves to computation which would yield some
wave fronts traveling with the equivoluminal body wave

velocity. The frequency spectrum is well understood due

to Mindlin [2] and others; however, the complexity of much
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of the high-frequency portion of the spectrum is not at all
conducive to integration. Hence, any advantage which can
be derived from the form (2.3-1l5a) must be obtained by
manipulation of the integrals such as deforming the con-
tours of integration, expanding functions, etc. As will be
shown later, it is by these methods that the integrals in
(2.3-15a) can be evaluated for the high-frequency response

for the present problem.
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CHAPTER 3

THE BRANCHES n=nn(x)

A great deal must be known about the branches n=nn(x)
satisfying the symmetrical frequency equation (2.3-13) and
the asymmetrical frequency equation (2.3-14) before the
integrals (2.3-15a) can be evaluated even in an approxi-
mate sense. In this chapter, existence of the branches on
the real y-axis and on the unit circle |x|=1 is shown and
properties of these brances which may be useful in evalu-
ating the integrals (2.3-15a) are developed.

The branches which map into the real w, real k- or the
real w, imaginary k-plane by (2.3-7) were completely
explained by Mindlin [2] and that work is repeated here
only to show how these branches map into the x,n-space.
The branches on which w is real and Kk is complex (k being
neither pure real nor pure imaginary) map into the yx,n-
space with both x and n complex and are not convenient to
examine in these variables. Other than for these real w,
complex K branches, this chapter is a limited extension
of Mindlin's work in that branches are considered on which
both w and k are complex.

The function R(yx) defined by (2.3-12a) is obviously
important in determining the properties of the branches n.

R(x) 1s treated in Appendix A and the results contained
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there will be referred to throughout this chapter. Also,
Figs. 4, 5 and 6 refer to R(Xx). Fig. 4 shows some special
points where R=0 or [R]_l=0, Fig. 5 shows a sketch of R
and of [R]™% on -l<y<l and Fig. 6 shows a sketch of
Y(8)=ArgR(eie) on X=eie, 0<oe<m.

Appendix B supplements Section 3.2 and Appendix C

pertains to the analytic continuations of the branches,

which are discussed in Section 3.4.
3.1. ANALYTICITY OF THE BRANCHES

Perhaps the most important property of the branches
is that they are analytic functions of the complex wvari-
able y except at certain singular points in the x-plane.
Thus, the powerful tools of analytic continuation and the
Cauchy-Goursat theorem for integration in the complex x-
plane are available for use on the modal solution inte-
grals (2.3-15a). If a branch can be identified and under-
stood on a subregion such as a segment of the real x-axis
or of the unit circle |x|=1, then the branch can be con-
tinued into any part of the x-plane where it is known to
be‘analytic. Analyticity of the branches is shown and an
investigation of the singular points is given in this

section.
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3.1.1. Proof of Analyticity and the Criteria for Singular

Points of the Branches.

The frequency equations, (2.3-13) and (2.3-14), can

be written in the form

F(x,n) =0 (3.1-1)

where F is analytic with respect to both x and n except at
a few isolated subregions of the x,n-space. For example,
F(x,n) can be taken as one of the Rayleigh-Lamb functions
defined in (2.3-12), which are analytic functions of y and
n except at n=» and at y=~. Hence, the derivative of n

with respect to x exists and is given by

5
"

{3 d=2)

[oN)
=<
@
&3]

[
3

and, by definition, n is an analytic function of x in any
domain where F(x,n) is analytic and where %%#0. The

derivative (3.1-2) is written explicitly as

dn _ _nRcosyn + R'sinyn (3.1-3)

dx cosn + YRcosyn

for the branches satisfying the symmetrical frequency

equation (2.3-13) and as

dn _ nRcosyn + R'sinyn (3.1-4)

dy cosn - XRcosyn
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for the branches satisfying the asymmetrical frequenqy
equation (2.3-14) where R'=g§ in each case.

Singular points where the branches are not analytic
because the derivatives (3.1-3) or (3.1-4) fail to exist

may occur at any point where

(1) R+== ,
(2] de= (3.1-5)

(3) cosn # xRcosyn = 0 .

The first case only occurs at x=0 and x=xy in |x|<1l as can
be seen from Appendix A and the second case will be found
to occur only at a few isolated points. In fact, it can
be shown directly from the frequency equations and the
properties of R(Xx) given in Appendix A that the branches
n are always bounded on |x|<l except possibly on the real
X¥—axis. This is done by assuming that n+« and showing
_that both sides of the frequency equations cannot be
balanced regardless of the manner in which n becomes
unbounded as long as ¥ is not real. The cases on the real
X—axis where n»« will be considered in a later section.
The third case in (3.1-5) occurs at many isolated points
in the y-plane which will be shown to be branch points
common to pairs of branches.

A useful property of the branches is that they are

also analytic with respect to Poisson's ratio v as can be
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seen by extending the foregoing argument. R(x)=R(x,v) in
(2.3-12a) is analytic with respect to both y and v except
at isolated poles. Hence, the frequency equations can be
written as in (3.1-1) with F also analytic with respect to
v. This property makes it possible to observe the branches
as v varies and to reach conclusions about n=nn(x) for v
fixed.

The third case of (3.1-5) is now considered in more
detail. If this case is satisfied for the symmetrical
branches, then some pairs x,n (these are not yet known to
be isolated points in the X ,n-space) must simultaneously

satisfy

sinn ~Rsinyn , } : ;
3.1-6

-xRcosyxn .,

cosn

the first of these relations being the symmetrical fre-
gquency equation (2.3-13). Simultaneous satisfaction of
these two equations is equivalent to requiring n to

satisfy

{3.1=7)

simultaneously where
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I = Thy) = |82 (3.1-7a)
1-x

j and k are arbitrary integers except that j+k must be odd.
The choice of the * signs must be consistent for both equa
tions. The pair (3.1-7) is derived by squaring both equa-
tions in (3.1-6) and adding to give the second equation in
(3.1-7) and by squaring both, multiplying the first by xz,
and adding to give the first of (3.1-7). Requiring that
j+k be odd insures that (3.1-7) are equivalent to (3.1-6).
This is seen by taking n from the first of (3.1-7) for the
left side of each of (3.1-6) and xn from the second of
(3.1-7) for the right side of each of (3.1-6). Then it is
seen that (—l)j+k=—l is required to make (3.1-6) and
(3.1-7) equivalent.

' is a single-valued, analytic function of x in a cut
X-plane (meaning that the branch points resulting from the
radical in (3.1-7a) are located and connected by branch
cuts in such a way that I' is single-valued on all of the
X-plane excepting the branch points and branch cuts). T
only has branch points at X=O,w,x0 and X; (X; is the com-
plex conjugate of XO) as can be deduced from Appendix A.

A branch cut can be taken on the negative imaginary x-axis

connecting =0 and x=-i» and another branch cut can con-

*
nect x=x, and X=Xq SO that it is not interior to the unit
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circle |x|=l. For definiteness, I is taken to be real and

2.2
positive when l_X_%_ is real and positive. Hence, the two
1-x

possible branches resulting from the radical are denoted by
+I' which accounts for the * signs in (3.1-7).

The inverse sine functions in (3.1-7) are also de-
fined as single-valued, analytic functions of x in a cut
x—-plane and they approach zero as ) approaches zero.

The functions n defined by (3.1-7) have all of the
branch points and branch cuts of T plus branch points at
X=§%%, g;% where R=1 and T'=1l, which produces square root

branch points in the inverse sine functions. Also, n

~given by the first equation of (3.1-7) has logarithmic

branch points at X=XR —l—, e where R=» and I'=e~ and n
X X
QL 02
given by the second equation of (3.1-7) has logarithmic
. 1 4,
branch points at X=Xg17 Xg2* i;' o where R=0 and §P=w.

Appendix A defines these points.

The multitude of combinations of *,j,k in (3.1-7)
then represents the various branches n (not to be confused
with the branches n=nn(x) satisfying the frequency equa-
tion). A point y where any branch n given by the first
expression in (3.1-7) is common with any branch n given by
the second expression is a possible singular point of some
branch n=nn(x) of the symmetrical frequency equation. The

point y=-1 is an exception for the symmetrical branches
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since (3.1-7) are satisfied simultaneously at this point
for some combinations of #*,j,k, but it will be shown not to
be a singularity of the branches. This occurs only at x=-1
where the pair (3.1-6) reduces to the identities sinn=sinn
and cosn=cosn. These equations appear to be satisfied by
any value n(-1l) and certainly (3.1-7) are satisfied simul-
taneously at x=-1 with the proper choice of %*,j,k. This
is a special case on the symmetrical branches which is
treated in B.l of Appendix B where it is shown that the
symmetrical branches are analytic at x=-1.

For the asymmetrical branches, simultaneous satisfac-

tion of

sinn Rsinyn ,

(3.1—-8)

cosn XRcosxn

the first being the asymmetrical frequency equation
(2.3-14) and the second being the third case of (3.1-5),
is analogous to the pair (3.1-6) for the symmetrical
branches. This is equivalent to requiring n to satisfy
(3.1-7) simultaneously with j+k even. Thus, simultaneous
satisfaction of (3.1-7) locates singularities of both the
symmetrical and asymmetrical branches with j+k determining
the particular case.

The point x=1 is an exception for the asymmetrical

branches for the same reason that x=-1 was for the
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symmetrical branches. For x=1, (3.1-8) reduces to
sinn=sinn and cosn=cosn allowing any value n(l) as a solu-
tion and (3.1-7) are satisfied for certain choices of
+,3,k. However, in B.l of Appendix B it is shown that the
asymmetrical branches are analytic at x=1.

In discussing these singular points, it is more natu-
ral to consider the zeros of the difference between the
functions n defined by (3.1-7). This being done, the
singular points of the branches arising from the third
case of (3.1-5) are identified as zeros of the function
b5 00 =k - JXI : (—l)k[sin_l(r) = %sin_:L(%I‘)] (3.1-9)
with j+k odd for the symmetrical branches and j+k even for
the asymmetrical branches. For each fixed combination of
j,k and either the plus or minus signs in (3.1-9) (again

these distinguish a given branch A;k), A% is a single-

jk
valued, analytic function of x in a cut y-plane. The func-
tion A?k has all of the branch points and branch cuts of

the two functions n defined in (3.1-7).

The singular points of the branches n=nn(x), which

&
3k

because the zeros of an analytic function are isolated

are identified as zeros of A are certainly isolated

(see Alfors [1l1l], p. 102). Furthermore, it is obvious

that if each of these zeros is identified by a pair, say
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X~/N., Where yx _ is a zero of A%, for a fixed combination

el e e jk .

+,3,k and up corresponds to X through either of (3.1-7)

then this pair determines a point in the four-dimensional

¥ rn-space which is distinct from any other point corres-
] 1]

ponding to another pair XerNg identified with a different

combination *,3j,k.
3.1.2. The Nature of the Singular Points.

Knowing that the singular points are isolated, it is
advantageous to investigate the nature of these points
before proceeding to determine their number and location.
For this purpose the symmetrical branches are considered,
and it is assumed that a singular point is given by the
pair Kar g which is identified with a zero of A?k’ as in
the foregoing, for a fixed combination #,3j,k with j+k odd.

For the moment it is assumed that

1 1 -
ncR(Xc)cosXCnc + R (Xc)Slannc # 0 (3.1-10)
so that the derivative %% in (3.1-3) truly does not exist.

Based on an argument analogous to that given for the
branches n=nn(x), an inverse function x=yx(n) with Xc=x(nc)
exists, which is analytic in a neighborhood of and includ-

ing the point B in the n-plane. The derivative of this

dx (n,)
function is given by the inverse of (3.1-3) with'aﬁ =0
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by the definition of the pair X and the second deriva-

&
tive 1is
2
T __aoy®simn (3.1-11)
dn2 nRcosyn + R'sinyn ¢ :
~Xc
e
dzx(nc)
Hence, — #0 unless Xc=il or sinn_=0. The points x=#1
dn

have already been seen to be exceptions and from (3.1-7)
sinnc=0 implies that I'=0 which only occurs at X=0,w,x0,x;
so that all of these are speciél points, which can be
examined separately. Other than at these exceptional

points, the local Taylor's series development of x(n)

about T is

d%x(n.)
1 2
x(n) =%, +35—5 - (A=n)* + o(In-nc|3) ' (3.1-12)
dn
which can be inverted locally to give
L
2 (x-x)\ 2
nx) =ng+ [ 5| +ollx-x, ) - (3.1-13)
d”x (ng)
dn2

This behavior of n(yx) near X% shows clearly the
nature of the singularity at this point, and it is a

square root branch point with the function n(x) being
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double-valued. Thus, Xa is a branch point common to two
branches, say nn(x) and nn.(x), which are defined locally
by (3.1-13) if they are identified with the two branches
of the radical defined to be single-valued in the x-plane
with a branch cut emanating from Xe*

The case where (3.1-10) does not hold and g% in

(3.1-3) takes the % indeterminant form at X=X o is now

considered. This gives another relation, in addition to

the two in (3.1-6), since the numerator of %% also van-
ishes and these three conditions can be shown to cause
an*
* ~ ik . _ . e dn ]
Ajk and ax to vanish at X=X+ Hence, if ay takes the 0

form, H is a zero of order higher than one of A# This

jk°
can also be interpreted as a point of tangency between the
functions n defined by (3.1-7). Such a case is like the

+
end result of a merging of two or more zeros of A,, to the

jk
single point Xg+ For all of the points satisfying this
situation, other than some of the exceptional points
already mentioned, this merging can be made to occur by
varying Poisson's ratio v. If this involves the merging
of only two branch points, as will be shown later to be
the case, and if they are common to the same pair of
branches, say nn(x) and nn,(x), then the branch points

merge to cancel each other and the branches become analytic

at the point Xg» B simple example illustrating this local
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behavior of two merging branch points is given by the
5
double-valued function (Xz—ez) as €+0. This can be shown

to be precisely the behavior of the branches n=nn(x) as v
varies when the case under discussion occurs.

It will soon become apparent that this is a very re-
stricted case. 1In fact, it is precisely the case which was
investigated by Onoe, McNiven and Mindlin [12] for the
similar circular rod frequency equation. In that work this
critical point was called a saddle point in the w,k,v-
space.

The asymmetrical branches have branch points which are
exactly analogous to those just discussed for the symmetri-

cal branches.
3.1.3. The Number of Branch Points and Their Location.

With the exception of the points x=0 and X=Xq s it can
be shown that there are no branch points resulting from
the third case of (3.1-5) on the segments %%%<x§l and
-1<x<0 or on the unit circle x=éie for 0<06<m. This is
done by using the inequalities (A-5) and the form (A-6)
from Appendix A and just showing that the frequency equa-
tions and the equations in the third case of (3.1-5) cannoct

be satisfied simultaneously on these segments. The excep-

tions include the w=k=0 points of the Rayleigh branches
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ig
where yx=x,=e H and n=0, with xolgiven by (2.3-8), for the

symmetrical Rayleigh branch and x=n=0 for the asymmetrical

Rayleigh branch.

a-1

L there are zeros of the func-

On the segment 0<y<

tions A?k in (3.1-9) and, hence, there are branch points
common to pairs of branches n=nn(x). This is shown in Fig.

7 by indicating the intersection points of the functions n
given in (3.1-7). The functions n are sketched, rather

than the functions A?k’
the Rey ,Ren-plane and they are actually points common to

so that the branch points occur in

pairs of branches n=nn(x) which will be considered in the
next section (Re and Im are used to denote the real and
imaginary parts respectively of the quantities in question).
Each function A?k can be deduced from Fig. 7 as the differ-
ence between two of the functions n, the two being given

by (3.1-7) for a fixed choice of *,j,k.

Each branch point in Fig. 7 is designated by the
triplet (£,j,k) indicating that it is a zero of A?k given
by (3.1-9). A given function A?k has either one zero or
%%% except possibly near x=§%%

with £ (-1)%=+1 and j,k>1 may have

no zeros at all on 0<y<

L
where some functions Agk

two zeros. Two such zeros of A; 1 corresponding to branch
4

|_J

points of asymmetrical branches are shown in Fig. 7 between

_ _ _a=l . s
n=1llm and n=127 and near X=371° If a function Ajk does

have two distinct zeros, then a slight increase in
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Poisson's ratio v causes these to merge into a double zero
and then vanish completely from the real y-axis. This is
the case of branch points merging to cancel each other that

was spoken of earlier. Alternatively, decreasing v causes

a-1

branch points to migrate onto the real yx-axis for 0<X<a+l

and they apparently come from the complex yx-plane.

The point =§I% is a singular point of the function
Aék. Specifically, it is a branch point through the in-
verse sine functions since R=1 and I'=1l at this point; how-
ever, it is possible for this point to also be a branch

point of the branches n=nn(x) for some integers n. This

will be the case if (3.1-6) or (3.1-8) are simultaneously

_arl

satisfied at X=3771 ©°F if
AT (2l o xp - 4p8tL $.(—l)kﬁ = g
3k\ a+1 ™o Tl a-1 ’

where % has been taken for the value of the inverse sine
functions at this point. This equation can be solved for

a to give the rational number

which indicates that these branch points are precisely the
mapping into the x-plane of the points on k=0 where

wn(0)=w (0) is possible as was discussed in Chapter 2.

n+1
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These points are not singular in the w,k-space and they
have become branch points in the x,n-space as a result of
the particular mapping (2.3-4) introduced in this work.

The question of branch points interior to the upper
half unit disk (|x|<1 and Imx>0) is now investigated. This
is accomplished by use of the argument principle (see
Alfors [11l], p. 123). The argument principle is applicable
since each branch, A?k’ is analytic and single-valued in-

terior to the upper half unit disk except for a logarithmic

branch point at X=Xg1 due to the fact that R(X01)=O (XOl is
interior only if vc<v5% with v defined following (A-3) in
Appendix A). This logarithmic branch point can be excluded

by a branch cut from Xo1 to the boundary 2

a+l<X<l, which

avoids any of the zeros of Agk.

branch point of the branches n=nn(x) since neither (3.1-6)

The point Xo1 is not a

nor (3.1-8) can be satisfied simultaneously at this point.
Actually, knowledge of A?k interior to the upper half

unit disk, other than the property of analyticity, is not

required for application of the argument principle; how-

ever Ajk must be known on the boundary of this region. As

mentioned before, the functions A;k are implicit in Fig. 7
for 0<X<§£%- The form of Aék is not complicated on the

remainder of the real y-axis. On the unit circle, Aék
takes a simple form due to (A-6) in Appendix A. With the

form of A#

known, the real and imaginary parts of A% and,
jk jk
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hence, the change in the argument of A?k can be deduced for
one traversal of the boundary in the positive direction.
Once this is done for a fixed combination *,j,k, it is a
simple matter to deduce the results for other combinations
due to the simple dependence of Agk on *,j,.& in {(3.1-9).
The number of zeros of the functions A?k(x) in (3.1~9)
or, equivalently, the number of branch points of the
branches n=nn(x), as calculated by the argument principle,

is given below.
Case I: =*(-1)"=+1.

. 4 T PR, RO Wi £ g ¥
(a) The function Ajk(x)~kw = +sin " (T) X51n <RO
has one simple zero interior to the upper half unit disk
for each pair j,k with j=1,2,3,... and k=1,2,3,... provided

that

(J=2)m < km < min[%? - sin—l(P) + %sin-l<%©}

a-1
O<x<z+1

(these will be called "the set of positive branch points"

henceforth). The upper bound on k involves a minimum over
O<X<21i of a gquantity in brackets which is actually just
kw-A?k. This bound is explained by saying that when it is
violated the function A?k has one or two zeros on 0<X<Z;i

as shown in Fig. 7. Hence, this bound on k defines the

transition between branch points on the real y-axis and
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branch points in the complex X-plane off the real axis.
The bound j-2<k has no obvious explanation, but it can be
shown to distinguish between branch points exterior to and
those interior to the unit circle |x|=Ll.

At these branch points the bounds
km < Ren < (k+1)m

on Ren result from (3.1-7) and knowledge of the range of
sin—l(F) on the upper half unit disk.

(b) A?k has one simple zero interior to the
upper half unit disk for each pair j,k with k=1,2,3,...

and j=~1,-2,~3,... provided that
B 3 ={3%l)}

(these will be called "the set of negative branch points"
henceforth). Again, the bound on k has no obvious expla-
nation, but it can be shown to distinguish between branch
points exterior to and those intéerior to the unit circle.

The value of Ren at these branch points satisfies
km < Ren < (k+l)m

with the bounds explained just as in (a).
This includes all of the zeros of Case I for

k=0,1,2,... and j=0,%1,%2,...
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Case II: i(—l)k=—l.

1 1 . -1/1
(P)+§s1n <§T> has no

zeros interior to the upper half unit disk for any pair j,k

The function A?k(x)=kn—%%-sin_

with k=0,1,2,... and j=0,%*1,*2,... . A natural analytic
continuation of this function into the lower half unit disk
does have zeros which are complex conjugates of the zeros
found in Case I.

Negative values of the integer k have not been con-
sidered since they only lead to branch points for branches
with Ren<0 which are simple reflections of the branches
whose branch points were just considered.

In summary, all of the branch points or singularities
due to the three cases in (3.1-5) have been identified for
those branches with Ren>0 at the point with some exceptions
on the real y-axis. These exceptions will be examined when
the branches n=nn(x) are understood in more detail.

It is interesting to examine the mapping of these
branch points back into the w,k-space by (2.3-7). With
the exception of the branch points which may occur at

=§:— and map into k=0 with w#0, all branch points with

the local behavior (3.1-13) give the local behavior

Yo 2
w = —Kk + O<|K~K | >
Ko o

in the w,xk=-space with WK (both may be complex) being
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the mapping of the branch point XgrNg* This is equivalent

to requiring that

which means that the phase and group velocities defined in
(2.3-1) are equal at K=K in the special case where both
Wy and Ko are real. Thus, absence of branch points of the
branches n=nn(x) on the integration paths C in Fig. 2 and
COS and COA in Fig. 3, as has been shown in all but a few
exceptional cases, guarantees that the phase and group

velocities are not equal on the real positive k-axis for

any of the branches w=wn(K), n=0,;1l;2;e5s s

3.2. THE BRANCHES ON THE REAL x-AXIS AND ON THE UNIT

CIRCLE |x|=1

One result of the change to the variables y,n in
Chapter 2 is that the frequency equations (2.3-13) and
(2.3-14) are satisfied by simple forms of the branches
n=n_(x) on the real x-axis and on the unit circle |x|=1.
This section contains verification of the existence and
form of n=nn(x) on which both w and « are real from
(2.3-7), plus other branches on these subregions. These

other branches will be shown in a later section to be
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analytic continuationscﬁ‘n=nn(x); however the notation
nn(x) is reserved for the branches on which w and k are
real with nm,nq, etc., denoting other branches.

The discussion is restricted to values of n with
Ren>0 since it is obvious that if n satisfies either of

the frequency equations then -n does also.
3.2.1. The Real Branches on the Real y-Axis.

In this subsection the branches n which are real on
the real y-axis are considered and most of the results are
shown in Fig. 8. Only the segment -1l<x<l of the real
¥—axis 1s considered since B.2 in Appendix B gives the
mapping of the branches under X*%--

A convenient form of the symmetrical frequency equa-

. Bl ;
tien (2.3~13) on E:T<X<l is

no=nr + (-1)*Lsin L [Rix)sinyn] (3.2-1)

n=1,2,3,... . Ifn is assumed to be real, the inverse

sine function is defined by requiring that

—% < sin—l[R(X)sinxn] < %

as can be done on this interval since -1<R(x)<1l by (A-5)
in Appendix A. The form (3.2-1) does not yield explicit

solutions n; however it immediately shows the existence
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of the branches n=nn(x) and also it provides a method of
finding solution points if they are required. This is seer
by considering the simultaneous solution of the two para-

metric equations

no=nr + (-1)™Ysin L [R(x)sinEn]
(3.2-2)
n = s
X

where P is a positive, constant parameter. This pair is
equivalent to (3.2-1) as can be seen by setting xn=Pm. As
P is varied continuously, the solution points of (3.2-2)
form a branch n=nn(x), which is a real, analytic function
of ¥y in this interval for each n=1,2,3,... .

The bounds

ny - sin_l]R(X)l <n, (x) < nm o+ sin—lIR(X)l (3.2-3)

result from (3.2-1) and (3.2-2) by setting sinyn=t1 to

n+l ., -1
S

make |(—l) in [R(X)sinxn]| a maximum. Thus, one of

the equalities in (3.2-3) is taken by a branch n_(x) at a
n

=(2m+l)7r

point x only if n (x) also satisfies n_(x) X

¥
: m
m=0,1,2,..., so that s1nxnn=(—l)

=2m+l -
2

case where (-1

(or equivalently, if

P

(3.2-2)) with the upper equality taken in the

)m+nR(X)50 and the lower equality in the

case where (—l)m+nR(X)ZO. These requirements on the sign
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of =1} gy

X) merely indicate whether the plus or minus
sign precedes sin—l]R(X)I in (3.2-3).

All of the results to this point apply equally well to
the asymmetrical frequency equation (2.3-14) and to its
branches n=nn(x), n=1,2,3,..., if R(x) is replaced by -R(¥X)
throughout.

Analogous to (3.2-1), on the interval -1l<y<—+ +i,a con-

venient form of the symmetrical frequency equation is

+1
mr ., (1) . -1 1
= — 4 A
n 5 > sin [R( )SLnn] 7 (3‘2 4)
m=0,%*1,*2,..., where, if n is assumed to be real,

il G o= 1 : m
—2- < 8S1ln [—R'—(—)U‘Slnn] < 5

defines the inverse sine function since =-1l<——<1 from

R( )
(A-5) in Appendix A. It should be stressed that (3.2-1)
and (3.2-4) are equivalent and, in turn, are both equiva-
lent to the symmetrical frequency equation (2.3-13). The
new forms are introduced only because they are open to
each interpretation in the respective intervals mentioned.
The form (3.2-4) lends itself to a parametric solution
just as did (3.2-2). However, the interpretation of con-
tinuing branches of the frequency equations is not so

obvious because of the branch points on O<x< i, which were

found in Section 3.1 and sketched in Fig. 7. These branch
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points show up as vertical tangents of the functions n in
Fig. 8. This only means that, if a continuous function is
to be traced through solution points from the parametric
solution, multiple-valued functions must be accepted. This
is certainly not a difficulty and the presence of branch
points does not hinder the parametric method of finding
solution points which form continuous functions be they
multiple- or single-valued. Further analysis will be done
later to identify analytic continuations of single branches,
but that is not important here.

The bounds

mm
X

mm

el £,
X

-]lsin_l —;L—-‘
X R(x)

(3+2-5)

%sin_l<§%;7>‘ <nlx) 2

result from (3.2-4) and are valid on the whole range

—1<X<§£%. These bounds are derived just as (3.2-3) was
derived from (3.2-1). One of the equalities in (3.2-5) is
taken at a point x only if n also satisfies n=izE%ll£,
n=0,1,2,..., with the upper equality being taken if
(_l)m+n (_l)m+n
= ‘ ' if =7~ >0.
R ] <0 and the lower equality being taken if YRy 2

For the case m=0, 0<n(y)< can be used as an

isin—l L
X R(x)
improved bound to replace (3.2-5).

a-1

Fre) apply to the

Again, all of the results for -l<y<

asymmetrical branches if R(yx) is replaced by =-R(x).
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The hyperbolas n= JEl, 1=1,2,3¢s53 and n=_lq§
g=1,2,3,..., are curves of constant a and B by (2.3-5) and

they form a grid in the y,n-plane, which can be used as an
aid for sketching the real branches. This grid is pre-

"

cisely the mapping of Mindlin's [2] "grid of bounds," which
also consists of hyperbolas, but in the w,k-plane.

The real n branches are sketched on the real x-axis in
Fig. 8 by using the bounds (3.2-3) and (3.2-5) and the
special solution pairs from B.l in Appendix B. The symmet-
rical branches are shown in heavy solid lines and the asym-
metrical branches are shown in dashed lines in Fig. 8.
Also, the hyperbolic grid consisting of n=f¥% and n=f§& is
shown in Fig. 8.

The branches, shown in Fig. 8 on 2?%<X<l are denoted
by Nye n=1,2,3,..., for both the symmetrical and asymmetri-
cal branches and they are one-to-one mappings of the real

branches wn(K), n=1,2,3,..., from the dilatational sector

(2.3-10) of the Rew,Rek-plane into the yx,n-plane by

+i are one-to-one mappings

of the branches in the Rew,Imk-plane, which were discussed

(2.3-4). The branches on 0<yx<

by Mindlin [2]. The branches on -1<x<0 give both w and «
pure imaginary by (2.3-7) and apparently these branches of
the Rayleigh-Lamb frequency equation -have not been con-
sidered before.

All of these branches will play a role in the analytic
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continuation of the branches n=nn(x). Those with w and «
pure imaginary seem to have no special physical signifi-
cance except that they add to the overall understanding of
the branches of the frequency equations.

As mentioned before, the branch points on 0<X§§%%
appear in Fig. 8 as vertical tangents on the branches and
they can be identified with the branch points shown in
Fig. 7 by comparing the two figures. The scale of the real
x—-axis in Fig.7 is expanded five times that of Fig. 8,

however, the vertical scale for real n is the same in both

figures.
3.2.2. The Branches on the Unit Circle |y|=1.

In Chapter 2 it was found that the portions of the
branches wn(K), n=1,2,3,..., and the portion of the symmet-
rical Rayleigh branch wo(K) which occur in the equivolumi-

nal sector (2.3-11l) map onto the upper half unit circle

x=ele, 0<6<m. The definition (2.3-6) of a and B determines

the particular mapping given by (2.3-4). It is sufficient
to consider the upper half of the circle since simple rela-
tions in B.2 of Appendix B give the continuations ontc the
lower half of the circle.

In this subsection these branches n=nn(x) are investi-
gated as functions of 6 through x=eie, Also, a second set

of branches are found on the upper half unit circle which
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map into the w,k-space with both w and Kk pure imaginary.
The former set of branches, which map into the usual real
branches wn(K), is shown in Fig. 9 as continuations of the
real branches n=nn(x) on the real x-axis (shown in Fig. 8
and discussed in Subsection 3.2.1) through the point x=1 or
=0. The latter set of branches, which map into branches
with w and k imaginary, is shown in Fig. 10 as continuations
of the real branches on the real x-axis through the point
x=-1 or 6=m.

In B.1l of Appendix B, it is shown that all of the
branches of the frequency equations which are bounded at
x=1 and x=-1 are analytic at these points.

The function n satisfying either of the frequency equa-

tions, (2.3-13) or (2.3-14), is just an unknown complex
function of 6 on X=ele; hence, it is just as well to take
36
n(ele) = ye . (3.2-6)

where y is another unknown complex function of 6. n is
taken in the form (3.2-6) to siﬁplify the frequency equa-
tions on X=eie.

(3.2-6) and the form (A-6) of R(eie) from Appendix A

are used to write the symmetrical frequency equation

(2.3-13) in the form
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iL| -iL -id
sinn + R(x)sinyn = e sin|ye
i6
x=e
i¥ iz ik

2 . _ 2 Y ) .
+ e “sin|ye = 2e cosssin|ycosy cosh ysins
- sinXcos ycosg sinh ysing =0

2 F: 2

on X=ele. Thus, the symmetrical frequency equation can be

written as

= tan%tanh

J

k) 2 2 i
on the unit circle y=e

tan<ycos

0

If (3.2-7) 1is written as

0 .0
§>coth<y31n§>

the right side of this equation

tan<ycos

in Appendix A is real and it is
that the left side is real only
or pure imaginary. Thus, using
of the forms

ele)

(1)

n (

(2) 48y

n(e

(3:2=7)

<ysin%>

= tan% 7

is real since y in (A-6a)
a simple matter to show
if y is either pure real

(3.2-6), n must take one

(3s2~8)

)
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These forms are chosen so that Ren>0. As mentioned previ-
ously, -n is also a solution if n given by either of
(3.2-8) satisfies the symmetrical frequency equation.

The form (1) of n in (3.2-8) maps into w and k real

1l .0

and nonnegative by (2.3-7) by taking Xi;eli, etc., and
branches of this description map into the branches wn(K) in
the equivoluminal sector (2.3-11l) which were discussed in
Chapter 2. Likewise, the form (2) of n in (3.2-8) maps
into w and k both pure imaginary by (2.3-7). For reasons
which will become apparent shortly, branches n(eie) of the
form (1) in (3.2-8) are called "the equivoluminal branches"
and those of the form (2) are called "the dilatational
branches."

The symmetrical frequency equation, (2.3-13) or
(3.2=-7), takes the form

tan<|n[cos%> = tan%tanh<]n|sin%> (3.2-9)

_i8

for the symmetrical equivoluminal branches nn(ele)=|nn|e y

n=0,1,2,..., and the form

cot<ln]sin%> = tan%doth(]n]cos%) (3.2-10)
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i B
; -i=
for the symmetrical dilatational branches nm(ele)=i|nm]e 2,

m=0,1,2,...
Just as the real branches in the preceding subsection
satisfied the form (3.2-1) or (3.2-4) of the symmetrical

frequency equation, the symmetrical equivoluminal branches

. 0
; -ix=
nn(ele)=|nn]e 2, n=0,1,2,..., satisfy the form
_ _nm L "’ ¥ . 0 v
In | = = & stan [Fanztanh<|nn[51n2>] (3.2-11)
cosz  cosy

of (3.2-9) and the symmetrical dilatational branches
_i8

nm(ele)=i|nm]e 2, m=0,1,2,..., satisfy the form

1
m+=) T
( 2> 1 -1
lnml = e = o= etan [Fan%coth<|nm|cos%>} (3.2-12)
siny siny

of (3.2-10). From knowledge of the function y=y(8) defined

by (A-6a) in Appendix A and sketched in Fig. 6, the ranges

o
A
IA

.. 6
< tan%tanh<|nn|51n§> o,

o
A
A
+
8

< tan%coth(]nm]cos%> <

apply on 0<6<m; thus (3.2-11l) and (3.2-12) are completely

defined by requiring that
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gt ! . B m

0 < tan tan%tanh(]nn|51n§) 4 =
=1, Y 0 m

0 < tan tanzcoth(lnmlcos§> <35 -

The forms (3.2-11) and (3.2-12) lend themselves to
easy solution for |n| by considering simultaneous solutions
of equivalent parametric equations as was done in (3.2-2)
for (3.2-1).

It should be indicated that fhe branches n=0 in
(3.2-11) and m=0 in (3.2-12) can be shown, by solving for
In|] using parametric equations or otherwise, to terminate
| | . 18y .
in a branch point at the point Xg=e given by (2.3-8).
The behavior of these branches near the branch point Xo is
given by (B.1l-1) in Appendix B, and this can also be de-
rived from either (3.2-11l) or (3.2-12). The branch n=0
defined by (3.2-11l) is the symmeﬁrical Rayleigh branch and

it only exists on the portion 6,<6<m of the upper half unit

0
circle. Likewise, the branch m=0, defined by (3.2-12), is

a continuation of the symmetrical Rayleigh branch about
ieo

Xg=¢ and it exists only on the portion 0<6<6, of the

upper half unit circle. The termination of these branches

in a branch point at 6=6, is seen in Figs. 9 and 10.

From (3.2-11) the moduli of the symmetrical equivo-

_48

luminal branches nn(ele =[nnle 2, n=0,1,2,..., have the



-66-

bounds

nm (n+%)ﬂ
=< In | < —= (3.2-13)
COSi COS'i'

with the upper equality occurring only at e=e_l where
Y(6_1)=w and the lower equality occurring only at 6=0 (the
branch n=0 does not extend to 6=0). The bounds (3.2-13)
result from the allowable range of the inverse tangent
function in (3.2-11)

Likewise, from (3.2-12) the moduli of the dilatational

. B
. e
branches nm(ele)=i]nm|e 2, m=0,1,2,..., have the bounds
1
m+ L)
A< | s L"e— (3.2-14)
Sini sini
with the lower equality occurring only at e_l for
m=1,2,3,... and the upper equality never occurring. These

branches satisfy (B.1-10) in Appendix B at 6=m and they
approach the upper equality in (3.2-14) for m large as can
be seen ffom the asymptotic expansion for nm(~l) following
(B.l-10} .

The solution points at x=1 or 6=0, X=X.q ©r 6=6_1,

and x=-1 or 6=m are listed in B.l in Appendix B where the
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subscripts n and m refer to equivoluminal and dilatational
branches respectively. These solution points can also be
deduced from (3.2-11l) and (3.2-12) and they make up some of
the points where the bounds (3.2-13) and (3.2-14) are
taken. These points are evident in Figs. 9 and 10.

It is apparent from the bounds (3.2-13) that the sym-
metrical equivoluminal branches n=1,2,3,... become un-
bounded as 6->m or x»-1 on the unit circle (the symmetrical
Rayleigh branch n=0 is an exception since it is bounded at
x=—-1, yet it is natural to call it an equivoluminal branch
in the present context). Also, from (3.2-14) the symmetri-
cal dilatational branches are unbounded as 6-+0 or x>l on
the unit circle. As was mentioned in Chapter 2, the phase
velocity cp in (2.3-1) takes the wvalue Cqr the equivolumi-
nal body wave velocity, at x=-1 and the value Cqr thé dila-
tational body wave velocity, at x=1. Hence, the names
equivoluminal and dilatational branches have been used
since these branches give the equivoluminal and dilata-
tional phase velocities at their singular points x=-1 and
X=1 respectively.

The equivoluminal branches are well known and are
just the mapping of the usual‘real w, real k branches from
the equivoluminal sector (2.3-11l) into the ¥ ,n-space.

The dilatational branches apparently have not been

investigated because they map into the w,k-space with both
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w and Kk pure imaginary. However, these branches are highly
significant since they have an asymptote (point where
|n|+e) where the phase velocity takes the value of the
dilatational body wave velocity in the limit. Also, they
are smooth monotonic functions of 6 as contrasted with the
terraced portion of the frequency spectrum in the dilata-
tional sector (2.3-10) or on g%%gxgl in Fig. 8, which is
the only place that the dilatational body wave wvelocity is
approached in the Rew,Rek-plane. Thus, if analytic contin-
uations can be found onto these branches, an improved rep-
resentation for the dilatational waves in the plate may be
possible by manipulating the integrals (2.3-15a).

The branches satisfying the asymmetrical frequency
equation (2.3-14) on the upper half unit circle x=eie,
O0<6<m, are now considered. Just as in the symmetricai
case, the asymmetrical branches must take one of the forms
(3.2-8) with those of the first form called the equivolumi-
nal branches and those of the second form called the dila-
tational branches. In the same manner as (3.2-9) and
(3.2-10) were derived, the asymmetrical frequency equation
(2.3-14) takes the form

cot([nlcos%) = —tan%coth(lnlsin%) ~ {3.2-15)
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.0
., —iz
far the asymmetrical equivoluminal branches nn(ele)=|nnle 2,
n=l,2,3,.++, and the form
tan<}n|sin%> = -tan%tanh(|n|cos%) {3,2~16)
+ 0
2

for the asymmetrical dilatational branches nm(ele)=i|hm|e :
Analogous to (3.2-11) and (3.2-12), (3.2-15)

m=1l,2,3,...
and (3.2-16) can be written as
<n"%>“ 1 -1 Yo 0
|nn| = 5+ gtan 7| tang oth(lnn|51n§) ¢ (3:2-17)
cos= cos=
2 2
n=1,2,3,+ s, and
_ _mm _ 1 e . 6 _
lnm| = —gtan [tanztanh<]nm|cosz)], (3.2-18)
sing sin

m=1,2,3,..., respectively.
The inverse tangent functions in (3.2-17) and (3.2-18)

have the same ranges as those given following (3.2-12),

which results in the bounds

<n_%>ﬂ nm
—= < Ingl s —5 (3.2-19)
COSE'

COSE
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n=1,2,3,..., for the moduli of the asymmetrical equivolumi-
/8
i0 "3
nal branches nn(e )=|nn|e and the bounds

(m-3)r -
e lnm| < —5 {3.:2=20)
sinz siny
m=1,2,3,..., for the moduli of the asymmetrical dilata-
)

i .

tional branches nm(e

The upper equality in (3.2-19) is taken only at the
point 6_, where y(6_,;)=m and the lower equality is not
taken. At 6=0 or y=1, (3.2-17) takes a limiting form which
is equivalent to (B.1l-4) in Appendix B; hence lnnl in
(3.2-19) approaches the lower equality at 6=0 for n very
large. This can be seen from the asymptotic expansion for
nn(l) following (B.1l-4).

The lower equality in (3.2-20) is taken only at the
bpoint 6_q and the upper equality ié taken only at the point
6=m or x=-1.

These asymmetrical equivoluminal and asymmetrical
dilatational branches are also unbounded at x=-1 and x=1
respectively and the descriptibn of the symmetrical
branches also applies here.

. el . .

The point X_1=e defined by (A-la) in Appendix A

maps into the Lamé point w=v/2k and the special solutions
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(B.1-12) and (B.1l-14) in Appendix B taken by the equivo-
luminal branches at this point are identified with the Lamé
modes of harmonic wave propagation. These consist of
equivoluminal waves meeting and reflecting from a boundary
at an angle of 45° with no mode conversion to dilatational
waves. This is expected since R(x_l =-1 and R is the re-
flection coefficient as stated in Appendix A.

Both the symmetrical (in heavy solid lines) and the
asymmetrical (in dashed lines) equivoluminal branches are
sketched in Fig. 9 with the continuations through the point
6=0 or x=1 onto the real branches of Fig. 8 shown at the
left side. Likewise, the symmetrical (in heavy solid lines
and the asymmetrical (in dashed lines) dilatational
branches are sketched in Fig. 10 with the continuations
through the point 0=m or x=-1 onto the real branches of

Fig. 8 shown at the right side. The hyperbolas |n]=—iﬂl§

2cos§
oF n=f%%, g=1,2,3,..., are also shown in Fig. 9 and the
hyperbolas |n|=—JﬁL§ or n=f¥&, p=1,2,3,..., are shown in

ZSinj

Fig. 10. These branches can be calculated approximately

by a few simple iterations on equations (3.2-11), (3.2-12),
(3.2-17) and (3.2-18).  This is done by taking |n_|=—"75
COSE

as a first try in the expression of the right side of

(3.2-11) to give an improved value of ]nnl, etc.
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3.2.3. The Complex Branches on the Real X-Axis.

These complex branches serve to complete the picture
of the branches of the Rayleigh-Lamb frequency equations
on the real y-axis and on the unit circle |x|=1. 1In prin-
ciple at least, analytic continuations of the branches can
then be made to the interior of the unit circle and the
mappings to the exterior are given by (B.2-2) and (B.2-4)
in Appendix B.

Actually, a detailed description of these branches
serves no other purpose than to complete the understanding
of the branches so that such continuations can be made with
more confidence. The method to be employed in this work
for evaluating the high-frequency response of the plate
does not depend on the complex branches. Hence, the com-
plex branches are treated in B.3 of Appendix B and only a
description of the branches is given here by referring to
B.3 and to Figs. 11l and 1l2.

The complex loops in the w,k-space with w real and K
complex as given by Mindlin [2] are somewhat like the
branches which are described here, however, they are not
the same since both w and k will be complex by (2.3-7) for
branches with n complex (not pure imaginary) and yx real.
Such complex branches must surely be analytic céntinuations

of the real w, complex K branches.
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nI=Imn, the imaginary part of n, is determined by
(B.3-3) and nR=Ren, the real part of n, is determined by
(B.3-4) by the method described in B.3 of Appendix B.

Fig. 11 shows the upper and lower bounds of nI=Imn
~given by (B.3-7) where the lower bound is the asymmetrical
Rayleigh branch on XR<x50 and it is a portion of the sym-
metrical Rayleigh branch.on —15X<XR. The remaining portion
of the symmetrical Rayleigh branch .is on x=eie and it is
shown in Fig. 9.

A sketch of some of the complex branches is shown in
Fig. 12 as a perspective in the Rey,Ren,Imn-space along
with the projections onto the Reyx,Ren- and Rey,Imn-planes.
Only branches with Imn>0 are shown, but the complex conju-
~gates, n*, are also branches satisfying the frequency
equations. Portions of the real branches on x>0 from Fig.
8 are shown at the right of Fig. 12 to illustrate that the

branch points on ngga

271 are common points of the real and

complex branches. Loops between branch points occur above
the level Ren=51 in this figure and they become very numer-
ous for Ren large. All of the projections onto the
Rey,Ren-plane up to the level included in Fig. 12 are
sketched, but only a few of thé projections onto the
Rey,Imn-plane are shown since these fall on top of each
other and just become confusing. Only the lowest asymmet-

rical complex branch (the branch with the smallest value
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of Ren=n_) is sketched as x»>-1 where ng*e and Imn=n

R I

oscillates more and more rapidly as shown in the projection
onto the Rey,Imn-plane. All other complex branches behave
in the same manner and their general form can be deduced
from their projections onto the Rex,Ren-plane in Fig. 12
and by the limited variation of Imn=nI allowed by its

as

bounds. The real part of n jumps by an amount il:&
R

the complex branches are continued about the logarithmic

branch point at X=Xg* This can be seen in Fig. 12 or from

the asymptotic approximation (B.3-9) in Appendix B.

In general, the imaginary part of n consists of loops

a-1

between the branch points on 0<X5a+l

where Imn=0, and the
loops are tangent to the upper bound given by the second
equation in (B.3-7) with the equality. The branch points
on this interval are shown as points in the Rey,Ren-plane
in Fig. 7. A final loop from a branch point near x=0
fails to return to the Rey,Ren-plane with Imn=0 and,
instead, it crosses yx=0 with a value of n satisfying
(B.1-7) of Appendix B if it is a symmetrical complex
branch or (B.1-8) if it is an asymmetrical complex branch.
On =1<y<0, ul oscillates between the upper and lower
bounds given by (B.3-7) and shown in Fig. 1l and becomes

unbounded as X7XR* The approximation to the complex

branches near X=Xy is given by (B.3-9). Since Ny takes
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the lower bound when sinan=sin2(l+x)nR=0 and the upper
bound when sinan=l and sin2(l+x)nR=0, it oscillates more
and more rapidly as x=-1 is approached with the frequency
of oscillation going to infinity at x=-1. As is mentioned
following (B.3-8) of B.3 in Appendix ‘B, the separation of
the bounds remains finite as x=-1 is approached. The
oscillation of n{ is a result of an essential singularity
at x=-1 on all of the complex branches except the symmetri-
cal Rayleigh branch, which is analytic at x=-1.

The unexpected feature of all complex branches having
a singularity at X=Xr seems to have little physical signif-
icance. The Rayleigh branches are unique in this respect
simply because they are pure imaginary and, of course, w
and K given by (2.3-7) are real. All other complex

branches have a finite real part, as X*Xg with the

TIR:
imaginary part, Ny unbounded. Then by (2.3-7), w and «
have real parts which become unbounded just as do the
Rayleigh branches, but they also have finite imaginary
parts which are usually identified with a disturbance that
decays in time and space and does not give rise to wave |
fronts. More important is the fact that analytic continua-
tions of the Rayleigh branches are now known about the
infinity point (w,k»») and the continuation goes onto

other neighboring complex branches all of which are inter-

connected by a common logarithmic branch point at X=XR*
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This gives further information needed to make analytic
continuations in the complex X-plane.

With regard to analytic continuations, there is a
striking similarity between the singularity of the complex
branches at xy=-1 and the singularity of the equivoluminal
branches on |x|=1 at the same point x=-1 or 6=rn. This is
seen by solving (B.3-4) in Appendix B for ng SO that it

has the leading term fﬂL, g=1,2,3,..., and comparing this

1+y
with (3.2-11) and (3.2-17). Then the dominate term of n
: . nm qm . ' .
in each case 1is Ty or Ty and this makes it seem likely

that the complex branches continue about x=-1 onto the
equivoluminal branches. A comparison of Figs. 9 and 12
also indicates this possibility.

The fact that there are no complex branches on the
real y-axis near yx=1 which can be considered as analytic
continuations of the dilatational branches on|x|=1 and
shown in Fig. 10 poses a difficult problem which can be
answered only by investigating the analytic continuations

about the branch points near x=1.

3.3. SERIES REPRESENTATIONS OF THE BRANCHES n ABOUT THE

POINTS x=1 AND yx=-1

All of the preceding work in Section 3.2 concerning
the existence and form of the branches on certain sub-

regions in the>x-plane is not sufficient to allow even a
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good approximate evaluation of the integrals (2.3-15). The
infinite sums of integrals and the complicated relationship
between n and y present the same difficulties that were
present in the integrals (2.2-10) with w and k as the
variables.

In this section representations of the branches n as
explicit functions of y are derived in the form of a series
of functions of y. These series are derived by expanding
the frequency equations about the points y=1 and yx=-1,
which are singular points of the dilatational and equivo-
luminal branches respectively of Subsection 3.2.2. The
fact that n+»« on these branches as y+1,-1 or as 6+0,m on
X=eie means that w>» and k»~ from (2.3-7).

These singular points are expected to be very signifi-
cant with regard to their contribution to the high-fre-
guency wave fronts in the plate. The reason for this is

W

that * and %% both approach 1 as y+-1 or as 6-+7 on the

eguivoluminal branches, other than on the symmetrical

&
Rayleigh branch, and they both approach a=5§ as xy>1 or as
S

6—+-0 on the dilatational branches. %cs and %%cs are the
phase and group velocities respectively as defined by
(2.3-1) when both ¢ and k are real, which is the case on
the equivoluminal branches. It is recalled from Subsec-

tion 3.2.2 that both w and « are pure imaginary on the
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dilatational branches and it remains to be seen if these
branches contribute to the response of the plate.

For much the same reason as was given in Subsection
3.2.2 for using the names equivoluminal and dilatational
branches, the points yx=-1 and X=1 are assumed to be identi-
fied with equivoluminal and dilatational wave fronts
respective.

Apparently, the only convenient series representa-
tions, such as w as a function of x, have been about points
where both w and « are finite. These usually consist of
Taylor's series. Obviously such representations are of
very little use for high-frequency calculations where w may
become unbounded. It is true that a few terms are apparent
in an asymptotic approximation as k-»® on the Rayleigh

branches or on any of the other branches. For example,

c
(K)~EBK on the Rayleigh branches as k=~ and B =
s

Yy

1

2

and n=1,2,3,... on the symmetrical branches and with

2
<wn2(K)-K2> ~lmﬂ as k= on all other branches with m=2n

m=2n~1 and n=1,2,3,... on the asymmetrical branches.
Attempts to find more than a few succeeding terms or to
find an expression for é general term in these expansions
appear to be doomed to failure. The reason for this is
the complicated functional relationship between w and k in

the frequency equations (2.2-11) and (2.2-12). It seems
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to be practical to seek asymptotic expansions only if the
variables w and k are grouped into convenient functional
forms such as y and n.

The symmetrical branches (T which are identical to
the equivoluminal branches of the form (1) of (3.2-8) when
16

x=e~ ~, will be considered first. ¥ will not necessarily be

restricted to the unit circle x=eie, however, the branches
considered are analytic continuations of the equivoluminal
branches.

As has been the usual practice, the form (2.3-13) of

the symmetrical frequency equation is altered to obtain

the more convenient form

(1+x)n _ R-1 (1-x)n "
5 = R+ltan 5 " (3.3-1)

tan

This can be recognized as the original form (2.2-11) of the
symmetrical frequency equation by using (2.3-5) and
(2.3-12a) to return to the w,k Variables.

Series representations are now sought for the symmet-
rical branches n which satisfy (3.3-1) and are singular as
¥x>-1 in some sector about that point. The sector must in-

clude the path X=ele

, 0<b<m, as 6~+m since the equivoluminal
branches are on this circle. Also this sector may include
the real y-axis as y»-1 from the right where the complex

branches on the real y-—-axis of Subsection 3.2.3 were found
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to be singular. It was speculated there that these
branches might be analytic continuations of the equivolumi-
nal branches. The singular nature of the equivoluminal
branches is shown in Fig. 9 and that of the complex
branches in Fig. 12 as x+-1 in each case.

0 first,

It is convenient to examine the case x=ei
realizing that by means of analytic continuations most of
the results will extend to neighboring portions of the
x—-plane. n takes the form (1) of (3.2-8) and the fre-

0 where

guency equation (3.3-1) becomes (3.2-9) on x=el
R(ele)=elY<e) by (A-6) in Appendix A. Further, (3.2-9)
can be written as (3.2-11l) which has the obvious approxi-

mation

i0 (0) ,_i6 .
‘nn(e )| Nep (© )l {3..3-2)
as 6-7m where
n(O)(ele)l = il g TAB) (3.3-2a)
o cos9 2cosg
2 2
The subscript e refers to equivoluminal branches. (3.3-2)
is valid for n=1,2,3,... since |n_[+~ and tanh<|nn|sin%>+l

as 0-m.
This result is extended to the general x-plane by

replacing ele with x and y(6) with -iLogR({y) and recalling
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the form (1) of (3.2-8) for (1 (e ) and n(o)(ele). Then
(0) _ 2nm _ .LogR(x) _
¢ 18 (x) = T:Y l—Igz—x— (3.3-3)

is taken for the first term in the series expansion for

nn(x) as y+-1l. The term is well-defined by taking LogR(x)=

iy (6) when X=ele, 0<é<m. The approximation n_ (x)~ ifx

B=%(l+x)nn~nw, which was mentioned as an asymptotic approx-

gives

imation to the symmetrical branches relating wn(K) to k as

k+». The second term in (3.3-3) is finite as x+-1 with

LogR (y) 2

lim = (3.3-4)
] 1+y 1=y
. , ; (0),._1i6 ,
by (A-4) in Appendix A. The single term |n_/ (e”") | in

(3.3-2a) gives an excellent approximation to the equivolu-

minal branches on X=ele being exact at e=0,e_l and as 0-m.
6_q is defined by (A-la) in Appendix A. The approximation

is so accurate that, on the scale shown in Fig. 9, no

apparent difference exists between inn(ele)l and
nég)(ele) for the symmetrical branches. By comparing

Figs. 6 and 9, it is seen that the fact that Y(6_1)=ﬂ gives

the exact solution at 6=6_, since

nn<eie_l>l i nég)<eie-l>l (n+3 )i

COB8—5—
2
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in agreement with (B.1-12) in Appendix B. Another result
of this good approximation is that succeeding terms in the
series representation must be very small on X=eie

The one-term approximation nn(x)~nég)(x) given by
(3.3-3) also has many of the characteristics of the complex
branches on the real y-axis of Subsection 3.2.3. This is
true both as y»-1 and near the point X=Xg @8 can be seen
by comparing (3.3-3) with (B.3-9) in Appendix B.

The question of a region or sector of convergence of
the series representation is discussed at the end of this
section and it is only assumed here that such a region will
include the circular path x=eie,'0§8§w, as 6-m.

For the purpose of deriving a series representation,
it is convenient to define another variable, gn(x), re-

placing nn(x) by setting

2g_(x)
_ . (0) n _
n,(x) =g, 00 + Tey (3.3-5)
where nég)(x) is given by (3.3-3). There is no reason to

exclude the Rayleigh branch n=0, and (3.3-5) will be taken
for the definition of gn(x) for n=0,1,2,.+« With gn(x)
expected to vanish as y»>-1.

The form (3.3-1) of the symmetrical fregquency equa-

tion then becomes
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—i(l-x)nég)(x) -2Rsing Zi%%ﬁgn
e 5= e
2

(R®+1)sing_ - i(R°-1)cosg_

(3.3-6)

by using (3.3-5). The left side of (3.3-6) approaches zero

exponentially fast as x»-1 in 0<Arg(l+y)<m and, since

2

R“-1=0(| 1+x|) as x»-1 from (A-1), must also approach

et LN
1+y
zero exponentially fast as y»-1 in this sector. The

-1 (1009 (0
Rayleigh branch n=0 is an exception with e *

4

e =V as x»—-1 regardless of Arg(l+y), but this exception

is of very little concern in this work.

The definitions

: (0)
=i (I=%}n (x)
en(x) = e ek i (3.3-7a)

. y i
-2Rsing 21——xg
2 e 1HXTR (3.3-7b)

F(g_,x)
R (R2+l)singn - i(Rz-—l)cosgn

(0)

with e

(x) given by (3.3-3), reduce (3.3-6) to

e, = F(gn,x) . (3.3-8)

For the present B e, Oy and X are thought of as three com-

pletely independent complex variables except that they are
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related by the functional relationship (3.3-8). That is,
the fact that By is a function of x by (3.3-7a) is not
critical in this derivation. F(gn,x), defined by (3.3-7b),

is an analytic function of both 9, and Y with three obvious
. K .
exceptions: 9= x=-1, and tang_=i 5 with s1ngn#0 in
R°+1

the last two cases.
The inverse of (3.3-8) must then exist in any domain

of the X 1€ ~Space in which %§—¢o and F is an analytic func-
n

tion of 9, and y. Furthermore, the representation of the
analytic functionvgn can be taken as a Taylor's series in
€ about en=0 with the coefficients being functions of X.

Thus, a representation of the form

g, = ;Eigéj)(x)sg (3.3-9)

which satisfies (3.3-8) will be sought. The question of
‘the existence of an explicit inverse function has been
answered by the analytic properties of the functional

relationship (3.3-8) and it is left to find the coeffi-
(3)

cients 95

¥y in (3.3~9).

It simplifies the algebra of finding these coeffi-

cients to consider the special case X=ele, 0<6<m, and then
return to the y-plane in general. The form of en(ele) is

not important since it is still considered to be an
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independent complex variable, however, it is listed here

along with F(gn,ele) and from (3.3-7a) and (3.3-7b) they

take the forms -

—(2nﬂ+y)tang

i6 2
en(el ) = e ’
sin 2 tang
F( eie) - 9n _ 9n 2
gnl sin(Y+gn)U °

R(ei6)=eiy(e)

rical frequency equation (3.3-8) then becomes

singn 2gntan%
=—._—‘___._____.___e
€n Sln(Y+gn) !

which can also be written as

6
2g_tanx

QLg e B 2 = —g_cotg_siny - cos
e,’n InCOtILSIY IncesY -

(3.3-11) is expanded in powers of 9, and (3.

(3.3-10a)

(3.3=10b})

from (A-6) has been used again. The symmet-

(3.3=11)

3—9) is

substituted for g, to give relationships for the coeffi-

(3) j

cients 9,

first few of these coefficients are easy to find,

by equating the coefficients of ei. The

but it

becomes increasingly more difficult as more coefficients

are sought. A general recurrence relation can be



=8 5=

{3+l
n

(3) _(3-1)

in terms of 9, 9,

determined which gives g 7

. ,gél) for j=1,2,3,..., however, the form of the general
term as a function only of 6 has not been found. Further
work on the integrals (2.3-15a) will show that only a
finite number of the terms in this series are required to
represent a finite number of wave fronts in the plate;
hence it is not so important to find all of the coeffi-

cients géjz An interesting feature of these coefficients
is that they are independent of the branch number n.

Thus, the coefficients are denoted by géj)Egéj) with the
subscript e added to distinguish these as equivoluminal
coefficients as opposed to the dilatational case, which
will be considered. A few of these coefficients, derived

by the procedure just described, are

(L) _ __:
Ie = -siny ,

(2) _ 1. - 2sin2 8
9e = 251n2Y 2sin Ytansy
ge(3) = —%sin3y + 3sianin2ytan% - 6sin3ytan2% ’

(4) _ 1_. _ ' . b g 0nd 6
D s = 451n4y 4siny <31n3y+351n Y> tan2

+ 165inz\(sinzw-.an29 - -6-£sin4ytan3% . (3.3-12)

2 3
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(3)

& and it is

A pattern does emerge in the form of g

clear that géj)==0(ﬂ—9) as 6-»m for fixed j since Yy (0)=

—iLogR(ele)=I%g(ﬁ—e)+o(ﬂ—e)2 from (A-4). Also, the first
(3)

and last terms in 9e

e

can be written in general as

sinjy and —i%%lj_ siantanj_1% respectively, however,
the other terms become more numerous and complicated as j
increases. It is true that the last term in géj) domi-
nates for j very large and it becomes unbounded as j+» for
a general point 6; however this is of very little conse-
guence in the power series (3.3-9) since the magnitude of
€4 greatly influences convergence.

The symmetrical branches on x=eie, 0<6<m, were de-
n_(e*?)

scribed in Subsection 3.2.2 by the modulus where

g8
2

A% e from (1) of (3.2-8) for the equivo-

)

luminal branches. Thus, from (3.3-2a), (3.3-5), (3.3-9)

nn(ei6)=lnn(e

and (3.3-10a), the series representation for the symmetri-

cal equivoluminal branches is

—j(2nw+y(e))tan%

n_(e*® ] = L |nr + Iye) + X glPe ‘
n S 2 =~ e
cosy j=1
(3.3-13)
n=0,1,2,..., where the first four coefficients g(j) are

e

given in (3.3-12).

Before the series representations are derived for the
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asymmetrical equivoluminal, symmetrical dilatational and
asymmetrical dilatational branches; it is useful to write
the series representation for the symmetrical equivoluminal

branches nn(x) for a point x not necessarily on the unit

circle X=ele. From (3.3-5) and (3.3-9), this series is

written as

. (0) :
o =39 (3=%)T (x)
n, (x) = nég)(x 2: (3)(x )e on , (3.3-14)
j:

n=0,1,2,..., where nég)(x) is given by (3.3-3) and néj)(x)=

T?ig(J)(X) The form (3.3-7a) of en(x) has been used. The
first four coefficients result directly from (3.3-12) by

(3)

replacing ele with x and e’ with R(x) to give 9o (x) and
(3) (vy= (J)
then Mg (x)= 1+X (x). These coefficients are
. 2

(1) i R®-1

Ne (x) = R L4y .
— 2

(2) __1iR°-1[1,.2 _ R°-1

e (X) - R_21+X 2(R +l) (l X)l+x ] y

(3) i r2-1[1, 4. 2 3 |

s W) = =3 1y F(RT+R™+1) - 5(1-x) (R +1)l+x

L,
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i R-11 .

(4) e 1,4 2 a _ 1.2 - R°=1
ng @ X)) = ~ Ty 7 (R +1) (R7+1) 2(1-x) (R7+R +l)1+x
2 2\
1 2 2R"-1 2 @ R™-1
+ ={1=x] (R"-1} Ty + 4(1l-x) (R +l)(l+x )
3
- §(l_ )3 Bill
3 X I+ . {3.3-15)
R2—l .
The term Ty is bounded, except at points where R is un-
g1 4
bounded, and limT_—_=T__ from (A-3) and (A-4) in Appendix A.
] +X -V

The series representation for the asymmetrical equivo-
luminal branches nn(x), n=1,2,3,..., is obtained by simply
replacing R(x) with -R(x) in all of the foregoing expres-
sions. This is valid because the sign of R(x) is the only
difference between the frequency equations (2.2-13) and
(2.2-14). 1In this case the Rayleigh branch n=0 is not
expected to occur in the domain of interest which includes
X=eie, 0<6<m. 1In order to have Renn(x)zo on all branches
n=1,2,3,..., it is necessary to take Log(—R)=LogR;iﬂ which
is equivalent to replacing n with n—l in the definition

2

{3«3-3) GF nég)(x). Therefore, yY(0) is replaced with

Yy(8)=-m on x=ele. In summary, the series representation

for the asymmetrical equivoluminal branches nn(x), n=1,2,

s ey 1S
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-ij(l-x)n(o)l(x)
en—-%
n, 00 =@ 00+ 5 (-1) i e 2 (3.3-16)
en—z j=1

(2n-1) _. LogR(x)
1+y 1+y

where n(o)l(x)— results directly from the

en-—2-
definition (3.3-3) for nég)(x), and the first four coeffi-

<ﬁentsné3)(x) are given by (3.3-15). On x=ele, 0<e<m,

19 1 1 i
n (el)|=—— n-> |7 + 3y (6)
‘ n cos% < 2) 2
6
o j((2n=1)7+y (6) ) tanx
§: -1) g(J < ) 2| (3.3-17)
.0
. 9 ie, | 72
with nn(el )=|n_(e™") |e from (1) of (3.2-8), and the

(3)

first four coefficients Ie are given by (3.3-12).

The symmetrical dilatational branches are now consid-
ered. The series representation of these branches can be
derived in much the same way as was done for the equivo-
luminal branches. However, due to the unusual symmetry of
the frequency equations, these representations for both
the symmetrical and asymmetrical cases can be derived

directly from the equivoluminal representations by simple

changes of variables.
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This comes about as follows for the symmetrical case:
The representation (3.3-14) is an explicit function of ¥
and R which satisfies the symmetrical frequency equation
(2.3-13). This, of course, assumes that all of the co-

(3)

& can be found and that the series converges

efficients n
to Mgy in some domain. Hence, that function can be written

as
n = £(x,R) (3.3-18)

and it is incidental that R is a function of x. It will
be assumed for the time being that x and R are independent
complex variables and then n given by (3.3-18) satisfies

the equation
sinn = -Rsinyn (3.3-19)

on some domain D in the y,R-space. (3.3-19) includes the
symmetrical frequency equation as the special case where
R=R(x) given by (2.3-12a). Now, if the mappings x+—% and

R+—% are carried out,

sin[f(x,R)] = =Rsin[x£f(x,R)]

becomes
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which can be written as

Thus, the function
= _£f<Ja_l> (3.3-20)

satisfies the same equation (3.3-19) as does f{x,R). 1In
this case, n given by (3.3-20) satisfies (3.3-19) on the
domain D—'l which is the mapping of D under x+-% and Rﬁ—%
in the x ,R-space. Setting R=R(X), this means that n given
by (3.3-20) is an equally good solution of the symmetrical
frequency equation.

16

For the special case when yx=e™ ", 0<6<m, (3.3-18) for

the symmetrical equivoluminal branches becomes
. 0
—l-_..

2

9, = £le*? & = @ £le? o173 (5, 3m315

n (e
where form (1) of (3.2-8) has been used. The changes
indicated by (3.3-20) are applied to (3.3-21) for
f(ele,elY), with X*‘% and R+—% being equivalent to 6-+7m-0

and y-»m-y respectively, to give new solutions
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. T—6
R 0 Gt R s
n(elf) o _emi0, T2 |f< (m=6) i(m Y))' .
;8
2|f<el(“"e),el(“'Y))| (3. 3=32)
on x=elen Hence, the new set of branches obtained in this

manner must be the symmetrical dilatational branches since
(3.3-22) is identical with form (2) of (3.2-8).

The changes indicated by (3.3-20) are carried out on
(3.3-14) where the right side of that equation is taken to
be f(x,R). Replacing n with m and using the subscript d
to distinguish these as dilatational branches, this opera-

tion gives the series representation

(0)
ik (I+xIn g ()
n (0 = 0o+ Eln(k) e et (3.3-23)

Afor the symmetrical dilatational branches nm(x), m=0,1,2,

..., Where n(o)( ) =—= [ ég)(x)} -1 with the indicated
b G

X

R

4

n--m

changes applying only to Ng )(x) given by (3.3-3). By

taking Log(—%>=lw—LogR, this gives

(0

(2m+1) LogR ()
ndm

) _ . "
lh ==l ¢ . (3.3-24)




-94-

(k
d

same operations indicated by (3.3-20) on the coefficients

(

The coefficients n )(X) are obtained by performing the

n j)()() given by (3.3-15). Thus, the first four coeffi-

e
cientsnék)(x) to be used in (3.3-23) are
2 : 2
(1) 1 . (1-R“) (=x) i 1-R
n (x) = -~[—1R ] = v v
d X R2(l—x) R 1-x
; 2 [ 2
(2) _ i 1-rR*|1,,,.2 1-R
ng X)) = =2 Ty 5 (L+R%) + (l+x)1:§—} '
(3) () = -4 LR ——1—(1+R2+R4) + 3 (1) (1R LB
Ng X =3 % |3 2T 1
2
2
3 2({1-R
i (1—_;)] '
) h = el 1-R? Liter® (14R%) + 201+ )(1+R2+R“)ﬂ3
Na 0T TTE Tox |3 X 1-
2
2 2 2
i _52,° 1-R 2 2,(1-R
.341+p(1 R“) T + 4 (1+y) “(1+R )(I:§_>
2 3
8 3(1-R _
+ 3 (1+x) <T:§_) } . (3.3-25)
The series for nm(ele) , the modulus of the symmetri-

16

cal dilatational branches on x=e™ , can be obtained from
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(3.3-13) by simply making the changes 6-»1-6 and y»m-y in
that expression. This is true since the term —%=-e~le

multiplying £ in (3.3-~20) has unity modulus. Thus, since

8+1=-6 implies that cos%*sin% and tan%+cot%,and YT =y

implies that sinjy+(-l)3+lsinjy, the series representation

for the symmetrical dilatational branches, nm(ele)=

_i8
Nl © 2, m=0,1,2,..., On X=ele is

.

ig | _ 1 1
,nm(e ) I = '————e" <m+~2—)'rr —2’Y(6)
Sll’_l_'z—

((2m+1)—y(e>)cot%

® -k
+ Zgék)e (3.3‘26)
k=1

as obtained from (3.3-13). The first four coefficients

_gék) in (3.3-26) result from (3.3-12) in the same manner

and they are

1 .
‘gé ) = -siny
(2 L s y 2 6
a ? = -3sin2y - 2sin®ycots 2
gc%3) - —%sin3y - 3sinysin2ycot—g— = 65in3Ycot2—62— v



(4) _ _1_. _ : . . 6
94 = 451n4y 451ny(s1n3y+351n Y)cot2
= l6sin2ysin2ycot?%-— ggsin4ycof3% . (3.3-27)

The series representation for the asymmetrical dilata-
tional branches, nm(x), m=1,2,3,..., is obtained by replac-
ing R(yx) with -R(x) in all of the expressions for the sym-
metrical dilatational branches. In this case Log(-R)=

LogR+iT is taken so that all branches with Renm(x)zo for
n=1,2,3,... are included. On x=ele, vy(6) is replaced with
y(6)+m. Thus, the series representation for the asymmetri-

cal dilatational branches is

1k(l+x)n(0) {x)
an~3

n 0 =n'® 0+ 2 -1 e ,
dm—f (3.3-28)

m=l,2,3;«++; With néo)(x) given by (3.3-24) and the first

four coefficients ndk)(x) given by (3.3-25). Likewise, on

X=ele, Oieﬁ’ﬂ',

‘n (eie)' L mT - %y(e)
" sin§

k<2mn—y(e)>cot%

+ T -nig{Fe (3.3-29)
k=1
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_i8
2

le by form (2) of (3.2-8) and the
(k)

first four coefficients g4 are given by (3.3-27).

n (')

where nm(ele)=i

The forms of the representations (3.3-23) and (3.3-28)
for the symmetrical and asymmetrical dilatational branches
respectively show that there is no chance of convergence on
the real y-axis. In fact, these series are complex for ¥
real and only real branches are possible on g%%gxgl. Also,
the individual terms in the series seem to increase in mag-
nitude as k increases. This is contrasted with the repre-
sentations for the equivoluminal branches which seem to
converge to the complex branches on some of the interval
-1l<x<0. This difference can be shown to be closely related
to the distribution of branch points near the points x=1,-L

The derivation of these representations has revealed a
very significant symmetry of the branches of the Rayleigh-
Lamb frequency equations. This symmetry is evident in the
close relationship between the equivoluminal and dilata-
tional branches as demonstrated by (3.3-18) and (3.3-20),
and it is not necessary to derive the series representa-
tions to find this relationship. Symmetries have long been
known to exist between the symmetrical and asymmetricél
branches, shown in this work by replacing R(x) with -R(x) .,

but the lack of any equivoluminal-dilatational symmetry

has been a troublesome aspect in modal solutions. The
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only part of the frequency spectrum with both w and k real
which seems to be related to dilatational waves is a por-
tion in the dilatational sector (2.3-10) where the branches
are terraced and very dissimilar to the branches in the
shear sector (2.3-11). However, this symmetry between
branches with an equivoluminal singularity and those with

a dilatational singularity is not really surprising. Once
the dilatational branches have been identified and sketched,
it is almost obvious in Figs. 9 and 10 that the equivolumi-
nal and dilatational branches are closely related. Also,
on physical grounds, there is a great similarity between
the geometry and form of the dilatational and equivoluminal
wave fronts, which will be found to be closely identified
with the dilatational and equivoluminal branches.

Convergence of the series representations that were
derived in this section can be shown on certain regions in
the y~-plane by a lengthy method, which is not included
here. Instead, the method is described briefly and the
results are listed.

Uniform convergence of the series representations can
be shown on certain regions by taking advantage of the
similarity between series such as (3.3-9) and a Taylof's
series in powers of € Actually, (3.3-9) is not a
Taylor's series since both €n and the coefficients géj)(x)

are functions of Y.
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As might be expected, the region of convergence of the
series is determined by the location .of the branch points
and other singular points of the branches n. The region of
convergence is then determined by locating the singularity

(3)

s (x) in

"nearest" to €n=0. However, since both €h and g
(3.3-9) are functions of y, the term "nearest" must be
interpreted very carefully. This fact makes the problem
quite difficult and too lengthy to include here.
Convergence of the series representations is only con-

sidered on X=ele

» 0<b<m, and on the path C,, which is de-
scribed at the end of Appendix A. These paths are good
choices for possible alternate integration paths for the
modal solution (2.3-15), and they are convenient to investi-
~gate due to the simple forms of R(x) given by (A-6) and
(A-8) in Appendix A.

The results for convergence are listed below.

The series (3.3-14) for the symmetrical equivoluminal
branch n=0 (the symmetrical Rayleigh branch) converges
uniformly with respect to x=eie on any closed segment in-
terior to 8,<6<m. 9, is defined by (2.3-8).

The series (3.3-23) for the symmetrical dilatational
branch m=0 converges uniformly with respect to x=eie on

any closed segment interior to 0<06<8 In B.1l of Appendix

0°
B it is shown that the symmetrical Rayleigh branch n=0 and

the symmetrical dilatational branch m=0 share a branch
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point at Xg=e . This branch point determines the limit

6=6, of these regions of uniform convergence.

0

The series (3.3-14) for the symmetrical equivoluminal
branches n=1,2,3,... and the series (3.3-16) for the asym-
metrical equivoluminal branches m=1,2,3,... converge uni-
formly with respect to x=eie on any closed segment interior
to 0<6<m.

The series (3.3-23) for the symmetrical dilatational
branches m=1,2,3,... and the series (3.3-28) for the asym-
metrical dilatational branches m=1,2,3,... converge uni-
formly with respect to x=eie on any closed segment interior
to 0<é<m.

None of the series representations converge on all of
the path Cl’ which has the endpoints X=§£% and X_1 given
by (A-la) in Appendix A. However, as the branch number, n
for the equivoluminal branches and m for the dilatational
branches, increases the series representations converge

uniformly with respect to XE:Cl on a larger and larger

closed segment of Cl which includes the endpoint X-1 and

approaches the endpoint x=§%%o A conclusion, which can be
verified by investigating the branch points near x=§%f’ is

that the extent of the region of uniform convergence is
determined by the location of branch points on or near C,

which are common to the branch n in question.
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This result for uniform convergence on Cl is precisely
that which is required since this work involves the high-
frequency response of a plate. As such, calculations are
necessary which require an approximation that improves in
accuracy as the branch number and, hence, the frequency

increases.
3.4. ANALYTIC CONTINUATIONS OF THE BRANCHES

The purpose of this section is to incorporate the in-
formation already derivea about the branches in this chap-
ter. Specifically, analytic continuations will be used to
continue the branches n on a closed curve consisting of the
boundary of the upper half unit disk (|x|<l, Imx>0) with
the singularities on the boundary being excluded. Also, by
excluding the branch points which are interior to tﬁe half
disk, the branches become single-valued, analytic functions
of x on the closed curve. The branches as a function of ¥
are described in Section 3.2 for all of this boundary and
the branch points are described in Section 3.1l. Analytic
continuations about each of the particular classes of
branch points and continuations about the aforementioned
closed curve are described in this section. Referencé is
made to Appendix C where supplementary material is given
for the continuations and continuations for specific

branches are described.
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3.4.1. Analytic Continuations About the Branch Points.

In this subsection the nature of the analytic continu-
ations of the branches of the frequency equations about
their branch points is investigated by varying Poisson's
ratio v. This causes many of the branch points to migrate
onto the real y-axis where they are much easier to under-
stand. In this context, the nature of the analytic contin-
uations about the branch points merely means the knowledge
of which branches are common to the particular branch
points. It is recalled from Subsection 3.1.2 that each
branch point is common to only two branches.

An argument was given in Subsection 3.1.1 showing that
the branches n are analytic functions of Poisson's ratio v
as well as being analytic functions of x. Hence, Vv is
varied and the fact that the position of all the branch
points, except the branch point of the asymmetrical
Rayleigh branch at x=0, are functions of n makes it pos-
sible to bring many of these points into view on the real
x—axis. The analyticity of the branches n with respect to
v insures that the nature of the branches remains generally
the same as v is varied. Specifically, given branch points
continue to be shared by the same twc branches.

From Subsection 3.1.3 and from Figs. 7 and B, branch

points are plainly visible and easily understood on the
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segment 0<x< +i of the real x-axis. Also, from (2.1-2)

~giving a as a function of v, the point

a;i = /2(1-v) = V1-2v _ 5 _ 40 L 3G (1~3v) (3.4-1)
& vY2(1-v) + V/1-2v

4 ' . : i) :
is an increasing function of v for Ogvgi. Hence, increas-

to increase to 1 and the interval

ing n to % causes S:I
containing branch points on the real y-axis becomes 0<x<l.

The branches are sketched on the interval 0<x<l for
v=% in Fig. 13. The general behavior of the branches re-
mains essentially the same on -1<x<0 and on x=eie, 0<b<m,
for all of the range Ogvg% with no change in the number of
branch points.

The transition of the branches which occurs as v in-
creases toward % is caused by the merging of the branch
points from "the set of positive branch points" of Subsec-
tion 3.1.3 with their complex conjugates. As v continues
to increase, the complex conjugate pairs then separate and
+i This can be visualized in Fig. 8 for

various pairs of branches. For example, the symmetrical

remain on O<y<—=

branches Ny and Ng approach in a maximum on Ny and a mini-

+i A slight increase in v over the

value v=0.3 in Fig. 8 will cause branch points common to

mum on T‘|5 near xX=——,=

Ny and g to merge on the real x-axis near x—a+i, hence,
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Ny and Ng also merge at this point and, as described in
Subsection 3.1.2, the branch points cancel and leave the
branches analytic at this point. A further increase in v

will cause these branch points to separate and remain on

gl : . :
O<X§5:I on the real yx-axis. Ny and Ny will then be left
connected by one of the branch points, as are the symmetri-
_a~L : 5
cal branches Ng and N,p near x=_77 in Fig. 8. By this

method, branch points common to Ny and ng are identified as
(+,1,4) from "the set of positive branch points" and as
(+,2,5) which is the complex conjugate of (+,1,4) for
v=0.3. The triplets (%,3j,k) identify these branch points

as zeros of the function A# in (3.1-9).

jk

The transition just described has occurred for all of
the branch points which are seen on 0<x<l in Fig. 13 as v
increased to v=%. These branch points are identified as
the vertical tangents where %%=w in Fig. 13 and they are
circled and labeled with the triplets (*,j,k) to identify
them as zeros of the functions A;k i {3:1-8) s

For v=% all of the branch points from "the set of
positive branch points" have migrated onto the segment
O<x<1l of the real y-axis with the exception of an infinite
subset of branch points. Before discussing this subsét,

the nature of the branch points which do migrate onto the

real y-axis can be described by comparing Figs. 8 and 13.



= 110 5

All of the branch points (+,3j,k) with i(—l)k

=+1, which
migrate onto the real y-axis as Vv increases to v=l, are
common to the real branches nk and U Referring to
Subsection 3.1.3, i(—l)k=+l identifies these as branch
points from "the set of positive branch points" and they
are common to symmetrical branches if j+k is odd while they
are common to asymmetrical branches if j+k is even.

The previously mentioned subset of branch points which
remains off the real y—axis is just "the set of positive
branch points" for v=%. The identification of these branch
points by the triplets (*,j,k) depends on the definition of
the functions A?k from (3.1-9). This definition is made
precise by specifying the branch cut to the logarithmic
branch point at Xo1 which is common to all of the functions
Ajk‘ X1 is located as shown in Fig. 4 for v=%. In Fig,
13 for v=% the choice of this branch cut is indicated by a
vertical line at x=0.6 which represents the intersection of
the real y-axis and the branch cut to Xo1* This is chosen
guite arbitrarily so as to avoid the lower branch points
on 0<x<l. This being the case, "the set of positive branch
points" for v=% which remain off the real yx-axis are
identified by the triplets (-,2,1), (+,3,2), (—,2,3),v
(+,3,4), (-,4,5), etc., for the symmetrical branches and

by (—llll)l (+12/2)1 (_1313)r (+I4I4).7 ("1315)7 etc., for

the asymmetrical branches.
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"The set of negative branch points" of Subsection
3.1.3 does not appear on the real yx-axis for v=%. These
branch points are investigated in the following by letting
V exceed %.

There is no physical reason to consider values of
Poisson's ratio v exceeding %, however, the branches are
analytic functions of v for v>% and they can be studied
for any range of v. For %<v<l the branches remain essen-

tially the same as they were for v=% with no more branch

points appearing on the real x-axis or on |x|=1. The point

a-1 )

:__;:1—- with 0<6<m caus-

~given by (3.4-1) does move onto x=ei
ing some change in the branches.

The limiting case v=1 causes many thingsto happen to
the branches. All of the points g%%, Xgrr Xg1r X-1 and Xg
and their inverses and complex conjugates have merged to
X=-1 leaving R=% from (2.3-12a). The frequency equations
then become sinn=i%sinxn. The first obvious result is that
the branches n are now even functions of ¥x.

The branches are sketched in Fig. 13 for v=1 on 0<x<1l
beside the case v=% for comparison. The sketch is also
valid for -1<x<0 by just replacing X by -x because the
branches are even functions of Y.

A result, which is of no importance here, is that the

asymmetrical Rayleigh branch n,(x) and the asymmetrical
0

branch nl(x), which shared the branch point at x=0, have
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become identically zero for v=1l.

The reason for looking at the branches for v=1l is
apparent from Fig. 13. The branch points on 0<x<1l for
l5v<l have merged together in pairs to form third order

2

2 3
branch points with g§=§_§=o#§_§ at the points. For example,
dn dn

the two symmetrical branch points (+,1,2) and (-,1,2) in
Pig. 13 for v=% have merged at x=% and n=2m for v=1, the
two asymmetrical branch points (-,1,3) and (+,1,3) have
merged at x=% and n=37m, etc. More importantly, the situa-
tion is the same on -1<x<0 for v=1 since the branches are
even functions of x; therefore, "the set of negative branch
points" have merged with their complex conjugates on that
segment of the real x-axis.

Now all of the branch points have been located since
the branches have no branch points other than those on the
real yx-axis for v=1. This can be seen by setting R=% in
(3.1-7a) to give T'=0 and A%

Jk ,
zeros of A?k, which are also branch points of the branches,

=k-f%; from (3.1-9) so that

occur only at X=% with n=km resulting from (3.1-7). This

value of n causes sinn to vanish in (3.1-11) to explain how

2
g—§=0 comes about at the branch points.
dn

This discussion has not explained what has happened to

"the set of positive branch points” for v=%, which remained

off the real x-axis as v+%. These branch points have
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migrated toward x=-1 as v+l and at v=1 they merge with their
complex conjugates at x=-1 to cancel each other and leave
the branches n analytic except for the branch points al-
ready discussed.

The nature of the branch points belonging to "the set
of negative branch points" is not apparent even though they
have migrated onto the real x-axis for v=1. These branch
points are investigated in C.l1 of Appendix C where the fre-
guency equations are approximated under the assumption that
Poisson's ratio v is slightly less than v=1.

The result of great importance ﬁhich is found in C.1
is that only the complex branches with Imn>0 have branch
points belonging to "the set of negative branch points" and
these branch points are shared with real branches on -1<x<0.
The complex branches with Imn<0 have no branch points from
"the set of negative branch points" and, in fact, these
complex branches share branch points with the real branches
on -1<x<0 which are the complex conjugates of branch points
from this set.

It is interesting that the form of the branch points,
which occur on the real y-axis or in complex conjugate
pairs adjacent to the real x—-axis, is related to the bounds
on R(x) and xR(x) given by (A-5) in Appendix A. That is,

o §£%<x<l where -1<R<l and -1l<xR<1l, the branch points are
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in complex conjugate pairs which are common to neighboring
real branches. On 0<X§§%% where R>1 and -1<xR<1l, the

branch points are in pairs on the real y—-axis and they are
common to complex loops and real branches. On -1<yx<0 where

l<l and —l<[xR]_l

-1<[R]~ <1, the branch points are in com-
plex conjugate pairs with the upper branch points (Imy>0)
common to the real branches and only the complex branches
with Imn>0.

Continuations about the singular points x=-1 and x=1
of the equivoluminal and dilatational branches respectively
are described in C.2 of Appendix C. There it is found that
the equivoluminal branches on x=eie, 0<6<m, continue about
X=-1 onto the complex branches with Imn<0 on -1<y<0. The
complex branches with Imn>0 continue about yx=-1 onto the
dilatational branches on x=eie, 0<6<m. This difference is
a result of the nature of the branch points from "the set
of negative branch points," which was just discussed.

Not surprisingly, the dilatational branches continue
about x=1 onto the real branches on g%%<x<l since these are
the only branches on this segment of the real x-axis.

These continuations of the equivoluminal and dilata-
tional branches provide information about the branch points
near x=-1 and x=1.

Additional information about the branch points can be

gained by approximating the function A?k in (3.1-9) in a
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Taylor's series about X=-1 and x=1l. The zeros of the

+ "
approximated function A7, then gives the approximate loca-

jk
tion of branch points near these points. Sets of branch
points corresponding to j fixed and k large and varying are
found corresponding to the triplets (+,j,k). Obviously,
these sets become infinite as k»+~ and it is found that
they have limit points at x=1l. For i(—l)k=+l and the
appropriate requirements on j and k, these branch points
belong to "the set of positive branch points," which were
found to be common to neighboring real branches, Ny and

Nyt 7 for k fixed and j varying. These branch points are
also common to the dilatational branch nj for j fixed and

k varying.

Likewise, "the set of negative branch points,”

repre-
sented by (+,3j,k) with i(—l)k=+l and j=-1,-2,-3,..., was
found to be common to real and complex branches as de-
scribed. For j fixed and k varying, the approximate loca-
tion of these branch points shows that the infinite sets as
k+» have limit points at x=-1. The abundance of these
branch points near the real y-axis as yx>-1 is reflected by
the rapid oscillation of the imaginary part of n on the

complex branches.

The details of the local analytic continuation about

2
a branch point where %%=0 and é—%#o, which includes all but
dn :
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a few branch points, is given by (3.1-13); thus, the nature
of any branch point can now be understood so that analytic

continuations can proceed.
3.4.2. Analytic Continuations on a Closed Path.

A discussion of analytic continuations of a general
branch of either frequency equation is given in this sub-~
section. In C.3 of Appendix C, "the set of positive branch
points" for v=%, which were not satisfactorily explained in
Subsection 3.4.1, are examined by using these analytic con-
tinuations on a closed path. The conclusions of the present
subsection are based on the analytic continuations of three
specific branches of the frequency equations corresponding
to a closed path in the x-plane, which are described in C.4
cf Appendix C.

The continuations of the branches are conformal map-
pings since the branches n are analytic functions of x and
they are single-valued mappings if no singular points of n
are interior to or on the closed path in the y-plane.

The paths for the analytic continuations described
here and in C.4 of Appendix C consist of the boundary of
the upper half unit disk (|x]|<l, Imy>0) taken in a counter-
clockwise direction with all of the branch points of the

branch in question excluded by making indentions about the
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points and their branch cuts. The branch cuts can be taken
perpendicular to the real x—-axis for convenience.
The continuation illustrated by Figs. 14 and 15 in-

volves the symmetrical branch ny at x=
i6

a+l' the symmetrical

dilatational branch no on x=e  , 0<6<80, and the symmetri-

cal eguivoluminal branch g (the symmetrical Rayleigh

branch) on x=ele, 0p<O2m. This analytic continuation is

explained in C.4 of Appendix C. The point x0=e190 is de-
fined by (2.3-8) and it is a branch point common to these
two branches on X=eie as is seen from (B.1-1) in Appendix
B.

Similarly, Figs. 16 and 17 illustrate a continuation
which involves the asymmetrical branch nl at x=—= +i
asymmetrical dilatational branch n, on x=e 6’ 0<6<m; and

and the

Figs. 18 and 19 illustrate a continuation which involves

==,
a+l

equivoluminal branch N, on x=ele, 0<6<m. These analytic

the symmetrical branch ng at x— and the symmetrical
continuations are also explained in C.4 of Appendix C.

Continuations involving branches with higher branch
numbers follow from the last two examples in C.4 of Appen-
dix C with the only difference being that more branch
points are involved. However, the details of continuations
about individual branch points is the same.

It is noted that the continuation described by Figs.

16 and 17 is called a dilatational continuation while the
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continuation described by Figs. 18 and 19 is called an
equivoluminal continuation. These names for the continua-
tions are explained as follows: If a given real branch is
continued in the y-plane, as shown in Figs. 16 and 18, so
that the path circles all of the branch points from "the
set of positive branch points™ which are common to this
continuation of the branch, then it is called a dilata-

tional continuation if the branch continues onto a dilata-

i0

tional branch on yx=e™ ™, 0<6<m. Likewise, it .is called an

equivoluminal continuation if the branch continues onto an

equivoluminal branch on X=ele

;+ 0<6<m. These names are used
both for continuations on closed paths, as in Figs. 16 and
18, and also for unclosed paths.

The continuation described by Figs. 14 and 15 is not
designated in this manner simply because it involves both a

0

dilatational and an equivoluminal branch on X=el , 0<é<m.

However, this is the only such case s;nce only these
branches share a branch point on x=ei9, 0<6<mw.

A point of interest is that equivoluminal continua-
tions involve branch points from "the set of positive
branch points" which have j+k constant while dilatational
continuations involve those with k-3j constant. This
assumes that the branch pointé are designated by the tri-
plets (£,j,k) so that they are alsoc zeros of the functions

*
AL

Sk in (3-1~8]).
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In Fig. 20 the branch points from "the set of positive

branch points," which are common to neighboring real

branches, are shown on —I%<x<l The branch points in Fig.
20 are designated by points on vertical lines connecting
the real branches which share the branch points. Some of
the points are labeled by the triplets (%,j,k) identifying
them as zeros of the functions Agk in (3.1-9).

Fig. 20 serves to illustrate the equivoluminal and
dilatational continuations. If continuations about the
branch points, as in Figs. 16 and 18, are visualized, an
equivoluminal continuation involves starting at x-——% on a
real branch nn(x), such as the symmetrical branches N3y
NgrNgres- OF the asymmetfical branches NorNgrNgiMgsMgreces
and stair-stepping down a branch at every branch point
encountered by continuing toward x=1 on the real x-axis.
Similarly, a dilatational continuation involves starting
+i on a real branch nn(x), such as the symmetrical
branches NysNysMysMagsree. OF the asymmetrical branches

at x=—r—~

NyrMgrMNgresey and stair-stepping up a branch at every
branch point encountered by continuing toward x=1 on the
real y-axis.

A close relationship exists between the type of con-
tinuation just described and the value of the real branch

at y=2o 2-1  For all but a few of the lowest branches (this
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depends on the value of v), those branches which take the

values at X=§%% given by the first of (B.1l-5) in Appendix B

or by the first of (B.1l-6) lead to equivoluminal continua-

tions. Likewise, those branches which take the values at

Tatl

(B.1-6) lead to dilatational continuations.

given by the second of (B.1-5) or by the second of
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CHAPTER 4

THE APPROXIMATE REPRESENTATION OF THE

HIGH-FREQUENCY RESPONSE

The modal solution (2.3-15) can now be replaced by an
equivalent representation which makes the high-frequency
response much more accessible. By utilizing the analytic
continuations of Section 3.4, the modal solution is found
to be equivalent to integrals over the integration paths
Cg and < in Fig. 21, and these integrals involve the
equivoluminal and dilatational branches from Subsection
3.2.2 respectively. The series representations in Section
3.3 for the equivoluminal and dilatational branches are
then used in these integrals to obtain approximations to
the high-frequency response of the plate. The geometry of
the resulting wave fronts in the plate is shown in Fig. 22
and a discussion is given relating the various wave fronts
to the frequency spectrum in the X ,n-space or in the w,Kk-
space.

This method requires expansions of the integrands,
which are much like those used by Rosenfeld and Miklowitz
[1] to obtain wave front expansions. However, relatively
convenient representations of the high-frequency response

are found here, which appear to be valid without the
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restriction of nearness to the wave front as is required
for wave front expansons.

A specific representation is further approximated near
a wave front to make a comparison with an amplitude in the

wave front expansion given by Rosenfeld [13].

4.1. THE MODAL SOLUTION ON THE EQUIVOLUMINAL AND

DILATATIONAL BRANCHES

In this section the modal solution (2.3-15), with the
exception of the Rayleigh modes n=0, is shown to be equi-
valent to a sum of integrals over the equivoluminal
branches plus a sum of integrals over the dilatational
branches of Subsection 3.2.2. This is done so as to make
use of the series representations in Section 3.3 to approx-
imate the high-frequency response of the plate. The
Rayleigh modes are not included because this method offers
no advantage over the usual w,k representation for these
modes.

The integrals (2.3-15a) separate into two parts con-
sisting of that part which results from the dilatational
potential ¢ through the first term in each of the func-
tions U in (2.3-~16) and that part which results from the
equivoluminal potential Y through the second term in each

of the functions U.



=118=

With some foresight about the task of identifying the
wave fronts, it is helpful, and perhaps necessary, to write
those parts of the integrals (2.3-15a) which result from
the dilatational potential ¢ as the imaginary part of

integrals of the form

j[F¢(X,nn(x),;)sin(wr)eiKde . (4.i—la)
C

Similarly, those parts of (2.3-15a) which result from the
equivoluminal potential Yy are written as the imaginary part

of integrals of the form

sin (k&) iwT
F (x._.(X),2) e "dx . (4.1-1b)
g ¥ m

cos (kE)

In both (4.1-la) and (4.1-1b), C is the integration path
shown in Fig. 2 and k and w are given by (2.3-7) with
n=nn(x), n=1,2,3,... . The bracket term in (4.1-1b) just
means that either sin(k§) or cos (k) may occur in the
integrand as in (2.3-15a). These forms are to be used to
examine the response of the right half of the plate, £>0.
As was mentioned, the representation (2.3-15) is not
a form which readily yields information about the wave
fronts or about the high-frequency response in general.
Thus, it is expected to be advantageous to write the re-

sponse as a sum of integrals over the equivoluminal and
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dilatational branches since these branches seem closely
related to the equivoluminal and dilatational wave fronts
respectiVely.

By using the forms (4.l1-la) and (4.1-1b), either the
symmetrical or asymmetrical parts of the representation

(2.3-15) can be written as the imaginary part of

00 ; sin (k&) .
2, {Fq)sin(wr)elKg + Fw[ ]ele]dx
n=1 c cos (KE)

E

o . sin(kg)] .
+ 2 ./ﬂ [Fcbsin(un)elKg + FW[ ]ele}dx (4.1-2)
m=0,1 C cos (k&)

D

where the integration paths Ck and CD are shown in the
first sketch of Fig. 21. The justification of the equiva-
lence of (4.1-2) and the modal solution (2.3-15) will be
given shortly. OnCE,F$EF¢(ann(X),C) and sz
Fw(x,nn(x),c) where nn(x), n=1,2,3,..., are the equivc-
luminal branches shown in Fig. 9 or analytic continuations

of these branches. On Cp, F¢EF¢(x,nm(X),C) and F

wz
Fw(x,nm(x),c) where nm(x) are the dilatational branches
shown in Fig. 10 or analytic continuations of these
branches. The lower limit on the sum in the second term

of (4.1-2) is from m=0 for the symmetrical case and from

m=1 for the asymmetrical case. Again, w and K are given
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by (2.3-7) with n=nn(x) being the equivoluminal branches in
the first integral of (4.1-2) and n=nm(x) being the dila-

tational branches in the second integral.

The first sketch of Fig. 21 shows Cp going from ngi%
i6_
to x_;=e given by (A-la) on the path C; on which [R|=1

as discussed in Appendix A. From X_1r C,. proceeds counter-

E

clockwise on the unit circle |x|=1 to the point x=-1. C
is meant to be such that all of the branch poihts common to
the particular equivoluminal branch nn(x) which belong to
"the set of positive branch points" of Subsection 3.1.3 are
to the right of the portion of CE from x=g£% to X=X_;-
Likewise, all of the branch points common to the particular
branch which belong to "the set of negative branch points"”
should be to the left of this portion of Cg- If this is
not possible due to the location of some of the branch
points, small indentions can be made in CE so as to leave
all of these branch points on the prdper side of the inte-
gration path.

The first sketch of Fig. 21 also shows the integration
path Ch going from x=g£% to X_q exactly as did Cq and the
same comments hold for those branch points common to the
particular dilatational branch nm(x)n CD then continues

clockwise on the unit circle |x|=1 toward the point x=1.

A small indention in CD about x=1 must be included because



=] 21

the integrals in (4.1-2) fail to exist for certain values
of £,z,T as 6-+0 on x=ele, 0<6<m. This difficulty can be
seen from (2.3-7), (3.2-8) and Fig. 10 showing that on the

dilatational branches w=i|w| and k=i|k| with both w and «

unbounded as 6+0 on x=ele, 0<6<m, and lig%=a. a is the
0+
ratio of velocities given by (2.1-2). The indention in CD

passes above all of the branch points from "the set of
positive branch points"” which are common to the particular
dilatational branch nm(x). Yet Cj approaches x=1 tangent
to the real x-axis. This is possible since the locus of
this infinite set of branch points is also tangent to the
real y-axis.

Justification of the equivalence of the representa-
tions (4.1-2) and (2.3-15) still requires considerable
explanation. This is not done rigorously since it involves
rearranging infinite series which are not expected to con-
verge everywhere due to the presence of singular wave
fronts. However, the representation (4.1-2) can be shown
to involve precisely the same integrals over the same
branches as does (2.3-15) and that is done in the following.

For each equivoluminal branch, the path CE is de-
formed onto the real y-axis and the unit circle x=eie,
0<6<m. This is done as in Fig. 18 so that the deformed

path goes from X=§%% along the real X-axis in a positive
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direction with vertical indentions for the branch points
from "the set of positive branch points" which are common
to this particular equivoluminal branch. Finally, x=1 is
reached and the deformed path remains on x=eie, 0<e<m, to
the end point x=-1.

Likewise, the integration path C is deformed onto the
+i<x<l of the real x-axis for each dilatational

branch with similar vertical indentions for the branch

segment =

points common to the particular branch. Examples of these
deformations of Cp are shown in Figs. 14 and 16 from x= +i
to x=1.

By the Cauchy-Goursat theorem, these deformations of
the integration paths Cg and Ch do not change the wvalues
of the integrals.

(4.1-2) is then equivalent to sums of integrals over
all equivoluminal and dilatational continuations df the
branches N, (x), n=1,2,3,..., with the equivoluminal contin-
uations extending from x= —;% to x=1 and then to x=-1 while
the dilatational continuations extend from X == +i to x=1.
The eguivoluminal and dilatational continuations are de-
fined in Subsection 3.4.2 and examples are shown in Figs.
19 and 17 respectively.

(4.1-2) then involves integrals over all of the

equivoluminal branches on x=ele, 0<6<m, which is identical

on both C in (2.3-15) and the path CE deformed as described
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for (4.1-2). This portion of the integrals is then identi-
cal in (2.3-15) and (4.1-2).

The remaining portion of (4.1-2) involves integrals
over the equivoluminal and dilatational continuations of
l<x<l plus the branch

a+1l
line integrals around the various branch points from "the

all branches nn(x), n=1,;2,3;¢+.,; 0ON 8

set of positive branch points.". Referring to Fig. 20 and
to the description of equivoluminal ahd dilatational con-
i to x=1 which is given in Subsection
3.4.2, it is seen that (4.1-2), with the paths CE and C

tinuations from X“

D
deformed, covers every portion of every real branch on

a-1

a+l<X<l This fact along with the fact that the equivo-

luminal branches are covered on x=eie, 0<6<m, means that
the same branches have been covered in (4.1-2) as have been
in (2.3-15).

Only the integrals on the indentions about the branch
i<x<l as shown in Figs. 14, 16 and 18

remain. Every branch point belonging to "the set of posi-

points adjacent to

tive branch points" is easily seen from Fig. 20 to be in-
volved twice in these integrals--once on an eguivoluminal
branch and once on a dilatational branch. It is then a
simple matter to show that the two branch line integrals
about a particular branch point cancel each other.. The
integrals on the small circular paths can also be shown

to cancel. Also, by making a simple expansion about the
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branch points and by using (3.1-13) it is seen that cosnt
1
XRcosXﬂ=O<|X—Xc‘2> near a branch point X=Xg* Since

(cosniXRcosxn)_l are the only singular terms at the branch
points in the integrands of (2.3-15a), the integrals on the
small circular paths give zero contribution as the paths
are shrunk to the branch point.

Thus, (4.1-2) results from (2.3-15) by a rearrangement
of the series representation. The representation (4.1-2)
is taken as the response of the plate to the loading
(2.1-7). To justify this form as a solution of the govern-
ing equations of motion (2.1-4) requires the procedure dis-

cussed at the end of Section 2.2.
4.2. THE HIGH-FREQUENCY APPROXIMATION
4.2.1. The High-Frequency Expansion of the Modal Solution.

The representation (4.1-2) is to be approximated by
using the series representations for the equivoluminal and
dilatational branches from Section 3.3.

Before proceeding with this approximation, it is con-
venient to write portiocns of the integrands of (4.1-2) or
(2.3-15a) as sums of exponential functions. A product of

the terms sin(wr)elKE and the first terms of U in (2.3-16)

sin(kg) it
e and the second terms of U are required.

and of [
cos (k§)
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In order to write these products, the phase functions

® and VY

I} Q7 2=1,2,...,8, are defined as

L
2

(%_%—x)] - (-1 Z X

a“-1

N|

1 a-1
‘I)R' (E ITICIX) 5 [(X_ETI>

N

+ (10L& (1)

(4.2-1)

’_1

1
5 ]
a 2 1 L a-l\/a+l
W,Q, (E /TG IX) > TX = 7(-1) E[(x—m)<.a___I-X)]
a" -1

H

S(1=x) + 2(1h0C

where the upper sign applies for 2=1,2,3,4, the lower sign
applies for ¢=5,6,7,8 and ¢ is replaced with -¢ for 2=3,4,
7:8. @2 is called the dilatational phase function and WQ
is called the equivoluminal phase function since they are
to be related to the dilatational potential ¢ and the
equivoluminal potential y respectively through (2.2-1) and
(2.3-16) defining the functions U. The spatial and time
dependence of the response depends strongly on @2 and WQ
and the geometry of the wave fronts is determined entirely
by these functions since they wiil contain all of the de-

pendence of the integrals on the variables £, T and z.

The phase functions (4.2-1) are now used to write the
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required products in two parts where the first and second

terms in the expressions (2.3-16) for the functions U are

separated to give

i
elKbs

iwT

where

kz)

The form (4.2-2) is deduced by simply

~

L

cosn(l;X)

=

£_..n(1l+x)
2

sinn(l_x)

S1ln

g

2
in(wTt)
n (1-x

COSn (12+X )

isin
2

it § 150

)Csinn (:L2+X)

)T n (1+x)

icos
2

e

COSs )

-

sin(Kg)sinn(%;X)

v.’ZOSn ( l_lz-x‘l &

Sin(KE)COSn(%;X)

sinn(l;ch

L ll-x) .. n(l+x)E
cos (kE)sin 5~—sin >
nil-%) . pilli+y)l
cos (kg ) cos 5 COS 5 b
-1 1 =3 1 1
-1 1 1 -1 -1
-1 L 1 =4 1
|1 -1 1 -1 1

B1g
s
29,
= %Zelrﬂbg ’
=1 S
3
s
- 4£J >
- ;
S1¢
S
1522
B %é;aelnvz L+l
B (-1)7 784y
L+1
(-1)™ S40
(4.2-2)
- 1wl
1 1 =i
. (4.2-2a)
=1, =i 1
-1 1 -1

writing the trigono—

metric functions in their exponential forms.
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The portion of the integrands in (4.1-2) or (2.3-15)
which contain the branches n can be éxpanded by using the
series representations in Section 3.3. From (2.3-15a) and

(4.2-2), the only portion of the integrands which involve n
ind -1
is composed of the expressions e (cosntyRcosyn) and
iny ' -1
e (cosntyRcosyn) ~. Expansions of these expressions are
required for the four sets of branches: the symmetrical

and asymmetrical equivoluminal branches and the symmetrical

and asymmetrical dilatational branches. The expansion

i O
which exhibits the wave fronts is a power series in e 237

(0)

for the equivoluminal branches and in

(0)

and e_i'(l"X)n

2in (O i (L+y)n

e and e for the dilatational branches.

n<0) is the first term in the series representation for n
given by (3.3-14), (3.3-16), (3.3-23) and (3.3-28) respec-
tively. These expansions leave the branch numbers n and m
as a linear multiple in the argument of the exponential
functions making it an easy matter to sum over the branch
numbers. The expansions are then simple in form and the
only difficulty is in calculating the coefficients in the
power series.

It is necessary to write the expressions cosniyxRcosxn

from the denominators of the integrals in the forms
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i - LEIHXIN s
cosntyRcosyn = %eln<}iXRe l(l+X)n><i+liXRe_i(l+ e 21?) )
1fXRe X)n
(4.2-3a)
-1 § Pl =i (l=xIn ..
cosntyRcosyn = .%_e ln(li‘XRel(l X)n)(lJ"liXRei(l_ : eZln
l+yRe Xn

for these expansions where (4.2-3a) is to be used when n is
on an equivoluminal branch and (4.2-3b) is to be used when
n is on a dilatational branch.

The expansion

el“n% , |ptg=3 inég) [¢,-1-(1-x)p-2q]
cosn +xRcosyn T 14y p}%LO pqe
4
+ 0of|e |, ]e | (4.2-4)

is for the symmetrical equivoluminal branches Ny, n=1,2,3,

(0)

.., Where
r nen

is given by (3.3-3) and @2 is given by
(4.2-1). The error term in (4.2-4) means that there are

-in % ((1-x) p+2q)

possible errors O<]e |> for any combination

of p and g such that p+g=4. The coefficients qu in
(4.2-4) result from the series representation (3.3-14) for
the symmetrical equivoluminal branches and from the form

(4.2-3a). The first ten of these coefficients are
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' 1
1(¢2—l+x)né )

_1+yR?
l+X

- - 2
2 2 i s 2
-5 le, ~ 2(l-x)¢£ # 1 = 3y + 3 (né )> + 1(®£—l+x)n()

2 e

b -t

- -

2 2

_: | 1+xR L 1+yR 2] (1)
* _T§§_¢2 (3-2x) Tty T XR™Ing

2

1+yR>
14y

. 3
—%[@fg - 3010l + 3(1-3x+x) e, - (1-x) (l—6x+x2)J<nél)>

(1) (2) (3)

2 2 .
[@2 - 2(1~x) 8, +.1-3x+X ]n ng”l + 1(e,-l+x)n

e e

Lin®2 o f5p0 0@ | e2)e 4 (o) LB
2| T+x 2 X7y X ) XTEX) Ty
sy g 22| DY - 1|22, L (aay) LRZ L 2], (@)

XX \Ng THy % X Ty T XR Mg
il+XR2 1+X32¢ + (3 _5)1+XR2 + 2yR2 (1)

T+y | I+x “% X720 Ty X2 Ne

e

~[1+xR™ "

( Tox {4.2-5)

the terms néj) are given by (3.3-15). The same
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expansion is obviously valid with WQ from (4.2-1) replacing

¢2 throughout (4.2-4) and (4.2—5),

From (4.2-3a), (4.2-5) and (3.3-16), it is apparent

that the expansion (4.2-4) is also valid for the expression
inn¢£ =],
e (cosnn-chosxnn) where My n=1,2,3,..., are the

asymmetrical equivoluminal branches if the coefficients A

(0) ., (0)
en 1S replaced by n 1°

en—+
(0) 4

en °

p4q
are replaced by (-l)pApq and n

n(o)l results from (3.3-3) for n

en-3
The expansions involving the dilatational branches are
derived in the same manner as for those involving the
equivoluminal branches, however, they can also be deduced
from (4.2-4) due to the similarity between (4.2-3a) and

(4.2-3b). As a result of this, the expansion

in_o (0)

e WA _ 2 p+q=3A. eindm [¢2’+1+A(l+x)p+2q]
cosnm+chosxnm L=y p F=0 jole|
4
. 0 . 0
1(l+x)ném) 21ném)

+ 0f]e E ] (4.2-6)
is for the symmetrical dilatational branches nm(x), m=0,1,
2,..., Where nég) is given by (3.3-24) and @2 is given by

¥
(4.2-1). The coefficients qu are given by (4.2-5) with ¥
and @2 replaced by -x and -@2 respectively and with néj)

ék) are given by (3.3-25).

replaced by -néj)g The terms n
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R=R(x) remains unchanged. Again the expansion is obviously

valid with ¥, replacing ¢, throughout.

As for the equivoluminal branches, the expansion

in_¢
(4.2-6) is also valid for the expression e m Q(cosnm

—)(Rcosxnm)—l where Vi m=1,2,3,..., are the asymmetrical
14
1

dilatational branches if the coefficients qu are replaced

-1)Pa" (0) . (0) (0)
by (-1) qu and Nam I8 replaced by n 1+ N 1 results

dm- 7 dm—i

from (3.3-24) for nég).
The expansions (4.2-4) and (4.2-6) and the similar
expansions for the asymmetrical branches are expected to
converge uniformly with respect to x on the same regions
in the x-plane as did the series representations in Section
3.3 for the equivoluminal and dilatational branches. This
is true in part because those series representations were
used to develop these expansions, but, it is also true

because a geometric series was used to expand the expres-

sions (4.2-3a) and (4.2-3b). An additional condition for
T 3
convergence is then that lixRe_i(l+ T 2IN1<1 on the
1txRe XJn

equivoluminal branches, and the analogous condition with ¥
and n replaced by their negatives as in (4.2-3b) on the
dilatational branches. These conditions are certainly not
satisfied at a branch point since cosn*yRcosyn=0 as was
found in Section 3.1, however, the presence of the factors
e—2in 2in

and e in (4.2-3a) and (4.2-3b) insures that these
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geometric series converge uniformly on practically the same
regions as do the series representations of Section 3.3.
Also, the same comments hold here as did in Section 3.3
about the regions of convergence becoming larger as the
branch numbers n and m are increased. Obviously, the ex-
pansion (4.2-6) involving the symmetrical dilatational

branch no(x) cannot be valid on all of the integration'path

i6
CD since this branch has a branch point at Xg=e 0 given
by (2.3-8) where 0<,<6_; for O<v§%.

Very little can be claimed about convergence of the
dilatational expansions on the small indention of < about
x=1 in the first sketch of Fig. 21l. The series of Section
3.3 were not shown to converge here. Also, CD approaches
the locus of a set of branch points whose limit point is
x=1. However, it is a reasonable assumption that the
series do converge on this indention since this locus of
branch points probably determines the boundary of the
domain of convergence.

The fact that the expansions (4.2-4) and (4.2-6) and
the similar expansions for theiasymmetrical branches fail
to converge to the desired functions on all of the integra-
tion paths CE and Cp as x=§%% is approached is the error
which makes this method approximate.

The expansions (4.2-4) and (4.2-6) suggest yet another

set of phase functions to simplify the notation. These are
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b bpig ™ l—%[%—l-(l-x)p-Zq]
Yorog = ﬁwl-l—(l—x)p—zq]
depq = I—_2-;[q>2+1+(1+x)p+2q]
¥arpq = %[W2+l+(l+x)p+2q]

where ¢,  and V¥

L %

(4.2~7)

are defined by (4.2-1). In (4.2-7) the

subscripts e and d refer to the fact that these phase func-

tions will be used in the equivoluminal and dilatational

expansions respectively. The remaining subscripts refer

to integers with ¢=1,2,...,8 and p,g=0,1,2,... .

The phase functions (4.2-7), the expansions (4.2-4)

and (4.2-6), the forms (4.2-2) and the representations

(4.1-2) make it possible to write (2.3-15) for the dis-

placement component u,_ as

€
‘/ 2 0 o
l—6--7111——5—:;L-u = Inlz: z: 2: A_ S __}:X_
al g pg 12 3
n=1 p,g=0 =1 c 5
E Xx“D(x)

i@ LogR inm¢
q e

X {[Xz—z (1-2v)y+1ile? 4P EAp

i ;
= LogR inmV¥
- (1_X2)e2 elpq a ezpq}dx
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+Imz Z Z/pql%éﬂ—
c

m=0 p,g=0 =1
D X D(X)

1 (1
-59 LogR i{m+>)md
X {[x2—2(1—2v)x+l]e e < 2) akpg

L 4
i LogR 1(m+ Y
(l_xz)e 2 dpg & ) d%pq}dx

o o 8
-1)P i=x
+Im), X ; (-1)%A S35
n=1 p,g=0 =1 c 3
E X D (x)

il ‘ 1
5% LogR 1i{n-%5)md
X 'éxz-Z(l—Zv)x+l]e2 elpa T ( 2) eflpq

i ‘ 1
= LogR i(n-%|mY¥
(l_XZ)eZ el pq " ( 2> ekpq}dx

+

1+
hni: z: E: pqu522_§_x__
m=1l p,g=0 =1 C
D x D(x)

-ié LogR imm¢

2°depq e df pg

X {[X2-2(1—2\))x+l]e

1
—5¥

LogR immy
- (l-xz)e ds pq e

dlpq}dx . (4.2-8)

The Rayleigh modes, n=0, are not included in (4.2-8).

Also, the expression is approximate in the sense that the
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expansions (4.2-4) and (4.2-6) have been used as exact
representations. The sum over p and g has been written as
if all of the coefficients qu and A;q were known. The
summation and integration order has been changed. This
can be justified rigorously only on the portions of the
integration paths Cp and C where (4.2-4) and (4.2-6) can

be shown to converge uniformly with respect to X to the
0
n( ) (0)

en from (3.3-3) and
en-'i

appropriate expressions. and n

nég) and n(o) from (3.3-24) have been used in (4.2-8).

The four integrals in (4.2-8) represent integrations over
the symmetrical equivoluminal branches,; the symmetrical
dilatational branches, the asymmetrical equivoluminal
branches and the asymmetrical dilatational branches respec-
tively. The terms Skz are given by (4.2-2a). As can be
seen from (2.3-15), a similar representation holds for the
@isplacement component uC.
The symmetrical and asymmetrical integrals for each

of the equivoluminal and dilatational cases can be added

in (4.2-8) to give
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1 .
59 LOgRelnﬂ¢e2pq

. T
=i

T 1 ;
~3=W =y LogR inmY
” (l'Xz)[Slg+('l)p52ze 2 ezpq]ez elpq & elpq}dx
© 0 8 i 1+
+ Imz Z E A TX——-
=1l p,g=0 =1 C ! 3
D x"D(x)

. 1 "
e ==0 LogR 1mm¢
% {[x2_2(l_2\)) X+l][slze 2 elpq+(_l)P S2g]e 2 depg e dipgq

.l & .
R T LogR imm¥
- (l-xz)[slge 2 dJqu+(-l)p822jle 2"atpq e d%pq}dx

(4:.2~9)

and similarly for uc.
This operation of adding the symmetrical and asymmetri-
cal terms is expected to cancel all of the extra wave
fronts which would have resulted from a singular loading
applied at the bottom face of the plate (£=0, ¢=-1). It is

recalled that such a loading is present in a purely symmet-

rical or asymmetrical loading. The cancellation must occur
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P _i%¢e2pq
as a result of the terms like Slg+(_l) Szze ’

vanishing for certain combinations of %2, p and g and for

et

certain values of the variablesvg, T, ¢ and Y.

The phase functions in (4.2-9), which are defined by
(4.2-7), are complex on the integration paths Cg and o and
the integrals are more convenient to handle if these paths
are deformed so that these phase functions are either real
or appear in a simpler form. This will make it possible to
sum over the branch numbers n and m and then to recognize
singular wave fronts.

It is very important to realize that (4.2-9) is now a
term-by-term integration and the integrands possess none of
the branch points which were of concern before. In fact,
the only branch point of interest here is Xg1 where R=0, so
that it is a branch point of the function LogR. The locus
of Xg1 2 Poisson's ratic v varies is shown in Fig. 4 and
the point is described following (A-3) in Appendix A.

With the preceding in mind, the integration paths Cg
and < of (4.2-9) and shown in the first sketch of Fig. 21
are deformed as shown in the second and third sketches of

Fig. 21. The path C_ is deformed back onto the original

B
integration path C shown in Fig. 2 exéept for a vertical
is

indention about the branch point at Xp1° The path CD

just collapsed onto the real x-axis on %%%gxgl with an
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identical vertical indention for the branch point at Xg1°
The point Xo1 where R=0 causes difficulties in the

representation (4.2-9) with CE and CD deformed as described.

The integrands in (4.2-9) may be singular at this point

depending on the values of the phase functions as can be

seen from the functions e etc. Actually, it
would be desirable to demonstrate mutual cancellation of
the branch line integrals about this point as was done in
Section 4.1 about the original branch points. It is true
that the integrals along the branch cut to Xo1 cancel by
mutual cancellation when the sum over the branch number is
taken with the exception of one line integral belonging to
the lowest branch. However, cancellation of the integrals
on the small circular path about the branch point Xo1 is
well concealed in (4.2-9) if it is present at all. The
intention here is not to investigate these branch line
integrals in detail, but to look at the remainder of the
integrals on %5%5X§1 and on x=eie, 0<b<m, and to try to
locate physically meaningful results.

The approach to be used is to bring the summation over

the mode or branch numbers n and m inside the integrands of

inw@el
(4.2-9) and to sum over the terms e pq’ etc. .These

are the only quantities in (4.2-9) which contain the branch

numbers. This interchange of the summation and integration
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order is again done without justification. The summations
yield generalized functions if the phase functions (4.2-7)
are real and they yield Qrdinary functions by a simple
geometric series if the phase functions are complex with
positive imaginary parts.

The phase functions (4.2-7) can be examined more con-

veniently in terms of the variable

1+y
= L Va2, -
B = TG 1 T (4.2-10)
2
X

. 6
l_

with y“=e 2 on x=ele

, 0<6<m. B 'is real on all of the inte-
gration path C of Fig. 2. From (2.3-5) and (2.3-7), B=% in

-1 1 2

terms of the original variables. On —3<x<1, 1>B>= Va™-1

and on X=ele, 0<ogm, % a®-1 >B>0 where B=% Vaz—l cos%.

The phase functions (4.2-7) then become

-
2
! I Ty _ 2 a=l} 5
¢e£pq = 518 1-B {(~1) "t—(2p+2g+1-L) VB 5 2g-1+x1 ,

a

] )
= Zlo- -1 %V1-B2 - (2phagHIsl) \/Bz-a “*|-2q-1+¢
-

Welpq B a
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®g U - £ 1-B2 - (—l)Q'T+(2p+.2q+1il)B]+2q+l+r, .
L pq 5
2 a -1
B s
a
‘szpq S — l}-(-l)’“g\/l—B2 + (2p+2q+1+t;)B]+2q+lil
W
B -
a

(4.2-11)

where the upper sign still applies for 2=1,2,3,4, the lower
sign applies for 2=5,6,7,8 and ¢ is replaced by -t for =3,

4,7,8. In (4.2-11) all of the terms are real and the radi-

cals are nonnegative on the integration path C except for
lX

V which is pure imaginary with the

2

\[_____—- X

imaginary part being negative on y=e

16, 0<6<m, where

— . a — - —_ | 9
v —B Va lsn1 Thus, ¢elpq and

i6

Wezpq have nonnegative imaginary parts on x=e™ " , 0<6<m, and
g=1 : ;
are real on —_T<X<l' The phase functions ¢d£pq and Wdzpq

are only involved on Z+i<x<l where they are also real.
It is seen from (4.2-11) that wezpq is real on all of

the integration path C including X=ele, 0<6<m, only for the
special cases where 2p+2g+1%1=0, which means that p=g=0 and
£=1,2,3,4 using the fact that p,g>0. These cases will be

seen to be identified with the circular equivoluminal wave
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front. Likewise, ¢ is real on all of C for the special

elpq
cases where 2p+2g+1-z=0, which means that p=g=0 for 2%=1,2,
5,6 and ¢z=1 or p=g=0 for 2=3,4,7,8 and t=-1.

When the phase functions (4.2-11) are real, the repre-

sentation
o) . l o0} .
Z ell’m@ = -3 + E § (d-2m) + %—cot%@ (4.2-12)
n=1 m==c

can be used where § (¢-2m) is the Dirac delta function.

This is just a Fourier series representation of periodic
generalized functions and it results from the representa-
tions given by Lighthill [9]. Also, (4.2-12) can be de-

rived by differentiating the Fourier series representations

[oe]

2, %cosmrcb=—-log|?.sin%¢>| and ), %sinmr@ which represents a
n=1 n=1

sawtooth function. A geometric series gives

© imd
M R . - i (4.2-13)

when the phase functions have positive imaginary parts.
(4.2-13) is also valid when the phase functions are real if
the'limiting process is carried out carefully so as to pro-
duce the generalized functions in (4.2-12).

The portion of the integrals (4.2-9) which result from
i6

integration on i:-—]1<)(51 and on x=e

PR ;, 0<B6<m, as shown in the
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second and third sketches of Fig. 21 can now be written
with the sums over the branch numbers, n and m, having been
performed. These consist of Cauchy principal value inte-
grals due to the presence of the generalized functions
cot%Q and csc%é. The integrals are separated into four
distinct sets of integrals, each identified with one of the

four phase functions (4.2-11). Thus, by using (4.2-12) and

(4.2-13), the quantity in (4.2-9) can be represented as

(4.2-14)

al g de ee dd ed

where

1
(1-x) [x?-2 (1-2v) x+1] 2°etpg™®9"

jolo] 3
xzD(x)
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o 8
I, = >
de Z: i=1

p,9=0

g
N
mk“‘w
'_!

I
=

o)
+
=

m _41 P m
X [Slmc°t§¢e2pq o ] ) Szzcsciéegpq}dx

(i 8 - .Y
51n2(cose 1+2v) 12(¢e2po+l)
+ 8Im 16 e = S12
Pd |D(e™") |

imd
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2 elp#] e ae , (4.2-143a)
l-e RLPd
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1
I = 3 ‘\% / (1~x (l-xz)ﬂiwelpqLogR
ee =
p,a=0 g2=1
l

D(x)
m . P ,
X [?lgcotiwezpq + (=1} Szzcsczwelpq]dx

il : _@_ ; Y

+ R 51n2s1ne 12(We2pq+l)

= 6. ° S1g
qID(e ) |

LT imy
=1 elpq
+ (-1)Ps, e 2 etPI_e das (4.2-14b)
9 lﬂwez
l-e Pq
1 2 ~2 LogR
I.. = 2 Z p.ov.[ a tx)[x"-2(1-2v)x+1] 27depq
dd 0 2=1 pq 3 -
P.g= - 2D( )
a+l X X
T -1)P i -
X [Slgcsczédlpq + (-1) SZRCOt§¢d£qudX ' (4.2-14c)
. 1 1,
I =- 3 ZS:P v A' (1+y) (l—x ) i dR,pqLogR
ed ' e = ° 7" jole] <]
Rog=d b=l I 3
TET X D (x)
: s -1\ P -
X [Slgcsczwdzpq + (-1)%s, cot2¢d2pq]dx . (4.2-144)

In these integrals the form (A-6) in Appendix A defining

(o3

Y=Y (6) has been used along with D(ele)=|D(ele)|e
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from (A-6a). The terms S are defined by (4.2-2a) and the

k%
coefficients qu are given by (4.2-5) for p+g=0,1,2,3. The
coefficients A;q result from qu as described following

¥

elpq’ “efpq’ “dipg depq
are defined by (4.2-11). The subscripts on these integrals

(4.2-6). The phase functions ¢ ) and Y
are meant to indicate their origin such as Iie for the
integral resulting from the dilatational potential ¢ with
the integration over the equivoluminal branches and simi-
larly for the other three integrals.

The Dirac delta functions from (4.2-12) are not
present in (4.2-14a),..., (4.2-14d) simply because only the
imaginary parts of the integrals in (4.2-9) are required
and the delta functions always multiply the real parts of
the integrands on %%%gxgl. A special case is described in
the following where the Dirac delta functions do remain.

The second integral in (4.2-14b) for I__ must be modi-
fied for the cases p=g=0 and 2=1,2,3,4 since WeQOO is real
on X=eie, 0<6<m, and the representation (4.2-12) must be

used rather than (4.2-13). Thus, using A00=l from (4.2-5),

the second term in (4.2-14b) for Iee must be replaced with
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4 ™ W
51n781n6 1 Iy
8 Z P:V. ——J—_r —islzcos '72"(1ye2100+l)
o D(e™)]

o]

+ z:w[él£+(—1)m322]cos[(m+%>y]6(WeZOO—Zm)

m=-

_.%sh{%iweg00+lﬂ[slzcotgwe200+szzcscgwelOOJ}de (4.2-15)
for p=g=0 and 2=1,2,3,4. The second term in (4.2-14a) for
Iie does not need to be modified even though its integrand
is singular for some points on the boundaries g=t1 for
p=g=0. It is just necessary to interpret the integral as a
Cauchy principal value at these points and to realize that
(4.2-12) is a limiting form of (4.2-13).

A similar representation for the displacement compo-
nent u, can be written by making very simple changes in
(4.2-14a) ,..., f4.2—l4d) and in (4.2-15) as suggested by

(2.3-15a) and (2.3-16).
4.2.2. The Geometry of the Wave Fronts.

As usual, when dealing with generalized functions, the
integrals (4.2-14a),..., (4.2-14d) and (4.2-15) are most

conveniently investigated when the phase functions ®e2pq’

etpq’ ®d2pq and wdzpq replace x or 6 as the independent

variable. This makes it possible to identify wave fronts

: 4
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as singularities in the integrals resulting from a singular
point of the generalized function coinciding with a singu-
lar point of the remainder of the integrand.

For the change of variables to the phase functions,

the factor

gle
&%
©

dy =

replaces dy in the integrals where ¢ is any one of the
phase functions (4.2-11l) and B is defined by (4.2-10). A

singular point in the integrands occurs if

dB do _ "
-d.—x--d_B._ 0 © (4.2 16)
From (4.2-10),
5 a2l
1-x 8=
dB _ 1 4/524 1 _(a%-1) 3 , (4.2-17)
d  2a 3 132
‘ 2 2 a™-1 2 a"-1
X B azva B az
and from (4.2-11),
de 1 2.1 2p+2q+1-i
a_gesapq:___ - (-l)gr + 2 . p+2g g
= 1-5% # B2_a2—l
' 2

a



L AT~

a_\_y_eﬁlpq - —JE _— (—l) a2—l 2p+2g+1F1
B
B \[~"“ ‘[—-____
dsd 2
agdzpq S - 3 Be - (—l)lBT + 2 _1(2p+2q+1il) .
2_.\2|a%V1-82 a
<B2_a —1)
2
a
ay 2
—HPT _ - L Br= (-1 B -+ E 1(2p+2q+1+t;) .
oB S 2 2 a2
2 a“Vl-B

(4.2-18)
%%—0 at x=1 or at B—lVaz—l from (4.2-17), however,
this singularity is removed by the factor —3 in all of
2
X
. L =X ay_
the integrals, except (4.2-14c) for I4gr 9iving 3 3B
3 x?
. 9 2
& For Idd’ the factor ( ‘8 ;l) "in (4.2-18) for
2 a
a“-1
ffdlpq makes oy e nonsingular The point B=lVa2-l is
dB dB do g g P a

dipg
special, however, since it will be seen to be identified
with the head wave. The head wave is not singular in the

displacements for the loading (2.1-7) used here.
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Thus, since each of the generalized functions in
(4.2-14a) ..., (4.2-14d) and in (4.2-15) is singular at
¢=2m for any integer m, the condition for a singular wave

front is the simultaneous satisfaction of the equations

¢ = 2m ,

(4.2-19)
dae _
3B - 0

for any integer m where ¢ represents any one of the four
phase functions (4.2-11). (4.2-19) represents four sets
of simultaneous equations resulting from (4.2-11) and
(4.2-18) each of which éan be solved for £ and ¢ to give
the spatial geometry of the wave fronts as a function of T.
From (4.2-18), it is obvious that %%=0 is not possible
for £>0 if #=1,3,5,7 since p,g>0 and -1<t<l. These phase
functions occur in terms which are singular only for £<0
and, therefore, are associated with wave fronts traveling
in the negative £ direction. The phase functions identi-
fied by 2=1,3,5,7 and the accompanying terms in the inte-
~grals are set aside for now and only those identified by
2=2,4,6,8 are considered.

It is helpful to define the normalized coordinates

and parameters
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E?
Il
A [y
-

7 = 2pt2atl-t

Pq T
Zd - 2p+2 +l+c , (4.2_20)
Pg T

0° - 2p+2qrlFl
Pq T

o - 2pt2qlrl
Pq T

where the upper sign applies for 2=2,4, the lower sign
applies for 2=6,8 and ¢ is replaced by -z for 2=4,8.

Then from (4.2-11) and (4.2-18), simultaneous satis-
faction of (4.2-19) gives the following parametric descrip-

tions of the singular wave fronts:

for the phase functions @e

14

Lpq

(4.2-21a)
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4

for the phase functions ¥
el pq

x Q
L = V1-B%[1+3 21 Pq ,
& 52_a°-1
2
a
(4.2-21Db)
e
e 1 _ %q
= B 1'-_ ?
mg a2 3
BZ__a___l
2
a
for the phase functions ¢d2pq’
2 2
_ a _m2fn_a’-1.d
| (4.2-21c)
2 2
& - a‘efg2.a —l(B_Qd > :
-mgq B 2 jolof
a
and for the phase functions Wdzpq’
2 od
L = ,/l_Bz 1-2 21 -mg ,
a 2
p2-2 =1
a2
(4.2-21d)
d
Q
28 = -p[1+2 i
pPq a2 5
B2_a =1
2
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where 2=2,4,6,8 throughout. These wave fronts can be
sketched in the L,Z-space by taking a fixed value of Q and

letting B vary in the range lsz% Vaz—l corresponding to

:;ifxgl. Also, there are singular wave fronts in (4.2-15)
i6

in the range %'VZE:IEBEO corresponding to x=e' , 0<6<m.
There is some restriction on the quantities involved in
(4.2-21a),..., (4.2-21d) since all of the quantities de-
fined by (4.2-20) are nonnegative as a result of p,g>0,

€>0, >0 and -1<g<l. However, when p is replaced by the

e
ng
negative since the integers m are only restricted by the

integers *m, as in Z__, Qﬁmq' etc., the quantity may be

fact that (4.2-19) must be satisfied.
Fig. 22 shows the equivoluminal wave fronts in dashed
lines and they are present in Iee given by (4.2-14b), and

they result from We as described by (4.2-21b). The

Lpg

dilatational wave fronts are shown in solid lines and they
are present in Idd_given by (4.2-14c), resulting from

®d2pq as described by (4.2-21c). The sketch is at the
Q@

time 7=6.3 for v=0.3 which gives a=—S=/3.521.871 from
s
(2.1-2) . 1=6.3 means that an equivoluminal wave has had

time to cross the plate %T=3.15 times while a dilatational

wave has had time to cross the plate %aT§5.89 times. The

top sketch of Fig. 22 is essentially the wave fronts in

the L,Z-space with L=% measured on the same axis as £ and
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= Zd measured downward from the horizontal line on

z=2°% ,
mg ' “-mg

which a particular wave front terminates. Actually, this
sketch just shows the right half of the plate, £>0, with
the thickness -1<t<1l successively repeated so that all wave
fronts appear as continuous lines. The geometry of the
wave fronts is exactly like that for a layered half-space
made up of identical layers with refraction but no reflec-
tion at the junctions. The second sketch in Fig. 22 shows
the superposition of these wave fronts as they appear in
the plate. The superposition just consists of folding the
first sketch as an accordian at each horizontal line repre-
senting the edges of the plate to form a éingle thickness.
The only case in which the range %'Vgijzszo or x=eie,
0<6<m, produces a wave front is for Q§q=0 in (4.2-21b), or

p=g=0 and %2=2,4 from (4.2-20), so that

This is obviously the circular equivoluminal wave front
2

2 e 2 2 2 2
since L +<Zm0> =] or § +[ém+1+(rl) C] =1 for 2=2,4 and
m=0,1,2,... . This wave front is labeled 1',2"',3¢ in Fig.

22 with the singularity on the portion 1',2°' contained in
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the representation (4.2-15) where % a2—13B30 or x=ele,

0<6<m. The singularity on the remaining portion 2',3' is

contained in the first term of I -~ in (4.2-14b) for p=qg=0

1 2 -1 or ——%<x<l.

The preceding is significant because the result indi-

and £=2,4 where l>B>

cates that only the portion 1',2' of the circular equivolu-
minal wave front 1',2',3' in Fig. 22 comes from "the equivo-
luminal sector" of the w,k-plane as defined by (2.3-11)
while all other wave fronts, eguivoluminal and dilatational,
come from "the dilatational sector" of the w,k-plane as de-
fined by (2.3-10)

The straight equivoluminal wave front 2',4' in Fig. 22
is the head wave and it is tangent to the circular equivo-
luminal wave front 1',2',3'. This wave front results from
the same terms, (4.2-14b) with p=g=0 and 2=2,4 and (4.2-15),
as did 1',2',3'. However, it comes about for different
reasons than the simultaneous satisfaction of the equa-
tions (4.2-19). 1In this case, the change in the form of
the integrand, as the point x=1 or B=% a2—l is crossed on
the integration path, produces the head wave. This is seen
by comparing the first term in (4.2-14b) for p=g=0 and
2=2,4 with (4.2-15) where the Dirac delta functions

S (Y -2m) are present. Thus, the head wave is associated

ef00
with the line w=k which separates "the dilatational sectoxr"
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from "the equivoluminal sector." The geometry of the head
wave can be deduced by setting B=% Vaz—l and We200=2m for
2=2,4 to obtain

e 1
m0

(a-L)
Vaz—l

2

from (4.2-11) and (4.2-20) giving 2m+1l+(-1)2g=—21

(at-¢)
a2—1

for m=0,1l:;2,544s <
The remaining equivoluminal wave fronts shown in Fig.

22 are contained in the first term of Iee in (4.2-14b) as

. e 246 810 ’
described by (4.2-21b) for qu—?,?,T,T,T as labeled in

the figure. Obviously, from (4.2-20), these values of Q;q

with p+g=0,1,2,3 are given

46
T Fer

specify p+g and, since only qu

in (4.2-5), only the wave fronts ng=0,%, are provided
for.,

The dilatational wave fronts shown in Fig. 22 result
from singularities contained in Iaa given by (4.2-14c) and
2

they are described by (4.2-21lc) corresponding to ng=0,?,
%,g as labeled in the figure. From (4.2-20) and (4.2-21c),

QSq:O implies that p=g=0 and 2=6,8 so that
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2
which is the circular dilatational wave front L2+(Z§m0> =a?
3
2

¢

2
or g2+[—2m+l-—(—l) ] =a®t? for 2=6,8 and m=0,-1,-2,... .

This wave front is 1,2 in Fig. 22 and it, along with 3,4
from Qd =2 and 5,6 from Qd =£, is perpendicular to one of
pqg T pqg T
the boundaries ¢=t1l so that these are conditions of grazing
incidence at these points. The dilatational wave front 7,8
is not at grazing incidence at point 7 (g=-1) since it is a
reflection of the portion 2',3"' of the circular equivolumi-
nal wave front which meets the boundary at an angle of

incidence which is less than the critical angle tan 12,

Vaz—l

]
Again, the coefficients qu for p+g=0,1,2,3 are sufficient

to describe the dilatational wave fronts identified by

For all of the wave fronts shown in Fig. 22, the points
at £=0 or L=0 come from B=1, x:%%% or k=0. The point 1' on
the circular equivoluminal wave front 1',2',3' comes from
B=0, x=-1 or %=l where both w and k are unbounded on the
equivoluminal branches. The point 2' comes from B=% az—l,
x=1 or %=a with w and k bounded on the egquivoluminal branches.
The points 5',7',9',11' and 13' on the reflected equivolu-
minal wave fronts each come from a point in the range 1>B>
%”VZE:I, %%%<X<l or from “the dilatational sector” of the

w,k-plane. The points 1, 3 and 5 on the dilatational wave
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fronts also come from B=% az—l, x=1 or %=a but with w and
k unbounded on the dilatational branches. The point 7 on
the dilatational wave front 7,8 is not at grazing incidence
and it comes from a point in the range 1>B>§‘V;7f1,
§£%>X>l or "the dilatational sector™ of the w,k-plane.

It is interesting, yet certainly expected, that the
number of equivoluminal wave fronts present in the plate
is related directly to the number of times that the circu-
lar dilatational wave front has crossed the plate at &=0
and vice versa as seen in the top sketch of Fig. 22. The
finite number of wave fronts which are present in the plate
at any finite time has the desirable effect of only requir-
ing a finite number of the coefficients qu in (4.2-5) to
account for all of the wave fronts. Then only a finite

(3) (k)
e d

number of the coefficients n and n for the series

representations in Section 3.3 are required. In (4.2-5) it
' (3)

is seen that coefficients qu with pt+q fixed involve N

with j=1,2,3,...,p+q, and likewise for A;q and nék), Thus,
while the series representations (4.2-14a),..., (4.2-144d)
involve infinite sums over p,g=0,1,2,..., only a finite
number of singular terms in (4.2-14b) for Iee and (4.2-14c)
for Igqq @re identified as the representations of the wave

fronts. The remaining terms do not vanish, however, they

can be shown to be small until the singular wave front
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with which they are identified is present in the plate.
There are wave fronts, other than those shown in Fig.
22, which are predicted by (4.2-21a),..., (4.2-21d), how-
ever, they cancel when the superposition of integrals
(4.2-14) is taken. These cancellations occur in pairs.
(4.2-21la) and (4.2-21c) predict wave fronts associated with

o] and ¢

efpg dLpq respectively, which obviously have the same

geometry. However, a detailed examination of the integral
sum Ide+Idd in (4.2-14) shows that the singularities cor-
responding to these wave fronts cancel leaving only the
dilatational wave fronts shown in Fig. 22. Likewise,
(4.2-21b) and (4.2-21d) predict wave fronts from Y and

elpg
¥ respectively, which have the same geometry. These

dpg
wave fronts also cancel due to the integral sum Iee+Ied in
(4.2-14) leaving only the equivoluminal wave fronts shown
in Fig. 22;
If only the wave fronts are of interest in the re-

sponse, the only function of the terms Ide and Ied in

(4.2-14) is to cancel the extraneous wave fronts.

4.2.3. Discussion of Specific Terms Yielding Wave Fronts.
An Example of a Solution Approximated Near a Wave

Front.

In the representation (4.2-15), the terms containing

the Dirac delta functions G(Wezoo-Zm) are very easy to
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integrate and they yield an explicit expression, which is
singular like an inverse square root in the spatial vari-
ables. These terms are singular on the portion 1',2' of

the circular equivoluminal wave fron 1',2',3' in Fig. 22

and they are identically zero on the interior of 1°',2',3',
being nonzero only on certain regions on the exterior.
Hence, this is the part of the representation (4.2-14) which
proceeds the circular wave front and, along with the remain-
ing terms in (4.2-15), this makes 1',2' the only wave front
in the plate which is singular as the front is approached
from both sides. This is usually called the two-sided
equivoluminal (or shear) wave.

All of the remaining terms in (4.2-14), other than the
delta function terms in (4.2-15), are Cauchy principal value
integrals due to the presence of the generalized functions
cotgwezpq, cscgwegpq, etc., and they are not so convenient
to evaluate. An example is considered here to illustrate
the Cauchy principal value integrals, and also to make a
check with the amplitudes of the wave front expansions
~given by Rosenfeld [13].

The circular dilatational wave front 1,2 in Fig. 22 is
considered. The singularity corresponding tc this wave.
front has been found to be present in (4.2-14c) for Idd

]

with p=g=0 and 2%=6,8. Therefore, with A00=l and the
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particular values of S and S from (4.2-2a), the terms

12 2%
in the representation (4.2-14) for u, which contain the

g

circular dilatational wave front are

32Ty Vaz-l.'

al dg =

1
1 2 -2 . LogR
_ (1+y) [x2-2 (1-2v) x+11 [."2%d600 T
P'Vf . tanz® 3600
a

=i,
atl XD (x)

A
-5¢ LogR
2°d800™ i

g

which contains this particular singularity. The

The prime on u, is a reminder that this term is only the

part of u

g

T L] L i
term cotZQ results from Sl8csc§®d800+828c°tf¢d800 in

=] from (4.2-2a). The fact that the

dgoo

(4.2-14c) and 818=S28

term is not singular at ¢ =4m+2 merely shows that no

d8oo
wave front is present as a result of a loading at &£=0

o ; : m
and ¢=-1. Likewise, for the term tan4¢d600.

(4.2-22) is only a part of the total response given
approximately by (4.2-14), however, no further approxima-
tions have been made and this single term is expected to

be valid well behind each reflection of the circular dila-

tational wave front. Of course, convergence of the series
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representation (4.2-14) is assumed here. Also, other terms
in (4.2-14) are identified with singular wave fronts and
they must be included to account for the response associ-
ated with these wave fronts.

From (4.2-11) the phase functions involved in (4.2-22)

take the form

%
®ag00 = “““—'—‘(é l—Bz-ﬂ) # L= (=i3% (4.2-23)
1

for ¢=6,8, and it is clear that ® 4000 as B+%jVa2—l (x~+1)

o
a‘d200=° at B=—L Vadr22
5 a2T

if g<atr. Also, from (4.2-18),

L
where ¢d£00=1—(—l)2;—Va212—;2 from (4.2-23), and this is

easily verified to be a maximum of the phase functions.
The portion of (4.2-22) containing ¢d800 can be

written as

}.—l

1-¢- Va2r2-¢2

dx
Tody = ALY T
P.V. [ F(x)cotyedy = P.V. F(Xl(®))(d® )cotz¢d®

V)]

|
=
'.—l'

w
+
=

dx
= P.V./F(xz(é))(—(p—z)cot%Qdé (4.2-24)
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where Xl(@) and XZ(Q) are the appropriate inverses of

(4.2-23). For 4m+2§1-;-“Va?T2—£2 <4m-2 for a particular
integer m, the second integral in (4.2-24) must be inter-

preted as

L= a212—£2

dXZ i
P.V. [ Fx,(@))| g5~ )cotzede

4m-2
-4m'-2
) dx
+ 2 PV F(x, (8))|==2)cotTeas =
. 2 dao 4
m =-m
-4m'-6

L a212-£2

dXz i
PV F(XZ(Q)) 56— CotzédQ

4m-2

4m-2

dx
4 1 d 2 :
o E‘[a_(ilip(xz(cb))(-(i(b—)]l_og[s:.nl‘£—<1>|<:1<1> : (4.2-25)

=OC

The last term in (4.2-25) is obtained by integrating by
parts so that the result is an ordinary integral.
The interpretation of the principal value integrals

suggested by (4.2-25) must be used on all of the
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representations (4.2-14a),..., (4.2-14d) and (4.2-15) when
the phase functions become unbounded since an infinite num-
ber of singularities are then present.

(4.2-25) is a convenient form since the first term
along with the first term in (4.2-24) contain the singular-
ity identified as a portion of the circular dilatational
wave front. The part of the integral (4.2-22) containing
® 3600 contains the remaining portion of this wave front.

If only the wave front expansion is required, these terms

can be combined and approximated with the nonsingular part
%

of the integrand being evaluated at ¢=l—(—l)7§—v azrz-gz
where x4 (2)=x,(2).

As a specific example, the unreflected portion of the
circular dilatational wave front is considered. This is
seen in Fig. 22 continuing from the point 1 through the
first thickness -1l<z<1l on 1,2, and it is associated with

the phase function ¢=¢ and the singularity of cot%¢ at

ds8oo
¢=2m=0. The approximation of (4.2-22) suggested in the

preceding is

gV a%-1. " ..

‘/2
-0+ [x —2 (1-2\))x+l]g\/a 2 <1 g-vVa'1 -¢ )LOgR
2 aIVa412-g

% D(x)

I(g,7,C)

(4.2-26)



=163~

where
l_c;wa212_£2
cot%¢
I(E,T,C) = P.V. do (4.2-26a)
V (o-1+z) 2+£%-a%72
-2
and

2
X = —5—— (Va4r2-g2 - \/a2T2—£2> . (4.2-26b)
a“(a“-1)7

1

2
The singular term [(@—l+g)2+g2—a212] in (4.2-26a) results

dx
from the derivative 35; in the first term of {(4.2-24) and
dXZ
the derivative S in the first term of (4.2-25). The

integral (4.2-26) is an approximation of the sum of these

two terms.

It is worth mentioning that, while 9%y identifies the

dx
a%s . ds
wave front, ——5#0 at the point where 3§=° or at any other
dx
point except for the wave fronts where cancellation occurs

between the wave fronts of Qezpq and édzpq'

The Cauchy principal value integral (4.2-26a) can be

evaluated approximately by expanding cot%@ about ¢=0 and

assuming that ll-c—V azrz-gz

<<1l, which means that the
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point £,z is near the wave front, to give

I(E,T,z) = = H(a%t%-g %= (1-7) %)

vggT2_§2_(l_c)2

i

aVZTO VT—TO

where H(T-To) is the Heaviside step function. Then

(4.2-26) , under the same approximation, becomes

. 1 (1) [%-2(1-2v)x+1] _ g@a-g)  B7T)
g = I "3 =
2rpaV 2{a%-1) 2> () Va2 2 Vi~
g V8T

(4.2-27)

where

_ ;‘/ 2 12 e
Ty = 3 YE +(1l-z) ; (4.2-27a)
is the arrival time of the wave front and y is given by
(4.2-26b) with t replaced by Tg*

_ H(t-1g)
The coefficient of ————— in (4.2-27) is similar to
the quantities that Rosenfeld [13] calculated except that

the loading o_ _=-I8(£)H(t) at =1 replaces (2.1-7) in that

(4
work and the coefficient of the singular term of the dila-

tational potential ¢ is calculated rather than a
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displacement term.

i H(T—TO)
With u 2A———— representing (4.2-27), u

g /?:i; E_

2A/T~T0'H(T-TO) is the approximate displacement for the

loading o,,=-I8 (§)H(T) by using the convolution theorem of

4
Laplace transforms. Also, u ~00 from (2.2-1) is valid near

g70¢
the wave front since y is not singular and this can be

a2T0 E

integrated to give ¢g-% —ET—A(T-TO)zH(T—TO). This coeffi-
3

cient of (T‘TO)ZH(T-TO) checks with the data points given
by Rosenfeld [13] for v=0.3 and aT0=8 within the accuracy
indicated in that work.

Detailed work on the dilatational wave fronts is actu-

from

ally more convenient if the variable éﬁ-l V l
' 2

X
(2.3-5) and (2.3-7) is used rather than y or B defined by

(4.2-10). B is best suited for study of the equivoluminal
wave fronts.

The first reflection of the dilatational wave front
1,2 in Fig. 22 results from the patt of (4.2-22) which con-

tains ¢ This wave front results from the singularity

d600°
1
~3%3600L09R

at ®d600=2m=—2 where e =R. The fact that one

reflection has introduced the factor R in the integrand at

the wave front is consistent with the interpretation of R
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as the reflection coefficient as suggested in Appendix A.
Subsequent reflections of this circular wave front result

4, ¢
3

from the singularities at ¢ d600=—6' etc., in

dasoo= -

(4.2-22) and this introduces R2,R ;-+. in the integrands at

the wave fronts. The same is true for all of the factors
1

¥ LogR —l¢ LogR

e2 eflpg ard & 27 depq

in the representations
(4.2-14b) and (4.2-1l4c) since, at the wave fronts, they
result in the factors Rm, m=0,1,2,..., in the integrands.
Thus, in the preceding discussion about the geometry of the
wave fronts as shown in Fig. 22, the integers m from ¢=2m
in (4.2-19) are associated with the reflections of wave

fronts.

These interpretations point out the importance of the
term 29%%§Xl in (3.3-3) for n(o) and EQ%?%XL in (3.3-24)

en
for nég)

since they are the terms which give an accurate
representation of the reflection process. In contrast, the
first terms in (3.3-3) and (3.3-24) contain the branch num-
bers n and m and the summation over the branch numbers pro-
duce the generalized functions which lead to the wave
fronts.

An interesting feature of the representation (4.2-14)

is that the second term in (4.2-14a) on X=ele, 0<é<m,

a’-1_2
)
a

-7 (2p+2g+1tg)

involves the terms e which result
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imd

from e S*PY and the definition (4.2-11) for o, This

Lpq’
is obviously an exponential dependence on the thickness
variable ¢ and it is related to the usual form of the dila-
tational potential ¢ which is associated with harmonic

equivoluminal waves reflecting from a plane boundary at an

angle of incidence greater than the critical angle

tan T —1

Vaz—l
The terms 2=1,3,5,7lin (4.2-9) have not entered this
discussion, however, they canhot be neglected. It is re-
called that these terms are identified with singular wave
fronts only for £<0. The terms could be estimated on the
deformed paths shown in the second and third sketches of
Fig. 21, however, it seems more practical to deform the

5 and CD as follows: CE is deformed

a-1 a-1 _ i#
onto lSXSg:T and C, onto ‘15X53¢T plus x=e

integration paths C
. 0<B<m.

There are no difficulties at the singularities x=t1 due to
the form of the phase functions for 2=1,3,5,7 and the fact
that £>0 has been specified.

The representation (4.2-14) is quite complex, however,
it only involves explicit functions of y and it offers
direct access to the high-frequency response and the accom-
panying singular wave fronts. This is contrasted with the

modal solution (2.3-15) in which the complete details of
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the high-frequency response is all but invisible. In addi-
tion, the representation (4.2-14) is apparently consider-
ably more accurate than wave front expansions, which are

only valid near the fronts.
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FIGURE 1

The Line Load Problem.
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FIGURE 16

A Path in the y-Plane for a Continuation Over Asymmetrical
Branches.
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APPENDIX A
THE FUNCTION R(Y)

The response of a plate to the loading (2.1-7) or to
other loadings is completely characterized by the branches
n=nn(x) through the modal solution (2.3-15). In turn, the
branches n are completely characterized by the function
R(x) in (2.3-12a) through the frequency equations (2.3-13)
and (2.3-14). Hence, it is necessary to know the behavior
of R at all points where the behavior of n is required.

R is the same function which occurred in the wave
front expansions given by Rosenfeld and Miklowitz [1]. It
is interesting, in the cbntext of that work and of the
present work, that R is identical to the reflection coeffi-
cient giving the ratio of reflecﬁed to incident amplitudes
of harmonic waves reflecting from a free boundary. R is a
function of the angle of incidence by writing (2.3-12a) as

a function of the phase velocity (2.3-1), which is given

by c_= A

- 51n6i where ¢ is the velocity of the body wave in

question and ei is the angle of incidence measured from
the normal of the boundary.

R is a rational function of both X and v and, there-
fore, it is analytic with respect to x and v except at the

zeros of [R] % (inspection shows that R is bounded and,
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hence, analytic as y»» or as v+»»). These zeros of [R]_l

and the points where R=0,1,-1, etc., are given in this
appendix along with the behavior of R on the real x-axis
and on the unit circle |y|=1.

R(x) can be written in several different forms each
of which exhibits points in the x-plane where it takes on
special values. The notation which will be used for these
points requires some explanation. Two points, Xo in
(2.3-8) and XR in (2.3-9), have already been defined and
the zero subscript means that this is the n=0 point of the
symmetrical Rayleigh branch (the complex conjugate of X0
is also such a point). The R subscript refers to the fact
that XR is the singular point of both Rayleigh branches
where both w and x are unbounded (also, n is unbounded
hére)° With respect to the function R(yx), it will be
shown that yR(x)=-1 at X=Xg and that [R(X)]_l=0 at X=Xg-
Other than for these two points, when a notation is re-
guired for a point, subscripts wili refer to values taken
by R(x). For example, it will be seen that R(x)=0 at
X=Xg17X02 and that R(yx)=-1 at X=X-1’le (the notation X*,
is used for the complex conjugate of ).

The forms taken by R(x) are
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. ” it
R(x) = XD(X)(X Xp1) (X x02)<x ) '

XR
- ‘ _a=l\fa+l
R-1 = XD (X) (X )(X a+l)( l‘X) r
_ 1 _ 2 o2 _
e g _8(1-\)2) (l_ )
X T TThiy) XX

*
XxR+1 = 5{%T(l+x)(x-xo)(x-xo)

where

“k w1 - 2y + 2NTI=0) (A-1a)

A
|

|

(0]

Il

so that 056_15% for Ogvf% (x=x_l maps into the Lamé point

where w=v2k), a is given by (2.1-2) with 3- 2/_<_:T<l for
Oivf% and D(x) is given by (2.3-12b). Comparing the form
of R(x) in (A-1l) with that in (2.3-12a), the points

X=X X0 L are obviously the zeros of (1+x)3—8&ﬂ»0ﬁvx)x
01702 Xgr

and théy will be discussed in more detail presently.
A useful property of R,which can be used in conjunc-
tion with the forms (A-1), is given by

R@ = [R()17T (A-2)
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and this results directly from (2.3-12a).
From (A-1) and (A-2), points in the X-plane where R

takes on special values are listed as follows:

a+l

=1
R=1 at x =223/ 1, %11' -1 ;

- - L o«
R = 0 at X s Xol’ X02] XRI 14
(A-3)
=] 1 1
IRl " =0 at x = Xpr 771 =—+ 0 ;
R Xo1" Xo2
xR =1 at x =0, +1 ;
160 & ' /
xR =~1 at y = -1, Xg = © ' Xog -
, _ 1 1 s

The three points x=x.,, ——:, —— are roots of D(x)=0 with
- R Xo1" Xo2

XR defined by (2.3-9). The loci of Xg+ Xo1 and Xg2 in the
¥x—plane and the variation of XRr with v for Ofvg% are shown
in Fig. 4. The points Xo1 and Xgp are identified by stat-
ing. that 12ReXOlZReX02>0 and that l>ImXOl=ImX0230 with the
points being complex conjugates if vc<v5%, real and equal

i€ V=V, and real and unequal if 0§v<vc where vé§0.263l.

It is also true that 12|x,;|2[xy,/0, the modulus being



equal to one only for Xo1 with v=0.
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One exception to (A-3)

occurs for v=0 in which case yx,,=x_;=+1 and R(1)=-1.

Derivatives of R with respect to XY at certain points

are useful and they result directly from (A-1l). Letting
' =dR
L
R'(1) = l—gv for 0 < v < % .
v
R'(l) =0 for v=0 ,
R.(a—l) _ _Blatl)
a+l a2(a—l)
2
[ - o
R ( l) l"\) 4
R'(X_l) =0 7 > (A=4)
()
= s S
dy \R x=0 +
2 i
d—?_(%) = 16(1-v) %
d
X x=0 }
& (xR) = =B ll-9i" .
X x=0
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The forms in (A-1l) and knowledge of the zeros of D(x)

determine the inequalities

a-1

-1 < R< 1 if a—+-i-<x<1 r
=1 ‘ : a~1
-1 < [R] <1 if -1 < yx < =T

(A-5)
-l <yxR<1l if 0 <y <1 ,

1

-1 < [XR] " <1 if -1<yx <0

The inequalities are evident in Fig. 5 where R(x) and
[R(X)]_l are sketched on the real y-axis, -1<x<1l, for the

values v=0,0.3,% of Poisson's ratio.

On the unit circle x=eiej R(x) takes the simple form
R(eie) = oiv(e) (A-6)
where
y(8) = 2[0-Argb(e*®)] (A-6a)

with D(y) given by (2.3-12b). For 0<6<m and 0<v<Z, y(8)
satisfies y(-8)=-y(0) and 0<y(6)<m with the equalities

being taken only at 6=0,6_1,ﬂ where

vy(0) = y(w) = 0, y(e_l) = 7 (Aa-7)
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For the special case v=0 and the same range 0<6<m, Yy (6)
satisfies vy (-6)=2m-y (6) and 0<y (6)<m with the equalities
being taken only at 6=0,m where y(0)=r, y(m)=0. The func-
tion y(6) is sketched in Fig. 6 for v=0,0,3,% and the
angle 6_l=cos—l(l-2v) is identified as the point where
y(6_y)=m in each case.

There is an additional path, other than the unit
i6

circle y=e ~, on which |R|=l. A portion of this path will

be called Cl and it connects the two points x——:% and
ie_l

X=X_1=¢ given by (A-la). This can be shown by making

local expansions of R(y) about x= —5% and X=X_1 using

R(a+i> 1 and R(x_ l)--—l from (A-3) and R' (x_ )=0 from (A-4).
The path Cl lies entirely interior to the quarter disk
Rex>0, Imy>0, |X|<l, with the exception of its endpoints,
for Poisson's ratio in Ogvgé. Thus, since |R(x)|=1

iy, (x)

R(x) = e (A-8)
will be taken for the form of R(x) when XE:Cl. The exact
forms of Cy and of the real function yl(x) are very diffi-
cult to calculate, but, they are not importanf for this
work. It can be stated with certainty that Cl is a smooth

path and that



-1
Yi_) =T, Y1<2+—1> =ar . (a-9)

Also, yl(x) is a monatonic increasing function of x for
f_R_"X—l)le(X-l)
dx dx

as x moves from x_, to 2;% on C,. yl(x) is monatonic on

XEZCl (except at X_.y Where =0 from (A-4))

Cl since, if it were not, there would be some point xGZCl

ar () 100 _

(X#X_l) where =y & 0. However, from the form
(2.3-12a) of R(yx), there can be no more than six points
where %%<X>=0, and it is obvious from Figs. 5 and 6 and

from (A-2) and (A-6) that four such points are on the real

*
x-axis and that two more, X-1 and X_qr are on the unit

circle |x|=1. Hence, there are no other points where
=0. One other aspect which clarifies (A-9) andhelps to

explain Cl and yl(x) is that, if x traverses the closed

path g%%+l on the real x-axis, l+x_l on the unit circle

|x|=1 and X_l+g£% on C,, then the argument of R(x) in-
creases by an amount 2m due to the presence of one simple
zero of R(y) at Xg1 " which then must be interior to the

closed path. This, of course, is with vc<v§% so that

ImXOl>O as shown in Fig. 4.
It is evident from the form (2.3-12a), showing that

*
R(x)=R*(X ), and from (A-2) that if yx is any point on Cl

%
then also |R|=1 at the points y , % and J%. This completes
X

C, into a closed curve on which |[R(x)|=1.
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APPENDIX B

ADDITIONAL INFORMATION ABOUT THE BRANCHES n=nn(x)

B.1l. THE BRANCHES AT SPECIAL POINTS

It is possible to find exact solution pairs x,n of the
frequency equations at some points in the x-plane or for
certain values of n. Such solution pairs will be helpful
in understanding the branches n as continuous analytic
functions of . The results for several points are listed
here without indicating the simple calculations. Use‘has
been made of the properties of the function R(x) given in
Appendix A and the property of analyticity of the branches
as shown in Section 3.1.

(1) The case n=0.

The trivial solution nz0 for all y is not inter-
esting since it implies that w=k=0 from (2.3-7). However,
expansion of the symmetrical frequency equation shows that

x*
]n|<<l is possible only near the points X=XgXg where

XxR(x)==-1 from (A-3). The expansion about X=Xq is
52160
2 _ _3ie v, _ 2
VY G =) l-v(x Xo) * O(IX X0| >
~-i6
3e - 1+v

2
= STr=or Vi (8-9) + o(]e-6;] ) (B.1-1)
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the second expression being specialized to x=ele with 6+60.

For 6>6, this is obviously an expansion of the symmetrical

0
Rayleigh branch no(x) about the n=0,x=x0 (or w=k=0) point
and, indeed, the branch has a square root branch point at
X=Xq+ For e<eo, (B.1-1) gives a continuation of the sym-
metrical Rayleigh branch about the branch point.
Likewise, the asymmetrical frequency equation only

admits branches with |n|<<1lnear the point x=0. The expan-

sion about x=0 takes the form

n? = 48(1-v)% + o(|x]|% . (B.1-2)

For <0 this is an expansion of the asymmetrical Rayleigh
branch no(x) about the n=x=0 (or w=k=0) pecint and this
branch has a square root branch point-at x=0.
(2) The point x=1l.
Directly from the symmetrical frequency equation

(2.3-13), the branches take the values

nn(l) = nmr , n=l;2;36 s i (B.1-3)

and the branches are analytic at y=1 since the derivative
' dn, (x)
(3.1-3) exists with el =-ZnT.
X -1 2
x=1
The asymmetrical frequency equation (2.3-14) can be

rearranged and written as
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tann = £(x,n)
where

- Rsin(x=-1)n
1-Rcos (x-1)n

f(Xm)

Assuming that bounded solutions n exist in a neighborhood -

of y=1 and using (A-4), results in

£(1,n) = ——1 = 'T%j—n :
R (1)

Hence, asymmetrical solutions nn(l), n=1,2,3,..., exist and

they satisfy

2
tann (1) = ‘—-—i—\_)—évn(l) (B.1-4)

from which nn(l) can be shown to be real. Only the posi-
(2n-1)m

tive set of solutions nn(l) satisfying 5 _nn(l)<nﬂ
for 0<v§% are taken, and
n (1) = (ZnEl)w + 2(1=2v) O(n_3)
(2n-1)mv
for n>>1 and 0<v<%.
dn_ (x)

The expression (3.1-4) for the derivative &
x=1
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of the asymmetrical branches takes the % indeterminant form
due to (B.1l-4) and (A-4) and the derivative cannot be shown
to exist from this form. However, the form tann=£(yx,n) of

the asymmetrical frequency equation gives

af
dn , _.oxX __
dx 1+f2—%

and this expression for the derivative does exist at x=1
with the assumption that bounded solutions nn(x) exist in
a neighborhood of x=1 with nn(l) satisfying (B.1l-4).

dn_ (x) 1
Carrying out this calculation gives —=— =-Zn_ (1) ;
dx x=1 2'n

hence, the branches are analytic at x=1 and they are tan-

n. (1)

gent to the hyperbolas n=—%———

X at this point as were the

nm

l—ﬂ(-at

symmetrical branches tangent to the hyperbolas n=
x=1.
These preceding values of the symmetrical and asymmet-

rical branches at x=1 map into the %=a points on the

branches in the w,k-plane.

: _a-1
-(3) The point b i
; ; -1
The symmetrical solutions nn(%if)’ N=1,2,3;¢6¢3

with O<nl<n2<'°°’ comprise the two sets
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a-1 2gm '
n( ) = v q=l'2,3,coo’
a+l 1+y _a-1
X a+l
(B.1-5)
a-1 (2p=-1)m
n< > = - I p=l’2’3’oon °
a+l =% gl
X=a+1
The asymmetrical solutions nn<§£i), N=1, 2,3 e s g with
0<nl<n2<..., comprise the two sets
a-1 (2g-1)m
n< ) = 7 q=l'2,3,o¢o’
a+til I+y g
X=aF1
(B.1-6)
a-l) 2pm
n = D 7 p=l'2’3’ooo .
(a+l 1-x el
X=aF1
The point x=g%% corresponds to cut-off k=0 and, just

as in the w,k variables, the branches have separated into
two sets at this point; those in (B.1-5) and (B.1l-6) with
l-x in the denominator correspond to motions of the
plate which were called the simple thickness-stretch modes
and those with 1l+yx in the denominator correspond to
motions which were called the simple thickness-shear modes
by Mindlin [2].

(4) The point x=0.

The symmetrical frequency equation admits
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solutions nm(O), m=1l,2,3;+++; satisfying

sinn(0) = -n(0) . (B.1-7)

nm(O) can be taken with Renm(0)>0, Imnm(0)>0, and
0<|ngl<Iny|<..., however, the complex conjugates are
equally good solutions. The first ten roots of (B.1l-7)

are tabulated by Robbins and Smith [l14], and for m>>1

_ (4m-1)m : . i
nm(O) B ehpily + iLog(4m-1)m + O<5Logm> .

The asymmetrical frequency equation admits solutions

n_(0), m=0,1,2,..., satisfying

m
sinn(0) = n(0) , (B 1~8)

which can also be taken with Renm(0)>0, Imnm(0)>0 for
m=1,2,3,..., and o=|n0|<|nll<|n2|<... . Ny(0)=0 is the
¥=0 point of the asymmetrical Rayleigh branch which was
just discussed. The first ten roots of (B.1-8) are tabu-

lated by Hillman and Salzer [15], and for m>>1

_ Umrl)w (X
.nm(O) = 5 +iLog (4m+l)m + O mLogm> .
These solutions at x=0 map into w=0 and K complex by
(2.3-7) and they are related to the degenerate case of the

static solution in the plate.
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(5) The point X=X g*

Both frequency equations admit solutions

= -— , m=l,2,3,¢0s = (B.1-9)

(6) The point x=-1.
As in the case of the asymmetrical branches at
x=1, the symmetrical frequency equation (2.3-13) can be
written as

Rsin (1l+yx)n
1-Rcos (1+x)n

tann = -

which allows solution values at x=-1 for the symmetrical

branches nm(—l), m=0,1,2,..., satisfying

tann (=1) = l-;-Xn(-l) i (B.1-10)

The root n,(-1)=-i|n,(-1)| is pure imaginary and it is
identified as the point on the symmetrical Rayleigh branch
where it crosses the equivoluminal tangent (x=-1 or w=K).
Other than for the conjugate of no(-l), all other roots of

(B.1-10) are real, and the positive set which satisfies

(2m+1)

5 for m=1,2,3,..., is taken where

mﬂ<nm(—l) <

(2m+1) ™ 4 3

Npi=1) = 2 T m+rl) 7T (1-v) )

+ O(m~
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for m>>1l.

Analogous to the point y=1 on the asymmetrical
branches, the derivative (3.1-3) takes the % form at x=-1
for the symmetrical branches and cannot be shown to exist.
However, the form given above for the symmetrical frequency
equation allows calculation of the derivative giving
-— =%ﬂ (-1) where n_(-1) satisfies (B.1l-10).

o, | m m
Hence, these symmetrical brances are analytic at yx=-1.

The asymmetrical branches take the values

n (_l) = mm 7 m=l,2’3,o--, (B-l—ll)

and they are analytic at y=-1 with the derivative (3.1-4)

dn

; m_1
taking the value ai——imﬂu

(7) The point x=x_j;.
At this point, the symmetrical frequency equation

is satisfied by each of the sets

et
(2n+l)m _ (2n+l)17,‘m:L 2

nn(x—l) = l+X-—l 2‘/_1:5_ v n=0,l,2,..., (Bql-lZ)
g
_2mm _ omm., Y2 _w B, 1133
nm(x-—l) - l—x_l - :/Ele 7 M=L,47370600 .
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The asymmetrical frequency equation is satisfied by

each of the sets

O_-
!
2nm ar Y72 1.2.3 (B.1-14)
n (X_ ) = = e F n= F 7 g © 0 oy e -
n 1 l+x_l ST
o1
ng(x_y) = Amedln _ meding, T2 pe1,2,3,... . (B.1-15)

1-X_1 2/

This separation of the branches into two sets at

X=X_1 is closely related to the separation which occurs at

(8) The points X=Xg1Xg2"
These points are not on the real y—-axis unless

O<vev,, (vc is described in Appendix A), however, they are

interesting points since both frequency equations admit

solutions

n(XOl) = n(xoz) = nnm , 0=l , 2,30 = (Bal-16)

These points can be made to move off the real axis, as in
Fig. 4, by increasing v, and the same values are retained
by nxgp) and nixgy,) -
(9) Points x which are real and rational.
Exact solution pairs, Xx,n, satisfying the fre-

guency equations can be found at these particular points
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by finding the zeros of polynomials. Such results are im-
portant since they give exact solution pairs at points
other than those already considered.

This case is illustrated by taking x=§ where n=2,3,
4,..., m=t1,+2,+3,..., and —1<%%1. The symmetrical fre-
qguency equation (or, likewise, the asymmetrical equation)

reduces to

sinn + R(%)sin(

?éB

) = sinfl) 2 con (k) -

at X=§ where Pn—l(z) is a polynomial of degree n-1 in z.
Further, if both m and n are odd, the frequency equation

takes the simpler form
sin(%n) Qn_l(cosz<%-n>> =0
2

where Q-1 is a polynomial of degree E%E. An obvious solu-

2
tion of these equations, which is of considerable impor-

tance for sketching the branches, results from sin(%®==09

Therefore, the pair

Y = % g n = nm (B.1-17)

for n=2,3,4,... and m=%1,+2,+*3,... satisfies both the sym-

metrical and asymmetrical frequency equations. The points
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(B.1-17) can also be recognized as the common points of the
hyperbolas n=f%%-and n=f¥§ for p=n-m and g=m+n. These are
the hyperbolas which form the grid as discussed in Subsec-
tion 3.,2.1.

The remaining solution points, for x real and rational,
are given by the roots of the polynomials Pn_l<;os<%ﬂ>) or

Qn_l(cosz<%m>) . Thus, by solving nothing more difficult
2

than for the roots of quadratic equations, the frequency

equations can be solved exactly at the points x=t%,i%,i%,
i§7r%,and, by solving for the roots of cubic equations, at
the points X=i%,i%,i%,i%,i%, etc.

For example, at the point x=—%, the symmetrical fre-

quency equation reduces to
. . 3.\ _
sinn + R51n<—§n) =
. (1 4(1 2(1
51n<§ﬂ>[16cos <§n)—4(3+R)cos (§ﬂ>+l+R] = 0

where R=R<—%>>l for Ogvié. This equation has the solutions

5mir, W=l,2,3,6w0

3
/I\
ulw
[ o—_

]

|

5mm * 5cos_l{—l—1}+R-(5+2R+R2)

2V/2

=
1

o|w

NS—
I

il
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m=0,1,2,..., (only the plus sign for m=0),
i
n(-%) = Smr ¢ Sicosh L ——]'——[3+R+(5+2R+R2)2] } )
2v2

m=0’l,2'aoo,

where all of the radicals are positive and the inverse
functions take their smallest real positive values. These
solutions indicate a great deal about the branches n in

the interval —l<x<xg. For instance, in the example chosen
exact solution points of the symmetrical freguency equation
are found both for w and k pure imaginary and for w and

complex through (2.3-7).

B.2. THE BEHAVIOR OF THE BRANCHES UNDER THE MAPPING X*%

The properties of the equivoluminal and dilatational
branches, which are derived in Subsection 3.2.2, make pos-
sible some general statements about the branches n in the
complex x-plane. Use can also be made of the fact that in
B.1l the branches are shown to be analytic functions of ¥
at y=1 and x=-1 for the cases where the branches are bound-
ed at these points.

From (3.2-11) and (3.2-17) and from‘tanXi%§l=-tan1%gl
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(y (-6)=-y (6) from Appendix A), the moduli of the equivolu-
minal branches are even functions of 6. That is, if |nn|=

fn(e) satisfies either (3.2-11l) or (3.2-17) for n=1,2,3,...

then fn(—e)=fn(6). Thus, the form of the branches nn(x) on
. 0
i )

the unit circle x=e is nn(ele)=fn(e)e from (1) of

(3.2-8). Using the fact that f (8) is an even function of

6 results in the interesting property

18

—ie) — fn(e)e 2

n. (e
ox

52

= f,(0)e * = n (e

(B.2~1)
for Ogé<r (£ () is singular as 6-m).

The analytic continuations of the equivoluminal
branches onto the lower half unit circle are given by
(B.2-1). More significantly, the property (B.2-1) also
must be valid for continuations off the unit cifcle x=eie
since the equality of these analytic functions on the unit
circle implies equality everywhere in their domain of an-

alyticity. This being the case, the equivoluminal branches

have the property

—ﬂ'<%) =n, x) | (B.2-2)
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which just defines the behavior of the branches nn(x) under
the mapping x+%.

The property (B.2-2) makes it possible to show that w
and k defined by (2.3-7) are invariant under the mapping
X*%- That is, if n in (2.3-7) is an equivoluminal branch
then w(%>=w(x) and K(%)=K(X). This depends on the defini-
tion of the radicals in (2.3-7). A suitable definition

which leaves the point y=1 and the x-plane near x=1 free
4

of branch cuts is to take x2 as real and positive on x>0
with the branch cut on the negative real x-axis. Simi-

larly, the radical in k is taken to be real and positive

on the interval g%%<x<§§% with the branch cut on the re-

mainder of the real y-axis. These also are definitions
which make w and k real and positi&e on the integration
path C shown in Fig. 2 for n=nn(x), i [ -

This invariance of w and k under the mapping x+% lends
Support to the statement in Section 2.3 to the effect that
if w and k are completely known as a function of x on the
unit disk |yx|<l then they are known everywhere.

Likewise, the moduli of the dilatational branches
~given by (3.2-12) and (3.2-18) are even functions of 6
with respect to the point 6=m. Hence, from (2) of (3.2-8),

the dilatational branches have the property
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= n (e1®) (B.2-3)

for 0<6<m which gives the analytic continuations onto the

lower half unit circle. (B.2-3) becomes

x|

_%ﬂ< ) =1 (x) (B.2-4)

when the dilatational branches are continued off the unit
circle. w and k in (2.3-7) are again invariant under the

mapping X*% if the positive real y-axis is taken for the
L _

branch c¢ut of x2 and the segment g%%ﬁxggé% is taken for the

branch cut of the radical in k.
The property (B.2-2) can be used to verify the value

of the derivative of the equivoluminal branches at x=1 as
dn, (x)

found in B.1l. a =——nm(—l) results directly from

x=1

(B.2-2) and the fact that both the symmetrical and asymmet-

rical equivoluminal branches are analytic at x=1. Like-

dnm(x) 1
wise, from (B.2-4), ai— =§ﬂm(—l) for the symmetrical

x=-1

and asymmetrical dilatational branches.
B.3; THE COMPLEX BRANCHES ON THE REAL x-AXIS

For the purpose of examining the complex branches on

the real y-axis, n is written as
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where nR=Ren and nI=Imn. The symmetrical frequency equa-

tion (2.3-13) becomes

sinchoshnI —R(x)sinancoshxnI 0

(B.3-2)
cosnRsinhnI = —R(x)cosansinhxnI

where the. real parts have been equated using the fact that
x and R(yx) are real. As usual, the asymmetrical frequency
equation is obtained from (B.3-2) by replacing =-R(x) with
Ri{Y) »

A simple case results from setting nR=0 in (B.3-2) and
in the corresponding asymmetrical frequency equation.
These solutions, n=inI, are identified as the Rayleigh
branches and they will be discussed in the context of the
entire set of complex branches.

By using the fact that -1<R(x)<1l on the interval
%%%§x<l (from (A-5) in Appendix A), it is possible to show
that no complex solution of the form (B.3-1l) exists with
nI#O which satisfies (B.3-2) on this interval. This is
done by assuming that a solution with nI#O exists and then
using the inequalities IRsinhth|<|sinhnI| and IRcoshxnIl<
coshnI to obtain a contradiction. The same proof is also

valid for the asymmetrical branches.
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The existence and form of the complex branches are
more apparent on ‘1SX<§%% if the equations (B.3-2) are
rearranged sc that R and ny can be discussed as separate
functions. The first equation of (B.3-2) is multiplied by
sinhxnI and squared, the second equation is multiplied by

coshxnI and squared, and the results are added to give

™| -

2 2 . 2
R”cosh Xny—sin'np
2

"R

sinhnI =

5 : sinh[xlnI . (B.3-3)
cosh xnI—sin

This equation is a result of forcing (B.3-2) into a form
which is very similar to the original frequency equations
(2.3-13) and (2.3-14) with ny=Imn replacing n and the radi-
cal replacing *R(x). Actually, the sign of R(x) has been
lost in the squaring operations so that (B.3-3) is valid
for both the symmetrical and asymmetrical complex branches,
and (B.3-2) or the analogous asymmetrical frequency equa-
tions must be used to identify the particular branches.

Similarly, the pair (B.3-2) can be manipulated to give

.2 .
sin 2nR51nh (l+x)nI

12
stinhzzxnI

sin®(lx)ng =

which can be combined with (B.3-3) to eliminate sin2

4sin2nR(l—sin2nR), resulting in

2nR=
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(sinhan-stinhzxnI)(choshzxnl—coshznl)

e 2 -
sin4 (1l+X)n, =
L. stinhz(l-x)nI

(B.3-4)

The pair (B.3-3) and (B.3-4) are especially convenient
forms from which to determine both the symmetrical and
asymmetrical sets of complex branches.

The following approach can be used to find exact solu-
tion points on the complex branches or to verify the exist-
ence and form of the branches: (1) sinznR is considered as
a constant parameter (Ogsinangl) in (B.3-3), which can
then be solved for ny as a function of x and the parameter;
(2) this result is substituted into (B.3-4) to give N as a
function of y and the parameter; (3) the common points of
this function g and the constant values of g from sinan=

constant give exact solution points XrMgs and n. is then

I

I

~given by evaluating the function Ny in (1) at this point ¥x.
The preceding procedure depends on the fact that there

exists a solution Ny of (B.3-3) for a fixed value of sinznR

and such a solution may not exist. If (B.3-3) is written

as

N

sinhnI choshzxnl—sinan

: = v
sinh|x[n; 2xnI_Sin2nR

cosh
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the left side of this equation is a strictly increasing

function of n, and the right side is a nonincreasing func-

a-1
a+l”®

tion of ul for -l<y< x=0 is an exceptional point with
complex solutions already known to exist satisfying (B.1l-7)
and (B.1-8) in Appendix B. Also, the point x=-1 gives a

limiting case which cannot be included here. Thus, a single

solution nI>0 exists if, and only if,

L
2
sinhn R2—sin2n
. I 1 R
1 StaRlxTny -~ TxT © 2 -
nI+0 I cos ng
1
2
2 2 v 2
R%cosh xnI sin nR
7
coshzxnI—sinznR
=0
e
which is equivalent to requiring that
2 1-y°R2
BiH"H, B SA . (B.3-5)
R 1y 2

From the first of (B.3-2), this also gives a bound on

sinzxnR which is

2
cosh™xn
sinzn = R? ———————Qgsinzxn < stinzxn
R 2 R - R
cosh Nt
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for nI>0, and this can be combined with (B.3-5) to give

2_2
sinzan > jﬁ l:l_%_ - (B.3-6)
R 1-x

On -1<x<0, both (B.3-5) and (B.3-6) are always satis-

fied since x2R2>l by (A-5); hence, complex branches exist

a-1

on this interval by this criterion. However, on 0<x<a+l

the inequalities (B.3-5) and (B.3-6) are not satisfied for
all y and nRzo. The limiting case nI+0 on the complex
branches can only occur at points XMy determined by
(B.3-5) and (B.3-6) with equalities replacing the inequal-
ities. This is not meént to include all of the points on
the real branches considered in Subsection 3.2.1 where
nIEO, but only the limiting points of the complex branches.
But, (B.3-5) and (B.3-6) with equalities are identical to
the two equations (3.1-7) with no distinction between the

symmetrical and asymmetrical cases. Thus, just as is ex-

pected from a local approximation like (3.1-13), the branch

a-1

points on O<X§a+l

are common points of the real and complex
branches.

Bounds on the functions Ny result directly from
(B.3-3) by observing that the radical on the right side of
that equation is a nondecreasing function of sinan for

2 a=l1

Ogsinangl if R™>1, which is the case on —15X551T° Hence,
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evaluating the right side of (B.3-3) for sinan=O and
sinan=l results in the lower and upper bounds respectively
for sinhnI, and also for Ny since sinhnI is an increasing
function of Npe The bounds are then defined by the‘in—

equalities

|R[sinh|x|n; < sinhn, < ‘VﬁzcoshzxnI—l v

which is equivalent to the pair of inequalities

Iv

sinhn ]Rlsinh[xlnI ’

(B.3-7)
coshnI

IA

lRlcoshxnI

with nle throughout.

The bounds (B.3-7) are taken (the equalities hold) by
the imaginary part of the complex branches at various points
in the Rex,Ren-plane; hence, the bounds are also envelopes
with nI=Imn being tangent to the curves at these points.

The lower bound is taken by hI if sinan=0 and
sin2(1+x)nR=0, which results from (B.3-4) under the condi-
tion that the first of (B.3-7) with the equality, or
sinhnI=]RlsinhlxlnI, is satisfied. Actually, a solution
nI>0 of the first of (B.3-7) with the equality exists only

on -1<x<0 where |xR|>1 by (A-5) in Appendix A. Hence, the
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a-1

appropriate lower bound for n e

on 0<x< is just n_=0.

I

The upper bound is taken by Ny if sinan=1 and
sin2(1+x)nR=0, which results from (B.3-4) and the second of
(B.3-7) with the equality, or coshn =|R|coshxn . This
equation has a solution nI>0 on all of the interval -1<x<
g%% where |R|>1. |

The envelopes or bounds defined by (B.3-7) are shown
in Fig. 1ll. Both the upper and lower bounds are obviously
unbounded as X*Xg where R(x) is also unbounded by (A-3).
The asymptotic approximations of the bounds n; are easily

derived and they both take the form

2XR

1 —1+XR
- T;——)Z-Log|R()()[ + of | x-xg| (B.3-8)

as X*Xg on the real y-axis. Hence, the imaginary part of
every branch must have this approximation. The equations
(B.3-7) for the bounds can be expanded near x=-1 by using
R(-1)=1 from (A-3) and R'(—l)=1%3 from (A-4) in Appendix A
to show that N1 for the lower bound‘satisfies

l...

v
—i—nI—tanhnI

at x=-1, and that Uk for the upper bound satisfies
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l%XﬂI = cothnI
at x=-1. The lower bound equation at x=-1 is identical to
(B.1-10) with n=inI. The solutions, nI(—l), of these equa-
tions can easily be shown to fall above and below the value
I%U with a finite separation that depends on Poisson's
ratio v.

The Rayleigh branches are a special case where sinan=
sin2(1+x)nR=0 due to nﬁEO and the lower bound is an exact
solution of the frequency equations. This can also be seen
by setting n=inI in the frequency equations (2.3-13) and
(2.3-14). To be precise, the symmetrical Rayleigh branch

n=in_ with nI#O only exists on —l§x<xR where yxR(x)<-1, and

i
the asymmetrical Rayleigh branch n=inI with nI#O only
exists on4xR<X<0 where xR(x)>1l. These comments result from
the forms of the frequency equations and they are a re-
minder that the lower bound in (B.3-7) has resulted from
squaring operations which obscure the difference between
the symmetrical and asymmetrical frequency equations. The
lower bound in Fig. 11 is then a sketch of a portion of the
symmetrical Rayleigh branch on ‘15X<XR and of the asymmet-
rical Rayleigh branch on XR<X§0' If the negative solqtion
n; is taken in each case and if the radicals in (2.3-7) are

taken as positive imaginary, then both w and k are real and

positive. The positive imaginary values of the radicals
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result from a natural continuation above their respective
; _ _a-1
branch points, x=0 and X=g71"
The asymptotic approximation of np=Imn as X>Xp is
~given by (B.3-8) for all of the complex branches and the
complete approximation for n=nR+inI, as derived from the

frequency equations (2.3-13) and (2.3-14), is

1 : 1+xr
n ~ iy lar+ilog(R())] + O | %% (B.3-9)
as X*Xg with g=0,2,4,... for the symmetrical branches and
g=1,3,5,... for the asymmetrical branches. In this approxi-

mation, Log (R(x))=Log|R(x)|+iArg(R(x)) with -J Arg(R(X))<%;.
(B.3-9) includes the approximation to the symmetrical
Rayleigh branch g=0 as X*Xg on ‘l§X<XR where Arg(R(yx))=0,
and to the asymmetrical Rayleigh branéh g=1 as X*Xg ©n
XR<XSO where Arg(R(yx))=m. Every complex branch has a loga-
rithmic branch point at X=xg and this feature is not unique
to the Rayleigh branches.

(B.3-9) indicates the nature of‘an analytic continua-
tion about the logarithmic branch point XR for every com-
plex branch. Any symmetrical complex branch, including the
Rayleigh branch, can be continued onto any other symmetri-

cal complex branch by encircling the branch point X=Xge

This is equivalent to passing through the branch cut and
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onto other sheets of the Riemann surface. The same holds
true for the asymmetrical complex branches.

A few of the complex branches are sketched in Fig. 12
in the Reyx,Ren,Imn-space. This figure and other details
about the complex branches are discussed in Subsection

3:2:3.
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APPENDIX C
ADDITIONAL MATERIAL FOR ANALYTIC.CONTINUATIONS

C.l. AN EXPANSION OF THE FREQUENCY EQUATIONS FOR 1-v

SMALL

The function R(x)=R(x,v) in (2.3-12a) is expanded in
powers of l-v, where the assumption must be made that 1l+y
is not small since both R and the branches n undergo dras-
tic changes near y=-1 as v+1. Then the frequency equations
(2.3-13) and (2.3—14).can be approximated, under the

assumptions that l-v,’x—% and n-km are small where k=2,3,

4,..., j=t1,+2,£3,... and XR<%<1, to give
. 2 .2 ; : TIR INY-
X = % + 8(11T\)) 1k Jg(n—kn) - '61? e =37) Z )(n-kﬂ)B .
k (k+3) k

C.3~1]

(C.1-1) is an approximation to the symmetrical branches for
j+k odd and to the asymmetrical branches for j+k even. The
requirement XR<%’ with Xg defined by (2.3-9), only serves
to avoid the vicinity of x=-1, but this is not veiy re-
strictive since XR+—1 as v»1. Thus, (C.1l-1) is valid near
x=-1 if 1-v is sufficiently small.

In addition, (C.l-1l) is wvalid even if 1-v is not

small provided that k>>j which means this approximate
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frequency equation is useful to examine the upper branches
near x=0.

The simple cubic (C.1l-1) vividly illustrates the
nature of the branch points, which merge as v+1, both on
-1l<x<0 for j<1 and on 0<x<l for j>1. If (C.1-1) is taken
to be exact, the branch points are identified by requiring

that %%=0; thus, the branch points are located at

_ 3, 64092 32(k-9) e
X =k * 37 5 Y3k
_ (k+3)
k .
n = km # 4(l-v)—————§ij

(k+3)

so that if j is negative both x and n are complex at the
branch points. The very important feature of this is that
when Imy>0 at the branch points; identifying these as the
approximate location of branch points from "the set of
negative branch points," it is also true that Imn>0.
Therefore; branch points belonging to "the set of negative
branch points" are common only to pairs of branches con-
sisting of a real branch on -1<x<0 and a complex branch
with Imn>0. The preceding statement requires a very simple
examination of the continuations about the branch points as
predicted by (C.1-1l). Likewise, it is seen that complex

conjugates of these branch points are common to pairs of
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branches consisting of a real branch on -1<x<0 (the same
real branches as those just mentioned) and a complex branch
with Imn<O0.

The simple cubic (C.1l-1) has solutions which illus-
trate the nature of the complex branches as v>1l. On 0<x<1

for %§v<l, the complex branches have complex loops between

a-1

pairs of branch points just as shown in Fig. 12 on 0<X<oFT"

v=1 causes the branch points and, hence, the base points of
neighboring loops to merge. On -1<x<0 for v<l, each com-
plex branch has an imaginary part which oscillates but is
never zero as is also shown in Fig. 1l2. v=1 causes these
minimums in Imn to reach Imn=0 at the branch points and the

branches become identical with those on 0<x<1.

C.2. CONTINUATIONS OF THE EQUIVOLUMINAL AND DILATATIONAL

BRANCHES ABOUT THEIR SINGULAR POINTS, x=-1 AND x=1

In Subsection 3.3.3, the equivoluminal and dilata-
tional branches were found to be singular at x=-1 and x=1
respectively. Continuations of these branches about their
singular points is required and this presents a problem
since none of the representations in Section 3.3 were
shown to be valid except as the singular points were

approached on X=ele

, 0L06<m.
To resolve this problem, it is easy to show that the

approximation
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2nm _.LogR —ZnHiili
T'ln(X) = —lTX—-ll+X + 0 |e | ; (C.2-1)
n=1,2,3,..., taken directly from the series representation

(3.3-14), is valid for the symmetrical equivoluminal
branches, with the error indicated, for 0<Arg(l+x)<m. The
verification of this approximation is contained in the dis-
cussion following the form (3.3-6) of the symmetrical fre-
quency equation. Thus, since the complex branches with
Imn<0 were found to have no branch points adjacent to the
real y-axis with Imyx>0, they can be continued slightly off
the real y-axis. This continuation for a complex branch
with the dominant term %%% must lead to the equivoluminal
branch with the approximation (C.2-1). This argument uses
the fact that g% must remain finite since no branch points
are present, and the continuation must take place away from
the singular point x=-1. Also, it is observed from (3.3-4)
that the imaginary part of the approximation (C.2-1) is
negative on the real x—axis, which is in good agreement
with the imaginary part of the complex branches since they
»oscillate about —T%g on the real x-axis near x=-1.

The complex branches with Ren>0 and Imn>0 continue
about y=-1 onto the dilatational branches on X=eie, 0<B<m.

The reason for the difference between the continuations of

complex branches with imaginary parts of different signs
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is that only those branches with Imn>0 have branch points
with Imy>0 adjacent to the real x-axis on -1<x<0.

Similarly, the asymmetrical equivoluminal-branches
continue about y=-1 onto the asymmetrical complex branches
with Imn<O0.

Also, from the approximations consisting of the lead-
ing terms of (3.3-23) and (3.3-28), the dilatational
branches continue about x=1 onto the only branches avail-

able on the real y-axis, the real branches.

C.3. THE NATURE OF "THE SET OF POSITIVE BRANCH POINTS" FOR

N

V=

3

"The set of positive branch points" for v=l, defined
in Subsection 3.4.1, has not been explained yet. The na-
ture of these branch points is easily resolved by making
analytic continuations about the closed paths described in
Subsection 3.4.2, except that these branch points are ig-
nored and remain interior to the closed paths. In doing
so, it is found that none of the branches have a single-
valued continuation on the closed path. Hence, one branch
point from this subset must be common to each pair of

a~1 . C o .
ar1-XSl since this 1s required

neighboring real branches on
for a single-valued continuation. Also, the details of the

continuation about each of these branch points must be the
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same as for the other members of "the set of positive
branch points" which are adjacent to g%%fxgl. To be pre-
cise, this argument only insures that an odd number of
these branch points be common to neighboring branches,
however, it was found in Subsection 3.1.3 that the branch
points are also zeros of A?kigiven by (3.1-9) with i(—l)k=
+1 where km<Ren<(k+1l)m at the branch point. Consequently,
it is not a reckless assumption to assign the branch point
of this subset which is a zero of A?k to the neighboring
pair of real branches Ny and N1 OB the real y-axis. This
gives the required number of branch points to make every
branch continue as a single-valued, analytic function on a

closed path with none of its branch points interior to or

on the path.
C.4. EXAMPLES OF ANALYTIC CONTINUATIONS ON CLOSED PATHS

A closed path in the y-plane is shown in Fig. 14 and
it corresponds to the analytic continuation of the symmetri-
cal branch shown in Fig.‘lS. Both the path and the corres-
ponding values of n are indicated by a heavy, directed line.
The dashed, directed lines in Fig. 15 represent transitions
caused by the path going around branch points. Two axes for

the modulus |n(ele)| versus 6, 0<8<m, are used on the leftof
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Fig. 15 to emphasize the transition from the dilatational

i i6 'i%
branch‘n&e )=i]n0(e )| e to the symmetrical Rayleigh
.0
i@ i6,, "2 :
branch n,(e™)=[n (e™")|e caused by their common branch

i6
point at 60, where the point Xg=e e is given by (2.3-8).

The numbers 1,2,...,6 label certain corresponding points in
both figures. Branch points are indicated in Fig. 14 by
dots.

A description of this continuation is now given by be-
ginning at point 1 or x=0. Point 1l is on a symmetrical
complex branch with Imn<0 (Fig. 12 shows the complex conju-
gate of this branch). n(0)=Ren(0)+iImn (0) satisfies
(B.1-7) and it is the root with the smallest positive real
part. On 1,2, n remains on this complex branch with Imn
vanishing at 2, which is the branch point identified as
(-,0,1) in Fig. 7. The continuation about the branch point
at 2 takes n onto a real branch identified as the symmetri-
cal branch nl(x) in Fig. 8. Beyond 2, branch points from
"the set of positive branch points" are encountered adja-
cent to the real y-axis. The continuations about these
branch points are indicated by dashed lines in Fig. 15 on
g%%<x<l, These continuations have the effect of stair-

stepping up the real branches. These branch points form

an infinite set with a.limit point at x=1 and they are
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zeros of Ai+l,k_given by (3.1-9) for i(—l)k=+l and k=1,2,
3,... . These become too numerous to show near y=1 in Fig.
14 and the path just passes above all of them and onto the
unit circle X=eie, 0<g<m. In Fig. 15 this continuation
connects the right and left extremes which are both labeled
3 for x=1 or 6=0. On the unit circle, n goes onto the
lowest dilatational branch described by (3.2-12) with m=0,
which is shown in Fig. 10. This branch shares the branch

. 16y . .
point at 4 or X=X g=e ~given by (2.3-8) with the symmetri-
cal Rayleigh branch which is described by (3.2-11) with n=0
and is shown in Fig. 9. The branch is analytic at 5 (x=-1,
6=m) and it continues onto the real y-axis still on the
symmetrical Rayleigh branch where ﬁ is pure imaginary with
Imn<0 on —15X<XR. The branch point at 6 or X=Xg given by
(2.3-9) is avoided by a small indention which causes n to

change as predicted by the complex conjugate of (B.3-9)

with g=0. The real part of n jumps from zero to l:; and
R

its imaginary part is unbounded at Xg* This puts n back on
the same complex branch as thé beginning point 1 and the
continuation to that point is uneventful.

A similar closed path in the y-plane is shown in Fig.
16 corresponding to the dilatational continuation (as de-
fined in Subsection 3.4.2) of the asymmetrical branch shown

in Fig. 17. 1In this case, there is a branch point at 1
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(x=0) which is common to the asymmetrical Rayleigh branch
andito the asymmetrical real branch nl(x) shown in Fig. 8.
The continuation from 1 to 2 (x=1) only encounters branch
points adjacent to §£%<x<l and these form another infinite
set with a limit point at y=1. These are zeros of Aik
given by (3.1-9) for #(-1)X=+1 and k=1,2,3,... . The de-
tails of the continuation about these branch points are the
same as just deécribed for the symmetrical continuation
shown in Figs. 14 and 15. At 2, n goes onto the asymmetri-
cal dilatational branch described by (3.2-18) with m=1,
which is shown in Fig. 10. This branch has no branch
points on the unit circle x=eie, 0<6<m, and it continues
onto the lowest asymmetrical real branch at 3 (x=-1). From
3 to 4 on the real y—-axis, n remains on this real branch
and then at 4 a branch point is encountered and n goes onto
a complex branch with Imn>0 which has the dominant term
I%§ as x»-1 and is shown in Fig. 12. This branch point is
a zero of A:ll and it belongs to "the set of negative
branch points." At 5 (x=xR), n leaves the complex branch

and continues onto the asymmetrical Rayleigh branch as

predicted by (B.3-9) with g=1. The real part of n de-

creases from to zero on the Rayleigh branch with the

i
l+XR

imaginary part of n unbounded at XR* The continuation

then proceeds on the asymmetrical Rayleigh branch from 5
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to 1 (x=0), which was the starting point.
In Figs. 18 and 19, an equivoluminal continuation (as

defined in Subsection 3.4.2) is shown and it involves the

symmetrical equivoluminal branch nz(ele)=|n2(ele)|e , de-

-
| @

scribed by (3.2-11l) with n=2 and shown in Fig. 9. The con-
tinuation is much like the two just described except that
only three branch points from "the set of positive branch
points" are involved on g%%§x<l« The branch points are
zeros of AI4, A53 and A;z respectively as x=1 is approached.
The continuation then goes onto the equivoluminal branch
nz(eie) which is analytic at x=1 and finally onto a complex
branch at x=-1 which has Imn<0. The complex branch has no
branch points from "the set of negative branch points" as

was found in C.l. The continuation about X=Xg is given by

the complex conjugate of (B.3-9) with g=4.



