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ABSTRACT

New opportunities for optical physics emerge from the integration of cold atoms
with nanophotonic devices. Due to their small optical loss and tight field confine-
ment, these nanoscale dielectric devices are capable of mediating strong atom-light
interactions and open new avenues for quantum transport and quantum many-body
phenomena. In particular, coupling atoms to the band edge of a photonic crystal
waveguide (PCW) provides a unique platform for generating tunable range coherent
atom-atom interactions which are mediated by the guided mode photons. Due to
the evanescent nature of the field in the band gap, dissipation into the structure is
suppressed exponentially. We have experimentally observed the transition into the
bandgap for the first time by shifting the band edge frequency of the PCW relative
to the D1 line of atomic cesium with an average of 3 atoms trapped along the PCW .
In addition, we have developed a formalism that provides a clear mapping between
the transmission spectra and the local Green’s function, which allows us to identify
signatures of dispersive and dissipative interactions between the atoms .
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CQED predicts that R CQED = γ c/∆ c, where ∆ c = (ν p − ν1). Note
that −J 1D is plotted in the figure to more readily compare Γ1D and
J1D as the band edge is approached. Figure adapted from [42]. . . . . 92
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6.5 (a) Schematic of the atoms in the side-illumination (SI) trap. Given
the estimated atom temperature of 30 µK, we infer that the atoms
are confined to a length of 2∆xA = 12 µm along the x-axis. (b,c,d)
FORT potentials for the SI trap simulation (b) in the y-z plane [37],
(c) along the z-axis, and (d) along the x-axis. Figure adapted from
[42]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.9 Total decay rates as a function of holding time t m. The red solid
curve is the empirical fit and the dash-dot line represents the fitted
asymptotic total decay rate at very long times. The blue dashed
lines specify fitted error boundaries. The fit yields τ SR = 16 ms,
Γ̄ SR = 1.5Γ′ and the asymptote Γ̄(1)tot/Γ

′
= 2.12 ± 0.14. Figure

adapted from [42]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
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C h a p t e r 1

INTRODUCTION

1.1 The fundamentals of strong atom-light interactions

Figure 1.1: Atoms coupled to a quasi-1D system. The decay rate into the quasi-1D
system is Γ1D, and the decay into free-space modes and other modes of the 1D
system is Γ′.

The building blocks for many quantum information protocols rely on the strong
interaction between atoms and light. As a way characterize the strength of the
interaction, Fig. 1.1 introduces a few basic concepts for atoms coupled to a quasi-
1D optical system, by which we mean a system where the propagation is confined
along one axis. The 1D structure can represent a variety of different systems, i.e.
a free-space paraxial mode, nanofiber, cavity, or photonic crystal waveguide. In
the past decade, atoms and other quantum emitters have been interfaced with the
electromagnetic fields of a plethora of quasi-1D nanostructured reservoirs, ranging
from high-quality optical [1–6] and microwave [7, 8] cavities to dielectric [9–15],
metallic [16–19], and superconducting [20, 21] waveguides.

Γ1D is the decay rate into a particular 1D mode, and Γ′ is the decay rate into all other
free-space modes and 1D modes. A more physical interpretation of these rates is
that the the reflection coefficient for a single photon in the particular 1D mode is
given by the ratio

R =
(

Γ1D
Γ′ + Γ1D

)2
. (1.1)

The condition Γ1D/Γ′ & 1 can be the standard by which we call the interaction
strong, and results in a reflection coefficient R & 0.25. As we will derive in
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Chapter 2, the decay rate into a 1D mode is approximately given by

Γ1D/Γ0 ≈
1
2

(σ0
A

) (
c
vg

)
, (1.2)

where Γ0 is the free-space decay. The first factor is the ratio of the atom’s optical
cross-section σ0 to the optical mode’s effective area A. The second factor is the
slow light enhancement due to a reduced group velocity of light in the optical mode.

Nature has unfortunately conspired to make achieving strong atom-light interactions
exceedingly difficult. The on-resonant optical cross-section of a two-state atom is
σ0 ≈ λ2/2 (see Sec. 2.3). As shown in Fig. 1.2(a), the smallest area that light can be
focused down to in free-space, which is set by the diffraction limit, is also A ≈ λ2,
resulting in inherently weak free-space interactions between atoms and photons.
Another way to understand this weak interaction is that dipole radiation pattern of
an atom poorly overlaps with modes of free-space light propagation, such as tightly
focused Gaussian beams.

(a)

(b)

(c)

Free space

Cavity

Waveguide

Figure 1.2: Coupling an atom (green), whose optical cross-section is represented by
the dashed black line, to (a) free-space, (b) cavity, and a (c) dielectric waveguide.

Historically, there have been two primary methods for overcoming this limitation.
The first method is to enhance the interaction by placing the atoms between two good
mirrors, as shown in Fig. 1.2(b). Light reflects back and forth, and Γ1D in Eq. (1.2)
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is enhanced by the roughly the number of times the photon passes the atom. This
enhancement is used in the field CQED, pioneered by Jeff Kimble [22] in the optical
domain and Herbert Walther and Serge Haroche [23] in the microwave domain, to
achieve strong coupling. In the field of CQED, the ratio Γ1D/Γ′ is instead expressed
as the cooperativity C = g2

c/κcΓ
′, where gc is the half-vacuum Rabi frequency, and

κc the cavity decay rate. While strong-atom light interactions are regularly achieved
in CQED, the systems have proven difficult to scale. The left picture in Fig. 1.3 is
the cavity from one of Jeff’s old experiments, and the corresponding lab is on the
right (which is in fact the lab we sadly dissembled to start our project).

Figure 1.3: The cavity and lab from one of Jeff Kimble’s CQED experiments [24].

A second method for increasing the interaction strength is to minimize the mode
area in Eq. (1.2) by more tightly confining the light into a waveguide, as shown
in Fig. 1.2(c). This has been used in the nanophotonics community to achieve
strong interactions between dielectrics and solid state emitters. While there have
been many experiments with atoms coupled to dielectric systems [3, 25], most of
them have relied on the high optical Q or large number of atoms rather than the
reduce mode area to achieve strong interactions. In the early 2000’s, Hakuta’s group
performed experiments coupling the fluorescence of a cloud of atoms to a nanofiber
going through the cloud [26, 27]. In the pioneering work by Rauschenbeutal’s group
[12], and now in many other groups [13–15], atoms are optically trapped around a
sub-wavelength diameter nanofiber by the optical guided modes of the fiber. This
system is convenient for its straightforward loading and cooling scheme, but is still
restricted to small mode area since the atoms are trapped in the evanescent tail of
the optical mode, resulting in Γ1D/Γ′ ≈ 0.03 or R � 1.

The field of nanophotonics has provided a new opportunity for atom-light interac-
tions. With fabrication precision now at the nanometer level, systems can be made
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with sufficient optical quality to achieve strong interactions. The solid state commu-
nity has led the effort to couple quantum emitters to nanophotonic structures which
both achieve a small mode area and high optical Q. Quantum dots [28], diamond
color centers [29], and rare earth ions [30] have been coupled to photonic crystal
cavities, waveguides, pillars, and microdisks. But with the convenient embedding
of the quantum emitter into the dielectric comes the problems of inhomogeneous
broadening, non-radiative decay, and varying resonance frequencies. Atoms have
the reverse problem. They have ideal optical properties but are challenging to cool
and trap near the dielectric structure.

The broad goal of our experiment has been to integrate atoms into a nanophotonic
circuit. While this exciting new platform can lead to strong atom-light interactions
in nanophotonic cavities [31] and waveguides [32], it is interesting to ask whether it
is possible to create new types of optical systems with novel atom-photon, photon-
photon, and atom-atom interactions.

Figure 1.4: The Alligator photonic crystal waveguide.

This goal has led us to the Alligator photonic crystal waveguide (PCW), shown
in Fig. 1.4. First, we will explain how the unique design of the device leads to
strong-atom light interactions. As shown in Fig. 1.5(a), the waveguide has been cut
in half, which is so that the atom can be positioned at the center of the device where
the optical mode is the strongest. The atom is no longer in the tail of the mode’s
evanescent field, as is the case in the nanofiber. The optical mode area (defined
in Eq. 2.87) for various atom positions is shown in Fig. 1.5(b) for the transverse-
electric (TE) mode near the dielectric mode band-edge. At the center of the device,
the mode area is A ≈ 0.3 λ2.
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Figure 1.5: (a) SEM of an Alligator PCW. (b) Cross-section of the intensity of the
TE mode near the lower band-edge. The units are in inverse mode area to show the
mode area for the various atom positions. For the upper band-edge, the effective
mode area is approximately two times smaller.

The second important feature of the structure is that the side walls are modulated to
form the "teeth" of the waveguide. As shown in Fig. 1.6(a), a uniform waveguide
has a approximately linear dispersion relation. Introducing just one tooth would
result in scattering of the guided mode into free-space. But when the modula-
tion is periodic, deconstructive interference of all the scatterers results in loss-less
propagation through the waveguide. The periodic dielectric structure is called a
photonic crystal waveguide (PCW) and has a much richer dispersion relation, as
shown in Fig. 1.6(b). For certain bands of frequencies, the reflections from all the
teeth constructively interfere in the backward propagating direction so that all the
light is reflected, and the field decays evanescently. These frequencies constitute
the bandgap. The group velocity of light vg = dω

dk is the slope of the dispersion
relation. Near the band-edges, the group velocity is reduced and approaches zero at
the band-edge. The slow light results in increased interaction time with the atom,
which results in an increased interaction strength. This slow light enhancement can
be seen from the second factor of Γ1D in Eq. (1.2).

A simulated dispersion relation for the Alligator PCW is shown in Fig. 1.7(a).
The photonic structure admits multiple modes, and we have plotted the dispersion
relation for the transverse-electric (TE), which is mostly polarized in the plane of
the waveguide, and the transverse-magnetic (TM), which is mostly polarized out of
the plane of the waveguide. Modes in the shaded area are above the light line and
are not guided [33]. The dimensions of the Alligator PCW are chosen to align the
TE band-edges near the Cs D1 and D2 lines. Figure 1.7(b) shows the group velocity
for the TE mode near the lower band-edge. In our experiment, we operate with a
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group index of ng ∼ 10, which requires aligning the band-edge to within 100 GHz
of a Cs atomic resonant frequency.

The Cs D1 and D2 are aligned to the lower and upper band-edges so that the optical
modes, shown in Fig. 1.8, have the same periodicity, which is set by the lattice
constant a. The lower frequency band-edge is called the "dielectric mode" since

bandgap

370 nm

370 nm

Uniform waveguide

Photonic crystal waveguide

(a)

(b)

Figure 1.6: (a)Auniformwaveguide has an approximately linear dispersion relation,
while a (b) photonic crystal waveguide (PCW) has a band-gap and reduced group
velocity near the band-edges. Note that the straightness of the uniform waveguide
dispersion relation is exaggerated. A uniform waveguide also has dispersion due to
the changing of the mode field as a function of frequency, which can be seen away
from the bandgap in Fig. 1.7 .
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Figure 1.7: (a) Dispersion relations for the TE (black) and TM (gray) modes of
an Alligator PCW [34]. The gray shaded area represents the light line. (b) Group
index near the dielectric band. The inset is for a larger range, and shows that the
group index converging to ∼ 2 far away from the band-edge
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the field is concentrated in the dielectric material. The upper frequency band-edge
is called the "air mode" since the field is concentrated in the air. As worked on
in Ref. [35], these two optical potentials can be combined with the Casimir-Polder
potential to form an optical trap for the atoms.

z

x

y

TE dielectric band

TE air band

Figure 1.8: TE dielectric (top) and air (bottom) modes near the band-edge for an
Alligator PCW.

‘Alligator’ Waveguide

Bu�-coupling For device cooling and 
support

Figure 1.9: Photograph of the Alligator PCW chip and schematic of the device.

A photograph of an Alligator PCW chip is shown in Fig. 1.9. The details of the
fabrication are described in Ref. [36]. The 1 × 1 cm chip consists of 200 nm thick
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silicon nitride on top of 200 µm thick silicon. As shown in the schematic beneath
the photograph, the devices are suspended across the 2 × 6 mm window. Optical
fibers (green) are positioned in V-grooves on both sides to couple light into and out
of the device. The mode overlap between the waveguide and the ∼ 6 µm diameter
fiber mode is maximized by decreasing the waveguide width to ∼ 130 nm. This
"butt-coupling" technique was developed in the Painter group, and typically gives a
single pass transmission of ∼70%. One main limitation in the efficiency is actually
the scattering caused by the 80 nm thick tether that holds the waveguide. The
remaining structures in the schematic, such as the support rails on both sides and
the tethers supporting the waveguide, are there to provide cooling and mechanical
stability. The initial devices could only handle a few µW, but the thermal coupling
to the 10 µm wide rails increased the limit to around 1 mW.

The Alligator PCW has been the result of a huge effort in both Oskar’s and our
group. One technical challenge has been suspending the few hundred nanometer
wide structures across a 2 mm window. The devices are already very fragile, and
the window allows the flow of liquids during the wet etching and cleaning. Another
challenge has been to align the band-edge of the device to within a few hundred
GHz of the Cs atomic resonance. This level of precision requires sub-nanometer
precision. Initially, we had to scan the parameters of many devices to find one which
was aligned, but we later learned tricks like atomic layer deposition (ALD) and a
slow CF4 etch to fine-tune the dimensions after release. A collection of SEM scans
of the entire length of a suspended Alligator PCW is shown in Fig. 1.10.

The purpose of the large window is to allow optical access for the trapping and
cooling beams. Inspired by the nanofiber loading scheme, we trap atoms around
the device in a magneto-optical trap (MOT). To maximize the number of atoms, we
first load the atoms into a large MOT outside the window. The atoms are transferred
to the "mini-MOT" in the MOT by abruptly changing the quadrapole center of the
MOT, as shown in Fig. 1.11.

In the our first results with the Alligator PCW in Ref. [32] and Ref. [37], the atomic
resonance frequency was outside the band-gap, and the results were similar to those
of a cavity or waveguide. Outside the bandgap the propagation still goes as eik x ,
where k is the Bloch-wave vector. In particular, in Ref. [37] we trapped Cesium
(Cs) atoms above the waveguide in a standing wave formed by a reflected field. The
Cs atomic transition was only 100 GHz from the band-edge, resulting in a group
velocity of ∼ c/10. By measuring superradiant decay of the atoms, we inferred
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Figure 1.10: A collection of SEM’s of the full length of a suspended Alligator PCW.
The Alligator has 150 uniform cells, and 30 tapering cells on each side. I fabricated
this particular structure.

Γ1D/Γ′ ∼ 1 and around N ∼ 3 atoms.

But what happens when the atom is coupled with its transition frequency inside the
bandgap of the photonic crystalwaveguide? The fields for frequencies in the bandgap
decay exponentially, closely analogous to the attenuation of light in conducting
material. So what happens when you put the atomic transition frequency in the
bandgap?
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)c()b()a(
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Figure 1.11: Absorption imaging of atoms trapped near a PCW chip. The atoms are
transferred from a larger MOT outside the window of the chip to a "mini-MOT" in
the window of the chip. The atomic cloud in (a) is called the "science MOT". The
atomic cloud in (c) is called the "mini-MOT".

Imagine that an excited atom is coupled to the photonic crystal waveguide, but that
the resonance frequency lies within the bandgap. As shown in Fig. 1.12, the atom
can still emit a photon into the structure, but the photon decays exponentially. One
way to interpret this is that the atom induces a cavity mode, and when the atom
moves, the cavity follows it. This is of course in stark contrast to a cavity mode,
where the cavity mode is defined by the position of the mirrors. Since the photon
cannot leave the 1D system, the decay rate into the guided mode Γ1D is zero, and we
are left with only conservative interactions between the atoms. As we will derive in
Chapter 3, this situation results in a Hamiltonian H =

∑N
i, j=1 Ji j σ̂

†
i σ̂i, where σ̂ and

σ̂† are the raising and lowering operators for the atomic ground and excited states.
The coherent coupling Ji j between two atoms is proportional to he overlap of their
photonic modes and scales with e−κ |xi−xj |, where κ−1 is the field decay length. As
a result, photonic crystal waveguides have been proposed as promising candidates
to study long- and tunable-range coherent interactions between quantum emitters
[38–41].

Figure 1.12: Atoms coupled to the bandgap of a photonic crystal waveguide. The
atoms and photon cloud form atom-photon bound states.

In Ref. [42], we report the first observation of cooperative atom-atom interactions
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around the band-edge of a photonic crystal waveguide. Our experiment opens the
door to fascinating new scenarios, such as exploring many-body physics with large
spin exchange energies and low dissipation [43].

While there are successful formalisms for quantum light-matter interactions in cav-
ities (the Jaynes-Cummings Hamiltonian) and waveguides (the scattering matrix
formalism), the finite photonic crystal waveguide does not fit either of those cat-
egories. To explore these new types of quasi-1D optical systems, we therefore
require a generalized model. The quantization scheme based on Green’s function
formalism (reviewed in Chapter 3) provides an elegant description of light-matter
interactions where the details of the optical system, whether a cavity, waveguide, or
photonic crystal waveguide, is captured in the electromagnetism Green’s function.
In Ref. [44], we used this formalism to create a generalized description of the trans-
mission spectra for atoms coupled to arbitrary quasi-1D systems. We show a direct
mapping between the transmission spectra and the Green’s function at the position
of the atoms.

1.2 Summary of Thesis

• Chapter 2 reviews the classical interactions of atoms and light in the context
of the electromagnetic Green’s function.

• Chapter 3 introduces the formalism for the quantization of the electromagnetic
field in the presence of dielectric media. At its heart is the electromagnetic
Green’s function. The equations of motions for multiple atoms coupled is
derived in the low-saturation regime to show the similarity to the classical
results of Chapter 2, and then an effective master equation describing the
atom-atom interactions is derived using the Markov approximation.

• Chapter 4 explores the spectral features of atoms coupled to quasi-1D systems
using the low-saturation formalism developed in Chapter 3. The special cases
of cavities, waveguides, and photonic crystal waveguides are considered.

• Chapter 5 describes experimental results for atoms trapped near an Alligator
PCW, and the transmission spectra are fitting using the models from Chapter
4 to measure the coherent and dissipation coupling rates at the positions of
the atoms.

• Chapter 6 provides further details for the experiment in Chapter 5.
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C h a p t e r 2

STRONG ATOM-LIGHT INTERACTIONS: THE MOSTLY
CLASSICAL STORY

2.1 Introduction
At the heart of quantum optics is the goal of strong atom-light interactions. In
free-space, the strength is limited by the diffraction limit for how tightly light can be
focused. The interaction probability is typically around a few percent or less. There
have been three main strategies for increasing the interaction strength.

One is to place the atom in a cavity between two highly reflective mirrors, thereby
increasing the interaction strength by the number of times the light passes the atom.
Another strategy is to focus the light even more tightly by confining the light to
a dielectric (nanophotonic) or metallic (plasmonic) waveguide. When the light’s
transverse area, the mode area, is small as compared to the atom’s optical cross-
section, the interaction probability is increased.

A strategy that is less commonly used is to slow the light down by confining it
to a highly dispersive waveguide, for example a photonic crystal. The interaction
probability is proportional to the amount of time it takes for light to pass the atom.

Due to the highly nonlinear nature of the atom, the complete description requires
a quantum mechanical formalism for both the atom and the light. However, the
classical case is much easier to derive and learn from, and shares many of the same
results as the quantum case. This chapter treats the classical case, and Chapter 3
will describe the more complete quantum case.

In this chapter, we derive a formalism to the describe the interaction strength be-
tween atoms and waveguide, where the atoms will be approximated as classical
dipole oscillators (an excellent approximation to the quantum case in the low satu-
ration limit). The electromagnetic Green’s function, which is the propagator of the
electromagnetic field, will have a prominent role in both the classical and quantum
formalism. Section 2.2 derives theGreen’s function for a waveguide fromMaxwell’s
equations. Section 2.3 addresses the interaction of a single atom with the field, and
section 2.4 addresses the case of multiple atom which can interact with each through
their fields. The interactions will be described in terms of the Green’s function, and
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section 2.5 derives expressions for the Green’s function of a dielectric waveguide.

2.2 Electromagnetic wave equation and Green’s function
In this section, we will derive the wave equation for the electric field. The macro-
scopic Maxwell’s equations in linear isotropic dielectrics are [45, 46]

∇ · D(r, t) = ρ f (r, t) (2.1)

∇ · B(r, t) = 0 (2.2)

∇ × E(r, t) = − ∂
∂t

B(r, t) (2.3)

∇ ×H(r, t) = ∂

∂t
D(r, t) + J f (r, t). (2.4)

Here, ρ f is the free charge density and J f is the free current density. To convert
to frequency space, we assume that all variables are oscillating with e−iωt , i.e.
E(r, t) = Re

[
E(r, ω)e−iωt

]
. Maxwell’s equations in frequency space are

∇ · D(r, ω) = ρ f (r, ω) (2.5)

∇ · B(r, ω) = 0 (2.6)

∇ × E(r, ω) = iωB(r, ω) (2.7)

∇ ×H(r, ω) = −iωD(r, ω) + J f (r, ω). (2.8)

The displacement field D(r, ω) and magnetizing field H(r, ω) are related to the
electric field andmagnetic field by the dielectric constant andmagnetic susceptibility
respectively,

D(r, ω) = ε0ε(r, ω)E(r, ω), B(r, ω) = µ0µ(r, ω)H(r, ω). (2.9)

Properties of the dielectric constant are discussed in Sec. 3.3. For dielectric optical
structures, we will assume that there is no free charge, ρ f (r, ω) = 0, and that the
material is not magnetic, µ(r, ω) = 1. The wave equation for the electric field in the
presence of a dielectric material is obtained by substituting Eq. (2.9) into Maxwell’s
equations, taking the curl of both sides of Eq. (2.7), and then replacing the resulting
∇ × B term with Eq. (2.8). The resulting wave equation is

∇ × ∇ × E(r, ω) − ω
2

c2 ε(r, ω)E(r, ω) = iµ0ωJ f (r, ω). (2.10)

The source term on the right side is the free current density J f (r, ω). An oscillating
polarization density also results in a current given by J f (r, t) = d

dt P(r, t), or in fre-
quency space J f (r, ω) = −iω P(r, ω). In the classical approximation, the atoms will
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be treated as oscillating dipole moments, and the source will be more conveniently
expressed in terms of an oscillating polarization density,

∇ × ∇ × E(r, ω) − ω
2

c2 ε(r, ω)E(r, ω) = µ0ω
2 P(r, ω). (2.11)

An oscillating point dipole source p0 at position r0 results in a polarization density
P(r, ω) = p0 δ(r − r0) . The resulting electric field from the point dipole source is
closely related to the Green’s function, which is defined as the solution of the wave
equation with a delta function source at position r′,

∇ × ∇ ×G(r, r′;ω) − ω
2

c2 ε(r, ω)G(r, r
′;ω) =

↔
I δ(r − r′). (2.12)

The Green’s function is useful for calculating the electric field from an arbitrary
polarization source. The resulting electric field is obtained by integrating theGreen’s
function over the polarization density, as shown by Dyson’s equation1

E(r, ω) = E0(r, ω) + µ0ω
2
∫

d3r′G(r, r′, ω)P(r′, ω). (2.13)

Here E0(r, ω) is the homogeneous solution — the solution with no sources.

For an oscillating point dipole moment at position r0 with polarization density
P(r, ω) = p0 δ(r − r0), Dyson’s equation reduces to

E(r, ω) = E0(r, ω) + µ0ω
2G(r, r0, ω) · p0. (2.14)

Ignoring the homogeneous solution, the electric field at position r due to an oscil-
lating dipole moment at position r0 is proportional to the Green’s function between
those points. In fact, the Green’s function is often calculated by performing a
numerical simulation of the electric field from a point dipole source.

Here, I give a few useful Green’s function identities. One important identity for the
Green’s function which we will often use is the reciprocity identity [46]

GT (r, r′;ω) = G(r′, r;ω), (2.15)
1 The proof of Dyson’s equation is as follows. We define the operator LE = ∇×∇×−ω

2

c2 ε(r, ω),
and write the wave equation asLEE(r, ω) = µ0ω

2P(r, ω). The Green’s function differential equation
is LEG(r, r′;ω) =

↔
Iδ(r − r′). We multiply both sides of this by µω2P(r′) and integrate over all r′-

space to get
∫

d3r′LEG(r, r′)µ0ω
2P(r′, ω) = µ0ω

2P(r) = LEE(r, ω), where in the last expression
we have substituted the wave equation. When the operator and integral commute, we can take the
operator LE outside the integral. The result is LE

∫
d3r′G(r, r′)µ0ω

2P(r′, ω) = LEE(r, ω). Then
we remove the operator LE from both sides to get Dyson’s equation.
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which is related to the fact that if a source and a detector are swapped, the detected
field is the same. Another important identity comes from the requirement that in
the time domain, G(r, r′, τ) is real,

G∗(r, r′, ω) = G(r, r′,−ω). (2.16)

Further, causality requires that G(r, r′, τ) = 0 for τ < 0, which leads to G∗(r, r′, ω)
being analytic in the upper half of the complex plane. These properties are discussed
more in Chapter 3.

The free-space Green’s function
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Figure 2.1: Coordinate system for the oscillating dipole. The dipole p is orientated
along the ẑ-axis.

For most systems, we will have to rely on numerical solutions for the Green’s
functions. However, the free-space Green’s function, which we have already seen is
proportional to the electric field due to an oscillating dipole moment, has a simple
analytic solution [45]. For a dipole oriented in the ẑ-direction as shown in Fig. 2.1,
the emitted electric field is

Eθ = µ0ω
2 |p| sin θ

ω

4πc

[
eikr

( NF︷︸︸︷
1

k3r3 −

IF︷︸︸︷
i

k2r2 −

FF︷︸︸︷
1
kr

)]
(2.17)

Er = µ0ω
2 |p| cos θ

ω

4πc

[
eikr

(
2

k3r3 −
2i

k2r2

)]
. (2.18)

The wave-vector k is k = ω/c. These expressions are separated into terms rep-
resenting the near-field (1/kr), intermediate-field (1/k2r2), and far-field (1/k3r3).
Figure 2.2 shows the electric field orientation and magnitude for both the far-field
and near-field. The far-field only contains transverse fields (Eθ), which are sym-
metric around the ẑ-axis and form the typical donut-shape associated with radiation
from a dipole or a linear antenna.
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The near-field, shown in Fig. 2.2(b), contains both transverse fields (Eθ) and the
longitudinal fields (Er). In the limit of kr → 0, the electric field simplifies to the
DC dipole solution, Eθ =

|p|
4πε0

sin(θ)
r3 and Er =

|p|
4πε0

2 cos(θ)
r3 , or as is more commonly

written

ENF =
1

4πε0

1
r3 [3(p · r̂) − p] . (2.19)
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Figure 2.2: Far-field (a) and near-field (b) of the electric field E(r, ω) radiated from
a linear oscillating dipole. The vectors represent the direction of the electric field,
while the color represents the magnitude (blue is low magnitude, yellow is large
magnitude). The black circle is included to compare the scales of the two plots.

2.3 The power radiated by an oscillating dipole
An oscillating dipole radiates energy into the environment, and the amount of power
radiated is in turn influenced by the environment. Systems can be designed to either
enhance or suppress the dipole radiation and thereby decrease or increase the decay
rate. In this section, we will see how the decay rate of the dipole energy is related
to the Green’s function.

The time averaged power radiated out of a system Prad can calculated by performing
a surface integral of the normal component of the Poynting vector over a surface
surrounding the oscillating dipole. It can also be calculated by integrating the line-
current j(r)with the in-phase electric field, which performs work on the line-current,

Prad = −
1
2

∫
d3rRe[j(r) · E(r, ω)]. (2.20)
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An oscillating dipole moment at position r0 results in the line-current j(r) =
−iωpδ(r − r0), and therefore the power radiated is

Prad =
ω

2
Im [p∗ · E(r0, ω)] . (2.21)

Using Dyson’s equation, we replace the electric field at the dipole E(r0) with the
self-Green’s function, E(r0, ω) = µ0ω

2G(r0, r0, ω) · p, which then gives

Prad =
ω3 |p|2
2ε0c2 n̂p · Im [G(r0, r0, ω)] · n̂p. (2.22)

Here, n̂p is the unit vector of the dipole, p = |p|n̂p . Note that we have assumed
that n̂p is real, e.g. for a linear dipole moment. In order to convert the power
radiated into a decay rate, we must also know the initial total energy W(t=0) of the
dipole. The averaged energy of a dipole is the sum of the averages of the kinetic
and potential energy, W = 〈m Ûx2/2 + k x2/2〉 = 〈 m

2q2 (ω2
0p2(t) + Ûp2(t))〉 = mω2

0
2q2 |p0 |2,

where q is the charge of the oscillator and m is the mass. Assuming that the energy
decays exponentially as W(t) = W(0)e−Γt , the power radiated is related to the total
energy and decay rate by Prad(0) = d

dt W(t)|t=0 = −ΓW(t =0). Solving for the decay
rate and substituting the energy W and power Prad gives

Γ = 2µ0ω
2 q2

2mω
n̂p · Im [G(r0, r0, ω)] · n̂p. (2.23)

The decay rate of an oscillating dipole is proportional to the imaginary part of the
self-Green’s function G(r0, r0, ω) at the position of the dipole. The decay rate of a
dipole can be enhanced or inhibited by the environment.

We will often want to take the ratio of the decay rate in a system to the decay rate in
free-space, a ratio which is known as the Purcell factor [47]. To find the free-space
Green’s function at the source (r = 0), we perform a Taylor series of the electric
field in Eq. (2.17) and (2.18) over small kr . Keeping both the first order real and
imaginary terms, the result is

lim
kr→0

E(r, ω) = µ0ω
2 |p| ω

4πc

[
2
(kr)3

− i
2
3

]
ẑ. (2.24)

The electric field is parallel to the dipole orientation. The real part is the same as the
DC dipole case and diverges at r = 0. The divergence is a result of the dipole being
infinitesimally small and would go away if we considered instead an oscillating
polarization density for a sphere of any radius. In contrast, the imaginary part of
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the electric field, which is out-of-phase with the oscillating dipole, is finite. Using
Dyson’s equations, the imaginary part of the self-Green’s function is

Im[G0(r0, r0, ω)] =
ω

6πc
↔
I. (2.25)

Inserting this result into the decay rate gives the classical expression for the free-
space decay rate,

Γ0 = µ0ω
2 q2

2mω
ω

3c
, (2.26)

which depends on the particle’s charge q and mass m. The Purcell factor - the ratio
between the decay rate and the free-space decay rate- is then

PF = Γ/Γ0 =
6c
ω

n̂p · Im [G(r0, r0, ω)] · n̂p. (2.27)

The Purcell factor is independent of the charge and mass, and is also valid for the
Purcell factor of a two level system in the quantum derivation (see Sec. 3).

In the quantum theory for an atom, the free-space decay rate of a non-degenerate
excited state |e〉 to a ground state |g〉 is instead

Γ0 =
µ0ω

2
0

~

(
ω0 |〈g | p̂|e〉|2

3πc

)
, (2.28)

which can be calculated using the Wigner-Weisskopf approximation [48]. The
quantum result can be obtained from our classical result by replacing the dipole
energy with ~ω0, and by replacing the dipole moment with half of the dipole
moment matrix element, p → 〈g |p̂|e〉/2. The factor of 1/2 is due to the fact that
the Fourier transform of the classical dipole moment spans positive and negative
frequencies.

Optical cross-section.
Another way to characterize the power radiated by a dipole is in terms of the optical
cross section σ, which can be interpreted as the source area for an incoming plane
wave that is scattered. It is calculated by dividing the power radiated over the
incoming intensity Iin, σ = Prad/Iin. Remarkably, the on-resonant optical cross-
section for an oscillating dipole is independent of the charge and mass, and is given
by

σ0 =
3λ2

2π
. (2.29)
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This result only requires that the decay of the dipole oscillator is due only to radiated
power, or equivalently to the radiative back-action caused by resulting field. In the
quantum formalism, this result will also be true for the on-resonant optical cross-
section of a two level system.

The proof of the optical cross-section is the following. The intensity for an incoming
plane wave of amplitude E0 is given by Iin =

cε0
2 |E0 |2. The power radiated (see

Eq. (2.21)) is Prad =
ω
2 Im[p∗ · E(r0, ω)], which after substituting polarizability

equation p = α(ω)E(r0, ω), gives

Prad =
ω

2
|E(r0, ω)|2Im[α(ω)].

The optical cross-section is defined as the ratio of the radiated power to the incoming
intensity, σ = Prad/Iin. Under the Born approximation, E(r, ω) ≈ E0, in which
case σ(ω) = ω0

2 Im[α(ω)]. From Eq. (2.32), the on-resonant polarizability for
a dipole is α(ω0) = iq2/mω0Γ0, and then the on-resonant optical cross-section is
σ0 = q2/mε0cΓ0. After substituting the decay rate fromEq. (2.26) into this equation,
the charge and mass terms cancel, and we get σ0 =

3λ2

2π .

2.4 Radiatively coupled dipoles

p2

p1

G(r1,r3)

G(r2,r3)
p3

G(r1,r2)

Figure 2.3: Radiatively coupled dipoles.

In the previous section, we saw how the behavior of a dipole oscillator is influenced
by the environment. Next, we consider a system with N oscillating dipoles, as
shown in Fig. 2.3. The dipoles again interact with the environment, but they also
interact with each other through their electric fields. The equation of motion for a
single dipole pi with damping Γ′ and resonance frequency ω0 is given by1

d2pi

dt2 + Γ
′dpi

dt
+ ω2

0pi =
q2

m
E(ri, t). (2.30)
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Here, E(ri, t) is the total electric field at the dipole. The field can have contributions
from the dipole itself, other dipoles, or from an external source. To simplify the
problem, we will assume that the electric field E(r, t) is due to radiation in a specific
mode of interest, for example a guided mode of a nanofiber or a mode of a cavity.2
The damping rate Γ′ is the decay rate independent of the single mode. Similarly, ω0

is the resonance frequency of the dipole oscillator independent of the single mode.

We would like to solve the system of equations for the dipoles. First, we switch to
the frequency domain by assuming that pi(t) and E(ri, t) oscillate with frequency ω
(i.e. pi(t) = pie−iωt),

(ω2
0 − ω

2 − iωΓ′)pi =
q2

m
E(ri, ω). (2.31)

This equation is just the polarizability equation pi = α ·E(ri, ω), where the polariz-
ability is

α(ω) = q2/m
(−ω2 + ω2

0 − iωΓ′)
≈ q2/2ωm
(∆ − iΓ′/2) . (2.32)

Here the detuning is ∆ = ω − ω0. In the last part of the equation, we have assumed
that the detuning is small so that ω2 − ω2

0 = (ω + ω0)(ω − ω0) ≈ 2ω(ω − ω0).
This approximation is analogous to the rotating wave approximation in the quantum
mechanical formalism.

The electric field E(r, ω) in the system contains contributions from the driving
source field E0(r, ω) as well as from the N radiating dipoles. From Eq. (2.14), the
total electric field is [45, 49]

E(r, ω) = E0(r, ω) + µ0ω
2

N∑
j=1

G(r, r j, ω) · p j . (2.33)

Substituting this expression into the polarizability equation pi = αE(ri, ω) results
in the following system of equations:

1
α

pi − µ0ω
2

N∑
j=1

G(ri, r j, ω) · p j = E0(ri, ω). (2.34)

1This equation is more obvious when it is written in terms of position r = d/e and forces as
m d2ri

dt2 + Γ
′m dri

dt + mω2
0ri = qE(ri, t).

2If we make E(r, ω) the total electric field here, then we would not need to include Γ′ on the left
hand side since the damping will naturally come from the atom’s interactions with the modes of the
system. The problem arises from the divergence of the real part of the self-Green’s function, which
is a result of us assuming an infinitely small dipole. We would therefore get a divergent frequency
shift. To avoid this problem, we instead assume that E(r, ω) is due a finite set of modes, for which
we do not have this divergence problem.
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To simplify this expression, we assume that all the dipoles are orientated in the same
direction and dot product both sides of Eq. (2.34) by the dipole unit vector n̂p ,

1
α

pi − µ0ω
2

N∑
j=1

n̂p ·G(ri, r j, ω) · n̂p p j = E0(ri, ω), (2.35)

where I have used pi = pin̂p and n̂p · E0(ri) = E0(ri). Next, we substitute the
polarizability from Eq. (2.32) into the first term and multiply by −q2/2mω to get

(∆ + iΓ′/2)pi + µ0ω
2 q2

2mω

N∑
j=1

n̂p ·G(ri, ri, ω) · n̂p p j = −E0(ri, ω)
q2

2mω
. (2.36)

Next we define the complex coupling rate,

gi j = µ0ω
2 q2

2mω
n̂p ·G(ri, r j, ω) · n̂p ≡ Ji j + iΓi j/2. (2.37)

and we define real and imaginary parts of this complex coupling rate as the spin-
exchange rate Ji j (called Lamb shift when i = j) and dissipation rate Γi j ,2

Ji j = µ0ω
2 q2

2mω
n̂p · Re[G(ri, r j, ω)] · n̂p (2.38)

Γi j = 2µ0ω
2 q2

2mω
n̂p · Im[G(ri, r j, ω)] · n̂p. (2.39)

In terms of these rates, the system of equations for the N oscillating dipoles and
external source E0(r, ω) are

(∆ + iΓ′/2) pi +

N∑
j=1
(Ji j + iΓi j/2) p j = −E0(ri, ω)

q2

2mω
. (2.40)

A single dipole
To interpret the system of equations in Eq. (2.40), we first look at the case of a single
dipole p1, for which the equation is[

∆ + J11 + i(Γ′ + Γ11)/2
]

p1 = −E0(r1, ω)
q2

2mω
. (2.41)

2 Using the same procedure that we used to convert the classical free-space decay rate into the
quantum decay rate of a two-level system, we can convert these rates to their corresponding quantum
analogue. We substitute the averaged dipole energy with ~ω and the dipole moment with half the
dipole matrix element (d = 〈g |r̂|e〉) to obtain the coefficients in the quantum case:

Ji j =
µ0ω

2

~
Re[d∗ ·G(ri, rj, ω) · d],

Γi j = 2
µ0ω

2

~
Im[d∗ ·G(ri, rj, ω) · d.
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This equation can be interpreted as a polarizability equation, where the dipole has
a modified polarizability due to its interaction with the new mode. The total decay
rate is increased to Γ′+ Γ11, and the resonance frequency is shifted to ω0 − J11. The
increased decay rate is in agreement with the previous section which found that Γ11

is proportional to work done on the dipole by its own field (radiative back-action).
The frequency shift J11 is proportional to the component of the electric field that is
in phase with the oscillating, and thus does not do work on the dipole. However, it
does modify its effective resonance frequency.

Two radiatively coupled dipoles
Next we look at the system of equations in Eq. (2.40) for two dipoles which interact
through their electric fields. The system of equations in matrix notation is(

∆ + iΓ′/2 + g11 g12

g21 ∆ + iΓ′/2 + g22

) (
p1

p2

)
= − q2

2mω

(
E0(r1, ω)
E0(r2, ω)

)
. (2.42)

Due the reciprocity condition for the Green’s function in Eq. (2.15), the complex
coupling rate gi j = Ji j + iΓi j has the symmetry g21 = g12, and correspondingly
J21 = J12 and Γ21 = Γ12. Therefore, the matrix on the left, which we will call M is
symmetric. We express the matrix and vectors in tensor notation so that the system
of equations is M p = − q2

2mωE0. We can solve this system of equations by finding the
two eigenvectors p± and eigenvalues λ± of the eigenvalue equation M p± = λ±p±.
To simplify the results, we assume that the self-interactions for the two dipoles are
the same, g22 = g11, which will often be the case for systems we will look at. The
two eigenvectors and eigenvalues are

p± =

(
1
±1

)
, λ± = ∆ + iΓ′/2 + g11 ± g12. (2.43)

These two eigenmodes correspond to when the dipoles are oscillating in-phase and
out-of-phase with each other, as shown in Fig. 2.4. One mode decays with rate
Γ+tot = Γ

′ + Γ11 + Γ12 and the other with decay rate Γ−tot = Γ′ + Γ11 − Γ12. We will
assume that Γ12 > 0, in which case p+ is called the “bright” eigenmode (since it has
enhanced decay), and p− is called the “dark” eigenmode (since it has suppressed
decay).

In the time domain, the eigenmodes p±(t) = Re[p±eiλ±te−iω0t] are

p±(t) = p0

(
1
±1

)
e−(Γ

′+Γ11±Γ12)t cos[(ω0 + J11 ± J12)t]. (2.44)
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Bright mode p+ Dark mode p+

Decay rate Γ’ +Γ11+ Γ12  Decay rate Γ’ +Γ11 - Γ12  

Shift J11+ J12  Shift  J11 - J12  

Figure 2.4: Bright and dark eigenmodes, and their decay rates and frequency shifts.
We have assumed that Γ12 > 0, but if Γ12 < 0, then the names are reversed.

To understand how the atoms interact with each other, we look at the solution for
when only one dipole is initially excited, p1(0) = p0 and p2(0) = 0. The solution is

p1,2(t) = e−(Γ
′+Γ11−Γ12)tRe

[
1
2

ei(ω0+J11)t
(
±e−iJ12t + eiJ12t e−2Γ12t

)]
. (2.45)

The behavior of the expression in the parenthesis is determined by the decay term
e−2Γ12t . For short times t � 1

2Γ12
, the expression in the parenthesis results in energy

oscillation between the two atoms (called spin-exchange in the quantum language)
at a rate J12,

p1(t <
1

2Γ12
) ≈

decay︷            ︸︸            ︷
e−(Γ

′+Γ11−Γ12)t/2

fast-oscillation︷              ︸︸              ︷
cos[(ω0 + J11)t]

spin-exchange︷     ︸︸     ︷
cos[J12t] (2.46)

p2(t <
1

2Γ12
) ≈ −e−(Γ

′+Γ11−Γ12)t/2 sin[(ω0 + J11)t] sin[J12t]. (2.47)

But for longer times t � 1
2Γ12

, the second term in the parentheses vanishes, and we
are left with the dark eigenmode

p1,2(t) = ±
1
2

decay︷          ︸︸          ︷
e−(Γ

′+Γ11−Γ12)t

fast oscillation︷                     ︸︸                     ︷
cos[(ω + J11 − J12)t] . (2.48)

This example clarifies the roles of the rates in the problem, and they are summarized
in the following table:

Spin-exchange rate J12

Decoherence of spin-exchange 2 Γ12

Decay rate Γ′ + Γ11 − Γ12

Fast dipole oscillation freq ω0 + J11 (t � 1
2Γ12
) or ω0 + J11 − J12 (t � 1

2Γ12
)

We plot the solutions for a few specific physical systems to observe the characteristic
behavior of the two dipoles. To simplify the plots, the decay rate due to all the other
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modes Γ′ is negligible. The additional of Γ′ just results in an additional exponential
decay to the overall profile.

The simplest physical system is a uniform waveguide, for example in a nanofiber or
in a single free-space mode. As will be shown in Sec. 2.5, the Green’s function for
a 1D uniform waveguide is proportional to G(xi, x j, ω) ∝ i eik |xi−xj |, which means
that

Γi j ∝ cos(k |xi − x j |), Ji j ∝ sin(k |xi − x j |). (2.49)

Here, k is the effective wave-vector of the guided mode. The nature of the interac-
tions depends on the separation distance between the dipoles, but the self-interaction
is always purely dissipative, since J11 = J22 = 0.

p1(t)

p1(t)

p1(t)p2(t)

p2(t)

p2(t)
t t

t

(a) (b)

(c)

waveguide, Δx=  λ/2  waveguide, Δx=  λ/4

coherent spin-exhance  

Figure 2.5: Solutions for two radiatively coupled dipoles with dipole p1(t=0) = p0
initially excited and dipole p2(t=0) = 0 unexcited. (a)Dipoles coupled towaveguide
and separated by λ/2. The interaction are all dissipative. (b) Dipoles coupled to
a waveguide and separated by λ/4. The self-interactions are dissipative, but the
interactions between the atoms are coherent. (c) Dipoles coupled to a system with
predominantly coherent interactions, e.g. a far-off-resonant cavity or a photonic
crystal bandgap.

Fig. 2.5(a) shows the simulation for when the dipoles are coupled to a waveguide
and separated by a distance mλ/2, for integer m. For this case, k |x1 − x2 | = mπ, and
the interaction is also purely dissipative with J12 = 0. This implies that there will
be no spin-exchange. In the long time limit, only the dark mode remains.
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Fig. 2.5(b) shows a simulation for when the dipoles are coupled to a waveguide
and separated by a distance λ/4 + mλ/2, for integer m. For this case, k |x1 − x2 | =
π/2+mπ. The self-interaction is still purely dissipative, but now the interaction term
is purely coherent, with Γ12 = 0. Therefore, spin-exchange will occur indefinitely,
but the overall profile decays with a rate Γ′ + Γ11.

Another common physical system is a cavity. When the bare dipoles are on-
resonance with the cavity, the self-interaction and interaction are both purely dis-
sipative (J11 = J12 = 0), as will be shown later in Sec. 2.5. The simulation is the
same as the case of the waveguide with the atoms spaced by mλ/2. However, in
the cavity case, the rates Γ11 and Γ12 are enhanced by the Finesse of the cavity (the
number of times light bounces back and forth).

One last interesting case is when all the interactions are coherent (Γ11 = Γ12 = 0),
as shown in Fig. 2.5(c). The energy oscillates between the dipoles indefinitely
and overall energy does not decay. For a cavity, the ratio of the coherent rates to
the dissipative rates is proportional to the detuning of the dipoles from the cavity
resonance, so that in the far-off-resonance case the interactions are predominantly
coherent. The photonic crystal band-gap is also a powerful system for observing
coherent interactions, and the ratio of the coherent rates to the dissipative rates
increases exponentially with detuning from the band-edge.

2.5 Solutions to the electromagnetic Green’s function
In the previous sections, we have seen how an atom’s interaction with the envi-
ronment and other atoms can be described in terms of the electromagnetic Green’s
function. To study how atoms behave in various systems, we will need to calculate
the Green’s function. The free-space Green’s function has a simple analytic solu-
tion, which was introduced in Sec. 2.2. Analytic solutions also exist for cylindrical
waveguides [50–52] and rectangular waveguides [52, 53], but for more complex
waveguides, we must resort to numerical solutions.

The relationship between the Green’s function and the electric field radiated by a
point dipole provides an efficient way to calculate the Green’s function. The electric
field E(r, ω) due to an oscillating dipole at r0 is proportional to G(r, r0, ω). Numer-
ical techniques, such as finite-difference time-domain (FDTD) [54, 55], efficiently
solve this problem. But a simulation of a dipole in a system much larger than the
size of the wavelength can take many hours, and the full Green’s function requires
many of these simulations.
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Another way to solve for the Green’s function is to expand the Green’s function
in terms of the electric field eigenmodes, which can be solved by finite-element
methods [34, 56]. The technique works well for systems such as uniform or periodic
waveguide, or a high Q cavity. For more open systems where the modes extend
outside the simulation volume, such as a finite periodic system or a bad cavity, we
will still have to rely on numerical simulation or approximate solutions.

In this section, we will derive an expression for the Green’s function in terms of the
eigenmodes of the system. And then we will derive a simplified expression for the
Green’s function of a periodic or uniform waveguide. Finally, we will use this result
to learn how to engineer a waveguide with strong atom-light interactions.

Eigenmodes and the Green’s function
The wave equation in operator form and written as an eigenvalue equation is [57]

LEE(r) = ω
2

c2 E(r), where LE =
1
ε(r)∇ × ∇ × . (2.50)

Note that we have taken away the frequency dependence of ε(r, ω), since now the
frequency ω acts as an eigenvalue for the eigenvalue equation. The eigenmodes
depend on the dielectric function as well as the boundary conditions of the system.
Typical boundary conditions are periodic -where the field at one surface is the same
as field at another surface times a phase- and closed- where electric field is zero at the
boundary. Closed boundary conditions are used for cavities and result in a discrete
set of modes. Periodic boundary conditions are used for photonic crystals, which
have a periodic dielectric constant, and result in a continuous set of eigenvalues.
Note that the periodic boundary condition also applies to a uniform waveguide,
which is the limiting case of the lattice constant going to zero.

For dielectrics that are periodic in one dimension, the dielectric function satisfies
ε(r + a) = ε(r), where a is the lattice vector that defines the symmetry. Bloch’s
theorem states that the eigenmodes of a periodic operator can expressed as the
product of a Bloch function ukn(r), which has the same periodicity as the dielectric
constant, times a plane wave with a Bloch wave-vector k, [33, 58, 59]

Ekn(r) = ukn(r)eik·r with ukn(r + a) = ukn(r). (2.51)

For a 1Dphotonic crystal, theBlochwave-vectork is parallel to a, and takes on values
−π/a ≤ |k| ≤ π/a, a region which is sometimes called the Brillouin zone. Fig. 2.6
shows an example of a dispersion relation for a periodic system. Besides the Bloch
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wave-vector, the modes are also labeled by the band number n = (1, 2, 3, ...). The
dashed line shows a non-periodic waveguide that is also mapped into the Brillouin,
although practically there is no advantage for doing so.

π/a-π/a 0
k

Brillouin zone

Bloch wave-vector

fr
eq

ue
nc

y

n=1

n=2

Figure 2.6: Dispersion relation for a 1D photonic crystal with lattice constant
a. The dispersion relation is frequency versus the Bloch wave-vector k, where
−π/a < k < π/a. The dashed line is the dispersion relation for a uniform 1D
waveguide, which can also be folded over into the Brillouin zone.

A useful identity that follows from time reversal symmetry relates the forward and
backward propagating modes,

E−kn(r) = E∗kn(r). (2.52)

Using Bloch’s theorem, we label the eigenmodes of the wave equation in Eq. (2.50)
by the Bloch vector k and band number n. The eigenvalue equation is then

LEEkn(r) =
ω2

kn

c2 Ekn(r). (2.53)

In the next section, we show that modes with different Bloch wave vectors or band
numbers satisfy the orthogonality condition∫

V
dr ε(r)E∗k ′n′(r) · Ekn(r) = δk ′,kδn′,n. (2.54)

Note that due to our choice of normalization, the eigenmodes Ekn have units 1/
√

V ,
where V is volume.
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Since the eigenmodes are orthogonal and complete, the Green’s function can be
expanded in terms of the eigenmodes as (the proof is shown in the next section)

G(r, r′, ω) = c2

ω2

∑
kn

(
ω2

kn

ω2
kn − ω2

)
Ekn(r) ⊗ E∗kn(r

′). (2.55)

This important result relates the Green’s function to the eigenmodes. It also implies
that the Green’s function can be decomposed into subsets of eigenmodes. For
example, we will often isolate the waveguide modes and write the total Green’s
function as G = Gwg +G′, where Gwg is summed over the waveguides modes, and
G′ is summed over all other modes.

Derivation of the Green’s function expansion
Here we derive the orthogonality and completeness condition for the eigenmodes,
and then the expansion of the Green’s function in terms of the eigenmodes. The
derivations here is based on Sakoda’s textbook in Ref. [57], but is also discussed in
Ref. [60], [61], and the theses of two of Steve Hughes’ students [62, 63], although
note that they use a different normalization for the Green’s function.

First we derive the orthogonality and completeness condition for the electric field
eigenmodes. The operator in the wave equation of Eq. (2.53) is not Hermitian
since

∫
dV E∗kn(LEEk ′n′) ,

∫
dV (LEE∗kn)Ek ′n′. Thus the eigenmodes are not

necessarily orthogonal. Instead we write the wave equation in terms of a Hermitian
operator as [58]

LQQkn(r) =
ω2

c2 Qkn(r), (2.56)

where the Hermitian operator LQ and eigenvectors Qkn(r) are defined as

LQ =
1√
ε(r)
∇ × ∇ × 1√

ε(r)
and Qkn(r) =

√
ε(r)Ekn(r). (2.57)

These modes are quasi-transverse, since ∇ · Dkn(r) = ∇ · [ε(r)Ekn(r)] = 0, and we
will sometimes label them as Q(T)(r), although they will be implied when there is
no label. There is also a set of non-physical zero eigenvalue solutions

LQQ(L)kn (r, ω) = 0, (2.58)

which are called the longitudinal modes (∇ ·Dkn , 0 ). Although these modes have
no physical meaning, the modes must be included to form a complete set.
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Since the operator LQ is Hermitian, the eigenmodes Qkn(r, ω) are orthogonal,

〈Q(α
′)∗

k ′n′ (r)|Q
(α)∗
kn (r)〉 =

∫
V

d3r Q(α
′)∗

k ′n′ (r) ·Q
(α)
kn (r) = δk ′kδn′nδα′α, (2.59)

and form a complete set,3∑
knα

Q(α)kn (r) ⊗ Q(α)∗kn (r
′) =

↔
I δ(r − r′). (2.60)

In terms of the electric field, the orthogonality condition is∫
V

dr ε(r)E(α
′)∗

k ′n′ · E
(α)
kn = δk ′,kδn′,nδα′,α (2.61)

and completeness condition is∑
kn

Ekn(r) ⊗ E∗kn(r
′) +

∑
kn

E(L)kn (r) ⊗ E(L)∗kn (r
′) =

↔
I
δ(r − r′)
ε(r) , (2.62)

where I have separated the longitudinal and transverse modes and omitted the
transverse label, E(r) ≡ E(T)(r).

Next, we use the completeness condition to derive the expansion of the Green’s
function in terms of the eigenmodes. The Green’s function wave equation from
Eq. (2.12) can be written in terms of the operator LE (see Eq. (2.50)) as(

LE −
ω2

c2

)
G(r, r′, ω) = δ(r − r′)

ε(r)
↔
I. (2.63)

We substitute the delta function with the completeness relation to get(
LE −

ω2

c2

)
G(r, r′, ω) =

∑
kn

(
Ekn(r) ⊗ E∗kn(r

′) + E(L)kn (r) ⊗ E(L)∗kn (r
′)
)
. (2.64)

We multiply both sides by
(
LE − ω2

c2

)−1
, and use LEEkn = (ω2

kn/c
2)Ekn and

LEE(L)kn = 0 to get

G(r, r′, ω) = c2

ω2

∑
kn

[(
ω2

ω2
kn − ω2

)
Ekn(r) ⊗ E∗kn(r) − E(L)kn (r) ⊗ E(L)∗kn (r)

]
. (2.65)

3 Here ⊗ denote the tensor product (A ⊗ B)i j = AiBj . As a way to understand this relation,
consider the expansion of a vector v into 3D vectorial space. Since v =

∑
n ên(ên · v), we could

define tensor Tn = ên ⊗ ên such that
∑

n Tn = 1, and then the vector expansion can be written in
terms of the tensor as v =

∑
n T · v.



30

Next, we use the completeness condition again to replace the longitudinal modes
with the transverse modes and a delta function. Combining the two terms with
transverse modes, we get

G(r, r′, ω) =
∑
kn

c2

ω2

(
ω2

kn

ω2
kn − ω2

)
Ekn(r) ⊗ E∗kn(r) −

c2

ω2
δ(r − r′)
ε(r)

↔
I. (2.66)

The delta function only contributes to the real part of the self-Green’s function. For
most applications, we can ignore the delta function and use

G(r, r′, ω) = c2

ω2

∑
kn

(
ω2

kn

ω2
kn − ω2

)
Ekn(r) ⊗ E∗kn(r

′). (2.67)

The cavity Green’s function
For a cavity boundary condition, the sumover thewave-vector in theGreen’s function
expansion of Eq. (2.55) is discrete, and we no longer have multiple bands. If we are
closely detuned to one particular mode, then we can approximate the cavity Green’s
function by a single mode at frequency ω0, [28, 61, 63]

Gcavity(r, r′, ω) ≈
(

c2

ω2
0 − ω2 − iω0κc/2

)
Ek(r) ⊗ E∗k(r

′). (2.68)

A non-ideal cavity has loss due to coupling to the environment, whether it is through
leakage out the mirrors, an imaginary index within the cavity, or scattering of light
out of the cavity mode. We have approximated this loss in Eq. (2.68) by giving the
frequency a small imaginary component, ω0 → ω0 − iκc/2, and only keeping the
first order term. κc is the cavity decay rate, and is also the full-width half-maximum.
It is related to the cavity Q by Q = ω/κc. Due to our choice of normalization,
the eigenmodes Ekn have units

√
1/V , where V is volume. We renormalize the

eigenmodes to make them unitless by defining the mode function

fk(r) = Ek(r)
√

Vk, (2.69)

where the mode volume Vk is defined as

Vk =

∫
cavity d

3r ε(r)|Ek(r)|2

max
[
ε(r)|Ek(r)|2

] (2.70)

such that the maximum of the mode function is unity,

max [ ε(r)|fk(r)| ] = 1. (2.71)
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In terms of the unitless mode function, the cavity Green’s function is

Gcavity(r, r′, ω) =
(

c2

ω2
0 − ω2 − iω0κc/2

)
1

Vk
f(r) ⊗ f∗(r′)

≈ c2

2ω0 Vk

(
1

∆ − iκc/4

)
f(r) ⊗ f∗(r′),

(2.72)

where in the last we approximated ω2
0 − ω

2 ≈ 2ω0(ω − ω0) and defined cavity
detuning ∆ = ω − ω0. The on-resonant Green’s function is

Gcavity(r, r′, ω0) = i
1

6π

(
σ0Q
Vk

)
f(r) ⊗ f∗(r′), (2.73)

where I have used the optical cross-section from Eq. (2.29). Since the mode is a
standing wave, the mode function typically is similar to f(r) ≈ cos(k x), where k is
the intra-cavity wave-vector. And if we separate the mode volume into Vk = L Ak ,
where L is an effectivemode length and Ak is an effectivemode area, the on-resonant
cavity Green’s function is Gcavity(r, r′, ω0) ≈ i 1

6π

(
σ0
Ak

Q
L

)
cos(k x) cos(k x′).

The waveguide Green’s function
As shown in previous section, the Green’s function can be expanded in terms of
the electric field eigenmodes of a system. In this section, we consider the Green’s
function specifically for the guided modes of a periodic or uniform waveguide.

The Green’s function for the 1D wave equation is (see App. D or Refs. [52, 64] )

G1D(x, x′) = i
c

2ω
eik |x−x′ |, (2.74)

where the traveling wave propagates with wave-vector k = ω/c. The real and
imaginary parts of the Green’s function, which are associatedwith the spin-exchange
rate and dissipation rate, are Im[G1D(xi, x j)] ∝ cos(k |xi − x j |) and Re[G1D(xi, x j)] ∝
− sin(k |xi − x j |) . We might expect that a quasi-1D system could be modeled well
by an effective 1D model with an effective wave-vector, and therefore we might
expect to see a similar behavior for the Green’s function. However, we should also
expect that the quasi-1D Green’s function has a mode function that characterizes the
transverse size of the mode.

We start with the eigenmode expansion for theGreen’s function in Eq. (2.55). For the
periodic boundary condition of a quasi-1D system with a lattice constant a, the sum
is actually an integral of the wave-vector over the Brillouin zone,

∑
k → a

2π

∫
dk,

with ωkn → ωn(k). The guided mode Green’s function is

Gwg(r, r′, ω) =
c2

ω2
a

2π

∑
n

∫ π/a

−π/a
dk

(
ω2

n(k)
ω2

n(k) − ω2

)
Ekn(r) ⊗ E∗kn(r

′). (2.75)
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We write Ekn(r) in terms of the Bloch function, Ekn(r) = ukn(r)eik x , where I have
assumed that the the waveguide is along the x-axis. We also assume that the Green’s
function is monopolized by one band n and omit the band number sum and label.
We also decompose the fraction into two terms. The Green’s function expression is
then

Gwg(r, r′, ω) =
a

4π

∫ π/a

−π/a
dk

(
ω(k)

ω(k) + ω + iδ +
ω(k)

ω(k) − ω − iδ

)
uk(r) ⊗ u∗k(r

′)eik(x−x′).

(2.76)

An infinitesimal term δ has been added to the denominator to make the Green’s
function obey causality. The only pole is in the second term in the parentheses, and
we use Cauchy’s residue theorem to simplify this integral. First we consider the
case of x > x′. The integral is taken around the upper-half of the complex plane.
Since x − x′ > 0, the integral along −π/a + i∞ to π/a + i∞ vanishes. The integrals
along −π/a to −π/a + i∞ and π/a to π/a + i∞ cancel each other, and we are left
with

Gwg(x > x′, ω) = a
4π

2πi Res|k0

[
ω(k)

ω(k) − ω

]
uk0(r) ⊗ u∗k0

(r′)eik0(x−x′), (2.77)

where k0 is the pole. Using the residue theorem Res[P(k)/Q(k)] = P(k0)/Q′(k0),
where Q′(k0) is the derivative with respect to k evaluated at the pole k0, the waveg-
uide Green’s function is

Gwg(x > x′, ω) = i
ac
2ω

c
vg

uk0(r) ⊗ u∗k0
(r′)eik0(x−x′), (2.78)

where the group velocity is vg = ∂ω
∂k evaluated at the pole.

For x < x′, we instead integrate around the lower-half of the complex plane.
Combining the two results, we get [61, 62, 65]

Gwg(r, r′, ω) = i
ac
2ω

(
c
vg

) [
uk(r) ⊗ u∗k(r

′)eik(x−x′)
Θ(x − x′) (2.79)

+u∗k(r) ⊗ uk(r′)e−ik(x−x′)
Θ(x′ − x)

]
. (2.80)

Here Θ(x) is the step function. Note that I omitted the subscript in k0.

The Bloch function is normalized as (see Eq. (2.54))∫
V

dr ε(r)u∗kn(r) · ukn(r) = 1, (2.81)



33

where the integral is over the volume of the unit cell, which has a lattice constant a.
The Bloch function has units 1/

√
V , and therefore has information about the dimen-

sions of the system. Just as we did for the cavity mode function, we renormalize the
Bloch function to make it is unitless,

fkn(r) = ukn(r)
√

Vk, (2.82)

where now the mode volume Vk is defined in terms of the integral over a unit cell as

Vk =

∫
cell d

3r ε(r)|Ek(r)|2

max
[
ε(r)|Ek(r)|2

] (2.83)

such that the maximum of the Bloch function is unity,4

max [ ε(r)|fk(r)| ] = 1. (2.84)

The guided photonic crystal Green’s function in terms of the dimensionless Bloch
function is

Gwg(r, r′, ω) = i
c

2ω

(
c
vg

) (
a

Vk

) [
fk(r) ⊗ f∗k(r

′)eik(x−x′)
Θ(x − x′) (2.85)

+f∗k(r) ⊗ fk(r′)e−ik(x−x′)
Θ(x′ − x)

]
. (2.86)

This result can easily be extended to the case of a uniform waveguide. We take the
limit of a → 0 and assume that the mode function does not vary along the axis of
the waveguide. Then we can separate the mode volume into Vk = Aka, where the
mode area Ak is defined in terms of an integral over the transverse area,

Ak =

∫
area d

2r ε(r)|Ek(r)|2

max
[
ε(r)|Ek(r)|2

] . (2.87)

We can compare the quasi-1D Green’s function to the 1D Green’s function from
Eq. (2.74). If we assume that the mode function f(r) is linearly polarized and unity
at both atoms (e.g. f(r) = x̂), then the Green’s function for the uniform waveguide
is

Gwg
xx (r, r′, ω) = i

c
2ω

(
c
vg

) (
1
Ak

)
eik |x−x′ | . (2.88)

Just as we expected, the 1D Green’s function is multiplied by a factor related to
the transverse mode area 1/Ak , but it is also multiplied by the group index c/vg.

4Note that the maximum can refer to the maximum value in the volume, but it can also refer to
the maximum in air, or perhaps along a specific axis.



34

Note that when the mode function is elliptically polarized, as is often the case in
waveguides away from the symmetry axes, this simplification does not work, and
the full version in Eq. (2.85) must be used.

A single atom’s decay rate and Lamb shift is related to the imaginary and real parts
of the self-Green’s function. The self-Green’s function for a waveguide is

Gwg(r, r, ω) = i
c

2ω

(
c
vg

) (
a

Vk

) [
fk(r) ⊗ f∗k(r)

]
. (2.89)

Interestingly, the self-interaction due to a quasi-1D waveguide is purely dissipative.
The Purcell factor from Eq. (2.27) is

Γwg

Γ0
=

1
2

c
vg

(
σ0
Ak

)
|n̂∗p · fk(r)|2, (2.90)

where n̂p is a unit vector in the direction of the dipole. In the quantum formalism for
the decay of a two-level system, the Purcell factor is also given by this expression.

Equation (2.90) shows there are twoways to increase the atom-waveguide interaction
strength. The first strategy is confine the light more tightly, for example in dielectric
waveguide, so that the mode area is small as compared to the atom’s optical cross-
section. The second strategy is to decrease the group velocity of the light in the
waveguide. When the group velocity is slower, the interaction time between the
atom and the light increases, strengthening the interaction. In the next section, we
will show how a photonic crystal waveguide addresses both of these strategies.
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C h a p t e r 3

QUANTUM ATOM-LIGHT INTERACTIONS WITH GREEN’S
FUNCTIONS

3.1 Introduction
Chapter 2 explored the interactions of atoms and the electromagnetic field, where the
atoms were approximated as classical dipole oscillators. We found that the Green’s
function, the propagator of the electromagnetic field, can be used to characterize the
strength and nature (dissipative vs. dispersive) of the interactions of the atoms with
the field and with each other. Real atoms, however, differ from classical dipoles
in that the electrons occupy discrete energy levels, and a dipole oscillator is only
a good approximation in the low saturation regime, where the atomic excited state
population can be neglected. Due to the highly nonlinear nature of the atom’s energy
levels, the atom can often be approximated by only two energy states, i.e. Hyperfine
levels for Alkali atoms. A single photon can excite the atom, resulting in saturation.
Therefore, a fully quantum mechanical description of both the atoms and light is
required to describe the system.

In free-space, the quantization of the electromagnetic field is most conventionally
achieved by first constructing a conserved classical Lagrangian or Hamiltonian [66,
67]. This strategy does not work in the presence of dielectric media. The Kramers-
Kronig relations for dielectrics show that there is a fundamental connection between
the imaginary dielectric constant, which results in energy loss, and the real dielectric
constant, which is used in nanophotonics to confine the light. And therefore energy
dissipation is an indispensable property of dielectrics. The free-space quantization
scheme does not work because the Hamiltonian is not conserved.

A strategy for quantizing the field in the presence of dielectricmedia is to incorporate
the dissipation by including a reservoir of harmonic oscillators into which the field
and material system can loose energy [68, 69]. The total Hamiltonian is then
conserved, and so are the commutation relations.

This strategy is a familiar one in quantum mechanics. For example, dissipation
can be added to a harmonic oscillator, or equivalently a cavity mode, with creation
and annihilation operators â† and â by including in the Hamiltonian a reservoir of
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harmonic oscillators b̂k and a coupling with strength g between them,

H = ~ωâ†â +
∑

k

~ωk b̂†k b̂k +
∑

k

gk â†b̂k + h.c.. (3.1)

By solving for the Heisenberg equations for the bath variables b̂k , substituting them
into the Heisenberg equations for the harmonic oscillator a, and assuming that the
time scale of the bath is much shorter than the time scale of the system, we get [48]

Û̂a(t) = (iω − κ/2)â(t) + F̂N(t). (3.2)

The decay rate of the harmonic oscillator is κ, but there is also a Langevin noise
term F̂N(t), which is a function of the bath variables b̂k . The noise term has a typical
spectral properties of a random noise, 〈F̂†N(t)F̂

†
N(t
′)〉 ∝ κδ(t − t′). As a result of the

Langevin term, the commutation relation [â†, â] = 1 is conserved, whereas without
it, the commutation relation would decay as [â†, â] = e−κt . This noise term can
also be interpreted as a requirement of the fluctuation-dissipation theorem, which
mandates that loss in a system is associated with a fluctuating "force".

Similarly, for the electromagnetic field in the presence of dielectric media, we will
incorporate a bath of harmonic oscillator coupled to the polarization, and thereby
obtain a Langevin noise term associated with energy loss that can be expressed in
terms of a polarization noise PN.

This quantization scheme will be described in this chapter. The formalism will also
have a practical purpose besides incorporating loss, and that will be the prominent
role of the Green’s function. The Langevin polarization noise can be related to
the field by the Green’s function (see Dyson’s equation in Eq. (2.13)). In the more
conventional free-space quantization, or in its extension to real dielectrics, the fields
are decomposed into the eigenmodes of the system. While this approach is well
suited for simple geometries of approximately closed systems, such as cavities [48,
70] or uniform systems such as nanofibers [51, 71–74], it is not practical for more
complicated open systems, such as finite photonic crystals.

In this chapter, we will first briefly review the free-space quantization scheme
in Sec. 3.2. Then we will describe the Green’s function quantization scheme for
dielectrics in Sec. 3.3. In section 3.4, wewill derive the quantum equations ofmotion
for a dielectric system with atoms, and in section 3.4 and 3.4, these equations will be
simplified in the time domain using theMarkov approximation, and in the frequency
domain by assuming the low saturation limit. While this chapter will be heavy with
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formalism, the next chapters will apply this formalism to study atoms coupled to
quasi-1D photonic nanostructures.

3.2 Brief review of QED in free-space
The quantization of the electromagnetic field in vacuum [46, 66] is often achieved by
first constructing a classical Langrangian or Hamiltonian for the field in terms of the
vector potential A(r, t) and conjugate momentum Π(r, t) = ε0 ÛA(r, t). The conjugate
variables are related to the electric field and magnetic field by Π(r, t) = −ε0E(r, t)
and B(r, t) = ∇×A(r, t). The vector potential in vacuum is the solution of the wave
equation

∇2A(r, t) + c2 ÜA(r, t) = 0. (3.3)

The classical Hamiltonian is given by

H =
1
2

∫
d3r

[
1
ε0
Π(r, t)2 + 1

µ0
(∇ × A(r, t))2

]
, (3.4)

which we can verify by replacing the conjugate variables with the electric and mag-
netic field and obtaining the expected total energyH = 1

2

∫
d3r

[
ε0E(r, t)2 + 1

µ0
B(r, t)2

]
.

In this formalism, the conjugate variables satisfy the canonical commutation rela-
tions in terms of the Poisson brackets, {A(r, t),Π(r′, t)} = δ⊥(r − r′). And the time
evolution of the field variables, i.e. A(r, t), is expressed in terms of the Poisson
brackets by ÛA = {A,H}, which as expected reproduces Maxwell’s equations.

The quantization of the field is simply obtained by upgrading the variables to non-
commuting quantum operators, i.e. A(r, t) → Â(r, t), and then setting the operator
commutation relations to be the same as classical ones,

[Â(r, t), Π̂(r′, t)] = δ⊥(r − r′). (3.5)

The time evolution of the quantum operators, i.e. A(r, t), is determined by the
commutation relations through the Heisenberg equation of motion

Û̂E(r, t) = 1
i~
[Ê(r, t), Ĥ]. (3.6)

Thus by setting the quantum commutation relations equal to the classical commu-
tation relations, we guarantee that the operators evolve similarly to their classical
counterparts. But since the quantum operators do not commute, there are funda-
mental limits to the precision to which the operators can be measured, as quantified
by Heisenberg’s uncertainty relations.
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While the Hamiltonian and commutation relations are sufficient, in practice the
formalism is further simplified by introducing the eigenmodes uk(r) of the wave-
equation in Eq. (3.3) with the given boundary conditions of the system (i.e. the
perfect conducting boundary conditions of a cavity). The vector potential, or equiv-
alently the electric field, is expanded in terms of the eigenmodes as

Ê(r, t) = iωÂ(r, t) = −
∑

k

√
~ωk

2ε0

[
uk(r) âk(t) + u∗k(r) â

†
k(t)

]
. (3.7)

Using the orthogonality condition of the eigenmodes
∫

d3r u∗j (r)·uk(r) = δ j k and the
fundamental commutation relation from Eq. (3.5), we find that the annihilation and
creation operators â and â† satisfy the simpler commutation relations [â†j , âk] = δ j k .
Substituting the expansion in Eq. (3.7) into the Hamiltonian and performing the
integration gives

Ĥ =
∑

k

~ωk

(
â†k âk +

1
2

)
. (3.8)

These expressions show the close analogy between a single electromagnetic mode
and a harmonic oscillator.

3.3 QED with dielectrics
The quantization of the electromagnetic field in presence of dielectric media is
not as straightforward as the free-space case. A dielectric material consists of a
vast number of charge distributions, and a complete description would require an
intractable set of coupled equations. To simplify the problem, we assume that the
equilibrium charge distribution is only weakly affected by the field, and we describe
the material by a uniform polarization density P(r, t). We further assume that the
polarization of the material responds linearly and isotropically to the electric field,
and therefore can be expressed in terms of a Langevin equation as

P(r, t) = ε0

∫ ∞

−∞
dτ χ(r, τ)E(r, t − τ) + PN(r, t). (3.9)

The first term is the linear response to the electric field, and the response function
is the electric susceptibility χ(r, τ), which in order to satisfy causality has the
constraint χ(r, τ) = 0 for τ < 0. The second part is a polarization noise term
PN(r, t), and is required by the fluctuation-dissipation theorem, which states that any
loss in a system is accompanied by a fluctuating force in the system caused by the
reservoir into which the energy is lost.
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In Fourier space, the linear response equation is

P(r, ω) = ε0χ(r, ω)E(r, ω) + PN(r, ω), (3.10)

where the realness of χ(r, τ) requires that χ(r,−ω) = χ∗(r, ω), and the causality
conditions requires that χ(r, ω) is analytic in the upper-half of the complex plane.
From these two constraints, we can derive the Kramers-Kronig relations for di-
electrics, which relate the imaginary and the real components of the permittivity
ε(r, ω) = 1 + χ(r, ω) and is given by [75, 76]

Re ε(r, ω) ≡ εR(r, ω) = 1 +
2
π
P
∫ ∞

0
dω′

ω′ εI(r, ω′)
ω
′2 − ω2 (3.11)

Im ε(r, ω) ≡ εI(r, ω) = −
2ω
π
P
∫ ∞

0
dω′

εR(r, ω′) − 1
ω
′2 − ω2 . (3.12)

The Kramers-Kronig relations show the intrinsic connection between the real di-
electric constant, which is used in nanophotonis to optically confine light into
waveguides, and the imaginary dielectric constant, which results in energy absorp-
tion. In fact, if we require εI(r, ω) = 0 for all frequencies, then the relations require
that ε(r, ω) = 1 for all frequencies.

Therefore, absorption is a fundamental property of dielectrics and is required to
satisfy causality. But a natural consequence of loss in a system is that the reservoir
into which the energy is flowing can also act on the system, resulting in a noise
force. This principle is outlined in the classical fluctuation-dissipation theorem [77]
in statistical mechanics. For the case of dielectrics and the electromagnetic field,
the classical theory states that the fluctuation of the polarization is proportional to
the imaginary response function and the temperature of the reservoir,

〈∆PN(r, ω) ∆P∗N(r
′, ω′)〉 = kBT

πω
ε0 Imχ(r, ω) δ(r − r′)δ(ω − ω′). (3.13)

Here we use ∆x = (x − 〈x〉). The fundamental role of dissipation in the system
presents a challenge for the quantization procedure. The Hamiltonian is not con-
served, and consequently the commutation relations decay with time. For example,
in the case of a uniform dielectric with a complex dielectric constant, the wave
equation is

∇ × ∇ × Ê(r, ω) − ω
2

c2 (εR(r, ω) + iεI(r, ω))Ê(r, ω) = 0, (3.14)

and Ref. [78] shows that the commutation relations [E(r, ω),A(r, ω)] are not con-
served.
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One strategy for incorporating the loss is to a construct a Hamiltonian that includes
the field, a set of harmonic oscillators that represent the material polarization, and
a reservoir of harmonic oscillators which are weakly coupled to the polarization os-
cillators and into which the system can dissipate energy. Since the total Hamiltonian
is then conserved, the dynamics are unitary and thus the commutation relations are
conserved. Huttner and Barnett [68] (for summary see Ref. [69]) used this strategy
for a homogeneous dielectric and diagonalized the entire Hamiltonian to solve for
a set of polariton-like operators f̂†(r, ω) and f̂(r, ω) that create and annihilate exci-
tations of the combined field, polarization, reservoir system. The total Hamiltonian
is given by

ĤF =

∫
d3r

∫ ∞

0
dω f̂†(r, ω) f̂(r, ω), (3.15)

and the operators satisfy the commutation relations

[ f̂k(r, ω), f̂ †k ′(r
′, ω′)] = δkk ′δ(ω − ω′)δ(r − r′) (3.16)

[ f̂k(r, ω), f̂k ′(r′, ω′)] = 0. (3.17)

Huttner and Barnett showed how these elementary excitation operators are related
to the other field variables. For example, the electric field satisfies

∇ × ∇ × Ê(r, ω) − ε(r, ω)ω
2

c2 Ê(r, ω) = µ0 ĵ(r, ω), (3.18)

where the current noise is ĵ = iωP̂N, and P̂N is a Langevin force term that represents
the polarization noise given by P̂N (r, ω) = i

√
~ε0
π Imε(r, ω) f̂(r, ω). Just as we saw

in the introduction example of a harmonic oscillator coupled to a bath, the presence
of the Langevin term preserves the commutation relations, and is required by the
quantum fluctuation-dissipation theorem.

This strategy was generalized to non-homogeneous dielectric systems by Grunner
andWelsch [78, 79]. Following the reverse process of Huttner and Barnett, they first
introduce a Langevin force term to Maxwell’s equations and define its properties to
conserve the commutation relations, which in turn also makes the formalism satisfy
the fluctuation-dissipation theorem. This quantization procedure is described here.

First, we require the quantum operators obey Maxwell’s equations for non-magnetic
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dielectrics,

∇ · D̂(r, ω) = 0 (3.19)

∇ · B̂(r, ω) = 0 (3.20)

∇ × Ê(r, ω) − iωB̂(r, ω) = 0 (3.21)

∇ × B̂(r, ω) + iωµ0D̂(r, ω) = 0. (3.22)

We add a Langevin force term by introducing a polarization noise operator PN into
the displacement operator

D̂(r, ω) = ε0Ê(r, ω) + P̂(r, ω) + P̂N(r, ω) = ε0ε(r, ω)Ê(r, ω) + P̂N(r, ω). (3.23)

Substituting D̂ into Eq. (3.19) and (3.22) gives

ε0∇ ·
[
ε(r, ω)Ê(r, ω)

]
= ρN (r, ω) (3.24)

∇ × B̂(r, ω) + iω
c
ε(r, ω)Ê(r, ω) = µ0 jN (r, ω). (3.25)

The noise current is related to the polarization noise by ĵN (r, ω) = −iωP̂N (r, ω), and
to the noise charge by ∇ · ĵN (r, ω) = iωρN (r, ω).

The polarization noise operator P̂N(r, ω) describes the fluctuations caused by cou-
pling to the loss reservoir. We next define its properties in order to satisfy the
fluctuation-dissipation theorem. Note that we could have also defined it as to con-
serve the commutation relations [Â(r, t), Π̂(r′, t)] = δ⊥(r−r′), which gives the same
result. We express the noise operator as

P̂N(r, ω) = i
√

~ε0
π

Im ε(r, ω) f̂(r, ω) (3.26)

and define the commutation relations which are typical for a noise term

[ f̂k(r, ω), f̂ †k ′(r
′, ω′)] = δkk ′δ(ω − ω′)δ(r − r′) (3.27)

[ f̂k(r, ω), f̂k ′(r′, ω′)] = 0. (3.28)

The constant in Eq. (3.26) is chosen so that the quantum fluctuation-dissipation
theorem is satisfied when the system is in the ground state1

〈0|S
[
∆P̂N(r, ω)∆P̂†N(r

′, ω′)
]
|0〉 = ~

2π
ε0Im χ(r, ω)δ(r − r′)δ(ω − ω′), (3.29)

where |0〉 represents the ground state of the system, and S
[
a†b

]
= 1

2 (ab + ba).
The average thermal energy kBT appearing in the classical fluctuation-dissipation
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theorem is replaced by the quantum ground-state energy ~ω/2 of a bosonic system.
Next we find an expression for the field operators in terms of the bosonic operators.
In Chapter 2, we found that the electric field is related to an oscillating polarization
by the Green’s function. Inserting Eq. (3.26) into Dyson’s equation from Eq. (2.13)
gives

Ê(r, ω) = iµ0 ω
2
√

~ε0
π

∫
dr′

√
Im{ε(r′, ω)}G(r, r′ω) · f̂(r′, ω) + h.c. (3.30)

≡ Ê+(r, ω) + Ê−(r, ω),

where the total electric field is

Ê(r, t) =
∫ ∞

0
dω

(
Ê+(r, ω) + h.c.

)
. (3.31)

As shown in Hunter and Barnett’s work, the bosonic operators can be interpreted
as an excitation of the combined field, polarization, and reservoir system. The
Hamiltonian is given by

ĤF =

∫
d3r

∫ ∞

0
dω f̂†(r, ω) f̂(r, ω), (3.32)

which can be obtained by inserting the expressions for the electric and magnetic
field into ĤF =

1
2

∫
d3rε0Ê2 + 1

µ0
B̂2, and using the Green’s function identity2

ω2

c2

∫
d3s εI(s, ω)Gik(r, s, ω)G∗j k(r

′, s, ω) = ImGi j(r, r′, ω). (3.33)

1 The proof of this is given here. Inserting the polarization noise in Eq. (3.26) gives

〈0|S[∆P̂N(r, ω)∆P̂†N(r
′, ω′)]|0〉 = ~ε0

2π
√
εI (r′, ω′)εI (r, ω)〈0|f̂(r, ω)f̂†(r′, ω′) + f̂†(r′, ω′)f̂(r, ω)|0〉.

Next we use f̂(r, ω)|0〉 = 0 and 〈0|f̂†(r, ω) = 0 to get rid of second term. Then we use
f̂(r, ω)f̂†(r′, ω′) = [f̂(r, ω), f̂†(r′, ω′)]+ f̂†(r′, ω′)f̂(r, ω). Taking the expectation value with respect to
the ground state and again eliminating the second term, we get

〈0|S
[
∆P̂N(r, ω)∆P̂†N(r

′, ω′)
]
|0〉 = ~ε0

2π
√
εI (r′, ω′)εI (r, ω)

[
f̂(r, ω), f̂†(r′, ω′)

]
.

Inserting the commutation relation of f̂(r, ω) and using ε = 1 + χ, gives Eq. (3.29).
2 This identity perhaps seems weird since for systems with no loss (εI → 0), the imag-

inary Green’s function on the right-hand side is still not zero even though the the left-hand
side seems to vanish. The proof for this identity is given in Ref. [46], but a simpler proof
for the 1D case is in Ref. [78], and more clearly solves the dilemma. The identity in 1D is
ω2

c2

∫ ∞
−∞ dyεI (y, ω)G(x, y, ω)G∗(x ′, y, ω) = −ImG(x, x ′, ω). This identity, as well as the 3D version,

is derived by an integration by parts and assumption that limx→∞G(x, y) → 0, which is only true
when the system has a small εI . For the 1D case in homogeneous space, G(x, y) = eik |x−x

′ |/(2ik),
and then the identity for x = x ′ is ω2

c2 εI (ω)
∫ ∞
−∞ dy |G(x, y, ω)|2 = ω2

c2 εI (ω)
∫ ∞
−∞ dy

��eik |x−y |/2k
��2 =

ω2

c2 εI (ω)
∫ ∞
−∞ dye−nIω/cy2/4|k |2 = ω2

c2 εI (ω)
√

π
nIω/c =

1
2k = −ImG(x, x, ω) .
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One more interesting result that comes out of this formalism is that fluctuations of
the electric field in vacuum is related to the imaginary Green’s function by

〈0|∆E(r, ω) ∆E†(r′, ω′)|0〉 = ~
2π

µ0ω
2ImG(r, r′, ω)δ(ω − ω′), (3.34)

which is obtained by substituting Eq. (3.30) and again using the identity in Eq. (3.33).
These vacuum fluctuations are related to the Casimir-Polder forces [46, 80–82].

Comparison to the eigenmode formalism
Some efforts have been made to quantize the field in the presence of real and fre-
quency independent dielectric constants, most prominently by Glauber and Lewen-
stein [67], where they constructed a conservative Hamiltonian and extended the
free-space scheme. While this can be a good approximation for a specific band-
width of frequencies with low loss in the dielectric, this formulation necessarily
violates causality due to the absence of loss.

It also relies on an eigenmode expansion of the electric field. The Green’s function
can be expanded in terms of eigenmodes (see Eq. (2.55)). We can show that the two
formalisms are equivalent in the limit of real and frequency independent dielectrics.
Substituting the expansion of the Green’s function into the electric field operator
gives

Ê(r, t) = i
∫ ∞

0
dω

√
~
πε0

ω2

c2

∫
d3r′

√
εI(r′, ω)

G(r,r′,ω)︷                              ︸︸                              ︷[
c2

ω2

∑
k

ω2
k

u∗k(r) ⊗ uk(r′)
ω2

k − ω2

]
·f̂(r′, ω)

(3.35)

= i

√
~
πε0

∑
k

u∗k(r)âk(t) (3.36)

where we have defined the bosonic operator

âk =

∫ ∞

0
dω

ω2
k

ω2
k − ω2

∫
d3r′

√
εI(r′, ω) uk(r′) · f̂(r′, ω). (3.37)

Assuming a uniform εI that goes to zero, and using the orthogonality of uk(r) gives
the expected commutation relations [âk, â

†
k ′] = δkk ′.
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3.4 Atom-light interactions with Green’s functions
Since its introduction, the Green’s function quantization formalism has been used
to study the spontaneous emission of a single atom [69, 83–87] and the interaction
of two atoms [19, 88–90]. Here we review the theoretical techniques used.

Due to the highly non-linear energy nature of the atoms, we will treat the atoms as
a two-level system, with a ground state |g〉 and excited state |e〉 that are separated
by an energy ~ωA. The Hamiltonian for the atom is

ĤA = ~ωA
1
2

(
|e〉〈e| − |g〉〈g |

)
=

~ωA

2
σ̂z. (3.38)

The Hamiltonian for the interaction between a single atom and the electromagnetic
field is given by [46, 69, 88]

ĤAF = −Ê(r, t) · d̂(t). (3.39)

The dipole operator of the atom d̂ = er̂ can be projected onto the two states as

d̂(t) =
(
|g〉〈g | + |e〉〈e|

)
d̂(t)

(
|g〉〈g | + |e〉〈e|

)
= d σ̂(t) + d∗ σ̂†(t), (3.40)

where the dipole matrix elements are d = 〈g | d̂|e〉 and d∗ = 〈e| d̂|g〉, and the
Pauli spin operators are the annihilation operator σ = |g〉〈e| and creation operator
σ† = |e〉〈g |. The matrix elements 〈g | d̂|g〉 and 〈e| d̂|e〉 are zero due to the odd parity
of the dipole operator.

Using the Green’s function quantization formalism, the total Hamiltonian Ĥ =

ĤF + ĤA + ĤAF for N identical atoms is

Ĥ =
∫

d3r
∫ ∞

0
dω ~ω f̂†(r, ω) f̂(r, ω)+

N∑
j=1

~ωA

2
σ̂z

j −
N∑

j=1
Ê(r j, t)·

(
d j σ̂j + d∗j σ̂

†
j

)
.

(3.41)

The time derivative of the operators is determined by the Heisenberg equation of
motion,

Û̂O(t) = 1
i~
[Ô(t), Ĥ]. (3.42)

Using σ̂z = 2σ̂†σ̂ − 1 and the commutation relations for the Pauli spin operators,

[σ̂†, σ] = σ̂z, [σ̂z, σ̂] = −2σ̂, [σ̂z, σ̂†] = 2σ̂†, (3.43)
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the time derivatives of the atomic operators σ̂j and σ̂z
j are

Û̂σj = −iωAσ̂ +
i
~
σ̂z

j Ê(r j, t) · d j (3.44)

Û̂σz
j =

2i
~
σ̂† Ê(r j, t) · d j + h.c. (3.45)

Next we solve for the time derivative of the field operators. To help in the derivation,
we expand the atom-field Hamiltonian in terms of the bosononic operators, which
gives

HAF = −i
N∑

j=1

∫ ∞

0
dω

√
~
πε0

ω2

c2

∫
d3r′

√
εI(r′, ω) d̂ j(t) ·

[
G(r j, r′, ω) · f̂(r′, ω)

−G∗(r j, r′, ω) · f̂†(r′, ω)
]
.

(3.46)

Using the commutation relations for f̂ and f̂†, theHeisenberg equation for f̂ simplifies
to

Û̂f(r, ω, t) = −iωf̂(r, ω, t) +
N∑

j=1

√
1

πε0~
ω2

c2

√
εI(r, ω) d̂ j(t) ·G∗(r, r j, ω). (3.47)

The time derivative of the electric field operator Ê(r, ω, t) is obtained by multiplying
this equation by iµ0ω

2
√

~ε0
π

√
εI(r, ω)G(r′, r, ω), integrating over all r-space, and

then using the Green’s function identity in Eq. (3.33). The result is

Û̂E(r, ω, t) = iωÊ(r, ω, t) +
N∑

j=1
i
µ0ω

2

π
ImG(r, r j, ω) · d̂ j(t). (3.48)

Note that the total electric field E(r, t) =
∫ ∞

0 dωE(r, ω) is given by integrating this
equation over frequency space.

The equations in Eq. (3.48), (3.44), and (3.45) form a set of coupled nonlinear
equations. The strategy that we will use to solve these equations is to eliminate the
electric field by solving for it and substituting into the time derivatives of the atomic
operators. In Sec. 3.4, we will do this procedure in the frequency domain in the low
saturation limit and show that the classical results from Chapter 2 are recovered. In
Sec. 3.5, we use the Markov approximation to simplify the electric field operator,
and then solve for a master equation for the atoms.



46

The low saturation limit
In the low saturation limit, the atoms are well approximated by classical dipole
oscillators. In Chapter 2, we derived a system of equations for radiatively coupled
dipoles. The frequency shifts and decay rates were expressed in terms of the real
and imaginary parts of the Green’s function. In this section, we show these results
are recovered from the quantum formalism. In the low saturation limit, the atom is
mostly in the ground state and we can take σ̂z → −1. Then the equation for the
dipole operator is linear:

Û̂σj = −iωAσ̂ +
i
~

Ê(r j, t) · d j . (3.49)

This equation is also applicable to the single excitation subspace. Just as we did in
the classical case, we transform to the Fourier domain. Here we use the Laplace
transformation [60, 63, 86], and define the variables

∫ ∞
0 dteiωtO(t) = O(ω). Using∫ ∞

0 dteiωt ÛO(t) = −iωO(ω) −O(t=0) , the Laplace transform of Eq. (3.44) is

i(ω − ωA)σ̂(ω) = −σ̂(t=0) − i 1
~

d j · Ê(r j, ω). (3.50)

We assume the atoms is initially in the ground state and ignore σ̂(t = 0).

The Laplace transformation for the electric field is more involved and is given in the
following section. The final result is the quantum analog of Dyson’s equation from
Eq. (2.13),

Ê(r, ω) = Efree(r, ω) −
N∑

j=1
µ0ω

2 G(r, r j, ω)
(
d j σ̂j(ω) + d∗j σ̂

†
j (ω)

)
. (3.51)

The free-field is the solution without the atoms, and the Green’s function propagates
the field generated by the atoms. Substituting this expression into the atomic
operators gives the system of equations

∆A σ̂i(ω) +
N∑

j=1

(
Ji j +

i
2
Γi j

)
σ̂j(ω) =

1
~

di · Êfree(ri, ω), (3.52)

where we have defined the decay rates Γi j and frequency shifts Ji j by

Ji j =
µ0ω

2

~
Re[d∗i G(ri, r j, ω)d j] (3.53)

Γi j =
2µ0ω

2

~
Im[d∗i G(ri, r j, ω)d j]. (3.54)
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For a single atom, the equation is(
∆A + J +

i
2
Γ

)
σ̂(ω) = 1

~
d · Êfree(ri, ω). (3.55)

There is one problem with this equation, and that is also related to the divergence of
the real part of self-GF in free-space. This would seem to give divergent frequency
shifts. We also saw this problem in the classical case, where it stems from the
assumption of an infinitesimally small dipole. In the quantum formalism, this
problem is overcome by performing the full relativistic field theory calculation. A
common trick to overcome this is to replace the real part of the self-Green’s function
with the scattered Green’s function, and to assume that the actual Lamb-shift is
already in the definition of the resonance frequency.

Derivation of the Laplace transform of the electric field operator

The proof of Eq. (3.51) is given here. The Laplace transform of Eq. (3.48) is

Ê(r, ω, ω′) = i
Ê(r, ω, t=0)
ω − ω′ −

N∑
j=1

µ0ω
2

π

ImG(r, r j, ω)
ω − ω′

(
d j σ̂j(ω′) + d∗j σ̂

†
j (ω
′)
)
.

The total electric field e E(r, ω′) =
∫ ∞

0 dωE(r, ω, ω′) is

Ê(r, ω′) = Efree(r, ω′) −
N∑

j=1

(∫ ∞

0
dω

µ0ω
2

π

ImG(r, r j, ω)
ω − ω′

)
·
(
dσ̂j(ω′) + d∗σ̂†j (ω

′)
)
.

Since the Green’s function is analytic in the upper portion of the complex plane, we
can use the identity

lim
y→0+

∫ b

a
dx

f (x)
x + iy

= −iπ
∫ b

a
dx f (x)δ(x) + P

∫ b

a
dx

f (x)
x

to expand the integral in the parentheses into∫ ∞

0
dω

µ0ω
2

π

ImG(r, r j, ω)
ω − ω′ = µ0ω

2ImG(r, r j, ω) + P
∫ ∞

0
dω

µ0ω
2

π

ImG(r, r j, ω)
ω − ω′ .

The Kramers-Kronig relations convert the second term in the parentheses to the
real part of the Green’s function, and combing the real and imaginary parts together
gives the final expression (the primes in ω′ are omitted)

Ê(r, ω) = Êfree(r, ω) −
N∑

j=1
µ0ω

2G(r, r j, ω)
(
d j σ̂j(ω) + d∗j σ̂

†
j (ω)

)
.
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3.5 The Markov approximation
In order to simplify the system of equations for the field and atomic operators, we
will eliminate the field by integrating it and substituting the solution into the atomic
operators. Integrating the electric field from Eq. (3.48) gives3

Ê(r, ω, t) = Êfree(r, ω, t) +
N∑

j=1
i
µ0ω

2

π
ImG(r, r j, ω) ·

∫ t

0
dt′e−iω(t−t ′) d̂ j(t′). (3.56)

The free field Êfree(r, ω, t) = E(r, ω, 0)e−iωt is the free evolution of the electric field
operator for the case of no interaction.

Next we substitute this expression into the field operator Ê+(r, t) =
∫ ∞

0 dωÊ+(r, ω)
to get

Ê+(r, t) = Ê+free(r, t) + i
N∑

j=1

∫ ∞

0
dω

µ0ω
2

π
ImG(r, r j, ω)

∫ t

0
dt′e−iω(t−t ′) d̂ j(t′).

(3.57)

The substitution of this expression into Eq. (3.44) and Eq. (3.45) yields a system
of integro-differential equations for the atomic variables. Up to this point, no
assumptions or approximations have been made besides the initial Hamiltonian.

We will now make assumptions about the time scales of the field system relative to
the atomic system in order to get rid of the two integrals in Eq. (3.57) and simplify
the integro-differential equations into Langevin-type differential equations.

First, we take the fast time dependence out of the atomic operators by defining the
slowly varying atomic operators ˆ̃σj(t) = σ̂j(t)eiωAt . The dipole operator is given by

d̂ j(t) = d j ˆ̃σj(t)e−iωAt + d∗j ˆ̃σ†j (t)e
iωAt . (3.58)

3Formally, we do this by defining a slowly varying variable by Ê(r, ω) = e−iωt ˆ̃E(r, ω). Substi-
tuting this into Eq. (3.48) gives

Û̃E(r,w) = eiωt
N∑
j=1

i
µ0ω

2

π
ImG(r, rj, ω) · d̂j(t ′),

which upon integrating gives

Ẽ(r, ω, t) = Ẽ(r, ω, 0) +
N∑
j=1

i
µ0ω

2

π
ImG(r, rj, ω) ·

∫ t

0
dt ′eiω(t

′−t) d̂j(t ′).

We multiply both sides by e−iωt and convert back to the normal variable to get the final expression.
Note that we have defined the free field as Êfree = Ê(r, ω, 0)e−iωt , which is the behavior of the field
without interaction.
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If the system is driven by an external coherent source with frequency ωL , as we will
assume in section 3.5, it is more appropriate to use the frequency of the laser here,
ˆ̃σj(t) = σ̂j(t)eiωL t . For now we will assume that the initial electric field is in the
ground state, so that the free field Êfree represents a Langvein noise force.

Inserting the dipole operator in Eq. (3.58) into the field gives4

Ê+(r, t) = Ê+free(r, t) + i
N∑

j=1

∫ ∞

0
dω

µ0ω
2

π
ImG(r, r j, ω)e−iωAt

·
∫ t

0
dt′

[
d j ˆ̃σj(t′)e−i(ω−ωA)(t ′−t) + d∗j ˆ̃σ†j (t

′)ei(ω+ωA)(t ′−t)
] . (3.59)

Next we make the Markov approximation by assuming that after we perform the
frequency integral, the time integral only contributes over a small correlation time
interval τc [91]. The correlation time interval τc is determined by the bandwidth of
ImG(r, r j, ω), with a broad spectrum (e.g. in a waveguide or bad cavity) producing
a short time interval τc, and a narrow spectrum (e.g. in a good cavity) producing a
long time interval τc. If the time scale of the atomic operator is much longer than
τc, then we can make the approximation σ(t′) ≈ σ(t) and take it out of the time
integral. Another interpretation of this approximation is that we are assuming that
the field system has no memory of the atomic system. We also assume t � τc and
take the lower time integration limit to −∞. The electric field operator is then

Ê+(r, t) = Ê+free(r, t) + i
N∑

j=1

∫ ∞

0
dω

µ0ω
2

π
ImG(r, r j, ω)e−iωAt

·
[
d j ˆ̃σj(t)

∫ t

−∞
dt′e−i(ω−ωA)(t ′−t) + d∗j ˆ̃σ†j (t)

∫ t

−∞
dt′ei(ω+ωA)(t ′−t)

]
.

(3.60)

The expression in the time integral can be written in terms of a delta function and
principal value part,∫ t

−∞
e−i(ω−ωA)(t ′−t) = ζ(ω − ωA) = πδ(ω − ωA) + iP

(
1

ω − ωA

)
. (3.61)

4Sometimes these integrals are solved by first performing the frequency integration. The fre-
quency part of the integral is

∫ ∞
0 dω µ0ω

2

π ImG(r, rj, ω)e−iω(t−t
′). For specific systems where the

Green’s function is known, then we perform this integral. But for arbitrary systems, we have to
perform the time integral first.
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Converting the slowly varying atomic operators back into normal operator gives

Ê+(r, t) = Ê+free(r, t)

+ i
N∑

j=1

∫ ∞

0
dω

µ0ω
2

π
ImG(r, r j, ω) ·

[
d j σ̂j(t)ζ(ω − ωA) + d∗j σ̂

†
j (t)e

2iωAtζ(ω + ωA)
]
.

(3.62)

The delta function in ζ(ω + ωA) is not in the integral interval, and the remaining
principal value integral is related to Casimir forces [81] and is typically small when
far enough away from the dielectric [35].

Ê+(r, t) = Ê+free(r, t)

=

N∑
j=1

σ̂j(t)
[
iµ0ω

2
A ImG(r, r j, ωA) · d j +

µ0
π
P

∫ ∞

0
dω

ω2ImG(r, r j, ω) · d j

ω − ωA

]
,

(3.63)

where the principal value simplifies using the Kramers-Kronig relation to5

P
∫ ∞

0
dω

ω2 ImG(r, r j, ω)
ω − ωA

= πω2
A ReG(r, r j, ωA) +

∫ ∞

0
dκκ2ReG(r, r j, iκ)

ωA

κ2 + ω2
A

(3.64)

. The last term is negligible for atom separation distances on the scale of the
wavelength or larger, and will be ignored [76]. The imaginary and real parts of
the Green’s function combine together into the total Green’s function, and the final
expression for the electric field operator in the Markov approximation is

Ê+(r, t) = Ê+free(r, t) + µ0ω
2
A

N∑
j=1

G(r, r j, ωA) · d j σ̂j(t). (3.65)

This equation is reminiscent of Dyson’s equation for the electric field emitted from
a dipole, but it is in the time domain. The meaning of the Markov approxima-
tion is made more clear by comparing this to the result in Fourier domain in

5 Due to causality, G(r, r′, ω) is analytic in the upper half complex plane (no poles), and the
Kramers-Kronig relations are

ReG(r, r′, ωA) =
1
π
P

∫ ∞

−∞
dω

ImG(r, r′, ω)
ω − ωA

=
2
π
P

∫ ∞

0
dω

ω ImG(r, r′, ω)
ω2 − ω2

A

,

where the second part uses the symmetry G∗(r, r′, ω) = G(r, r′,−ω∗). The expression in Eq. (3.64)
has an extra ω factor in the numerator, and ref. [76] derives the correction term, which is the second
part of Eq. (3.64).
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Eq. (3.51), where neither the Markov approximation or rotating wave approxi-
mation was required. Taking the inverse Laplace transform of Eq. (3.51) gives the
non-approximate solution in the time domain

Ê(r, t) = Êfree(r, t) −
N∑

j=1
µ0ω

2
∫ t

0
dτG(r, r j, t − τ)

(
dσ̂j(τ) + d∗σ̂†j (τ)

)
. (3.66)

Toget to theMarkov approximation, we are assumingG(r, r′, t−τ) ≈ G(r, r′, ωA)δ(t−
τ). In fact, I think this might be a more satisfying derivation of the Markov approx-
imation for the electric field than the one given above.

The atomic system in the Markov approximation
When the Markov approximation for the electric field in Eq. (3.65) is inserted into
the Heisenberg equation for the atomic operators in Eq. (3.44) and (3.45), the result
is

Û̂σk = iωAσ̂k − iσ̂z
k

N∑
j=1

σ̂j
µ0ω

2

~
d∗kG(rk, r j, ωA)d j − iΩ̂k σ̂

z
k (3.67)

Û̂σz
k = 2i

µ0ω
2

~

∑
j

[
d∗kG(rk, r j, ωA)d j σ̂

†
k σ̂j − h.c.

]
+ 2i(Ω̂k σ̂

†
k − h.c.). (3.68)

The electric free-field operator Ω̂k is

Ω̂k = dk · Ê+free(rk, ω)/~. (3.69)

Remember that in performing the Markov approximation, we assume that the dipole
operator evolves with eiωAt , which requires that the free-field is either close to
resonance or in the group state. We treat the driven case in Sec. 3.5, and for now
assume the initial electric field is in the ground state, in which case Ω̂k can be
interpreted as a Langevin noise term.

The electric field operator in Eq. (3.67) and (3.68) has been eliminated. In the low
saturation limit where we can take σ̂z ≈ −1, the first equation is reminiscent of the
classical system of equations for radiatively coupled dipoles in Eq. (2.40). Just as
we did for the classical case, we define the complex coupling rate

gi j = Ji j +
i
2
Γi j =

µ0ω
2
A

~
d∗i G(ri, r j, ωA)d j (3.70)

and the spin-exchange rates and dissipation rates

Γi j =
2µ0ω

2
A

~
Im[d∗i G(ri, r j, ωA)d j] (3.71)

Ji j =
µ0ω

2
A

~
Re[d∗i G(ri, r j, ωA)d j]. (3.72)
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Then the equation for σ̂k in the low saturation limit is

Û̂σk = i(ωA + Jkk)σ̂k −
1
2
Γkk σ̂k + i

∑
j,k

σ̂j

(
Jk j +

i
2
Γk j

)
+ iΩ̂k . (3.73)

For a single atom, Jkk is the frequency shift, Γkk is the decay rate. The two atom
rates Jk j and Γk j are the interactions between the atoms.

The system of equations can be solved beyond the low saturation using the quantum
regression theorem [16, 20, 49].

The atomic system master equation
In the density matrix formalism, the state of the system is represented by the density
matrix ρ̂(t), where now the time dependence is on the state rather than the operators.
In this section we will use the Markov approximation for the electric field to derive
a master equation for the density matrix of the atomic subspace of the system [69,
88, 92]. The final result can also be derived by tracing out the field components
in a Born-Markov approximation [89, 93–96]. The master equation will show the
close analogy between atoms interacting along a waveguide and spin-spin physics
in condensed matter systems.

The derivation has a lot of algebra, but there are no additional assumptions made
beyond what was made in the Markov approximation for the electric field. The first
step is to calculate the Heisenberg equation for an arbitrary atomic operator Ô using
the Hamiltonian from Eq. (3.41),

Û̂O(t) = i
N∑

j=1

ωA

2
[Ô, σ̂z

j ] −
1
i~

N∑
j=1

(
Ê+(r j, t) · [Ô, d̂ j(t)] + [Ô, d̂ j(t)] · Ê−(r j, t)

)
.

(3.74)

In this expression, we have substituted Ê(r, t) = Ê+(r, t) + Ê−(r, t), and for con-
venience have adapted normal ordering so that Ê−(r, t) operators on the right, and
Ê+(r, t) on the left. Next we substitute d̂ j(t) = dσ̂j(t) + d∗σ̂†j (t) and the Markov
approximation for the electric field in Eq. (3.65). We make the rotating wave ap-
proximation by omitting the terms σ̂j σ̂k and σ̂†j σ̂

†
k since they oscillate at 2ωA (this

can more be seen more clear if we convert to the slowly varying variables).

The next step is to convert from the Heisenberg picture to the Schrodinger picture.
In the density matrix formalism, the expectation value of an operator Ô(t) for a
system represented by a density matrix ρ̂ is given by 〈Ô〉 = Tr[ρ̂O]. We multi-
ply both sides on the left by the density matrix ρ̂(0), take the trace, and then use
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the cyclic property of the trace to transfer the time dependence from the operator
to the density matrix, for example the left side becomes 〈 Û̂O〉 = Tr[ρ̂(0)Ô(t)] =
Tr[ρ̂(0)(U(t)Ô(0)U†(t))] = Tr[(U†(t)ρ̂(0)U(t))Ô(0)] = Tr[ρ̂(t)Ô(0)] . We are effec-
tively converting from the Heisenberg picture, where the operators have the time
dependence, to the Schrodinger picture, where the states have the time dependence.

The final step is to use the cyclic property of the trace to rearrange each term so
that the operator O(0) (which no longer is time dependent) is on the right. The final
equation has the form

Tr[ Û̂ρ(t)Ô(0)] = Tr[· · · Ô(0)], (3.75)

where the dots represent the expression which we can identify as the master equation
for the atomic systems. We write separate the master equation into the conservative
and dissipative parts as

Û̂ρ = i
~
[H0, ρ̂] + L[ρ̂], (3.76)

where the conservative Hamiltonian is given by

H0 =

N∑
j=1

~ωA

2
σ̂z

j +

N∑
j,k=1

Jj k σ̂
†
j σk (3.77)

and the dissipative Lindblad is given by

L[ρ̂] = −1
2

N∑
j,k=1

Γj k

(
σ̂†j σ̂k ρ̂ − 2σ̂k ρ̂σ̂

†
j + ρ̂σ̂

†
j σ̂k

)
. (3.78)

Note that since we assume that the initial electric field is in the ground state, when
we take the expectation, the free electric terms Ω̂ vanish. This master equation is a
familiar one in spin-spin physics, with the frequency-shift rates Jj k representing the
hoping of the excitations between sites.

This type of master equation can be diagonalized to find the excited states of the
system [74, 94]. For a two atom system, the eigenstates are shown in Fig. 3.1 [19,
88–90]. The first excitation manifold has a symmetric |eg〉 + |ge〉 state and an
anti-symmetric |eg〉 − |ge〉 state. Similar to the dipole eigenmodes of the classical
case of two interacting dipoles, one has a superradiant decay Γ′ + Γ11 + Γ12 and
the other has a subradiant decay Γ′ + Γ11 − Γ12. The two states are separated by a
frequency 2J12.
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Figure 3.1: Level structure for two radiatively coupled atoms. The bright mode has
supperradiant decay, white the dark mode has a subradiant decay.

A Driven System
In the derivation of the electric field in the Markov approximation, we assumed that
the fast time dependence of the atomic dipole operators oscillate with the atomic
resonance frequency ωA. We now consider a system that is driven by a coherent
laser source at frequency ωL . Previously, we assumed that the initial electric field
was in the ground state, so that the total electric field Ê(r, ω) contained the vacuum
fluctuations and the field emitted by the atoms. Now we write the total electric field
as

Êtot(r, t) = Ê(r, t) + Elaser(r) eiωL t, (3.79)

where E(r, t) is the same as before, but now there is a classical drive field at the
frequency of the laser ωL with spatial profile Elaser(r). This expression can formally
be obtained by assuming that the initial is in a coherent state, and then performing
a transformation with the displacement operator to convert the field to the ground
state and the electric field operator to Eq. (3.79).

Substituting this expression into the total Hamiltonian of Eq. (3.41) produces a drive
term

Hdrive = −
N∑

j=1
~

(
Ω jeiωL t σ̂j +Ω

∗
j e
−iωL tσ̂†j

)
, (3.80)

where the drive coefficient Ωk is

Ωk = dk · E+laser(rk)/~. (3.81)
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To get rid of the time dependence of the drive term, we can rotate to frame of the
laser. In the Heisenberg picture, we define the transformed variables ˆ̃O = Û†ÔÛ ,
where Û = eiĤut/~ is a unitary transformation. (Note that this is the same procedure
as performed when converting to the slowly varying variables.) The Hamiltonian
for the transformed variable is given by6

Ĥ′ = Û†ĤÛ − Ĥu. (3.82)

We use Hu = ~ωL

(∫
d3r

∫
dω f̂†f̂ +

∑N
j=1 σ̂

†
j σ̂j

)
, which then gives the transformed

Hamiltonian (ignoring the primes)

Ĥ =
∫

d3r
∫ ∞

0
dω ~(ω − ωL) f̂†(r, ω) f̂(r, ω) +

N∑
j=1

~∆A

2
σ̂z

j

−
N∑

j=1
Ê(r j, t) ·

(
d σ̂j + d∗ σ̂†j

)
−

N∑
j=1

~
(
Ω j σ̂j +Ω

∗
j σ̂
†
j

)
.

(3.83)

The detuning∆A = ωL−ωA is between the laser and the atomic resonance frequency.

In the frame of the laser, the Heisenberg equations for the atomic operators are

Û̂σk = i∆Aσ̂k − iσ̂z
k

N∑
j=1

σ̂j
µ0ω

2

~
d∗kG(rk, r j, ωL)d j − iΩk σ̂

z
k (3.84)

Û̂σz
k = 2i

µ0ω
2

~

∑
j

[
d∗kG(rk, r j, ωL)d j σ̂

†
k σ̂j − h.c.

]
+ 2i(Ωk σ̂

†
k − h.c.), (3.85)

and the master equation is again Û̂ρ = i
~ [H0, ρ̂] + L[ρ̂], where the conservative part

is

H0 =

N∑
j=1

~∆A

2
σ̂z

j +

N∑
j,k=1

Jj k σ̂
†
j σk (3.86)

and the dissipative Lindblad is

L[ρ̂] = −1
2

N∑
j,k=1

Γj k

(
σ̂†j σ̂k ρ̂ − 2σ̂k ρ̂σ̂

†
j + ρ̂σ̂

†
j σ̂k

)
, (3.87)

6The proof in the Heisenberg picture is as follows. The Heisenberg equation for the normal
variables is Û̂O = 1

i~ [Ô, Ĥ] + δÔ/δt. We assume the operator Ô has no explicit time dependence and

ignore the last term. The derivative of the transformed operator is Û̃̂O = d
dt [Û†ÔÛ] = Û̂U†ÔÛ+Û†Ô Û̂U+

Û† Û̂OÛ . Substituting the original Heisenberg equation for the third term, and using Û̂U = iĤu/~ = Û

for the first two terms, we get Û̃̂O = 1
i~ [

ˆ̃O, Û†ĤÛ − Ĥu], and we can identify Û†ĤÛ − Ĥu as the
Hamiltonian for the transformed operator.
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where now the atomic frequency ωA in the spin-exchange rates and dissipation rates
is replaced with the laser frequency,

Γi j =
2µ0ω

2
A

~
Im[d∗i G(ri, r j, ωL)d j] (3.88)

Ji j =
µ0ω

2
A

~
Re[d∗i G(ri, r j, ωL)d j]. (3.89)

3.6 Including angular momentum
The above formalism is for a two-level system. We have been often approximating
the atom as only two-levels which are coupled by linearly polarized light. The
correct description of the atom must include the all the hyperfine and Zeeman levels
of the atom. While currently in our experiment, we have been assuming that the
atom is in a incoherent mixture of all the Zeeman sublevels, future experiments will
need to optically pump to a single mf level in order to observe coherent dynamics.
The extension of the above formalism is presented in Appendix A.
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C h a p t e r 4

ATOMS COUPLED TO A QUASI-1D NANOSTRUCTURE

Many efforts have been made in the past few decades to couple quantum emitters
with the electromagnetic fields of a variety of quasi-1D nanostructured reservoirs,
ranging fromhigh-quality optical [1–5, 97] andmicrowave [7, 8] cavities to dielectric
[9–15], metallic [16–19], and superconducting [20, 21] waveguides. The photonic
crystal waveguides have more recently been proposed as a strong candidates to study
long- and tunable-range coherent interactions between quantum emitters [38–41].
Due to the different character of the guided modes at various frequencies within the
band structure of the photonic crystal, the interaction of the quantum emitters with
the nanostructure can be remarkably distinct. Far away from the bandgap, where
light propagates, the guided modes resemble those of a conventional waveguide.
Close to the bandgap, but still in the propagating region, the fields of a finite length
PCW are similar to those of a quasi-1D cavity, whereas inside the bandgap the fields
become evanescent, decaying exponentially.

All of these regimes have been recently explored in the lab, where atoms [32,
36, 37] and quantum dots [28, 98, 99] have been interfaced with photonic crystal
waveguides. Most of these experiments have been performed in conditionswhere the
resonance frequency of the emitter lies outside the bandgap. However, very recently,
the first experiments of atoms [42] and superconducting qubits [100] interactingwith
evanescentmodes in the bandgap of photonic crystal waveguides have been reported.

Within this context, it has become a necessity to understand the rich spectral sig-
natures of atom-like emitters interacting through the guided modes of quasi one-
dimensional nanophotonic structureswithin a unified framework that extends beyond
those of cavity [101] or waveguide QED [102]. In this work, we employ a formal-
ism based on the classical electromagnetic Green’s function [46, 78, 82, 88, 89]
described in Chapter 3 to characterize the response of atoms that interact by emit-
ting and absorbing photons through the guided mode of the nanostructure. Since
the fields in the vicinity of the structure might have complex spatial and polarization
patterns, the full Green’s function is only known analytically for a handful of systems
(such as planar multilayer stacks [103], infinite nanofibers [50, 104], and a few more
[82]) and beyond that one has to resort to numerical solvers of Maxwell’s equations.



58

However, in quasi-1D nanostructures, one can isolate the most relevant guided mode
and build a simple prescription for the 1D Green’s function that accounts for the
behavior of this mode, greatly simplifying the problem.

In this chapter, we apply the Green’s function formalism from Chapter 3 to a
collection of atoms in different quasi one-dimensional dielectric environments, and
analyze the atomic transmission and reflection spectra in terms of the eigenvalues of
thematrix consisting of the Green’s functions between every pair of atoms. We show
that, in the linear (low-saturation) regime, asymmetry in the transmission spectra
and frequency shifts are signatures of coherent atom-light interactions, whereas
symmetric lineshapes reveal dissipation. In Sec. 4.4 and 4.5, we show how the
generalized model reproduces the expected results for cavities and waveguides upon
simply introducing their respective Green’s functions. For example, the cavity
model shows Rabi-splitting in the strong coupling limit. And the waveguide model
converges to the optical depth model in the low coupling limit. Finally, in Sec. 4.6,
we explore the expected spectral features near the band-edge of a photonic crystal
waveguide, where we eventually hope to study many-body systems with a tunanble-
range interactions.

4.1 The low-saturation atomic system
In Sec. 3.4, we derived an expression for the electric field operator and a low-
saturation system of equations for the atomic dipole moments. These expressions
were in terms of the free-field (the field not coming from the atoms) and the full
EM Green’s function. We use these two expressions, but make one change of
convention. As discussed in Chapter 2, the Green’s function can be decomposed
into a part coming from the guided modes and a part coming from the non-guided
(i.e. free-space) modes:

G(ri, r j, ω) = Gwg(ri, r j, ω) +G′(ri, r j, ω). (4.1)

Here the first term corresponds to the guided modes that propagate along the struc-
ture, and the second term accounts for all other modes (e.g. emission into free-
space). For many systems, G′(ri, r j, ω) is similar to the free-space Green’s function
from Sec. 2.2, and therefore has a fast spatial decay. This is because the quasi-1D
dielectric structure does not strongly alter the free-space modes. When the atoms
are spaced by more than a wavelength, we can approximate

G′(ri, r j, ω) ≈ G′(ri, ri, ω)δi j, (4.2)



59

or equivalently Γi j = Γ
wg
i j + Γ

′
iiδi j and Ji j = Jwgi j + J′iiδi j , where δi j is the Kronecker

delta. We assume that J′ is identical for every atom and incorporate it into the
definition of ωA. That is the case for example if all the atoms are at the same
position relative to the dielectric structure (see Ref. [105] for more detail).

In the Fourier domain, the electric field operator is still (see Eq. (3.51))

Ê+(r, ω) = Ê+free(r, ω) −
N∑

j=1
µ0ω

2G(r, r j, ω)d j σ̂j(ω). (4.3)

The first term is the free-field from some input source, and the second term is
the emitted field from each of the N atoms. It is important to remember that this
expression was derived without using the Markov approximation, and the results
that follow in this chapter are equally valid in the non-Markovian limit, e.g. in
strong-coupling limit of CQED. As long as r , r j , we can replace the total Green’s
function with the waveguide Green’s function Gwg.

In the low saturation regime the atoms are represented by a linear system of equations
(see Eq. 3.52),(

∆A +
i
2
Γ
′
)
σ̂i(ω) +

N∑
j=1

gi j σ̂j(ω) =
1
~

di · Ê+free(ri, ω). (4.4)

Here, the detuning from the atomic resonance frequency is ∆A = (ω − ωA), and the
complex waveguide coupling rates are

gi j = Ji j +
i
2
Γi j =

µ0ω
2

~
d∗i Gwg(ri, r j, ω)d j, (4.5)

where the real and imaginary parts are the decay rates Γi j and frequency shifts Ji j

given by

Ji j =
µ0ω

2

~
Re[d∗i Gwg(ri, r j, ω)d j] (4.6)

Γi j =
2µ0ω

2

~
Im[d∗i Gwg(ri, r j, ω)d j]. (4.7)

Note that we have omitted the waveguide superscripts on J and Γ, which will be the
convention from now on. The decay rate Γ′ in Eq. (4.4) represents the non-collective
decay of the atoms due to non-guided modes.

The linear systems of equations in Eq. (4.4) can be solved by inverting the left side.
The solution for the atomic operators σ̂j can then be substituted into the electric
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field operator in Eq. (4.3) to obtain the solution for the field at any position. But
before proceeding, we simplify the notation of the system of equations and electric
field operator. First, we express the free field E+free(rk, ω) as if it is being emitted by
some classical dipole din at a position rinσin which is far outside the system,

Ê+free(r, ω) = µ0ω
2G(r, rin, ω)dinσin. (4.8)

For example, plane-wave illumination can be achieved by having the dipole very far
away in free-space. Or an incoming guidedmode field can be achieved by having the
dipole far away and coupled to the guided mode (since the free-space component is
shorter range and all we are left with is the guided component). The atomic system
of equations in Eq. (4.4) is then (using gk,in =

µ0ω
2

~ dkG(rk, rin)din )

(∆A + iΓ′/2)σk +

N∑
j=1

gk j σj = −gk,in σin, (4.9)

and the electric field operator in Eq. (4.3) is

Ê+(r, ω) = µ0ω
2
G(r, rin, ω)dinσin −

N∑
j=1

G(r, r j, ω)d j σ̂j(ω)
 . (4.10)

The second change of notation is to express the electric field operator in a scalar
form. We can accomplish this by multiplying the both sides of Eq. (4.10) by an
arbitrary dipole vector d∗out. We can interpret this as if we are using a negligible
dipole dout at position rout in order to to measure the electric field. The vector can
be removed at the end of a calculation, but including it lets the output electric field
be conveniently expressed in terms of the complex coupling rates gi j as

gout,in σin +

N∑
j=1

gout, j σj =
1
~

d∗out · E+(rout, ω). (4.11)

Orwritten inmatrix formanddefining the vector of atomic operatorsσ = (σ̂1, · · · , σ̂N ),
Eq. (4.9) and (4.10) can be expressed as[

(∆A + iΓ′/2)1 + g
]
· σ = −gin σin (4.12)

gout,in σin + gout · σ =
1
~

d∗out · E+(rout, ω), (4.13)

where the matrix (g) j k = g j k contains the propagators between the atoms, the vector
gin = (g1,in, · · · , gN,in) contains the propagators between the source and the atoms,
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and the vector gout = (gout,1, · · · , gout,N ) contains the propagators from the atoms to
the output.

The solution for the atomic operator for a given input field is found by inverting
Eq. (4.12) ,

σ = −
(

1
(∆A + iΓ′/2)1 + g

)
· ginσin. (4.14)

For a system with a single atom and a drive with amplitude proportional to g1,in, the
atom’s dipole operator is

σ1 = −
g1,in

∆A + J11 +
i
2 (Γ′ + Γ11)

. (4.15)

The resonance frequency is shifted by J11 and the total decay rate is Γtot = Γ′ + Γ11.
When multiple atoms interact with each other, g is not diagonal, and the atoms
instead behave collectively. We can no longer talk about the decay rate or frequency
shift of a single atom. However, we will show that we can instead use the frequency
shifts and decay rates for the collective atomicmodeswhich are uncoupled from each
other. Due to the reciprocity identity from Eq. (2.15) [GT (r, r′, ω) = G(r′, r, ω)],
the the matrix g is symmetric (gT = g) when the dipole matrix elements are real.1It
is interesting to note that because of the dissipation, the matrix g is not Hermitian
and the eigenvectors are not orthogonal in the more traditional sense which uses
the conjugate transpose. Instead, as shown in Appendix C, complex symmetric
matrices have eigenvectors defined by the eigenvalue equation

g vξ = λξvξ (4.17)

that satisfy the orthogonality and completeness relation

vT
ξ · vξ ′ = δξξ ′ and

N∑
ξ=1

vξ ⊗ vT
ξ = 1. (4.18)

Here T is the transpose, rather than the more customary conjugate transpose for
Hermitian or normalmatrices. Thematrix in Eq. (4.14) shares the same eigenvectors

1 The orthogonality and completeness relation of the eigenmodes rely on (g)i j =
µ0ω

2

~ d∗i G(ri, rj, ω)dj being a complex symmetric matrix, gT = g. Taking the transpose of g and
using the reciprocity identity for the Green’s function, GT (ri, rj, ω) = G(rj, ri, ω), gives

(gT)i j =
µ0ω

2

~
diG(ri, rj, ω)d∗j . (4.16)

Comparing this to (g)i j , we see that the only difference is that the complex conjugate is on the second
dipole moment. The matrix is symmetric (g = gT ) when 1) all the dipole moments are real 2) the
Green’s function is linearly polarized.
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as g, since the other term in the denominator is diagonal. Inserting the completeness
relation into the right side of Eq. (4.14), using the eigenvalue equation gives an
expansion of the dipole operator in terms of the N collective modes,

σ = −
(

1
∆A + iΓ′/2 + g

)
· ©­«

N∑
ξ=1

vξ ⊗ vT
ξ
ª®¬ ginσin (4.19)

= −
N∑
ξ=1

vξ · ginσin

∆A + iΓ′/2 + λξ
vξ . (4.20)

Defining the real and imaginary parts of the eigenvalue as λξ = Jξ + iΓξ/2 as
the frequency shift and decay rate for the collective mode ξ, where the Greek
letter signifies a collective mode rather than a single atom, the final expression for
expansion is

σ = −
N∑
ξ=1

vξ · ginσin

∆A + Jξ + i(Γ′ + Γξ)/2
vξ . (4.21)

The elements of eigenvector vξ give the relative amplitude and phase for the atoms in
the collective mode. As a result of the interactions, the collective mode is shifted by
Jξ , and the total decay rate is either inhibited or enhanced to Γtot = Γ′ + Γξ . Finally,
the coupling between the input field and a particular collective mode is given by the
scalar product vξ · ginσin.

4.2 Output field
In the previous section, we derived the solution for the atomic dipole operators in the
low saturation limit. Substituting this solution from Eq. (4.14) into the expression
for the output electric field operator in Eq. (4.13) results in

σin

[
gout,in − gout ·

(
1

(∆A + iΓ′/2)1 + g

)
· gin

]
=

1
~

dout · E+(rout, ω). (4.22)

Notice that in the limit of no atoms (dk → 0), the second terms in the brack-
ets vanishes, which leaves σin gout,in = σin

µ0ω
2

~ d∗outG(rout, rin, ω)din =
1
~d∗out ·

E+N=0(rout, ω). Removing ~ and the arbitrary vector dout from both sides gives
µ0ω

2 G(rout, rin, ω)dinσin = E+N=0(rout, ω), which is the expected result for the
transmitted field through the system with no atoms (N = 0). The scattering from
the atoms is captured in the second term in the brackets.

The ratio of the transmitted field with atoms to the transmitted field without atoms
is given by

tN (∆A)
t0(∆A)

=
d∗out · E+(rout, ω)

d∗out · E+N=0(rout, ω)
, (4.23)
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which upon substitution of Eq. (4.22) gives

tN (∆A)
t0(∆A)

= 1 − 1
gout,in

gout ·
(

1
(∆A + iΓ′/2)1 + g

)
· gin. (4.24)

The vector gin propagates the input field to the atoms, while the vector gout propagates
the field to the output. The matrix sandwiched between the vectors is the response
of the atoms and the propagation of the field between the atoms. The normalized
transmission for a single atom N = 1 simplifies to

tN=1(∆A)
t0(∆A)

= 1 − 1
gout,in

(
gout,1 g1,in

∆A + iΓ′/2 + g11

)
. (4.25)

The normalized transmission can also be expressed in terms of the collective modes
of the atoms. Inserting the completeness relation into both sides of the matrix in
Eq. (4.24) gives

t(∆A)
t0(∆A)

= 1 − 1
gout,in

N∑
ξ,ξ ′=1

gout · (vξ ⊗ vT
ξ ) ·

(
1

(∆A + iΓ′/2)1 + g

)
· (vξ ′ ⊗ vT

ξ ′) · gin

= 1 − 1
gout,in

N∑
ξ=1

(vξ · gout)(vξ · gin)
∆A + Jξ + i(Γ′ + Γξ)/2

,

(4.26)

where in the last line we used the eigenvalue equation with λξ = Jξ + iΓξ/2, and the
orthogonality of the eigenvectors. Since the collective modes are uncoupled from
each other, the transmission spectrum can be written as a sum of N independent
parts, each one similar to the single atom spectra.

We can also derive a similar expression for the reflected field. In contrast to a
transmitted signal, the total electric field for a reflected signal has both the incoming
wave as well as the reflected field. We define the reflected signal as

d∗ · E(xin, ω) = [1 + rN (∆A)]d∗ · Efree(rin, ω). (4.27)

Following a similar procedure as for the transmitted case, we derive

rN (∆A) = r0(∆A) −
1

gout,in
gin ·

(
1

(∆A + Γ′/2)1 + g

)
· gin. (4.28)

4.3 Transmission through a quasi-1D waveguide
For many applications in atomic physics, atoms are coupled to quasi-1D systems,
where the light is confined to propagate in a single axis. Often, quasi-1D modes can
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be well approximated by a 1D wave equation with an effective dielectric constant[
d2

dx2 + εeff(x)ω
2

c2

]
E(x, ω) = 0 , for which the Green’s function is also well approx-

imated by a 1D Green’s function G1D(x, x′, ω) defined by the wave equation (see
Appendix D for details)[

d2

dx2 + εeff(x)
ω2

c2

]
G1D(x, x′, ω) = −δ(x − x′). (4.29)

In this section, we show that the transmission spectrum for atoms coupled to a
system whose Green’s function is well approximated by a 1D Green’s function only
depends on the eigenvalues of the Green’s function matrix g and the decay rate
Γ′. Amazingly, the transmission spectrum is independent of the input and output
vectors gin and gout seen in Eq. (4.24). This equation is a generalization of the
optical bistability equation for cavities and the optical depth model for waveguides
to arbitrary quasi-1D systems.

The derivation for multiple atoms is quite technical, so first we look at the derivation
for the single atom case. From Eq. (4.25), the normalized transmission for a single
atom is

tN=1(ω)
t0(ω)

= 1 − gout,1 g1,in

gout,in

(
1

∆A + iΓ′/2 + g11

)
. (4.30)

We assume that the Green’s function is well approximated by an effective 1DGreen’s
function, and assume that the polarization of the field is the same as the dipoles. We
can then write the complex coupling rate as

gi j =
µ0ω

2

~
d∗G(ri, r j, ω)d ≈

µ0ω
2

~
|d|2

G1D(xi, x j, ω)
Aeff

, (4.31)

where the effective mode area 1/Aeff includes both themode area and group velocity,
as discussed in Sec. 2.5. The front coefficient in Eq. (4.30) is then given by

gout,1 g1,in

gout,in
=
µ0ω

2 |d|2
~Aeff

(
G1D(xout, x j)G1D(xk, xin)

G1D(xout, xin)

)
. (4.32)

An identity for 1D Green’s function, which will be proven in the multiple atom
derivation, is G1D(xout, x1)G1D(x1, xin) = G1D(xout, xin)G1D(x1, x1) for xout > x1 >

xin. Using this identity, the coefficient simplifies to
gout,1 g1,in

gout,in
= g11 (4.33)

and the transmission spectrum is

tN=1(ω)
t0(ω)

= 1 −
(

g11
∆A + iΓ′/2 + g11

)
=

∆A + iΓ′/2
∆A + iΓ′/2 + g11

. (4.34)
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Remarkably, the normalized low saturation transmission spectrum for a quasi-1D
system with one atom only depends on the self-Green’s function at the position
of the atom. Two completely different systems will have the same normalized
transmission as long as g11 and Γ′ are the same. For a single atom, there is a
clear mapping between the spectrum lineshape and the local 1D Green’s function.
Examples of the single atom spectra are shown in Fig. 4.1. Figure 4.1(a) shows
spectra for a dissipative interaction (J = 0) and increasing ratios of Γ/Γ′. For a
nanostructure with a purely imaginary self-Green’s function (such as a waveguide or
a cavity on resonance), the spectrum is Lorentzian, and centered around the atomic
frequency. Defining the total decay rate Γtot = Γ′ + Γ, the transmission can be
written in a form that shows the linewidth and depth of the symmetric resonance,

TN=1(∆A)
T0(∆A)

�����
J=0

= 1 −

peak depth︷      ︸︸      ︷(
1 − Γ

′2

Γ2
tot

) peak width︷            ︸︸            ︷(
1

1 + ∆2
A/Γ2

tot

)
. (4.35)

As shown in the Fig. 4.1(c), the linewidth is given by the total decay rate Γtot = Γ+Γ′,

and the on-resonant transmission is T(0)/T0(0) =
(
Γ′

Γtot

)2
.

Figure 4.1(b) shows single atom spectra for the purely dispersive self-interaction
(Γ = 0) for increasing ratios of J/Γ′. If the real part of the Green’s function is
finite, for example in an off-resonant cavity or the bandgap of a PCW, the spectrum
is shifted and asymmetric. For J/Γ′ � 1, the lineshape is an asymmetric Gaussian.
But for larger ratios, a resonance appears at frequency J from the center, as shown

in Fig. 4.1(d). The height of the peak increases rapidly with
(

J
Γ′/2

)2
.

The multiple atom result, which is derived in the Sec. 4.9 , is

t(ω)
t0(ω)

=

N∏
ξ=1

(
∆A + iΓ′/2

∆A + iΓ′/2 + λξ

)
, (4.36)

where the λξ’s are the eigenvalues of the matrix g. For the multiple atom case, the
transmission spectra is a direct probe of the frequency shifts and decay rates of the
collective modes. This expression extends the models for cavities and waveguides to
arbitrary 1D systems. To get to this result, we have only assumed the low saturation
limit and that Green’s function is well approximated by a 1D Green’s function.
We did not use the Markov approximation, and so this result is valid in the non-
Markovian limit, where the linewidth of the Green’s function is narrower than the
atomic linewidth. This result is also valid for systems with loss, since the 1DGreen’s
function is well-defined for lossy systems, in contrast to the eigenmode formalism.
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Figure 4.1: (a) Single atom transmission spectra for J = 0 and Γ/Γ′ =
(0.1, 0.5, 1, 5, 10). (b) Single atom transmission spectra for Γ = 0 and J/Γ′ =
(0.1, 0.5, 1, 2, 4) . (c) Generic curve with the approximations for the height and
width for a J = 0 lineshape. (d) Generic curve with the frequency shift and peak
height for a Γ = 0 lineshape.

4.4 Atoms in a cavity
As a first example of atoms coupled to a quasi-1D system, we look at a cavity. For
a good cavity, the interactions can be approximated as coming from a single optical
mode with linewidth κc which is resonant with the cavity. This approximation is
used in the Jaynes-Cumming (JC) formalism, which is obtained from the Green’s
function formalism by substituting the approximation cavity Green’s function (see

1 The transmittance T = |t |2 can be recast into a Fano-like lineshape [106] as

T/T0 =
(q + χ)2
1 + χ2 +

(
Γ′

Γ′ + Γ 1D

)2 1
1 + χ2 ,

where χ = 2(∆ A + J 1D)/(Γ 1D + Γ
′) and q = −2J 1D/(Γ 1D + Γ

′) is the so-called asymmetry
parameter. For Γ′ � Γ 1D, the second term is negligible and T/T0 is a pure Fano resonance, with
q = −Re[G 1D(rj, rj, ω)]/Im[G 1D(rj, rj, ω)]. Fano resonances arise whenever there is interference
between two different transport channels. For instance, in a cavity far from resonance, there is
interference arising from all the possible optical paths that contribute to the transmission signal due
to reflections at the mirrors, whereas in an unstructured waveguide there is no such interference and
thus the lineshape is Lorentzian.
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Eq. (2.5)),

G(r, r′, ω) = c2

2ω0V
1

∆ − iκc/2
f(r) ⊗ f∗(r′), (4.37)

where V is the mode volume and f(r) the unitless mode function which is often well
approximated by |f(r)| ≈ cos(k x).

In 1D, we can obtain the exact Green’s function for a cavity consisting of twomirrors
with reflection R separated by a distance L. In Appendix D, we derive a simple
procedure, which we call the "Wronkian method", for deriving the 1D Green’s
function for arbitrary systems. The full solution is given in Appendix D, but a good
approximation is

ImG1D(x, x′, ω) = 1
2kc

(
1 +
√

R

1 −
√

R

) [
1

1 + F sin2(kcL)

]
cos(kc x) cos(kc x′) (4.38)

ReG1D(x, x′, ω) = 1
kc

√
R(

1 −
√

R
)2

[
sin(kcL)

1 + F sin2(kcL)

]
cos(kc x) cos(kc x′), (4.39)

where R is the reflection coefficient for each mirror, kc = ncω/c is the intra-cavity
wave-vector, L is the cavity length, and the "coefficient of Finesse" F — which is
closely related to the Finesse [107] — is given by

F = 4R
(1 − R)2

. (4.40)

To derive these expressions, we have assumed cos(kcL) ≈ 1 and R & 0.5, but we
note that they are exact for the self-Green’s function G(x, x, ω) at the cavity anti-
node, which is the maximum value in the cavity and will be an important quantity
later. While the single-mode approximation Green’s function breaks down in the
very bad cavity limit, these expressions recover the uniform waveguide Green’s
function for R→ 0, i.e. ImG = i

2k A and ReG = 0.

In the good cavity limit (1 − R � 1), we recover the approximate Green’s function
expression from Eq. (4.37) by replacing the reflection coefficient with the cavity
linewidth. The full-width half-maximum (T = 1/2) linewidth in angular frequency
units is

κc =
2c

Lng
arcsin

(
1 − R

2
√

R

)
≈ c

Lng
(1 − R). (4.41)

where ng = c/vg, and vg =
dω
dk . Assuming close to resonance, we take kcL =

mπ + n∆cL/c and asuume that n∆cL/c � 1 . Here ∆c = ω − ωc is the cavity
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Figure 4.2: The coherent Jc and dissipative Γc coupling rates for a cavity. They have
been normalized by κc/q2 to make them unitless.

detuning. The Green’s function is then

G1D(xi, x j, ω) ' −
(

c2

ωL

)
1

∆c + iκc/2
cos(k cxi) cos(k cx j). (4.42)

The complex coupling rates are then given by gi j =
µ0ω

2

~ |d|2
1
AG1D(xi, x j, ω), where

A is the effective mode area. This simplifies to

gi j =
qiq j

∆c + iκc/2
, where qi =

√
|d|2ω
ε0~L A

cos(kc x) (4.43)

is the vacuum Rabi frequency from the JC model. The atoms’ spin-exchange and
decay rates are plotted in Fig. 4.2 versus cavity detuning, and are given by

Ji j
c = −qiq j

∆c

(∆2
c + κ

2
c/4)

≡ Jc cos(kcxi) cos(kcx j), (4.44a)

Γ
i j
c = qiq j

κc

(∆2
c + κ

2
c/4)

≡ Γc cos(kcxi) cos(kcx j). (4.44b)

The ratio of the coherent to dissipative rates is Jii
c /Γii

c = ∆c/κc, and is the dashed line
in Fig. 4.2.2A general feature of the coherent rate is its maximum is approximately
25% of the dissipative rate maximum, and it is shifted by one linewidth κc.

Since the atoms are approximately only interacting with a single optical mode,
there is a decreased dimensionality in the problem as compared for example to the
continuum of modes in a uniform waveguide. In fact, we will now show that only
a single "bright" collective mode of the atoms is coupled to the cavity. In the low

2Using the more accurate 1D expression from Eq. (4.38), Jiic /Γiic =
√
F sin(kcL)
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saturation regime, the spectral features behave the same as a single "super atom"
with an enhanced coupling.

We use the mathematical property that for any vector a, the rank 1 matrix a ⊗ aT

has only nonzero eigenvalue λB = a · a with a corresponding eigenvector a. The
remainder of the N −1 eigenvalues are zero. The matrix (g)i j ∝ qiq j from Eq. (4.43)
can be written as the product of two vectors. Therefore, the matrix g has one
eigenstate describing a superposition of atomic coherences that couples to the cavity
(a "bright mode"), with eigenvalue λ B =

∑N
i=1 g

ii = (J1D + iΓ1D/2)
∑N

i=1 cos2(k cxi).
The amplitude and phase of the atoms in the collective excitation are given by the
eigenvector σ̂i ∝ cos(k cxi). The matrix g has also N − 1 decoupled ("dark") modes
of eigenvalue 0. Because these dark modes have a zero decay rate into the cavity
mode, it is also impossible to excite them employing the cavity field. The optical
response is thus entirely controlled by the bright mode, and the transmission is
simply

t(∆ A)/t0(∆ A) =
∆ A + iΓ′/2

(∆ A +
∑N

i=1 Jii
1D) + i(Γ′ +

∑N
i=1 Γ

ii
1D)/2

. (4.45)

Remarkably, this expression is valid no matter the separation between the atoms
or whether they form an ordered or disordered chain. The transmission spectrum
corresponds to that of a ‘super-atom’, where the decay rates and the frequency shifts
are enhanced (N-fold if all the diagonal components of g are equal) compared to
those of a single atom.

This result replicates the well-known expressions for conventional cavity QED.
Substituting λB = −

∑N
i=1 q2

i

∆c+iκc/2 into Eq. (4.45), the transmission for a cavity is

tN (ω)
t0(ω)

=
∆A + iΓ′/2

∆A + iΓ′/2 + λB
=

(∆c + iκc/2)(∆A + iΓ′/2)
(∆c + iκc/2)(∆A + iΓ′/2) −

∑N
i=1 q2

i

. (4.46)

The transmission of a cavity with no loss is given by (see appendix D)

t0(ω) =
1 − R

1 − e2ikL R
≈ iκc/2
∆c + iκc/2

, (4.47)

where for the second expression we have made the approximation R ≈ 1 and
δkL � 1. The un-normalized transmission is then

tN (ω) =
(iκc/2)(∆A + iΓ′/2)

(∆c + iκc/2)(∆A + iΓ′/2) −
∑N

i=1 q2
i

. (4.48)

When all the atoms are positioned at the anti-nodes of the standing wave so that
they all have identical vacuum Rabi frequency q, then we can take

∑N
i=1 q2

i = N2q2.
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Figure 4.3: Cavity Rabi splitting. For these plots, we have taken Γ′ = 0 and
Nq/κ = (0, 0.5, 1). The dashed line is the raw cavity transmission.

Figure 4.3 shows the cavity spectra for various values of qN . The dashed line is the
cavity transmission with no atoms, and the orange and blue show the Rabi splitting.

4.5 Waveguides
Another paradigm that has been investigated frequently is that of "waveguide QED"
[102]. The simple model of such a system consists of a single guided mode with
translational invariance, and where the dispersion relation is well-approximated as
linear around the atomic resonance frequency. In a 1D translationally invariant
system, a source simply emits a plane wave whose phase at the detection point is
proportional to the distance of separation. Therefore, the elements of the Green’s
function matrix g depend on the distance between the atoms, and read

gi j = i
Γ 1D

2
eikp |xi−xj | . (4.49)

Remarkably, the selfGreen’s function in awaveguide is purely imaginary. The coher-
ent interactions between atom i and atom j are dictated by the Hamiltonian, and are
proportional to Re{gi j} = −(Γ 1D/2) sin k p |xi − x j |, whereas the dissipation is given
by the Lindblad operator, which is proportional to Im{gi j} = (Γ 1D/2) cos k p(xi−x j)
[19, 108]. It is thus clear that by carefully tuning the distance between the emitters,



71

ooooooooooooo
ooooooooo

oooo

oooooooo
ooooooooooo

ooooooooooooo
ooooooooooo

ooooooo

oooooooo
ooooooooooo

ooooooooooooo
ooooooooooo

oooooo

ooooooo
ooooooooooo

ooooooooooooo
ooooooooooo

oooooooo
o

oooooooo
ooooooooooo

ooooooooooooooo
ooooooo

oooo

ooooo
o

ooooo

oooooo
oooooooo

oooooooooo
oooooooo

oooooo
o

ooooo
o

ooooo

oooooo
oooooooo

oooooooooo
oooooooo

oooooo
o

ooooo

ooooo
o

oooooo
oooooooo

oooooooooo
oooooooo

oooooo
o

ooooo
o

ooooo

oooooo
oooooooo

ooooooooooo
ooooo

ooooo

oooo
o

oooooo

ooooo

oooo
o

ooooo
ooooo

ooooo
ooooo

ooooo
oooo

oooo
o

oooooo

ooooo

oooo
o

ooooo
ooooo

ooooo
ooooo

ooooo
oooo

oooo
o

oooooo

ooooo

oooo
o

ooooo
ooooo

ooooo
ooooo

ooooo
oooo

oooo
o

ooooo

oooooo

oooo
o

ooooo
ooooo

ooooooo
oo
oooooo

ooooo

ooooo

oooooo

ooooo

ooooo

ooooo

oooooo
oo
oo
oo
ooo

oooo

ooooo

ooooo

oooooo

ooooo

ooooo

ooooo

oooooo
oo
oo
oo
ooo

oooo

ooooo

ooooo

oooooo

ooooo

ooooo

ooooo

oooooo
oo
oo
oo
ooo

oooo

ooooo

ooooo

ooooo

oooooo

ooooo

ooooo

oooooo
oo
ooo

o
o
ooooooo

oooooooooo

ooooooooooo

oooooooooo

ooooooo
o
o
o
o
o
ooooooo

oooooooooo

ooooooooooo

oooooooooo

ooooooo
o
o
o
o
o
ooooooo

oooooooooo

ooooooooooo

oooooooooo

ooooooo
o
o
o
o
o
ooooooo

oooooooooo

ooooooooooo

oooooooooo

ooooooo
o
o
o

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
ooo

oooooooooo
ooooooooooo

oooooooooooooooooooooooooo
ooo

oooooooooo
ooooooooooo

oooooooooooooooooooooooooo
ooo

oooooooooo
ooooooooooo

oooooooooooooooooooooooooo
ooo

oooooooooo
ooooooooooo

oooooooooooooooooooo
oo
oo
ooooooooo

oo
oooooooo

oo
ooooooooo

oo
oooooooooooooo

oo
oo
ooooooooo

oo
oooooooo

oo
ooooooooo

oo
oooooooooooooo

oo
oo
ooooooooo

oo
oooooooo

oo
ooooooooo

oo
oooooooooooooo

oo
oo
ooooooooo

oo
oooooooo

oo
ooooooooo

oo
ooooooooooo

oooooo
o
o
o
ooo

oooooooooo
oooooooooo

ooo
ooooooo

o
o
o
oo
ooo

oooooo
o
o
o
ooo

oooooooooo
oooooooooo

ooo
ooooooo

o
o
o
oo
ooo

oooooo
o
o
o
ooo

oooooooooo
oooooooooo

ooo
ooooooo

o
o
o
oo
ooo

oooooo
o
o
o
ooo

oooooooooo
oooooooooo

ooo
ooooooo

o
o
o
oo
ooo

o

0.50

0

-2

2

1 1.5 2

0.50 1
d / λp

1.5 2

(b)

(a)

0

2

4

6

J ξ,1
D
 / 
Γ

1D
Γ

ξ,
1D

 / 
Γ

1D

Figure 4.4: (a) Frequency shifts and (b) decay rates of the collective modes of a
regular chain of 5 atoms with uniform spacing placed along a waveguide normalized
to the single-atom decay rate into the guided mode Γ 1D, as a function of the distance
d between the atoms in units of the probe wavelength. Figure adapted from [44].

one can engineer fully dissipative interactions. If the atoms form a regular chain
and are spaced by a distance d such that kpd = nπ, where n is an integer number,
the matrix g has only one non-zero eigenvalue λ B = iNΓ 1D/2 associated with the
bright atomic mode. This situation is analogous to the case of atoms interacting in
an on-resonance cavity. Therefore, there will not be any collective frequency shift,
and the lineshape will be a Lorentzian of width Γ B + Γ

′. For n even, the phases
of the dipole moments of the atoms are all identical, whereas for odd n the dipole
moments of adjacent atoms are π out of phase.

For a regular chain with lattice constant different from k pd = nπ, or for atoms
placed randomly along the waveguide, the coefficients of matrix g have both a
real and imaginary part, and, to the best of our knowledge, there is no analytic
expression for the eigenvalues of g. Figure 4.4 shows the frequency shifts and
decay rates of the collective modes of a N = 5 atom chain as a function of the
separation between the atoms. For separations where k pd = nπ, the real part of the
Green’s function is zero and the imaginary part of all modes but one goes to zero,
whereas for other spacings one generically gets a zoo of coherent and dissipative
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Figure 4.5: (a) Normalized transmission spectra for 20 atoms interacting through
the guided modes of an unstructured waveguide. The blue line represents a regular
separation between the atoms of d = λ p/2. The orange curves show 10 different
spectra obtained by randomly placing the atoms along the nanostructure. The black
curve represents the "non-interacting" case of Eq. (4.50). (b) Normalized reflection
spectra for the same situations as in (a). We have chosen Γ 1D = Γ

′. Figure adapted
from [44].

couplings of comparable strength. This occurs because the real and imaginary parts
of gi j are generically of similar magnitude. Figure 4.5 shows the transmission and
reflection spectra for N = 20 atoms separated by k pd = π (blue curve), and for
several random realizations where each atomic position is chosen randomly from
a distribution k pxi ∈ [0, 2π] (orange curves). The black line represents the non-
interacting case, which is obtained by setting the non-diagonal terms of g to zero,
yielding a transmission spectrum

t(∆ A)/t0(∆ A) =
(

∆ A + iΓ′/2
∆ A + i(Γ′ + Γ 1D)/2

)N

, (4.50)

where the transmission coefficient is a product of the transmission coefficient of each
single atom, and the frequency shifts and decay rates are not collective quantities
but, instead, single-atom parameters.

Figure ??(a) also shows that, for randomfilling, although the atoms interactwith each
other (gi j,i , 0), the transmission spectra follow closely that of a non-interacting
system, for which all the off-diagonal elements are zero (gi j,i = 0), and the eigenval-
ues of matrix g are proportional to the self Green’s functions [G(xi, xi)] at the atoms’
positions. In this case, the behavior of the emitters cannot be understood in terms of
the ‘super-atom’ picture, as the transmission spectrum of the system is significantly
different from a Lorentzian. In particular, for the non-interacting scenario, one can
recast Eq. (4.50) into an exponential, and the transmittance recovers the well-known
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form of a Beer-Lambert law, reading

T(∆ A)/T0(∆ A) = exp

[
−N ln

∆2
A + (Γ

′ + Γ 1D)2/4
∆2

A + Γ
′2/4

]
' exp

[
− OD

1 + (2∆ A/Γ′)2

]
,

(4.51)

where OD ≡ 2NΓ 1D/Γ′ is the optical depth and the last equality holds for Γ 1D � Γ′.
This is exactly the same behavior that an atomic ensemble in free space would ex-
hibit. This occurs only for non-negligible Γ′, which suppresses multiple reflections.
Otherwise one would see huge fluctuations associated with Anderson localization
in the spectra.

The reflectance spectrum, on the other hand, is more complex and carries more
information than the transmittance, as shown in Fig. 4.5(b). In contrast to the case
of the transmission coefficient, the reflection does not admit a simple formula in
terms of the eigenvalues of the system. This is only possible when the Green’s
function is separable, namely, when the distance between the atoms is d = nλp/2.

4.6 Photonic crystal bandgaps
The band-gap region of a photonic crystal waveguide (PCW) is a very appealing
scenario to explore coherent atom-atom interactions, as light cannot propagate, and
atoms interact with each other through finite-range evanescent fields [41]. For a
photonic crystal waveguide of lattice constant a the elements of matrix g are well
approximated by

gi j = J 1D cos(πxi/a) cos(πx j/a)e−κx |xi−xj |, (4.52)

where the cosine terms account for the spatial profile of the Bloch modes, and κ−1
x

is the finite range of interaction due to the evanescent decay of the guided mode
field in the bandgap, which is controlled by detuning the band-edge frequency from
the atomic resonance. It should be noted that in this idealized picture, gi j is purely
real, indicating the absence of collective emission into the PCW. This is naturally
expected, due to the absence of guided modes at the atomic frequency. In practice,
residual decay might still exist to the extent that the mediating photon has a decay
channel. This could be either due to the finite length of the PCW,which can cause the
photon to leak out the ends and is suppressed when κx L � 1, or through scattering
and absorption losses of the PCW. Given that these photonic decay processes can
be made small, for conceptual simplicity here we treat the idealized case.
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Figure 4.6: Collective frequency shifts of the modes of a regular chain of N=10
atoms in the bandgap of an infinite photonic crystal as a function of κxd, where
κ−1

x is the spatial range of the interaction and d is the distance between atoms. The
atoms are placed at even anti-nodes of the Bloch modes. Figure adapted from [44].

For a chain of periodically spaced atoms placed in even antinodes of the Bloch
modes, the dipole-projected Green’s function matrix reads

g = J 1D

©­­­­­«
1 χ χ2 · · · χN−1

χ 1 χ · · · χN−2

...
...

...
. . .

...

χN−1 χN−2 χN−3 · · · 1

ª®®®®®¬
, (4.53)

where we have defined χ ≡ e−κxd , with d being the distance between nearest-
neighbor atoms. The matrix g is a real symmetric Toeplitz matrix (or bisymmetric
matrix). Neglecting higher order contributions besides first-neighbor, an approxima-
tion valid for κxd � 1, g becomes a tridiagonal Toeplitz matrix whose eigenvalues
and eigenvectors are:

λξ ≡ J 1D,ξ = 1 + 2e−κxd cos
(
ξπ

N + 1

)
, (4.54a)

vξ, j =

√
2

N + 1
sin

(
ξ jπ

N + 1

)
. (4.54b)

In this simple tight binding model, the frequency shifts of the collective atomic
modes are distributed around J 1D with a frequency spread controlled by κx (i.e.,
for larger κx , the modes are closer in frequency). However, if the interaction length
is very large compared to the distance between the atoms, the approximation of
neglecting higher order neighbors falls apart, and the eigenvalues start to show a
different behavior. Eventually, when the interaction length becomes infinite (or



75

much larger than the length of the atomic cloud), there is only one bright mode, of
eigenvalue λ B = N J 1D. This is analogous to the cavity case, where the interaction
range is also infinite, except now the eigenvalue is purely real. This can be observed
in Fig. 4.6, which shows how the collective frequency shifts coalesce towards J 1D

for large κxd. The band-edge of a photonic crystal is thus a cross-over region in
which the single bright mode approximation holds and then transitions to another
regime where it breaks down, as the guided mode becomes evanescent and decays
substantially within the length of the PCW. Importantly, the bandgap of a photonic
crystal provides a tunable interaction range, a feature which is unique to this kind of
nanostructure, and makes PCWs remarkably different reservoirs from either cavities
or unstructured waveguides.

In the following section, we present some predictions for the transmission spectrum
of two atoms coupled to a PCW for Γ 1D and J 1D values that can be achieved
experimentally in the coming years. We hope that the foreseen large coherent
couplings between the atoms combined with low dissipation through the guided
mode help to stimulate a new generation of experiments that go beyond the current
state of the art.

4.7 Experimental perspectives
In a recent experiment [42], the authors have observed signatures of collective
atom-light interactions in the transmission spectra of atoms coupled to an alligator
photonic crystal waveguide. They have recorded these spectra for various fre-
quencies around the band edge of the PCW, exploring different physical regimes.
Outside the bandgap, due to the finite size of the PCW, they observe the formation
of a low-finesse cavity mode [as shown in Fig. 3(a) of Ref. [42], at a frequency
ν1]. At resonance with this cavity mode, the dissipative single-atom coupling to the
structure is Γ 1D(ν1) ' 1.5Γ0, as obtained from steady-state transmission lineshape
measurements. As before, Γ0 is the free-space decay rate. The decay rate into
leaky modes is Γ′/Γ0 ' 1.1, estimated from finite-difference time-domain (FDTD)
numerical calculations.

After tuning the spectral features of the PCW so that the resonance frequency of
the atoms moves into the bandgap, they observe asymmetric lineshapes, revealing
significant coherent coupling. Specifically at ν BG = 60 GHz inside the bandgap, the
spin exchange and decay rates are J 1D(ν BG)/Γ0 ' −0.2 and Γ 1D(ν BG)/Γ0 ' 0.01,
respectively. Due to the evanescent character of the field in the bandgap, the
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Figure 4.7: (a)Magnitude of the ratio between the coherent and dissipative couplings
through the guided mode of an alligator PCW [42]. The dashed line shows the ratio
as given in Fig.4 of Ref. [42], and the continuous curve represents the expected ratio
that could be achieved within the next years (see text for more details). (b) Evolution
of the excited state population of atom 1 (blue curve) and 2 (orange curve) after fully
inverting atom 1 at the initial time. The resonance frequency of the atoms lies in the
bandgap of the photonic crystal, with the atoms placed at successive even antinodes
(continuous curve). The dashed line represents the non-interacting scenario, where
the off-diagonal terms of g are zero. The spin exchange and decay rates are chosen to
be J 1D = −3Γ0, Γ 1D = 0.15Γ0, and Γ′ = 0.5Γ0. The lattice constant is a = 370 nm
and the range of interaction is κ−1

x = 80a. Figure adapted from [44].

interaction range is finite, and at ν BG its value is κ−1
x ' 80a, being a = 370 nm

the lattice constant of the alligator PCW. While this experiment constitutes the
first observation of more than one emitter interacting through the guided modes
around the band edge of a PCW, the values of J 1D and Γ 1D are not yet good
enough to observe signatures of atom-atom interactions such as time-dependent
spin exchange. Nevertheless, we expect that near-term advances of the current set
up will yield dramatic improvements on these rates, opening the door to exploring
exciting collective atomic phenomena.

In particular, instead of using an alligator PCW, one can employ a slot photonic
crystal waveguide [28, 109], i.e. a quasi-1D waveguide embedded in a 2D photonic
crystal. This structure would be advantageous due to several reasons. First of
all, it inhibits atomic emission into non-guided modes due to the surrounding 2D
photonic bandgap that reduces the modes into which the atom can radiate. Absent
inhomogeneous broadening, early simulations demonstrate that it is possible to
achieve a small non-guided decay rate, i.e. Γ′ ' 0.5Γ0, while keeping the effective
mode area similar to the Alligator PCW. Moreover, one can engineer flatter bands,
which leads to an increase of the group index of n g ' 30 near the band-edge (three
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times larger than that of the current alligator), according to FDTD simulations. Then,
both J 1D and Γ 1D would experience a three-fold increase. Finally, by trapping the
atoms at the center of the nanostructure, in between the two slots and not above as
it is currently done, we have estimated that J 1D and Γ 1D would be five times larger.
Summarizing, we project Γ 1D(ν1)/Γ0 ' 22 at the first cavity resonance. This yields
the values of J 1D(ν BG)/Γ0 ' −3 and Γ 1D(ν BG)/Γ0 ' 0.15 for a detuning from the
band edge ν BG = 20 GHz, where the range of interaction is κ−1

x ' 80a.

Figure 5.6(a) compares the ratio |J 1D/Γ 1D | between the coherent and dissipative
guided-mode rates for the current alligator PCW (dashed line) and the described slot
PCW (continuous line). The improved ratio for the later structure can already be
observed at frequencies just beyond the band-edge, and becomes |J 1D/Γ 1D | ' 104

at a detuning of 0.5 THz from the band-edge. An indisputable signature of collective
behavior is represented in Fig. 5.6(b), which shows the evolution of the excited state
populations of two atoms placed at successive even antinodes (continuous curve),
after initially inverting one of them. The atoms interact through the guided modes
of the already described slot PCW, and their resonance frequency lies inside the
bandgap, at the frequency for which the interaction range is κ−1

x ' 80a. The dashed
lines show the expected result for non interacting atoms, where the off-diagonal
terms of g are zero, a situation that occurs when the atoms are separated by a
distance d � κ−1

x .

To summarize, we believe that there is a bright future for experiments involving not
only atoms, but also superconducting qubits interacting through the guided mode of
a microwave photonic crystal. In a recent experiment, a ratio of Γ 1D/Γ′ = 50 has
already been achieved for transmon qubits connected to a 1D coplanar microwave
transmission line [20]. Combined with the exciting recent advances in microwave
photonic crystal fabrication [100], we expect a next generation of experiments where
many qubits interact with each other in a mostly coherent manner.

4.8 Conclusion
We have analyzed the optical response of a chain of atoms placed along a quasi-1D
nanophotonic structure in terms of the classical electromagnetic Green’s function.
This formalism is valid in the presence of absorptive and dispersive media.

We find that the linear response of the atoms can be understood in terms of collective
atomic eigenstates of the Green’s function matrix g(xi, x j) for all pairs of atoms. In
particular, we have derived a closed expression for the transmission spectra that only
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depends on the cooperative frequency shifts and decay rates of these modes. We
have shown that the transmission coefficient is a direct probe of the Green’s function
of the nanostructure, enabling us to determine whether the atom-light interactions
are fundamentally dispersive or dissipative in character as well as to quantify the
degree of cooperative interaction. We have gained insight into the interactions
between atoms and quasi-1D cavities, waveguides, and photonic crystals, structures
of relevance in recent experiments, as well as provided estimations of what can be
observed in the near future.

The Green’s function formalism provides a natural language that unifies nanopho-
tonics and quantum optics, and our results apply not only to atoms [42], but to many
other quantum emitters, such as superconducting qubits [100], NV centers [110],
rare earth ions [30] and quantum dots [28], interacting with any kind of quasi-1D
photonic structures or circuits.

4.9 Derivation for the multiple atom transmission spectrum
The low-saturation transmission spectrum for N atoms is

t(ω)
t0(ω)

= 1 − 1
gout,in

gout ·
(

1
(∆A + iΓ′/2)1 + g

)
· gin. (4.55)

For any vectors u and v and matrix A, the matrix determinant lemma states that

det[A + u ⊗ v]
det[A] = 1 + vT · A−1 · u. (4.56)

Defining A = − ((∆A + iΓ′/2)1 + g) and using the identity in Eq. (4.55) gives an
alternative expression for the normalized transmission,

t(ω)
t0(ω)

=
det[(∆ + iΓ′/2)1 + g − h]

det[(∆ + iΓ′/2)1 + g] , (4.57)

where we have defined the matrix

h =
1

gout,in
gin ⊗ gout. (4.58)

The matrices g and h are closely related to each other. In fact, we will show that
for systems which are well approximated by an effective 1D wave equation, g and h
have the same upper triangular and diagonal elements. Therefore, g − h is strictly
triangular (upper triangular and diagonal elements are zero) and does not contribute
to the determinant in Eq. (4.57). Omitting g − h leads to the final result for the low
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saturation quasi-1D transmission spectrum for multiple atoms:

t(ω)
t0(ω)

=
det[(∆A + iΓ′/2)1]

det[(∆A + iΓ′/2)1 + g]
=

1
det[1 + g

∆A+iΓ′/2 ]
=

N∏
ξ=1

(
∆A + iΓ′/2

∆A + iΓ′/2 + λξ

)
.

(4.59)

Next we show that g − h is strictly triangular for approximately 1D systems. Just
as we did for the single atom case, we assume that the Green’s function is well-
approximated by a 1D Green’s function of an effective 1D system, and therefore the
complex rate gi j can be written as

gi j =
µ0ω

2 |d|2
~Aeff

G1D(xi, x j, ω). (4.60)

An element of the matrix h is then given by

hi j =
µ0ω

2 |d|2
~Aeff

≡H1D(xi,xj )︷                             ︸︸                             ︷(
G1D(xout, xi)G1D(x j, xin)

G1D(xout, xin)

)
. (4.61)

We can now use unique properties of the 1D Green’s function to simplify this
expression. As shown in Appendix D, the solution of the 1D Green’s function can
be expressed in terms of the solutions φL/R(x) for a wave coming into the system
from the left/right,

G1D(xi, x j) = −
Θ(x j − xi)φL(x j)φR(xi) + Θ(xi − x j)φR(x j)φL(xi)

W
. (4.62)

HereΘ(x−x′) is theHeaviside funciton. TheWronskian given byW = φR(x)d φL(x)dx −
d φR(x)

dx φL(x) and can be evaluated for any value of x since it is a constant.

We will assume that the position xin is to the left of the system, and that xout is
to the right of the system, so that xout > x j > xin. Then the input propagator
is G1D(x j, xin) = −φR(xin)φL(x j)/W , the output propagator is G1D(xout, x j) =
−φR(x j)φL(xout)/W , and the propagator through the system without atoms is
G1D(xout, xin) = −φL(xout)φR(xin)/W . Substituting these expressions for the 1D
Green’s function into H1D(xi, x j) results in

H1D(xi, x j) =
G1D(xout, xi)G1D(x j, xin)

G1D(xout, xin)
= − 1

W
φR(xi)φL(xout) × φR(xin)φL(x j)

φL(xout)φR(xin)

= −
φL(xi)φR(x j)

W
.

(4.63)
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Upon comparing H1D(xi, x j) and G1D(xi, x j) from Eq. (4.62), we see that they are
the same when xi ≥ x j . It then follows that g − h is strictly triangular.
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C h a p t e r 5

ATOMS TRAPPED ALONG AN ALLIGATOR PHOTONIC
CRYSTAL WAVEGUIDE

Recent years have witnessed a spark of interest in combining atoms and other
quantum emitters with photonic nanostructures [28]. Many efforts have focused
on enhancing emission into preferred electromagnetic modes relative to vacuum
emission, thereby establishing efficient quantummatter-light interfaces and enabling
diverse protocols in quantum information processing [111]. Photonic structures
developed for this purpose include high-quality cavities [1–4, 97], dielectric fibers
[9–13], metallic waveguides [16–18], and superconducting circuits [20, 21, 112].
Photonic crystal waveguides (PCWs) are of particular interest since the periodicity
of the dielectric structure drastically modifies the field propagation, yielding a set
of Bloch bands for the guided modes [33]. For example, recent experiments have
demonstrated superradiant atomic emission due to a reduction in group velocity for
an atomic frequency near a band edge of a PCW [37].

A quite different paradigm for atom-light interactions in photonic crystals was
proposed in Refs. [38–40, 113], but has yet to be experimentally explored. In
particular, when an atomic transition frequency is situated within a bandgap of a
PCW, an atom can no longer emit propagating waves into guided modes (GMs)
of the structure. However, an evanescent wave surrounding the atoms can still
form, resulting in the formation of atom-photon bound states [114, 115]. This
phenomenon has attracted new interest recently as a means to realize dispersive
interactions between atoms without dissipative decay into GMs. The spatial range
of atom-atom interactions is tunable for 1D and 2D PCWs and set by the size of the
photonic component of the bound state [41, 116]. Many-body physicswith large spin
exchange energies and low dissipation can thereby be realized, in a generalization
of cavity QED arrays [117, 118]. Fueled by such perspectives, there have been
recent experimental observations with atoms [32, 36, 37] and quantum dots [98,
99] interacting through the GMs of photonic crystal waveguides, albeit in frequency
regions outside the bandgap, where GMs are propagating fields.

In this chapter, we report the first observation of collective dispersive shifts of the
atomic resonance around the band edge of a photonic crystal. Thermal tuning
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Figure 5.1: Description of the alligator photonic crystal waveguide (PCW). (a)
Atoms are trapped above the PCW in an optical dipole trap formed by the reflection
of a near normal-incidence external beam [37]. The orange cylinder represents the
confinement of the atoms, which is ∆xA ' ±6 µm along the axis of the device, and
∆y A ' ∆z A ' ±30 nm in the transverse directions (see Chap. 6). The three green
spheres represent trapped atoms that interact radiatively via the fundamental TE
guided mode, polarized mainly along y. The decay rate for a single atom into the
PCW is Γ1D (red arrows), and the decay rate into all other modes is Γ′ (wavy red).
(b) SEM images of portions of the tapering and PCW sections. The suspended
silicon nitride device (grey) consists of 150 cells and 30 tapering cells on each
side. The lattice constant is a = 370 nm and thickness is 185 nm. (c) Calculated
band structure of the fundamental TE (solid) and TM (translucent) modes using
an eigenmode solver [34] and the measured SEM dimensions, which are modified
within their uncertainty tomatch themeasured bands. The black curves represent the
Bloch wave-vector kx (lower axis). The red curves show the attenuation coefficient
κx of the field for frequencies in the bandgap (upper axis), and are calculated by
means of an analytical model (see Chap. 6). The dotted lines mark the frequencies
of the Cs D1 (νD1 = 335.1 THz) and D2 (ν D2 = 351.7 THz) transitions. The
dielectric band edge is indicated as νBE. The pink (gray) shaded area represents the
TE bandgap (the light cone). Figure adapted from [42].
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allows us to control the offset of the band edge frequency (νBE) of the PCW relative
to frequency νD1 of the D1 line of cesium. In both the dispersive domain (i.e., νD1
outside the bandgap with electric field E(x) ∝ e±ikx x) and reactive regime (i.e., νD1
inside the bandgap with E(x) ∝ e−κx |x |), we record transmission spectra for atoms
trapped along the PCW, as illustrated in Fig. 5.1(a).

To connect the features of the measured transmission spectra to underlying atom-
atom radiative interactions, we have developed a formalism based on the electro-
magnetic Green’s function [44]. The model allows us to infer the peak single-atom
frequency shift of the atomic resonance J1D(∆ BE) and guided mode decay rate
Γ1D(∆ BE) as functions of detuning ∆ BE = νD1 − νBE between the atomic νD1 and
band edge νBE frequencies. From the observation of superradiant emission outside
the bandgap, we infer the average number of trapped atoms to be N̄ = 3.0 ± 0.5,
as described in Ref. [37] and the supporting material (see Chap. 6). For frequen-
cies inside the bandgap (∆ BE = 50 GHz) the ratio of dissipative to coherent rates
is R = Γ1D/J1D = 0.05 ± 0.17, due to the exponential localization of the atomic
radiation in the bandgap. For comparison, the prediction for our system from cavity
quantum electrodynamics (CQED) models alone is RCQED = 0.30 ± 0.04. Be-
sides yielding a more favorable ratio between coherent and dissipative guided mode
rates, PCWs offer significant advantages when compared to conventional cavities
as platforms for atom-light interfaces. First, the range of interaction in a PCW is
tunable, ranging from effectively infinite to nearest neighbor, in contrast to the fixed
infinite range of a cavity. Second, due to the multimode nature of PCWs, one can
employ different guided modes as different interaction channels to which the atoms
simultaneously couple.

5.1 Alligator Photonic Crystal Waveguide
Figure 5.1(a) provides an overview of our experiment with atoms trapped near and
strongly interacting with the TE-like mode of an alligator PCW. The suspended
silicon nitride structure consists of Ncells = 150 nominally identical unit cells of
lattice constant a = 370 nm, and is terminated by 30 tapering cells on each side, as
shown in the SEM images in Fig. 5.1(b). The tapers mode-match the fields of the
PCW to the fields of uncorrugated nanobeams for efficient input and output coupling.
Design, fabrication, and characterization details are described in Refs. [32, 36, 37].
Figure 5.1(c) shows the nominal cell dispersion relations for the TE (polarized
mainly along y) and TM-like modes (polarized mainly along z). After release of
the SiN structure from the Si substrate, a low power CF4 etch is used to align the
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Figure 5.2: Characterization of the alligator PCW. (a)Measured and (b) calculated
electric field magnitude along the PCW, as functions of position x along the PCW
and probe detuning δ BE = ν p − νBE relative to νBE for the dielectric band edge.
(c,d) Guided mode intensity |E(x)|2 along PCW at two different frequencies: (c) ν1
for the first cavity resonance showing a resonant ‘super mode’ and (d) νBG inside
the bandgap displaying exponential decay (N cellsκxa = 2.0 at ν BG). For clarity, the
number of cells of the nominal and tapering sections is decreased by a factor of 5,
and the Bloch periodicity (a = 370 nm), while present, is not shown in the intensity.
The orange ovals represent the confinement of the atoms in the optical trap above
the PCW, which is ∆x A ' ±6 µm along the x-axis of the device and ∆y A ' ±30
nm, with a PCW gap width of 220 nm. Figure adapted from [42].

lower/‘dielectric’ TE band edge (νBE) to the Cs D1 transition (νD1). The TM mode
has band edges far detuned from the both the Cs D1 and D2 lines. In our experiment,
the TE mode is used to probe the atoms, while the TM mode with approximately
linear dispersion serves to calibrate the density and trap properties.

In order to better understand atomic interactions with the PCW, it is helpful to
visualize the spatial profile of the fields generated absent atoms, when light is input
from one end. Figure 5.2(a) shows the measured intensity along the length of the
PCW as a function of probe detuning δ BE = ν p − νBE around the band edge, where
ν p is the probe frequency. The intensity was measured by imaging weak scatterers
along the length of the alligator PCW that, after calibration, serve as local probes of
the intensity (see Chap. 6). Figure 5.2(b) shows the corresponding finite-difference
time-domain (FDTD) simulated intensity [54]. In both images, resonances appear at
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Figure 5.3: (a) Dispersion relation for the projected wave vector kx and attenuation
constant κx versus probe detuning δ BE deduced for the PCW obtained by fitting the
data in Fig. 5.2(a) to a model of the device (see Chap. 6). The shaded pink area
represents frequencies inside the bandgap. (b) Plot of the exponentially localized
emission e−2κx |x−x A | from an atom (green sphere) at position x A with transition
frequency νD1 = νBG inside the bandgap. Figure adapted from [42].

ν p = ν1,2,3 due to the weak cavity formed by the reflections of the tapers. The spatial
modulation of the intensity at the resonances due to the cavity effect is approximated
by |E(x)|2 ≈ cos2(δkx x), where δkx = π/a − kx is the effective wave-vector near
the band edge. The n’th resonance at frequency νn is such that δkx = nπ/L, where
L is the effective length of the PCW (including field penetration into the tapers).
Fig. 5.2(c) shows a plot of |E(x)|2 for a probe input at frequency ν p = ν1 at the first
resonance. Inside the bandgap (∆ BE > 0) the field is evanescent, and δkx = iκx .
Fig. 5.2(d) plots |E(x)|2 for probe frequency ν p = νBG inside the bandgap, and
shows the exponential decay of the intensity. Using a model for the field in a finite
photonic crystal (see Chap. 6), we fit the measured intensity for each frequency in
Fig. 5.2(a) and Fig. 5.2(b) and extract δkx and κx , thereby obtaining the dispersion
relations shown in Fig. 5.3(a). Importantly, we determine the band edge frequency
for the actual device to be νBE − ν1 = 133 ± 9 GHz relative to the readily measured
first resonance at ν1, which is in good agreement with the FDTD simulated result of
135 GHz.

Both ν1, νBG are relevant to our measurements of transmission spectra with trapped
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atoms. The presence of a ‘cavity’ mode at ν1 implies that the emission of an
atom with transition frequency νD1 = ν1 will generate a field inside the PCW with a
similar spatial profile to that of the cavity mode, as shown in Fig. 5.2(c). By contrast,
atomic emission in the regime with νD1 = νBG within the bandgap will excite an
exponentially localized mode centered around x A, as illustrated in Fig. 5.3(b).

5.2 Experiment
Cs atoms are trapped above the surface of the alligator PCW, as shown in Fig. 5.1(a),
using a similar experimental setup to that reported in Ref. [37]. As described in
more detail in the previous reference, the decay rate into the guided mode Γ 1D is
exponentially sensitive to the trap position above the surface of the alligator PCW.
Our calculations and measurements of Γ 1D agree with COMSOL simulations [34]
of the trap position, and thus we are able to determine that the Cs atoms are trapped
125±15 nm above the surface of the alligator PCW. Atoms are cooled and trapped in
a MOT around the PCW, and then loaded into a dipole trap formed by the reflection
from the device of a frequency red-detuned side illumination (SI) beam. The SI
beam has a waist of 50 µm, and the polarization is aligned along the x axis for
maximum reflection from the PCW. We measure a 1/e trap life time of ∼ 30 ms,
and we estimate an atom temperature of∼30 µK from time-of-flight measurements.
From the trap simulations (for details see supporting materials (see Chap. 6)),
we infer that the atoms are confined to a region 125 nm above the surface with
dimensions ∆x A ' ±6 µm, ∆y A ' ∆z A ' ±30 nm. The simulations predict that
more energetic atoms escape the trap and collide into the structure, since the weakest
direction of the trap is along the diagonals of the y-z plane due to Casimir-Polder
forces.

In order to estimate the average number of trapped atoms, we measure the superra-
diant atomic decay rate when the atom frequency νD1 is tuned to the first resonance
ν1 of the PCW (Fig. 5.2(c)) [37]. Due to the strong dissipative interactions between
the atoms and with J 1D ≈ 0, the collective decay rate is enhanced as compared to
the single atom decay rate, and we infer an average atom number of N̄ = 3.0 ± 0.5
(see Chap. 6). In the low density limit N̄ � 1, the measured decay rate cor-
responds to that of a single atom. We then measure a guided mode decay rate
Γ 1D = (1.5± 0.2) Γ0, which is in good agreement with the FDTD simulations at the
calculated trap location (see Chap. 6).

After the atoms are loaded into the trap, we send a weak 5 ms probe beam E p
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with frequency ν p in either the TE or TM guided mode through the PCW and
record the transmitted intensity |t(ν p) E p(ν p)|2. The probe beam scans near the Cs
6S1/2, F = 3 → 6P1/2, F′ = 4 transition. Each experimental cycle runs at a fixed
detuning ∆ A = ν p − νD1 relative to the free-space atomic transition frequency νD1.
We observe little change of signal during the 5 ms probing time, suggesting that
the atom number is approximately constant over this interval. The band edge of
the PCW is tuned thermally by shining an external laser onto a corner of the chip,
where its light is absorbed by the silicon substrate. Therefore, the Cs D1 line can be
aligned to be either outside or inside the bandgap with an uncertainty δν ' 5 GHz.
The transmission for each data point is normalized by the transmission with no
atoms (|t0E p |2), resulting in a measurement of T/T0 ≡ |t/t0 |2. The logarithm of
the measured and simulated transmission spectrum with no atoms T0 = |t0(ν p)|2 is
shown in Fig. 5.4(a).

Examples of transmission spectra with atoms are shown in Figs. 5.4(b-d). Note that
the spectra are shifted 12.5MHz due to both the AC Stark shift of the dipole trap and
the modified Lamb shift induced by the non-guided modes of the PCW. Notably,
the transmission spectra at the first ‘cavity’ resonance ν1 exhibit a characteristic
Lorentzian ‘dip’, and they become more and more asymmetric as the frequency
moves into the bandgap.

5.3 Transmission model
We have developed a model to extract quantitative values for collective decay rates
and frequency shifts from these atomic transmission spectra [44]. While the for-
malism of waveguide [119] and cavity QED [70] is well suited for describing atoms
coupled to uniform waveguides and cavities, it is not general enough to capture the
rich physics of atomic interactions in the vicinity of a PCW. Instead, we describe
our system by employing a spin model in terms of the classical electromagnetic
Green’s function, in which the atoms (or ‘pseudo-spins’ σ for ground and excited
state) interact via the emission and re-absorption of guided photons [82, 88, 89].

The electromagnetic Green’s function G(r, ri, ω) is related to the electric field
E(r, ω) emitted by a dipole pi oscillating at frequency ω at position ri by E(r, ω) =
µ0ω

2G(r, ri, ω) · pi [45, 82]. The dipole moment operator for atom i is decomposed
into p̂i = diσ̂

i +d∗i σ̂
i, where di is the dipole matrix element, and where σ̂i = |g〉〈e|

is the atomic coherence operator between the ground and excited states. The spin
model describes a system of N atoms coupled to and driven by a guided mode of
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the PCW. In the low saturation and steady-state regime, expectation values for the
atomic coherences (σi = 〈σ̂i〉) are described by a linear system of equations [44](

∆̃ A + i
Γ′

2

)
σ̂i +

N∑
j=1

gi j σ̂
j = −Ωi, (5.1)

where ∆̃ A = 2π∆ A = 2π(ν p − νD1) is the detuning between the probe and the
atomic angular frequencies, Ωi is the classical drive (Rabi frequency) for the i’th
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Figure 5.4: Transmission spectra of the PCW without (a) and with trapped atoms
(b-d). (a) Measured (black) and FDTD simulated (blue) transmission spectra of
the PCW without atoms as a function of the probe detuning from the band edge
frequency, δ BE = ν p − νBE. There is a minimum extinction of 25 dB for the
transmitted signal due to fabrication imperfections. (b-d) Transmission spectrum
for N̄ = 3.0 ± 0.5 trapped atoms versus probe detuning ∆ A = ν p − νD1, at several
frequencies around the band edge. The solid lines are fits using the transmission
model in (5.4), averaged over atom positions and different atom numbers. In (b),
the Cs D1 line is aligned to the first ‘cavity’ resonance ν1, resulting in symmetric
spectra for both the TE (black) and TM (gray) modes. The TE spectra in (c) are for
frequencies ν−/+ on the two sides of the ν1 resonance. The TE spectra in (d) are
taken at the band edge (νBE, circles) and 60 GHz (νBG, triangles) into the bandgap.
The asymmetry of the line-shapes in (c) and (d) implies a large ratio of coherent to
dissipative interactions. Figure adapted from [42].
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atom due to the guided mode input field, and gi j = Ji j
1D + iΓi j

1D/2 where Ji j
1D =

µ0ω
2
p/~d∗i · ReG(ri, r j, ω p) · d j , and Γi j

1D = 2µ0 ω
2
p/~d∗i · ImG(ri, r j, ω p) · d j .

Each atom can also decay into non-guided modes, including free-space, with a
decay rate Γ′. The appearance of the real and imaginary parts of the Green’s
function in the coherent and dissipative terms has the classical analogue that the
in-phase and out-of-phase components of a field with respect to an oscillating dipole
store time-averaged energy and perform time-averaged work, respectively. Since the
first term in (6.7) is diagonal, the atomic coherences can be understood in terms of
the eigenvalues {λξ} for ξ = {1, · · · , N} and eigenfunctions of the matrix g, whose
elements are gi j . The real and imaginary parts of {λξ} correspond to frequency
shifts and guided mode decay rates, respectively, of the collective atomic mode ξ.

The transmission spectrum can be expressed in terms of the eigenvalues of g as [44],

t(∆̃A, N)
t0(∆̃A)

=

N∏
ξ=1

(
∆̃A + iΓ′/2

∆̃A + iΓ′/2 + λξ

)
, (5.2)

where t0(∆̃A) is the transmission without atoms. In the case of a single atom, the
only eigenvalue is proportional to the self-Green’s function, λξ = gii, which implies
that the transmission spectrum is a direct measurement of the self-Green’s function
at the atom’s position. For non-interacting atoms, the off-diagonal elements of g
are zero, and thus the eigenvalues are single-atom quantities, λξ = gii as there is no
cooperative response.

In contrast, for interacting atoms, the off-diagonal elements are non-negligible, and
there is a cooperative response. In particular, for the atomic frequency inside the
bandgap of a photonic crystal, the elements gi j are well approximated by [41]

gi j = (J 1D + iΓ 1D/2) cos(πxi/a) cos(πx j/a)e−κx |xi−xj |, (5.3)

where the cosine factors arise from the Bloch mode and the decay length κ−1
x is due

to the exponential decay of the field and results in a finite range of interaction. For
an infinite photonic crystal, Γ 1D = 0, since the light is localized and there is no
dissipation through the guided mode. But for a finite PCW of length L, the guided
mode dissipation Γ 1D ∼ e−κxL is finite due to leakage of the mode out of the edges
of the structure.

In the limit where the interaction range 1/κx is much larger than the separation
δxi j = |xi − x j | of the atoms, κx δxi j . κx ∆x A � 1, the guided mode input
field couples predominantly to a single collective “bright” mode of the system with
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eigenvalue λB =
∑N

i=1 gii =
∑N

i=1(Jii
1D+ i Γ

ii
1D/2). Formally, when κx = 0, the matrix

g is separable [gi j = uiu j with ui ∝ cos(πxi/a)] and therefore only has one non-zero
eigenvalue. In this single bright mode approximation, the transmission spectrum is
given by

t(∆̃ A, N)
t0(∆̃ A)

=
∆̃ A + iΓ′/2(

∆̃ A +
∑N

i=1 Jii
1D

)
+ i

(
Γ′ +

∑N
i=1 Γ

ii
1D

)
/2
. (5.4)

We have confirmed numerically that this single ‘bright mode’ picture is valid within
the limits of our uncertainties for the range of frequencies of the measured spectra
in Fig. 5.4 In particular, at the largest detuning into the bandgap ∆ BE = 60 GHz,
we have κx ∆x A ' 0.2. However, for atomic frequencies further away from the
band edge, this approximation eventually breaks down (e.g., at the bandgap center,
κx ∆x A ' 1.5).

The single bright mode approximation is also valid in conventional cavity QED. The
Green’s function matrix is then given by gi j = (J 1D + iΓ 1D/2) cos(k cxi) cos(k cx j),
where k c is the wave-vector of the standing-wave cavity. In this case, J 1D ∝
∆c/(1 + ∆2

c/γ2
c ) and Γ 1D ∝ γc/(1 + ∆2

c/γ2
c ), where ∆ c is the detuning from the

cavity resonance and γc is the cavity linewidth. Importantly, the ratio between the
imaginary dissipative coupling rate to the real coherent coupling rate falls off with
inverse detuning, R CQED = Γ 1D/J 1D = γc/∆c for large ∆c, whereas in a PCW
bandgap, the fall off is exponential with detuning from the band edge.

5.4 Analysis of measured spectra
Equation (5.4) provides a direct mapping between the observed transmission spectra
of Figs. 5.4(b-d) and the electromagnetic Green’s function of the PCW. In particular,
the line shape is Lorentzian for purely dissipative dynamics (Jii

1D = 0). This is
precisely what occurs at the frequency of the first cavity mode ν1, as shown by
Fig. 5.4(b). When the GM band edge frequency is moved towards the atomic
resonance ν D1, the dispersive interactions are switched on, and the transmission
line shape becomes asymmetric, displaying a Fano-like resonance [106], as can
be observed in Figs. 5.4(c,d). The appearance of an asymmetry in the atomic
spectra directly reveals a significant coherent coupling rate J 1D, which is evident
for frequencies that lie in the bandgap region.

For all relevant frequencies, the spectra for the TM guided mode are approximately
symmetric, as J TM

1D , Γ
TM
1D � Γ′ for this GM polarization. An example of a TM

spectrum is shown in the gray curve of Fig. 5.4(b). Since the TM bandgap is so
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far detuned, the TM spectra are insensitive to ∆ BE and serve as a calibration signal.
Using a waveguide transmission model, we fit the TM transmission spectra and
extract a TM guided mode decay rate of Γ TM

1D = (0.045 ± .01) Γ0. This rate is
∼ 30 times smaller than the TE guided mode decay rate Γ 1D at the first resonance
ν1. The ratio Γ TE

1D/Γ
TM
1D ≈ 30 is explained well by the expected slow-light and

cavity enhancement of the PCW described in Ref. [37] and supporting material
(see Chap. 6). From the TM fits, we also measure Γ′ = 2π × 9.1 MHz, which,
due to inhomogeneous broadening, is larger than value Γ′ = 2π × 5.0 MHz from
FDTD numerical calculations (see Chap. 6). While tuning the band edge to move
the atomic frequency ν D1 into in the bandgap, TM spectra are measured in order
to confirm in situ that the average atom number is approximately constant over the
course of the measurements of TE spectra.

-0.15 -0.1 -0.05 0 0.05
-2

0

2

4

ΔBE (THz)

Bandgap

-1

0

1

2

N
 Γ

1D
 / 
Γ 0

-N
 J 1D

 / 
Γ 0

Figure 5.5: (a) Peak dissipative interaction rate N̄Γ1D (green) and coherent rate
N̄ J1D (blue) around the band edge. With N̄ determined from independent decay rate
measurements, the values for Γ1D, J1D are found from fits of the transmission model
in Eq. (4) to the measured atomic spectra and are normalized by the free-space
decay rate Γ0 = 2π × 4.56 MHz for the Cs D1 line. The lines are the predictions
from a numerical model based on 1D transfer matrices . Figure adapted from [42].

To obtain quantitative values for the collective frequency shifts and decay rates by
fitting the TE atomic spectra to the spin model, we must account for the fluctuations
in atom number and position along the x-axis. As depicted in Fig. 5.1(a) and
Fig. 5.2(c), trapped atoms are aproximately free to move along the axis of the device
(see Chap. 6). Their coupling rates are thus modulated by the fast oscillation of
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Figure 5.6: (b) The measured and calculated ratios R = Γ1D/J1D. The average
of the two points in the bandgap gives that the ratio of the dissipative to coherent
coupling rate is R = 0.05 ± 0.17. The inset is a comparison of R for the PCW
calculation (solid) and CQED model (dashed). From the measured linewidth of the
first cavity resonance, γ c = 60 ± 8 GHz, CQED predicts that R CQED = γ c/∆ c,
where ∆ c = (ν p − ν1). Note that −J 1D is plotted in the figure to more readily
compare Γ1D and J1D as the band edge is approached. Figure adapted from [42].

the Bloch function, which near the band edge is approximately given by (6.11),
Γii
1D(xi) = Γ1D cos2(xiπ/a) and Jii

1D(xi) = J1D cos2(xiπ/a). Here Γ1D and J1D are
the peak values. Further, although we know the average atom number N̄ = 3 ± 0.5
atoms from independent decay-rate measurements (see Chap. 6), the atom number
for each experiment follows an unknown distribution. To model the experimental
transmission spectra such as in Fig. 5.4, we average the expression in (5.4) over
the atom positions {xi} along the Bloch function and assume a Poisson distribution
PN̄ (N) for the atom number N . We extract peak values Γ1D and J1D, and plot the
resulting cooperative rates N̄Γ1D and N̄ J1D in Fig. 5.5. In particular, at the first
resonance ν1, the fitted single atom guided-mode decay rate is Γ 1D = (1.4± 0.2) Γ0,
which is in good agreement with the decay time measurements, Γ 1D = (1.5±0.2) Γ0

(see Chap. 6). More generally, we find good agreement between our measurements
and our model for the transmission, as shown in Fig. 5.4.

The ratio R = Γ1D/J1D is shown in Fig. 5.6. Because of the evanescent nature of
the field in the bandgap, R decays exponentially with increasing detuning into the
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bandgap, R ∼ e−κxL , where κx ∝
√
∆ BE [41]. As displayed in the inset, the ratio

between the frequency shift and the GM decay rate diminishes much faster than
would be the case in traditional settings such as CQED, for which R CQED = γ c/∆ c,
where γ c is the cavity linewidth and ∆ c is the detuning from the cavity resonance.
Indeed, by performing an average of the last two measured frequencies in the
bandgap, we obtain R = 0.05 ± 0.17, whereas R CQED = 0.30 ± 0.04, where we
have taken the cavity linewidth to be a value consistent with the linewidth of the
first cavity mode of the PCW (γ c = 60± 8 GHz). We can then infer that the ratio of
dispersive to dissipative rates for guided mode atom-atom interactions (i.e., 1/R) is
significantly larger than is the case in conventional optical physics (e.g., CQED).

Beyond the detailed modeling involving (5.4) averaged over fluctuations in atom
number and position, we also fit the spectra with a generic transmission model with
no averaging, as shown in Chap. 6. We find that the effective values for the guided
mode decay rate and frequency shift are related to N̄Γ 1D and N̄ J 1D in Fig. 5.5 by a
simple scale factor related to the averaging of the Bloch function cos2(πx/a).

Despite favorable scaling between the collective frequency shifts and the guided
mode decay rates, there is still one obstacle to overcome towards purely dispersive
atomic interactions, namely atomic emission into non-guided modes (characterized
by Γ′). For the current PCW structure, the FDTD simulated value of this decay rate
is Γ′ ' 1.1 Γ0 [37] for the relevant frequencies of our experiment. Fortunately, it has
been shown that suitable engineering of a wide variety of nanophotonic structures
can lead to significant reductions in Γ′/Γ0 [35]. For example, Ref. [28] reviews
possibilities to achieve Γ′ ' 0.1Γ0.

5.5 Concluding remarks and outlook
In conclusion, we report the first observation of cooperative atom interactions in
the bandgap of a photonic crystal waveguide. By tuning the band edge frequency
of the photonic crystal waveguide, we are able to modify the interactions between
the atoms that are trapped close to the device, reducing the dissipative relative to
coherent coupling for frequencies inside the bandgap of the PCW. Equipped with
a theoretical model based on the electromagnetic Green’s function of the alligator
photonic crystal waveguide, we infer quantitative values for the collective frequency
shifts and decay rates experienced by the atoms. Moreover, we infer a suppression
of the dissipative interactions with respect to the coherent ones several times larger
than is customarily obtained in AMO physics. This measurement provides the first
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stepping stone towards the realization of quantum many body physics in bandgap
systems.

Moreover, near-term extensions of our experiment open the door to exploring new
physical scenarios by employing atoms coupled to PCWs. By trapping the atoms at
the center of the device with guided modes [35], we expect a 6-fold increase to both
coupling strengths J 1D and Γ 1D relative to Γ′. Moreover, by probing the atoms with
the Cs D2 line tuned to the upper band edge, where the intensity at the position of the
atoms is larger, we expect a further improvement by a factor of two. Combining these
two effects, we expect a significant enhancement of interactions via guided modes as
compared to conventional free space interactions, namely J 1D, Γ 1D > 10× Γ′. This
could enable investigations of new paradigms for atom-photon interactions, such as
the recently proposed multi-photon dressed states [114, 115].
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C h a p t e r 6

DETAILS OF THE EXPERIMENT

In our results in Chapter 5, we measure collective frequency shifts and decay rates
for atoms trapped near a photonic crystal waveguide (PCW). In our previous work
in Ref. [37], we trapped multiple atoms in an optical dipole-force trap above the
PCW. We operated with the atomic frequency outside the bandgap in a regime with
large decay rate Γ 1D and small coherent coupling rate J 1D. By varying the density
and observing the superradiant decay of the atoms Γ(N̄)tot = Γ SR(N̄) + Γ 1D + Γ

′,
we inferred the single-atom guided-mode decay rate Γ 1D and the average number
of atoms N̄ . Importantly, this measured single-atom decay rate Γ 1D agreed well
with the finite-difference time-domain (FDTD) simulations at the calculated trap
location. This good agreement is in part due to the nanometer-scale accuracy in
which the alligator PCWs are fabricated, which is required for both the band-edge
alignment and the device quality.

For Chapter 5, the band-edge of the PCW is tuned around the resonance frequency
of the atoms, and we observe the dominance of the guided-mode coherent coupling
rates J 1D over the dissipative coupling rates Γ 1D, which is associated with atomic
radiative processes for operation within the bandgap. To extract quantitative values
for these parameters from our measurements of transmission spectra for atoms
trapped along a PCW, we have developed theoretical techniques based upon Green’s
functions for the PCW, which are new to atomic physics. As in Ref. [37], the
average number of atoms N̄ is measured by way of transient decay. Our principal
finding relates to the turning-off of the guided-mode decay rate Γ 1D, which in the
bandgap is predicted to be exponentially suppressed, while nonetheless, retaining
appreciable coherent processes described by J 1D.

For the spectra in Chapter 5, the transmission through the device decreases expo-
nentially in the bandgap, and more time is required to measure the transmission
spectra as compared to our work in Ref. [37]. Unfortunately, cesium slowly coats
the PCW during the measurement, both degrading the device quality and shifting
the band-edge out of the thermal tuning range. As a result, each device only has
a limited lifetime for making transmission measurements. For our current experi-
ment, we first repeated superradiance measurements outside the bandgap at the first
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resonance ν1 of the PCW in order to determine the average number of atoms N̄ and
the single-atom guided-mode decay rate Γ 1D, and to show that the atoms behave as a
collective emitter. Then, with an average number of N̄ ' 3, we measured transmis-
sion spectra as the atomic frequency is shifted into the bandgap. We simultaneously
measured the TM spectra to verify that the atom number is constant over the course
of the measurements of the TE spectra.

6.1 Alligator photonic crystal waveguide design and fabrication
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Figure 6.1: Alligator photonic crystal waveguide (PCW) chip and device overview,
taken from Ref. [36]. (a) Schematic of the entire device. The alligator photonic
crystal waveguide (PCW) is at the center. Optical fibers (green) on both ends couple
light into and out of the waveguide. The waveguide is surrounded by supporting
and cooling structures. (b) Image of a 10× 10 mm PCW chip, taken from Ref. [36].
Multiple waveguides stretch across the window of the chip, with the PCWs at the
center of the window. The window provides optical access for trapping and cooling
atoms around the device. (c) Overview of device variables. The lattice constant
for the entire device is a = 370 nm. The device dimensions are measured with
an SEM and are calibrated to the lattice constant. The device dimensions are
w = 310 ± 10 nm, 2A = 262 ± 10 nm, g = 220 ± 10 nm, w initial = 268 ± 15 nm,
g initial = 165± 10 nm. The thickness of the silicon nitride is 185± 5 nm. The index
of refraction for Si3N4 is n = 2.0 around our frequencies of interest. Figure adapted
from [42].

The schematic of the device is shown in Fig. 6.1(a). Light is coupled into and out of
the device by mode-matching the output of an optical fiber to that of a terminated
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rectangular-shaped waveguide on both sides of the device [36]. The fibers are
glued permanently in etched v-grooves at optimized coupling positions. The design
and fabrication of the alligator photonic crystal waveguide (PCW) are detailed in
Ref. [36]. The PCW is fabricated on a 200 µm silicon (Si) chip coated with a 200 nm
thick silicon nitride (SiN) film. The SiN device is suspended across a 2-mm-wide
window after the silicon substrate beneath it is removed, as shown in the image of
Fig. 6.1(b). The window allows optical access for the trapping and cooling of atoms
around the device.

The dielectric TE mode band edge (ν BE) is aligned to within 200 GHz of the Cs D1
line (ν D1 = 335.12 THz) via a low-power inductively-coupled reactive-ion CF4 etch.
The directional etch thins the SiN layer at a rate of 3 nm/min until a transmission
measurement confirms alignment of the band edge. The final geometric dimensions
of the device used in Chapter 5 are given in Fig. 6.1(c).

For the experiment, the chip is placed at the center of a ultra-high vacuum chamber,
and the optical fibers exit through Teflon fiber feed-throughs. We measure the
transmission through a device using a super luminescent diode (SLD) as the source
and an optical spectrum analyzer (OSA) as the detector. The measured transmission
and reflection spectra are shown in Fig. 6.2(a). The transmission spectra near the
lower (dielectric) and upper (air) band edge are compared to an FDTD simulation
in Fig. 6.2(b-c).

6.2 Alligator dispersion relation from scattering images
Here, we describe the analysis performed for the PCW dispersion relations in
Fig. 6.2(e) of the manuscript. We send a single-frequency laser beam through
the device and image the scattered light with a microscope. We integrate the image
over the width of the PCW to produce a single plot of intensity versus position.
Then we scan the laser frequency around the lower band edge to produce a 2D plot
of scattered intensity as a function of position x along the device and frequency ν
of the input light.

The weak scattered light comes from small fabrication imperfections or intrinsic
material defects and serves as a probe of the local intensity. Since each scatterer
emits light at a different rate, we have to normalize the scattered light by a reference
intensity spectrum in which the intensity of the device is known. For this reference
spectrum, we average over the intensities for frequencies far from the band edge,
where the PCW behaves like a waveguide, and where the local intensity in the
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Figure 6.2: Measured and simulated transmission and reflection spectra. (a) Trans-
mission (black) and reflection (blue) spectra through the entire chip for the TE
mode (polarization in the plane of the device). The red dashed lines are the Cs D1
(335.1 THz) and D2 (351.7 THz) lines. The TE transmission efficiency through
the entire device near the dielectric band edge is ∼ 23%, indicating that the single
pass efficiency from the fiber to device is approximately 49%. Most of the loss is
due to the waveguide-to-fiber coupling section. The gray line is the TM transmis-
sion (polarization perpendicular to the plane of the device). Note that the lower
band edge of the TM mode is visible at around 365 THz, but is far detuned from
both Cs D1,2 transitions. (b-c) TE transmission data is normalized and compared
to a finite-difference time-domain (FDTD) simulation [54]. The simulation uses
the measured device parameters in Fig. 6.1, but adjusted within the uncertainty of
the measurements so that the position of the first resonances match those in the
measured spectra. Figure adapted from [42].

device is approximately constant. The normalized data is shown in Fig. 6.3, and a
zoomed-in version is in Fig. 5.2(a) of the manuscript.

In the FDTD simulation described above, we calculate the intensity along the center
of the device for frequencies around the band edge. Taking the maximum intensity
in each unit cell and normalizing by the intensity in the waveguide regime, we
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Figure 6.3: Normalized magnitude of the scattered electric field of the PCW for
frequencies ∆ BE = νp− ν BE around the band edge. The schematic on the left shows
the PCW with the number of unit cells reduced by 5. Figure adapted from [42].

produce Fig. 5.2(b) in the Chapter 5.

Next, we fit the intensity spectrum at a given frequency to a model in order to extract
the wave-vector for that frequency. Near the band edge, the field in an infinite PCW
is well approximated by E(x) ∝ cos(xπ/a)eiδkx x , where δkx = π/a − kx in the
propagating band (∆ BE < 0) and δkx = iκx inside the bandgap (∆ BE > 0) The
edges of a finite photonic crystal reflect with Rt due to a large group index mismatch
between the waveguide section and the photonic crystal waveguide. The resonances
of the weak cavity result in the cavity-like intensity profiles seen at frequencies
ν1,2,3,4,5 in Fig. 6.3. The intensity at a point x along a finite photonic crystal of
length L is well approximated by a model based on the intensity in a cavity with two
mirrors of reflectivity R t

|E(x)|2 = I1 |eiδkx x − R te2iδkxLe−iδkx x |2, (6.1)

where I1 is related to the overall intensity. This expression ignores the fast oscilla-
tions of the Bloch function, which go as cos2(xπ/a). Note that in the bandgap (when
κx L � 1), the intensity model reduces to an exponential decay: |E(x)|2 ≈ I1 e−2κx x .
Interestingly, at the band edge (δkx → 0, Rt → 1), the intensity displays a quadratic
dependence on the position, |E(x)|2 ∝ (L − x)2.

For each frequency, we fit the intensity along the nominal cells with (6.1) and extract
δkx . This procedure allows us to map out the dispersion relation δkx(∆ BE), which
we show in Fig. 5.3(e) for the measured and simulated data. From the simulated fits,
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we find that the effective length of the cavity is 162 cells, which is slightly longer
than the 150 nominal cells. This is expected since the cavity field can leak into the
tapering sections. We use this length for the fits of the measured data. Examples
of the measured and simulated intensity are shown in Fig. 6.4. The fluctuation of
the intensity, even after the normalization, is most likely due to the spatial profile
of Bloch mode. The normalization trace is taken by averaging data for excitation
frequencies further away from the band-edge where the Bloch mode contrast is
reduced, whereas the data closer to the band-edge has a large Bloch mode fringe
visibility. However, the fluctuations do not affect the statistical fits at the level of
accuracy required for the dispersion relation in our current work.
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Figure 6.4: The electric field magnitude in the PCW at the first resonance ν1 (a),
and in the bandgap ν BG = ν BE + 60 GHz (b). The points show measured data, and
the black lines are from an FDTD simulation. The electric field magnitude |E | is
normalized by the electric field magnitude far from the band edge; thus, these plots
gives the enhancement of |E | over the waveguide regime. Figure adapted from [42].

The frequency for which δkx = 0 is defined as the band edge frequency ν BE. To
extract this frequency and the curvature of the dispersion relation near the band edge,
we fit the measured and simulated dispersion relations with a dispersion model [37],

δkx(ν) =
2π
a

√
(ν BE2 − ν)(ν BE − ν)
4ζ2 − (ν BE2 − ν BE)2

, (6.2)

where ν BE (ν BE2) is the lower (upper) band edge frequency, and ζ is a frequency
related to the curvature of the band near the band edge. From the measured data fits,
the distance between the first resonance and band edge is ν BE − ν1 = 133 ± 9 GHz
and ζ = 227 ± 3 THz. The simulated data give ν BE − ν1 = 135.0 GHz and the
curvature parameter is ζ = 226.0 THz. These values are in good agreement with the
dispersion relation from the eigenmode simulation of the infinite PCW in Fig. 1(c)
of the Chapter 5, which gives ζ = 229.1 THz.
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6.3 Side-illumination trap
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Figure 6.5: (a) Schematic of the atoms in the side-illumination (SI) trap. Given
the estimated atom temperature of 30 µK, we infer that the atoms are confined to a
length of 2∆xA = 12 µm along the x-axis. (b,c,d) FORT potentials for the SI trap
simulation (b) in the y-z plane [37], (c) along the z-axis, and (d) along the x-axis.
Figure adapted from [42].

In Fig. 6.5(a), we show a schematic of the side-illumination (SI) trap. The side-
illumination beam is nearly perpendicular to the axis of the device, has a 50 µm
diameter, and has a polarization aligned to the axis of the device. The orange areas
represent the approximate localization of the atoms along x, y. By time-of-flight
measurements of atoms in the dipole traps, we estimate an atomic ‘temperature’ of
approximately 30 µK. From the beam waist and atom temperature, we can infer that
the atoms are localized to 2∆xA = 12 µm along the x-axis.

Simulations of the FORT potential for the SI trap are shown in Fig. 6.5(b-d). The
simulations are performed for the infinite structure with COMSOL. The trap depth
is calibrated with the 12.5 MHz AC Stark shift measured from the atomic spectra.
Figure 6.5(b) shows the trap potential in the y-z plane. Atoms that are significantly
hotter than ∼ 100 µK are expected to crash into the device along the diagonal
directions due to Casimir-Polder forces. Figure 6.5(c) shows the trapping potential
along the z-axis. Atoms are trapped at z = 240 nm. Figure 6.5(d) shows the trap
along the x-axis. Due to the photonic crystal, the trap modulates by ∼ 10 µK along
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the x-axis, but this is significantly smaller than the estimated trap temperature.

In addition to the results in Fig. 6.5, we have also carried out numerical modeling
of the optical trap using Lumerical simulations [54] of the actual finite length PCW
and tapers shown in Fig. 6.1. We have as well included Casimir-Polder potentials
as in Ref. [35]. More details of the trap are discussed in Ref. [37].

6.4 Transmission model and atomic spectra fits
Here we give a more detailed description of the transmission model in the Chap-
ter 5, which follows the derivation given in Ref. [44]. A system of N atoms
coupled to a radiation field can be described using formalism based on the clas-
sical Green’s function [82, 88]. In the Markovian limit, the field can be elimi-
nated to obtain a master equation that describes the interactions between the atoms,
Û̂ρ A = − i

~ [H, ρ̂ A] + L[ρ̂ A]. Here the Hamiltonian H gives the coherent evolution
of the system,

H = −~
N∑

j=1
∆̃ Aσ̂

z
j − ~

N∑
j,i=1

J ji
1Dσ̂

†
j σ̂i − ~

N∑
j=1

(
Ω j σ̂

†
j +Ω

∗
j σ̂

j
)
, (6.3)

and the Lindblad operator L[ρ̂ A] gives the dissipation of the system,

L[ρ A] =
N∑

j,i=1

Γ′δ ji + Γ
ji
1D

2
(6.4)

×
(
2σ̂j ρ̂ Aσ̂

†
i − σ̂

†
j σ̂i ρ̂ A − ρ̂ Aσ̂

†
j σ̂i

)
.

The Hamiltonian and Lindblad are expressed in terms of the atomic coherence oper-
ator σ̂ j = |g〉〈e| between the ground and excited states of atom j. The Hamiltonian
contains terms for the free-atom evolution, the coherent atom-atom interactions,
and the classical drive, respectively. ∆̃ A = 2π∆ A = 2π(ν p − νD1) is the detuning
between the probe and the atomic angular frequencies. Ω j is the Rabi frequency
for atom j due to the guided-mode field. The atom-atom spin-exchange rate J ji

1D is
expressed in terms of the real part of the guided mode Green’s function as

J ji
1D = (µ0ω

2
p/~)d∗j · ReG(r j, ri, ω p) · di, (6.5)

whereω p = 2πν p and d j is the dipole matrix element of atom j. The Lindblad term
is responsible for the dissipative interactions in the system, which include atomic
decay into non-guided (Γ′) and guided (Γ ji

1D) modes. The decay rate into the guided
mode is written in terms of the imaginary part of the Green’s function as

Γ
ji
1D = 2(µ0ω

2
p/~)d∗j · ImG(r j, ri, ω p) · di . (6.6)
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For low atomic density along the PCW, the non-guided emission rate Γ′ is not
cooperative, and is described here as a single-atom effect, with δ ji as the Kronecker
delta.

In the low saturation regime, the Heisenberg equations for the expectation value of
the atomic coherences (〈σ̂eg〉 = σeg) can be solved for with the master equation
leading to

Ûσ j = i
(
∆̃ A + i

Γ′

2

)
σ̂j + iΩ j + i

N∑
i=1

g ji σ̂i, (6.7)

where the complex coupling rate is

gi j = Ji j
1D + iΓ

i j
1D/2 = (µ0ω

2
p/~)d∗i ·G(ri, r j, ω p) · d j, (6.8)

which is the Green’s function between atoms i and j projected onto the respective
dipole matrix elements. In the steady-state solution, the time derivative is set to
zero and result is the linear system of equations for the atomic coherences given in
Chapter 5.

The electric field in the system can be expressed in terms of the input probe field
E+(r, ωp) and solutions for the atomic coherences [44],

E+(r, ω p) = E+p(r, ω p) + µ0ω
2
p

∑
j

G(r, r j, ω p) · d jσ
j . (6.9)

An expression for the transmission through a quasi-1D structure can be derived by
solving the steady state system of equations in (6.7) for the atomic coherences σ j

and substituting them into (6.9). The expression can then be simplified in the case
where the dipole moments are real, in which case g is a complex symmetric matrix
with eigenvectors and eigenvalues g uξ = λξ uξ , and when the Green’s function is
well represented by a 1D Green’s function. The final result is [44],

t(∆̃A, N)
t0(∆̃A)

=

N∏
ξ=1

(
∆̃A + iΓ′/2

∆̃A + iΓ′/2 + λξ

)
, (6.10)

where t0(∆̃A) is the transmission without atoms.

In the bandgap, the matrix g of elements gi j is well approximated by

gi j = (J 1D + iΓ 1D/2) cos(πxi/a) cos(πx j/a)e−κx |xi−xj | . (6.11)

As discussed in Chapter 5, when the interaction range 1/κx is much larger than the
separation distance (κx |xi − x j | � 1), there is only a single atomic ‘bright mode’,
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for which the frequency shift and guided-mode decay rate are given by
∑N

i=1 Jii
1D

and
∑N

i=1 Γ
ii
1D. The transmission spectra for N atoms in the ‘single-bright-mode’

approximation is given by

T(∆ A, N) = T0(∆ A)
����� ∆̃ A + iΓ′/2
∆̃ A + iΓ′/2 +

∑
i(Jii

1D + iΓ
ii
1D/2)

�����2 , (6.12)

where ∆̃ A = 2π∆ A = 2π(νp−νD1) is the detuning between the pump and the atomic
frequency, and T0(∆ A) is the device transmission when no atoms are present.

Explicitly accounting for the atoms’ positions by substituting (6.11) into (6.12), the
transmission is given by

T(∆ A, N; x1, ..., xN )/T0(∆ A) = (6.13)����� ∆′A + iΓ
′/2

∆′A + iΓ′/2 +
∑N

j=1(J 1D + iΓ 1D/2) cos2(x jπ/a)

�����2 .
We have defined ∆′A ≡ ∆̃ A +∆0 in order to account for the AC-Stark shift ∆0 of the
atoms due to the dipole trap.

In order to accurately model the experimental conditions, we average the transmis-
sion model over atom positions and atom number. During a single measurement,
the atoms are free to move along the length of the device over the range 2∆xA as in
Fig. 6.5(a), evenly sampling the Bloch function. We let 〈T(∆ A, N; x1, ..., xN )〉x be
an average over all positions, i.e.,

〈T(∆ A, N; x1, ..., xN )〉x = T0(∆ A)

×
∫ a

0
dx1...dxN

����� ∆′A + iΓ
′/2

∆′A + iΓ′/2 +
∑N

j=1(J 1D + iΓ 1D/2) cos2(x jπ/a)

�����2 . (6.14)

We repeat the measurement multiple times for each frequency∆ A. Each experiment
can have a different number of atoms, and so we average the transmission expression
over a Poisson distribution PN̄ (N), which is a function of the average atom number
N̄ . The transmission model averaged over both atom positions and atom numbers
is given by

〈T(∆ A, N; x1, ..., xN )〉x,N = (6.15)

T0(∆ A)
∑

N

PN̄ (N) 〈T(∆ A, N; x1, ..., xN )〉x .
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This is the final form of the transmission model that we use to fit the atomic spectra.

Assuming N̄ = 3.0, which is obtained from the atom decay rate measurement, we
fit the TE atomic spectra with (6.15) and extract Γ 1D, J 1D, Γ′, and ∆0 for each
frequency. We show the values of Γ 1D and J 1D in Fig. 5.5 of Chapter 5. We show
the AC Stark shift and non-guided decay rate in Fig. 6.6.
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Figure 6.6: Fitted values from averaged transmission model for TE (black, circles)
and TM (gray, triangles) spectra. (a) Fitted AC Stark shift ∆0. (b) Fitted Γ′.
Figure adapted from [42].

The average of the non-guided decay rate Γ′ for the TE data outside the bandgap is
Γ′ = 2π × 9.1 MHz. This is significantly larger than the expected value from the
FDTD simulation, Γ′ = 2π × 5.0 MHz. This additional inhomogeneous broadening
could be due to finite temperature of the trapped atoms, vector shifts from circular
light in the SI beam, atom density dependent collisional broadening, stray magnetic
fields, and electric fields fromcharges in the dielectric. We estimate the contributions
individually, and find that they likely do not explain the extraneous broadening. We
note that the estimate of ‘temperature’ of trapped atoms could be improved in the
future, and it may help shed light on our excess broadening.

Interestingly, the fitted Γ′ increases in the bandgap, and is as high as Γ′ = 2π ×
16 MHz for the last measured point. One possible explanation is that this is due to
the break-down of the single bright mode approximation, as coupling to multiple
collective atomic modes should result in a broadened linewidth. Another possibility
is since there is a large extinction of the TE mode in the bandgap, there might be
some mixing between the TE and TM modes.

We also measure transmission spectra for the TM mode, whose band edges are
far-detuned from the Cs transitions. The transmission in this waveguide regime is
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described by an optical density model

T/T0 = exp


−OD

1 +
( 2∆′A
Γ TM
1D +Γ

′

)2

, (6.16)

where the resonant optical density is given by OD = 2N̄Γ TM
1D /Γ̃

′. We fit the TM
spectra with this model and extract Γ′, ∆0, and Γ TM

1D (assuming N̄ = 3). The values
of Γ′ and ∆0 are shown with the TE data in Fig. 6.6. The averaged Γ TM

1D value is
0.044 Γ0, which is∼ 30 times smaller than Γ 1D for the TEmode at the first resonance
ν1, and clearly demonstrates the enhanced interaction due to the PCW.

6.5 Simple transmission model
In Chapter 5, we fit atomic transmission spectra with the averaged transmission
model from (6.15) in order to extract the peak guided-mode decay rate Γ 1D and
frequency shift J 1D. In this section, we fit the spectra with a transmission model
which involves no averaging, and we extract an effective decay rate Γ eff

1D and fre-
quency shift J eff

1D, which will be smaller than the corresponding peak values due to
the averaging of the cos2(πx/a) Bloch function as the atoms move along the x-axis
of the trap. In the “single-bright-mode" approximation discussed in Chapter 5, the
transmission for a single collective mode with total decay rate A and frequency shift
B is given by

T(∆ A)
T0(∆ A)

=

���� ∆′A + iΓ
′/2

∆′A + B + i(Γ′ + A)/2

����2 . (6.17)

Here, the detuning ∆′A includes the AC stark shift ∆′A = ∆A + ∆0. Since the average
number of atoms N̄ ≈ 3 is measured independently in a decay rate measurement,
the collective rates A and B are related to the effective rates by A = N̄Γ eff

1D and
B = N̄ J eff

1D. Examples of the fitted spectra for atoms outside and inside the band-gap
are shown in Fig. 6.7. The translucent lines are the expected signals for an average
atom number of N̄ = 1 and N̄ = 9.

The fitted values of A and B are plotted for each detuning from the band-edge∆ BE in
Fig. 6.8(a). The results are qualitatively similar to the corresponding plot in Fig. 5.5
in the manuscript, except the effective rates A = N̄Γ eff

1D and B = N̄Γ eff
1D are scaled

down by η = 0.42 due to the modulation of the Bloch function cos2(πx/a). The
solid line in Fig. 6.8(a) is the same theoretical curve as in Fig 4(a) except scaled by
η = 0.42.
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Figure 6.7: Fits of transmission spectra with model of (6.17) for when the atomic
resonance frequency is aligned to the first resonance (a) and in the bandgap (b).
From the decay rate measurement, the average number of atoms is N̄ ≈ 3, and the
translucent curves give the expected spectra for N̄ = 1 and N̄ = 9 atoms. Figure
adapted from [42].

The ratio of A/B = Γ eff
1D/J

eff
1D is plotted in Fig. 6.8(b). Since the scale factors η

cancel, the result is in good agreement with the corresponding plot of R = Γ 1D/J 1D

in Fig. 5.6 of Chapter 5. The black theory curve is the same as in the manuscript.
Whereas the peak decay rate and frequency shift is sensitive to the specific model,
the ratio of dissipative to coherent coupling is mostly model insensitive.
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Figure 6.8: (a) Fitted values for the effective collective decay rates A and frequency
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expected result for the peak values, except scaled down by η = 0.42. (b) Ratio
A/B = Γ eff

1D/J
eff
1D, along with the theoretical prediction for the peak ratio Γ 1D/J 1D

from Fig. 5.6 of Chapter 5. Figure adapted from [42].

6.6 Atom decay measurement
We exploit the superradiance of atoms trapped near the alligator PCW to determine
the mean atom number N̄ and the peak atom decay rate Γ 1D (at ν1) into the guided-
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modes.

As established in Ref. [37], the total exponential decay rates of the atoms is
Γ̄ tot(N̄) = Γ̄ SR(N̄) + Γ̄(1)tot, where Γ̄ SR is the N̄-dependent superradiance decay rate,
and Γ̄

(1)
tot is the observed single-atom decay rate. We note that when N̄ � 1,

Γ̄ tot ∼ Γ̄(1)tot = Γ̄ 1D+Γ
′, since only the single-atom decay rate into GM Γ̄ 1D and into

environment Γ′ remain. Γ′ is numerically calculated to be 2π × 5.0 MHz for cesium
D1 line at the trapping site near the PCW [37].

We excite the atoms with a weak resonant light pulse through the guided-mode,
while the first resonance ν1 near the band edge is aligned with cesium D1 line.
Pulse properties are as in Ref. [37]. The subsequent fluorescence decay rates Γ̄ tot

are determined through exponential fits. By varying the trap holding time t m after
loading, the mean atom numbers for the decay measurements are varied. The decay
rates are empirically fitted in an exponential form as a function of holding time
t m [37]: Γ̄ tot(t m) = Γ̄ SRe−t m/τ SR + Γ̄(1)tot, as shown in Fig. 6.9. From the fitted
asymptotic-value of the decay rates, we deduce that the apparent single-atom decay
rate is Γ̄ 1D = (1.12 ± 0.14)Γ′.
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Figure 6.9: Total decay rates as a function of holding time t m. The red solid curve
is the empirical fit and the dash-dot line represents the fitted asymptotic total decay
rate at very long times. The blue dashed lines specify fitted error boundaries. The fit
yields τ SR = 16 ms, Γ̄ SR = 1.5Γ′ and the asymptote Γ̄(1)tot/Γ

′
= 2.12 ± 0.14. Figure

adapted from [42].

Because the atoms are randomly distributed along x direction in the trap, the ob-
served decay curves are results after spatial averaging the coupling rates Γ 1D(x).
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Assuming an uniform distribution of N atoms around the center of the PCW, a more
detailed model specifies the form of fluorescence intensity decay as [37]:

IN (t) = γ2e−(Nγ+Γ
′)t · I0 (γt)N−2 ·

[N(N + 1)
4

I0 (γt)2

−
(

N
4γt
+

N2

2

)
I0 (γt) I1 (γt) + N(N − 1)

4
I1 (γt)2

]
,

(6.18)

where γ = Γ 1D/2, and Ik is the modified Bessel function. Numerically simulating
the decay of single atoms in the trap by using I1(t), we compare between the
exponentially fitted value Γ̄ 1D and the value of Γ 1D used for I1(t), which yields
a ratio of Γ̄ 1D/Γ 1D = 0.81. This is consistent with the ratio of 0.8 ± 0.3 from
measurement at long hold time t m = 94 ms, when single-atom decay predominates
(shown as the asymptote in Fig. 6.9). Based on the values of Γ̄ 1D deduced above,
we conclude that Γ 1D = (1.4 ± 0.2)Γ′.

At early holding times, the atom number N noticeably fluctuates around some mean
values N̄ & 1 . To capture this N̄-dependent variation, we fit the decay curves
by averaging IN (t) with weight function of Poisson distribution probability PN̄ (N)
[37]. The fitting parameter here is N̄ , while we fix the value of Γ 1D in Eq. 6.18. The
fit is consistent with N̄ = 3.0±0.5 at t m = 4 ms when we carry out the transmission
spectra measurement. Based on the trap life time τ = 30 ms, we further deduce that
N̄ ∼ 0.1 at t m = 94 ms .

The linear N̄-dependence of superradiance is given by Γ̄ SR = η · N̄ · Γ 1D, where
η = 0.36±0.06 is some linear coefficient whose value is consistent with that reported
in Ref. [37].
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A p p e n d i x A

GREEN’S FUNCTION FORMALISM WITH ANGULAR
MOMENTUM

Next we extend the quantum formalism for atoms in Chapter 3 beyond two levels
systems. For Alkali atoms such as cesium, wewill include the hyperfine and Zeeman
levels into the formalism. While Cs atoms coupled to a waveguide has been treated
in Ref. [120], I have not seen any reference that expands the Green’s function
formalism of Chapter 3 to include the hyperfine and Zeeman levels. A brief review
of angular momentum theory is given in Appendix B.

A.1 Master equation with hyperfine levels
First we consider just one hyperfine level for the ground state Fg and one for the
excited state Fe. In the next section, I will expand this to the case of arbitrary levels.
The dipole operator d̂ in Eq. 3.40 is expanded into the basis of two-levels of the
atom. Now the basis is expanded to include multiple Zeeman sublevels. The unity
projection operator for the i’th atom is given by

I =
∑
mg

|iFgmg〉〈iFgmg | +
∑
me

|iFeme〉〈iFeme |. (A.1)

Multiplying the dipole operator d̂i on both sides with the unity operator gives

d̂i =
∑

mgme

〈iFgmg |d̂|iFeme〉σ̂imgme + h.c., (A.2)

where the atomic lowering operator from a particular excited state to a particular
ground state is

σ̂imgme = |iFgmg〉〈iFeme |. (A.3)

Next I express the dipole operator d̂ in Eq. (A.2) in terms of the spherical vector
basis,

d̂ =
∑

q

d̂qe∗q. (A.4)

The spherical basis vectors are êq given by

ê±1 = ∓
1
√

2
(x̂ ± iŷ), ê0 = ẑ. (A.5)
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and the normalization of these unit vectors is êq · ê∗q = δqq′.

Next I use the Wigner-Eckert theorem from Eq. (B.18) to simplify the resulting
expression in terms of the reduced matrix element. The dipole operator simplifies
to

d̂i =
∑

q

d̂i,qe∗q where d̂i,q =
〈iFg | |d̂| |iFe〉√

2Fe + 1

(
Σ̂i,q + (−1)qΣ̂†i,−q

)
, (A.6)

where the combined raising and lower operators Σ̂i,q are expressed in terms of the
two-level raising and lowering operators and the oscillators strengths:

Σ̂i,q =
∑

mgme

fq FgmgFeme σ̂imgme . (A.7)

The oscillator strengths fq FgmgFeme are given by

fqFgmgFeme = (−1)Fg−mg
√

2Fe + 1

(
Fg 1 Fe

−mg q me

)
. (A.8)

The oscillator strengths have the property that the sum of the square of the oscillator
strength of all ground states mg and polarizations q is unity (which can be shown
using the orthogonality of the 3-J symbols),∑

q mg

( fq FgmgFeme)2 = 1. (A.9)

Now we can substitute the dipole operator of Eq. (A.6) into the Hamiltonian from
Eq. (3.41) in Chapter 3 and proceed with the derivations. For example, the resulting
master equation is given by:

Û̂ρ = −i[HA, ρ] + i
∑
i jqq′

Ji jqq′[Σ†iqΣ jq′, ρ̂] −
1
2

∑
i jqq′

Γi jqq′
(
Σ
†
iqΣ jq′ ρ̂ − 2Σ jq′ ρ̂Σ

†
iq + ρ̂Σ

†
iqΣ jq′

)
+i

∑
iq

[~ΩiqΣ
†
iq + h.c., ρ̂].

(A.10)

The second and third terms are the spin-exchange and dissipation. The the new
dissipation and coupling parameters are given by

Ji jqq′ =
ω̃2

~ε0c2
|〈iFg | |d̂| |iFe〉|2

2Fe + 1
eq ·Re[G(ri, r j, ω̃)]·e∗q′ (A.11)

Γi jqq′ =
2ω̃2

~ε0c2
|〈iFg | |d̂| |iFe〉|2

2Fe + 1
eq ·Im[G(ri, r j, ω̃)]·e∗q′ (A.12)
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The drive term is expressed in terms of the electric field in the spherical basis
Eq(r, t) = E(r, t) · ê∗q:

Ωiq =
1
~
|〈iFg | |d̂| |iFe〉|√

2Fe + 1
Eq(r, t) (A.13)

Including multiple hyperfine levels in each ground and excited state
The previous case treated a single hyperfine level for the ground state and single
hyperfine level for the excited state. Now we allow multiple hyperfine levels for
both the ground state and excited state. We use the the Wigner-Eckert identity from
Eq. (B.23),

〈γJg IFg | |T (k) | |γJeIFe〉 = (−1)Jg+I+Fe+k
√
(2Fg + 1)(2Fe + 1){

Fg k Fe

Je I Jg

}
〈γJg | |T (k) | |γJe〉,

(A.14)

to express the dipole operator as

d̂i =
∑

q

d̂i,qe∗q where d̂i,q =
〈iJg | |d̂| |iJe〉√

2Je + 1

(
Σ̂i,q + (−1)qΣ̂†i,−q

)
(A.15)

where
Σ̂i,q =

∑
FgmgFeme

f HFqFgmgFeme
σ̂iFgmgFeme (A.16)

and the new hyperfine oscillator strengths are expressed in terms of the previous
oscillator strengths from Eq. A.8,

f HFqFgmgFeme
= (−1)Jg+I+Fe+1

√
(2Fg + 1)(2Je + 1)

{
Fg 1 Fe

Je I Jg

}
fqFgmgFeme . (A.17)

The hyperfine oscillator strengths have the property that the sum the square over all
ground states and polarizations is unity (which can be shown using Eq (A.9) and the
orthogonality of the 6-J symbols):∑

q Fg mg

( f HFqFgmgFeme
)2 = 1. (A.18)

The parameters Ji jqq′, Γi jqq′, and Ωiq are the same as before except with Fg and Fe

replaced with Jg and Je respectively.

From La Kien’s paper [121], the reduced matrix elements for the Cs D1 and D2 line
are given by

|〈6P1/2 | |d| |6S1/2〉| = 4.489 ea0 (A.19)

|〈6P3/2 | |d| |6S1/2〉| = 6.324 ea0 (A.20)
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A p p e n d i x B

ANGULAR MOMENTUM REVIEW

This is to serve as a brief review of spherical tensor operators. Steck’s "Quantum
and Atom Optics" notes are great for an introduction, but there are many small
errors and the convention for the reduced matrix element is different than the one
used by many groups. The textbooks "Angular Momentum in QuantumMechanics"
by A.R. Edmunds [122], and "Quantum Theory of Angular Momentum" by D.A.
Varshakovich [123] are the main references I have used. Other great references
include Kyle Beloy’s thesis [124] and Ref. [125]. The formalism worked out here is
used in the next appendix to derive the master equation for multiple atoms coupled
to an arbitrary waveguide.

B.1 Cartesian Tensor Operators
The definition of a Cartesian vector operator is an operator that rotates as∑

j
RijVj = V ′i . (B.1)

Similarly, a Cartesian tensor operator is defined as∑
ij···

RkjRli · · ·Tji··· = T ′ij···. (B.2)

The scalar Cartesian product between tensors Tuv··· and Suv··· is defined as

T · S =
∑
uv···

Tuv···Suv···

An irreducible tensor implies that under a rotation, the elements transform into
themselves. Any 2x2 cartesian tensor Tuv can be decomposed into a scalar T (0)

(rank 0) related to the trace, a vector T(1) (rank 1) related to the anti-symmetry of
the tensor, and a symmetric traceless matrix T(2) (rank 2). This is shown here:

Tuv = −
1
√

3
T (0)δuv −

i
√

2
εuvwT (1)w + T (2)uv , (B.3)
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where

T(0) = − 1
√

3
Tr[T] (B.4)

T(1) =
i
√

2
εuvwTvw

T(2) =
1
2
(Tuv + Tvu) −

1
3
Tr[T]δuv.

Note that each term here has an arbitrary normalization, since the normalization can
be compensated by changing Eq. (B.3). We choose the normalization so that the
Cartesian scalar product between two tensors Tuv and Suv is given by

T · S =
∑
uv

TuvSuv =
∑

k

(−1)kT(k) · S(k)

This convention is chosen so that it will later be easier to convert between Cartesian
and Spherical tensors.

B.2 Spherical Tensor Operators
The spherical tensor operator of rank k is defined as an operator that rotates like a
rank k spherical harmonic:

U(R)T (k)q U(R)−1 =
∑
q′

T (k)q′ D
(k)
q′q(R), (B.5)

whereD(k)q′q(R) is theWignerD-matrix elements defined byD(k)q′q(R) = 〈kq′|U(R)|kq〉.
U(R) is the unitary rotation operator. The tensor operator has elements |q | ≤ k .

One useful relation is that the complex conjugate of a spherical operator component
is just

(T (k)q )∗ = (−1)qT (k)−q . (B.6)

Given two spherical tensors A(k1) and B(k2), we can construct a new spherical tensor
C(k)q by the spherical tensor product relation

C(k)q =
∑
q1q2

〈kq |k1q1k2q2〉 A(k1)
q1 B(k2)

q2 ≡ {A
(k1) ⊗ B(k2)}(k)q . (B.7)

One can prove that C(k)q is a tensor operator by showing that it rotates as a spherical
tensor operator. The brackets in the final expression is a convenient way to express
the spherical tensor product.
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A quantity that is convenient to define is the spherical scalar product between two
rank k tensors:

A(k) · B(k) ≡
∑

q

(−1)q A(k)q B(k)−q =
√

2k + 1{A(k) ⊗ B(k)}(0). (B.8)

Later, we will find that this relation is related to the Cartesian scalar product.

The rank 1 spherical harmonics Y m
l are given by Y0

1 =
√

3
4π

z
r and Y±1

1 = ∓
√

3
4π

x±iy√
2r
.

Since the rank 1 spherical tensor rotates the same, we can relate the rank 1 spherical
tensor A(1) to the Cartesian vector A = Axx̂ + Ayŷ + Azẑ by

A(1)±1 = ∓
1
√

2
(Ax ± iAy) (B.9)

A(0)0 = Az.

Note that the normalization is different than for the spherical harmonic. It is chosen
here so that the spherical scalar product from Eq. (B.8) matches the Cartesian scalar
product

A · B =
∑
u

AuBu =
∑

q

(−1)q AqB−q. (B.10)

I use the convention that roman subscripts are Cartesian tensors and italicized are
spherical tensors. With this normalization, the scalar product for two vectors gives
the same answer as if we first converted them both to rank 1 spherical tensors, and
then took the spherical scalar product.

We can also define spherical unit vectors

ê±1 = ∓
1
√

2
(x̂ ± iŷ), (B.11)

ê0 = ẑ.

For some vector A, the component in the êq direction is given by

A · êq =
∑

q

(−1)q Aq ê−q = (−1)q A−q.

Therefore, the vector A can expressed in terms of the spherical unit vectors as

A =
∑

q

(−1)q Aq ê−q =
∑

q

Aq ê∗q. (B.12)
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Now we repeat the same procedure that we did for rank 1 tensors for rank 2 tensors.
A rank 2 symmetric traceless tensor T (2)uv has 5 DOF (degrees of freedom) and is
irreducible. Remember that roman subscripts are reserved for Cartesian tensors,
and italicized subscripts are for spherical tensors. The rank 2 spherical tensor is also
irreducible and has the same DOF. The spherical tensor can be expressed in terms
of the rank 2 Cartesian matrix elements by

T (2)0 =

√
3
2

Tzz (B.13)

T (2)±1 = ∓(Txz ± iTyz)

T (2)±2 =
1
2
(Txx − Tyy ± i2Txy).

This relation can be derived by forming the rank 2 spherical product of two spherical
vectors, and then expressing the spherical vectors in terms of the cartesian vectors
using Eq. (B.12). Note that there is again a single arbitrary normalization factor
here. Just as we did for the rank 1 case, we define the normalization term so that if
we convert two rank 2 Cartesian tensors Buv and Auv into rank 2 spherical tensors
A(2)q and B(2)q , the spherical scalar product of the two spherical tensors gives the same
as as the Cartesian scalar product of the Cartesian tensors:∑

uv
AuvBuv =

∑
q

(−1)q A(2)q B(2)−q ≡ A · B. (B.14)

For the more general case of two 2x2 Cartesian tensors Auv and Buv, each Cartesian
tensor can be decomposed into a rank 2, 1, and 0 Cartesian tensor using Eq. (B.4).
The Cartesian scalar product is given by A · B = ∑

uv AuvBuv. But because of our
normalization conventions, this is the same as taking the spherical scalar product of
the spherical tensors and adding them as

A · B =
∑
uv

AuvBuv =
∑

k

(−1)k A(k) · B(k) =
∑
kq

(−1)k+q A(k)q · B(k)−q .

For an example, we consider the 2x2 cartesian matrix

G =
©­­«
Gxx Gxy Gxz

Gyx Gyy Gyz

Gzx Gzy Gzz

ª®®®¬ . (B.15)

This can be for example theGreen’s functionmatrix. Thismatrix can be decomposed
into irreducible Cartesian tensors G(0), G(1)u , and G(2)uv using Eq. (B.4). Then each
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of these can be converted into their corresponding spherical tensors G(k)q . For
convenience, I give the spherical tensor elements G(k)q in terms of the cartesian
matrix elements Guv:

G(0) = − 1
√

3
Tr[G] (B.16)

G(1)±1 =
1
2

[
Gzx − Gxz ± i(Gzy − Gyz)

]
G(1)0 =

i
√

2

[
Gxy − Gyx

]
G(2)±2 =

1
2

[
Gxx − Gyy ± i(Gxy + Gyx)

]
G(2)±1 = ∓

1
2

[
Gxz + Gzx ± i(Gyz + Gzy)

]
G(2)0 =

1
√

6
[3Gzz − Tr[G]] .

These equations will be used for the decay rate equations to decompose the Green’s
function tensor into its spherical tensors.

B.3 Reduced Matrix Element Identities
The Wigner-Eckert theorem is

〈γ′ j′m′|T (k)q |γ jm〉 = (−1)2k

√
2 j′ + 1

〈 j′m′| jm kq〉〈γ′ j′| |T (k) | |γ j〉 (B.17)

= (−1) j ′−m′
(

j′ k j

−m′ q m

)
〈γ′ j′| |T (k) | |nj〉. (B.18)

I follow the convention in Varshakovich, Edmunds, and Beloy by adding the
√

2 j′ + 1. Note that Steck does not include this term. The convenience of our
convention is that the complex conjugate takes a simple form:

〈γ j | |T (k) | |γ′ j′〉 = (−1)( j ′− j)〈γ′ j′| |T (k) | |γ j〉∗. (B.19)

The three-J symbol is related to the Clebsch-Gordon coefficient is

〈 j′m′| jmkq〉
√

2 j′ + 1
= (−1) j ′−m′

(
j′ k j

−m′ q m

)
. (B.20)

The convenience of the three-J symbols is that the symmetries takes a simple form.
The three-J symbols are invariant under an even permutation of the columns. An
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odd permutation of the columns gives a phase factor (−1) j1+ j2+ j3 . Changing the sign
of all the m quantum numbers gives the same factor:(

j1 j2 j3
m1 m2 m3

)
= (−1) j1+ j2+ j3

(
j1 j2 j3
−m1 −m2 −m3

)
. (B.21)

The orthogonality condition is

(2 j + 1)
∑
m1m2

(
j1 j2 j

m1 m2 m

) (
j1 j2 j′

m1 m2 m′

)
= δ j j ′δmm′ . (B.22)

There are several useful identities for simplifying the reduced matrix element. If
we have a reduced matrix element 〈γ j′1 j′2 j′| |P(k) | |γ j1 j2 j〉, where J = J1 + J2, and
a tensor operator P(k) only operates in J1 space, then we can simplify it to

〈γ j′1 j′2 j′| |P(k) | |γ j1 j2 j〉 = (−1) j ′1+ j2+ j+k
√
(2 j′ + 1)(2 j + 1){

j′ k j

j1 j2 j′1

}
〈γ j′1 | |P

(k) | |γ j1〉.
(B.23)

The term in the brackets is the 6-j symbol. It is left invariant by any permutation of
the columns, and against interchange of the upper and lower arguments in each of
any two columns.

Another useful identity is for simplifying the reduced matrix element for a spherical
tensor product:

〈γ′ j′| |{P(k1) ⊗ Q(k2)}(k) | |γ j〉 =
√

2k + 1
∑
j ′′
(−1) j ′+ j+k

{
j′ k j

k2 j′′ k1

}
×

∑
γ′′
〈γ′ j′| |P(k1) | |γ′′ j′′〉〈γ′′ j′′| |Q(k2) | |γ j〉.

(B.24)
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A p p e n d i x C

COMPLEX SYMMETRIC MATRICES

C.1 Diagonalization formalism for complex symmetric matrices
Here we derive the orthogonality and completeness relation for the eigenvectors of
a complex symmetric matrix. The eigenvectors and eigenvalues of a matrix A are
defined by the the eigenvalue

A ui = ai ui . (C.1)

If A is Hermitian (A† = A), or more generally if normal [A,A†] = 0, then the
eigenvectors have the orthogonality condition u†i ·u j = δi j and completeness relation∑

i ui ⊗ u†i = 1 . However, the matrix g of the Green’s function between the atoms
is complex and symmetric (see Chapter 4). It is only Hermitian if there is no
dissipative terms, in which case g is real. In this section, we derive the orthogonality
relation for the eigenvectors of a complex symmetric matrix.

First we review the general diagonalization formalism. Any invertible matrix A has
a set of right eigenvectors

A ui = ai ui (C.2)

which can be written as

AR = RΛ, where Λ = aiδi j (C.3)

Here R contains the eigenvectors in the columns (there is an arbitrary normalization
for each eigenvector),

Ri j = (u j)i (C.4)

We can rearrange Eq (C.3) to get

R−1AR = Λ (C.5)

So we see that performing a similarity transformation with R converts A into a
diagonal matrix consisting of the the eigenvalues.

Similarly, the matrix A also has a set of left eigenvectors which has the same
eigenvalues as the right eigenvalues,

v T
i A = u T

i ai, or A Tvi = aivi (C.6)
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where the second equation is the transpose of the first and shows that the left
eigenvectors are the same as the right eigenvectors of the matrix A T. We can write
the eigenvector equation using L, which contains the left eigenvectors in its rows,

LA = ΛL, where Li j = (vi) j (C.7)

The matrix L also diagonalizes A,

LAL−1 = Λ (C.8)

Multiplying L and R together, we get

(LR)ik =
∑

j

Λi jR j k =
∑

j

(vi) j(uk) j = vi · uk (C.9)

Multiplying Eq (C.7) by R on the right, and Eq (C.3) on the left with L, and then
setting the two equal, we get

[LR,Λ] = 0 (C.10)

which requires that LR is diagonal, or that

vi · uk = 0 for i , k (C.11)

All the above formalism is true for any invertible matrix A. Now I consider the
special case where A is a complex symmetric matrix, A = A T. From the second
part of Eq (C.6), we see that ui and vi are the same set of vectors. However it is
important to remember that every eigenvectors has an arbitrary normalization. I fix
the normalization in the following way. First I assume vi = ui. Then it follows that

L = R T (C.12)

Then I normalize ui so that u T
i · u = 1, so then we get LR = 1 (see Eq (C.9)), or

L = R−1 (C.13)

and combining the last two equations

RT = R−1 (C.14)

So in summary, we have shown that a complex symmetric matrix A = A T has the
same left and right eigenvectors, that A is diagonalized by R where R−1 = R T, that
R contains the eigenvectors ui in its columns, and that the eigenvectors obey

ui · u j = δi j (C.15)
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C.2 Circulant Matrices
An N × N circulant matrix A has the form

A =
©­­«

c0 cN−1 . . . c2 c1

c1 c0 cN−1 c2

· · ·

ª®®®¬
The eigenmodes of an N × N circulant matrix are

u j =
1
√

N

(
1, w j, w2

j , · · · , wN−1
j

)
for j = 0, 1, · · · , N−1, where w j = e2πi j/N

(C.16)
The corresponding eigenvalues are

λ j = c0 + cN−1ω j + +cN−2ω
2
j + . . . + c1ω

N−1
j , j + 0, 1, . . . , N − 1. (C.17)

C.3 Nearest neighbor interactions
For a chain of periodically spaced atoms placed in even antinodes of the Bloch
modes, the dipole-projected Green’s function matrix reads

g = J 1D

©­­­­­«
1 χ χ2 · · · χN−1

χ 1 χ · · · χN−2

...
...

...
. . .

...

χN−1 χN−2 χN−3 · · · 1

ª®®®®®¬
, (C.18)

where we have defined χ ≡ e−κxd , with d being the distance between nearest-
neighbor atoms. The matrix g is a real symmetric Toeplitz matrix (or bisymmetric
matrix). Neglecting higher order contributions besides first-neighbor, an approxima-
tion valid for κxd � 1, g becomes a tridiagonal Toeplitz matrix whose eigenvalues
and eigenvectors are:

λξ ≡ J 1D,ξ = 1 + 2e−κxd cos
(
ξπ

N + 1

)
, (C.19a)

vξ, j =

√
2

N + 1
sin

(
ξ jπ

N + 1

)
. (C.19b)
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A p p e n d i x D

1D WAVE EQUATION AND GREEN’S FUNCTION

D.1 3D to 1D
We start with the Maxwell’s three dimensional wave equation in the frequency
domain (see Eq. (2.11)) :

∇ × ∇ × E(r, ω) − ω
2

c2 ε(r)E(r, ω) =
1
ε0

ω2

c2 P(r, ω) (D.1)

Here the source term p(r, ω) is an oscillating polarization density. The three dimen-
sional Green’s Function equation is (see Eq. (2.12))

∇ × ∇ ×G(r, r′, ω) − ω
2

c2 ε(r)G(r, r
′, ω) = ω

2

c2 δ(r − r′)1 (D.2)

Here the Green’s function is normalized to have units 1/L3.

The Dyson equation (see Eq. (2.13) ) gives the electric field response for a given
oscillating polarization density:

E(r, ω) = E0(r, ω) +
∫

d3r′G(r, r′, ω)P(r
′, ω)
ε0

(D.3)

Now I will convert these equations to their 1D counterpart. I assume that the
electric field and polarization density are universe in the yz plane. Then I can take
∇ × ∇× = ∇(∇ ) − ∇2 → − d2

dx2 . Next I assume that all the vectors are aligned in the
same direction so that I can treat them as scalars. The wave equation then becomes[

d2

dx2 +
ω2

c2 ε(x)
]

E(x, ω) = − 1
ε0

ω2

c2 P(x, ω) (D.4)

The 3D Green’s function is written in terms of a point source in 3D space, but
now I am interested in planar source. I can integrate over the area of the transverse
plane and define G1D(x, x′, ω) =

∫
dAG(r, r′, ω) = A G(r, r′, ω), where A is the area

integrated over the yz plane. This 1D Green’s function has units 1/L. Now the 1D
Green’s function is[

d2

dx2 +
ω2

c2 ε(x)
]

G1D(x, x′, ω) = −ω
2

c2 δ(x − x′) (D.5)
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Finally the Dyson equation becomes

E(x, ω) =
∫

dx′G1D(x, x′, ω)P(x
′, ω)
ε0

(D.6)

It is important to note that P(x′, ω) is still a three dimensional polarization density.
But since we have assumed uniformity in the yz plane, we can view it as sheet
of oscillating polarization. For an oscillating point dipole p at position r0 in
three-dimensional space, we previously could write the emitted electric field as
Edipole(r, ω) = G(r, r0, ω)p/ε0. Similarly, we can write the electric field from an
oscillating sheet of dipole P(x) = δ(x)pη , where p is an oscillating dipole, and η is
dipoles density per unit area, as E(x′) = G1D(x, x′;ω) p η/ε0.

D.2 Solution to the 1D Green’s function
There are multiple ways to solve the for the 1D Green’s function. We could express
it as a sum of eigenmodes of a Hermetian operator, as is done for three-dimensional
photonic crystal. For the Helmoltz equation, we could use complex integration.
However, there are usually easier solutions in the 1D case. We could just treat the
delta function as a dipole source and sum up the resulting fields everywhere, using
the transfer matrices to assist. However, there is usually an even easier solution in
1D.

The Green’s function can be written in terms of just the left-incoming φL(x) and
right-incoming φR(x) solutions to the wave equation. φL(x) is the solution to the
wave equation for incoming wave eik x from the left, and φR(x) is the solution to the
wave equation for incoming wave e−ik x from the right. The derivation is given in
the next section. The solution is

G1D(x, x′;ω) = −
(
ω2

c2

) [
Θ(x′ − x)φL(x′)φR(x) + Θ(x − x′)φR(x′)φL(x)

W(x′)

]
(D.7)

W(x′) = φR(x′)φ′L(x′) − φ′R(x′)φL(x′) = 2itk (D.8)

where theWronskianW(x′) is a constant (independent of x′, although it is convenient
to define it at x′) proportional to t, the complex the transmission through the entire
system. Θ(x) is the Heaviside function. Also k = ω/c.

When L is real and Hermitian (see Barton chapter 2), then the Green’s function has
the property

G1D(x, x′) = G1D(x′, x) (D.9)



135

Using this equation, we find that the free-space Green’s function is given by

Gfree-space(x, x′;w) = i
2k

eik |x
′−x | (D.10)

This result is the same as obtained by the complex integral technique ( Appendix E
in [64]).

One more comment is that this solution also works for lossy dielectrics, when ε(x)
has an imaginary component. But then I don’t think the previous Green’s symmetry
holds.

D.3 Derivation of 1D Green’s function solution
We want to find a solution to the 1D Green’s function of Eq. (D.5). The proof
is outlined here because I think it provides an intuitive way to think about the 1D
Green’s function. The reader should refer to Ref. [64] or Ref. [126] for more details.
We treat x′ as just a constant in this equation. When x , x′, then the equation is just
a 2nd order linear homogeneous ODE. We define a more general 2nd order linear
homogeneous ODE as

−
(

d2

dx2 + q(x) d
dx
+ r(x)

)
φ(x) = Lφ(x) = 0 (D.11)

For the 1D Green’s function, q(x) = 0 and r(x) = ε(x)ω2/c2. The Wronskian for
two solutions φ1(x) and φ2(x) is defined as

W(x) = φ1(x)φ′2(x) − φ
′
1(x)φ2(x) (D.12)

If two solutions φ1 and φ2 are linearly dependent, then their Wronskian is equal to
zero. If the solutions are linearly independent, then the Wronskian is equal to

W(x) = const exp(−
∫

dx q(x)) (D.13)

Therefore, if q(x) = 0, then the Wronskian is a constant. Using the Wronskian,
it is easy to show that for the homogenous operator L, there are two and only two
linearly independent solutions φ1(x) and φ2(x).

Next we consider Green’s function

L G(x, x′) = α δ(x − x′) (D.14)

For the 1D wave equation Green’s function, α = ω2/c2. When x , x′, then
LG(x, x′) = 0 and it is homogeneous. Our strategy for the solution of the Green’s
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function is the following. Wewill start with two boundary conditions (BC’s), one for
the left-hand side and one for the right-hand side. One example could be φ(x1) = 0
for x1 < x′ and φ(x2) = 0 for x2 > x′. For the wave equation, we will instead use
asymptotic BC’s:

left-hand BC: φ(x1) ∝ e−ik x1 for x1 → −∞ (D.15)

right-hand BC: φ(x2) ∝ e+ik x2 for x2 →∞ (D.16)

We find a solution φ1(x) that satisfies the left-hand BC and a solution φ2(x) that
satisfies the right-hand BC. Then Green’s function is then of the form

G(x, x′) = Θ(x′ − x)C φ1(x) + Θ(x − x′)D φ2(x) (D.17)

The constants C and D can be a function of x′, because we are treating x′ as
a constant. Since we have two more constants, we need two more BC’s. By
integrating Eq. (D.14) around the delta function δ(x) once and twice, we obtain two
more constraints (the jump condition and the continuity condition) for the Green’s
function. The final solution is given here

G(x, x′) = −αΘ(x
′ − x)φ2(x′)φ1(x) + Θ(x − x′)φ1(x′)φ2(x)

W(x′) (D.18)

where Θ(x) is the Heaviside function.

Now we consider specifically for the 1D wave equation and Green’s function, where

L =
d2

dx2 +
ω2

c2 ε(x) and α =
ω2

c2 (D.19)

First I define two solutions. Let φL(x) be the solution to the wave equation for
an incoming traveling wave eik x from the left. Let φR(x) be the solution to the
wave equation for an incoming traveling wave e−ik x from the right. Note that φR(x)
satisfies the asymptotic left-handBCof Eq. (D.15), and φL(x) satisfies the right-hand
BC of Eq. (D.16). We can therefore use φ1(x) = φR(x) and φ2(x) = φL(x).

Since the Wronskian is a constant, we can calculate it far from the system. For
example, we consider the Wronskian far to the right of our system (where the
index of refraction is one). Let the total system have reflection and transmission
r and t. Then the solutions far to the right of the system are φL(x) = teik x and
φR(x) = e−ik x + reik x . The Wronskian is then

W(x′) = 2i t k (D.20)
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Then the solution for the 1D Green’s function to the wave equation is

G1D(x, x′;ω) =
(
iω2

2tkc2

)
[Θ(x′ − x)φL(x′)φR(x) + Θ(x − x′)φR(x′)φL(x)] (D.21)

where again t is complex the transmission through the entire system, and φL(x)
is the solution for incoming wave eik x from the left, and φR(x) is the solution for
incoming wave e−ik x from the right.

D.4 1D Cavity Green’s Function
The case with no mirrors is just the free-space Green’s function:

Gfree-space(x, x′;w) = i
2k

eik |x
′−x | (D.22)

Using the transfer matrix formalism, or just summing the series of traveling waves,
we find that the fields inside a cavity centered at x = 0 from a wave from the left
φ
cavity
L and right φcavityR are

φ
cavity
L =

teikL(eik x−ikL/2 + re−ik x+ikL/2)
1 − r2e2ikL and φ

cavity
R = φ

cavity
L (x → −x) (D.23)

Note that, as always in these notes, I am using eik x as a left-going wave. By putting
these solutions in Eq. (D.21) and simplifying, we obtain the cavity Green’s function.
Because the the Green’s function is symmetric with respect to x and x′, I only give
the solution for x′ > x. We assume that r is real and negative, and use R = r2. The
real and imaginary parts of the unit-less Green’s function are

ImGcavity(x′ > x) = 1
2

(1 − R)
(1 − R)2 + 4R sin2[kL]

×
(
(1 + R) cos[k(x′ − x)] − 2

√
R cos[k(x + x′)] cos[kL]

) (D.24)

ReGcavity(x′ > x) = 1
2

sin[k(x′ − x)] −
√

R sin[kL]
(1 − R)2 + 4R sin2[kL]

×
(
(1 + R) cos[k(x + x′)] − 2

√
R cos[k(x′ − x)] cos[kL]

) (D.25)

The maximum from ImG occurs when on-resonant, where the front coefficient is
1

2(1−R) . The half-maximum occurs at sin(kL) ≈ ± 1−R
2
√

R
. Ignoring the first term, the

maximum for ReG instead occurs at the half-maximum and the front coefficient is
1

4(1−R) . So the maximum ReG is 1/2 of the maximum ImG.

We can look at a few scenarios. As a sanity check, we can check that we recover the
free-space Green’s function from Eq. (D.10) when r = 0.
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Self-Green’s function or λ/2 spacing, k(x′ − x) = mπ

Note that this case includes the self-Green’s function, x = x′. Here we can take
k(x + x′) = 2k x + mπ. We get

ImGcavity(x′ = x+mλ/2) = (−1)m 1
2

(1 − R)
(1 − R)2 + 4R sin2[kL]

(
(1 + R) − 2

√
R cos[2k x] cos[kL]

)
(D.26)

ReGcavity(x′ = x+mλ/2) = (−1)m
√

R sin[kL]
(1 − R)2 + 4R sin2[kL]

(
(1 + R) cos[2k x] − 2

√
R cos[kL]

)
(D.27)

A useful identity is cos[a+b]+cos[a−b] = 2 cos[a] cos[b] and cos[a+b]−cos[a−
b] = −2 sin[a] sin[b]. I can use these to show how interactions are infinite range for
when R ≈ 1.


