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ABSTRACT

The utility of reflection and transmission function (or collec-
tively, response function) concepts in reactor physics is extensively
investigated. Previously obtained differential (invariant imbedding)
and functional (adding) equations for the response functions are re-
derived in a unified manner. In addition a numerical halving technique
is developed from the adding relations.

Existing response function calculations are summarized and
extended by combining the invariant imbedding and functional equa-
tions. For deep-penetration shielding problems in slab geometry,
this combined response function approach is shown to be more ef-
ficient than conventional Monte Carlo or discrete ordinates techniques.
The response function approach is also shown to be efficient for a
criticality search in slab geometry. As a step toward a more general
treatment, invariant imbedding equations are derived, but not solved,
in finite cylindrical geometry.

Finally the feasibility of performing response function experi-
ments to obtain cross-section and criticality information is examined.
The envisioned experimental set-up is described and calculations are
carried out to verify the analytical procedures, with particular em-
phasis on the propagation of errors. Cross-sections can be deter-
mined using the halving scheme, which provides a theoretically sound
technique for multiple scattering correction. Thus experiments may
be done on moderately thick slabs. Criticality parameters can be

obtained from measured response functions using the criticality
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search procedure. Because response function experiments are
expected to be relatively quick and cheap compared to present cross-
section and critical experiments, it is concluded that response
function experiments should be carried out as soon as possible to

determine whether they are as useful as our analysis indicates.
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I. INTRODUCTION

A. Purpose of Thesis

In this thesis we will present a unified treatment of reflection
and transmission functions (or collectively, response functions) as
applicable to reactor physics. The original interest in response func-
tions (particularly the reflection function) arose in the study of light,
The possibility of applying response function techniques to reactor
physics has only been recently considered. Consequently few realistic
reactor calculations have been carried o.ut, while the experimental
possibilities of measuring response functions have received no atten-
tion at all, We will summarize and extend existing calculations as
well as investigaté the previously ignored experimental aspects.
Throughout our emphasis will be on techniques for solving practical

reactor problems., Primarily we will be concerned with fast reactors.

B. Response Function Approach - - Differential Equations and
Functional Equations

Transport theory problems may be approached in several ways.
At present the Monte Carlo and Boltzmann approaches are most com-
monly used, In the Monte Carlo approach, the motion of individual
particles is simulated and their average behavior is predicted by
tracing many individual histories. The Boltzmann approach is devel-
oped in terms of an average particle angular flux and results in a first
order, linear, integro-differential equation. In this thesis we will use

the response function approach in which the dependent variables are



the average reflected and transmitted angular fluxes. Two different
kinds of equations arise from this approach., The so-called invariant
imbedding equations are second order, non-linear, integro-differen-
tial equations, The response functions also satisfy functional equa-
tions (''adding relations'') which relate the response functions of a
composite piece of material to the response functions of its constituent
parts. Although the invariant imbedding equation.s and the adding rela-
tions can be shown to be mathematically equivalent (and both are equiv-
alent to the Boltzmann equation), they have significantly different
physical interpretations. The invariant imbedding equations contain
the material cross-sections and so, require microscopic information
for their solution. The adding relations, on the other hand, are macro-
scopic as they contain no cross-sections, requiring instead knowledge
of the response functions for some material thickness as their input
information, It is this macroscopic property that makes the function-
al equations especially attractive from an experimental point of view

and which provided much of the motivation for this thesis,

C. Review of Previous Work

Both the functional and differential equations originated with

(1)

Stokes in 1862 in his study of the reflection and transmission of
light through a stack of glass plates, Stokes derived the adding rela-
tions and from them obtained the differential equation (invariant imbed-

ding equation) for the reflection function. In 1907, more than fifty

g e L8 5 _—
years later, Schmldt( ) carried out a similar treatment for the



-3-

reflection and transmission of electrons through slabs of material.
By restricting the electron motion to be normal to the slabs, he ob-
tained the same equations as Stokes plus the differential equation for
the transmission function,

No further work was done until the 1940's when response func-

(3,4)

tions were used in radiative transfer by Ambarzumian and

Chandrasekhar(S' 6), in microwave transmission by members of the

M.I.T. Radiation Laboratory(7’ 8)

(9)

, and in neutron and gamma ray
penetration by Bobrowsky The microwave and neutron work was
similar to that of Stokes and Schmidt in that only '"‘right'' and ''left"
motion was considered,

Ambarzumian's work in radiative transfer using ""principles of
invariance'' was an innovation, however, in that angular dependence
was incorporated in the equations. These invariance principles were
generalized and used extensively by Chandrasekhar., In 1956 Bellman
and Kalaba(lo) coined the name '"invariant imbedding'' and suggested
its appliability to neutron transport. In the succeeding years
Bellman and co-workers have written many papers on invariant bed-
ding. Good reviews of this work are Bellman, Kalaba, Bailey, and

(11-14)

Wing This work provided a sound theoretical basis for the

invariant imbedding technique, but produced no realistic neutron cal-
culations as energy dependence was not considered. The first numer-
ical treatments of multi-energetic invariant imbedding were done by

(15,16) and Mathews et a1(17)

(18-20)

Beissner for neutron shielding and by

Shimizu and Mizuta for gamma ray penetration. The time-
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(21,22) (23, 24)

dependent work of Bellman et al was extended by Mockel

(25)

to include energy dependence. Finally, Mingle has done some
criticality calculations using invariant imbedding, but only for one-
energy transport,

In essentially all of this development it was the differential
equations that were used. The functional equations were only occa-
sionally mentioned as a curiosity. The one exception was the work by
Shimizu and Mizuta. They utilized a functional equation in conjunction
with the differential equations to obtain an efficient numerical scheme
for deep-penetration calculations.

Simultaneous with this development of differential equation
techniques, there were a number of independent studies using the

(26)

functional equations, Peebles and Plesset and Aronson and

34
Yarmush( ) considered angular - and energy-dependent gamma ray

penetration, while RibariE(27), Selengut(zg), Bl By 13 a1(29-31),
(32) (33)

Vértes , and Nuding considered neutron transport or diffusion,

In the meantime work was continuing in the field of microwave

transmission, In fact the scattering matrices introduced in the 1940's

(35)

had become standard tools in transmission-line and network analysis

and similar techniques were being used for mechanical vibration prob-

1ems(36"38)0 Because there was no angular dependence, the relation-

ship between the differential equations and the functional equations was

(39)

clearer, This motivated Redheffer to develop a general theory of
scattering processes encompassing microwave, light, and neutron

problems alike, It is this theory that shows that the differential
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equations and the functional equations are mathematically equiva-

(40,41) (42,14)

lent as stated previously. The work of Bailey and Wing

(43)

and Devooght has shown the equivalence between the invariant im-
bedding equations and the Boltzmann equation for neutron transport,
We thus have available several mathematically equivalent approaches
for transport problems,

As for numerical implementation, however, the different ap-
proaches are not at all equivalent, Response function approaches are
very efficient for slab geometry, but can be extended to other geome-
tries only with great difficulty. The invariant imbedding equations

have been derived.in spherical and infinite cylindrical geometry(44—46)

(47)

but numerical calculations have been done only for spherical shells
. . (31)
and two-dimensional blocks .
Finally note that all of the previous work has been theoretical,
Response functions are easily measured and thus particularly well
suited for experimental work, The feasibility of using experimentally

measured response functions to determine significant reactor physics

parameters will be the subject of Chapter IV.

D. Outline of Thesis

The outline of the thesis is as follows, Following the intro-
duction, Chapter II is devoted to the basic theory of response functions.
The response functions are defined in slab geometry and the functional
equations and differential equations are derived for both transport and

diffusion theory. The major new result in this chapter is the
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development of a halving scheme., Most of Chapter IV will be based
on this scheme,

In Chapter III we will discuss the purely calculational aspects
of working with response functions, It will be shown that for slab
geometry shielding problems, response function techniques are more
efficient than conventional Monte Carlo or Boltzmann techniques. Next
the utilization of response functions in criticality calculations is dis-
cussed. In higher dimensions the use of response functions appears
to be severely restricted because of their Green's function nature.
The chapter is concluded with a discussion of the invariant imbedding
equations in finite cylindrical geometry, which are derived, but not
solved, in Appendices A and B.

Chapter IV is devoted to possible experimental applications of
response function techniques. The most promising application appears
to be in cross-section determination, The halving scheme developed

in ChapterIl provides a theoretically sound technique for multiple scatter-
ing correction. Experiments canthus be done onmoderately thickslabs of
material. Theuse of response function experiments for direct deter-
mination of criticality is also discussed. Propagation of errors
through the ensuing calculations is considered for both the cross-sec-
tion and criticality determinations,

The last chapter summarizes the thesis and points the way

toward further research,



II. THEORY OF RESPONSE FUNCTIONS

A. Transport Theory

1. Definitions

First let us define the response functions and derive the equa-
tions governing them for time-independent processes in slab geometry.
Throughout we will speak of neutrons rather than photons, although the
same equations govern the transport of both.

Consider a slab of material of thickness x with an azimuthally
symmetric angular flux 6 (u -uo)ﬁ(E—EO) incident uniformly on the
left face of the slab (see Fig., 1). Then the resulting reflected and
transmitted angular fluxes, f+(x,u, E,uo, EO) and t+(x,;,L, E,po, EO),

are called the reflectionand transmission functions (or response

functions). Physically

Incident beam

(-1 )6 (E-E))

7

Transmitted beam

Reflected beam
+
o (x,u,E,uo,Eo) X

t+(x,u, E, b, E))



r+(x,u,E,po,Eo)du dE

= the number of neutrons per unit timme per unit area
reflected from a slab of thickness x into du about
-4 and dE about E due to an incident beam of one

neutron per unit time per unit area in direction Ko
: o y 2-1
with energy EO. (The incident and exit areas are ( )

measured normalto the neutron motion. Alsc u and
B, will always be positive. )

and

t+(X,}i, E, IJO: Eo)du dE

= the number of neutrons per unit time per unit area
transmitted through a slab of thickness x into du
about g and dE about E due to an incident beam (2-2)
of one neutron per unit time per unit area in direction
Mo with energy EO.

Thus r' and 1:+ are the Green's functions for reflected and trans-
mitted angular fluxes due to an incident angular flux from the left.
Consequently we can write the reflected and transmitted angular

fluxes for an arbitrary incident angular flux, §b+(0,u', E'), as

00 1
éu(o: -“:E) :S‘ dE'S‘ dp"r—*_(x:u',E:HI;EI)¢+(O:“':E') (2-3)
o [¢]
+ © i .1 |+ ! 1 + i !
qs (X:“:E) = dE du’ t (X:“:E:“ :E ){b (O:“‘ :E ) . (2—4)
O o

Since all our work will be numerical, we discretize the r
and ’c+ functions in both energy and angle. Suppose we have n

energy groups with mean energies E, . . . | En and widths
1

AE , . « « 3 AE_ and m directions K, . . « ; B with widths
1 n 1 m

Al ; » » = 3 A}J,m. Each combination of energy group and direction
1



will correspond to a state of the neutron motion to which we will as-

sign a new index. Thus U = = 10 MeV might correspond to state

Lu =.2, E =3 MeV to state 2; etc, Itis the state index which will
appear in all of the equations below. For n energy groups and m
directions, we have N= nXm states. This assumes, of course, that
we use the same energy mesh for each direction and vice versa. This

.(26)

is not necessary, though. As Peebles and Plesset pointed out, the

meshes can be chosen non-uniformly and so tailored to a particular

problem. For all our calculations, however, we will use uniform

meshes,

Let

(2-5)
+ =
rlJ(X) =T (X?“’:‘LJE ”J'J’E )
+,oy ot

Then Eqs. (2-3) and (2-4) may be written in the discrete approxima-

tion as
N
67(0) =) AwAEL T (2-6)
j=1
N
$50x) = ) APAE L (x}](0) (2-7)
j=1

If we further define

toy - +
p.lj(x) :A].LjAEjrij(x) (2-8)
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+ o +
'Tij(x) = A}.LjAEjtij(x) (2-9)
then Egs, {2-6) and (2-7) can be written as

$7(0) = p (x)6T(0) (2-10)

+

ot x) = )9t (0) (2-11)

where the ¢'s are N-vectors and p+ and 77 are NXN

matrices, which we will call the reflection ana transmission matrices

(or collectively the response matrices ),

In a similar fashion the reflected and transmitted angular

fluxes due to an incident angular flux qS-(x) from the right are

For a homogeneous slab no distinction between left and right

response matrices is necessary as p+(x) =p (x) and T (x)=7 [x),

2. Macroscopic Relations

The adding relations giving the response matrices of a com-
posite slab in terms of the response matrices of its constituent slabs
form the basis of the macroscopic response function approach,.

Consider a slab of thickness x + vy with an angular flux <[>+(O)

incident from the left (Fig. 2). Then the following relations hold:

$7(0) = p (x)p

0) +7 (x)¢ (x) (2-12)



=11~

/7 d)(X)\
%\\\ %‘(;y)
==

% 7(0) Ny
X y
Fig, 2
6T (x) = 7 (x)$7(0) + p (x)¢ (x) (2-13)
6 (x) = p (y)6 T (x) (2-14)
6T xHy) =TTy Tx) (2-15)

Eliminating ¢+(x) and ¢ (x) from these equations and using Egs.

(2-10) and (2-11), we have

+, -1+

- et )] et (0)

$7(0) = p ()87 (0) + 7 (x)p Ty ) I-p (x)p

o (x+y)4 T (0)

1

¢t x) = 7T I-p e ] et (0)

+ +
=7 (x+y)$ (0)
Since these equations hold for all incident distributions <[)+(0), we

have

P+(X+Y) = p+(X) + T_(X)p+(y)[1-p"(><)p+(y)] - T+(x) (2-16)

+ +

T (xty) = 7 (y ) I-p (x)p ()] T T(x) (2-17)

These functional equations we will call the adding relations. They
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were first derived in the context of neutron transport by Bellman

(11)

et al Similar relations hold for p (x+y) and 7 (x+y). To sim-
plify notation we will drop the + and - superscripts from now on,
When working with heterogeneous slabs, however, one must remember
to take them into account, Without superscripts, Eqs. (2-16) and
(2-17) are

plxty) = p(x) + T(x)p(y)[ I-p(x)p(y)] " 7(x) (2-18)

T(xty) = T(y) I-p(x)p(y)] ~ 7(x) . (2-19)

To obtain the adding relations we eliminated $ (x) and ¢ (x)
from Eqs, (2-12) - (2-15). This is not possible if [I-p(x)p(y)] is
singular, that is if

det[I - p(x)p(y)] =0 . (2-20)

This is the criticality condition about which we Wwill have more to say
later.

| Doubling relations are obtained immediately from the adding

relations by simply letting y = x, Then

-1

p(2x) = p(x) + T(x)p(x)[ I-p*(x)] — 7 (x) [Z-21}

eI - p200)] T T(x) . (2-22)

1

T(2x)

The doubling relations are explicit expressions for p(2x) and
T(2x) in terms of p(x) and T7(x). This leads one to ask whether it is
possible to invert these relations to get expressions for p(x) and

7(x) in terms of p(2x) and 7(2x), 1i.e. halving relations, So far we
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have not been able to obtain such expressions. An iterative scheme
for halving has been devised, however, which we will now describe.

First let us write the doubling relations (2-21) and (2-22) as
p(x) = p(x/2) + T(x/2)p(x/2)[ 1-p*(x/2)] " T(x/2) (2-23)
T(x) = 7(x/2)[ I-p*(x/2)] " T(x/2) (2-24)
Using (2-24) in (2-23) we have
p(x) = p(x/2) + T(x/2)p(x/2)7" (x/2)7T (x) (2-25)

Equations (2-25) and (2-24) then suggest the following iteration
scheme for finding p(x/2) and 7(x/2).
1 ' #
Prqs (5/2) = 5 {p (x/2) + p(x) =7, (x/2)p, (x/2)7 [} (x /2)7(x)}
(2-26)

Ty K12) = 3 {r (x/2) + [1-gF, (x/2)]7 ' (x/2)7(x)}  (2-27)

with
p (x/2) = 3 plx) (2-28)
'TO(X/Z): é—[l+7’(x)] ) (2 -29)

This scheme is more efficient than the one we described in Ref. 48,

requiring only one matrix inversion and five matrix multiplications per
iteration. A convergence problem still arises, however, when the
thickness x approaches the order of the mean free path of the lowest

energy group. Modification of the above scheme is then necessary.
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This will be discussed in detail in Chapter IV,

For an arbitrary thickness z we can use a combination of
doubling, halving, and adding to get p(z) and 7(z) from a given
o(x) and 7 (x) provided the slab is homogeneous. It is this ability
to get the response matrices at one thickness from those at another
thickness that makes this approach so useful. For a heterogeneous
slab we need the reflection and transmission matrices for a single

thickness of each material,

3. Response Functions and Cross-sections

The macroscopic relations derived above do not explicitly con-
tain any cross-sections., For a slab of small thickness, however, the
response functions are simply related to the cross-sections as we

now show,

———

Fig. 3
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Consider the slab of thickness dx shown in Fig. 3. Then the

relevant quantities and their corresponding physical interpretations

are listed below.

¢ =¢(0,u ,E ) angular flux (neutrons per unit time per unit
o o’ o o
area) incident on slab

collisions per unit time per unit volume due to incident

Zt(EO)qSO.
flux ¢
o
o i sy s g ! dx
collisions per unit time in Vo = AO — due to
o

Z(E ¥ A —:
th om0 0o,  incident flux qSO

- dx .

£l ol By B MUAE SE(E JS A 05 ki, By B JGUdE:
neutrons per unit time emitted from Vo into dy about

i with energy dE about E due to an incident flux ¢O (2-30)

where the frequency function

k(u, E,uo, EO) dudE = the number of neutrons emitted per collision
in du about g and dE "about E due to an

incident neutron moving in direction Ko with

energy Eo' (Fission as well as scattered
(2-31)

neutrons are included. )

Next define the transfer cross-section as

2, E,pg, E ) = Z(E_ k@, E,p_,E_) (2-32):
In terms of the scattering and fission processes
(2m 5 W= 1
dg T(Q-QL,E,E )+ >x (E)vZ[(E))  (2-33)

=, E,p, E) =j
(o]

where 5'50 = pp gt J1-p® l-ug cosg

From Fig. 3 we see that
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(2-34)

Otlo:‘>
>

Equations (2-32) and (2-34) in (2-30) yield

dx
f(d.X, ‘l”o,usE,lJ«O; Eo)dudE = Z(p” E:’J‘o! Eo)d’OA _II— le‘dE . (2—35)
Finally comparing Egs,(2-1) and (2-2) with (2-30) and (2-35) we have

r(dx,u, E, kg dEO)dudE

1
= X f(dx, 1, -u, E,po,EO)dudE

¢

dx neutrons
A BB B ) B e (&=dt)

and

t(dx, 4, E,Q, EJdudE
%
. dx neutrons
= [1-2E) ﬁ:) B(u-p )8 (E-E UdE =

1

T&

dx neutrons
+ 2B B ) d“dE} prr—ye ==l [e~87]

f(dx, 1,4, E,p, E JdudE

0,

(1- (E ) ﬁ)a(u-uo)a(E-Eo)dudE

3%

The first term in (2-37) is due to undeflected, transmitted neutrons,

Discretizing as in Eq. (2-5)

r..(dx) = dx 2-38
) = (2-38)

3%
In the en-

This factor is necessary for the units to come out right,
suing derivation, however, we will neglect it.
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1 + 2 gx (2-39)
i

where

ZE. EE(M-,Ei,uj,E-) (2-40)

Then

Zb

dx) = ALAE.7..(dx) = AR.AE. 3 dx
() = A ARy, WX} = AlAE, B

: L
L (dx) = ALAE.t. (dx) = |1 - —& dx| 6. . +AL.AE. —3 dx
Tjjldx) = ApARL(dx) ( by ) s R T

pij

or defining

gt

b
S.. EAU.AE,
“J J

4]

=

f
S.. = Au.AE.
1] HJ J

2

(2-41)

=

o(dx) = S dx (2-42)

r(dx) = (I-Mdx) + stax =T + (sf-myax . (2-43)

These are the equations relating the response matrices for a slab of

f

. . b
small thickness dx to the cross-section matrices S , S and M,
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4, Invariant Imbedding Equations

Using the adding relations (2-18) and (2-19) and the relations
(2-42) and (2-43) just derived, we can easily obtain the invariant im-

bedding equations., Thus to first order

p(x+dx) = p(x) + 7 (x)deX[I-p(X)dex] T (x)
= plx) + 7 {x)S%dx 7 (x)

T(x+dx) = [1+ (sT-M)dx] [1-p(x)sPax] ™" 7(x)

=[I+ (Sf-M)dx + p(X)dex]'T(x)

so that
o plx) = 7 (x)S°7 (x) (2-44)
o 7(x) = [px)s® + (sT-M)] 7 (x) (2-45)
Alternatively

p(dx+x) = deX+[I+(Sf-M)dX] p(x)[I- S dxp(x)] [I+ Sf M)dx]

= SPax+plx)(ST-Max plx)tplx)S ax plxtp St -M)dx

T (dxtx) = 7(x)[ I-dex p(x)] "[1+(-sf-M)dx]

<) 1+8Pax pix) + (ST -M)dx]
so that
2 p(x) = SPH(ST-M)p ) p (x)(S - Mo (x)5%p x) (2-46)
o}

2 rx) = Tx)[SPp(x) +(st- M) . (2-47)
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These last two differential equations are the invariant imbedding

equations in their usual form, although Eqs. (2-44) and (2-45) are

equivalent, Our derivation is essentially the same as that given by

(23) (4)

Shimizu and Mizuta(lg) and Mockel Ambarzumian and

Chandrasekhar(s) derived these same equations" from the transport
equation using ""invariance principles.'' Detailed particle counting has

(11,12)

also been used , while more recently general mathematical

procedures have been developed to go directly from the transport

(14’43). This is useful

equation to the invariant imbedding equations
when working in more complicated geometries.

For numerical purposes it is advantageous to separate the

undeflected transmitted flux from that which is scattered(lé). Thus
we define 7° and 7° by
T(x) = 7°x) + 7" (x) (2-48)
o - t _ _ _
ij(x) = exp(—Z‘,ix/ui)éij = exp( Mi_jx) : (2-49)

Then the differential equation for the scattered transmission matrix is

2 7%x) = ST )Sp S (k) (ST -MM TS (x)SPp (%) (2-50)

which bears some resemblance to the reflection equation (2-46),
From Eqs, (2-42) and (2-43) we see that the response functions

satisfy the initial conditions

p(0) =0 (2-51)

¥ Although in considerably different notation.



7(0) = I (r°0) =1 , 7°(0)=0) . (2-52)

Before moving on to diffusion theory, we note that the so-

(11)

called Stokes' relations are obtained by comparing the right-hand

sides of Eqs., (2-44) - (2-47). Thus
T(x)S°T(x) = §° + (S5 -Mplx) + plx ST -M)+p(x)S p (%) (2-53)
[px)sP st -M)] T(x) = 7x)[SPp(x)t(sE-M)] . (2-54)

These equations will not be used in this thesis. We will return to the
invariant imbedding equations, however, when we discuss calculation-

al techniques in Chapter III,

B. Diffusion Theory

1. Definitions and Macroscopic Relations

For the diffusion theory treatment we will work with right and

left partial currents instead of right and left angular fluxes. Then

for a slab of thickness x with an incident current _j;_(O) in the jth

of n energy groups (see Fig. 4), the ith group reflected current is

j(0) = ) R..(x)i"(0) (2-55)

and the ilCh group transmitted current

Z X)J 0) (2-56)

or in matrix form



3

R (x)iT(0) (2-57)

—

—_
(@]

~
1

T (x)t0) . (2-58)

| S
=
"
~
i

R (x) and T (x) are the reflection and transmission matrices or col-

lectively the response matrices for the diffusion theory approximation,

The energy interval AEi does not appear in Egs. (2-55) and (2-56)

j (%)

|
AN

as it did in Eqgs. (2-6) and (2-7) since AEi is lumped within j:it(x) as
is customary in diffusion theory. Thus Rij(x) gives the current in
group i reflected from a slab of sickness x due to a unit incident
current in group j, and similarly for Tij(x)’ In order to obtain well-
defined response matrices, we assume that the angular distribution of

the incident and exit currents is the same. Equations (2-57) and (2-58)
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are precisely analogous to Eqgs. (2-10) and (2-11) in the transport
theory development, Identical arguments then lead to the diffusion

theory adding relations

R(xty) = R(x) + T(x)R(y)[ I-R(x)R(y)] ~ T(x) (2-59)
Tlety) = T(y)[ I-R(x)R(y)] ™ T(x) (2-60)
and likewise to the doubling relations and halving scheme.

2., Invariant Imbedding Equations

The diffusion theory invariant imbedding equations can be

obtained directly from the adding relations and the relations

R(dx) = Pdx (2-61)

T(dx) = I + Qdx (2-62)

which are the analogues of Eqs, (2-42) and (2-43) in the transport
theory case., The matrices P and Q are related to the cross-sec-
tions in a manner similar to their transport theory analogues and
presumably can be determined from detailed microscopic considera-
tions as in Section II, A, 3, although this has not been done.

Instead we derive the invariant imbedding equations directly

from the multi-group diffusion equations using the mathematical pro-

cedure given by Bailey and Wing(14), The multi-group diffusion equa-
tions may be written in slab geometry as(49)
d* ;‘ 6
D, — o + = 0 2-63
j o2 4Tt /B it x)vz)kqs (2-63)

k#j



d
J. = -D. — ).
J j dz %

or in matrix form

J+S$p =0

&le

$+32T =0

&la

where
[1/3D 0
1

0 1/3D .
2

™
m

Define

Then

=23 -

(2-64)
(2-65)
(2-66)
(2-67)
zn—*1+xl(v2f)n
zn—>2 +X7_(vzf)n
.(2-68)
-Zr +Xn(v2f)n
n _
(2-69)
(2-70)
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<~
1

2(utv) (2-71)

J=u-v . (2-72)

Using these expressions in (2-63) and (2-64) we obtain

%u-Qu—PV:O (2-73)

. 2-74

EV'!‘P’CL'*‘QV:O (— )
with

PES.JF?TZ (2-75)

st-%z (2-76)

Now define ul(z) and vl(z) to be those solutions of (2-73) and

(2-74) such that

[0 ] o] 1

i i .

u(0)=(0 s vix)= |1 i (2-77)
LO il i 0 ] n

that is, ul(z) and vl(z) are the partial currents due to a unit partial
current in group i incident from the right on a slab of thickness x.
If we further define

U=[ulv? . . . u"]
(2-78)

Ve[HVE L L L v
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then U and V must satisfy Eqs. (2-73) and (2-74)

2 U(z,x) = QU(z,x) + PV(z,x) (2-79)
5%— Viz,x) = - PU(z,x) - QV(z,x) (2-80)

with the boundary conditions
U0, x) =0 (2-81)
Vi, x)=1 (2-82)
where we have explicitly included the slab thickness x as an argumen
in U and V., Comparison with Egs, (2-57) and (2-58) shows that
R(x) = U(x, %) (2-83)
T(x) = V(0,x) (2-84)

The invariant imbedding equation for R -is obtained by con-

sidering
9

oy R(x) = Ul(x,x) + UZ‘(x,x) (2-85)

where the subscripts denote partial differentiation. U (x,x) is
1

obtained directly from (2-79) as

U (x,x) = QU(x,x) + PV(x, x)
1
=QR(x)+ P . (2-86)
To get U (x,x) we note that Uz(z,x) and V (z,x) satisfy the differ-
2 z

ential equations (2-79) and (2-80) with boundary conditions slightly

different from (2-81) and (2-82). Specifically
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|

5 Ul(z,x) =QU (z,x) + PV (z,x) (2-87)

VA 2 p A 2

8. v e x] 5 = PU (z,2) -0QV to, %] (2-88)

gz 2 2 z

UZ(O,x) =0 (2-89)

V (X:X) = = V (X,X) . (2_90)
z 1

Because the systems of equations are linear, U and V  are related
2 2

to U and V by

U (2,%) = - Ulz,x)V_(x,x) (2-91)

Vz(z,x) = - V(z,x)Vl(x,X) : (2-92)
In particular

U (x,%) = - Ulx, %)V, (x, %)

U(x,x) PU(x,x) + QV(x,x)]

R(x)[ PR(x)+Q] . (2-93)

Substituting (2-86) and (2-93) into (2-85) we finally have

% R(x) =P + QR(x) + R(x)Q + R(x)PR(x) . (2-94)

Similarly for T we have

o Tle) =V (0,%)

- V(O’ X)Vl(xsx)

V(0,x)[ PU(x,x) + QV(x,x)]

T(x) PR(x) + Q] . (2-95)
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Equations (2-94) and (2-95) are the diffusion theory invariant imbedding

equations analogous to their transport theory counterparts, Eqgs. (2-46)
and (2-47). For numerical solution in the diffusion theory case, it is
not necess ary to separate the transmission function into its deflected
and undeflected parts as we did in transport theory (cf. Eqs. (2-48)

and (2-49) ).

3. One-group Response Functions

In thecase of one energy group we can obtain analytic expres-
sions for the response functions. Although the quantitative results are
only of academic interest, the qualitative behavior is similar to that in
the general multi- group problem,

The one-group diffusion equation in slab geometry is

a2 ) vzf—Za
- ba)+BYE) =0 5 Bz —p (2-96)
z
which has the genéral solution
$(z) = asinBx + B cos Bx . (2-97)

If the slab extends from 0 to x with an incident unit current from

the left, then the boundary conditions are

i) = 3 o)+ 24 = 0 (2-98)
701 = 8000 - 2 g0y =1 (2-99)

Substituting (2-97) into (2-98) and (2-99) we can solve for the constants

a and B to obtain
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sin B(x-z)+2DB cos B(x-z)

$(z) = (2-100)
[+ -(DB)*] sin Bx+DB cos Bx
so that the response functions are
Rix)=37(0) = 5 6(0) + 2 ¢1(0) = [5+(DB}]sin Bx (2-101)
[3-(DB)] sin Bx+DB cos Bx
T(x) =7 (x) = —,}d»(x) - %¢'(x) = DB (2-102)

[ -(DB)?] sin Bx+DB cos Bx

Finally defining

[£+(DBY ] (2-103)

o=

P

[3-(DBY] (2-104)

O
T
1
ol

(which is consistent with Eqs. (2-75) and (2-76) ) we have

P sin Bx

Big) = -Q sin Bx+B cos Bx Aslis)
B B
T(x) = Q) sin Bx+B cos Bx _ P sin Bx Rix) . {2~106)
In the case of a non-multiplying medium
z Za
- b e S e 2 -
Zf = 0 so B" = D ="K (2-107)
B2 [kl = ponB (2-108)
o R T4 a
Q= - -1 [Z+(Dk)] = - A = (2-109)
R - 4D &
and
Bix] = P sinh kx (2-110)

-Q sinh Kx+K cosh Kx
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K
Tixl = -Q sinh Kx+K coshKkx . (2-111)

Equations (2-105), (2-106), (2-110), and (2-111) were first derived for

(28)

neutron diffusion by Selengut and Mizuta (in Shimizu(zg)), although

Stokes(l)

had obtained the analogous equations for light a hundred years
earlier,

Representative response functions are plotted in Fig. 5 for both
a multiplying and non-multiplying material. Note that in the multiply-
ing case there is a critical thickness X for which R and T become

infinite, This critical thickness is obtained by setting the denominator

of Eqs., (2-105) and (2-106) equal to zero, Then

-DB

tanBx_ = — 22— (2-112)
[%-(DBY]
or
Bxc 1

which is the usual diffusion theory result for the boundary conditions
j7(0) =0 and j (x ) =0,

Using Eq. (2-112) in (2-105) we also have
R(x /2)=1 . (2-114)

More will be said about this relationship in Section C of the next
Chapter. Note alsc that (2-114) can be obtained directly from the

doubling relation

» ROx/2)T/2)
1-R%(x/2)

R(x) = R(x/2)
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4 T I I I
2,sz" a _ O R(x)
B 5 —32“(0 )
3—' = I
D =
3
z” T(x)
. V2f+25
ol ztr
|
Xe =4.457
| |
1%— '
| L 4 | | '
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Fig, 5a Response functions for multiplying material

with 2 =1, ¢ =1,1 (D =1/3, B® = .3).

2 I ] ! |
K2=‘82
I
R(x)
| | | |
0] | 2 3 4

x (mfp)
Fig. 5b Response functions for non-multiplying material

with Z,_ =1, ¢=.9(D =1/3, k% = .3).
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III. USE OF RESPONSE FUNCTIONS IN CALCULATIONS

A, Albedo and Shielding Problems

All previous work with response functions has been concerned
with utilizing them calculationally. It is apparent that the techniques
we have developed are immediately applicable to certain problems,
for example albedo and shielding problems, since here the quantities
of interest are precisely the reflection and transmission functions,
respectively,

Albedo (i.e. reflection)problems arise primarily in astro-
physics, however, and are of only limited importance in reactor

(50)

physics. Bellman et al have done extensive one-speed calcula-
tions using straightforward step-by-step integration of the invariant
imbedding reflection equation. As we pointed out in a recent artic1é49),
a considerably faster procedure is to do one numerical integration of
both invariant imbedding equations and then go to larger thicknesses
using the doubling relations,

Shielding problems, on the other hand, are of considerable

importance in reactor physics. Response functions have been used by

Beissner(IS’ La) and Mathews et a1(17) for neutron penetration and by
26 s
Peebles and Plesset( ), Shimizu and 1\/['1ZULta.(18 20), and Aronson and
34
Yarmush( ) for gamma ray penetration,

Mathews et al developed an exponential integration technique
to solve the invariant imbedding equations., Although more efficient
than the Runge-Kutta or finite difference methods, their exponential

method is still a step-by-step procedure. If instead one doubles
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after the first integration step, the computation time for large thick-
nesses is greatly reduced. Table I shows a time comparison between
this latter technique (D + II) and that used by Mathews et al (II). As
can be seen, the D + II method is significantly faster, especially for
the thick water shield. Since Mathews et al indicated that their cal-
culations were competitive with Monte Carlo for thick shields and with
discrete ordinates for anisotropic scattering, it appears that the

D + II method isthe best available for these particular problems and
probably for more general problems as well. As a guide for further
calculations, an approximate graph of doubling time vs. matrix size
is given in Fig. 6.

Note that more than half the computation time for the D + II
calculations was spent generating the response matrices using the
Runge-Kutta method. Perhaps a better starting technique would be to
use Eqs., (2-42) and (2—43).to generate the response matrices for a
very small thicknéss. Although more doubling would then be required,
the initialization time would be less. Thus the total time should be
comparable while the programming would be much simpler.

(18-20) have introduced a modified trans-

Shimizu and Mizuta
mission function which satisfies an even simpler doubling relation
than Eqs. (2-21) and (2-22), An additional approximation must be
made, however, to calculate the modified transmission function. Al-
though their doubling technique should actually be slightly faster than

ours, they have not redone Mathews' calculations (Table I) so no

direct time comparison can be made,
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B. Criticality Problems

Although it is less obvious, we can also use response functions
to calculate criticality. Throughout the previous sections of this
thesis we have assumed that the response functions were well-defined,
For a slab of multiplying material, however, there exists a critical
thickness above which the response functions are not defined. As the
slab thickness approaches this critical thickness from below, the
response functions approach infinity due to neutron multiplication,

Thus a straightforward technique for determining criticality
is to calculate the response functions for increasing slab thicknesses
until they become infinite. Using invariant imbedding one need only

(25)

consider the reflection function, Mingle has taken this approach,

although for numerical reasons he makes the transformation,

Alx) = &)1 (3-1)

The reflection equation (2-46) can then be re-written as a differential
equation for A with initial condition A(0) = -1 and critical condition
A(Xc) = 1. The differential equation for A is then integrated step-by-

step to obtain the critical thickness X Numerical results are
. (25) . .
given assuming mono-energetic transport and ¢ (the number of
secondaries per collision) = 2,
An alternative statement of the criticality condition was given

in Chapter II as

det[I - p(x)p(y)] =0 (2-20)

for a slab of thickness x + y. This is a special case of the more



Bl =

general relation
det[ NI - p(x)p(y)] =0 . (3-2)

(29) (27)

As shown physically by Shimizu and mathematically by Ribarid ;
the largest eigenvalue )\O (i.e. the spectral radius) is the multiplica-
tion constant. Thus the criticality condition (2-20) is simply that the
spectral radius )\O = i,

LS8l used Eq. (3-2) with x = y to determine the

Shimizu et al
multiplication constant of a symmetrical slab reactor with various
reflectors. The reflection matrices were calculated exactly using two-
group diffusion theory for a fixed thickness and composition of the
reactor,

It is also possible to use response matrices for a criticality
search on the thickness. By generating the initial response matrices

by invariant imbedding and then using adding and doubling¥ together

with the criticality condition
det[I - p?(x)] =0 (3-3)

(i.e. Eq. (2-20) with x =vy), we can develop an efficient procedure
for the criticality search, A flow chart of this procedure for a two-
region, symmetrical slab reactor is given in Fig. 7. The actual im-
plementation of condition (3-3) is based upon the observation that for
a subcritical reactor det[I - pz(x)] > 0, while fof a supercritical

one det[I - p%(x)] < 0.

>'<H::leing is avoided as it is slower than adding and doubling,
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Two-region, symmetrical slab reactor

Given: 1. Core composition
2. Reflector composition

3. Reflector thickness, X

Calculate: Critical thickness, X % 6

( START )

\

Calculate p(e) and T7(e)

for Reflector Material Invariant
where ¢ =x /2% for Imbedding
i

some Integer n

/

Double n Times
to Obtain p(Xr) Doubling
Y
Calculate p(6) and 7(6) Invariant
for Core Material Imbedding
Calculate p(xn+6)
X = Xr'H)
% = Adding
1

Fig, Ta
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Calculate Calculate

p(X+Xi) P(Xi) and T(Xi)

i=1-1
- e e e ) S —
l - Calculate [
| —f p(x+xi) l
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| |
l X = Xtx. ]
i

| |
| |
| |
l i=1-1 s l
| l
| |
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( STOP ) is between x and x + §

Fig. Tb
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As might be expected this procedure is considerably faster
than the step-by-step integration performed by Mingle. The time
(25)

comparison for the problem considered by Mingle is given in
Table Il

Generally one is interested in more than just the critical thick-
ness. Response function techniques can also be used to get the inter-
nal neutron distribution., Thus at critical, no incident flux ¢+(0) is

necessary to maintain an internal neutron flux, Equation (2-13) then

becomes

37 (%) = px) " (x) (3-4)

which together with Eq. (2-14)

6 (x) = ply) ¢ (x) (2-14)
gives

[1- px)p(y)] ¢ (x) =0 (3-5)

[I-plylpx)]¢ (x)=0 . (3-6)

Hence the angular fluxes ¢+(x) and ¢ (x) are just the eigenvectors
corresponding to the N =1 eigenvalue for the matrices p(x)p(y) and
o(y)p(x), respectively, For a symmetrical reactor we can set y = x,

find the solution $7(x) = ¢ "(x) to

[1-p%(x)] % (x) = 0 (3-7)
and use the relations

6 (x+h) = 7 (M) (x) - p()p7

)l (3-8)
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$(x+h) = 7(h)p T (x) + p(h)$ (x+h) (3-9)

(cf. Egs. (2-12) and (2-13)) to get the angular flux at increments of
thickness h within the reactor.

Shimizu et al(30) have carried out this procedure in the dif-
fusion theory case and have shown it to be much faster than the con-
ventional finite difference method of solution.

Unfortunately in the transport theory case, the stepping proce-
dure given by Eqgs. (3-8) and (3-9) is numerically unstable. One can
still use Eqs. (3-5) and (3-6) to obtain accurate angular fluxes. The
normalization, however, is arbitrary so that if one wants to relate
the flux at one point to that at another in order to obtain a spatial flux
shape, some sort of stepping proceduré is required. As only Egs.

(3-8) and (3-9) have been tried, it may be possible to find a simple

alternative which is stable,

C. Other Geometries

As reactors are never made in the form of infinite slabs, it is
clearly desirable to have criticality techniques which are applicable
tc more general geometries. To this end Aoki and Shimizu(3l) ex-
tended their response matrix method to two-dimensional reactors
made up of rectangular rods, The response matrices of each rectan-
gular rod were calculated exactly using two-group diffusion theory.

An iterative procedure was then used to obtain the criticality constant

and internal flux much faster than the conventional finite difference



-42 -

method, This technique, however, is limited to two or at most three
energy groups, since the response matrices are obtained analytically
for each rod.

Another possibility for extension to other geometries is to gen-
eralize the invariant imbedding equations, For example, in spherical
and infinite cylindrical geometry the invariant imbedding equations can

(44-46) and perhaps solved(47), but the doubling relations

be derived
no longer hold, Without them it becomes necessary to integrate the
invariant imbedding equations step-by-step which is prohibitively
time-consuming for matrices of order larger than about 10.

For a finite cylinder, however, made up of disks as in a stack
of coins, we can obtain doubling relations. Now, though, the incident
beam is no longer introduced uniformly, but rather as a 6 -function in
the radial variable on the top of the cylinder as suggested by

Ma’chews(51 ).

The resulting problem in the transport theory case is
similar to the ''searchlight problem!' considered previously by
Chandrasekhar(sz). Mathews' mathematical statement of the problem
is incomplete, however, and no derivation was given., In Appendices
A and B we derive both the transport and diffusion theory invariant
imbedding equations, although we have been unable to solve them.

The source of the difficulty is the presence of radial 6 -function terms
in the equations due to the incident beam. If these terms could be
handled in some fashion so that the invariant imbedding equations

couldbe solved for a thin disk, then the adding and doubling relations could

be expected to provide an efficient means of calculating the critical height.
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IV. FEASIBILITY OF USING RESPONSE
FUNCTIONS IN EXPERIMENTS

Two kinds of experiments are presently being used in fast re-
actor physics, cross-section experiments done on small samples of
materials and critical experiments done on full-size mock-ups of pos-
sible reactors. Both have notable shortcomings; cross-section exper-
iments are time-consuming, while critical experiments are expensive.
Much of the incentive for this thesis was provided by the possibility
of doing response function experiments on moderate-sized samples as
an alternative to the differential and integral experiments mentioned
above. In this chapter we will show how one can use response func-
tion experiments both to obtain cross-sections quicker and critical
information cheaper than at present. The required experimental set-
up will be described followed by a study of how errors in the measured

response functions propagate to the final quantities of interest.

A. Cross-section Determination - - Multiple Scattering Correction
1. Fast Cross-sections
A major stumbling block to accurate.fast reactor calculations

at present is the inaccuracy of many important cross-sections. Sen-

sitivity studies(53_56) have shown that improvements in calculations
-3
can come only with improvements in cross-section measurements.

“The situation is summed up by Greebler in (54) with "It is evident
thatthe present status of fast reactor cross-sectioninformationis very
confusing. Until this is resolved by a suitable program of energy
point-wise and integral critical measurements, physics predictions of
fast power reactor performance will remain highly unreliable. "

(p. 32)
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Cross-section measurements, however, are difficult to carry out be-
cause they are differential in nature and because the various inter-
action processes must be separated. Moreover cross-sections are
required for all constituent nuclides of a proposed reactor. Using
this detailed microscopic information, an equivalent homogeneous core
is calculated and average group cross-sections for the homogeneous
material are obtained. They are then further combined into cross-
section matrices which can be used in diffusion or transport calcula-
tions. A long, involved procedure(57) has been used to get from

the detailed microscopic information to the cross-section matrices.
It is the latter, however, that the reactor designer needs for his
calculations. He is not much interested in the details of how they
were obtained and in fact would prefer to avoid such tedious cross-
section preparation procedures. Response function experiments pro-
vide a straightforward procedure for directly obtaining cross-section
matrices for reactor design.

Response functions are first measured for some moderate
thickness of the material of interest. The halving scheme developed
in Chapter II then allows us to obtain response matrices for a differ-
ential thickness of the same material. Finally the cross-section
matrices are simply related to the differential response matrices as
shown previously (Egs. (2-42) and (2-43) ).

The advantages of this technique for cross-section determina-
tion are

(1) The experiment is integral rather than differential
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with respect to the thickness of the slab, since the halving scheme
essentially provides us with a sound technique for multiple scatter-
ing correction, and

(2) The separate interaction processes, such as fission,
capture, inelastic scattering, and elastic scattering, need not be
separately measured. Rather the cross-section matrices obtained
are precisely in the form needed for input to a sfandard diffusion or
transport theory code (see Appendix C). This point is most signi-
ficant. It means that cross-section preparation problems are re-
placed by response matrix measurements. The measurements can
be made on the same material to be considered for use in a reactor
and may be slab-wise inhomogeneous. The halving technique will then

produce homogenized cross-section matrices.

Description of experiment

Measurement of the transport theory response matrices

requires knowledge of the incident neutron angle and energy as well

oo
b3

as the exit neutron angle and energy. This can be accomplished
with the experimental set-up of Fig. 8, which is analogous to that

described by Orphan, Carlson, and Hoot(58)

for gamma-rays. An
electron linear accelerator sends pulses of electrons into a heavy

metal target (e.g. U or W). The electrons are decelerated pro-

ducing bremsstrahlung which in turn produces neutrons by (y,n) and

% . . 4 : :
The diffusion theory matrices are simply obtained from the .
transport theory matrices by angular integration.
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Fig. 8 Schematic of Experimental Set-up.

¢
(y,f) reactions. The resulting pulse of neutrons travels down a
flight path of ~ 15m to the slab of material for which the response
matrices are being measured. Energy sensitive neutron detectors

(68, 61)) are placed at

(e.g. proton-recoil or Li6 sandwich detectors
various angles with respect to the slab. A time-of-flight measure-
ment determines the energy of the incident neutron while pulse-

height analysis determines the exit neutron energy. Thus both

incident and exit energies are obtained in a single measurement.

“For a uranium target the'. . . photoneutron-photofission spectrum
is similar to the neutron-induced fission spectrum." (p. 525 of Ref.
59) It would probably be desirable to add a small amount of thermal-
izing material to the target in order to obtain a broader, lower
energy spectrum. '
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Similarly measurements canbe made for all exitangles simultaneously.
Thus for each exit angle 6 i detectors are placed at various
azimuthal positions in order to carry out the azimuthal integration
necessitated by our definition of the response functions (cf. Fig. 1).
Clearly many detectors will be required. By doing the azimuthal
integration with the detectors, however, we can take advantage of
symmetry to introduce the incident neutrons as a parallel beam,
rather thaninthe conical fashionindicatedinFig, 1, To obtain complete
response functions the slab must be rotated and the measurements
repeated for different incident angles, Gj.

In order to use the halving scheme developed in Chapter II,
we must convert the measured response functions to response matrices
by introducing a group structure in both energy and angle. Although
it is desirable to use as many groups as possible to avoid flux weight-
ing problems, the order of the matrices involved is the product of the
number of energies times the number of angles. In practice this will
probably limit the fineness of the energy and angular meshes so that

the resulting matrices are of order 100 or less.

Expected count rates

An order of magnitude estimate of the expected detector
count rates can be made, based on the characteristics of the General

Atomic LINAC. For a uranium target (see Fig. 8) the average neutron

(62). For a 15.5m flight path this

(58)

yield rate is 2X 10" neutrons/s

produces a collimated, 15 cm diameter beam Thus the number
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of neutrons per unit time incident on the slab sample is

w(7.5)
4m(1550)

X2X 101 2K 109 neutrons/s

In the next sub-section we will show that the optimum slab thickness
is about half a mean free path. Assuming an average value of = 5

for the incident direction, then a fraction

-(Zx/u) y
1 -e k :1—e1=.6

of the incident neutrons will interact with the sample (cf. Eq. (2-49) ).
The materials of interest in fast reactors are generally either slightly
absorbing (Na, Fe) or slightly multiplying (PuC—UC,PuOZ—UOZ). In
either case the fraction leaving the slab after experiencing an inter-
action will be roughly the same as the fraction interacting. Accord-
ingly the number of neutrons per unit time a.rising from an inter -
action and leaving the slab will be about

9

6 X1,2X10 :7)(108 neutrons/s

If these neutrons were to leave isotropically, then a detector positioned

%
l.5m away would receive a flux of

2 3
L) X 17X 108 = 8 X 107 neutrons/(cm?s)
4m(150)

|
This compares with a flux level of 10° cm”™ s for Bennett's

“This distance is expected to give adequate angular resolutionneeded
to account for the fact that the exit angular flux is not actually iso-
tropic. Obviously a smaller distance would be desirable to increase
the flux.
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(63)

proton-recoil measurements swhich gave a count rate of 2500
counts/s split roughly half and half between neutrons and background

gammas.

Sensitivity of cross-sections to the experimental slab thickness

Given the material to be studied and the experimental set-up,
the only remaining experimental variable is the slab thickness. Large
thicknesses are desirable because of higher counting rates, hence
less statistical error in a given time. As the slab thickness increas-
es, however, the propagation of errors from the measured response
matrices to the calculated cross-sections through the halving technique
increases. The resultis that there is an "optimum" experimental
thickness which "minimizes' statistical errors in the cross-sections.

In order to make this quantitative, we have simulated experi-
ments on various thicknesses of the PuC-UC core material con-

(53)

sidered by Moorhead in his sensitivity study Using 5 energies

and 2 angles, response matrices were generated at several thicknesses
of material from the assumed cross-sections. To simulate experi-
mental statistical errors, we added normally distributed errors

(with a 1% standard deviation) to each element of the response matri-

ces. Using these response matrices we then halved down to a small

10

thickness (2~ ~ cm) to obtain the "experimental® cross-sections.

“With one exception - - for small thicknesses no errors were added
to the main diagonal of the transmission matrix as these elements
are due mainly to the undeflected beam and would be known more
accurately than the others.
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Finally these "experimental" cross-sections were compared to the
assumed cross-sections. The resulting differences in the cross-
sections were random (although correlated to the imposed response
matrix errors) and the standard deviation of their differences gives
a measure of the propagation of error through the halving procedure.
The actual results of this study are given in Table III. In the
first row no errors were imposed on the response matrices (first two
columns), The resulting errors in the calculated cross-sections (suc-
ceeding columns) are negligible and are due to the higher order terms
in the relations (2-42) and (2-43). The succeeding rows in Table III
simulate five experiments at each of four slab thicknesses. The

standard deviations (0, and O‘F) of the cross-section errors are

b g

averaged at each thickness to give a quantitative measure of the prop-
agation of error. These errors increase with increasing slab thick-
ness as shown in Fig. 9. The count rate errors, however, decrease
with increasing thickness as mentioned before. The "optimum"
lexperimenial thickness is that for which the rate of increase of the
propagated errors with increasing thickness is equal to the rate of
decrease of the count rate errors. A quantitative measure of these

| (64)

rates is the sensitivity, commonly used in control systems theory

e o
The sensitivity Sx is defined as the percentage change in ¢

per percentage change in x. Mathematically

& = 85 /o

b’e ox/x (4-1)



=B ]

"S$95S0UNDIY} 9S9Y]} 3B XII}BW UOISSIWSURI} 9Yj JO [RUOSRIP UTRW 9} O} POPPE 2I19M SIOIID ON,,

C'¢T  €S5°L | 2€'e 187 |S8°T  WL'T | LE'T 1€°T || €01 10°1 odeiaAy
L'%1 9%°L | €1°¢ 982 |#9°T L9°T | $2°1 L2°1 || 86" 001 G
I°¢l 22°L | 6F°¢ €62 |L6°T 1L°1 |S%'1 L2°T || 0071 G6 " ¥
$°21 ¥L°9 | 9%°¢ 8%z |¥0°Z 19°T | 261 GZ'1 || 60°T €0°1 ¢
2°21 22°L | 6£°¢ 90°¢ |98°T S8'1 | €€°1 6 1 || 00°1 €01 Z
0'FPT 106 | #I°¢ $0°¢ |9L°'T S8°T | 2€°1 8¢°1 || 90T 20°1 i
- - - - - - - - - - - - - = = = = - - uswraadxd,,
€0 L0° %0 $0 ° %0 %0 %0 %0 0 0 [0 130D,
E q 3 q 3 q q (X)L (x)g (%)
Yo) o Yol fel 0 0 mb 0 Yo) Yol uotjerasd
pIepuels
wio Q) "§ wo (g ' 7 7 0D 0°1 22 G"* X SSoUMOIYT,

Apnig sxoxxy jo uorjededord
IITI HTdV.L




52~

16 I I I
-0
° |2}~
=
o
'__.
<
o 8k
Q
(&)
c
<
Q
= B
< 4
(¥p]
| | |
0 | 2 3 4

Fig. 9 Propagation of error as a function
of experimental slab thickhess,

| "optimum"
/thickness
0 | 2

x (cm)
Fig. 10 Determination of "optimum!'' thickness,




-53-

I T I |
Ej1|.35—IO MeV M) = i
0.2 E;:0.30 — .35 MeV 079 =0.79
ol N
L
Q
_l(l)
b 7
£
(i ) 0.2l = 0.79 -
a 0.79 = 0.21
3
o) | | l l
[ | I I
S E;: 0.30-1.35 MeV 0.79 =079 -
T
>
(]
TU)
O
£
S Ol i
ol 0.21 = 0.79
i 0.79 - Q.21
& | 1 | o_]2| — 0.2]
© e . 6 8 Ie)

x (cm)

Fig., 11 Representative response matrix elements
for. PuC-UC mixture,



B4

The sensitivities of ¢, and g, are obtained by graphically differ-

b
entiating Fig. 9 and are shown in Fig. 10. To calculate the sensitiv-
ity of the count rate error, we note that if n neutrons are counted,

)

.. . 65 . ]
the statistical error is f_;l— ( Thus the relative count rate error is

For thin slabs the count rate increases nearly linearly with thickness

as shown in Fig. 11. Thus we can write

for some constant n» and hence

I BGC/JC « oo 1

Sx T ox/x JT ox 2

From our previous remarks, the "optimum'' thickness is just that
for which the magnitude of this sensitivity is equal to that of the prop-
agated error sensitivities. For the PuC-UC core material this
occurs at about .9cm (see Fig. 10).

No§vhere in the above have we mentioned systematic errors
due, for example, to fluctuations in the incident beam strength and
uncertainties in the detector efficiencies. In practice they may well

determine the actual accuracy attainable.

Halving difficulty

In Chapter II we mentioned a difficulty in halving when the
slab thickness approaches the mean free path of the lowest energy

group. For the material and group structure just studied this
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thickness is about 2 cm. At this thickness some of the curves in
Fig. 11 have begun to flatten out or even decrease. For "thin" slabs
only 3 - 5 iterations are generally required for halving. However,
for 1. 0 cm of the PuC-UC core material, 12 iterations were required,
while for 2.0 cm the scheme given by Eqgs. (2-26) - (2-29) oscillated
and eventually diverged.

In order to overcome this instability, various ad hoc strate-

gems have been tried. First the halving scheme was "symmetrized"

to
oy (K/2) = 1/2 p, (x/2) + 1/4{2p(x) -1 (x/ 2)py s/ 2)7y7 (x/2)7(x)
+7()7 7 (x/2)py (x/2)7, (x/2)}
T (6/2) 21727 (x/2) + 1/4{[1-p% , (x/2)] 7y, (x/2)7(x)

-1

+'7'(x)’rk (x/2)] I-p21-<+z (x/2)]}

This produced convergence for x= 2.0 cm (after 20 iterations) but
not for x = 4. 0cm. To achieve convergence for greater thicknesses
a convergence parameter ''a'was introduced to give the following
iteration scheme

brsy (/2) = (1-a)p, (x/2) + a/2{2p(x)-7, (x/2)p, (x/2)7} " (x/2)7(x)

+T()T] (x/2)py (x/2)7 (x/2)}

L x/2) = (L-a)r (x/2) + a/2{[1-p}, (x/2)}7,  (x/2)7(x)

+T(x)7 (x/2)[ 1-p%  (x/2)]}

Tx
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By making''a' smaller as the number of iterations increased, conver-
gence was achieved for a thickness of x = 4.0 cm after 30 iterations.
At 8. 0cm the procedure was apparently converging, albeit very
slowly, and so was stopped after 100 iterations with "small" (~10-3)
relative errors in the elements of the halved matrices.

Due to the complexity of the equations, no analytical treatment
of when this procedure will converge has been given. However, in
practice, the halving difficulty is not especially significant since the
Yoptimum'' experimental thickness is less than that for which the

problem arises.

2. Thermal Double-differential Cross-sections

Currently considerable effort is being expended on the deter-
mination of double-differential cross-sections (ddc's) for various
materials at thermal energies. ¥ At present multiple scattering
limits the thickness of the experimental slab that can be used. As in
the fast neutron case of the previous section, the halving technique
provides us with a reliable way of correcting for multiple scattering.
Experiments can thus be done on thicker slabs.

The experimental set-up is somewhat different for thermal
neutrons than for fast neutrons, however. Thermal neutrons can be
produced either by a reactor or a LINAC with a thermalizer around

the neutron source. Detectors are not available which can distinguish

neutron energies of a fraction of an electron volt so that only time-of-

B3

"A representative paper for scattering in water is Ref. 66.
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flight can be used. Thus a velocity selector is used to produce a
mono-energetic incident beam of neutrons from the reactor or LINAC
and time-of-flight is used to determine the exit energy. As previous-
ly we can place detectors at several different angles and so do the
angle measurements simultaneously. Now, however, we must do
separate measurements for different input energies as well as angles.
Because of the time required to obtain good statistics with thin
slabs, measurements are presently made for only one input angle (45°)
and only several input energies. The resulting data do not give the
ddc's directly because of multiple scattering within the slab. To
correct for this, some theoretical model (e. g. McMurry-Russell or

Haywood II) is required (67).

The resulting ddc's are found to be
rather sensitive to the theoretical model used for the correction.

The halving technique, however, is entirely independent of any
theoretical scattering model. By making measurements on thicker
slabs, better statistics can be obtained in a given time allowing more

input angles and energies to be used so that entire response matrices

can be measured.

Outline of calculation

To demonstrate the feasibility of this correction procedure we
have carried out a numerical study for thermal scattering in water.
Water was chosen because detailed cross-sections are available as are

(67)

the results of present correction techniques for comparison
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%
The Haywood II kernel was used in the computer code

0
FLANC}E(7 ) to generate the double-differential scattering cross-

sections. The total cross-sections were taken from BNL-325 (71).
This cross-section information was used to generate fine-mesh cross-
section matrices (70 X 70) and from them response matrices at a
thickness of . 125 cm which simulated the experimental measurements.
These 70X 70 matrices were "reduced" as described below to 24 X 24
response matrices which were then halved back to a small thickness

(2-16

made between these "corrected" ddc's and the "actual® ddc's, i.e.

cm) to obtain the "corrected" ddc's. Finally a comparison was

those obtained by reducing the 70 X 70 cross-section matrices. A

flowchart of this procedure is given in Fig. 12.

Group structure

The energy and angle groups used in the study are given in
Tables IV and V. In both sets, thereis a I = 1 angle. This is
necessary in order to obtain the ddc's from the response matrices.
This last point is important and is clarified in the sub-section below.

A major assumption in the choice of the energy group structure
is that setting an upper limit of . 10 eV will not seriously affect the
accuracy of the calculations. The errors we make in pij and 'Tij by
placing this upper limit are a result of neglecting upscattering from

group j to k (where E. >.10eV) followed by downscattering to

(68) (69)

"A model developed by Koppel
data.

from Haywood's experimental
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TABLE IV

Energy and Angle Groups for 70 X 70 Matrices

Energy Group o

(eV) (b) U Ap
1 0 -.005 192 1.o .2
2 . 005 -, 010 151 7.2
3 .010 - ,015 135 5 .2
4 .015 - 020 123 3 .2
5 .020 -, 025 113 1.2
6 .025 - . 030 103
7 .030 - , 035 96. 7
8 . 035 - 040 91.8
9 . 040 - , 050 86.3
10 . 050 - . 060 81.4
11 . 060 -, 070 77.8
12 . 070 - . 080 74.9
13 . 080 - . 090 72.5
14 .090 - .100 70,6

&Taken from BNL-325, Ref. 71

TABLE V
Energy and Angle Groups for 24 X 24 Matrices

Energy Group o

(eV) (b) TN
1 0-.010 164 1.0 .2
2 .010 - ,020 128 6 4
3 ,020 - ,030 107 2 .4
4 .030 - ,040 94.0
5 .040 - , 050 86.3
6 .050 - , 060 81.4
7 .060 - ,080 76.1
8 ,080 - ,100 71.3

®Taken from BNL-325, Ref, 71
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group i. This was expected to be small. A check calculation by
adding a broad group from .10 - .25eV to account for the upscatter-
ing gave matrix elements at .125cm which differed from those pre-
viously obtained by less than 1% for the most part, the maximum
difference being 5%. Thus energies above. .10eV are neglected in
the following and the results we obtain are expected to be adequate to
verify the feasibility of the halving technique for multiple scattering
correction. It should be clearly understood that the restriction to
24 X 24 matrices was purely a matter of economics for check calcula-
tions and not a limitation of the size allowable for the halving technique
to work. In practice one would no doubt include higher energy groups
and a finer mesh at the lower energies. One or two more angles
could also be used and the 4 =1 angular interval could be made
smaller in order toc avoid the difficulties described later, which are
associated with forward scattering,

To halve the 24 X 24 matrices from .125 to 2—16 cm required
4min on an IBM 7094. * As a rule of thumb, doubling the order of
the matrices increases the computer time by a factor of six. Thus
although the computer times would be lérge for more detailed
matrices, they would not be prohibitive because the multiple scatter-
ing correction need only be done once and would most likely represent

only a small part of the total experimental expense.

“For "small" thicknesses the halving time per iteration is the same
as the doubling time (see Fig. 6). For "large' thicknesses, i.e.
those requiring that the halving scheme be 'symmetrized, ' the
halving time per iteration is approximately 1.4 times longer.
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Cross-section matrices

The cross-section matrices Sb and Sf (Eq. (2-41) ) are

obtained from the ddc's according to Eq. (2-33)
2w g
oy = . S, O
z1J d¢1JZ) (@, QJ, E, J)
with

uJEfi 5 —uu +/1-uJ —[.,L cos(e
= ;J,ip,j +J l-ui 41 -u; cos'gaij.

Symmetry gives
us 5 )
= 2 i

and approximating the integral by a sum, we have

‘ZZA‘” )E E;)

The integer M was taken to be 7 and the “’(i?) and Acp%) used are
.given in Table VI. The ddc's zs(,u(fj), Ei’ Ej) were obtained from
FLANGE.

In general, by integrating the ddc's over the azimuthal angle,
we lose information and it is. not possible to work backward from the
cross-section matrices to the ddc's. If, however, we take one of
our angle groups to be M =1, then the azimuthal integral merely
multiplies the ddc's by 21 for those matrix elements with By = 1 o

V«j = 1. Thus by including a U = 1 angle group we can obtain the
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J
005
015
025
035

. 045
055
070
090

E. =.005

.015
. 025
. 035
. 045
. 055
s O70
. 090

Fig. 13 Partitioning of the 24 X 24 matrices
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TABLE VI
Azimuthal Angle Integration

Parameters
. OO
1 0 w/12
2 /6 /6
3 w/3 w/ 6
4 w/2 w/6
5 2m/3 w/6
6 5w/ 6 w/6
T T ) 12

ddc's from the cross section matrices. For the matrix partitioning
shown in Fig. 13, the three left-hand blocks are just 2w times the

ddc's, (By symmetry so are the three upper blocks.)

Reducing technique

The 24 X 24 "reduced" matrices were obtained from the 70 X 70
rﬁatrices by averaging u irij and p’itisj over the appropriate input and
output energies and angles. These quantities were averaged because
le is smooth and Eqs. (2-38) and (2-39) show that for small thickness-

es r,j and tisj vary like Zij/ui- For larger thicknesses this behavior
1

persists so that “irii is smoother than rij (and similarly for tfj).

v

Physically,

“irij (x) = the number of neutrons per unit time reflected
from a unit area of slab of thickness x into

state i due to an input of one neutron per unit

time per unit area normal to the incident beam
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in state j.

Experimental slab thickness

In Section A. 1 the "optimum' slab thickness was obtained by
balancing the statistical counting errors with the propagated halving
errors. For a non-multiplying medium, such as water, the transmis-
sion matrix elements do not increase monotonically with thickness as
do the reflection matrix elements (Fig. 14), but rather peak at a thick-
ness about equal to the mean free path (Fig. 15) and then die away. As
a result, maximizing the count rate is the primary consideration in the
choice of the slab thickness for a non-multiplying medium. For water
this thickness is about .5 cm. In our study, the slab thickness was
. 125 cm, however, since the calculations were done before it was real-

ized how to circumvent the halving difficulty mentioned in Section A. 1.

Results and conclusions

A tabular comparison between the "actual' and "corrected"
ddc's is given in Table VII. Graphical comparisons of representative
cross-sections are given in Fig. 16 and 17. Except for forward scat-
tering(y =1 ->u=1, which is not shown) the agreement is rather good.

1o

These results may be compared with Slaggie's% over the same energy

range. There the average error between the "actual' and "corrected"

ddc's appears to be about 25% while the maximum error is 50%. This

£

See Fig. 2 in Ref. T2.
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Fig. 15 Total cross-section and mean free path for water.

"Actual'’ and '"Corrected' DDC's

Block
(uj )

1.0~ -1,

TABLE VII

Difference Between

Average
Difference

(%)
8.0

3.4

Maximum
Difference

(%)

4

20
9
9

11
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Eo=0.045 eV

—0- ACTUAL DDC'S
-o- "CORRECTED" DDC'S

1 . 1
0.02 0.04 0.06 0.08
E (eV)

Fig. 16 Representative DDC's vs exit energy.
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Fig., 17 Representative DDC's vs cosine of scattering angle.
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is considerably poorer than our agreement.

Moreover, one shouldnote thatSlaggie's results are based upon
a slab thickness of .025cm. Ours, however, was . 125 cm and with
the improved halving scheme, could have been .5 cm (as mentioned
above) to give high count rates. Hence the measurement of entire p
and T matrices could be performed in about the same time as present
measurements. Use of the halving tecﬁnique for multiple scattering
correction would then result in better accuracy and more information
than presently obtained.

The "corrected" ddc's are uniformly larger than the "actual"
ddc's for forwardscattering (not shown in Table VII) by roughly a factor
of 4. This comes about as a result of the singular nature of the for-
ward scattering. In our calculations, the "actual" ddc's for forward
scattering were obtained directly from FLANGE, These ddc's were an
order of magnitude smaller than those for small angle scattering.
Actually a better procedure would have been to average the ddc's over
the .8 - 1.0 p-interval. The resulting ddc's would have been larger,
presumably more like the "corrected" ddc's. Moreover in practice it

is average values that one would measure.
B. Criticality Determination

As we mentioned at the beginning of this Chapter, experimental-
ly measured response functions can also be used to directly determine
criticality. Unfortunately the necbessary calculational techniques

developed in Section C of Chapter IIl are essentially restricted to
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slab geometry so that the critical thickness which one determines will
not be of much practical significance in itself. However, other quan-
tities which we can obtain, such as the power distribution, neutron
spectrum, and reactivity coefficients, may well be quite similar to
those in a more realistic geometry.

The advantage of response function experiments over critical
experiments is that much less material is used. This means that the
experiment is considerably cheaper since (1) the fissile inventory is
smaller, and(2)elaborate safety precautions are unnecessarybecause the
slabs are always far subcritical. Some idea of the expense presently
being considered can be obtained from the following.

Fast reactor statics and transient physics characteristics
must be obtained for large core loadings up to several thousand
kilograms of plutonium. These tests will be extremely expen-
sive. Up to $21,000, 000 is estimated for fabricating a critical
experiment loading for the ZPPR. (pp. 62 - 63 of Ref. 73).

The incentive to develop a more economical experimental technique
should be clear.

Although the criticality information obtained from response
functions would no doubt be less accurate than that obtainable from a
critical experiment, it would probably be better than what one could
calculate starting from existing cross-sections. This is because the
response functions are macroscopic quantities which are 'closer" to
the final criticality parameters than are the cross-sections.

In order to check this hypothesis, we have studied the sensiti-

vity of the critical thickness to errors in the measured response

functions. The critical thickness was chosen for study because of its
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ease of calculation. Moreover, the sensitivity of other quantities of
interest is expected to vary similarly to that of the critical thickness
(e.g. the sensitivity of reactivity coefficients is the same as that of the

critical thickness).

1. Critical Thickness
A qualitative idea of the sensitivity of the critical thickness to
the response functions can be quickly obtained from the one-group dif-
fusion solution of Chapter II. If we define the sensitivities (cf. Eq.
(4-1) ) as
X 8xc/xc

SR(x) = PRE/RE)

¢ axc/xC

ST/ Tx)

then the curves for S as a function of x are as given in Fig. 18. As
one might expect, the sensitivity is less the closer the experimental
thickness =x 1is to the critical thickness X -

The introduction of energy and angle dependence does not signif-
icantly chaﬁge this picture. For example, representative elements of
the 5-group diffusion matrices for the PuC-UC mixture of Ref. 53 are
plotted in Fig. 19 and the corresponding sensitivities are given in

* foi  fn ‘5 B : ;
Fig. 20. Again the sensitivities decrease with increasing experimental

‘It is interesting to note that the halving difficulty discussed in Section
A. 1 was not encountered here until a thickness of 32 cm. Since the
group structures were the same, the difficulty must be due in part to
the angular variable in transport theory.
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thickness.

It does not follow, though, that one should do the experiment
on as large a thickness as possible since this would negate the advan-~
tages of the response function approach mentioned previously. Also the
experiment becomes more difficult to analyze for large thicknesses.
This is because all of the theory we have developed presumes uniform
incident and exit beams, or in practice that the beam diameter is large
compared to the slab thickness. If this is not the case, a considerable
number of neutrons will be transported transversely within the slab.
Thus the choice of the experimental thickness depends upon a combina-

tion of factors specific to the material under study and the particular
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experimental set-up. In any case, however, the thickness for this
experiment will be larger than that for the cross-section experiment
described in Section A. 1. This is the only difference between the two
experiments.

If we assume that for the PuC-UC mixture the experiment would
be done at a thickness of 8 cm, then a sensitivity comparison can be
madé with Moorhead(53). * Although the critical thickness is less
sensitive to some of the cross-sections than to the response functions,
it is more sensitive to v and Ze Presuming the response functions
could be more accurately determined, the overall sensitivity should be

less. Unfortunately this is still rather qualitative since it remains to

be seen how accurately response function experiments can be done.

2. Reactivity Worth and Doppler Coefficient

The reactivity worth of a material X in a sample core could be
simply obtained by response function measurements. The response
functions would first be measured for a slab of core material. A small
slab of material X would then be added and the measurements repeated
The difference in the calculated critical thickness is simply related to
the reactivity worth of material X. Since in many cases the reactivity
worth is a spectral rather than a spatial effect, the worth so obtained
may be nearly the same as for other-than-slab geometries.

Similarly the Doppler coefficient may be obtainable by measur-

ing the response functions on the same slab at two different temperatures

='<See his Tables VII and VIII as well as Eq. (3).
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and calculating the difference in critical thickness. Because the

Doppler effect is rather small and difficult to measure using present

techniques<74’ 75)

, we have carried out a sample calculation to deter-
mine whether there would be measurable changes in the response
functions. Diffusion theory response matrices were calculated at
temperatures of 300°K and 900°K using the Russian 26-group cross-

(76)

sections for a slab of pure U238. Of course to obtain criticality,

some fissile isotope would be added, but for large power reactors
U238 will predominate. The calculated response matrix elements in
the resonance range were about 2% lower at 900°K than at 300°K for a
slab thickness of 4 cm and about 5% lower for a slab thickness of 8 cm.
It is anticipated that the errorsinthe measured response functions will

(59: 61). ’ However, the fact that all the

be of this same order, 2 to 5%
calculated changes were in the same direction (lower), strongly sug-
gests that the net effect will be to produce a noticeable change in re-
activity due to the Doppler effect.

No thermal expansion was assumed in the above calculation.
This effect can be treated as follows. At temperature T the in-

variant imbedding equation for p 1is

o b %

s plx) = S° 4 (ST-Mp(x) + p(x)(ST-M) + p(x)S%p(x) (2-46)

If there were no Doppler effect, but only expansion as a result of heat-

ing, then at temperature T' = T + AT we would have
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o'(x) = S° + (ST -M")p'(x) + p'(x)(ST -M") + p'(x)5P p'(x)

where N 1is the nuclear density, since (cf. Eq. (2-41))

bt b b

Pk A, L - b, = B g ap oD

i TOHSR T T TSR I T N AR T
N b
TN Tij

B I8® + (sT-M)p' () + p(e)(ST-M) + p(x)SPp ()] (4-2)

and similarly for Sf and M. Equation (4-2) can also be written as

—81\%&‘) = 8%+ (sT-M)p'(x) + p'(x)(ST-M) + p! ()50 ()
a(w X)
or

+p (—E—, x) pr’( %T x)

By comparing (2-46) and (4-3) we see that

As a result of expansion the slab thickness becomes
x' mx+ Ax 2x + oxAT
while the nuclear density becomes

N' =N+ AN = N - 3aNAT

(4-3)

(4-4)

(4-5)

(4-6)
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where « is the coefficient of linear expansion, Comparison of (4-5)

and (4-6) gives

1 N-N!
I = .
_x+3 N

X (4-7)

Thus the measured reflection function at temperature T' is related to

that at T by

o'(x') = p'(x+é— Nl-\INIX)
N-N' N—N'X)

2
ol B - E 3

_N\!
= p'(x + N—N}—\I— X - Za/xAT) (to first order)
= p'(% X - ZozxAT)
= p(x) - %;iLx) 20xAT (4-8)

where we have used Eq. (4-4) and Taylor's theorem in the last step.

Similarly for the transmission function

T x') = T(x) - 82;(:() 2axAT . (4-9)

The partial derivaties of p and 7 in Egs. (4-8) and (4-9) can be

obtained from the invariant imbedding Equations (2-46) and (2-47).

3., Neutron Spectrum

Although carried out on a critical assembly, fast spectral mea-

surements are not necessarily done at critical. For example, in

(60)

Bennett et al , we find
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. It is not possible to operate a plutonium assembly near

critical using proton-recoil detectors of fixed sensitivity .

The spectrum measured was, consequently, the central

spectrum for a subcritical assembly lacking about half its

critical mass., (pp. 477 - 478).
To analyze this particular experiment the assumption was made that
the subcritical spectrum was close to the critical spectrum.

In a response function experiment one would measure the
reflected and transmitted spectra on a slab consisting of considerably
less material than above. However, using the techniques of Chapter III

one can calculate a critical spectrum which may be better than that

obtained from the ''critical'’ experiment,



-82-
V. SUMMARY AND CONCLUSIONS

The most fundamental quantity of interest in reactor physics
is the neutron distribution (or flux) within the reactor. The neutron
cross-sections are the basic physical parameters which determine the
neutron distribution, Most reactor theories start from the
cross-sections and end with the neutron distribution, This has
given rise to two basic kinds of experiments, cross-section experi=
ments and critical experiments which measure directly the initial
and final quantities, respectively, of the theories. This preoccupa-
tion with cross-sections and fluxes, however, has allowed other
approaches to be overlooked.
| In fhis thesis we have investigated another approach to re-
actor analysis which is developed in terms of response functions., Al-
though not of immediate interest in themselves, the response functions
can be simply related to both the cross-sections and the neutron dis-
tribution and have the experimental advantage of being more easily
measured than either of the other two quantities, Only limited theo-
retical and no experimental work using this approach has been done
previously. We have reviewed and unified this work, as well as
adding several new results, the most important of which we list
below,

1) An iterative halving scheme was developed to obtain
response matrices at half the thickness of the original matrices. No
theoretical justification of the convergence properties of this scheme

was given, Numerically, however, it was found that a convergence
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problem arose only for slab thicknesses larger than the neutron mean
free path and that this difficulty could apparently be solved by intro-
ducing a convergence factor,

2) An efficient calculational technique for deep-penetration
shielding problems in slab geometry was developed by combining the
doubling relations with invariant imbedding. As the time savings over
existing Monte Carlo or discrete ordinates methods are significant,
the response function approach should be seriously considered for
future calculations,

3) Invariant imbedding equations have been derived, but not
solved, for finite cylindrical geometry in both the transport and
diffusion theory cases. Previously it was shown that response func-
tion techniques are very efficient for diffusion theory criticality calcu-
lations in one-dimensional slab and two-dimensional rectangular
geometries, Consequently, it appears to be quite worthwhile to try to
develop a similar diffusion theory technique in cylindrical geometry,
starting from Eqs. (B-32) - (B-35).

4) We have shown how the halving scheme can be used to obtain
cross-sections from response function experiments done on moderate-
ly thick samples, Of all the results of this thesis, this is the most
significant due to the acknowledged, immediate need for better cross-
sections, particularly for fast reactors. As a result of this work, it
appears that these experiments should be carried out as soon as
possible to determine whether they are as useful as our analysis

indicates. The large gains possible at a relatively small expense
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seem to warrant giving such experiments high priority in our fast

reactor physics program.
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APPENDIX A

TRANSPORT THEORY INVARIANT IMBEDDING
IN CYLINDRICAL GEOMETRY

A. Preliminaries

For no internal source, the time independent Boltzmann equa-
tion is(77)

— —_

Q-VW(r,E,Q)+ Z(r,EN(r,E,2)

=§ e’ | . dfim@ B, G~ E\ @G, E,EY) . (A-1)
: Qr

From the outset we assume that the reactor has azimuthal symmetry,
i,e. the cross-sections are independent of ¢ where T = (p,9,2z). In
order not to obscure the arguments in the derivation, we will also
take the cross-sections to be independent of p, z, and E as well,
After we have obtained the invariant imbedding equations, it is an
easy matter to re-incorporate the p, z, and E dependence,

In cylindrical geometry (see Fig. 21)
2 = sing COS(pB + sin @ sing :[) +cosOk

=J1-u? cos<,o;3+./1-},L2 sin¢$ +p,f< (W = cos )

and
v BLIJ -~ 1 8LJ o 8'\} A]
dp f p O¢ © 0z

so that the Boltzmann equation is
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o
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Fig.



-87-

o o L [{oE sine & 8 ==
[ 1-p® coseg P +Jy1-p - h¢_+u az+ZtJ41(r,Q)

1 2T R
=S‘1du'5 de'Z(U, U, e-@ ") (r, Q") (A-2)

where we have noted that

—_ —a

TQ~Q') = Q) = D, p', ¢ ')

since

Q- =pp' +JT-pF J1-p% coslp-¢')

Note that

—_

LP(I,Q) =¢(P,¢:Z,N:¢)+¢)

It is also possible to consider

i

Y(r,R) =y(p,d,z,4,¢)
In this case we must include an extra derivative in the Boltzmann
equation to take into account the fact that

)

3¢

I
o

$lp,$,2,1,0)
?ly

o
, ¢(p,¢,z,u,¢+¢)’ -
% Pto

.

Then we have

[\/l-p,z’ cosg 5% + /1 -p? 81;90

+ ;Z— + Et:l@(p,%z,u,so)

o 9
99 8<P)

1 2T -
=§ . du'g do'Z(u, 1" e -0 )(p,0,2z,u",0") . (A-3)
= (0]

Now designate by
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Ylp,d,z, 0,8 s 2,00 ) 50 2=2 , -1<p <0

that solution of Eq. (A-3) with the boundary conditions

_ 5(p-p,) Slp-p,)
blps s Zolhuos p s s Zob 0 ) = 5 b-p,) ———

for - 1<pu<o0
$lps$, 01,05 p s b2, ,0, ) =0 for 0<p<1 (A-4)
G(R, 52,1, 95p 8, Zok,9,) = O R

Thus @ is the Green's function for an arbitrary input (with azimuthal
¢ -symmetry) on the top of the cylinder. Because of the assumed sym-

metry, ¢ 1is independent of ¢ and d)o. Accordingly let us define

Y (Zy 25 05 Bhs @ po’“o"”o)

1 2 2m -
= ZT—‘.'. o d‘b o diﬁOLP(P:fb:Z,U,?’; PO:QSO:Z:IJ’O:‘PO)
which satisfies(77)
[Jl—uzcos —a——Jl—u?‘ Siﬂ'—a--i-p.—a—+2 Y(Z, z v U o )
@ 8<P P BQD aZ 't 34, P, 3P, PO: o’to
1 27 ,
:S‘ d“'g de Ap; pu's e-¢" )4 (Z, 2,0, 150", 0 U Lo ) (A-5)
-1 o o’To’ o

with the boundary conditions
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(p-p.)
LIJ(Z,Z, P:P::QD:POs H’O’(PO) = o 6(H‘HO)6(¢"¢O)
for -1<u<O0
LP(Z’O’ p’p"qa, PO:U’ONPO) s 0 fOI' 0 < M < 1 (A—6)
q;(Z,z,R,p.,qi,po,po,qao) =0 for w/2 < ¢ < 3%w/2

Equations (A-5) and (A-6) comprise the problem we will consider in the

next section. Physically

LP(Z: ZyPs My @y PO, }J'O: (PO)

= theanumber of neutrons per unit time per unit area at z and p
moving in unit solid angle about (u,¢), due to an incident beam
on the top of the cylinder of one neutron per unit time per unit
area at P, in direction (HO, goo). Both areas are measured
normal to the neutron motion.

The height Z is included explicitly as an independent variable since it

will be varied in the invariant imbedding equations.

B. Derivation of the Invariant Imbedding Equations

(14)

Using the procedure suggested by Bailey and Wing , the in-

variant imbedding equations can now be derived in a straightforward

fashion. First we define the reflection and transmission functions

I‘(Z’p:P-:‘P’PO’PoO:QDO)Eq;(Z,Z:P:H:Q”:pO:HO,QDO) for O <p,<l
(A-T)

and
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t(Z, Ps s @, PO’ P-O’ (PO) = q/(Z’ 0, Py My @, PO: }Jvoy (PO) . for -1< P <0

(A-8)
From Eq. (A-7) we have for r that
9 "
57 I‘(Z, Ps My @, Po’ HO’ (PO) = qu(Z,Z:P, Mes @y Po: H0:<PO)
+¢Z(Z:ZJP,H:¢’PO,HO:§DO) for O<IJ'<1 (A“g)

where the subscripts denote partial differentiation. { 1is obtained

2

directly from Eq. (A-5). To obtain y we note that upon differentia-
1

tion of Eq. (A-5) with respect to Z, Lpl is a solution with the boundary

conditions
LPL(Z: L, Psps @y PO, HO’ 900) = 'll)z(z: Z, Ps s @, PO: H«O: fPo)

for -1 <u<0

il
o

\PI(Z:O,P,H:SP,PO:HO,QPO) for 0<p,<l

Hl
(@]

qJI(Z,z,R,p,q),po,po,goo) for w/2 < ¢ <3u/2

Since Eq. (A-5) is linear we can superpose solutions to get

R o 2T
‘PI(Z:Z’P,M%PO’HOMPO) = - go p'dp'S‘_ldu' SO de' X

X LPZ(Z:Z:PI:Hl’QD"PO:HO:(PO) Ll)(Z,Z,p,p,,(p,p',p.',(p') o (A—lO)

This step is the key to the transformation from the Boltzmann equa-

tion to the invariant imbedding equations. It is possible because the

Boltzmann equation is linear and { is the appropriate Green's
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function.

From Eq. (A-5) we have

4‘2(Z’Z: Py s @y PO: IJ-O: 900)

z
2 -u® . ‘
, [fl:“— o J1-p* sing o | "ﬁt']w(z,z, JUR VRTINS

O8¢5 TR p de

1 N Al
__]_‘_ l§ ! 1 ~ ! 1 1
+H§_ldl¢. » d‘PZ“":H:? ¢)¢(Z:Z)P:H,¢ :pO:IJ'O’qu)

(A-11)

Then using Eqgs. (A-11), (A-6), and (A-7) in (A-10) we have
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tpl(Z,z, Psbs @5 P s poygoo)

R o 2
- "5 P'dP'S‘ dH'S de'W(Z,z,p, s p's p's ") X
-1 o

(e]
Sy 3 s 2]
0 9p' 1 T S9! v [
M P " P Y

1 1 1
XLP(Z’Z’P sy ML @ ,PO:HO:QDO)
1 1 2 '
+ — ‘S“ dp.” S‘ d¢|| Z(HI’I‘L"’QD"QD”) x
P -1 o

XL[J(Z,Z,p',p",(ﬂ”,PO,IJ«O’(PO)}

ll-poz (-R
wap. | P

(0]

_ 5 [é(p'-p,)
Ll & : A S
dpkp\Z,Z:P,H:ﬁo:P :}J-o:q’o) apl pl

- (A-12)

02 ZTT 0
1 1 4 1 |
__P'o S; de'U(Z,2,ps s 95 5 15 9')Sin g -—8@,[6(4’ 900)]

Zt
+ _IJ'- V(Z,2z,p, 5 o, PO: IJ«O:<P0)

e} 2T ) 1
- 1 1 1 1 - 1 b=
S‘_ldu go d¢¢(Z,z,p,u,¢,po:H,¢) m Z(H:HONP <po)

R e} 2T
- P'dP'S‘ dp'§ de'W(Z,z,p, p, @, p'H u's @) X
o -1 o

1 1 C 2T
X S‘ du" do"Z |, n, 1 _pht i ] 1"
}J'l o M ‘)O @ (I‘L P )r(Z:P s M, @ :PO, HO,QDO)-

Integrating the first integral on the right-hand side of Eq. (A-12) by
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parts, we have

S'R 5 [o(p'-p,)
1 1 !
de\P(Z:Z’P:H:Q":P :HO:QOO) 8p'

1
o p

0 1
"'(%T*E‘

O o

V(Z,zspsps@p s b2 9 ) (A-13)

and similarly for the second integral on the right-hand side of (A-12),
27

. B ,
5 dq""q" (Z:Z: P:U‘:‘Py PO:HO,Q"O) 511'199' '5'97 [6((P _(PO)I

: 0
= —(Sln(poﬁ'm- COSQDO ¢(Z,Z, prM, @, PO:PLOMPO) . (A'14)

Putting (A-13) and (A-14) in (A-12) we obtain

\Pl(Z, zZ,p,M,e, po’“o’“"o)

2 2, i .
J 1k 0 I-p, sing, Z %
- oSt B P op W
Mo o Mo o) o Fo

Xq‘(Z:Z:P;H’Qp:PO’HQ"PO)
o 2T 1
= I 1 1 ¥y 1 ¥
S_Idp go dcqu(Z,z,p,p,qofpo,p,w) o Z(p's g @'-0)

(A-15)

R o 2T
"§ P'dp'j‘ d}"'l‘gv dﬁo"JJ(Z:Z,P,IJ«,(P,p,':p.',(P')X
o} -1 o

o
du " T I B N
'FLT" o M . de E(H s, @ - )I‘(Z:P s BT, @ JPO’P‘O’(PO) $

Finally putting Egs. (A-11), (A-15), and (A-7) in (A-9), we have
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0
57 r(Z:P:H,%pO,HO,(PO)
6(p-p )
o L o
= Z (s HQ’QD-GDO) :
g / 2
1-pf l—MO 0 Y1-u? sing 8
- COS(pa— - coOSs (po a » a_p
¥ [Hol po M P
l-p?‘ sine > =
o o 0 t t
¥ , l P a(p i —ﬂ— ¥ l I]r(z’p’“’:(P:pO’p'os(Po)
Fo o o Ko
. A-16
1 \S‘l 2% ( )
+— J 'Z; § | 1 1
B, W) WTWpLeer(Zipnlel 05k )

e} 2T
+§ du' ‘g‘ de'r(Z,p,U,¢,p ,H',0") o p2(TRN '~
A . = o | pLlgset-e )
R o 2 .
+§ P'dp'§ dN’S‘ de'r(Z,p,l,e,p', u'0") X
o -1 o)
1 1 2T
X . du“ 5‘ d(pllz( l’ H, | SO | r Z 1 1 "
0 Yo . B g =g (Z " 1 s Poikbgr® )

This is the invariant imbedding equation for r. The initial condition
is

r(O,P,}J«,ﬁDsPO,}J«O:‘PO) =0 . (A‘l7)

For t (from Eq. (A-8)),

5}
57 t(z, Ps s @y PO’ P'O’ 900) = q"(z’o’ Py M @y pO’ P‘O! q)O)

for -1<u<0 . (A-18)

Then putting Eqs. (A-15) and (A-8) in (A-18), we have
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0
g‘z“ t(Z: PsMs @, PO: H-o: ¢0)

2 Z 2
_[_ J 1k o 1k, 1% > J X
l

os + _—
SRRy ap Py d¢

| o lnl

. o I

Xt(Z,ps s 03P s b s #)

o 2w 1
+§ dp'S‘ de't(Z, pyps @i p s ' @') —— Z(p'sp9'-¢)

-1 o) _ ]H'l
- o S (A-19)
+“S‘ P‘dP'Sm dH'51 de't(Z,p, @5 p's 'y @) X
[o) -1 O
1 1 2
X = dp’"S' d¢|l Z(H',p",qO-qD")r(Z,p‘,p.“,cp",p ) e s P )
[p'| Yo o ° e e

which is the invariant imbedding equation for t with initial condition

6(9-90)

t(O: P:Hsﬁo,Po,}J«o:Qoo) = 0

5(M-Ho)<5(¢-<po) . (A-20)

As they stand, Egs. (A-16) and (A-19) cannot be integrated
numerically in the straightforward manner that the slab geometry
equations (2-46) and (2-47) were. The difficulty arises from the
presence of the é-function term in the reflection equation, which would
also appear in the transmission equation if we separated out the un-
deflected beam. So far we have been unable to find a way to integrate

over or separate out the offending term.
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C. X-and Y -Functions

If we restrict our attention to mono-energetic transport so that
the principle of reciprocity holds, then we can reduce the dimension-
ality of the problem by introducing the cylindrical geometry analogues
of Chandrasekhar's X-and Y -functions. In fact most of Chapter VII
of R. T. * can be generalized to cylindrical geometry. Using the prin-
ciples of invariance one can arrive at Egs. (A-16) and (A-19) above
as well as the cylindrical analogues of Egs. (2-44) and (2-45). We
will not carry this out here, but will merely state the results.

Let us define

S(Z)P, Ms @ PO, HO’ ¢O) = }J,I‘(Z, PsrpMs @, PO-P-O, ¢O)
+ Hr(Z:P:H:-Q”,PO:-HO:GDO) (A'Zl)
and

‘ S
U(Z,P:H:(pa PO:IJ'O:(PO) = li“',lt (s P:'H:§0:PO"HO:(PO)

- .
+ lHlt (Z,p, -, —<p,po,-—p,o,<po) (A-22)

which are the analogues of Ché.ndrasekhar‘s S and T. These defini-
tions fully use azimuthal symmetry so that we need only consider
values of ¢ and @, in the interval 0 to w. The quantity t° is
the scattered transmission function just as in the slab geometry case

(cf. Eq. (2-48) ).

* — :
Chandrasekhar's Radiative Transfer, Ref. 6. Some familiarity with
this work is necessary for an understanding of this section.
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We then define

5(9"90) yl \Y’-‘T 1
XZS, ) Moy E——‘_+ dl dl___SZ,,,’ :':'
(Zspsp s @) = O|~L0<PH1(PH¢’POH<P)
(A-23)
and =
t
-tz si-p,)
Y(Z,p, po’P"ﬁo)E € s (A-24)
l v i
| R 90 1 I
+ S‘ dp! do' gr UZ,p,ls0,p: 05 00)
o o
where
(1-p2) 1-p 2
f ;ﬁ% -—-2—9- Z2%-2pZY—2_ cos o (A-25)
Mo ‘p‘o '

is due to the undeflected beam. By the principle of reciprocity

}.LI'(Z, Py My @ Po: IJ'O: QOO) = !HOII‘(Z:PO: IJ'O: 1T"'§DO: P s 'lT-gD) (A'Zé)

and
,!‘th(zs Py s @ PO’ P‘O’ (pO)'-—. IHO lt<z’ PO’ H'O:Tr'(po: P s TI’—(p) (A'2‘7)

so that X(Z, Por P by TT—gDO) and Y(Z, PP ‘IT-(,DO) are simply the
total fluxes at the top and bottom of the cylinder, respectively, for

an incident flux on the top of

8(p-p )

- 8(u-p )6 (p-0 ) + 8(ote )]

the 6(<p+cpo) arising from our definitions of S and U.
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In the case of isotropic scattering, i.e.

Y

Z(H’: }-Lo, ¢'<Po) =
the invariant imbedding equations can then be written as

0
9Z S(Zsps Ms @y PO: HO: (PO)

Z
e l-p il .
___[ l-n COS(Paa _ o 0  J1-p” sing 0

Mg Py e p Oy

1-p,(f sing_ 4 =z, th fe 28}
+ + — + —|S(Z,p,s0,p sH 9 )
Mo P, 99 M o o o "o

R
e} 1o . . i
¥ o S‘O p'dp'X(Z,psp's s 9)X(Z,p _sp'sp s -9 )

)
57 (%, Py My @y PO’ HO, ¢O)

op B p d¢ ' L
(A-29)
XU(Z: P,H,fpapo,po,qoo)
> R
HEEDN PR FAZ P e PITAR s P o Phgo TR, )
. S(Z )
9Z ’P:H:fp,Po,po,qoo
- R
= emmm— 1 1 L | _ -
= ZTT§ p'dp ¥ (Zis PsP :H:?)Y(Z,po,p ,Ho,n' q;o) (A-30)

o
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o]
57 U(Z,p, Wy ¢, PO’ HO, 400)

l-p l-p sin ¢ 2
= -|- cos¢_ 3 + o 88 $ = | X
IJ«0 © o IJ‘O pO g0() HO
XU(Z:P:IJ«’QDJPO:HO:(PO) (A-—31)
= R
- 140" | 1 -
s . P'Ap'Y(Z,p,p's s 9)X(Zyp s p'sp s T )

The following correspondences exist between our equations

and those in §54 of R. T.

(A-23) ~(78)
(A-24) = (79)
(A-28) - (A-30) ~(80)
(A-31) - (A-29) ~(81)
(A-30) ~(82)

(1/p,)(A-29) - (1/p)(A-31) ~(83)

The analogues to Chandrasekhar's integral Equations ( (84) and
(85) ) do not seem to be easily obtainable in our case because of the
partial derivatives with respect to p and o.

Integro-differential equations for X and Y (see §54 and §62
of R. T.), however, can be obtained by integrating Eqs. (A-30) and
(A-29) with respect to Mo and g and then using Eqgs. (A-23) and

(A-24). We have
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0 P R
a—'~ X(Z,P,PO:H:GO) = 'Z—'TFS\O P'dP'Y(Z;Ps P':U:Q")X
: ‘(‘TT 1 v 1 1 1 32
X d“ J d‘xo }_lz—'- -‘(Zs POaP s, ) (A— )
O o
and
2 ¥z )
3Z !p’por“:(f’
) 1 -p® cose 2 J1-pZ sing _8__+E:c Y(Z 0
= @ 5 ‘——"'-u "‘——‘p Bq) “ ,P;Pos X%
(A-33)
= R » ] g‘n 1
+ 5 3‘0 pldp!X(Z,p,p',“,qp)\So | dp,luo do' ﬁT Y(Z’po"P':li',<P') )

Equations (A-32) and (A-33) compare with (13) and (14) in §56 of R. T.

The initial conditions are

(p-py)
X(O, Ps PO,P":(P) :—"“p—"'— (A-34)
2t bipep)
m PPy
Y(Z,p,p:Hsp) ~e —~— 28 Z -0 ; (A-35)

p

We still cannot solve these differential equations in a straight-
forward manner because of the initial conditions. KEquations (A-32)
and (A-33) have a considerably simpler form, however, than the

invariant imbedding equations (A-16) and (A-19).
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APPENDIX B
DIFFUSION THEORY INVARIANT IMBEDDING
IN CYLINDRICAL GEOMETRY

The general multi-group diffusion equations are (cf. Eqs. (2-63)

and (2-64) )
2 . -
D,V2, - T, 4. + Z Zy L+ sz (vZ), 4, =0 (B-1)
K#; »
I = - D.V¢. -
;rJ DJ ¢J (B-2)
or
AT 4 86 =0 (B-3)
Vé + 32T = 0 (B-4)

where Z and S are given by Egs. (2-67) and (2-68).

In r-z geometry (i. e. assuming azimuthal symmetry), we have

8¢ ~, 04 o
Vs gy Td g b (B-5)
= 1 9 9
VeIl = o el d v 5z U0 - (B =61

The derivation now parallels that given in Section B, 2 of Chapter II

for slab geometry.

Define

wzj () =g 60+ 2T (D (B-7)
o pik 1 - 1 =5

vei(R=3 - 3T . (B-8)

Then
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¢ =2(u+ v) (B-9)

J =u-v (B-10)
Z

;T=J§+Jk_-D-_3i}+%f< (B-11)

r Z ar zZ
with

D..=D.s.. . (B-12)

ij jij

Using these expressions, we can write Eq. (B-3) as

% —aa?[zm -5‘1- (u+v)]— —5% la-v} % 28kase) = O (B-13)

and the z-component of Eq. (B-4) as

2 -a% fudvl + 3Blta~v) = 0 (B-14)

which can be combined to give

—a%-u--l;)a—i]:r—a—i—(wfv)]-Qu—Pv:O (B-15)
3(1_ v + %a—i[r —a—i- (u+v)]‘+ Pu+ Qv =0 (B-16)

where P and Q are given by Egs. (2-75) and (2-76).
Just as in the slab geometry case (cf. Egs. (2-77) and (2-78) ),

we introduce matrices U and V which satisfy

lv)

5%[1‘ 3-2—; (Ulz, %, 7, ro)+V(z,x, T, ro) )]

+QU(z,x,r,ro)+P'V(Z,x,r,ro) (B'17)
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9 D ® 9 |
= V(z,x,r,ro) a3 - [r 5T (U(z,x,r,ro) . o V(z,x,r,ro) )]

+ PU(z,x%,r, ro) + QV(z,x, r, ro) (B-18)

with the boundary conditions

U(O,x,r,ro) =0 (B-19)
6(r-ro)

Vix,x,r, rO) = = I (B-20)
Then

R(X,r,l‘o) = U(x,x,r,ro) {(B-21)

T(x,r,ro) EV(O,x,r,ro) . (B-22)

The invariant imbedding equation for R is obtained by con-
sidering

aR(xrr):U(xxrr)+U(xxrr) ; (B-23)

‘8‘}2 ’ 1) o 1 H ] ] o 2 v ] ) E] o

For Ul we have

6(r-r )
D o 9 o
UI(X»X:I’:I'O) i g;[r o [Bl# 2,8 ) + s I)J
6(r-r )
+ QR(%, ¥, ro) + P e e (B-24)

while Uz and Vz are solutions of the differential equations (B-17)

and (B-18) with the boundary conditions

U0y, T, ) =10 (B-25)
2 (o]
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Hence

R
Ulzgx, s ) = = 5 r'dr'U(z,x, r, r")V(x,x,r', v )
2 o 1 o

Vv (Z,X, r,r )
2 o) -

In particular

R
Uz(x,x,r,ro) = 5 r'dr'R(x, r, r') X

o

6(r'-r )
D 0 0 o
X{? ?)?c_{r—a? (R“"r" ) —

|

o
R
= - S‘ r'dr‘V(z,x,r,r‘)Vl(x,x,r',rO)

]+ QR.(X, r, rO)

6(r’-ro)
+ PR(x,r',r ) + Q ————
o r
so that
T R{x,r,r )
6(r-r )
_ D o o) o
= —fé?[r—a? Ri{x,r,r_ )+ ————r—-—--I
6(r—ro) R
+ P — + S‘ r'de ' R,z rt) X
o
6(r'-r
D 0 0
X{—I-:, 5T { r' 5 Rix,r',r ) + =7
§{r'-r )
+ PR(x,r',r )+ Q g
o T

Integrating by parts

(B-26)

(B-27)

(B-28)

(B-29)
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‘R 6(r'-r )
D 0 0 o
y r'dr'R(x, r, r') ' Or' [rl or' ( r' )]

¢)

= rE 82 [ro_ﬁ— R(x,r,ro)] . (B-31)
o

+ QR(x, r, ro) + Bix, #» rO)Q

R
D o 4]
+‘§ r'dr'R(x,r,r‘){E——a—f,[r' 5 R(x,r‘,ro)]

o
+ PR(x,r‘,ro)} (B-32)

with the initial condition
R(O,r,ro) =0 . (B-33)

r

Similarly for T we have
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-?—T(xrr)=V(0er)
ax £ ,O 2 3 t] ’O

R
= - g 'r'dr'V(O,x,r,r')Vl(x,x,r',ro)
o

T~ r_ or (ro or el
o o o
+ T(x,r,r )Q
o
R
D o o ]
+ S‘O r'dr'T(x, r, r") =i —B_F(:r' o R(x, r', ro)
+ PR(x, r', ro)} (B-34)
with the initial condition
6(r-ro)
I (B-35)

T(O, s ro) = —;——
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APPENDIX C
EXPERIMENTALLY DETERMINED CROSS-SECTION MATRICES

In Section A. 1 of Chapter IV we stated that the cross-section
matrices obtained from response function experiments are in pre-
cisely the form needed for input to conventional computer codes.

This we demonstrate now.

A. Transport Theory

For a differential thickness dx, we have

b
p(dx) = S dx (2-42)
T(dx) = I + (ST-M)dx (2-43)

so that repeated halving of the measured response functions just

gives us the matrices 5° and Sf-M.

In slab geometry the transport equation can be written as(77)
b b (2w E) + Z (BN (2, b, E)
} Sz Loy o t s Moy
00 1 ,
:5 dE‘g dp B(ps By p', ENG (2, b EY (C-1)

Discretizing just as we did in Section A of Chapter II, we have

b o ¥ (2) + )

N
f o+ b +
i=1
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or

245 (2) = (sT-My H(2) + % F(a) (C-3)

Thus Sb and Sf-M are sufficient to determine the solution to the
transport equation in slab geometry. Sb and Sf—M are related to
the double-differential cross-sections through an azimuthal itegration
(Eq. (2-33) ) which takes advantage of the symmetry in slab geometry.
However, by letting ore of the angle groups be p =1 as discussed in
Section A. 2 of Chapter IV, we can obtain the double-differential

cross-sections and so prepare cross-sections for any geometry.

B. Diffusion Theory

For a small thickness dx, we have

R(dx) = Pdx (2-61)
T{dx) =1 + Qdx (2-62)
‘so that repeated halving of measured R and T will give P and Q.

The general multi-group diffusion equations, however, can be writ-

ten as
-V-J+S$=0 (B-3)
Vé+32] =0 (B-4)
with (cf. Egs. (2-75) and (2-76) )

S = (P + Q) (C-4)

Wl N

Z= (P -Q) . (C-5)
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C. Individual Interaction Cross-sections

In the previous two sections of this Appendix and in Section A

of Chapter IV, we emphasized that "combined" cross-sections are ob-

tained from response function experiments. However, if so desired,

the individual interaction cross-sections can be separated to a certain

extent.

Thus suppose we have obtained the diffusion theory matrices

Z and S as shown in the previous section. These matrices were

defined in Chapter II as

l/3D1 0.5 &« 0
0 1/3D2 R
= .
0 0 1/3D
n
-21 + )((VZ)f)l 22->1+ Xl(vZ,f) Zn_>1+xl(v2f)
Zl ..+X2(vzf)1 -zr2+xz(v2£) = 2n~>2+xz(vzf)n
S =
b3 =
Z Lt I oL (vE . zrn X, (vZ;)
— s

The elements of = are just the transport cross-sections Et

]

(2-67)

(2-68)

For
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a non-fissile material the elements of S are the transfer cross-
sections Zj—*i and removal cross-sections X .. Moreover, summa-
r)

¢ .th ; ;
tion of the j. column gives the capture cross-section. Thus

i)
For a fissile material the analysis of S is slightly more

involved. Since there is no fast upscattering,
2%....=0 for j =i

so that the elements above the diagonal are just Xi(vZ‘, If we as-

f)j'
sume the fission spectrum X; is well-known, then we have (vZf)j
for j #+1. Moreover we can then obtain the transfer cross-sections

Ej"’i(j <1i) and the removal cross-sections 2, except for j=1.
J

By summing the jth column we obtain the absorption cross-section

“since
2. .- .t (vZ). =- 2 .- 2.+ (vZ C-6
z i1 Tt VB, o I (C-6)
i#]
and we know (vzf)j.
Finally suppose j = l. For the fissile isotopes, Zc =0

1
(see Ref. 49 and 76). If in addition we presume that vl is known

from some other experiment, then we can get Zf from (C-6) and
1
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thence the transfer cross-sections X _ . from (2-68).
1,

Summarizing the above, Ztr can be obtained from 2Z and

J
provided X4 is known, (vZf)j, %»i, and Zaj can be obtained from

S. In particular we can get

) (vZf).
n. = _Z -
J aj

which is of foremost significance in determining the breeding ratio of

(78)

a fast reactor
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