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SUMMARY

The unstable burning of a bipropellant rocket combustion
chamber is investigated and a study mede of the requirements for an
automatic closed loop control circuit to stabilize the motor.

The bipropellant combustion chamber equations developed by
Dr. L. Grocco(l) are utiliged as the analyticel description of the
rocket motor burning phenomena. ZIZquations similar to those developed
by Dr. H. S. Tsian(z) are used for the oxidizer and fuel supply systems
and the two closed loop stabilizing circuits.

The stability or instability of the system is demonstrated by
the use of a special plotting diagrem in the complex plane suggested
by M. Satche as a means of handling systems with time lag, and
developed for this use by H. S. Tsien. This involves separating the
transfer function into two perts. In the complex plane the first
portion of the transfer function, the exponential variable containing
the time leg, plots as a unit circle as the complex variable p is
made to take a contour enclosing the positive half of the p~plane.

If the remaining portion of the transfer function intersects this
unit circle, the rocket motor can be unstable for large reduced time
lag; if it does not intersect the unit circle, the system is
generally stable, although the roots of the exponential coefficient

in the positive half of the complex plane must be investigated. This
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latter requirement can be conveniently accomplished by the aid of
a Nyquist Diagram.
The equations for the feedback circult are developed and the
oxidizer and fuel transfer function requirements are determined.
Two cases of stable combustion and two cases of unstable
combustion are analyzed. One unstable case is stabilized by the

addition of a feedback circult.
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SYMBOLS AND DEFINITIONS

time
instantaneous value of the time lag

pressure exponent of pressure dependence of the
processes taking place during the time lag

instantaneous pressure in the combustion chamber

A+ 1@ = root of the characteristic equation
with the reduced time as the independent variable

pressurse in the combustion chamber in steady
operation

(p-p)/P = fractional variation of pressure
in the combustion chamber

instantaneous rate of injection, burning, and
ejection of propellants

common value of the above rates of injection,
burning and ejection in steady operation

(ﬁi - E)/; = fractional variation of injection
rate

instantaneous mass of gases in the combustion
chamber

Mo/ & = gas residence time in steady operation

o g +7 = total residence time of propellants
in steady operation

absolute temperature of combustion gases



S >

Hi

i

i

i

vi

reduced amplification coefficient
reduced angular frequency
instantaneous mixture ratio
mixture retio in steady operation

coefficient related to the variation of
temperature with mixture ratio

non-dimensional reservoir cepacity for the
oxidizer line

non-dimensional reservoir capacity for the
fuel line

(r~-1)/ 2 (* + 1) = coefficient representing
the deviation from unity of the mixture ratio

subscript indicating injector emd
subscript indicating ejector end
subscript indicating oxidizer
subscript indicating fuel

1:/9g = reduced time

f}/eg = reduced time lag

constent relating the mass flow rate to the
pressure in the feed system lines

p;!.i/ZApAt eg = inertia parsmeter in the line
P/2Ap = pressure drop parameter

retio of functions in (d /dz) describing the
response of the feedback circuits

H+ 2K - KeP? = a convenient grouping of terms
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G(p)

g1,(p), g5(p)
4, C, D, R, S

L, M

®
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vii
complex constents used in the trial
solution
system transfer function

components of G(p) used in the Tsien-Satche
Diagram

convenient system constants defined 3in
equations (16) through (21)

convenient grouping of system constants and
veriables defined in equations (22) and (23)

Fo(p)L - Fe(p)M=8)/p+ 2y + &) + a5

& convenlent symbol for the feedback circuit
transfer function



I. INTRODUCTION

Rocket motors often exhibit rough combustion either as
chugging (low frequency oscillation below 100 cycles per second)
or screaming (high frequency oscillations several hundreds of cycles
per second). The first of these phenomena has been investigated
sufficiently that several authors have developed equations describing
analytically the oscillation processes in rocket motors(l) - Those
equations which are utilized in this paper are deduced by L. Croceco

under the following assumptions:

1. The processes of transforming the propellants into high
temperature gases require a certain time called the time lag, T
it is the time after which the liquids may be considered suddenly
transformed into hot gases. The rate of mixing of the propellants
depends essentially on the injection system used and recirculation
effects, but probably not on chamber pressure. The conditions,
droplet size, temperature, vaporization and eventual chemjical trang-
formation of the propellants after mixing depend considerably on

chamber pressure.

2. The time lag is considered the same for all particles of the
propellants; the residence time is considered the same for all
particles, i.e., 21l particles travel from the injector end where

burning ocecurs to the exhaunst end in the same residence time interval,
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3. The lew of varistion of time lag with pressure is assumed
to be:

t
f £ (p) dt* = constent (1)

t -
where p is the chamber pressure and f(p) is the time rate of

preparation for combustion.

4, Pressure variations are sufficiently slow throughout the

combustion chamber that o uniform pressure can be used, p = p(t).

5. Temperature of the gases is assumed to vary with time and space

but not with pressure oscillations,

6. Analysis of the stabilizing circuit itself and its oscillations
affecting the rocket motor are not investigated.

L. Grocco(l) has demonstrated that a rocket combustion chamber
is intrinsically unstable, i.e., the burning phenomenon itself can
generate oscillations even without variation in the injection rate,
This occurs because any oscillations of the pressure will cause an
oscillation in the time lag by equation (1). Thus if the time lag is
oscillating, it is immediately seen that when the time lag is
decreasing, the burning of the particles that were injected later will
catch up with the burning of those injected earlier; this increases
the rate of burning with respect to the average. Similarly, the
opposite happens for an increasing time lag., Thus, if the increased

or decreased rate of burning should coincide with a pressure
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increase or decrease, self-excited oscillations can exist resulting
in unstable burning.

For the bipropellant case assumption 2 that O g 1is the
residence time of all particles mezns that each particle burns at
the injector end and travels to the exhaust end carrying with it the
temperature developed at the combustion instant. Thus, the
temperature at the exhaust, Ege
mizxture ratio of the propellants injected at the earlier time

s, at the time ¢ corresponds to the

t-Oy=%- T - eg. This can be put in temms of the reduced
time by dividing by Gg giving: z = & = 1. Therefore, in effect,
we have two reduced time lags, (S' and 1.0. It is the second time
lag that introduces additional complications in the formulas for
the bipropellant case by appearing as an exponential term in g, (p).

The problem of stabilizing a combustion chamber is simplified
by the use of the TsienwSatche Diagram., If the system transfer
function, G(p), is separated into gl(p) = e”sp and gz(p) = all
remaining terms in G(p), then as the complex variable, p=A+ i,
is made to take the contour enclosing the positive half of the
p-plane, stability cen be conveniently determined if the gz(p) curve
lies completely clear of the unit circle, gl(p). A Hyquist Diagrem
of the denominator of ga(p) also is required to determine if there
are any poles in the positive half plane.

For an unstable case in which gz(p) does intersect the unit

circle, gy (p), stability cen be insured by designing a feedback
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circuit transfer function which will cause the gg(p) curve to
move clear of the g (p) curve, and still meet the requirements
of the Nyquist Diegram concerning poles in the positive half plane.

For a bipropellent rocket the temperature of the combustion
gases 18 & function of the local mixture ratio.

As the mixture
ratio operates away from the steady-state value, T, the fractional

variation of the temperature varies as:

- _ . JT

Ta — T r-r . X __1d

“1:—1":2‘(—,::-— or, '(:—Z")':i dr
To

This defines K which turns out to be an interesting parameter
of the system.

K may be either positive or negative, although,
as pointed out by L. Crocco, K is generally positive,
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I1. DEVELOPMENT OF EQUATIONS

Under the assumptions given above, the equation of the combustion
chamber for a bipropellant rocket was developed by L. Crocco: (See

Figure 1 for schematic diagram of system),

f/zié # ZKﬂ/uo ’/ap/&l -(m—»@/g] + 55 ~ K (4 -/uf)éw -

(é—*/‘/)/flo/g 4 (%——-H)/u'f'lg + N C¢— 75,5) (2)

Following H. S. Tsien and considering the propellant to be fed
by a centrifugel pump run at constant speed the following equations

for the bipropellant feed system are developed:

-;’(E%)(ﬂwj’f’) -R¢ = b+ T d%(ﬂo+%§) (3)

J 5 T
& (Bs)(wp+ 75F) - g = g v Tp g7 (ue+ 525 ()

Bquations (2), (3) and (4) specify the transiemnt behavior of
the fuel and oxidizer supply systems coupled with the combustion
chamber when the reservoir cepacities in the feed line, K, and K,
are specified. The closed loop stabilization circuit can be
completed by requiring K, and K¢ to be a function of ¢§ o This

means that the reservoir capacity responds to pressures from the
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combustion chamber through a suitable amplifier and servo system.

Thus K, and K¢ are assumed to satisfy a pair of integro~-differential

equations,
Fo (342 ) 4) =K (5)
d
B (3z)¢ =K (6)

vhere Ff and Fo correspond to a ratio of functions (generally
polynomials) in d/dz.

Trying a solution of the form:

g=AC =BT y-De”

\ ez (7)
K,=L'e?*® K =M e

where now p = A +1@Q is complex, as are A!, B!, D', L' and M!.
Eliminating the common factor e’Z, equations (2), (3), (4), (5)
and (6) represent a solution of the system if the five homogeneous

first degree equations below are simultaneously satisfied:

- -p& -pd
(1-n+p+neI"r)-ﬂ-'--(g+-:’§)eIJ B'+(g-%;)epv D= o (8)
P A! + [_1+1(P+1~)+J ]B'-l-[_" Pgti)p + J 2]1.!- (9)
0 A oP &(Potz)p + Jop =0

PeAl + [1 + &(PeHy) + Jgp | DM+ [&(Pf.,.%)p + Jp? ] M=o (10)



Fo(p) Al = Lt =o (11)

Fe(p) A' = M=o (12)

Since they are homogeneous equations, they can be simultaneously
satisfied if, and only if, the following determinant of the

coefficients of the above equations vanishes:

P+ (=m)+ 5
nedt €T qpne? o °

B [raetrng o [f@ebprisy o

P o [r2Betreng o [KB+i)pep]
Fp) Y 0 -1 o
£ (#) o o) o -/
"where g = H+ 2K - Ke * has been used for convenience,

Expending the determinant gives equation (14) below; if p
satisfies this equation, our assumed solution, equation (7), will

be a possible solution of the system,
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[Prem][1+ & (R+ D)+ Tpl[i+ < (R+4)+Top] +
C—frin[w.%(m D[+ LR+ 5] + P (q+)[1+a P+ 1) ]+
-Fg-ple ]} ¢ pe T Rl E ]y
nL[1+c(R+t)] - BP(4-5) +J}%(9+‘z:)} + Pzejfn LI+
b B {Latl [ EGD][ 1+ (R+3)]] +
e T Ry (g-0) L2 (Be ][5 + L Dis 2R+ 1)1 +
P Bp (3- D (T 50) +

pet B [[g+411E@e 1)I[1+ 2(F+4)1} +

P T ) (ged) {ER+OIIT T+ KL+ L7+ 5)1)F

Pse‘&Fo(ﬁ (9+4)(JoT¢) = G = © (rv)
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For the system to be stable, the roots p of equation (14)
should not have real parts. The problem of stabilizing the rocket
motor thus becomes one of designing the closed loop transfer
function, F,(p) + Fe(p), so that this criterion is satisfied. This
condition can be investigated most easily by use of the TsienwSatche
Disgram and a Nyquist Diagram.

If the complex variable p is made to take a contour as in
Figure 2 enclosing the positive half of the p~pleane from -~ 00 %0 + 0O
and around a circle in the positive direction with infinite radius,
each root of G(p) = O (equation 14) in the positive half plane will
cause G(p) to make a complete revolution about the origin. Separating
G(p) into two parts, gl(p) and go(p), by dividing by the coefficient

of the exponential term, e"é‘p. gives:

G = G — G2

(15)

c_é“ _ [p+t-»][A+TspI[ B+ Top]
..z[n)},)}rz-y(i)wb Se‘f’)p+C+’?E_PJ+€(1OIL+E@N}

where

A

1+% P+ 3) (18)
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B= 1+ (P,+3) (17)

¢c= n+(P°+Pf) (%{-é +°'—2- +£'C.)+ (PO-Pf) (2 + 2K+7'_%‘+ ,’K{ )+

n
PP G+ 3 )+ o L+ 3x)

(18)
D= [(Gehly) (k) + (TP Pr) @ +2) + (JePe=ToPy) (H+ 2K)] (19)

RE (Pp - Bp) (K+5) (20)

ST -X (Jp B, - J, Pg) ()

M= {(H-«-zx-%)[(.&-l) (8p + Jgp%) + 3, (3°) +

I, 0°] - xeP[a-1) @+ 3%+ Tp(m?) + JfJops_]}

(22)

L= f (B+ 2k + 3) [(B - 1) (Ap + J52%) + JO(A;:Q) + JfJOP3]+

- Ko P I(B -1) (Ap + prz) + Jy (4p°) + JfJoPSJf

(23)
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Note that in these definitions, A, B, C, D, R, S, are constants
of the system, but that L and M include the variable (p).

With this arrangement of terms, G(p) becomes a vector with
vertex on g; (p) and the starting point on g5(p). As p makes the
stated contour of Figure 2, g, (p) becomes 2 unit circle and gs(p)
prescribes various contours dependent on its form.

It is also necessary to investigate the coefficient of e-d"p
(this is the denominator of gz(p) as written in equation (15)) to
ascertain if it has any poles or zeros in the positive half plamne.

If the coefficient of e"':P has s poles and r zeros in the
right half p-plane, then as p traces & clockwise contour as in
Figure 2, the coefficient will trace r-s clockwise revolutions.
Therefore, for stability ga(p) must make r counterclockwise revolue
tions around the unit circle. Thus even though the primary condition
of stability is that g5(p) lie completely clear of the unit circle,
gl(p), it must also satisfy the conditions dictated by the number
of poles in the positive half plane of the coefficient of the
-&p

exponential term, e
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IT1I. STABILITY OF BIFROPELLANT SYSTEMS
WITHOUT FEEDBACK
To investigate first the coupled feed system and combustion
chamber without the feedback circuit, set K (p) and Ke(p) equal to

zero. This reduces equation (15) to:

6(1a)=e“”-{ [P+ n]LA+Tp1LB+3p] } (24)

“[n% 3 4> 4 (D+SeP)p+ C+HRe P ]
fp P

where the constants A, B, C, D, S and R are defined in equations (16)

through (21).

CASE I: (Stable Case, K= 0,2)

letn = 0.1; & = 1.0; T = 2.75; H = 0.233; T 4500°K;

]

0.5;

d7,/dr = 650; K = 0.2; Jo = 4.0; Jp = 0.8; P
P; = 1.0.

Substituting these values into equations (16) through (21) gives:
A = 206; B = 2.0 C = 1.,65; D = 1.08; R = 0.2;

S = 0.72,

Thus, equation (24) becomes:

. . 0.3 2.0 +4
(p+09)(2.5+ 03p)(20+%0p) }(25)

Gt = e - - -
-[a 32p>+ (108 + 0.7287F)p + (L5 +0.2¢ 1]
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Yow let p= 1) , where « is the reduced angular frequency.

Equation (25) reduces to:

(- 320°+ /544 w) — /E 4P 4 £S )
26

Gp) = e“%—{

~[-0.320"+ (103 +072€ ) (> + (165 +0.2¢7]

Substituting values for <«J gives the Tsien-Satche Diagrem for
g2(p) plotted in Figure 3. Checking the denominetor of go(p) for
roles gives the Nyquist Diagram plotted in Figure 4. The numerator
is plotted in Figure 5.

From the figures it is evident that this case is stable since
the ga(p) curve is completely clear of the unit circle and makes no
loops about it. Also, the denominator in the Nyquist Diagram is
proven not to have any zeros in the positive half p~plane, since it

does not make any revolutions about the origin.

CASE 1I: (Stable Case, K = 0.3).

Letn = 0.,1; o =1.0; ¥ = 2.75; H = 0.233;

dT,/ar = 1000; K = .3; J, = 4.0; J, = 0.8; P = 0.5

P, = 1.0.

Substituting these values into equations (16) through (21) gives:

A = 2,5; B = 2,0 ¢ = 1.,50; D = 0.36; R = 0.,3; § = 1.08.
Letting p = i¢) and substituting these values into equation (24)

gives:
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_¢Sw ~3.2W + 15.44 o ,“(,._)" 45
~lo32w™+ (036 +103e ) o + (15 0. 3e7°)]

Again, substituting values for ) gives the Psien-Satche
Diagram for gz(p) plotted in Figure 6; the Nyquist Diagram of the
denominator is plotted in Figure 7, The numerator is the same as in
Case I (Figure 5).

Changing K in this second case has resulted in a radical change
in the Tsien-Satche Diagram. The curve gz(p) now makes two counten=
clockwise loops about the unit circle, although it does not intersect
the curve gl(p). Nevertheless, this is still a stable case since
the denominator of gg(p) makes two clockwise revolutions about the

origin in the Nyquist Diagran,

CASE III: (Unstable Case, K = 0.2)

Letn = 0.5; o = 1.0; F = 2.75; E = 0.23%; T, = 4500°K;
dTg/dr = 650; K = 0.2; J, = 4.0; Jy = 0.8; P, = 0.5

Py = 1.0.
Substituting these values into equations (16) through (21) gives:
A = 2.6 B = 2,0; ¢ = 3.65; D = 5,72; R = 0.2;
S = 0.72.
Letting p = 1> and substituting these values into equation (24)

gives:
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_iSw [ (320’4 10.8w)c — 320+ 25
Gp) =€ - : = = {z8)
~[-16 @ 4 (572+072€ ) cw + 35 +0.2¢™7)]

Substituting values for « and plotting gives the Tsien-Satche
Diagram of Figure 8 for g,(p). The behavior of the denominator of
go(p) is shown in the plot of Figure 9. The numerator is plotted in
Figure 10,

Inspecting the figures it is seen that the gz(p) curve now
intersects the unit circle and thus the rocket motor can be unstable
for large reduced time lags. This shift to instability is primarily
the result of the change in the value of n from 0.1 to 0.5, Thus,
Un", the pressure exponent of pressure dependence of the processes
taking place during the time lag, 7 , is shown to be an important

system parameter.

CASE 1V: (Unstable Case, K = 0.3)

Letm = 0.5; o = 1.0; F = 2.75 E = 0.288; T, = 4500°K;

d'.rg/dr = 1000; K = 0.3; J, = 4.0; Jgr = 0.8; P = 0.5
Pe = 1,0.

Substituting these values into equations (16) through (21) gives:
A = 205 B = 2,0 ¢ = 3.50; D = 4.,50; R = 0.3;

) 1.08,

i
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Letting p = 1 « and substituting these values into

equation (24) gives:

esw [((Zrwt+r0.8w)l - 13.20v 4 2.5

Gp =€ - (29)

~[-t6 Wt (#5¢+r08e )cw + (3.5+0-3¢%)]

Substituting values for ) and plotting the values of gz(p)
gives the Tsien~Satche Diagram of Figure 1l. The Nyquist Diagram of
the denominstor is plotted in Figure 12 and the numerator, which is
the same as in Case III, is plotted in Figure 10.

In this case changing X from 0.2 to 0.3 4id not have the
spectacular results as in the stable case, although the gz(p) curve

does have a more complicated shape.



IV. STABILIZATION OF A BIPROPELLANT SYSTEM
BY A FEEDBACK CIRCUIT

Turning to the problem of stabilizing an unstable burning
rocket motor, it is obvious that a feedback transfer function,
Fo(p)L + Fe(p)M, is required that will move the go(p) curve
completely clear of the unit circle for small values of <«J) plus
satisfying the requirements of the Nyquist Diagram for all values of
) ., Since the go(p) curve can only intersect the unit circle in
the region of small values of & , the e-id terms in the denomi-
nator of go(p) —~ (equation 15) = cen be expanded in a power series
of (i) ana higher order terms neglected. Also, define a feed

system transfer function, F (p)L + F.(p)M, as a series in powers of p:
) f ,

T+ FpoW= & (@) = ayjp+ 8 + ap + ap® (30)

Substituting these two changes into G(p), equation (15), and

letting p= 1L gives:

Gir) - e,cJo_ [cw+G-m]ILA+ Fan] [ B+ T, (<w)] }
P "{" Ll +[045 (1 + S04 Yo + C+R(1- <o +E I}j

(31)

Now clear the denominator of go(p) of imaginary terms by
multiplying both numerator and denominator by the conjugate of the

denominator giving:
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ol = - { HBAU-M] [N+ 8 -5+ @]~ [p-Re 5+a,] [3oAl-n)+ T B(1-n) + BAT] ()™
{2l %3+ §-s+ @] [c+R+a]-[D-Re5+ 4,1 fGw) 4 [c+ R+ @, ]2

z[J'., A +35B 4330 (-n)J[C+R+6,]3 (W) + [c+ R+ a,][8A(-m) ]
fz[njol; +8 _s+a, I[c+R+a.]-[D-R+5« Q‘]z}((w,‘——}— [c+R+a,]*

(T nt-n>+ JeB(-n) + BRI [(+R+G, ] - [D-R +5+a,1[ BAG-m)] §
2 R L 2 (51)
f2Inddpe B=5+a,1C+R+ 6,1~ [P-R+S 4T fcw)* + [C+ R+ ]

This is the approximated equation for the gz(;i) term of the
system transfer function and holds for small <« only. Terms of
order (i w )3 and higher order were neglected in this development.

Row it is necessary to specify the shape of the stabilized curve,
gz(p), near the unit circle and derive the values of a_y, &84, a3, ag

that will meet these requirements. Let this stabilized curve be:
_ 2 3
ga(p) = W+ X(1w) + Y(1w)” + 2(1) (33)

Equate this to gg(p) in eguation (31) and clear by multiplying
the denominator by equation (33), transposing the numerator terms
to the left hand side and collecting even and odd powers of (i)

together:



{w[n.'l'.f;wt R —s1+ x[p-R+s]+ Y[c+R]+ Wa, + Xa,+ Yag *+ Za_,i(;’w)”-’—

[TA + 348 + 5T (-] w)* + [W[CHRT+ ABG-n) + Wa, +Xa, =0  (za)

EWL%- B I+ XLy + & -s1+ Y[D-R+3] + Z[c+R] + Xa, +Ya, + Za, J(cw) +

[FoTy I(cw)’ + } W[p-r+51+ X[C+R] +[3,AG-v) + T, BU-m+ BA +
(35)

Wa, + Xa, + Ya, {cw + Wa, = o

Note that in this development terms of order (i )4 and higher
were neglected. The coefficient of each (iw) term must be independ=-
ently zero for these equations to be satisfied. Therefore, setting
the coefficient of each term, i.e., (1 ), (1 )%, (1w )1,

1w )2 to zero and solving for the unknowns, 8_15 8gs 89 8o gives:

ﬁa_l =0
Wa, + Xa_j = = 4B(1-n) - W[c+ R]
Wey + Xag + Ya.) = = [ JoA(1-n) + JgB (1-nWBa] =¥ [D-R + §] -x[c + B]

Wag + Xap + Yag + Za.y = = [ Joh + JgBHIpl, (1-n)] ~W[aiode + 5 -s]+

-x[p-Rr+s] -v[c+Rr]

(36)
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These four eguations caen be solved simulianeously to give
explicit relations for a_;, 25, 8y, ay in terms of system constants,
and thus Fo(p)L + Ff(p)u, the feedback system tremsfer function, is
determined.

Solving for the unknown 8_1s 801 ¥, 8 gives:

8.130

ay = - é’?(f—n)] - (c+ R)

&y = - [ JoA(1-n) + JeB(1-n) + BAj = (D-B#S) + (C+ B) (X - ;’;‘,) +

[ X ]

ay =+ [JOA(l-n) + JgB(1l-n) + BA][\T):‘ -i/]' [nJoJf *3 - 5] +
[l -E1 -[o+2)[& - X1 ]
(37)

For smell > the approximated g5(p) equation (32) can be used
with the feedback transfer function equation (30) to plot the
Tsien-Satche Diagram., For large O the general equation (15) must
be used in plotting this diagram; also the Nyquist Diagram of the
denominator of gz(p) must be investigated.

To illustrate the procedure outlined above, consider the unstable
case discussed previously where X = 0.2. Let the required stabilized

curve of g5(p) be described as follows:



| 2
go(p) = W+ X(10) + Tw)® + 2(10)% = = 2+ 80° + 81w,  (38)

This erbitrary selection of the g,(p) curve is made to place
the stabilized curve in the approximate position of the known stable
curves of Cases I end II. Thus, W= = 2; X= = 8; Y== 8; Z= O,
Also, A= 2.5; B= 2,03 C = 3,65; D= 5.72; R= 0.2; § = 0.72 (other
values as Case III).

Substituting these values into equation (37) gives: a_j = 0;
8y = = 2.63 8q = = 5.84; a5 = = 1,06. With these values,
¥ = - 2.6 + 1.060% - 5.84 10,

Using equation (32) and the above values the following expression

is obtained for gz(p):

+ 317 — 15.31 qu + < (IZ.%«J) } (39)
4153 — .25 o™

i<

Solving this equation for various values of « gives the below

table of results:

A Jo(p) W XCw) + Y(ew)*+ Zcw)?
Q —2.04 -2.0

0_‘6 -195 -<0.83 -192-c0.%0

‘L} -1.5¢( - 2.25 ~15 -¢ 2.9

3 -122 ~< 355 —tt2 - ¥ 268

z +o.97 -¢ 87 o-¢40
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This teble shows that as « becomes greater than 1/3. the
values of gz(p) have too great an error. However, from Figure 13
it is apparent that the curve has been stabilized satisfactorily
for small .,

It is now necessary to investigate the behavior of ga(p)
using the exact equation (15) which includes the feedback circuit;
substituting the values determined above into equation (15) results

in:

G Sp | -mszot+ 25 + (3207 Fr0.7W) 0)
-=¢ - . . 40
(f) -[—0.54 W+ (01240726 ) (w + los+0.2e ]

Substituting values for <« and plotting gz(p) gives the
Tsien=Sotche Disgram of Figure 14, The Nyquist Diagram of the
denominator is plotted in Figure 15; the numerator is the some as
Cage I1I and is plotted in Figure 10,

From Figure 13 it is evident that the stabilized curve is
completely clear of the unit circle for small «w ., However, for
large W the addition of the feedback circuit has caused the go(p)
curve to change in the Tsien=Satche Diagram from no loops about the
unit circle in Case III to one with two counterclockwise revolutions

about g, (p) in the stabilized curve of Figure 14. Nevertheless,
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the system is still stable since the Nyquist Diagram shows that
the denominator of gg(p) makes two clockwise revolutions about the
origin.

Thus an unstable burning rocket motor has been stabilized by
an appropriate closed loop feedback system. The circuit chosen
to stabilize Case III was a combination of three terms of a
differentiating circuit and one term of an integrating circuit. The
coefficient of the integrating circuit turned out to be zero
indicating this type circuit need not be used.

In order to show the nature of the feedback function,EE.(p),

set F%(p) = 0 and solve for Fo(p) in equation (30).

F(0) = (a_y/veagtarpres®) /L2 Afp+ &g+ Ap+ AD°  (4)

Evaluating L by substituting the values of constents used

TR

previously, approximating e by a power series in (i« ) and

neglecting higher order terms gives:
L==10.59 (1« )? - 2.33 (10) (42)

Equation (41) can now be evaluated by using the known values of all

terms, resulting in:

[— 1.06(1«:)2 - 5.84(iw) -2.60)/ [+ 10.59(1u)2+ 2.33(iw)]

F,(p)

- 1.12/ (1w) + 2.57 = 12(iw) + 54.77(1«))2 (43)

Therefore, to our order of approximetion:
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Ag=-1.12

Ay =+ 2.57

A4 =-12 (ae)
Ay =+ B4.77

It is now necessary to choose & relationship for Fo(p) that will
approach zero for large ¢° and still retain the desired stabilizing
characteristics for small « ., Thus the following expression, which
is arbitrarily chosen, describes a circuit that will stabilize the

combustion chamber:
F,(p) = (-1.12/p) (1 + Byp / 1+ By2° + Bgz") (45)

To evaluate B,, By, B; in terms of the constants in equation (44),

equate equation (45) to (43) giving:

% = - 2.29
B, = =10.7 (46)
By = + 23.9

Thus,

F (p) = (-1.12/p) (1 - 2.29p/ 1 - 10.71p% + 23.9p°) (47)

This equation for the closed loop circuit gives the desired

stabilization to the rocket motor for low freguency pressure

variations in the burning process which could have caused combustion

instebility.
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