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ABSTRACT

Communication over a point-to-point link is relatively well understood. How-
ever, when such a link is part of a larger network, our understanding is far
from complete. Nonetheless, progress in this area has important consequences
in both the theoretical and practical aspects of communication networks.

In this work, we focus on the role of a single link in networks that in addition
to point-to-point links, contain “multi-terminal components.” An example of
a network consisting of a single multi-terminal component is the uplink in
a wireless communication network where multiple transmitters communicate
with a single receiver over a shared medium. We demonstrate the existence
of a class of such networks where a finite capacity link results in a rate gain
for each source that far exceeds the capacity of that link. This is an example
of a “network effect”: the phenomenon where a resource, here link capacity, is
significantly more valuable in a network than in isolation. Here we measure
the “value” of the finite capacity link by the sum-capacity gain per source that
it enables.

The central idea behind the construction of networks that exhibit such effects
is the introduction of a node, referred to as the “cooperation facilitator” (CF),
that allows other network nodes to work together to reduce interference. In
the setting of the classical multiple access channel (MAC), an example of
a CF is a node that receives rate-limited information from each transmitter
and broadcasts rate-limited information back to the transmitters through a
common bottleneck link. Let the “cooperation rate” be the capacity of the
CF bottleneck link. We show that for a class of MACs, the presence of a CF
leads to a sum-capacity gain that, as a function of the cooperation rate, has
an infinite slope at cooperation rate zero. This means that the bottleneck link
of the CF is significantly more valuable in some networks than in isolation.
This class of MACs includes well-known examples such as the Gaussian MAC
and the binary adder MAC.

In addition to sum-capacity gain, cooperation under the CF model also im-
proves reliability. Specifically, in the case of the MAC with two transmitters,
whenever the CF has full access to both messages, the maximal- and average-
error capacity regions coincide. This effect is observed even when the coop-
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eration rate is “negligible”; that is, the cooperation rate grows sub-linearly in
the number of channel uses. An implication of this result is the existence of a
network whose maximal-error sum-capacity is not continuous with respect to
the capacities of its edges; this means that in some networks, even a negligible
cooperation rate leads to a positive sum-capacity gain.
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C h a p t e r 1

INTRODUCTION

Communication networks play an increasingly important role in our society.
While demand is growing, the resources used to meet those demands (e.g.,
bandwidth and power in wireless communication) are not. This leaves us
with one possible solution: we have to use network resources as efficiently as
possible.

One way to increase efficiency is to allow network nodes to work together,
or “cooperate.” Through cooperation, over-constrained regions of the network
can take advantage of the resources available in less constrained regions. This
results in a reduction in interference and thus an increase in throughput at a
given power.

There are many ways network nodes can cooperate. In fact, many well-studied
mechanisms such as feedback or relay nodes can be thought of as cooperative
designs [1]. Here we consider cooperative strategies that are enabled through
finite capacity noiseless links among network nodes. Such designs can take two
possible forms: direct and indirect. (See Figure 1.1.) Our focus is on indirect
cooperation.

A simple instance of indirect cooperation is the scenario where two or more
nodes are connected via a pair of incoming and outgoing links to a common
node, which we refer to as a “cooperation facilitator” (CF). Each node sends
some information to the CF; using this information, the CF then helps each
node improve its transmission rate. The amount of information sent and re-
ceived by the CF is limited by the capacities of its input and output links.

1.1 The Cooperation Facilitator

We begin by considering cooperation in a network consisting of two encoders, a
CF, a multiple access channel (MAC), and a decoder. In this network, the aim
of each encoder is to transmit its message to the decoder with small probability
of error.

For i ∈ {1, 2}, encoder i sends rate-limited information to the CF over a link
of capacity Ci

in. The CF, using the information it receives from the encoders,
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Figure 1.1: Left: Cooperation model where nodes A and B communicate
directly. Right: Cooperation model where nodes A and B communicate indi-
rectly through a third party C.

sends rate-limited information back to encoder i over a link of capacity Ci
out.

The communication between the CF and the encoders can continue for a finite
number of rounds, where in each round, both the CF and the encoders may
use any information received in prior rounds. A CF with input link capacities
Cin = (C1

in, C
2
in) and output link capacities Cout = (C1

out, C
2
out) is referred to as

a (Cin,Cout)-CF. (See Figure 1.2.)

Once the communication between the encoders and the CF is complete, each
encoder, based on its message and the information it receives from the CF,
transmits a codeword over the MAC. Upon receiving the output, the decoder
seeks to find the transmitted messages.

In this work, we consider two benefits of cooperation: rate and reliability. We
discuss each separately below.

1.2 Rate Benefit

To measure the rate benefit of cooperation, we calculate the sum-capacity
gain resulting from cooperation. Sum-capacity is the maximum of the sum of
transmission rates for all sources.

Our aim is to understand how the sum-capacity of a network consisting of a
MAC and a (Cin,Cout)-CF depends on (Cin,Cout). As we show in Chapter 3,
however, we observe the most interesting behavior of sum-capacity when we
fix Cin ∈ R2

>0 and study it solely as a function of Cout.

To guide our study, we briefly discuss prior work. When Cout = 0, no coop-
eration is possible, and the sum-capacity is obtained from the capacity region
of the classical MAC as derived by Ahlswede [2], [3] and Liao [4]. The sum-
capacity of this setting serves as a baseline for measuring the rate benefit of
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Figure 1.2: The network model for the MAC with a (Cin,Cout)-CF. Here w1

and w2 are the messages, n is the blocklength, Xn
1 and Xn

2 are the codewords,
and Y n is the MAC output.

cooperation; specifically, the “cooperation gain” is defined as the difference
between sum-capacity in the presence of cooperation and the sum-capacity of
the classical MAC.

While our aim is to understand indirect cooperation, the direct cooperation
model of Willems [5], referred to as the “conferencing encoders model,” proves
important for our study. In Willems’ model, which was also originally intro-
duced for the MAC, the encoders are connected via directed links of capacities
C12 and C21. The main contribution of [5] is that it determines the capacity
region of this setup. (See Figure 1.3.)

Using Willems’ region [5], we see that the sum-capacity gain of (C12, C21)-
conferencing is bounded from above by C12 + C21, which is the total amount
of information the encoders receive per time step as a result of cooperation.

In the CF setting, the encoders receive a total of C1
out +C2

out bits per time step
in the cooperation process. Does a result similar to conferencing hold in this
case? That is, does there exist a universal constant K, independent of the
MAC, such that the sum-capacity gain is always bounded from above by

K(C1
out + C2

out)? (1.1)

In Chapter 2, we demonstrate that no such universal constant exists; that is,
for (1.1) to be an upper bound for the sum-capacity gain, K must depend on
the MAC. This is done by constructing a sequence of MACs where for the mth
MAC in the sequence, setting

C1
out = C2

out = log
(
m logm

)
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Figure 1.3: Network model for the MAC with (C12, C21)-conferencing [5].

leads to a sum-capacity gain that is linear in m.

In Chapter 3, we extend the ideas of Chapter 2 in a number of directions. First,
we consider the more general setting where for some k ≥ 2, there are k encoders
in our network. The encoders are all connected to a (Cin,Cout)-CF, where Cin

and Cout are vectors in Rk
≥0. Second, we give a single-letter representation of

a class of MACs for which the sum-capacity gain is not bounded by any linear
function of Cout. In addition, this class of MACs includes many well-known
channels, such as the Gaussian MAC [6].

Even though a simple coding strategy suffices for the purposes of Chapter 2, we
require random coding arguments in Chapter 3. In addition to techniques from
Ulrey [7], who extended Ahlswede’s and Liao’s results to the k-user MAC, we
apply a coding strategy due to Marton [8]. While Marton initially developed
this coding strategy for the broadcast channel, it is particularly well-suited
for the MAC in the presence of a CF. In fact, this is the strategy that is
responsible for the large sum-capacity gain mentioned earlier.

In Chapter 4, we return to the setting of the 2-user MAC. Here we also study
the sum-capacity gain, but in the presence of “channel state information” at
the encoders and the decoder. This model is especially important as it arises
in applications such as wireless communication with fading [9]. Our work in
this chapter relies on prior work by Jafar [10] and Permuter, Shamai, and
Somekh-Baruch [11].

Based on the encoder cooperation gain we demonstrate here, it is natural
to ask whether in networks with multiple decoders, a similar gain is possible
through decoder cooperation. The answer is negative; in particular, in the two-
receiver broadcast channel, decoder cooperation via a (Cin,Cout)-CF cannot
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increase the sum-capacity by more than C1
out +C2

out. This limitation of decoder
cooperation first appears in the work of Jalali, Effros, and Ho [12]. We provide
a more detailed discussion of this result in Appendix D.

1.3 Reliability Benefit

In Chapter 5, we study the reliability benefit of cooperation.1 The reliability of
a code is a measure of the distribution of the error probabilities of the message
vectors; in particular, we say that a code with small maximal probability of
error is more reliable than a code with the same rate that has small average
probability of error.

In Shannon’s original work [14], which marks the beginning of information
theory, the capacity of a point-to-point channel is defined as the supremum
of all rates that are achievable with small maximal probability of error. In
[14], Shannon defines the average probability of error as well, and proves that
the capacity of a point-to-point channel is the same under both maximal and
average probability of error constraints.

Three decades after Shannon, Dueck [15] demonstrated that Shannon’s result
does not extend to networks; specifically, Dueck constructed a MAC for which
the maximal-error capacity region is strictly contained in the average-error
capacity region. More than a decade later, however, Willems [16] proved that
Shannon’s result does extend to the broadcast channel; that is, the broadcast
channel maximal- and average-error capacity regions coincide.

Given the results of Shannon [14], Dueck [15], and Willems [16], one may won-
der where the MAC with rate-limited encoder cooperation lies; that is, what
is the relationship between the average- and maximal-error capacity regions of
the MAC with a CF? We answer this question in Chapter 5. Specifically, we
show that in the case where the CF has full access to the encoders’ messages,
the maximal- and average-error capacity regions are the same as long as the
capacities of the CF output links are positive. So in this scenario, our result
falls in line with Shannon [14] and Willems [16].

In the case where the CF only has partial access to the messages, however,
using Dueck’s construction [15], we show that the maximal-error capacity re-

1We remark here that our use of the term “reliability” differs from prior work in the liter-
ature where “reliability” is used to describe the rate of decay of the average error probability
of a sequence of codes with strictly increasing blocklength [13, p. 160].
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gion is not necessarily equal to the average-error region. Nonetheless, there
is still a reliability benefit, but the maximal probability of error constraint is
too strict for its description. To address this problem, we define a family of
error probability constraints that lie between the maximal and average error
probabilities. We discuss this idea in detail in Chapter 5.

1.4 The Edge Removal Problem

Our work here is strongly motivated by results from the network coding lit-
erature. The network coding literature studies networks that solely consist of
noiseless links of finite capacity [17]. The determination of the capacity region
of such networks is open in general; in fact, even the impact of a single edge
on the capacity region, which we next discuss, is unknown.

The “edge removal problem” [12], [18]–[20] is the problem of determining the
effect of removing a finite capacity edge from a network. For simplicity, we
focus on the effect of removing an edge on sum-capacity rather than on the
entire capacity region. In the study of this problem, various versions of the
“edge removal property” are introduced to capture the effect of edge removal in
different networks. In this work, we encounter the following three variations.
Note that our definitions for the weak and strong edge removal properties are
consistent with [21].

In the following definitions, consider a network N and an edge e in N of
capacity δ. Each variation of the edge removal property is defined for the
fixed pair (N , e). We say the network N satisfies a certain edge removal
property if for all edges e of N , the pair (N , e) satisfies that property.

1.4.1 The Weak Edge Removal Property

The pair (N , e) satisfies the “weak edge removal property” if the sum-capacity
of N is continuous in δ at δ = 0+.

The first study of the weak edge removal property appears in the work of Gu,
Effros, and Bakshi [18], who conjecture that any network consisting solely of
noiseless links satisfies this property. A similar conjecture also appears in the
work of Chan and Grant [19].
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1.4.2 The Strong Edge Removal Property

The pair (N , e) satisfies the “strong edge removal property” if there exists a
constant K > 0 such that for all δ > 0, removing e from N reduces the
sum-capacity of N by at most Kδ.

Lee, Langberg, and Effros [22] demonstrate that this property holds for the
linear programming bounds given by Yeung [23].

1.4.3 The Universal Edge Removal Property

This property is similar to the previous definition, with the difference that
the constant K equals the number of sources. Formally, (N , e) satisfies the
“universal edge removal property” if removing e reduces the sum-capacity by
at most

(the number of sources of N )× δ.

Ho, Effros, and Jalali introduce this property in [12], [20]. The intuition behind
their definition is that each source can send at most δ bits of information over
an edge of capacity δ; thus the removal of this edge should not affect the rate of
each source by more than δ bits. Among other examples, they prove that this
property holds for networks with co-located sources, networks where cutset
outer bounds fully characterize the capacity region, and networks where linear
codes achieve the capacity region.

1.4.4 Edge Removal and Other Open Problems

In addition to being a fundamental question in the research on network capac-
ity, the edge removal problem is also related to a relatively large collection of
problems that are either equivalent to or are implied by some variation of the
edge removal property. We next mention some of these problems.

Gu and Effros [24], [25], and more recently, Kosut and Kliewer [21], establish
connections between different variations of the edge removal property and
strong converse results. In [26], Langberg and Effros study the connection
between the edge removal problem and the zero- and ε-error network coding
capacity regions. In [27], the same authors study the connection between the
edge removal problem and the network source coding problem for dependent
sources. Connections between the edge removal problem and a number of
other problems in network coding are further explored by Wong, Effros, and
Langberg [28]–[30].
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1.4.5 Edge Removal in Noisy Networks.

“Noisy networks” are networks that in addition to point-to-point channels and
noiseless links, also contain multi-terminal components such as the MAC or
the broadcast channel. This definition is motivated by the fact that in any
network, noisy point-to-point channels may be replaced by noiseless links of
the same capacity without affecting the network capacity region [31]. In this
work, we mainly consider the edge removal problem in noisy networks. This
additional freedom allows us to settle problems that to date are still open in
the network coding domain.

Specifically, in Chapter 2, we give an example of a network that does not
satisfy the universal edge removal property. On the other hand, in Appendix
D, we show that in any network, any ingoing edge of a node that has no
outgoing edges satisfies the universal edge removal property. In Chapter 3,
we extend the results of Chapter 2 by constructing a class of networks that
do not satisfy the strong edge removal property. In Chapter 5, we exhibit a
class of networks that do not satisfy the weak edge removal property. Despite
this, the results in Chapter 5 are not stronger than those in Chapter 3. This
is due to the fact that the counterexample in Chapter 5 is with respect to
the maximal-error capacity region whereas Chapter 3 is concerned with the
average-error capacity region. Our example in Chapter 2, however, applies to
both the maximal- and average-error capacity regions. Finally, in Appendix
C, we show that the network consisting of any MAC with a CF that has
access to both messages does satisfy the weak edge removal property with
respect to the average-error capacity region. The following table indicates, for
a given variation of the edge removal property and capacity region definition,
the chapter with the most relevant result.

Table 1.1: Location of the main result for each variation of the edge removal
property.

weak strong universal
maximal-error Ch. 5 Ch. 5 Ch. 2
average-error App. C Ch. 3 Ch. 2/App. D
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C h a p t e r 2

A SIMPLE EXAMPLE

In this chapter, we study a simplified version of the MAC with CF model where
the CF has access to both messages and communicates with the encoders
through a shared bottleneck link. (See Figure 2.1.) Based on this model,
we describe a sequence of MACs with increasing alphabet sizes and set the
cooperation rate for each channel as a function of its alphabet size. We then
show that the increase in sum-capacity that results from cooperation grows
more quickly than any universal linear function of the cooperation rate.

We begin by reviewing the conferencing model and its capacity region as pre-
sented by Willems [5]. We give a formal introduction to the simplified CF
model in Section 2.2.

2.1 Conferencing Encoders

Consider the MAC (
X1 ×X2, pY |X1,X2(y|x1, x2),Y

)
,

where X1, X2, and Y are finite sets and pY |X1,X2(y|x1, x2) denotes the condi-
tional distribution of the output, Y , given the inputs, X1 and X2. To simplify
notation, we suppress the subscript of the probability distributions when the
corresponding random variables are clear from context. For example, we write
p(x) instead of pX(x).

For every real number a ≥ 1, [a] := {1, . . . , bac}.

There are two sources, source 1 and source 2, whose outputs are the messages
W1 ∈ W1 = [2nR1 ] and W2 ∈ W2 = [2nR2 ], respectively. The random variables
W1 andW2 are independent and uniformly distributed over their corresponding
alphabets. The nonnegative real numbers R1 and R2 are called the message
rates.

This material is based upon work supported by the National Science Foundation under
Grant Numbers CCF-1321129, CCF-1018741, CCF-1038578, and CNS-0905615. It origi-
nally appears in [32].
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In the absence of cooperation, each encoder only has access to its corresponding
message. The encoders are represented by the functions

f1n :W1 → X n
1

f2n :W2 → X n
2 .

We denote the output of the encoders by xn1 = f1n(w1) and xn2 = f2n(w2).
Let Y n be the output of the channel when the pair (xn1 , x

n
2 ) is transmitted.

Using Y n, the decoder estimates the original messages via a decoding function
gn : Yn →W1 ×W2.

A (2nR1 , 2nR2 , n) code for the MAC is defined as the triple (f1n, f2n, gn). As-
suming that the messages are uniformly distributed, the average probability
of error for this code is given by

P (n)
e = Pr

(
gn(Y n) 6= (W1,W2)

)
.

The rate pair (R1, R2) is “achievable” if there exists a sequence of (2nR1 , 2nR2 , n)

codes such that P (n)
e tends to zero as the blocklength, n, approaches infinity.

The capacity region, C , is the closure of the set of all achievable rate pairs.

For a given capacity region C ⊆ R2
≥0, the “sum-capacity,” Csum, is defined as

Csum = max {R1 +R2| (R1, R2) ∈ C } . (2.1)

In the absence of cooperation [2]–[4], the sum-capacity is given by

Csum = max
p(x1)p(x2)

I (X1, X2;Y ) .

In the conferencing model, each encoder shares some information regarding
its message with the other encoder prior to transmission over the channel.
This sharing of information is achieved through a K-round conference over
noiseless links of capacities C12 and C21. A K-round conference consists of two
sets of functions, {h11, . . . , h1K} and {h21, . . . , h2K}, which for every message
pair (w1, w2), recursively define the random vectors vK1 := (v11, . . . , v1K) and
vK2 := (v21, . . . , v2K) as

v1k = h1k(w1, v
k−1
2 )

v2k = h2k(w2, v
k−1
1 )
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for k ∈ [K]. In step k, encoder 1 (encoder 2) computes v1k (v2k) and sends it
to encoder 2 (encoder 1). Since the noiseless links between the two encoders
are of capacities C12 and C21, respectively, we require

K∑
k=1

log |V1k| ≤ nC12

K∑
k=1

log |V2k| ≤ nC21,

where Vik is the round-k alphabet of the conferencing output of encoder i for
i ∈ {1, 2} and k ∈ [K]. The outputs of the encoders, xn1 and xn2 , are given by

xn1 = f1n(w1, v
K
2 )

xn2 = f2n(w2, v
K
1 ),

where f1n and f2n are deterministic functions.

Denote the sum-capacity of the MAC with (C12, C21)-conferencing with

Csum(C12, C21).

By studying the capacity region [5], we deduce

Csum(C12, C21) ≤ Csum(0, 0) + C12 + C21.

Thus, with conferencing, the sum-capacity increases at most linearly in (C12, C21)

over the sum-capacity in the absence of cooperation.

2.2 The Simplified CF Model

In the CF model, cooperation is made possible not through finite capacity
links between the encoders, but instead through a third party, the CF, which
receives information from both encoders and transmits a single description of
that information back to both (Figure 2.1). The CF is represented by the
function

ϕn :W1 ×W2 → Z,

where the CF output alphabet Z = [2nδ] is determined by the cooperation rate
δ. The output of the CF, z = ϕn(w1, w2), is available to both encoders. Each
encoder chooses a blocklength-n codeword as a function of its own message



12

Figure 2.1: Network model for the MAC with a simplified CF. The cooperation
rate is the capacity of the output link of the CF which we denote by δ.

and z and sends that codeword to the receiver using n transmissions. Hence
the two encoders are represented by the functions

f1n :W1 ×Z → X n
1

f2n :W2 ×Z → X n
2 .

The definitions of the decoder, probability of error, and capacity region are
similar to the classical MAC discussed in the previous section and are omitted.
We denote the sum-capacity of this network by Csum(δ).

Given a pair of functions f, g : Z+ → R, we say f = o(g) if limm→∞
f(m)
g(m)

= 0.

We say f = ω(g) if g = o(f).

For a sequence of MACs{(
X (m)

1 ×X (m)
2 , p(m)(y|x1, x2),Y(m)

)}
m
,

C
(m)
sum(δ) denotes the CF sum-capacity of the mth channel when the cooper-

ation rate is δ. We define the sum-capacity gain of the mth channel for all
cooperation rates δ ≥ 0 as

G(m)(δ) := C(m)
sum(δ)− C(m)

sum(0).

In the next theorem, which is the main result of this chapter, we see that for a
sequence of MACs, the ratio of the sum-capacity gain to the cooperation rate
grows without bound; this demonstrates the existence of a network that does
not satisfy the universal edge removal property. In what follows, log(x) is the
base-2 logarithm of x.
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Theorem 2.2.1. For every sequence of cooperation rates (δm)∞m=1 satisfying
δm = logm + ω(1) and δm ≤ m and every ε ∈ (0, 1), there exists a sequence
of MACs with input alphabets X (m)

1 = X (m)
2 = [2m], such that for sufficiently

large m, (
3−
√

5 + 4ε
)
m− δm ≤ G(m)(δm) ≤ m+ δm.

In the above theorem, the choice of δm is constrained only by δm = logm+ω(1)

and δm ≤ m. For example, for the sequence of MACs in Theorem 2.2.1 a
cooperation rate of δm = log(m logm) leads to an increase in sum-capacity
that is linear in m, giving a capacity benefit that is “almost” exponential in
the cooperation rate.

In the next section, we prove the existence of a sequence of MACs with prop-
erties that are essential for the proof of Theorem 2.2.1. In Section 2.4, we
show that for the sequence of channels of Section 2.3,

2m− δm ≤ C(m)
sum(δm) ≤ 2m. (2.2)

In Section 2.5, we show

m− δm ≤ C(m)
sum(0) ≤ (

√
5 + 4ε− 1)m. (2.3)

Combining these two results gives Theorem 2.2.1.

2.3 Channel Construction

For a fixed positive integer m, the channel(
X (m)

1 ×X (m)
2 , p(m)(y|x1, x2),Y(m)

)
used in the proof of Theorem 2.2.1 has input alphabets X (m)

1 = X (m)
2 = [2m]

and output alphabet

Y(m) =
(
X (m)

1 ×X (m)
2

)
∪ {(E,E)} ,

where “E” denotes an erasure symbol. For each (x1, x2, y) ∈ X (m)
1 × X (m)

2 ×
Y(m), p(m)(y|x1, x2) is defined as a function of the corresponding entry bx1x2 of
a (0, 1)-matrix Bm = (bx1x2)

2m

x1,x2=1. Precisely,

p(m)(y|x1, x2) :=

1− bx1x2 , if y = (x1, x2)

bx1x2 , if y = (E,E) .
(2.4)
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That is, when (x1, x2) is transmitted, y = (x1, x2) is received if bx1x2 = 0, and
y = (E,E) is received if bx1x2 = 1. Thus, we interpret the 0 and 1 entries of
Bm as “good” and “bad” entries, respectively. Let X (m) = {1, . . . , 2m}. We
define the sets

0Bm :=
{

(x1, x2)
∣∣bx1,x2 = 0

}
1Bm :=

{
(x1, x2)

∣∣bx1,x2 = 1
}
,

to be the set of good and bad entries of X (m) ×X (m), respectively.

For every S, T ⊆ [2m], let Bm(S, T ) be the submatrix obtained from Bm by
keeping the rows with indices in S and columns with indices in T . For every
x ∈ [2m], let Bm(x, T ) := Bm({x}, T ) and Bm(S, x) := Bm(S, {x}).

The proof of Theorem 2.2.1 requires that Bm satisfies two properties. One
is that every sufficiently large submatrix of Bm should have a large fraction
of bad entries. This property ensures that the sum-capacity of our channel
without cooperation is small (Section 2.5). The second property is that every
submatrix of a specific type should have at least one good entry. This property
enables a significantly higher sum-capacity under low-rate cooperation using
the cooperation facilitator model (Section 2.4). Lemma 2.3.1 demonstrates
that these two properties can be simultaneously achieved. A proof of this and
all subsequent lemmas can be found in Section 2.6.

Lemma 2.3.1. Let f, g : Z+ → Z+ be two functions such that f(m) = ω(m)

and g(m) = logm+ ω(1). Then for every ε ∈ (0, 1), there exists a sequence of
2m × 2m (0, 1)-matrices (Bm)∞m=1 such that

(1) for every S, T ⊆ [2m] that satisfy |S|, |T | ≥ f(m),

|(S × T ) ∩ 1Bm|
|S| |T |

> 1− ε;

that is, in every sufficiently large submatrix of Bm, the fraction of bad entries
is larger than 1− ε, and

(2) for every x ∈ [2m] and k ∈ [2m−g(m)], each of Bm(x,Xm,k) and Bm(Xm,k, x)

contains at least one good entry, where

Xm,k :=
{

(k − 1)2g(m) + `
∣∣∣` ∈ [2g(m)]

}
;

that is, if we break each row or column into consecutive blocks of size 2g(m),
each block contains at least one good entry.
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Channel Definition: Choose functions f and g that satisfy the constraints
f(m) = ω(m), g(m) = logm + ω(1), and log f(m) = o(m). Fix a sequence of
channels as defined by (2.4) using matrices (Bm)∞m=1 satisfying the properties
proved possible in Lemma 2 for the chosen functions f and g.

2.4 Inner and Outer Bounds for the CF Capacity Region

For the mth channel, using cooperation rate δm = g(m), we show the achiev-
ability of the rate pairs (m,m−g(m)) and (m−g(m),m). For each, we employ
a blocklength-1 code (n = 1). Time sharing between these codes results in an
inner bound for the capacity region given by

R1, R2 ≤ m

R1 +R2 ≤ 2m− g(m).

If R1 = m, R2 = m− g(m), and n = 1, then the message alphabets are given
by W1 = [2m] and W2 = [2m−g(m)]. By the second property of our channel in
Lemma 2, for every w1 ∈ W1 and w2 ∈ W2, the submatrix Bm(w1,Xm,w2−1)

contains at least one good entry. Let z = ϕ(w1, w2), the output of the CF,
be an element of Z = [2g(m)] such that (w1, (w2 − 1)2g(m) + z) is a good entry
of Bm(w1,Xm,w2−1). If there’s more than one good entry, pick the one that
results in the smallest z.

To transmit message pair (w1, w2), encoder 1 sends x1 = w1 and encoder 2
sends x2 = (w2−1)2g(m)+z. By the definition of our channel (2.4), the channel
output equals the channel input (x1, x2) with probability one, and hence zero
error decoding is possible. Thus the rate pair (m,m − g(m)) is achievable.
Note that for this achievability scheme to work, only the second encoder needs
to know the value of z. A similar argument proves the achievability of (m −
g(m),m) and the lower bound of (2.2) follows.

To find an outer bound for the capacity region, we use the capacity region of
the conferencing model [5] in a special case. Consider the situation in which
encoder 1 has access to both messages and can transmit information to encoder
2 on a noiseless link of capacity δm. Then it is easy to see that the capacity
region of this network contains the capacity region of the CF model. This
situation, however, is equivalent to the conferencing model [5] for C12 = δm

and C21 = ∞. Hence an outer bound for the capacity region is given by the
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set of all rate pairs (R1, R2) such that

R1 ≤ I (X1;Y |X2, U) + δm,

R1 +R2 ≤ I (X1, X2;Y )

for some distribution p(u)p (x1|u) p (x2|u). Note that

I (X1;Y |X2, U) ≤ H (X1) ≤ m,

I (X1, X2;Y ) ≤ H (X1, X2) ≤ 2m,

and δm = g(m), so the region

R1 ≤ m+ g(m),

R1 +R2 ≤ 2m

is an outer bound for the CF model. Note that if we switch the roles of
encoders 1 and 2, we get the outer bound

R2 ≤ m+ g(m),

R1 +R2 ≤ 2m.

Since the intersection of two outer bounds is also an outer bound, the set of
all rate pairs (R1, R2) such that

R1, R2 ≤ m+ g(m),

R1 +R2 ≤ 2m

is an outer bound for the CF model as well and the upper bound of (2.2)
follows.

2.5 Inner and Outer Bounds in the Absence of Cooperation

Consider the mth channel of the construction in Section 2.3. In the case where
there is no cooperation, we show that the set of all rate pairs (R1, R2) satisfying

R1 +R2 ≤ m− g(m)

is an inner bound for the capacity region. To this end, we show the achiev-
ability of the rate pairs (m − g(m), 0) and (0,m − g(m)). The achievability
of all other rate pairs in the inner bound follows by time-sharing between the
encoders. Similar to the achievability result of the previous section, let n = 1.
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Then W1 = [2m−g(m)] and W2 = {1}. By our channel construction, for every
w ∈ W1, Bm(Xm,w−1, 1) contains at least one good entry. This means that the
first column of Bm contains at least |W1| = 2m−g(m) good entries. Suppose
encoder 1 transmits uniformly on these 2m−g(m) good entries and encoder 2
transmits x2 = 1. Then the input is always on a good entry and the channel
output is the same as the channel input. Thus the pair (m−g(m), 0) is achiev-
able. A similar argument shows that the pair (0,m− g(m)) is achievable and
the inner bound follows by time-sharing.

We next find an outer bound for the capacity region of our network in the
absence of cooperation.

Let y1 and y2 be the components of output y; that is, when y = (x1, x2), then
y1 = x1 and y2 = x2, and when y = (E,E), then y1 = y2 = E. Note that
y1, y2 ∈ [2m]∪{E}. In the absence of cooperation, given an input distribution
p(x1)p(x2), the distribution p(y1) is given by

p(y1) =

γy1 y1 ∈ X

1− γ y1 = E,
(2.5)

where
∀x1 ∈ [2m] : γx1 = p(x1)

∑
x2:bx1x2=0

p(x2),

and γ :=
∑

x1
γx1 . Let Rm denote the set of all pairs (R1, R2) such that

R1 ≤ I (X1;Y |X2) ,

R2 ≤ I (X2;Y |X1) ,

R1 +R2 ≤ I (X1, X2;Y )

for some distribution p(x1)p(x2)p(y|x1, x2) and let conv(A) denote the convex
hull of the set A. Then the capacity region in the absence of cooperation is
given by the closure of conv(Rm) [2]–[4].

If for all pairs (R1, R2) ∈ conv(Rm), one of R1 or R2 is smaller than or equal
to log 2f(m), then the upper bound in (2.3) follows, since

R1 +R2 ≤ m+ log 2f(m),

and log f(m) = o(m). On the other hand, if there exist rate pairs (R1, R2) ∈
conv(Rm) such that

R1, R2 > log 2f(m), (2.6)
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then by the definition of Rm and (2.6),

H(X1), H(X2) > log 2f(m). (2.7)

Using (2.7), the following argument shows

R1 +R2 ≤ (
√

5 + 4ε− 1)m.

For our channel, Y , Y1, and Y2 are deterministic functions of (X1, X2), (X1, Y2)

and (Y1, X2), respectively. Thus the bounds defining Rm simplify as

R1 ≤ I(X1;Y |X2) = H(Y1|X2) ≤ H(Y1), (2.8)

R2 ≤ I(X2;Y |X1) = H(Y2|X1) ≤ H(Y2).

To bound H(Y1), we apply the following lemma, which bounds the probability
that a random variable X falls in a specific set T ; the bound is given as a
function of the entropy of X and the cardinality of T . For any set T , we
denote its indicator function by 1T .

Lemma 2.5.1. Let X be a discrete random variable with distribution p : X →
R≥0, and let T be a subset of X . If q : T → R≥0 is a function and α :=∑

x∈T q(x), then

−
∑
x∈T

q(x) log q(x) ≤ α log |T | − α logα. (2.9)

When q(x) = p(x)1T (x), the above inequality implies

α =
∑
x∈T

p(x) ≤ K

(
1− H (X)− 1

log |X |

)
, (2.10)

where K =
(

1− log |T |
log|X |

)−1

.

By (2.5),
H(Y1) = −

∑
x1

γx1 log γx1 − (1− γ) log(1− γ).

Applying (2.9) from Lemma 2.5.1,

H(Y1) ≤ γm+ h(γ) ≤ γm+ 1, (2.11)

where h(γ) denotes the binary entropy function and is given by

h(γ) = γ log
1

γ
+ (1− γ) log

1

1− γ
.

We next bound γ. To this end, we write each of the input distributions as a
particular convex combination of uniform distributions using the next lemma.
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Lemma 2.5.2. If X is a random variable with finite alphabet X , then there
exists a positive integer k, a sequence of positive numbers (αj)

k
j=1, and a se-

quence of non-empty subsets of X , (Sj)
k
j=1, such that the following properties

are satisfied.

(a) For every j ∈ [k − 1], Sj+1 ( Sj.

(b) For all x ∈ X ,

p(x) =
k∑
j=1

αj
1Sj (x)

|Sj|
.

(c) For every C, 0 < C < |X |,∑
j:|Sj |≤C

αj ≤ K

(
1− H(X)− 1

log |X |

)
,

where K =
(

1− logC
log |X |

)−1

.

Using Lemma 2.5.2, we write p(x1) and p(x2) as

p(x1) =
k∑
i=1

α
(1)
i

1
S
(1)
i

(x1)

|S(1)
i |

p(x2) =
l∑

j=1

α
(2)
j

1
S
(2)
j

(x2)

|S(2)
j |

.

Then

γ =
∑

x1,x2:bx1x2=0

p(x1)p(x2) =
k∑
i=1

l∑
j=1

α
(1)
i α

(2)
j βij,

where

βij :=
∑

x1,x2:bx1x2=0

1
S
(1)
i

(x1)1
S
(2)
j

(x2)

|S(1)
i ||S

(2)
j |

=

∣∣∣(S(1)
i × S

(2)
j

)
∩ 0Bm

∣∣∣
|S(1)
i ||S

(2)
j |

.

For every i and j, βij ≤ 1. If, however, min{|S(1)
i |, |S

(2)
j |} ≥ f(m), then by the

first property of our channel (Property (1) in Lemma 2.3.1), βij ≤ ε. Thus by
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part (c) of Lemma 2.5.2 and (2.7),

γ < ε+
∑

i,j:min{|S(1)
i |,|S

(2)
j |}<f(m)

α
(1)
i α

(2)
j

= ε+ 1−
∑

i,j:min{|S(1)
i |,|S

(2)
j |}≥f(m)

α
(1)
i α

(2)
j

= ε+ 1

−
(

1−
∑

i:|S(1)
i |<f(m)

α
(1)
i

)(
1−

∑
j:|S(2)

j |<f(m)

α
(2)
j

)

≤ ε+ 1−
(

1−Km

(
1− H(X1)− 1

m

))
×
(

1−Km

(
1− H(X2)− 1

m

))
,

where Km =
(

1− log f(m)
m

)−1

. Note that Km → 1 as m→∞ since log f(m) =

o(m) by assumption. Furthermore, the definition of Rm and (2.6) imply
log 2f(m) ≤ Ri ≤ H(Xi) for i ∈ {1, 2}. Thus

γ < ε+ 1−
(

1−Km

(
1− R1 − 1

m

))
×
(

1−Km

(
1− R2 − 1

m

))
= ε+Km

(
2− R1 +R2 − 2

m

)
−K2

m

(
1− R1 − 1

m

)(
1− R1 − 1

m

)
.

Combining the previous inequality with (2.8) and (2.11) results in

R1

m
≤ ε+

1

m
+Km

(
2− R1 +R2 − 2

m

)
−K2

m

(
1− R1 − 1

m

)(
1− R1 − 1

m

)
= ε+

1

m
+Km

(
2− R1 +R2 − 2

m

)
−K2

m

(
1− R1 +R2 − 2

m
+

(R1 − 1)(R2 − 1)

m2

)
.

If we let x = 1
m
R1 and y = 1

m
R2, then the previous inequality can be written
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as

x ≤ ε+
1

m
+Km

(
2 +

2

m
− x− y

)
−K2

m

(
1 +

2

m
− x− y +

(
x− 1

m

)(
y − 1

m

))
,

or
(x− am)(y + bm) ≤ cm, (2.12)

where

am = 1 +
1

m
− 1

Km

,

bm = −1− 1

m
+

1

Km

+
1

K2
m

,

cm = −1− 2

m
− 1

m2
+

(
2 +

2

m

)
1

Km

+

(
ε+

1

m

)
1

K2
m

− ambm.

By symmetry, we can also show

(x+ bm)(y − am) ≤ cm. (2.13)

Note that

a := lim
m→∞

am = 0

b := lim
m→∞

bm = 1

c := lim
m→∞

cm = 1 + ε.

Let Sm be the set of all nonnegative x, y that satisfy (2.12) and (2.13) and Sm

be the set of all (mx,my) such that (x, y) ∈ Sm. Then by the arguments of
this section, every (R1, R2) ∈ Rm that satisfies R1, R2 > log 2f(m) is in Sm.
As the capacity region is given by the closure of conv(Rm), the definition of
sum-capacity (2.1) implies

1

m
C(m)

sum(0) ≤ 1

m
max

(R1,R2)∈conv(Sm)
(R1 +R2)

= max
(x,y)∈conv(Sm)

(x+ y).

Thus
lim sup
m→∞

1

m
C(m)

sum(0) ≤ lim
m→∞

max
(x,y)∈conv(Sm)

(x+ y). (2.14)

To find the limit on the right hand side, we make use of the following lemma.
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Lemma 2.5.3. Suppose (am)∞m=1, (bm)∞m=1, and (cm)∞m=1 are three convergent
sequences of real numbers with limits a, b, and c, respectively. The limits
satisfy

b, c, a+ b, ab+ c > 0,

and √
(a+ b)2 + 4c > b+

c

b
.

For every positive integer m, let Sm be the set of all nonnegative x, y that
satisfy (2.12) and (2.13). Then

lim
m→∞

max
(x,y)∈conv(Sm)

(x+ y) = a− b+
√

(a+ b)2 + 4c.

It is easy to see that the sequences above satisfy the assumptions of Lemma
2.5.3. Thus

lim sup
m→∞

1

m
C(m)

sum(0) ≤
√

5 + 4ε− 1,

Therefore, for all but finitely many m,

C(m)
sum(0) ≤ (

√
5 + 4ε− 1)m.

2.6 Proofs

2.6.1 Proof of Lemma 2.3.1

We use the probabilistic method [33]. We assign a probability to every 2m×2m

(0, 1)-matrix and show that the probability of a matrix having both proper-
ties is positive for sufficiently large m; hence, there exists at least one such
matrix. Fix ε ∈ (0, 1), and let Bm = (bij)

2m

i,j=1 be a random matrix with

bij
iid∼ Bernoulli (p), where 1− ε < p < 1. Let

Γm :=
{
S
∣∣∣S ⊆ [2m], |S| ≥ f(m)

}
.

For every S, T ∈ Γm, define the event

E (m)
S,T :=

{
|(S × T ) ∩ 1Bm|

|S| |T |
≤ 1− ε

}
.
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By the union bound,

Pr

( ⋃
S,T∈Γm

E (m)
S,T

)
≤

∑
S,T∈Γm

Pr
(
E (m)
S,T

)
=

∑
S,T∈Γm

Pr
(
|(S × T ) ∩ 1Bm| ≤ (1− ε) |S||T |

)

=
∑

S,T∈Γm

b(1−ε)|S||T |c∑
k=0

(
|S||T |
k

)
pk(1− p)|S||T |−k

=
2m∑

i,j=f(m)

(
2m

i

)(
2m

j

) b(1−ε)ijc∑
k=0

(
ij

k

)
pk(1− p)ij−k.

Suppose {X`}L`=1 is a set of independent random variables such that for each `,
X` ∈ [0, 1] with probability one. If S =

∑L
`=1X`, from Hoeffding’s inequality

[34] it follows that for all u ≤ ES,

Pr (S ≤ u) ≤ e−
2
L

(ES−u)2 .

If {X`}ij`=1 is a set of ij independent Bernoulli(p) random variables, then for
every `, 0 ≤ X` ≤ 1, and

(1− ε)ij < pij = E

[
ij∑
l=1

Xl

]
.

Thus Hoeffding’s inequality implies

b(1−ε)ijc∑
k=0

(
ij

k

)
pk(1− p)ij−k = Pr

(
ij∑
l=1

Xl ≤ (1− ε)ij

)
≤ e−2(p−1+ε)2ij.

Since
(

2m

i

)
≤ 2mi,

2m∑
i,j=f(m)

(
2m

i

)(
2m

j

) b(1−ε)ijc∑
k=0

(
ij

k

)
pk(1− p)ij−k

≤
2m∑

i,j=f(m)

2m(i+j)e−2(p−1+ε)2ij

=
2m∑

i,j=f(m)

e(i+j)m ln 2−2(p−1+ε)2ij.
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Define h : Z2 → R as

h(i, j) := (i+ j)m ln 2− 2(p− 1 + ε)2ij.

Then for j ≥ f(m),

h(i+ 1, j)− h(i, j)

= m ln 2− 2(p− 1 + ε)2j

≤ m ln 2− 2(p− 1 + ε)2f(m)

= f(m)

(
m

f(m)
ln 2− 2(p− 1 + ε)2

)
.

By assumption,
lim
m→∞

m

f(m)
= 0,

so there exists M1 such that for all m > M1,

m

f(m)
<

2

ln 2
(p− 1 + ε)2.

Therefore, for m > M1 and y ≥ f(m), h is decreasing with respect to i. As h
is symmetric with respect to i and j, for m > M1 and i ≥ f(m), we also have
h(i, j+ 1)−h(i, j) < 0. Thus h is a decreasing function in i and j for m > M1

and i, j ≥ f(m). Hence for m > M1,

2m∑
i,j=f(m)

e(i+j)m ln 2−2(p−1+ε)2ij

≤ (2m − f(m) + 1)2 e2mf(m) ln 2−2(p−1+ε)2(f(m))2

< e2m(1+f(m)) ln 2−2(p−1+ε)2(f(m))2

= e2(f(m))2((1+ 1
f(m))

m
f(m)

ln 2−2(p−1+ε)2).

The exponent of the right hand side of the previous inequality,

2 (f(m))2

((
1 +

1

f(m)

)
m

f(m)
ln 2− 2(p− 1 + ε)2

)
,

goes to −∞ as m approaches infinity. Thus

lim
m→∞

Pr

( ⋃
S,T∈Γm

E (m)
S,T

)
= 0.

This means that the probability that the fraction of bad entries in a sufficiently
large submatrix is less than 1− ε is going to zero.
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Next, we calculate the probability that Bm doesn’t satisfy the second property.
For every i ∈ [2m] and j ∈ [2m−g(m)], define the event

E (m)
i,j :=

{
0Bm(i,Xm,j) ∩ 0Bm = ∅

}
,

where
Xm,j =

{
(j − 1)2g(m) + `

∣∣∣` ∈ [2g(m)]
}
.

The probability that for every i and j, the set Bm(i,Xm,j) doesn’t have at least
one good entry equals

Pr

(⋃
i,j

E (m)
i,j

)
≤

2m∑
i=1

2m−g(m)∑
j=1

Pr
(
0Bm(i,Xj,k) ∩ 0Bm = ∅

)
= 22m−g(m)p2g(m)

= 2
2g(m)

(
2m−g(m)

2g(m)
+log p

)
.

Since m = o(2g(m)), the exponent of the right hand side of the previous in-
equality,

2g(m)

(
2m− g(m)

2g(m)
+ log p

)
,

goes to −∞ as m→∞. This implies that

Pr

(⋃
i,j

E (m)
i,j

)
goes to zero as m→∞. Similarly, the probability that there exists (i, j) such
that Bm(Xm,j, i) doesn’t have at least one good entry goes to zero as m tends
to infinity. Thus, by the union bound, the probability that the matrix doesn’t
satisfy either of these properties is going to zero. Therefore, for large enough
m, almost every (0, 1)-matrix satisfies all the required properties, though we
only need one such matrix.

2.6.2 Proof of Lemma 2.5.1

We first prove (2.9). If α = 0, then q(x) = 0 for every x ∈ T and both sides
equal zero. Otherwise,

−
∑
x∈T

q(x) log q(x) = −α
∑
x∈T

q(x)

α
log

q(x)

α
− α logα

≤ α log |T | − α logα,
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since q(x)/α is a probability mass function with entropy
∑

x∈T
q(x)
α

log α
q(x)

and
alphabet size |T |.

We next prove (2.10). If
q(x) = p(x)1T (x) ,

then by the previous inequality,

−
∑
x∈T

p(x) log p(x) = −
∑
x∈T

q(x) log q(x)

≤ α log |T | − α logα,

where
α =

∑
x∈T

q(x).

Similarly, replacing X \ T with T results in

−
∑
x∈X\T

p (x) log p (x)

≤ (1− α) log |X \ T | − (1− α) log (1− α) .

Adding the previous two inequalities gives

H (X) ≤ α log |T |+ (1− α) log |X \ T |+H (α)

≤ α log |T |+ (1− α) log |X |+ 1.

Therefore,
H (X)

log |X |
≤ 1 +

1

log |X |
−
(

1− log |T |
log |X |

)
α,

and

α ≤
1− H(X)−1

log|X |

1− log |T |
log|X |

.

2.6.3 Proof of Lemma 2.5.2

Let k be the cardinality of the range of p : X → R. Then there exists a
sequence (xj)

k
j=1 such that{

p(x)
∣∣x ∈ X} =

{
p(xj)

∣∣j ∈ [k]
}
,

and
0 < p(x1) < · · · < p(xk) ≤ 1.
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For j ∈ [k], define
Sj :=

{
x ∈ X

∣∣p(x) ≥ p(xj)
}
,

and let Sk+1 := ∅. Then for j ∈ [k], Sj+1 ⊆ Sj, and

Sj \ Sj+1 =
{
x ∈ X

∣∣p(x) = p(xj)
}
6= ∅.

Thus the number of x ∈ X such that p(x) = p(xj) equals |Sj \ Sj+1|. For
j ∈ {2, . . . , k}, define

αj := |Sj|
(
p(xj)− p(xj−1)

)
,

and set α1 := |S1|p(x1). We have

k∑
j=1

αj
1Sj(x)

|Sj|
=

k∑
j=1

(p(xj)− p(xj−1)) 1Sj(x)

=
k∑
j=1

p(xj)1Sj\Sj+1
(x)

= p(x).

This proves (a) and (b).

In (c), if the set {
j ∈ [k]

∣∣∣|Sj| ≤ C
}

is empty, then there’s nothing to prove. Otherwise, it’s a nonempty subset of
[k] and thus has a minimum, which we call j∗. Then

∑
j:|Sj |≤C

αj =
k∑

j=j∗

αj

=
k∑

j=j∗

|Sj|
(
p(xj)− p(xj−1)

)
=

k∑
j=j∗

|Sj \ Sj+1|p(xj)− |Sj∗ |p(xj∗−1)

=
∑
x∈Sj∗

p(x)− |Sj∗|p(xj∗−1)

≤
∑
x∈Sj∗

p(x).
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By (2.10), ∑
x∈Sj∗

p(x) ≤ 1

1− log |Sj∗ |
log|X |

(
1− H (X)− 1

log |X |

)

≤ 1

1− logC
log|X |

(
1− H (X)− 1

log |X |

)
,

since |Sj∗| ≤ C.

2.6.4 Proof of Lemma 2.5.3

Prior to proving Lemma 2.5.3, we state and prove the following lemma.

Lemma 2.6.1. Suppose a ∈ R and

b, c, a+ b, ab+ c ∈ R>0.

In addition, √
(a+ b)2 + 4c > b+

c

b
.

Let S be the set of all pairs (x, y) such that x, y ≥ 0, and(x− a)(y + b) ≤ c

(x+ b)(y − a) ≤ c.

If x0 is the unique positive solution to the equation

(x− a)(x+ b) = c,

then
max

(x,y)∈conv(S)
(x+ y) = 2x0.

Proof. Since

(x− a)(y + b)− (x+ b)(y − a) = (a+ b)(x− y)

and a+ b > 0, the set S can be written as S = S1 ∪ S2 (Figure 2.2), where S1

is the set of all pairs (x, y) such that 0 ≤ x ≤ y and

(x+ b)(y − a) ≤ c,

and S2 is the set of all pairs (x, y) such that 0 ≤ y ≤ x and

(x− a)(y + b) ≤ c.
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Figure 2.2: The sets S1 and S2 (gray area), and their convex hulls.

The intersection of S1 and S2 consists of all pairs (x, x) such that 0 ≤ x ≤ x0,
where

x0 =
a− b+

√
(a+ b)2 + 4c

2
.

Note that since b, c and ab+ c are positive,√
(a+ b)2 + 4c < a+ b+

2c

b
,

so 0 < x0 < a + c
b
. The convex hull of S1 consists of all pairs (x, y) such that

0 ≤ x ≤ y and (
a+

c

b
− x0

)
x+ x0y ≤

(
a+

c

b

)
x0,

and the convex hull of S2 consists of all pairs (x, y) such that 0 ≤ y ≤ x and

x0x+
(
a+

c

b
− x0

)
y ≤

(
a+

c

b

)
x0.

Note that conv (S1)∪conv (S2) is the region bounded by the axes y = 0, x = 0,
and the piecewise linear function

h(x) =


x0−a− cb

x0
x+ a+ c

b
0 ≤ x ≤ x0,

x0
x0−a− cb

x− (a+ c
b)x0

x0−a− cb
x0 < x ≤ a+ c

b
.

Since 2x0 ≥ a+ c
b
by assumption,

x0 − a− c
b

x0

≥ x0

x0 − a− c
b

.

This means the slope of h is decreasing, or equivalently, h is a concave function.
Thus conv (S1) ∪ conv (S2) is convex. But

S ⊆ conv(S1) ∪ conv(S2) ⊆ conv(S),
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so
conv(S) = conv(S1) ∪ conv(S2).

This implies
max

(x,y)∈conv(S)
(x+ y) = 2x0.

Using this lemma, we may prove Lemma 2.5.3. There exists a positiveM such
that for every m ≥M ,

bm, cm, am + bm, ambm + cm > 0

and √
(am + bm)2 + 4cm − bm −

cm
bm

> 0.

Let x(m)
0 and x0 be the unique positive solutions to the equations

(x
(m)
0 − am)(x

(m)
0 + bm) = cm

and
(x0 − a)(x0 + b) = c.

Since x(m)
0 and x0 are continuous functions of (am, bm, cm) and (a, b, c), respec-

tively, we have
lim
m→∞

x
(m)
0 = x0.

Thus by Lemma 2.6.1,

lim
m→∞

max
(x,y)∈conv(S(m))

(x+ y) = lim
m→∞

2x
(m)
0

= 2x0

= a− b+
√

(a+ b)2 + 4c.
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C h a p t e r 3

THE RATE BENEFIT

In the classical k-user multiple access channel (MAC) [7], there are k encoders
and a single decoder. Each encoder has a private message which it transmits
over n channel uses to the decoder. The decoder, once it receives n output
symbols, finds the messages of all k encoders with small average probability of
error. In this model, the encoders cannot cooperate, since each encoder only
has access to its own message.

We now consider an alternative scenario where our k-user MAC is part of a
larger network. In this network, there is a node that is connected to all k
encoders and acts as a “cooperation facilitator” (CF). Specifically, for every
j ∈ [k], there is a link of capacity Cj

in ≥ 0 going from encoder j to the CF and
a link of capacity Cj

out ≥ 0 going back. The CF helps the encoders exchange
information before they transmit their codewords over the MAC. Figure 3.1
depicts a network consisting of a k-user MAC and a (Cin,Cout)-CF, where
Cin = (Cj

in)j∈[k] and Cout = (Cj
out)j∈[k] denote the capacities of the CF input

and output links. In this figure, Xn
[k] = (Xn

1 , . . . , X
n
k ) is the vector of the

channel inputs of the k encoders, and ŵ[k] = (ŵ1, . . . , ŵk) is the vector of
message reproductions at the decoder.

The main result of this chapter (Theorem 3.2.3) determines a set of MACs
where the benefit of encoder cooperation through a CF grows very quickly
with Cout. Specifically, we find a class of MACs C∗, where every MAC in
C∗ has the property that for any fixed Cin ∈ Rk

>0, the sum-capacity of that
MAC with a (Cin,Cout)-CF has an infinite derivative in the direction of every
v ∈ Rk

>0 at Cout = 0. In other words, as a function of Cout, the sum-capacity
grows faster than any function with bounded derivative at Cout = 0. This
means that for any MAC in C∗, sharing a small number of bits with each
encoder leads to a large gain in sum-capacity.

An important implication of this result is the existence of a memoryless net-
work that does not satisfy the strong edge removal property (Chapter 1, Sec-

This material is based upon work supported by the National Science Foundation under
Grant Numbers 1527524, 1526771, and 1321129. It originally appears in [35].
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Figure 3.1: The network consisting of a k-user MAC and a CF. For j ∈ [k],
encoder j has access to message wj ∈ [2nRj ], which is omitted in this figure.

tion 1.4). Recall that a network satisfies the strong edge removal property
if removing an edge of capacity δ > 0 decreases sum-capacity by at most a
linear function of δ. Now consider a network consisting of a MAC in C∗ and a
(Cin,Cout)-CF, where Cin ∈ Rk

>0. Our main result in this chapter (Theorem
3.2.3) implies that for small Cout, removing all the output edges reduces sum-
capacity by an amount much larger than any linear function of Cout. Thus
there exist memoryless networks that do not satisfy the edge removal property.

We introduce the coding scheme that leads to Theorem 3.2.3 in Section 3.3.
This scheme combines forwarding, coordination, and classical MAC coding.
In forwarding, each encoder sends part of its message to all other encoders
by passing that information through the CF.1 The coordination strategy is
a modified version of Marton’s coding scheme for the broadcast channel [8],
[37]. To implement this strategy, the CF shares information with the encoders
that enables them to transmit codewords that are jointly typical with respect
to a dependent distribution; this is proven using a multivariate version of the
covering lemma [38, p. 218]. The multivariate covering lemma is stated for
strongly typical sets in [38]. In Appendix A, using the proof for the 2-user case
from [38] and techniques from [39], we prove this lemma for weakly typical sets
[40, p. 251]. Using weakly typical sets in our achievability proof allows our
results to extend to continuous (e.g., Gaussian) channels without the need for
quantization. Finally, the classical MAC strategy is Ulrey’s [7] extension of
Ahlswede’s [2], [3] and Liao’s [4] coding strategy to the k-user MAC.

1While it is possible to consider encoders that send different parts of their messages to
different encoders using Han’s result for the MAC with correlated sources [36], we avoid
these cases for simplicity.
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Using techniques from Willems [5], we derive an outer bound (Proposition
3.2.5) for the capacity region of the MAC with a (Cin,Cout)-CF. This outer
bound does not capture the dependence of the capacity region on Cout and
is thus loose for some values of Cout. However, if the entries of Cout are
sufficiently larger than the entries of Cin, then our inner and outer bounds
agree and we obtain the capacity region (Corollary 3.2.6).

In Section 3.4, we apply our results to the 2-user Gaussian MAC with a CF that
has access to the messages of both encoders and has links of output capacity
Cout. We show that for small Cout, the achievable sum-rate approximately
equals a constant times

√
Cout. A similar approximation holds for a weighted

version of the sum-rate as well, as we see in Proposition 3.4.2. This result
implies that at least for the 2-user Gaussian MAC, the benefit of cooperation
is not limited to sum-capacity and applies to other capacity region metrics as
well.

In Appendix 3.6, we consider the extension of Willems’ conferencing model [5]
from 2 to k users. We apply our outer bound for the k-user MAC with a CF to
obtain an outer bound for the k-user MAC with conferencing. The resulting
outer bound is tight when k = 2 and coincides with the conferencing capacity
region [5] . A special case of this model with k = 3 is studied in [41] for the
Gaussian MAC.

In the next section, we formally define the capacity region of the network
consisting of a k-user MAC and a CF.

3.1 Cooperation over the k-user MAC

Consider a network with k encoders, a CF, a k-user MAC, and a decoder
(Figure 3.1). For each j ∈ [k], encoder j communicates with the CF using
noiseless links of capacities Cj

in ≥ 0 and Cj
out ≥ 0 going to and from the CF,

respectively. The k encoders communicate with the decoder through a MAC
(X[k], p(y|x[k]),Y), where

X[k] =
∏
j∈[k]

Xj,

and an element of X[k] is denoted by x[k]. We say a MAC is discrete if X[k]

and Y are either finite or countably infinite, and p(y|x[k]) is a probability mass
function on Y for every x[k] ∈ X[k]. We say a MAC is continuous if for some
positive integers `1, . . . , `k+1, Xj = R`j for j ∈ [k], Y = R`k+1 , and p(y|x[k]) is
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a probability density function on Y for all x[k]. In addition, we assume that
our channel is memoryless and stationary, so that for every positive integer n,
the nth extension channel of our MAC is given by p(yn|xn[k]), where

∀(xn[k], y
n) ∈ X n

[k] × Yn : p(yn|xn[k]) =
n∏
t=1

p(yt|x[k]t).

An example of a continuous MAC is the k-user Gaussian MAC with noise
variance N > 0, where

p(y|x[k]) =
1√

2πN
exp

[
− 1

2N

(
y −

∑
j∈[k]

xj

)2]
. (3.1)

Henceforth, all MACs are memoryless and stationary and either discrete or
continuous.

We next describe a (
(2nR1 , . . . , 2nRk), n, L

)
-code

for the MAC (X[k], p(y|x[k]),Y) with a (Cin,Cout)-CF with cost functions (bj)j∈[k]

and cost constraint vector B = (Bj)j∈[k] ∈ Rk
≥0. For each j ∈ [k], cost func-

tion bj is a fixed mapping from Xj to R≥0. Each encoder j ∈ [k] wishes to
transmit a message wj ∈ [2nRj ] to the decoder. This is accomplished by first
exchanging information with the CF and then transmitting across the MAC.
Communication with the CF occurs in L rounds. For each j ∈ [k] and ` ∈ [L],
sets Uj` and Vj`, respectively, describe the alphabets of symbols that encoder
j can send to and receive from the CF in round `. These alphabets satisfy the
link capacity constraints ∑

`∈[L]

log |Uj`| ≤ nCj
in∑

`∈[L]

log |Vj`| ≤ nCj
out. (3.2)

The operation of encoder j and the CF, respectively, in round ` are given by

ϕj` : [2nRj ]× V`−1
j → Uj`

ψj` :
∏
i∈[k]

U `i → Vj`,

where U `j =
∏`

`′=1 Uj`′ and V`j =
∏`

`′=1 Vj`′ . After its exchange with the CF,
encoder j applies a function

fj : [2nRj ]× VLj → X n
j ,



35

to choose a codeword, which it transmits across the channel. In addition, every
xnj in the range of fj satisfies the cost constraint∑

t∈[n]

bj(xjt) ≤ nBj.

The decoder receives channel output Y n and applies

g : Yn →
∏
j∈[k]

[2nRj ]

to obtain estimate Ŵ[k] of the message vector w[k].

The encoders, CF, and decoder together define a(
(2nR1 , . . . , 2nRk), n, L

)
-code.

The average error probability of the code is defined by

P (n)
e := Pr

{
g(Y n) 6= W[k]

}
,

where W[k] is the transmitted message vector and is uniformly distributed on∏
j∈[k][2

nRj ]. A rate vector R[k] = (R1, . . . , Rk) is achievable if there exists a
sequence of

(
(2nR1 , . . . , 2nRk), n, L

)
codes with P (n)

e → 0 as n → ∞. The ca-
pacity region, C (Cin,Cout), is defined as the closure of the set of all achievable
rate vectors.

3.2 Inner and Outer Bounds

In this section, we describe the key results. In Subsection 3.2.1, we present
our inner bound. In Subsection 3.2.2, we state the main result of this chapter,
which proves the existence of a class of MACs with large cooperation gain.
Finally, in Subsection 3.2.3, we discuss our outer bound.

3.2.1 Inner Bound

Using the coding scheme we introduce in Section 3.3, we obtain an inner bound
for the capacity region of the k-user MAC with a (Cin,Cout)-CF. The following
definitions are useful for describing that bound. Choose vectors C0 = (Cj0)kj=1

and Cd = (Cjd)
k
j=1 in Rk

≥0 such that for all j ∈ [k],

Cj0 ≤ Cj
in (3.3)

Cjd +
∑
i 6=j

Ci0 ≤ Cj
out. (3.4)
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Here Cj0 is the number of bits per channel use encoder j sends directly to the
other encoders via the CF and Cjd is the number of bits per channel use the
CF transmits to encoder j to implement the coordination strategy. Subscript
“d” in Cjd alludes to the dependence created through coordination. The set

Sd(Cd) :=
{
j ∈ [k]

∣∣∣Cjd 6= 0
}

describes the encoders that participate in this dependence. We denote Sd(Cd)

with Sd when Cd is clear from context.

Fix alphabets U0,U1, . . . ,Uk. For every nonempty S ⊆ [k], let US be the set of
all uS = (uj)j∈S where uj ∈ Uj for all j ∈ S. Define the set XS similarly. Let
P(U0,U[k],X[k], Sd) be the set of all distributions on U0×U[k]×X[k] that are of
the form

p(u0) ·
∏
i∈Scd

p(ui|u0) · p(uSd|u0, uScd) ·
∏
j∈[k]

p(xj|u0, uj), (3.5)

satisfy the dependence constraints2

ζS :=
∑
j∈S

Cjd −
∑
j∈S

H(Uj|U0) +H(US|U0, UScd) > 0 ∀∅ ( S ⊆ Sd,

and cost constraints

E
[
bj(Xj)

]
≤ Bj ∀j ∈ [k]. (3.6)

Here U0 encodes the “common message,” which, for every j ∈ [k], contains
nCj0 bits from the message of encoder j and is shared with all other encoders
through the CF; each random variable Uj captures the information encoder
j receives from the CF to create dependence with the codewords of other
encoders. The random variable Xj represents the symbol encoder j transmits
over the channel.

We next state our inner bound for the k-user MAC with encoder cooperation
via a CF. The coding strategy that achieves this inner bound uses only a single
round of cooperation (L = 1) and is given in Section 3.3. The error analysis
is presented in Subsection 3.5.1.

2The constraint on ζS is imposed by the multivariate covering lemma (Appendix A),
which we use in the proof of our inner bound.
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Theorem 3.2.1 (Inner Bound). Consider a MAC (X[k], p(y|x[k]),Y). Fix
C0,Cd ∈ Rk

≥0 satisfying (3.3) and (3.4) and p ∈ P(U0,U[k],X[k], Sd). If the
rate vector R[k] := (R1, . . . , Rk) satisfies∑

j∈[k]

Rj < I(X[k];Y )− ζSd , (3.7)

and for every S, T ⊆ [k] there exist sets A and B such that S ∩ Scd ⊆ A ⊆ S,
Sc ∩ Scd ⊆ B ⊆ Sc, and∑

j∈A

(Rj − Cj0)+ +
∑
j∈B∩T

(Rj − Cj
in)+

< I
(
UA, XA∪(B∩T );Y

∣∣U0, UB, XB\T
)
− ζ(A∪B)∩Sd , (3.8)

then R[k] ∈ C (Cin,Cout).3

The next corollary treats the case where the CF transmits the bits it receives
from each encoder to all other encoders without change. In this case, our
coding strategy simply combines forwarding with classical MAC encoding.
We obtain this result from Theorem 3.2.1 by setting, for all j ∈ [k], Cjd = 0

and |Uj| = 1, in addition to choosing A = S and B = Sc for every S, T ⊆
[k] in (3.8). In Corollary 3.2.2, Pind(U0,X[k]) is the set of all distributions
p(u0)

∏
j∈[k] p(xj|u0) that satisfy the cost constraints (3.6).

Corollary 3.2.2 (Forwarding Inner Bound). For any MAC, C (Cin,Cout) con-
tains the set of all rate vectors that for some C0 ∈ Rk

≥0 (satisfying (3.3) and
(3.4) with Cd = 0) and distribution p ∈ Pind(U0,X[k]), satisfy∑

j∈S

Rj < I
(
XS;Y |U0, XSc) +

∑
j∈S

Cj0 ∀∅ 6= S ⊆ [k]∑
j∈[k]

Rj < I(X[k];Y ).

3.2.2 Sum-Capacity Gain

We wish to understand when cooperation leads to a benefit that exceeds the
resources employed to enable it. Therefore, we compare the gain in sum-
capacity obtained through cooperation to the number of bits shared with the
encoders to enable that gain. Formally, for any k-user MAC with a (Cin,Cout)-
CF, define the sum-capacity as

Csum(Cin,Cout) := max
C (Cin,Cout)

∑
j∈[k]

Rj.

3For every real number x, x+ := max{x, 0}.
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Let X1, . . . ,Xk,Y be finite sets. Fix cost functions (bj)j∈[k] and cost constraints
(Bj)j∈[k], and let Pind(X[k]) be the set of all independent distributions

p(x[k]) =
∏
j∈[k]

p(xj)

on X[k] that satisfy the cost constraints (3.6). Similarly, P(X[k]) is the set of
all distributions on X[k] that satisfy (3.6). We say a MAC (X[k], p(y|x[k]),Y) is
in C∗, if for some pind ∈ Pind(X[k]) that satisfies

Iind(X[k];Y ) = max
p∈Pind(X[k])

I(X[k];Y ),

there exists pdep ∈ P(X[k]) whose support is contained in the support of pind

and satisfies

Idep(X[k];Y ) +D
(
pdep(y)‖pind(y)

)
> Iind(X[k];Y ). (3.9)

In the above equation, pdep(y) and pind(y) are the output distributions corre-
sponding to the input distributions pdep(x[k]) and pind(x[k]), respectively. We
remark that (3.9) is equivalent to

Edep

[
D
(
p(y|X[k])‖pind(y)

)]
> Eind

[
D
(
p(y|X[k])‖pind(y)

)]
,

where the expectations are with respect to pdep(x[k]) and pind(x[k]), respectively.

Using these definitions, we state the main result of this chapter which captures
a family of MACs for which the slope of the gain function is infinite in every
direction at Cout = 0. The proof appears in Subsection 3.5.2.

Theorem 3.2.3 (Sum-capacity). Consider a finite alphabet MAC in C∗ and
fix Cin ∈ Rk

>0. Then for any vector v ∈ Rk
>0,

lim
h→0+

Csum(Cin, hv)− Csum(Cin,0)

h
=∞. (3.10)

For continuous MACs, when bj(x) = |x|2 for all j ∈ [k], cost constraints are
referred to as power constraints. In addition, for every j ∈ [k], the variable Pj
is commonly used instead of Bj. Our next proposition states that the Gaussian
MAC satisfies (3.10). The proof appears in Subsection 3.5.3.

Proposition 3.2.4. For the k-user Gaussian MAC with power constraint vec-
tor P = (Pj)j∈[k] ∈ Rk

>0, defined by (3.1), (3.10) holds.
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3.2.3 Outer Bound

We next describe our outer bound. While we only make use of a single round
of cooperation in our inner bound (Theorem 3.2.1), the outer bound applies
to all coding schemes regardless of the number of rounds.

Proposition 3.2.5 (Outer Bound). For any MAC, C (Cin,Cout) is a subset
of the closure of the set of all rate vectors that for some distribution p ∈
Pind(U0,X[k]) satisfy∑

j∈S

Rj ≤ I
(
XS;Y |U0, XSc

)
+
∑
j∈S

Cj
in ∀∅ 6= S ⊆ [k] (3.11)∑

j∈[k]

Rj ≤ I(X[k];Y ). (3.12)

The proof of this proposition appears in Subsection 3.5.4. Our proof uses ideas
similar to the proof of the converse for the 2-user MAC with conferencing [5].

If the capacities of the CF output links are sufficiently large, our inner and
outer bounds coincide and we obtain the capacity region. This follows by
setting Cj0 = Cj

in for all j ∈ [k] in our forwarding inner bound (Corollary
3.2.2) and comparing it with the outer bound given in Proposition 3.2.5.

Corollary 3.2.6. For the MAC (X[k], p(y|x[k]),Y) with a (Cin,Cout)-CF, if

∀j ∈ [k] : Cj
out ≥

∑
i:i 6=j

Ci
in,

then our inner and outer bounds agree.

3.3 Coding Strategy

Choose nonnegative constants (Cj0)kj=1 and (Cjd)
k
j=1 such that (3.3) and (3.4)

hold for all j ∈ [k]. Fix a distribution p ∈ P(U0,U[k],X[k], Sd) and constants
ε, δ > 0. Let

Rj0 = min{Rj, Cj0}

Rjd = min{Rj, C
j
in} −Rj0

Rjj = Rj −Rj0 −Rjd = (Rj − Cj
in)+.

For every j ∈ [k], split the message of encoder j as wj = (wj0, wjd, wjj), where
wj0 ∈ [2nRj0 ], wjd ∈ [2nRjd ], wjj ∈ [2nRjj ]. For all j ∈ [k], encoder j sends
(wj0, wjd) noiselessly to the CF. This is possible since Rj0 +Rjd is less than or
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equal to Cj
in. The CF sends wj0 to all other encoders via its output links and

uses wjd to implement the coordination strategy to be descibed below. Due
to the CF rate constraints, encoder j cannot share the remaining part of its
message, wjj, with the CF. Instead, it transmits wjj over the channel using
the classical MAC strategy.

Let W0 :=
∏

j∈[k][2
nRj0 ]. For every w0 ∈ W0, let Un

0 (w0) be drawn indepen-
dently according to

Pr
{
Un

0 (w0) = un0
}

:=
n∏
t=1

p(u0t).

Given Un
0 (w0) = un0 , for every j ∈ [k], wjd ∈ [2nRjd ], and zj ∈ [2nCjd ], let

Un
j (wjd, zj|un0 ) be drawn independently according to

Pr
{
Un
j (wjd, zj|un0 ) := unj

∣∣∣Un
0 (w0) = un0

}
=

n∏
t=1

p(ujt|u0t). (3.13)

For j ∈ [k], we denote a mapping from [2nCjd ] to Unj by µnj .4 For every
(w1, . . . , wk), define E(un0 , µ1, . . . , µk) as the event where Un

0 (w0) = un0 and for
every j ∈ [k],

Un
j (wjd, ·|un0 ) = µnj (·). (3.14)

Let A(un0 , µ
n
[k]) ⊆

∏
j∈[k][2

nCjd ] be the set

A(un0 , µ
n
[k]) :=

{
(z1, . . . , zk)

∣∣∣(un0 , µ1(z1), . . . , µk(zk)
)
∈ A(n)

δ (U0, U[k])
}
, (3.15)

where A(n)
δ (U0, U[k]) is the weakly typical set with respect to the distribu-

tion p(u0, u[k]). If A(un0 , µ
n
[k]) is empty, set Zj = 1 for all j ∈ [k]. Other-

wise, let the k-tuple Z[k] = (Z1, . . . , Zk) be the smallest element of A(un0 , µ
n
[k])

with respect to the lexicographical order. Finally, given Un
0 (w0) = un0 and

Un
j (wjd, Zj|un0 ) = unj , for each wjj ∈ [2nRjj ], let Xn

j (wjj|un0 , unj ) be a random
vector drawn independently according to

Pr
{
Xn
j (wjj|un0 , unj ) = xnj

∣∣∣Un
0 (w0) = un0 , U

n
j (wjd, Zj) = unj

}
:=

n∏
t=1

p(xjt|u0t, ujt).

We next describe the encoding and decoding processes.
4Note the difference between unj and µn

j ; the former denotes an element of Un
j , while

the latter denotes a mapping from [2nCjd ] to Un
j .
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Encoding. For every j ∈ [k], encoder j sends the pair (wj0, wjd) to the
CF. The CF sends ((wi0)i 6=j, Zj) back to encoder j. Encoder j, having access
to w0 = (wi0)i∈[k] and Zj, transmits Xn

j (wjj|Un
0 (w0), Un

j (wjd, Zj)) over the
channel.

Decoding. The decoder, upon receiving Y n, maps Y n to the unique k-tuple
Ŵ[k] such that(

Un
0 (Ŵ0),

(
Un
j (Ŵjd, Ẑj|Un

0 )
)
j
,
(
Xn
j (Ŵjj|Un

0 , U
n
j )
)
j
, Y n

)
∈ A(n)

ε (U0, U[k], X[k], Y ). (3.16)

If such a k-tuple does not exist, the decoder sets its output to the k-tuple
(1, 1, . . . , 1). Note that in (3.16), Ẑj is the CF output to encoder j corre-
sponding to the CF input vector (Ŵj0, Ŵjd)j∈[k].

The analysis of the expected error probability for the proposed random code
appears in Subsection 3.5.1.

3.4 Case Study: 2-User Gaussian MAC

In this section, we study the network consisting of the 2-user Gaussian MAC
with power constraints and a CF whose input link capacities are sufficiently
large so that the CF has full access to the messages and whose output link
capacities both equal Cout. We show that in this scenario, the benefit of
cooperation extends beyond sum-capacity; that is, capacity metrics other than
sum-capacity also exhibit an infinite slope at Cout = 0. In addition, we show
that the behavior of these metrics (including sum-capacity) is bounded from
below by a constant multiplied by

√
Cout.

The following corollary for the 2-user MAC follows from Theorem 3.2.1.

Corollary 3.4.1. Consider a MAC (X1 × X2, p(y|x1, x2),Y) with a CF that
has access to both messages and has output link capacities C1

out and C2
out. The

capacity region of this network contains the set of all rate pairs (R1, R2) that
satisfy

R1 ≤ max{I(X1;Y |U0)− C1d, I(X1;Y |X2, U0)}+ C10

R2 ≤ max{I(X2;Y |U0)− C2d, I(X2;Y |X1, U0)}+ C20

R1 +R2 ≤ I(X1, X2;Y |U0) + C10 + C20

R1 +R2 ≤ I(X1, X2;Y )
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for some nonnegative constants C1d ≤ C1
out, C2d ≤ C2

out,

C10 := C1
out − C2d

C20 := C2
out − C1d,

and some distribution p(u0)p(x1, x2|u0) that satisfies E[X2
i ] ≤ Pi for i ∈ {1, 2}

and
C1d + C2d = I(X1;X2|U0).

By (3.1), the 2-user Gaussian MAC can be represented as

Y = X1 +X2 + Z,

where Z is independent of (X1, X2) and is distributed as Z ∼ N (0, N) for
some noise variance N > 0. Let U0 ∼ N (0, 1), and (X ′1, X

′
2) be a pair of

random variables independent of U0 and jointly distributed as N (µ,Σ), where

µ :=

(
0

0

)
, and Σ :=

(
1 ρ0

ρ0 1

)

for some ρ0 ∈ [0, 1]. Finally, for i ∈ {1, 2}, set

1√
Pi
Xi = ρiX

′
i +
√

1− ρ2
iU0,

for some ρi ∈ [0, 1]. Calculating the region described in Corollary 3.4.1 for
the Gaussian MAC using the joint distribution of (U0, X1, X2) and setting
γi := Pi/N for i ∈ {1, 2} and γ̄ :=

√
γ1γ2, gives the set of all rate pairs

(R1, R2) satisfying

R1 − C10

≤ max

{
1

2
log

1 + ρ2
1γ1 + ρ2

2γ2 + 2ρ0ρ1ρ2γ̄

1 + (1− ρ2
0)ρ2

2γ2

− C1d,
1

2
log
(
1 + (1− ρ2

0)ρ2
1γ1

)}
R2 − C20

≤ max

{
1

2
log

1 + ρ2
1γ1 + ρ2

2γ2 + 2ρ0ρ1ρ2γ̄

1 + (1− ρ2
0)ρ2

1γ1

− C2d,
1

2
log
(
1 + (1− ρ2

0)ρ2
2γ2

)}
and

R1 +R2 ≤
1

2
log
(
1 + ρ2

1γ1 + ρ2
2γ2 + 2ρ0ρ1ρ2γ̄

)
+ C10 + C20

R1 +R2 ≤
1

2
log
(

1 + γ1 + γ2 + 2
(
ρ0ρ1ρ2 +

√
(1− ρ2

1)(1− ρ2
2)
)
γ̄
)
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for some ρ1, ρ2 ∈ [0, 1] and ρ0 =
√

1− 2−2(C1d+C2d). Denote this region with
Cach(Cout).

We next introduce a lower bound for the weighted version of the sum-capacity.
Denote the capacity region of this network with C (Cout). For every α ∈ [0, 1],
define

Cα(Cout) = max
(R1,R2)∈C (Cout)

(αR1 + (1− α)R2).

Note that Cα(Cout) is a generalization of the notion of sum-capacity where
the weighted sum of the encoders’ rates is considered. The main result of this
section demonstrates that for small Cout, Cα(Cout) is bounded from below by
a constant times

√
Cout when Cout is small. The proof is given in Subsection

3.5.5.

Proposition 3.4.2. For the Gaussian MAC

Y = X1 +X2 + Z

with Z ∼ N (0, N) and SNRs (γ1, γ2), we have

Cα(Cout)− Cα(0) ≥ 2
√
γ1γ2 · log e

1 + γ1 + γ2

·min{α, 1− α} ·
√
Cout + o(

√
Cout).

In particular, for every α ∈ (0, 1),

dCα
dCout

∣∣∣
Cout=0+

=∞.

In Figure 3.2, using [42], we plot the sum-rate of the region Cach(Cout) and the
forwarding inner bound (Corollary 3.2.2) for γ1 = γ2 = 100. We also plot the
√
Cout-term in the lower bound given by Proposition 3.4.2. Notice that the

forwarding inner bound provides a cooperation gain that is at most linear in
Cout.

3.5 Proofs

3.5.1 Proof of Theorem 3.2.1 (Inner bound)

Fix η > 0, and choose a distribution p(u0, u[k], x[k]) on U0 × U[k] × X[k] of the
form

p(u0) ·
∏
i∈Scd

p(ui|u0) · p(uSd|u0, uScd) ·
∏
j∈[k]

p(xj|u0, uj),

that satisfies the dependence constraints

ζS :=
∑
j∈S

Cjd −
∑
j∈S

H(Uj|U0) +H(US|U0, UScd) > 0 ∀∅ ( S ⊆ Sd,
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Figure 3.2: Plot of the achievable sum-rate gain given by Theorem 3.2.1 and
Corollary 3.2.2 (forwarding inner bound) for Gaussian input distributions, and
the
√
Cout-term given in Proposition 3.4.2. Here γ1 = γ2 = 100.

and cost constraints

E
[
bj(Xj)

]
≤ Bj − η ∀j ∈ [k]. (3.17)

Let (w1, . . . , wk) denote the transmitted message vector and (Ŵ1, . . . , Ŵk) de-
note the output of the decoder. To simplify notation, denote

Un
0 (w0), Un

j (wjd, Zj|Un
0 ), Xn

j (wjj|Un
0 , U

n
j )

with Un
0 , Un

j , and Xn
j , respectively. Similarly, define Ûn

0 , Ûn
j , and X̂n

j as

Un
0 (Ŵ0), Un

j (Ŵjd, Zj|Un
0 ), Xn

j (Ŵjj|Un
0 , U

n
j ).

Here Ŵ0, Ŵjd, and Ŵjj are defined in terms of (Ŵj)j similar to the definitions
of w0, wjd, and wjj in Section 3.3. Let Y n denote the channel output when
Xn

[k] is transmitted. Then the joint distribution of (Un
0 , U

n
[k], X

n
[k], Y

n) is given
by

pcode(u
n
0 , u

n
[k], x

n
[k], y

n) := p(un0 )pcode(u
n
[k]|un0 )p(xn[k]|un0 , un[k])p(y

n|xn[k]), (3.18)

where
pcode(u

n
[k]|un0 ) =

∑
µn
[k]

p(µ1|un0 ) · · · p(µk|un0 )p(un[k]|un0 , µn[k]) (3.19)

and p(µnj |un0 ) and p(un[k]|un0 , µn[k]) are calculated according to

p(µnj |un0 ) =
∏

zj∈[2
nCjd ]

p(µnj (zj)|un0 ) =
∏

zj∈[2
nCjd ]

n∏
t=1

p(µjt(zj)|u0t),
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and
p(un[k]|un0 , µn[k]) =

∑
z[k]

p(z[k]|un0 , µn[k])
∏
j∈[k]

1{µnj (zj) = unj }.

Furthermore, p(z[k]|un0 , µn[k]) is given by

p(z[k]|un0 , µn[k]) =

1
{
z[k] = minA(un0 , µ

n
[k])
}

if A(un0 , µ
n
[k]) 6= ∅

1
{
z[k] = 1[k]

}
otherwise,

where the minimum is calculated according to the lexicographical ordering.
Define the distribution pind(un0 , u

n
[k], x

n
[k], y

n) as

pind(un0 , u
n
[k], x

n
[k], y

n) := p(un0 )p(xn[k]|un0 , un[k])p(y
n|xn[k])

∏
j∈[k]

p(unj |un0 ), (3.20)

which is the joint input-output distribution if independent codewords are
transmitted. We next review some results regarding weakly typical sets [40,
pp. 520-524] that are required for our error analysis.

For any S ⊆ [k], let A(n)
δ (U0, US) denote the weakly typical set with respect

to the distribution p(u0, uS), a marginal of p(u0, u[k]). In addition, for every
(un0 , u

n
S) ∈ A(n)

δ (U0, US), let A(n)
δ (un0 , u

n
S) be the set of all unSc such that

(un0 , u
n
[k]) ∈ A

(n)
δ (U0, U[k]).

Similarly, let A(n)
ε (U0, U[k], X[k], Y ) be the weakly typical set with respect to

the distribution p(u0, u[k], x[k])p(y|x[k]), where p(y|x[k]) is given by the channel
definition. For subsets S, T ⊆ [k], A(n)

ε (U0, US, XT , Y ) is the weakly typical set
with respect to the marginal distribution p(u0, uS, xT , y). For (un0 , u

n
S, x

n
T , y

n) ∈
A

(n)
ε (U0, US, XT , Y ), A(n)

ε (un0 , u
n
S, x

n
T , y

n) is the set of all (unSc , x
n
T c) such that(

un0 , u
n
[k], x

n
[k], y

n
)
∈ A(n)

ε (U0, U[k], X[k], Y ).

Furthermore, we have [40, p. 523]

log |A(n)
ε (un0 , u

n
S, x

n
T , y

n)| ≤ n
(
H(USc , XT c |U0, US, XT , Y ) + 2ε

)
. (3.21)

Finally, under fairly general conditions described in Appendix B,5 there ex-
ists an increasing function I : R>0 → R>0 such that if (Un

0 , U
n
[k], X

n
[k], Y

n)
iid∼

p(u0, u[k], x[k], y), then

Pr
{

(Un
0 , U

n
[k], X

n
[k], Y

n) ∈ A(n)
ε (U0, U[k], X[k], Y )

}
≥ 1− 2−nI(ε). (3.22)

5Distributions that satisfy these conditions include any distribution on a finite alphabet
and the Gaussian distribution.
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Fix any such function I.

We next study the relationship between pcode and pind given by (3.18) and
(3.20), respectively. Note that the main difference arises from the conditional
marginal pcode(u

n
[k]|un0 ) and pind(un[k]|un0 ). Our first lemma provides an upper

bound for pcode in terms of pind.

Lemma 3.5.1. For every nonempty S ⊆ [k] and all (un0 , u
n
S),

1

n
log

pcode(u
n
S|un0 )

pind(unS|un0 )
≤ nCSd,

where CSd :=
∑

j∈S Cjd.

Proof. By (3.19),

pcode(u
n
S|un0 ) =

∑
µn
[k]

p(unS|un0 , µn[k])
∏
j∈[k]

p(µnj |un0 ).

To bound pcode(u
n
S|un0 ), note that

p(unS|un0 , µn[k]) ≤
∏
j∈S

1
{

(µnj )−1(unj ) 6= ∅
}
,

where
(µnj )−1(unj ) :=

{
zj ∈ [2nCjd ]

∣∣∣µnj (zj) = unj

}
.

For every j ∈ S,∑
µnj

p(µnj |un0 )1
{

(µnj )−1(unj ) 6= ∅
}

= Pr
{
∃zj : Un

j (zj) = unj

∣∣∣Un
0 = un0

}
≤ 2nCjdp(unj |un0 ).

Thus

pcode(u
n
S|un0 ) ≤

∑
µS

∏
j∈S

p(µnj |un0 )1
{

(µnj )−1(unj ) 6= ∅
}

=
∏
j∈S

(∑
µnj

p(µnj |un0 )1
{

(µnj )−1(unj ) 6= ∅
})

≤ 2n
∑
j∈S Cjdpind(unS|un0 ).

Our second lemma provides an upper bound for pind(unS|un0 ) when (un0 , u
n
S) is

typical.
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Lemma 3.5.2. For all nonempty Scd ⊆ S ⊆ [k] and (un0 , u
n
S) ∈ A(n)

δ (U0, US),

1

n
log

pind(unS|un0 )

p(unS|un0 )
≤ −

∑
j∈S∩Sd

H(Uj|U0) +H(US∩Sd|U0, UScd) + 2(|S ∩ Sd|+ 1)δ.

Proof. Recall that

p(un[k]|un0 ) = p(unSd|u
n
0 , u

n
Scd

)
∏
j∈Scd

p(unj |un0 ).

Thus for all S ⊇ Scd, we have

p(unS|un0 ) = p(unS∩Sd |u
n
0 , u

n
Scd

)
∏
j∈Scd

p(unj |un0 ).

Therefore,

pind(unS|un0 )

p(unS|un0 )
=

pind(unS∩Sd |u
n
0 )

p(unS∩Sd |u
n
0 , u

n
Scd

)

=

∏
j∈S∩Sd p(u

n
j |un0 )

p(unS∩Sd |u
n
0 , u

n
Scd

)
.

The proof now follows from the definition of A(n)
δ (U0, US).

Combining the previous two lemmas results in the next corollary, which we
use in our error analysis.

Corollary 3.5.3. For every nonempty S satisfying Scd ⊆ S ⊆ [k] and all
(un0 , u

n
S) ∈ A(n)

δ (U0, US),

1

n
log

pcode(u
n
S|un0 )

p(unS|un0 )
≤ ζS∩Sd + 2

(
|S ∩ Sd|+ 1

)
δ.

Let E denote the event where either the output of an encoder does not satisfy
the corresponding cost constraint, or the output of the decoder differs from
the transmitted k-tuple of messages; that is (Ŵj)

k
j=1 6= (wj)

k
j=1. Denote the

former event with Ecost and the latter event with Edec. When Edec occurs, it
is either the case that (wj)

k
j=1 does not satisfy (3.16) (denote this event with

Etyp), or that there is another k-tuple, (Ŵj)
k
j=1 6= (wj)

k
j=1, that also satisfies

(3.16). If the latter event occurs, we either have Ŵ0 6= w0 (denote this event
with E∅,∅), or Ŵ0 = w0. When Ŵ0 = w0, define the subsets S, T ⊆ [k] as

S :=
{
j
∣∣Ŵjd 6= wjd

}
T :=

{
j
∣∣Ŵjj 6= wjj

}
.
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Now for every pair of subsets S, T ⊆ [k] such that S∪T 6= ∅, define ES,T as the
event where there exists a (Ŵj)

k
j=1 that satisfies (3.16), Ŵ0 = w0, Ŵjd 6= wjd

if and only if j ∈ S, and Ŵjj 6= wjj if and only if j ∈ T . Thus we may write

E ⊆ Ecost ∪ Etyp ∪
⋃

S,T⊆[k]

ES,T .

The union over all ES,T also contains the event E∅,∅. By the union bound,

Pr(E) ≤ Pr(Ecost ∪ Etyp) +
∑

S,T⊆[k]

Pr(ES,T ).

Thus to find a set of achievable rates for our random code design, it suffices
to find conditions under which Pr(Ecost ∪ Etyp) and each Pr(ES,T ) go to zero as
n→∞.

We begin with the event Ecost ∪ Etyp. Define Eenc as the event where(
Un

0 , U
n
[k]

)
/∈ A(n)

δ (U0, U[k]).

We bound the probability of Ecost ∪ Etyp by

Pr(Ecost∪Etyp) ≤ Pr(Eenc∪Ecost∪Etyp) ≤ Pr(Eenc)+Pr(Ecost\Eenc)+Pr(Etyp\Eenc).

(3.23)
The event Eenc occurs if and only if A(Un

0 , U
n
[k](.)) (defined in Section 3.3) is

empty. Thus
Pr(Eenc) = Pr

{
A(Un

0 , U
n
[k](.)) = ∅

}
.

If Sd = ∅, then

pcode(u
n
[k]|un0 ) = pind(un[k]|un0 ) = p(un[k]|un0 ),

which implies
Pr
(
Ecenc

)
≥ Pr

(
A

(n)
δ (U0, U[k])

)
.

Thus Pr(Eenc) goes to zero in this case. If Sd 6= ∅, recall that for every
nonempty S ⊆ Sd, ζS is defined as

ζS =
∑
j∈S

Cjd −
∑
j∈S

H(Uj|U0) +H(US|U0, UScd).

From the multivariate covering lemma (Appendix A), it follows that Pr(Eenc)

goes to zero if for all nonempty S ⊆ Sd,

ζS > (8|Sd| − 2|S|+ 10)δ. (3.24)
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Next, for Ecost \ Eenc we have

Pr
(
Ecost \ Eenc

)
(3.25)

=
∑

(un0 ,u
n
[k]
,xn

[k]
):

(un0 ,u
n
[k]

)∈A(n)
δ

pcode(u
n
0 , u

n
[k], x

n
[k]) Pr

{
∃j ∈ [k] :

1

n

n∑
t=1

bj(xjt) > Bj

}

≤ 2n(ζSd+2(|Sd|+1)δ)
∑

(un0 ,u
n
[k]
,xn

[k]
):

(un0 ,u
n
[k]

)∈A(n)
δ

p(un0 , u
n
[k], x

n
[k]) Pr

{
∃j ∈ [k] :

1

n

n∑
t=1

bj(xjt) > Bj

}

≤ 2n(ζSd+2(|Sd|+1)δ)
∑
xn
[k]

p(xn[k]) Pr
{
∃j ∈ [k] :

1

n

n∑
t=1

bj(xjt) > Bj

}

≤ 2n(ζSd+2(|Sd|+1)δ)
∑
j∈[k]

∑
xnj

p(xnj ) Pr
{ 1

n

n∑
t=1

bj(xjt) > Bj

}
≤ 2n(ζSd+2(|Sd|+1)δ)

∑
j∈[k]

2−nθ(bj(Xj),η), (3.26)

where (3.26) follows from (B.3) in Appendix B. Thus Pr
(
Ecost \ Eenc

)
→ 0 if

ζSd + 2(|Sd|+ 1)δ) < min
j∈[k]

θ(bj(Xj), η). (3.27)

We now find an upper bound for Pr(Etyp \ Eenc). Let B(n) be the set of all
(un0 , u

n
[k], x

n
[k], y

n) such that (un0 , u
n
[k]) ∈ A

(n)
δ (U0, U[k]) but (un0 , u

n
[k], x

n
[k], y

n) /∈
A

(n)
ε (U0, U[k], X[k], Y ). Then

Pr(Etyp \ Eenc) =
∑
B(n)

p(un0 )pcode(u
n
[k]|un0 )p(xn[k]|un0 , un[k])p(y

n|xn[k])

(a)

≤ 2n(ζSd+2(|Sd|+1)δ)
∑
B(n)

p(un0 , u
n
[k], x

n
[k], y

n)

(b)

≤ 2n(ζSd+2(|Sd|+1)δ) Pr
{

(A(n)
ε )c

} (c)

≤ 2n(ζSd+2(|Sd|+1)δ−I(ε)),

where (a) follows from Corollary 3.5.3, (b) holds since B(n) ⊆ (A
(n)
ε )c, and (c)

follows from the definition of I(ε) given by (3.22). Thus Pr(Etyp \ Eenc)→ 0 if

ζSd < I(ε)− 2(|Sd|+ 1)δ. (3.28)

Therefore, if (3.24), (3.27), and (3.28) hold, then by (3.23), Pr(Ecost∪Etyp)→ 0.
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We next study E∅,∅, which is the event where there exists a k-tuple (Ŵj)j that
satisfies (3.16) but Ŵ0 6= w0. If this event occurs, then (Ûn

0 , Û
n
[k], X̂

n
[k]) and Y n

are independent. By the union bound,

Pr(E∅,∅) ≤ 2n
∑
j∈[k]Rj

∑
A

(n)
ε

pcode(u
n
0 , u

n
[k], x

n
[k])pcode(y

n).

We rewrite the sum in the above inequality as∑
A

(n)
ε (Y )

pcode(y
n)

∑
A

(n)
ε (yn)

pcode(u
n
0 , u

n
[k], x

n
[k]),

Using Corollary 3.5.3, we upper bound the inner sum by∑
A

(n)
ε (yn)

2n(ζSd+2(|Sd|+1)δ)p(un0 , u
n
[k], x

n
[k])

≤ 2n(H(U0,U[k],X[k]|Y )+2ε)2n(ζ|Sd|+2(|Sd|+1)δ)2−n(H(U0,U[k],X[k])+ε), (3.29)

where (3.29) follows from (3.21). This implies Pr(E∅,∅)→ 0 if∑
j∈[k]

Rj < I(X[k];Y )− ζSd − 2(|Sd|+ 1)δ − 3ε.

Next, let S, T ⊆ [k] be sets such that S ∪ T 6= ∅ and consider the event ES,T .
Recall that this is the event where there exists a k-tuple (Ŵj)j that satisfies
(3.16) and Ŵ0 = w0, Ŵjd 6= wjd if and only if j ∈ S, and Ŵjj 6= wjj if and
only if j ∈ T . For every A ⊆ S and B ⊆ Sc, let EA,BS,T ⊆ ES,T be the event
where there exists a k-tuple (Ŵj)j that satisfies(
Un

0 (w0),
(
Un
j (Ŵjd, Ẑj|Un

0 )
)
j∈A,

(
Un
j (wjd, Ẑj|Un

0 )
)
j∈B,(

Xn
j (Ŵjj|Un

0 , Û
n
j )
)
j∈A∪(B∩T )

,
(
Xn
j (wjj|Un

0 , Û
n
j )
)
j∈B\T , Y

n
)
∈ A(n)

ε (3.30)

and Ŵ0 = w0, Ŵjd 6= wjd if and only if j ∈ S, and Ŵjj 6= wjj if and only if
j ∈ T . If ES,T occurs, then so does EA,BS,T for every A ⊆ S and B ⊆ Sc. Thus

ES,T ⊆
⋂
A,B

EA,BS,T .

This implies
Pr(ES,T ) ≤ min

A,B
Pr
(
EA,BS,T

)
. (3.31)

Therefore, to bound Pr(ES,T ), we find an upper bound on Pr(EA,BS,T ) for any
A ⊆ S and B ⊆ Sc such that A ∪ (B ∩ T ) 6= ∅. This is the key difference
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between our error analysis here and the error analysis for the 2-user MAC
with transmitter cooperation presented in [43]. For independent distributions,
using the constraint that subsets of typical codewords are also typical does not
lead to a larger region; the same may not be true when dealing with dependent
distributions. That being said, to include all independent random variables in
our error analysis, instead of calculating the minimum in (3.31) over all A ⊆ S

and B ⊆ Sc, we limit ourselves to subsets A and B that satisfy

S ∩ Scd ⊆ A ⊆ S

Sc ∩ Scd ⊆ B ⊆ Sc,

since all the random vectors (Un
j )j∈Scd are independent given Un

0 . Choose any
such A and B. Note that for every j ∈ A ∪ (B ∩ T ), either Ŵjd 6= wjd or
Ŵjj 6= wjj. In addition, in (3.30),((

Un
j (Ŵjd, Ẑj|Un

0 )
)
j∈A,

(
Un
j (wjd, Ẑj|Un

0 )
)
j∈B,(

Xn
j (Ŵjj|Un

0 , U
n
j )
)
j∈A∪(B∩T )

,
(
Xn
j (wjj|Un

0 , U
n
j )
)
j∈B\T

)
is independent of Y n given(

Un
0 (w0),

(
Un
j (wjd, .|Un

0 )
)
j∈Sc ,

(
Xn
j (wjj|Un

0 , U
n
j (.))

)
j∈Sc\T

)
.

Therefore, by the union bound, Pr(EA,BS,T ) is bounded from above by

2n
(∑

j∈ARjd+
∑
j∈A∪(B∩T )Rjj

)
×
∑
A

(n)
ε

p(xnA∪(B∩T )|un0 , unA∪(B∩T ))

×
∑

µnA∪Sc ,χ
n
Sc\T

p(un0 , µ
n
Sc , χ

n
Sc\T , y

n)p(µA|un0 )p(unA∪B, x
n
B\T |un0 , µnA∪Sc , χnSc\T ),

(3.32)

where the inner sum is over all mappings µnj : [2nCjd ]→ Unj for j ∈ A∪Sc and
χnj : [2nCjd ] → X n

j for j ∈ Sc \ T . The distribution p(un0 , µ
n
Sc , χ

n
Sc\T , y

n) is a
marginal of p(un0 , µn[k], χ

n
[k], y

n), which is defined as

p(un0 , µ
n
[k], χ

n
[k], y

n) = p(un0 , µ
n
[k])p(χ

n
[k]|un0 , µn[k])p(y

n|un0 , µn[k], χ
n
[k]),

where

p(χn[k]|un0 , µn[k]) =
∏
j∈[k]

p(χnj |un0 , µnj )

=
∏
j∈[k]

∏
zj∈[2

nCjd ]

p(χnj (zj)|un0 , µnj (zj)),
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and
p(yn|un0 , µn[k], χ

n
[k]) =

∑
z[k]

p(z[k]|un0 , µn[k])p(y
n|χn[k](z[k])).

We have

p(unA∪B, x
n
B\T |un0 , µnA∪Sc , χnSc\T )

≤ 1
{
∃(zj)j∈B ∈

∏
j∈B

[2nCjd ] : (∀j ∈ B : µnj (zj) = unj ) ∧ (∀j ∈ B \ T : χnj (zj) = xnj )
}

× 1
{
∃(zj)j∈A ∈

∏
j∈A

[2nCjd ] : (∀j ∈ A : µnj (zj) = unj )
}
. (3.33)

We can thus upper bound the inner sum in (3.32) as a product of the sums∑
µnSc ,χ

n
Sc\T

p(un0 , µ
n
Sc , χ

n
Sc\T , y

n)

× 1
{
∃(zj)j∈B ∈

∏
j∈B

[2nCjd ] : (∀j ∈ B : µnj (zj) = unj ) ∧ (∀j ∈ B \ T : χnj (zj) = xnj )
}

and ∑
µA

p(µA|un0 )1
{
∃(zj)j∈A ∈

∏
j∈A

[2nCjd ] : ∀j ∈ A, µnj (zj) = unj

}
.

We first find an upper bound for the first sum. Define

p̃(un0 , u
n
[k], x

n
[k], y

n) :=
∑

µn
[k]
,χn

[k]

p(un0 , µ
n
[k], χ

n
[k], y

n)
∏
j∈[k]

1
{
µnj (1) = unj , χ

n
j (1) = xnj

}
.

The following argument demonstrates that p̃(un0 , un[k], x
n
[k]) = pind(un0 , u

n
[k], x

n
[k]),

p̃(un0 , u
n
[k], x

n
[k]) =

∑
yn

p̃(un0 , u
n
[k], x

n
[k], y

n)

=
∑

µn
[k]
,χn

[k]

p(un0 , µ
n
[k], χ

n
[k])
∏
j∈[k]

1
{
µnj (1) = unj , χ

n
j (1) = xnj

}
= p(un0 )

∏
j∈[k]

∑
µnj ,χ

n
j

p(µnj , χ
n
j |un0 )1

{
µnj (1) = unj , χ

n
j (1) = xnj

}
= pind(un0 , u

n
[k], x

n
[k]). (3.34)

For every zB = (zj)j∈B, where zj ∈ [2nCjd ] for all j ∈ B, let E(zB) denote
the event where for all j ∈ B, Un

j (wjd, zj|Un
0 ) = unj , and for all j ∈ B \ T ,
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Xn
j (wjj|Un

0 , U
n
j ) = xnj . Also, recall that by definition, CBd =

∑
j∈B Cjd. Then∑

µnSc ,χ
n
Sc\T

p(un0 , µ
n
Sc , χ

n
Sc\T , y

n)

× 1
{
∃zB ∈

∏
j∈B

[2nCjd ] : (∀j ∈ B : µnj (zj) = unj ) ∧ (∀j ∈ B \ T : χnj (zj) = xnj )
}

= Pr
(
{Un

0 = un0 , Y
n = yn} ∩

⋃
zB

E(zB)
)

= Pr
(⋃
zB

(
{Un

0 = un0 , Y
n = yn} ∩ E(zB)

))
≤ 2nCBd Pr

(
{Un

0 = un0 , Y
n = yn} ∩ E(1B)

)
(3.35)

= 2nCBd p̃(un0 , u
n
B, x

n
B\T , y

n)

= 2nCBdp(un0 )pind(unB, x
n
B\T |un0 )p̃(yn|un0 , unB, xnB\T ), (3.36)

where (3.35) follows by the union bound and (3.36) follows from (3.34). Using
a similar argument we can show∑

µA

p(µA|un0 )1
{
∃zA ∈

∏
j∈A

[2nCjd ] : ∀j ∈ A, µnj (zj) = unj

}
≤ 2nCAdpind(unA|un0 ).

(3.37)
Thus by (3.33), (3.36), and (3.37), the expression

2n
(∑

j∈ARjd+
∑
j∈A∪(B∩T )Rjj+CAd+CBd

)
×
∑
A

(n)
ε

p(un0 )pind(unA∪B|un0 )p(xnA∪B|un0 , unA∪B)p̃(yn|un0 , unB, xnB\T )

is an upper bound for (3.32). Applying Lemma 3.5.2 to pind(unA∪B|un0 ) and
dropping the epsilon term, this expression can be further bounded from above
by

2n
(∑

j∈ARjd+
∑
j∈A∪(B∩T )Rjj+ζ(A∪B)∩Sd

)
×

∑
A

(n)
ε (U0,UB ,XB\T ,Y )

p(un0 , u
n
B, x

n
B\T )p̃(yn|un0 , unB, xnB\T )

×
∑

A
(n)
ε (un0 ,u

n
B ,x

n
B\T ,y

n)

p(unA|un0 , unB)p(xnA∪(B∩T )|un0 , unA∪(B∩T ))
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Using (3.21), we can further upper bound the logarithm of this expression by

n

[∑
j∈A

Rjd +
∑

j∈A∪(B∩T )

Rjj + ζ(A∪B)∩Sd

]
+ log

∑
A

(n)
ε (U0,UB ,XB\T ,Y )

p(un0 , u
n
B, x

n
B\T )p̃(yn|un0 , unB, xnB\T )

− nH(UA|U0, UB)− nH(XA∪(B∩T )|U0, UA∪(B∩T ))

+ nH(UA, XA∪(B∩T )|U0, UB, XB\T , Y ).

Therefore, Pr(EA,BS,T )→ 0 if∑
j∈A

Rjd +
∑

j∈A∪(B∩T )

Rjj

< −ζ(A∪B)∩Sd +H(UA|U0, UB) +H(XA∪(B∩T )|U0, UA∪(B∩T ))

−H(UA, XA∪(B∩T )|U0, UB, XB\T , Y )

= I(UA, XA∪(B∩T );Y |U0, UB, XB\T )− ζ(A∪B)∩Sd ,

where the last equality follows from the fact that

H(UA|U0, UB) = H(UA|U0, UB, XB\T ) + I(UA;XB\T |U0, UB)

= H(UA|U0, UB, XB\T )

and

H(XA∪(B∩T )|U0, UA∪B) = H(XA∪(B∩T )|U0, UA∪B, XB\T )

+ I(XA∪(B∩T );XB\T |U0, UA∪B)

= H(XA∪(B∩T )|U0, UA∪B, XB\T ).

Thus Pr(ES,T ) → 0 if for some S ∩ Scd ⊆ A ⊆ S and Sc ∩ Scd ⊆ B ⊆ Sc such
that A ∪ (B ∩ T ) 6= ∅,∑

j∈A

Rjd +
∑

j∈A∪(B∩T )

Rjj

< I(UA, XA∪(B∩T );Y |U0, UB, XB\T )− ζ(A∪B)∩Sd . (3.38)

The bounds we obtain above are in terms of (Rjd)
k
j=1 and (Rjj)

k
j=1. To convert

these to bounds in terms of (Rj)
k
j=1, recall that Rj0 = min{Cj0, Rj}, Rjj =

(Rj − Cj
in)+, and

Rjd = Rj −Rj0 −Rjj

= Rj −min{Cj0, Rj} −Rjj = max{Rj − Cj0, 0} − (Rj − Cj
in)+

= (Rj − Cj0)+ − (Rj − Cj
in)+.
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Thus (3.38) can be written as∑
j∈A

(Rj − Cj0)+ +
∑
j∈B∩T

(Rj − Cj
in)+

< I(UA, XA∪(B∩T );Y |U0, UB, XB\T )− ζ(A∪B)∩Sd

3.5.2 Proof of Theorem 3.2.3 (Sum-capacity gain)

Fix any vector v ∈ Rk
>0, rate vector Cin ∈ Rk

>0, and cost constraint vector
B ∈ Rk

≥0. For every h ≥ 0, define Cout(h) = hv. In the achievable region
defined in Section 3.1, let U0 = {0, 1}, and for every j ∈ [k], let Uj = Xj. Set
Cj0 = 0 and Cjd = Cj

out(h) for every j ∈ [k]. For h > 0, let P(h) be the set of
all distributions of the form

p(u0, u[k]) ·
∏
j∈[k]

p(xj|u0, uj)

that satisfy dependence constraints∑
j∈S

Cj
out(h)−

∑
j∈S

H(Uj|U0) +H(US|U0) > 0 ∀∅ ( S ⊆ [k],

and cost constraints

E
[
bj(Xj)

]
≤ Bj ∀j ∈ [k].

Since our MAC is in C∗, for some distribution pa ∈ Pind(X[k]) that satisfies

Ia(X[k];Y ) = max
p∈Pind(X[k])

I(X[k];Y ),

there exists a distribution pb ∈ P(X[k]) that satisfies

Eb
[
D
(
p(y|X[k])‖pa(y)

)]
> Ea

[
D
(
p(y|X[k])‖pa(y)

)]
and whose support is contained in the support of pa. Here we also assume that
for all j ∈ [k],

Ia(Xj;Y |X[k]\{j}) > 0.

At the end of the proof, we show that in the case where the last property does
not hold, the same result follows by considering a MAC with a smaller number
of users.

Choose µ ∈ (0, 1) such that for every nonempty S ⊆ [k],

µIa(XS;Y |XSc) <
∑
j∈S

Cj
in. (3.39)
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For every λ ∈ [0, 1], define the distribution pλ(u0, u[k], x[k]) as

pλ(u0, u[k], x[k]) := pλ(u0)pλ(u[k])pλ(x[k]|u0, u[k]),

where

pλ(u0) :=

µ if u0 = 1

1− µ if u0 = 0,

and for every u[k] ∈ U[k] (recall U[k] = X[k]),

pλ(u[k]) := (1− λ)pa(u[k]) + λpb(u[k]).

Finally, for every (u0, u[k], x[k]),

pλ(x[k]|u0, u[k]) :=
∏
j∈[k]

pλ(xj|u0, uj),

where for all j ∈ [k],

pλ(xj|u0, uj) :=

1{xj = uj} if u0 = 1

pa(xj) if u0 = 0.

Note that pλ(u0) and pλ(x[k]|u0, u[k]) do not depend on λ. In addition, since
pa and pb satisfy the cost constraints, and for all j ∈ [k] and λ ∈ [0, 1],

pλ(xj) = (1− λ)pa(xj) + λpb(xj),

pλ satisfies the cost constraints as well.

We next find a function λ∗(h) such that for sufficiently small h,

pλ∗(h)(u0, u[k], x[k]) ∈ P(h).

Fix ε > 0, and define h : [0, 1]→ R by

h(λ) :=
1∑

j∈[k] vj

(∑
j∈[k]

Hλ(Uj)−Hλ(U[k])
)

+ ελ. (3.40)

The following argument relies on Lemma 3.5.6, which appears at the end of
this section. By Lemma 3.5.6 (i),

dh

dλ
=

1∑
j∈[k] vj

∑
u[k]

(
pb(u[k])− pa(u[k])

)
log

pλ(u[k])∏
j∈[k] pλ(uj)

+ ε,
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and by Lemma 3.5.6 (iii),
dh

dλ

∣∣∣
λ=0+

= ε > 0.

Thus h(λ) is continuously differentiable and has positive derivative at λ = 0+.
Therefore, by the inverse function theorem, there exists a function λ = λ∗(h)

defined on [0, h0) for some h0 > 0 that satisfies

h
∑
j∈[k]

vj =
∑
j∈[k]

Hλ∗(h)(Uj)−Hλ∗(h)(U[k]) + ελ∗(h)
∑
j∈[k]

vj,

and
dλ∗

dh

∣∣∣
h=0+

=
1

ε
. (3.41)

Now for every nonempty S ⊆ [k], define the function ζS : [0, h0)→ R as

ζS(h) =
∑
j∈S

Cj
out(h)−

∑
j∈S

Hλ∗(Uj) +Hλ∗(US), (3.42)

If we calculate the derivative of ζS at h = 0+, by Lemma 3.5.6 (iii), we get

dζS
dh

∣∣∣
h=0+

=
∑
j∈S

vj > 0.

This implies that there exists 0 < h1 ≤ h0 such that for every 0 < h < h1 and
all nonempty S ⊆ [k],

ζS(h) > 0.

Therefore, for all sufficiently small h, pλ∗(h)(u0, u[k], x[k]) is in P(h).

We next find a lower bound for the achievable sum-rate using the distribution
pλ∗(u0, u[k], x[k]) for small h. For every S, T ⊆ [k], define the function fS,T :

[0, h1)→ R as

fS,T (h) := Iλ∗(h)(XS∪T ;Y |U0, USc , XSc∩T c) +
∑
j∈T\S

Cj
in − ζ[k](h). (3.43)

This definition is motivated by the fact that by Lemma 3.5.4, any rate vector
(Rj)j∈[k] that satisfies ∑

j∈S∪T

Rj < fS,T (h) ∀ S, T ⊆ [k]

is in C (Cin, hv). In (3.43), expanding the mutual information term with re-
spect to U0 gives

Iλ∗(XS∪T ;Y |U0, USc , XSc∩T c)

= µIλ∗(XS;Y |XSc) + (1− µ)Ia(XS∪T ;Y |XSc∩T c),
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where the term Iλ∗(XS;Y |XSc) is calculated with respect to the distribution

pλ∗(x[k]) = (1− λ∗)pa(x[k]) + λ∗pb(x[k]).

Next, for every S ⊆ [k], define the function FS : [0, h1)→ R as

FS(h) := Iλ∗(XS;Y |U0, USc , XSc)− ζ[k](h).

The following argument shows that for sufficiently small h and for all S, T ⊆
[k],

fS,T (h) ≥ FS∪T (h).

Consider some S and T for which T \ S is not empty. Then

fS,T (0) = µIa(XS;Y |XSc) + (1− µ)Ia(XS∪T ;Y |XSc∩T c) +
∑
j∈T\S

Cj
in

> µIa(XS;Y |XSc) + (1− µ)Ia(XS∪T ;Y |XSc∩T c) + µIa(XT\S;Y |X(T\S)c)

(3.44)

≥ Ia(XS∪T ;Y |XSc∩T c) = FS∪T (0),

where (3.44) follows from (3.39). Note that fS,T and FS∪T are continuous
functions of h for all S and T . Thus there exists 0 < h2 ≤ h1 such that for
every h ∈ [0, h2) and S, T ⊆ [k] with T \ S 6= ∅,

fS,T (h) ≥ FS∪T (h).

Next consider S and T for which T \ S = ∅; that is, T ⊆ S. In this case,

fS,T (h) = Iλ∗(XS∪T ;Y |U0, USc , XSc∩T c) +
∑
j∈T\S

Cj
in − ζ[k](h)

= Iλ∗(XS;Y |U0, USc , XSc)− ζ[k](h)

= FS(h) = FS∪T (h).

Thus fS,T (h) ≥ FS∪T (h) for all such S and T as well. Now fix h ∈ [0, h2).
From the above argument, it follows that the region

Cach(h) :=
{
R[k]

∣∣∣∀∅ ( S ⊆ [k] : 0 ≤
∑
j∈S

Rj ≤ FS(h)
}

is a subset of C (Cin, hv). Now consider the region

Cout(h) :=
{
R[k]

∣∣∣∀∅ ( S ⊆ [k] : 0 ≤
∑
j∈S

Rj ≤ ΦS(h)
}
,
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where ΦS(h) is defined as

ΦS(h) := FS(h) + ζSc(h) +
∑
j∈S

Cj
out(h).

Note that Cout(h) contains Cach(h).

We next show that there exists h3 ∈ (0, h2] such that for every j ∈ [k] and all
h ∈ (0, h3),

Φ{j}(h) > k
∑
i∈[k]

Ci
out(h). (3.45)

To see this, first note that the right hand side of the above equation equals
zero at h = 0, while

Φ{j}(0) = Ia(Xj;Y |X[k]\{j}) > 0.

Inequality (3.45) now follows from the fact that both sides are continuous in
h.

By Lemma 3.5.7, which appears at the end of this section, for a fixed h, the
mapping S 7→ ΦS(h) is submodular and nondecreasing. Thus for every j ∈ [k],
there exists a rate vector (Ri)i∈[k] in Cout(h) such that

Rj > k
∑
i∈[k]

Ci
out(h), and

∑
i∈[k]

Ri = Φ[k](h).

For example, for j = 1, consider the rate vector (Ri)i∈[k], where R1 = Φ{1}(h),
and for all 1 < i ≤ k,

Ri = Φ[i] − Φ[i−1].

From Lemma 3.5.8, it follows that the defined rate vector is in Cout(h). Since
Cout(h) is a convex subset of Rk

≥0, there exists a rate vector (R∗j (h))j ∈ Cout(h)

such that

R∗j (h) >
∑
j∈[k]

Cj
out(h) ∀ j ∈ [k], and

∑
j∈[k]

R∗j (h) = Φ[k](h).

On the other hand, from the definition of ζS(h), given by (3.42), it follows that

ΦS(h) ≤ FS(h) +
∑
j∈[k]

Cj
out(h).
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Thus (
R∗j (h)−

∑
i∈[k]

Ci
out(h)

)
j∈[k]

∈ Cach(h).

This implies that the sum-rate

Rsum(h) = Φ[k](h)− k
∑
j∈[k]

Cj
out(h)

= µIλ∗(X[k];Y ) + (1− µ)Ia(X[k];Y )− k
∑
j∈[k]

Cj
out(h)

is achievable. In addition, since by [36, Lemma 3.2] we have

Rsum(0) = Ia(X[k];Y ) = max
p∈Pind(X[k])

I(X[k];Y ) = Csum(Cin,0),

thus
Csum(Cin, hv)− Csum(Cin,0) ≥ Rsum(h)−Rsum(0) (3.46)

for all h ∈ [0, h3). Thus

lim inf
h→0+

Csum(Cin, hv)− Csum(Cin,0)

h

≥ lim
h→0+

Rsum(h)−Rsum(0)

h
(3.47)

= µ
d

dλ∗
Iλ∗(X[k];Y )

∣∣∣
λ∗=0+

× dλ∗

dh

∣∣∣
h=0+

− k
∑
j∈[k]

vj

≥ µ

ε

[∑
x[k]

(
pb(x[k])− pa(x[k]))D

(
p(y|x[k])‖pa(y)

)]
− k

∑
j∈[k]

vj. (3.48)

Here (3.47) follows from (3.46) and (3.48) is proved by combining (3.41) and
Lemma 3.5.6 (ii), which appears at the end of this section. From our definitions
of pa and pb, it follows that∑

x[k]

pb(x[k])D
(
p(y|x[k])‖pa(y)

)
>
∑
x[k]

pa(x[k])D
(
p(y|x[k])‖pa(y)

)
.

Since ε is arbitrary, from (3.48) we get

lim
h→0+

Csum(Cin, hv)− Csum(Cin,0)

h
=∞.

This completes the proof for the case where

S∗ :=
{
j ∈ [k]

∣∣∣Ia(Xj;Y |X[k]\{j}) > 0
}
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equals [k]. We next consider a MAC for which S∗ is a strict subset of [k] (i.e.,
S∗ ( [k]).

For every j ∈ [k], let Aj ⊆ Xj denote the the support of pa(xj). Then for
nonempty S ⊆ [k], the support of pa(xS) is given by

AS :=
∏
j∈S

Aj.

Note that
Ia(XSc∗ ;Y |XS∗) ≤

∑
j∈Sc∗

Ia(Xj;Y |X[k]\{j}) = 0.

Thus for every xS∗ ∈ AS∗ ,

Ia(XSc∗ ;Y |XS∗ = xS∗) = 0,

which implies that for all x[k] ∈ A[k],

p(y|x[k]) = pa(y|xS∗).

Note that since the support of pb is contained in the support of pa by as-
sumption, it follows that for all nonempty S ⊆ [k], the support of pb(xS) is
contained in AS.

Now consider the |S∗|-user MAC(
AS∗ , pa(y|xS∗),Y

)
,

and the input distributions pind(xS∗) = pa(xS∗) and pdep(xS∗) = pb(xS∗). Note
that

Iind(XS∗ ;Y ) = max
p∈P(XS∗ )

I(XS∗ ;Y ),

and

Edep

[
D
(
pa(y|XS∗)‖pind(y)

)]
= Eb

[
D
(
p(y|X[k])‖pa(y)

)]
> Ea

[
D
(
p(y|X[k])‖pa(y)

)]
= Eind

[
D
(
pa(y|XS∗)‖pind(y)

)]
.

Furthermore, for every j ∈ S∗,

Iind(Xj;Y |XS∗\{j}) = Ia(Xj;Y |X[k]\{j}) > 0.
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Thus this MAC satisfies all of the conditions under which we already proved
Theorem 3.2.3. Suppose v = (vj)

k
j=1 ∈ Rk

>0. Define v∗ = (v∗j )
k
j=1 ∈ Rk

>0 as

v∗j := vj1{j ∈ S∗}.

Then

lim
h→0+

Csum(Cin, hv)− Csum(Cin,0)

h

= lim
h→0+

Csum(Cin, hv∗)− Csum(Cin,0)

h

(?)
= ∞,

where (?) follows from the fact that our |S∗|-user MAC satisfies all the required
properties to imply an infinite directional derivative for sum-capacity.

We next provide the proofs for the lemmas we use in the above argument.

We begin by proving Lemma 3.5.4, which is used to obtain a lower bound on
the sum-capacity.

Lemma 3.5.4. For any MAC with a (Cin,Cout)-CF, let

p(u0, u[k]) ·
∏
j∈[k]

p(xj|u0, uj)

be a distribution that satisfies

ζS =
∑
j∈S

Cj
out −

∑
j∈S

H(Uj|U0) +H(US|U0) > 0 ∀∅ ( S ⊆ [k],

and E
[
bj(Xj)

]
≤ Bj for all j ∈ [k]. Then C (Cin,Cout) contains the set of all

rate vectors (Rj)j∈[k] for which∑
j∈S∪T

Rj < I(XS∪T ;Y |U0, USc , XSc∩T c) +
∑
j∈T\S

Cj
in − ζ[k] ∀ S, T ⊆ [k]

∑
j∈[k]

Rj < I(X[k];Y )− ζ[k].

Proof. In Theorem 3.2.1, for every j ∈ [k], set Cj0 = 0 and Cjd = Cj
out. If in

(3.8), for every S, T ⊆ [k] with S∪T 6= ∅, we choose A = S and B = Sc, then
we see that any rate vector (Rj)j∈[k] that satisfies∑
j∈S∪T

(Rj − Cj
in)+ < I(XS∪T ;Y |U0, USc , XSc∩T c) +

∑
j∈T\S

Cj
in − ζ[k] ∀ S, T ⊆ [k]

∑
j∈[k]

Rj < I(X[k];Y )− ζ[k],
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is achievable. To get the desired region, we apply the following lemma. The
proof is simple and is omitted.

Lemma 3.5.5. Let k be a positive integer. Fix γ > 0 and for every j ∈ [k],
let αj be a real number. Then the vector (xj)j∈[k] satisfies∑

j∈[k]

(xj − αj)+ < γ

if and only if for every nonempty S ⊆ [k],∑
j∈S

(xj − αj) < γ.

The next lemma provides the derivative of the input-output mutual informa-
tion and the total correlation [44], when calculated with respect to the convex
combination of two distributions.

Lemma 3.5.6. Consider two distributions pa and pb defined on the finite al-
phabet X[k]. For every λ ∈ [0, 1], define the distribution pλ on X[k] as

pλ(x[k]) = (1− λ)pa(x[k]) + λpb(x[k]).

Then the following statements are true.

(i) For every nonempty S ⊆ [k], we have

d

dλ
Hλ(XS) = −

∑
xS

(pb(xS)− pa(xS)) log pλ(xS).

(ii) For every finite alphabet k-user MAC (X[k], p(y|x[k]),Y), we have

d

dλ
Iλ(X[k];Y ) =

∑
x[k]

(
pb(x[k])− pa(x[k])

)
D
(
p(y|x[k])‖pλ(y)

)
. (3.49)

(iii) If pa has the form
pa(x[k]) =

∏
j∈[k]

pa(xj),

and the support of pa(x[k]) contains the support of pb(x[k]), then for every
nonempty S ⊆ [k],

d

dλ

(∑
j∈S

Hλ(Xj)−Hλ(XS)
)∣∣∣

λ=0+
= 0. (3.50)
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Proof. Statement (i) follows by direct calculation.

For (ii), note that
pλ(y) = (1− λ)pa(y) + λpb(y).

Thus by (i),

d

dλ
Hλ(Y ) = −

∑
y

(
pb(y)− pa(y)

)
(log e+ log pλ(y))

=
∑
y

(
pb(y)− pa(y)

)
log

1

pλ(y)

=
∑
x[k]

(
pb(x[k])− pa(x[k])

)∑
y

p(y|x[k]) log
1

pλ(y)
.

Similarly,

d

dλ
Hλ(Y |X[k])

=
∑
x[k]

(
pb(x[k])− pa(x[k])

)∑
y

p(y|x[k]) log
1

p(y|x[k])
.

Taking the difference between these derivatives completes the proof of part
(ii).

For part (iii), note that for every j ∈ [k],

d

dλ
Hλ(Xj) = −

∑
xj

(pb(xj)− pa(xj))(log e+ log pλ(xj))

= −
∑
xj

(pb(xj)− pa(xj)) log pλ(xj).

Hence
d

dλ

∑
j∈S

Hλ(Xj) = −
∑
j∈S

∑
xj

(pb(xj)− pa(xj)) log pλ(xj)

=
∑
xS

(pb(xS)− pa(xS)) log
1∏

j∈S pλ(xj)
.

On the other hand,

d

dλ
Hλ(XS) = −

∑
xS

(pb(xS)− pa(xS)) log pλ(xS).

Thus
d

dλ

(∑
j∈S

Hλ(Xj)−Hλ(XS)
)

=
∑
xS

(pb(xS)− pa(xS)) log
pλ(xS)∏
j∈S pλ(xj)

.
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Equation (3.50) now follows from the fact that

pa(xS) =
∏
j∈S

pa(xj),

and the support of pb is contained in the support of pa.

In the next lemma, we prove that for a fixed h, the mapping S 7→ ΦS(h) is
nondecreasing and submodular. In the statement of this lemma, 2[k] denotes
the collection of all subsets of [k]. This lemma was proved for independent
distributions by Han [36, Lemma 3.1].

Lemma 3.5.7. Fix a distribution

p(u[k]) ·
∏
j∈[k]

p(xj|uj) · p(y|x[k])

on U[k] ×X[k] × Y, and define the function Φ : 2[k] → R as

Φ(S) := I(XS;Y |UScXSc) +
∑
j∈S

H(Uj)−H(US|USc)

for every S ⊆ [k]. Then Φ is nondecreasing and submodular.

Proof. Note that

Φ(S) = H(Y |UScXSc)−H(Y |X[k]) +
∑
j∈S

H(Uj) +H(USc)−H(U[k]).

For every j ∈ [k], define Vj := (Uj, Xj). Then for every S ⊆ [k],∑
j∈S

H(Vj) +H(VSc)−H(V[k]) =
∑
j∈S

H(Uj, Xj) +H(USc , XSc)−H(U[k], X[k])

=
∑
j∈S

H(Uj) +H(USc)−H(U[k]),

since each Xj only depends on Uj. Thus

Φ(S) = H(Y |VSc)−H(Y |V[k]) +
∑
j∈S

H(Vj) +H(VSc)−H(V[k])

= H(VSc |Y ) +
∑
j∈S

H(Vj)−H(V[k]|Y ).
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We first show Φ is nondecreasing; that is, we show Φ(S) ⊆ Φ(T ) whenever
S ⊆ T . Suppose S ⊆ T . Then

H(VSc|Y ) +
∑
j∈S

H(Vj)

= H(VT c |Y ) +H(VSc\T c |VT c , Y ) +
∑
j∈T

H(Vj)−
∑
j∈T\S

H(Vj)

≤ H(VT c |Y ) +
∑
j∈T

H(Vj),

since
H(VSc\T c |VT c , Y ) = H(VT\S|VT c , Y ) ≤

∑
j∈T\S

H(Vj).

Thus Φ(S) ⊆ Φ(T ).

We next show Φ is submodular. Fix S, T ⊆ [k]. Our aim is to prove

Φ(S) + Φ(T ) ≥ Φ(S ∪ T ) + Φ(S ∩ T ). (3.51)

We have

H(VSc |Y ) +H(VT c |Y ) = H(VSc∩T c|Y ) +H(VSc\T c|VSc∩T c , Y )

+H(VSc∪T c |Y )−H(VSc\T c|VT c , Y )

= H(VSc∩T c|Y ) +H(VSc∪T c |Y )

+ I(VSc\T c ;VT c\Sc|VSc∩T c , Y )

≥ H(VSc∩T c |Y ) +H(VSc∪T c|Y ).

This proves (3.51), since∑
j∈S

H(Vj) +
∑
j∈T

H(Vj) =
∑
j∈S∪T

H(Vj) +
∑
j∈S∩T

H(Vj).

For a rate region defined by submodular constraints, the next lemma gives
an explicit formula for a rate vector that achieves the maximum sum-rate.
It is a special case of [45, Corollary 44.3a, p. 772] and is included here for
completeness.

Lemma 3.5.8. Let Φ : 2[k] → R≥0 be a nondecreasing submodular function
with Φ(∅) = 0. Define the region R(Φ) ⊆ Rk

≥0 as

R(Φ) :=
{
R[k]

∣∣∣∀ S ⊆ [k] :
∑
j∈S

Rj ≤ Φ(S)
}
.
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Then the rate vector R[k] = (R1, . . . , Rk), defined as

Rj :=

Φ
(
[j]
)
− Φ

(
[j − 1]

)
if j ∈ [k] \ {1}

Φ
(
{1}
)

if j = 1,

is in R(Φ).

Proof. Using induction on |S|, we show that the rate vector R[k] satisfies

∀ S ⊆ [k] :
∑
j∈S

Rj ≤ Φ(S).

If |S| = 0, then S = ∅ and the proof is clear. For nonempty S ⊆ [k], let
j := maxS. By the induction hypothesis,∑

i∈S\{j}

Ri ≤ Φ
(
S \ {j}

)
.

Thus ∑
i∈S

Ri ≤ Φ
(
S \ {j}

)
+Rj

= Φ
(
S \ {j}

)
+ Φ

(
[j]
)
− Φ

(
[j − 1]

)
≤ Φ(S), (3.52)

where (3.52) follows from the fact that Φ is submodular.

3.5.3 Proof of Proposition 3.2.4 (The k-user Gaussian MAC)

A close inspection of the proof of Theorem 3.2.3 (Subsection 3.5.2) reveals that
the proof applies to any discrete or continuous MAC for which there exists a
family of input distributions (pλ(x[k]))λ∈[0,1] such that

(i) for λ = 0,

p0(x[k]) =
∏
j∈[k]

p0(xj), and

I0(X[k];Y ) = max
p(x1)...p(xk)

I(X[k];Y );

(ii) for every nonempty S ⊆ [k],

d

dλ
Hλ(XS)

∣∣∣
λ=0+

= 0; and
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(iii) the input-output mutual information satisfies

d

dλ
Iλ(X[k];Y )

∣∣∣
λ=0+

> 0.

For the Gaussian MAC with power constraints (Pj)j∈[k], define pλ(x[k]) as the
probability density function of a multivariate Gaussian distribution with mean
vector zero and covariance matrix Σλ, where for i, j ∈ [k], the (i, j)-entry of
Σλ is given by

Σλ(i, j) =

λ
√
PiPj if i 6= j

Pi if i = j.

Clearly, condition (i) is satisfied. Next, note that for every nonempty S ⊆ [k],
we have

Hλ(XS) =
1

2
log
[
(2πe)|S|

( ∏
j∈[k]

Pj

)
(1− λ)|S|−1

(
1 + (|S| − 1)λ

)]
,

from which (ii) follows by a simple calculation. Finally, defining the SNR of
encoder j as γj := Pj/N for j ∈ [k] gives

Iλ(X[k];Y ) =
1

2
log
(

1 +
∑
i∈[k]

γi + λ
∑
i,j:i 6=j

√
γiγj

)
,

from which (iii) follows if there exist distinct i, j ∈ [k] such that γiγj > 0.

3.5.4 Proof of Proposition 3.2.5 (Outer bound)

Consider a
(
(2nR1 , . . . , 2nRk), n, L

)
-code for the MAC with a (Cin,Cout)-CF.

For every message vector w[k] = (w1, . . . , wk), j ∈ [k], and ` ∈ [L], define

uj` := ϕj`(wj, v
`−1
j )

vj` := ψj`(u
`
1, . . . , u

`
k),

where u`j := (uj1, . . . , uj`) and v`j := (vj1, . . . , vj`). Also, for every nonempty
S ⊆ [k] and ` ∈ [L], let uS` = (uj`)j∈S and u`S = (u`j)j∈S. Finally, for every
j ∈ [k], ` ∈ [L], and v`−1

j ∈ V`−1
j , define the mapping

ϕ−1

j`,v`−1
j

: Uj` → 2[2nRj ]

uj` 7→
{
wj

∣∣∣ϕj`(wj, v`−1
j ) = uj`

}
,

where 2[2nRj ] denotes the set of all the subsets of [2nRj ].
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Note that vL[k] is a deterministic function of uL[k]. Thus for every u
L
[k] and j ∈ [k],

the set

Aj(uL[k]) :=
L⋂
`=1

ϕ−1

j`,v`−1
j

(uj`)

is well-defined. It follows that for a fixed code and a given message vector
w[k], the vector of all CF inputs is given by uL[k] if and only if for every j ∈ [k],
wj ∈ Aj(uL[k]).

Now consider a sequence of
(
(2nR1 , . . . , 2nRk), n, L

)
-codes with P

(n)
e → 0 as

n→∞. By Fano’s inequality [40, p. 38], there exists a sequence (εn)∞n=1 such
that εn → 0 as n→∞ and

H(W[k]|Y n) ≤ nεn.

Thus for every nonempty subset S ⊆ [k],

H(WS|WSc , U
L
[k], Y

n) ≤ nεn.

We have

n
∑
j∈S

Rj ≤ H(WS|WSc)

= I(WS;UL
[k], Y

n|WSc) +H(WS|WSc , U
L
[k], Y

n)

≤ I(WS;UL
[k]|WSc) + I(WS;Y n|WSc , U

L
[k]) + nεn. (3.53)

We next find an upper bound for each of the mutual information terms. For
the first term, we have

I(WS;UL
[k]|WSc) = H(UL

[k]|WSc) (3.54)

=
L∑
`=1

H(U[k]`|WSc , U
`−1
[k] )

=
L∑
`=1

H(US`, USc`|WSc , U
`−1
[k] )

=
L∑
`=1

H(US`|WSc , U
`−1
[k] , USc`) ≤

∑
j∈S

Cj
in, (3.55)

where (3.54) follows from the fact that UL
[k] is a deterministic function of

W[k], and (3.55) follows from the fact that USc` is a deterministic function
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of (WSc , U
`−1
[k] ). For the second term in (3.53), we have

I(WS;Y n|WSc , U
L
[k]) = H(Y n|WSc , U

L
[k])−H(Y n|WS,WSc , U

L
[k])

= H(Y n|UL
[k], X

n
Sc)−H(Y n|UL

[k], X
n
[k])

≤
n∑
t=1

(
H(Yt|XSct, U

L
[k])−H(Yt|UL

[k], X[k]t)
)

≤
n∑
t=1

I(XSt;Yt|UL
[k], XSct),

where XSt = (Xjt)j∈S. We have

p(uL[k]) = Pr
{
∀j ∈ [k] : Wj ∈ Aj(uL[k])

}
=
∏
j∈[k]

|Aj(uL[k])|
|Wj|

,

and

p(uL[k]|wj) = 1
{
wj ∈ Aj(uL[k])

} ∏
i:i 6=j

|Ai(uL[k])|
|Wi|

.

Thus

p(wj|uL[k]) =
p(wj)p(u

L
[k]|wj)

p(uL[k])
=

1
{
wj ∈ Aj(uL[k])

}
|Aj(uL[k])|

and

p(w[k]|uL[k]) =
p(w[k])p(u

L
[k]|w[k])

p(uL[k])
=

∏
j∈[k] 1

{
wj ∈ Aj(uL[k])

}∏
j∈[k] |Aj(uL[k])|

=
∏
j∈[k]

p(wj|uL[k]).

Therefore, W1, . . . ,Wk are independent given UL
[k]. Recall that at time t ∈ [n],

the output of encoder j is given by Xjt := fjt(Wj, V
L
j ) for some mapping

fjt : [2nRj ]× VLj → Xj.

Also define U0t := UL
[k] for all t ∈ [n]. Then

p(x[k]t|u0t) =
∑
w[k]

p(w[k]|u0t)p(x[k]t|w[k], u0t)

=
∑
w[k]

∏
j∈[k]

p(wj|u0t)p(xjt|wj, u0t)

=
∏
j∈[k]

∑
wj

p(wj|u0t)p(xjt|wj, u0t) =
∏
j∈[k]

p(xjt|u0t).

Defining a time sharing random variable and applying the usual time sharing
argument [40, p. 600] completes the proof.
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3.5.5 Proof of Proposition 3.4.2 (The Gaussian MAC)

Consider any α ∈ [0, 1/2]. In the region given in Section 3.4, set C10 = C20 = 0,
C1d = C2d = Cout, ρ1 = ρ2 = 1, and

ρ0 =
√

1− 2−4Cout .

Then the rate pair (R∗1, R
∗
2) given by

R∗1 =
1

2
log
(1 + γ1 + γ2 + 2ρ0γ̄

1 + (1− ρ2
0)γ2

)
− Cout

R∗2 =
1

2
log
(
1 + (1− ρ2

0)γ2

)
,

is achievable. Since

Cα(0) = α× 1

2
log
(1 + γ1 + γ2

1 + γ2

)
+ (1− α)× 1

2
log(1 + γ2)

=
α

2
log(1 + γ1 + γ2) +

1− 2α

2
log(1 + γ2),

we have

Cα(Cout)− Cα(0)

≥ αR∗1 + (1− α)R∗2 − Cα(0) (3.56)

=
α

2
log
(

1 +
2ρ0γ̄

1 + γ1 + γ2

)
+

1− 2α

2
log
(

1− ρ2
0γ2

1 + γ2

)
− Cout. (3.57)

Using the fact that 2x = 1 + x
log e

+ o(x) and
√

1 + o(1) = 1 + o(1), we get

ρ0 =
√

1− 2−4Cout

=

√
4Cout

log e
+ o(Cout)

=
2√

log e
·
√
Cout + o(

√
Cout).

In addition,

ρ2
0 =

4Cout

log e
+ o(Cout) = o(

√
Cout).

Applying log(1 + x) = x log e + o(x) to (3.56) completes the proof for α ∈
[0, 1/2]. The proof for α ∈ (1/2, 1] follows similarly.
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Figure 3.3: In k-user MAC with conferencing, for every i, j ∈ [k], there are
links of capacities Cij and Cji connecting encoders i and j.

3.6 Appendix: The k-User MAC with Conferencing Encoders

In this appendix, we extend Willems’ conferencing encoders model [5] from the
2-user MAC to the k-user MAC and provide an outer bound on the capacity
region.

Consider a k-user MAC where for every i, j ∈ [k] (in this section, i 6= j by
assumption), there is a noiseless link of capacity Cij ≥ 0 going from encoder
i to encoder j and a noiseless link of capacity Cji ≥ 0 going back (Figure
3.3). As in 2-user conferencing, the “conference” occurs over a finite number
of rounds. In the first round, for every i, j ∈ [k] with Cij > 0, encoder i
transmits some information to encoder j that is a function of its own message
wi ∈ [2nRi ]. In each subsequent round, every encoder transmits information
that is a function of its message and information it receives before that round.
Once the conference is complete, each encoder transmits its codeword over the
k-user MAC.

We next define a
(
(2nR1 , . . . , 2nRk), n, L

)
-code for the k-user MAC with an L-

round (Cij)
k
i,j=1-conference. For every i, j ∈ [k] and ` ∈ [L], fix a set V(`)

ij so
that for every i, j ∈ [k],

L∑
`=1

log |V(`)
ij | ≤ nCij.

Here V(`)
ij represents the alphabet of the symbol encoder i sends to encoder j

in round ` of the conference. For every ` ∈ [L], define V`ij =
∏`

`′=1 V
(`′)
ij . For

j ∈ [k], encoder j is represented by the collection of functions
(
fj, (h

(`)
ji )i,`

)
,

where

fj : [2nRj ]×
∏
i:i 6=j

VLij → X n
j

h
(`)
ji : [2nRj ]×

∏
i′:i′ 6=j

V`−1
i′j → V

(`)
ji .
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The decoder is a mapping g : Yn →
∏k

j=1[2nRj ]. The definitions of cost
constraints, achievable rate vectors, and the capacity region are similar to
those given in Section 3.1.

The next result compares the capacity region of a MAC with cooperation
under the conferencing and CF models.

Proposition 3.6.1. The capacity region of a MAC with an L-round (Cij)
k
i,j=1-

conference is a subset of the capacity region of the same MAC with an L-round
(Cin,Cout)-CF cooperation if for all j ∈ [k],

Cj
in ≥

∑
i:i 6=j

Cji and Cj
out ≥

∑
i:i 6=j

Cij.

Similarly, for every L, the capacity region of a MAC with L-round (Cin,Cout)-
CF cooperation is a subset of the capacity region of the same MAC with a
single-round (Cij)

k
i,j=1-conference if for all i, j ∈ [k], Cij ≥ Ci

in.

Proof. An L-round (Cij)
k
i,j=1-conference for a blocklength-n code is uniquely

determined by a collection of sets {W(`)
ij }i,j,` and mappings

h
(`)
ji : [2nRj ]×

∏
i′:i′ 6=j

W`−1
i′j →W

(`)
ji , (3.58)

where i, j ∈ [k] and ` ∈ [L]. In (3.58), for every ` ∈ [L],

W`
ij :=

∏̀
`′=1

W(`′)
ij .

Furthermore, for all i, j ∈ [k] and ` ∈ [L], W (`)
ij satisfies∑

`∈[L]

log |W(`)
ij | ≤ nCij.

Finally, for every message vector (m1, . . . ,mk), where mj ∈ [2nRj ], define w(`)
ji

recursively as
w

(`)
ji = h

(`)
ji

(
mj,

(
w`−1
i′j

)
i′ 6=j

)
.

Our aim is to construct a blocklength-n code for the same MAC with a
(Cin,Cout)-CF that through L rounds of communication with the encoders,
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provides them with the same information as the L-round conference given
above. To this end, for every j ∈ [k] and ` ∈ [L] define the sets Uj` and Vj` as

Uj` :=
∏
i:i 6=j

W(`)
ji

Vj` :=
∏
i:i 6=j

W(`)
ij .

Then ∑
`∈[L]

log |Uj`| =
∑
`∈[L]

∑
i:i 6=j

log |W(`)
ji |

=
∑
i:i 6=j

∑
`∈[L]

log |W(`)
ji |

≤ n
∑
i:i 6=j

Cji ≤ nCj
in.

Similarly, we show ∑
`∈[L]

log |Vj`| ≤ n
∑
i:i 6=j

Cij ≤ nCj
out.

Next for every j ∈ [k] and ` ∈ [L], define the mapping

ϕj` : [2nRj ]× V`−1
j → Uj`(

mj,
(
w`−1
ij

)
i:i 6=j

)
7→
(
w

(`)
ji

)
i:i 6=j.

Similarly, define

ψj` :
∏
i∈[k]

U `i → Vj`(
w`ij′
)
i,j′
7→
(
w

(`)
ij

)
i:i 6=j.

This completes the proof of the first part.

For the second part, we show that the capacity region of a MAC with a single-
round (Cij)i,j-conference contains the outer bound given in Proposition 3.2.5
if Cij ≥ Ci

in for all i, j ∈ [k]. The coding strategy is simple. For each j ∈ [k],
encoder j sends the first nCj

in bits of its message to all other encoders. The
encoders then form a “common message” that contains the initial nCj

in bits
of message j for all j ∈ [k]. The rest of the proof follows by applying the
forwarding inner bound (Corollary 3.2.2) with Cj0 = Cj

in for all j ∈ [k].



75

Combining the first part of Proposition 3.6.1 with the outer bound from Propo-
sition 3.2.5 results in the next corollary, which holds regardless of the number
of conferencing rounds.

Corollary 3.6.2 (Conferencing Outer Bound). The capacity region of a MAC
with a (Cij)

k
i,j=1-conference is a subset of the closure of the set of all rate vectors

(R1, . . . , Rk) that for some distribution p(u0)p(x1|u0) . . . p(xk|u0) satisfy∑
j∈S

Rj ≤ I
(
XS;Y |U0, XSc

)
+
∑
j∈S

∑
i 6=j

Cji ∀∅ 6= S ⊆ [k]∑
j∈[k]

Rj ≤ I(X[k];Y ).
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C h a p t e r 4

THE ROLE OF STATE INFORMATION

In this chapter, we extend the exploration of cooperation beyond the networks
of Chapters 2 and 3 to examine the cost-benefit tradeoff of cooperation in
networks where state information is present at some nodes.

4.1 Channel State Information

Networks where state information is available at some nodes appear in many
applications, including wireless channels with fading [9], [47], cognitive radios
[48], and computer memory with defects [49]. Depending on the application
at hand, the state information may be either fully available at all network
nodes or available in a distributed manner; in the latter case, each node has
access to a component or a function of the state sequence. Furthermore,
the state information may be available non-causally, or alternatively, may be
subject to causality constraints. For example, when state information models
fading effects in wireless communication [9], the transmitters’ knowledge of
state information is strictly causal or causal. On the other hand, when the
state sequence models a signal that the transmitter sends to another receiver,
then the state sequence is available non-causally at the transmitter [50].

In this chapter, we study the advantage of encoder cooperation in the setting of
networks with state information. In this context, network nodes work together
to increase transmission rates—not only by sharing message information, but
also by sharing state information (Figure 4.1). As an example of message
and state cooperation, Permuter, Shamai, and Somekh-Baruch [11] find the
capacity region of the MAC with encoder cooperation under the assumption
that distributed, non-causal state information is available at the encoders and
full state information is available at the decoder. As their cooperation model,
the authors use a special case of the Willems conferencing model [5], originally
defined for MACs in the absence of state information.

Indirect forms of cooperation, in the presence of state information, are also
considered in the literature. Cemal and Steinberg [51] study a model where a

This material is based upon work supported by the National Science Foundation under
Grant Numbers 1527524 and 1526771. It originally appears in [46].
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central state-encoder sends rate limited versions of non-causal state informa-
tion to each encoder, while the decoder has access to full state information.

Here we study cooperation under the CF model. Specifically, we characterize
channels for which the cooperation gain has an infinite slope in the presence of
state information (Section 4.4); interestingly, this includes channels for which
the infinite slope phenomenon did not arise in the absence of state informa-
tion.1

For state information at the encoders we consider four cases: (i) no state in-
formation, (ii) strictly causal state information, (iii) causal state information,
and (iv) non-causal state information. In case (i), the CF is used for sharing
message information (a strategy here called “message cooperation”) since no
state information is available at the encoders. In cases (ii)-(iv), the CF enables
both message and state cooperation. Here we study message and state coop-
eration only in case (iv); in this case we show that the use of joint message
and state cooperation leads to a weaker sufficient condition for an infinite-
slope gain compared to the sole use of message cooperation. Whether in cases
(ii) and (iii), the use of joint message and state cooperation likewise leads to
a weaker sufficient condition for an infinite-slope gain compared to message
cooperation alone, remains an open problem.

Throughout, we assume that any state information available at the encoders is
distributed; that is, we assume S = (S1, S2), where for i ∈ {1, 2}, Si is available
at encoder i. As we do not make any assumptions regarding the dependence
between S1 and S2, our results apply to the limiting cases of independent states
(i.e., independent S1 and S2) and common state (i.e., S1 = S2).

Since the decoder starts the decoding process only after receiving all the out-
put symbols in a given transmission block, causality constraints at the decoder
do not impose limitations on the availability of state information. Thus we
may assume that the decoder either has full state information or no state infor-
mation. Here we focus on the former scenario. Jafar [10] provides the capacity
region of the MAC with distributed independent (causal or non-causal) state
information at the encoders and full state information at the decoder. The

1As an example, consider the MAC Y = X1 +X2 + S (mod 3), where S is uniform on
{0, 1, 2}, X1 and X2 are binary, and Y is ternary. The infinite slope sum-capacity gain is
achievable when the decoder has full knowledge of S, but no sum-capacity gain is possible
when it does not have access to S.
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Figure 4.1: The network studied here consists of a pair of encoders communi-
cating, with the help of a CF, to a decoder through a state-dependent MAC.
Full state information is available at the decoder. Partial state information Ŝti
is available to encoder i ∈ {1, 2} at time t ∈ [n].

capacity region is unknown when the encoders have access to state information
but the decoder does not [52], [53].

4.2 Model

4.2.1 Preliminaries

Let S1, S2, X1, X2, and Y be discrete or continuous alphabets. A MAC with
input alphabet X1 ×X2, output alphabet Y , and state alphabet S := S1 × S2

is given by the sequence {
p(sn)p(yn|sn, xn1 , xn2 )

}∞
n=1

.

The MAC is said to be memoryless and stationary if for some p(s)p(y|s, x1, x2)

and all positive integers n,

p(sn)p(yn|sn, xn1 , xn2 ) =
n∏
t=1

p(st)p(yt|st, x1t, x2t).

4.2.2 Message Cooperation

In this subsection, we define the capacity region of a MAC with a CF that
enables message cooperation. We include four scenarios in our definition based
on the availability of state information at the encoders: no state, strictly
causal, causal, and non-causal. We assume full state information is available
at the decoder.
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We start by defining a (2nR1 , 2nR2 , n)-code for the MAC with a (Cin,Cout)-CF,
cost functions bi : Xi → R≥0 for i ∈ {1, 2}, and cost constraints B1, B2 ≥ 0.
The pairs Cin = (C1

in, C
2
in) and Cout = (C1

out, C
2
out) denote the CF input and

output edge capacities, respectively. Encoder i, for i ∈ {1, 2}, is represented
by (ϕiin, (fit)

n
t=1), the CF is represented by (ϕ1

out, ϕ
2
out), and the decoder is

represented by g. These mappings are defined in the order of their use below.
For i ∈ {1, 2}, the transmission from encoder i to the CF is represented by
the mapping

ϕiin : [2nRi ]→ [2nC
i
in ] (4.1)

and the transmission from the CF to encoder i is represented by

ϕiout : [2nC
1
in ]× [2nC

2
in ]→ [2nC

i
out ].

For simplicity, the transmissions to and from the CF occur prior to the trans-
mission of codewords over the channel.

At time t ∈ [n], for i ∈ {1, 2}, the transmission of encoder i over the channel
is represented by the mapping

fit : [2nRi ]× [2nC
i
out ]× Ŝti → Xi. (4.2)

Here Ŝti represents any knowledge about the state gathered by encoder i in
times {1, . . . , t}. Let ∗ be a symbol not in S1 ∪ S2. For t ∈ [n], we have

Ŝit =



∗ no state information

Si(t−1) strictly causal

Sit causal

Sni non-causal.

For every message pair (w1, w2), the codeword of encoder i is required to satisfy
the cost constraint

n∑
t=1

Ebi
[
fit
(
wi, ϕ

i
out(ϕ

1
in(w1), ϕ2

in(w2)), Ŝti
)]
≤ Bi. (4.3)

The decoder has full state information and is represented by the mapping

g : Sn × Yn → [2nR1 ]× [2nR2 ].

The average probability of error is given by

P (n)
e = Pr

{
g(Sn, Y n) 6= (W1,W2)

}
,
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Table 4.1: Parameter τ designates the type of state information available at
the encoders.

τ encoder state information
0 none

T − 1 strictly causal
T causal
∞ non-causal

where (W1,W2) is uniformly distributed over [2nR1 ] × [2nR2 ]. A rate pair
(R1, R2) is achievable if there exists a sequence of (2nR1 , 2nR2 , n)-codes with
P

(n)
e → 0 as n → ∞. We use subscript τ ∈ {0, T − 1, T,∞} to specify the

dependence of the capacity region and sum-capacity on the availability of state
information at the encoders. Table 4.1 makes this dependence clear. The ca-
pacity region Cτ (Cin,Cout) is given by the closure of all achievable rate pairs.
The sum-capacity, denoted by Cτ (Cin,Cout), is defined as

Cτ (Cin,Cout) := max
Cτ (Cin,Cout)

(R1 +R2). (4.4)

For example, CT (Cin,Cout) and CT (Cin,Cout) denote the capacity region and
sum-capacity of a MAC with a (Cin,Cout)-CF and distributed causal state
information available at the encoders, respectively.

4.2.3 Message and State Cooperation

In the scenario where non-causal state information is available at the encoders,
we also study the benefit of joint message and state cooperation. In the defi-
nition of a code for the case where non-causal state information is available at
the encoders (Subsection 4.2.2), for i ∈ {1, 2}, replace (4.1) and (4.3) with

ϕiin : [2nRi ]× Sni → [2nC
i
in ], and

n∑
t=1

Ebi
[
fit
(
wi, ϕ

i
out(ϕ

1
in(w1, S

n
1 ), ϕ2

in(w2, S
n
2 )), Sni

)]
≤ Bi.

We denote the capacity region and sum-capacity with C∞,s(Cin,Cout) and
C∞,s(Cin,Cout), respectively. The subscript “s” indicates the dependence of
the cooperation strategy on the channel state information.

4.3 Coding Strategy

Here we describe our coding strategies, which are based on random coding
arguments. Since our aim is to determine conditions sufficient for an infinite
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slope cooperation gain, we specifically focus on coding strategies that lead
to large gains for small cooperation rates such as the coordination strategy
(Chapter 3). In particular, in the coding strategies below, the CF does not
use its rate for forwarding message or state information, since in the cases
studied in the literature [5], [11], the gain of such a strategy is at most linear
in the cooperation rate. We start with message cooperation and conclude with
message and state cooperation.

4.3.1 Inner Bound for Message Cooperation

For simplicity, we assume the CF has access to both messages by setting
Cin = C∗in = (C∗1in , C

∗2
in ), where C∗1in and C∗2in are sufficiently large. Despite

this assumption, our main result regarding sum-capacity gain, Theorem 4.4.1,
holds for any Cin ∈ R2

>0. This is due to the fact that using time-sharing, as
stated in the lemma below, we can use the inner bounds for C∗in to obtain
inner bounds for any Cin ∈ R2

>0.

Lemma 4.3.1. Fix a memoryless stationary MAC. For any (Cin,Cout) ∈
R2
>0 × R2

≥0, there exists µ > 0, depending only on Cin, such that for all τ ∈
{0, T − 1, T,∞},

Cτ (Cin,Cout)− Cτ (Cin,0) ≥ µ
(
Cτ (C

∗
in,Cout)− Cτ (C∗in,0)

)
.

The proof appears in Subsection 4.6.1.

We first describe our inner bound for the case where the encoders do not have
access to state information. In this case, even though the decoder has access
to full state information, we can obtain a suitable inner bound by applying
results where state information is absent at both the encoders and the decoder
to a modified channel. Specifically, applying Corollary 3.4.1 to the channel(

X1 ×X2, p(y, s|x1, x2),Y × S
)
,

where
p(y, s|x1, x2) = p(s)p(y|s, x1, x2),

gives an inner bound for the channel p(y|s, x1, x2) when full state information
is available at the decoder.
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Lemma 4.3.2. The set of all rate pairs (R1, R2) satisfying

R1 ≤ I(X1;Y |S1, S2, X2)

R2 ≤ I(X2;Y |S1, S2, X1)

R1 +R2 ≤ I(X1, X2;Y |S1, S2)

for some distribution p(x1)p(x2) with

I(X1;X2) ≤ C1
out + C2

out

and E[bi(Xi)] ≤ Bi for i ∈ {1, 2}, is contained in C0(C∗in,Cout).

In the case where the encoders have access to causal state information, the
codeword transmitted by an encoder can depend both on the encoder’s mes-
sage and the present state information available at the encoder. Lemma 4.3.3
provides an inner bound for the capacity region in this scenario. In the inner
bound, for i ∈ {1, 2}, Ui encodes the message of encoder i in addition to the
information it receives from the CF. The proof is given in Appendix 4.6.2.

Lemma 4.3.3. The set of all rate pairs satisfying

R1 ≤ I(U1;Y |S1, S2, U2)

R2 ≤ I(U2;Y |S1, S2, U1)

R1 +R2 ≤ I(U1, U2;Y |S1, S2)

for some distribution p(u1, u2)p(x1|u1, s1)p(x2|u2, s2) with

I(U1;U2) ≤ C1
out + C2

out

and E[bi(Xi)] ≤ Bi for i ∈ {1, 2}, is contained in CT (C∗in,Cout).

4.3.2 Inner Bound for Message and State Cooperation

As discussed in Subsection 4.2.3, we only consider message and state coop-
eration in the scenario where non-causal state information is available at the
encoders.

Here we assume that the state alphabet S = S1×S2 is discrete andH(S1, S2) is
finite. Furthermore, we assume the CF not only has access to both messages,
but also knows the state sequences Sn1 and Sn2 ; equivalently, we set Cin =

C̄in = (C̄1
in, C̄

2
in), where C̄1

in and C̄2
in are sufficiently large. A lemma similar to

Lemma 4.3.1 holds in this case.
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Lemma 4.3.4. Fix a memoryless stationary MAC. For any (Cin,Cout) ∈
R2
>0 × R2

≥0, there exists µ > 0, depending only on Cin, such that

C(∞,s)(Cin,Cout)− C(∞,s)(Cin,0) ≥ µ
(
C(∞,s)(C̄in,Cout)− C(∞,s)(C̄in,0)

)
,

Codebook Generation. Choose a distribution p(x1, x2|s1, s2). For i ∈
{1, 2}, wi ∈ [2nRi ], zi ∈ [2nC

i
out ], sni ∈ Sni , generate Xn

i (wi, zi|sni ) i.i.d. ac-
cording to the distribution

Pr
{
Xn
i (wi, zi|sni ) = xni

∣∣∣Sni = sni

}
=

n∏
t=1

p(xit|sit).

Encoding. The CF, having access to (w1, w2) and (Sn1 , S
n
2 ), looks for a pair

(Z1, Z2) ∈ [2nC
1
out ]× [2nC

2
out ] satisfying(

Sn1 , S
n
2 , X

n
1 (w1, Z1|Sn1 ), Xn

2 (w2, Z2|Sn2 )
)
∈ A(n)

δ , (4.5)

where A(n)
δ is the weakly typical set with respect to the distribution

p(s1, s2)p(x1, x2|s1, s2).

If there is more than one such pair, the CF chooses the smallest pair according
to the lexicographical order. If there is no such pair, it sets (Z1, Z2) = (1, 1).
The CF sends Zi to encoder i for i ∈ {1, 2}. Encoder i transmits Xn

i (wi, Zi|Sni )

over n uses of the channel.

By the multivariate covering lemma (Appendix A), the probability that a pair
(Z1, Z2) satisfying (4.5) exists goes to one as n goes to infinity provided that

C1
out > H(X1|S1)−H(X1|S1, S2) + 24δ

C2
out > H(X2|S2)−H(X2|S1, S2) + 24δ

C1
out + C2

out > H(X1|S1) +H(X2|S2)−H(X1, X2, S1, S2) + 4δ.

Decoding. Once the decoder receives Y n, using (Sn1 , S
n
2 ), it looks for a pair

(ŵ1, ŵ2) that satisfies(
Sn1 , S

n
2 , X

n
1 (ŵ1, Ẑ1|Sn1 ), Xn

2 (ŵ2, Ẑ2|Sn2 ), Y n
)
∈ A(n)

ε .

Here A(n)
ε is the weakly typical set with respect to the distribution

p(s1, s2)p(x1, x2|s1, s2)p(y|s1, s2, x1, x2).
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If there is no such pair, or there is such a pair but it is not unique, the decoder
sets (ŵ1, ŵ2) = (1, 1).

The error analysis of the above coding scheme leads to the following lemma,
which provides an inner bound for C∞,s(C̄in,Cout).

Lemma 4.3.5. The set of all rate pairs satisfying

R1 ≤ I(X1;Y |S1, S2, X2)

R2 ≤ I(X2;Y |S1, S2, X1)

R1 +R2 ≤ I(X1, X2;Y |S1, S2)

for some distribution p(x1, x2|s1, s2) with

C1
out ≥ I(X1;S2|S1)

C2
out ≥ I(X2;S1|S2)

C1
out + C2

out ≥ I(X1;S2|S1) + I(X2;S1|S2) + I(X1;X2|S1, S2)

and E[bi(Xi)] ≤ Bi for i ∈ {1, 2}, is contained in C∞,s(C̄in,Cout).

4.4 Main Result

Our main result describes conditions on a MAC that, if satisfied, guarantee
for every fixed Cin ∈ R2

>0, an infinite slope in sum-capacity as a function of
Cout. As sum-capacity depends on the availability of state information at the
encoders, so do our conditions. The proof appears in Subsection 4.6.3.

Theorem 4.4.1. Let S, X1, X2, and Y be finite sets. For any τ ∈ {0, T −
1, T,∞, (∞, s)}, any MAC in Cτ (S,X1,X2,Y), and any (Cin,v) ∈ R2

>0×R2
>0,

lim
h→0+

Cτ (Cin, hv)− Cτ (Cin,0)

h
=∞.

We next specifically define Cτ (S,X1,X2,Y) for each subscript τ ∈ {0, T −
1, T,∞, (∞, s)}; as defined previously, τ specifies the availability of state in-
formation at the encoders. Note that the definition of Cτ provides a sufficient
condition for a large cooperation gain; the given condition may not be neces-
sary.

In our descriptions below, all mentioned distributions satisfy

Ebi(Xi) ≤ Bi for i ∈ {1, 2}.
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No state information. A MAC is in C0(S,X1,X2,Y) if

(i) for some p0(x1)p0(x2) that satisfies

I0(X1, X2;Y |S) = max
p(x1)p(x2)

I(X1, X2;Y |S),

there exists p1(x1, x2) that satisfies

I1(X1, X2;Y |S) + E
[
D
(
p1(y|S)‖p0(y|S)

)]
> I0(X1, X2;Y |S), and

(ii) supp(p1(x1, x2)) ⊆ supp(p0(x1, x2)), where “supp” denotes the support.

Intuitively, condition (i) ensures that our channel has the property that depen-
dence created through message cooperation increases sum-capacity. Condition
(ii) allows the CF to use a small rate (i.e., small Cout) to help the encoders,
whose codewords are generated according to p0(x1)p0(x2), to transmit code-
words whose distribution is sufficiently close to p1(x1, x2) to achieve a large
gain in sum-capacity.

Strictly causal state information. The availability of strictly causal state
information at the encoders of a MAC without cooperation does not enlarge
the capacity region, thus we set CT−1(S,X1,X2,Y) = C0(S,X1,X2,Y).

Causal state information. A MAC is in CT (S,X1,X2,Y) if

(i) for some p0(x1|s1)p0(x2|s2) that satisfies

I0(X1, X2;Y |S) = max
p(x1|s1)p(x2|s2)

I(X1, X2;Y |S),

there exist alphabets U1, U2, distributions p0(u1)p0(u2) and p1(u1, u2), and
conditional distributions p∗(x1|u1, s1) and p∗(x2|u2, s2) such that

p0(x1|s1)p0(x2|s2) =∑
u1,u2

p0(u1)p0(u2)p∗(x1|u1, s1)p∗(x2|u2, s2),

I1(U1, U2;Y |S) + E
[
D
(
p1(y|S)‖p0(y|S)

)]
> I0(U1, U2;Y |S), (4.6)

(ii) supp(p1(u1, u2)) ⊆ supp(p0(u1)p0(u2)).
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In (4.6), the expressions are calculated with respect to the input distributions∑
u1,u2

p0(u1)p0(u2)p∗(x1|u1, s1)p∗(x2|u2, s2), and

∑
u1,u2

p1(u1, u2)p∗(x1|u1, s1)p∗(x2|u2, s2).

Non-causal state information (message cooperation). In the case with
no cooperation (Cout = 0), the capacity region is not dependent on whether
the state information available at the encoders is causal or non-causal. This
follows from the converse argument in [11] and relies on the fact that Sn is
an i.i.d. sequence. Thus, similar to the strictly causal case above, we set
C∞(S,X1,X2,Y) = CT (S,X1,X2,Y).

Non-causal state information (message and state cooperation). Fi-
nally, we say a MAC is in C∞,s(S,X1,X2,Y) if there exists

(i) p0(x1|s1)p0(x2|s2) that satisfies

I0(X1, X2;Y |S) = max
p(x1|s1)p(x2|s2)

I(X1, X2;Y |S),

(ii) p1(x1, x2|s1, s2) that satisfies

I1(X1, X2;Y |S) + E
[
D
(
p1(y|S)‖p0(y|S)

)]
> I0(X1, X2;Y |S), and

(iii) for all s ∈ S, supp(p1(·|s)) ⊆ supp(p0(·|s)).

4.5 Example: Gaussian MAC with Binary Fading

While we prove Theorem 4.4.1 only for finite alphabet MACs, the result is not
limited to such MACs. Specifically, for a given MAC, we can use our inner
bounds described in Section 4.3 to calculate an inner bound for sum-capacity
and verify the result of Theorem 4.4.1 directly. We next describe an example
of such a MAC.

Consider a MAC that models the wireless communication between two trans-
mitters and a receiver in the presence of binary fading. The input-output
relationship of our MAC is given by

Y = S1X1 + S2X2 + Z,
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where S1 and S2 are independent Bernoulli(1/2) random variables, and Z is
a Gaussian random variable with mean zero and variance N . In addition,
we set the cost functions b1(x) = b2(x) = x2 and cost constraints Bi = Pi

for i ∈ {1, 2}, so that the cost constraints correspond to the usual power
constraints of the Gaussian MAC.

Proposition 4.5.1. Consider the Gaussian MAC with binary fading. Fix
(Cin,v) ∈ R2

>0 × R2
>0. Then for all τ ∈ {0, T − 1, T,∞, (∞, s)},

lim
h→0+

Cτ (Cin, hv)− Cτ (Cin,0)

h
=∞.

The proof is given in Appendix 4.6.4.

4.6 Proofs

4.6.1 Proof of Lemma 4.3.1

Since Cin ∈ R2
>0, there exists µ ∈ (0, 1) such that for i ∈ {1, 2},

Ci
in ≥ µC∗iin.

Then for each τ ∈ {0, T − 1, T,∞}, a time-sharing argument shows that

Cτ (Cin,Cout) ⊇ µCτ (Cin/µ,Cout) + (1− µ)Cτ (0,Cout)

⊇ µCτ (C
∗
in,Cout) + (1− µ)Cτ (0,Cout).

Thus
Cτ (Cin,Cout) ≥ µCτ (C

∗
in,Cout) + (1− µ)Cτ (0,Cout),

which implies

Cτ (Cin,Cout)− Cτ (Cin,0) ≥ µ
(
Cτ (C

∗
in,Cout)− Cτ (C∗in,0)

)
since

Cτ (0,Cout) = Cτ (0,0) = Cτ (Cin,0) = Cτ (C
∗
in,0).

4.6.2 Proof of Lemma 4.3.3

Fix alphabets U1 and U2, and mappings

fi : Ui × Si → Xi for i ∈ {1, 2}.

Applying Lemma 4.3.2, where state information is only available at the de-
coder, to the channel

p(y|s, u1, u2) =
∑
x1,x2

p(y|s, x1, x2)1
{
x1 = f1(u1, s1)

}
1
{
x2 = f2(u2, s2)

}
(4.7)



88

shows that the set of all rate pairs satisfying

R1 ≤ I(U1;Y |S, U2)

R2 ≤ I(U2;Y |S, U1)

R1 +R2 ≤ I(U1, U2;Y |S)

for some distribution p(u1, u2) with

I(U1;U2) ≤ C1
out + C2

out,

is achievable for the channel p(y|s, u1, u2) when no state information is available
at the encoders. Note that every code for this channel can be transformed into
a code for the channel p(y|s, x1, x2) with causal state information available at
the encoders; for all times t ∈ [n] and i ∈ {1, 2}, simply apply the mapping
fi to the pair (Uit, Sit), where Uit is the output symbol of encoder i and Sit is
component i of the state at time t. Note that the new code has the same rate
and by (4.7), the same average error probability as the original code. Thus
CT (C∗in,Cout) contains the set of all rate pairs (R1, R2) satisfying

R1 ≤ I(U1;Y |S, U2)

R2 ≤ I(U2;Y |S, U1)

R1 +R2 ≤ I(U1, U2;Y |S)

for some distribution p(u1, u2) with

I(U1;U2) ≤ C1
out + C2

out

and mappings
fi : Ui × Si → Xi for i ∈ {1, 2}.

To complete the proof, we show that for every δ ≥ 0 and every distribution

p(u1, u2)p(s1, s2)p(x1|u1, s1)p(x2|u2, s2)

satisfying I(U1;U2) ≤ δ, there exist alphabets U ′1 and U ′2, mappings

fi : U ′i × Si → Xi for i ∈ {1, 2},

and distribution p(u′1, u′2) such that I(U ′1;U ′2) = I(U1, U2), and the rate region
calculated with respect to

p(u′1, u
′
2)1
{
x1 = f1(u′1, s1)

}
1
{
x2 = f2(u′2, s2)

}
,
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contains the region calculated with respect to p(u1, u2)p(x1|u1, s1)p(x2|u2, s2).

To this end, applying Lemma 4.6.1 (see end of this appendix) to p(xi|ui, si)
demonstrates the existence of a random variable Vi that is independent of
(Ui, Si) and a mapping

fi : Vi × Ui × Si → Xi

that satisfies
p(xi|ui, si) =

∑
vi

p(vi)1
{
xi = fi(vi, ui, si)

}
.

Furthermore, without loss of generality, we may assume V1 and V2 are inde-
pendent, and (V1, V2) is independent of (U1, U2, S1, S2).

Let U ′i := (Ui, Vi) for i ∈ {1, 2}. Then

I(U ′1;U ′2) = I(U1, V1;U2, V2)

= H(U1, V1) +H(U2, V2)−H(U1, U2, V1, V2)

= I(U1;U2) + I(V1;V2) = I(U1;U2).

We next show that the rate region calculated with respect to the distribution

p(s1, s2)p(u′1, u
′
2)1{x1 = f1(u′1, s1)}1{x2 = f2(u′2, s2)}

contains the rate region with respect to

p(s1, s2)p(u1, u2)p(x1|u1, s1)p(x2|u2, s2).

Recall that S = (S1, S2). We have

I(U ′1;Y |S, U ′2) = I(U ′1;Y, U ′2|S)− I(U ′1;U ′2|S)

= I(U ′1;Y, U ′2|S)− I(U1;U2|S)

= I(U1, V1;Y, U2, V2|S)− I(U1;U2|S)

≥ I(U1;Y, U2|S)− I(U1;U2|S)

= I(U1;Y |S, U2).

Similarly, we show

I(U ′2;Y |S, U ′1) ≥ I(U2;Y |S, U1).

Finally, we have

I(U ′1, U
′
2;Y |S) = I(U1, V1, U2, V2;Y |S)

≥ I(U1, U2;Y |S).
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This completes the proof. We next state and prove Lemma 4.6.1, which was
used earlier. In Lemma 4.6.1, the scenario where X and S are finite is a special
case of the functional representation lemma [38, p. 626].

Lemma 4.6.1. Let {F (·|s)}s∈S be a collection of cumulative distribution func-
tions (CDFs) on alphabet X ⊆ R and let S be a random variable with alphabet
S. Then there exists a random variable U independent of S and a mapping

g : S × U → X

such that the conditional CDF of g(S, U) given S = s equals F (·|s). In the
case where X and S are finite, we can choose U such that

|U| ≤ |S|
(
|X | − 1

)
+ 1. (4.8)

Proof. We prove the result for general alphabets X ⊆ R. Let U = [0, 1].
Define the mapping g : S × U → X as

g(s, u) = inf
{
x ∈ X

∣∣∣F (x|s) ≥ u
}
.

Let U be independent of S and uniformly distributed on (0, 1). From the
quantile function theorem [54, Theorem 2], it follows that for all s ∈ S, g(s, U)

has CDF F (·|s). Set X = g(S, U). Then

FX|S(x|s) = Pr
{
X ≤ x

∣∣S = s
}

= Pr
{
g(S, U) ≤ x

∣∣S = s
}

= Pr
{
g(s, U) ≤ x

}
= F (x|s).

4.6.3 Proof of Theorem 4.4.1

From the description of the set Cτ (S,X1,X2,Y) in Section 4.4, we see that it
suffices to prove Theorem 4.4.1 only in the cases τ = 0, τ = T , and τ = (∞, s).

The case τ = 0. When no state information is available at the encoders,
Theorem 4.4.1 follows immediately by applying Theorem 3.2.3 to the MAC

p(s, y|x1, x2) = p(s)p(y|s, x1, x2),

with input alphabets X1 and X2, and output alphabet S × Y .
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The case τ = T . When causal state information is available at the encoders,
Theorem 4.4.1 follows by applying the case τ = 0 to the MAC

p(y|s, u1, u2) =
∑
x1,x2

p∗(x1|u1, s1)p∗(x2|u2, s2)p(y|s, x1, x2),

with input alphabets U1 and U2, state alphabet S, and output alphabet Y .

The case τ = (∞, s). In this case, we provide a self-contained proof as it is
not straightforward to derive it from prior cases. This is due to the fact that in
this case, as described in Lemma 4.3.5, the family of achievable distributions
is constrained by three inequalities rather than one.

Let p0(x1|s1)p0(x2|s2) be a distribution that satisfies

I0(X1, X2;Y |S) = max
p(x1|s1)p(x2|s2)

I(X1, X2;Y |S).

By assumption, there exists a distribution p1(x1, x2|s1, s2) such that

I1(X1, X2;Y |S) + E
[
D
(
p1(y|S)‖p0(y|S)

)]
> I0(X1, X2;Y |S), (4.9)

and for all s ∈ S,
supp(p1(·|s)) ⊆ supp(p0(·|s)). (4.10)

For every λ ∈ [0, 1], define

pλ(x1, x2|s1, s2) = (1− λ)p0(x1|s1)p0(x2|s2) + λp1(x1, x2|s1, s2).

Fix ε > 0 and v ∈ R2
>0. Define the mapping h : [0, 1]→ R as

h(λ) =
1

v1

Iλ(X1;S2|S1) +
1

v2

Iλ(X2;S1|S2) +
1

v1 + v2

Iλ(X1;X2|S1, S2).

Using (4.10), a direct calculation shows

d

dλ
Iλ(X1;S2|S1)

∣∣∣
λ=0+

= 0

d

dλ
Iλ(X2;S1|S2)

∣∣∣
λ=0+

= 0

d

dλ
Iλ(X1;X2|S1, S2)

∣∣∣
λ=0+

= 0.

Since h is continuously differentiable and

dh

dλ

∣∣∣
λ=0+

= ε > 0,
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by the inverse function theorem, there exists h0 > 0 such that h is invertible
on [0, h0); that is, there exists a mapping λ∗ : [0, h0)→ [0, 1] that satisfies

h =
1

v1

Iλ∗(h)(X1;S2|S1) +
1

v2

Iλ∗(h)(X2;S1|S2) +
1

v1 + v2

Iλ∗(h)(X1;X2|S1, S2),

(4.11)
and

dλ∗

dh

∣∣∣
h=0+

=
1

ε
.

We henceforth write λ∗ instead of λ∗(h) when the value of h is clear from
context.

From (4.11), it follows that for all h ∈ [0, h0),

hv1 ≥ Iλ∗(X1;S2|S1)

hv2 ≥ Iλ∗(X2;S1|S2)

h(v1 + v2) ≥ Iλ∗(X1;S2|S1) + Iλ∗(X2;S1|S2) + Iλ∗(X1;X2|S1, S2).

Thus, by Lemma 4.3.5,

C(∞,s)(C̄in, hv) ≥ Iλ∗(X1, X2;Y |S)− Iλ∗(X1;X2|S). (4.12)

Since equality holds in (4.12) at h = 0, we have

lim inf
h→0+

C(∞,s)(C̄in, hv)− C(∞,s)(C̄in,0)

h
(4.13)

≥ 1

ε

d

dλ∗

(
Iλ∗(X1, X2;Y |S)− Iλ∗(X1;X2|S)

)∣∣∣
λ∗=0+

=
1

ε

d

dλ∗
Iλ∗(X1, X2;Y |S)

∣∣∣
λ∗=0+

≥ 1

ε

(
I1(X1, X2;Y |S) + E

[
D
(
p1(y|S)‖p0(y|S)

)]
− I0(X1, X2;Y |S)

)
.

(4.14)

The proof of (4.14) is analogous to Lemma 3.5.6 (ii) and is omitted. Since
(4.14) holds for all ε > 0, from (4.9) it follows that

lim
h→0+

C(∞,s)(C̄in, hv)− C(∞,s)(C̄in,0)

h
=∞.

4.6.4 Proof of Proposition 4.5.1

Since C0(C∗in,0) = CT−1(C∗in,0) and CT (C∗in,0) = C∞(C∗in,0) = C(∞,s)(C
∗
in,0),

it suffices to prove the result only when τ = 0 or τ = T .
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When τ = 0, from Lemma 4.3.2, it follows that any distribution p(x1)p(x2)

satisfying E[X2
i ] ≤ Pi for i ∈ {1, 2} and

I(X1;X2) ≤ C1
out + C2

out,

we have
C0(C∗in,Cout) ≥ I(X1, X2;Y |S)− I(X1;X2). (4.15)

Fix h > 0. Let (X1, X2) be jointly Gaussian with mean zero and covariance
matrix

Σ :=

( √
P1 ρ

√
P1P2

ρ
√
P1P2

√
P2

)
,

where ρ ∈ [0, 1] is chosen such that

I(X1;X2) =
1

2
log

1

1− ρ2
:= h(v1 + v2).

Then
dρ

dh

∣∣∣
h=0+

=∞.

Using (4.15), it follows that

C0(C∗in, hv)− C0(C∗in,0) ≥ 1

8
log
(

1 +
2ρ
√
P1P2

1 + P1 + P2 +N

)
− h(v1 + v2),

from which the desired result follows.

A similar proof follows when τ = T . In this case, for fixed h > 0, let (U1, U2)

be jointly Gaussian with mean zero and covariance matrix

Σ :=

( √
2P1 2ρ

√
P1P2

2ρ
√
P1P2

√
2P2

)
,

where ρ ∈ [0, 1] is chosen such that

I(U1;U2) =
1

2
log

1

1− ρ2
:= h(v1 + v2).

Now set Xi := SiUi and apply Lemma 4.3.3.

4.6.5 Outer Bounds in the Absence of Cooperation

We next prove outer bounds for CT−1(0,0) and C∞(0,0). Together with our
inner bounds in Section 4.3, these outer bounds determine the capacity region
Cτ (0,0) for all τ , and show

C0(0,0) = CT−1(0,0) and CT (0,0) = C∞(0,0) = C(∞,s)(0,0).
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The bounds presented here are well known [38, p. 175] and are included for
completeness.

For convergent sequences (an)∞n=1 and (bn)∞n=1, define notation ' and . as

an ' bn :⇐⇒ lim
n→∞

1

n
(an − bn) = 0

an . bn :⇐⇒ lim
n→∞

1

n
(an − bn) ≤ 0.

Consider a sequence of (2nR1 , 2nR2 , n) codes with P (n)
e → 0 as n → ∞ for the

MAC with full state information at the decoder. Initially, we do not make any
assumptions regarding the presence of state information at the encoders.

We begin with the bound on R1. We have

nR1 = H(W1)

= H(W1|Sn,W2)

' I(W1;Y n|Sn,W2)

= H(Y n|Sn,W2, X
n
2 )−H(Y n|Sn,W1,W2, X

n
1 , X

n
2 )

= H(Y n|Sn, Xn
2 )−H(Y n|Sn, Xn

1 , X
n
2 )

=
n∑
t=1

(
H(Yt|Y t−1, Sn, Xn

2 )−H(Yt|Y t−1, Sn, Xn
1 , X

n
2 )
)
. (4.16)

Similarly,

nR2 '
n∑
t=1

(
H(Yt|Y t−1, Sn, Xn

1 )−H(Yt|Y t−1, Sn, Xn
1 , X

n
2 )
)
.

Next we bound R1 +R2. We have

n(R1 +R2) = H(W1,W2)

= H(W1,W2|Sn)

' I(W1,W2;Y n|Sn)

= H(Y n|Sn)−H(Y n|Sn,W1,W2, X
n
1 , X

n
2 )

= H(Y n|Sn)−H(Y n|Sn, Xn
1 , X

n
2 )

=
n∑
t=1

(
H(Yt|Y t−1, Sn)−H(Yt|Y t−1, Sn, Xn

1 , X
n
2 )
)
.

Before proceeding further, we specify the nature of state information available
at the encoders.
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The case τ = T −1. In this case, strictly causal state information is available
at the encoders. That is, for i ∈ {1, 2} and t ∈ [n], Xit is a deterministic
function of (Wi, S

t−1
i ). Continuing from (4.16), we get

nR1 .
n∑
t=1

(
H(Yt|St, X2t)−H(Yt|St, X1t, X2t)

)
=

n∑
t=1

I(X1t;Yt|St, X2t).

Similarly, we get

nR2 .
n∑
t=1

I(X2t;Yt|St, X1t)

n(R1 +R2) .
n∑
t=1

I(X1t, X2t;Yt|St).

Setting Qt := St−1 for t ∈ [n] gives

nR1 .
n∑
t=1

I(X1t;Yt|Qt, St, X2t)

nR2 .
n∑
t=1

I(X2t;Yt|Qt, St, X1t)

n(R1 +R2) .
n∑
t=1

I(X1t, X2t;Yt|Qt, St).

Thus CT−1(0,0) is contained in the closure of the set of all rate pairs satisfying

R1 ≤ I(X1;Y |Q,S,X2)

R2 ≤ I(X2;Y |Q,S,X1)

R1 +R2 ≤ I(X1, X2;Y |Q,S)

for some distribution p(q)p(x1|q)p(x2|q).

The case τ = ∞. In this case, noncausal state information is available at
the encoders, meaning that for i ∈ {1, 2} and t ∈ [n], Xit is a deterministic
function of (Wi, S

n
i ). From (4.16), we have

nR1 .
n∑
t=1

(
H(Yt|St1, St:n2 , X2t)−H(Yt|St1, St:n2 , X1t, X2t)

)
=

n∑
t=1

I(X1t;Yt|St1, St:n2 , X2t),
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where for t ∈ [n],
St:n2 =

(
S2t, S2(t+1), . . . , S2n

)
.

Similarly, we have

nR2 .
n∑
t=1

I(X2t;Yt|St1, St:n2 , X1t)

n(R1 +R2) .
n∑
t=1

I(X1t, X2t;Yt|St1, St:n2 ).

For t ∈ [n], following [11], define

Qt := (St−1
1 , St+1:n

2 ).

By assumption, (Sn1 , S
n
2 )

iid∼ p(s1, s2). Thus

p(sn1 , s
n
2 |st−1

1 , st+1:n
2 , s1t, s2t) = p(st+1:n

1 , st−1
2 |st1, st:n2 )

= p(st+1:n
1 |st+1:n

2 )p(st−1
2 |st−1

1 ),

which implies Sn1 and Sn2 are independent given (Qt, S1t, S2t). Since (W1,W2) is
independent of (Sn1 , S

n
2 ), it follows that for t ∈ [n],X1t(W1, S

n
1 ) andX2t(W2, S

n
2 )

are independent given (Qt, S1t, S2t). Thus C∞(0,0) is contained in the set of
all rate pairs satisfying

R1 ≤ I(X1;Y |Q,S,X2)

R2 ≤ I(X2;Y |Q,S,X1)

R1 +R2 ≤ I(X1, X2;Y |Q,S)

for some distribution p(q)p(x1|q, s1)p(x2|q, s2).
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C h a p t e r 5

THE RELIABILITY BENEFIT

Consider a network consisting of a two-user MAC and a CF as shown in Figure
5.1. The main result of this chapter, Theorem 5.2.1, considers the case where
C1

in and C2
in are sufficiently large so that the CF has access to both source

messages. In such a network, Theorem 5.2.1 shows that whenever C1
out and

C2
out are positive, the maximal- and average-error capacity regions are equal.

Thus, unlike the classical MAC scenario, where codes with small maximal
error in general achieve lower rates than codes with small average error, when
the encoders cooperate through a CF that has full access to the messages
and outgoing links of positive capacity, any rate pair that is achievable with
small average error is also achievable with small maximal error. Therefore,
cooperation removes the tradeoff that exists between transmission rates and
reliability in the classical MAC. We discuss this result in detail in Section 5.2.

In Section 5.3, we apply the equality between maximal- and average-error
capacity regions in the scenario described above to Dueck’s “contraction MAC,”
a MAC with maximal-error capacity region strictly smaller than its average-
error region [15]. We use this example to prove the existence of a network
where a noiseless link of “negligible capacity” has a non-trivial effect on the
maximal-error capacity region. Intuitively, a link has negligible capacity if for
any function f(n) = o(n) and all sufficiently large n, it can reliably deliver
f(n) bits over the channel in n channel uses.

Proposition 5.2.4 in Section 5.2 shows that when C1
in and C2

in are small, equality
between the maximal-error and average-error capacity regions is not guaran-
teed. This motivates the definition of a family of error probability constraints
that are not as stringent as maximal-error, yet more strict than average-error
(Section 5.4). In Theorem 5.4.1, we show that this family captures the relia-
bility benefit of rate-limited cooperation under the CF model. For the proof,
we use techniques from [16], in which Willems shows that the average- and
maximal-error capacity regions of the discrete memoryless broadcast channel

This material is based upon work supported by the National Science Foundation under
Grant Numbers 1527524, 1526771, and 1321129. It originally appears in [55].
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Figure 5.1: A network consisting of two encoders, a CF, a MAC, and a decoder.

are identical.

All proofs appear in Section 5.5.

5.0.1 Prior Work

The edge removal problem [12], [20] studies the change in the capacity region
of a network that results from removing a point-to-point channel, here called
an “edge,” from the network. In this context, Proposition 5.3.1 in Section 5.3
shows that the removal of a negligible capacity edge has a non-negligible effect
on the maximal-error capacity region.

The edge removal problem for edges with negligible capacity has some history
in the literature. In the context of lossless source coding over networks, Gu,
Effros, and Bakshi [18] state the “Vanishment Conjecture,” which roughly says
that in a class of network source coding problems, certain edges with negligible
capacity can be removed with no consequences. In [25] and [24, p. 51], the
authors study the relationship between the edge removal problem for edges
with negligible capacity and a notion of strong converse. In [56], Sarwate and
Gastpar show that feedback via links of negligible capacity does not affect
the average-error capacity region of a memoryless MAC. In [26], Langberg
and Effros demonstrate a connection between the edge removal problem for
edges with negligible capacity and the equivalence between zero-error and ε-
error capacities in network coding. In work that appeared after [55], Langberg
and Effros [57] demonstrate the existence of a network where even a single
bit of communication (over the entire transmission block) results in a positive
maximal-error sum-capacity gain.

Given that one may view feedback as a form of cooperation, similar questions
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may be posed about feedback and reliability. In [15], Dueck shows that for
some MACs, the maximal-error capacity region with feedback is strictly con-
tained in the average-error region without feedback. This contrasts with our
results on encoder cooperation via a CF that has access to both messages and
output edges of negligible capacity. Specifically, we show in Section 5.3 that
the maximal-error region of a MAC with negligible encoder cooperation of this
kind contains the average-error region of the same MAC without encoder coop-
eration. For further discussion of results regarding feedback and the average-
and maximal-error capacity regions of the MAC, we refer the reader to Cai
[58].

Other networks under which maximal- and average-error capacity regions are
identical include MACs where one of the MAC encoders is “stochastic,” that
is, its codewords depend on some randomly generated key in addition to its
message. For such codes, the definitions of the maximal- and average-error
probabilities require an expectation with respect to the distribution of the
random bits. Cai shows in [58] that the maximal-error capacity region of a
MAC where one encoder has access to a random key of negligible rate equals
the average-error capacity region of the same MAC when both encoders are
deterministic. While some of the techniques we use in this chapter are con-
ceptually similar to Cai’s proof [58], the respective models are rather different.
For example, it holds that stochastic encoders cannot achieve higher rates than
deterministic encoders under average error, even if they have access to random
keys with positive rates. The same result however, is not true of the cooper-
ation model we study here when the cooperation rate is positive (Chapter 3).
That is, at least for some MACs, a positive cooperation rate leads to a strictly
positive gain. Furthermore, for a negligible cooperation rate, while we do not
demonstrate a gain in the average-error capacity region, the proof that applies
in the case of stochastic encoders does not rule out such a gain here.

5.1 Definitions

Consider a network comprising two encoders, a cooperation facilitator (CF),
a multiple access channel (MAC)(

X1 ×X2, p(y|x1, x2),Y
)
,

and a decoder as depicted in Figure 5.1. The following definitions aid our
description of an (n,M1,M2, J)-code with encoder cooperation for a MAC
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with a (Cin,Cout)-CF. Recall that for every real number x ≥ 1, [x] denotes
the set {1, . . . , bxc}, where bxc is the integer part of x. For each i ∈ {1, 2}, fix
two sequences of sets (Uij)Jj=1 and (Vij)Jj=1 such that

log
∣∣UJi ∣∣ =

J∑
j=1

log |Uij| ≤ nCi
in

log
∣∣VJi ∣∣ =

J∑
j=1

log |Vij| ≤ nCi
out,

where log denotes the base-2 logarithm and for all j ∈ [J ],

U ji :=

j∏
`=1

Ui`

Vji :=

j∏
`=1

Vi`.

Here Uij represents the alphabet for the round-j transmission from encoder i
to the CF while Vij represents the alphabet for the round-j transmission from
the CF to encoder i. The given alphabet size constraints are chosen to match
the total rate constraints nCi

in and nCi
out over J rounds of communication

between the encoders and the CF. For i ∈ {1, 2}, encoder i is represented by
((ϕij)

J
j=1, fi), where

ϕij : [Mi]× Vj−1
i → Uij

captures the round-j transmission from encoder i to the CF, and

fi : [Mi]× VJi → X n
i

captures the transmission of encoder i across the channel.1 The CF is repre-
sented by the functions ((ψ1j)

J
j=1, (ψ2j)

J
j=1), where for i ∈ {1, 2} and j ∈ [J ],

ψij : U j1 × U
j
2 → Vij

captures the round-j transmission from the CF to encoder i. For each mes-
sage pair (m1,m2) and i ∈ {1, 2}, define the sequences (uij)j∈[J ] and (vij)j∈[J ]

recursively as

uij := ϕij(mi, v
j−1
i ) (5.1)

vij := ψij(u
j
1, u

j
2). (5.2)

1For notational simplicity, we omit encoder cost constraints (e.g., power constraints in
a Gaussian MAC). We note, however, that the same proofs apply in the presence of such
constraints.
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In round j, encoder i sends uij to the CF and receives vij from the CF. After
the J-round communication between the encoders and the CF is completed,
encoder i transmits fi(mi, v

J
i ) over the channel. The decoder is represented

by the function
g : Yn → [M1]× [M2].

The collection of mappings(
(ϕ1j)

J
j=1, (ϕ2j)

J
j=1, (ψ1j)

J
j=1, (ψ2j)

J
j=1, f1, f2, g

)
defines an (n,M1,M2, J)-code for the MAC with a (Cin,Cout)-CF.

The probability that a message pair (m1,m2) is decoded incorrectly is given
by

λn(m1,m2) :=
∑

yn /∈g−1(m1,m2)

p
(
yn|f1(m1, v

J
1 ), f2(m2, v

J
2 )
)
, (5.3)

where
g−1(m1,m2) :=

{
yn
∣∣g(yn) = (m1,m2)

}
.

Note that λn depends only on (m1,m2) since by (5.1) and (5.2), vJ1 and vJ2 are
deterministic functions of (m1,m2). The average probability of error, P (n)

e,avg,
and the maximal probability of error, P (n)

e,max, are defined as

P (n)
e,avg =

1

M1M2

∑
m1,m2

λn(m1,m2)

P (n)
e,max = max

m1,m2

λn(m1,m2),

respectively.

We say that a rate pair (R1, R2) is average-error achievable for a MAC with
a (Cin,Cout)-CF if for all ε, δ > 0 and n sufficiently large, there exists an
(n,M1,M2, J)-code such that

1

n
logMi ≥ Ri − δ for i ∈ {1, 2},

and P (n)
e,avg ≤ ε. We define the average-error capacity region, Cavg(Cin,Cout), as

the set of all rates that are average-error achievable. We define the maximal-
error capacity region, Cmax(Cin,Cout), similarly.
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5.2 Average- and Maximal-Error Capacity Regions

The main theorem of this section states that cooperation through a CF that
has access to both messages results in a network whose maximal- and average-
error capacity regions are identical. We address the necessity of the assumption
that the CF has access to both messages in Proposition 5.2.4.

Theorem 5.2.1. For a given MAC (X1×X2, p(y|x1, x2),Y), let C∗in = (C∗1in , C
∗2
in )

be any rate vector that satisfies

min{C∗1in , C
∗2
in } > max

p(x1,x2)
I(X1, X2;Y ).

Then for every Cout ∈ R2
>0,

Cmax(C∗in,Cout) = Cavg(C∗in,Cout).

We next present a sequence of lemmas that prove Theorem 5.2.1. Our first
lemma shows that any positive rate, no matter how small, is sufficient for the
CF to inform the encoders which message pairs result in a small error at the
decoder. The proof, using ideas similar to [16] and [26], appears in Subsection
5.5.1.

Lemma 5.2.2. For every Cout = (C1
out, C

2
out) and C̃out = (C̃1

out, C̃
2
out) satisfy-

ing C̃1
out > C1

out and C̃2
out > C2

out,

Cmax(C∗in, C̃out) ⊇ Cavg(C∗in,Cout).

Note that Cmax(C∗in,Cout) is also a subset of Cavg(C∗in,Cout). Thus examining
the continuity of Cavg(C∗in,Cout) in Cout may be helpful in proving equality
between the average- and maximal-error capacity regions. It turns out to be
simpler, however, to introduce a function of the capacity region and study the
continuity of that function.

Let C be a compact subset of R2
≥0. For every α ∈ [0, 1], define

Cα(C ) := max
(x,y)∈C

(
αx+ (1− α)y

)
. (5.4)

Thus, Cα is the value of the support function of C computed with respect to
the vector (α, 1− α) [59, p. 37]. When C is the capacity region of a network,
C1/2(C ) equals half the corresponding sum-capacity.
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Now consider a MAC with a (Cin,Cout)-CF. For every α ∈ [0, 1], define

Cα
avg(Cin,Cout) := Cα

(
Cavg(Cin,Cout)

)
.

Define Cα
max(Cin,Cout) similarly. For α ∈ [0, 1] and pairs Cout and C̃out satis-

fying the conditions of Lemma 5.2.2, we have

Cα
max(C∗in,Cout) ≤ Cα

avg(C∗in,Cout) ≤ Cα
max(C∗in, C̃out). (5.5)

The next lemma, for fixed α ∈ [0, 1], investigates the continuity of Cα
avg(Cin,Cout)

and Cα
max(Cin,Cout) as a function of (Cin,Cout). Since the proof and thus the

result apply in both the maximal- and average-error cases, we omit the “avg”
and “max” subscripts in Lemma 5.2.3.

Lemma 5.2.3. For every α ∈ [0, 1], the mapping Cα(Cin,Cout) is concave on
R4
≥0 and thus continuous on R4

>0.

In Lemma 5.2.3, the proof of concavity follows from a time-sharing argument.
Continuity then follows from the fact that any concave function defined on
an open convex subset of Rn is continuous [60, pp. 22-23]. The details are
omitted.

Since Cα
max is continuous on R4

>0, for any Cout ∈ R2
>0, taking the limits C̃1

out →
(C1

out)
+ and C̃2

out → (C2
out)

+ in (5.5) gives

Cα
max(C∗in,Cout) = Cα

avg(C∗in,Cout)

for all α ∈ [0, 1]. By Lemma 5.6.1 in the appendix, for a given capacity
region C , the mapping α 7→ Cα(C ) characterizes C precisely. Thus for every
Cout ∈ R2

>0, we have

Cmax(C∗in,Cout) = Cavg(C∗in,Cout).

One question that arises from Theorem 5.2.1 is whether it is necessary for the
CF to have access to both messages in order to guarantee identical maximal-
and average-error capacity regions. Proposition 5.2.4 shows that the mentioned
condition is necessary; that is, if the CF only has partial access to the messages,
regardless of the capacities of the CF output links, the average- and maximal-
error regions sometimes differ. The proof appears in Subsection 5.5.3.
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Figure 5.2: Left: A network N with a single edge of “negligible capacity.”
Right: The network N (δ), where the negligible capacity edge of N is replaced
with an edge of capacity δ > 0.

Proposition 5.2.4. There exists a MAC (X1 × X2, p(y|x1, x2),Y) and Cin ∈
R2
>0 such that for every Cout ∈ R2

≥0,

Cmax(Cin,Cout) 6= Cavg(Cin,Cout).

This proposition shows that the maximal probability of error is too stringent
a concept for capturing the reliability benefit of rate-limited cooperation. We
address this problem in Section 5.4 by defining a continuum of error probability
criteria that bridge the gap between average and maximal probability of error.
Before moving to that description, we discuss the effect of negligible rate in a
network in Section 5.3.

5.3 Effect of Negligible Rate

We begin by giving a rough description of the capacity region of a network
containing an edge of negligible capacity. Let N be a network containing
exactly one edge of negligible capacity and possibly other edges of positive
capacity. For every δ > 0, let N (δ) be the same network with the difference
that the edge with negligible capacity is replaced with an edge of capacity δ.
(See Figure 5.2.) Then we say a rate vector is achievable over N if and only if
for all δ > 0, that rate vector is achievable over N (δ). Formally, if we denote
the capacity regions of N and N (δ) with C (N ) and C (N (δ)), respectively,
then

C (N ) :=
⋂
δ>0

C (N (δ)).

We define achievability over networks with multiple edges of negligible capacity
inductively.
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Based on the above discussion, the capacity region of a network N comprised
of a MAC with a CF that has complete access to both messages and output
edges of negligible capacity is given by

C (N ) =
⋂

Cout∈R2
>0

C (C∗in,Cout),

where we again drop the subscript “avg” or “max” since the definition applies
in both cases. From Theorem 5.2.1 it follows that for every MAC,⋂
Cout∈R2

>0

Cmax(C∗in,Cout) =
⋂

Cout∈R2
>0

Cavg(C∗in,Cout) ⊇ Cavg(C∗in,0) = Cavg(0,0),

(5.6)
where 0 = (0, 0). Thus even a negligible cooperation rate suffices to guarantee
a small maximal probability of error for rate pairs that without cooperation
can only be achieved with small average probability of error.

The reliability gain of negligible cooperation is closely related to the ques-
tion of the continuity of the capacity region of a network with respect to its
edges. Using the ideas discussed above, Proposition 5.3.1 provides conditions
under which Cα

max(Cin,Cout) is not continuous with respect to Cout. The proof
appears in Subsection 5.5.4.

Proposition 5.3.1. Fix α ∈ (0, 1) and Cin ∈ R2
>0. Given any MAC for which

Cα
avg(0,0) > Cα

max(0,0), (5.7)

Cα
max(Cin,Cout) is not continuous with respect to Cout at Cout = 0.

In Subsection 5.5.5, we show that Dueck’s contraction MAC [15] is an example
of a MAC that satisfies (5.7) for every α ∈ (0, 1). This results in the next
corollary.

Corollary 5.3.2. There exists a MAC where for all Cin ∈ R2
>0 and α ∈ (0, 1),

Cα
max(Cin,Cout) is not continuous with respect to Cout at Cout = 0.

Note that Corollary 5.3.2 provides an example of a network that does not
satisfy the weak edge removal property with respect to the maximal-error
capacity region (Chapter 1).
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5.4 Cooperation and Reliability

As observed in Section 5.2, to quantify the reliability benefit of cooperation
when the capacity of the CF input links are limited, we require a more general
notion of probability of error. We next describe this concept.

For r1, r2 ≥ 0, the (r1, r2)-error probability P
(n)
e (r1, r2) is a compromise be-

tween average and maximal error probability. The pair (r1, r2) provides a
measure of reliability, where larger values of r1 and r2 correspond to higher re-
liability. For a given (n,M1,M2, J)-code, define the probability of error matrix
as

Λn :=
(
λn(m1,m2)

)
m1∈[M1]
m2∈[M2]

, (5.8)

where λn(m1,m2), given by (5.3), equals the probability of error at the decoder
when the pair (m1,m2) is transmitted. To compute P (n)

e (r1, r2), we partition
Λn into K1K2 blocks of size L1 × L2, where for i ∈ {1, 2},

Ki := min
{
b2nric,Mi

}
Li := bMi/Kic,

and a single block containing the remaining M1M2 −K1K2L1L2 entries. We
begin by calculating the average of the entries within each L1 × L2 block and
obtain the K1K2 values{

1

L1L2

∑
m1∈S1,k1
m2∈S2,k2

λn(m1,m2)

}
k1∈[K1]
k2∈[K2]

, (5.9)

where for i ∈ {1, 2} and ki ∈ [Ki], the set Si,ki ⊆ [Mi] is defined as

Si,ki =
{

(ki − 1)Li + 1, . . . , kiLi

}
. (5.10)

Next we find the maximum of the K1K2 average values, namely

max
k1,k2

1

L1L2

∑
m1∈S1,k1
m2∈S2,k2

λn(m1,m2). (5.11)

The averages in (5.9) and thus the maximum in (5.11) depend on the labeling
of the messages, which is not desirable. To avoid this issue, we choose the
labeling that minimizes (5.11) over all permutations of the rows and columns
of Λn. This results in the definition

P (n)
e (r1, r2) := min

π1,π2
max
k1,k2

1

L1L2

∑
m1∈S1,k1
m2∈S2,k2

λn(π1(m1), π2(m2)),
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where the minimum is over all permutations π1 and π2 of the sets [M1] and
[M2], respectively. Note that

P (n)
e (0, 0) = P (n)

e,avg,

and for sufficiently large values of r1 and r2,

P (n)
e (r1, r2) = P (n)

e,max.

Thus P (n)
e (r1, r2) gives a continuum of error probabilities between P

(n)
e,avg and

P
(n)
e,max.

We say a rate pair (R1, R2) is (r1, r2)-error achievable for a MAC with a
(Cin,Cout)-CF if for all ε, δ > 0 and all sufficiently large n, there exists an
(n,M1,M2, J)-code such that

1

n
log(KiLi) ≥ Ri − δ for i ∈ {1, 2}, (5.12)

and P
(n)
e (r1, r2) ≤ ε. In (5.12), we use KiLi instead of Mi since only KiLi

elements of [Mi] are used in calculating P (n)
e (r1, r2). We define the (r1, r2)-

error capacity region, C(r1,r2)(Cin,Cout), as the set of all rate pairs that are
(r1, r2)-error achievable.

The main result of this section, Theorem 5.4.1, says that if a rate pair is achiev-
able for a MAC with a CF under the average error criterion, then sufficiently
increasing the capacities of the CF links ensures that the same rate pair is also
achievable under a stricter notion of error. This result applies to any MAC
whose average-error capacity region is bounded. Prior to stating this result,
we introduce notation used in Theorem 5.4.1.

Define R∗1 and R∗2 to be the maximum of R1 and R2, respectively, over the
average-error capacity region of a MAC with a (Cin,Cout)-CF. Each rate is
maximized when the other rate is set to zero. When one encoder transmits
at rate zero, cooperation through a CF is no more powerful than a simple
forwarding strategy (Chapter 3). Thus R∗1 and R∗2 equal the corresponding
maximal rates in the capacity region of the MAC with conferencing encoders
[5]. Thus,

R∗1 = max
X1−U−X2

min
{
I(X1;Y |U,X2) + C12, I(X1, X2;Y )

}
R∗2 = max

X1−U−X2

min
{
I(X2;Y |U,X1) + C21, I(X1, X2;Y )

}
,

where C12 = min{C1
in, C

2
out} and C21 = min{C2

in, C
1
out}.
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Theorem 5.4.1 (Reliability under the CF model). If for i ∈ {1, 2},

C̃i
in > min{Ci

in + r̃i, R
∗
i }

C̃i
out > Ci

out,

then
C(r1,r2)(C̃in, C̃out) ⊇ Cavg(Cin,Cout).

A detailed proof of Theorem 5.4.1 appears in Subsection 5.5.6.

Remark. We note that Lemma 5.2.2 follows as a corollary of Theorem 5.4.1.
To see this, let Cout = (C1

out, C
2
out) and C̃out = (C̃1

out, C̃
2
out) be elements of R2

>0

such that for i ∈ {1, 2}, C̃i
out > Ci

out. In Theorem 5.4.1, for i ∈ {1, 2}, set
C̃i

in = Ci
in = C∗iin > R∗i and r̃i > R∗i . Then Theorem 5.4.1 implies

Cmax(C∗in, C̃out) ⊇ Cavg(C∗in,Cout).

5.5 Proofs

This section contains proofs for preceding results. Throughout, proof outlines
are followed by formal arguments.

5.5.1 Proof of Lemma 5.2.2 (Reliability under CF model with high
capacity CF input links)

The assumption Cin = C∗in implies that the CF has access to both messages.
Thus one round of cooperation suffices to achieve any rate pair in the maximal-
or average-error capacity region. That is, any function that the CF can com-
pute in J rounds of communication with the encoders, it can also compute in
a single round. We therefore set J = 1.

Now suppose (R1, R2) ∈ Cavg(C∗in,Cout). Fix ε, δ > 0. Then there exists an
(n,M1,M2, 1)-code such that

1

n
logMi ≥ Ri − δ

and P (n)
e,avg ≤ ε. Note that for this code, the CF can be represented by a pair

of functions (ψ1, ψ2), where for i ∈ {1, 2},

ψi : [M1]× [M2]→ [2nC
i
out ].
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To keep track of the message pairs that have small probability of error, we
define the (0, 1)-matrix An = (an(m1,m2))m1,m2 as

an(m1,m2) :=

1 if λn(m1,m2) > e3ε

0 otherwise,

where λn(m1,m2) is the probability of error when the pair (m1,m2) is trans-
mitted. We next (deterministically) partition this matrix into blocks of size
M∗ ×M∗, where

M∗ =
⌈
n
(

max
p(x1,x2)

I(X1, X2;Y ) + 2δ
)⌉
. (5.13)

Suppose that for i ∈ {1, 2}, encoder i wants to transmit messagemi. If there is
at least one zero entry in theM∗×M∗ block containing (m1,m2), then the CF,
using logM∗ bits, sends to the encoders the location of that zero entry. This is
possible since the CF has access to both messages and the fixed partition, and
thus knows which block contains the message pair. Assuming the zero entry is
located at (m∗1,m

∗
2), the CF also sends ψi(m∗1,m∗2) to encoder i for i ∈ {1, 2}.

This is possible since for sufficiently large n,

C̃i
out > Ci

out +
1

n
logM∗.

Then encoder i transmits the codeword corresponding to(
m∗i , ψi(m

∗
1,m

∗
2)
)
.

Note that the code described above has a maximal probability of error of at
most e3ε. Furthermore, the transmission rate of encoder i, for i ∈ {1, 2}, is at
least as large as

1

n
log

Mi

M∗
≥ Ri − δ −

1

n
logM∗,

which exceeds Ri − 2δ for sufficiently large n, since M∗ = O(n).

In the scenario where not every M∗ ×M∗ block in An contains a zero entry,
we permute the rows and columns such that at least one zero entry ends up
in each block. To prove the existence of such permutations, we use the next
lemma.

Lemma 5.5.1 (Permutation Lemma). Let A = (aij)
m,n
i,j=1 be a (0, 1)-matrix

and let N(A) denote the number of ones in A. Suppose k is a positive integer
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smaller than or equal to min{m,n}. For any pair of permutations (π1, π2),
where π1 is a permutation on [m] and π2 is a permutation on [n], and every
(s, t) ∈ [m

k
]× [n

k
], define the k × k matrix Bst(π1, π2) as

Bst(π1, π2) :=
(
aπ1(i)π2(j)

)
,

where i ∈ {(s− 1)k + 1, . . . , sk} and j ∈ {(t− 1)k + 1, . . . , tk}. If

mn

k2

[
N(A)e2

mn

]k
< 1, (5.14)

then there exists a pair of permutations (π1, π2) such that for every (s, t),
Bst(π1, π2) contains at least one zero entry.

The proof of Lemma 5.5.1 appears in Subsection 5.5.2, below.

To apply Lemma 5.5.1 to our matrix An, we first bound the number of ones
in An as

N(An) =
∑
m1,m2

an(m1,m2)

≤ 1

e3ε

∑
m1,m2

λn(m1,m2)

=
1

e3ε
M1M2P

(n)
e,avg ≤M1M2e

−3.

Thus

M1M2

M2
∗

[
N(An)e2

M1M2

]M∗
=
M1M2

M2
∗
e−M∗

= 2logM1M2−M∗ log e−2 logM∗ ,

which is less than one for sufficiently large n by the definition ofM∗ (Equation
(5.13)). Applying Lemma 5.5.1 completes the proof.

5.5.2 Proof of Lemma 5.5.1 (Existence of good permutations)

Let A = (aij)
m,n
i,j=1 be a (0, 1)-matrix. We apply the probabilistic method. Let

Π1 and Π2 be independent and uniformly distributed random variables on the
set of all permutations of [m] and [n], respectively. Since N(A) denotes the
number of ones in A, we have

N(A) =
m∑
i=1

n∑
j=1

aij.
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For (s, t) ∈ [m
k

]× [n
k
], define the k × k matrix Bst(Π1,Π2) as

Bst(Π1,Π2) =
(
aΠ1(i)Π2(j)

)
,

where i ∈ {(s− 1)k + 1, . . . , sk} and j ∈ {(t− 1)k + 1, . . . , tk}. Let Jk denote
the k × k matrix consisting of all ones. By the union bound,

Pr
{
∃(s, t) : Bst(Π1,Π2) = Jk

}
≤ mn

k2
Pr
{
B11(Π1,Π2) = Jk

}
. (5.15)

We next find an upper bound for the right hand side of (5.15). Consider the
pairs (S1, S2) and (τ1, τ2), where S1 ⊆ [m], S2 ⊆ [n], |S1| = |S2| = k, and τ1

and τ2 are permutations on [k]. Denote the elements of S1 and S2 by

S1 = {i1, . . . , ik}

S2 = {j1, . . . , jk}.

Define Eτ1τ2
S1S2

as the event where for all ` ∈ [k], Π1(`) = iτ1(`) and Π2(`) = jτ2(`).
In other words, when Eτ1τ2

S1S2
occurs, B11(Π1,Π2) is a (permuted) submatrix of

A with row indices (iτ1(`))`∈[k] and column indices (jτ2(`))`∈[k]. Then

Pr
{
B11(Π1,Π2) = Jk

}
≤ Pr

{
∀` ∈ [k] : aΠ1(`)Π2(`) = 1

}
=

∑
S1,S2,τ1,τ2

Pr
(
Eτ1τ2
S1S2

)
Pr
{
∀` ∈ [k] : aΠ1(`)Π2(`) = 1

∣∣∣Eτ1τ2
S1S2

}
.

Note that

Pr
(
Eτ1τ2
S1S2

)
= Pr

{
∀` ∈ [k] : Π1(`) = iτ1(`),Π2(`) = jτ2(`)

}
(a)
= Pr

{
∀` ∈ [k] : Π1(`) = iτ1(`)

}
× Pr

{
∀` ∈ [k] : Π2(`) = jτ2(`)

}
(b)
=

(m− k)!

m!
× (n− k)!

n!
=

1

(k!)2
(
m
k

)(
n
k

) ,
where (a) follows from the independence of Π1 and Π2, and (b) follows from
the fact that Π1 and Π2 are uniformly distributed. Furthermore,

Pr
{
∀` ∈ [k] : aΠ1(`)Π2(`) = 1

∣∣∣Eτ1τ2
S1S2

}
= 1

{
∀` ∈ [k] : aiτ1(`)jτ2(`) = 1

}
.

Thus

Pr
{
B11(Π1,Π2) = Jk

}
≤ 1

(k!)2
(
m
k

)(
n
k

) ∑
S1,S2

∑
τ1,τ2

1
{
∀` ∈ [k] : aiτ1(`)jτ2(`) = 1

}
.
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For a fixed pair (S1, S2), we have∑
τ1

∑
τ2

1
{
∀` ∈ [k] : aiτ1(`)jτ2(`) = 1

}
=
∑
τ1

∑
τ2

1
{
∀` ∈ [k] : ai

(τ1◦τ
−1
2 )(`)

j` = 1
}

= k!
∑
τ

1
{
∀` ∈ [k] : aiτ(`)j` = 1

}
. (5.16)

Note that the expression in (5.16) equals k! times the number of k-subsets of
S1 × S2 that consist only of ones and have exactly one entry in each row and
each column. Summing over all S1 and S2, we see that that the total number
of such subsets is bounded from above by

(
N(A)
k

)
. Thus

Pr
{
B11(Π1,Π2) = Jk

}
≤

k!
(
N(A)
k

)
(k!)2

(
m
k

)(
n
k

) =

(
N(A)
k

)
k!
(
m
k

)(
n
k

) . (5.17)

Therefore,

Pr
{
∃(s, t) : Bst(Π1,Π2) = Jk

} (a)

≤ mn

k2
×

(
N(A)
k

)
k!
(
m
k

)(
n
k

)
(b)

≤ mn

k2
×
(N(A)e

k

)k(
m
e

)k(n
k

)k
=
mn

k2

(N(A)e2

mn

)k
,

where (a) follows from combining (5.15) and (5.17), and (b) follows from
Lemma 5.5.2 [61, Appendix C.1], which is stated below.

Lemma 5.5.2. For integers k and n that satisfy 1 ≤ k ≤ n, we have

(n
k

)k ≤ 1

k!

(n
e

)k ≤ (n
k

)
≤
(ne
k

)k
.

5.5.3 Proof of Proposition 5.2.4 (Necessity of high capacity CF
input links)

We begin by providing an upper bound on the maximal-error sum-capacity
gain.

Lemma 5.5.3. For any MAC and any (Cin,Cout) ∈ R4
≥0,

C1/2
max(Cin,Cout) ≤ C1/2

max(0,0) +
C1

in + C2
in

2
.
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Proof. For every (n,M1,M2, J)-code for the MAC with a CF, the set of all
messages that lead to the same CF inputs is of the form A1 × A2 for some
Ai ⊆ [Mi] for i ∈ {1, 2}. This is demonstrated in the proof of Proposition
3.2.5. Now fix a sequence of (n,M1,M2, J)-codes that achieve the rate pair
(R∗1, R

∗
2), where

R∗1 +R∗2 = 2C1/2
max(Cin,Cout).

Since there are at most 2n(C1
in+C2

in) possible CF inputs, the pigeonhole principle
implies that there exist sets A∗1 ⊆ [M1] and A∗2 ⊆ [M2] such that

|A∗1| × |A∗2| ≥M1M22−n(C1
in+C2

in),

and the set of all message pairs in A∗1 × A∗2 lead to the same CF inputs. For
i ∈ {1, 2} and sufficiently large n, we have

1

n
logMi ≥ R∗i − δ,

thus

1

n
log
(∣∣A∗1∣∣∣∣A∗2∣∣) ≥ R∗1 +R∗2 − C1

in − C2
in − 2δ

= 2C1/2
max(Cin,Cout)− C1

in − C2
in − 2δ. (5.18)

Now consider the code where for i ∈ {1, 2}, encoder i transmits codewords
from the original code that correspond to messages in A∗i . This code has small
maximal error probability since the maximal error probability over A∗1 × A∗2
is at most as large as the maximal error probability of the original code over
[M1]× [M2]. This new code achieves a sum-rate of at least

1

n
log
(∣∣A∗1∣∣∣∣A∗2∣∣).

Thus by (5.18),

C1/2
max(Cin,Cout) ≤ C1/2

max(0,0) +
C1

in + C2
in

2
.

We now prove Proposition 5.2.4 by showing that for Dueck’s contraction MAC
[15], there exists Cin ∈ R2

>0 such that for every Cout ∈ R2
≥0, Cmax(Cin,Cout) is

a proper subset of Cavg(Cin,Cout). In Subsection 5.5.5, we show that for the
contraction MAC,

C1/2
avg(0,0) > C1/2

max(0,0).



114

Thus it is possible to choose Cin = (C1
in, C

2
in) ∈ R2

>0 such that

C1/2
avg(0,0)− C1/2

max(0,0) >
C1

in + C2
in

2
.

For this Cin and every Cout ∈ R2
≥0, we have

C1/2
max(Cin,Cout) ≤ C1/2

max(0,0) +
C1

in + C2
in

2
(5.19)

< C1/2
avg(0,0)

≤ C1/2
avg(Cin,Cout),

where (5.19) follows from Lemma 5.5.3. This completes the proof.

5.5.4 Proposition 5.3.1 (Discontinuity of Cα under CF model)

We first use the condition

Cα
avg(0,0) > Cα

max(0,0),

together with Theorem 5.2.1 to show that for sufficiently large C1
in and C2

in,
Cα

max(Cin,Cout) is not continuous at Cout = 0. The proposition then follows
by using the concavity of Cα

max (Lemma 5.2.3).

Choose λ ∈ (0, 1) such that

min{C1
in, C

2
in} > λ max

p(x1,x2)
I(X1, X2;Y ),

and define C∗in = (C∗1in , C
∗2
in ), where C∗iin = Ci

in/λ for i ∈ {1, 2}. Then by
Theorem 5.2.1,

lim
Cout→0+

Cα
max(C∗in, (Cout, Cout)) = lim

Cout→0+
Cα

avg(C∗in, (Cout, Cout))

≥ Cα
avg(C∗in,0) = Cα

avg(0,0)

> Cα
max(0,0) = Cα

max(C∗in,0).

Thus Cα
max(C∗in,Cout) is not continuous in Cout. Now by the concavity of

Cα
max(Cin,Cout) (Lemma 5.2.3),

Cα
max(Cin,Cout) ≥ λCα

max(C∗in,Cout) + (1− λ)Cα
max(0,Cout),

which can be rearranged as

Cα
max(Cin,Cout)− Cα

max(Cin,0) ≥ λ
(
Cα

max(C∗in,Cout)− Cα
max(C∗in,0)

)
,
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since
Cα

max(0,Cout) = Cα
max(0,0) = Cα

max(Cin,0) = Cα
max(C∗in,0).

The fact that λ > 0, together with the discontinuity of Cα
max(C∗in,Cout) at

Cout = 0, implies that Cα
max(Cin,Cout) is not continuous in Cout for arbitrary

Cin ∈ R2
>0.

5.5.5 Proof of Corollary 5.3.2 (Dueck’s Contraction MAC)

Dueck’s introduction of the “contraction MAC” in [15] proves the existence
of multiterminal networks where the maximal-error capacity region is a strict
subset of the average-error capacity region. The input and output alphabets
of the contraction MAC are given by

X1 = {A,B, a, b}

X2 = {0, 1}

Y = {A,B,C, a, b, c} × {0, 1}.

The channel is deterministic and defined by the function f : X1 × X2 → Y ,
where

f(a, 0) = f(b, 0) = (c, 0)

f(A, 1) = f(B, 1) = (C, 1),

and f(x1, x2) = (x1, x2) for all other (x1, x2). Dueck [15] shows that the
maximal-error capacity region of this channel is contained in the set of all rate
pairs (R1, R2) that satisfy

R1 ≤ log 3− p

R2 ≤ h(p)

for some 0 ≤ p ≤ 1/2, where h(p) denotes the binary entropy function

h(p) = p log
1

p
+ (1− p) log

1

1− p
.

Thus for every α ∈ [0, 1],

Cα
max(0,0) ≤ max

p∈[0,1/2]

[
α(log 3− p) + (1− α)h(p)

]
= α(log 3− 1) + (1− α) log

(
1 + 2

α
1−α
)
;
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the maximum is achieved by

p∗ =
1

1 + 2
α

1−α
.

To show that
Cα

avg(0,0) > Cα
max(0,0) for all α ∈ (0, 1),

we find a lower bound for Cα
avg(0,0). From the average-error capacity region

of the MAC [2]–[4], it follows that for α ∈ [0, 1/2],

Cα
avg(0,0) = max

p(x1)p(x2)

(
αI(X1;Y ) + (1− α)I(X2;Y |X1)

)
and for α ∈ [1/2, 1],

Cα
avg(0,0) = max

p(x1)p(x2)

(
αI(X1;Y |X2) + (1− α)I(X2;Y )

)
.

Since the contraction MAC is deterministic, the above equations simplify to

Cα
avg(0,0) = max

p(x1)p(x2)

(
αH(Y ) + (1− 2α)H(Y |X1)

)
(5.20)

for α ∈ [0, 1/2] and

Cα
avg(0,0) = max

p(x1)p(x2)

(
(1− α)H(Y ) + (2α− 1)H(Y |X2)

)
(5.21)

for α ∈ [1/2, 1]. Let the input distribution of the first transmitter be given by

pX1(A) = pA, pX1(B) = pB, pX1(a) = pa, pX1(b) = pb,

and the input distribution of the second transmitter be given by pX2(1) = q

and pX2(0) = 1− q. In addition, let Y1 and Y2 denote the components of Y so
that Y = (Y1, Y2). Note that Y2 = X2, and

H(Y ) = H(Y1, Y2)

= H(Y2) +H(Y1|Y2)

= h(q) + qH(pa, pb, pA + pB) + (1− q)H(pA, pB, pa + pb).

Furthermore,

H(Y |X1) = H(Y1, Y2|X1)

= H(Y2|X1) = h(q),
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and

H(Y |X2) = H(Y1, Y2|X2)

= H(Y1, Y2, X2)−H(X2)

= H(Y )− h(q).

From (5.20) and (5.21) it follows for all α ∈ [0, 1],

Cα
avg(0,0) ≥ αH(Y ) + (1− 2α)H(q)

= (1− α)h(q) + α
[
qH(pa, pb, pA + pB) + (1− q)H(pA, pB, pa + pb)

]
.

If we set q = p∗, pA = pB = 1/3, and pa = pb = 1/6, we get

Cα
avg(0,0) ≥ (1− α)h(p∗) + α(log 3− p∗/3).

Recall that
Cα

max(0,0) ≤ (1− α)h(p∗) + α(log 3− p∗).

Thus Cα
avg(0,0) > Cα

max(0,0), unless α = 0 or p∗ = 0 (which occurs if and only
if α = 1).

5.5.6 Proof of Theorem 5.4.1 (Reliability under the CF model)

The argument that follows involves modifying an (n,M1,M2, J) average-error
code for a MAC with a (Cin,Cout)-CF to get an (n, M̃1, M̃2, J̃) code for the
same MAC with a (C̃in, C̃out)-CF. Our aim is to obtain small (r̃1, r̃2) proba-
bility of error and 1

n
log M̃i only slightly smaller than 1

n
logMi for i ∈ {1, 2}.

To achieve this goal, we first partition Λn, as given by (5.8), into 2nr̃1 × 2nr̃2

blocks. For mi ∈ [Mi], let ki denote the first nr̃i bits of mi. We next construct
a 2nr̃1 × 2nr̃2 (0, 1)-matrix, where entry (k1, k2) equals zero if the average of
the λn(m1,m2) entries in the corresponding (k1, k2)-block of Λn is small, and
equals one otherwise. (See Figure 5.3.)

Next, we partition our (0, 1)-matrix into blocks of size roughly n × n. In the
first cooperation round, encoder i sends the first nr̃i bits of mi to the CF so
that the CF knows the block in the (0, 1)-matrix that contains (m1,m2). If
there is at least one zero entry in that block, the CF sends the location of that
entry back to each encoder using log n bits. Then encoder i modifies the first
nr̃i bits of its message and communicates with the CF over J rounds using the
original average-error code. As a result of transmitting (m1,m2) pairs that
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Figure 5.3: Left: The M1 ×M2 matrix Λn with entries λn(m1,m2). Right:
The (0, 1)-matrix constructed from Λn. The stars indicate the location of the
zeros.

correspond to zeros in our (0, 1)-matrix, the encoders ensure a small (r1, r2)-
probability of error.

It may be the case that not every block contains a zero entry. Lemma 5.5.1
shows that if there is a sufficiently large number of zeros in the (0, 1)-matrix,
then there exists a permutation of the rows and a permutation of the columns
such that each block of the permuted matrix contains at least one zero entry.
Since the original code has a small average error, it follows that our (0, 1)-
matrix has a large number of zeros.

For the formal proof, we wish to show that if

C̃i
in > min{Ci

in + r̃i, R
∗
i }

C̃i
out > Ci

out

for i ∈ {1, 2}, then

C(r̃1,r̃2)(C̃in, C̃out) ⊇ Cavg(Cin,Cout).

Recall that R∗1 and R∗2 are defined as the maximum of R1 and R2, respectively,
over the capacity region of a MAC with a (Cin,Cout)-CF. Our proof follows
[16], where Willems proves that the maximal- and average-error capacity re-
gions of the broadcast channel are identical.

Suppose (R1, R2) is in Cavg(Cin,Cout). Assume r̃1, r̃2, R1, R2 are all positive.
We discuss the case where some of these quantities are zero at the end of this
subsection. Fix ε, δ > 0. Then for sufficiently large N and any n > N , there
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exists an (n,M1,M2, J)-code such that for i = 1, 2,

log
∣∣UJi ∣∣ ≤ nCi

in (5.22)

log
∣∣VJi ∣∣ ≤ nCi

out (5.23)
1

n
logMi ≥ Ri − δ (5.24)

and P
(n)
e,avg ≤ ε. In addition, from Fano’s inequality it follows that for suffi-

ciently large n,
1

n
logMi ≤ R∗i + δ. (5.25)

Let K∗ = dn(R∗1 + R∗2 + 2δ)e. For i ∈ {1, 2}, define Ki = min{K∗b2nr̃ic,Mi}
and Li = bMi/Kic. From the set [M1] choose the K1L1 messages that have
the smallest

M2∑
m2=1

λn(m1,m2),

and renumber them as {1, . . . , K1L1}. Similarly, from the set [M2] choose
K2L2 messages that have the smallest

K1L1∑
m1=1

λn(m1,m2)

and renumber them as {1, . . . , K2L2}. Then

1

K1L1K2L2

K1L1∑
m1=1

K2L2∑
m2=1

λn(m1,m2)

≤ 1

M1M2

M1∑
m1=1

M2∑
m2=1

λn(m1,m2) ≤ ε. (5.26)

Next, for every (k1, k2) ∈ [K1]× [K2], define an(k1, k2) as

an(k1, k2) :=

1 if
∑

S1,k1
×S2,k2

λn(m1,m2) > L1L2e
3ε

0 otherwise,

where S1,k1 and S2,k2 are defined by (5.10). Set An := (an(k1, k2))k1,k2 , and let
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N(An) denote the number of ones in An. Then

N(An) =
∑
k1,k2

an(k1, k2)

≤ 1

L1L2e3ε

∑
k1,k2

∑
S1,k1

×S2,k2

λn(m1,m2)

=
1

L1L2e3ε

K1L1∑
m1=1

K2L2∑
m2=1

λn(m1,m2)

≤ K1K2e
−3, (5.27)

where the last inequality follows from (5.26).

Let αn denote the quantity on the left hand side of (5.14) in Lemma 5.5.1.
Then

αn =
K1K2

K2
∗

(N(A)e2

K1K2

)K∗
.

To apply Lemma 5.5.1, we must first prove αn < 1. We have

αn
(a)

≤ K1K2

K2
∗e
K∗

(b)

≤ 2n(R∗1+R∗2+2δ)−K∗ log e−2 logK∗
(c)
< 1,

where (a) follows from (5.27), (b) follows from (5.25) and the fact thatKi ≤Mi,
and (c) follows from the fact that K∗ = dn(R∗1 + R∗2 + 2δ)e. Thus by Lemma
5.5.1, there exist permutations π1 and π2 on the sets [K1] and [K2], respectively,
such that if we partition the matrix (aπ1(k1)π2(k2))k1,k2 into blocks of sizeK∗×K∗,
then there is at least one zero in each block. For i ∈ {1, 2}, let

K∗i := bKi/K∗c.

Note that the partition of the matrix (aπ1(k1)π2(k2))k1,k2 contains at leastK∗1×K∗2
blocks.

Next we use the partition defined above to construct a code that achieves
a rate pair sufficiently close to (R1, R2) under (r̃1, r̃2)-error. For i ∈ {1, 2},
encoder i splits its message as mi = (ki, `i) ∈ [Ki] × [Li] and sends ki to the
CF. Let (π1(k∗1), π2(k∗2)) be the good entry in the K∗×K∗ block containing the
pair (π1(k1), π2(k2)). For i ∈ {1, 2}, the CF sends the difference πi(k∗i )−πi(ki)
(mod K∗) back to encoder i. Encoder 1 and encoder 2 then use the original
average-error code with J rounds of cooperation to transmit the message pair
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(m∗1,m
∗
2) where for i ∈ {1, 2}, m∗i = (πi(k

∗
i ), `i). By combining (5.22), (5.23),

and the fact that Ki ≤ K∗2
nr̃i , we see that for sufficiently large n,

1

n
log |UJi |Ki ≤ Ci

in + r̃i +
1

n
log(1 + n(R∗1 +R∗2 + 2δ)) < C̃i

in

1

n
log |VJi |K∗ ≤ Ci

out +
1

n
log(1 + n(R∗1 +R∗2 + 2δ)) < C̃i

out.

Thus the rate achieved by encoder i under an (r̃1, r̃2) notion of error is at least
as large as

1

n
logK∗i Li =

1

n
log
⌊Ki

K∗

⌋⌊Mi

Ki

⌋
.

We next find a lower bound for the above expression. If r̃i < Ri, then for
sufficiently large n, Ki = K∗b2nr̃ic, and the above quantity is at least as large
as

1

n
log
(
2nr̃i − 1

)( 1

K∗
2n(Ri−δ−r̃i) − 1

)
≥ Ri − δ +

1

n
log
(
1− 2−nr̃i

)( 1

n(R∗1 +R∗2 + 2δ) + 1
− 2−n(Ri−δ−r̃i)

)
> Ri − 2δ.

On the other hand, if r̃i ≥ Ri, then for sufficiently large n, Ki ≥ 2n(Ri−δ) for
i ∈ {1, 2}. Thus

1

n
log
⌊Ki

K∗

⌋⌊Mi

Ki

⌋
≥ 1

n
log
⌊Ki

K∗

⌋
≥ 1

n
log
( 2n(Ri−δ)

1 + n(R∗1 +R∗2 + 2δ)
− 1
)

= Ri − δ +
1

n
log
( 1

1 + n(R∗1 +R∗2 + 2δ)
− 2−n(Ri−δ)

)
> Ri − 2δ.

When either min{r̃1, r̃2} = 0 or min{R1, R2} = 0, we apply a similar argument,
but instead of using Lemma 5.5.1, we use its corresponding vector version,
which we state below.

Lemma 5.5.4 (Permutation Lemma – Vector Version). Let A = (ai)
m
i=1 be a

(0, 1)-vector and let N(A) denote the number of ones in A; that is,

N(A) =
m∑
i=1

ai.
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Suppose k is a positive integer smaller or equal to m. For any permutation π
on [m] and s ∈ [m

k
], let Bs(π) denote the vector

Bs(π) =
(
aπ(i)

)sk
i=(s−1)k+1

.

If

N(A) < m
(

1− 1

k

)
,

then there exists a permutation π such that for every s ∈ [m
k

], the vector Bs(π)

contains at least one zero.

5.6 Appendix: Characterization of Special Regions of Rk
≥0

In Section 5.2, we require the following well-known result.

Lemma 5.6.1. Let C ⊆ R2
≥0 be non-empty, compact, convex, and closed under

projections onto the axes, that is, if (x, y) is in C , then so are (x, 0) and (0, y).
Then

C =
{

(x, y) ∈ R2
≥0

∣∣∣∀α ∈ [0, 1] : αx+ (1− α)y ≤ Cα
}
.

For completeness, we state and prove an extension of this result to arbitrary
dimensions here.

Let k be a positive integer and C be a compact subset of Rk
≥0. In addition, let

∆k ⊆ Rk
≥0 denote the k-dimensional probability simplex, that is, the set of all

α = (α1, . . . , αk) in Rk
≥0 such that

∑k
j=1 αj = 1. For every α = (α1, . . . , αk) ∈

∆k, define Cα ∈ R≥0 as
Cα := max

x∈C
αTx.

For j ∈ [k], define the projection Pj : Rk → Rk as

Pj(x1, . . . , xj−1, xj, xj+1, . . . , xk) := (x1, . . . , xj−1, 0, xj+1, . . . , xk).

In words, Pj sets the jth coordinate of its input to zero and leaves the other
coordinates unchanged. We say a set C ⊆ Rk is closed under projection Pj if
and only if Pj(C ) ⊆ C .

Lemma 5.6.2. Let C ⊆ Rk
≥0 be non-empty, compact, convex, and closed under

the projections {Pj}kj=1. Then

C =
{

x ∈ Rk
≥0

∣∣∣∀α ∈ ∆k : αTx ≤ Cα
}
. (5.28)
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Proof. Let C ′ denote the set on the right hand side of (5.28). From the defi-
nition of Cα, it follows C ⊆ C ′. Thus it suffices to show C ′ ⊆ C .

Every hyperplane in Rk divides Rk into two sets, each of which is referred to
as a half-space. Since C is closed and convex, it equals the intersection of all
the half-spaces containing it [62, p. 36]. Thus it suffices to show that if for
some β = (βj)

k
j=1 ∈ Rk and γ ∈ R, C is a subset of the half-space

H :=
{

x ∈ Rk
∣∣∣βTx ≤ γ

}
,

then C ′ is also a subset of H. Suppose H contains C . Since C is nonempty
and closed under the projections {Pj}kj=1, C contains the origin. But C ⊆ H,
thus H contains the origin as well. This implies γ ≥ 0. Let S be the set of all
j ∈ [k] such that βj > 0. If S is empty, then H contains Rk

≥0 and therefore,
C ′. If S is nonempty, define α = (αj)j∈[k] ∈ ∆k as

αj :=

βj/βS if j ∈ S

0 otherwise,

where βS =
∑

j∈S βj > 0. From the definition of Cα, it follows that there
exists x ∈ C such that αTx = Cα, or equivalently,∑

j∈S

βjxj = βSC
α. (5.29)

Since C is closed under the projections {Pj}kj=1, the vector x∗ = (x∗j)j∈[k] is
also in C , where

x∗j :=

xj if j ∈ S

0 otherwise.

Using (5.29) and the fact that x∗ ∈ C ⊆ H, we get

βSC
α = βTx∗ ≤ γ.

Now for every x′ ∈ C ′, we have

βTx′ =
k∑
j=1

βjx
′
j ≤

∑
j∈S

βjx
′
j = βSα

Tx′ ≤ βSC
α ≤ γ.

Thus C ′ ⊆ H. Since H was an arbitrary half-space containing C , it follows
that C ′ ⊆ C .
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C h a p t e r 6

CONCLUSION

When small networks are not studied in isolation, but rather viewed as part
of larger networks, many opportunities arise for a more efficient utilization of
resources. Consider the classical MAC; the presence of a single additional node
significantly expands the coding strategies available to the encoders, which
results in major improvements in rate and reliability. This simple example
demonstrates not only the complexity but also the opportunity that lies ahead
in the study of communication networks.

We conclude this work by discussing a number of problems that both extend
the theoretical reach of this work and bring it closer to implementation.

Low-Complexity Coding for Cooperation. While random coding argu-
ments are very useful for obtaining inner bounds on the capacity region of
a network, their direct application is not possible in practice. The reason is
that randomly-generated codes have a high computational cost: both in their
construction and in their encoding and decoding processes. Thus, to ensure
that the cooperative gains discussed here are attainable in practice, we need
low-complexity codes. Polar codes [63] may be well-suited for this purpose,
for reasons which we next discuss.

Recall that our coding strategy in Chapter 3 combines three schemes: for-
warding, coordination (Marton coding), and classical MAC coding. Due to
the simplicity of the forwarding strategy, the main problem lies in obtaining a
low-complexity implementation of Marton coding and classical MAC coding.
Both of these strategies, however, are implemented using polar codes in [64],
[65], and [66], respectively. It remains to be seen whether these strategies can
be successfully combined to obtain the large sum-capacity gains described in
Chapter 3.

Ongoing Cooperation in the Presence of Causal State Information.
In the absence of cooperation, assuming that the state process is i.i.d. and
the decoder has full state information, the MAC capacity region is the same
regardless of whether the state information at the encoders is causal or non-
causal. The open question here is whether the same result holds in the presence
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of cooperation. Note that progress on this problem requires an extension of our
cooperation model; this is due to the fact that when causal state information is
available at the encoders, the communication between the CF and the encoders
has to occur during the same time that the encoders transmit their codewords
over the channel. We refer to this extended cooperation model as “ongoing
cooperation.”

The Weak Edge Removal Property in Noisy Networks. In Chapter 5,
we demonstrate the existence of a network that does not satisfy the weak edge
removal property with respect to the maximal-error capacity region. Whether
such a network exists with respect to the average-error capacity region remains
open. The result of Sarwate and Gastpar [56] regarding negligible feedback
and our result in Appendix C provide evidence against the existence of such
a network.
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A p p e n d i x A

THE MULTIVARIATE COVERING LEMMA

The covering lemma and its extensions play a crucial role in achievability re-
sults in network information theory. Covering lemmas are useful for enabling
network nodes to transmit codewords that “look like” they are generated from
a dependent distribution, whereas in reality, they are carefully selected from
sufficiently large codebooks that are independently generated. This allows
nodes to obtain the benefits of both independent and dependent codewords:
like independent codewords, such codewords can be decoded in different loca-
tions; like dependent codewords, they have the potential to achieve rates higher
than those achieved by independent codewords. This benefit, however, comes
at a cost in rate. Thus this strategy is useful when the benefit of transmitting
dependent codewords exceeds its cost.

In the context of the covering lemma, the concept of “looking like” dependent
codewords is captured by the notion of being jointly typical with respect to
a dependent distribution. As there are various ways to define the typical set
(here we specifically focus on weakly typical [40] and strongly typical sets
[38]), one may ask whether a specific version of the covering lemma holds for a
given definition of the typical set. The weakly typical set has two advantages
over the strongly typical set. First, it is easily defined for continuous (e.g.,
Gaussian) distributions. Second, the weakly typical set has a simple one-shot
counterpart, which allows proofs using the weakly typical set to be written in
the one-shot framework in a simple manner. On the other hand, the strongly
typical set has properties that the weakly typical set does not possess. Thus
it is helpful to review the covering lemma and its extensions and see for which
definitions of the typical set each result is currently known to hold.

The simplest case of the covering lemma is the situation where, given a random
vector and an independently generated codebook, a node looks for a codeword
in the codebook that is jointly typical (with respect to a dependent distribu-
tion) with the given random vector. The result obtained in this case, simply
referred to as the “covering lemma,” appears in the achievability proof of the
rate distortion theorem using weakly typical sets [40]. The second case, called
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the “mutual covering lemma,” treats the case where given two independently
generated codebooks, a node looks for a jointly typical pair of codewords,
where each codeword is from one of the codebooks. This result is used in
Marton’s inner bound for the two-user broadcast channel and is proved for
strongly typical sets [8], [37]. Recently, by extending the proof of [40], the
authors of [67], [68] prove a one-shot version of the mutual covering lemma.
This proof can be used to show the validity of the mutual covering lemma for
weakly typical sets in the asymptotic setting. The proof in [67], [68], how-
ever, requires stronger independence assumptions on the codebooks than the
proof using strongly typical sets in [37], [38]. Finally, the “multivariate cover-
ing lemma” is the extension of the mutual covering lemma to k independently
generated codebooks for arbitrary k ≥ 2, and can be used to obtain an inner
bound on the broadcast channel with k users [38]. As stated in [38], one can
show this result holds for strongly typical sets by extending the proof of the
mutual covering lemma [37].

In this work, using the general strategy of El Gamal and Van der Meulen
[37] and some ideas regarding weakly typical sets from Koetter, Effros, and
Médard [39], we prove an extension of the multivariate covering lemma for
weakly typical sets. This extension is motivated by cooperative strategies
where nodes share both message and state information as in Chapter 4.

We also provide a converse, a special case of which is usually referred to as the
“packing lemma” [38]. We remark that while similar to [37], we use Cheby-
shev’s inequality to prove the direct result in Section A.3, it is also possible
to use the Cauchy-Schwarz inequality, which leads to a more accurate upper
bound in this case (Section A.5).

A.1 Problem Statement

Let {Ai}i∈I be a finite collection of sets. For every nonempty S ⊆ I, define
AS as

AS :=
∏
i∈S

Ai.

An element of AS is denoted with aS := (ai)i∈S.

For every positive integer n, define [n] := {1, . . . , n}. Fix a positive integer k.
Consider the sets (Ui)i∈[k+1] and (Vj)j∈[k]. We study discrete and continuous
settings. In the discrete case, these sets are all finite or countably infinite, and
p(u[k+1], v[k]) is a probability mass function on U[k+1] × V[k]. In the continuous
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case, p(u[k+1], v[k]) is a probability density function on R2k+1, and the sets Ui
and Vj represent the support of the marginals p(ui) and p(vj), respectively.

For every j ∈ [k], let Mj be a nonnegative integer. For nonempty S ⊆ [k],
define the setMS as

MS :=
∏
j∈S

[Mj],

and let M := M[k]. For every m[k] = (m1, . . . ,mk) ∈ M, let the random
vector (

U[k+1], V1(m1), . . . , Vk(mk)
)

have distribution pind(u[k+1], v[k]), where

pind(u[k+1], v[k]) := p(u[k+1])
∏
j∈[k]

p(vj|uj). (A.1)

In (A.1), p(u[k+1]) and each p(vj|uj) are calculated from our original distribu-
tion p(u[k+1], v[k]).

Let F be an arbitrary subset of U[k+1] × V[k]. For every S ⊆ [k], define FS as
the projection of F on U[k+1] × VS. For (u[k+1], vS) ∈ FS, let F(u[k+1], vS) be
the set of all vSc such that (u[k+1], v[k]) ∈ F , where Sc := [k] \S. Furthermore,
assume that for every nonempty S ⊆ [k], there exist real numbers αS and βS
such that

∀ (u[k+1], vS) ∈ FS : αS ≤ log
p(vS|u[k+1])

pind(vS|uS)
(A.2)

∀ (u[k+1], v[k]) ∈ F : βS ≤ log
p(vS|u[k+1], vSc)

pind(vS|uS)
. (A.3)

Furthermore, assume that there exists a constant γ such that

∀ (u[k+1], v[k]) ∈ F : γ ≥ log
p(v[k]|u[k+1])

pind(v[k]|u[k])
. (A.4)

Our aim is to find upper and lower bounds on the probability

Pr
{
∀m[k] ∈M :

(
U[k+1], V1(m1), . . . , Vk(mk)

)
/∈ F

}
.

We derive the lower bound in Section A.2 using the union bound, which does
not depend on the statistical dependencies of the vectors(

U[k+1], V1(m1), . . . , Vk(mk)
)



129

for different values of m[k]. For the upper bound, given in Subsection A.3,
which leads to the multivariate covering lemma, we require a stronger as-
sumption, which we next describe.

Let m[k] and m′[k] be inM. Define the set S(m[k],m
′
[k]) as

S(m[k],m
′
[k]) :=

{
j ∈ [k]

∣∣∣mj = m′j

}
.

When m[k] and m′[k] are clear from context, we denote S(m[k],m
′
[k]) with S.

Recall that Sc = [k] \ S.

In the proof of the upper bound, we require

Assumption I. For all (m[k],m
′
[k]) and (u[k+1], v[k], v

′
Sc),

Pr
{
∀ j ∈ [k] : Vj(mj) = vj and Vj(m′j) = v′j

∣∣∣U[k+1] = u[k+1]

}
=
∏
j∈[k]

p(vj|uj)×
∏
j∈Sc

p(v′j|uj).

In the corresponding asymptotic problem, which we study in Section A.4, we
apply our bounds to

Pr
{
∀m[k] :

(
Un

[k+1], V
n

1 (m1), . . . , V n
k (mk)

)
/∈ A(n)

δ

}
,

where the probability is calculated according to the distribution defined by the
assumption below.

Assumption II. For every m[k] ∈M,(
Un

[k+1], V
n

1 (m1), . . . , V n
k (mk)

) iid∼ pind(u[k+1], v[k]).

Finally, we need A(n)
δ , the weakly typical set [40, p. 521] defined with respect

to the distribution p(u[k+1], v[k]), to satisfy the requirements posed by (A.2),
(A.3), and (A.4). This is guaranteed by the next assumption.

Assumption III. The distribution p(u[k+1], v[k]) has the property that for
all nonempty S ⊆ [k], the conditional marginal distributions p(vS|u[k+1]),
p(vS|u[k+1], vSc), and {p(vj|uj)}j∈[k] are well defined and have finite entropy.

Note that this assumption holds trivially for probability mass functions with
finite support.

The multivariate covering lemma follows.
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Lemma A.1.1 (Multivariate Covering Lemma). Suppose assumptions (I-III)
hold for the joint distribution of

Un
[k+1],

{
V n

1 (m1), . . . , V n
k (mk)

}
m[k]

.

For the direct part, suppose for all j ∈ [k], Mj ≥ 2nRj . If for all nonempty
S ⊆ [k],∑

j∈S

Rj >
∑
j∈S

H(Vj|Uj)−H(VS|U[k+1]) + (8k − 2|S|+ 10)δ, (A.5)

then

lim
n→∞

Pr
{
∃m[k] :

(
Un

[k+1], V
n

1 (m1), . . . , V n
k (mk)

)
∈ A(n)

δ

}
= 1. (A.6)

For the converse, assume for all j ∈ [k], Mj ≤ 2nRj . If (A.6) holds, then∑
j∈S

Rj ≥
∑
j∈S

H(Vj|Uj)−H(VS|U[k+1])− 2(|S|+ 1)δ,

for all nonempty S ⊆ [k].

Remark. In the direct part of Lemma A.1.1, we can weaken the lower bound
on
∑

j∈S Rj when S = [k]. Specifically, for S = [k], we can replace (A.5) with∑
j∈[k]

Rj >
∑
j∈[k]

H(Vj|Uj)−H(V[k]|U[k+1]) + 2(k + 1)δ.

A.2 Lower Bound

For every m[k] = (m1, . . . ,mk) ∈M, define the random variable Z(m[k]) as

Z(m[k]) := 1
{(
U[k+1], V1(m1), . . . , Vk(mk)

)
∈ F

}
and set

Z :=
∑

m[k]∈M

Z(m[k]).

Our aim is to find a lower bound for Pr{Z = 0}. Note that for every nonempty
S ⊆ [k],

Pr
{
∃m[k] : Z(m[k]) = 1

}
= Pr

{
∃m[k] :

(
U[k+1], V1(m1), . . . , Vk(mk)

)
∈ F

}
≤ Pr

{
∃mS :

(
U[k+1],

(
Vj(mj)

)
j∈S

)
∈ FS

}
≤ |MS|

∑
FS

p(u[k+1])pind(vS|uS)

≤ |MS|2−αS
∑
FS

p(u[k+1], vS)

≤ |MS|2−αS .
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Thus

Pr{Z = 0} = 1− Pr
{
∃m[k] : Z(m[k]) = 1

}
≥ 1− min

|S|6=∅
|MS|2−αS . (A.7)

A.3 Upper Bound

In deriving our upper bound on Pr{Z = 0}, we apply conditioning and Cheby-
shev’s inequality, which lead to the appearance of the factor

1(
Pr{F(u[k+1])}

)2 ,

where

Pr
{
F(u[k+1])

}
:= Pr

{
V[k] ∈ F(u[k+1])

∣∣∣U[k+1] = u[k+1]

}
=

∑
v[k]∈F(u[k+1])

p(v[k]|u[k+1]).

Recall that F(u[k+1]), defined in Section A.2, is the set of all v[k] ∈ V[k] such
that (u[k+1], v[k]) ∈ F . Thus to get an accurate upper bound, we require
Pr{F(u[k+1])} to be large. However, as this cannot be guaranteed for all
u[k+1], we partition U[k+1] into “good” and “bad” sets, corresponding to large
and small values of Pr{F(u[k+1])}, respectively. We show that the probability
of the good set is large whenever Pr{(U[k+1], V[k]) ∈ F} is large. Following [39,
Appendix III], fix ε > 0 and define Gε ⊆ U[k+1] as

Gε :=
{
u[k+1]

∣∣∣Pr{F(u[k+1])} ≥ 1− ε
}
.

Note that Gε represents the set of all good u[k+1] as described above. We have

Pr
{

(U[k+1], V[k]) ∈ F
}

=
∑
u[k+1]

p(u[k+1]) Pr{F(u[k+1])}

≤ (1− ε) Pr{U[k+1] /∈ Gε}+ Pr{U[k+1] ∈ Gε}

= 1− εPr{U[k+1] /∈ Gε}.

Thus
Pr{U[k+1] /∈ Gε} ≤

1

ε
Pr
{

(U[k+1], V[k]) /∈ F
}
. (A.8)
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Our aim is to find an upper bound for Pr{Z = 0}. To do this, we write

Pr{Z = 0} =
∑
u[k+1]

p(u[k+1]) Pr
{
Z = 0

∣∣u[k+1]

}
≤ 1

ε
Pr
{

(U[k+1], V[k]) /∈ F
}

+
∑

u[k+1]∈Gε

p(u[k+1]) Pr
{
Z = 0

∣∣u[k+1]

}
,

(A.9)

where the inequality follows from (A.8). Therefore, to find an upper bound
on Pr{Z = 0}, it suffices to find an upper bound on Pr{Z = 0|u[k+1]} for all
u[k+1] ∈ Gε.

Fix u[k+1] ∈ Gε. We use Chebyshev’s inequality to find an upper bound on
Pr{Z = 0|u[k+1]}. Thus we need to calculate E[Z|u[k+1]] and E[Z2|u[k+1]]. For
a given m[k], from (A.4), it follows that

E
[
Z(m[k])

∣∣u[k+1]

]
= Pr

{(
V1(m1), . . . , Vk(mk)

)
∈ F(u[k+1])

∣∣∣u[k+1]

}
=

∑
F(u[k+1])

pind(v[k]|u[k+1])

≥
∑

F(u[k+1])

2−γp(v[k]|u[k+1])

= 2−γ Pr{F(u[k+1])} ≥ (1− ε)2−γ,

where the last inequality follows from the fact that u[k+1] ∈ Gε. Thus, by
linearity of expectation,

E[Z|u[k+1]] ≥ |M|2−γ(1− ε). (A.10)

Next, we find an upper bound on E[Z2|u[k+1]]. We have

Z2 =
∑
m[k]

[Z(m[k])]
2 +

∑
m[k] 6=m′[k]

Z(m[k])Z(m′[k]) = Z +
∑

m[k] 6=m′[k]

Z(m[k])Z(m′[k]),

since [Z(m[k])]
2 = Z(m[k]) and Z =

∑
m[k]

Z(m[k]). Thus

E[Z2|u[k+1]] = E[Z|u[k+1]] + E
[ ∑
m[k] 6=m′[k]

Z(m[k])Z(m′[k])
∣∣∣u[k+1]

]
.
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For any pair of distinct m[k] and m′[k] with nonempty S := S(m[k],m
′
[k]), we

have

E
[
Z(m[k])Z(m′[k])

∣∣∣u[k+1]

]
=

∑
FS(u[k+1])

pind(vS|uS)

[ ∑
vSc∈F(u[k+1],vS)

pind(vSc |uSc)
]2

≤ 2−αS−2βSc
∑

FS(u[k+1])

p(vS|u[k+1])

[ ∑
vSc∈F(u[k+1],vS)

p(vSc |u[k+1], vS)

]2

≤ 2−αS−2βSc ,

where FS(u[k+1]) is the set of all vS where (u[k+1], vS) ∈ FS. On the other hand,
if S is empty, then Z(m[k]) and Z(m′[k]) are independent given U[k+1] = u[k+1],
and

E
[
Z(m[k])Z(m′[k])

∣∣∣u[k+1]

]
=
(
E
[
Z(m[k])

∣∣u[k+1]

])2

.

Fix m[k] ∈ M. For every nonempty S ⊆ [k], let m[k](S) be an element ofM
such that mj = mj(S) if and only if j ∈ S. Thus

E
[
Z2
∣∣u[k+1]

]
= E

[
Z
∣∣u[k+1]

]
+
[ ∏
j∈[k]

(
|Mj|2 − |Mj|

)](
E
[
Z(m[k])

∣∣u[k+1]

])2

+
∑
∅(S([k]

|MS|
[ ∏
j∈Sc

(
|Mj|2 − |Mj|

)]
E
[
Z(m[k])Z(m[k](S))

∣∣∣u[k+1]

]
≤ E

[
Z
∣∣u[k+1]

]
+
(
E
[
Z
∣∣u[k+1]

])2

+
∑
∅(S([k]

|MS||MSc |22−αS−2βSc .

(A.11)

Thus for all u[k+1] ∈ Gε, we have

Pr
{
Z = 0

∣∣u[k+1]

}
≤ Pr

{∣∣Z − E[Z|u[k+1]]
∣∣ ≥ E[Z|u[k+1]]

∣∣∣u[k+1]

}
(a)

≤
Var(Z|u[k+1])(
E[Z|u[k+1]]

)2 =
E[Z2|u[k+1]](
E[Z|u[k+1]]

)2 − 1

(b)

≤ 1

1− ε
|M|−12γ +

1

(1− ε)2

∑
∅⊂S⊂[k]

|MS|−12−αS−2βSc+2γ,

where (a) follows from Chebyshev’s inequality and (b) follows from (A.10) and
(A.11). Now using (A.9), we get

Pr{Z = 0} ≤ 1

ε
Pr{F c}+ 1

1− ε
|M|−12γ+

1

(1− ε)2

∑
∅⊂S⊂[k]

|MS|−12−αS−2βSc+2γ,

(A.12)
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where
Pr{F c} := Pr

{
(U[k+1], V[k]) /∈ F

}
.

A.4 Asymptotic Result

In this section, using our lower and upper bounds, we prove Lemma A.1.1. We
first prove the direct part using our upper bound from Section A.3. For every
positive integer n, set F (n) = A

(n)
δ (U[k+1], V[k]), and for every j ∈ [k], choose

an integer Mj ≥ 2nRj . Furthermore, fix ε ∈ (0, 1).

For every nonempty S ⊆ [k], notice that if
(
un[k+1], v

n
S

)
∈ F (n)

S , then

∣∣∣ log
p(vnS|un[k+1])∏
j∈S p(v

n
j |unj )

− n
(∑
j∈S

H(Vj|Uj)−H(VS|U[k+1])
)∣∣∣ ≤ 2n(|S|+ 1)δ.

Thus we can choose

α
(n)
S := n

(∑
j∈S

H(Vj|Uj)−H(VS|U[k+1])− 2(|S|+ 1)δ
)

γ(n) := n
(∑
j∈[k]

H(Vj|Uj)−H(V[k]|U[k+1]) + 2(k + 1)δ
)
.

Similarly, for every nonempty S ⊆ [k], we can set

β
(n)
S := n

(∑
j∈S

H(Vj|Uj)−H(VS|U[k+1], VSc)− 2(|S|+ 1)δ)
)
,

since for every
(
un[k+1], v

n
S, v

n
Sc

)
∈ F (n),

∣∣∣ log
p(vnS|un[k+1], v

n
Sc)∏

j∈S p(v
n
j |unj )

− n
(∑
j∈S

H(Vj|Uj)−H(VS|U[k+1], VSc ])
)∣∣∣ ≤ 2n(|S|+ 1)δ.

From our upper bound, Equation (A.12), it now follows that if for all nonempty
S ( [k],∑

j∈S

Rj >
1

n
(2γ − αS − 2βSc)

= 2
∑
j∈[k]

H(Vj|Uj)− 2H(V[k]|U[k+1])−
∑
j∈S

H(Vj|Uj) +H(VS|U[k+1])

− 2
∑
j∈Sc

H(Vj|Uj) + 2H(VSc |U[k+1], VS) + (8k − 2|S|+ 10)δ

=
∑
j∈S

H(Vj|Uj)−H(VS|U[k+1]) + (8k − 2|S|+ 10)δ,
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and for S = [k],∑
j∈[k]

Rj >
1

n
γ =

∑
j∈[k]

H(Vj|Uj)−H(V[k]|U[k+1]) + 2(k + 1)δ,

then

lim
n→∞

Pr
{
∃m[k] :

(
Un

[k+1], V
n

1 (m1), . . . , V n
k (mk)

)
∈ A(n)

δ

}
= 1. (A.13)

Next we prove the converse. Suppose for each j ∈ [k], Mj ≤ 2nRj and (A.13)
holds. Then from (A.7), it follows that∑

j∈S

Rj ≥
1

n
αS =

∑
j∈S

H(Vj|Uj)−H(VS|U[k+1])− 2(|S|+ 1)δ,

for all nonempty S ⊆ [k].

A.5 Cauchy-Schwarz versus Chebyshev

Let Z be any random variable that is nonnegative with probability one and
has positive first and second moments. Then

Z = Z1{Z > 0}

almost surely. Thus by the Cauchy-Schwarz inequality,

E[Z] = E
[
Z1{Z > 0}

]
≤
√

E[Z2]× Pr{Z > 0}.

Hence

Pr{Z > 0} ≥
(
E[Z]

)2

E[Z2]

and

Pr{Z = 0} ≤ 1−
(
E[Z]

)2

E[Z2]
.

On the other hand, using Chebyshev’s inequality we get

Pr{Z = 0} = Pr
{
|Z − E[Z]| ≥ E[Z]

}
≤ Var(Z)(

E[Z]
)2 =

E[Z2](
E[Z]

)2 − 1.

Note that the bound resulting from Cauchy-Schwarz is stronger, since for any
t > 0,

1− t ≤ 1

t
− 1.
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A p p e n d i x B

LARGE DEVIATIONS

In this appendix, we prove that the probability that an i.i.d. sequence is weakly
typical converges to one exponentially fast. It is proved for a modified version
of weakly typical sets in [31, p. 991] and for strongly typical sets in [23, p.
117].

B.1 Result

Lemma B.1.1. Choose a distribution p(u[k]) on the alphabet U[k], which may be
continuous or discrete. Suppose there exists t0 > 0 such that for all nonempty
S ⊆ [k] and t ∈ (−t0, t0),

E
[
p(US)−t

]
<∞.

Then there exists a nondecreasing function θ(U[k], ·) : R>0 → R>0 such that
for all sufficiently large n,

Pr
{
A(n)
ε (U[k])

}
≥ 1− 2−nθ(U[k],ε).

Proof. The base-2 moment generating function of a random variable X is
defined as

M(t) = E[2tX ]

for all real t for which the expectation on the right hand side is finite. If M
is defined on a neighborhood of 0, say (−t1, t1) for some t1 > 0, then it has a
Taylor series expansion with a positive radius of convergence [69, pp. 278-280].
In particular,

d

dt
M(t)

∣∣∣
t=0

=
1

log e
E[X].

We next find an upper bound for Pr{X ≥ a} for any a ∈ R. Choose t ∈ (0, t1).
Using Markov’s inequality, we get

Pr{X ≥ a} = Pr{tX ≥ ta}

= Pr{2tX ≥ 2ta}

≤ 2−taE[2tX ]

= 2logM(t)−ta.
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Since t ∈ (0, t1) was arbitrary, we get

Pr{X ≥ a} ≤ 2inft∈(0,t1)(logM(t)−ta). (B.1)

For all ε ∈ R, define θ(X, ε) as

θ(X, ε) := sup
t∈(0,t1)

[
t
(
E[X] + ε

)
− logM(t)

]
.

Define the function f as

f(t) = logM(t)− ta.

We have f(0) = 0 and f ′(0) = E[X]− a. Thus if a > E[X],

inf
t∈(0,t1)

(
logM(t)− ta

)
< 0. (B.2)

Similarly, if ε > 0, then θ(X, ε) > 0. If we apply (B.1) to the random variable

1

n

n∑
i=1

Xi,

where the Xi’s are i.i.d. copies of X, we get

Pr
{ n∑

i=1

Xi ≥ na
}
≤ 2−nθ(X,a−E[X]). (B.3)

Now consider a random vector (U1, . . . , Uk) with distribution p(u1, . . . , uk).
For every nonempty S ⊆ [k], let US denote the random vector (Uj)j∈S. Let
(Un

1 , . . . , U
n
k ) be n i.i.d. copies of (U1, . . . , Uk). By applying inequality (B.3) to

the random variables {
log

1

p(USi)

}n
i=1

and setting a = H(US) + ε for some ε > 0, we get

Pr

{
n∑
i=1

log
1

p(USi)
≥ n

[
H(US) + ε

]}
≤ 2−nθ(US ,ε). (B.4)

Let
θ(U[k], ε) =

1

2
min

∅(S⊆[k]
θ(US, ε).
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By the union bound,

Pr
{

(Un
1 , . . . , U

n
k ) /∈ A(n)

ε (U1, . . . , Uk)
}
≤ 2

∑
∅(S⊆[k]

2−nθ(US ,ε)

≤ 2(2k − 1)2−nmin∅(S([k] θ(US ,ε)

≤ 2−nθ(U[k],ε),

where the last inequality holds for all sufficiently large n. Finally, note that
since by (B.2), each θ(US, ε) is positive and nondecreasing, so is θ(U[k], ε).
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A p p e n d i x C

CONTINUITY OF AVERAGE-ERROR SUM-CAPACITY

In this appendix, we show that the average-error sum-capacity of a network
consisting of a MAC and a CF that has access to both messages is continuous
with respect to the CF output edge capacities.

C.1 Model and Result

Consider a MAC (
X1 ×X2, p(y|x1, x2),Y

)
,

where X1, X2, and Y are finite sets. We assume this MAC is memoryless and
stationary so that its nth extension is given by

p(yn|xn1 , xn2 ) :=
∏
t∈[n]

p(yt|x1t, x2t).

We next state the main result of this appendix. In this theorem, for a
given MAC, C∗in is any pair with sufficiently large components so that any
(C∗in,Cout)-CF has access to both messages. Our proof relies on ideas devel-
oped by Dueck [70].

Theorem C.1.1. For any finite alphabet MAC, Csum,avg(C∗in,Cout) is contin-
uous on R2

≥0.

Note that by Lemma 5.2.3, Csum,avg(C∗in,Cout) is continuous on R2
>0. Thus it

suffices to prove Theorem C.1.1 on the boundary of R2
≥0.1

As we are not concerned with maximal-error sum-capacity in this appendix, we
drop the “avg” subscript and henceforth write the average-error sum-capacity
as Csum(C∗in,Cout).

We begin with a number of definitions that are useful for the description of
our lower and upper bounds for Csum(C∗in,Cout).

For every finite alphabet U and all δ ≥ 0, define

P(n)
U (δ) :=

{
p(u, xn1 , x

n
2 )
∣∣∣I(Xn

1 ;Xn
2 |U) ≤ nδ

}
.

1Note that the boundary of R2
≥0 is given by R2

≥0 \ R2
>0.
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For every n, define the function fn : R≥0 → R≥0 as2

fn(δ) := sup
U

max
p∈P(n)

U (δ)

1

n
I(Xn

1 , X
n
2 ;Y n|U), (C.1)

where the supremum is over all finite sets U . For every δ ≥ 0, (fn(δ))∞n=1

satisfies the following superadditivity property.3

Lemma C.1.2. For all m,n ≥ 1 and all δ ≥ 0,

fm+n(δ) ≥ m

m+ n
fm(δ) +

n

m+ n
fn(δ).

Thus by [13, Appendix 4A, Lemma 2], the sequence (fn(δ))∞n=1 converges for
every δ ≥ 0, and

lim
n→∞

fn(δ) = sup
n
fn(δ).

Therefore, we can define the function f : R≥0 → R≥0 as

f(δ) := lim
n→∞

fn(δ). (C.2)

We next state our inner and outer bounds for Csum(C∗in,Cout).

Lemma C.1.3. For any MAC, we have

f(C1
out + C2

out)−min{C1
out, C

2
out} ≤ Csum(C∗in,Cout) ≤ f(C1

out + C2
out).

Thus to prove that Csum(C∗in,Cout) is continuous on the boundary of R2
≥0, it

suffices to show that f is continuous on R≥0. This is stated in the next lemma.

Lemma C.1.4. For any finite alphabet MAC, the function f , defined by (C.2),
is continuous on R≥0.

C.2 Proofs

C.2.1 Proof of Lemma C.1.2

By definition, for all ε > 0, there exist finite alphabets U0 and U1 and distri-
butions pn ∈ P(n)

U0 (δ) and pm ∈ P(m)
U1 (δ) such that

In(Xn
1 , X

n
2 ;Y n|U0) ≥ nfn(δ)− nε

Im(Xm
1 , X

m
2 ;Y m|U1) ≥ mfm(δ)−mε.

2For n = 1, this function also appears in the study of the MAC with negligible feedback
[56].

3The proofs of all our results are given in Section C.2.
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Consider the distribution

pn+m(u0, u1, x
n+m
1 , xn+m

2 ) = pn(u0, x
n
1 , x

n
2 )pm(u1, x

n+1:n+m
1 , xn+1:n+m

2 ).

For U = U0 × U1, it is simple to show that pn+m ∈ P(n+m)
U (δ) and

In+m(Xn+m
1 , Xn+m

2 ;Y n+m|U0, U1) ≥ nfn(δ) +mfm(δ)− (n+m)ε,

which implies the desired result.

C.2.2 Proof of Lemma C.1.3

We first prove the lower bound. For i ∈ {1, 2}, choose Cid such that

0 ≤ Cid ≤ Ci
out.

Let p(x1, x2) be any distribution satisfying

I(X1;X2) = C1d + C2d.

Then Corollary 3.4.1 implies that

Csum(C∗in,Cout) ≥ I(X1, X2;Y )−min{C1d, C2d}.

Applying the same corollary to the MAC

p(yn|xn1 , xn2 ) =
∏
t∈[n]

p(yt|x1t, x2t),

proves our lower bound.

For the upper bound, consider a sequence of (2nR1 , 2nR2 , n)-codes for the MAC
with a (C∗in,Cout)-CF. By the data processing inequality,

I(Xn
1 ;Xn

2 ) ≤ n(C1
out + C2

out).

In addition, from Fano’s inequality it follows that there exists a sequence
(εn)∞n=1 such that

H(W1,W2|Y n) ≤ nεn,

and εn → 0 as n→∞. We have

n(R1 +R2) ≤ H(W1,W2)

= I(W1,W2;Y n) +H(W1,W2|Y n)

= I(Xn
1 , X

n
2 ;Y n) + nεn

≤ nf(C1
out + C2

out) + nεn.

Dividing by n and taking the limit n→∞ completes the proof.
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C.2.3 Proof of Lemma C.1.4

The proof is via a sequence of lemmas, which we next describe.

We begin by showing that for all n ≥ 1, fn is concave and continuous.

Lemma C.2.1 (Concavity of fn). For all n ≥ 1, fn is concave on R≥0.

Proof. It suffices to prove the result for n = 1. We apply the technique from
[71]. Note that

f1(δ) = sup
U

max
p∈P(1)

U (δ)

I(X1, X2;Y |U).

Fix a, b ≥ 0, λ ∈ (0, 1), and ε > 0. Then there exist finite sets U0 and U1 and
distributions p0 ∈ P(1)

U0 (a) and p1 ∈ P(1)
U1 (b) satisfying

I0(X1, X2;Y |U0) ≥ f1(a)− ε

I1(X1, X2;Y |U1) ≥ f1(b)− ε,

respectively. Define the alphabet V as

V := {0} × U0 ∪ {1} × U1.

We denote an element of V by v = (v1, v2). Define the distribution pλ(v, x1, x2)

as
pλ(v, x1, x2) = pλ(v1)pv1(v2, x1, x2),

where

pλ(v1) =

1− λ if v1 = 0

λ if v1 = 1.

Then

Iλ(X1;X2|V ) = Iλ(X1, X2|V1, V2)

= (1− λ)I(X1;X2|V1 = 0, V2) + λI(X1;X2|V1 = 1, V2)

= (1− λ)I0(X1;X2|U0) + λI1(X1;X2|U1)

≤ (1− λ)a+ λb,

which implies pλ ∈ P(1)
V ((1− λ)a+ λb). Similarly,

Iλ(X1, X2;Y |V ) = Iλ(X1, X2;Y |V1, V2)

= (1− λ)I(X1, X2;Y |V1 = 0, V2) + λI(X1, X2;Y |V1 = 1, V2)

= (1− λ)I0(X1, X2;Y |U0) + λI1(X1, X2;Y |U1)

≥ (1− λ)f1(a) + λf1(b)− ε.
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Therefore,
f1

(
(1− λ)a+ λb

)
≥ (1− λ)f1(a) + λf1(b)− ε.

The result now follows from the fact that the above equation holds for all
ε > 0.

Lemma C.2.2 (Cardinality of U). In the definition of fn(δ), namely

fn(δ) = sup
U

max
p∈P(n)

U (δ)

1

n
I(Xn

1 , X
n
2 ;Y n|U),

it suffices to calculate the supremum over all sets U with |U| ≤ |X1|n|X2|n + 1.

Proof. We prove the result for n = 1. A similar argument applies for any
positive integer n. Let U be a finite set with

|U| > |X1||X2|+ 1,

and let p∗ ∈ P(1)
U (δ) be the distribution that achieves

max
p∈P(1)

U (δ)

I(X1, X2;Y |U).

Define the set Q as

Q :=
{
q ∈ R|U|

∣∣∣ ∀u ∈ U : q(u) ≥ 0,

∀(x1, x2) :
∑
u∈U

q(u)p∗(x1, x2|u) = p∗(x1, x2),∑
u∈U

q(u)I∗(X1;X2|U = u) = I∗(X1;X2|U)
}
.

Note that Q is a convex polytope in R|U| and the mapping F : Q → R≥0

defined as
F (q) :=

∑
u∈U

q(u)I∗(X1, X2;Y |U = u)

is convex. Thus there exists an extremal point q∗ ∈ Q at which F obtains its
maximum. Any extremal point of Q must satisfy at least |U| constraints in
the definition of Q with equality; thus q∗(u) = 0 for at least

|U| −
(
|X1||X2|+ 1

)
values in U . This completes the proof.

Lemma C.2.3 (Continuity of fn). For all n ≥ 1, fn is continuous on R≥0.
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Proof. Similar to prior lemmas, it suffices to prove the result for n = 1. By
Lemma C.2.1, f1 is concave on R≥0; thus, it is continuous on R>0. Therefore,
we only need to prove f1 is continuous at δ = 0+. Let U be a set of cardinality
1 + |X1||X2|. By Lemma C.2.2, for all δ ≥ 0, we have

f1(δ) = max
p∈P(1)

U (δ)

I(X1, X2;Y |U).

Fix δ > 0. Let p∗(u, x1, x2) be a distribution in P(1)
U (δ) achieving the maximum

above, and define
p∗ind(x1, x2|u) := p∗(x1|u)p∗(x2|u).

Since ∑
u∈U

p∗(u)D
(
p∗(x1, x2|u)‖p∗ind(x1, x2|u)

)
= I∗(X1;X2|U) ≤ δ,

by [40, Lemma 11.6.1],∑
u∈U

p∗(u)
∥∥p∗(x1, x2|u)− p∗ind(x1, x2|u)

∥∥2

L1 ≤ 2δ ln 2. (C.3)

Furthermore,∑
u∈U

p∗(u)
∥∥p∗(y|u)− p∗ind(y|u)

∥∥
L1

≤
∑
u∈U

p∗(u)
∑
x1,x2

p(y|x1, x2)
∣∣p∗(x1, x2|u)− p∗ind(x1, x2|u)

∣∣
≤
∑
u∈U

p∗(u)
∥∥p∗(x1, x2|u)− p∗ind(x1, x2|u)

∥∥
L1

≤
√

2δ ln 2, (C.4)

where (C.4) follows from (C.3) and the Cauchy-Schwarz inequality. Define the
subset U0 ⊆ U as

U0 =
{
u ∈ U :

∥∥p∗(y|u)− p∗ind(y|u)
∥∥
L1 ≤ 1/2

}
.

Clearly, ∑
u/∈U0

p∗(u) ≤ 2
√

2δ ln 2.
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Thus∣∣H∗(Y |U)−H∗ind(Y |U)
∣∣

≤
∑
u∈U

p∗(u)
∣∣H∗(Y |U = u)−H∗ind(Y |U = u)

∣∣
(a)

≤ 2
√

2δ ln 2 log |Y|

−
∑
u∈U0

p∗(u)
∥∥p∗(y|u)− p∗ind(y|u)

∥∥
L1 log

∥∥p∗(y|u)− p∗ind(y|u)
∥∥
L1

|Y|
(b)

≤ 2
√

2δ ln 2 log |Y| −
√

2δ ln 2 log
( 1

|Y|
√

2δ ln 2
)

=
√

2δ ln 2 log
|Y|3√
2δ ln 2

,

where (a) follows from [40, Theorem 17.3.3] and (b) follows from the fact that
the mapping t 7→ −t log(t/|Y|) is concave and increasing for sufficiently small
t. In addition, by (C.4),∣∣H∗(Y |U,X1, X2)−H∗ind(Y |U,X1, X2)

∣∣
≤
∑
u,x1,x2

∣∣p∗(u, x1, x2)− p∗ind(u, x1, x2)
∣∣H(Y |X1 = x1, X2 = x2)

≤
(

log |Y|
)√

2δ ln 2.

Thus

f1(δ) = I∗(X1, X2;Y |U) = H∗(Y |U)−H∗(Y |U,X1, X2)

≤
∣∣H∗(Y |U)−H∗ind(Y |U)

∣∣+
∣∣H∗(Y |U,X1, X2)−H∗ind(Y |U,X1, X2)

∣∣
+ I∗ind(X1, X2;Y |U)

≤
√

2δ ln 2 log
|Y|3√
2δ ln 2

+
(

log |Y|
)√

2δ ln 2 + f1(0).

Since f1(0) ≤ f1(δ) for all δ ≥ 0, the continuity of f1 at δ = 0+ follows.

The next lemma is proved by Dueck [70]. We include the proof for complete-
ness.

Lemma C.2.4. Fix ε, δ > 0, positive integer n, and finite alphabet U . If
p ∈ P(n)

U (δ), then there exists a set T ⊆ [n] satisfying

|T | ≤ nδ

ε
,
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and
∀t /∈ T : I(X1t;X2t|U,XT

1 , X
T
2 ) ≤ ε,

where for i ∈ {1, 2}, XT
i := (Xit)t∈T .

Proof. If for all t ∈ [n], we have

I(X1t;X2t|U) ≤ ε,

then we define T := ∅. Otherwise, there exists t1 ∈ [n] such that

I(X1t1 ;X2t1|U) > ε.

Let S1 := [n] \ {t1}. Then

I(Xn
1 ;Xn

2 |U) = I(Xn
1 ;X2t1 |U) + I(Xn

1 ;XS1
2 |X2t1)

= I(X1t1 ;X2t1|U) + I(XS1
1 ;X2t1|U,X1t1)

+ I(X1t1 ;X
S1
2 |U,X2t1) + I(XS1

1 ;XS1
2 |U,X1t1 , X2t1)

≥ I(X1t1 ;X2t1 |U) + I(XS1
1 ;XS1

2 |U,X1t1 , X2t1).

Therefore, since p ∈ P(n)
U (δ),

I(XS1
1 ;XS1

2 |U,X1t1 , X2t1) ≤ nδ − ε.

Now if for all t ∈ S1,

I(X1t;X2t|U,X1t1 , X2t1) ≤ ε,

then we define T := {t1}. Otherwise, there exists t2 ∈ [n] such that

I(X1t2 ;X2t2|U,X1t1 , X2t1) > ε.

Similar to the above argument, if we define S2 := [n] \ {t1, t2}, then

I(XS2
1 ;XS2

2 |U,X1t1 , X1t2 , X2t1 , X2t2) ≤ nδ − 2ε.

If we continue this process, we eventually get a set T := {t1, . . . , tk} such that

I(XT c

1 ;XT c

2 |U,XT
1 , X

T
2 ) ≤ nδ − |T |ε, (C.5)

and for all t ∈ [n] \ T ,

I(X1t;X2t|U,XT
1 , X

T
2 ) ≤ ε.

In addition, from (C.5) it follows that

|T | ≤ nδ

ε
. (C.6)
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The next corollary combines bounds given in [15] with ideas developed here.

Corollary C.2.5. For all ε, δ > 0, we have

f
(
δ
)
≤ δ

ε
log |X1||X2|+ f1(ε).

Proof. Fix a positive integer n. Let U be a set with cardinality |X1|n|X2|n + 1

and choose a distribution p ∈ P(n)
U (δ). From Lemma C.2.4, it follows that

there exists a set T ⊆ [n] such that

0 ≤ |T | ≤ nδ

ε
,

and
∀t /∈ T : I(X1t;X2t|U,XT

1 , X
T
2 ) ≤ ε.

Thus

I(Xn
1 , X

n
2 ;Y n|U) = I(XT

1 , X
T
2 ;Y n|U) + I(XT c

1 , XT c

2 ;Y n|U,XT
1 , X

T
2 )

≤ |T | log |X1||X2|+ I(XT c

1 , XT c

2 ;Y n|U,XT
1 , X

T
2 ).

We further bound the second term on the right hand side by

I(XT c

1 , XT c

2 ;Y n|U,XT
1 , X

T
2 )

= I(XT c

1 , XT c

2 ;Y T c|U,XT
1 , X

T
2 ) + I(XT c

1 , XT c

2 ;Y T |U,XT
1 , X

T
2 , Y

T c)

≤
∑
t/∈T

I(X1t, X2t;Yt|U,XT
1 , X

T
2 )

≤ n max
p∈P(1)

V (ε)

I(X1, X2;Y |V ) ≤ nf1(ε),

where
V := U × X |T |1 ×X |T |2 .

Therefore,
1

n
I(Xn

1 , X
n
2 ;Y n|U) ≤ δ

ε
log |X1||X2|+ f1(ε).

Our result now follows from Lemma C.2.2.

By Corollary C.2.5, for all ε, δ > 0,

f(δ) ≤ δ

ε
log |X1||X2|+ f1(ε).

Thus
f(0) ≤ lim

δ→0+
f(δ) ≤ f1(ε).

Now take the limit ε → 0+ and note that f1 is continuous by Lemma C.2.3,
and f(0) = f1(0).
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A p p e n d i x D

EDGE REMOVAL AT THE RECEIVERS

In this appendix, we study the effect of removing an ingoing edge of a node that
has no outgoing edges. Specifically, we show that for memoryless stationary
networks, such an edge always satisfies the universal edge removal property.
We remark that this fact is stated in [12], where a proof sketch is provided.
Here we present a more detailed proof.

An important corollary of this result is that unlike encoder cooperation, we
cannot use decoder cooperation to construct networks that do not satisfy the
universal edge removal property.

D.1 Memoryless Stationary Networks

Consider a memoryless stationary noisy network1 with K source messages, M
transmitters, and L receivers. The source messages are uniformly distributed
and independent. For every m ∈ [M ], transmitter m has access to a subset
T (m) ⊆ [K] of source messages. For ` ∈ [L], receiver ` demands subset
D(`) ⊆ [K] of source messages with small average probability. In addition,
receiver ` has access to side-information Z` of rate δ`.2 We denote this network
by N (δ), where δ := (δ`)`∈[L]. (See Figure D.1.) For k ∈ [K], define

δ̄k := max
` : k∈D(`)

δ`.

The main result of this appendix follows.

Proposition D.1.1. If the rate vector (Rk)k∈[K] is in the average-error capac-
ity region of N (δ), then the rate vector((

Rk − δ̄k
)+
)
k∈[K]

is in the average-error capacity region of N (0).

1As described in the Introduction, this is a network consisting of both memoryless
stationary multi-terminal components and noiseless point-to-point links. An example is the
network consisting of a memoryless stationary MAC and a CF.

2The only constraint on the side-information is rate; that is, for a code of blocklength
n, receiver ` receives at most nδ` bits of side-information. Thus the random variable Z` can
depend on the inputs of any network node.
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Figure D.1: The network N (δ).

Proof. Suppose the rate vector (R∗k)k∈[K] is achievable over N (δ). Then for
every ε > 0, there exists a(

(2NR
∗
1 , . . . , 2NR

∗
K ), N, ε

)
-code

for N (δ). Fix ε > 0 and a corresponding code C. For this code, let XN
k

denote the output of transmitter k and Y N
` denote the input to receiver `.

Furthermore, for k ∈ [K], let Wk denote source message k. Note that by
assumption, Wk is uniformly distributed on its source alphabet [2NR

∗
k ], and for

all ` ∈ [L], Z` ∈ [2Nδ` ]. For ` ∈ [L] satisfying k ∈ D(`), we have

R∗k =
1

N
H(Wk)

=
1

N
I(Wk;Y

N
` , Z`) + εN(k, `)

≤ 1

N
I(Wk;Y

N
` ) + δ` + εN(k, `)

≤ 1

N
I(Uk;Y

N
` ) + δ̄k + εN(k, `),

where Uk := Wk, and

εN(k, `) :=
1

N
H(Wk|Y N

` , Z`).

By Fano’s inequality [40, p. 38],

εN(k, `) ≤ 1

N

(
h(ε) +NR∗kε

)
= oε(1),
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Figure D.2: The network NC(0).

where h(ε) is the binary entropy function. Thus for every k ∈ [K],

R∗k ≤
1

N
min

`:k∈D(`)
I(Uk;Y

N
` ) + δ̄k + oε(1). (D.1)

Note that the code C defines a conditional distribution

p
(
yN[L]

∣∣xN[M ]

)
:= p

(
yN1 , . . . , y

N
L

∣∣xN1 , . . . , xNM). (D.2)

Now consider the network NC(0), depicted in Figure D.2, which consists of
M transmitters, L receivers, and a single multi-terminal component defined
by (D.2). Somekh-Baruch and Verdú [72] show that the set of all rate vectors
(Rk)k∈[K] that for every k ∈ [K], obey

Rk ≤ min
`:k∈D(`)

I(Uk;Y
N
` )

for some distribution

p(u1) . . . p(uK)
∏

m∈[M ]

p
(
xNm|uT (m)

)
,

is a subset of the capacity region of NC(0). Now if a rate vector (Rk)k∈[K] is
achievable over NC(0), then (Rk/N)k∈[K] is achievable over N (0). Thus by
(D.1), ((

R∗k − δ̄k
)+
)
k∈[K]

is in the capacity region of N (0).
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