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ABSTRACT

Machine learning is becoming prevalent in all aspects of our lives. For some appli-

cations, there is a need for simple but accurate white-box systems that are able to

train efficiently and with little data.

“Boosting” is an intuitive method, combining many simple (possibly inaccurate)

predictors to form a powerful, accurate classifier. Boosted classifiers are intuitive,

easy to use, and exhibit the fastest speeds at test-time when implemented as a cas-

cade. However, they have a few drawbacks: training decision trees is a relatively

slow procedure, and from a theoretical standpoint, no simple unified framework

for cost-sensitive multi-class boosting exists. Furthermore, (axis-aligned) decision

trees may be inadequate in some situations, thereby stalling training; and even in

cases where they are sufficiently useful, they don’t capture the intrinsic nature of

the data, as they tend to form boundaries that overfit.

My thesis focuses on remedying these three drawbacks of boosting. Ch. 3 outlines a

method (called QuickBoost) that trains identical classifiers at an order of magnitude

faster than before, based on a proof of a bound. In Ch. 4, a unified framework for

cost-sensitive multi-class boosting (called REBEL) is proposed, both advancing

theory and demonstrating empirical gains. Finally, Ch. 5 describes a novel family

of weak learners (called Localized Similarities) that guarantee theoretical bounds

and outperform decision trees and Neural Nets (as well as several other commonly

used classification methods) on a range of datasets.

The culmination of my work is an easy-to-use, fast-training, cost-sensitive multi-

class boosting framework whose functionality is interpretable (since each weak

learner is a simple comparison of similarity), and whose performance is better than

Neural Networks and other competing methods. It is the tool that everyone should

have in their toolbox and the first one they try.
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NOTATION

R Set of real numbers (−∞,∞)

R Set of extended real numbers [−∞,∞] (i.e. including±∞)

Px,y Joint probability distribution (i.e. P (x, y))

Py|x Posterior probability distribution (i.e. P (y | x))

x Scalar (non-bold font)

f(·) Scalar function (i.e. returns a scalar)

1(...) Indicator function, returns 1 if logical expression (represented as “...”)

evaluates to true, otherwise returns 0

x Vector (bold font)

0 Zero vector (i.e. [0, 0, ..., 0])

1 One vector (i.e. [1, 1, ..., 1])

δδδk Indicator vector (i.e. 0 with a 1 in the kth index)

H(·) Vector-valued function (i.e. returns a vector)

xk Value of the kth index in vector x (i.e. xk ≡ 〈x, δδδk〉)

C Matrix (Bold Underlined font)

〈a,b〉 Inner product of a and b

a⊙b Element-wise product of a and b (i.e. [a1b1, a2b2, ..., aKbK ])

exp[x] Element-wise exponentiation (i.e. [ex1, ex2, ..., exK ])

g[x] Square brackets indicate element-wise function (i.e. [g(x1), g(x2), ..., g(xK
)])

ỹ Estimate (tilde-hat) of a quantity y

x∗ Optimal value (star) of a quantity x
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Chapter 1

INTRODUCTION

The year is 2017 and we have just recently entered the age of machine learning.

Algorithms that automatically analyze data are indispensable tools and are being

heavily applied in all aspects of our lives. Companies are competing to hire machine

learning experts to properly implement these algorithms. However, such powerful

tools should be accessible to all members of society, not just the experts. With this

body of work, I propose a simple framework that is ready to deploy with the push

of a button, no expertise necessary. But first, I recount a brief history of events that

motivated my work.

At the turn of the (21st) century, the first object detection system capable of function-

ing in real-time was proposed: the Viola-Jones face detector [14]. One of the main

aspects of computer vision is object detection, i.e. finding and/or identifying a par-

ticular object within in image or video frame. As humans, faces are prevalent in our

daily lives and hence are particularly relevant as detectable “objects”, marking the

Viola-Jones detector as a major milestone. The detector was intuitively clear and

easily implementable, largely owing its success to the “brains” behind its operation:

the machine learning system, namely, boosting [7].

Boosting was able to produce very good visual object classifiers by combining many

simple features (e.g. the average pixel intensity of a rectangular image patch). In-

deed, methods based on boosting remained state-of-the-art in many fields for over

a decade [6, 3, 1]. However, the good times didn’t last; in 2012, AlexNet [9] paved

the way for the resurgence of neural networks, leaving boosting almost forgotten.

As of this year, deep nets of varying (obscenely large and complex) architectures

have taken over, reaching almost if not better than human performance in many

domains [10].

One of the key strengths of these networks is their ability to transform the input data

by learning complex feature representations to facilitate classification [12]. How-

ever, there are several considerable drawbacks to employing such networks.

A first drawback is that the complex representations achieved by these networks are

difficult to interpret and to analyze. For many riskier applications (e.g. self-driving

cars, robotic surgeries, military drones, etc.), it would be better if a machine was
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allowed to run autonomously only if it could explain its every decision and action.

Further, when used towards the scientific analysis of phenomena (e.g. understand-

ing animal behavior, weather patterns, financial market trends, etc.), the goal is

to extract a causal interpretation of the system in question; hence, to be useful, a

machine should be able to provide a clear explanation of its internal logic.

To demonstrate the potential flaws in the almost magical inner-workings of deep

nets, Fig 1.1 is borrowed from [13]. Seemingly identical inputs are classified as

completely different classes (in both cases, with high reported levels of confidence).

[13] claims that every sample can be appropriately adjusted to be classified as any

class. Although these adjustments are very specific, the fact remains that the more

complex the network, the more mysterious its functionality.

Subtle adjustments to random samples from Imagenet images and MNIST digits

Figure 1.1: (Results from [13]) (left) Random Imagenet images [5], correctly

classified samples (top row), incorrectly classified subtly adjusted samples (middle

row), and the amplified pixel-wise difference between the two seemingly identical

images (bottom row). (right) Random MNIST digits [11], correctly classified sam-

ples (odd columns), incorrectly classified subtly adjusted samples (even columns).

A second drawback is that training a deep network (i.e. validating through many

architectures, each of which may have millions or billions of parameters) requires

a lot of data and a lot of time. In many fields (e.g. pathology of not-so-common

diseases, expert curation of esoteric subjects, etc.), gathering large amounts of data

is expensive or even impossible [16]. Autonomous robots that need to learn on the

fly may not be able to afford the large amount of processing power or time required

to train more complex networks simply due to their hardware constraints. Moreover,

most potential users (e.g. non-machine-learning scientists, small business owners,

hobbyists, etc.) may not have the expertise or artistry required to even validate

through the appropriate models.
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For these reasons, it is desirable to have a simple white-box machine learning sys-

tem that can train quickly and with little data. To this end, I have sped up train-

ing time, theoretically unified and empirically improved cost-sensitive multi-class

boosted classification, and have proposed better constituents for use in the overall

boosted classifier. My proposed boosting framework is the accurate, data-efficient,

easy-to-use tool that should be in everyone’s tool-bag.

To demonstrate its versatility, Fig. 1.2 shows a plot of test error rates on ten datasets

ranging in amount of training data N, input sample dimensionality d, and number

of output classes K, (refer to Table 1.1 for specifications). I compare my proposed

method to neural networks (trained using four different architectures: [d−4d−K],

[d−4K−K], [d−2d−d−K], [d−4K−2K−K], finally reporting the one that

performed best on the test set) and SVMs (support vector machines [4] – another

standard machine-learning method; cross-validating to find optimal parameters C

and γ using a 5 × 6 grid search)1. As described above, the neural nets and SVMs

required several runs in order to select appropriate hyper-parameters. My method

did not require validation and led to the best accuracy in almost all cases. It is

decisively the best choice of algorithm based on these results.

53 52
8

38
23
44

35
55

94
62

38
74

94

16
00

0

43
50

0

60
00

0

Number of Training Samples (N)

0.03

0.1

0.3

1

3

10

30

100

A
v
e
ra

g
e
 T

e
s
t 
E

rr
o
r 

[%
]

G
G

G

S

S

S

VV

V

P

PP

L

L

L
A
AA

O
O

O

I

I

I

M

M

M

C

C

C

[2/10] NN 

[2/10] SVM 

[8/10] New

GLASS

SHUTTLE

VOWEL

PENDIGIT

LETTER

LANDSAT

OPTDIGIT

ISOLET

MNIST

CUB200

G

S

V

P

L

A

O

I

M

C

Method

Dataset

Figure 1.2: Comparison of my (New) method versus neural networks and support

vector machines on ten datasets of varying sizes and difficulties. My method is the

most accurate on almost every dataset.

1 Training times for my method and neural networks were approximately equal; the SVMs took

over an order of magnitude longer to train, with an astonishing 20 hours for MNIST.
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Figure 1.3: Comparison of error rates achieved using my method versus neural net-

works and support vector machines on ten datasets of varying sizes and difficulties.

Note that almost all of the points lie in the top-left half of the plot, signifying that

my method is the most accurate method on almost every dataset.

# Input # Output # Training # Test
Dataset dims. classes samples samples

GLASS 9 6 53 159
SHUTTLE 9 7 43500 14500
VOWEL 10 11 528 462

PENDIGIT 16 10 7494 3498
LETTER 16 26 16000 4000

LANDSAT 36 6 4435 2000
OPTDIGIT 64 20 3823 1797

ISOLET 617 26 6238 1559
MNIST 728 10 60000 10000
CUB200 4096 200 5594 5794

Table 1.1: Specifications of datasets shown in Fig. 1.2. The first eight are UCI

datasets [2], the ninth: MNIST digits [11], and the tenth: CUB200 birds [15]; input

dimensions are the 4096 output features of a pre-trained ConvNet [8].
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Chapter 2

MACHINE LEARNING

Whether or not we believe in a higher power, we can all agree that there is a certain

order to our existence (however chaotic it might be). This “order” in our world

is the governing laws of nature (many of which we are still uncovering) and the

“chaos” is the stochasticity – or randomness – inherent in every process. These

laws (which can be thought of as pre-defined patterns or phenomena) ensure that

for a given set of input conditions, we can expect a specific set of output results.

The scientific method itself is based on this notion of repeatability – if the same

procedure is repeated multiple times, similar results should occur.

All living entities thrive from being able to leverage these patterns, if not by fully

comprehending them then at least by being able to predict them. More importantly,

we are able to generalize our specific experiences to the infinite number of possible

experiences that we have not already explicitly encountered.

As an example, from birth, we are subject to the pull of gravity, without knowing

what it is. We notice that if we don’t hold ourselves up, we fall. If we let go of

a ball, it falls. So does a piece of paper, although not as fast. Without having to

grab and drop every object around us, we come to expect that all objects fall when

released, some quickly and some slowly. And then on our birthday, we are given a

helium balloon. We let it go and it immediately soars up and out of reach (and we

cry). But we quickly learn to correctly predict which objects fall quickly, slowly,

and which don’t fall at all – even without having to hold them first!

This learning mechanism is not intrinsic to animals, it can be achieved in machines

as well, hence the term Machine Learning: training/teaching computers to predict

(i.e. having them learn) the structure and/or input-output relationships based on

previously-observed patterns.

Back to our ball-dropping example, we can reduce any object to a set of summa-

rizing features such as color, mass, and volume. A tennis ball, for example, would

instead be known as “object that is neon-green, 60 grams, and 0.15 liters”. Our

goal could be to train a predictor (or classifier) to correctly hypothesize whether an

object – known only by its color, mass, and volume – drops like a rock, more like a

feather, or floats up like a balloon.
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We start by inspecting a number of samples (e.g. objects of various kinds); for each

sample, we record the values of its input features (color, mass, and volume) and

corresponding output class (whether it falls quickly, slowly, or floats). This set of

samples is the training data, which is then analyzed using a pre-chosen algorithm.

The “machine” crunches the data, attempting to extract the underlying input-output

relationships. Upon completion, a new classifier is returned; able to hypothesize

the class of any object given only its input features.

But how does this work? And which algorithm should we use? There are many

to choose from, each resulting in different types of classifiers. In the following

sections, we give a more formal perspective of machine learning, briefly overview

various existing families of algorithms, and go into more detail on one specific

family: the focus of our work, boosting.

2.1 Learning to Predict

Algebraically, we can represent any object as a set of d features, just as we did in the

example above. Note that in general, an “object” can refer to any form of entity that

we are dealing with (e.g. a digital image, bouts of animal behavior, financial trends,

etc.; not necessarily a physical object). Accordingly, we abstract any such entity as

a d-dimensional vector x, with each dimension encoding the value of some corre-

sponding feature. Note that categorical (i.e. nominal) features can be represented

as numerical features by assigning a discrete index to each category. As such, we

define the input space X as the region of the overall space R
d in which the data is

concentrated:

x ∈ X ⊆ R
d

Similarly, we can represent any output properties in which we are interested (i.e.

observations) as a K-dimensional vector y, and define Y as the output space1:

y ∈ Y ⊆ R
K

We assume that there is an underlying “order” to our existence, encoded as the prob-

abilistic distribution P
Ω

. By marginalizing over all variables that do not comprise X

or Y (i.e. ignoring all variables that are not input features or output observations),

we define Px,y as the distribution that governs the layout and density of our specific

input and output data.

1 For simplicity, we forego the possibility of structured output [4, 20] in this section.
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Our high-level goal is to determine a function H : X → Y that accurately predicts

the output y given a specific input x, i.e. H(x) ≈ y. To characterize the perfor-

mance of this function, we need to define a notion of error. Let err be some appro-

priate measure of error between a prediction ỹ ≡ H(x) and an expected output y.

Accordingly, we can define the expected error εE:

εE ≡ Ex,y

{
err
(
H(x),y

)}
(2.1)

The lower the expected error, the more accurate the predictor. However, the joint

space X× Y (i.e. all possible input-output combinations) may consist of an infinite

number of points, each with corresponding probabilities that cannot be explicitly

computed. So how do we gauge this error? The best we can do is analyze a finite

subset by gathering N points and consolidating them into a dataset S. Collecting

data in an unbiased way is equivalent to sampling from the joint distribution Px,y:

S ≡ {(xn,yn)}Nn=1 ∼ Px,y

With this dataset in hand, we can compute the corresponding empirical error εS:

εS ≡
1

N

N∑

n=1

err
(
H(xn),yn

)
(2.2)

Throughout this work, we assume that our empirical error is a good enough approx-

imation of the expected error: εS ≈ εE. There is a lot of formal math rigorously

defining the notion of “good enough”; however, it is outside the scope of our work.

Please refer to [1] for a more comprehensive discussion on the topic.

Unsupervised Learning

In many situations, we only have access to the input points {xn}, not their cor-

responding outputs {yn}. This could happen if the output observations or class

labels are very difficult or impossible to obtain or are simply hidden from us. These

situations constitute the Unsupervised Learning regime, so-named because no su-

pervision (i.e. labels or expected outputs) are provided.

In this regime, algorithms can aim to cluster the data based on its input statistics

(e.g. K-Means and variants [14] and Gaussian Mixture Models [8]), or to reduce

the dimensionality of the input data (e.g. Principal Component Analysis (PCA),

Linear Discriminant Analysis (LDA), and variants [10]), or to transform the input
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data into more meaningful feature representations (e.g. Self-Organizing Maps [16]

and t-Distributed Stochastic Neighborhood Encoding (tSNE) [17]), to name a few.

However, throughout this work, we assume that we do have access to fully labeled

data, or all of S. Accordingly, our work focuses on the Supervised Learning regime.

In this regime, we can still carry out any of the methods mentioned above, but we

can also perform two other important tasks: regression and classification.

Regression

Back to our falling objects example, given only the color, mass, and volume of an

object, we can try to predict the amount of time it takes that object to fall when

dropped from a height of 1 m. In this case, our training set S consists of a scalar-

valued output observation yn, namely, the falling time associated with each object

n. A pre-chosen regression method crunches the data, attempting to extract the un-

derlying input-output relationships. Upon completion, a new regressor is returned,

able to estimate the falling time of any object given only its input feature values.

More concretely, a regressor H estimates the value of one or more output observa-

tions (dependent variables) y given the input features (independent variables) x:

H : X→ Y such that: H(x) ≈ y

To quantify the accuracy of H, we make use an error function err, as in Eq. 2.1.

A correct estimate should always incur zero error. In the case of regression, the

larger the estimate relative to the expected output, the worse the error should be;

similarly, the smaller the estimate relative to the expected output, the worse the error

should be. Many different functions achieve this goal. Depending on the specific

problem, some may be more suitable than others. Arguably the most intuitive and

mathematically-simple function used for regression is the squared L2 norm between

an estimate and its expected output:

err(ỹ,y) ≡ ‖ỹ− y‖2

Classification

Instead of dropping objects in air, what if we wish to predict whether they float or

they sink in water? In this case, our training set S consists of an output class associ-

ated with each object: whether it floats or sinks. Predicting one of several classes is

aptly known as classification. A pre-chosen classification method crunches the data,
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attempting to extract the underlying input-output relationships. Upon completion,

a new classifier is returned, able to hypothesize the class of any object given only

its input feature values.

More formally, a classifier F hypothesizes the class label y given input features x:

F : X→ Y such that: F (x) ≈ y

In the context of classification, the output class is represented as an integer. For

instance, if there are K possible classes, the output space Y can be defined as:

Y ≡ {1,2, ...,K}

Quantifying the error of a classifier is different than that of a regressor. A class label

is a discrete quantity; thus, there is no smooth notion of “almost” – a hypothesis is

either right or it is wrong2. Accordingly, an apt error function for use in Eq. 2.1 is

the misclassification indicator (error = 0 for the right answer, error = 1 for wrong):

err(ỹ, y) ≡ 1(ỹ 6=y)

Estimating the Underlying Distributions

Recall our assumption that there exists an intrinsic order, encoded as a distribution

Px,y over the joint input-output space X× Y. Given a specific input x, the posterior

distribution Py|x can be computed using Bayes’ theorem:

P (y |x) ≡ P (x, y)
∑

k∈Y

P (x, k)

Our goal is to understand the very phenomenon that is being described by these

distributions; thus, by definition, we do not know them and so we cannot directly

evaluate them. However, if we were somehow able to evaluate Py|x for any x and y,

we could classify any given point x as the class corresponding to the highest poste-

rior probability. This (purely theoretical) strategy guarantees optimal classification,

yielding the lowest possible expected error, i.e. the Bayes classifier F
∗

:

F
∗

(x) ≡ argmax
y∈Y
{P (y |x)} (2.3)

2 Actually, some mistakes may be better (or less severe) than others. This scenario is known as

cost-sensitive classification, and is discussed in more detail in Ch. 4.
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But as we have just asserted, we cannot directly access Py|x in practice. Fortunately,

we can make use of our dataset S to form an empirical estimate P̃ , using this esti-

mate as a basis for a Maximum A Posteriori (MAP) classifier F :

F (x) ≡ argmax
y∈Y
{P̃ (y |x)} (2.4)

Being a finite dataset (i.e. having only N discrete points), we need to generalize

over the entire input-output space. To this end, several approaches exist.

Non-parametric methods generalize the labels of discrete data points to their sur-

roundings [21]. Kernel Density Estimation uses a pre-chosen kernel to smooth the

discrete points in S so that they cover a much larger range of the problem space.

Using K-Nearest Neighbors, the estimated posterior probability of a query point

depends on distances from the K closest points in S and their corresponding labels.

Similarly, Random Ferns use an ensemble of random input-space-hashing functions

(i.e. ferns), each with a corresponding empirical posterior distribution, averaging

them to form an overall estimate [18].

Alternatively, parametric models, explicitly defined over the entire space, can be

used to estimate the joint distribution (and hence also the posterior distribution).

Using Bayesian-style methods (e.g. Naive Bayes), model parameters are optimized

to maximize the likelihood of the dataset [13].

With these estimation techniques, the choice of kernel or model can be rather heuris-

tic, especially when little is known about the underlying structure of the problem.

Regardless, the act of classification requires making a specific decision. In deter-

mining the maximal a posteriori class (as in Eq. 2.4), a probability estimate is used

only in relative comparisons; its absolute value is unimportant. This fact is particu-

larly apparent when there are few classes.

Binary Classification

In the special case of binary classification (i.e. when K=2), we are distinguishing

between the smallest possible number of distinct classes: two. Accordingly, data

is typically split into two, a positive and a negative set, and the output space Y is

commonly defined as:

Y ≡ {±1}

The binary MAP classifier (i.e. the two-class equivalent of Eq. 2.4) reduces to:

F (x) ≡
{

+1, P̃ (y=+1 |x) > 1/2

−1, P̃ (y=+1 |x) ≤ 1/2
≡ sign

(
P̃ (y=+1 |x)− 1/2

)
(2.5)
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Note that the estimate P̃y|x may itself be inaccurate due to various sources of error:

poor model selection, dataset bias, and unaccounted noise, to name a few. Moreover,

classification is simply the comparison between the probability and a single fixed

threshold (e.g. 1/2 in Eq. 2.5). Consequently, requiring the estimator to be a valid

probabilistic distribution may add unnecessary constraints and complexity.

Estimating Class Boundaries

Instead of applying the indirect procedure of first estimating the posterior and then

classifying using MAP, we can ignore probabilities entirely and focus directly on

decision boundaries. After all, this is what any classifier essentially reduces to.

Linear models split the input space into two using a hyperplane (i.e. a comparison

between the weighted average of feature values and a threshold). Logistic Regres-

sion [6] and Perceptron Learning [12] train (i.e. fine-tune) the hyperplane weights

to improve the separation between positive and negative data points.

In many cases, the given input features are not ideal for linear classification. Rather

than using these feature directly, we can apply various non-linear transformations to

them to generate a new, potentially more suitable representation of the data, thereby

leading to more expressive classifiers.

Support Vector Machines (SVMs) work with a kernelization (i.e. a user-defined

high-dimensional non-linear transformation) of the input data [7], maximizing the

margin (i.e. minimum distance) between points of differing classes with a hyper-

plane in the kernel (transformed) space. Instead of requiring a user-defined kernel

(i.e. a hand-coded feature transform), Neural Networks infer a transform from the

data itself. This transform is implemented using multiple layers of interconnected

perceptrons (i.e. linear projections followed by a non-linear transform) [15], and is

optimized to facilitate more accurate classification.

Using multiple hyperplanes, Decision Trees divide the input space into leaves (i.e.

non-overlapping regions), each with a specific class label [19]. Assigning a label to

a given query point involves a set of comparisons, starting at the root node (i.e. the

trunk of the tree) and traversing through the branches – depending on the outcome

of each comparison – until finally reaching a leaf node3.

The methods described above lead to learners (i.e. regressors or classifiers) that

can function on their own. Some learners are more accurate and some are less

3Sec 3.3 describes decision trees in more detail.
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so. However, by appropriately combining the predictions of an ensemble of such

learners, we can potentially improve (or boost) their individual accuracies. This

“boosting” procedure is the focus of our work, and is described in greater detail in

the following section.

2.2 Boosting

Boosting is a beautifully simple yet effective procedure: given a set of relatively-

poor classifiers (or weak learners), a strong classifier can be induced through a

linear combination (i.e. a weighted sum) of their outputs. The basic procedure for

boosting is intuitively described as follows:

1. Do your best: find (or train) the best weak learner given the original data (i.e.

the learner that achieves the lowest training error as in Eq. 2.2).

2. Check your performance: based on the accuracy of the cumulative sum

of previous learner(s), give more importance to individual samples that have

incurred a larger error than to those with smaller error.

3. Focus on your mistakes: again, find (or train) a new weak learner, this time,

accounting for the updated importance weights of the samples when deter-

mining the corresponding error (see Eq. 2.11 below).

4. Keep on keepin’ on: repeat steps 2 and 3 until some satisfactory stopping

condition is met.

One of the earliest and most popular algorithms for binary boosting is AdaBoost

[11]. In the following sections, we motivate the AdaBoost algorithm from a prac-

tical classification standpoint. AdaBoost can also be derived from a statistically-

motivated standpoint; please see Appendix 7.1.

Greedily Minimizing a Surrogate Loss

In the context of binary classification, we are trying to generate a strong classifier

F : X→ {±1}. Let us assume that we have a set F of binary weak learners f :

F ⊆
{
f
∣
∣ f : X→ {±1}

}

We define a confidence function h : X → R as a linear combination of T weak

learners; ft ∈ F are the learners and αt ∈ R are their corresponding weights:

h(x) ≡
T∑

t=1

αtft(x) (2.6)
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The more weak learners individually agree with each others’ predictions, the further

h is from 0, and the more confident the prediction. Our strong classifier F simply

predicts the more confident of the two possible labels; equivalent to the sign of h:

F (x) ≡ sign
(
h(x)

)
(2.7)

With all T weak learners in the mix, the average training error ε is defined as:

ε ≡ 1

N

N∑

n=1

1(F (xn) 6=yn) (2.8)

In this form, finding the T optimal (ft, αt) pairs is very difficult (if not intractable)

for two reasons. Firstly, due to the indicator function, the error ε is non-convex in

the T pairs (ft, αt). Secondly, this optimization requires an exponential number of

operations (i.e. on the order of |F|T, where |F| is the number of weak learners in

the set F; potentially quite large).

To address the first issue, we use a convex surrogate loss function L. A valid loss

should also upper-bound the training error, guaranteeing that error minimization

is an implied consequence of loss minimization. The exponential function e−yh is

convex and upper-bounds the misclassification error for an individual point. It is

the basis of AdaBoost, resulting in the following surrogate loss:

ε ≤ L ≡ 1

N

N∑

n=1

e−ynh(xn) (2.9)

Note that: 1(sign(h) 6=y) ≤ e−yh therefore: L = 0 ⇒ ε = 0

To address the second issue, we apply a greedy, iterative training procedure. Instead

of simultaneously optimizing all T learners, we “greedily” consider only the best

one at each iteration. To start, we find the single best learner f1. Holding f1 fixed,

we find the best subsequent learner f2. Then, holding all previously-chosen learners

fixed, we find the next one, and so on. This greedy procedure may be suboptimal

due to its stage-wise nature, but it reduces the number of operations down to an

order of only |F|·T , a tractable endeavor.

Optimal Weak Learner and Weight

Let’s assume that we have just trained the first I < T iterations. Consolidating

Eqs. 2.9 and 2.6, the corresponding loss can be explicitly defined as:

LI =
1

N

N∑

n=1

exp
(

−yn
I∑

t=1

αtft(xn)
)
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The loss can be expressed as a sum of its current sample-wise constituents wn, re-

ferred to as “sample weights” (not to be confused with weak learner weights αt):

LI =
1

N

N∑

n=1

wn where: wn ≡ exp
(

−yn
I∑

t=1

αtft(xn)
)

The sample weightwn summarizes the cumulative performance of previously-chosen

weak learners in classifying sample n; the worse the classification, the greater its

weight (and vice-versa). Since all previous learners ft and weights αt are held fixed

due to the greedy training procedure, the next iteration’s loss L is defined as a func-

tion of only the next weak learner f and corresponding weight α, as follows:

L(f, α) =
1

N

N∑

n=1

exp
(

−yn
( I∑

t=1

αtft(xn) + αf(xn)
))

=
1

N

N∑

n=1

exp
(

−yn
I∑

t=1

αtft(xn)

︸ ︷︷ ︸

wn

)

e−αynf(xn) =
1

N

N∑

n=1

wn e
−αynf(xn)

(2.10)

Since class labels and binary weak learner outputs can only be ±1, therefore:

incorrect classification: f(x) 6= y ⇒ e−α yf(x) = eα

correct classification: f(x) = y ⇒ e−α yf(x) = e−α

Furthermore, given a weak learner f, the relative weighted error εf is defined as the

(weighted) proportion of samples that are incorrectly classified by f :

εf ≡

N∑

n=1

1(f(xn) 6=yn)wn

N∑

n=1

wn

=
1

NLI

N∑

n=1

1(f(xn) 6=yn)wn (2.11)

∴
1

N

N∑

n=1

1(f(xn) 6=yn)wn = εf LI ∴
1

N

N∑

n=1

1(f(xn)=yn)wn = (1−εf)LI

Accordingly, Eq. 2.10 can be expressed as the sum of two terms (misclassifications

and correct classifications):

L(f, α) =
eα

N

N∑

n=1

1(f(xn) 6=yn)wn +
e−α

N

N∑

n=1

1(f(xn)=yn)wn

=
(
εf e

α + (1−εf) e−α
)
LI
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Given a weak learner f, the optimal corresponding weight α∗ is obtained by setting

the derivative to zero and solving:

∂L
∂α

= 0 = εf e
α∗ − (1−εf) e−α∗

∴ e2α
∗

=
1−εf
εf

∴ α∗ =
1

2
ln
(1−εf

εf

)

(2.12)

The AdaBoost surrogate loss (as in Eq. 2.9) not only leads to a simple, closed-form

solution for the optimal learner weight α∗, but for the resulting loss as well:

eα
∗

=

√
1−εf
εf

∴ L(f) =
(

εf

√
1−εf
εf

+ (1−εf)
√

εf
1−εf

)

LI = 2
√
εf(1−εf)LI (2.13)

Consequently, the optimal weak learner f
∗

is the minimizer of the above loss. In

practice, f
∗

is determined by looping through and evaluating Eq. 2.14 for weak

learners f ∈ F, finally recalling the best one.

f
∗

= argmin
f∈F
{L(f)} (2.14)

Training a Weak Learner

At each iteration, instead of passively finding the best weak learner from a set of

predetermined learners F, a weak learner can be specifically trained for use in the

current iteration. Accordingly, any of the methods discussed in Sec. 2.1 can be used,

appropriately modified to account for the specific sample weightswn (resulting from

the previous boosting iterations).

In particular, shallow decision trees are easily trainable (refer to Sec 3.3) and have

proven to be very suitable weak learners in practice, used in a multitude of domains

such as computer vision, behavior analysis, and document ranking [9, 5, 2]. Shallow

trees are also particularly quick to evaluate, enabling applications that require fast

output speeds, especially when combined with cascades.

Cascaded Evaluation

Recall that a strong classifier F returns the sign of the confidence function h:

F (x) ≡ sign
(
h(x)

)
where: h(x) ≡

T∑

t=1

ft(x)αt
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Instead of evaluating all T weak learners, the final decision may already be deter-

mined (with a high probability or even definitely) after only I < T learners:

F (x) ≈ sign
(
hI(x)

)
where: hI(x) ≡

I∑

t=1

ft(x)αt

This observation gives rise to the idea of cascaded evaluation: instead of accumulat-

ing the confidence of all T learners at once, keep track of the cumulative confidence

score. If a lower or upper threshold is reached before all T learners are evaluated,

an early classification can be made. Thresholds are typically set by trading-off ac-

curacy and aggressiveness of early termination (e.g. by finding upper and lower

thresholds h
±

t for which 95% of validation samples are correctly classified after

only 10% of weak learners have been evaluated). As a result, early classification

can be as accurate or aggressive as desired [3].

Accordingly, the following procedure (called soft cascades [3]) can be used to eval-

uate a boosted classifier:

0. initialize to: t = 0, h = 0

1. increment t and update the confidence score: t← t+1, h← h+ ft(x)αt

2. if a lower or upper threshold is reached, return with the appropriate label

(i.e. if h ≤ h
−

t then return F =−1, if h ≥ h
+

t then return F =+1)

3. if all T weak learners have been evaluated, return F =sign(h)

otherwise, goto step 1.

Note that a simple extension to the above procedure is to repeat step 1 for a total of

M times before continuing to step 2, thereby coarsening the cascade.

Boosting Boosting

The combination of simple weak learners and the potential for fast cascaded evalua-

tion makes boosted shallow decision trees a very strong candidate for many machine

learning tasks. In this work, we aim to further improve boosting by:

• Proposing a procedure for speeding up the training of decision trees (Ch. 3)

• Proposing a unified method for improved cost-sensitive multi-class boosting (Ch. 4)

• Proposing better weak learners to improve classification boundaries (Ch. 5)
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Chapter 3

QUICKLY BOOSTING DECISION TREES

Corresponding paper: [1]

Boosted decision trees are among the most popular learning tech-

niques in use today. While exhibiting fast speeds at test time, rela-

tively slow training renders them impractical for applications with

real-time learning requirements. We propose a principled approach

to overcome this drawback. We prove a bound on the error of a de-

cision stump given its preliminary error on a subset of the training

data; the bound may be used to prune unpromising features early

in the training process. We propose a fast training algorithm that

exploits this bound, yielding speedups of an order of magnitude

with no loss in the final performance of the classifier. Our method

is not a new variant of boosting; rather, it is used in conjunction

with existing boosting algorithms and other sampling methods to

achieve even greater speedups.

3.1 Introduction

Boosting is a technique of combining many weak learners to form a single strong

one [30, 17, 18]. Shallow decision trees are commonly used as weak learners due to

their simplicity and robustness in practice [26, 5, 28, 22]. This powerful combina-

tion (of boosting and decision trees) is the learning backbone behind many methods

across a variety of domains such as computer vision, behavior analysis, and docu-

ment ranking to name a few [11, 8, 2], with the added benefit of exhibiting very fast

speeds at test time.

Learning speed is important as well. In active or real-time learning situations such

as for human-in-the-loop processes or when dealing with data streams, classifiers

must learn quickly to be practical. This is our motivation: fast training without

sacrificing accuracy. To this end, we propose a principled approach. Our method
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offers a speedup of an order of magnitude over prior approaches while maintaining

identical performance.

Our contributions are the following:

1. Given the performance on a subset of data, we prove a bound on a stump’s

classification error, information gain, Gini impurity, and variance.

2. Based on this bound, we propose an algorithm guaranteed to produce identi-

cal trees as classical algorithms, and experimentally show it to be one order

of magnitude faster for classification tasks.

3. We outline an algorithm for quickly boosting decision trees using our quick

tree-training method, applicable to any variant of boosting.

In the following sections, we discuss related work, inspect the tree-boosting process,

describe our algorithm, prove our bound, and conclude with experiments on several

datasets, demonstrating our gains.

3.2 Related Work

Many variants of boosting [18] have proven to be competitive in terms of predic-

tion accuracy in a variety of applications [7]; however, the slow training speed of

boosted trees remains a practical drawback. A large body of literature is devoted to

speeding up boosting, mostly categorizable as methods that subsample features or

data points and methods that speed up training of the trees themselves.

In many situations, groups of features are highly correlated. By carefully choosing

exemplars, an entire set of features can be pruned based on the performance of its

exemplar. [12] propose clustering features based on their performances in previous

stages of boosting. [21] partition features into many subsets, deciding which to

inspect at each stage using adversarial multi-armed bandits. [25] use random pro-

jections to reduce the data dimensionality, in essence merging correlated features.

Other approaches subsample the data. In Weight-trimming [20], all samples with

weights smaller than a certain threshold are ignored. With Stochastic boosting [19],

each weak learner is trained on a random subset of the data. For very large datasets

or in the case of on-line learning, elaborate sampling methods have been proposed,

e.g. Hoeffding trees [15] and Filter Boost [14, 4]. To this end, probabilistic bounds

can be computed on the error rates given the number of samples used [24]. More

recently, Laminating [16] trades off number of features for number of samples con-

sidered as training progresses, enabling constant-time boosting.
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Although all these methods can be made to work in practice, they provide no per-

formance guarantees.

A third line of work focuses on speeding up training of decision trees. Building

upon the C4.5 tree-training algorithm of [27], using shallow (depth-D) trees and

quantizing features values into B≪N bins leads to an O(D×d×N) implementation

where d is the number of features, and N the number of samples [34, 31].

Orthogonal to all of the above methods is the use of parallelization; multiple cores

or GPUs. Recently, [32] distributed computation over cluster nodes for the applica-

tion of ranking; however, reporting lower accuracies as a result. GPU implementa-

tions of GentleBoost exist for object detection [9] and for medical imaging using

Probabilistic Boosting Trees (PBT) [3]. Although these methods offer speedups in

their own right, we focus on the single-core paradigm.

Regardless of the subsampling heuristic used, once a subset of features or data

points is obtained, weak learners are trained on that subset in its entirety. Conse-

quently, each of the aforementioned strategies can be viewed as a two-stage process;

in the first, a smaller set of features or data points is collected, and in the second,

decision trees are trained on that entire subset.

We propose a method for speeding up this second stage; thus, our approach can

be used in conjunction with all the prior work mentioned above for even greater

speedup. Unlike the aforementioned methods, our approach provides a performance

guarantee: highly sped-up training with identical performance as classical training.

3.3 Boosting Trees

A boosted classifier (or regressor) having the form F (x) ≡ sign
(∑

t αtft(x)
)

can

be trained by greedily minimizing a loss functionL; i.e. by optimizing weak learner

ft and corresponding weight αt at each iteration t. Before training begins, each data

sample n is assigned a non-negative weight wn (as discussed in Sec. 2.2). After

each iteration, misclassified samples are weighted more heavily, thereby increasing

the severity of misclassifying them in following iterations. Regardless of the flavor

of boosting used (i.e. AdaBoost, LogitBoost, L2Boost, etc.), each iteration requires

training a new weak learner given the sample weights. We focus on the case when

the weak learners are shallow trees.
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Training Decision Trees

In the context of classification, a binary decision tree fTREE(x) processes an input

x and outputs a class label (either +1 or −1). Internally, the tree is composed

of a decision stump (i.e. a two-way split) sj(x) at every non-leaf node j. Each

stump corresponds to a binary decision, parametrized with a polarity p ∈ {±1}, a

threshold τ ∈ R, and a feature index k ∈ {1,2, ...,d}, and expects an input x ∈ R
d:

sj(x) ≡ pj sign
(
xkj−τj

)
where: xkj ≡ 〈x, δδδkj〉
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Figure 3.1: A shallow (depth-3) binary tree. Each non-leaf node corresponds to

a binary decision stump sj(x). The output of a stump determines which stump is

evaluated next: an output of +1 means the next stump is to the right, otherwise

the next stump is to the left. Upon reaching a leaf node, the output of the tree

corresponds to the output of the last stump to be evaluated.

Trees are commonly grown using a greedy procedure as described in [6, 27], re-

cursively setting one stump at a time, starting at the root node (i.e. the trunk) and

working through to the extremities (i.e. the pre-leaf nodes). In this work, we focus

on classification error; for other split criteria (e.g. information gain, Gini impurity,

or variance), refer to Appendix 7.2 for similar derivations.

In the context of classification, the goal in each stage of stump-training is to find

the optimal parameters that minimize ε, the average weighted classification error:

ε ≡ 1

Z

N∑

n=1

1(sj(xn) 6=yn)wn where: Z ≡
N∑

n=1

wn (3.1)

Note that while the root node evaluates every input datapoint, stumps further down

the precessing chain only evaluate subsets of the data, based on the results of earlier-

evaluated stumps in the tree. For example, in Fig. 3.1, stump s6 only evaluates

points n such that: s1(xn) = +1 and s3(xn) = −1. From hereon-in, we implicitly

assume that when training stump sj , all points n that do not reach sj have wn = 0.



23

Consequently, in training a decision stump (specifically on the kth feature of the

data), we can expand the weighted classification error (Eq. 3.1) as:

εk =
1

Z

( N∑

n=1

1(xnk ≤ τ ∧ yn=+p)wn +

N∑

n=1

1(xnk > τ ∧ yn=−p)wn

)

In practice, this error is minimized by finding k∗; the best single feature of them all:

(p∗, τ∗, k∗) ≡ argmin
p,τ,k

εk ε∗ ≡ εk∗

In current implementations of boosting [31], feature values can first be quantized

into B bins by linearly distributing them in [1, B] (outer bins corresponding to the

min/max, or to a fixed number of standard deviations from the mean), or by any

other quantization method. Not surprisingly, using too few bins reduces threshold

precision and hence overall performance. We find that B = 256 is large enough to

incur no loss in practice.

Determining the optimal threshold τ∗ requires accumulating each sample’s weight

into discrete bins corresponding to that sample’s feature value xnk. This procedure

turns out to still be quite costly: for each of the d features, the weights of each of the

N samples have to be accumulated in bins, causing the training of a single stump

to be an O(d×N) operation; the very bottleneck of training boosted decision trees.

In the following sections, we examine the training process in greater detail and

develop an intuition for how we can reduce computational costs.

Progressively Increasing Subsets

Let us assume that at the start of each boosting iteration, the data samples are sorted

in order of decreasing weight, i.e: r < m ⇒ wr ≥ wm. Consequently, we define

Zm, the mass of the heaviest subset of m data points:

Zm ≡
m∑

n=1

wn [note: ZN ≡ Z]

Clearly, Zm is greater or equal to the sum of any m other sample weights. As

we increase m, the m-subset includes more samples, and accordingly, its mass Zm

increases (although at a diminishing rate).

In Figure 3.2, we plot Zm/Z for progressively increasing m-subsets, averaged over

multiple iterations. An interesting empirical observation can be made about boost-

ing: a large fraction of the overall weight is accounted for by just a few samples.
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Since training time is dependent on the number of samples and not on their cumula-

tive weight, we should be able to leverage this fact and train using only a subset of

the data. The more non-uniform the weight distribution, the more we can leverage;

boosting is an ideal situation where few samples account for most of the weight.

0.3% 1% 3% 10% 30% 100%
0%

20%

40%

60%

80%

100%

Relative Subset Size (m/N)

R
el

a
ti

v
e

S
u
b
se

t
M

a
ss

(Z
m

/Z
)

 

 
AdaBoost

LogitBoost

L
2
 Boost

Figure 3.2: Progressively increasing m-subset mass using different variants of

boosting. Relative subset mass Zm/Z exceeds 90% after only m/N ≈ 7% for

AdaBoost and m/N ≈ 20% for L2Boost.

The same observation was made by [20], giving rise to the idea of weight-trimming,

which proceeds as follows. At the start of each boosting iteration, samples are

sorted in order of weight (from largest to smallest). For that iteration, only the sam-

ples belonging to the smallest m-subset such that Zm/Z ≥ η are used for training

(where η is some predefined threshold); all the other samples are temporarily ig-

nored – or trimmed. Friedman et al. claimed this to “dramatically reduce computa-

tion for boosted models without sacrificing accuracy.” In particular, they prescribed

η = 90% to 99% “typically”, but they left open the question of how to choose η from

the statistics of the data [20].

Their work raises an interesting question: Is there a principled way to determine

(and train on only) the smallest subset after which including more samples does not

alter the final stump? Indeed, we prove that a relatively small m-subset contains

enough information to set the optimal stump; thereby saving a lot of computation.

Preliminary Errors

Definition: given a feature k and an m-subset, the best preliminary error ε
(m)

k is

the lowest achievable training error if only the data points in that subset are consid-

ered. This is equivalent to the error if all samples not in that m-subset are trimmed.
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ε
(m)

k ≡
1

Zm

( m∑

n=1

1(xnk ≤ τ
(m)

k ∧ yn=+p
(m)

k )wn +

m∑

n=1

1(xnk > τ
(m)

k ∧ yn=−p
(m)

k )wn

)

[where p
(m)

k and τ
(m)

k are optimal preliminary parameters]

The emphasis on preliminary indicates that the subset does not contain all data

points, i.e: m < N , and the emphasis on best indicates that no choice of polarity p

or threshold τ can lead to a lower preliminary error using that feature.

As described above, given a feature k, a stump is trained by accumulating sample

weights into bins. We can view this as a progression; initially, only a few samples

are binned, and as training continues, more and more samples are accounted for. As

revealed by the smoothness of the traces, ε
(m)

k may be computed incrementally.
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Figure 3.3: Traces of the best preliminary errors over increasing Zm/Z. Each

curve corresponds to a different feature k. The dashed orange curve corresponds

to a feature that turns out to be misleading (i.e. its final error drastically worsens

when all the sample weights are accumulated). The thick green curve corresponds

to the optimal feature; note that it is among the best performing features even when

training with relatively few samples.

Figure 3.3 shows the best preliminary error for each of the features in a typical

experiment. By examining Figure 3.3, we can make four observations:

1. Most of the overall weight is accounted for by the first few samples. (This

can be seen by comparing the top and bottom axes in the figure)
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2. Feature errors increasingly stabilize as m→ N

3. The best performing features at smaller m-subsets (i.e. Zm/Z < 80%) can

end up performing quite poorly once all of the weights are accumulated

(dashed orange curve)

4. The optimal feature is among the best features for smaller m-subsets as well

(solid green curve)

From the full training run shown in Figure 3.3, we note (in retrospect) that using an

m-subset with m/N ≈ 0.2 would suffice in determining the optimal feature. But

how can we know a priori which m is good enough?
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Figure 3.4: Probability that the optimal feature is among the K top-performing

features. The red curve corresponds to K = 1, the purple to K = 10, and the blue

to K = 1% of all features. Note the knee-point around Zm/Z ≈ 75% at which the

optimal feature is among the 10 preliminary-best features over 95% of the time.

Averaging over many training iterations, in Figure 3.4, we plot the probability that

the optimal feature is among the top-performing features when trained on only an

m-subset of the data. This gives us an idea as to how small m can be while still

correctly predicting the optimal feature.

From Figure 3.4, we see that the optimal feature is not amongst the top perform-

ing features until a large enough m-subset is used – in this case, Zm/Z ≈ 75%.

Although “optimality” is not quite appropriate to use in the context of greedy stage-

wise procedures (such as boosted trees), consistently choosing sub-optimal parame-

ters at each stump empirically leads to substantially poorer performance, and should

be avoided. In the following section, we outline our approach, which determines

the optimal stump parameters using the smallest possible m-subset.
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3.4 Pruning Underachieving Features

Figure 3.4 suggests that the optimal feature can often be estimated at a fraction of

the computational cost using the following heuristic:

Faulty Stump Training

1. Train each feature only with samples in the m-subset where Zm/Z ≈ 75%.

2. Prune all but the 10 best performing features.

3. For each of un-pruned feature, complete training on the entire data set.

4. Finally, report the best performing feature (and corresponding parameters).

This heuristic does not guarantee to return the optimal feature, since premature

pruning can occur in step 2. However, if we were somehow able to bound the error,

we would be able to prune features that would provably underachieve (i.e. would

no longer have any chance of being optimal in the end).

Definition: a feature k is denoted underachieving if it is guaranteed to perform

worse than the best-so-far feature k◦ on the entire training data.

Proposition 3.2: for a feature k, the following bound holds (proof given in Sec-

tion 3.4): given two subsets (where one is larger than the other), the product of

subset mass and preliminary error is always greater for the larger subset:

r ≤ m ⇒ Zr ε
(r)

k ≤ Zm ε
(m)

k (3.2)

Let us assume that the best-so-far error ε◦ has been determined over a few of the

features (and the parameters that led to this error have been stored). Hence, this

is an upper-bound for the error of the stump currently being trained. For the next

feature in the queue, even after a smaller (m < N)-subset, then:

Zm ε
(m)

k ≥ Z ε◦ ⇒ Z εk ≥ Z ε◦ ⇒ εk ≥ ε◦

Therefore, if: Zm ε
(m)

k ≥ Z ε◦ then feature k is underachieving and can safely be

pruned. Note that the lower the best-so-far error ε◦, the harsher the bound; conse-

quently, it is desirable to train a relatively low-error feature early on.

Accordingly, we propose a new method based on comparing feature performance

on subsets of data, and consequently pruning underachieving features:
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Quick Stump Training

1. Train each feature only using data in a relatively small m-subset.

2. Sort the features based on their preliminary errors (from best to worst).

3. Continue training one feature at a time on progressively larger subsets,

updating ε
(m)

k after accumulating the samples in each subset.

• if it is underachieving, prune immediately.

• if it trains to completion, save it as best-so-far.

4. Finally, report the best performing feature (and corresponding parameters).

Subset Scheduling

Deciding which schedule of m-subsets to use is a subtlety that requires further ex-

planation. Although this choice does not effect the optimality of the trained stump,

it may effect speedup. If the first “relatively small” m-subset (as prescribed in step

1) is too small, we may lose out on low-error features leading to less-harsh pruning.

If it is too large, we may be doing unnecessary computation. Furthermore, since the

calculation of preliminary error does incur some (albeit, low) computational cost, it

is impractical to use every m when training on progressively larger subsets.

To address this, we implement a simple schedule: The first m-subset is determined

by the parameter η
kp

such that Zm/Z ≈ η
kp

. M following subsets are equally spaced

out between η
kp

and 1. Figure 3.5 shows a parameter sweep over η
kp

and M, from

which we fix η
kp
= 90% and M = 20 and use this setting for all of our experiments.

ηkp

M
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Figure 3.5: Computational cost of training boosted trees over a range of η
kp

and

M, averaged over several types of runs (with varying numbers and depths of trees).

Red corresponds to higher cost, blue to lower cost. All final classifiers are identical.

Standard training corresponds to η
kp
= 100%, resulting in the highest computational

cost. The lowest computational cost is achieved at η
kp
= 90% and M = 20.

Using our quick stump training procedure, we determine the optimal parameters

without having to consider every sample for each feature. By pruning underachiev-
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ing features, a lot of computation is saved. We now outline the full boosting proce-

dure using our quick training method:

Quickly Boosting Decision Trees

1. Initialize weights (sorted in decreasing order).

2. Train decision tree ft (one node at a time) using Quick Stump Training.

3. Perform standard boosting steps:

(a) determine optimal αt (e.g. closed-form optimum or using line-search).

(b) update sample weights given the misclassification error of ft,

according to the specific variant of boosting being used.

(c) if more boosting iterations are needed, sort sample weights in decreasing

order, increment iteration number t; goto step 2.

We note that sorting the weights in step 3(c) above is an O(N) operation. Given an

initially sorted set, boosting updates the sample weights based on whether the sam-

ples were correctly classified or not. All correctly classified samples are weighted

down, but they maintain their respective ordering. Similarly, all misclassified sam-

ples are weighted up, also maintaining their respective ordering. Finally, these two

sorted lists are merged in O(N).

We now give a proof for the bound that our method is based on, and in the following

section, we demonstrate its effectiveness in practice.

Proof of Proposition 3.2

As previously defined, ε
(m)

k is the preliminary weighted classification error computed

using the feature k on samples in the m-subset; thus:

Zm ε
(m)

k =
m∑

n=1

1(xnk ≤ τ
(m)

k ∧ yn=+p
(m)

k )wn +
m∑

n=1

1(xnk > τ
(m)

k ∧ yn=−p
(m)

k )wn

Proposition 3.2: r ≤ m ⇒ Zr ε
(r)

k ≤ Zm ε
(m)

k

Proof: ε
(r)

k is the best achievable preliminary error on the r-subset (and correspond-

ingly, (p
(r)

k, τ
(r)

k ) are the best preliminary parameters); therefore:

Zr ε
(r)

k ≤
r∑

n=1

1(xnk ≤ τ ∧ yn=+p)wn +
r∑

n=1

1(xnk > τ ∧ yn=−p)wn ∀ p, τ
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Hence, switching the optimal parameters (p
(r)

k, τ
(r)

k ) for potentially sub-optimal ones

(p
(m)

k , τ
(m)

k ) (note the subtle change in indices on the right side of the inequality):

Zr ε
(r)

k ≤
r∑

n=1

1(xnk ≤ τ
(m)

k ∧ yn=+p
(m)

k )wn +

r∑

n=1

1(xnk > τ
(m)

k ∧ yn=−p
(m)

k )wn

The resulting sum can only increase when summing over a larger subset (m ≥ r):

Zr ε
(r)

k ≤
m∑

n=1

1(xnk ≤ τ
(m)

k ∧ yn=+p
(m)

k )wn +
m∑

n=1

1(xnk > τ
(m)

k ∧ yn=−p
(m)

k )wn

But the right-hand side of the inequality is equivalent to Zm ε
(m)

k ; thus:

r ≤ m ⇒ Zr ε
(r)

k ≤ Zm ε
(m)

k

Q.E.D.

For similar proofs using information gain, Gini impurity, or variance minimization

as split criteria, refer to Appendix 7.2.

3.5 Experiments

In the previous section, we proposed an efficient stump training algorithm and

showed that it has a lower expected computational cost than the traditional method.

In this section, we describe experiments that are designed to assess whether the

method is practical and whether it delivers significant training speedup. We train

and test on three real-world datasets and empirically compare the speedups.

Datasets

We trained AdaBoosted ensembles of shallow decision trees of various depths on

the following three datasets:

1. CMU-MIT Faces dataset [29]; 8.5 ·103 training and 4.0 ·103 test samples,

4.3 ·103 features used are the result of convolutions with Haar-like wavelets

[33], using 2000 stumps as in [33].

2. INRIA Pedestrian dataset [10]; 1.7 ·104 training and 1.1 ·104 test samples,

5.1 ·103 features used are Integral Channel Features [13]. The classifier has

4000 depth-2 trees as in [13].

3. MNIST Digits [23]; 6.0·104 training and 1.0 ·104 test samples, 7.8·102 features

used are grayscale pixel values. The ten-class classifier uses 1000 depth-4

trees based on [21].
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Figure 3.6: Computational cost versus training loss (left plots) and versus test

error (right plots) for the various heuristics on three datasets: (a1,2) CMU-MIT

Faces, (b1,2) INRIA Pedestrians, and (c1,2) MNIST Digits [see text for details].

Dashed lines correspond to the “quick” versions of the heuristics (using our pro-

posed method) and solid lines correspond to the original heuristics. Test error is

defined as the area over the ROC curve.

Comparisons

Quick Boosting can be used in conjunction with all previously mentioned heuristics

to provide further gains in training speed. We report all computational costs in units

proportional to Flops, since running time (in seconds) is dependent on compiler

optimizations which are beyond the scope of this work.

In Figure 3.6, we plot the computation cost versus training loss and versus test error.
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We compare vanilla (no heuristics) AdaBoost, Weight-Trimming with η = 90% and

99% [see Sec. 3.3], LazyBoost 90% and 50% (only 90% or 50% randomly selected

features are used to train each weak learner), and StochasticBoost (only a 50%

random subset of the samples are used to train each weak learner). To these six

heuristics, we apply our method to produce six “quick” versions.

We further note that our goal in these experiments is not to tweak and enhance the

performance of the classifiers, but to compare the performance of the heuristics with

and without our proposed method.

Results and Discussion

From Figure 3.6, we make several observations. “Quick” versions require less com-

putational costs (and produce identical classifiers) as their slow counterparts. From

the training loss plots (5a1, 5b1, 5c1), we gauge the speed-up offered by our method,

often around an order of magnitude. Quick-LazyBoost-50% and Quick-Stochastic-

Boost-50% are the least computationally-intensive heuristics, and vanilla AdaBoost

always achieves the smallest training loss and attains the lowest test error in two of

the three datasets.

The motivation behind this work was to speed up training such that (i) for a fixed

computational budget, the best possible classifier could be trained, and (ii) given a

desired performance, a classifier could be trained with the least computational cost.

For each dataset, we find the lowest-cost heuristic and set that computational cost as

our budget. We then boost as many weak learners as our budget permits for each of

the heuristics (with and without our method) and compare the test errors achieved,

plotting the relative gains in Figure 3.7. For most of the heuristics, there is a two

to eight-fold reduction in test error, whereas for weight-trimming, we see less of

a benefit. In fact, for the second dataset, Weight-Trimming-90% runs at the same

cost with and without our speedup.

Conversely, in Figure 3.8, we compare how much less computation is required to

achieve the best test error rate by using our method for each heuristic. Most heuris-

tics see an eight to sixteen-fold reduction in computational cost, whereas for weight-

trimming, there is still a speedup, albeit only between one and two-fold.

As discussed in Sec. 3.3, weight-trimming is similar to our method in that it prunes

features, although it does so naively - without adhering to a provable bound. This

results in a speed-up (at times almost equivalent to our own), but also leads to

classifiers that do not perform as well as those trained using the other heuristics.
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Figure 3.7: Relative (x-fold) reduction in test error (area over the ROC) due to our

method, given a fixed computational cost. Bar triplets of the same color correspond

to the three datasets: CMU-MIT Faces, INRIA Pedestrians, and MNIST Digits.
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Figure 3.8: Relative speedup in training time due to our proposed method to

achieve the desired minimal error rate. Bar triplets of the same color correspond

to the three datasets: CMU-MIT Faces, INRIA Pedestrians, and MNIST Digits.

3.6 Conclusions

We presented a principled approach for speeding up training of boosted decision

trees. Our approach is built on a novel bound on classification or regression error,

guaranteeing that gains in speed do not come at a loss in classification performance.

Experiments show that our method is able to reduce training cost by an order of

magnitude or more, or given a computational budget, is able to train classifiers that

reduce errors on average by two-fold or more.

Our ideas may be applied concurrently with other techniques for speeding up boost-

ing (e.g. subsampling of large datasets) and do not limit the generality of the

method, enabling boosting for applications where fast classifier training is key.
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Chapter 4

COST-SENSITIVE MULTI-CLASS BOOSTING

Corresponding paper: [2]

We present a simple unified framework for multi-class cost-

sensitive boosting. The minimum-risk class is estimated directly,

rather than via an approximation of the posterior distribution. Our

method jointly optimizes binary weak learners and their corre-

sponding output vectors, requiring classes to share features at each

iteration. By training in a cost-sensitive manner, weak learners

are invested in separating classes whose discrimination is impor-

tant, at the expense of less relevant classification boundaries. Ad-

ditional contributions are a family of loss functions along with a

proof that our algorithm is boostable in the theoretical sense, as

well as an efficient procedure for growing decision trees for use as

weak learners. We evaluate our method on a variety of datasets: a

collection of synthetic planar data, common UCI datasets, MNIST

digits, SUN scenes, and CUB-200 birds. Results show state-of-the-

art performance across all datasets against several strong baselines,

including non-boosting multi-class approaches.

4.1 Introduction

Boosted classifiers are easy and quick to train [3], and yield the fastest classifiers

when computed as a cascade [7], enabling real-time applications such as object

detection and animal tracking [41, 17, 26].

In the case of binary classification, boosting is well understood [35, 21, 22]. From

a statistical standpoint, boosting can be seen as iteratively improving an estimator

of the underlying posterior distribution of the data [23]; refer to Appendix 7.1 for

details. However, the multi-class case is not yet as well understood. Generalizing

binary boosting to multi-class often requires various heuristics in order to work (see

Sec. 4.2). Moreover, different errors may incur different costs, with such situations
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arising in a wide variety of domains such as computer vision, behavior analysis, and

medical diagnosis, to name a few [15, 10, 33].

An interesting case in point is the categorization of objects naturally organized into

a taxonomy, such as birds [8]. Misclassifying taxonomically close categories (eg.

confusing two types of duck) is usually more forgivable than distant categories (eg.

mistaking a vulture for a duck) [14]. Even in cases without inherent taxonomies,

different errors may have different severities. At a security checkpoint, letting a

knife through is worse than a water bottle. Accordingly, classifiers should be trained

to minimize classification cost rather than just error rates.
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Figure 4.1: Example scenario of an airport security checkpoint with three classes

and corresponding classification costs. With standard training, cost-sensitive classi-

fication is a two-step (potentially inefficient) process. Weak learners may be wasted

on irrelevant (low-cost) boundaries. Using cost-sensitive training (e.g. REBEL), rel-

evant boundaries are set first, giving less weight to the distinction between classes

with forgivable errors.

We present a novel approach to multi-class cost-sensitive boosting, offering both

a clearer theoretical framework and improved performance over prior art. Instead

of first approximating the class-wise posterior distributions and then taking costs

into account at test time, our approach directly estimates the class with minimum

risk (i.e. minimum expected cost) by using the costs during training, as illustrated

in Fig. 4.1. Since our proposed loss function estimates the underlying risk, and in

particular, is based on a sum of exponentials, we call our method Risk Estimation

Boosting using an Exponential Loss, or REBEL.

We prove that REBEL is a true boosting algorithm in the theoretical sense and

outline a method for jointly optimizing decision trees as weak learners, facilitating

feature sharing among classes.
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In summary, the contributions of our work are:

1. a novel family of loss functions that facilitate multi-class cost-sensitive

training (refer to Sec. 4.3)

2. a proof that REBEL employs the appropriate weak learning condition

required for boostability (refer to Sec. 4.5)

3. a greedy optimization procedure for growing binary stumps into shallow

decision trees (refer to Sec. 4.4)

4. state-of-the-art results on several datasets for both neutral and cost-sensitive

setups (refer to Sec. 4.6)

4.2 Related Work

There are two main approaches to multi-class classification: combining multiple

binary classifiers, and training multi-class classifiers directly, both of which already

exist in the context of boosting.

A multi-class prediction can be achieved by compounding the outputs of multiple

binary classifiers. AdaBoost.M2 [22] and AdaBoost.MR [36] train binary classi-

fiers that maximize the margins between pairs of classes. AdaBoost.MH [36] con-

currently trains M one-vs-all classifiers, sharing the same weak learners for each

binary classifier. Reduction to multiple one-vs-all or one-vs-one classifiers requires

augmenting the given datasets, and often results in sub-optimal joint classifiers

[34]. ECOC [1] trains multiple binary classifiers and uses error-correcting codes

for output classification. Selecting error-codes is often problem dependent and

not straightforward; AdaBoost.ERP [28] attempts to find a good trade-off between

error-correcting and base learning. JointBoost [40] trains shared binary classifiers,

optimizing over all combinations of binary groupings of classes. CD-MCBoost

[34] and CW-Boost [37] perform coordinate-descent on a multi-class loss function,

thereby focusing each weak learner on a single class. HingeBoost.OC [24] uses out-

put coding combined with a multi-class hinge loss, demonstrating improvements in

performance on several datasets. In all of these approaches, the number of clas-

sifiers trained (and eventually evaluated) is super-linear in the number of classes,

potentially slowing down classification [17].

On the other hand, strong boosted classifiers can be generated using a single chain

of multi-class weak learners directly, avoiding the super-linear issue of the afore-

mentioned methods. AdaBoost.M1 [22] is a simple adaptation of binary AdaBoost

that makes use of multi-class learners, but has an unreasonably strong (often un-
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achievable) weak-learning condition [30]. SAMME [45] uses a fixed set of code-

words to additively generate a score for each class; however, [30] show that it does

not satisfy the weak learning conditions required to be boostable (i.e. it is unable to

reduce the training error in some situations). GD-MCBoost [34] also uses a fixed set

of codewords. AOSO-LogitBoost [39] improves upon previous methods by adap-

tively separating pairs of classes at each iteration. Struct-Boost [38] combines weak

structured learners into a strong structured classifier, applicable to multi-class clas-

sification. GLL-Boost [5] exhibits guess-aversion, attempting to avoid outputting

equal scores over all classes. However, multi-class weak learners are not as easy

to generate and are inherently more complex than their binary counterparts, po-

tentially leading to worse overfitting of the training data. Further, these methods

require a sum-to-zero constraint on their output codes, adding to the complexity of

computation as well as restricting the classifier’s output [29].

As discussed above, many varieties of boosting have been proposed over the years.

However, most approaches do not properly deal with the case of cost-sensitive clas-

sification. As a workaround, several post-hoc methods exist that interpret classifier

output scores as posterior distributions, enabling the estimation of the minimum-

risk class as a second step [19, 23, 32]. Approximating posterior distributions is

often inaccurate [31], and we claim is unnecessary. Our proposed method is dis-

tinguished from prior work, consolidating the following desirable properties into a

single framework:

• a novel multi-class loss function that is easily implementable due to its simple,

closed-form solutions (refer to Eq. 4.5)

• direct estimation of the minimum-risk class via cost-sensitive training; avoiding

the need to (inaccurately) approximate a posterior distribution (refer to Sec. 4.3)

• a classifier composed of a single chain of binary (i.e. less complex) weak learn-

ers, sharing features among all classes; leading to less overfitting [34]

• vector-valued outputs without sum-to-zero constraints, simplifying optimiza-

tion and producing classifiers that can be more expressive

• a novel method for growing binary trees as weak learners (refer to Sec. 4.4),

leading to improved performance (refer to Table 4.1)

Unifying all the above features into a single framework translates into superior per-

formance as demonstrated in Sec. 4.6, compared against both prior boosting and

non-boosting approaches. Considering that boosting is one of the most widely used
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supervised classification frameworks, we find that a simple, improved multi-class

cost-sensitive classifier is an important contribution to the field.

Although this work focuses on developing a better boosting algorithm; for complete-

ness, we also compare against several other state-of-the-art algorithms: 1-vs-All

and multi-class SVMs [11], Structured SVMs [8] and Random Forests [9].

4.3 Approach

In this section, we review multi-class classification, formulate an appropriate upper-

bounding loss function, and generalize to deal with cost-sensitive classification.

The goal of multi-class classification is to obtain a function F that correctly predicts

the class of queried data points. A data point is represented as a feature vector x and

is associated with a class label y. If there are a total of d features and K possible

output classes, then:

x ∈ X ⊆ R
d y ∈ Y ≡ {1,2, ...,K} F : X→ Y

For a specific classifier F, the expected misclassification error is:

εE ≡ Ex,y{1(F (x) 6=y)} ≡ Ex,y{〈1−δδδy, δδδF(x)〉}

For F to output a discrete label, we first define a vector-valued certainty function

H : X→ R
K
, where the index of the maximal certainty is used as the output label:

F (x) ≡ argmax
k
{〈H(x), δδδk〉}

In practice, we do not know the underlying distribution of the data; thus, we em-

pirically approximate the expected misclassification error (as discussed in Sec. 2.1;

see Eq. 2.2). Given a stochastically sampled training set of N points, the error is

approximated as:

ε ≈ 1

N

N∑

n=1

〈1−δδδyn , δδδF(xn)〉

However, as previously discussed, different errors may incur different costs (e.g.

letting a knife through a security checkpoint versus a water bottle). Costs can be

encoded as a matrix C, where each entry cyk ≥ 0 is the cost of classifying a sample

as class k when its true class is y. We implicitly assume that correct classification

incurs no cost; cyy = 0. A cost vector cy is simply the yth row of this cost matrix.
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Consequently, the empirical risk (i.e. expected cost) can be expressed as:

R ≡ E
{
〈cy, δδδF(x)〉

}
≈ 1

N

N∑

n=1

〈cyn, δδδF(xn)〉

Accordingly, given a hypothesis space H of possible certainty functions, we can

formulate our problem as:

H
∗

= arg min
H∈H
{R}

In this form, minimizing the error is infeasible, as discussed in Sec. 2.2. Without

further constraining H, the search space is intractably large; moreover, the error

function is difficult to optimize as it is non-convex [29]. Instead, we propose a

family of surrogate loss functions that reach the same optimum as the original error

and that can tractably be minimized.

Coupled Sum

Consider any scalar function g on the extended real numbersR that is convex, upper-

bounds the unit step function, and whose minimal value, like the step function, is

also 0 (e.g. g(x) ≡ ex, log2(1+ex), (x+1)2). Given a cost vector cn, by carefully

choosing non-negative subcosts c
+

n and c
−

n, we define the coupled sum Ln as:

Ln(x) ≡ 〈c+n, g[H(x)]〉+ 〈c
−

n, g[−H(x)]〉 − 〈c∗n, 1〉 (4.1)

where: c∗nk ≡ min
h∈R
{c+nk g(h) + c

−

nk g(−h)} and: c
+

n, c
−

n ≥ 0,

(recall that: g[H] ≡ [g(H1), g(H2), ..., g(HK)])

Being a sum of convex functions, Ln is itself convex, and further, by construction,

Ln has an minimal value of 0. By aptly selecting subcost vectors c
+

n and c
−

n, we

ensure that Ln upper-bounds the sample-wise misclassification cost.

Note that H(x) outputs a vector of K certainty scores, one for each class. Let H
∗

n

be the optimal certainty score given subcost vectors c
+

n and c
−

n:

H
∗

n ≡ arg min
H∈R

K
{〈c+n, g[H]〉+ 〈c−n, g[−H]〉}

To guarantee that our loss function upper-bounds the misclassification cost, we can

enforce the following implication:

∀ k 6=yn, 〈H(x), δδδk〉 ≥ 〈H(x), δδδyn〉 ⇒ Ln(x) ≥ 〈cn, δδδk〉 (4.2)
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Equivalently, if H(x) is optimal, except for the kth and yth
n values which are equal

to each other (i.e. Hj(x)=H
∗

nj ∀ j 6=k, yn, Hk(x) = Hyn(x) = h), then Eq. 4.2 can

be expressed as:

∀ k 6=yn, min
h

{
(c

+

nk+c
+

nyn
) g(h) + (c

−

nk+c
−

nyn
) g(−h)− (c∗nk+c∗nyn)

}
≥ cnk (4.3)

Depending on the choice of g, by satisfying Eq. 4.3 for each class label k, appropri-

ate subcost vectors can be chosen1 that ultimately imply:

Ln(x) ≥ 〈cn, δδδF(x)〉 (4.4)

Accordingly, the risk R can be replaced with a convex, upper-bounding surrogate

loss L (whose minimal value is also 0):

R ≤ L ≡ 1

N

N∑

n=1

(
〈c+n, g[H(xn)]〉+ 〈c−n, g[−H(xn)]〉

)
− c∗ (4.5)

where: c∗ ≡ 1

N

N∑

n=1

〈c∗n, 1〉

Therefore, minimizing the loss implies minimizing the risk as well.

Up to this point, we derived a new family of multi-class cost-sensitive loss functions.

From hereon in, we explicitly use the function g(x) = ex as our convex upper-

bound due to its simplicity and closed-form solutions. We call the resulting method

REBEL since it uses this exponential loss.

Subcost Vectors

As discussed in Sec. 4.3, to ensure an upper-bounding loss as in Eq. 4.4, we need

to enforce the inequality in Eq. 4.3, explicitly using g(x) = ex:

∀ k 6=yn, min
h

{
(c

+

nk+c
+

nyn
) eh + (c

−

nk+c
−

nyn
) e−h − (c∗nk+c∗nyn)

}
≥ cnk (4.6)

Since our situation is under-constrained, we can greatly simplify the inequality in

Eq. 4.6 by setting c
+

nyn
= 0, c

−

nk = 0 ∀ k 6= yn. Further, note that for x1, x2 ≥ 0,

min
h
{x1 e

h + x2 e
−h} = 2

√
x1x2; therefore, c∗n = 2

√

c+n⊙c−n = 0 (due to Eq. 4.1)

Thus, the inequality in Eq. 4.6 drastically simplifies to:

∀ k 6=yn, 2
√

c
+

nkc
−

nyn
≥ cnk

1Sec. 4.3 below outlines explicit values of the subcost vectors using g(x) = ex.



43

Accordingly, we parameterize subcost vectors c
+

n and c
−

n in terms of θn > 0 as:

c
+

n =
[cn]

2

4θn
c
−

n = θn δδδyn

In an attempt to keep the subcost vector values as uniform as possible2, to reduce

their variance, θn is set to the mean of the values in c
+

n:

θn =
1

K−1
〈 [cn]

2

4θn
, 1
〉

∴ θ2n =
‖cn‖2

4(K−1) ∴ θn =
‖cn‖

2
√
K−1

Finally, we use these θn to fix REBEL’s subcost vectors as:

c
+

n =

√
K−1

2‖cn‖
[cn]

2 c
−

n =
‖cn‖

2
√
K−1

δδδyn

Greedy Iterative Minimization

In this work, we model the certainty function H as a weighted sum of T binary

weak learners. Recall that in standard binary boosting, a certainty score h
T

is the

sum of T weak learners, where αt ∈ R are scalar weights and ft : R
d → {±1} are

binary weak learners (chosen from a hypothesis set F), and the final classification

is just the sign of h
T
(x) [35]. In our model, the scalar weights αt are extended into

K-dimensional vectors at ∈ R
K

as follows:

h
T
(x) ≡ α

0
+

T∑

t=1

ft(x)αt → H
T
(x) ≡ a

0
+

T∑

t=1

ft(x) at (4.7)

and the overall classifier outputs the index of the maximum-valued element in H
T

.

With this additive form, after having trained the first I iterations; on iteration I+1,

we have: H
I+1
(x) = H

I
(x) + f

I+1
(x) a

I+1
. Greedy iterative optimization may be

carried out by fixing all parameters from the previous I iterations and minimizing

the loss function with respect to the parameters in iteration I+1.

Accordingly, we expand Eq. 4.5 as:

Lf(a) =
1

N

N∑

n=1

(
〈c+n, exp[HI

(xn)+f(xn) a]〉+ 〈c−n, exp[−[HI
(xn)+f(xn) a]]〉

)

=
1

N

N∑

n=1

(
〈w+

n, exp[f(xn) a]〉+ 〈w−

n, exp[−f(xn) a]〉
)

2 Uniformity in subcost values yielded better results, albeit without extensive experimentation.
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with multi-class weights w
±

defined as:

w
+

n = c
+

n
⊙ exp[H

I
(xn)], w

−

n = c
−

n
⊙ exp[−H

I
(xn)]

Given a binary weak learner f, we further define weak learner weight sums s
±

f
as:

s
±

f
≡ 1

N

N∑

n=1

[1(f(xn) = ±1)w
+

n + 1(f(xn) = ∓1)w
−

n ] (4.8)

leading to a compact expression for the overall loss:

Lf(a) = 〈s+f, exp[a]〉+ 〈s
−

f
, exp[−a]〉

To determine the optimal a∗, we set the gradient to zero and solve:

∇aLf(a∗) = 0 ∴ s
+

f
⊙ exp[a∗] = s

−

f
⊙ exp[−a∗]

∴ a∗ =
1

2

(
ln[s

−

f
]− ln[s

+

f
]
)

(4.9)

Plugging in a∗, the optimal loss given a weak learner f also has a compact, closed-

form expression:

L(f) ≡ Lf(a∗) = 2〈
√

s
+

f
⊙s

−

f
, 1〉 (4.10)

Also of interest is the rate of reduction in loss at a given iteration, i.e. the ratio

between the optimal loss at the end of an iteration to the loss at the beginning:

LI+1

LI

=
Lf(a∗)
Lf(0)

=
2〈
√
s
+

f
⊙s

−

f
, 1〉

〈s+
f
+s−

f
, 1〉 (4.11)

Finally, joint optimization of f and a can be accomplished by looping over candi-

date weak learners f ∈ F (the hypothesis space of possible weak learners), selecting

the learner f
∗

that minimizes L(f) and its corresponding optimal vector a∗.

Note that every element of a∗ is dynamically optimized at every iteration. It is nei-

ther a fixed code-word, nor has a sum-to-zero constraint, enhancing the expressive-

ness of the classifier, ultimately leading to better accuracy (see Sec. 4.6). Further, in

the binary (2-class) case, this framework exactly reduces to binary AdaBoost, Log-

itBoost, etc. (depending on the choice of g(x); refer to Appendix 7.3 for details).
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4.4 Decision Trees

In section 4.3, we introduced our loss function and an optimization procedure given

a hypothesis space of binary weak learners. In this section, we describe our ap-

proach specifically for growing useful binary decision trees. Decision trees are sim-

ple white-box models, and in particular, shallow trees (i.e. depth ≤ 4) generalize

well and have proven robust in practice [18].

A decision stump f : X → {±1} can be written as: f(x) ≡ p sign(〈x, δδδj〉 − τ)

where p ∈ {±1} is a polarity, δδδj selects the j th feature in x (out of d possible

features), and τ ∈ R is a threshold. Let H1 denote the hypothesis space of all unique

decision stumps on the training data. The input space X ⊆ R
d has d dimensions, at

times on the order of several thousands (see Sec. 4.6). Each dimension has a finite

number of possible thresholds (at most equaling the number of training samples N).

In practice, we only consider Nτ , a fixed number of thresholds3. Finally, there are

two possible polarities; thus, d×Nτ×2 unique stumps in H1. Let H
D

denote the

space of unique depth-D trees. For each split in a depth-D tree, both child nodes are

depth-(D−1) trees. This leads to an exponential number of possible trees, totaling

(d×Nτ×2)D unique trees in H
D

. Even on a GigaHertz computer, looping through

each possible tree in H
D

is only feasible for D = 1. To overcome this issue, we

propose a greedy algorithm for using deeper trees as weak learners in our estimator.

Greedily Growing Trees

By greedily adding one depth-layer at a time, we can grow trees to any depth in

a computationally tractable manner. Using this procedure, we guarantee that with

each added depth-layer, the tree leads to a more accurate strong classifier. Let us

assume that we have already jointly trained a depth-D tree f
(D)

and corresponding

output vector a
(D)

; the following method efficiently grows the D+1th layer.

1. Replace each leaf node in f
(D)

with a stump having identical parameters as its parent

node, thereby deepening the tree without changing its functionality.

2. Holding a
(D)

fixed, optimize each of the 2D newly added stumps. This operation is

O(2D×d×Nτ ), resulting in a new tree f
(D+1)

. In the worst case, all added stumps (and

hence, overall accuracy) remain unchanged.

3. Fixing f
(D+1)

, minimize Lf(a) with respect to a, storing the optimal vector as a
(D+1)
.

3 We find that Nτ ≈ 200 (evenly-spaced bins over the range of the training data) is sufficient to

achieve maximal accuracy in practice resulting in d×Nτ×2 ≈ 106 unique stumps in H
1
.
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Figure 4.2: Growing a binary decision tree by one layer, as described above.

Figure 4.2 illustrates our tree-growing technique, reducing the computational com-

plexity from 106D to 2D×d×Nτ , making our classifier fit for use with shallow binary

decision trees as weak learners.

4.5 Weak Learning Conditions

At each iteration, boosting uses a weak learner to improve upon classification in

the previous iterations. Since each successive iteration can be viewed as being

independent of all others, in order for a boosting algorithm to fully minimize the

training error (via the training loss), the decrease in loss must always be exponential

(i.e. ∃ γ > 0 such that ∀ I, LI+1/LI ≤ 1−γ).

If in some situation, no available weak learner is good enough, boosting cannot

proceed and the algorithm terminates. Consequently, for a boosting algorithm to be

able to exponentially minimize the training error in any situation (i.e. regardless of

sample weights), it must always have access to an adequate weak learner.

“Adequate” could mean different things for different algorithms; each algorithm’s

particular adequacy requirement is encoded as its weak learning condition. For an

algorithm to be boostable, its weak learning condition must be both necessary and

sufficient for exponential error minimization [30].

In the case of binary boosting, the weak learning condition is intuitive; requiring

that there exist a weak learner that achieves a weighted average accuracy marginally

better than random guessing (i.e. at least 50% + γ, for some edge γ > 0).

REBEL’s weak learning condition is:

∃ γ>0 such that: ∀ w+

n ,w
−

n ≥ 0, ∃ f ∈ F satisfying:

〈∣
∣
∣

N∑

n=1

[w
+

n−w
−

n ]f(xn)
∣
∣
∣, 1
〉

≥ γ
N∑

n=1

〈w+

n+w
−

n , 1〉 (4.12)
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Proposition 4.5.1: If REBEL’s weak learning condition (Eq. 4.12) is met, then

the training error is guaranteed to be driven to 0 at an exponential rate.

Proof: Note that rearranging the weight sums (i.e. s
±

f
from Eq. 4.8), we get:

s
+

f
− s

−

f
=

1

N

N∑

n=1

[w
+

n−w
−

n ]f(xn) s
+

f
+ s

−

f
=

1

N

N∑

n=1

[w
+

n+w
−

n ]

Accordingly, Eq. 4.12 can be compactly expressed as:
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Since both sides are positive, squaring both sides maintains the inequality:
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Swapping both sides and taking the square-root:
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, 1〉 (4.13)

Since the square-root function is concave and all s
±

fk
≥ 0, then Jensen’s inequality

can be applied:
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Expressed in vector form:
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Combining Eq. 4.13 and Eq. 4.14, if the condition in Eq. 4.12 is met, then:
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f
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Note from Eq. 4.11 that the loss ratio is equivalent to:

LI+1
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=
2〈
√
s
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f
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f
, 1〉

〈s+
f
+s−

f
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√
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2

Therefore, if the condition in Eq. 4.12 is met for T iterations, then:

LT

L0
≤
(

1−γ2

2

)T

and hence, REBEL minimizes the training error at an exponential rate in the number

of iterations T . Q.E.D.

Proposition 4.5.2: If REBEL’s weak learning condition (Eq. 4.12) cannot be met,

then there is a situation in which the training error cannot be exponentially reduced.

Proof: If REBEL’s weak learning condition is unmet, then its negation is true:

∀ γ>0, ∃ w+

n ,w
−

n ≥ 0 such that: ∀ f ∈ F
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Taking the limit as γ → 0, Eq. 4.15 reduces to:

∃ w+

n ,w
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Rewriting in terms of the weight sums s
±

f
and solving for a∗ using Eq. 4.9 leads to:

〈|s+
f
− s

−

f
|, 1〉 = 0 ∴ s

+

f
= s

−

f
∴ a∗ =

1

2

(
ln[s

−

f
]− ln[s

+

f
]
)
= 0

Since a = 0, there is no change to the strong classifier, and hence the training error

remains stationary, certainly not exponentially decreasing. Q.E.D.

Propositions 4.5.1 and 4.5.2 combine to validate that REBEL’s weak learning condi-

tion (Eq. 4.12) is equivalent to boostability; thus, REBEL is indeed a true boosting

method in the theoretical sense, as defined in [30].
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4.6 Experiments

We benchmark our approach on both synthetic and real data, exploring its perfor-

mance vis-a-vis other methods and demonstrating its functionality.

Experiments using synthetic data test REBEL’s main properties; Fig. 4.3 demon-

strates the behavior of classifiers trained using four different cost matrices: (a) uni-

form misclassification costs, (b) 10× higher green false-negative costs, (c) 10×
higher red false-negative costs, and (d) 10× higher red false-positive costs. As ex-

pected, REBEL adapts its behavior according to the input misclassification costs.

Note from Fig. 4.3 that REBEL avoids missing a class with high false negative cost

at the expense of missing other classes.

(a) Uniform Costs (b) High green F.N. (c) High red F.N. (d) High red F.P.

Figure 4.3: Effects of cost-sensitive training on synthetic data using REBEL with

100 depth-2 trees. Classes are color-coded, each panel is the result of a different cost

matrix. (c) and (d) demonstrate the difference in output with a high false-negative

cost versus a high false-positive cost. As encoded in the cost matrix, in (c), no red

datapoint is misclassified, whereas in (d), no red classification is incorrect.

Fig. 4.4 traces the min-risk confidence score (i.e. H(x)) over two paths through the

input space, using either stumps or depth-2 trees as weak learners. The scores vary

across class boundaries while staying fairly constant within class-specific regions.

Fig. 4.5 compares REBEL’s performance (using cost-sensitive training) to the stan-

dard method (i.e. training on just the data, estimating the posterior distributions, and

using the costs only at test-time). 10 random datasets and 20 random cost matrices

were generated for a total of 200 trials.

Each dataset consists of 1000 training and 500 test points drawn from a mixture of

multiple Gaussian clusters (datasets are plotted in Fig. 4.6 below). All cost matri-

ces have zeros along the diagonals and (positive) normally-distributed off-diagonal

entries, normalized such that random classification results in unit cost. For each

trial, classifiers consist of 100 stumps. REBEL outperforms the standard method
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Figure 4.4: REBEL output on a synthetic 2D dataset, sampled along two paths

labeled (A) and (B). Nibs along the two paths on the left-most panel are at 20% in-

crements. Two classifiers were trained: the first using 100 stumps (top), the second

using 100 depth-2 trees (bottom). Min-risk confidence scores (i.e. H(x)) are plot-

ted (the background colors correspond to the minimum-risk class).

in ∼90% of the trials, especially on harder classification problems (i.e. when both

methods incur relatively high costs).
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Equal Costs

Figure 4.5: REBEL versus the standard (two-step) approach. ∼ 90% of the trials

lead to better results using REBEL, especially in more difficult problems (i.e. when

final test misclassification costs are higher).

Standard multi-class classification on real data

We benchmark REBEL on several UCI datasets [4] and the MNIST handwritten

digits [27], using a uniform (cost-neutral) metric. We compared our method against

several competitive boosting methods: 1-vs-All AdaBoost and AdaBoost.MH [36],

AdaBoost.ECC [16] Struct-Boost [38], CW-Boost [37], and A0S0-LogitBoost [39].
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Random Dataset #1 Random Dataset #2 Random Dataset #3 Random Dataset #4

Random Dataset #5 Random Dataset #6 Random Dataset #7 Random Dataset #8

Random Dataset #9 Random Dataset #10

Figure 4.6: Random datasets generated for Fig. 4.5

Based on the experimental setup in [38], we use stumps as weak learners, each

method having a maximum of 200 weak learners. Five versions of each dataset are

generated, randomly split with 50% of the samples for training, 25% for validation

(i.e. for finding the optimal number of weak learners), and the remaining 25%

for testing. All misclassifications are equally costly; thus, we report percent error

with the resulting means and standard deviations in Fig.4.7. REBEL is the best

performing method on three of these five datasets, and is second best to CW-Boost

on the two remaining datasets. Even in these commonly-used and saturated UCI

datasets, we are able to show consistent accuracy compared to previous approaches.

Cost-sensitive classification

As discussed in the introduction, some scenarios require cost-sensitive classifica-

tion. Among many existing datasets, we chose two current datasets that fall into

this category: (1) SUN scene recognition [43] and (2) CUB200 fine-grained bird

categorization [42]. Both of these datasets are organized into hierarchies; thus, an

apt evaluation metric penalizes each misclassification according to its distance from

the true class along the hierarchy.

We compare our method against state-of-the-art boosting methods as well as non-
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boosting baselines: 1vsAll AdaBoost and AdaBoost.MH [36], AdaBoost.ECC [1],

Struct-Boost [38], CW-Boost [37], A0S0-LogitBoost [39], multi-class and 1vsAll

SVM [11], Struct-SVM [8], and Random Forests [9].
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Figure 4.7: Popular boosting algorithms tested on UCI datasets. Bar caps indicate

±1 std. from the mean. The number of times each method places [1st, 2nd, 3rd] is

indicated in the legend. REBEL consistently places in the top two on every dataset.

For Struct-Boost [38], we report performance as published by their authors. For

the remaining methods, we downloaded or re-implemented code, cross-validating

using the training data to establish optimal parameters, specifically, the number of

boosted weak learners (up to 200 on SUN and 2500 on CUB) and the tree depth

(to a maximum of 4). For the SVMs, we performed grid search through C and γ

as recommended in [11]. Finally, for the random forest, we performed grid search

for tree depth (to a maximum of 7) and number of trees (between 1 and 1000) with

combinations not exceeding the number of feature splits allotted to the boosted

methods to ensure a fair comparison. For completeness, we report the performance

of each method on both the hierarchical and uniform cost metrics.

SUN scene recognition

We benchmark REBEL on the same two subsets of the SUN database as used in [38],

containing six and fifteen classes respectively, and using HOG features as input [12].

For each subset, five random splits were generated with 75% of the samples used

for training and 25% for testing. In each of the SUN subsets, the corresponding cost

matrices were normalized by the appropriate factor to ensure that random guessing
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incurred the same cost (∼ 83% in the 6-class subset and ∼ 93% in the 15-class

subset). The mean and standard deviations over the five splits are shown in Fig. 4.8.
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[0.330] Random Forest
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Figure 4.8: SUN scene recognition datasets, with state-of-the-art classifiers evalu-

ated on a six-class (SUN6) and a fifteen-class subset (SUN15). Each method was

trained and evaluated in both a (Cost) cost-sensitive and (0-1) cost-neutral way.

REBEL is a consistent top-performing method across all of these subsets.

In cross-validating for optimal parameters on the SUN subsets, REBEL performed

best using depth-2 trees as weak learners, see Table 4.1. REBEL is consistently

the top-performing method on all of the subsets, edging out multi-class SVM and

the other boosting methods. Other than the one-vs-all SVM, which consistently

under-performs, most of the methods lead to similar accuracies.

Stumps Depth-2 Depth-3 Depth-4

SUN6(0-1) 32.8% 30.3% 34.2% 35.0%

SUN6(cost) 0.363 0.323 0.327 0.325

CUB(0-1) 21.4% 20.9% 22.1% 22.9%

CUB(cost) 0.291 0.291 0.286 0.26

Table 4.1: REBEL misclassification errors on SUN-6 and CUB datasets using

different tree depths. Deeper trees consistently outperform stumps, validating our

tree-growing method of Sec. 4.4.

CUB fine-grained bird categorization

We further benchmark REBEL on the CUB200 fine-grained bird categorization

dataset, using a fourteen-class Woodpecker subset as in [20, 6, 44, 13]. Each bird in
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the subset is represented as a 4096-feature vector, the output of a pre-trained Con-

volutional Neural Network [25], consisting of 392 training and 398 test samples.
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Figure 4.9: CUB200 fine-grained bird categorization results. Several state-of-

the-art classifiers evaluated on a standard fourteen-class subset. All methods are

trained and evaluated (a) cost-neutrally and (b) cost-sensitively, tree depths for each

boosting method are chosen by cross-validation. The lowest cost of each method

on the test set is indicated in square brackets. REBEL with decision trees is the best

performing method in both cases.
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Classification errors are shown in Fig. 4.9. Boosting methods are plotted as a func-

tion of the number of weak learners and non-boosting methods are plotted as hori-

zontal lines. REBEL is the best performing method in both cases. All other boosting

methods saturated between 20% and 40% higher costs than REBEL; significantly

worse. REBEL also outperformed multi-class SVM, albeit by much smaller mar-

gins. Since this subset of birds has a particularly shallow taxonomy, its cost matrix

is not that different from that of uniform errors; hence, we do not expect drastic

improvements in performance and are satisfied with these modest gains.

In cross-validating for optimal parameters on CUB, REBEL performed best using

depth-2 trees as weak learners for the cost-neutral experiment and depth-4 trees for

the cost-sensitive experiment (see Table 4.1), validating the benefit of our decision

tree growing approach introduced in Sec.4.4.

4.7 Discussion

Our experimental results indicate that REBEL is as good as and even outperforms

other state-of-the-art classifiers. But (1) why does it work so well? And (2) why

does it also outperform existing classifiers in cost-insensitive situations (in which

REBEL seemingly has no advantage)?

(1) We are pleased with REBEL’s performance and seek a better understanding.

Our current explanation relates to the form of our model and agrees with empirical

results, summarized as follows:

(a) In each iteration, REBEL determines a single binary split ft (and the correspond-

ing vector at). This forces feature sharing across classes. Experiments show supe-

rior performance against baselines that do not require feature sharing (observed in

Figs. 4.7,4.8: REBEL vs 1vsAll, Ada.ECC, CW-Boost). Feature sharing is a form

of regularization [40, 34].

(b) Avoiding sum-to-zero constraints on the associated vector at is empirically ad-

vantageous. The additional degree of freedom lets each weak learner and vector pair

be more expressive, leading to a steeper reduction in loss (observed in Figs. 4.7,4.8:

REBEL vs AOSO, Fig. 4.9: REBEL’s quick initial descent in error/cost).

Therefore (a) and (b) act in opposite directions and the balance of the two leads to

beneficial results. This finding is also theoretically justified since REBEL employs

the Binary Weak Learning Condition in [30], thereby neither overly overfitting nor

overly underfitting the training data.
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(2) The proposed surrogate loss function (Eq. 4.5) is set up to incorporate classifica-

tion costs during training. However, misclassification cost is equivalent to classifi-

cation error when the cost matrix has uniform costs. In this case, the min-risk class

is the max-posterior class. Therefore, there is no reason to expect better or worse

performance than other methods that minimize classification error. The fact that our

our method performs slightly better on the datasets we tested (observed in Fig. 4.7)

is a further indication that our balance of regularization and expressiveness (point

(1) above) is advantageous.

4.8 Conclusions

We presented a multi-class cost-sensitive boosting framework with a novel family of

simple surrogate loss functions. This framework directly models the minimum-risk

class without explicitly approximating a posterior distribution. Training is based on

minimizing classification costs, as specified by the user (e.g. following taxonomic

distance). Specifically using an exponential-based loss function, we derived and

implemented REBEL.

REBEL unifies the best qualities from a number of algorithms. It is conceptually

simple, and optimizes feature sharing among classes. We found that REBEL is

able to focus on important distinctions (those with costly errors) in exchange for

more forgivable ones. We prove that REBEL employs the weak learning condition

required to be a true Boosting algorithm in the theoretical sense.

We compared REBEL to several state-of-the-art boosting and non-boosting meth-

ods, showing improvements on the various datasets used. Being based on boosting,

our method may be implemented as a cascade to yield very fast classification, useful

in real-time applications. Our technique therefore holds the promise of producing

classifiers that are as accurate and faster than the state-of-the-art.
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Chapter 5

THEORETICALLY GUARANTEED LEARNERS

Corresponding paper: [2]

Powerful machine learning algorithms should also be accessible to

users that don’t have a lot of data, computational power, or exper-

tise. Further, in many circumstances, an algorithm must be able

to explain the logic behind its decisions. It is therefore desirable

to have a simple yet accurate white-box learning system that trains

quickly and with little data. To this end, we build upon the multi-

class boosting method REBEL, and present a novel family of weak

learners called Localized Similarities. Due to these learners, our

framework is provably able to minimize the training error of any

dataset at an exponential rate. We carry out experiments on a va-

riety of synthetic and real datasets, demonstrating a tendency to

avoid overfitting. We evaluate our method on several standard UCI

datasets against other state-of-the-art methods, showing that our

method performs amongst the best.

5.1 Introduction

The past couple of years have seen vast improvements in the performance of ma-

chine learning algorithms. Deep Neural Networks of varying architectures are

achieving unprecedented performance in many fields [11]. However, as discussed in

Ch. 1, there are several considerable drawbacks to employing such networks: their

inner workings are complex and sometimes mysterious [18], and training them of-

ten requires expertise, processing power, computational time, and vast amounts of

data not accessible to the average user [19]. Consequently, there is still a need

for a simple but accurate “white-box” machine learning system that is able to train

quickly and with little data.

As we have argued in previous chapters, boosted classifiers are easy and quick to

train [3], produce very fast classifiers at test-time when computed as a cascade [5,
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8], and can efficiently handle cost-sensitive multi-class data [1], exhibiting high

empirical accuracies. Moreover, being a linear combination of weak learners, the

complexity of a strong boosted classifier is dependent on its weak learners. Thus,

when using simple learners such as shallow decision trees (Sec. 3.3), the inner work-

ings of a boosted classifier are clearly interpretable; it is a white-box system.

A shallow decision tree partitions the input space using axis-aligned hyperplanes,

i.e. by comparing a few input features to a few fixed thresholds. This simplicity

enables very fast evaluation; however, there are distributions of data for which axis-

aligned hyperplanes are unable to fully separate the classes. Furthermore, even

when the training data can be perfectly classified, the resulting decision boundaries

are often jagged and do not generalize well. This situation is exemplified in Fig. 5.1

(left), where a boosted shallow tree classifier is trained to perfectly classify the data.

Figure 5.1: Boosted classification using shallow decision trees (left), leading to

classification boundaries that are axis-aligned and not representative of the data.

Although this method can lead to perfect training, it is overfitting. Our method

(right) uses Localized Similarities (described in Sec. 5.4). Paired with a procedure

that provably guarantees exponential loss minimization, our classifiers focus on

well-generalizing boundaries that fit the data.

Note that the classifier on the left (using decision trees) does not accurately capture

the pattern inherent in the data, whereas the classifier on the right (using our novel

weak learners) leads to intuitive boundaries, properly generalizing the data.

In this chapter, we review the fundamentals of REBEL, derive an optimal binariza-

tion of the multi-class data at each iteration, and propose a novel family of weak

learners which we call Localized Similarities.
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The main contributions of our work are the following:

1. a derivation of the optimal binarization of multi-class data (see Sec. 5.3)

2. a proof that the training error is fully minimized within a finite number of

iterations (see Sec. 5.4)

3. a simple family of weak learners (Localized Similarities) that facilitate the

loss guarantees (see Sec. 5.4)

4. empirical state-of-the-art results on a range of datasets (see Sec. 5.6)

Background

Boosting is a mature method, originally formulated for binary classification (e.g.

AdaBoost and similar variants) [13, 9, 10]. Although multi-class classification is

more complex than its binary counterpart, many advances have been made in both

performance and theory in the context of boosting (as discussed in Sec. 4.2).

In the noteworthy paper “A Theory of Multiclass Boosting” [12], many of the exist-

ing multi-class boosting methods were shown to be inadequate, either because they

demand too much of their weak learners at each iteration, or because their loss func-

tion is unable to deal with some configurations of the training data. [12] outlines

the appropriate Weak Learning Condition that a boosting algorithm must impose on

its weak learners in order to guarantee training convergence. However, it does not

prescribe a method with which to find an adequate set of weak learners.

The goal of our work is to propose a family of weak learners that are guaranteed

to satisfy the weak learning condition and whose inner workings are easily inter-

pretable. Using REBEL (proposed in Ch. 4) as our multi-class boosting method,

our overall framework is meant to be as straightforward as possible so that it is

accessible and practical to more users; we outline it in Sec. 5.2 below.

5.2 REBEL Revisited

In the multi-class setting, a datapoint is represented as a feature vector x and is

associated with a class label y. Each sample is comprised of d features and belongs

to one of K classes:

x ∈ X ⊆ R
d y ∈ Y ≡ {1,2, ...,K}

A good classifier reduces the training error while generalizing well to potentially-

unseen data. We use (cost-neutral) REBEL due to its support for binary weak learn-

ers, its mathematical simplicity (i.e. closed-form solution to loss minimization),
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and its strong empirical performance [1]. REBEL returns a vector-valued output H,

the sum of T (binary weak learner f , accumulation vector a) pairs:

H(x) ≡
T∑

t=1

ft(x) at

where: ft : R
d → {±1}, at ∈ R

K

The hypothesized class is simply the index of the maximal entry in H:

F(x) ≡ argmax
y∈Y
{〈H(x), δδδy〉}

REBEL uses an exponential loss function to upper-bound the training error:

L ≡ 1

2N

N∑

n=1

〈exp[yn⊙H(xn)], 1〉

where: yn ≡ 1−2δδδyn (i.e. all +1s with a −1 in the yth
n index)

Being a greedy, additive model, all previously-trained parameters are fixed and each

iteration amounts to jointly optimizing a new weak learner f and accumulation

vector a. To this end, the loss at iteration I+1 may be expressed as:

LI+1 =
1

N

N∑

n=1

〈wn, exp[f(xn)yn⊙a]〉 (5.1)

where: wn ≡
1

2
exp[yn⊙HI(xn)]

Given a weak learner f, we define the true and false weight sums (sTf and sFf ) as:

sTf ≡
1

N

N∑

n=1

1[f(xn)yn<0]⊙wn sFf ≡
1

N

N∑

n=1

1[f(xn)yn>0]⊙wn (5.2)

Using these weight sums, the loss can be simplified as:

LI+1 = Lf ≡ 〈sTf , exp[−a]〉+ 〈sFf , exp[a]〉

Expressed in this way, the optimal accumulation vector a∗ has a simple closed-form

solution (refer to Eq. 4.9), and the loss simplifies to:

a∗=
1

2

(
ln[sTf ]− ln[sFf ]

)
∴ Lf = 2〈

√

sTf⊙sFf , 1〉 (5.3)
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At each iteration, REBEL’s tree-growing algorithm (Sec. 4.4) initially requires an

exhaustive search through a pool of decision stumps (which is tractable but time-

consuming), keeping the binary learner that best reduces the multi-class loss in

Eq. 5.3. In some cases, no axis-aligned trees can further reduce the loss; hence, the

training procedure stalls.

Instead, in our new framework, we first determine an adequate “binarization” of the

multi-class data (i.e. a separation of the K-class data into two groups) and then train

a weak learner guaranteed to reduce the loss for any possible distribution of data.

5.3 Binarizing Multi-Class Data

Note that Eq. 5.3 is upper-bounded by the following expression:

Lf = 2〈
√

sTf⊙sFf , 1〉 ≤ 〈sTf+sFf , 1〉 −
1

2
U where: U ≡

〈 [sTf−sFf ]2
[sTf+sFf ]

, 1
〉

(5.4)

which follows from:
√

x(1−x) ≤ 1

2
−
(1

2
−x
)2

and setting: x =
sT

sT+sF

Lf is minimized by maximizing U :

U =
〈 [sTf−sFf ]2
[sTf+sFf ]

, 1
〉

≡
〈
[ N∑

n=1

f(xn)wn⊙yn

]2

[ N∑

n=1

wn

] , 1

〉

=
∥
∥
∥

N∑

n=1

f(xn)un

∥
∥
∥

2

(5.5)

where: un ≡
wn⊙yn

√
[ N∑

n=1

wn

]

Eq. 5.5 can be expressed as a product of matrices by stacking all of the un as

column vectors of a matrix U and defining f as a row vector with elements f(xn):

U = f [U
⊤

U] f
⊤

Let v̂n be the eigenvector of U
⊤

U corresponding to the nth largest eigenvalue λn.

Consequently, f can be decomposed as:

f = 〈f ,v̂1〉 v̂1 +
N∑

n=2

〈f ,v̂n〉 v̂n (5.6)
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Since U
⊤

U is positive semi-definite, its eigenvalues are all non-negative, thus:

∴ U = λ1〈f ,v̂1〉2 +
N∑

n=2

λn〈f ,v̂n〉2 ≥ λ1〈f ,v̂1〉2

Further, the trace of a matrix is equal to the sum of its eigenvalues and U
⊤

U has at

most K non-zero eigenvalues (λ1 being the largest), hence:

λ1 ≥
1

K
tr(U

⊤

U) =
1

K

N∑

n=1

‖un‖2 =
1

K

〈
N∑

n=1

[wn]
2

[ N∑

n=1

wn

] , 1

〉

≥ L0
KN

(5.7)

since:

N∑

n=1

x2
n ≥

1

N

( N∑

n=1

xn

)2

(by Jensen’s inequality) and:

N∑

n=1

〈wn, 1〉 = L0

Based on this formulation, optimal binarization is achieved by setting the binarized

class bn of each sample n as the sign of its corresponding element in v̂1:

bn ≡ sign(〈v̂1, δδδn〉)

Accordingly, if b is the vector with elements bn, then:

〈b,v̂1〉2 ≡ 〈sign[v̂1],v̂1〉2 = 〈|v̂1|, 1〉2 ≥ 1 (5.8)

(with the bound occurring for: v̂1 = ±δδδ; refer to App. 7.4 for proof)

Finally, by combining Eq. 5.4, Eq. 5.7, and Eq. 5.8, with perfect binarized classi-

fication (i.e. when the binary weak learner perfectly classifies the binarized data),

the reduction in loss at any iteration is bounded by:

Lf∗

L0
≤ 1− 1

2KN

In general, there is no guarantee that any weak learner can achieve perfect binarized

classification. However, what if we there was a weak learner that could isolate any

single point in space (i.e. classify an inner point as +1 and all the rest as −1)?
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5.4 Isolating Points

Let us assume that we have a weak learner fi that can isolate a single point xi in the

input space X. Accordingly, denote fi = 2δδδi−1 as a vector of all −1s with a +1 in

the ith entry, corresponding to classification using the isolating weak learner fi(xn).

Assuming that N ≥ 4, then for any unit vector v̂ ∈ R
N :

max
i
{〈fi,v̂〉2} ≥

4

N
(5.9)

(Refer to App. 7.4 for proof)

Accordingly, the loss ratio at each iteration is upper-bounded:

min{Lf1 ,Lfi}
L0

≤ 1− 2

KN2

Recall that the relative training error ε is the (discrete) fraction of incorrectly clas-

sified points in the training set:

ε ≡ 1

N

N∑

n=1

εn where: εn ≡ 1(F (xn) 6=yn)

and that REBEL’s loss always upper-bounds the training error:

εn ≤
1

2
〈exp[yn⊙H(xn)], 1〉

Before the first iteration, the initial loss L0 = K/2. With each iteration, the loss

decreases exponentially. Since the training error is discrete and is upper bounded

by REBEL’s loss, our framework is guaranteed to attain minimal training error on

any1 training set after a finite number of iterations:

T =

⌈

ln(2/KN)

ln
(
1− 2

KN2

)

⌉

≈
⌈
KN2

2
ln
(KN

2

)⌉

⇒ K

2

(

1− 2

KN2

)T

<
1

N
⇒ ε = 0

Although this bound is too weak to be of practical use, it is a bound nonetheless

(and can probably be improved). In the following section, we specify a family of

weak learners with the ability to isolate single points.

1 There may be situations in which multiple samples belonging to different classes are coincident

in the input space. These cases can be dealt with (before or during training) either by assigning all

such points as a special “mixed” class (to be dealt with at a later stage), or by setting the class labels

of all coincident points to the single label that minimizes error (or cost).
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One/Two-Point Localized Similarities

Classical decision stumps compare a single feature to a single threshold, outputting

+1 or −1. Instead, our proposed family of weak learners (which we call localized

similarities) compare points, and have two modes of operation. Let k(xi,xj) de-

note a measure of similarity between vectors xi and xj ; specifically, we use negative

squared Euclidean distance −‖xi−xj‖2 due to its simplicity and effectiveness.

1. In one-point mode, given an anchor xi and a thershold τ , the input space is

classified as positive if it is more similar to xi than τ and negative otherwise,

ranging between +1 and −1:

fi(x) ≡
τ − ‖xi−x‖2
τ + ‖xi−x‖2

2. In two-point mode, given supports xi and xj , the input space is classified as

positive if it is more similar to xi than to xj (and vice-versa), with maximal

absolute activations around xi and xj , falling off away from the midpoint m:

fij(x) ≡
〈d,x−m〉

4‖d‖4 + ‖x−m‖4

where: d ≡ 1

2
[xi−xj ] and: m ≡ 1

2
[xi+xj]

One-point mode enables the isolation of any single datapoint, guaranteeing a base-

line reduction in loss. However, it essentially memorizes the training data; mimick-

ing a nearest neighbor classifier. Two-point mode adds the capability to generalize

better by providing margin-style functionality. The combination of these two modes

makes localized similarities flexible enough to tackle a wide range of classification

problems. Furthermore, in either mode, the functionality of a localized similarity

is easily interpretable: “which of these fixed training points is a given query point

more similar to?”

Finding Adequate Localized Similarities

Given a dataset with N samples, there are about N2 possible localized similarities.

The following procedure selects an adequate localized similarities out of the many:

0. Using Eq. 5.3, calculate the base loss L1 for the homogeneous stump f1 (i.e. the

one-point stump with any xi and τ ≡ ∞, classifying all points as +1).

1. Compute the eigenvector v̂1 (as in Eq. 5.6); group the points based on their

binarized class labels bn.
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2. Find the optimal isolating Localized Similarity fi (i.e. with xi and appropriate

τ , classifying point i as +1 and all other points as −1).

3. Using Eq. 5.3, calculate the corresponding loss Li. Of the two stumps f1 and fi,

store the one with smaller loss as best-so-far.

4. Find point xj most similar2 to xi among points of the opposite binarized class:

xj = arg max
bj=−bi

{k(xi,xj)}

5. Calculate the loss achieved using the two-point localized similarity with xi and

xj as supports. If it outperforms the previous best, store the newer learner and

update the best-so-far loss.

6. Find all points that are similar enough3 to xj and remove them from considera-

tion for the remainder of the current iteration. If all points have been removed,

return the best-so-far stump; otherwise, loop back to step 4.

Upon completion of this procedure, the best-so-far stump is guaranteed to lead to

an adequate reduction in loss, based on the derivation in Sec. 5.3 above.

5.5 Generalization Experiments

Our boosting method provably reduces the loss well after the training error is min-

imized. In this section, we demonstrate that the continual reduction in loss serves

only to improve the decision boundaries and not to overfit the data.

Figure 5.2: A 500-point 2-dimensional synthetic dataset with a (2/3, 1/3) split

of train data (left plot) to test data (right plot). Background shading corresponds to

the hypothesized class using our framework.

2 “most similar” need not be exact; approximate nearest neighbors also work.
3 In our implementation, we remove all xn where fij(xn) ≤ fij(xj)/2.
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We generated 2-dimensional synthetic datasets in order to better visualize and get

an intuition for what the classifiers are doing. The results shown in this chapter are

based on a dataset composed of 500 points belonging to one of three classes in a

spiral formation, with a (2/3, 1/3) train/test split. Fig. 5.2 shows the hypothesized

class using a classifier trained for 1000 iterations.
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Figure 5.3: A plot of training loss, training error, and test error as a classifier is

trained for 1000 iterations. Note that the test error does not increase even after the

training error drops to zero. The lower inset is a zoomed-in plot of the train and test

error, the upper inset is a plot of training loss using a log-scaled y-axis; both inset

plots are congruous with the original x-axis.
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Figure 5.4: The progression of a classifier as it is trained (the corresponding itera-

tion number is shown at the bottom left of each subplot).
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Our classifier achieves perfect training (left) and test classification (right), produc-

ing a visually simple well-generalizing contour around the points. Training curves

are given in Fig. 5.3, tracking the loss and classification errors per training iteration.

Note that the test error does not increase even after the training error drops to zero.

In Fig. 5.4, we show the progression of a classifier as it is being trained. Once per-

fect training error is achieved (around iteration 35), the remaining iterations seem

to focus on smoothening out classification boundaries.

The following experiments explore the functionality of our framework (i.e. REBEL

using localized similarities) in two scenarios that could arise in practice: (1) varying

sparsity of training data, and, (2) varying amounts of mislabeled training data.

Sparse Training Data

In this section of experiments, classifiers were trained using varying amounts of

data, from 4/5 to 1/5 of the total training set. Fig. 5.5 shows the classification

boundaries learned by the classifier (ai,bi), and the training curves (ci). In all cases,

the boundaries seem to aptly fit (and not overfit) the training data (i.e. being satisfied

with isolated patches without overzealously trying to connect points of the same

class together). This is more rigorously observed from the training curves; the test

error does not increase after reaching its minimum (for hundreds of iterations).

Mislabeled Training Data

In this section of experiments, classifiers were trained with varying fractions of

mislabeled data; from 1% to 30% of the training set. Fig. 5.6 shows the boundaries

learned by the classifier (ai,bi), and the training curves (ci). All classifiers seem to

degenerate gracefully, isolating rogue points and otherwise maintaining relatively

smooth boundaries. Even the classifier trained on 30% mislabeled data (which we

would consider to be unreasonably noisy) is able to maintain smooth boundaries.

In all cases, the training curves still show that the test error is fairly stable once

reaching its minimum value. Moreover, test errors approximately equal the fraction

of mislabeled data, further validating the generalization properties of our method.

Real Data

Although the above observations are promising, they could result from the fact that

the synthetic datasets are 2-dimensional. In order to rule out this possibility, we

perform similar experiments on several UCI datasets [4] of varying input dimen-
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(a4) Train Data (b4) Test Data (c4) Training on 4/5 of the data (267 points)
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(a3) Train Data (b3) Test Data (c3) Training on 3/5 of the data (200 points)
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(a2) Train Data (b2) Test Data (c2) Training on 2/5 of the data (133 points)
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(a1) Train Data (b1) Test Data (c1) Training on 1/5 of the data (67 points)
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Figure 5.5: Classification boundaries (a,b), and training curves (c) when a classifier

is trained on varying amounts of data. Stars are correctly-classified, circles are

misclassified. In all cases, the test error is fairly stable once reaching its minimum.

sionalities (from 9 to 617). From the training curves in Fig. 5.7 (on the following

page), we observe that once the test errors saturate, they no longer increase, even

after hundreds of iterations.

In Fig. 5.8, we plot the training losses on a log-scaled y-axis. The linear trend

signifies an exponential decrease in loss per iteration. Our proven bound predicts a

much slower (exponential) rate than the actual trend observed during training. Note

that within the initial ∼ 10% of the iterations, the loss drops at an even faster rate,
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(a1) Train Data (b1) Test Data (c1) ∼1% mislabeled data (4 points)
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(a2) Train Data (b2) Test Data (c2) ∼3% mislabeled data (10 points)
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(a3) Train Data (b3) Test Data (c3) ∼10% mislabeled data (32 points)
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Figure 5.6: Classification boundaries (a,b), and training curves (c) when a classi-

fier is trained on varying fractions of mislabeled data. In all cases, the test error

is fairly stable once reaching its minimum. Even with 30% mislabeled data, the

classification boundaries are reasonable given the training labels.

after which it settles down to a seemingly-constant rate of exponential decay. We

have not yet determined the characteristics (i.e. the theoretically justified rates) of

these observed trends, and relegate this endeavor to future work.
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Figure 5.7: Training curves for classifiers trained on UCI datasets with a range of

dimensionalities. In all cases, the test error is stable once it reaches its minimum.
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Figure 5.8: Training losses for classifiers trained on UCI datasets. The linear

trend (visualized using a log-scaled y-axis) signifies an exponential decrease in loss,

albeit at a much faster rate than established by our proven bound.
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5.6 Comparison with Other Methods

In Sec. 5.4 we proved that our framework adheres to theoretical guarantees, and in

Sec. 5.5 above, we showed that it has promising empirical properties. In this sec-

tion, we compare our classifiers against several state-of-the-art boosting baselines.

Specifically, we compare our method against 1-vs-All AdaBoost and AdaBoost.MH

[14], AdaBoost.ECC [7], Struct-Boost [16], CW-Boost [15], AOSO-LogitBoost

[17], and REBEL (using shallow decision trees as weak learners) [1].

Based on the same experimental setup as in [16, 1], each method is trained to a max-

imum of 200 weak learners. For each dataset, five random splits are generated, with

50% of the samples for training, 25% for validation (i.e. for setting hyperparameters

where needed), and the remaining 25% for testing.
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Figure 5.9: Test errors of various state-of-the-art and baseline classification meth-

ods on MNIST and several UCI datasets. All boosting methods are allowed to use

200 weak learners. Our method is the best on all but one dataset shown.

Our method is the most accurate on five of the six datasets tested. In the Vowel

dataset, it achieves almost half of the error as the next best method. Note that

although our framework uses REBEL as its boosting method, the Localized similar-

ites add an extra edge, outperforming REBEL with decision trees in all runs. These

results demonstrate the ability of our framework to produce easily interpretable

classifiers that are also empirically proficient.

Comparison with Neural Networks

Complex neural networks are able to achieve remarkable performance on large

datasets, but they require an amount of training data proportional to their complex-

ity. In the regime of small to medium amounts of data (within which the UCI and

MNIST datasets belong, i.e. 10 < N < 106 training samples), such networks
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cannot be too complex. Accordingly, in Fig. 5.10, we compare our method against

fully-connected neural networks (with one hidden layer).
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Figure 5.10: Comparison of our method versus Neural Networks and Support

Vector Machines on ten datasets of varying sizes and difficulties. Our method is the

most accurate on all but one dataset.

Four neural networks were implemented, each having one of the following architec-

tures: [d−4d−K], [d−4K−K], [d−2d−d−K], [d−4K−2K−K]. Only the one

with the best test error is shown in the plot. A multi-class SVM [6] was validated

using a 5 × 6 parameter sweep for C and γ. Our method was run until the training

loss fell below 1/N . Overall, our method achieves the best results on eight of the

ten datasets, decisively marking it as the method of choice for this range of data.

Training times are plotted in Fig. 5.11. Our method’s training times were compara-

ble to those for neural networks (although our current code is not optimized so we

expect substantial speed-ups). For the ISOLET, MNIST, and CUB200 datasets, the

SVMs took much longer to train, whereas they were on-par with the other methods

for the smaller datasets.
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Figure 5.11: Comparison of the training times for our method, Neural Networks,

and Support Vector Machines. At the time of this run, our code was not optimized.

We expect substantial speed-ups in the future.

5.7 Discussion

In Sec. 5.5, we observed that our classifiers tend to smoothen the decision bound-

aries in the iterations beyond zero training error. In Fig. 5.12, we see that this is

not the case with the typically-used axis-aligned decision stumps. Why does this

happen with our framework?

Figure 5.12: The contrasted difference between overtraining using (a) classical

decision stumps and (b) localized similarities. (a) leads to massive overfitting of the

training data, whereas (b) leads to smoothening of the decision boundaries.
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First, we note that the largest-margin boundary between two points is the hyper-

plane that bisects them. Every two-point localized similarity is such a bisector.

Therefore, it is not surprising that with only a pool of localized similarities, a classi-

fier should have what it needs to place good boundaries. Further, since not all pairs

need to be separated (many neighboring points belong to the same class), only a

small subset of the ∼N2 possible learners will ever need to be used.

Secondly, we note that if some point (either an outlier or an unfortunately-placed

point) continues to increase in weight until it can no-longer be ignored, it can simply

be isolated and individually dealt with using a one-point localized similarity, there

is no need to combine it with other “innocent-bystander” points. This phenomenon

is observed in the mislabeled training experiments in Sec. 5.5.

Together, the two types of localized similarities complement each other. With the

guarantee that every step reduces the loss, each iteration focuses on either further

smoothening out an existing boundary, or reducing the weight of a single unfit point.

5.8 Conclusions

We have presented a novel framework for multi-class boosting that makes use of a

simple family of weak learners, called Localized Similarities. Each of these learners

has a clearly understandable functionality; a test of similarity between a query point

and some pre-defined samples.

We have proven that the framework adheres to theoretical guarantees: the training

loss is minimized at an exponential rate, and since the loss upper-bounds the train-

ing error (which can only assume discrete values), our framework is therefore able

to achieve perfect training on any dataset.

We further explored some of the empirical properties of our framework, noting that

the combination of localized similarities and guaranteed loss reduction tend to lead

to a non-overfitting regime, in which the classifier focuses on smoothing-out its

decision boundaries. Finally, we compare our method against several state-of-the-

art methods, outperforming all of the methods in most of the datasets.

Altogether, we believe that we have achieved our goal of presenting a simple multi-

class boosting framework with theoretical guarantees and empirical proficiency.
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Chapter 6

CONCLUSIONS

Boosting is an intuitive method for combining multiple weak (i.e. not very accurate)

classifiers into a single strong (i.e. accurate) classifier. When implemented with

cascaded evaluation, it is the amongst the fastest methods at test-time. Boosting

had its shortcomings: decision trees commonly used as weak learners were slow

to train and were unable to properly fit the data, and there was no simple unified

framework for tackling cost-sensitive multi-class problems.

In this work, I have addressed all of these issues: when there is a need for an accu-

rate, easy-to-use, white-box machine learning system that is able to train efficiently

and with little data, I have shown that boosted classifiers are the tool for the job;

specifically, REBEL using Localized Similarities as weak learners.

In Ch. 3, I presented a principled approach (called QuickBoost) for training iden-

tical classifiers at an order of magnitude faster than before. My approach is built

on a bound on classification or regression error, guaranteeing that gains in speed

do not come at a loss in classification performance. Experiments show that this

method is able to reduce training cost by an order of magnitude or more, or given a

computational budget, can train classifiers that reduce errors by two-fold or more.

In Ch. 4, I presented a multi-class cost-sensitive boosting framework with a novel

family of simple surrogate loss functions. My framework directly models the min-

risk class without explicitly approximating a posterior distribution. Training is

based on minimizing user-specified classification costs (e.g. following taxonomic

distance). Specifically using an exponential-based loss function, I derived and im-

plemented REBEL.

REBEL unifies the best qualities from a number of algorithms. It is conceptually

simple and optimizes feature sharing among classes. REBEL is able to focus on

important distinctions (those with costly errors) in favor of more forgivable ones.

I proved that REBEL employs the weak learning condition required to be a true

boosting algorithm in the theoretical sense. I compared REBEL to several state-of-

the-art methods, showing improvements on a range of datasets.

In Ch. 5, I presented a novel framework for multi-class boosting that makes use
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of a simple family of weak learners, called Localized Similarities. Each of these

learners has a clearly understandable functionality: a test of similarity between a

query point and some pre-defined samples. I proved that the framework adheres

to theoretical guarantees: the training loss is minimized at an exponential rate, and

have shown that my framework is therefore able to achieve perfect training on any

dataset within a finite number of iterations.

I also showcased the empirical properties of my framework, noting that the com-

bination of Localized Similaritiesand guaranteed loss reduction tend to lead to a

non-overfitting regime in which the classifier focuses on smoothing-out its decision

boundaries. Finally, I compared my method against several state-of-the-art meth-

ods, outperforming all methods in all but one of the datasets.

Altogether, I have progressed the theory of cost-sensitive multi-class boosting and

have shown that REBEL paired with Localized Similarities achieves state-of-the-art

results. It can be run with the push of a button, no expertise necessary, its function-

ality is interpretable, and its performance is better than Neural Networks and other

competing methods in the mid-sized data regime. It is the tool that everyone should

have in their toolbox and it should be the first one they try.
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Chapter 7

APPENDICES

7.1 Statistically Motivated Derivation of AdaBoost

In Ch. 2, we motivated AdaBoost from a practical standpoint by finding a suitable

upper-bounding convex loss function of the misclassification error. Here, we give

an alternative derivation, one that is statistically motivated, as in [1].

As discussed in Sec. 2.1, in discriminative classification, our goal is to learn the

intrinsic posterior distribution of the data, Py|x. Specifically, in the case of binary

classification (i.e. y ∈ {±1}), it would suffice to know P (y = +1 |x).

We propose to estimate the posterior as p̃(x) ≈ P (y = +1 |x) by expressing it

as a logistic function of a confidence value H : X→ R, as follows:

p̃(x) =
eH(x)

e−H(x) + eH(x)
(7.1)

Note that this logistic form ensures that: H ∈ [−∞,∞] ⇔ p̃ ∈ [0, 1]

To optimize our model, we minimize its expected negative log-likelihood:

L ≡ E{−l(x, y)} = −E
{(1+y

2

)

ln p̃(x) +
(1−y

2

)

ln
(
1−p̃(x)

)}

= −E
{(1+y

2

)(
H(x)− ln(e−H(x)+eH(x))

)

+
(1−y

2

)(
−H(x)− ln(e−H(x)+eH(x))

)}

= E{ln(e−H(x)+eH(x))− yH(x)}

= E

{

ln
(e−yH(x) + eyH(x)

eyH(x)

)}

= E{ln(1 + e−2yH(x))}

Solving for optimal H
∗

:

∂L
∂H

= 0 =

∫

x

P (x, y = +1)
( −2e−2H

∗
(x)

1 + e−2H∗(x)

)

+

∫

x

P (x, y = −1)
( 2e2H

∗
(x)

1 + e2H
∗(x)

)

∴

∫

x

P (x, y = +1)

1 + e2H
∗(x)

=

∫

x

P (x, y = −1)
1 + e−2H∗(x)
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∴ H
∗

(x) =
1

2
ln
(P (x, y = +1)

P (x, y = −1)
)

=
1

2
ln
(P (y = +1 |x)
P (y = −1 |x)

)

Thus, the optimal confidence function H
∗

is half the log-ratio of the intrinsic

posterior probabilities (also known as the logit), and plugging it in to Eq. 7.1, the

optimal value of our estimator p̃ is indeed the intrinsic posterior that we seek.

Since H ∈ R, an additive model is a fitting choice (no pun intended):

H(x) ≡
T∑

t=1

αtft(x) where: αt ∈ R, ft : X→ {±1}

By fixing all model parameters from the first I iterations, we can greedily optimize

the I+1th parameters as follows:

(α
I+1
, f

I+1
) = argmin

α,f
{LI+1} = argmin

α,f

{
E{ln

(
1 + e−2yHI(x) e−2yαf(x)

)
}
}

The above procedure is aptly named LogitBoost, but as it turns out, it does not

yield a closed-form solution. However, we can use a clever surrogate function to

approximate the negative log-likelihood of our initial model:

L′ ≡ E{e−yH(x)} ≈ E{ln(1 + e−2yH(x))}

This surrogate function is the basis of AdaBoost, yielding a closed-form solution as

shown in Sec. 2.2. Furthermore, the solution for optimal H
∗

remains unchanged:

∂L′

∂H
= 0 = −

∫

x

P (x, y = +1) e−H
∗
(x) +

∫

x

P (x, y = −1) eH
∗
(x)

∴ H
∗

(x) = ln
(P (x, y = +1)

P (x, y = −1)
)

= ln
(P (y = +1 |x)
P (y = −1 |x)

)
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7.2 QuickBoost via Information Gain, Gini Impurity, and Variance

In Ch. 3, we prove a bound on the misclassification error on a preliminary subset of

the data, given as Proposition 1:

r ≤ m ⇒ Zrεr ≤ Zmεm

Using this bound, we are able to prune features early and speed up the training of

decision trees using the classification error criterion. In this document, we prove

the same bound on other common types of stump splitting criteria (information

gain, Gini purity, and variance minimization), extending our method for use with

regression trees as well as binary or multi-class classification trees.

In a decision tree, an input propagates down the tree (based on the tree parameters)

until it reaches a single leaf node. The optimal tree parameters are those that lead

to the best error based on the training data. Recall that an m-subset is the set of m

datapoints with the largest weights. We define ρj to be the set of elements in the

m-subset that are assigned to leaf j using the optimal tree parameters (when trained

on the n-subset). We define the sum of the weights of elements that belong to that

leaf j as Zρj and the sum of the weights of elements in ρj with class y as Zy
ρj

Zm ≡
∑

n≤m

wn Zρj ≡
∑

n∈ρj

wn Zy
ρj
≡
∑

n∈ρj

wn 1(yn = y)

In regression, elements have values yi ∈ R
d and we define the weighted average

value of a leaf as:

ỹρj ≡
1

Zρj

∑

n∈ρj

wn yn

Given an m-subset of data (with m ≤ N), the preliminary error is computed by

summing the error in each leaf, proportionally weighted by the total mass of sam-

ples belonging to that leaf:

εm =
∑

j

Zρj

Zm

ερj which we reformulate as: Zmεm =
∑

j

Zρjερj

Our goal is to show that for each leaf j, the product of preliminary error and subset

mass always exceeds that of a smaller subset. Let uj be the elements in ρj that are

in an r-subset and ūj be the elements that are not, where r ≤ m:

uj ≡ {n |n ∈ ρj , n ≤ r}, ūj ≡ {n |n ∈ ρj , n > r} [Note that: uj ∪ ūj = ρj]
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Zuj
≡
∑

n∈uj

wn Zy
uj
≡
∑

n∈uj

wn 1(yn = y) Zūj
≡
∑

n∈ūj

wn Zy
ūj
≡
∑

n∈ūj

wn 1(yn = y)

The optimal tree parameters for the r-subset might be different than those for the

m-subset; hence, the use of potentially sub-optimal parameters may lead to a worse

error. Accordingly, in the following section, we finalize our proof by showing:

Zρjερj ≥ Zuj
εuj
∀j

⇒ Zmεm =
∑

j

Zρjερj ≥
∑

j

Zuj
εuj
≥ Zrεr

Q.E.D.

Note that this proof applies to trees of any depth and any number of leaves, not just

binary stumps.

The following proofs are based on inequalities which are given at the end.

Misclassification

εm ≡
∑

j

Zρj

Zm

(

1− Z
yj
ρj

Zρj

)

∴ Zmεm =
∑

j

Zρj
ερj

︷ ︸︸ ︷

(Zρj − Zyj
ρj
)

Zρjερj = Zρj − Zyj
ρj

= (Zuj
+ Zūj

)− (Zyj
uj

+ Z
yj
ūj
) = Zuj

− Zyj
uj

︸ ︷︷ ︸

Zuj
εuj

+ Zūj
− Z

yj
ūj

︸ ︷︷ ︸

Zūj
εūj ≥ 0

Information Gain

εm ≡
∑

j

Zρj

Zm

(

−
∑

y

Zy
ρj

Zρj

ln
(Zy

ρj

Zρj

))

∴ Zmεm =
∑

j

Zρj
ερj

︷ ︸︸ ︷
(

−
∑

y

Zy
ρj
ln
(Zy

ρj

Zρj

))

Zρjερj = −
∑

y

Zy
ρj
ln
(Zy

ρj

Zρj

)

= −
∑

y

(Zy
uj

+ Zy
ūj
) ln
(Zy

uj
+ Zy

ūj

Zuj
+ Zūj

)

≥
(

−
∑

y

Zy
uj
ln
(Zy

uj

Zuj

))

︸ ︷︷ ︸

Zuj
εuj

+
(

−
∑

y

Zy
ūj
ln
(Zy

ūj

Zūj

))

︸ ︷︷ ︸

Zūj
εūj ≥ 0

The proof for Information Gain Ratio is a trivial adaptation of the proof above.
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Gini Impurity

εm ≡
∑

j

Zρj

Zm

∑

y

Zy
ρj

Zρj

(

1−
Zy

ρj

Zρj

)

∴ Zmεm =
∑

j

Zρj
ερj

︷ ︸︸ ︷(

Zρj −
∑

y

(Zy
ρj
)2

Zρj

)

Zρjερj = Zρj −
∑

y

(Zy
ρj
)2

Zρj

= (Zuj
+ Zūj

)−
∑

y

(Zy
uj
+ Zy

ūj
)2

Zuj
+ Zūj

≥
(

Zuj
−
∑

y

(Zy
uj
)2

Zuj

)

︸ ︷︷ ︸

Zuj
εuj

+

(

Zūj
−
∑

y

(Zy
ūj
)2

Zūj

)

︸ ︷︷ ︸

Zūj
εūj ≥ 0

Variance Minimization

εm ≡
∑

j

Zρj

Zm

∑

n∈ρj

wn

Zρj

‖yn−ỹρj‖2 ∴ Zmεm =
∑

j

Zρj
ερj

︷ ︸︸ ︷(
∑

n∈ρj

wn‖yn‖2 −
‖Zρj ỹρj‖2

Zρj

)

Zρjερj =
∑

n∈ρj

wn‖yn‖2 −
‖Zρj ỹρj‖2

Zρj

=
∑

n∈uj

wn‖yn‖2 +
∑

n∈ūj

wn‖yn‖2 −
‖Zuj

ỹuj
+ Zūj

ỹūj
‖2

(Zuj
+ Zūj

)

≥
(
∑

n∈uj

wn‖yn‖2 −
‖Zuj

ỹuj
‖2

Zuj

)

︸ ︷︷ ︸

Zuj
εuj

+

(
∑

n∈ūj

wn‖yn‖2 −
‖Zūj

ỹūj
‖2

Zūj

)

︸ ︷︷ ︸

Zūj
εūj ≥ 0

Inequalities

For positive scalars a, b ≥ 0 and α, β > 0, the following inequality holds:

(a+ b) ln
( a+ b

α + β

)

≤ a ln
( a

α + β

)

+ b ln
( b

α + β

)

= a ln
( a

α
· α

α + β

)

+ b ln
( b

β
· β

α + β

)

= a ln
( a

α

)

+ b ln
( b

β

)

−
(

a ln
(

1 +
β

α

)

+ b ln
(

1 +
α

β

))

︸ ︷︷ ︸

≥ 0
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∴ (a + b) ln
( a+ b

α + β

)

≤ a ln
( a

α

)

+ b ln
( b

β

)

For any vectors (or scalars) a,b and positive scalars α, β > 0, the following

inequality holds:

‖a+ b‖2
α + β

=
‖a‖2 + ‖b‖2

α + β
+

2〈a,b〉
α + β

=
‖a‖2
α

(

1− β

α + β

)

+
‖b‖2
β

(

1− α

α+ β

)

+
2〈a,b〉
α + β

=
‖a‖2
α

+
‖b‖2
β
− ‖β a− αb‖2

αβ(α+ β)
︸ ︷︷ ︸

≥0

∴
‖a+ b‖2
α + β

≤ ‖a‖
2

α
+
‖b‖2
β
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7.3 Reduction of REBEL to Binary AdaBoost

In Ch. 4, we propose a novel multi-class cost-sensitive boosting method, REBEL. In

this section, we prove that REBEL reduces to binary boosting methods, depending

on the convex upper-bounding function g. In the binary (two-class) cost-insensitive

case, the surrogate loss reduces to:

L =
1

2N

∑

yn=1

(
g(−Hn1) + g(Hn2)

)
+

1

2N

∑

yn=2

(
g(Hn1) + g(−Hn2)

)
(7.2)

where we denote:
∑

yn=k

(...) ≡
N∑

n=1

1(yn=k)(...) (i.e. summing over only class k)

and: Hn1 ≡ 〈HI
(xn), δδδ1〉, Hn2 ≡ 〈HI

(xn), δδδ2〉, H+
n1 ≡ 〈HI+1

(xn), δδδ1〉, H+
n2 ≡ 〈HI+1

(xn), δδδ2〉

Proposition: Hn1 = −Hn2 ∀ I

Proof: (by induction)

Before any training: H0(xn) ≡ 0 ∴ Hn1 = Hn2 = 0 ∴ Hn1 = −Hn2 ∀n

Assume this holds for H
I
(x). On the I+1th iteration, H

I+1
(x) = H

I
(x)+f(x) a, hence:

L
I+1

=
1

2N

(∑

yn=1

(
g(−H+

n1)+g(H+
n2)
)
+
∑

yn=2

(
g(H+

n1)+g(−H+
n2)
))

=
1

2N

∑

yn=1

(
g(−Hn1−f(xn)a1) + g(Hn2+f(xn)a2)

)

+
1

2N

∑

yn=2

(
g(Hn1+f(xn)a1) + g(−Hn2−f(xn)a2)

)

Therefore, solving for optimal a1 by setting:
∂L

I+1

∂a1
= 0

∴

∑

yn=1

f(xn)g
′(−Hn1−f(xn)a1) =

∑

yn=2

f(xn)g
′(Hn1+f(xn)a1) (7.3)

Whereas solving for optimal a2 by setting:
∂L

I+1

∂a2
= 0

∴

∑

yn=1

f(xn)g
′(Hn2+f(xn)a2) =

∑

yn=2

f(xn)g
′(−Hn2−f(xn)a2)

Since by assumption, Hn1 = −Hn2, therefore:

∴

∑

yn=1

f(xn)g
′
(
−Hn1−f(xn)(−a2)

)
=
∑

yn=2

f(xn)g
′
(
Hn1+f(xn)(−a2)

)
(7.4)
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Note that if a1 = a solves Eq. 7.3, then a2 = −a solves Eq. 7.4; hence: a1 = −a2.

∴ H+
n1 = Hn1 + f(xn) a1 = −Hn2 − f(xn) a2 = −(Hn2 + f(xn) a2) = −H+

n2

On the I+1th iteration, again: H+
n1 = −H+

n2

Back to the original binary loss (Eq. 7.2):

L =
1

2N

∑

yn=1

(
g(−Hn1) + g(Hn2)

)
+

1

2N

∑

yn=2

(
g(Hn1) + g(−Hn2)

)

=
1

N

(∑

yn=1

g(−Hn1) +
∑

yn=2

g(Hn1)
)

=
1

N

N∑

n=1

g(−y⋆nHn1)

where: y⋆n ∈ {+1,−1} for: yn ∈ {1, 2}

which is exactly the same form as the loss function for binary boosting. For in-

stance, if g(x) ≡ ex, REBEL reduces to AdaBoost, g(x) ≡ log2(1 + ex) reduces to

LogitBoost, and g(x) ≡ (1 + x)2 reduces to L2Boost.
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7.4 Unit Vector Bounds

Proposition 5.8: 〈|v̂|, 1〉2 ≥ 1

Proof: Reformulate as a constrained minimization problem, with x ∈ R
N :

min
x

{〈x, 1〉} such that: ‖x‖2 = 1, x ≥ 0

∴ L = 〈x, 1〉 − λ(‖x‖2 − 1)−
N∑

n=1

µn(〈x, δδδn〉 − 0)
[
µn ≥ 0 ∀n

]

∴ ∇xL = 1− 2λx−
N∑

n=1

µn δδδn

∴ 2λx∗ =

N∑

n=1

(1−µn)δδδn ∴ x∗ =

N∑

n=1

(1−µn)δδδn
√

N∑

n=1

(1−µn)2

[
µn ≤ 1 ∀n

]

∴ 〈x∗, 1〉 =

N∑

n=1

(1−µn)

√
N∑

n=1

(1−µn)2

≥

N∑

n=1

(1−µn)
2

√
N∑

n=1

(1−µn)2

=

√
√
√
√

N∑

n=1

(1−µn)2

To have unit norm, x must contain at least one non-zero element. Thus, without

loss of generality, we assume x1 > 0; hence: µ1 = 0

∴ 〈x∗, 1〉 ≥

√
√
√
√1 +

N∑

n=2

(1−µn)2 ≥ 1

Q.E.D.
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Proposition 5.9: max
i
{〈1−2δδδi,v̂〉2} ≥

4

N
for N ≥ 4

Proof: Reformulate as a constrained minimization problem with x ∈ R
N . With-

out loss of generality, assume that 〈x, 1〉 ≥ 0 and that its first element x1 is a

minimal element (i.e. x1 ≤ xn ∀n).

min
x

{〈x, 1−2δδδ1〉} such that: ‖x‖2 = 1, x ≥ x1 1

∴ L = 〈x, 1−2δδδ1〉 − λ(‖x‖2 − 1)−
N∑

n=2

µn(〈x, δδδn〉 − x1)
[
µn ≥ 0 ∀n

]

∴ ∇xL = [1−2δδδ1]− 2λx−
N∑

n=2

µn δδδn

∴ 2λx∗ = −δδδ1 +
N∑

n=2

(1−µn)δδδn ∴ x∗ =

−δδδ1 +
N∑

n=2

(1−µn)δδδn
√

1 +
N∑

n=2

(1−µn)2

∴ 〈x∗, 1−2δδδ1〉 =

1 +
N∑

n=2

(1−µn)

√

1 +
N∑

n=2

(1−µn)2

Note that if xn > x1 then µn = 0, and if xn = x1 then (1−µn) = −1.

Let M be the number of unique indices n ≥ 2 for which xn = x1.

∴ 〈x∗, 1−2δδδ1〉 =
1 +

(
(N−1)−M

)
−M√

N
=

N − 2M√
N

Since 〈x, 1〉 ≥ 0, hence: −1 +
(
(N−1)−M

)
−M ≥ 0 ∴ −2M ≥ 2−N

∴ 〈x∗, 1−2δδδ1〉 ≥
2√
N

∴ 〈x∗, 1−2δδδ1〉2 ≥
4

N
Q.E.D.
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