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ABSTRACT 

Proper synthesis and targeting of membrane proteins that contain hydrophobic 

transmembrane domains are mediated by chaperones and targeting factors. Tail-anchored 

(TA) proteins are a special class of membrane proteins that are characterized by a single 

carboxy (C) terminal helix that anchors them to biological membranes. Fungal Guided 

Entry of Tail-anchored protein (GET) pathway components, which include four soluble 

proteins—Sgt2, Get3, Get4, Get5—and two membrane bound receptors—Get1 and Get2—

mediate TA biogenesis. These proteins maintain TA protein solubility in the aqueous 

cytosol and target TA to the endoplasmic reticulum. While most of the components are 

conserved in metazoans, one additional protein, Bag6, reorganizes the sorting complex 

from the heterotetrameric Get4-5 to the heterotrimeric Bag6-TRC35-Ubl4A. To understand 

the molecular architecture and mechanism of the Bag6 complex, we took a 

multidisciplinary approach that combines x-ray crystallography, biochemical 

reconstitution, and cell biology. Our studies demonstrate that the BAG domain of Bag6 is 

not a canonical BAG domain. Instead, main role of the Bag6 ‘mock’ BAG domain is to 

dimerize with Ubl4A. Furthermore, the truncated Bag6 complex defined in this study is 

sufficient to facilitate substrate transfer from SGTA to TRC40. Lastly, our results 

unequivocally establish TRC35 as a cytoplasmic retention factor for Bag6. These results 

provide structural, biochemical and cell biological bases for modular Bag6 function and 

regulation of nucleocytoplasmic distribution of Bag6 by TRC35.  
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1 
C h a p t e r  1  

INTRODUCTION 

Biological Membranes and Cellular Evolution 

Formation of the biological membrane was crucial to the emergence of cellular life on 

earth. While it is likely that the first cellular membranes differed significantly from the 

phospholipid bilayers we observe in modern cells, the fundamental properties that 

membranes confer to life do not change. Membranes encapsulate the cell, forming a 

protective barrier from the changing and often harsh environment. This encapsulation also 

results in compartmentalization of the biochemical activity of a cell, such as DNA 

replication and metabolic activity, from the environment. These two conditions were 

prerequisites to the emergence of the self-replicative cell that comprises life on earth today.  

Encapsulation and compartmentalization by biological membranes are also guiding 

principles for achieving further biological complexity in eukaryotes. Membrane bound 

compartments within the plasma membrane partitions specific activities within the cell. 

The encapsulation of DNA by the nuclear membrane, for example, not only ensures greater 

integrity of the cell’s genetic material, but also physically separates transcription from 

translation. This decoupling allows for mRNA processing prior to translation, which 

expands the transcriptome and the proteome without altering the genome size. Other 

subcellular compartments specialize in different functions, such as protein synthesis and 

modification in the case of endoplasmic reticulum (ER) and metabolic reactions in the case 

of mitochondria. In complex multicellular organisms, differential distribution of subcellular 



 

 

2 
organelles in distinct cell types plays a role in determining tissue-specific function. The 

extensive ER networks in pancreatic cells that secrete digestive enzymes and the 

abundance of mitochondria in muscle cells exemplify membrane-bound organelle-driven 

tissue specialization.  

Understanding the molecular machineries that have evolved to accommodate and maintain 

these increasingly complex biological membrane systems is crucial to advancing our 

understanding of cellular biology and can provide valuable insight into the underlying 

principles of molecular evolution. This dissertation explores a metazoan molecular 

machinery involved in proper biosynthesis of proteins that reside in the membrane. 

Membrane Protein Biogenesis 

Biological membranes do not exist in isolation; rather, membrane proteins that reside in 

biological membranes are indispensable for cellular homeostasis, membrane function and 

organelle function (Engel and Gaub, 2008; Tan et al., 2008). Membrane protein synthesis, 

however, is inherently problematic for the cell. First, membrane proteins are characterized 

by hydrophobic transmembrane domains that are required for spanning the hydrophobic 

phospholipid bilayer. Due to these hydrophobic domains, membrane proteins are prone to 

aggregation in the aqueous and crowded cytosol where they are synthesized. Furthermore, 

they need to be targeted to appropriate destination membranes. Dedicated cellular 

machineries work to ensure proper folding and targeting of membrane proteins. One such 

machinery is the universally conserved and essential Signal Recognition Particle (SRP) 

(Akopian et al., 2013). SRP co-translationally recognizes the amino-terminal (N-terminal) 

signal sequence (Blobel and Dobberstein, 1975), which is usually the first transmembrane 
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domain encoded by transmembrane proteins. In eukaryotes, SRP binds the ribosome 

nascent chain complex (RNC) (Walter and Blobel, 1981), and the SRP-RNC complex is 

recruited to the ER membrane via its interaction with the ER-resident SRP receptor (SR) 

(Gilmore et al., 1982). Upon arrival, the RNC is transferred to the Sec61 translocon (Simon 

and Blobel, 1991), a protein channel through which polypeptides are translocated across 

membranes. In this highly-coordinated process, SRP acts both as a chaperone and a 

targeting factor (Akopian et al., 2013).   

Notably, membrane proteins whose single transmembrane domain is near the carboxy 

terminus (C-terminus) cannot access the co-translational SRP pathway because the 

transmembrane domain—the signal sequence—does not emerge from the ribosome until 

translation has terminated. These proteins, named tail-anchored (TA) proteins, are 

topologically constrained from accessing the SRP pathway. TA proteins were first 

described in 1993 (Kutay et al., 1993). Subsequent biochemical studies showed that the 

post-translational insertion of synaptobrevin, a model TA protein, into the ER membrane is 

SRP-independent and ATP-dependent (Kutay et al., 1995). For 12 years the TA targeting 

machinery remained elusive until a 40 kDa cytosolic ATPase, Transmembrane domain 

Recognition Complex 40 (TRC40), was isolated from an unbiased biochemical screen for a 

predominant TA binding partner in rabbit reticulocyte lysate (Stefanovic and Hegde, 2007).  

Thanks to high evolutionary conservation of TRC40, its fungal counterpart Get3 was 

quickly identified. Get3 was initially identified in a large-scale genetic interaction study of 

the yeast secretory pathway (Schuldiner et al., 2005). Get1, 2, or 3 knockout yeast 

displayed phenotypes consistent with defects in retrograde trafficking, and thus were 
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named Golgi ER Trafficking 1-3 (Schuldiner et al., 2005).  After studies in the mammalian 

TA targeting pathway identified Get3 as the TRC40 homologue (Stefanovic and Hegde, 

2007), Get3 and its membrane associated interaction partners, Get1 and Get2, were re-

established as central players in fungal TA targeting (Schuldiner et al., 2008; Wang et al., 

2011a), which led to the renaming of the Get pathway as Guided Entry of Tail-anchored 

protein pathway. 

 

Figure 1. Overview of the TA targeting pathways in fungi and mammals. Upon translation termination and release 
from the ribosome, TA is captured by Sgt2/SGTA and handed off to Get3/TRC40. This handoff step is facilitated by 
the Get4-5 heterotetramer in yeast and the Bag6 heterotrimer in mammals. The Get3-TA/TRC40-TA complex that 
results is ultimately recruited to the ER membrane by membrane receptors, fungal Get1/2 or mammalian WRB/CAML.  

Unlike the co-translational SRP pathway, which is comprised of a single cytosolic factor 

SRP and a single membrane receptor SR, the fungal Get system is composed of four 



 

 

5 
soluble components—Sgt2, Get3-5—and two membrane bound factors—Get1 and Get2; 

in metazoans, incorporation of one additional soluble factor results in five soluble 

components—SGTA, TRC40, TRC35, Ubl4A, Bag6—and two membrane bound factors—

WRB and CAML. In yeast, upon termination of translation and release from the ribosome, 

TA substrate is captured by Sgt2. Sgt2 hands the TA substrate off to the targeting factor 

Get3 (Wang et al., 2010; Wang et al., 2011a), a process facilitated by the Get4-5 

heterotetramer (Gristick et al., 2014). This Get4-5 heterotetramer will be referred to as the 

fungal sorting complex throughout the text. The Get3-TA complex is recruited to the ER 

membrane via the ER membrane-associated Get3 receptor, Get1/2 complex, followed by 

TA release and insertion into the membrane (Stefer et al., 2011; Wang et al., 2014a).  

In mammals, the overall TA transfer from the Sgt2 homologue, SGTA, to the Get3 

homologue, TRC40, is conserved. SGTA post-translationally captures free TA substrate 

then hands it off to TRC40, a process facilitated by the mammalian sorting complex, the 

Bag6 heterotrimer comprised of Bag6, TRC35 (Get4 homologue) and Ubl4A (Get5 

homologue) (Mariappan et al., 2011; Mock et al., 2015; Stefanovic and Hegde, 2007). The 

TRC40-TA complex is targeted to the ER membrane via its ER receptor, the WRB/CAML 

complex, followed by substrate release and insertion into the membrane (Vilardi et al., 

2011; Vilardi et al., 2014; Yamamoto and Sakisaka, 2012). The incorporation of Bag6 into 

the mammalian TA targeting pathway results in substantial reorganization of the molecular 

architecture of the sorting complex. In yeast, the N-terminal domain of Get5 forms a direct 

complex with the C-terminal binding groove of Get4 (Chartron et al., 2010). Get5 also 

contains a homodimerization domain at its C-terminus (Chartron et al., 2012c). 



 

 

6 
Bcl-2 associated Athanogene 6 (Bag6, also known as Scythe or BAT3)  

Bag6 is a uniquely metazoan protein that appears late in opisthokont evolution (Fig. 2.11). 

Opisthokonts include a broad range of eukaryotes: the metazoan, choanozoan and fungal 

lineages. The term opisthokont was first coined in 1987 by Thomas Cavalier-Smith (British 

Mycological Society. Symposium (1986 : University of Bristol) et al., 1987), who 

suggested a close evolutionary relationship between fungi and metazoans; analysis of 16S-

like rRNA sequences (Wainright et al., 1993) and key protein sequences (Baldauf and 

Palmer, 1993) confirmed the hypothesis. A commonly isolated isoform of Bag6 is ~130 

kDa with an N-terminal ubiquitin-like (UBL) domain, a large predicted-to-be disordered 

proline-rich domain and a C-terminal putative BAG domain (Fig. 6.2).  

Bag6 was initially described as part of the gene cluster that included the human major 

histocompatibility complex (MHC) class III on chromosome 6, resulting in its first name, 

HLA (human leukocyte antigen)-B-Associated Transcript 3 (BAT3). The genomic 

localization suggested a role in immune response, which has been supported by evidence of 

Bag6 involvement in TH1 cell survival (Rangachari et al., 2012), natural killer cell 

cytotoxicity (Pogge von Strandmann et al., 2007), and MHC class II molecule presentation 

(Kamper et al., 2012a; Pai et al., 2002).  

Based on limited sequence homology to the Bcl-2 associated Athanogene (BAG) family 

and apparent Hsc70 regulating activity, BAT3 was renamed Bag6 in 2001 (Thress et al., 

2001). BAG family of proteins are multidomain proteins characterized by a conserved C-

terminal BAG domain (Qin et al., 2016; Takayama and Reed, 2001). The BAG domain is 

usually 110 to 130 residues long and folds into a three helix bundle that acts as a nucleotide 
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exchange factor for Hsp70 family of chaperones (Arakawa et al., 2010; Briknarova et al., 

2001). Excess BAG domain has been shown to inhibit Hsc70 refolding activity in vitro 

(Takayama et al., 1997). Initial searches that identified four additional functional 

homologues of Bag1 (Bag2-5) (Takayama et al., 1999) failed to detect Bag6. 

In addition to its roles in immune regulation, there is increasing evidence for nuclear 

functions of Bag6. Bag6 contains a functional nuclear localization sequence (NLS) 

(Manchen and Hubberstey, 2001) and endogenously localizes both in the nucleus and the 

cytoplasm (Kamper et al., 2012b; Manchen and Hubberstey, 2001; Pogge von Strandmann 

et al., 2007; Tsukahara et al., 2009; Wu et al., 2004). Bag6 NLS is removed by apoptosis 

inducers (Preta and Fadeel, 2012a, b) or masked by TRC35 (Wang et al., 2011a). In 

addition, inhibition of Crm1-dependent nuclear export prevents trafficking of Bag6 from 

the nucleus (Kamper et al., 2012b). Nuclear Bag6 has been shown to play a role in DNA 

damage response (Krenciute et al., 2013), p53 acetylation (Sasaki et al., 2007), cell cycle 

regulation (Yong and Wang, 2012), p300-mediated acetylation (Sebti et al., 2014a) and 

histone methylation (Nguyen et al., 2008; Wakeman et al., 2012). Secreted forms of Bag6 

have also been observed, and which appear to modulate natural killer cell cytotoxicity in 

chronic lymphocytic leukemia patients (Reiners et al., 2013).  

Bag6 has been implicated in a variety of additional cellular processes via numerous binding 

partners such as apoptosis inducing factor (AIF), Reaper, osteopontin, Rpn10c, SGTA, 

gp78, UbxD8, Rpt5, BORIS, SCP and RNF126 (Akahane et al., 2013; Desmots et al., 

2008; Goto et al., 2011; Kikukawa et al., 2005; Long et al., 2012; Nguyen et al., 2008; 
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Rodrigo-Brenni et al., 2014; Thress et al., 2001; Xu et al., 2013) (Fig. 6.2). Importantly, 

multiple studies have independently shown the interaction between components of the TA 

targeting pathway (SGTA, TRC35, Ubl4A) and Bag6, demonstrating that Bag6 exists in 

complex with TR35 and Ubl4A in the cytoplasm (Hessa et al., 2011; Krenciute et al., 2013; 

Mariappan et al., 2010; Mariappan et al., 2011; Wang et al., 2011b), with frequent 

interactions with SGTA (Chartron et al., 2012b; Leznicki and High, 2012; Leznicki et al., 

2013; Winnefeld et al., 2006; Xu et al., 2012). Bag6 has also been demonstrated to homo-

oligomerize in vitro, introducing greater complexity to the system. This builds a picture of 

Bag6 as a central hub for diverse physiological network of proteins. 

Such diverse cellular roles of Bag6 are reflected by its implications in a variety of diseases. 

Mutations of Bag6 are implicated in Kawasaki Syndrome (Hsieh et al., 2010), rheumatoid 

arthritis (Harney et al., 2008), lung cancer (Chen et al., 2014; Etokebe et al., 2015b; Wang 

et al., 2008; Zhao et al., 2014), type 1 diabetes (Degli-Esposti et al., 1992), myasthemia 

gravis, thymus hyperplasia (Vandiedonck et al., 2004) and osteoarthritis (Etokebe et al., 

2015a). Combined, these data establish Bag6 as a critical player in cellular and organismal 

biology. 

In contrast to the complicated plethora of data on the function of Bag6, precise biochemical 

and structural description had been rare when this work was conceived. This dissertation 

focuses on structural and biochemical characterization of a trimeric Bag6 complex that 

includes TRC35 and Ubl4A. Chapter 2 describes the structural characterization of the 

Bag6-Ubl4A complex and the Bag6-TRC35 complex. TRC35 and Ubl4A bind Bag6 at 
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distinct binding sites; Ubl4A localizes to the putative BAG domain and TRC35 binds at 

the region that includes the NLS of Bag6. The Bag6-Ubl4A structure reveals that the Bag6-

BAG domain does not resemble a canonical BAG domain, establishing Bag6 as a 

misnomer. TRC35 masking NLS provides the structural basis for nucleocytoplasmic 

distribution of Bag6. Chapter 3 describes the biochemical assays used to functionally 

characterize the BAG domain and the isolated minimal Bag6 complex, which includes a 

truncated C-terminal Bag6, truncated TRC35 and full length Ubl4A. An Hsc70 refolding 

assay is used to confirm that the Bag6 “BAG” domain is not a BAG domain. We also 

developed an in vitro TA transfer assay to demonstrate that the minimal Bag6 complex 

identified in this study is sufficient for facilitating TA handoff, establishing it as a TA 

targeting module. In Chapter 4, the regulation of nucleocytoplasmic distribution of Bag6 by 

TRC35 is explored using biochemical and cell biology techniques. Chapter 5 concludes by 

contextualizing the findings of this dissertation in the body of work on protein targeting and 

quality control.  
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C h a p t e r 2  

STRUCTURAL CHARACTERIZATION OF THE BAG6-TRC35-
UBL4A COMPLEX 
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Mock, J.-Y., Chartron, J.W., Zaslaver, M., Xu, Y., Ye, Y., and Clemons, W.M. Jr. 
(2015) Bag6 complex contains a minimal tail-anchor-targeting module and a mock 
BAG domain. Proc Natl Acad Sci USA. 112(1): 106-11 doi: 10.1073/pnas.1402745112 

Mock, J.-Y., Xu, Y., Ye, Y., and Clemons, W.M. Jr. (2017) Structural basis for regulation 
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Jee-Young Mock solved the crystal structures, carried out yeast 2-hybrid analysis, 
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Abstract 

Bcl2-associated athanogene cochaperone 6 (Bag6) is a uniquely metazoan protein 

involved in a diverse array of cellular processes. It is part of the heterotrimeric Bag6 

complex, which also includes ubiquitin-like 4A (Ubl4A) and transmembrane domain 

recognition complex 35 (TRC35). The Bag6 complex plays a central role in the 

mammalian tail-anchor protein targeting pathway, mislocalized protein degradation 

pathway and the endoplasmic reticulum-associated degradation pathway. Here we define 

the architecture of the Bag6 complex, demonstrating that both TRC35 and Ubl4A have 

distinct C-terminal binding sites on Bag6 defining a minimal Bag6 complex. The crystal 

structure of the Bag6-Ubl4A dimer demonstrates that Bag6-BAG is not a canonical BAG 

domain. Instead, its main function is to dimerize with the well-conserved dimerization 

domain of Ubl4A. The crystal structure of Bag6 and its cytoplasmic retention factor 

TRC35 reveals remarkable structural conservation of Get4/TRC35 throughout opisthokont 

lineage except at the C-terminal Bag6-binding groove, which diverged to accommodate 

Bag6. Together these data advance our molecular understanding of the Bag6-TRC35-

Ubl4A complex. 
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Introduction 
Bcl2-associated athanogene cochaperone 6 (Bag6, also known as “BAT3” or “Scythe”) 

plays a central role in membrane protein quality control, with additional links to 

apoptosis, transcription regulation, and immunoregulation (for reviews, see (Kawahara et 

al., 2013; Krenciute et al., 2013; Lee and Ye, 2013)). Recent studies demonstrated that 

Bag6 forms a heterotrimeric Bag6 complex with ubiquitin-like 4A (Ubl4A) and 

transmembrane domain recognition complex 35 (TRC35) that determines the fate of 

membrane proteins (Mariappan et al., 2011; Wang et al., 2011b) in tail-anchor (TA) 

protein targeting (Stefanovic and Hegde, 2007), mislocalized protein degradation (Hessa 

et al., 2011), and endoplasmic reticulum (ER)-associated protein degradation (Wang et 

al., 2011b). The many roles of the Bag6 complex likely are centered on its ability to bind 

exposed hydrophobic regions of proteins, such as transmembrane domains.  

In mammals, Bag6 has been shown to be critical in the targeting of TA proteins to the ER 

by the transmembrane recognition complex (TRC) pathway (Mariappan et al., 2011), a 

process best understood in the equivalent fungal guided entry of tail-anchored proteins 

(GET) pathway (Chartron et al., 2012a; Hegde and Keenan, 2011). Although Bag6 is 

absent in fungi, the analogous yeast complex contains two proteins, Get4 and 

Get5/Mdy2, which are homologues of the mammalian proteins TRC35 and Ubl4A, 

respectively. In yeast, these two proteins form a heterotetramer that regulates the handoff 

of the TA protein from the cochaperone small, glutamine-rich, tetratricopeptide repeat 

protein 2 (Sgt2) [small glutamine-rich tetratricopeptide repeat-containing protein (SGTA) 

in mammals] to the delivery factor Get3 (TRC40 in mammals) (Chartron et al., 2010; 
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Chartron et al., 2012c; Gristick et al., 2014; Wang et al., 2010). It is expected that the 

mammalian homologs, along with Bag6, play a similar role (Chartron et al., 2012b; 

Leznicki and High, 2012; Leznicki et al., 2013; Xu et al., 2012).  

Bag6 also interacts with other proteins such as apoptosis-inducing factor, glycoprotein 78 

(gp78), regulatory particle 5, and brother of regulator of imprinted sites (BORIS) 

(Akahane et al., 2013; Desmots et al., 2008; Kikukawa et al., 2005; Long et al., 2012; 

Nguyen et al., 2008; Thress et al., 2001; Xu et al., 2013) and can homo-oligomerize (Xu 

et al., 2013). These findings build a picture of Bag6 as a central scaffolding factor linking 

various cellular processes. A variety of diseases, ranging from cancer to autoimmune 

disorders and diabetes, are linked to Bag6 (Degli-Esposti et al., 1992; Harney et al., 2008; 

Hsieh et al., 2010; Vandiedonck et al., 2004; Wang et al., 2008).  

Despite this demonstrated importance, structural characterization of the Bag6 complex is 

lacking. The longest and most common isoform of the Bag6 gene encodes an 1,132-aa 

protein (Banerji et al., 1990) with an N-terminal ubiquitin-like (UBL) domain that has 

been characterized structurally (PDB ID codes 4EEW, 4DWF, and 1WX9), a large 

proline-rich central domain that is predicted to be unstructured, and a C-terminal 

predicted BAG domain (Bag6-BAG).  

In this study, we map the TRC35- and Ubl4A-binding regions to the C terminus of Bag6. 

Based on these results, the structure of the complex between the heterodimerization 

domains of Bag6 and Ubl4A was solved, revealing unexpected structural homology to 

Get5 and showing that the Bag6-BAG is a “mock” BAG domain. The structure of the 
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complex between the heterodimer of Bag6 and TRC35 presented here provides a 

structural basis for regulation of nucleocytoplasmic distribution of Bag6 by TRC35. 

Furthermore, the structures reveal that despite the changes in architecture, the overall 

folds of the TA sorting complex have been remarkably conserved throughout opisthokont 

evolution.  
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Results 
TRC35 binds the Bag6 nuclear localization sequence, whereas Ubl4A binds the BAG 

domain 

To define the molecular architecture of the heterotrimeric Bag6 complex (Bag6, Ubl4A, 

and TRC35), a series of yeast two-hybrid assays were performed. Bag6 was divided into 

five fragments: A (amino acids 1–225), B (amino acids 226–399), C (amino acids 400–

659), D (amino acids 660–950), and E (amino acids 951–1,126), with the activating 

domain attached at the N terminus (Fig. 2.1A); TRC35 or Ubl4A contained N-terminal 

DNA-binding domains. TRC35 and Ubl4A both showed a positive interaction with the 

C-terminal Bag6E fragment that contains the nuclear localization sequence (NLS) and the 

BAG domain (Fig. 2.1B). To refine the interfaces, Bag6E was divided further into an N-

terminal domain, an NLS domain, and the putative BAG domain (EN, ENLS, and EBAG 

respectively) (Fig. 2.1A). TRC35 showed an interaction with ENLS (Fig. 2.1B) confirming 

the in vivo result that TRC35 masks the Bag6-NLS, preventing nuclear targeting (Wang 

et al., 2011b). Ubl4A showed an interaction with EBAG (Fig. 2.1B), a surprising result 

because none of the five previously characterized BAG domains was known to form 

stable interactions with other proteins.  

According to sequence alignment, Ubl4A lacks the Get5 N-terminal domain, and TRC35 

lacks the β-loop in Get4 (Fig. 2.2A), both of which are involved in the Get4 interface 

with Get5 (Chartron et al., 2010). This difference suggests there are different interactions 

in the Bag6 complex. One possibility is that the region around the Bag6 NLS acts 

structurally like the Get5 N domain by binding the C domain of TRC35. To confirm this 

hypothesis, a two-hybrid experiment was performed with TRC35 split into either an N 
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domain (TRC35-N, residues 1–157) or a C domain (TRC35-C, residues 158–327), as 

had been done previously for Get4 (Fig. 2.2A) (Chang et al., 2010). As predicted, Bag6E 

showed a clear interaction with TRC35-C and no interaction with TRC35-N (Fig. 2.2B). 

Surprisingly, the smaller Bag6ENLS did not interact with TRC35-C (Fig. 2.2B) despite the 

previously seen interaction with full-length TRC35 (Fig. 2.1B). This interaction was 

restored with the longer Bag6EN,NLS, suggesting that additional contacts are required to 

form a stable interaction. This extended region defines a minimal complex with TRC35 

bound to the C terminus of Bag6 in close proximity to Ubl4A, similar to the architecture 

found in the yeast Get4-5 complex.  

The crystal structure of Bag6-BAG/Ubl4AC 

For structural characterization, multiple variants of the Bag6min complex were pursued for 

crystallization. One consisting of the Ubl4A C-terminal dimerization domain (Ubl4A-C) 

and the Bag6 BAG domain (Bag6-BAG, residues 1054-1107) resulted in well-formed 

crystals. A complete 2.1 Å native data set was collected in the space group P21 and 

phased using an iodide derivative. The final refinement resulted in an Rfree of 28.0% and 

good statistics (Table 2.1). Both domains are primarily helical (Fig. 2.3A) with an 

extensive dimer interface dominated by conserved hydrophobic residues that results in 

2485 Å2 of buried surface (Fig. 2.3A). Bag6-BAG contains three helices in an extended 

conformation making few intramolecular contacts. Ubl4A-C contains three helices with 

the first two forming an interface and the short third helix wrapping around Bag6-BAG 

(Fig. 2.3A). All of the conserved hydrophobic residues of Bag6-BAG participate in 

dimerization (Fig. 2.3B). 
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While fungal Get5 forms a stable homo-dimer mediated by Get5-C, Ubl4A alone is 

primarily a monomer (Chartron et al., 2012c). As Ubl4A forms a hetero-dimer with Bag6 

one might expect a novel fold for Ubl4A-C; instead, the Ubl4A-C hetero-dimerization 

domain has an identical structure to the Get5-C homo-dimerization domain, an RMSD of 

0.94 Å for equivalent backbone residues (Figs. 2.4A and B). The same hydrophobic 

residues that form the core in Get5 homo-dimerization—W179, I182, L186, F190, V200, 

L204, W208—are conserved in Ubl4A—W96, I99, L103, F107, V115, L119, Y123 

(Figs. 2.4B and C). 

Bag6-BAG is a ‘mock’ BAG domain 

Based on the structural characterization, the Bag6-BAG is shorter (47 residues) than 

canonical BAG domains (6-112 residues) and the three helices do not form a BAG-like 

three-helix bundle, with different orientations of the few residues equivalent to those 

involved in Hsp70 binding of other BAG domains (Figs. 2.5A and B).  

Furthermore, circular dichroism of Bag6-BAG alone indicates no stable secondary 

structure (Fig. 2.6). This implies that a primary role for Bag6-BAG is to hetero-dimerize 

with Ubl4A, as the two are found in a stoichiometric complex (Hessa et al., 2011; 

Mariappan et al., 2010). 

The crystal structure of Bag6-NLS/TRC35 complex 

A complex between TRC35 (residues 23 to 305) and a minimal TRC35-binding domain 

of Bag6 that contains the NLS (residues 1000-1054) was co-expressed, purified and 

crystallized. A dataset from a single crystal was collected to 1.8Å resolution and phases 
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were obtained using single wavelength anomalous dispersion from a rubidium 

derivative. The final model refined to 1.8 - 40Å had good statistics with an Rwork=16.5% 

and an Rfree=20.1% and no residues in the disallowed region of the Ramachandran. Full 

crystallographic statistics are provided in Table 2.2. All TRC35 residues in the 

crystallized construct were visible in the electron density except for S137 and G138 that 

are disordered in the loop between α6 and α7. For Bag6, residues 1002-1043 were 

resolved with only a few terminal residues ambiguous in the electron density. 

TRC35 has the same overall architecture as the fungal Get4 structures (Fig. 2.8A), 

revealing that the Get4 fold has been conserved across opisthokonta and is likely 

conserved across all eukaryotes. Opisthokonta includes metazoan, choanozoan, and 

fungal lineages (Fig. 2.11), which share common ancestry as determined by analysis of 

16S-like rRNA sequences (Wainright et al., 1993) and several protein sequences (Baldauf 

and Palmer, 1993). The first 15 α-helices form an α-solenoid fold that can be divided into 

an N- and C-terminal halves (Fig. 2.7). Alignment of the NTD between TRC35 and Get4 

(PDB ID: 3LKU) results in an RMSD = 1.380Å for that region, while the equivalent 

alignment in the CTD results in an RMSD = 3.429Å (Fig. 2.8). As seen in Get4 (Chartron 

et al., 2010), there is likely some flexibility between these two halves based on 

differences across crystal forms. As predicted from sequence alignment analysis, the β-

hairpin in Get4 is replaced by a shorter loop in TRC35 (Fig. 2.7C, arrows). The C-

terminal α16 is flanked by two extended stretches that cover part of Bag6 (Fig. 2.7A). 
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The Bag6 NLS region wraps around the TRC35-CTD (Fig. 2.7B, light pink) at an 

interface that resembles the interaction of Get5 with Get4 (Fig. 2.7C). The interaction is 

stabilized by two hydrophobic interface sites. In interface I, Bag6 α1 and α2 dock into a 

conserved pocket created by α12 and α13 of TRC35 (Fig. 2.9B) and include W1004, 

V1008 and W1012 from Bag6 and V254, V257, F242, L258 and Y262 from TRC35 (Fig. 

2.7E). In fungal Get4-5, the Get5 N-terminal helix docks into a groove formed by α12, 

α13, and the β-hairpin of Get4 (Fig. 2.7C). The missing β-hairpin in TRC35 results in the 

Bag6 helix shifting away from α11 towards α12 and α13 near the bottom of TRC35 (Fig. 

2.7C, arrows). The differences in the interface result in changes in the arrangement of 

α11, α13, and α15 of TRC35 (Fig. 2.7C) relative to those of Get4. Interface II is less 

extensive involving fewer residues, L1032, Y1036, M1040 of Bag6 and F195, M271 of 

TRC35 (Fig. 2.7E). While the connecting loops between the two interfaces are well-

ordered in both contexts, the Bag6 loop makes fewer contacts to TRC35 than the 

extensive interactions in the Get5-loop to Get4 (Fig. 2.7B). 

The structure reveals how TRC35 masks the Bag6 bipartite NLS (Fig. 2.7B). The 

conserved first basic cluster of the predicted NLS (K1024RVK) is sequestered between 

interfaces I and II (Fig. 2.7B, sticks). Only the first lysine residue of the second cluster 

(K1043RRK) is resolved in our model (Fig. 2.7B, sticks). The truncated C-terminal 

residues of TRC35 in our construct are predicted to be disordered (Linding et al., 2003) 

and include conserved multiple negative charges (five Glu and three Asp (Fig. 2.10)) that 

would be in position to mask the second NLS basic cluster, K1043RRK, through charge-

mediated interactions. 
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TRC35 and TRC40 are Conserved throughout Opisthokont Evolution 

Unlike Get4, the CTD of TRC35 does not bind the homologous counterpart Ubl4A, and 

the change in binding partner is reflected at the sequence level by the lack of the β-

hairpin in TRC35 and the lack of the N-terminal extension in Ubl4A. We hypothesized 

that the loss of the fungal features may coincide with the appearance of Bag6. To address 

this, we turned to phylogenetic analysis. First, sequence alignments of Bag6, TRC35, 

Ubl4A, SGTA and TRC40 were used to generate sequence motifs using the Multiple Em 

for Motif Elicitation suite (MEME) (Bailey et al., 2009). Species were selected based on 

fully sequenced genomes from representative lineages of Eukaryota. The MEME motifs 

were used to search each of the genomes shown (Fig. 2.11). 

Consistent with our hypothesis, in opisthokonts the split from the fungal lineage 

coincides with disappearance of the Get4/TRC35 β-hairpin (Figs. 2.10 and 2.11) and the 

Get5/Ubl4A N-terminal extension. However, species lacking Get4/TRC35 β-hairpin do 

not immediately gain Bag6. In TA targeting, Bag6 centrally bridges the Ubl4A-mediated 

TA substrate hand-off from SGTA to TRC40 which itself is mediated by TRC35 (Mock 

et al., 2015). Curiously, various lineages seem to lack either Sgt2/SGTA or Get5/Ubl4A 

with Get5/Ubl4A most often missing. In both mammals and yeast, the interaction 

between the two proteins (Chartron et al., 2011) has been demonstrated to be crucial to 

TA protein transfer (Mateja et al., 2015; Mock et al., 2015) and ER-associated 

degradation system (Xu et al., 2013). In species that lack TRC35 β-hairpin, Bag6, and 

Ubl4A, such as Demosponge or Caenorhabditis, it is unclear how these processes are 
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modulated. It is likely that functionally homologous proteins with low sequence 

homology exist.  

Get4/TRC35 and Get3/TRC40 are conserved throughout eukaryotic evolution and seem 

to occur as a pair in all opisthokonts and in most eukaryotes, suggesting the essentiality 

of the two proteins in the pathway. Consistent with this notion, residues at the predicted 

TRC35-TRC40 interface and the TRC35-Bag6 interface in TRC35 are highly conserved 

(Figs. 2.8A and 2.8C). 
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Discussion 

The Bag6 complex has been implicated in various cellular pathways necessitating a 

description of its molecular architecture. In this study, we have examined the Bag6 

trimeric complex and solved high-resolution crystal structures of the Bag6-Ubl4A and 

Bag6-TRC35 complexes.  

The initial characterization of Bag6 BAG domain relied on limited and inaccurate 

sequence homology (Thress et al., 2001) without structural information. Comparison of 

high resolution structures of BAG domains, as well as circular dichroism data that show 

Bag6-BAG alone is intrinsically disordered, suggests that the Bag6-BAG domain is not a 

canonical BAG domain. Biochemical data from the previous study that demonstrated 

functional equivalence between Bag6 BAG and canonical BAG domains will be 

addressed later in this work.  

The first functional annotation of Scythe (the Bag6 Xenopus homolog) was an ability to 

bind Reaper, an apoptosis-inducing protein in Drosophila, thus inhibiting Reaper-induced 

apoptosis in Xenopus oocyte extracts (Thress et al., 1999; Thress et al., 1998). Reaper 

induces apoptosis in a variety of model systems, including Xenopus oocyte extract 

(Evans et al., 1997), SF-21 insect cells (Vucic et al., 1997), and HeLa human cancer cells 

(Tait et al., 2004). Sequence alignment of the conserved Ubl4A dimerization domain and 

Reaper reveals the conservation of most of the residues involved in Bag6-BAG/Ubl4A-C 

dimerization (Fig. 2.4), suggesting that Reaper may disrupt the Bag6/Ubl4A interaction. 

This hypothesis would be consistent with Reaper’s binding the 312-residue C-terminal 
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truncation of Scythe (ScytheC312), leading to the release of bound factors (Thress et al., 

1998). 

The remarkable conservation of TRC35 in both sequence and structure from yeast to 

human can be attributed to the role of TRC35 as a hub of protein-protein interactions in 

the TRC pathway. The most important interaction, based on its complete conservation, is 

between TRC35 and TRC40 (Fig. 2.9) and likely drives evolution of the components in 

the pathway. This interaction is critical for the regulation of TA protein transfer (Gristick 

et al., 2014; Mock et al., 2015; Shao et al., 2017) and, as shown in fungal Get4, for 

release of Get3/TRC40 from the ER membrane to restore the cytosolic pool of complex 

ready for TA protein transfer (Rome et al., 2014). The importance of linking TRC35 

homologs to Ubl4A homologs, while less conserved, is sustained in humans despite the 

loss of structural features that allow these two proteins to interact with each other. In this 

case, a new component Bag6 is introduced, which serves as a scaffold to link TRC35 to 

Ubl4A. The Bag6-TRC35 structure reveals that TRC35 binds this novel binding partner 

utilizing conserved patches in a distinct fashion (Fig. 2.9). This led to the expansion of 

the TRC35 protein-protein interaction network while maintaining its crucial interaction 

with TRC40. Our findings establish support the model in which TRC35 is an important 

hub of a protein-protein interaction network with its interaction with TRC40 at the core. 

Higher eukaryotes expanded on this network by the addition of Bag6. 
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The emergence of Bag6 in metazoan evolution is also an intriguing question. How did 

such a complex and extended scaffolding protein emerge? The exact genetic events are 

difficult to pinpoint because the DNA sequences that can provide clues to events such as 

previous recombination or gene duplication are not under selective pressure, and are 

therefore quickly removed (Moore et al., 2008). Instead, the protein sequence of Bag6 

can be used to speculate the evolutionary origins of Bag6.  

There are evolutionary trends that can be applied to deduce the evolutionary origin of 

Bag6. Bioinformatic survey of multidomain proteins suggest that novel multidomain 

proteins are often created by single domain insertions and deletions at the N- and C- 

termini (Bjorklund et al., 2005; Kummerfeld and Teichmann, 2005). These domain 

rearrangement events seem to occur more frequently in metazoans than in other 

phylogenetic groups (Ekman et al., 2007). Similarly, the N-terminal UBL domain and C-

terminal TRC35 and Ubl4A binding domains are conserved structural elements that could 

have been added through independent domain insertion and rearrangement events. 

A similar phenomenon has been observed in the evolution of the membrane-associated 

guanylate kinase (MAGUK) family of proteins, which are involved in cell-cell 

communication in metazoa. Putative ancestral MAGUK-like genes were discovered in 

unicellular ancestors to metazoans, Capsaspora owczarzaki and Monosiga brevicollis, as 

well as the earliest surviving metazoan Amphimedon queenslandica (de Mendoza et al., 

2010). These ancestral genes contain parts of the domains that have been expanded upon 

in modern MAGUK proteins by domain insertion and rearrangement events. 
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These results support a model in which the primary role of the Bag6 C terminus is to 

bridge TRC35 and Ubl4A. Possible Bag6 dimerization would form a heterohexamer, 

creating a complex analogous to the Get4-5 heterotetramer found in yeast and providing 

strong structural parallels in TA targeting (Fig. 2.12). Several unanswered questions 

about the Bag6 complex remain. Does Bag6-BAG domain behave like a canonical BAG 

domain? Is the structurally characterized Bag6 complex functionally equivalent to the 

fungal Get4-5 complex? Can disrupting the Bag6-TRC35 interface lead to changes in the 

nucleocytoplasmic distribution of Bag6? Biochemical and cell biological methods will be 

used to answer these questions in the following chapters. 
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Figures 

 

Figure 2.1. Bag6 has distinct binding sites for TRC35 and Ubl4A at its C-terminus 

(A) Scheme of the five different Bag6 fragments and of the sub-fragments of Bag6E, which 

is further divided into N-terminus (EN), the NLS (ENLS), and a fragment containing only the 

putative BAG domain (EBAG). (B) Yeast two-hybrid assay between Bag6 fragments and 

either TRC35 or Ubl4A. The A fragment contains the UBL domain and the E fragment 

contains the NLS and putative BAG domain. Yeast two-hybrid assay of TRC35 or Ubl4A 

between the Bag6 E fragments. 
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Figure 2.2 Defining the interaction between Bag6 and TRC35 by yeast two-hybrid 

assay 

(A, Upper) Diagram of the Get4/Get5-N complex (PDB ID code 3LKU). Get4 is shown in 

gray and red, and Get5 is shown in green. (Lower) A top-view schematic representation of 

the architecture. The two β-strands in Get4 that are missing in TRC35 are outlined in blue. 

Ubl4A does not contain a Get5-N equivalent. (B) Bag6E fragments containing the 

activating domain were combined with full-length TRC35 (FL), TRC35-N (residues 1–

157), or TRC35-C (residues 158–327) conjugated to the binding domain. TRC35-N and 

TRC35-C were defined by sequence alignment with Get4. 
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Figure 2.3. Crystal structure of Bag6-BAG/Ubl4A-C heterodimer 

(A) The overall structure of Bag6-BAG/Ubl4A-C heterodimer in ribbon representation 

with Bag6-BAG in cyan and Ubl4A-C in magenta. Hydrophobic residues in Bag6 involved 

in packing are highlighted as orange sticks. (B) Sequence alignment of Bag6-BAG (H.sap 

Homo sapiens, X.tro Xenopus tropicalis, D.mel Drosophila melanogaster, D.rer Danio 

rerio, S.kow Saccoglossus kowalevskii, and T.cas Tribolium castaneum). The secondary 

structure based on the structure is highlighted above the text. The conserved hydrophobic 

and aromatic residues involved in the hydrophobic packing interactions between Bag6-

BAG and Ubl4A-C are highlighted in orange. The extended Drosophila melanogaster 

sequence is a predicted protein sequence based on theoretical translation, and may not 

reflect a physiological isoform. 
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Figure 2.4. Ubl4A-C and Get5-C are structurally homologous 

(A) A monomer of Get5-C (green) (PDBID: 3VEJ) and Ubl4A-C (pink) overlaid. Bag6-

BAG is included in cyan. The inset shows the Get5-C homo-dimer. (B) Ubl4A-C and 
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Get5-C are juxtaposed with conserved residues involved in dimerization highlighted as 

orange sticks. (C) Sequence alignment of Ubl4A-C homologs (H.sap Homo sapiens, D.rer 

Danio rerio, X.tro Xenopus tropicalis, A.fum Aspergillus fumigatus, and S.cer 

Saccharomyces cerevisiae) and the Drosophila apoptosis-inducing protein Reaper. The 

Ubl4A-C and Get5C secondary structure are shown above (pink) and below (green), 

respectively. Conserved hydrophobic residues involved in dimerization are highlighted in 

orange. 
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Figure 2.5. A comparison of Bag6-BAG to canonical BAG domains 

(A) Published structures of BAG domains are shown as ribbons similar to Bag6-BAG. 

Residues involved in Hsp/Hsc70 binding are highlighted as magenta sticks. (B) Sequence 

alignment of human Bag1-BAG, Bag5-BAG5, and Bag6-BAG with known secondary 

structure indicated.  
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Figure 2.6. Circular dichroism spectra of Bag6-BAG, Ubl4A-C and the complex of the 

two 

Spectra for Bag6-BAG (blue), Ubl4A-C (green), and Bag6-BAG/Ubl4A-C (red).  
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Figure 2.7. The crystal structure of the Bag6-NLS/TRC35 heterodimer 

(A) The structure of Saccharomyces cerevisiae Get4-Get5N complex (PDBID: 3LKU), 

Get4 in rainbow and Get5 in magenta. Sequence alignment of TRC35/Get4 from helix 11 

to 12 of two metazoan species, Hsap (Homo sapiens), Aque (Amphimedon queenslandica), 

and six fungal species Spom (Schizosaccharomyces pombe), Ncas (Naumovozyma castelli), 

Scer (Saccharomyces cerevisiae), Afum (Aspergillus fumigatus), Ncra (Neurospora 

crassa), and Smus (Sphaerulina musiva). The secondary structure based on fungal Get4s is 

highlighted above the text. (B) Left, the overall structure of Bag6-TRC35 heterodimer in 

cylinder representation with Bag6 in light pink and TRC35 in rainbow. The nuclear 

localization sequence is highlighted in sticks on Bag6. Right, a 90˚ in plane rotated 

‘bottom’ view. The 16 helices of TRC35 are labeled from N to C terminus. (C) 
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Comparison of the C-terminal faces of TRC35 and Get4 that bind Bag6 and Get5, 

respectively. The arrows highlight the significant structural difference in the residues 

between α11 and α12. (D) Zoomed in view of the regions, defined as interface I and II. 

Hydrophobic residues that are involved in Bag6-TRC35 dimerization are shown as sticks. 
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Figure 2.8. Comparison of TRC35 and Get4 structures 

(A) Representative structures of fungal Get4 homologs. 3LKU is from Saccharomyces 

cerevisiae (Sc) and 3LPZ is from Chaetomium thermophilum (Ct). (B) Aligned human 

TRC35 (color ramped) and ScGet4 (3LKU, grey) using Pymol (Schrodinger, 2015) super 

for sequence-independent structural alignment. Left, structures aligned to the six N-

terminal helices. Right, structures aligned to the seven C-terminal helices. 



 

 

36 

 

Figure 2.9 Analysis of the surface conservation and hydrophobicity of TRC35 

(A) Accessible surface representation of TRC35 colored based on percent conservation as 

implemented in Chimera (Pettersen et al., 2004). Conservation based on a MAFFT (Katoh 

and Standley, 2013) alignment of TRC35/Get4 sequences from Homo sapiens, Xenopus 

laevis, Danio rerio, Drosophila melanogaster, Nematostella vectensis, Monosiga 

brevicollis, Schizosaccharomyces pombe, and Saccharomyces cerevisiae. Bag6 is in 
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ribbons representation in pink. (B) The Bag6-binding surface of TRC35 colored based on 

hydrophobicity (Kyle-Doolittle scale) and percent conservation as implemented in Chimera 

(Pettersen et al., 2004). 
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Figure 2.10. Representative aligned sequences of eukaryotic TRC35/Get4 

Species selected based on the eukaryotic phylogenetic tree by Eme et al (Eme et al., 

2009). Sequences were aligned with MAFFT (Katoh and Standley, 2013). α-helices, 

based on the TRC35 structure, are highlighted in colors that correspond to the crystal 

structure on Figure 2.1B and numbered on top. Residues highlighted in red boxes were 

identified as critical to fungal Get4 binding Get3 (Gristick et al., 2014). Residues 

highlighted in blue boxes are critical to Get4/TRC35 regulating Get3/TRC40 (Gristick et 

al., 2014). The residues that comprise the fungal β-hairpin are highlighted in a black box. 

The arrow indicates the end of the crystallization construct. Purple boxes highlight 

glutamate and aspartate residues in the C-terminus of TRC35.  
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Figure 2.11 Survey of factors involved in the TRC pathway in eukaryotes 

A condensed phylogenetic tree of representative eukaryotes was built based on the 

maximum likelihood phylogenetic tree of eukaryotes by Eme et al (Eme et al., 2014). The 

genome of each organism was searched for the presence of Get4/TRC35, Ubl4A/Get5, 

Sgt2/SGTA, Get3/TRC40, and Bag6 using MEME suite motif discovery tool (MEME) 

(Bailey et al., 2009) and motif scanning tool (MAST) (Bailey and Elkan, 1994) in addition 

to NCBI protein BLAST (Altschul et al., 1990). Proteins are color coded and sequence 

elements are highlighted. Black circles indicate homologs that are missing residues 

demonstrated to be critical in fungal TA-targeting studies.  
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Table 2.1 Bag6-Ubl4A crystallographic data and model refinement statistics  
 Native Iodide 

Data collection   

Protein Bag6-BAG/Ubl4A-C  Bag6-BAG/Ubl4A-C 

Synchrotron ALS ALS 

Beamline 8.2.1 8.2.1 

Space group P21 P21 

Cell dimensions   

    a, b, c (Å) 47.2, 56.4, 75.5 47.4, 57.2, 75.9 

    a, b, g (°) 90.0, 96.2, 90.0 90.0, 95.9, 90.0 

   

Wavelength 1.0000 1.7000 

Resolution (Å) 28.2 – 2.05 28.6 – 3.5 

Rmerge (%)a 3.6 (71.1) 14.2 (162.6) 

< I > / < sI >a 18.3 (2.0) 24.8 (3.0) 

Completeness (%)a 98.7 (98.3) 99.9 (100.0) 

No. of observations 78,344 258,426 

No. of unique reflections a 26,539 (1,950) 11,271 (1,483) 

Redundancya 3.0 (2.7) 22.9 (23.3) 

 

Refinement   

Resolution (Å) 28.3 – 2.0  

No. of reflections 26525  

No. of reflections test set 1338  

Rwork / Rfree 0.251 (0.335) / 0.280 (0.353)  

No. atoms (non-hydrogen) 3298  

    Protein 3159  

    Water 139  

B-factors   

    Protein 43.60  

    Water 41.80  

RMSD   

    Bond lengths (Å)  0.019  

    Bond angles (°) 1.30  

   

Ramachandran plot   

    Favored (%) 95  

    Additionally allowed (%)   

    Outliers (%) 1.9  
 

aHighest-resolution shell is shown in parentheses 
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Table 2.2 Bag6-TRC35 crystallographic data and model refinement statistics  
 Native  Rubidium 

Data collection   

Protein Bag6-TRC35 Bag6-TRC35 

Synchrotron SSRL SSRL 

Beamline 12-2 12-2 

Space group P21 21 21 P21 21 21 

Cell dimensions   

    a, b, c (Å) 41.7, 84.6, 102.6 42.0, 84.3, 102.5 

    a, b, g (°) 90.0 90.0, 90.0 90.0, 90.0, 90.0 

Wavelength 0.9200 0.8154 

Resolution (Å) 39.1 – 1.80 (1.92 – 1.80) 50.0 – 1.99 (2.11 – 1.99)  

Rmeas (%)a 9.3 (64.3) 16.9 (118.8) 

I  /  s(I)  16.9 (3.8) 14.9 (2.1) 

CC1/2 (%) 99.9 (95) 99.9 (88.0) 

Completeness (%)a 98.7 (92.7) 99.2 (95.6) 

No. of observations 384,047 (60,190) 655,714 (96,962) 

No. of unique reflections a 40,776 (6,194) 47,793 (7,417) 

Redundancya 9.4 (9.7)  

13.7 (13.1) 

 

Refinement   

Resolution (Å) 39.1 – 1.80  

No. of reflections 34,334  

No. of reflections test set 1,998  

Rwork / Rfree 16.0 / 20.0  

No. atoms (non-hydrogen) 2725  

    Protein 2561  

    Water 152  

    Ligand/Ions 12  

B-factors   

    Protein 31.7  

    Water 39.0  

RMSD   

    Bond lengths (Å)  0.010  

    Bond angles (°) 1.16  

Ramachandran plot   

    Favored (%) 98  

    Additionally allowed (%) 2.0  

    Outliers (%) 0.0  
TaHighest-resolution shell is shown in parentheses  
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Table 2.3 Table of genomes surveyed for TRC pathway proteins in figure 2.11 
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Materials and Methods 

Yeast two-hybrid 

The PJ69-4α strain was obtained from the Yeast Resource Center at the University of 

Washington. Bag6 fragments, A (1-225), B (226-399), C (400-659), D (660-950), E (951-

1126), Bag6EN (951-1011), Bag6ENLS (1012-1054), and Bag6EBAG (1055-1126) were 

cloned into pGAD-C1 vector. TRC35, TRC35-N (1-157), TRC35-C (158-327), and 

Ubl4A were cloned into pGBDU-C1 vector. Alanine mutants were made using site-

directed mutagenesis (Agilent Technologies). pGAD-C1 and pGBDU-C1 containing 

genes of interest were co-transformed into PJ69-4α using previously described methods 

(Gietz and Schiestl, 2007) andf then plated on SC-Ura-Leu and incubated at 30°C. The 

double transformants were then inoculated into 5 mL SC-Ura-Leu and grown over night 

in a shaking incubator at 200 rpm, 30 °C. From the cultures 2 × 107 cells were re-

inoculated into 5 mL total SC-Ura-Leu and grown in a shaker incubator for 6 hours. Cells 

were harvested by spinning at 3000 ×g at room temperature, washed twice with 5 mL 

sterile water. 1 × 107 cells were resuspended in 40 µL of sterile water. 4 µL of this 

resuspended sample were spot plated onto SC-Ura-Leu-Ade and grown for 72 hours at 

30°C. 

Cloning, expression and purification 

For crystallization, 54 residues from Bag6 (Q1054 to D1107) and the C-terminal 53 

residues from Ubl4A (P93 to K145) were co-expressed with pET33b plasmid with the N-

terminal 6x histidine tag on Ubl4A-C. To facilitate tobacco etch virus (TEV) cleavage of 

the histidine tag, three flexible residues, glycine, alanine, and serine, were inserted 

between the TEV cut site and P93 of Ubl4A using site-directed mutagenesis. The proteins 
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were expressed in E. coli NiCo21(DE3) (New England Biolabs) for 3 hours at 37°C after 

induction with 300 µM isopropyl-β-D-thiogalactopyranoside (Affymetrix). Cells were 

lysed using an S-4000 sonicator (Misonix) in 50 mM NaH2PO4, 200 mM NaCl, 20 mM 

imidazole supplemented with benzamidine, PMSF and 0.5% triton X-100. The complex 

was purified by nickel-nitrilotriacetic acid-agarose (Ni-NTA) affinity chromatography 

(Qiagen) then incubated overnight at room temperature with TEV protease in 20 mM 

NaH2PO4, 100 mM NaCl, 20 mM imidazole, and 10 mM β-mercaptoethanol followed by 

size-exclusion chromatography on Superdex 75 gel-filtration column in 10 mM Tris, 

50mM NaCl, pH 8.0 and concentrated to ~10 mg/ml. All truncations of Bag6 were 

purified using the protocol described above. C-terminal 53 residues from L1055 to 

D1107 of Bag6 were cloned for Bag6-BAG. Bag6-Ubl4A construct contained the C-

terminal 73 residues and full-length Ubl4A. C-terminal 175 residues from V951 to P1126 

were cloned in the Bag6 E fragment vector. Bag6-C81 contained the C-terminal 81 

residues from K1046 to P1126. 

All constructs were derived from human cDNA, specifically the major Bag6 isoform b 

(NP_542433.1). For crystallization, both Bag6 (1000 to 1054) and TRC35 (23 to 305) 

were inserted into the multiple cloning site of the pACYCDuet plasmid (Novagen) with 

an N-terminal hexahistidine tag on Bag6(1000-1054). The plasmid was transformed into 

E. coli NiCo21(DE3) (New England Biolabs). The plate was scraped to inoculate 12 × 2L 

baffled flasks containing 2xYT media then grown by shaking at 37°C in a shaking 

incubator (Multitron Standard Infors HT) at 250 rpm. Cell growth was monitored to an 

OD600 = 0.6 then protein expression was induced for 3 hours by the addition of 500 µM 
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isopropyl-β-D-thiogalactopyranoside (IPTG) (Affymetrix). Cells were harvested by 

centrifugation in a TLA 8.1 rotor at 4000 ×g for 20 minutes. The pellet was resuspended 

in 50 mM Mops pH 7.2, 300 mM K⦁glutamate, 5 mM MgOAc, 20 mM imidazole, 5 mM 

β-mercaptoethanol (1g cell / 10 mL lysis buffer) and supplemented with 0.1 mM PMSF 

and 1 mM benzamidine. Cells were lysed using an M-110L microfluidizer 

(Microfluidics) by two passes at approximately 17,500 psi. The lysate was clarified by 

centrifugation at 235,000 ×g in a Beckman Ti45 rotor for 30 minutes at 4°C. The clarified 

lysate was incubated for 1 hour with 3 mL of a 50% (vol/vol) slurry of nickel-

nitrilotriacetic acid (Ni-NTA) agarose (Qiagen) by rocking. The mix was poured into a 

gravity column then washed with 100 mL lysis buffer. The protein was eluted with 12 

mL elution buffer (20 mM Mops (pH 7.2), 150 mM K⦁glutamate, 300 mM Imidazole, 5 

mM β-mercaptoethanol). The eluent was mixed with ~0.5 mg of TEV protease in 

snakeskin dialysis tubing with 10 kDa molecular weight cutoff (Thermo Fisher 

Scientific) and dialyzed overnight at room temperature in (20 mM Mops (pH 7.2), 100 

mM K•glutamate, and 10 mM β-mercaptoethanol). Precipitate was removed by 

centrifugation with Beckman SX4750A rotor at 3000 ×g for 5 minutes at 4 °C and 

filtered with a 0.22 µm syringe filter. The sample was concentrated and loaded onto a 5 

mL UnoQ ion-exchange column (Biorad) then eluted with a 60 mL 20 mM Mops (pH 

7.2), 50 - 500 mM K•glutamate gradient, 5 mM β-mercaptoethanol. The fractions 

containing the protein (~5-23mL) were dialyzed in snakeskin dialysis bag in 20 mM 

Mops (pH 7.2), 50 mM K•glutamate, 5 mM β-mercaptoethanol for 2 hours at 4 °C. The 

sample was concentrated to 2 mL, filtered with a 0.22 µm syringe filter, and then further 
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purified by size-exclusion chromatography over a 120 mL Superdex 75 column (GE 

Healthcare) (20 mM Mops (pH 7.2), 50 mM K•glutamate, 5 mM β-mercaptoethanol). 

The fractions containing the heterodimer (61 mL – 72 mL) and monomeric Bag6 (77 mL 

– 82 mL) were pooled and concentrated to ~10 mg/mL using centrifugal filter units with 

10 kDa molecular weight cutoff (Merck Millipore). 

Circular dichroism 

Circular dichroism spectra were obtained using an Aviv 62A DS circular dichroism 

spectrometer. The ellipticity of 10 µM of Bag6-BAG, Ubl4A-C, or Bag6-Ubl4A 

suspended in 10 mM Tris, 50 mM NaCl, pH 8.0 was measured. 

Crystallization 

For the Bag6-Ubl4A dimer, crystallization screening was performed using the sitting 

drop vapor-diffusion method with commercially available screens (Hampton) and was set 

up by a Mosquito robot (TTP Labtech) and incubated at room temperature. The 

heterodimer crystallized after 4 days as rectangular prisms in 20% PEG-3350, 0.05 M 

Hepes, 1% tryptone (Hampton). They were soaked in 20% glycerol for 15 seconds and 

cryopreserved in liquid nitrogen. Iodide derivatives were generated by soaking crystals in 

40 µl mother liquor (20% PEG-3350, 0.05 M Hepes, 1% tryptone (Hampton)), 10 µl 

ethylene glycol, and 3 µl 6 M sodium iodide for 2 to 10 seconds prior to 

cryopreservation. 

For the Bag6-TR35 dimer, crystallization screening was performed using the sitting drop 

vapor-diffusion method with the commercially available PEG Ion screen (Hampton 
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Research) and MRC 2 Well Crystallization plate (Hampton Research). Initial screening 

was performed by a Mosquito robot (TTP Labtech) with 100nL:100nL drops 

(protein:well solution) and 50 µL wells. No refinement was necessary. Crystals grew to 

full-size after 5 days as rectangular prisms in 20% PEG-3350 (wt/vol), 0.2 M DL-malic 

acid (pH 7.0). For cryo-protection, crystals were transferred into 100uL of well solution 

with 20% (vol/vol) glycerol for 15 seconds and then frozen in liquid nitrogen. Rubidium 

derivatives were generated by transferring crystals into 40 µl well solution plus 350 mM 

rubidium iodide for 2 to 10 seconds prior to cryopreservation with glycerol. 

Data collection, structure solution and refinement 

For the Bag6-Ubl4A structure, x-ray diffraction data were collected on beam line 8.2.1 at 

the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory. A 

complete dataset was collected from a single crystal to 2.1 Å resolution. Data were 

integrated, scaled, and merged using MOSFLM (Battye et al., 2011) and SCALA 

(Collaborative Computational Project, 1994; Winn et al., 2011). Phases were determined 

by single-wavelength anomalous dispersion data merged from three iodide derivative 

crystals, which diffracted to 3.5 Å. The model was refined using COOT (Emsley et al., 

2010) and PHENIX (Adams et al., 2010) . Statistics are provided in Table 1. 

For the Bag6-TRC35 dimer, x-ray diffraction data were collected on beam line BL12-2 at 

the Stanford Synchrotron Radiation Laboratory (SSRL). A complete native dataset was 

collected from a single crystal to 1.8 Å resolution and a single rubidium derivative crystal 

dataset was collected from a single crystal to 2.0 Å with a Dectris Pilatus 6M detector. 

Data were integrated, scaled, and merged using XDS (Kabsch, 2010) and SCALA 
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(Collaborative Computational Project, 1994; Winn et al., 2011). Phases were determined 

by molecular replacement single-wavelength anomalous dispersion (MRSAD) using 

SHARP (Bricogne et al., 2003) and PHASER-MR (McCoy et al., 2007) on PHENIX 

(Adams et al., 2010). The initial structure was built by PHASER as implemented by 

PHENIX (Adams et al., 2010). The model was further built and refined against the native 

dataset over several rounds using COOT (Emsley et al., 2010) and PHENIX (Adams et 

al., 2010). Statistics are provided in Table 2. 

Phylogenetic Tree of GET/TRC Components 

The phylogenetic tree was modified from the maximum likelihood phylogenetic tree of 

eukaryotes by Eme et al (Eme et al., 2014). The MEME suite (Bailey et al., 2009) was 

used to determine the presence or absence of the GET/TRC components in the genomes 

presented in the tree. The MEME motif discovery tool was used to make motifs for 

Ubl4A, Get5, Get4/TRC35, and Sgt2, SGTA, and Bag6. The motifs were then used to 

search the genomes using the motif-scanning tool MAST (Bailey and Elkan, 1994). 

Identified proteins were confirmed using BLAST (Altschul et al., 1990) and the 

corresponding reference ID is provided on table 3. 
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C h a p t e r  3  

BIOCHEMICAL CHARACTERIZATION OF THE BAG DOMAIN 
AND THE MINIMAL TA TARGETING MODULE 
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Abstract 

The metazoan protein BCL2-associated athanogene cochaperone 6 (Bag6) forms a hetero-

trimeric complex with ubiquitin-like 4A (Ubl4A) and transmembrane domain recognition 

complex 35 (TRC35). This Bag6 complex is involved in tail-anchored protein targeting and 

various protein quality control pathways in the cytosol as well as regulating acetylation and 

histone methylation in the nucleus. Crystal structure of the Bag6 BAG domain revealed 

that it does not fold into a canonical BAG domain fold. In this study, we biochemically 

demonstrate that Bag6-BAG domain does not behave like a canonical BAG domain, 

establishing it as a “mock” BAG domain. Furthermore, we show that C-terminal 125 

residues of Bag6, which can form a stable complex with TRC35 and Ubl4A, are sufficient 

for TA targeting.   
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Introduction 
BCL2-associated athanogene cochaperone 6 (Bag6, also known as “BAT3” or “Scythe”) 

is a metazoan protein that is involved in membrane protein targeting and quality control 

in the cytosol. Biochemical (Mariappan et al., 2011; Stefanovic and Hegde, 2007; Wang 

et al., 2011b) and structural studies (Mock et al., 2015) have demonstrated that Bag6 

forms a stable heterotrimer with transmembrane domain recognition complex 35 

(TRC35) and ubiquitin-like 4A (Ubl4A).  

Crystal structures of the Bag6-Ubl4A and Bag6-TRC35 complexes revealed that the 

Bag6 BAG domain, previously designated based sequence homology and biochemical 

characterization (Thress et al., 2001), does not resemble the canonical three helix bundle 

conformation of other BAG domains (Fig. 2.5). Furthermore, despite organizational 

changes from the heterotetrameric fungal complex to the heterotrimeric metazoan 

complex, all the functional domains required for TA targeting are structurally conserved. 

The fungal heterotetrameric Get4-5 sorting complex binds Sgt2 via the UBL domain of 

Get5 (Chartron et al., 2012b; Xu et al., 2012). The N-terminal domain of Get4 binds and 

regulates the ATPase activity of Get3 (Chartron et al., 2010; Gristick et al., 2014; Rome 

et al., 2013). Structurally, the UBL domain of Get5 and the N-terminal domain of Get4 

have both been conserved in the metazoan homologues, Ubl4A and TRC35, respectively. 

This suggests that the minimal Bag6 complex structurally characterized in chapter 1 is 

functionally equivalent to the fungal Get4-5 complex.  

This chapter seeks to functionally verify structural observations using biochemical 

methods. In vitro Hsc70-mediated refolding assay was used to confirm that the Bag6 
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BAG domain does not behave like a canonical BAG domain, which binds and inhibits 

Hsc70 in vitro. Furthermore, the minimal Bag6-TRC35-Ubl4A complex identified and 

structurally characterized in chapter 2 facilitates TA protein transfer from SGTA to 

TRC40 in vitro. These findings establish the minimal Bag6 complex identified in this 

study as a TA targeting module.  
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Results 
Functional characterization of the Bag6-BAG domain 

Previous results have shown that the ability of Bag6 to inhibit Hsc70 refolding of 

substrates in vitro is dependent on the presence of the C-terminal 81 residues (Bag6-

C81), which include the BAG domain (Thress et al., 2001). This was suggested to be 

equivalent to results for the Bag1 BAG domain, a demonstrated nucleotide exchange 

factor for Hsc70 (Sondermann et al., 2001). If true, Bag6-BAG should inhibit Hsc70-

mediated protein folding. To assay this, denatured β-galactosidase was folded in vitro in 

the presence of human Hsc70 and Hdj1, as done previously (Freeman and Morimoto, 

1996; Thress et al., 2001). Folding was measured as a percent of β-galactosidase activity 

recovered after the folding reaction was quenched. With both Hsc70 and Hdj1 present a 

maximal refolded activity of ~35% was recovered after 180 min (Fig. 3.1, brown line) 

while no refolding was seen when only BSA was added (black line). The addition of 

human Bag1-BAG to Hsc70 and Hdj1 completely inhibited the ability of Hsc70 to fold 

the protein (purple line) consistent with previous results (Takayama et al., 1997). 

Conversely, the addition of Bag6-BAG had no effect on refolding by Hsc70 (orange solid 

line). 

The inconsistency with previous results might be explained by co-purification of 

endogenous Bag6 binding partners. In the earlier study, an affinity-tagged full-length 

human Bag6 and C-terminal 81 residues of Bag6 (Bag6-C81) were expressed and 

purified from insect cells over a single affinity resin (Thress et al., 2001). As the proteins 

are well conserved, it is reasonable to assume that endogenous insect Ubl4A could be a 
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contaminant and may contribute to the inhibition. The introduction of the Bag6-

BAG/Ubl4A complex to the reaction had no effect on folding (blue line). SGTA, a co-

chaperone, has recently been shown to form a specific complex with Ubl4A (Xu et al., 

2013) and may also have been in the endogenously purified sample. SGTA had no 

significant effect on activity (Fig. 3.2) with or without the other factors (Fig. 3.1A, 

dashed lines). Bag6-C81, which was required for inhibition in the previous study, is 

slightly larger than the BAG domain defined here (Fig. 2.1A). However, using this larger 

fragment also had no effect on folding (Fig. 3.2). Together, these results suggest that 

although the C-terminal 81 residues of Bag6 are required for its chaperoning activity, it 

does not act as a bona fide BAG domain to cooperate with Hsc70. 

This conclusion was further supported by binding assays. A 6xHis-tagged Hsc70-NBD 

(Nucleotide Binding Domain), the expected binding site for Bag proteins, was incubated 

with purified Bag6-C81, Bag6-BAG, Bag6-BAG/Ubl4A, or Bag1-BAG. After 

incubation, Hsc70-NBD was captured on Ni-NTA beads along with any associated 

protein. As expected, Hsc70-NBD could capture the Bag1-BAG (Fig. 3.3). On the other 

hand, Hsc70-NBD was unable to capture any of the Bag6 C-terminal fragments at levels 

above background. Thus, one would conclude that Bag6-BAG is unlike canonical BAG 

domains in its ability to interact with Hsc70 in vitro. 

While the evidence makes it clear that the Bag6 BAG domain does not interact with 

Hsc70 in isolation, the role of other unknown factors could not be ruled out. For instance, 

SGTA could mediate the interaction between Bag6-BAG and Hsp70 as it binds Hsp70 
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via its tetratricopeptide repeat (TPR) domain and Ubl4A via its N-terminus (Chartron et 

al., 2012b). To address the possibility of accessory factors, tagged variants of BAG 

domains were incubated with 293T whole cell lysate (Fig. 3.1B). The positive control 

Bag1-BAG again could capture a significant amount of Hsc70. A complex with Bag6-

BAG and Ubl4A, either the crystallized fragment or the full-length, was unable to capture 

Hsc70. 

These results contrast with previous experimental results in which Bag6 inhibition of 

Hsc70 was dependent on the presence of the BAG domain (Thress et al., 2001). This 

could not rule out the possibility of binding Hsc70 in the context of the full-length Bag6. 

To test this, 293T cells were transfected with either FLAG-Bag6 or FLAG-Bag6ΔC81 

and captured with anti-FLAG resin. Proteins bound to the beads were blotted with both 

Bag6 (green) and Hsc70 (red) antibodies. Full-length Bag6 captured a small amount of 

Hsc70 over background; however, the lack of the previously annotated BAG domain, 

Bag6ΔC81, had no effect on the amount of captured Hsc70 (Fig. 3.1C). Combined, these 

results suggest that Bag6-BAG, both structurally and biochemically, is not a true BAG 

domain. 

Expression and purification of Bag6min complex 

The next goal was to purify the hetero-trimeric complex. Both full-length Bag6 and 

TRC35 were recalcitrant to recombinant expression in E. coli. For TRC35, expression 

required removal of residues at the N- and C-terminus that are not conserved, TRC35(23-

305). This truncated TRC35 behaved as wild-type by yeast 2-hybrid with Bag6E (Fig. 

3.4A). Additionally, based on the interaction results, a minimal Bag6 fragment (Bag6min) 
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was constructed, residues 1001 to 1126, that removed the N-terminal 50 residues of 

Bag6E. Co-expressing Bag6min, TRC35(23-305) and Ubl4A resulted in a stable complex 

that could be purified (Fig. 3.4).  

The Bag6min complex is an independent module that facilitates TA handoff 

The fungal Get4-5 complex binds ATP bound Get3 and inhibits its ATPase activity 

priming Get3 for TA substrate capture from Sgt2 (Gristick et al., 2014; Rome et al., 2014). 

One would expect that the trimeric Bag6 complex, which contains the mammalian Get4-5 

orthologues, regulates TRC40 in a similar manner. To test this, an in vitro assay was 

developed to probe the role of the Bag6min complex in TA handoff from SGTA to TRC40 

using recombinantly purified proteins (scheme in Fig. 3.5A). When co-expressed, fungal 

Sgt2 binds GET dependent TA substrates and this complex can be purified (Wang et al., 

2010). Here, histidine-tagged SGTA (hSGTA) was co-expressed in E. coli with the yeast 

TA protein Sbh1 that contained an N-terminal maltose-binding protein (MBP•Sbh1) 

resulting, after a two-step purification, in a stable hSGTA/MBP•Sbh1 complex (Fig. 3.4B). 

The final component, TRC40, was generated as a N-terminal glutathione-S-transferase tag 

(GST•TRC40) (Fig. 3.4B), as done previously (Vilardi et al., 2011; Yamamoto and 

Sakisaka, 2012). Transfer was initiated by incubation of hSGTA/MBP⦁Sbh1 with either 

GST•TRC40 alone or with the Bag6min complex (Fig. 3.5A). The samples were then 

precipitated with anti-GST resin, washed in two steps in the absence of ATP, and then 

probed after Western blotting with both MBP and GST antibodies.  
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GST•TRC40 was able to capture some TA from SGTA alone as seen before for the yeast 

system (Wang et al., 2010) (Fig. 3.6). The additional presence of the Bag6min complex 

resulted in an ATP-dependent increase in TA transfer to TRC40 (compare lanes 4 & 6).  

This was not a result of a bridged capture of TRC40 pulling down TA still bound to SGTA. 

The interaction between SGTA and Ubl4A is predicted to have very fast off-rates (Chartron 

et al., 2012b) and SGTA would be rapidly removed during the wash steps. Moreover, 

capture of TA by TRC40 was insensitive to increasing salt concentration (Fig. 3.6) despite 

the SGTA/Ubl4A and TRC35/TRC40 interactions being dominated by electrostatics, the 

latter also requiring ATP (Chartron et al., 2012b; Gristick et al., 2014). The Bag6min 

fragment used in the study does not contain the Bag6 substrate-binding domain (Leznicki et 

al., 2013); therefore, the Bag6 complex can promote substrate hand-off from SGTA to 

TRC40 without Bag6 directly engaging the substrate. 

SGTA binds the Bag6 complex via the UBL domain of Ubl4A; consequently, the Bag6 

dependent hand-off should require this interaction (Chartron et al., 2012b; Xu et al., 2012). 

To address this, the mutants hSGTA(C38A) and Ubl4A(L43A) were generated where the 

equivalent mutations in yeast were previously shown to disrupt the homologous interaction 

(Chartron et al., 2012b). As expected, each resulted in a similar loss of substrate hand-off 

relative to wild type (Figs. 3.5B and 3.7C). This highlights the importance of this 

interaction for the bridging by Bag6 during TA transfer. 

In yeast, Get4-5 binding regulates Get3 ATPase activity and TA targeting (Rome et al., 

2013). Therefore, in addition to the bridging role of the Bag6 complex, it is critical to test if 
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this larger complex plays a regulatory role in TA targeting. The crystal structure of yeast 

Get4 bound to Get3 highlighted a regulatory interface separate from the binding interface 

(Gristick et al., 2014). When mutated, residues on either side of this regulatory interface 

(the charge swaps K69D on Get3 and D74K on Get4) each resulted in a loss of ATPase 

inhibition, reduction of TA insertion into microsomes, and a loss of fitness in vivo, despite 

maintaining a stable complex in vitro (Gristick et al., 2014). Combining the charge swap 

mutants restored the Get4 regulatory activity (Gristick et al., 2014). For TRC40, the 

corresponding regulatory mutation, K86D, resulted in a reduction of the Bag6 complex 

facilitated hand-off (Fig. 3.5C, compare lanes 4 & 8 and Fig. 3.7D). Similarly, the 

corresponding regulatory mutation in TRC35, D84K, resulted in a reduction of facilitated 

hand-off (compare lanes 4 & 5 and Fig. 3.7D). Excitingly, as seen for the yeast system 

(Gristick et al., 2014), the combination of these two charge swap mutants resulted in a 

rescue of the facilitated hand-off (lane 9 and Fig. 3.7D). These results highlight that this 

minimal Bag6 complex acts as an independent TA targeting module and performs a similar 

regulatory role to the fungal Get4-5 complex despite the different architectures. 
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Discussion 
Our structural characterization of the mammalian TA sorting complex in chapter 1 

established Bag6 as a scaffolding factor that forms a stable complex with TRC35 and 

Ubl4A. The structure of the putative BAG domain, however, did not resemble published 

structures of canonical BAG domains. Meanwhile, although the introduction of Bag6 alters 

the overall molecular architecture in mammals relative to that of yeast, all the functional 

elements required to bind and regulate relevant TA components, Sgt2/SGTA and 

Get3/TRC40, were conserved in the Bag6 complex. In this chapter, we biochemically 

confirm that Bag6 BAG domain is not a BAG domain. Furthermore, we define and 

characterize in vitro a minimal Bag6 TA targeting module that is sufficient for TA handoff. 

The demonstrated inability of Bag6-BAG to influence Hsc70 activity is unsurprising if 

one considers sequence and structural comparisons with canonical BAG domains. This 

result brings into question the reported inhibition of Hsp70-mediated β-galactosidase 

refolding by Bag6 (Thress et al., 2001). A possible explanation is the holdase activity of 

Bag6. Bag6 prevents the aggregation of unfolded luciferase by forming a stable 

interaction with the exposed hydrophobic core, preventing Hsp70-mediated refolding 

(Wang et al., 2011b). Similar Bag6 holdase activity may have prevented refolding of β-

galactosidase. Deletion of the 81 C-terminal residues may disrupt this holdase through an 

unknown mechanism, possibly by occluding the binding site on the truncated Bag6. The 

observed Hsp70 inhibition by Bag6, therefore, would be a result of sequestration of the 

unfolded substrate by Bag6 via its hydrophobic substrate-binding region, which also 

could be recognized by Hsp70, resulting in the interaction between Bag6 and Hsp70. 
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While full-length Scythe and Bag6 inhibit reaper and ricin-triggered apoptosis, excess 

ScytheC312 (Thress et al., 1998) or the C-terminal 131 residues (Wu et al., 2004) of 

Bag6 can induce apoptotic events. As the C-terminal fragment would be consistent with 

the Bag6min complex defined here, excess Bag6 C-terminus would disconnect the triaging 

and holdase/degradation roles of the complex. The apoptosis connection could then be 

linked to tail-anchor targeting. Overexpression of Bag6 in HeLa cells exposed to ricin, an 

apoptosis inducer, leads to an increase in endogenous Bcl-2 protein levels, whereas Bag6 

knockdown causes down-regulation of Bcl-2 proteins (Wu et al., 2004). Several proteins 

that belong to the Bcl-2 family are tail-anchored, including Bcl-2, MCL1, BAX, and 

BOK, and reside both at the ER and the mitochondria (Echeverry et al., 2013; Strasser, 

2005; Szegezdi et al., 2009). The Bag6 complex would then play an important role in 

regulating the localization and turnover of these Bcl-2 proteins, which could be altered by 

Bag6 cleavage. 

The results presented in this chapter establish the C-terminal domain of Bag6 as an 

independent TA targeting module of Bag6. The N-terminal UBL domain of Bag6 

connects the proteasome, where it interacts with RP non-ATPase 10c (Kikukawa et al., 

2005), with components of quality control pathways, where it interacts with RNF126, 

gp78 and ubiquitin regulatory X domain-containing protein 8 (Rodrigo-Brenni et al., 

2014; Wang et al., 2011b; Xu et al., 2013). Downstream of this connection, the proline-

rich domain has been implicated as the holdase domain binding to exposed hydrophobic 

regions and polyubiquitylated defective ribosomal products (Leznicki et al., 2013; 

Minami et al., 2010; Wang et al., 2011b). Bag6 then acts as a scaffolding protein, 
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simultaneously binding ubiquitylation machinery, the proteasome, TA-targeting factors, 

and proteins to be triaged. Recent biochemical characterization of the triaging process 

revealed that TA substrate that is not handed off to TRC40 within ~3 cycles is rerouted to 

the degradation pathway by Bag6 (Shao et al., 2017). The molecular details of how its 

decision-making process relates to its other functions in apoptosis, gene regulation, and 

immunoregulation are important questions for future studies.  
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Figures 
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Figure 3.1. Bag6-BAG is not a canonical BAG domain 

(A) Hsc70-mediated refolding of β-galactosidase in the presence of Bag1-BAG (purple), 

Bag6-BAG (orange solid), Bag6EBAG/Ubl4A (blue solid), SGTA & Bag6-BAG (orange 

dashed), SGTA & Bag6EBAG/Ubl4A (blue dashed) or BSA (black) as a negative control. 

(B) Affinity tagged Bag6-BAG, Bag6EBAG/Ubl4A, Bag6-BAG/Ubl4A-C or Bag1-BAG 

was loaded onto cobalt resin beads and incubated with 293T whole cell lysate. Eluted 

samples were immunoblotted with Hsc70 antibody (top panel) and Ponceau stained 

(bottom panel). (C) FLAG-Bag6 or FLAG-Bag6ΔC81 was overexpressed in 293T cells 

and anti-FLAG resin was used to capture them with bound factors. Bag6 antibody on the 

blot is detected in green, and Hsp70 antibody in red.  
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Figure 3.2. Individual results for various in vitro refolding assays 

β-Galactosidase refolding assays in the presence of Hsc70, Hdj1 and/or other factors 

(labeled). Colors are based on Figure 3.1 except for assays containing Bag6-C81 that are in 

cyan. Error bars are from three independent experiments.  
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Figure 3.3. Bag6-BAG does not bind Hsc70 nucleotide binding domain (NBD) 

In vitro capture by 6xHis-Hsc70-NBD of Bag6-BAG, Bag6-C81, Bag6EBAG/Ubl4A, or 

Bag1-BAG. Protein was pulled down (PD) with Ni-NTA after incubation with 6xHis-

Hsc70-NBD. Four percent of total loaded protein is shown as a loading control (LC), and 

each protein was incubated alone with Ni-NTA (Ni) to assess background binding.   
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Figure 3.4. Purification of recombinant proteins used in TA transfer assay 

(A) Two-hybrid using full-length TRC35 and TRC35(23-305) with Bag6E fragment. Both 

TRC35 constructs display strong two-hybrid interactions. (B) Representative Coomassie 

stained 12% SDS-PAGE gel of purified hSGTA/MBP⦁Sbh1, Bag6min Complex, and 

GST⦁TRC40. 
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Figure 3.5. The Bag6min complex facilitates TA transfer from SGTA to TRC40 

(A) The in vitro TA handoff reaction scheme. Recombinantly purified hSGTA-MBP⦁Sbh1 

complex was incubated with GST⦁TRC40 and indicated recombinant proteins. After 

incubation on ice for 10 minutes, GST⦁TRC40 and bound substrate were precipitated with 

anti-GST resin followed by three wash steps and Western blotting. (B) Mutants affecting 

SGTA binding to the Bag6min complex reduce TA transfer to TRC40. GST⦁TRC40 was 

captured on anti-GST resin after incubation in the presence of ATP with SGTA/MBP-Sbh1 

or SGTA(C38A)/MBP⦁Sbh1 alone or with the Bag6min or Bag6min(Ubl4A(L43A)) 

complex. Eluted samples were immunoblotted with anti-GST (red) and anti-MBP antibody 

(green) then quantified by Odyssey Infrared Imaging System analysis software. Relative 

values of captured Sbh1 underneath each lane with the experiment containing all wild-type 

components as the reference. Sbh1 fluorescence values were normalized for each trial 

based GST⦁TRC40 captured in each lane. Values are averages of six independent 

experiments. Standard deviations are included in figure 3.7. The 5% rxn lane corresponds, 

in all cases, to loading 5µL of the wild-type reaction prior to capture. (C) Regulatory 

mutants GST⦁TRC40(K86D) and TRC35(D84K)Bag6min complex were incubated with 

indicated recombinant proteins and ATP then captured on anti-GST resin and analyzed as 

in B. 
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Figure 3.6. The Bag6min complex facilitates TA transfer from SGTA to TRC40 in an 

ATP dependent manner  

Nucleotide-dependent TA handoff facilitated by Bag6min complex. GST⦁TRC40 was 

captured on anti-GST resin after incubation with SGTA-MBP⦁Sbh1 and Bag6min complex 

with or without ATP. Eluted samples were immunoblotted with anti-GST (red) and anti-

MBP antibody (green) then quantified by Odyssey Infrared Imaging System analysis 

software and the Sbh1 values were normalized based on total GST⦁TRC40 captured. 

MBP⦁Sbh1 signal from WT experiment was designated 1, and the rest represented as a 

fraction of the WT value. Values are the average of four independent experiments. 
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Figure 3.7. TA handoff from SGTA to TRC40 

(A) Average values of nucleotide-dependent TA handoff from SGTA to TRC40 facilitated 

by Bag6min complex. Error bars are from four independent experiments. (B) Average 

values of TA handoff from SGTA to TRC40 facilitated by Bag6min complex in the presence 

of ATP washed with buffers with varying salt concentrations. Error bars are from three 

independent experiments. Fluorescence values are represented as a percentage of WT 

handoff as measured by MBP fluorescence. (C) Average values of TA handoff by binding 

mutants hSGTA(C38A)/MBP⦁Sbh1 and Bag6min(Ubl4A(L43A)) complex as compared to 

WT. Error bars are from six independent experiments. (D) Average values of TA handoff 

of regulatory mutants GST⦁TRC40(K86D) and Bag6min(TRC35(D84K)) complex as 

compared to WT. Error bars are from four independent experiments. 
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Materials and Methods 

Cloning, Expression, and Purification. cDNA of human Hsc70, Hdj1, and Hsc70-NBD 

(P5 to S381) were subcloned into pET33b vector, expressed, and purified similar to 

previously described methods with some modifications (Chartron et al., 2012b). Full-

length Hsc70 and Hsc70-NBD were purified over a UnoQ column (Biorad) (50 mM 

Hepes, 50 - 500 mM KCl gradient, pH 8.0, 5 mM β-mercaptoethanol). Hdj1 was purified 

over a UnoS column (50 mM Hepes, 20 mM KCl 500 mM KCl, pH 7.0, β-

mercaptoethanol). The plasmid vectors containing the cDNA of the chaperone proteins 

were obtained from the Morimoto group at Northwestern University (Freeman and 

Morimoto, 1996). 

cDNA of human TRC40 was subcloned into pGEX-6P-1 vector and expressed in 

NiCo21(DE3) cells. Cells were lysed using a M-110L Microfluidizer Processor 

(Microfluidics) in 50 mM NaH2PO4 and 400 mM NaCl supplemented with benzamidine, 

PMSF, and 5mM β-mercaptoethanol. The protein was purified in a single step 

Glutathione SuperFlow resin affinity chromatography (Clontech). cDNA of human 

SGTA was subcloned into pET33b vector, and co-expressed with MBP-Sbh1 in 

pACYCDuet vector in NiCo21(DE3) cells and lysed using a M-110L Microfluidizer 

Processor (Microfluidics) in 50 mM NaH2PO4, 150 mM NaCl, 20 mM imidazole 

supplemented with benzamidine, PMSF, and 5mM β-mercaptoethanol. The complex was 

purified in two steps using Ni-NTA resin (Qiagen) and amylose resin (NEB). Human 

TRC35(23-305) was subcloned from TRC35 cDNA into pACYCDuet vector in the first 

multiple cloning site (MCS) with N-terminal 6x histidine tag and a TEV protease cut site. 
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In the second MCS, cDNA of untagged human Ubl4A was subcloned. TRC35 and was 

co-expressed with untagged Bag6(1001-1126) in pET33b in NiCo21(DE3). The complex 

was purified by Ni-NTA affinity chromatography (Qiagen). Contaminants were further 

removed using chitin affinity chromatography (NEB). TRC40(K86D), TRC35(D84K), 

SGTA(C38A), and Ubl4A(L43A) mutants were generated using site-directed 

mutagenesis (Agilent Technologies). 

Hsc70 refolding assay. The Hsc70 mediated β-galactosidase refolding assay was carried 

out as previously reported with modifications. Stock solution of β-galactosidase at 10 

mg/ml was prepared by dissolving the enzyme (Sigma-Aldrich) in 50 mM Tris-HCl, 10 

mM MgCl2, 5mM β-mercaptoethanol (pH 7.3). For experiments, the stock enzyme was 

1:10 diluted in 1 M glycylglycine (pH 7.4). 5 µl of this was diluted into 95 µl of 

unfolding buffer (25 mM Hepes, 5 mM MgCl2, 50 mM KCl, 5 mM β-mercaptoethanol, 6 

M guanidine-HCl, pH 7.4), and 5 µl was diluted into 95 µl 1 M glycylglycine pH 7.4 for 

the control. Final β-galactosidase concentration was 3.4 nM. The two samples were 

incubated at 30°C for 30 minutes. 

Folding reactions were performed in refolding buffer (1.6 µM Hsc70 and 3.2 µM Hdj1 

suspended in 25 mM Hepes, 5 mM MgCl2, 50 mM KCl, 2 mM ATP, 10 mM DTT, pH 

7.4). Varying concentrations of Bag6 constructs were tested for their effect on Hsc70 

folding activity. After a 30 minute incubation at 30°C, 1 µl of denatured enzyme was 

added to 124 µl of each refolding reaction tube and incubated at 37 °C. In regular time 

intervals, 10 µl of each folding reaction was added to 10 µl of 0.8 mg/ml ONPG (ortho-
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nitrophenyl-β-galactoside) and incubated at 37°C for 15 minutes. The reaction was 

stopped by the addition of 80 µl 0.5 M sodium carbonate. β-galactosidase activity was 

measured as a rate of conversion of ONPG by absorbance at 413 nm. 

Hsc70 capture assay 

500 pmol of Hsc70-NBD with N-terminal 6x histidine tag was incubated with 2 nmol of 

untagged Bag6-BAG, Bag6-C81, Bag6EBAG/Ubl4A, and Bag1-BAG in total 100 µl of 

binding buffer (20 mM Hepes, 100 mM KCl, 20 mM imidazole, and 5 mM β-

mercaptoethanol) for 1 hour at room temperature. The samples were then added to 15 µl 

of Ni-NTA beads (Qiagen). The beads were washed twice with 100 µl binding buffer. 

Bound proteins were eluted with 15 µl of 20 mM Hepes, 100 mM KCl, 300 mM 

imidazole, and 5 mM β-mercaptoethanol then run on to 4-20% gradient SDS-PAGE gel 

(Biorad). 4% of total sample was run as loading control. 

For capture assays from 293T whole cell lysate, cells from 10cm dish (90% confluent) 

were lysed in 1.5 ml NP40 lysis buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 2 mM 

MgCl2, 0.5% NP40, 2 mM β-mercaptoethanol, protease inhibitor cocktail). Cell extracts 

were subject to centrifugation at 20,000 ×g for 5 min to remove insoluble materials. The 

soluble fractions were pre-treated with 180 ml HisPurTM Coblat resin (Thermo) and then 

incubated with 30 ml HisPurTM Coblat resin immobilized with His-tagged Bga6-

fragments as indicated in the figure at 4 degree for 1 hour. The resins were quickly 

washed twice with 400 ml a wash buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 2 mM 

MgCl2), 0.1% NP40, and 2 mM β-mercaptoethanol. The proteins bound to the resin were 

eluted with 60 ml SDS-PAGE loading buffer and denatured by heating at 65 °C for 10 
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minutes. The samples were analyzed by SDS-PAGE. Proteins were detected by either 

Ponceau staining and immunoblotting. 

To examine in vivo interaction of Bag6 and Hsp70, cells grown in a 6 well plate were 

transfected with plasmids expressing FLAG-tagged wild type Bag6 or a mutant Bag6 

lacking the C-terminal 81 amino acids using TransIT 293 (Mirus). Cells were lysed in the 

NP40 lysis buffer 24 hours post transfection. Bag6 was pulled down from the lysate by 

FLAG M2 beads (Sigma-Aldrich). The precipitated material was analyzed by 

immunoblotting. 

In vitro TA handoff assay 

0.625 pmol of hSGTA/MBP⦁Sbh1 or hSGTA(C38A)/MBP⦁Sbh1 was incubated with 

0.04 µg/µL (6.25 pmol) GST⦁TRC40 or GST⦁TRC40(K86D) with or without 0.008 

µg/µL of Bag6min, Bag6min(D84K), or Bag6min(L43A) complex in 100 µL of incubation 

buffer (50 mM Hepes (pH 7.5), 4 mM Mg(OAc)2, 150 mM KOAc, 10% glycerol, and 1 

mM DTT) on ice for 10 minutes. After 10 minutes, 10 µL of MagnetGST resin 

(Promega) was added to each reaction and incubated at room temperature for 15 minutes 

to pull down GST⦁TRC40 and bound factors. The resin was washed three times with 500 

µL of incubation buffer and eluted with 20 µL of 20 mM Tris, 300 mM NaCl, and 33 

mM L-Glutathione pH 7.4. The precipitated material was analyzed by immunoblotting. 

For the wild-type capture experiment, approximately 12 ± 5.2% of TRC40 and 4.1 ± 

1.6% of Sbh1 were eluted from the beads. Assuming one TA per TRC40 dimer, one 

would expect ~6% of the TA to be captured assuming 100% transfer; therefore, our yield 
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is reasonable and differences could be attributed to a variety of factors such as 

differences in stoichiometry assumptions or affinities of the various TRC40 complexes. 
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C h a p t e r  4  

BIOCHEMICAL AND CELL BIOLOGICAL INVESTIGATION OF 
THE MECHANISM FOR NUCLEO-CYTOPLASMIC 

DISTRIBUTION OF BAG6 BY TRC35 
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Abstract 

The metazoan protein BCL-2 associated athanogene cochaperone 6 (Bag6) acts as a 

central hub for several essential cellular processes, including immunoregulation, gene 

regulation, autophagy, apoptosis, and proteostasis. These roles are in both the nucleus and 

the cytosol, but the mechanism by which Bag6 trafficking is regulated remains elusive. 

Here we present biochemical and cell biological characterization of the cytoplasmic 

retention factor of Bag6, transmembrane domain recognition complex 35 (TRC35). 

Disrupting the interface between Bag6 and TRC35 results in nuclear localization of 

Bag6. TRC35 binds Bag6 with higher affinity than karyopherins. Free TRC35 that cannot 

bind Bag6 at its native binding site is ubiquitylated and degraded. Combined, these 

results suggest a mechanism for regulation of the nucleo-cytoplasmic distribution of 

Bag6. 
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Introduction 

The metazoan protein Bag6 is a multidomain protein implicated in various essential 

cellular processes. Recent efforts have elucidated its extensive cytosolic role as a protein 

targeting and quality control triaging factor (Mock et al., 2015; Rodrigo-Brenni et al., 

2014; Shao et al., 2017; Wang et al., 2011b). It is well known, however, that Bag6 can 

localize to the nucleus via its nuclear localization sequence (Manchen and Hubberstey, 

2001), which has been assumed to be a bipartite nuclear localization sequence. 

Several studies have investigated nuclear roles of Bag6. First, Bag6 modulates histone 

methylation. In U2OS cells, Bag6 constitutively co-localizes in the nucleus with DOT1 

Like histone methyltransferase (DOT1L) (Wakeman et al., 2012), a methyltransferase 

that methylates histone 3 at lysine 79 (H3K79). siRNA-mediated knockdown of Bag6 

results in reduced DOT1L-dependent H3K79 methylation in cells treated with ionizing 

radiation (Wakeman et al., 2012). In HCT116 cells, Bag6 interacts with Brother Of the 

Regulator of Imprinted Sites (BORIS), a DNA-binding protein that localizes to the 

promoter regions of myc and BRCA1 (Nguyen et al., 2008). Bag6 binding facilitates 

BORIS-mediated histone 3 lysine 4 (H3K4) dimethylation (Nguyen et al., 2008).  

Bag6 is also implicated in regulating the acetyltransferase p300. Bag6 promotes the 

interaction between p300 and p53 (Sasaki et al., 2007), which is crucial for p300-

mediated acetylation of p53 in the nucleus. siRNA-mediated knockdown of Bag6 results 

in reduced p300-mediated acetylation of p53, which cannot be rescued by expressing 

Bag6ΔNLS (Sasaki et al., 2007). Another study showed that Bag6 promotes p300-

mediated p53 acetylation but inhibits p300-mediated acetylation of ATG7 (Sebti et al., 
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2014b). These cells also cannot be rescued by expressing Bag6 ΔNLS mutant (Sebti et 

al., 2014b). Notably, in Bag6-/- mouse embryonic fibroblasts, Bag6 is a nuclear shuttling 

factor of p300 (Sebti et al., 2014a, b).  

Other examples include cell cycle dependent (Yong and Wang, 2012) and ionizing 

radiation-induced nuclear localization of Bag6 (Krenciute et al., 2013).  

While it is clear that some endogenous Bag6 is translocated into to the nucleus, our 

understanding of the molecular mechanism by which Bag6 distribution is modulated 

between the nucleus and the cytoplasm is lacking. Importantly, many localization studies 

did not consider the molecular characterization of the Bag6 complex that includes 

TRC35, which binds and retains Bag6 in the cytosol (Mock et al., 2015; Wang et al., 

2011b). There is strong evidence that Bag6, TRC35 and Ubl4A exist in a trimeric 

complex in the cytoplasm (Hessa et al., 2011; Liu et al., 2014; Mariappan et al., 2010; 

Mariappan et al., 2011; Mock et al., 2015; Shao et al., 2017; Wang et al., 2011b; Xu et 

al., 2013) and influence each other’s stability. Knocking down Bag6 leads to reduced 

cellular levels of TRC35 and Ubl4A (Krenciute et al., 2013), and knocking down both 

TRC35 and Ubl4A results in reduction of Bag6 levels (Krenciute et al., 2013).  

This chapter explores the molecular basis for cytosolic retention of Bag6 by TRC35. Our 

results reveal that the Bag6-TRC35 interface seen in our crystal structure (Fig. 2.7) is 

crucial for cytoplasmic retention of Bag6. Furthermore, this interaction is important for 

maintaining TRC35 stability. Our results, combined with previous human genetics and 
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qualitative mass spectrometry studies, suggest that nucleo-cytoplasmic distribution of 

Bag6 is partially mediated by modulation of Bag6 expression.  
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Results 

Probing the Bag6-TRC35 interface 

To validate the interfaces observed in the Bag6-TRC35 structure (Fig. 2.7), we generated 

alanine mutants for analysis by yeast 2-hybrid analysis. A fragment of Bag6 (residues 951-

1126) was attached to the GAL4 transcription activating domain and full-length TRC35 

was attached to the GAL4 DNA-binding domain. Of the single amino acid substitutions, 

only one residue, TRC35 (Y262A), disrupted the yeast 2-hybrid interaction (Fig. 4.1A). 

The Bag6 mutations W1004A and W1012A are localized at interface I and Y1036A is 

localized at interface II. The combination of the two mutations synthetically disrupted the 

interaction (W1004A/Y1036A or W1012A/Y1036A) (Fig. 4.1D) confirming that both 

interfaces are critical for forming a stable complex between Bag6 and TRC35. Expression 

of Bag6 and TRC35 in the yeast used from two-hybrid experiments was confirmed by 

immunoblotting (Fig. 4.1C).  

We also sought to validate the interaction of TRC35 with full length Bag6 in the context of 

a mammalian cellular environment by co-immunoprecipitation. For this, we co-expressed 

N-terminally GFP-tagged wild-type (wt) Bag6 or the mutants Bag6(W1004A), 

Bag6(W1012), Bag6(Y1036A), Bag6(W1004A/Y1036A), and Bag6(W1012A/Y1036A) 

with FLAG-tagged TRC35 in a Bag6 knock-out 293T cell (Bag6-/-). Bag6 and associated 

proteins were captured from detergent-derived cell extracts by immunoprecipitating using a 

GFP-antibody. Immunoblotting analysis showed that these mutations on full length Bag6 

protein only partially disrupted the interaction: compared to wtBag6 that efficiently 

captured TRC35 (Fig. 4.2 lane 9), the single mutation W1004A reduced but not completely 
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abolished the amount of TRC35 captured by Bag6 (lane 10). This was also true for the 

double mutants (lane 13 &14). 

TRC35 Masks the Nuclear Localization Sequence of Bag6 and Retains Bag6 in the 

Cytosol 

To investigate the Bag6-TRC35 interface in the context of Bag6 localization, the mutants 

identified from yeast 2-hybrid and immunoprecipitation were used for localization studies. 

Overexpression of TRC35 has been shown to retain wtBag6 in the cytosol (Wang et al., 

2011b), suggesting that TRC35 binding is required for cytosolic localization of Bag6. 

Because the mutations identified in our yeast 2-hybrid experiments specifically prevent 

TRC35 binding, we postulated that exogenously expressed Bag6 mutants defective in 

TRC35 binding would localize primarily in the nucleus regardless of TRC35 expression. 

To test this hypothesis, wt and mutant Bag6 were expressed in Cos7 cells with or without 

TRC35•FLAG and the localization of Bag6 and TRC35 was examined by 

immunofluorescence. 

As expected (Wang et al., 2011b), given the NLS, overexpressed wtBag6 and various Bag6 

mutants were localized to the nucleus (Fig. 4.3A). This is likely due to excess Bag6 that 

cannot be retained in the cytosol by endogenous TRC35. Indeed, when TRC35 is co-

expressed with wtBag6, the increased cytosolic pool of TRC35 captures wtBag6 and both 

proteins stain primarily in the cytosol (Fig. 4.3A). In accordance with the 

immunoprecipitation results (Fig. 4.2), introduction of a single mutation—W1004A, 

W1012A, or Y1036A—results in some Bag6 localization to the nucleus (Figs. 4.3B, C, and 

D). Mutations at both interface I (W1004A or W1012A) and interface II (Y1036A) further 
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reduce binding between Bag6 and TRC35 (Fig. 4.2) and Bag6 localizes primarily to the 

nucleus (Fig. 4.3E and F). These results unequivocally establish TRC35 as a cytoplasmic 

retention factor of Bag6. 

Free TRC35 is Ubiquitylated 

Careful examination of the immunoprecipitation results (Fig. 4.2) revealed two intriguing 

observations: (1) an unexpected increase in TRC35 binding to Bag6 double mutants 

relative to single mutants even though these double mutants contain exposed NLS due to 

lack of TRC35 shielding (Fig. 4.2, compare lanes 11-12 vs. lanes 13-14) and (2) the 

appearance of higher molecular weight products for Bag6 double mutants (Fig. 4.2, 

asterisk). As there is evidence that the stability of TRC35 requires forming a proper 

complex with Bag6 (Krenciute et al., 2013; Mariappan et al., 2010) and given the 

implication of Bag6 as a chaperone holdase in protein quality control processes such as 

mis-localized protein degradation (Hessa et al., 2011) and ER-associated protein 

degradation pathways (Payapilly and High, 2014; Wang et al., 2011b), we postulated that 

TRC35 mutants that fail to form a complex with Bag6 at its physiological binding site are 

unstable and become a target for degradation pathways. This would result in TRC35 

becoming a target for Bag6 dependent degradation leading to TRC35 binding at the Bag6 

substrate-binding site. In this case, the higher molecular weight bands observed in figure 

4.2 would probably be ubiquitylated TRC35 bound to Bag6.  

To verify this hypothesis, Bag6-/- 293T cells were used to co-express TRC35, Bag6 variants 

and ubiquitin with the expectation that destabilized TRC35 would show increased ubiquitin 

complexes. Cells were transfected with TRC35•FLAG, Bag6•GFP, and HA•ubiquitin. 
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Proteins bound to Bag6 were first immunoprecipitated with GFP antibody. To remove 

other ubiquitinated Bag6 substrates (Minami et al., 2010; Wang et al., 2011b; Xu et al., 

2013), the samples obtained from the GFP immunoprecipitation were subject to a second 

round of immunoprecipition using FLAG beads under denaturing conditions. 

Immunoblotting analysis of the samples from the first round of immunoprecipitation 

showed that all Bag6 variants pulled down ubiquitinated proteins, suggesting that these 

mutations did not affect its substrate-binding activity (Fig. 4.4, lane 2-7). Re-

immunoprecipitation with FLAG antibody showed that TRC35 associated with wtBag6 

carried a small amount of ubiquitin conjugates, but those associated with Bag6 variants that 

disrupted physiological association with TRC35 carried significantly more ubiquitin 

conjugates. Compared to single Bag6 mutations, TRC35 bound to the double mutants had 

the highest ubiquitin to TRC35 ratio (Figs. 4.4 compare lanes 10-12 to 13-14) supporting 

the idea that the subset of TRC35 molecules unable to associate with Bag6 via the NLS 

domain are unstable and become targets for ubiquitin-dependent degradation through a 

client-chaperone interaction with Bag6. This suggests that the ubiquitylated TRC35 

associates with the quality control module (QC) of Bag6 (Shao et al., 2017).  

We sought to ensure that TRC35 is a Bag6-QC substrate by investigating the effect of the 

E3 ligase RNF126 on TRC35 ubiquitylation. RNF126 is a Bag6-associated E3 ligase 

utilized by the Bag6-QC for ubiquitylation of Bag6-associated clients in the cytosol 

(Rodrigo-Brenni et al., 2014). Ubiquitylated Bag6-QC substrates are proteasomally 

degraded (Shao et al., 2017). If TRC35 ubiquitylation is mediated by Bag6-QC, knocking 

down RNF126 in cells expressing Bag6 mutants would result in reduced ubiquitylation of 
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TRC35. Furthermore, if ubiquitylated TRC35 is degraded by the ubiquitin proteasome 

system, RNF126 reduction would also stabilize TRC35. To test this hypothesis, the effect 

of RNF126 and proteasome inhibition on TRC35 ubiquitylation and stability were 

examined. 

We first examined the effect of siRNA-mediated RNF126 knockdown on TRC35 

ubiquitylation. 293T cells co-expressing HA•ubiquitin, TRC35•FLAG and either wt or 

mutant Bag6•GFP (W1004A/Y1036A or W1012A/Y1036A) were treated with siRNA 

against RNF126. Changes in ubiquitylation were compared by taking the relative ratio 

between ubiquitylated TRC35 and unmodified TRC35 (Ub-TRC35/TRC35). The ratio in 

cells expressing both wtTRC35 and wtBag6 without RNF126 was defined as 1. In cells 

expressing Bag6 mutants, TRC35 bound to Bag6 is mostly ubiquitylated (Fig. 4.5A lanes 

13 and 14); the relative ratio between ubiquitylated TRC35 (Ub-TRC35) and unmodified 

TRC35 in cells expressing Bag6(W1004A/Y1036A) and Bag6(W1012A/Y1036A) are 193 

and 111, respectively (Fig. 4.5B). Knockdown of RNF126 reduces TRC35 ubiquitylation 

in cells expressing Bag6 mutants, resulting in ~10-20-fold reduction in Ub-TRC35/TRC35 

(Fig. 4.5B). In contrast the Ub-TRC35 to TRC35 ratio in cells expressing wtBag6 remains 

constant (Figs. 4.5A lane 12 & 16 and 4.5B) regardless of RNF126 treatment, suggesting 

that TRC35 that is bound to Bag6 at the native binding site is stable. Both unmodified and 

polyubiquitylated TRC35 is stabilized by proteasome inhibition by MG132 (Fig. 4.5C 

lanes 9 & 10 vs. 11 & 12), confirming that Ub-TRC35 is degraded by the ubiquitin 

proteasome system. The accumulation of unmodified TRC35 (Fig. 4.5C lanes 9 & 10 vs 11 

& 12) is probably due to depletion of free ubiquitin in the cell (Melikova et al., 2006). To 
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better observe the changes in accumulation of Ub-TRC35 upon RNF126 knockdown, cells 

were simultaneously treated with RNF126 siRNA and MG132 to prevent the degradation 

of Ub-TRC35. For both cells expressing wtBag6 and Bag6(W1004A/Y1036A), 

accumulation of ubiquitylated TRC35 was reduced (Fig. 4.6 compare lanes 9 & 10 vs. 11 

& 12). Together these results demonstrate that ubiquitylation of free TRC35 is modulated 

by the quality control role of Bag6 and RNF126.  

TRC35 has higher affinity for Bag6 than Karyopherin-α 2 (KPNA2) 

All molecules destined for the nucleus must move through the nuclear pore complex 

(NPC), a large assembly that spans the nuclear envelope and facilitates nucleo-cytoplasmic 

traffic (Hoelz et al., 2011). Macromolecules larger than ~40 kDa cannot freely diffuse 

through the NPC and require carrier proteins, such as the karyopherin-α (KPNA) and -β 

families of transport receptors (Lange et al., 2007; Pumroy and Cingolani, 2015). The two 

basic clusters, R1024KVK and K1043RRK (Fig. 4.7A), in Bag6 are thought to act as a 

bipartite NLS by specifically recognizing the acidic substrate-binding surface of 

karyopherins (Manchen and Hubberstey, 2001). In HeLa cells, the K1045R to S1045L 

mutation has been shown to abrogate nuclear localization of Bag6 (Manchen and 

Hubberstey, 2001). Therefore, TRC35 and KPNA both bind Bag6 at the fragment that 

contains the NLS although likely distinct residues mediate the respective interactions.  

To confirm that the Bag6-NLS is a KPNA binding site and to define the residues involved 

in KPNA binding, a Bag6 C-terminal 131 residues (Bag6C131) (Wu et al., 2004) in 

complex with hexahistidine-tagged full-length Ubl4A (Bag6C131-6xHis•Ubl4A) was 

purified from E. coli. KPNA2 was chosen specifically as it had been seen to interact with 



 

 

91 
Bag6 (Rouillard et al., 2016) and could be stably purified. Mutations previously shown to 

abrogate Bag6 nuclear localization (Manchen and Hubberstey, 2001) were introduced at 

either the first basic cluster (1024SL) or the second basic cluster (1045SL) (Fig. 4.7A). The 

purified Bag6C131-6xHis•Ubl4A variants were incubated with either GST•TRC35 or 

MBP•KPNA2 (58-529) and the resulting complexes were isolated using Ni-NTA beads. 

GST•TRC35 pulled down wild-type, 1024SL, and 1045SL Bag6C131-6xHis•Ubl4A with 

similar efficiency (Fig. 4.7B lanes 5-7), demonstrating that these residues are not involved 

in binding TRC35. MBP•KPNA2 formed a sufficiently stable complex with Bag6 that can 

be visualized in a pull-down where MBP•KPNA2 captures wtBag6 (Fig. 4.7B lane 9). 

Surprisingly, only mutating of the second basic cluster led to significant disruption of the 

interaction between Bag6C131-6xHis•Ubl4A and MBP•KPNA2 (Fig. 4.7B compare lane 

10 and 11). These results show that the residues required for binding KPNA2 are distinct 

from those required for binding TRC35, and TRC35 acts as a cytosolic retention factor by 

occluding the Bag6 NLS. Moreover, the second basic cluster is necessary and sufficient for 

binding KPNA2. 

If TRC35 binding to Bag6 prevents KPNA-mediated nuclear translocation, only TRC35-

free Bag6 should be able to bind KPNA and be translocated to the nucleus. There are 

several ways in which this could be achieved. One such is that if KPNAs have a higher 

affinity for Bag6 than TRC35, upregulation of KPNA expression would lead to 

displacement of TRC35 from Bag6 and formation of a Bag6-KPNA complex. To test this, 

we sought to compare the binding affinities of the TRC35 and KPNA2 to Bag6 using an 

exchange assay. Bag6C131-6xHis•Ubl4A complexes with GST•TRC35 were generated 
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and bound to glutathione affinity resin beads via the GST-tag. After washing, varying 

amounts of MBP•KPNA2 were added to the bound beads. The ability of MBP•KPNA2 to 

displace Bag6C131-6xHis•Ubl4A from GST•TRC35 was determined by the amount of 

Bag6C131-6xHis•Ubl4A that was eluted from the resin after incubation. In this case, even 

at the highest concentration tested (2x molar excess), there was no significant displacement 

of Bag6 from TRC35 by KPNA2 (Fig. 4.8 lanes 4-7). Performing the opposite experiment, 

starting with MBP•KPNA2-Bag6C131-6xHis•Ubl4A on amylose beads, adding excess 

GST•TRC35 resulted in the dissociation of the MBP•KPNA2-Bag6C131-6xHis•Ubl4A 

complex (Fig. 4.8 lanes 11-14). These results highlight the stability of the TRC35-Bag6 

complex and argue against the ability of KPNA regulation as a means for modulating the 

nuclear pool of Bag6. 
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Discussion 
Bag6 is a critical scaffolding factor that has important nuclear and cytosolic roles. It is 

unclear how the localization of Bag6 is regulated. Here we report biochemical and cell 

biological characterization of the Bag6-TRC35 complex and suggest a mechanism for 

regulation of Bag6 localization. 

Our results demonstrate that TRC35 acts as an intermolecular mask to the monopartite 

Bag6 NLS in a role similarly performed in other pathways. Examples of other cytosolic 

retention factor pairs include IκB and NF-κB (Beg et al., 1992), HIC and Rev (Gu et al., 

2011) and BRAP2 that retains HMG20A (Davies et al., 2013). Unlike other cytoplasmic 

retention factors, which have only been shown to bind their target NLS-containing proteins 

for occlusion of the NLS, TRC35 also plays a distinct role in the cytoplasmic TA targeting 

and protein quality control when in complex with Bag6. This dual functionality seems to 

have been evolutionarily conserved. One study showed that Ubl4A also has a nuclear role 

of promoting STAT3 dephosphorylation (Wang et al., 2014b). This study did not explore 

the localization of Bag6 relative to Ubl4A, but Bag6 that translocates to the nucleus brings 

Ubl4A with it (Krenciute et al., 2013). In yeast, fungal Get4 binds the N-terminal domain 

of Get5, which appears to contain a functional NLS that directs Get5 to the nucleus during 

a ‘Get5-mediated stress response’ (Arhzaouy and Ramezani-Rad, 2012).  

These results allow speculation of possible regulatory mechanism for Bag6 nuclear 

localization. First, disrupting the Bag6-TRC35 interface by introducing alanine mutations 

results in Bag6 and RNF126-dependent ubiquitylation and degradation of TRC35 (Fig. 

4.4). Similarly, knocking down Bag6 has been shown to reduce levels of TRC35 in HeLa 
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cells (Krenciute et al., 2013), demonstrating that Bag6 is required for TRC35 stability. We 

also show that KPNA2 has a lower affinity for Bag6 than TRC35 (Fig. 4.8B), which 

suggests that for Bag6 to bind KPNA and translocate into the nucleus, it needs to be free of 

TRC35. The most likely explanation is that cells regulate Bag6 localization by modulating 

Bag6 levels or decreasing TRC35 levels. In humans, Bag6 rs3117582 single nucleotide 

polymorphism at the promoter region of Bag6, likely affecting expression levels, is 

associated with higher incidence of lung cancer (Chen et al., 2014; Etokebe et al., 2015b; 

Zhao et al., 2014) and osteoarthritis (Etokebe et al., 2015a). The localization could also be 

pre-translationally regulated with differential splicing. In brain and breast tissue, for 

instance, Bag6 isoforms that lack the NLS are expressed at higher levels than isoforms with 

the NLS (Luce et al., 2016).  

TRC35 utilization of the Bag6 quality control module has important implications on 

previous Bag6 knockdown studies. When Bag6 is knocked down TRC35 protein levels, not 

mRNA levels, decrease (Krenciute et al., 2013). Thus, when Bag6 is knocked down, 

TRC35 translation probably continues. Knocking down Bag6 then not only eliminates 

Bag6 localization to the nucleus due to higher TRC35 to Bag6 ratio, but also affects the 

quality control module of Bag6 because excess TRC35 would become Bag6 substrates. 

The combination of these effects perhaps explains the pleiotropic effects of Bag6 reduction 

or removal from cells.    

Our biochemical studies unequivocally establish TRC35 as a cytosolic retention factor of 

Bag6 and suggest that Bag6 needs to be in excess for nuclear localization. However, how 



 

 

95 
different cell types regulate Bag6 localization, whether the TRC35-dependent regulation 

can be mediated by specific stress, and the biological implications of differential 

distribution of Bag6 are important questions for future studies. 
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Figures 
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Figure 4.1. Validation of the Bag6-TRC35 interface 

(A) Yeast 2-hybrid assay to validate the interface identified in the crystal structure. Wild-

type or mutant full length TRC35 conjugated to the DNA binding domain was expressed 

with wild-type Bag6(951-1126) conjugated to the transcription activating domain. 

Transformation was confirmed by ability to grow on SC-Ura-Leu media. Interaction was 

determined by ability to grow on SC-Ura-Leu-Ade media. (B) Wild-type full-length 

TRC35 conjugated to the DNA binding domain was expressed with wild-type or mutant 

Bag6(951-1126) conjugated to the transcription activating domain. (C) Expression of 

TRC35 and Bag6 in yeast cells used from yeast 2-hybrid was examined by Western blot. 

Antibodies against Gal4 DNA binding domain or trans-activating domain were used to 

detect expression of Gal4BD-TRC35 and Gal4AD-Bag6. (D) Combination of mutations at 

interface I (W1004A and W1012A) and interface II (Y1036A) is sufficient for disrupting 

yeast 2-hybrid interaction.  
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Figure 4.2. Validation of Bag6-TRC35 interface in mammalian cells 

Wild-type or mutant Bag6•GFP was co-expressed in Bag6-/- 293T cells with TRC35•FLAG 

and immunoprecipitated using anti-GFP antibody. Amount of TRC35 retrieved by Bag6 

was assessed by blotting with anti-FLAG antibody. The position of the higher molecular 

weight TRC35•FLAG is highlighted with an asterisk.  
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Figure 4.3. Bag6 mutations at the TRC35 binding site results in nuclear localization of 

Bag6 

(A-F) Cos7 cells were transfected either with Bag6•GFP (wt or mutant) expressing 

plasmid alone or co-transfected with TRC35•FLAG (wt) expressing plasmid. Cells were 

stained with anti-GFP (green) and/or anti-FLAG (red) antibodies. DNA was stained with 
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DAPI where indicated (blue). In the Bag6 column, the percent of Bag6 calculated to be 

in the nucleus is noted. Shown are representative cells imaged by a confocal microscope.  
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Figure 4.4 Ubiquitylation of TRC35 upon mutant Bag6 expression 

(A) Immunoprecipitation (IP) of TRC35 in Bag6-/- 293T cells co-transfected with plasmids 

encoding TRC35•FLAG (wt), Bag6•GFP (wt or mutants), and HA•ubiquitin. Anti-GFP 

antibody was used for the first IP. Anti-FLAG antibody was used for the second IP in 
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denaturing conditions.  TRC35 ubiquitination was assessed by immunoblotting with anti-

HA antibody. The exposure times were adjusted to improve visibility of the reactive bands. 

(B) IP was carried out as in (A) in Bag6-/- 293T cells co-transfected with plasmids encoding 

TRC35•FLAG (wt) and Bag6•GFP (wt or mutants). TRC35 ubiquitination was assessed by 

immunoblotting with anti-FLAG antibody. The exposure times were adjusted to improve 

visibility of the reactive bands. (C) The cell extract used for immunoprecipitation was 

immunoblotted for Bag6, TRC35, and ubiquitin with Bag6 antibody, FLAG antibody and 

HA antibody, respectively. 
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Figure 4.5 RNF126 knockdown stabilizes TRC35 in cells expressing mutant Bag6 

(A) wt293T cells expressing TRC35•FLAG, Bag6•GFP and HA•ubiquitin were treated 

with siRNA against RNF126. Cells were lysed and TRC35 bound to Bag6 were 

immunoprecipitated first with GFP antibody then with FLAG antibody in denaturing 

condition. The amount of TRC35 and ubiquitylated TRC35 was assessed by 
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immunoblotting with anti-TRC35 antibody and anti-HA antibody, respectively. (B) The 

relative amounts of ubiquitylated TRC35 and unmodified TRC35 from figure 4.5 are 

calculated as a ratio. (C) 293T cells expressing wtTRC35•FLAG, Bag6•GFP (wt or 

W1004A/Y1036A) and HA•ubiquitin were treated 10 µM MG132. Bag6 and TRC35 were 

immunoprecipitated and immunoblotted as in A.  
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Figure 4.6 TRC35 ubiquitylation is dependent on RNF126. 

wt293T cells co-transfected with plasmids encoding TRC35•FLAG (wt), Bag6•GFP (wt or 

mutants), and HA•ubiquitin. The cells were simultaneously treated with MG132 and 

siRNA against RNF126. The cell extracts were subject to two rounds of denaturing 

immunoprecipitation with anti-GFP antibody then with anti-FLAG antibody. TRC35 

ubiquitylation was assessed by immunoblotting with HA antibody.  
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Figure 4.7 Biochemical identification of the monopartite Bag6 NLS 

(A) The putative bipartite nuclear localization sequence of Bag6. The serine and leucine 

mutations introduced in this study are highlighted. (B) Recombinantly purified Bag6C131-

6xHis•Ubl4A was incubated with excess GST•TRC35 or MBP•KPNA2 for 20 minutes at 

room temperature. Ni-NTA beads were used to capture purified Bag6C131-6xHis•Ubl4A 

and bound factors. 
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Figure 4.8 TRC35 binding precludes karyopherin α binding to Bag6 

Recombinantly purified Bag6C131-6xHis•Ubl4A was first incubated with either 

GST•TRC35 or MBP•KPNA2. The resulting GST•TRC35-Bag6C131-6xHis•Ubl4A 

complex was incubated with glutathione resin beads, and increasing amounts of 

MBP•KPNA2 was added. The ability of MBP•KPNA2 to displace Bag6C131-

6xHis•Ubl4A from GST•TRC35 was examined by eluting the GST•TRC35 and bound 

Bag6C131-6xHis•Ubl4A from the glutathione resin. The opposite experiment was also 

carried out using amylose resin beads. 
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Materials and Methods 

Expression and purification 

The plasmid containing human KPNA2 was obtained from Addgene (#26677). A 

truncated KPNA2 (58-529) was subcloned into pMAL-C2 vector (New England Biolabs) 

and transformed into E. coli NiCo21(DE3). The cells were grown in 2×YT media and 

induced at 37 °C until OD600 = 0.1 then cooled on ice for 1 hour. Expression was 

induced with 500 µM IPTG for 18 hours at 16°C in a shaking incubator at 200 rpm. The 

cells were harvested as above and resuspended in 50 mM Mops (pH 7.2), 300 mM 

K•glutamate, 5 mM β-mercaptoethanol, supplemented with cOmplete EDTA-free 

protease inhibitor cocktail (Roche) and lysed using the M-110L microfluidizer by two 

passes at approximately 17,500 psi. The lysate was clarified by centrifugation at 235,000 

×g in a Beckman Ti45 rotor for 30 minutes at 4°C. The lysate was incubated for 1 hour 

with 3 mL of a 50% (vol/vol) slurry of amylose resin (New England Biolabs) by rocking. 

The mix was poured into a gravity column then washed with 100 mL lysis buffer. The 

protein was eluted with 12 mL elution buffer (20 mM Mops (pH 7.2), 150 mM 

K•glutamate, 10 mM maltose, 5 mM β-mercaptoethanol). The sample was placed in 

snakeskin dialysis bag (10 kDa cutoff, Thermo Fisher) and dialyzed overnight at 4 °C in 

20 mM Mops (pH 7.2), 50 mM - 800 mM K•glutamate gradient, 5 mM β-

mercaptoethanol. The fractions containing the protein (~36 - 70 mL) were pooled and 

dialyzed in snakeskin dialysis bag in 20 mM Mops (pH 7.2), 50 mM K•glutamate, 5 mM 

β-mercaptoethanol for 2 hours at 4 °C. The sample was concentrated to 2 mL, filtered 

with a 0.22 µm syringe filter, and purified by size-exclusion chromatography over a 120 

mL Superdex 200 column (GE Healthcare) (20 mM Mops (pH 7.2), 50 mM K•glutamate, 
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5 mM β-mercaptoethanol). Fractions containing the sample (60 mL – 90 mL) were 

pooled and concentrated with centrifugal filtration units with 50 kDa molecular weight 

cutoff. 

For expression and purification of GST•TRC35, full-length TRC35 was subcloned into 

pGEX6P-1 (GE Healthcare) and transformed into NiCo21(DE3). The cells were grown at 

37 °C until OD600 = 0.1, chilled on ice for 1 hour, then induced with 500 µM IPTG at 16 

°C for 18 hours in a shaking incubator at 200 rpm. Cells were lysed using 10 mL per g 

cell pellet lysis buffer (50 mM Hepes (pH 7.2), 400 mM KCl, 5 mM mercaptoethanol) 

and incubated with 3 mL 50% (vol/vol) slurry of glutathione resin (GE healthcare) for 2 

hours at 4 °C by rocking. The resin was washed with 100 mL lysis buffer and the protein 

was eluted with 12 mL of freshly prepared 20 mM Hepes (pH 7.2), 150 mM KCl, 33 mM 

glutathione, 5 mM β-mercaptoethanol. The sample was placed in snakeskin dialysis bag 

(10 kDa cutoff, Thermo Fisher) and dialyzed overnight at 4 °C in 20 mM Hepes (pH 7.2), 

100 mM K•glutamate, 5 mM β-mercaptoethanol, before concentration with centrifugal 

filter unit (50 kDa molecular weight cutoff, Millipore). 

Yeast Two-Hybrid 

The PJ69-4α strain was obtained from the Yeast Resource Center at the University of 

Washington. Bag6 isoform b residues 951 to 1126 were cloned into pGAD-C1 vector and 

TRC35 was cloned into pGBDU-C1 vector. Alanine mutations were made using Q5 site-

directed mutagenesis (New England Biolabs). pGAD-C1-TRC35 (wt or mutant) and 

pGBDU-C1-Bag6 (wt or mutant) were co-transformed into PJ69-4α using previously 

described methods (12) and then plated onto SC-Ura-Leu plates and incubated at 30 °C. 
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Single colonies from the transformants were cultured in 5 mL SC-Ura-Leu liquid media 

and grown overnight in a shaking incubator (Multitron Standard Infors HT) at 200 rpm at 

30 °C. 2 × 107 cells were transferred into total 5 mL SC-Ura-Leu media and grown in a 

shaking incubator at 30 °C at 200 rpm for 6 hours. Cells were harvested by centrifugation 

with a Beckman SX4750A rotor at 3000 ×g at 25 °C. The cells were washed twice by 

resuspension in 5 mL sterile water followed by centrifugation at 3000 ×g at 25 °C. After 

the second wash, cells were resuspended in 1 mL sterile water. Concentration was 

measured and 1 × 107 cells were resuspended in total 40 µL of sterile water. 4 µL of this 

resuspended sample were spot plated onto SC-Ura-Leu-Ade plate and incubated for 72 

hours at 30 °C. 

Yeast Two-hybrid Expression Controls 

Cells were grown overnight in SC-Ura-Leu medium. 2.5 x 107 cells were transferred to a 

total 5 mL media and grown for ~6-8 hours until OD600 = 2.0. Cells were harvested by 

centrifugation at 4000 ×g for 5 minutes at 4 °C. Cells were resuspended in 2 mL 10 mM 

TE buffer (Tris-HCl, pH 8.0, 0.1 mM EDTA). Cells were centrifuged in a microcentrifuge 

at 13,500 ×g at 4 °C for 2 minutes. ~37.5 µL glass beads (415-600 µm size) for each OD 

unit were added to the sample. Same volume of 1x SDS-PAGE loading buffer was added. 

The cells were vortexed and immediately plunged into a boiling water bath. After boiling 

for 3 minutes, tubes were immersed into an ice bucket. The tubes were placed into FastPrep 

(MP biomedicals) homogenizer at 6 m/s for 45 seconds. Cells were boiled for 3 minutes 

and centrifuged in a microcentrifuge for 2 minutes at 13,500 g at room temperature. 

Supernatant was transferred to a clean microfuge tube and loaded onto 5-20% gradient gel 
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(Biorad). The protein was transferred onto PVDF membrane. Membrane was blocked with 

Odyssey TBS blocking buffer (Li-Cor) for 1 hour. The membrane was incubated with 

primary antibody against Gal4 DNA binding domain (for TRC35 detection) or Gal4 trans-

activating domain (for Bag6 detection). After washing with TBST (20 mM Tris-HCl, pH 

7.5, 150 mM NaCl, 0.2% Tween-20) for 10 minutes 3 times, membrane was incubated with 

anti-mouse secondary antibody (IRDye 680RD or 800CW, Li-Cor) for 1 hour at room 

temperature. Membrane was washed 3 times with TBST for 10 minutes each. Proteins were 

detected using an Odyssey Imaging System (Li-Cor).  

 

Immunoprecipitation from 293T cells 

On day 0, 5 x 105 Bag6-/- cells were seeded in plates. On day 1, TRC35 with a C-terminal 

FLAG tag (TRC35•FLAG), Bag6 with a C-terminal GFP tag (wt or mutant Bag6•GFP), 

and HA•ubiquitin were co-transfected. On day 3, cells were collected and washed with 1 

mL of ice cold phosphate-buffered saline. The cells were lysed with NP40 lysis buffer 

containing 1 mM N-ethylmaleimide to inhibit the ubiquitin-proteasome system. The 

detergent soluble fraction was used for immunoprecipitation (IP) using GFP antibody. 

After IP, the beads were divided into two fractions. Half was analyzed directly with SDS-

PAGE and immunoblotting with indicated antibodies to assess the interaction between 

TRC35 and Bag6 and Bag6 mutants. The other half was used for denaturing 

immunoprecipitation to detect TRC35 ubiquitylation. The beads were resuspended in 150 

µL denaturing buffer (1× PBS, 1% SDS, 5 mM DTT) and heated at 95 °C for 10 minutes.  

Then 1.35 mL NP40 lysis buffer was added into the tube and incubated at 4 °C for 30 

minutes. The supernatant was used for immunoprecipitation with FLAG antibody 
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conjugated M2 beads (Sigma-Aldrich). The eluate was analyzed with SDS-PAGE and 

immunoblotting.  

 

For RNF126 knockdown, 5 × 105 wild type 293T cells were seeded in 6 well plates. On 

day 1, cells were transfected with 60 pmol RNF126 siRNA (Thermo Fisher) or control 

siRNA using Lipofectamin RNAiMAX (Thermo Fisher). The sequence of the RNF126 

siRNAs are GCAUCUUCGAUGACAGCUU (catalog number S31185), 

GAUUAUAUCUGUCCAAGAU (catalog number S31186), and 

GCAGGGCUACGGACAGUUU (catalog number S13387). Cells were passaged in 1:2 

ratio onto new plates on day 2. Cells were transfected with TRC35•FLAG (wt), Bag6•GFP 

(wt or mut) and HA•ubiquitin on day 3. On day 4, the cells were collected and cell extracts 

were assayed with sequential immunoprecipitation and immunoblotting as above. To assay 

TRC35 ubiquitylation after proteasome inhibition, 5 × 105 wild type 293T cells were 

seeded in plates on day 0. On day 1, cells were transfected as above. 24-hours post 

transfection, proteasome inhibitor, MG132, was added to the concentration of 10 µM and 

incubated overnight. Cells were collected and analyzed with sequential 

immunoprecipitation and immunoblotting as above. 

 

To investigate the effect of simultaneous RNF126 down-regulation and proteasomal 

inhibition on TRC35 ubiquitylation, 5 × 105 Bag6 293T cells were seeded in plates on day 

0. On day 1, cells were transfected with RNF126 siRNA or control siRNA. On day 2, cells 

were split in half into new plates. After ~9 hours, plasmids encoding TRC35•FLAG (wt), 

Bag6•GFP (wt or mutant) and HA•ubiquitin were transfected. On day 3, medium was 



 

 

113 
replaced with fresh medium containing either 10 µM MG132 or DMSO. On day 4, cells 

were collected and sequential IP was performed as described above.  

 

Localization assay 

On day 0, 1 × 105 Cos7 cells were seeded onto a 12-well plate with a poly-D-lysine 

coated cover glass. After approximately 8 hours, the cells were co-transfected with 

TRC35•FLAG and Bag6•GFP (wt or mutant). 20 hours after transfection, the cells were 

washed with 1× PBS, fixed with 4% (vol/vol) paraformaldehyde for 15 minutes, then 

washed with 1× PBS before permeabilization with staining solution (1× PBS, 5% fetal 

bovine serum (vol/vol), 0.1% (vol/vol) NP40 with primary and secondary antibodies). 

The staining solution was replaced with staining solution with FLAG antibody and 

incubated at room temperature for 1 hour. After washing the cells with 1× PBS, the cells 

were incubated with staining solution with secondary antibody then washed with 1× PBS. 

Cells were counterstained with a mounting medium containing DAPI to illuminate the 

nucleus. Cover glass was mounted for visualization with Axiovert 200M microscope 

(Zeiss). 

To assay the localization of Bag6, 3 view fields were evaluated suing an Axiovert 200 

inverted microscope equipped with a 40x oil immersion objective. Confocal analyses 

were performed with a Zeiss LSM 780 system. Approximately 100 cells were counted for 

each constructed tested. The localization of Bag6 in the nucleus was assessed visually 

and cells were categorized as either Bag6 out of nucleus or Bag6 inside the nucleus.  
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In vitro binding assay with purified proteins 

nmol hexahistidine-tagged Ubl4A-Bag6C131 (wt, 1025SL or 1043SL) was incubated 

with 1 nmol GST•TRC35 or 1 nmol MBP•KPNA2 in 100 µL total volume of binding 

buffer (20 mM Mops (pH 7.2), 100 mM K•glutamate 20 mM imidazole, 5 mM β-

mercaptoethanol) at room temperature for 30 minutes. 30 µL 50% slurry of Ni-NTA 

beads (Qiagen) equilibrated with binding buffer were added to the reaction and incubated 

at room temperature for 30 minutes. The beads were resuspended using a pipet every 10 

minutes. The beads were then washed twice with 100 µL room temperature binding 

buffer. Samples bound to the resin were eluted with 25 µL elution buffer (20 mM Mops 

(pH 7.2), 100 mM K•glutamate, 300 mM imidazole, 5 mM β-mercaptoethanol) and 

evaluated with Coommassie-stained SDS-PAGE gel. 

Exchange assay 

1 nmol hexahisidine-tagged Ubl4A-Bag6C131 (wt, 1024SL, or 1043SL) was incubated 

with 1 nmol GST•TRC35 in 100 uL total volume of binding buffer (20 mM Mops (pH 

7.2), 100 mM K•glutamate, 20 mM imidazole, 5 mM β-mercaptoethanol). 30 µL 50% 

(vol/vol) slurry of glutathione beads (GE Healthcare) equilibrated with binding buffer 

were added to the reaction and incubated at room temperature for 30 minutes. The beads 

were resuspended every 10 minutes. The beads were washed twice with 100 µL room-

temperature binding buffer (20 mM Mops (pH 7.2), 100 mM K•glutamate, 5 mM β-

mercaptoethanol), and then 0.5, 1 or 2 nmol MBP•KPNA in 100 µL was added to the 

resin and incubated for 30 minutes at room temperature. The beads were washed twice 

with 100 µL binding buffer and then eluted with 25 µL elution buffer (20 mM Mops (pH 
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7.2), 100 mM K•glutamate, 33 mM glutathione, 5 mM β-mercaptoethanol). The reverse 

experiment starting with hexahistidine-tagged Ubl4A-Bag6C131 and MBP•KPNA2 was 

carried out as above but using 30 µL 50% (vol/vol) slurry of amylose beads (New 

England Biolabs) in 20 mM Mops (pH 7.2), 100 mM K•glutamate, 5 mM β-

mercaptoethanol and eluted with 25 µL of 20 mM Mops (pH 7.2), 100 mM K•glutamate, 

10 mM maltose, and 5 mM β-mercaptoethanol. 
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C h a p t e r  6  

BAG6: A MODULAR MULTITASKER 
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Concluding Remarks  

Initial appreciation of the unique nature of Bag6 as a component of the TA targeting 

machinery led to two major questions that this dissertation seeks to address. The first 

question pertains to the difference in the molecular architecture between the fungal Get4-

5 and the mammalian Bag6-TRC35-Ubl4A sorting complexes. Atomic resolution crystal 

structures presented in this study reveal surprising degree of structural conservation. 

Although the incorporation of Bag6 results in overall reorganization—from a 

heterotetramer to a heterotrimer—the structural elements crucial for protein-protein 

interactions between the TA targeting components have all been conserved (Fig. 5.1). 

Accordingly, the trimeric Bag6 complex for TA sorting is functional equivalent to the 

Get4-5 sorting complex.  

Importantly, the architectural reorganization leads to changes in stoichiometry. In the 

fungal system, the heterotetramer of Get4-5, which contains two copies of both Get4 and 

two Get5, could bring together two dimers of Get3, ultimately forming a Get3 tetramer. 

In the mammalian system, the sorting complex includes one TRC35 and one Ubl4A, 

which bind a single dimer of TRC40 (Fig. 5.1). Homo-oligomerization of Bag6 has been 

observed in vitro (Xu et al., 2013), but it is unclear whether this oligomeric complex is 

physiologically relevant. Similarly, physiological relevance of the Get3 tetramer is under 

debate in the field. Several lines of evidence support the existence of a tetrameric Get3. 

First, a crystal structure of a tetrameric archaeal homologue of Get3 has been solved 

(Suloway et al., 2012). Second, recombinantly expressed Get3-TA complex purifies as a 

tetramer (Bozkurt et al., 2009; Suloway et al., 2012) and is competent for in vitro TA 
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insertion into purified microsomes (Suloway et al., 2012). Third, Get3 tetramerization 

stimulates its ATPase activity by ~100 fold (Rome et al., 2013). However, the only 

atomic resolution structure of a Get3-TA complex solved thus far suggests that dimeric 

Get3 (Mateja et al., 2015) is sufficient for binding and targeting TA proteins. It should be 

noted that the crystallized Get3-TA complex was artificially stabilized by (1) introducing 

a mutation that rendered Get3 incompetent for ATP hydrolysis and (2) adding high-

affinity synthetic antibody fragments. As a result, the crystal structure could have trapped 

and captured a specific intermediate or an artificial state of the Get3-TA complex. 

Whether tetrameric Get3/TRC40 plays a physiological role in TA targeting remains to be 

seen.  

Ultimately, the observation that the C-terminal TA targeting module—the minimal Bag6 

complex—characterized in this study is structurally and functionally equivalent to the 

fungal Get4-5 complex begged the question: what different purpose, if any, does Bag6 

serve? 
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Figure 5.1 Cartoon summary of the fungal and metazoan sorting complexes. Left: fungal Get4-5 TA sorting 
complex and its binding partners, Sgt2 and Get3, are illustrated. Right: metazoan Bag6 TA sorting complex and its 
binding partners, SGTA and TRC40, are illustrated. The structurally conserved dimerization domains, whose structures 
have been solved in this study, are highlighted with grey and yellow dotted boxes.  

One purpose Bag6 serves is to physically couple protein targeting and quality control. A 

recent study demonstrated that purified N-terminal domain of Bag6 (Fig. 5.2), which 

excludes the TA targeting module, is sufficient for substrate ubiquitylation (Shao et al., 

2017). Bag6 seems to decide the fate of TA substrate as it is handed off from SGTA by 

utilizing either its C-terminal targeting module for productive synthesis of well-folded 

proteins or its N-terminal quality control module for degradation of misfolded proteins. 

Such coordination, enabled by modularity, likely minimizes the risk of aggregation for 

nascent TA proteins.  
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Figure 5.2 Summary of Bag6 domains and binding partners. (a) The Bag6 complex is a scaffold for a broad range 
of activities. (a) A model of the Bag6 complex and its defined interactions. For Bag6, the locations of the ubiquitin-like 
domain (UBL), proline-rich domain (PR), domain of unknown function (DUF), nuclear localization sequence (NLS), 
and the BAG domain (pink) are shown. Arrows indicate the five fragments of Bag6 (A, B, C, D, E) used in this study. 
Regions required for interaction with Rpn10c, BORIS, PXT1, and NKp30 are indicated in black lines. The regions 
required for binding of hydrophobic substrates and polyubiquitylated defective ribosomal products (DRiPs) are 
displayed in orange. The region required for Bag6 dimerization is indicated on top. Proteins with defined interactions 
are shown as colored boxes. Bag6-UBL binding proteins are highlighted in yellow. The membrane-embedded UbxD8 
and transmembrane protein gp78 are thought to anchor the Bag6 complex to the ER. Rpn10c is a component of the 
proteasome. For the Bag6 complex, TRC35 (dark red) and Ubl4A (green) are shown with their domains indicated. (b) 
Amino acid sequence of the Bag6 isoform used in this study. Key structural elements are highlighted in unique colors. 

The demonstrated nuclear localization of Bag6 may also be an important functionality 

conferred by Bag6 incorporation. Our structural and biochemical characterization of the 

Bag6-TRC35 complex unequivocally establishes TRC35 as the cytoplasmic retention 

factor for Bag6. While the exact function of Bag6 in the nucleus remains to be seen, cell-

cycle dependence of the nucleo-cytoplasmic distribution of Bag6 (Yong and Wang, 2012) 

and observations of endogenous Bag6 localization in the nucleus (Krenciute et al., 2013; 

Wang et al., 2011b) suggest that nuclear localization of Bag6 is physiologically relevant. 

Furthermore, our exchange assay demonstrated that excess Bag6 relative to TRC35 is 

required for nuclear translocation. In fact, estimated physiological ratio of Bag6 to 
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TRC35 in HeLa cells as determined by qualitative mass spectrometry is 1.2 (Kulak et al., 

2014). We postulate that the relative protein abundance of Bag6 and TRC35 is fine-

tuned, in which Bag6 acts as a stoichiometry sensor. TRC35 levels would be interpreted 

as a signal for Bag6 to localize to the nucleus. As such, results presented here necessitate 

re-interpretation of a large body of work in the field that investigated the localization of 

Bag6 independent of TRC35 and Ubl4A.  

Our interest in Bag6 began in the context of membrane protein biosynthesis. Bag6, 

however, is a multifaceted protein that regulates diverse cellular processes in complex 

multicellular animals. Its modularity demonstrates the benefits of modular protein 

structure in coordinating cellular signals.  

Juxtaposition of functional modules leads to physical proximity and coupling, resulting in 

efficiency. In the case of Bag6, it reduces the amount of time that a failed nascent 

substrate would spend in the cytosol. The incorporation of Bag6 in metazoans suggests 

that in higher eukaryotes, the cost of misfolded protein and potential aggregation is 

higher than it is in fungi.  

Modularity also allows for additional fine-tuning of protein function via alternative 

splicing. Due to the modular nature of Bag6 protein function, the Bag6 gene can generate 

multiple proteins with varying combinations of functional modules. Of the ~20 predicted 

Bag6 isoforms documented on the NCBI database, 7 are missing the BAG domain 

identified in this study. Bag6 that lacks Ubl4A would not be competent for TA handoff, 

but its quality control module remains intact (Shao et al., 2017) (Fig. 3.7). Its shortest 
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predicted isoform is 903 residues long and is missing a large portion of the second 

proline rich domain (Fig. 5.2). Analysis of RNA-seq data from the Illumina Human Body 

Map Project revealed that Bag6 transcripts without NLS are abundant in breast and brain, 

while transcripts with NLS are abundant in liver, lung, testes, prostate, kidney and lymph 

nodes (Luce et al., 2016). In rats, different Bag6 isoforms are expressed in distinct 

developmental stages (Kwak et al., 2008). Thus, in addition to the modulation of TRC35 

expression, alternative splicing would affect Bag6 localization and function. The 

functional and physiological consequence of different Bag6 isoforms, however, is unclear 

and is a question for future studies.  

Recent structural and biochemical breakthroughs have led to rapid leaps in our 

understanding of TA targeting and Bag6, but challenging questions remain. Is the 

Get3/TRC40 tetramer physiologically relevant? Does Bag6 change the stoichiometry of 

TRC components in metazoans? How is TRC35 expression, and Bag6 localization, 

modulated? Could some of the pleiotropic effects of knocking down Bag6 be explained 

through the resulting destabilization of TRC35? A multifaceted approach that combines 

structural and mechanistic characterization of Bag6 with cell biological and organismal 

studies is required for a complete understanding of this fascinating protein.  
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