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ABSTRACT

We investigate a many-body localized 1d spin chain with a Hamiltonian consisting
of classical disordered Ising and a small transversal field. An existing perturbative
diagonalization by Imbrie is simplified and reinterpreted in order to prove the an-
ticipated form of the Lieb-Robinson bound and the area law in an eigenstate. We
also show how to approximately reduce Imbrie’s unitary to a finite depth circuit.
The concept of resonances in Imbrie’s work can be given a physical meaning as
an avoided crossing of levels as functions of a magnetic field. For a slow drive of
this field, we discuss the proofs of validity for an efficient classical simulation of
such disordered systems, both isolated and in contact with the environment. Our
results are applicable to Floquet systems and describe an unexpected mechanism of
heating up over long times. We also revisit noisy quantum adiabatic annealers like
the D-wave machine and find a nontrivial physics that can possibly be observed in
them.
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Executive summary:

A simplified description of the circuit constructed
by Imbrie for a many-body localized 1d system. (pedagogical)

Similarities of Imbrie cirtuit and Quasi-Adiabatic evolution,
but unlikely that Imbrie circuit can replace it for >1d. (new, negative)

Lieb-Robinson bound and a bound on (known)
entanglement entropy for Imbrie circuit. (new)

A new level statistics tool that can
be used to identify MBL: level slopes. (new, useful)

Correspondence between resonances in Imbrie circuit
and avoided crossings of levels w.r.t. a parameter. (new)
Poly-time simulation of a closed system drive. (new)

Poly-time estimate of deviations from
a Gibbs state of a driven open system. (new, testable)

Testable predictions about runs of a D-wave machine. (new, testable)
D-wave does not provide an advantage for the study of MBL. (new, negative)
However that inspires data analysis techniques for D-wave, (new)
proposals for an adjustment of the protocol to suit our goal, (new)

and a new tool for approximate simulation of quantum dynamics. (new, useful)
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NOMENCLATURE

Conductance. A number quantifying how well the system transports one of the
following conserved quantities: charge, heat, magnetization.

Conserved quantity. A physical observable that doesn’t change with time in the
system.

Diagonalize. An operation that reduces a general Hamiltonian operator to its diag-
onal form, with energies on diagonal.

Disordered. A model where local energies (local terms in the Hamiltonian) differ
from place to place.

Finite-depth local circuit. A sequence of quantum operations on spins such that
each operation is local, and each spin is involved in finitely many (less than
depth) operations.

Local. A property of an observable (operator) that it is supported (can bemeasured)
in a fixed-size neighborhood of some point. Sometimes also a sum of such
operators, as in Local Hamiltonian.

Localization. A property that a particle remains near its starting point (as defined
originally by Anderson). The term Many-body Localization (MBL) is an
overarching term that includes both Anderson localization of free particles
and the same phenomenon for interacting particles or spins. Zero interaction
case (or z-basis Hamiltonian for spins) is considered trivial. The term MBL
is used only if localization persists after turning on interactions.

Many-body. A term in physics that refers to either a system of many particles, or
many spins sitting fixed on the lattice and interacting.

Spins. Quantum mechanical objects that have a discrete set of states, usually two.

z-basis Hamiltonian for spins. A special case of a system of spins that has a clas-
sical description: each combination of discrete states is associated with a
number - energy (Hamiltonian). The states are said to be in z-basis. This
is in contrast to quantum mechanical systems where energy is an operator
acting on states. As an operator, z-basis Hamiltonian is a diagonal matrix,
while the general Hamiltonian is not.
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C h a p t e r 1

INTRODUCTION

Literature The central concept of this work is Many-Body Localization (MBL)
- a property of quantum-mechanical many-body systems. The original work (An-
derson, 1958) posed a question whether the MBL can exist and as a way to solve it
studied the localization of a single particle. The distinction between the MBL and
the Anderson localization is not strict: a state of an L-spin system can be represented
by a position of a single particle in an L-dimensional hypercube (Thouless, 1977).
The first MBL system with a mathematical solution converging in a realistic range
of parameters (such as the interaction strength, lattice connectivity and temperature)
was presented by (Basko, Aleiner, and B.L. Altshuler, 2006). The system they con-
sidered contained interacting 2d electrons in a strongly disordered material (grains
of metal with a weak tunneling between them). They have proved zero conductance
at finite temperature as an experimental manifestation of MBL. The idea was univer-
sal enough to be applicable to other many-body systems. The simplification to spin
chains soon followed: strongly disordered spin chains have been claimed to possess
MBL, which manifested in rich mathematical structure including zero conductance.
The intuition for said mathematical structure was pioneered by conjectures of local
conserved quantities (Oganesyan and Huse, 2007; Serbyn, Papić, and Abanin, 2013)
and finite depth local circuits (Bauer and Nayak, 2013). The latter conjectured that
an MBL spin chain Hamiltonian could be diagonalized by such circuit, at least
approximately. It culminated in an exact construction by (Imbrie, 2016): a proof
that a certain disordered spin chain can be solved exactly if we extend our notion of
finite depth local circuits slightly. We will use that construction to obtain a better
understanding of MBL phase.

The previous work on MBL conjectured results for:

• Lieb-Robinson bound (Lieb and Robinson, 1972). A dynamical property
that characterizes the spread of correlations with time in a given system.
Hamza, Sims, and Stolz, 2012 showed that effective speed of light (Lieb-
Robinson velocity) in systems reduced to Anderson localization is zero. A
proof for a certain definition of MBL can be found in (Kim, Chandran, and
Abanin, 2014).
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• Entanglement. A static property defined for a bipartition of the system that
quantifies how much of the purity of each part is missing. A numerical study
of entanglement in small MBL systems was performed by (Bauer and Nayak,
2013), and one of the open questions in that work is an explanation of outlier
entanglement logarithmic in system size. We address it in this work.

• Entanglement growth. A dynamic property that describes how fast the en-
tanglement grows after a quench (instantaneous change in the Hamiltonian).
Bardarson, Pollmann, and Moore, 2012 found logarithmic growth with time
numerically, while Kim, Chandran, and Abanin, 2014 presented a mathemat-
ical proof.

• Closed system. A system isolated from an environment.

• Floquet. A closed systemwith a Hamiltonian that is not constant, but depends
on time periodically. Ponte et al., 2015 and Abanin, Roeck, and Huveneers,
2016 investigated such an evolution of the MBL system numerically and
concluded that the system remains localized and cold (retains some memory
of the initial condition) up to infinite times.

• Open system. A part of a bigger closed system, where the rest is considered
to be the environment. A study of how theMBL is destroyed in the presence of
the environment can be found in (Medvedyeva, Prosen, and Žnidarič, 2016).
The model studied here is very similar, but the presence of MBL shows up in
the nonequilibrium effects.

• Adiabatic protocol A process in a closed system where the Hamiltonian is
varied slowly. B. Altshuler, Krovi, and Roland, 2010 showed that MBL is
a major obstacle for useful computational applications of such a protocol.
(Khemani and S. L. Sondhi, 2015) studied nonlocal rearrangements in the
slow drive of Anderson localization, a work which we generalize here to the
MBL systems.

Our contribution All of these results we revisit and build upon here. The motiva-
tion for these developments can be explained as follows: MBL is a special property
that greatly simplifies the underlying physics. Therefore some generally intractable
dynamical problems become accessible. For instance, we provide an insight into
mathematical conditions that are required for Floquet MBL to have local memory
of the initial state up to infinite times (Ponte et al., 2015; Rehn et al., 2016; Abanin,
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Roeck, and Huveneers, 2016), and describe the short time (first few periods of the
drive) withmore detail than is usually found in literature. These results are presented
in Chapter VII. For LRB and entanglement, see Chapter III and Appendices. We
also provide a new (to the best of our knowledge) indicator of an MBL phase in
Chapter V.

As another example, consider a D-wave machine (Dickson et al., 2013), which
takes a spin system z-Hamiltonian as an input, runs an adiabatic protocol (from
a uniform field along x to our input Hamiltonian) and returns a state measured in
z-basis as an output. It is believed to be described by open system dynamics. Big
system sizes with disorder on a D-wave machine are expected to be hard to simulate
classically. Some insights into closed system adiabatic protocol were given in (B.
Altshuler, Krovi, and Roland, 2010). In particular, they established the expected
scaling of the minimal gap (the difference of energies between the two lowest
energy states) encountered in the protocol, and presented perturbative tools that
allow such estimates for big system sizes of generic MBL systems. We investigate
similar questions in Chapters IV and VI. For an open system (which is the case
in D-wave), the environment makes this approach irrelevant. We show that in the
specific case of 1d chains (as well as other rapidly mixing systems, those that reach
thermal equilibrium quickly when in contact with the environment) some features
of the output can be predicted up to big system sizes. These predictions may shed
some light on potential new applications of the D-wave machine for detection and
characterization of MBL phases. In particular, we propose a set of data analysis
tools that has never been applied to D-wave data before. One can think of it as a
simulate-and-compare tool. So far no direct simulations for big system sizes have
been carried out. We propose a way to do it in Chapter VIII.

Topological motivation As an aside, we comment on another reason to study
MBL systems. In (Bauer and Nayak, 2013), there was a proposal of a disordered
Toric code. (Bravyi and Koenig, 2012) considered a disordered Majorana chain.
Both are quantum memories based on the theory of topological phases. But the
classification of those phases was developed without consideration for disorder, with
an exception of the periodic table (Kitaev, 2009). We will give a short and very
partial account of the state of affairs in the theory of topological phases, and how
disorder can come in.

Let us start with a concept of quasi-adiabatic continuation (QAC, Matthew B.
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Hastings and Michalakis, 2015) that gives one a unitary to build a ground state
of a gapped (with the gap of order 1) perturbed system from the unperturbed one.
The benefit w.r.t. using the adiabatic protocol is that an error remains exactly zero
without taking the protocol time T → ∞ limit. The generator of the evolution has
exponential (suppressed faster than any power of interaction range, to be precise)
tails — that is, it’s approximately local. Cutting off those tails and making a Trotter
approximation would lead to an error similar to the one of adiabatic protocol (error is
linear in the number of qubits). However it boasts an extra exponential suppression
in terms of the gap and the QAC parameter α that allows one to optimize for a much
better performance.

Will the QAC work for the MBL system? No, because it doesn’t handle levels
closer than the gap correctly. Imbrie’s construction can be thought of as a working
alternative, as it also takes eigenstates of the unperturbed (z-basis) Hamiltonian and
prepares the true eigenstates with zero error.

Let’s consider the following problem (motivation will come later). Start with a
Hamiltonian H =

∑
i Zi — a trivial gapped Hamiltonian (here Zi is a Pauli-z matrix

diag(1,−1) on spin i). Without symmetry restrictions, it is connected to any bosonic
symmetry-protected topological phase, which is just a set of spin Hamiltonians
with a representative given in (Chen et al., 2012) and the accompanying work.
Connection is defined as a path H(s) that’s gapped in the bulk. General gapped
Hamiltonians are believed to be well represented by this theory, however nobody
has rigorously explored how connected they are. It is hard to make the phrase
"gapped in the bulk" in the definition rigorous. But at least, if spins are laid out on
a sphere, bulk is everything, so H(s) is gapped in a conventional sense. Consider a
sphere with an interpolation of Hamiltonians H(θ/π) — such that at one pole the
Hamiltonian is H(0) and at another H(1). Let the interpolation affect every term
according to the position of the center of its support. Will such a Hamiltonian be
gapped?

For a subclass of frustration-free Hamiltonians (those where the ground state is also
the ground state of every local term), questions like this are answered by Knabe’s
lemma (Knabe, 1988; Gosset and Mozgunov, 2016). For noninteracting frustrated
Hamiltonians the answer is positive as well (unpublished supplement for Kitaev,
2009). For interacting frustrated ones, it is not clear. In the specific case of the
continuous path above, it is possible to construct a different gapped Hamiltonian
with approximately the same ground state, by using the quasiadiabatic evolution
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with a position-dependent factor in front of the generators. The spectrum doesn’t
change as a quasiadiabatic evolution is a unitary, so the result is gapped. For a
sufficiently big size of the sphere, the ground states of the two should be pretty
close.

This is one problem that appears if one tries to build topological classification of
phases. Of course, one need not go this route, but by the law of conservation of evil
it has to get technical somewhere. In the existing work on classification of phases
rigorous proofs like this have not been spelled out yet.

So here we propose a different approach. Instead of requiring the gap to be present
in the family of Hamiltonians that we try to classify, we require them all to be MBL.
The MBL gives one some benefits with such proofs; for instance, the frustration
doesn’t matter anymore, instead it’s the level statistics in the thermodynamic limit
that determines whether the Hamiltonian still belongs to the family. It is easy to just
conjecture that the level statistics is favorable (no level attraction) in the continuous
path construction above; in the end what we get by spatial interpolation is just
another realization of disorder.

In this work we investigate the circuits involved in the MBL theory, and our results
illustrate some of the challenges of the above approach. In particular, rigorous
proofs for the MBL will all rely on some version of Imbrie’s construction, unless
one wishes to restrict one’s attention to Hamiltonians made of commuting terms.
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C h a p t e r 2

IMBRIE’S CONSTRUCTION

Imbrie, 2016 presented a procedure to diagonalize the following Hamiltonian in
the many-body localized regime (which is achieved in a range of parameters to be
specified below):

H =
∑

i

hiσ
i
z +

∑
i

Jiσ
i
zσ

i+1
z +

∑
i

γiσ
i
x . (2.1)

The system described by it is a chain of spin-1/2 degrees of freedom. All the
coefficients of the Hamiltonian are disordered: Ji, hi and γi/γ are random numbers
drawn independently from a distribution that can be quite general. The results apply
for familiar distributions like uniform on an interval [−1, 1] or normal. The constant
γ is a small parameter representing the scale of the offdiagonal terms.

The term many-body localization for this model should be understood as "each
eigenstate is approximately a product state". Intuitively, we expect such structure at
a sufficiently small γ. Indeed, the γ = 0 Hamiltonian is diagonal in the z-basis. The
existence of Imbrie’s diagonalization procedure can be thought of as a precise way
of saying "approximately a product state". Denote the diagonalization procedure by
a unitary U such that U†HU = Hdiag, where H is the Hamiltonian defined in Eq.
(2.1) and Hdiag is diagonal in the z-basis. Note that we put the † the other way by
convention, as the main role of U is to act on a Hamiltonian operator from the left.
Such unitary always exists; what Imbrie shows is its local structure for a sufficiently
small γ. We can represent such structure pictorially if we think of U as a quantum
circuit acting on our spin chain (see Fig. 2.1). The first step of the circuit is:

U = e−A . . . (2.2)

Here A is a local generator: A =
∑

i Ai, such that each Ai acts on just a few
neighboring spins. We absorb i into A such that iA is Hermitean and e−A is unitary.
The rotation e−A is small in the sense that each ‖Ai‖ is small:

‖Ai‖ < χ � 1, (2.3)

where the small number χ is related to γ, and we use the operator norm ‖A‖ =
max|λ | where λ’s are eigenvalues of A. Then one can show that if |π〉 is a product
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Figure 2.1: The circuit diagonalizing the system.

state, e−A |π〉 locally remains close to a product state as well. That’s how each
eigenstate will remain "approximately a product state" after this step.

On the next step of the diagonalization, eigenstates are allowed to deviate from
product states in rare regions of the chain called the resonant regions. We denote
them by an index r ∈ R, and the rotation required in each of them by Or . The total
rotation on this step will be given by O = ⊗r∈ROr :

U = e−AO . . . (2.4)

The resonant regions are very rare. The probability for a spin i to lie within one of
them is bounded as

P(i ∈ R) < ε � 1, (2.5)

where ε is another small parameter related to γ. We see that more than 1 − ε of all
spins remain untouched by the operator O — it acts on them as 1. After the above
two steps, the procedure repeats itself on the next scale (See Fig. 2.1):

U = e−AOe−A′O′ . . . (2.6)

The terms in A′ are allowed to couple spins at longer distances than in A, and the
resonances in O′ are allowed to be bigger than in O. It turns out that when A and
O are chosen optimally, the bounds on A′ and O′, analogous to Ineq. (2.3, 2.5),
can be made tighter. To make it precise, let’s denote the length scales at steps
k = 1, 2, 3.. by Lk . Imbrie chooses an exponential sequence of scales for his proof:
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Lk ∼ (L1)k , where L1 ≈ 2, L0 = 1. We now present the full set of conditions on the
diagonalization procedure U (there are some differences from Imbrie, 2016, which
we will discuss below):

U = e−A1O1e−A2O2 · · · =
∞∏

k=0
e−AkOk, (2.7)

Ak =
∑

i

Ak,i, suppAk,i < Lk, ‖Ak,i‖ < χLk−1, (2.8)

Ok = ⊗r∈Rk
Or, suppOr = |r | ≤ Lk, P(i ∈ Rk) ≤ ε k2

= ε ln
2Lk/ln2L1 . (2.9)

Here Rk is the set of resonances at the k’th step. Note that technically the circuit is
of infinite (∞) depth, but the rotations become smaller/more sparse as we go deeper
in the circuit.

The parameter χ that we will use for purely theoretical proofs is χ = γ/ε as it is
the one that both produces a match with the explicit form of the first few orders of
the circuit and gives correct results for correlation functions. We derive χ ≈ 4γ/ε
norm bound on Aki from the formalism developed by Imbrie in Appendix C. For
more practical estimates for γ ≈ 0.1 we will use a notation χ = γe f f , to point out
that it can get renormalized in a nontrivial way.

The range of applicability of Imbrie’s result (the convergence radius of infinite
product) is not to all the Hamiltonians defined above, only those with 1 � ε > γ1/20

that satisfy an extra assumption on the statistics of eigenvalues of H:

(Assumption about level statistics) U converges if for all L the block of size L of H

has not too strong level attraction:

P(minn,m |En − Em | < x) = const · cL xa, (2.10)

with a > 0 and c some constant. We note that a = 1 for the Poissonian statistics
expected of MBL.

Next thing we note here is the ε ln2Lk scaling of the density of resonances. It is an
important quantity to test experimentally. In particular, it implies that the biggest
resonance in the system of size L has size < e

√
lnL (essentially indistinguishable

from lnL for all numerical purposes).

The choice of which sites to include in resonant blocks at each step is made by
comparing the energy differences between states connected by spin flips within
the block of size Lk to an exponentially decreasing energy window ε Lk . If those
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Figure 2.2: Circuit diagonalizing the system with no resonances; the terms of the
generators are shown as blue dots

differences are below ε Lk , the perturbation theory fails and we expect the amplitudes
of the eigenstates to be nonperturbative. We can think of ε as a free parameter: we
have a choice of how far to stretchwhatwe call nonperturbative. In the (Imbrie, 2016)
proof ε is a scale that’s chosen based on the perturbation strength γ. Specifically,
for ε = γ1/20 � 1 the proof goes through. Note how small this makes the range
of validity of the construction! A reasonable threshold is ε < 0.5, so the Imbrie’s
proof works only for γ < 10−6. That’s why here we left ε and χ as parameters in the
circuit, without specifying their dependence on γ. We believe that even though the
proof stops working for γ > 10−6, one can numerically check that the circuit still
exists up to γ of order 0.1 with some parameters ε and γ. We will measure those
indirectly through numerics. The other phases will be explained in chapter 5.

In (Imbrie, 2016) the resonance density is presented at each step via two bounds on
quantities called Q and P. Besides the structure of the circuit above, they contain
extra information that will be useful for some of the estimates in this work. To
explain it, we will need to delve deeper into the construction. A typical resonance
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would appear at some step k1, and is diagonalized by a nonperturbative rotation at
a step k2 ≥ k1, not necessarily equal to k1.

The quantity that counts the number of resonances that appear (but are not necessarily
diagonalized) at step k is described on pages 13-14 of (Imbrie, 2016) - it’s P(k)xy . By
definition, it is a probability for sites x and y to belong to the same resonant block
appearing at step k. Imbrie proves a bound ((4.1) in Imbrie, 2016)

P(k)xy ≤ (cρ1ε
s)(|x−y |(k−1)∨Lk )/8. (2.11)

Here ∨ means the maximum of the two. |x − y |(k−1) differs from the ordinary
distance |x − y | by a constant factor. We can deduce the bound on the density of
step k resonant blocks by taking y = x in the above expression. We get

P(k) ≤ (Cε)c′Lk . (2.12)

Note that c′ < 1, because c′ = s/8, where 0 < s < 1 is a constant parameter in
a Holder-continuity type bound on the initial randomness. A weaker bound (Q(k))
is proven by Imbrie for the density of resonant blocks that are rotated at a step k.
Above we used it in the description of the circuit. But P is also useful for us: to
understand the physical meaning of resonances, we need to see how they appear.

Simply put, every resonant block corresponds to at least two eigenenergies E j, E j+1

being close as |E j − E j+1 | ≤ ε Lk . The minimum distance between resonant levels
E j − E j+1 is approximately described by a difference of eigenvalues of a matrix(

E (0)j aγn

aγn E (0)j+1

)
, (2.13)

where E (0)j is the way the energy would go if the other level was not there, and n

is the consecutive support of spins flipped in the resonance. We call the distance
between the leftmost and the rightmost spin flip the consecutive support. a is an
O(1) constant that we drop for scaling estimates. The eigenvalues of such matrix
approximate E j, E j+1 up to terms that are small in comparison to γn. The actual
minimal distance is found at the crossing point to be 2aγn. A careful proof of
that requires using more details of Imbrie’s construction and can be found in the
Appendix C. We conjecture this statement minδE < γn

e f f to hold for some γe f f in
all of the MBL phase and check it with our numerics in Chapter 6.

Note that our splitting is < O(γLk ), so much smaller than the window ε Lk .
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Let’s quote the specific definition used by Imbrie for when the block is consid-
ered resonant. Looking at the equation (4.8) in Imbrie, 2016, we note two major
adjustments of the above intuition:

1. The energy levels are taken not from the the final diagonal Hamiltonian,
but from the diagonal elements that appear at the intermediate steps of the
construction.

2. Even if the level splitting is big, there’s an extra opportunity for a block to be
resonant if the numerator in the perturbation theory happens to be particularly
big.

The second one only contributes extra resonances to the bound (2.12); what holds
for all of them remains for more strictly defined ones. But the first adjustment above
obfuscates the meaning of resonant blocks: does their presence mean anything in
terms of the original system levels E j, E j+1? In fact, in the first three paragraphs of
the proof of Theorem 5.1 Imbrie, 2016, argues that the true level distance ∆Ede f =

∆E +O(cγ/ε)n/4, where n is the number of spins involved in this particular potential
resonance. Here Imbrie proceeds to show that since γ = ε20 � ε , the correction is
much less than the separation scale εn. Then Imbrie concludes that the bound (2.12)
holds to the first order also for resonances defined in terms of final energy levels.
There is a subtlety here: the idea of the proof with exponential smallness in n relies
on the separation condition, which only holds for "small blocks" (resonances that
appear in isolated clusters of size < Lk). But the bound (2.12) is for all blocks that
appear at a certain level of construction. Some of themare not separate from the other
blocks at this step. One can potentially think of a chain reaction where a spin next to
the block that is resonant becomes resonant, violates the ∆Ede f = ∆E +O(cγ/ε)n/4

of the next spin, which then becomes resonant and so on. Imbrie does not present
an argument that would exclude that scenario (as he does not need it in the proof),
but we expect that it can be done. We will only use the bound (2.12) as a qualitative
explanation of numerics in Chapter 6. We summarize our interpretation below:

Consider a system of size L. Now assign to each eigenenergy E j a corresponding
(by U up till the appearance of a resonance) z-basis product state. Each energy
eigenstate will have a number E j and a string σj corresponding to it. Among the
pairs of strings separated by a flip of spins in a block of size < Lk , the pairs of
corresponding levels are either |E j − Ei | < ε Lk or the other way. In the former case,
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we call the block that needed to be flipped resonant. The density of such blocks is
bounded as

P(k) ≤ (Cε)c′Lk . (2.14)
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C h a p t e r 3

PROPERTIES OF IMBRIE CIRCUIT

The easiest way to formulate the results of this paper is to state them for the case
with no resonances (also shown on fig. 2.2)

U = e−A1 e−A2 · · · =
∞∏

k=0
e−Ak . (3.1)

The presence of resonances is a low-probability event, so typically the simplest form
of results hold. Here we only discuss the effect of resonances on the entanglement
entropy as that one was experimentally (numerically) observed.

Results The first result of this paper is to establish the form (2.7) based on con-
structions of (Imbrie, 2016). The form (2.7)was never explicitly stated in the original
paper. Once we have the form, it allows the use of most advanced techniques of
information theory to prove the following:

• If U is a circuit with no resonances, then for a local operator X both UXU†

and U†XU have exponential tails.

• |ψ〉 of any eigenstate of H (the Hamiltonian diagonalized byU) has an efficient
matrix-product state description.

• |ψ〉 satisfies a stronger condition: it can be created by a finite-depth local
circuit with local precision.

Let’s take a moment here and try to formulate the last statement precisely. Based
on the infinite circuit U without resonances, we construct a circuit

UF = ⊗D
j=1 ⊗

L/2
j=1 Ui j (3.2)

containing only nearest neighbor 2-qubit gates (2-spin rotations), such that any qubit
is acted upon by at most D gates. D is called the depth of the circuit. Such circuit
is called finite-depth local circuit.

We know that an eigenstate |ψ〉 = U |π〉, where |π〉 is a product state. The circuit
UF is constructed so that |ψF〉 = UF |π〉 approximates |ψ〉. For a system size L, we
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X	
   =	
   e-­‐r/ξ	
  

Figure 3.1: First way to conjugate a
local operator.

X	
   =	
   e-­‐r/ξ	
  

Figure 3.2: Second way to conjugate
a local operator.

could require approximation of a state as a whole ‖|ψ〉 − |ψF〉‖ to be small. That
would imply system size dependent depth D(L) (in fact, one can show D(L) ∼ L in
this case). We’d like D to be independent of L (thus the name finite-depth), so we
need to relax the approximation requirement: let’s only care about local observables,
and approximate |ψ〉 so that one is unlikely to distinguish |ψF〉 from it by any local
measurement. This is done by considering density matrices ρ = trR̄ |ψ〉〈ψ | and
ρF = trR̄ |ψF〉〈ψF | over any region R of |R| < R0 consecutive spins. Now we require

∀R, ‖ρ − ρF ‖ < ε. (3.3)

The result is that there indeed exist triples (ε, R0,D) such that it is possible to fulfill
the above requirement for any eigenstate |ψ〉. We note that it is not always possible
to have "flat" circuit - that is, for the region to be longer than the circuit is deep:

D = D(R0, ε) < R0. (3.4)

For not too small errors (compared to χ) it is possible. Note that UF approximates
any eigenstate of H with the same chosen precision ε over regions of chosen size
R0. It is one circuit for all basis states.

A general Hamiltonian H will also have resonances. They modify the circuit above:
on top of each resonance, there’s a local increase in depth. We proceed with a list
of our results about U, H and its eigenstates |ψ〉:

• States |ψ〉 satisfy area law (as expected from states approximated by matrix
product states). We can bound the entanglement across the cut as

Scut = S(ρle f t) < 16χ. (3.5)
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Figure 3.3: Entropy across the cut in the system with no resonances
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Figure 3.4: Entropy across the cut, generic.
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• The presence of resonancesmodifies the entanglement entropy in the following
way: if the cut is across the resonance, Scut < size of the resonant region.
Recall that the total density of resonances is O(ε), and the distribution of their
sizes is P(nr) ≤ ε ln

2nr . Thus for different realizations of disorder, as well as
for different locations of the cut, we should observe the following tail of the
distribution of entanglement entropies:

P(Scut > X) ≤ const · ε ln2 X . (3.6)

Aswe noted before, the largest resonance in a systemof size L is approximately
logarithmic in L. Thuswe should find entropies as big as logarithmic in system
size for a given disorder realization. The bound on the expectation value of
entanglement is now dominated by step-1 resonances:

Scut ≤ 16χ + 4ε, (3.7)

as ε � χ in Imbrie’s construction.

• We can bound correlations in states of H. Imbrie provided a result for static
correlation functions in the eigenstates, which can be easily derived from
exponential tails of local operatorUXU†, written in the form of the telescopic
sum (see Appendix B). The correlations are exponentially decaying with
distance. The bounds are modified by resonances, the probability of large
deviations being bounded in (Imbrie, 2016).

We begin the investigations of the dynamics of correlations developed by H.
We prove a Lieb-Robinson bound for the case of no resonances:

‖[A, B(t)]‖ ≤ ate−cx = at(Z χ)x, (3.8)

where B(t) = eiHt Be−iHt . Here Z is a system-independent number. We note
that the decay in x is much stronger than for generic Hamiltonian, which has
e−cx with c a system-independent number. In our case, c ∼ −lnχ. We can
see the logarithmic light cone x ∼ lnt. The effect of the resonances is such
that, again, the bound becomes probabilistic - in the rare event that resonance
is found between supports of A and B, the light cone is linear in that region.
We also note that since lnt is non-analytic at t = 0, the logarithmic light cone
should be thought of as linear for the first lattice site and then logarithmic.

We provide an original proof of LRB in Appendix B. We note, however, that
once the bound on tails of the UXU† is established, it is easy to transform the
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Figure 3.5: Dynamics as in LRB.

Hamiltonian into a sum of tailed commuting terms asU†HU. Then it satisfies
the definition of MBL given in (Kim, Chandran, and Abanin, 2014). This
reference contains an independent proof of Lieb-Robinson bound, as well as
the proof of the logarithmic growth of entanglement after quench.
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C h a p t e r 4

ALONG THE ADIABATIC PATH

Consider setting up a chain of spins in the D-wave machine. The input consists of a
classical random 1d Ising model:

Hz =
∑

i

Ji,i+1Zi Zi+1 + hi Zi, (4.1)

where Ji, hi ∈ [−1, 1] are random variables. Other Hamiltonian terms are a trans-
verse field and a coupling to environment that acts by phase flips (Z operators):

Hx =
∑

i

Xi, Hb =
∑

i

Zi Bi . (4.2)

D-wave protocol goes as follows: start in Hx groundstate |−〉⊗n and interpolate to
Hz:

H = (1 − s)Hx + sHz, where s(t) = t/Tprotocol. (4.3)

The time of the protocol can be varied in the machine. We plot the energy levels
of the closed 6-spin system (without the term containing the environment) in figure
4.1. We ignore the midband for now, as the low energy subspace is relevant for the
protocol.

Figure 4.1: Levels along the protocol
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We see that the gap of the original transverse field Hamiltonian Hx closes somewhere
along the protocol, and the ground state experiences avoided crossings with the first
excited state.

Let’s first investigate the gap of classical Hz (the system at the end of the protocol).
Consider first a simple model with just a single-site field hi

x . The gap is given
by 2minihi

x . There are n random variables uniformly distributed in the interval
[−1, 1], so the smallest of them is O(1/n) on average (over the ensemble of disorder
realizations). The presence of random interactions along the chain makes the
problem more complicated, but doesn’t change the average. We are not familiar
with any theoretical results on the matter. We demonstrate it on small system sizes
in Figure 4.2.

Figure 4.2: For system sizes n = 7 to 20 ensemble-averaged gap approaches 1/n
scaling. One can extend the data to bigger system sizes in poly-time, as outlined in
appendix A.

We expect that the gap along the protocol is also O(1/n) for ensemble average. But
for the matter of avoided crossings, we care about minimal gap along the protocol,
and that is given by exponentially short intervals ∆s where the gap is exponentially
small in n. Numerically it is not feasible to observe that, as checking for minimal
gap along s is exponentially more expensive than checking for a gap at a specific s.
We can only access system sizes up to n = 9. Typical minimal gaps for those sizes
are not much different from the end gap of the corresponding disorder realization of
Hz. Figure 4.3 shows distribution of gaps for an ensemble of 100 realizations.
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Figure 4.3: For system sizes n = 1 to 9 the smallest gap of avoided crossing that
ground state encounters is expected to be e−n —not observed for small systems. (B.
Altshuler, Krovi, and Roland, 2010) presents a poly-time procedure for collection
of this data for big systems sizes, assuming MBL.

We note that suppression by a factor of 10 is present in at least one of those 100
systems. However n < 10 is nowhere near the regime where exponentially small
minimal gap is typical, so these numerics do not qualify as an evidence of existence
of such regime. We note that since the evolution time of the D-wave is around 105,
the smallest gaps measurable by it would be

√
n/105, so roughly 0.01. Using the fit

for gap of Hz above, one finds that at system sizes n ≈ 100 the gaps surely become
smaller than what’s measureable on D-wave. However they can do so much earlier
- a more ambitious estimate is the gap of ferromagnetic chain with no magnetic
field — that one becomes unmeasureable over the D-wave protocol time already
for n = 10.
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C h a p t e r 5

SLOPES

So farwe have establishedwhatMBLmeans for aHamiltonian that is close to z-basis.
However, along the adiabatic path considered in the previous section, only the s ≈ 1
region is that way. The s ≈ 0 region is close to a Hamiltonian diagonal in another
basis (x-basis), but that Hamiltonian is not disordered so we don’t expect Imbrie’s
proof to apply. However, this does not show that approximately diagonalizing it
locally is impossible. We would like to have some measure that distinguishes the
two cases, ideally based on our understanding of what basis-independent properties
the MBL has. Finally, in the middle of the path (s ∼ 0.5) the perturbation strength
controlling Imbrie’s construction is big (γ = 0.5), so we expect an extended phase
(antipode of the MBL phase) to appear.

The traditional indicators of MBL are level statistics and exponential decay of
correlations (which can be used to derive zero conductivity). The latter is somewhat
hard to confirm in systems of ED size L = 10, as the finite-size effects are strong
and the data can be fit equally well by a power law. So we focus our attention on the
level statistics. The commonly used quantity in level statistics is level repulsion.

Consider the differences between the two closest eigenenergies δn = En − En−1 for
a particular system. We can form a dimensionless parameter:

r = Avgn,dis
min(δn, δn+1)
max(δn, δn+1)

. (5.1)

A random matrix theory result is that a Hermitean matrix with random entries will
have r = 0.55 and a symmetric real matrix has r = 0.53. At the same time, a
matrix with random diagonal and all zeroes off-diagonal will have r = 0.39. Note
that an MBL Hamiltonian can be reduced to sum of local terms that are statistically
independent of each other (there are some correlations between neighbors, but
not the ones far away). Now two different eigenstates typically have O(L) of
the local terms flip signs, so their energies are random variables that are to a good
approximation independent and identically distributed (i.i.d.). And nothing prevents
i.i.d. random variables from being arbitrarily close, so unless there’s an adversarial
realization of disorder, the ones that we will find close typically are the ones that
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Figure 5.1: Level repulsion parameter r along the protocol, averaged over disorder.
We see that it detects the extended phase, but does not distinguish between the
systems close to disordered Hz and non-disordered Hx

were independent. So the random diagonal approximation works for the estimation
of parameter r above, and we should get r = 0.39.

Note that this argument fails outside MBL as the energy depends on the randomness
in our system not like a sum over regions but like a more complicated function.
We plot the level statistics parameter r along the protocol in Figure 5.1. Note that
the data is very noisy even for big system sizes L = 15, and it takes a lot of time
to average out the noise. If one were to claim the position of the MBL-extended
transition, it would not be conclusive from this picture alone; one needs to also
collect data for different system sizes to observe finite size scaling (if the points go
closer to 0.53 as L increases, that should be extended phase, and MBL elsewhere).
Also, we get the same behavior for two very different regimes next to Hx and Hz

(s ≈ 0 and s ≈ 1).

In this section, we take advantage of the fact that we need to study the range of s

instead of isolated Hamiltonian, and try to see how the relationship between H(s)
and H(s + ds) can reveal the differences between the s ≈ 0 phase and the MBL
phase, as well as provide a better indicator of where the transition is. Let’s look
again at En(s), En−1(s), but now also at En(s + ds), En−1(s + ds). Depending on how
big we take ds, there may be an issue of how to associate level label n. For ds � γL
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Figure 5.2: An illustration of smart level labels used to determine slopes at big ds

in the MBL phase, no crossings have time to go by, and the simple ordering in
energies will give the correct labels. For other two phases, we can use ds � 1/2L

and ds � sL respectively.

However, there’s another way of assigning labels, somewhat more computationally
demanding. If we take ds > 1/2L , some levels will swap places in the energy
ordering. We assign label n in such a way that the state |n(s + ds)〉 has the biggest
overlap |〈n(s + ds)|n(s)〉| (see Figure 5.2). That by itself is not enough, as a unitary
Unm = 〈n(s + ds)|m(s)〉 connecting the eigenbases may have a states |n(s + ds)〉
and |n′(s + ds)〉 such that the maximum over m of overlaps |〈n(s + ds)|m(s)〉| and
|〈n′(s + ds)|m(s)〉| is achieved on the same eigenstate |m(s)〉. Instead we maximize
the sum of all overlaps

∑
n |〈n(s + ds)|n(s)〉| over UP where P are all possible

permutations of 2L elements. There are 2L! of those, so it’s a computationally
unfeasible task.

Instead we note that confusions happen close in energy, and restrict the permutations
to k consecutive levels ordered in energy, thus requiring only 2L k! iterations. For
sizes L > 8, we also find that there are apparent blocks of confused levels of
size k > 12, which again makes the computation take too long. Instead of full
permutation of k levels, we first deal with k = 2, but for all possible pairs within
some window in energies. That removes most of the confused regions, so we can
assign labels for L = 10 and ds = 1/40 without trouble. Higher L are also possible
either by decreasing ds or by extra improvements in the code, but here we present
the results for this approach.

Now that we have two ways of assigning labels (for exponentially small ds1 and for
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Figure 5.3: The quantities R(s, ds), R(s, ds)/S(s, ds), S(s, ds) are plotted along the
protocol. Step ds1 is in blue, step ds2 with smart overlap lables is in gold

ds2 = 1/40), we consider the following quantities:

S(s, ds) = Avgn,dis
|En(s + ds) − En(s)|

ds
, (5.2)

R(s, ds) = Avgn,dis
|En(s + ds) − En(s) − (En−1(s + ds) − En−1(s))|

ds
. (5.3)

We note that the overall scale factor contributes to S and R, and can be estimated by
the standard deviation of the eigenvalues of the Hamiltonian:

σE =
√
Avgn,disE2

n =
√
trH2/2L/2 =

√
s2trH2

z + (1 − s)2trH2
x/2L/2 ≈ L

√
s2 + (1 − s)2

(5.4)
In the slopes, En(s + ds) can get an extra shift just by s-dependent overall rescaling
of H according to σE above. This trivial contribution obfuscates our results, so for
the purposes of this chapter we are using the Hamiltonian:

H(s) = 1
L
√

s2 + (1 − s)2
(sHz + (1 − s)Hx). (5.5)

We plot an example of S and R, as well as their dimensionless ratio R/S for one
disorder realization of L = 9, for two different step sizes ds1 = 10−4, ds2 = 1/40.
The second one uses smart overlap labels as described above. We see how R/S
distinguishes between the s ≈ 0 and s ≈ 1 phases. Indeed, near Hx , levels fan
out from the

∑
sx sectors almost like straight lines. That is because each Z Z term

preserves the total X magnetization, so it introduces the splitting in the first order of
perturbation theory. The energies go within

E = E(s = 0) ± sO(L), (5.6)

so the slopes vary by O(L) among exp(L) levels in the fan. They all originate from
the same point and do not turn, so the relative slopes will go as O(L)/exp(L) → 0
in the thermodynamic limit. That explains the drop of the finite-size contribution
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Figure 5.4: The quantity D(s) is in blue, S(s) in gold

to zero on the left. So the expectation for quantity R/S ∼ L2−L , whereas in both
extended and MBL phases it remains constant.

We also note the linear scaling of S and R at s ≈ 1, as expected from perturbation
theory: the corrections to energy appear only in the second order δE ∼ (1 − s)2, so
the slopes are S ∼ (1 − s). From the numerics we find the coefficient R ≈ 1.5S ≈
1.5(1 − s), so we can use an estimate 1.5L(1 − s)

√
s2 + (1 − s)2 for the relative

slopes of our original system at s ≈ 1 , and 0.2L for s ∼ 0.5. Our understanding of
frequency of crossings along a level will be based on two characteristics: neighbors
and slopes. We will to study the neighbors and explain the crossing data in the next
chapter.

Finally, we note a subtle difference between results for ds1 and ds2. Consider the
mean absolute value of the differences observed in individual levels:

D(S, ds2) = limds1→0Avgn,dis

���� |En(s + ds1) − En(s)|
ds1

− |En(s + ds2) − En(s)|
ds2

���� =
(5.7)

= Avgn,dis

��������dEn(s)
ds

���� − |En(s + ds2) − En(s)|
ds2

���� .
(5.8)

We plot it in comparison with S in Figure 5.4. It is nonzero only where we expect
extended phase to be according to the level repulsion parameter r . We note in Figure
5.5 that due to its fine-tuned character, it is very sensitive to noise. However, if we
average out the noise over many disorder realizations, we may observe a hint of
finite-size scaling (see Figure 5.6). For level repulsion r , we had a clear expectation
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Figure 5.5: The quantity D(s) for different realizations of disorder

Figure 5.6: The quantity D(s) for different system sizes

of infinite system size value from random matrix theory. For D, one could also
consider two random matrices sH1 + (1 − s)H2 and calculate the value. We expect
the normalized by the norm value in the extended phase to be some constant. The
logic for this is the following: in the extended phase, the level crossings are as big
as the level distances allow. Two levels that are δE apart at the avoided crossing
will stay ∼ δE away from each other. That repulsion alters the slope by quantity of
the same order as the slope itself. Thus the slopes are altered from their true values
extracted from where the overlap travels O(1) of the time. Thus we expect O(1)
difference in average slopes.

In MBL the size of the repulsion goes as γn with consecutive distance n. Here we
consider non-normalized H. The probability for a level to intersect a level consecu-
tive distance n away is ∼ L2n/2L (see next chapter). That gives an upper bound on
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the portion of energy change covered by avoidance that this level experiences:

δEavoid ∼
∑

n

L2n/2Lγn ∼ 2Lγ/2L . (5.9)

On the other hand, the distance to the next level is

δE ∼ L2−L, (5.10)

thus the fraction of values of energy at which the slopes are affected by the crossings
is:

δEavoid/δE ∼ 2γ (5.11)

So it is also system-size independent. However, the
∑

n may start only with n such
that γn < ds2, as the bigger avoidances are followed by the smart overlap labels. So
changing ds2 should affect the result in the MBL phase as

D(s, ds2) ∼ min(ds2, γ). (5.12)

In the extended phase, on the contrary, the slopes are typically results of avoided
crossings with neighbors in energy, so D should remain roughly independent of ds2

as long as ds2 > 1/2L - some size-dependant scale. In practice it also decreases
with ds2, but is slower than linear in ds2. So if one plots

D(s, ds2)/ds2, 2−L < ds2 < γ, (5.13)

one should find a static value for the MBL phase, and an unbounded growth for
the extended phase. That is indeed what is observed, see Figure 5.7. We note that
the quantities we defined are more sensitive to the MBL/extended transition than
the level repulsion r , given the same computational resources in a numerical study.
Indeed, the system size dependence of level repulsion r is shown in Figure 5.8, and
the number of realizations needed to produce clean features was 500, 500, 100, 20
for L = 6, 8, 10, 12 , respectively. But for the D(s,ds2)

80ds2
in Figure 5.7, we only needed

L = 6 and just 30 realizations. The location of the transitions can be inferred equally
poorly from both. One commonly used technique for that is to search for a scaling
collapse as in (Kjall, Bardarson, and Pollmann, 2014). One can then assess the
benefits of our indicator by comparing the resulting uncertainty of the transition
point to the one found by methods of (Kjall, Bardarson, and Pollmann, 2014). As
the choice of scaling functions is subjective, we leave a careful comparison for
future work. In the following section we present a somewhat more straightforward
way to improve the level repulsion indicator, that does not require a sophisticated
algorithm.
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Figure 5.7: The quantity D(s, ds2)/80ds2 for different step sizes: 1/w = 1/80ds2 =
4, 1, 0.5, 0.5 for blue, red and two yellow lines correspondingly. Here L = 6.

Figure 5.8: The level repulsion parameter r for the full Hamiltonian H, calculated
in the mid 20% of levels where the MBL breaks down the fastest. System sizes
L = 12, 10, 8, 6 in blue, gold, green and red, respectively.
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Figure 5.9: The level repulsion parameter r for time-averaged mid-chain Hamilto-
nian H′a. System sizes L = 6, 8, 10 in blue, gold and green correspondingly.

5.1 Time-averaging of Hamiltonian terms
Consider splitting the chain into two regions: H = Ha + Hb. Specifically, take a
region a to be the middle 1/3 of the chain. In general [Ha,H] , 0, but we want to
adjust it so that it commutes with H.

We construct a time-average

H′a = limT→∞1/T
∫ T

0
eiHt Hae−iHt dt; (5.14)

this kills off-diagonal elements in the eigenbasis of H, so commutation is enforced.
Note that time averaging leaves the Hamiltonian invariant:

H = limT→∞1/T
∫ T

0
eiHt He−iHt dt = H′a + H′b. (5.15)

So [H′a,H′b] = [H
′
a,H − H′a] = 0 as well. The eigenstates of H′a are those of H, but

the eigenvalues might be very different. In the worst case scenario they all go to
zero when the local term does not have any diagonal matrix elements. But for a
sufficiently long chain the middle will carry a third of the energy, so this shouldn’t
be the case. What time-averaging does is that it spreads the initially local operator to
the whole system, so we don’t expect any degeneracies in H′a. What we suggest is to
look for level statistics in H′a. We plot its level repulsion parameter r′ in Figure 5.9.
We immediately see that in the alleged MBL phase r′ follows γ, but then stops at the
Poisson value 0.39 for the extended phase. The crossover appears to be smooth. It is
easy to explain the Poisson: after dropping the offdiagonal terms, we essentially end
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up with a random diagonal. But in the MBL phase the levels of H′a seem to attract
each other. That is because in theMBL phase the local Hamiltonian of themid-chain
H′a can be represented in a basis of tailed logical operators, Uσx

i U†,Uσz
i U†, in such

a way that the coefficients of the operators far away from the middle are small as γd ,
where d is the distance. Then time averaging kills all the terms containing logical
Uσx

i U†, so we expect what’s left to have γd tails around the middle. That means
that the values of faraway spins only shift the spectrum by γd . So each eigenvalue
of the middle has neighbors positioned roughly as energies of

He f f =

L/3∑
n=1

γn(σz
n − 1); (5.16)

the closest one will have a distance of γL/3, the next one γL/3−1. We can see that
the ratio r′ = γ. We see that the curves for different system sizes collapse onto each
other without any rescaling. We expect that closer investigation of the transition
region, and possibly the derivatives of r′, will reveal the position of the transition
point using methods similar to (Kjall, Bardarson, and Pollmann, 2014), but we do
not attempt it here. We also note that the decay of the tails of H′a as well as the
amplitude of the center was used in (Chandran et al., 2015) to locate the transition.

Reduction of Any Hamiltonian
The time-averaging technique discussed here is very powerful. The properties of
the infinite time-average of the Hamiltonian terms were used in (Kim, Chandran,
and Abanin, 2014) as a definition of MBL, with all the mathematical properties of
our Chapter 3 except the Area law following from that definition. If we time-average
for a finite-time, let’s bound the commutator of the two parts:

[H′a,H′b] = [H
′
a,H] =

1
T

∫ T

0
eiHt[Ha,H]e−iHt dt = (5.17)

=
1
iT

∫ T

0

d
dt

eiHt Hae−iHt dt =
eiHT Hae−iHT − Ha

iT
(5.18)

‖[H′a,H′b]‖ ≤
2S
T
, (5.19)

where S is the support of Ha. The spread of the local operator of any Hamiltonian
can be bounded by the Lieb-Robinson bound. Let the light cone (where the bound
on ‖[A(t), B]‖ ∼ 1) be given by x(t), therefore time-averaging for timeT should give
an operator whose support outside the radius x(T) + ∆x can be bounded as e−c∆x ,
where c is a Hamiltonian-independent number for 2-local Hamiltonians (and can be
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strengthened even more for MBL). Moreover, the time-averaging can be done with
the Hamiltonian truncated to an x(T) + ∆x collar of the local operator, with only
exponentially small error:

H̃′a = 1/T
∫ T

0
eiHct Hae−iHct dt = H′a + δa, ‖δa‖ ≤ e−c∆x . (5.20)

Note that δ is a nonlocal interaction that’s exponentially small in the distance.
Now split the system in many regions a1, a2 . . . So if we take Ha to have support
S > x(T)+∆x, the effects of the time-averaging could be truncated in such a way that
H̃′ai only overlap with their neighbors H̃′ai±1 . So we have reduced our Hamiltonian
to a nearest neighbor chain of approximately commuting terms (as in Bound 5.19),
with an exponentially small error:

H =
∑

i

H̃′ai + δi . (5.21)

Now let’s take even-odd pairs H̃′a2k
+ H̃′a2k+1

. We would like to use a result by
(M. B. Hastings, 2009) that reduces approximately commuting operators to exactly
commuting ones, by small adjustments to each:

H̃′a2k
= A2k + ε2k, H̃′a2k+1

= A2k+1 + ε2k+1, (5.22)

[A2k, A2k+1] = 0, (5.23)

and the ε terms are small and have the same support as the overlap of a′2k and a′2k+1.
Now we introduce the notation

hk = A2k + A2k−1, H =
∑

k

hk +
∑

i

(εi + δi), [hk, hk+1] = 0. (5.24)

We have reduced any local Hamiltonian on a chain to a nonlocal one with exponen-
tially decaying long-range interaction, written in the form of commuting terms plus
a small perturbation. We note that to repeat this in 2d one would need a version of
Hastings’ result for three matrices, and that one has a counterexample presented in
his paper.

For chains, one may think of applying Imbrie’s construction to this form of the
Hamiltonian - after step 1, Imbrie’s Hamiltonian has exactly this form with long
range but rapidly decaying interactions! Unfortunately, the bounds for a general
1d Hamiltonian do not work out in our favor: the number of levels in the block
S > x(T) + ∆x grows as 2x(T), so the minimum level distances decrease as 2−x(T).
However, the norm bound on ε is related to Bound 5.19, which is just 1/T . For
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the standard Lieb-Robinson bound x(T) = vT , so the level distances are always
smaller than the perturbation scale, which is the opposite to what is used in Imbrie’s
construction. However, in MBL with x(T) ∼ lnT , the scales may just work out.
In this way, any Hamiltonian that possesses the MBL Lieb-Robinson bound can be
reduced to a form "diagonal + small perturbation", even if the z-basis is not apparent
from the start.
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C h a p t e r 6

CROSSINGS

We continue the study of Hamiltonian H(s) for L spins on a chain depending on
adiabatic parameter s defined in the previous chapters. Here we focus on the region
(1−s) < γ, whereH(s) is close to the diagonalHamiltonian inσz-basis. The strength
of noncommuting local terms is quantified by a parameter γ � 1. Every eigenstate
ψσ(s) corresponds to a word σ = {sign(〈σz

i 〉), i = 1..L} with some discontinuities
where the sign changes. So for a given σ there are continuous fragments of ψσ(s)
and jumps. We can visualize it as a plot of energies Eσ(s) against s for all σ. When
a discontinuity happens, one generally finds an avoided crossing for small L. The
property of MBL is that such crossings are still discernible even for large L, where
there is a background of other levels. Here’s how:

Note that (σ − σ′)/2 is an indicator of spins that differ for the two states that are
exchanged at discontinuity. Define consecutive support S(σ, σ′) to be the smallest
connected region that contains S(σ, σ′). Add a collar neighborhood of same size at
each end. Truncate the Hamiltonian to n = 3|S(σ, σ′)| spins. In this Hamiltonian,
the density of states is ∼ 2−n in the midband, and the size of the avoidance between
levels is expected to be γn

e f f for a small γe f f � 1/2 related to γ (we have briefly
touched upon this in chapter 2, but here we postulate it as Conjecture 1 below).
So there are no levels in the immediate vicinity of the crossing. Adding the full
system of size L will add a constant energy shift, replicate the crossing many times
in the spectrum, and distort it by amounts smaller than γn

e f f . So even though many
other smaller crossings may overlay on top of this one, we typically can still trace
the original lines of the truncated system. We define the region [sd − ∆s, sd + ∆s],
where avoidance distorts otherwise almost straight lines of levels E1(s), E2(s) by
an amount of order δE = mins |E1 − E2 | (expected ≤ γn

e f f ), to be the place where
avoided crossing "happens". Here δE is the size of the avoidance of this particular
crossing, ∆s = δE/(∂(E − E′)/∂s), and the derivative is taken as if the crossing
did not happen (the slope is found by using smart overlap labels from the previous
chapter, or the spin projection label defined just now).

This logic can be used as a definition of what we call an "avoided crossing" in a
many-body system:
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Definition 1Level |1〉 experiences a crossingwith |2〉 if |E1−E2 | < 2δE where δE =

mins |E1 − E2 |, and the corresponding z-strings, sign(〈1|σz |1〉) and sign(〈2|σz |2〉),
switch places on different sides of |E1 − E2 | = δE . If the positions that are flipped
between |1〉 and |2〉 are joined in real space into the smallest interval of the chain
that contains them all, that interval is called a resonance. The interval size is nr .

To make this rigorous, a clause is implied about truncating the Hamiltonian so that
there are no levels in the immediate vicinity (as explained above), and E1, E2 are
consecutive in energy.

An important thing to note is that when two lines cross, there will always be a
resonance in the Imbrie circuit at some moment. Indeed, if the avoidance was
bigger than the separation scale, the Imbrie circuit would have treated this place
perturbatively, thus the energies of two states corresponding to these two product
stateswill vary continuouslywith γ. The argument for it goes as follows: the Imbrie’s
construction in a region without resonances is a finite product where every term is
a continuous function of s, times an infinite product that may be discontinuous but
with its contribution to this region strongly bounded. But the continuity is strongly
violated during the crossing - instead expectations of σz switch from ≈ +1 to ≈ −1.
This discontinuity has to come from the nonperturbative rotation in the circuit. This
the central idea of this paper. We formulate it as:

Proposition 1 The range of γ’s where the two levels E j(γ), E j+1(γ) experience a
crossing as per definition 1 is contained in the interval of γ when the Imbrie circuit
resonance is present in the system. The spatial position of this resonance covers all
the spin flips necessary to go from one of the levels to the other.

Every k-step Imbrie circuit resonance corresponds to O(2L−Lk ) crossings in this
way. In the new notation, every resonance of size nr corresponds to O(2L−nr )
similar crossings, just translated in energy.

Our definition of crossings relied on the truncation. So a rigorous proof of Propo-
sition 1 would rely on a statement like this:

(Resonance separation condition) For a resonance of size x, changing spins outside
mx for some number m doesn’t affect the resonant conditions.

Unfortunately, Imbrie proves separation only for "postprocessed" resonances. The
resonances found in the brute forceway abovemay not have any separation condition.
Big resonances can appear as sequence of small ones, and the energy separations
will always remain big, which can potentially confuse our method. If one carefully
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draws a situation where two resonances happen in the neighboring spins, one will
see that the levels of distance nr = 2 do not have to have a γ2 matrix element
anymore, only ∼ γ.

Consideration of such events would make the proof slightly more convoluted if one
were to do it in full rigor. There may also be minor disagreements with (Imbrie,
2016) about how far around the crossing in energy should the levels be called
resonant, and the size of the collar around flipped spins to include in nr .

Now that we know the correspondence between Imbrie’s work and our defintion of
crossings, we present the following application of it to the region of s ≈ 1:

Conjecture 1 a bound δE < (1 − s)anr = γnr
e f f holds for some constant a, for

crossings satisfying definition 1 as long as there are no crossings of one of the same
levels in the immediate vicinity in s for a given system size. If there are, but the
corresponding spin flips can be identified to be far away from each other (e.g. by
considering isolated portions of the system), the bound is still expected to hold. The
bound could be violated if there are many small resonances appearing next to each
other in space, and the level experiences an independent crossing in each of those
regions.

This conjecture can be used as a definition of γe f f . Our bound is not a strict
upper bound for all splittings that we find. If the algorithm that identifies crossings
discards the congested areas where many levels are close in energy and in spin flips,
the bound should hold, except for rare cases where the algorithm fails to discard
problematic combination of levels (with probability p f < 1/2). Note that even small
p f expectation value significantly: a naive upper bound on the splitting of failed
case is γ, so the expectation value will be:

δE(nr) = (1 − p f )γnr + p f γ (6.1)

which can be dominated by the second term if γ � 1. Here we averaging over all
observed crossings corresponding to a flip of nr consecutive spins. The median of
the distribution will not have this problem for p f < 1/2. For a median, the bound
holds in the infinite system size limit if one uses truncation of Hamiltonian to small
blocks to identify crossings as per Definition 1.

One may ask how many of the resonances of a given size will our algorithm discard
due to congestion? In the independent approximation, it is an easy estimate - the
sites to the left and to the right of this resonance are occupied by other resonances
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with O(ε) probability, or O(cε) for a collar size c. So we discard O(ε) if we discard
the resonances that are nearest neighbors. As in the model above, we also add p f

for when the algorithm fails. Either of those small corrections should not affect the
validity of our data for the purpose of measuring resonance densities (see below).

If we don’t discard anything, the minδE between levels can look very different from
a positive random variable with mean around γn which was predicted above. For
a simple estimate, let’s assume that resonances are independent from each other,
and each size is randomly scattered through the system with Pk = (Cε)cLk for
Lk−1 < nr < Lk . This gives

γ

2nr
≤ minδE ≤ γ

nr
(6.2)

if a presence of a single one spin resonance in the cluster guarantees the splitting to
be no less than γ. Of course, it is a very conservative estimate, and in a real system
a single one spin resonance will not disturb as much.

Now let’s ask ourselves a question how big a part of the system will we find to be
involved in flips between two crossing levels such that the consecutive distance is
nr . By Proposition 1 we know that all of these regions are contained in Imbrie’s
resonances. But our resonances are much smaller than Imbrie’s as he uses a def-
inition of resonances that count splitting ε = γ1/20 as one-spin resonant, and uses
εnr as threshold for many-spin resonances. For his definition, the whole system is
resonant for, e.g. γ = 0.1. We hope that the spirit of the bounds still applies:

Conjecture 2
P(nr) = O(exp(−nr)) (6.3)

Definition 2 ∆sr(nr): Consider an interval ∆s. The crossings experienced by a
single level in that interval have various sizes. The number of crossings of a given
size nr is on average ∆s/∆sr(nr)

∆sr is not specific to MBL, it is easy to estimate from density of states, slopes
and neighbors. Slopes have been considered in Chapter 5. By neighbors we mean
distribution in consecutive spin flip distance nr of this particular level’s neighbors
in energy. If we assume a completely random neighbor (as is the case for diagonal
Hamiltonian with i.i.d. random variables on diagonal), each spin can flip with
probability 1/2, and distribution of neighbors is given by:

P(N)(nr) ∼ (L − nr + 1)2nr−L (6.4)
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the normalization is O(1). The random diagonal model produces monotonic prob-
abilities in nr . Another model to consider is independent spins in random z-fields.

H =
∑

i

hini, ni = 0, 1 hi ∈ [−1, 1] (6.5)

We are interested in the neighbors of ni = 0 state. It is hard to estimate the nearest
neighbor in energy, but easy to reduce it to the previous problem (random diagonal)
if we instead ask for distribution of neighbors in a window ε around one energy. Let
d(®n) be consecutive distance of a specific flip pattern. The probabilities P(N)(nr)
are exactly expectation values of

∑
n δ(d(®n) − nr)Θ(ε − |

∑
i hini |) where the second

term is an indicator of our neighbor. The sum and the expectation value can swap
places:

P(N)(nr) = e.v.
∑

n

δ(d(®n)−nr)Θ(ε−|
∑

i

hini |) =
∑

n

δ(d(®n)−nr)e.v.Θ(ε−|
∑

i

hini |)

(6.6)
Surprisingly, the second term is essentially independent of ®n. Consider m =

∑
i ni

random fields as an m-dimensional cube centered at 0. The total probability of their
sum being within ε is ∼ ε for any m. So the probability reduces to

P(N)(nr) ∼ ε
∑

n

δ(d(®n) − nr) ∼ ε(L − nr + 1)2nr−L (6.7)

which is exactly the random diagonal model. Another quantity we need are relative
slopes R(s) defined in Chapter 5:

∂E/∂s = f (γ)L
√

s2 + (1 − s)2 (6.8)

where f (γ) ∼ γ in MBL and a constant (0.25 from Fig. 5.3 in extended phase. We
have added a factor L

√
s2 + (1 − s)2 as in this Chapter we’re using an unnormalized

Hamiltonian. Finally, the density of states is:

ρ = 2L/L (6.9)

so the average distance between levels is ρ−1 = L2−L . That distance is traveled in
∆sr,any = ρ

−1/(∂E/∂s) ≈ f (γ)2−L
√

s2 + (1 − s)2. Now for each size nr , we need to
cross 1/PN (nr) levels to run into it. Thus

1
∆s1

r (nr)
= ρ

∂E
∂s

PN (nr) ≈ f (γ) (L − nr + 1)2nr

Z N

√
s2 + (1 − s)2 (6.10)

Here Z N =
∑

nr (L − nr + 1)2nr−L is a factor needed so that probability of neighbors
is normalized to 1. The answer for the case where the single level we track is the
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ground state will be different as the density of states is different. For all the levels
put together, we get the total number of states as an additional factor of 2L:

1
∆sr(nr)

= 2Lρ
∂E
∂s

PN (nr) ≈ f (γ) (L − nr + 1)2nr+L

Z N

√
s2 + (1 − s)2 (6.11)

What can we say about 2d systems?
All of these results apply to a random chain. Now let’s consider random 2d lattice,
such that the disorder is not enough to localize the system. Specifically, let’s first
assume that level repulsion is present at least among some levels. Then, the bound
δE < (1 − s)anr does not hold for those, in fact one finds large (O(ρ−1)) avoidances
for big nr . Here ρ is the density of states. The difference is in the base of the
exponential: 1/ρ(nr) ∼ 2nr for any s, while in MBL we had (1 − s)anr = γnr

e f f . The
median of avoidances of isolated crossings (when we discard the crowded regions)
will show a crossover between two exponential behaviors in MBL and in extended
phase.

Let’s explain what I mean by "level repulsion for some levels". It is likely that
random 2d lattice has Poissonian level statistics. Indeed, consider a linear sum of
two independent systems with level repulsion. The resulting levels, if they overlay,
will be half-way to Poissonian statistics. For random 2d lattice, there are many
metastable equilibria separated by large energy barriers, so the statistics is almost
poissonian. But it is not unreasonable to expect that on top of each metastable
equilibrium there exists extended excitations, like in non-disordered Ising model.
So it is not unreasonable to expect that 2d random Ising conducts heat at any
temperatures and at arbitrary small transverse fields (1− s), even∼ O(1/Lp). If that
is the case, one should still be able to identify big avoidances between levels on top
of the same metastable state, but maybe not as big as in the previous example. We
do not know of any estimate.

A geometrical bound on resonance density
There is a way to estimate an exponent in P(n) = O(exp(−n)) for our definition
of crossings and resonances (without ε), as can be seen from purely geometrical
considerations and a bound on δE . The argument is not rigorous though, it makes
use of some extra assumption and estimates. Consider a system of size L and a
crossing of maximal size n = L in it. The argument goes as follows. We note that
the size of the crossing in s ∆scr = δE/(∂(E − E′)/∂s) can be at most γn

e f f v
−1
min

for crossing of size n if we throw away the special cases of small relative slopes



39

(∂(E − E′)/∂s) < vmin . There is no special reason for levels to go parallel to
each other in s - we expect a smooth distribution of v = (∂(E − E′)/∂s) for all the
crossings of size n. We choose a cutoff vmin and observe that it can be taken very
small, such that the contribution of v < vmin to P(n) will be bounded as event of
probability vmin/vmax . Now we note that there are at most ρvmax∆s crossings that
one level experiences, where ρ ≤ 2n/n is the density of states at this level’s energy.
The total number of crossings of all levels is 2nρvmax∆s then. So the typical distance
between crossings is ∆s0 ≥ v−1

max4−nn. ∆s0 is related to ∆sr(n = L) for individual
level by a factor 2n - the total number of levels. On the other hand, the interval
within which crossing will be counted towards P(n) is bounded as ∆scr ≤ γn

e f f v
−1
min

- that is the width in s of region where each crossing. So a bound on P1(n) is then

P1(n) ≤
∆scr

∆s0
+ vmin/vmax ≤

γn
e f f (vmin)−1

v−1
max4−nn

+ vmin/vmax (6.12)

which can be optimized to ∼ γn/2
e f f .

Here we used typical distance between all crossings ∆s0 ≥ v−1
max4−nn as a proxy for

2−n∆sr(n = L) - typical distance between crossings of consecutive size n in a system
of size L = n. Indeed, the typical crossings are the ones that span the whole system
- we encounter them the most. Our formula works for all n which can be shown by
virtue of truncation. Our bound is much stronger than what Imbrie used, which may
be attributed to a weaker definition of resonance that makes every ∆scr wider by a
factor (γe f f /ε)n.

6.1 Identification of crossings
The method of crossing detection is based on overlaps between consecutive states
in energy |En(s)〉, |En+1(s)〉 and the same two levels after a step δs: |En(s +
δs)〉, |En+1(s + δs)〉. If the overlaps swap places, we call this a crossing. This
method has its quirks that has been discussed at length in Chapter 5. One can easily
see that such method will be sensitive to crossing that are faster than δs, but leave
slow crossings undetected. One can improve the performance on slow crossings a
bit by considering multiple δs and combining the data, but many of the big crossings
in a big system are also obscured by a lot of small crossings happening "on top of
them".

We use a simpler algorithm with a fixed δs = 1/40 for the whole range H(s = 0) =
Hx to H(s = 1) = Hz, where s is the adiabatic parameter from the original protocol,
and the system is not MBL for some portions of the path.
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Figure 6.1: One can identify resonances as places where the state is flipped to
approximately orthogonal

We can see by eye in Fig. 6.1 that for large gaps the numerical method used here
stops being sensitive. One can think about it as follows:

Figure 6.2: In the midband large gaps are obscured by multi-crossing.

We are content with the partial data. Consider crossing locations plotted uniformly
with the eigenstate index:

We look only at isolated squares of 4-levels and discard the multi-crossing from the
ensemble. On the coarse scale δs that we use, slopes allow levels to cross many of
their neighbors, so we get a significant portion of multicrossing, which should be a
true feature of extended phase, but an artifact of our approach in MBL. By zooming
in, we should be able to resolve each and recover the bound O(ε) derived in the
previous section. One redeeming feature of keeping δs fixed is that each crossing of
small size in space should be repeated several times throughout the spectrum in the
MBL phase, as the the state of the faraway parts of the system change. So even if it
is a part of multicrossing in one part of the spectrum, it might be isolated in another.
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Figure 6.3: Resonances vs. level number

One quantity that can be extracted immediately is the “frequency” of resonances, or
1/∆sr(nr) defined in Eqn. 6.11 - the rate of resonances encountered by a system as s

changes without regard to their width in s. Recall that this quantity does not follow
directly from Imbrie’s construction, instead we needed to make assumptions about
neighbors in energy (that they are essentially random) The value of this quantity for
chains will be important for predictions of a behavior under a slow drive. Its direct
measurement from the data above is shown in Fig. 6.4. We use the consecutive
distance between the two levels to determine the size of the resonance. We show that
if multicrossings are included, 1/∆sr(nr) is well predicted with no fitting parameters
by Eqn. 6.11 that uses Relative Slopes f (γ) found in Chapter 5. The majority of
crossings found by our algorithm are multi-crossings in energy, but the isolated
ones are representative of the total distribution. As expected, the algorithm misses
some crossings of small sizes as they happen over intervals longer than ∆s = 1/40.
One can also perform a direct measurement of the distribution of neighbors, which
shows good agreement with our theoretical estimate in Eqn. 6.7.

6.2 Resonance densities
Finally we are ready to collect resonance statistics (the avoidance vs. the spin flip
consecutive distance). We investigate L = 6 and find avoided crossings with the
splitting as small as γ6, which is 10−6 for magnetic field 0.1.

We pick a scale ∆s first, and identify avoided crossings by overlap switches as
explained before.

Then for every avoided crossing, we pick a finer scale ∆s1 = ∆s/250, and measure
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Figure 6.4: The histogram of frequencies 1/∆sr(nr) collected in the last [7/8, 1] of
s (left) and in the middle [4/8, 5/8] of s. Blue line is a theoretical prediction. The
system size L = 6, we average over 15 disorder realizations

the minimal gap between two levels ∆min and the maximal one ∆max within each
interval ∆s. We also extract the consecutive spin flip distance d. This is a resonance
when the level distance is within O(1) of ∆min, according to our definition. So of
the interval ∆s, only for about ∆min

∆max
∆s the system has resonance at that position. It

contributes
∆min

∆max
d

2
2L−d(L − d)

(6.13)

to the resonance density. The extra two factors are to account for duplicates of this
resonance that should be also found in the spectrum, and for many possible positions
it can occupy in the system

We then add that up for all the resonances and average over realizations. The result
should be understood as average resonance density, and unsurprisingly it exceeds 1
in the extended phase:

We proceed to extract the data about minimal splittings. We described above how
to mark different places in (s, E) with (δE, nr) whenever there is a crossing. Then
one collects all the pairs (δE, nr) for a given s (putting together different energies).
Then one puts the data together for N realizations of disorder.

We take a median of δE for all realizations of disorder for an interval of s. That is
the quanitity that should be bounded by our conjecture. One can check the bound
δE < γnr

e f f by looking at those plots. Note that one needs a very small finer scale
∆s1 such that ∆s1

∂E
∂s = 10−6. We don’t quite get there with ∆s1 = ∆s/250 = 10−4.

If we keep making it smaller, the medians for s = 1/8 will lie on the straight line.

We also note that in extended phase the consecutive distance does notmean anything,
so the splitting is essentially flat as a function of it
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Figure 6.5: Total density of resonances plotted along the protocol

Figure 6.6: Median of δE with resonance size for length-1/8 intervals of s along
the protocol, from [4/8, 5/8] in blue to [7/8, 1] in red. The theoretical fit (purple)
with γe f f = 1/8 is plotted to guide the eye

A good proxy that would tell us which gaps are small enough for MBL and which
are typical for extended phase is 2−L - indeed that is of the same order of magnitude
as the median found for extended phase in Fig. 6.6.

But there’s extra information in those plots — the resonance probability as a function
of d which is calculated as an average of ∆min

∆max
d 2

2L−d(L−d) over all observed instances
of size d.

Recall that Imbrie proves weak bound on it using ε = γ1/20. If we try to do that
in our code, we will find everything overlapping. So the density of resonances for
reasonable values of magnetic fields is 1 if we use Imbrie’s definition. We can still
follow "the spirit" of his bound and use our own bound γn/2

e f f . That will be contrasted
with the extended system where the resonances we find are dominated by sizes O(L)
(because typical two states are away by L/2 spin flips and ∼ L consecutive flips)
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So if we observe a peak at L in the resonance probability data, that’s a sign we’re
extended.

We can extract the plots that look consistent with γn/2
e f f for MBL, and growing for

extended, if we throw away the multi-crossing in energy (we also drop the factor
2L−d from the formula as most of the duplicates are also involved in multicrossings):
Unfortunately, there’s a form of a cutoff in our data collection method at small

Figure 6.7: Resonance density with size. Extended in gold, MBL in blue. We see
that large (∼ L) resonances are always present in the extended system

resonance sizes, so γn/2
e f f is not very apparent. Cutoff stems from insensitivity to

crossings with big avoidances. In numerics, one can directly see from the Fig.
6.1 that some crossings are missed, because they happen on a scale bigger than the
discretization step, so the algorithm considers them to be just levels that are changing
continuously. A better algorithm would catch all of those. But then there’s another
reason for cutoff - resonance overlap. It is not clear how to write an algorithm that
works for big systems and treats this case correctly.
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C h a p t e r 7

SLOW DRIVE

The MBL is expected to hold for a sufficiently small γ. Also it is expected to be
stable with respect to other sufficiently small static perturbations.

Let us consider the MBL Hamiltonian changing in time from a perturbation param-
eter γ to aγ. Here a = O(1), a , 0. Here for simplicity the system will start in
an eigenstate, but one can straightforwardly translate our result to easy-to-prepare
states (Gibbs state, or product state). Our goal is to say something predictive about
the state at the end of the evolution. This is the simplest case to analyze, yet other
paths within the MBL regime are possible (e.g. from one realization of disorder to
another). We will draw the intuition from changing γ, other paths can be considered
in a similar way. One may think of changing γ as a possible parameter drift in an
actual physical system exhibiting MBL. Even when restricted to changing only γ,
one can engineer many other types of paths that are physically relevant: creation
of a state (from γ = 0 to some nonzero value, relevant for proofs in the spirit of
quasi-adiabatic evolution by Matthew B. Hastings and Michalakis, 2015), and the
slow random motion of γ around some average (parameter drift in actual systems
is a random walk). The method we will use only works for small drive rates and
breaks down at the drive rate T

∆γ ≈ 1 That sets the distinction between fast and slow.

Our theoretical prediction for the dynamics is as follows:

Proposition At T/∆γ = v−1 � 1 the result of the evolution will remain close to an
eigenstate almost everywhere and we can neglect the diabatic errors. Spin flips of
resonances will be observed starting from v−1 ≥ γ2. In the range of velocities:

T
∆γ
= v−1 < (v∗)−1 =

a + 1
4π

(
1√
|a − 1|γ

)5.8ln(1/γe f f )+2

(7.1)

the total density of flipped regions is < 1. The configuration of flips changes with the
drive speed in discrete steps of the shape of the original system’s resonances. New
and typically bigger resonances are added to the flipped region as the v decreases.
After it decreases past the value in Eq. 7.1, system is no longer in approximately a
product state. One can no longer identify local flips by varying v, as large portions
of the system appear to flip simultaneously.
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Let’s elaborate on what the theorem means. Consider the energy scale Ev =

γ
√
v |a − 1|/2π set by our drive speed. The relationship between Ev and the split-

ting energy δEn of the individual resonances determines whether they are flipped
along the drive. In the special case when Ev ≈ δEn, we can selectively create an
entanglement between the two resonant states. This entanglement will be visible in
the z-basis measurement as the expectation value is now given by a superposition
of the corresponding product states. When resonances start to overlap, flip of one
of them can influence the other (because one state has the corresponding crossing
and the other one doesn’t), so even a rare resonance such that Ev ≈ δEn makes the
whole system a superposition of two possible paths. Thus long range entanglement
is introduced for v < v∗

Other contributions to the evolution are adiabatic and diabatic losses. The latter
is bounded by a value small in γ. We use the term "adiabatic losses" implying an
honest application of Landau-Zener formula. The competitor probabilities found in
it are bounded in the distance between Ev and δEn for all the resonances along the
path.

Proof The average relative slope of the levels is found in Chapter 5:
dE
dt
=

dE
dγ

dγ
dt
≈ γ(t)L γ |a − 1|

T
(7.2)

We will use the average slope for simplicty for all level intersections, the argument
can be repeated with only minor modifications for a random distribution of slopes
around the average. The contribution of a crossing of a consecutive size n at position
γ(tx) = axγ, ax = O(1) is given by a Landau-Zener formula:

δP = 1 − exp
(
−2π

δE2
x

naxγ2 |a − 1|
T
)
= 1 − exp

(
− δE2

x

naxE2
v

)
(7.3)

where δEx is the splitting and Ev = γ
√
v |a − 1|/2π. Only the slopes of the section of

the system where the resonance is matter. To find the losses along the evolution, we
need to sum the above contributions for each level for those that are passed fast, and
1−δP = exp

(
− δE2

x

naxE2
v

)
for slow passage. We sum corrections over all crossings. We

can neglect the corrections from slow passage as they are exponentially small. The
big contribution comes only from unlucky levels with the splitting at the crossing
close to √naxEv (or more carefully, the right fraction of the splitting and the slope
of that level matches that value). If for some of the resonances the exponent is close
to 1, we consider them to be mixing corresponding spins, but not affecting the other
regions.
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To estimate the number of regions with such mixing, we again need the relative
slopes and the density of states:

ρ ∼ 2L

L
(7.4)

the total number of crossings over an interval ∆γ = |a − 1|γ is then

N = ρ
dE
dγ
∆γ =

2L

L
γLγ |a − 1| = 2Lγ2 |a − 1| (7.5)

We see that it grows with the system size. But we only care about δEx ≈ Ev, where
δEx ≈ γn

e f f . So the sizes of the crossings we care about are limited roughly to n <

lnEv/(lnγe f f ). If we keep all the factors, δEx =
√

naxEv =
√

naxγ
√
v |a − 1|/2π.

We will replace ax by its average a = (a + 1)/2. Now denote

n∗ =
ln
√

n∗aEv

lnγe f f
=

lnγ
lnγe f f

+
1

2lnγe f f

(
ln
|a − 1|

T
+ lnn∗ + ln

a
2π

)
(7.6)

The first term is O(1); the second depends on the relationship between |a−1|/T and
γe f f . The last two terms in the brackets are subleading. We find n∗ = 4 for γ = 0.1
and T = 105.

The number of crossings of size n per site is given by the same expression as the
total number of them for a system size n:

Nn = 2nγ2 |a − 1| (7.7)

Now we note that there are 2 times as many crossings of size n + 1 as those of size
n. So the typical one that’s not jumped is of size n∗. The total density of crossings
that experience flips is then:

p f =
∑
n≤n∗

nNn = n∗2n∗+1γ2 |a − 1| (7.8)

if 2n∗+1γ2 |a− 1| < 1, we resolve individual resonances with this procedure. For our
n∗ = 4 and γ = 0.1, and |a − 1| = 1, we get 2n∗−1γ2 |a − 1| = 1.3 so the flips start to
overlap. Every spin will be found in some entangled state away from its original z

configuration. More generally, this relation gives us the idea that to witness bigger
resonances, besides exponentially long drive times, we need to narrow down our
range in γ and a.

A few remarks about this result:
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1. We can plug in the value of n∗ to obtain the expression in Eq. 7.1. γn∗
e f f =√

n∗aEv which gives 2n∗ = γ
(ln2)n∗/lnγe f f
e f f in:

p f = n∗γ2 |a − 1|
(√

n∗aEv

) ln2/ln(γe f f )
(7.9)

p f < 1 if
√

n∗aEv < (n∗γ2 |a − 1|)ln(γe f f )/ln2 which we express via the drive
speed:

γ
√
v |a − 1|/2π < 1

√
n∗a
(n∗γ2 |a − 1|)ln(γe f f )/ln2 (7.10)

or in terms of the protocol time:
T
∆γ
= v−1 >

a + 1
4π
(1/γ)5.8ln(1/γe f f )+2 (n∗ |a − 1|)2.9ln(γe f f )−2 (7.11)

the last multiplicative term can be dropped as it is ∼ ln1/γe f f .

2. A careful error estimates counts the contribution from terms like δP = 1 −
exp

(
− δE2

x

naxE2
v

)
for jump crossings n > n∗ as they give bigger, non-exponentially

small error. δP ≈ δE2
x

naxE2
v
that is suppressed for sizes n∗ + 1 by a factor of γ2

e f f

compared to n.Consider contributions of resonances of size n∗. Even if all
of them happen to have δEx that are fine-tuned to our speed of the drive,
the effect will still be contained to the regions of flips that occupy < p f of
the system. If we ask for an average local deviation from the product state
1 − Ploc

max,z it is bounded by p f . There are also contributions that are a factor
of γ2

e f f smaller from the resonances at the step n∗ + 1. Even though their
density is two times bigger, they don’t affect the leading order of the error.
p f is proportional to γ |lnγe f f |. Assuming that is small, we find 1 − Pmax,z in
a system of size L. We need to add the probabilities of different locations in
the system:

1 − Pmax,z ≤ Lp f , L > n∗ (7.12)

For a patch of a bigger system, we get:

1 − Pmax,z ≤ (L + n∗ − 1)p f (7.13)

For our parameters and L = 1 this gives 2.5 so the bound is useless, but for
smaller γ or shorter T it can be the other way.

We note that for small system sizes it’s the same as the expression for p f ,
besides a subleading L, n∗-dependent factor. So the same condition on velocity
can be derived from it. Whenever the crossings are well-resolved, on average
the system is still in the product state.
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3. All along we used resonance size n as a proxy for splitting δEx . But in fact
those splittings are random variables taking values around the mean we’ve
used. As well as the randomness in slopes, that can be accounted for and does
not change the results.

4. Landau-Zener formula we have used is only exact for just two levels measured
infinitely far away after the crossing. if the LZ protocol is stopped Eend away
from the crossing point with the splitting δE , the LZ result gets adjusted.
As in the remaining portion the time-dependent p.t. is applicable, we expect
deviations from LZ result to be small in δE/Eend . In our case, the adjustment
of amplitudes is O(γ/ε)n as according to Imbrie we can endow every crossing
with a window of energies of εn size. Indeed in our time-dependent p.t.
analysis below we will confirm that scaling.

7.1 Finite velocity perturbation theory
To conclude the proof, we need to account for another loss of probability which
is fully perturbative and is just due to the fact that we’re not evolving infinitely
slowly. It’s present even if there are no distinctive avoided crossings in the levels.
This effect is discussed in the literature as error bounds on the adiabatic theorem
(Cheung, Høyer, and Wiebe, 2011; Jansen, Ruskai, and Seiler, 2007). Let’s get
familiar with these results. Consider the evolution of our Hamiltonian and assume
that there is a gap > ∆ between all the eigenstates. Then the probability loss per unit
length can be bounded naively (theorem 1 in Cheung, Høyer, and Wiebe, 2011) by

δPp.t.

L
≤ 1
∆4T2 +O

(
1

T3

)
(7.14)

and using a more refined bound (theorem 2 in Cheung, Høyer, and Wiebe, 2011):

δPp.t .

L
≤ γ2

max

T2∆2 +O(T−3γ
p
max) (7.15)

Here γmax = max(γ, aγ) and to derive this form we used a special time-dependent
basis for the Hamiltonian (see below). Here p > 2 is some constant power. In fact,
the first term have even more detailed structure according to Wiebe

δPp.t . ≤ 1
T2

∑
α

|V0α |2

∆2
α

+O(T−3Lγp
max) (7.16)

here V0α is a matrix element that decreases as (γ/ε){α} where {α} is a consecutive
support of difference between the state α and the intitial state. If all the states are
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nonresonant, ∆α > ε {α}, so the sum converges as

1
T2

∑
α

|V0α |2

∆2
α

≤ 1
T2 L(γe f f + γ

2
e f f + . . . )

2 ≤ 2
T2 Lγ2

e f f (7.17)

here γe f f = γ/ε2 to indicate that renormalization can change this quantity. This
sum can be thought as a partition function. Note that for big systems Lγ2

e f f /T
2 � 1,

so the typical state is one of the excited states, not the initial one. But our bound on
adiabatic theorem applies to all states in the spectrum, as all of them have bounds
on gaps when they are nonresonant. So each of states that have weight γ2

e f f /T
2 will

have its own errors accumulate, until the partition function takes the form:

δP ≤ 1
T2 Lγ2

e f f + (Lγ
2
e f f /T

2)2 + · · · = (eLγ2
e f f
/T2
− 1) (7.18)

This bound is saturated in O(L) time. It is roughly that of a chain of independent
spins each with probability p = v2γ2

e f f of flipping. A configuration with n (not
consecutive) spins flipped will have a probability pn(1 − p)L−n. We note that
probability loss per unit length can be translated into density of deviations in density
matrices (the error of density matrices over region R goes as 2γ2

e f f R/T2). Indeed,

δPp.t . =
∑
α

δPα (7.19)

If we only look at the 1
T2

∑
α
|V0α |2
∆2
α

term, we note that

δPα ≤ (γe f f /T)2|α | (7.20)

Now we split the system into region R and its complement R. Thus we change
notation α→ αα

1
R
‖ρR − trR |φs=1〉〈φs=1 |‖1 =

1
R

∑
α,0

∑
α

δPαα ≤
2γ2

e f f

T2 (7.21)

Here we have used a nontraditional version of the trace norm that we removes all
offdiagonal elements of the density matrix in a basis of interest.

Unfortunately, we cannot choose different gaps ∆α for terms that Wiebe collects into
the other contribution O(T−3Lγp

max). Pessimistically, those terms get 1/∆min ∼ 2L

and the norm gets a factor exponential in the system size. Still, those bounds are
useful for small system sizes.

Note that the error does not depend on time as ∼ T for T > O(L) - instead there are
some cancellations and evolution that started at a state 0 will in O(L) time saturate
the bounds above and remain within them for the rest of the time.
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The proofs in Cheung, Høyer, and Wiebe, 2011 are quite sophisticated, instead we
will present an estimate that gives the same answer. Besides coinciding with the
above bounds on small system sizes, our estimate has the prospect of avoiding ∼ 2L

terms in the same way as they are avoided in Imbrie’s construction. So our intuition
is that a proof of a bound consistent with our estimate is possible, although we do
not attempt it here. First let’s derive what is the operator V that we have used above.

MBL, finite velocity evolution We take advantage of our knowledge of MBL
phase: at each point s along the path γ(s) = aγs + γ(1− s) we know the circuit that
diagonalizes the system:

U(s) =
∏

k

eA(k)(s) (7.22)

Here we are interested in perturbative effects, so we’ll assume there are no res-
onances. Then U(s) is a continuous function. Here γmax = max(γ, aγ) and we
will omit the difference between γ and γmax as a = O(1). The time-dependent
Schrodinger equation is:

i
d
dt
ψ(t) = H(s(t))ψ(t) (7.23)

Here s(t) = t/T for our purposes, and v = ∆γ/T is the velocity. We’d like to recover
adiabatic theorem in the v → 0 limit, and find the first perturbative correction to
it. We would like to choose a time dependent basis of instantaneous eigenstates of
H(s(t)):

U(s)H(s)U(s)† = E(s), ψ(t) = U(t/T)†a(t) (7.24)

we substitute it into the Schrodinger equation:

i(U(s) d
dt

U(s)†)a(t) + i
d
dt

a(t) = E(s)a(t) (7.25)

From this equation, we get a new time-dependent Hamiltonian:

Hx(s) = E(s) − (U(s) d
dt

U(s)†) (7.26)

We call the second term V

V = −(U(s) d
dt

U(s)†) (7.27)

From the properties of U(s) for Imbrie spin chain,

V =
1
T

L∑
i

∑
k

(U(k+)(s)
dA(k)i

ds
U(k+)(s)†) (7.28)
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V is strictly offdiagonal. We get the following bound on V :

|Vαβ | ≤
1
T
(γ/ε){α−β} (7.29)

where {α− β} is the consequtive support of nonzero elements in the bitstring α− β.
With this property, the convergence of Ineq. (7.17) follows:

δPp.t . ≤ 4
∑
α

1
T2(Eα − E0)2

|Vα0 |2 (7.30)

We use |Eα − E0 | > ε |α |. We can split the summation into size nr spin flips starting
at site i from the initial state.

δPp.t . ≤ 4L
∑
nr

∑
α(nr,i)

1
T2 (γ/ε

2)2nr (7.31)

The question is whether
∑
α(nr,i) contains a factorial. It doesn’t - it is bounded by

2nr . Thus the sums converge, are dominated by the first term, and we arrive at

δPp.t. ≤ 4L
T2 (γ/ε

2)2 (7.32)

We note that we can transfer to the interacting picture with V considered as a
perturbation. The resulting time-dependent Hamiltonian is small in γ. That’s how
we can use Wiebe’s bounds. Let’s derive the estimate of the probability loss stated
in the beginning of this section.

probability loss We use first order time dependent perturbation theory for evolu-
tion with Hx:

a(t) = a(0)(t) + a(1)(t) (7.33)

In the equation
i

d
dt

a(t) = (E(s) + V(s))a(t) (7.34)

There are no transitions in zeroth order:

i
d
dt

a(0)(t) = E(s)a(0)(t) (7.35)

a(0)(t) = e−i
∫

E(vt)dta(0) (7.36)

In the first order, we find

i
d
dt

a(1)(t) = E(s)a(1)(t) + V(s)a(0)(t) (7.37)

a(1)(t) = e−i
∫

E(t/T)dt
∫

ei
∫ τ

E(t/T)dtV(s)e−i
∫ τ

E(t/T)dt dτa(0) (7.38)
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The coefficient cα of the excited state α for a system started in the ground state
a(0) = |0〉 is:

cα(t) = e−i
∫

Eα(t/T)dt
∫

ei
∫ τ

Eα(t/T)dtVα0(s)e−i
∫ τ

E0(t/T)dt dτ (7.39)

We can proceed if we make simplifications: Vα0(s) = Vα0 time-independent in the
first order, Eα(t/T) = Eα time-independent (the first time-dependent correction is
O(γ2)). Then

cα(t) = e−iEαt 1
Eα − E0

(ei(Eα−E0)t − 1)Vα0 (7.40)

More generally, this is the first contribution from integration by parts of the integral
above:

cα(t) = e−i
∫

Eαdt
(

Vα0(t)
Eα(t) − E0(t)

ei
∫
(Eα−E0)dt − Vα0(0)

Eα(0) − E0(0)

)
(7.41)

The next contributions drop a power of 1
T γ each as

d
dt =

1
T

d
ds =

γ
T

d
dγ , so it is justified to

neglect them (this is a well known situation with rapidly oscillating integrand, so all
the oscillations cancel out). Then we makeVα0 → 1

T V s
α0 by changing d/dt → d/ds.

The V s doesn’t depend on T to the first order. The total probability loss is:

δPp.t. =
∑
α

|cα |2 ≤ 4
∑
α

1
T2(Eα − E0)2

|V s
α0 |

2 (7.42)

We arrived at the desired result. We see that the difference establishes itself over
times (Eα − E0)−1 ∼ 1, and then remains bounded while our approximations of
neglecting higher orders in integration by parts and smallness of the population of
excited states remain valid. Wiebe’s bound for small system sizes suggests that it
stays such even beyond those approximations. For big system sizes, we can bootstrap
the argument for all levels as described above/ We believe that the corresponding
bound

δPp.t./L = 1
R
‖ρR − trR |φs=1〉〈φs=1 |‖ ≤

4
T2 (γ/ε

2)2 (7.43)

remains valid for big system sizes. There are twomajor concerns with this argument:

• As usual in MBL, the low system size estimates might be misleading. One
needs to show that n’th order of time-dependent p.t. is always smaller than
the first, and that the approximations can be justified.

• The Imbrie’s bounds used relatively tight combinations of parameters. We
have seen that the dynamics enhances both the perturbative and the resonant
contributions. Maybe γe f f becomesO(1) faster than in the static construction,
so one needs to confine oneself with even smaller range around Hz.
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Now putting it all together We have discussed losses due to perturbation theory
and exact nonperturbative LZ losses. Now we’d like to have an understanding
how to glue/compare those two. Note that the LZ effect happens on timescales
∼ 1/γnr−2. For higher-order crossings 1/γnr−2 � T so a simple δPp.t ./L ∼ T/γnr−2

bound gives good enough suppression. For the sake of an easier proof, we may
also consider a deformed Hamiltonian where all the jumped avoided crossings are
turned into actual crossings of levels. There is some theory for that case ( Avron
and Elgart)

The crossings with smaller nr are followed, not jumped. So they are in the range
of applicability of the diabatic corrections theorem. The bound should coincide for
the two, but our theorem appears to be not tight: our bound for γe f f = 1 gives 1

T2

probability of error, not exp(−T) like in LZ.

Adding the two, we get the average error to be:
1
R
‖ρR − trR |φs=1〉〈φs=1 |‖ ≤ 4

1
T2 (γ/ε

2)2 + n∗2n∗+1γ2 |a − 1| (7.44)

where n∗ as defined before is the characteristic resonance size that has nontrivial
LZ probabilities, and is logarithmic in v. The resulting v-dependence of the second
term is some power-law v−1/(lnγe f f ) - some small positive power. We note that the
second term grows the longer is our path in the space of Hamiltonians, while the
first terms stays fixed.

But the two contributions are easy to separate experimentally: while perturbative
effects are evenly spread in the system, the LZ flips happen with those particular
sites involved in the resonance. Their total density over all time of the evolution
may still be small for the range of parameters discussed in LZ section. So if we
look at the local density matrix, it will only notice the resonances with probability
(over disorder configurations) proportional to resonance total density, otherwise its
deviation from the eigenstate will be bounded by our diabatic bound.

We note that the choice of ε still has some freedom. For bigger ε , the diabatic term
is better controlled, while the second term seems to remain the same. But remember
that now our diabatic estimate is not applicable ε of the time. So naively ε < 1,
which gives:

1
R
‖ρR − trR |φs=1〉〈φs=1 |‖ ≤ 4

v2

|a − 1|2
+O(v−1/(lnγe f f ))γ2 |a − 1| (7.45)

Finally, do we understand this evolution well enough to predict it? As the estimates
show, n∗ ≈ 4 for realistic drive. MBL systems also possess exponential decay
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of correlations, so the resonances will flip in the same locations approximately
independent of the edges. It should be enough to simulate truncated Hamiltonian of
10-spin patches of the chain, either by trotterizing the evolution, or by investigating
the crossings. Then the behavior of spins in the center will be a good predictor for
what will happen in that location in the infinite system. The error will be augmented
by γ3 via the influence of the edges, but the above two errors will be reduced if
we actually do careful trotterization of evolution. They stay if we just point at the
product state after investigating the crossings. Trotterization introduces additional
error, which can be made arbitrarily small given enough resources, and we will
still count it as polynomial in system size. We note however that as soon as the
flips start overlapping, one will need to keep track of many entangled trajectories. A
method based on matrix product states will give slight advantage for simulating such
dynamics, but eventually the amount of resources required will become exponential.
Thus we have a long window in protocol time where the simulation is efficient, but
not infinitely long.

We also note that such systems allow for Quantum computation with a decent error
given by estimates above, with the only experimental knob being the magnetic field.
Indeed, by tuning it back and forth at various speeds, one can perform gates at
every crossing. This idea has been used in Quantum dots (Cao et al., 2013) before.
The cost of apparent simplicity is that the fabrication has to be very precise, so
that we know exact parameters of the system, and the preprocessing that turns a
computational routine into a h(t) is not trivial.

7.2 Floquet
We now consider a special case of periodic driving H(t) = H(t + T). To be
consistent with the calculations above, we will vary the transverse magnetic field
γ = γ(t). There are two simple realizations of the time dependence: a periodic
drive γ(t) = γCos2πt/T and a sequence of quenches

γ(t) =

γ, t ∈ [Tn,T/2 + Tn]

0, t ∈ [T/2 + Tn,T(n + 1)]
(7.46)

for integer n. Our analysis of the slow drive only applies to the first case. However,
the second case is easier to analyze numerically if one wishes to access infinite
times. Indeed, one just needs to study the eigenvalues and eigenvectors of the
unitary evolution operator:

U f loquet = ei(Hz+Hx)T/2eiHzT/2 (7.47)
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we will also discuss the Hermitean Floquet Hamiltonian:

iH f loquetT = ln(ei(Hz+Hx)T/2eiHzT/2) (7.48)

The logarithm is ill-defined so every eigenvalue of H f loquet can be shifted up or down
by 2π/T . In T → 0 limit the Baker-Campbell-Hausdorff formula is applicable, and
the eigenvalues are too small to wrap around in this way, so

limT→0H f loquet = Hz +
1
2

Hx (7.49)

in fact, the BCH expansion converges for ‖Hz + Hx)T/2‖ + ‖HzT/2‖ < ln2, so for
T = O(1/L). The Floquet Hamiltonian acquires small in 1/L terms like [Hz,Hx]T2.

Even though for biggerT our formal perturbative expansion diverges, the eigenvalues
of the Floquet Hamiltonian are expected to be found near the original eigenvalues
of the big Hz term modulo 2π/T , with the following exceptions. Repeat the energy
levels of Hz in steps of 2π/T on energy axis. For a pair of levels, there will be
situations when the perturbative mixing of the appropriate order by Hx is bigger
than the new level distance. In these situations we will find eigenvalues of H f loquet

to deviate from those of Hz The level distance is now calculated as a minimum over
all possible shifts by 2π/T of one of the levels, so faraway levels can now experience
a resonance. In other words, the denominators Eα−Eβ appearing in the perturbation
theory are now replaced by minn(Eα − Eβ + 2πn/T).

We can confirm the above intuition by studying a two-level system (a single spin)
exactly. Let Hz = rσz where r is a random number uniformly distributed in an
interval [−1, 1], and Hx = γσ

x where γ � 1. We would like to find how close the
eigenstates

ei(Hz+Hx)T/2eiHzT/2 |φ〉 = eiφ |φ〉 (7.50)

are to the z-basis:
X(γ, r,T) = 1 − (〈φ|σz |φ〉)2 (7.51)

In particular, we’re interested in disorder average:

Av.X(γ,T) = 1
2

∫ 1

−1
dr(1 − (〈φ|σz |φ〉)2) (7.52)

In the two level system, the quantity X(γ, r,T) can be evaluated exactly:

X(γ, r,T) = n2
xSin2(ET/2)

n2
xSin2(ET/2) + (Cos(ET/2)Sin(rT/2) + nzCos(rT/2)Sin(ET/2))2

(7.53)
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where E =
√

r2 + γ2, nx = γ/E and nz = r/E . From our intuition, we expect a
peak in this expression at ET = πn as the levels are 2E apart. Indeed, we find a
sequence of peaks as a function of T , of width γ/E for odd n and γ2

E2 for even n , 0.
For smaller r , we can essentially look at corresponding value of X at T = rT0,

2 4 6 8 10 12
T
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Figure 7.1: The peaks in X(γ = 0.1, r = 1,T)

Indeed, X is a function of just two independent parameters rT and γT . As long as
the second one is small, X(T) at r = 1 and X(r) at T = 1 essentially coincide. Only
for r ≈ 0 there’s a difference: X(t) experiences a peak corresponding to a resonance
in the original (with no level wrapping) system. For bigger T’s, the picture shrinks
so that the peaks appear in the interval of integration r ∈ [−1, 1]. we note how the

Figure 7.2: The peaks in X(γ = 0.1, r,T = 6) (blue) and X(γ = 0.1, r,T = 1) (gold)

area under peaks increases by at least a factor of 3 thanks to wrapping of the levels.
Since our probability distribution of r has a discontinuity at r = ±1, it appears as
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a discontinuity in the limit γ → 0 in the integrated value Av.X(γ,T). Even for
moderate γ = 0.1 it is still very sharp. At T → ∞, the value X(γ,T) saturates to
∼ 4γ. The T → 0 value was ∼ 1.5γ, so the system is 3 times as likely to experience
a resonance as the non-driven one! We confirm that the enhancement is linear so

20 40 60 80 100 120
T

0.1

0.2

0.3

0.4

Av.X

Figure 7.3: Saturation of Av.X(γ = 0.1,T). The narrow peaks lead to a numerical
noise.

Av.X(γ = 0.1,T) ∼ γ. Now that we’ve understood this one-spin effect, let’s see
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Figure 7.4: Enhancement Av.X(γ,T = 500)/γ in the limit of long times

what happens in a many-spin system. First, note that our effect appeared for all
(Eα−Eβ)T > 2π. In a block of size n, there are 4n pairs of levels. Their perturbative
mixing is γn′

e f f , where n′ is their consecutive distance. We restrict our attention
to those that have n′ = n, as they are typical and moreover, the smaller n′ could
be considered in the smaller block sizes. From above considerations of two level
system, we know that a particular pair will be resonant 4γn

e f f fraction of the time.
The total probability of size n resonance is then 4n+1γn

e f f . For sufficiently small
γe f f it will still be suppressed in n.
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This naive consideration predicts that densities of resonant blocks are enhanced by
a factor of 4n. It does not account for the fact that the true suppression of the density
is weaker than the splittings at the crossing (γn/2

e f f according to our estimates or ε cn

according to Imbrie). The cases where multiple resonances are in the neighboring
blocks need to be accounted carefully as in Imbrie’s construction. Finally, the
reduction of 2L level system to 4L two-level systems is not legitimate — there may
be three-level collisions after we allow for 2π/T shifts.

One redeeming quality of this naive estimate is that it works very well to predict the
behavior up to L = 10. Consider again

U f loquet = ei(Hz+Hx)T/2eiHzT/2, (7.54)

but now Hz+Hx is the spin chainHamiltonianwe investigate in this paper. Individual
spins has magnetic fields along z hi ∈ [−1, 1] and the couplings Ji ∈ [−1, 1].
Surprisingly, the jump when one-spin levels start to wrap around is still clear and
almost unchanged for all system sizes up to L = 10. We divide the Av.X(γ,T)
by γ so that the plots for different γ approximately lie on top of each other. The
position of the jump is now at T ≈ π/2. The many-body slopes at small γ appear
to be renormalized by a factor of two as well with the addition of Jiσ

z
i σ

z
i+1 terms.

Long-time behavior appears to be saturating to a value ∼ 4γ with a slight positive
γ2 corrections in the L = 10 system.

Figure 7.5: The jump in Av.X(γ,T)/γ for L = 10 system

This lead Ponte et al., 2015 to conclude that the floquet Hamiltonian is also MBL
in a strong sense (admitting an Imbrie circuit using the notation of our paper). That
is, for example, that:

iH f loquet(t1 + t2) = ln(ei(Hz+Hx)T/2eiHzT/2) (7.55)
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Figure 7.6: The values of Av.X(γ,T)/k before and after the jump. An integer k is
chosen to approximately match the small γ slope.

has local with exponential tails form and can be diagonalized by Imbrie circuit. To
get around the ill-defined logarithm we say that the local structure exists for one
choice of 2πn/T .

Since the eigenstates are close to the product states except for a few resonances,
the evolution of a product state under U f loquet may actually preserve the regions
outside resonances up to infinite times. That is indeed what has been observed in
the numerical study (Ponte et al., 2015). A many body system that preserves a local
density matrix up to infinite time is demonstrating non-thermalizing behavior: hot
and cold systems put together do not reach the same temperature. Instead they stay
how they started.

There’s a consensus in the literature thatMBL systems under anyweak local periodic
driving do not heat up to infinite temperature. Thus in particular the driving
γ(t) = γCos2πt/T should not completely destroy the state even for large T . Note
that it does not immediately follow from our results about slow drive of γ(t): we can
predict what happens for a few periods of the drive, but eventually the diabatic errors
and the LZ drain could explore the whole configuration space. However, the diabatic
loss may be reversible — in the same integration by parts as above the periodic
drive over infinite time in principle keeps the error the same over many periods. The
LZ effects that are big are constrained locally. So the only contribution that remains
uncontrolled is a polynomially small correction fromhigh-order flips that are jumped
by LZ. Surprisingly, this effect seems to remain controlled at least in a limit of weak
drive up to infinite times, as demonstrated in (Abanin, Roeck, and Huveneers, 2016)
by constructing an analogue of perturbation theory that would allow an equivalent
of Imbrie’s construction. For stronger drives and higher frequencies, see a detailed
numerical study in (Rehn et al., 2016).
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C h a p t e r 8

D-WAVE

Consider again a disordered spin chain Hamiltonian

H = s(t)Hz + (1 − s(t))Hx, Hz =
∑

i

Jiσ
z
i σ

z
i+1 + hiσ

z
i , Hx =

∑
i

σx
i (8.1)

where s(t) = t/T and Ji, hi are random numbers drawn from a uniform distribution
on an interval [−1, 1]. Denote the number of spins by L. In this section we will
focus on the interaction with environment via

He =
∑

i

σz
i Bi (8.2)

where Bi are operators acting on the environment. To obtain the system evolution
in a closed form, a set of approximations can be made in the weak coupling limit
Ci j(t) = 〈B(t)i B j〉 → 0. The derivation of a master equation in this setting is can
be found in Mozgunov, 2016. Such environment acts on the MBL phase at s ≈ 1
primarily by dephasing: the off-diagonal elements ρnm of the density matrix in
the eigenstate basis are lost at a rate κL =

∑
i 〈n|σz

i |n〉〈m|σ
z
j |m〉

∫
Ci j(t)dt. From

Johansson et al., 2009 we know that for one spin κ = O(1) — it is of the same
scale as the local terms in the Hamiltonian. That allows us to focus our attention
on the diagonal of the master equation. It is well known that the Lindblad equation
decouples the evolution of diagonal density matrix elements in the eigenstate basis.
Such evolution can be written as a Markov process: an evolution of a probability
vector PE = 〈E |ρ|E〉 via the rate matrix:

ÛPn = Mnk Pk, Mnk =
∑

i

|〈n|Zi |k〉|2
∫

Cii(t)e−iEnk t dt, for n , k (8.3)

Here we assumed an independent noise on each spin. The matrix element between
two states |n〉, |k〉 given by their labels nprod, kprod in Z-basis is:

〈nprod |(1+
∑

c1(1− s)X + . . . )Z(1+
∑

c2(1− s)X + . . . )|kprod〉 ∼ (1− s)nr (8.4)

Here (1 + ∑
c1(1 − s)X + . . . ) stands for a Taylor expansion of the Imbrie circuit,

and nr is the consecutive distance between nprod and kprod . If the two levels are
resonant, the matrix element can get O(1). However for κ = O(1) the weak coupling
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limit is no longer applicable, so we can’t trust this equation for the diagonal rates.
The effective rates were presented in Johansson et al., 2009 and derived via Fermi’s
golden rule in Amin and Averin, 2008

Mn,k =
(1 − s)2nr

κ
e−

βEnk
2 −

E2
nk

4κ2 −
1
4 β

2κ2
(8.5)

where β is the inverse temperature that is also O(1) according to Johansson et al.,
2009. The noise is also low-frequency (Amin and Averin, 2008), so technically even
Born approximation fails and the use of master equation has uncontrolled error. We
believe that error bounds special for this case can still be derived, but we are not
aware of any work in this direction. We will use a simpler form for just one spin
flips below:

Mn,k = (1 − s)2e−
βEnk

2 , nr = 1 (8.6)

and ignore the rest. Here we note that the reduction to the diagonal of the density
matrix doesn’t do justice to the LZ transitions - all of them are followed adiabatically
in this approach. So for an accurate description, we don’t use the exact E(s) obtained
by diagonalizing H(s), instead we keep only the perturbative part of the Hamiltonian
U†H(s)U on logical spins whenever the resonance corresponds to a crossing that is
jumped. We discuss it further in the Subsection 8.2.

The final part of the protocol is a readout: the s = 1 state is measured in Z basis, that
is, a bitstring is sampled from the final probability distribution PE . The question
we address here is whether running this protocol on the MBL system captures any
features of that elusive phase.

Comparison The conventional way to test for MBL will be to prepare a nonequi-
librium state (e.g. an even-odd pattern of spins) and see if that state persists for
long times. This is a special case of a quench experiment, where we prepare an
eigenstate of Hz and that turn on small magnetic field instantly. What happens is
that all resonances present at this value of the field will start turning, and if one
measures several times after waiting for different intervals, the rare spins that will
be found flipping will belong to resonances. One can map out the resonances, and
as a consequence everywhere where the system is nonresonant (1 − O(γ) of sites)
the even-odd pattern will survive if it was put in initially.

This protocol is simple, can give valuable information in finite time (does not require
the protocol time to grow with the system size) and is already implemented in other
settings. What possible benefit or an interesting effect can the adiabatic evolution
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show that the above cannot? We find no immediate advantages of using it. The only
motivation is that it’s a chance to use an already available D-wave machine, but we
will find that the open system effects and the limit on the evolution times smears the
data so much that it would be infinitely better to just do the quench experiments.

So we cannot measure an "order parameter" of MBL on the machine directly.
Nonetheless, if the methods described in this section predict the results of a run
of the D-wave machine well, the underlying system has an MBL phase present at
the end of the protocol (and possibly other phases before it). So the error in our
prediction of the outcome becomes such an "order parameter" for the MBL phase.

8.1 Failure of the collection of (δE, nr) data
First we would like to answer how well can a D-wave machine collect a similar data
to what our exact diagonalization of small system sizes was collecting in Chapter 7,
and list all the complications that arise. Even though we will find a negative answer,
this will provide us with valuable intuition for the following Sections. Let’s review
the physics of the Landau-Zener transition.

If there is one avoided crossing that the GS encounters, the probability to stay in GS
will depend on protocol time by LZ formula:

Pgs = 1 − e2π∆2T/v (8.7)

here ∆ is the minimal gap and v = ∂(Egs − Ee)/∂s. The protocol time dependence
looks as follows:

If there’s two crossings that ground state experiences, the early times go as T2:

But the late times behavior always depends on the minimal gap encountered along
the path. We can extract it from the late times by taking a logarithm of 1 − Pgs and
fitting a line through its dependence on the protocol time. This is true for a closed
system. For an open system, one needs to be more crafty, as 1 − Pgs is generally
nonzero for all protocol times because of the thermal occupation of excited states.
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We can estimate the effect of the decay by considering the decay rate of a difference
in density matrices between the current state and the instantaneous Gibbs state
τs = ρs − ρG,s. It depends on the adiabatic parameter like (1− s)2. Indeed, the state
that is away from the ground state by nr � 1 spin flips does not have to relax to the
ground state directly. Each decaying state can always go to states that are energy
O(1) (constant energy barrier in 1d systems) away by (1−s)matrix element, and then
keep flipping until it reaches a state 1 spin flip away from the ground state, all within
O(1) energy window. The actual time dependence of the ground state depletion
〈g |τs |g〉 will go as 1 − O(((1 − s)2t)nr ) for small times, and poly(t)e−κe−β(1−s)2t for
long times, as probabilities take some time to redistribute themselves among the
intermediate states. The half-life of the depletion is still governed by an exponential
and is ∼ 1/(1 − s)2. Here by half-life we mean the time when depletion changes by
half, since its time dependence is not a simple exponential decay. It is also what we
measure from long-time tail of ln(1 − Pgs). Of course, this kind of model neglects
many contributions: for instance the entropic contribution of multiple possible paths
to the decay. So it’s not going to give the right answer for every system (especially
if the answer is that decay time grows with the system size - there are many models
that have an energy barrier but are not expected to be good memories). But it gives
the right intuition for the case of a chain, as is shown in (Alicki, Fannes, and M.
Horodecki, 2009) in the non-disordered case.

There is also a simpler framework that we will find useful. According to (Alicki,
Fannes, and M. Horodecki, 2009), there’s a gap ∆M in singular values of a matrix
MEE ′ between singular value 0 corresponding to the Gibbs state and all the other
ones. we claim that the same statement holds for our disordered chain. Consider
the rate of decay of the deviation from the ground state τs for a very special τs that
is zero everywhere except for the ground state and the first excited state. 〈g |τs |g〉 =
PGibbs

e − PGibbs
g and 〈e|τs |e〉 = PGibbs

g − PGibbs
e . The rate of decay of such τs is lower

bounded by a decay with the Markov process with a transition matrix in which all
nonzero singular values are the same (equal to the gap of the original process ∆M).
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And that one has a very simple τse−∆M∆t behavior. In our case, ∆M = κ(1 − s)2 as
(1 − s)2 is an overall factor appearing through the matrix elements

∑
i |〈E |Zi |E′〉|2

that define every ME,E ′.

Let’s consider the protocol with s = t/T and see which LZ transitions are feasible
to observe and which ones will have their effects smeared by the decay. The fact
that the relaxation depends on s as (1 − s)2 alters the result by a constant factor in
the exponential. One also takes into account the time ∼ (1 − s∗) left till the end of
the protocol, where s∗ is the position of the avoided crossing of the ground state and
first excited state. With decay, we expect the end population after one LZ transition
at s∗ to be:

Pgs − Pgibbs
gs = (Pgibbs

e − Pgibbs
gs )polynr (κ(1 − s∗)3)Tprot)e−(∆

2/vs∗+κ(1−s∗)3)Tprot (8.8)

Even if for some reason the half-life does depend on consecutive spin flip distance
nr to the excited state, it will only do so linearly or weaker. The gap in ∆2/vs∗ is
exponential in nr , so its contribution to the exponent is negligible for most nr .

We have dropped the terms that would come when occupations of the excited states
Pe are comparable to that of the ground state Pgs. This approximation is valid
for small system sizes and small temperatures as the ground state has the most of
the population. The approximation can be thought of as follows: fully occupied
groundstate experiences crossings with different states, but decays back. Decay is
so strong that before smin s.t. κ(1− smin)3)Tprot = 1 we expect the LZ occupations to
decay and be not so well measureable. For a our Hamiltonian, κ ≈ 1 andTprot ≈ 105.
Thus smin = 0.98 - well into the MBL regime. So the Z phase flips actually help
focus the data on the Hamiltonians close to Hz. The decay will also obscure (make
negligible) the ∆2/vs∗ contribution of all resonances of sizes nr > 2, which is almost
all of them. The time Tsmin is called a freezing time.

Suppose we measure 1 − Pgs for different protocol times. The long times log-slope
will give (∆2/vs∗ + κ(1 − s∗)3) for s∗ - the position of the last crossing. So if
interpreted as the closed system result would be, it will overestimate some of the
small ∆2/vs∗ , especially the ones away from Hz. So some of the small gaps will be
reported as big ones. The same effect was already present in the closed system case
due to the variability in velocities v = ∂(Egs−Ee)/∂s. We expect vs∗ ≤ vmax ∼ ‖H‖,
but in principle it can be very small. This will bloat the small gaps as well. One
redeeming feature is that if the small gap is bloated by either of the two factors,
another one comes in its place. If there are two or more small gaps encountered
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by the system, the long times log-slope will be given by one of them, such that
Min(∆2/vs∗ + κ(1 − s∗)3) is achieved. That condition prefers the cases where the
corrections are weaker.

An experimentalist can collect the data for the factor in front of Tprot in the expo-
nential for different disorder realizations and system sizes. We also want to record
the number of spins nr that are flipped between the ground state and the state the
smallest gap transition was to. We can’t get that information from D-wave directly:
in practice, it’s hard to findwhich state the smallest (∆2/vs∗+κ(1−s∗)3)LZ transition
was to. But it is likely to be the last one. So instead we use the consecutive flip
distance to the lowest excited state at the end of the protocol (or the average over the
distance to a few lowest excited states).

Smallest gap (∆2/vs∗ + κ(1 − s∗)3) has the typical gap that an avoided crossing
would have in our system. Indeed, the distribution of neighbors is what governs the
resonance sizes (see Chapter 6), and most of the weight is concentrated around size
nr ∼ L. One of nr ∼ L resonances will have the smallest (∆2/vs∗ + κ(1 − s∗)3). We
expect s∗ to be in MBL phase, if any crossings fall into the range [smin, 1] at all. In
the minimal gap estimates of Chapter 4, we did not find any avoided crossings at all
at sizes L < 10. Since the fully occupied ground state approximation breaks down
pretty fast with system size (at L > β ≈ 1), our prediction here is that small system
sizes where it is valid will not see any crossing that would allow one to extract
(∆2/vs∗ + κ(1 − s∗)3).

Moreover, even though there’s a possibility for two terms to be comparable, the
expectation is that the closed system contribution is orders of magnitude smaller
for all the cases we’ll see. Note that running a system size many times to collect
statisticswith exponential precision takes exponentially long time. If wewere to look
at L = 10, we can plug in the numbers directly. k(1− s)3T = 104, and ∆2T/v = 102.
There’s no way in the world to measure e−102 difference in population.

It takes exponentially long in the system size to collect (δE, nr) data for avoided
crossings by relying on exact diagonalization as in Chapter 6. If one doesn’t know
where the crossings are in advance, it will also take exponentially long to collect
such data using a fully operational quantum computer (since they are exponentially
small). But note that not all of them are like that. We can still collect (δE, nr) for
big δE . Conveniently the gap between the ground state and the first excited state
is O(1/L), so the crossing we’re measuring can have a splitting as big as ∼ 1/L.
Suppose we wanted to search for this kind of crossings involving the ground state in
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the vicinity of s = 1. That can be done in polynomial time on a quantum computer
by essentially running the closed system protocol described in this section. Now
can we use D-wave to perform the same task?

Such a task is easier if we allow adjustments to the D-wave protocol. First of all,
we suggest a simple quench protocol where a state in z-basis at s = 1 experiences
a sudden change to s , 1. After some time, the state is measured in z-basis. This
protocol is will allow to detect resonances of sizes up to nr = 2 in our MBL system,
that is, almost all of them at this s. Bigger resonances will be obscured by thermal
decay. One can also deduce their splitting by investigating the time-dependence of
the observed z-projection. So we can collect a clean (δE, nr ≤ 2) data by carefully
analyzing the data from the same experiment as what is conventionally done to
detect MBL in cold atoms. Alternatively, we can consider a protocol that also starts
with a state in z-basis (not in x-basis like the D-wave machine) and then quenches
to s1 and evolves to s2 over a time T . That has the benefit of higher chances of
running into bigger nr (smaller δE). Both protocols will be useful for a search for
O(1/L) crossing that the ground state can experience. Below we discuss possible
implications of such measurements.

Recall that Imbrie’s bound on δE is proven throughout the whole spectrum of
energies, not just the crossings between the ground state and the first excited state.
One can imagine the strongMBL property shown by Imbrie to fail, while the ground
state splitting of crossings is still bounded by γnr

e f f at the crossing. That happens if
at any nonzero (1 − s) the mobility edge is present in the system: all the eigenstates
above it are extended, and below — localized. Such situation is not very likely
for a generic system, since we’re infinitesimally close to a z-Hamiltonian, but the
intensive and extensive mobility edges are discussed in the literature (Cuevas et
al., 2012). We illustrate the possibilities in the figure below: The current D-wave
machine can distinguish between (c) and the rest, whereas the adjusted protocol
will be able to detect the mobility edge in (b). Indeed, the relationship δE ≤ γnr

e f f

is only present in the MBL phase, the extended phase is essentially flat in nr as
shown in Chapter 6. We note that possibilities (b),(c) are not going to be present in
1d disordered (1 − s)Hx + sHz systems generically (as per Imbrie’s proof). To see
them, we either need a very atypical family of disorder realizations, or to look at a
higher-dimensional (or long-range) Hamiltonian.

So the application of a D-wave machine to physics using the method of this section
could be to study theMBLphase found in (a) and tomeasure the quantities used in the
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Figure 8.1: Phase diagram (a) is expected for our spin chain. Mobility edge (b) and
a fully extended phase (c) is shown for comparison.

Imbrie’s proof (e.g. splitting), albeit with very strong limitations (only nr < 2, L < β

can be accounted for), and everything it can do so far can be reproduced by exact
diagonalization. In the next Section we will go with our predictions beyond the
ED lenghscale. Let’s note a crucial feature of the usage of the D-wave machine
we seek: the task of mapping out a phase diagram of a many-body system is a
non-commercial scientific application of independent interest. So far it has only
been used to (i) study itself and (ii) approximately solve instances of an optimization
problem. It was shown to be not very suitable for either of those tasks, but we believe
that it can perform well at the task of simulating physical systems of independent
interest (quantum simulation task).

To sum up: in this approximation, there are 3 regimes in terms of the speed of
the drive and the system size: (i) all is thermal, because the last crossing has had
plenty of time to relax (ii) the last crossing didn’t completely relax, so a jump +
thermal relaxation describes it (iii) the last crossing wasn’t too small so a full LZ
+ thermal relaxation describes it. The most frequent regime for small system sizes
is (i), followed by (ii) and the most rare of all, (iii). The regime (iv) that will be
explained in the following is when deviations from the Gibbs distribution become
more complex .

Larger than ED system sizes are never in the regimes (i-iii). So if we want to extract
anything at all from the runs of the D-wave on big sizes, we need to expand our
understanding.
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8.2 Prediction about distribution deviating from Gibbs
Consider a so called stoquastic Hamiltonian corresponding to a Markov chain de-
scribing the evolution of the energy level population:

ÛPE =
∑
E ′

ME ′→E PE ′ ⇔ Û|ψ〉 = HM |ψ〉, PE =

√
PGibbs

E 〈E |ψ〉 (8.9)

We note that the PGibbs (and |g〉 for the equivalent quantum problem) is the steady
state of the time-independent chain. In our case, the generator of the evolution
ME ′→E changes with time slowly: the energy levels drift so the would-be fixed point
changes as PGibbs(t) (or |g(t)〉). We plan to apply the above equation for the MBL
part of the path s > 0/8, assuming everything is Gibbs before that. The transitions
rates contain an overall factor (1 − s)2 that can be taken out by rescaling of time
τ = T(1 − (1 − t/T)3). The Hamiltonian (or Markov chain) after that has a constant
gap (constant gap of 1D Ising relaxation has been proven by Alicki, Fannes, and
M. Horodecki, 2009). We again use a simplification where all singular values are
equal to the gap ∆M . After the rescaling, ∆M ∼ κ and contains Gibbs factors of
transitions that are O(1) in energy. Since β = O(1), we can just set the whole thing
to one ∆M = 1 up to a constant factor:

HM(τ) = −
∑

e

|e(τ)〉〈e(τ)| = −(1 − |g(τ)〉〈g(τ)|) (8.10)

Here |e(τ)〉 are the instantaneous excited states of HM . Since we’re working with a
Hamiltonian, we used the fact that its eigenstates form a resolution of the identity:
|g(τ)〉〈g(τ)| + ∑

e |e(τ)〉〈e(τ)| = 1. In practice some of the exponentially many
excited states relax even faster than the rate we set, but it will not alter the estimates
below. Recall that before we identified a timescale s∗ = 0.98. Looking at HM ,
nothing peculiar stands out about last 0.000008T of τ (which corresponds to s > s∗).
It is defined as the place where if the big changes in the state are introduced, they
don’t have time to completely relax. It is an upper bound on the time the changes
actually start to persist until the end of evolution. The source of changes is hidden in
the time dependence of eigenstates |g(τ)〉, |e(τ)〉: energy differences start to curve
with singular slopes as τ → T . But the crossing physics is lost as soon aswe replaced
the full density matrix evolution with just the energy level population. Since we
know that crossings are jumped for most of the intersections, we should truncate
the z-Hamiltonian used to define energy levels at a low order of the construction, so
that it automatically ignores all the resonances n > n∗ defined in Chapter 7 (let the
levels E used to define ME,E ′ pass through each other with populations intact). The
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construction will still send the populations of levels for n < n∗ adiabatically. This
idea is similar to the 6th order of perturbation theory used by (B. Altshuler, Krovi,
and Roland, 2010) to map out the energy levels near s = 1.

A side note to alleviate a possible confusion: the stoquastic hamiltonians in imagi-
nary time always have positive amplitudes in the ground state, so it cannot experience
a genuine LZ transition with anything. Other levels too because of imaginary time,
so we should not apply our ideas about LZ transitions to this one. All the dynamics
is in the changes of the eigenvector itself.

Now we use the same method of finding the diabatic corrections as in Chapter 7.
Consider the imaginary time Shroedinger equation:

Û|ψ(τ)〉 = HM(τ)|ψ(τ)〉 == −(1 − |g(τ)〉〈g(τ)|)|ψ(τ)〉 (8.11)

Using the resolution of the identity again, |ψ(τ)〉 = |g(τ)〉〈g(τ)|ψ(τ)〉+∑e |e(τ)〉〈e(τ)|ψ(τ)〉.
Then we can derive the time-evolution:

d
dτ
〈g(τ)|ψ(τ)〉 = 〈 Ûg(τ)|ψ(τ)〉 + 〈g(τ)|HM |ψ(τ)〉 (8.12)

The second term is zero as the ground state is annihilated by HM . Now insert the
resolution:

d
dτ
〈g(τ)|ψ(τ)〉 = 〈 Ûg(τ)|g(τ)〉〈g(τ)|ψ(τ)〉 +

∑
e

〈 Ûg(τ)|e(τ)〉〈e(τ)|ψ(τ)〉 (8.13)

Now the first term is zero as we can see if we take derivative of 〈g(τ)|g(τ)〉 = 1, and
use the fact that for stoquastic Hamiltonian we can always choose all the states to
be real, so 〈g(τ)| Ûg(τ)〉 = 〈 Ûg(τ)|g(τ)〉. The second terms contain amplitudes in the
excited states 〈e(τ)|ψ(τ)〉 which we assume to be small by p.t. So in the first order,

d
dτ
〈g(τ)|ψ(τ)〉 = 0, 〈g(τ)|ψ(τ)〉 = 1 (8.14)

Now for the evolution of amplitudes of the excited states, we find (again, neglecting
the higher orders of p.t.):

d
dτ
〈e(τ)|ψ(τ)〉 = 〈 Ûe(τ)|g(τ)〉〈g(τ)|ψ(τ)〉 − 〈e(τ)|ψ(τ)〉 (8.15)

The steady state is such that the r.h.s vanishes, and is reached in O(1) time:

〈e(τ)|ψ(τ)〉|steady = 〈 Ûe(τ)|g(τ)〉 (8.16)
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Here we have used that 〈g(τ)|ψ(τ)〉 = 1. Also note that 〈e(τ)|g(τ)〉 = 0, thus
〈 Ûe(τ)|g(τ)〉 = −〈e(τ)| Ûg(τ)〉. Finally, we can write the full steady state vector:

|ψ(τ)〉|steady = |g(τ)〉 −
∑

e

|e(τ)〉〈e(τ)| Ûg(τ)〉 (8.17)

We can collect the resolution of the identity (remember that 〈g(τ)| Ûg(τ)〉 = 0):

|ψ(τ)〉|steady = |g(τ)〉 − | Ûg(τ)〉 (8.18)

Now recall that the steady state takes O(1) time to equilibrate. So any changes in it
that happen in the last interval τ ∈ [T − 1,T] will not have time to take effect. That
"screens" the singularity in | Ûg(τ)〉. Note that τ∗ = T − 1 is the same condition as
(1 − s∗)3T = 1 which gave us s∗.

So what we expect from |ψ(T)〉 is that it is well approximated by the steady state
one relaxation time away, that is:

|ψ(T)〉 ≈ |ψ(T − 1)〉|steady = |g(τ∗)〉 − | Ûg(τ)〉|τ∗ (8.19)

If we use the Taylor expansion around τ∗:

|g(T)〉 = |g(τ∗)〉 + | Ûg(τ)〉|τ∗ +O(| Üg(τ)〉|τ∗) (8.20)

The derivatives will turn out to be small, so we get a factor of two:

|ψ(T)〉 ≈ |g(T)〉 − 2| Ûg(τ)〉|τ∗ (8.21)

How far it is from the Gibbs state depends on the size of the correction | Ûg(τ)〉|s∗:

〈E | Ûg(τ)〉 = d
dτ

e−βE/2
√

Z
=

1
T

dt
dτ

dE
ds
−βe−βE/2/2
√

Z
− 1

2T
dt
dτ

e−βE/2
√

Z

dlnZ
ds

(8.22)

where we can use the numerical slopes to estimate dE ′
ds ∼ L(1 − s) in the first term.

We denote the amplitude of the deviation |〈E |(−2)| Ûg(τ)〉| = f (s):

f (s) = 1
T

dt
dτ

dE
ds
−βe−βE/2
√

Z
∼ L
√

ZT

1
(1 − s) (8.23)

The second term adjusts overall scale of the steady state compared to |g(τ)〉. Markov
chain preserves the sum of probabilities, so we expect the equivalent dynamics to
respect that, and that terms makes that happen.

The components of |g(τ∗)〉 are of order 1/
√

Z . So at least while f
√

Z � 1, the
probabilities will not be too far from their equilibrium values - the decay is working.
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Intuitively, at position s the nonequilibrium state’s amplitude deviation from the
steady state is bounded by f . Let’s calculate when f

√
Z = 0.1:

L
T

1
(1 − s) = 0.1 ⇒ T(1 − s)/(10L) = 1 (8.24)

for L > 200 this condition gives s < s∗ = 0.98. Another way to put it:

√
Z f (s∗) = L

T
1

(1/T)1/3
=

L
T2/3 ≈ L/2000 (8.25)

So this is the bound on relative deviation of amplitudes of |ψ(T)〉 from |g(s∗)〉.
Recall that the observed probability distribution is related to |ψ(T)〉:

|ψ(T)〉 = P−1/2
G P (8.26)

Here PG is a Gibbs state at s = 1.

If we square and add up the amplitudes of |ψ(T)〉− |g(T)〉, the relative error becomes
an absolute error:

f
√

Z =
√
((P − PG)P−1/2

G )T (P − PG)P−1/2
G = ‖(P− P∗G)/

√
PG‖2 ≤ L/2000 (8.27)

That is the norm for which we predict a bound for D-wave. The precise number
2000 is to be taken with a grain of salt, as we dropped numerical factors along
the way and didn’t use the true relaxation rates for a chain. But we see that this
construction lets one arrive to a bound on error < L/10L∗ with some L∗. We also
note that distributions can be traced over the complement of a region R. Let’s look
at the expression again:

P = P1/2
G |ψ(T)〉 = PG − 2P1/2

G | Ûg(τ)〉|τ∗ = PG −
1

T(1 − s∗)2
dE
ds
−βe−βE

Z
+ norma-n

(8.28)
First lets express the correction in terms of spins in z-basis:

P(sz) = PG(sz)
(
1 + β

1
T(1 − s∗)2

dE s∗(sz)
ds

+ norma-n
)

(8.29)

The factor L comes from E s∗(sz) - the energy of the level corresponding to sz at s∗,
for which the perturbative expression is valid. Denote:

dE s∗(sz)
ds

= (1 − s∗)
∑

i

Oi(sz) (8.30)
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where each Oi(sz) is a norm O(1) tailed function (operator) of sz around site i. We
truncate it with some constant collar c. Now we take a trace over R:

trRP(sz) = trRPG(sz)
(
1 + β

1
T(1 − s∗)

∑
i∈R+c

Oi(sz) + norma-n

)
(8.31)

We see that the only spin-dependent corrections are from operators Oi that are in
the collared region R + c. The rest just contribute to the overall normalization. So
the deviation of the distribution observed in R from the trace of a Gibbs state is:

trRP(sz) − trRPG(sz) = β(1 − s∗)2trRPG(sz)
∑

i∈R+c

Oi(sz) + norma-n (8.32)

The sum of the absolute values of the differences (the 1-norm) is bounded as:

‖trRP(sz) − trRPG(sz)‖1 = β(1 − s∗)2(R + 2c) = R + 2c
T2/3 (8.33)

Unfortunately, it’s not easy to calculate either of the two norms for a distribution
from which we only have a sample. But we see that all the deviations come from
operators Oi that have a tailed decay with a small exponent 1/(−lnγ). So we expect
all the deviations of P from PG to come from traced distributions over just a few
neighbors.

8.3 Distributions as slopes, small systems
Here we will discuss how slopes of levels near the ground state can be measured
after the protocol. First of all, let’s define the relative slopes carefully: there is an
overall scale factor that contributes to every slope. For example, for the counting of
the number of crossings the relative slopes generated by a Hamiltonian sH (where
H is independent on s) should be counted as zero (because there are no crossings)
even though the levels appear to go at different angles. We can exclude the effect of
rescaling the Hamiltonian by adding the scale transform. As the first step of it, one
needs to find average slopes at different ranges of energy. Then one finds the point
where they intersect (or average of those intersections), and rescales the slopes so
as to send that point to infinity.

The relative slopes are O(L) in the system size. The density of states is exponen-
tial as Lexp(

√
L) even in the constant window of energies above the ground state

(see the Supplementary material to Cuevas et al., 2012). Correspondingly, one
gets O(L2e

√
L) level crossings with the ground state throughout the protocol. The

coefficient should be such that at L = 10 there’s still 0 to 1 crossings. Let’s assume
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Figure 8.2: The Hamiltonian rescaling procedure used to determine slopes involved
in frequency of resonances. Steps (a) and (b) are averaging, then at step (c,d) the
transformation is found and applied to original slopes

L2e
√

L/2000 dependance. There’s a special point s∗ = 1 − (1/T κ)1/3 = 0.98, be-
fore which the effects of the crossings have enough time to be washed away by the
environment.

How many crossings are in [0.98, 1]? If the slopes obey 1 − s like they do for the
midband, we’ll get an extra numerical suppression of (1 − s)2 = 0.0004 of the total
number. Now it’s 0.0004L2e

√
L/2000. So there will be a system size L∗ = 60 when

the first crossing falls into this range. Among the crossings there are a few ones
of size 1, 2 such that their slow passing can significantly mix the occupancies. But
the probability that those fall into the range of [0.98, 1] remains very small for all
sizes D-wave has to offer. So we don’t need to worry about LZ formula, just the
Gibbs probabilities of the appropriate logical spin Hamiltonian. We also note that
for excited states crossings appear for system sizes smaller than L∗.

A simplified model derived above is that the end state is

P(sz) = PG(sz)
(
1 + β(1 − s∗)dE s∗(sz)

ds
+ norma-n

)
≈ Ps′

G (sz) (8.34)

which corresponds to the Gibbs distributions at energies E(s∗). So the D-wave
machine is preparing a Gibbs distribution at s∗ = 0.98, from which for small
system sizes we can extract the energies. Note that every population whose statistics
have been observed ({Pi} for different states i) can be interpreted as energies via
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Ei = T lnPi where T = 1/β is the temperature. There’s an overall constant that
remains arbitrary. It can be set by setting the smallest energy to zero. This allows
one to extract energy slopes near z-Hamiltonian from D-wave data! Pictorially,
one just positions two sets of levels 0.02 apart in s, one for z-Hamiltonian, and
ones extracted from the "permuted" distribution. Note that in the actual system
levels go as (1 − s)2, not as straight lines, which introduces a factor of two in the
estimate. Of course, if the p.t. is valid, one can extract the same picture the way (B.
Altshuler, Krovi, and Roland, 2010) did it in poly-time, so the D-wave doesn’t offer
any speedup here. Also, for any big system it takes exponentially long to collect the
distribution precisely.

In reality the extracted Ei can be placed on the level at si somewhere between, say,
s1 = 0.9 and s = 1. Indeed, at s1 the state is Gibbs with a good precision. The
equation Ei = T lnPi will obtain an exact match with the spectrum if applied for s1

populations. Then the system fails to follow the level changes, so the populations
remain closer to the past Gibbs state at s1. How close depends on the rate of
decay of an individual level, and the detail of the Markov process. To the zeroth
approximation, all of the si = s∗ = 0.98. In practice there is a scatter, in some
extreme cases some points lie even outside [0.9, 1], but we neglect that.

Figure 8.3: The data processing procedure where end populations are interpreted as
points along the evolution of the level, and then they are collapsed to s∗ = 0.98 and
used to determine a first approximation to slopes.

The zeroth approximation dE/ds(0) can be obtained by investigation just one prob-
ability distribution for a specific Tprot . The position of s∗ depends on Tprot .
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To obtain the first approximation, one needs to use the specific properties of the
underlying Markov process. We do not control the error between the zeroth and
the first approximation. Both adjustments are really weak in 1 − se f f = 0.02, but
they are of the same order. So one needs to study the Markov process to fit those
(supposedly small for small system sizes) differences between P and PG. Now we
know that those differences are only due to local Oi, so simulating a small system
size and then truncating a few sites at each end should give the same trRP(sz) as the
real experiment.

Let’s discuss what can be done with a Markov process. TheMarkov matrix has rates
Pi→ j obeying the detailed balance:

Pi→ j

Pj→i
= eβEi j (8.35)

So Pi→ j = κi jeβEi j . This equation can be derived from a Lindblad equation as
described in the beginning of the Chapter. The diagonal and offdiagonal evolution
decouples for it, and the offdiagonal terms decay really fast. What’s left for the
diagonal is the Markov process obeying the above. The Lindblad equation itself is
theoretically not a good approximation for a strong bath, one may consider looking
at the Redfield instead. In practice we did not see any serious differences.

The specific terms in Lindblad are well known, but one needs exact eigenstates to
calculate the matrix elements 〈φ|Z |ψ〉. Or one uses the first few steps of the Imbrie
circuit and neglects all the rest. Approximate calculation of these matrix elements is
possible (one should be contempt with elements between states one spin flip away),
since the Imbrie’s procedure is poly-time for a finite number of steps, so one can
obtain the form of the Markov chain.

Since we only talk about small system sizes here, all the approaches are feasible.
The Redfield is probably the best compromise between computational efficiency
and simplicity: one can easily simulate ED sizes. We note that a patch in a bigger
system can be selected and the distribution can be traced to what’s in the center of
the patch. Now back in the approximation where all the decay singular values were
the same, the nonequilibrium state is a Gibbs state of the Hamiltonian at another
time. The validity of the truncation to a small patch can be checked if we compare
trCe−βH for different total system sizes. By the transfer matrix method outlined in
the Appendix, this distribution converges starting from some system size C + 2ξ
where ξ = O(1) is the distance at which classical correlations decay. We hope that
the same applies to nonequilibrium states extracted using true decay rates.
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Now note that comparing the slopes extracted from ln(trCP) for different s′ may
contain an indicator of the MBL phase vs. the extended phase, just like the closed
system slopes did in Chapter 5. The boundary effects introduced in the truncation
can be estimated using the Gibbs state approximation. After blocking the effec-
tive Hamiltonian into 2-site terms, each truncated side just introduces an effective
magnetic field on the corresponding end spin. The dependence of that magnetic
field on s is not much stronger than dependance of other couplings. So we expect
it to contribute a system-size independent constant into the slope. Of course, in our
system it’s always MBL near the ground state and the z-Hamiltonian. Even if there
exists a rapidly mixing system with disorder that becomes delocalized at s∗, only at
a very large system sizes will the band around energy ∼ temperature T with level
spacings exp(−

√
L) start to get delocalized.

To conclude, let’s answer a somewhat simpler question: what would be the ground
state population of a chain at the end of the protocol depending on the system size?
It varies from disorder realization to realization, but for small sizes it is the Gibbs
state, so the occupation of one state is O(exp(−L)) and random (occupies a band
around exp(−L) if sampled from different realizations). There are corrections to the
Gibbs value because of the failure of decay at the very end regardless of crossings.
We get the Gibbs value for s = 0.98 roughly, and it stops changing after that. What
happens at L∗ = 60 when the first crossing appears is that the end probabilities of the
ground and the first excited state can now be out of order in magnitude. Surprisingly,
we see it much earlier in the numerics.

Non-monotonic population
For a simulation of a 1d MBL chain in the D-wave protocol one observes an
irregularity in populations of final states. Instead of population following the Gibbs
state with some smooth correction, there are preferred states appearing that depend
on the speed of the driving and the level layout. This is contrasted with non-MBL
systems, where preferred states are not expected to appear, at least the populations
should remain smooth typically. Such irregularities are a suppressed remnants of the
preferred states in the closed system adiabatic evolution. It is indeed observed for
many disorder realizations, at least for smaller protocol times T = 1000 and system
sizes L = 10. However, even for clean transverse field Ising model we observe
step-like behavior in populations that is sometimes non-monotonic in energy.

One would think that investigating monotonicity will lead to an indicator of the
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MBL vs. extended phase. The biggest problem with this approach is that the non-
monotonicity is a qualitative, not quantitative feature. One interesting quantitative
consequence of the non-monotonicity is the possibility of a work extraction. Even
from the monotonic non-Gibbs states one can extract some work. We investigated
some of the measures from quantum thermodynamics, related to the majorization
and resource theories, following a picture from (Michał Horodecki and Oppenheim,
2013). But we don’t think there can be any quantitative measure that works as
an "order parameter" related to the non-monotonicity of the level populations with
energy.

8.4 Distributions too thin to sample
So, a run of a size L = 100 chain on the D-wave machine will return a sample
from a distribution P(s), where we won’t see two states twice unless we run it for an
exponential time. We can still trace out most of the spins to calculate local density
matrices. Those should be fairly consistent with the local Gibbs state.

Only sizes up to L = 20 are accessible for direct comparison with the Gibbs state
due to memory limitations of the classical software and a high number 220 = 106

of runs of the machine. For bigger sizes, the overall error grows as L, but it is just
compounded from small local errors. When at L∗ = 60 the first predicted jump
crossing introduces a permutation in the global probability, it is still reflected in
the global Gibbs state at s′ if we use z-projections as state labels. Will this effect
be washed out by the influence of truncation in simple local Gibbs states? If we
only compare local density matrices, one may be concerned that something global
is missing from the picture. Here we introduce a possible measure of error that is
applicable when we can only sample from a distribution: the Bayesian likelihoods.
Essentially we calculate the logprobability of the observed data with the assumed
distribution. We expect the logprobability to grow if one uses Gibbs state at s′ as
compared to classical systemGibbs state. One can improve the likelihood evenmore
by using the decay models, or other numerical methods. If one has a hypothesis as
a matrix product density operator, one can easily calculate logprobability.

Let’s see how to compute likelihoods (= free energies) for the Gibbs cases. We get a
bitstring. With ED, we find eigenstates for H(s′) of patches that match the bitstring.
Then we calculate the expectation value of the Hamiltonian terms in the middle of
the patch. By scanning like this, we can get energy that is this eigenvalue, thus
logprobability. We can compare that to pure z. Constants are partition functions of
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pure z Hamiltonian and the quantum one. The first one can be calculated via the
transfer matrix method, the second one - via trotterization of e−βH and contraction
of it. Both poly-time. The likelihood is calculated as:

− logP
Nruns

= Avsn X(sn) + ln
∑

s

e−X(sn) (8.36)

where X(sn) is the βE(sn) of string sn we’re trying to use. One can easily see that
the function on the right is minimized for X∗ s.t. strings are distributed ∼ e−X∗(sn).
The value at the minimum is the entropy of this state. One can plug in the classical
Hamiltonian X = βHz at the end of the protocol as the prior, and the diagonalized
quantum Hamiltonian X′ = βUH′U† as the competing hypothesis. The second one
should be closer to the underlying entropy of the distribution we sample.

For calculation of quantum partition function, one can do without trotter. Note that
〈λ |H |λ〉 = ∑

i 〈λ |Hi |λ〉, and each Hi just spreads by a small amount by the Imbrie
circuit. Take L blocks around each Hi at the biggest size that is accessible by ED.
Label the states by z-spin expectations rounded to ±1. Now use the found averages
of Hi to build a classical Hamiltonian that is local on ED size. Its free energy can
be calculated via the transfer matrix.
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C h a p t e r 9

GENERALIZATION TO OTHER SYSTEMS

9.1 Efficient simulation of big systems via master equation
Consider a more general system sHz + (1 − s)Hx , possibly in 2d. Assume that at
s = 0.8 the protocol is stopped and the system thermalizes for arbitrary long time.
The thermal state is expected to be described by a tensor network for any system
with exponentially decaying correlations. For the further evolution one just needs
to update it via a local master equation (it is easier to use the equivalent stochastic
shroedinger equation though). It is only known how to do the required tensor
contractions and the truncation of entanglement in the case of Matrix Product States
(1d systems). Now there’s another method that is so naive no one to our knowledge
seriously investigated it, but somehow it seems to be applicable at least in this work.
One initially assumes that the state is thermal along the way. Then one can calculate
time-dependent correlation function along the protocol. Master equation for a patch
of a closed system depends on the full dynamics only through Ci j(t) = 〈Ai(t)A j〉 on
the boundary. If Ci j(t) decays sufficiently fast with |i − j |, we can self-consistently
simulate big systems! One can evolve each patch in a bath of thermal time-dependent
correlation functions of its neighbors. This will give some evolution of the patches
computed in poly-time. Then one can use these patches to calculate correlation
functions one more time, to plug in the new evolution. One repeats the steps of
this procedure until convergence. There’s no guarantee it converges, or does so in
poly-time. But if it does, we get a self-consistent answer. That is, we know density
matrices everywhere, and we know that their local time-evolution looks like the
generator was our time-dependent Hamiltonian.

A simple counterexample when this method fails will be two wavepackets after the
beamsplitter. In time that’s related to a Lieb-Robinson bound of the system and
the size of the patch this will fail to describe reality. All the interference is lost.
So some effects like weak localization correction will also be out of reach, or will
get adjusted by a correction depending on the size of the patch. But besides that,
maybe the long-range interference is not that important for D-wave. It will be a
good method to compare the experimental results to.

Another interesting application for this method are all-to-all connected systems. The
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Figure 9.1: Layout of pathes for a 2d system

mean field is exact in some calculations like the cavity method, and this method may
also benefit from a boost in accuracy like that. The only to our knowledge relevant
result in mathematical physics is LRB on a complete graph (Lashkari et al., 2013),
which allows the authors to prove that for t ∼ logL (logk for coordination number
k) the state of the system can be approximated by a pure product state. Clearly it
proves the validity of method suggested here for at least that time. A more tight
error estimate for it is an open question.

We can also use the logarithmic LRB for MBL systems to establish that for some
patch size n the time for which the above method is valid is exp(n) > T(1− s∗) that’s
left to travel to z-Hamiltonian. Our work proved that one is allowed to use a much
smaller patch for 1d chains.
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A p p e n d i x A

TRANSFER MATRICES

Is there a local representation of the disordered z-chain? We’re interested in being
able to sum over spins up to position i0. The probabilities are:

P(s) = 1
Z

∏
i

e−βHi(si,si+1) (A.1)

Consider a left portion of the chain up to spin i0:

H(i0) =
∑
i<i0

Hi(si, si+1) (A.2)

In this chain, the probabilities of different values of si0 can be found:

PL(si0) =
1

Zi0

∑
si, i<i0

e−βH(i0) (A.3)

Note that the numeratorPL(si0)Zi0 can be found recursively:

PL(si0)Zi0 =
∑
si0−1

e−βHi0 (si0−1,si0 )PL(si0−1)Zi0−1 (A.4)

The normalization factor can be chosen at every step such that
∑

s PL(s) = 1. One
can also include the normalization factors into the equation on probabilities:

PL
i0
= TPL

i0−1 (A.5)

where T is a 2x2 transfer matrix. Computing transfer matrices and their products
takes poly-time. Using transfer matrices, any correlation function of local operators
can also be computed in poly-time. In particular, we can compute a joint probability
of finite number k of (possibly distant) spins. That would be equivalent to knowing
(after poly-time of effort) any density matrix of size that can fit in our memory.

But note that it doesn’t give us low-lying states immediately! Even though we know
the probability P(s) = 1

Z
∏

i e−βHi(si,si+1) of every state (can compute it for one state
in poly-time), we don’t know which are the likely states. That’s counterintuitive
because we seem to have what we like to call "efficient description", yet to produce
a sample from this distribution we need some extra work.
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Proposition: we can find polynomially many low-lying states in poly-time.

Unfortunately, they’re not going to contain > 1/2 of all the probability distribution.
One can imagine a system at nigh-infinite temperature, where one need to know
exponentially many likely states to get to 1/2 of probability distribution. But
note that if energies scales as O(L), then this argument requires corresponding
temperature also scales as O(L). For temperature that stays finite, it really all
depends on the density of states. One needs to solve the following system:

Z =
∫

dEρ(E)e−βE,

∫
dEρ(E) = 2L, Z/2 =

∫ E∗

0
dEρ(E)e−βE (A.6)

where E is counted from the bottom of the band. Then the number of states that we
want to know (that we will see in the machine) is:

N =
∫ E∗

0
dEρ(E) (A.7)

if it were N =poly(L), then the method below is useful. If N =exp(L), there’s no
way to list so many levels, but we can sample from them with Gibbs probability
using Monte Carlo. On the experimental size, we’ll need to spend exponential
time sampling from this distribution to collect any data about underlying many-
body probabilities. Shorter samples can still be compared to theory using Bayesian
methods as was discussed in "Distributions too thin to sample".

Could it be that for a chain Hamiltonian N =poly(L)? No. Note that for random
diagonal that’s O(L) in width N =exp(L). Indeed, temperature is finite, and we
integrate exponentially big density of states over a finite interval. Random chain is
more like independent spins in random field. In that case, density of states is Le

√
LE

according to Feigelman, Cuevas. This will give E∗ ∼ eL/β2 and N∗ = exp(L). Let’s
see if we can arrive to this.

Let’s start with a non-random chain. The energy only depends on magnetization, the
degeneracies of equally spaced levels are 1, L, L2/2, L3/6 . . . . That suggests that for
a finite interval around the ground state the density of states is O(L). If one prepares
a thermal state of this system though, each spin just has a probability pe ∼ e−βh

to be excited, and 1 − pe to be down. That means that any one configuration has
probability <max(pe, 1 − pe)L . So one needs to sum at least N ∼expL of them to
get anything finite. Same arguments hold for a random chain with lower bound on
absolute value of local magnetic field.

If there’s no lower bound, one may just consider the half of spins that have a lower
bound, and repeat an argument for them. Even if the rest can be represented by just
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one state, the resulting representation will still have N ∼expL states. So the two
limiting cases both have N ∼expL typical states. The precise calculation for a chain
is not as simple, but we expect that it also has N ∼expL typical states. In the main
text we were also using an estimate on the typical probabilties P(E) ∼exp(−L) that
can be derived from the above expressions.

Let’s still describe how to find polyL lowest states in poly-time. It’s not clear
what we would need it for at the moment. The ground state can be found by the
following procedure that scans the chain from one end to another. We start with two
possibilities: spin up and spin down. We keep both of them in memory. The next
spin is also up or down. If it is up, there are two states where the previous was up
or down respectively. We compare their energies up till this point. The one with
bigger energy surely will not be the ground state, because it will have at least the
same energy in the remaining part. So we forget that one from the memory. Same
for the last spin down. We again have two states written in our memory, different by
the last spin at the very least, and their energies. We repeat the step with the next
spin. At the end of the chain, we choose the smallest out of two.

The procedure above gives us an unambiguous ground state inO(L) time. It’s harder
to find first excited state. We know that it should be different from GS in at least
one spin. We try flipping each one of L spins, and then repeat the minimization
procedure with that spin fixed. That takes O(L2), but the smallest energy we find
is the 1st excited state. We also record all the other energies we find. For the 2nd
excited state, we need to try to flip every spin of the 1st excited state, and compare
all the 2L-1 energies we have for flips away from GS or excited state. The smallest
of those will be 2nd excited state. The procedure can be repeated as many times as
one wants, finding next excited state always takes O(L2).

Finally, let’s say a few words on locality. If the state has decay of correlations
(which 1d essentially always has), then the transfer matrix multiplied several time
will approximately have rank 1. That means that after a few sites the boundary
conditions do not matter. And that means that we can just use the Gibbs state of a
patch of Hamiltonian to estimate the density matrix (= joint probability distribution)
in the middle of the patch. The accuracy will be related to the width of the collar
of the patch. If correlations decay exponentially, the accuracy will be exponential
in the width, if polynomially - polynomial.

So we don’t even need to calculate transfer matrices - just calculate the distribution
for a patch of, say, 20 spins, and then take the trace over the 7-spin collar on each
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site, to obtain something close to the true distribution of the middle 6 spins.

Now we are ready to discuss the quantum case. By Imbrie’s construction, it is
reduced to the above by finite depth circuit (we throw away exponentially small
rotations). The only difference is that the Hamiltonian is not nearest neighbor, but
instead has exponentially decaying long-range interactions. To deal with that, we
block sites until we can throw away non-nearest neighbor interactions. Then we
are back to nearest neighbor classical chain, and can apply the techniques above.
Of course, it’s nontrivial to show that exponential tails lead to exponentially small
errors in any of the quantities of interest. It is possible that it can only be shown in
the presence of exp. decay of correlations. But we do not concern ourselves with
those proofs here.

There’s an easier way to obtain something alike transfer matrix approach. The Gibbs
state e−βH can be trotterized, and then split into local gates. Then we can contract
legs of the left portion of the tensor network to come upwith an equivalent of PL

i , but
now with a lot (but still finite number) of virtual legs sticking out. Then we consider
a vertical array of local gates that advances that tensor by 2 steps. That would be
our new transfer matrix. The same consideration about decay of correlation and
approximate rank 1 applies, even though contraction can be performed in poly-time.
Using this object, we demonstrate that again the patch density matrices should give
a good approximation if the approximate rank 1 condition holds.

But how do we sample from a distribution? A local density matrix can be fully
reconstructed, but then what? Same question for classical case, how do we sample
from Gibbs, instead of just finding low-lying states one by one? Markov chain
Monte Carlo is one thing that definitely does that after the "equilibration time" that
is somewhere between const and poly(L). How to do it for the quantum case?
Well it only takes poly-time to find one joint probability of measuring a spin string
(by contracting with appropriate projectors). Then one can attempt an MC step
to another string, and find accept probability by finding the probability of that
string. Since the distribution is given essentially by a z-Hamiltonian, we expect the
relaxation time of that chain to be likewise between 1 and poly(L).

Another thing we might want though are the Gibbs occupations of the quantum
Hamiltonian. And for that one needs to know exact energies. One might do the
scanning again, calculating the expectation values of the Hamiltonian terms at the
center of the patch in the eigenstate of the patch that matches the desired spin pattern.
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A p p e n d i x B

PROOFS OF PROPERTIES OF IMBRIE CIRCUIT

B.1 Telescopic sum for Imbrie circuit
Small unitary expansion
We consider a generator A of a unitary evolution eA (corresponding to step k) such
that A =

∑
i Ai where ‖Ai‖ ≤ χLk and each Ai is supported on Lk+1 consecutive

sites. We would like to study the structure of a local operator X , evolved as eAXe−A.
We prove

Proposition:
eAXe−A =

∑
j

X j (B.1)

where SuppX j ≤ SuppX + 2 j(Lk+1 − 1) and ‖X j ‖ ≤ L j
k+1χ

jLk ‖X ‖

So the operator X acquires exponential tails after conjugating with eA.

Proof:

eAXe−A =
∑

n

An

n!
X

∑
m

(−A)m
m!

(B.2)

collecting the terms that have the same power of A

=
∑

k

k∑
i=0

Ak−i

(k − i)! X
(−A)i

i!
(B.3)

Compare this to the expansion of k’th order commutator

[A[A . . . [A, X]]](k) =
k∑

i=0
Ci

k Ak−i X(−A)i (B.4)

where Ci
k =

k!
(k−i)!i!∑

k

k∑
i=0

Ak−i

(k − i)! X
(−A)i

i!
=

∑
k

1
k!
[A[A . . . [A, X]]](k) (B.5)

Now denote X j =
1
j! [A[A . . . [A, X]]]( j). We found that

eAXe−A =
∑

j

X j (B.6)
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Each commutator [A, X] increases the support of X by at most 2(Lk+1−1) sites (left
and right included). Thus

SuppX j ≤ SuppX + 2 j(Lk+1 − 1) (B.7)

To find the normof ‖X j ‖, one needs to recall that A =
∑

i Ai, and only the overlapping
terms can contribute to the commutator. If one counts carefully the overlap of
supports of the terms in the nested commutators, it cancels the factorial:

‖X j ‖ ≤ L j
k+1χ

jLk ‖X ‖ (B.8)

where we neglected the original support of X , that doesn’t cancel the factorial. The
same factor of L j

k+1 will appear again in the recursion relation below. /

Note that with this tool we can have a bound for collared X̃ = eAc Xe−Ac , where
c(Lk+1 − 1) is the extra support on each side of X . By bounds above, we see that X

and X̃ only differ in terms starting from Xc. So the difference is bounded by their
sum:

‖eAXe−A − X̃ ‖ ≤
∑

k

Lc
k+1χ

cLk ‖X ‖ ≤ 4Lc
k+1χ

cLk ‖X ‖ (B.9)

One can relax the above bound to a simpler expression:

‖eAXe−A − X̃ ‖ ≤ 4(2χ)cLk ‖X ‖ (B.10)

for all k. Indeed, the second expression differs by multiplication of 2cLk/Lc
k+1 >

minx>1,c>0(2x/x)c = 1 which can be easily confirmed by noticing that slope of
2x is bigger than of x already at x = 1. In this fashion, we will always replace
inconvenient polynomial (in Lk etc.) factors by bigger bounding numbers, as we
only care about exponential decay for these bounds. We have proven:

Proposition: If one conjugates a local operator X with Lk-locally generated 1d evo-
lution eA for small time χLk , operator X acquires exponential tails. Two equivalent
expressions exist for an operator with exponential tales - telescopic sum:

eAXe−A =
∑

j

X j where SuppX j ≤ SuppX + 2 j(Lk+1 − 1) and ‖X j ‖ ≤ (2χ) jLk ‖X ‖

(B.11)
and error of the collared neighborhoods:

‖eAXe−A−X̃ ‖ ≤ 4(2χ)cLk ‖X ‖ where X̃ = eAc Xe−Ac and SuppAc = SuppX+2c(Lk+1−1)
(B.12)

where we have "simpified" the bound on X j to 2χ as well.
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Aside: comparison with LRB It is much stronger result than if we apply LRB
for small χ for propagation of tails beyond the collar, but becomes trivial for χ = 1.
Here’s this LRB estimate for comaparison - it still gives nontrivial answers even for
big χ:

‖eAXe−A − X̃ ‖ ∼ exp{−(ac − Lk+1χ
Lk )}‖X ‖ (B.13)

Here a is just some number < 20 much smaller than Lk/(−lnχ). We shall use the
stronger first bound as in our case χ � 1.

Infinite product of unitaries
Now we’d like to use our bound to estimate precision of collar approximations to:∏

k=1
eAk X

∏
k ′=1

e−Ak ′ (B.14)

as in the total Imbrie circuit without resonances. The order in the product turns out
to be unimportant for our bound. From the point of view of the physical meaning,
if smaller k act on the operator X first, then X is a physical operator and evolved X

represents the action on "logical" spins, or integrals of motion. In particular, for the
diagonalization of the Hamiltonian, smaller k act on the physical Hamiltonian first.
If smaller k act last, then X is a logical operator, and its evolved form will be the
representation of such operator on physical spins.

In the proof below χ = γ/ε . We now present and prove the bound:

Proposition: If we add a collar of c sites to the support of X , and take Ak,c to be
the sum of terms fully within the collared region, then




∏

k=1
eAk X

∏
k ′=1

e−Ak ′ −
∏
k=1

eAk,c X
∏
k ′=1

e−Ak ′,c






 ≤ O ((Zγ/ε)c) (B.15)

note that for Lk > c there’s no rotation: Ak = 0. The constant Z will be found
below.

Proof:

We start from looking at individual rotation, that was discussed above:

Uk XU†k =
∑

m

Xm, SuppXm = 2m(Lk+1 − 1), ‖Xm‖ ≤ (2χ)mLk (B.16)
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here we set ‖X ‖ = 1 and neglected its support, as it won’t affect the bound. If there
are two rotations, we get:

Uk ′Uk XU†kU†k ′ =
∑
m,m′

Xm,m′, (B.17)

SuppXm,m′ = 2m(Lk+1 − 1) + 2m′(Lk ′+1 − 1), ‖Xm,m′‖ ≤ (2χ)mLk+m′Lk ′ (B.18)

we see that the order of unitaries indeed does not matter for the form of the bound.
For an infinite product, the components of evolved X are indexed by a string of
integers {mk} for all k = 1, 2, 3 . . . : ∏

k=1
eAk X

∏
k ′=1

e−Ak ′ =
∑
{mk }

X{mk }, (B.19)

SuppX{mk } =
∑
{mk }

2mk(Lk+1 − 1), ‖Xm,m′‖ ≤ (2χ)
∑
{mk } mkLk (B.20)

Terms X{mk },a,b contributing to supports SuppX{mk } = 2n (n ∈ Z) are bounded as
‖X{mk },n‖ ≤ (2χ)

∑
{mk } mkLk , where∑

{mk }
mk Lk ≥ min(Lk/2(Lk+1 − 1))

∑
{mk }

2mk(Lk+1 − 1) ≥ 8
15

n (B.21)

we have used explicit choice Lk = (15/8)k made by Imbrie. So the terms within
SuppX{mk } = 2n are bounded as

‖X{mk },a,b‖ ≤
(
(2χ)8/15

)n
(B.22)

We need to estimate the number of terms with such support that are generated in
our telescopic sums

∑
{mk } X{mk }. First note that terms with mk , 0 for at least one

k such that 2(Lk+1 − 1) > 2n do not contribute. Let k∗ be the biggest k such that
2(Lk+1 − 1) < 2n:

k∗ = bln(n + 1)/ln(15/8)c − 1 (B.23)

The terms we are interested in have some mk nonzero for k ≤ k∗. For simplicity, lets
overcount, and allow every mk = 1 . . . n (it should be at least mk = 1 . . . n/((Lk+1 −
1)), but we overcount). Then the total number of terms contributing is bounded as

≤ nk∗ where k∗ = bln(n + 1)/ln(15/8)c − 1 (B.24)

we get the bound on terms in
∑
{mk } X{mk } with that contribute to the 2n supports:

′∑
{mk }

X{mk } ≤ nk∗
(
(2χ)8/15

)n
(B.25)
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Figure B.1: We see how the right-hand side is always bigger for Z = 1.6

Let’s simplify the nk∗ by weakening the bound a little bit:

nk∗ = exp(lnn(bln(n + 1)/ln(15/8)c − 1)) ≤ exp(ln2(n + 1)/ln(15/8)) (B.26)

Now we use it to rewrite

nk∗
(
(2χ)8/15

)n
≤ exp(ln2(n + 1)/ln(15/8))

(
(2χ)8/15

)n
(B.27)

We want to prove that

exp(ln2(n + 1)/ln(15/8))
(
(2χ)8/15

)n
≤

(
Z(2χ)8/15

)n
(B.28)
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for some constant Z > 1 and all n ≥ 1. Denote (2χ)8/15 = α. Observe that α
cancels immediately:

exp(ln2(n + 1)/ln(15/8)) (α)n ≤ (Zα)n (B.29)

ln2(n + 1)/ln(15/8) ≤ nlnZ (B.30)

Here we can seem that the right-hand side has slope lnZ , while the left hand side
never really grows that fast. The maximum slope of ln2(n + 1) is achieved at
n = e − 1 and is 2/e. We should demand 2/eln(15/8) ≤ lnZ as well as the value of
the left hand side to be smaller than the right hand side at the beginning (n = 1) :
ln22/ln(15/8) ≤ lnZ . The two inequalities give the following values of Z:

Z ≥ e2/eln(15/8) ≈ 3.2 (B.31)

Z ≥ eln
22/ln(15/8) ≈ 2 (B.32)

So the analytically proven value for which the inequalities start working is Z = 3.2.
We can strengthen it numerically as our proof was not tight:

ln2(n + 1)/ln(15/8) ≤ nlnZ (B.33)

n + 1 ≤
√

nlnZ/ln(15/8) (B.34)

n ≤
√

nlnZ/ln(15/8) − 1 (B.35)

We compare the two sides numerically in Fig. B.1 and find that for Z = 1.6 it works.
Note that the bounds imply that Zα < 1, which means (2χ)8/15 < 1/Z = 0.6,
χ < 0.2. Now we can use it in the telescopic sum that we had:∏

k=1
eAk X

∏
k ′=1

e−Ak ′ =
∑

n

Xn, where SuppXn = 2n, and ‖Xn‖ ≤ nk∗
(
(2χ)8/15

)n

(B.36)
For χ < 0.2, this bound can be simplified to

∏
k=1

eAk X
∏
k ′=1

e−Ak ′ =
∑

n

Xn, where SuppXn = n, and ‖Xn‖ ≤
(
Z(2χ)8/15

)n

(B.37)
where Z = 1.6. We also get a bound on collared neighborhoods

‖eAXe−A − X̃ ‖ ≤ 4
(
Z(2χ)8/15

)n
where X̃ = eAc Xe−Ac and SuppAc = 2n (B.38)

The error of the first step is already found above (for k=1):

‖eA1 Xe−A1 − X̃ ‖ ≤ 4Lc
2(γ/ε)

cL1 ‖X ‖ (B.39)



96

L1 = 1 here. We just assume the scaling for the k’th step X̃k =
∏k

q=1 eAq,c X
∏k

q′=1 e−Aq′,c :





 k∏
q=1

eAq X
k∏

q′=1
e−Aq′ − X̃k







 ≤ f (k, c)(γ/ε)c‖X ‖ (B.40)

and set out to find f (k, c). The construction of X̃ also showed the telescopic sum
structure:

X̃ =
c∑

j=0
X j, ‖X j ‖ ≤ L j

2(γ/ε)
j ‖X ‖ (B.41)

We assume on the k’th step that

X̃k =

c∑
j=0

X j,k, ‖X j,k ‖ ≤ f ( j, k)(γ/ε) j ‖X ‖ (B.42)

On the k + 1’th step we get contributions to X j,k+1 from m′th order terms of
eAk+1 X j−mLk+2,k e−Ak+1 . There will be at most j/Lk+2 such contributions, all with the
same factors in the norm. So the recursion relation will read:

f ( j, k + 1) =
j/Lk+2∑
m=0

f ( j − mLk+2, k)Lm
k+2 (B.43)

f ( j, k) grows with j. If we bound

f ( j, k + 1) ≤ f ( j, k)
j/Lk+2∑
m=0

Lm
k+2 ≈ f ( j, k)L j/Lk+2

k+2 (B.44)

Applying it recursively, we get

f ( j, k′) ≤
(

k ′∏
k=1

L1/Lk+1
k+1

) j

(B.45)

The product converges as can be seen by its logarithm:

ln
k ′∏

k=1
L1/Lk+1

k+1 =

(
ln

15
8

) k ′∑
k=1
(k + 1)

(
15
8

)−k−1
≤

(
ln

15
8

)−1
(B.46)

Thus we find the bound
f ( j, k′) ≤

(
e(ln 15

8 )−1) j
(B.47)

and the constant Z = e(ln 15
8 )−1
≈ 4.9 in the

X̃k =

c∑
j=0

X j,k, ‖X j,k ‖ ≤ (Zγ/ε) j ‖X ‖ (B.48)
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Note that the bound on the norm doesn’t depend on k. The error is given by






∏
k=1

eAk X
∏
k ′=1

e−Ak ′ −
∏
k=1

eAk,c X
∏
k ′=1

e−Ak ′,c






 ≤ ∞∑
j=c+1

‖X j,∞‖ ≤ O ((Zγ/ε)c)

(B.49)
/

B.2 Circuit approximation
We would like to have a FDL circuit approximation of a unitary eA. Consider a
simple case of Lk = 2 first: A =

∑
i Ai,i+1. The Trotter approximation in N steps is

defined as:
UT = (e

1
N Aevene

1
N Aodd )N (B.50)

where Aeven =
∑

i even Ai,i+1. The error is given by BCH formula while it remains
small:

eA = UT +O(| |[Aeven, Aodd]| |/N) = UT +O(L | |Ai,i+1 | |2/N) (B.51)

Note that the error over whole macroscopic system diverges with size. However,
over a small patch the error is small. Specifically, let’s prove that for an operator X

supported over m sites the conjugation with eA is simulated by:

eAXe−A = UT XU†T +O
(
| |X | | (m + 16N)

N
| |Ai,i+1 | |2

)
(B.52)

We see that the system size dependence drops, alsoUT XU†T is an operator supported
on m + 2N , and expressed by a tensor network of size (m + 2N) × N . The terms
outside the causal cone of X just cancel.

First we use the bound approximation by collared evolution (from now on we keep
general Lk , so our arguments will also apply to Awith bigger support of local terms):

| |eAXe−A − eAc Xe−Ac | | ≤ 4Lc
k+1(γ/ε)

cLk ‖X ‖ (B.53)

Here c is the number of sites we are to include in the "collar" of X . Ac are the terms
in A supported inside the collared region. Taking a collar c ∼ lnδ/Lk ln(γ/ε) we get

eAXe−A = eAc Xe−Ac +O(| |X | |δ) (B.54)

The problem reduced to finding an FDL approximation to eAc supported on M =

m + 2c - a finite number of spins. For that purpose, Trotter approximation is used.
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For general Lk , we group the terms Aeven =
∑

i/Lk even Ai. The Trotter approximation
is then:

eAc ≈ (e 1
N Aevene

1
N Aodd )N +O((γ/ε)2Lk L2

k M/N) (B.55)

is such a scheme with total depth D0 = 2O(22Lk )N and even and odd sites repeated
N times. We have used that each 2Lk-qubit gate from Trotter formula is written as
exp(2Lk) 2-qubit gates. Note that the Lieb-Robinson velocity gets only a multiplica-
tive adjustment v → 2Lkv . So even though apparent causal cone of of the circuit
we get is 2Lkv, the true causal structure of the circuit has tighter bound. The final
circuit for eAr has "effective" depth 4Lk N (the one that reflects the causal structure).
The total precision defined as:

| |eAk Xe−Ak −UT XU†T | | ≤ | |X | |εtot(D0, k, γ/ε) (B.56)

is found to be

εtot(D0, k, γ/ε) = O((2γ/ε)2Lk L2
k M/D0) +O(Lc

k+1(γ/ε)
cLk ) (B.57)

Note that if we were Trotter approximating eA instead of the collared one, we still
get the same result eA

T Xe−A
T = eAc

T Xe−Ac

T by cancellations of the spare terms as
long as c = 4Lk N . So there exists an FDL circuit eA

T over the whole system that
approximates eA locally in every patch.

Plugging in c = 4Lk N , we find second term ∼ (γ/ε)4L2
k

N to be negligible. The
error is now:

εtot(D0, k, γ/ε) = O((γ/ε)2Lk L2
k (m + 8Lk N)/N) (B.58)

To conclude, let us study the state eA |0〉〈0|e−A. Any observable X on m sites is
approximated by measuring it with eA

T |0〉〈0|e−A
T with error as in Eq. (B.57). The

latter measurement is represented by a system-size independent tensor network due
to the cancellations. So the difference in density matrices over m sites elementwise
is bounded:

|(ρ − ρappr)αβ | ≤ εtot(D0, k, t) (B.59)

We can also show the operator norm bound:

| |ρ − ρappr | | ≤ εtot(D0, k, t) (B.60)

here ρ = trm̄eA |0〉〈0|e−A and ρappr = trm̄eA
T |0〉〈0|e−A

T . To see this, consider the
eigenbasis of ρ − ρappr . We can make X to be measuring matrix elements in this
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basis. In particular, the maximum eigenvalue of ρ − ρappr will not be bigger than
the difference |〈X〉 − 〈X〉appr | ≤ εtot(D0, k, t).

To approximate the Imbrie circuit, note that neglecting eAc in eAc Xe−Ac altogether
leads to an error

| |eAc Xe−Ac − X | | ≤ | |X | | | |Ac | | (B.61)

| |ρ − ρappr | | ≤ | |X | | | |Ac | | (B.62)

by summing the result of the Taylor expansion, which converges because it is
controlled by 1/n!. This allows us to drop higher-order terms altogether. For
instance, we can use the collared bounds from above to establish the bound on just
using the first order L1 = 2 of the circuit (keeping the leading contributions):

‖
∏
k=1

eAk X
∏
k ′=1

e−Ak ′−UT XU†T ‖ ≤ ‖X ‖(O(
(m + 16N)

N
(γ/ε)2)+O((m+8N)(γ/ε)L2))

(B.63)
In Imbrie’s construction, L2 = 4.

B.3 Area law
We will prove the following:

Proposition The state
∏

k=1 eAk |prod〉 obeys the area law: for B - the half of the
system, the entanglement entropy S(ρA) ∼ ξ. Here |prod〉 is a product state in the
z-basis.

We also discuss the tail of the distribution of entanglement entropies in the presence
of resonances.

We turn to the paper Bravyi, M. B. Hastings, and Verstraete, 2006 which derives
the entanglement production δS ≤ c0 + c1t under the evolution eiHt . In our case, we
apply the bound for every step using H(k)t = Ak . We set t = 1.

We use the tightest bound on c1 that is given on the last page of Bravyi, M. B.
Hastings, andVerstraete, 2006. The interaction between two parts can bewritten as a
Shmidt decomposition H(k)LR =

∑
i ri Ji

L ⊗ Ji
R, where we have freedom to set | |JL | | = 1,

| |JR | | = 1. The HLR is bounded by Lk(γ/ε)Lk , thus each | |ri | | ≤ Lk(2γ/ε)Lk . The
entangelement produced over time t = 1 will be

δS ≤ c∗
∑

i

| |ri | | ≤ c∗(4γ/ε)Lk (B.64)
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The coefficient c∗ ≈ 1.9 is universal and is found in Childs, Leung, and Vidal, 2004.
The total entanglement is the sum of entanglement produced by each order k of the
circuit. The total bound on entanglement is converging:

δStot ≤
∑

k

c∗(4γ/ε)Lk ≤ 16γ/ε (B.65)

Thus the Imbrie states without resonances satisfy area law.

Every resonance is an extra local rotation over region of size nr that does not have to
be small. If it happens that our cut passes through the resonance, we need to add the
entanglement created by this rotation to the total entanglement bound. A rotation
over nr sites can create ∆S(nr) ≤ nr entanglement. Naive expectation is ≤ nr/2
which is true for a unitary acting on a whole system of size nr . But in fact having a
bigger system we can create two times more entanglement with the rotation on nr

sites! Indeed, the bound is saturated by a swap gate, that turns a state with nr/2 Bell
pairs on every side of the cut into a state where every Bell pair crosses the cut.

After k1 when the first resonance appears across the cut, there may be other, bigger
resonances containing the first one. Since a cut is placed randomly in the system,
denote the probability that the biggest resonance across the cut has size nr by P(nr).
It is exactly the same quantity as the probability of a site to be a part of a connected
cluster of resonances of size nr . Imbrie shows that this probability decays faster
than any polynomial. Thus the expectation value∑

nr

nr P(nr) ≤ const (B.66)

Moreover, we know that first few terms go as εnr and then it keeps decaying faster
than any polynomial, so the leading contribution to the expectation value is the first
term: ∑

nr

nr P(nr) ≤ 4ε (B.67)

Thus the total bound on the expectation value of the entanglement entropy is:

Stot ≤ 16γ/ε + 4ε (B.68)

We note that the first term is smaller for the parameters used by Imbrie - so the main
contribution to entanglement is from rare distributions of disorder when resonances
cross the cut. We also note that in full construction by Imbrie, the perturbative parts
of the circuit eAk get adjusted in the presence of resonances as the resonant spins are
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grouped into metaspins. The entanglement produced by resulting unitaries is still
bounded, so we dropped this complication from our simplified circuit.

Consider rare cuts that may have entanglement bigger than nr = 2, by passing
near the big resonant regions. Assuming for simplicity exponential distribution
of entanglement as a random variable P(S = 2x) = ε x for x the half of the size
of the resonance, with the biggest entanglement across the cut in a given system
determined by:

LP(Smax) = Lε−Smax ≈ 1 (B.69)

Smax ≈ lnL/(−lnε) (B.70)

To derivemaximal entanglementmore carefully one needs to use the true statistics of
resonances from Imbrie’s paper: a superpolinomially decaying P(S) anyway. That
only adjusts lnL → e

√
lnL - a difference between the two will be almost impossible

to detect.

B.4 LRB
First we would like to derive a Lieb-Robinson bound (a bound on [A(t), B]) for
a diagonal local Hamiltonian with exponential tails: H = H(σz), H =

∑
i,r Hi,r

such that ‖Hi,r ‖ < e−cr . The operator H has only diagonal matrix elements. The
operators A and B can have arbitrary nonzero matrix elements, but A is local in
the region supp(A) and B is local in the region supp(B). Distance between regions
A and B is the length of the shortest path connecting a point in A to a point in
B, denoted dA,B. In the commutator A(t) = eiHt Ae−iHt . For H = H(σz), eiHt =

ei
∑

i j Hi j t =
∏

i j eiHi j t . We immediately see that terms not supported on supp(A)
in the Hamiltonian commute through and cancel each other:A(t) = eiHAt Ae−iHAt

Then, since we are trying to bound a norm ‖[A(t), B]‖ and it’s invariant under
unitaries, we conjugate with eiHAt and get ‖[A(t), B]‖ = ‖[A, e−iHAt BeiHAt]‖. Here
we can commute through the terms in HA that don’t have support on B, to get
‖[A(t), B]‖ = ‖[eiHABt Ae−iHABt, B]‖. Now note that the locality condition enforces
‖HAB‖ < e−cdA,B . We also note that the individual matrix elements over basis on
supp(AB) are bounded by the same bound. So in fact we need to solve for Lieb-
Robinson bound of small Hamiltonian, and then we get our LRB for diagonal local
H with exponential tails as a trivial corollary.

Now, drop the A, B notation, just think that A = A ⊗ 1, B = 1 ⊗ B (they act on
different degrees of freedom HA ⊗ HB we always suppress the extra degrees of
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freedom of the rest of the system... we can’t). And ‖H‖ is small as explained above.
We consider matrix element of [A(t), B] in the basis of eigenstates of H (we need this
basis to respectHA ⊗HB, so this bound won’t work for general small Hamiltonian,
only for ones diagonal in z-basis) :

[A(t), B]αβ,α′β′ = (eiHt A⊗1e−iHt ·1⊗B)αβ,α′β′−(1⊗B·eiHt A⊗1e−iHt)αβ,α′β′ (B.71)

We label the eigenstates inHA by α, and inHB by β. The Hamiltonian is diagonal
so we write it as Hαβ - the diagonal element:

[A(t), B]αβ,α′β′ = eiHαβ t Aαα′e−iHα′β t Bββ′ − Bββ′eiHβ′αt Aαα′e−iHα′β′ t (B.72)

We can pull the matrix elements of A and B in front:

[A(t), B]αβ,α′β′ = Aαα′Bββ′(eiHαβ te−iHα′β t − eiHβ′αte−iHα′β′ t) (B.73)

Let’s bound the expression in the brackets:

ei(Hαβ−Hα′β)t − ei(Hβ′α−Hα′β′)t = eiε1 − eiε2 =

∞∑
n=1

(i)n(εn
1 − ε

n
2 )

n!
(B.74)

Up to this point ε1,2 are operators on the rest of the system. We bound the norm as

‖ei(Hαβ−Hα′β)t − ei(Hβ′α−Hα′β′)t ‖ ≤ 2
∞∑

n=1

‖ε ‖n
n!
= (B.75)

= 2(e‖ε ‖ − 1) < 2(e − 1)‖ε ‖ = 4(e − 1)te−cdA,B (B.76)

Here we used the bound ‖HAB,αβ‖ < e−cdA,B . So every matrix element of [A(t), B]
is bounded as in Eqn. B.76 times the matrix elements of A and B, so we can bound
the matrix as a whole:

‖[A(t), B]‖ ≤ ||A| | | |B | |2supp(AB)4(e − 1)e−cdA,B t (B.77)

Now how do we apply this to the quantum Hamiltonian of Imbrie chain? Note
that it can be reduced to the diagonal Hamiltonian by the rotation with the Imbrie
circuit UHU†. The decay of long-range terms is governed by e−c = γ/ε . The
local operators A, B are then rotated to U AU†,UBU†. The resulting operators have
exponential tails and be replaced by ones strictly within a collar:

‖[A(t), B] − [Ac(t), Bc(t)]‖ ≤ c′‖A‖‖B‖(Zγ/ε)c (B.78)
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The Lieb-Robinson bound acquires a constant term:

‖[A(t), B]‖ ≤ ||A| | | |B| |(2supp(AB)4(e − 1)(γ/ε)dA,B−2ct + c′(Zγ/ε)c) (B.79)

optimizing c gives (only for t > (γ/ε)dA,B/2)

‖[A(t), B]‖ ≤ ||A| | | |B | |c′′(γ/ε)dA,B/3 3
√

t2supp(AB) (B.80)

We believe that the bound should be t(γ/ε)dA,B for all times, with no constant
contribution. Either way, the light cone is given by t(γ/ε)dA,B = 1, d ∼ lnt.

Here’s a sketch of a derivation that can give a better bound. Consider

A(t) = eiHt Ae−iHt = U†eiHz tU AU†e−iHz tU =
∑

r

U†eiHz t Ar e−iHz tU (B.81)

where Ar is supported on r sites and is bounded by ‖A‖(Zγ/ε)r . Now the terms in
eiHz t that do not overlap with r commute through, so

eiHz t Ar e−iHz t = eiHr
z t Ar e−iHr

z t (B.82)

where Hr
z =

∑
m Hr+m

z and this sum is bounded as (Zγ/ε)m. Now we find m∗ such
that (Zγ/ε)m∗t = 1. Our intuition is that the telescopic sum for eiHr

z t Ar e−iHr
z t should

have the form

eiHr
z t Ar e−iHr

z t =
∑

p

Qr+m∗+p, ‖Qr+m∗+p‖ ≤ ‖A‖(Zγ/ε)p (B.83)

After plugging in and resumming all the telescopic sums, we get:

‖[A(t), B]‖ ≤ ||A| | | |B | |c′′(Zγ/ε)dA,B−m∗ = | |A| | | |B | |c′′(Zγ/ε)dA,B t (B.84)

The validity of this approach rests on our ability to prove (B.83). It is very simple,
since eiHr

z t is diagonal, we can extract terms m∗ + p away:

eiHr
z t = eiHr+m∗

z t
∏

eiHr+m∗+p
z t (B.85)

and the latter each has bounded support and bounded correction:

eiHr+m∗+p
z t = 1 +O((γ/ε)p) (B.86)

That concludes the proof.
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A p p e n d i x C

INTERPRETATION OF IMBRIE’S PROOF

C.1 Bound on generators
Here we discuss the bound on the local generator Ak,i of the perturbative step e

∑
i Ak,i

of Imbrie circuit. Here i is the spatial index labeling sites of the chain, and k is the
order of the perturbation theory. Each Ak,i is acting on Lk spins, where the radius
of locality Lk = (17

8 )k ≈ 2k is growing with k. We have presented a bound

‖Ak,i‖ ≤ χLk (C.1)

Let’s demonstrate how such bound can result from Imbrie’s construction. First let’s
define the path formalism used by Imbrie on the following toy example.

Toy example 1. Consider an operator J defined as:

J =
∑
g

J(g) (C.2)

The sum is over paths g =
{
i1 . . . i |g |

}
in the space of spin flips. Each in is a site on

a lattice, and the length of the string of those sites g is denoted |g |. In the
∑

g, it is
implied that |g | > 1. There’s one condition on the string g: each new spin flip has
to be within 1 lattice spacing from one of the old ones:

∀n > 1 ∃n′ < n : |in − in′ | ≤ 1 (C.3)

The operators J(g) are supported on the smallest consecutive region containing all
spin flips in g plus a 1 spin collar on the left and on the right. Consider the following
way to bound the terms in J:

|Jσσ′(g)| ≤
γ |g |

C(|g |) (C.4)

where C(x) is a combinatorial factor to be determined and γ � 1. We’d like to see
what C(x) do we need to be able to translate this bound to a more traditional norm
bound. Consider a decomposition of J into "local" terms centered around sites of
the lattice:

J =
∑

i

Ji, Ji =
∑
g |i1=i

J(g) (C.5)
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where Ji contains only graphs starting at i1. Let’s show that a norm bound on Ji

follows from a bound on Jσσ′(g):

‖Ji‖ ≤
∑
g |i1=i

‖J(g)‖ (C.6)

Note that any operator J(g) supported on ∪g ∪ c where c is a 1-spin collar can be
written in an operator basis with one basis vector per matrix element :

J(g) =
∑
σσ′

Jσσ′(g)|σ〉〈σ′| (C.7)

and since J(g) acts as an identity outside ∪g ∪ c, and doesn’t flip c, the number of
terms in the sum is 4| ∪ g |2|c| ≤ 22|g |+c:∑

g |i1=i

‖J(g)‖ ≤
∑
g |i1=i

∑
σσ′

Jσσ′(g) ≤
∑
g |i1=i

22|g |+C γ |g |

C(|g |) (C.8)

We can now split the sum into terms corresponding to each |g |:

‖Ji‖ ≤
∞∑

x=1
22x+C γx

C(x)
∑

g |i1=i, |g |=x

1 (C.9)

A simple upper bound on the number of elements in the sum
∑

g |i1=i, |g |=x 1 is if a
flip in can be chosen from 2n − 1 sites centered at i1. For |g | = x flips, it gives
(2x − 1)!! = (2x − 1)(2x − 3) . . . .

‖Ji‖ ≤
∞∑

x=1
22x+Cγx (2x − 1)!!

C(x) (C.10)

So a choice of C(x) = (2x−1)!! will cancel this factor. What remains is a geometric
series which is bounded for 4γ < 1/2:

‖Ji‖ ≤ 2C+1(4γ) (C.11)

we have arrived at a desired bound.

Toy example 2. We will repeat the above construction with a minor modification:
in the

J =
∑
g

J(g) (C.12)

the
∑

g is now taken over g such that |g | > L1. The bound on Jσσ′(g) and C(x) =
(2x−1)!! are the chosen the same. All the steps go through in exactly the same way,
until we arrive to:

‖Ji‖ ≤
∞∑

x=L1

22x+Cγx (2x − 1)!!
C(x) =

∞∑
x=L1

22x+Cγx ≤ 2C+1(4γ)L1 (C.13)

we see that any level is bounded by the smallest allowed flip.
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Toy example 3. Wewill now introduce an extra layer of structure tomatch Imbrie’s
construction. Consider

J =
∑

G

J(G) (C.14)

where G =
{
g1, g2 . . . g|G |

}
a string of spin flip paths gn defined in examples before.

The costraint on the paths in G is now:

∀n > 1 ∃n′ < n : d(gn, gn′) ≤ 1 (C.15)

where d(g1, g2) is the distance in lattice spacings between the two nearest spins in
g1, g2.

The support of J(G) is in the smallest consecutive region containing all spin flips
of underlying paths of G plus some constant collar c. Surprisingly, it is enough to
bound

|Jσσ′(G)| ≤
1

C(|G |)
∏
g∈G

γ |g |

C(|g |) (C.16)

where C(x) = (2x − 1)!! again. Indeed, for a "local" term

Ji =
∑

G |i=i1∈g1∈G
J(G) (C.17)

the norm bound

‖Ji‖ ≤
∑

G |i=i1∈g1∈G
‖J(G)‖ ≤

∑
G |i=i1∈g1∈G

4
∑ |g |2c

C(|G |)
∏
g∈G

γ |g |

C(|g |) (C.18)

The sum over G can be split into sums over paths with fixed values of |G | and all
|gm |:

‖Ji‖ ≤
∑
|G |,|gm |

4
∑ |gm |2c

C(|G |)
∏

m

γ |gm |

C(|gm |)
∑

G |i=i1∈g1∈G, |G |,|gm |
1 (C.19)

so we need to do the counting again. We first count the small graphs as before, and
then count how many ways are there to place |G | small graphs of sizes |gm | so that
each new one is a neighbor to one of the old ones. We get the following bound:∑

G |i=i1∈g1∈G, |G |,|gm |
1 ≤ (C.20)

≤
∏

m

C(|gm |)|g1 |(|g1 | + 2|g2 |)(|g1 | + 2|g2 | + 2|g3 |) . . . (2
∑

m

|gm | − |g1 |) (C.21)
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or if we plug it in:

‖Ji‖ ≤

(C.22)

≤
∑
|G |,|gm |

4
∑ |gm |2cγ

∑
m |gm | |g1 |(|g1 | + 2|g2 |)(|g1 | + 2|g2 | + 2|g3 |) . . . (2

∑
m |gm | − |g1 |)

C(|G |)

(C.23)

Or if we separate sums over |G |,∑m |gm | = X, |gm | = xm:

‖Ji‖ ≤
∑
|G |

∑
X≥|G |

4X2cγX
∑

xm |
∑

m xm=X

x1(x1 + 2x2)(x1 + 2x2 + 2x3) . . . (2X − x1)
C(|G |)

(C.24)

We see that the smallest power of γ is given by
∑

m |gm | = |G |, in which case the
C(|G |) exactly cancels its numerator:

‖Ji‖ ≤
∑
|G |

4|G |2cγ |G |F(|G |, γ) (C.25)

where

F(|G |, γ) = 1+

(C.26)

+
∑

X> |G |
4X−|G |γX−|G |

∑
xm |

∑
m xm=X

x1(x1 + 2x2)(x1 + 2x2 + 2x3) . . . (2X − x1)
C(|G |)

(C.27)

we want to show that f (|G |, γ) can be bounded by a constant for sufficiently small
γ. It is a series in terms of n = X − |G |. F =

∑∞
n=0 Fn and:

Fn = (4γ)n
∑

xm |
∑

m xm=|G |+n

x1(x1 + 2x2)(x1 + 2x2 + 2x3) . . . (2(|G | + n) − x1)
C(|G |)

(C.28)
There are always |G | terms xm. One can already see that∑

xm |
∑

m xm=|G |+n

x1(x1 + 2x2)(x1 + 2x2 + 2x3) . . . (2(|G | + n) − x1)
C(|G |) ≤ (|G | + n)2|G |

(C.29)
so we only get a polynomial prefactor in front of γn and the series converges. What
we want to show is that it converges to something that goes to∞ only exponentially
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in |G |, so we can suppress it by (4γ)|G |. Clearly the naive bound (|G |+ n)2|G | where
dropped C(|G |) altogether gives a factorial-like scaling even for the first term in the
sum that we know is 1. We know that number of terms in the sum for each n is in
fact given by C |G ||G |+n < 2|G |+n, so what’s left is to bound a single term in the sum:

x1(x1 + 2x2)(x1 + 2x2 + 2x3) . . . (2(|G | + n) − x1)
C(|G |) ≤ (C.30)

≤
(
(2(|G | + n) − 1

2|G | − 1

) |G |
=

(
1 +

2n
2|G | − 1

) |G |
(C.31)

these terms summed with 4γn can only lead to logarithmic corrections (1/(−lnγ))|G |

to the F(|G |, γ. Putting it all together:

Fn ≤ (4γ)n2|G |+n
(
1 +

2n
2|G | − 1

) |G |
(C.32)

There is no factorial in |G |, so:

F(|G |, γ) =
∞∑

n=0
Fn ≤ c′ = O(1) (C.33)

dropping the logarithmic corrections, and

‖Ji‖ ≤
∑
|G |

c′2c(4γ)|G | ≤ c′2c+1(4γ) (C.34)

Each term in the sum is bounded by our choice of C(|G |). We can also consider
long paths of |G | > L2 like in the toy example 2 and get c′2c+1(4γ)L2 .

The structure that we described is present in the generators Ai of steps 1 and 2 of
Imbrie’s construction, and then one can proceed in this manner inductively to prove
the norm bound on the following steps. One difference is that in the original bound
on Aσσ′(g) the γ/ε stands in place of γ that we used here. Another difference with
Ji is that the paths for A are bounded in length from above by a growing scale Lk+1,
which gives truly local generators, but does not in any way affect the derivation
above.

C.2 Effective Hamiltonian of an avoided crossing
We have already formulated this result in Chapter 2, but now we want to derive it
carefully. From Imbrie’s construction we know that the energy of level a σ (labeled
by a string that’s the corresponding configuration at γ = 0) is:

Eσ = E0
σ + γ

2P(2)σ + γ
3P(3)σ + · · · + Rσ (C.35)
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Here E0
σ is the energy with respect to γ = 0 Hamiltonian, P(i)σ are O(1) results of a

partial summation of the corresponding order in perturbation theory, and Rσ is the
correction due to the presence of resonances.

If the start points E0
σ, E

0
µ and slopes P(2)σ , P

(2)
µ are such that two levels intersect at

some γ, we expect a contribution to appear in Rσ corresponding to their avoidance.
Rσ is discontinuous at that value of γ: if it was continuous, the level σ would
follow the crossing adiabatically thus transitioning to a different line with a different
underlying spin configuration µ. By notation, we want σ to always correspond to
this particular string of spins in z-basis.

The discontinuity comes entirely from the nonperturbative rotation present at the
resonance, and it is our freedom to choose the value γ∗ at which the discontinuity
takes place. Let’s note that the circuit that produces eigenstates from the product
states is also discontinuous. This rotation acts locally in a neighborhood of spins that
need to be flipped. It is a very specific type of discontinuity such that the product
states with the specific spin configurations as σ and µ in the neighborhood of of the
resonance will be mapped into something that depends on γ in a discontinuous way.

We will use the above understanding to try and come up with an approximation to
the Hamiltonian around γ∗. We will see that in a very generic case the avoidance
happens. Let’s restrict our attention to a system of size n such that this resonance is
the only one that happens while γ is tuned in the interval [γ∗ − δγ, γ∗ + δγ]. At the
ends of the interval the resonance is gone and there’s no resonances in the system.

Now let’s describe the dependence on γ in the regions near points γ∗ − δγ, γ∗ + δγ
where the resonance is not yet present. The benefit of doing that is that states are
given by a circuit U(γ) that is purely perturbative and depends on γ continuously,
containing the terms that we understand.

Let’s look at the eigenbasis at each γ in the perturbative regime. The Hamiltonian
is a diagonal matrix, with energies given by the perturbation expansion as in Eq.
(C.35), but without resonant terms. The would-be resonances are the ones that
contain the denominator Eσ − Eµ and its powers.

Looking at the ordinary perturbation theory for corrections to energies up to 5th
order, we already note a peculiar property: even though we need to flip there and
back fromσ to µ to obtain correction to Eσ, the difference Eσ−Eµ appears only once
in the denominator. That is because the energy correction is obtained by averaging
H, so there’s an extra energy in the numerator, which turns out to cancel one of the
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denominators. The Imbrie’s perturbation theory retains this property. Unfortunately,
this is the only similarity, otherwise Imbrie’s construction is very different from the
ordinary perturbation theory. In particular, in the ordinary perturbation theory
higher orders allow large powers of Eσ − Eµ per given number of spin flips. Indeed,
we can reach µ, and then keep flipping one spin back and forth. Asymptotically, it
will lead to the contribution

δE = O
(

γ2k

(Eσ − Eµ)k

)
(C.36)

which is too big for our purposes - there’s just two spin flips, not enough to sup-
press the blowup of the denominator. So we need to get the terms from Imbrie’s
perturbation theory as they don’t have this problem.

The corrections to the energies from Imbrie’s construction in the no-resonance case
are

Hdiag = H0 +
∑
σ

∑
k

∑
gk

Jσσ(gk)|σ〉〈σ | (C.37)

Here k is the order of perturbation theory, gk are k’th order graphs in the space of
spin flips, and Jσσ′(gk) appears after k products are taken in the expansion of

Hdiag =
∏

k

e
∑

gk
A(gk )H

∏
k

e
∑

gk
A(gk ) (C.38)

The construction is inductive: gk is defined as a composition of flips from several
gk−1, and A(gk) is constructed from J(gk) by adding the appropriate denominator:

A(gk) =
∑
σ

Jσgk (σ)(gk)
Eσ − Egk (σ)

(C.39)

Note that the graphs gk in the definition of A(gk) have to flip at least one spin,
whereas the graphs gk in Jσσ(gk) always loop back to the original configuration.
After the combinatoric factors are taken into account Jσσ(gk) ∼ (γ/ε)Lk .

We see that for a specific denominator to appear, the corresponding graph gk has to
be present. So there will be a numerator (γ/ε)Lk for every problematic denominator
of size Lk . In our case, in the vicinity of the potential resonance Eσ − Eµ of size
x, every term with a power p of such denominator will have at least (γ/ε)px in
the numerator. We call these terms problematic and see which ones dominate the
corrections.

There’s something to note: consider the flip back and forth in Jσσ(gk). That is,
gk contains two graphs - g(1)k−1 flipping spins from σ to µ, and g

(2)
k−1 - back. Each
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graph had to come from corresponding A(gk−1) and have the denominator Eσ − Eµ.
However, there’s also H that stands in the middle of the rotations in Eq. (C.38).
This H will take value of either Eσ or Eµ depending on where the A’s are. We are
looking at the expression that looks like:

[[H, A]A] (C.40)

where A flips σ to µ and back and otherwise zero. It is easy to see that the above
is proportional to Eσ − Eµ, which cancels one of the problematic denominators! In
general, every problematic denominator either that appears twice will have

[. . . [H, . . . A] . . . A] (C.41)

term in Hdiag, so one of the two cancels.

Every energy contains problematic terms as well as smooth terms with respect to
γ − γ∗. The energies Eσ and Eµ themselves have the biggest problematic terms,
as for each problematic denominator the suppression is γ2x , while it’s γ2x+a for
other levels. Here x is the number of flips required to go from σ to µ, and a ≥ 0.
Let’s consider σ and µ first. We’ve already considered the flip back and forth. A
single problematic denominator will just have γ2x suppression. A triple problematic
denominator will have γ4x suppression and two powers remaining. A fifth power
problematic denominator will have γ6x suppression and three powers remaining.
You can see the pattern.

For other states ν, the denominator will not appear unless we go though both of σ
and µ and return to ν, which requires a ≥ 0 additional flips.

Eσ = E p
σ +O

(
γ2x

Eσ − Eµ

)
(C.42)

Eµ = E p
µ +O

(
γ2x

Eσ − Eµ

)
(C.43)

Eν = E p
ν +O

(
γ2x+a

Eσ − Eµ

)
(C.44)

We will first neglect the problematic term in the last line. This will allow us to
show that |Eσ − Eµ | ≥ O(γ2x) from what we understand about perturbative circuit.
This justifies neglecting the problematic term for ν - it’s always suppressed by at
least extra x powers of γ, which is sufficiently small compared to the average level
distance at this number of flips. Moreover, we assume that we are looking at an
isolated crossing separated by ≥ ε x from other levels, which is� γx .
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What we have left are the corrections that enter with a different sign:

Eσ = E p
σ + a

(
γ2x

Eσ − Eµ

)
+ o

(
γx

Eσ − Eµ

)
(C.45)

Eµ = E p
µ − a

(
γ2x

Eσ − Eµ

)
+ o

(
γx

Eσ − Eµ

)
(C.46)

The remaining terms are always small, since exactly at γ∗ we will show that |Eσ −
Eµ | = O(γx). So the remaining termswill have higher powers of γ. But we are going
to look at the avoidance away from γ∗, prove that |Eσ −Eµ | ≥

√
aγx , and then make

a generalization. Away from γ∗, we are left with just two terms in approximation:

Eσ = E p
σ + a

(
γ2x

Eσ − Eµ

)
(C.47)

Eµ = E p
µ − a

(
γ2x

Eσ − Eµ

)
(C.48)

Thenwe come upwith a basis where instead ofσ, µwe take their linear combinations
such that the expected value of energy is E p

σ, E
p
µ correspondingly. The general form

of such basis is
|ψ〉 = α |σ〉 + eiφ

√
1 − α2 |µ〉 (C.49)

The condition on energies leads to

α2 =
a

E p
σ − E p

µ

(
γ2x

Eσ − Eµ

)
(C.50)

and the orthogonality of the basis relates φ of two basis vectors. The offdiagonal
element of the Hamiltonian between them is

αeiφ(Eσ − Eµ) =
√

a(Eσ − Eµ)
E p
σ − E p

µ

γx (C.51)

We cancel the energy differences to the leading order, which results in a Hamiltonian

H′σµ =

(
E p
σ

√
aγx

√
aγx E p

µ

)
(C.52)

This is a Hamiltonian written in a very specific basis, designed by combining only
two levels, and staying diagonal in the rest. What we observe, however, is that
this Hamiltonian is very different from diagonal Hamiltonian in a sense that it is
fully continuous in these two levels, if we continue it to γ∗. It also gives a very
specific avoidance behavior - at E p

σ = E p
µ the gap is 2

√
aγx . Which is great - the

|Eσ − Eµ | = O(γx) and everything works out as we thought!
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Our demonstration of avoidance behavior is restricted to an isolated crossing in a
small system. In a bigger system, there may be levels in the background correspond-
ing to spin flips far away. These form cases of triple crossing and provide extra
complications for the use of logic of this sectiom..

C.3 Level repulsion is generic
If the continuation argument does not seem very convincing, there’s also a more
general logic coming from the random matrix theory. Consider two hermitean
matrices H and V that are made by choosing a complex matrix with i.i.d. random
elements C, and then taking C + C†. The distribution of elements is taken to be
rectangular or normal. Therewas recently a proof for discrete (±1) random elements.
Anywayswe get a semicircle of eigenvalues that have level repulsion for each of them
- it is less likely to find eigenvalues close to each other than what would be expected
if they were scattered independently on the energy axis (Poissonian distribution).

Now consider H + λV . This will result in level crossing as λ is varied. How often is
it that two levels of H coincide? This condition forms a hypersurface in the space of
elements of the matrix H. Depending on the dimension of this hypersurface, we can
either see avoidance, crossing or sticking together in the (E, λ) picture. H + λV is
a line in matrix element space. For a given two levels, This line will have intervals
of δE = 0 if the set (δE = 0) is codimension 0 (level sticking), frequent points of
δE = 0 if the set (δE = 0) is codimension 1 (level crossing), and almost never have
δE = 0 if the set (δE = 0) is codimension 2 or greater (level repulsion). It is the
same as with drawing a line in a random direction in a 3-dimensional space that has
a ball, a sphere and another line. It will almost always have an interval intersection
(if any) with the ball, 2 points of intersection with the sphere, and it requires fine
tuning to have it intersect the other line.

Let’s try to find the codimension of (δE = 0) surface for H + λV . To find the
dimension, we sit at a point in matrix elements where (δE = 0), and try to move
away from this point. Let’s first consider the two given levels and thematrix elements
of H + λV between them:

H + λV =

(
E1 0
0 E1

)
+

(
δ1 δ3 + iδ4

δ3 − iδ4 δ2

)
(C.53)

If only this four parameters are moving, then we note that the first correction to
energy should be the same for both levels on (δE = 0) surface:

δ1 = δ2 (C.54)
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is the only constraint. δ3 and δ4 can be chosen arbitrarily, and we still stay in
(δE = 0) surface to the first order. So it seems that we have codimension 1 surface
(δE = 0). However, we know from eigenvalues of 2x2 matrix that δ3 = δ4 = 0 is
also required. It’s just that in the direction of δ3 and δ4 the dependence of δE on
δ is quadratic, thus only seen in second order of perturbation theory. So we have a
codimension 3 surface set by the following conditions:

δ1 = δ2; δ3 = δ4 = 0 (C.55)

This condition stemmed from solving

δE =
√
(δ1 − δ2)2 + 4δ2

1 + 4δ2
2 = 0 (C.56)

Now for a system of bigger dimension, only two levels are degenerate. So one can
apply perturbation theory to find corrections from others. Let E1,2 =

δ1+δ2±δE
2 . The

correction from level E3 that’s sufficiently far is given by orders of perturbation
theory:

δE1 =
|〈1|V |3〉|2
E1 − E3

+ . . . (C.57)

all the shifts like that can be incorporated by the choice of δ that does not exactly
satisfy Eqns. (C.55). We can use the correction above neglecting the dependence of
E1 on δ. Then we can approximately cancel the effect of the third level by choosing:

δ1 − δ2 =
|〈2|V |3〉|2
E1 − E3

− |〈1|V |3〉|
2

E1 − E3
(C.58)

A more precise choice of those two δ’s may be required to cancel subsequent
corrections of the presence of the third (and other) levels. But since the other levels
are separated by a constant difference from E1, and the perturbations δ and V can be
chosen arbitrarily small, there is always a perturbation theory type calculation that
one can do for subsequent corrections, and find δ’s to higher and higher accuracy.
However, we will never need more than 3 equations to force δE = 0, so we find
codimension to be 3 - it’s very unlikely to find a level crossing in H(λ) eigenenergies
plot, or even in a 3d plot of H(λ, µ).

The classic argument considers the unitary that diagonalizes the Hamiltonian, ob-
serves that the eigenstate coincidence leads to a freedom of choice of a 2x2 unitary
matrix in that block, and counts the number of free parameters to arrive at the
codimension 3 result.
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