Computational Methods for Behavior Analysis

Thesis by
Eyrun Eyjolfsdottir

In Partial Fulfillment of the Requirements for the
degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California

2017
Defended September 16, 2016

© 2017
Eyrun Eyjolfsdottir

All rights reserved

11

11

ABSTRACT

Behavioral scientists strive to decode the functional relationship between sensory
input and motor output of the brain, which requires quantitive measurement of an-
imal behavior. Artificial intelligence researchers aim to build intelligent systems,
capable of understanding, predicting, and generating behavior. Our research lies on
the intersection of the two fields; our goal is to automate measurement of animal

behavior and to model their sensory-motor relationship using machine learning.

We have developed a tool that tracks the pose of multiple fruit flies and aims to
maintain their identity throughout a video. It outputs motion trajectories that can be
used to quantify behavioral differences between individuals, for example by com-
paring histograms of velocities and wing angles. We show that the tool also works

well on non-fly-like animals such as zebrafish larvae.

Embedded in these motion trajectories are temporal patterns that constitute actions.
We developed two supervised learning frameworks for action detection: a sliding
window framework and a structured output framework. Both frameworks learn to
classify actions from motion trajectories and expert annotated action intervals. Our
results show that the simpler sliding window framework achievers better results in

spite of being much faster to train, reaching 90% of human performance.

Supervised learning requires a lot of training data which involves time consuming
and painstaking annotation. To alleviate that we have built a semi-supervised neu-
ral network framework that, in addition to classifying actions, learns to predict how
an animal will move next given its motion and sensory inputs so far. Our model
archives as good results as its supervised counterpart with only half of the expert
labels. In addition, we show that motion prediction can be used to generate convinc-
ing simulations of fruit fly behavior and handwritten text, and that our model learns

to represent high level information, such as identity, when trained unsupervised.

Although developed for animal behavior, our methods are general and could be
applied to other motion data. We hope that this thesis demonstrates the value of

studying animal behavior for the development of artificial intelligence.

v

PUBLISHED CONTENT AND CONTRIBUTIONS

[Asa+14] Kenta Asahina, Kiichi Watanabe, Brian J Duistermars, Eric Hoopfer,
Carlos Roberto Gonzdlez, Eyrin Arna Eyjo6lfsdottir, Pietro Perona,
and David J Anderson. “Tachykinin-expressing neurons control male-
specific aggressive arousal in Drosophila”. In: Cell 156.1 (2014), pp. 221-
235. urL: http://www.sciencedirect.com/science/article/
pii/S0092867413015365.

E.E. developed fly tracking software used for the behavior analysis.

[Eyj+14] Eyrun Eyjolfsdottir, Steve Branson, Xavier P Burgos-Artizzu, Eric D
Hoopfer, Jonathan Schor, David J Anderson, and Pietro Perona. “De-
tecting social actions of fruit flies”. In: Computer Vision—-ECCV 2014.
Springer, 2014, pp. 772-787. urL: https://link.springer. com/
chapter/10.1007/978-3-319-10605-2_50.
E.E. made algorithmic contributions, collected data, designed the ex-
periments, and analyzed the results.

[Eyj+17] Eyrun Eyjolfsdottir, Kristin Branson, Yisong Yue, and Pietro Perona.
“Learning recurrent representations for hierarchical behavior model-
ing”. In: ICLR 2017 (2017). urL: https : / / openreview . net /
forum?id=BkLhzHt1g¬eId=BkLhzHt1lg.

E.E. designed the algorithms, prepared the data, designed the experi-
ments, and analyzed the results.

[Lim+14] Rod S Lim, Eyrin Eyjoélfsdéttir, Euncheol Shin, Pietro Perona, and
David J Anderson. “How food controls aggression in Drosophila”. In:
PloS one 9.8 (2014), €105626. urL: http://journals.plos.org/
plosone/article?id=10.1371/journal.pone.0105626.
E.E. wrote code for analyzing the data.

http://www.sciencedirect.com/science/article/pii/S0092867413015365
http://www.sciencedirect.com/science/article/pii/S0092867413015365
https://link.springer.com/chapter/10.1007/978-3-319-10605-2_50
https://link.springer.com/chapter/10.1007/978-3-319-10605-2_50
https://openreview.net/forum?id=BkLhzHtlg¬eId=BkLhzHtlg
https://openreview.net/forum?id=BkLhzHtlg¬eId=BkLhzHtlg
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0105626
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0105626

TABLE OF CONTENTS
Abstracl iii
[Published Content and Contributions| v
(fableof Contents| v
List of Mlustrations] vi
[Chapter [: Introduction| 1
(1.1 Behavior analysis and its automation| 1
(.2 Contributions and thesisoutlinel, 2
[Chapter II: Tracking|. 3
2.1 Evaluationl 3
P2 DeteCtion] . . « « « v v oo e e 9
................................ 14
R4 Poseestimationl. 21
[2.5 Behavior quantification| 0oL, 23
[Chapter III: Action detection| 26
(3.1 Background 27
3.2 Fly-vs-Fly| 29
[3.3 Feature representation| Lo oL, 30
[3.4 Sliding window classification| 35
[3.5 Structured output classication| 36
[3.6 Experiments and analysis|00, 38
B.7 Discussion] Lo 46
[Chapter IV: Behavior modeling|. 50
4.1 Background 51
B2 Modell 52
4.3 Applications| 56
BATData . . o o o 57
4.5 Experiments and analysis| 60
4.6 Discussionl 69
[Chapter V: Conclusion| 71

Bibliography| e 73

vi

LIST OF ILLUSTRATIONS
Number Page
[2.1 Trackersummary|. 3
[2.2 Tracker comparison| 4
[2.3 Identityaccuracy| 6
[24 Poseaccuracy|. 8
2.5 Performance on zebrafish larvael 9
[2.6 Background computation|. oL 10
[2.7 Chamberdetectionl 12
[2.8 Flydetection| 13
[2.9 Tracking procedure overview| 14
[2.10 Stutching of tracklets| 18
[211 Poseestimationot 21
[2.12 Heat map of individual’s location| 23
[2.13 Heat map of relative position|. 24
[2.14 Histogram of wing angles and body lengths| 24
[3.1 Synoptic table of action datasets| 28
[3.2 Fly-vs-Flydataset| 30
[33 Actonsoffruitflies] 31
[34 Actionstatisticsl. Lo 32
[3.5 Featurerepresentation| 33
3.6 Feature distribution for actions|. 33
[3.7 Performance measures| 39
[3.8 Frame vs. boutdiscrepancy| 40
[3.9 Humanperformancel 41
[3.10 Human comparison|. 41
[3.11 Method comparison on Fly-vs-Fly| 42
[3.12 Performance clustering and feature importance| 43
[3.13 Method comparison on CRIMI3|. 44
[3.14 Confusion matrix for CRIMI3| 45
[3.15 Resultson Boy meetsboy| 47
[3.16 Resultson Aggression| 48

[3.17 Resultson Courtship| 49

[4.1 Modelarchitecturel 53
[42 Dataoverviewlo 58
[4.3 Datarepresentation|. 59
[4.4 Classification performance] 61
[4.5 Effect of diagonal connectionscostf 62
[4.6 Motion prediction performance| 63
[4.7 FlyBowl simulattion| 64
[4.8 Fly-vs-Fly ssmulation| 65
[4.9 Handwriting simulation| 65
[4.10 SynthFly stmulation| 66
[4.11 Fly-vs-Fly discovery| 67
[4.12 Handwriting discovery| 68

(413

Unsupervised action and actor classification|. 69

Chapter 1

INTRODUCTION

1.1 Behavior analysis and its automation
Behavior can be defined as the coordinated responses to external and/or internal
stimuli [LLFO9]. It is a function of the brain that involves interaction with a dy-

namic environment and can be perceived at various scales [[Gom+14]].

Behavioral scientists strive to understand the functional relationship between stim-
uli and response and how neural systems mediate these relations [Moo02]. Ethol-
ogists study the natural behavior of animals, e.g. how it is composed of intercon-
nected actions, while neuroscientists and psychologists study behavior in a con-
trolled environment where they can measure and manipulate neural activations and
environmental stimuli. These studies require measuring (describing and/or quanti-
fying) behavior in order to derive correlations or causal relationships between be-
haviors over time or between behavior and stimuli. Traditionally, behavior has been
measured by manual observation but in recent years scientists are turning towards
automated systems for more objective and precise measurements, allowing for sig-

nificantly increased throughput [AP14].

Artificial intelligence (Al) researchers are also concerned with behavior. Like be-
havioral scientists, they are interested in finding a functional relationship between
the input and output of the brain, but not necessarily the underlying physiological
processes. In fact, Al systems may eventually outperform humans at any given task.
One branch of Al is working on machine understanding and prediction of human
activity, which can be applied to surveillance, assisted living, and sports analytics.
Another branch focuses on generating intelligent behavior, for applications such as

self driving vehicles, robots, and virtual assistants.

The two groups of scientists can benefit from each other. Advances in computer
vision, natural language processing, and machine learning enable automatic mea-
surement of animal behavior from video. Data collected for behavioral science
experiments, of animals behaving naturally or with a controlled stimuli, for hours
or days at a time, can be extremely useful for Al research; obtaining human data
of the same caliber is impossible due to privacy and ethical restrictions, and thus

emulating animal intelligence is a promising direction for Al.

1.2 Contributions and thesis outline

In this thesis I present my work towards automating behavior analysis, which in-
volves: 1) computing motion from video, 2) detecting and classifying actions, 3)
predicting future motion, and 4) simulating behavior. The work is organized into

three main chapters, each describing one or more of my contributions:

Chapter II describes a system that tracks multiple fruit flies in a video, keeps track of
their identity, and outputs motion trajectories describing their pose at every frame.

The results demonstrate that these features are useful for quantifying fly behavior.

Chapter III compares two action detection frameworks that learn from expert pro-
vided labels to detect and classify actions in motion sequences, allowing for se-
mantic analysis of behavior. It introduces the Fly-vs-Fly dataset which contains
videos of fruit fly interactions and is used for measuring performance of the tried

algorithms.

Chapter IV proposes a neural network architecture that simultaneously classifies
actions and predicts motion. Learning the two objectives simultaneously requires
fewer expert labels to train good action classifiers. The structure of this architec-
ture facilitates discovery of high level behavioral phenomena. In addition, motion
prediction can be used to simulate behavior, which may become useful for under-

standing the underlying mechanism of behavior.

Y
e actions
.“’ \—)
behavior
analysis 2 T
Lo Y s ()
........... motion —— | future motion
N —
1 T 4 l
R)
video simulation

— e

Chapter 2

TRACKING

FlyTracker is a system that aims to track the pose (position, orientation, size, wing-
and leg positions) of multiple flies and maintain their identities throughout a video.
In addition to trajectories, it outputs features (such as velocity, distance to walls,
wing angles) useful for behavior analysis. FlyTracker comes with an interface that
lets users: 1) calibrate the system on their experimental setup, 2) track all flies in
videos, 3) visualize results and correct errors, and 4) annotate behavior of individual
flies. It has been tested on videos containing up to 20 individuals, recorded at 25-

200 frames per second, and with resolution of 6-60 pixels per body length.

In Section we evaluate the performance of FlyTracker, and in Sections
[2.4] we describe in detail the computer vision algorithms behind it which can be
divided into: detection, tracking, and pose estimation. FlyTracker is available at

www.vision.caltech.edu/Tools/FlyTracker.

detection

Figure 2.1: Three stages of FlyTracker: detection (extract fly bodies and chamber
boundaries), tracking (connect body components across frames), and pose estima-

tion (fit body, wing, and leg components to detected flies).

2.1 Evaluation
We evaluate FlyTracker in the following ways: first, we qualitatively compare it
against other tracking tools, second, we compare its identity accuracy with the state

of the art, and third, we measure its pose accuracy.

www.vision.caltech.edu/Tools/FlyTracker

Related work

CADABRA [Dan+09] and Ctrax [Bra+09]] are two of the first available fly tracking
systems, they were released around the same time but serve different purposes.
CADABRA is tailored towards fly pairs and outputs the detailed pose of each fly
as well as their mutual position and orientation. Ctrax, on the other hand, tracks
multiple flies and uses motion continuity and segmentation of overlapping bodies
to keep track of their identity. Both tools have been used extensively for fly behavior
analysis, i.e. in the work of [WA10; (Wan+11; Lim+14; |OZR11; Ram+15], to list
a few. IdTracker [Pér+14] is a more recent software that tracks any type of animal,
its main strength is re-identification which allows it to keep track of individuals
throughout the video and recover from mistakes. It does not attempt to separate
bodies that are merged due to overlapping but instead re-identifies them based on

an appropriately computed ‘fingerprint’ after they have been separated again.

FlyTracker combines the strengths of each of the above. It tracks multiple flies and
extracts a detailed pose of each fly at every frame, which it uses to re-identify flies
when motion trajectories are ambiguous. Like Ctrax it resolves touching bodies,
and similar to idTracker it uses appearance features to re-identify flies. Its appear-
ance features are less elaborate than those of idTracker, but they are also less com-
putationally expensive and do not make assumptions about lighting or resolution.
Figure [2.2 summarizes the difference between the different tracking softwares. A
more comprehensive list can be found in [Del+14] which includes software that is
commercial, tailored to different animals, or requires an elaborate setup (i.e. multi-

ple cameras or specialized hardware).

CADABRA Ctrax idTracker FlyTracker
animals 2 >20 >20 >20
resolves overlap yes yes no yes
stitches gaps yes no yes yes

Figure 2.2: Comparison of different tracking tools. Resolves overlap refers
to whether individual bodies are segmented apart when bodies are overlapping.
Stitches gaps refers to whether trajectory identities are re-assigned when trajec-
tories end and start again (i.e. due to flies leaving field of view or merged bodies).

Identity accuracy

We measure the identity accuracy on three different videos, shown in Figure [2.3
and compare the performance of Flytracker with idTracker which also aims to keep
track of subject’s identity. 8-well flies contains 8 fly pairs, each in a separate cham-
ber, with 405 pixels on each fly’s body. This video has two main challenges, 1)
when flies are close to chamber walls their reflection can be mistaken for a true
fly, and 2) during aggressive behaviors the flies are in close contact and sometimes
jump quickly away from each other. However, for each fly pair one of the flies
has one wing clipped so that their identities can be determined by a human annota-
tor. FlyTracker automatically detects chamber boundaries, and therefore treats this
video as 8 separate tracking problems, but for comparison with idTracker we also
include results where the video is treated as a single chamber with 16 flies. Fly
bowl contains 20 flies, half of which are female, with 108 pixels on each fly’s body.
The main challenge of this video is that multiple male flies often chase a female
at the same time, with bodies of 2 or more flies frequently touching. Zebrafish
contains 5 zebrafish larvae with 610 pixels covering each body on average, and the

main challenge in this video is that fish can swim over each other.

Figure [2.3] compares the two tracking systems in terms of their tracking time (on
OSX with 4 cores and 8GB memory), the percent of frames that a fly was not
detected (%missed), the percent of frames that a fly was misclassified (%wrong),
and how many identity swaps (#swaps) would be necessary for correct assignment
(ignoring misidentifications shorter than 1 second). The percent misclassified and
number of swaps exclude undetected frames. In addition, we visualize identity

assignments to give intuition for the meaning of these errors.

The results show that globally idTracker performs better, as the percent of mis-
identified fly-frames is lower, but locally FlyTracker performs better, as the percent
of missed detections (when animals are touching) is lower, and the number of swaps
needed to correct identities is lower on average. On the bowl video, idTracker fails
to recover identities. This may be due to a few reasons: 1) although the authors
report good results for as low as 50 pixels per body, they recommend 150 pixels for
good performance, 2) they report that identity recovery can be compromised when
crosses are ubiquitous, which is the case with this video, and 3) the video is backlit

and might therefore not have enough detail on the fly body for fingerprinting.

In conclusion, the two systems seem to be complementary; if one cares about keep-

ing track of animal identities, but not about their pose or their location when touch-

8-well flies fly bowl zebrafish
8x2 flies, 405 pix?, 60hz 20 flies,108 pix2, 30hz 5 larvae, 610 pix?, 32hz

1024x1280 pix?, 10 min 1024x1024 pix2, 17 min 1080x1920 pix?, 8 min

identity assignments time #swaps %wrong %missed
5:12 3 0.1 0.1 FlyTracker
7]
o
= = - ‘ = FlyTracker
3 == 601 98 22.5 0.2 w/o chamber
S = detection
©
= T 2408 192 30 5.2 idTracker
1:25 15 4.3 0.1 FlyTracker
E
o
o
>
- 11:04 1187 344 15.9 idTracker
G — . 1M 34 188 0.1 FlyTracker
<
_Q ——
8 — — 247 27 0.2 81 idTracker

Figure 2.3: Top: Videos used to measure identity correctness. Bottom: Compar-
ison of identity accuracy between FlyTracker and idTracker. Identity assignments
are visualized with time on the x-axis, ground truth fly identity on the y-axis, and
color represents the predicted identity of a fly.

7

ing, idTracker is better (with the caveat that relatively high resolution is required).
If one cares about position when animals are in contact and/or the pose of the an-
imals, FlyTracker is a better choice. In addition, FlyTracker is considerably faster

than idTracker, especially when animals frequently touch or overlap.

Pose accuracy

In order to measure pose accuracy, we collected ground truth annotations for the
8-well fly video described in the previous section. An annotator was presented with
randomly selected frames, zoomed in on a randomly selected fly, and asked to click
on its head, the tip of its abdomen, both sides of its body, the two wing tips, and
on the tips of all visible legs. In order to measure accuracy during difficult cases,
additional frames were sampled where flies are touching and where their bodies
overlap. The annotator was asked ignore frames where she could not determine the

pose of the fly.

Figure [2.4] plots the pose errors for 1) flies not touching, 2) flies touching, and 3)
flies overlapping, and compares ground truth pose to the pose estimated by Fly-
Tracker, showing five smallest and five largest body pose error for each case, mea-
sured as a function of position-, orientation-, and length error, and the precision and
recall of the wings and legs. We matched wings and legs using a one to one match-
ing with a maximum threshold, and the wing- and leg position errors are reported
only for matched legs and wings. Precision refers to the percentage of detected
wings/legs that matched with a ground truth wing/leg, and recall to the percentage
of ground truth wings/legs that were matched with a predicted wing/leg. Results
are based on 510 annotated fly-frames, 150 of which flies are touching, and 110 of

which they overlap.

When flies are not touching the median errors are relatively small. Position and
length errors are generally around 0.1 mm, orientation error less than 1.5 degree,
and both wing and leg precision is greater than 95% while wing recall is 94% and
leg recall 83%. When flies overlap, orientation and length errors increase to 2.4

degrees and 0.16 mm, and wing and leg recall drops down to around 70%.

0.2

0.1

touching = not touching

= overlapping

position orientation length wing position leg position
0.2 /\ 0.2
0.1 / 0.1 /
\
- 0 0 0
0.01 0.1 1 0.1 1 10 100 0.01 0.1 1 0.01 0.1 1 0.01 0.1 1
error (mm) error (deg) error (mm) error (mm) error (mm)
body wings legs
median median median median median
position : orientation length recall precision | position recall precision position
error (mm) | error (deg) | error (mm) error (mm) error (mm)
— not touching 0.04 11 0.10 94 100 0.10 83 96 0.09
touching 0.03 1.4 0.12 94 99 0.10 73 91 0.09
— overlapping 0.08 2.4 0.16 73 97 0.10 68 89 0.1
lowest errors highest errors
¥ » I ' NE
° 4 . . . -
o
§ / 3 o &N o
I ¥ - K
£ ' ~ ﬁ$~ # T N | F
w .
c % 3 [
2 Ak . y . by A
3 '; . . /4 b s 2
\]
= . .
o ‘/ d ‘
£
2
= 4
= oy ~
o
g ;
1 X}
=
>
w

Figure 2.4: Top: histogram of pose errors plotted separately for flies not touching
(green), touching (yellow) and overlapping (red). Middle: median errors for body,
wings, and legs, and precision-recall for wing and leg detection. Bottom: Five
lowest/highest pose errors shown shown for the three cases.

Performance on other animals

FlyTracker is optimized for tracking fruit flies. It makes use of constraints specific
to a fly (elliptical body, 2 wings, 6 legs) to fit a skeletal representation to its body.
However, it can in theory track any type of animal as long as the background is
constant throughout the video and the animals are all of similar size. We showed in
Figure [2.3] the identity performance on a video containing 5 zebrafish, and Figure
[2.5] shows that the results also look promising when considering segmentation of
overlapping fish and pose. The zebrafish larvae do not have wings or legs and their
body is non-rigid, but the tracker fits an ellipse to the thicker part of their body and
a leg to its tail. The shape of the ellipse and the relative position of the "leg" could

be used to infer the curvature of the fish.

Y \ A 72
sl = Pt \ \

~ 4
4 X A i b
- - > \ \

™ /4

Figure 2.5: Zebrafish larvae tracked using FlyTracker. This example shows a case
where identity swap was successfully disambiguated.

2.2 Detection

Input videos are assumed to have rigid camera-chamber setup with constant lighting
and no shadows cast from flies, such that a background image can be estimated
and used to detect flies via background subtraction. This also requires that the
animals are not stationary for the entire duration of the video. A single video may
contain several experiments, separated by chamber walls, and in order to reduce
complexity of the tracking problem chambers boundaries are detected automatically
and flies tracked independently within each chamber. In this section we describe the
background computation algorithm, the chamber detection algorithm, and finally

the fly detection algorithm.

10

Background estimation

Two common background computation methods [Ben+08] are 1) taking the mean
of all images in a video, which is susceptible to ghost effects when flies stay in place
over extended periods of time; and 2) taking the median over all pixels, which is
subject to noise and makes the assumption that pixels are not covered by foreground
at least half of the time. Our approach combines these two ideas to obtain a smooth
background image without ghosting effects, assuming each area of the background

is visible in at least one frame.

The background image is computed by iteratively adding weighted images to a
background sum. First, a rough background is estimated and at each successive
iteration a randomly selected image is added, weighted such that areas believed
to belong to the foreground contribute a negligible amount. This is described in
Algorithmmwhich takes as input a 7-frame video, {/; : i € [1,T]}, and a minimum n
and maximum N number of frames to use for background computation, and outputs
background image, B, and weight sum, S, which indicates how many images were
used to compute the value for each pixel. Figure [2.6] shows steps of the algorithm

for an example video.

{1y (¥ ~)
+ \ » - » ‘
4 o '
+ + +
} | ' S
) 3 - ® %
P ”» ¢ MR 2
— i i i B
| }] " |
. I f '
, ’ - — — —_ (
+ v 4 L + 4
L init iter 1 iter 2 iter 3)

Figure 2.6: Weighted background computation shown for an example video. At
each iteration, frame I;, weighted by its estimated foreground mask, is added to the
background weight sum. Here, the final output was obtained after 33 iterations.

11

Algorithm 1 WeightedBackground
Imput: {/; :i € [1,T]},n,N
Output: B,S

1: B=mean({l; :i€1l:|T/n]:T}) > rough background estimate
2: 7 = inferThresh(/|7/2) — B) > foreground threshold
3: Bs=0 > initialize background sum
4: =0 > initialize sum weights
5: fori € randi(T, N) do > loop through N random frames
6: W=U-B)<T > background mask
7: Bs=Bs+ 1, *W > add weighted image to background
8 S=S+WwW > update weight sum
9: a=S8== > mask for zero weight pixels
10: B=Bs./S*(1-a)+B.*a > update background

11: if min(S) > n AND converged(B) then break

Chamber detection

Detecting chamber boundaries can improve tracking quality as it provides extra
constraints for matching flies and it facilitates computation of a fly’s proximity to
chamber walls which can be informative of the fly’s behavior. Algorithm [2] takes
as input background, B, background weight sum, S, number of chambers, N, and
(optionally) chamber parameters. It outputs chamber centers, C, and the optimal
chamber parameters (radius if circular, width and height if rectangular). The algo-
rithm uses the gradient of B to compute an edge mask, and determine the chamber
shape: if gradient orientation distribution has 4 modes, the chambers are inferred
to be rectangular or otherwise circular. It thresholds S to obtain a cumulative fore-
ground mask. It then loops through a range of possible chamber sizes (determined
based on image size), create an edge filter with positive weights on the boundary
and negative weights inside it, and a foreground filter with positive weights inside
the boundary and negative outside it, and convolves the masks with the respective
filters and sum their response. The optimal parameter is that producing the high-
est maximum response. Finally, from the total response, R, chambers are selected
from the top local maxima such that they do not overlap. Figure [2.7] shows the

input, output, and intermediate variables for an example video.

12

Algorithm 2 ChamberDetect
Input: B, S, N, (param)
Output: {C; :i € [1,N]}, param

1: G,0 = imGradient(B) > magnitude and orientaiton of gradient
2: T = mean(G)+std(G); > gradient threshold
3 E=G>1 > edge mask
4: F =S < prctile(S,99) > cumulative foreground mask
5: if nargin < 4 then

6: Fmax = 0, param = [] > initialize parameters
7: P = getParameterRange(O, N) > infer chamber parameter range
8: for p € Pdo > loop through range
9: Kg, Kr = generateFilters(p) > edge and foreground filters
10: r = max(conv(E,Kg) + conv(F,KFr)) > max total response
11: if r > r;4, then ry,,,, = r, param = p > update parameters
12: Kg,Kr = generateFilters(param)
13: R =conv(E,Kg) + conv(F,KFr) > response image
14: C = getTopResponses(R, N, param) > top N chamber locations
S

B

Figure 2.7: Chambers detected from background edges and foreground estimates

cumulated during background computation.

13
Fly detection

Using the same principle as in background computation, where moving objects are
located using a rough background estimate, we subtract background, B, from each
image to detect flies. The background subtracted image (signal) is normalized with
the background itself to account for non-uniform environments: the signal strength
of a fly walking on top of a dark area is weaker than a signal of a fly on top of
a bright area, as shown in Figure 2.8] The foreground image is thresholded to
obtain a foreground mask (weak threshold, 7¢) and a body mask (strong threshold,
7p) and from the masks we extract connected components (using (x1,+1) pixel
neighborhood). This is described in Algorithm [3] which takes as input a video and
a background image, and outputs, for each frame, 7, a list of foreground objects,
{fl.j : J € [1,n;]}, and body objects, {bl.i : j € [1,m;]}. Each object is defined in
terms of a pixel list, centroid, and area, and foregrounds point to the list of bodies
it contains (children), and bodies to their corresponding foreground (parent); if two
or more flies are touching, their bodies are the children of a single foreground.
Tracking can be done for each chamber individually, considering only detections
within each chamber’s boundary.

Algorithm 3 FlyDetect

Input: {/;:i €[1,T]},B

Output: {f; :i € [1,T]},{b; :i €[1,T]}
1: fori €[1,T] do

> loop over frames

22 Iy =(I; - B) /max(0.1,B)

D N T

Mf = If < Tf

Mb = If < Tp

M,, = dilate(erode(Mj;))

{f] :j €[1,n]} = conncomp(M)
{b{ : j € [1,m;]} = conncomp(Mj)
removelnvalid(f;, b;)
assignRelationship(f;, b;)

> normalized foreground image
> foreground mask

> body mask

> eliminate noise

> foreground objects

> body objects

> too small / big / skinny

> assign bodies to foregrounds

s

%\

Figure 2.8: Background subtraction: I; — (I; = B) — Iy, — (My + Mj). In the last

image, black pixels represent body and gray U black pixels represent foreground.

14

@)
blobs: 0 &
@
) Oe)
o D | Q@ |©
O
< ® e o e e
merge . o
@ &
@ %))
o0 | @ |o
O
| ® e © e e
ik tracklets: ® P O‘
- O
........... @ o WY @
@ -
< ST — D
split ® Q®
.................... @
@ . @ @ &
........... @V @ W (@
@ o
< ® @ D W
stitch trajectories:| | | | | P
i pp—— e ® >
- @9 BT ‘ @
@ [T gyt
< @ @ @ D D
correct
.................... &
@@ .. P
Phaaii™ L SE0 — She v ®a e

frame 2 frame 3 frame 4 frame 5 frame 6

Figure 2.9: A synthetic example demonstrating the tracking procedure. The top row
shows blob detections (colored in a shade of grey according to their identity within
the frame) which include anomalies such as split, merged, missing, and false blobs.
Our tracking algorithm is split into the following steps: 1) merge small blobs with
nearest sibling, 2) link blobs across frames unless matching is ambiguous, 3) split
tracklets containing more than one fly, 4) stitch tracklets into full length trajectories,

and 5) correct potential identitiy swaps based on appearce.

2.3 Tracking

Tracking by detection involves matching detected bodies between consecutive frames
to obtain contiguous trajectories. If detection were perfect this would be a fairly
simple task. However, common problems include: a) merged detections when sub-
jects overlap, b) missed detections caused by motion blur or subjects out of field of
view, c) false detections due to noise, d) split detections due to over-segmentation,
and e) mismatching due to discontinuous motion of subjects. Our tracking algo-

rithm, summarized in Figure[2.9] is designed to handle these challenges.

15

Merging

From now on we will refer to detected body, bl’ , as a blob, as it may not represent
a self-contained body but rather multiple bodies, body fragment, or noise. We want
to split blobs that contain more than one fly, and merge blobs that belong to a single
fly, but solving both issues simultaneously is a circular problem: if two blobs in
frame i match to one blob in frame i + 1, should the blobs in frame i be merged or
the blob in frame i + 1 be split? Frames i — 1 and i + 2 could help disambiguate
that, however, further merging or splitting of blobs in surrounding frames, as well
as missing and false blobs, can further complicate things. By merging small blobs
with nearby blobs (whose body they potentially belong to), the problem reduces to
splitting only. A blob’s survival is based on its cardinality, ¢, which measures how
many fly bodies a blob is believed to contain. Blobs with O-cardinality are merged

with their closest sibling (with smallest distance between closest pixels).

Algorithm 4 Merge
Input: {b; :i € [1,T]}
Output: {b; :i € [1,T]}

1: m, = median;, j(b{ .area) > expected size of blob
2: for b € {b{}do
3: b.c = round(b.area / m,) > blob cardinality

4: if isLargestChild(b) then b.c = max(b.c, 1) > keep largest / only child
5: if b.c == 0 then mergeWithClosestSibling(b)

Linking

Ultimately, the goal is to match blobs between consecutive frames and link them
together from frame 1 to 7T to form trajectories for individual flies. We start by link-
ing the blobs into shorter trajectories, tracklets, whose matches are un-ambiguous.
Matching is considered ambiguous when a) many blobs match to one, b) one blob
matches to many, ¢) swapping matches results in low cost increase, or d) cost of
matching is too high. Algorithm [S|takes as input the list of blobs at each frame, and
outputs a list of N tracklets, {#; : i € [1,N]}. For n blobs in frame i, and m blobs
in frame i + 1, it builds an n X m cost matrix, C, defined in terms of blob overlap
and distance. It uses the Hungarian matching algorithm [Kuh55] to assign blobs
from frame i to blobs in frame j, then greedily allows blobs to swap to a high car-
dinality blobs if the match is cheaper and both cardinality constraints are satisfied,
and finally removes assignments that are too expensive or ambiguous. Remaining

matches are joined to form tracklets.

16

Algorithm 5 Link
Input: {b; :i € [1,T]}
Output: {r;:i € [1,N]}

1: N = |b;] > current number of tracklets
2: inds = [1,N] > current tracklet indices
3: fori € [1,N]do
4: t; = init(b', 1,0) > start tracklet at frame 1 with O matches
5: fori € [1,T] do > loop through frames
6: A = MarcH(b;, biy1) > assignments
7: A* = removeOneMany(A) > one-to-one assignments
8: for j,k € find(A* == 1) do
9: tinds(j).append(bfﬂ) > append to existing tracklet
10: for j € find(sum(A*,1) == 0) do
11: c =sum(A(j,:)) > number of matches from tracklet
12: tinds(j)-end(i, c) > end tracklet at frame / with ¢ matches
13: inds =inds \ inds(j) > remove index from current indices
14: for k € find(sum(A*,2) == 0 do
15: c =sum(A(:,k)) > number of matches to tracklet
16: INgl = init(bl’.ﬁrl,i + 1,c¢) v start tracklet at frame i + 1 with ¢ matches
17: N=N+1
18: inds =inds U (N + 1) > add index to current indices
19:
20: function Marcu(b;, b;;1)
21: C = Cost(b;, bit1) > match cost
22: n,m = size(C)
23: C’ =1((n + m)) * max(C)*2 > add high-cost dummy nodes ...
24: C’'(l1:n,1:m)=C > ... for non-matches
25: A’ = hungarian(C’) > one-to-one matching
26: A’ = greedySwap(C’, A’, b;.c, b4 .c) > swap to cheaper if allowed
27: A=A(1:n,1:m) > remove dummy matches
28: AC>1)=0 > un-assign invalid matches
29: A(ambiguous(A, 74¢c)) =0 > un-assign ambiguous matches
30: return A
31:

32: function Cost(b;, b;;1)

33: for b/ € {b;}, b* € (b1} do

34: Co(j,k)=1-(1 Nnb*) /(@ U b > overlap cost
35: Cq(j, k) = distance(d/, bk > distance cost
36: return C, * 1 + Cy4 > A ~ fly length

17

Splitting

Some of the tracklets may contain more than one fly (in the case where flies over-
lap). The next step is to determine the cardinality of each tracklet, similar to what
we did with blobs before. The cardinality is determined based on how many track-
lets match to and from the tracklet, as well as blobs-cardinality within the tracklet,
and is set such that cardinality is consistent between matching tracklets. Once the
algorithm has determined tracklet-cardinalities, it split blobs of tracklets with car-
dinality ¢ > 1 by fitting a mixture of ¢ 2-dimensional Gaussians to the blob pixels
using Expectation-Maximization [[DLR77]. It then set the cardinality of all blobs to
1 and rerun the linking algorithm to obtain M < N 1-fly tracklets.

Algorithm 6 Split
Imput: {z;:i € [1,N]},{b;:i €[1,T]}
Output: {r; :i € [1,M]}

1: {¢;} = computeCardinality({z; : j € [1,N]})

2: for j € find({¢c;} > 1) do > split high cardinality tracklets
3: for bF € 1;.blobs do

4: (b':1¢ [1,cil} = splitBlob(bl{‘,cj) > fit mixture of ¢; Gaussians
5 b,-.remove(bf) > remove blob from frame i
6 bi.add({b! : 1 € [1,¢;1}) > add blobs to frame i
7: for b € {b{} dobc=1 > set all cardinalities to 1
8: {t;:ie[l,M]}=Link({b; : i €[1,T]}) > re-link all blobs

Stitching

The next step is to stitch together the tracklets to form full trajectories for each fly
(similar to linking blobs to tracklets) and discard tracklets containing nosie. The
tracklets may be separated because of ambiguous or expensive matches, missing
blobs, or noise blobs. The first step of stitching is to identify sub-problems, or
intervals of overlapping gaps. Between sub-problems there exist exactly as many
confident tracklets as there are flies, and a sub-problem involves all tracklets whose
start or end overlaps with the sub-problem’s interval. This is visualized in Figure

2.10|A). A tracklet’s confidence is a function of its duration and distance traveled.

For each sub-problem, the objective is to find a path from each confident track-
let entering the problem to each confident tracklet exiting the problem. The cost
of matching tracklets is composed of three factors: Time cost, Cr, represents the
time between the end of tracklet i to the beginning of tracklet j, space cost, Cy, is

computed between the blob at the end of tracklet i and the blob at the beginning

18

o | = ’
1T 1] o»
1 *_* @
I \

time
subproblems: 1 2 3 4 5
C)
Temporal cost (Cr) Spatial cost (Cs) Elimination cost (Ck) Total cost (

3

Figure 2.10: A) Tracklets arranged greedily. Overlapping gaps define a subproblem.
Note that only tracklets whose boundaries overlap with the subproblem window
belong to that subproblem. B) Location of blobs at time indicated by circles in A).
C) Cost matrices for subproblem 3.The total cost shows that it is more optimal to
match the cyan tracklet to the purple one rather than the pink one.

of tracklet j, using their predicted location at the frame between the tracklets, and
elimination cost, Cg, is the cost of eliminating tracklet i based on its duration, dis-
tance, and confidence. Space and time costs between tracklet i and j are infinite if
J starts before i ends, and all confident tracklets have infinite elimination cost. The
tradeoff between time and space cost is such that when duration between tracklets
is low, space cost weighs higher, and when duration is high the time cost dominates

the total cost (because flies my have traveled arbitrarily far).

This can be solved as a one-to-one matching problem, again using the Hungarian al-
gorithm, with a guaranteed path between the confident tracklets at the beginning and
end of the subproblem (a confident tracklet cannot connect with a self-eliminating
tracklet, because, by definition, self eliminating sequences connect from themselves

to themselves). All tracklets that match to themselves can be discarded as noise.

Trajectories are constructed the same way as tracklets were from blobs, by linking
together the matched tracklets. This time everything is matched, even if matching
is ambiguous, but all ambiguous matches are flagged such that they can later be

automatically or manually corrected.

19

Algorithm 7 Stitch
Input: {z; :i € [1, M]},nfijes
Output: {7;:i € [Lnflies]}’F
1: S = FinoSusrroBLEMS({#; : i € [1,M]})

2: Ag =0 > Global, M xM, assignment matrix
3: for s € Sdo

4: C = ComputeCost({t; : i € s.inds}) > cost of matching tracklets
5: A = hungarian(C) > one-to-one assignment
6: F = [F flag(A,7)] > add ambiguous matches to flags F
7: Ag(s.inds,s.inds) = A > update global assignment
8: {t; i € [1,npes]} = removeAndLink({z; : i € [1,M]}, Ac)

10: function ComputeCost({t; : i € [1,n]})
11: Cr =Cs=Cg =c(n,n)

12: fori € [1,n] do

13: for j € [1,n] do

14: if start(j) > end(i) then

15: Cr(i,j) = start(j)-end(7) > temporal cost
16: Cs(i, j) = spaceCost(t;,1;) > spatial cost
17: if i unconfident then

18: Cg(i,i) = elimCost(votes, dur, dist) > elimination cost
19: W =1/ +exp(-(Cr + 1)) > time-space tradeoff
20: Cr = sqrt(Cr)

21: C=min(W .*Cs+ (1 =W) .*Cr, Cg) > total cost
22: return C

23:

24: function FINpSuBPrOBLEMS({#; : I € [1,M]})

25: count =1 > 1 x T vector
26: {c; ;i €[1,M]} = confidence({t; : i € [1,M]}) > tracklet confidence
27: for i € find(¢; > 0) do

28: count(t;.start + 1 : tj.end — 1) = count(t;.start + 1 : tj.end — 1) + 1
29: $ = conncomp(count < nyjies) > framerange for each subproblem
30: for s € Sdo > assign trajectories to subproblems
31: s.inds = findBoundyOverlap(s,{t; : i € [1,M]})

32: return S

20

Automatic identity correction

Finally, potential identity swaps are disambiguated using appearance features such
as body width, length, and area, and length of wings. But first, in order to obtain
such a description of each fly, pose extraction (described in the next section) is
performed on the detection and tracking outputs. Each identity swap involves two
flies (if more flies are involved, they are treated as independent swaps). Using
appearance features from frame 1 to the swap frame, f, a binary classifier (logistic
regression on binned appearance features) is trained and applied to the appearance
features from f to the next swap frame for each fly. The output of the classification
at every test frame is aggregated into a probability matrix. If the probability of
swapping exceeds a threshold, then blobs from f onward are swapped between the

two trajectories, and flags are updated accordingly.

In cases where fly appearances vary significantly, for example when comparing
male vs. female or when one of the flies has its wing clipped, auto-identification
works well, but in cases where flies are very similar, ambiguous matches may need
further correcting. The FlyTracker interface allows the user to loop through poten-

tial swaps and manually correct them.

Algorithm 8 AutoCorrect
Input: {z; : i € [1,npe5]}, F
Output: {t; :i € [1,n//ie5])

1: fora,b,f € F do > trajectories a and b at frame f
2: X, = shapeFeat(t,,1,f — 1), Y, =0 > extract features from start...
3: Xp = shapeFeat(tp,1,f — 1), 1, =1 > ... until swap
4: X = [X0, Xpl, Yir = [Ya, Vsl > training data
5: fa = nextFlag(F,a, f), f» = nextFlag(F,b, f)
6: X, = shapeFeat(t,, f + 1, f,), Y, =0 > extract features from swap...
7: Xp = shapeFeat(tp, f + 1,), Y, =1 > ... until next swap
8: Xie = X0, X3, Yie = [Ya, Yol > test data
0: model = train(X;,, Y;,) > train binary classifer
10: S = predict(X;,, model) > apply classifier
11: p = aggregate(S) >p(i,j),i,j € {a,b}
12: if p(a) = b - p(a) = a > 7 then > if confidently swap

—
(O8]

ta,tp, F = swap(ty,tp, f,F) > update trajectories and flags at f

21

Figure 2.11: a) Foreground (gray) and body (black), b) wings, legs, and body seg-
ments, c) flies parameterized with body ellipse, wing segments and leg positions.

2.4 Pose estimation

In addition to tracking individual flies, a skeleton is fit to each fly such that their lo-
comotion can be measured as well as their whereabouts. This is done by segmenting
the masks output from detection into body-, wing-, and leg pixels, and fitting an ori-
ented ellipse to the body pixels, a line segment to the wing pixels, and points to the

tips of the leg pixels, as visualized in Figure 2.4 and described in Algorithm 9]

For each body object output by the detection algorithm, a Gaussian ellipse is fit
to the list of pixels it contains by computing the mean and covariance over the
pixel locations. The orientation of the ellipse is the angle between the image x-
axis and the major axis length of the fly, but it may be flipped by 180 degrees
to enforce consistency with 1) fly’s wing positions, 2) velocity, or 3) surrounding

frames, depending on which one is most trusted.

Next, the foreground objects are used to extract legs and wings: each foreground’s
mask is eroded and dilated such that "skinny" regions of the mask disappear. Con-
nected components of pixels that disappeared are considered leg candidates. Leg
pixels and the dilated body masks and then subtracted from the foreground mask,
and connected components of remaining pixels for candidate wings. Validity of
legs and wings, and to which fly they belong (when multiple bodies contained in
foreground) is determined using size/pose constraints. Each body is assigned at
most 6 legs and 2 wings, and if a fly has only one wing component it is split along
its major axis to form two wing components. The position of wing/leg segments is
represented by the location of the pixel furthest away from the body ellipses center,

and are ordered based on their signed angle with respect to the fly’s major axis.

From this representation, features such as velocity, wing angles, and distance to

other flies, which are useful for quantifying a fly’s behavior, are computed.

22

Algorithm 9 ExtractPose

Input: {f; :i € [1,T1},{b; :i € [1,T1},{t; : i € [1,np4ie5]}
Output: {#; :i € [1,n//ie5])

1

»

10:

12:
13:
14:
15:

R A A

. for b) € (b :i € [1,T]} do
b{.(centroid, ori,axes) = ﬁtEllipse(b{)
c forr e {t; 1 i € [1,np)5]} do >

: forie[1,T]do

M¢? = dilate(erode(MF))

My = Mp - M¢?

ccy, = conncomp(Mp)

MW = MF - ML— dilate(MB)
ccy = conncomp(Myy)

b.or1 = fwdDisambiguateOri(b.t)
b.wings = assignWings(b, ccy)
b.legs = assignlegs(b,ccr)

16:

17

18:
19:
20:

21:
22:
23:
24
25:

: function AssIGNWINGS(b, cc)
trusted = strictConstraints(b, cc)
if trusted then

b.ori = disambiguateWing(b, cc)
valid = constraintsWings(b, cc)
if [valid) == 1 then

cc,valid = splitMiddle(b, cc(valid))
wings = fitVector(cc(valid),b.centroid)
return wings(1 : max(2,|wings|))

26:

27

28:
29:
30:

: function AssiGNLEGs(b, cc)

valid = constraintsLegs(b, cc)

legs = fitVector(cc(valid),b.centroid)
return /egs(1 : max(6,|legs|))

> fit ellipse to each body

disambiguate orientation using...

t = bwdDisambiguateOri(t) > ... velocity- and backwards consistency

for f € fido > loop through foregrounds in frame

> remove "skinny" regions
> leg mask

> leg candidates

> wing mask

> wing candidates

for b € f do > loop through bodies in foreground

> large, same side, 1 resting body

> adjust ori to fit wing positions

> shape and pose constraints
> if wings merged as one

> split along major axis

> use furthest pixel from body
> return 2 best candidates

> shape and pose constraints
> use furthest pixel from body
> return 6 best candidates

23

2
\

=

=

Figure 2.12: Heat map for the position of each larva in the zebrafish video. Here we
can see that the larvae are attracted to one corner of the arena, and that individual 3
explores more than the others.

2.5 Behavior quantification

Global measurements Having extracted motion trajectories from videos, one can
begin to quantify behavior. Global measurements of the data, such as histograms
or heat maps for an individual or a group can be very informative about their be-
havior. For example, Figure shows a heat map for each larva in the zebrafish
video, from which it can be inferred that the north-west corner of the chamber was
attractive to the group. It can also be seen that individual number 3 spent more time
exploring the chamber than the others. Another example that involves a heat map
computed from the position of animals is shown in Figure [2.13| which sums up the
relative position of other individuals with respect to each individual. Here we can
see that females (bottom two rows) have individuals located behind them and males
(top two rows) generally have other individuals in front of them. This is indicative
of a chasing behavior between males and females. On interesting thing to note here

is that male number 5 does not seem to chase females.

Figure[2.14]shows global measurements that have to do with the pose of flies rather
than their location. On the left it shows a histogram of wing angles, plotted for
each individual in the fly bowl video. It has three prominent modes, one where the
angle is low, which is common for both males (colored in shades of green-blue)
and females (colored in shades of purple-pink), one around 15 degrees which is
common for two of the female flies, and one that is close to 90 degrees that is
occasionally reached by males. In the middle of Figure [2.14] we show a histogram
of the long axis of the body ellipse for each fly, and it is clear that females are
significantly larger than males, which can be a useful feature for automatic behavior
analysis. On the right we have pictured a heat map of leg locations with respect to
the fly’s pose, for all flies in the 8-well flies video. Perhaps not surprisingly, there
are six modes around the fly. One might use this information to look all frames

where legs are between the two front modes, which might indicate flies grooming.

24

="
£-»
= .
=

=

e

= d
=
=
{ =

=

_ @
-

=
N
ﬁ*:'@

P ek o 05 || =0

Figure 2.13: Heat map for the position of flies relative to each fly in the fly bowl.
The top two rows are male flies and the bottom two are femals. Here it is clear that
females are chased by males, except that male 5 seems to also be a chasee.

0.06
0.1

0.04
0.05

0.02

0 0 -
45 90 2 2.5 3
wing angle (deg) body length (mm) leg histogram

Figure 2.14: Left: Histogram of wing angle for each fly in the fly bowl. We see that
males (colored in shades of blue) sometimes have close to a 90 degree angle, while
females do not. Middle: Histogram of body length of each fly in the fly bowl. The
two modes represent males and females. Right: Heat map of leg positions of flies
in the 8-well flies video.

25

Local measurements One might also be interested in measuring how a fly’s pose
evolves over time or in the spatio-temporal patterns in its pose, which constitute
actions. This could be done by specifying thresholds for features, such as wing
angle or velocity, and searching for all frames where a feature or a combination of
features exceeds its threshold. For more intricate patterns, one could specify that
feature 1 has to be above a threshold for a certain duration, followed by feature 2
exceeding its threshold within a certain duration, and so on. However, this kind of
manual approach is limited by the user’s notion of which features are informative of
an action, and may need iterative fine tuning to eliminate false detections or missed
action instances. An automatic and more robust solution for learning such patterns

is described in the following chapter.

26
Chapter 3

ACTION DETECTION

Machine understanding of human behavior is potentially the most useful and trans-
formative application of computer vision. It will allow machines to be better aware
of their environment, enable rich and natural human-machine interaction, and it will
unleash new applications in a number of industries including automotive, entertain-
ment, surveillance and assisted living. Development of automated vision systems
that can understand human behavior requires progress in object detection, pose esti-
mation, tracking, action classification and detection, and activity analysis. Progress
on the latter (actions and activities) is hampered by two difficulties. First, track-
ing and pose estimation is very difficult in humans due to variation in clothing, the
amount of occlusion in natural environments and in social conditions, and the sheer
complexity and number of human body motions. Second, it is difficult (both tech-
nically and legally) to film large numbers of humans acting spontaneously while
they perform interesting activities. As a result, human action datasets are small and

unrepresentative, especially when social behavior is concerned.

A good strategy for computer vision researchers to make progress on behavior anal-
ysis is to shift their attention to the simpler world of laboratory animals [Bur+12a].
We collaborate with behavioral neurobiologists who are interested in measuring
and analyzing behavior across genotypes, in order to understand the link between
genes, brains, and behavior. One of their most popular model organism is the fruit
fly, Drosophila melanogaster: it is easy to care for, has a fast life cycle, and exhibits
a wide range of behaviors despite having merely 10° neurons. Through this col-
laboration we have put together a large annotated dataset of fruit flies interacting
spontaneously in controlled environments. This dataset allows us to study natural
actions and develop insight into how to represent, segment and classify them. If our
effort is successful, we can both advance the state of the art in human action anal-
ysis and provide biologists with tools for automatic labeling of actions, enabling
them to do experiments at a scale which would otherwise be extremely expensive

or impossible.

In this chapter we describe methods for detecting actions of fruit flies from their

trajectories obtained using FlyTracker. The main contributions of our study are:

27

1) We consider two different action detection architectures: sliding window detec-
tors and structured output detectors. By comparing five variants of the two architec-
tures on our dataset, we find that sliding window detectors outperform the structured

output detectors, in spite of being orders of magnitude faster.

2) We describe bout features that extract statistical patterns from frame-level fea-
tures over an interval of time, and emphasize the similarities of bouts within an
action class. Our experiments show that actions cannot be well detected using

frame-level features alone, and that bout features improve performance by 28%.

3) We discuss pitfalls of measures commonly used for benchmarking action de-
tection in continuous video and demonstrate which measures are most suitable,

suggesting a protocol for comparing the performance of different algorithms.

4) We introduce Caltech Fly-vs-Fly Interactions (Fly-vs-Fly for short), a dataset
containing 22 hours of fruit flies interacting spontaneously and sporadically. It
comes with complete labeling of 10 actions, annotated by neurobiologists, and a
second layer of annotations that can be used as a reference point for action detection
performance. Along with the videos and annotations we publish a number of time-
varying trajectory features, computed from the tracked pose (position, orientation,
wing angles, etc.) of the flies. The dataset is available at www.vision.caltech.
edu/Video_Datasets/Fly-vs-Fly.

3.1 Background

Datasets A large number of human action datasets have been published. KTH
[SLCO4] and Weizmann [Gor+07] are early contributions that have been exten-
sively used, but they are very small and consist of pre-segmented clips of acted ac-
tions. Hollywood 2 [MLS09], Olympic Sports [NCF10], HMDBS51 [Kue+11], and
UCF-101 [SZS12], contain pre-segmented clips of natural actions, making them
suitable for action classification, but not for detection and segmentation of actions,
while UT-interactions [[RA10]] contains continuous social interactions that are acted.
VIRAT [Oh+11] contains hours of continuous video of humans behaving naturally
and intermittently, lending itself well to action detection research; however, the pose
of the subjects cannot yet be robustly tracked and the human motion that can be ex-
plored is limited; furthermore, VIRAT does not contain social actions. HumanEva
[SBO6], HDMO5 [Miil+07], TUM Kitchen [TBB09]], CMU MMAC [De +09], and
CAD-60/120 [Sun+12; KGS12]] are continuous and come with fully tracked skele-

tons which makes them useful for analyzing a range of human motions; however,

www.vision.caltech.edu/Video_Datasets/Fly-vs-Fly
www.vision.caltech.edu/Video_Datasets/Fly-vs-Fly

28

Dataset Year #Citations Duration #Actions* Natural Social Continuous Art:)c:slzted
KTH 2004 1634 3 hours* 6 X X X

Weizmann 2005 986 5 minutes* 10 X X X

HumanEva 2006 583 22 minutes 6 X X v v
HDMO05 2007 107 3 hours 70 X X v v
TUM Kitchen 2009 98 1 hour* 13 X X N v
CMU MMAC 2009 97 6 hours* 16** X X v v
Hollywood 2(1) 2009 436(1327) 20 hours 12 v v X X
Olympic Sports 2010 196 2 hours* 16 N X X X

UT Interactions 2010 41 20 minutes 6 X v v X
HMDB51 2011 137 2 hours 51 v v X X
VIRAT 2011 91 29 hours 23 N X N X
UCF-101(50,11) 2012 40(57,477) 27 hours 101 v v X X
CAD-601M20 201113 17534 2hours' 22 x X oo, YA Y
UCSD mice 2005 1458 2 hours 5 v X X X
Honeybee 2008 61 3 minutes 3 N X N X
Home-cage 2010 60 13 hours 8 Ng X v X
CRIM13 2012 15 37 hours 12 v v v X
Fly-vs-Fly 2014 - 22 hours 10 Ng v v v

*estimated upper limit, **sub-activities (actions/verbs), *excluding the null category

Figure 3.1: Synoptic table of action datasets shown in chronological order, grouped
by human vs. animal. Properties desired for detecting realistic social actions from
articulated pose are highlighted in green.

these datasets are small, and their actions are acted. Figure @compares the detail

of the mentioned datasets.

Publicly available datasets of animal behavior video are Honeybee Dance [Oh+08]],
UCSD mice [Dol+05], Home-cage behaviors [Jhu+10a], and CRIM13 [Bur+12a].
The latter two are suitable for action detection, containing long videos of spon-
taneous mouse actions, but both are parameterized with only the tracked centroid
of the subject and spatial-temporal features. A large and well annotated dataset
containing unsegmented, spontaneous, social actions, that includes tracking of ar-

ticulated body motion has not yet been published. Our dataset aims to fill that place.

Action detection A common approach to action detection is frame-by-frame classi-
fication, where each frame is classified based on features extracted from the frame
itself, or from a time window around it: [Dan+09|] detected actions of fruit flies
using manually set thresholds on frame-level features, along with nearest neighbor
comparison; [Bur+12a] used boosting and auto-context on sliding windows for de-
tecting actions between mice; and [Kab+12]] also use window based boosting for
detecting actions of fruit flies in their interactive behavior annotation tool, JAABA.

More sophisticated approaches globally optimize over possible temporal segmenta-

29

tions, outputting structured sequences of actions: [Jhu+10al] used an SVMHMM,
described in [A+03]], for detecting actions of single housed mice; [HLD11] used a
multi-class SVM with structured inference for segmenting the dance of the honey-
bee; and [Shi+11]] used a discriminative semi-Markov model for segmenting human

actions.

We implemented three variants of the above approaches, specifically comparing a
sliding window SVM detector against two structured output SVM detectors, ex-
pecting the latter to improve frame-wise consistency and better capture structured
actions. For reference, we compare our results with the methods described in

[Kab+12]] and [Bur+12a] and with the performance of trained novice annotators.

3.2 Fly-vs-Fly

In collaboration with biologists we have collected the Fly-vs-Fly dataset, which
contains a total of 22 hours (1.5m frames recorded at 200Hz and 2.2m frames at
30Hz) of 47 pairs of fruit flies interacting. The videos are organized into three

subsets, each of which was collected for a different study:

Experimental setup

Boy meets boy is designed to study the sequence of actions between two male
flies, whose behaviors range from courtship to aggression. The flies are placed in
a 4x5 cm? chamber with a food patch in its center and walls coated with Fluon,
constraining the flies to walking on the floor [Hoy+08]. It contains six 20 minute
videos recorded at 200Hz with 12 pix/mm (24 pixels covering the 2mm fly body
length).

Aggression contains videos of two hyper aggressive males [Hoo+15] and is used to
quantify the effect of genetic manipulation on their behavior. The flies are placed in
a circular 16mm diameter chamber with uniform food surface [[Asa+14]. It consists

of ten 30 minute videos recorded at 30Hz with 8 pix/mm.

Courtship videos contain a female and a male, which in some cases are wild type
and in the rest are so-called hyper courters [Hoo+15]]. This set of videos was used
to study how genetic manipulation affects male courtship behavior. It consists of 31

videos recorded with the same chamber and video settings as Aggression.

The filming setups for these experiments are shown in Figure [3.2]

30

Boy meets boy Aggression Courtship
200 fps, 12 pix/mm 30 fps, 8 pix/mm 30 fps, 8 pix/mm

I RN
o) -

1 -

Figure 3.2: Experimental setup for Boy meets boy, Aggression, and Courtship.

Annotations

The entire dataset was annotated by, or under the supervision of, biologists, with
10 action classes that have been identified for the study of fruit fly interactions
[Che+02; Hal94; Dan+09|: wing threat, charge, lunge, hold, and tussle (aggres-
sive), wing extension, circle, copulation attempt, and copulation (courtship), and

touch (neutral). Each action is described and visualized in Figure [3.3]

Annotating a video involves finding all time intervals that contain an action of in-
terest, also referred to as action bouts, and requires recording the start frame, end
frame, and class label of each detected bout. The dataset is annotated such that ac-
tions can overlap, for instance tussling usually includes lunging, wing threat some-
times includes a charge, and wing extension and circling tend to overlap. Each
action class takes up less than 2% of the total frames in a video, apart from touch
(7%) and copulation (57%), and some classes have substantial intraclass variation,

both in terms of duration and appearance. Figure [3.4 summarizes the dataset.

The Fly-vs-Fly dataset, including videos, trajectory features, and annotations, is

available at www.vision.caltech.edu/Video_Datasets/Fly-vs-Fly.

3.3 Feature representation

For action classification, data representation is half the challenge. An ideal classi-
fier is invariant of any intra-action variation, but to train such a classifier a complex
model or large amounts of training data may be needed. Alternatively, this invari-

ance can be encoded into the features.

www.vision.caltech.edu/Video_Datasets/Fly-vs-Fly

- ® | w | = | -
- - L > 2

% % N &

a ¢ 5 X \
/ / / / i J
IRIRIRER

5 5
- p(ﬁ .
P x ox
A
A -

* - - +- =
i
| d F'a # ’\
F A S Al | R “.‘
“)

Q - »
] i
ot v
i - e g :

31

TOUCH The fly touches the leg,
wing, or body of the other fly.

The fly
extends one wing and vibrates it
while presenting it to the other fly.

CIRCLE The fly moves along
an arc around the other fly while
facing it.

COPULATION ATTEMPT
The fly approaches the other fly
from behind, curls its abdomen
towards it and tries to copulate,
but is unsuccessful.

COPULATION The fly
approaches the other fly from
behind, curls its abdomen towards
it and successfully copulates.

WING THREAT The fly
extends and raises both wings and
presents them to the other fly.

CHARGE The fly extends both
wings fully and charges towards
the other fly.

LUNGE The fly stands up on its
hind legs and thrusts down onto
(or close to) the other fly’s body.

HOLD After lunging, the fly
holds onto the body of the other
fly for an extended period of time.

TUSSLE The two flies lunge at
each other repeatedly and tumble
around interlocked.

Figure 3.3: An example and description of each action in Fly-vs-Fly.

32

Number of bouts Fraction of time spent in action Histogram of durations
> 6.9% 0.4
S 10 \ 0.4% os
5] 0.9% c
O 1072 8
9] 0.1% 502
£ 77 0.3 &
3 ’ 0.1 AL
] v
0 ‘ RS ‘ ‘
touch lunge wing charge wing 10 10/2 10"3 10 1075
threat ext.
28% 1-2% !
c 1073 .
S \‘ 0.0% 08
2 jore 410 0.2% 06
o s 132 0.7% :_f_é 04
S
< 0.2
0 /<
lunge wing charge hold tussle 10 1072 10"3 10M 1075
threat
1.6% 0.4
1073 0 1%3%
1%
-3 918 ‘ Q o8
< S
g 102 361 Eo'z
5 =
8 10 0.1
0
wing circle copul. copul. 10 1072 103 10 10%
ext. attempt duration (ms)

Figure 3.4: Action statistics: Left: Number of bouts for each action. Center: Frac-
tion of time a fly spends in each action, where the gray area represents the grab-bag
category other. Right: Distribution of bout durations for each action class.

Frame features

From the tracking output, described in Chapter 2] we derive a set of features that
are designed to be invariant of the absolute position and orientation of a fly, and
relate its pose to that of the other fly. The features (illustrated in Figure [3.5)) can
be split into two categories: individual features which include the fly’s velocity,
angular velocity, min and max wing angles, mean wing length, body axis ratio,
foreground-body ratio, and image contrast in a window around the fly; and relative
features which relate one fly to the other with distance between their body centers,
leg distance (shortest distance from its legs to the foreground of the other fly), angle
between, and facing angle. Analysis of the feature distributions showed that the
velocities, wing angles, and foreground-body ratio are better represented by their
log values, becoming more normal distributed. Figure [3.6] shows the distribution
of each feature, for all actions in the Boy meets boy sub-dataset, giving an idea
of which features are important for which action. In addition, we take the first
two time derivatives of each feature, resulting in a feature space of 36 per-frame
features. The features are computed from the reference frame of each fly, yielding
two asymmetrical feature vectors, as the actions we consider are always involve one

fly ‘performing’ the action.

33

\ Individual features
L A “ 1) velocity

\ 2) angular velocity
3) min wing angle

4) max wing angle
5) mean wing length
6) body axes ratio
7) fg body ratio

8) image contrast

Relative features
9) distance between
10) leg distance

11) angle between
12) facing angle

Figure 3.5: Illustration of features derived from the tracked fly skeletons. Individ-
ual features describe the fly’s motion and are invariant of its absolute position and
orientation, and relative features relate the pose of the fly to that of the other fly.

0.1 \e \3 \e 04 \e
(oCa 0.1 (oca o (o
\o%° \o%° 02} \0%° \ob°

S

=

&}

g _,45--......5_L
01 1 10 100 0.1 1 10 100 0.01 0.1 1 0.1 1
velocity (mm/sec) angular velocity (rad/sec) min wing angle (rad) max wing angle (rad)

0.1

04

(2
0.3 0.2 %S(;’A\

c \o

kel

R

S}

©

=

4 s >
06 08 1 12 14 06 08 1 12 25 4 63 10 05 1 15
normalized mean wing length normalized axes ratio foreground/body ratio normalized image contrast

06 0.8 ® touch

c ® lunge

2 wing threat

g ® charge

= A wing extension

.
0 10 20 2 0 5 10
distance to other (mm) angle between (rad) facing angle (rad) leg distance (mm)

Figure 3.6: Frame-wise feature distribution for the actions of the Boy meets boy
sub-dataset, and the grab-bag action other shown in gray. Here we see which fea-
tures are important to each action, for instance, velocity is high during lunge and
charge, min wing angle is high during charge and wing threat, and max wing angle
is high during wing extension.

34

Bout features

Although the actions look fairly separable in the per frame features, adding context
of the surrounding frames may significantly improve classification. We define a
number of bout-level features that are designed to extract statistical patterns from
an interval and emphasize the similarities of bouts within an action class, indepen-
dent on bout duration. The following bout features, ¥ (X, ?sqart,tena), are functions

of sequence x and interval [#qs tenal:

Temporal region features capture statistics of frame-level features over subinter-
vals, and emphasize patterns within an action composed of r subactions. They can
be expressed as: {op(x(¢sqrs + (i — 1)0t ¢ tgare + 1 0t — 1))}ieq1... 5}, Where ot

= (tend — tstart + 1)/(r = 1), r > 1, and op € {min, max, mean, std}.

x +H—H—H—H—H—|+E—H—H+H|4+FFFFH|H+H4+H4+H+FFFFFFFH—> time

min, max, mean, std

Harmonic features are meant to capture harmonic actions and can be expressed
as: Z;zl(—l)i mean(x(tgqr + (@ —1)01 © tyqre +1 6t — 1)), Where 6t = (topg — tsrar: +
)/(r—1)andr > 1.

® © ®

X: time
mean mean mean

Boundary features emphasize the change in features at the start and end of a

bout, and help with locating boundaries. For a fixed o, they can be expressed

as: mean(x(tstart/end : tstart/end + 5t)) - mean(x(tsmrt/end — 0Ot tstart/end))~

x: —H4+FFH+|-|+HE—H|-H—H+H—H+FFFH+H|-H—H+—H-|4+FFFH+FFH time
mean mean mean mean

Bout change features capture the difference in features between the beginning and

end of a bout, expressed as: x(f¢nq) — X(start)-

Global difference features compare the mean of a bout to global statistics of data,

expressed as: mean(x(Zsq4rs : tend))—0p(x), where op € {min, max, mean}.

Histogram features represent the normalized distribution of each feature within
the bout, expressed as: hist(x(¢sq4rs : tena), bins), where bins are extracted from

the training data, such that an equal number of frames falls into each bin.

35

In our experiments we use three temporal region splits, r € {1,2,3}, and set the
number of histogram bins to be 23, resulting in a total of K = 48 bout functions.
With K bout functions applied to each of the N per-frame features, the feature

representation for a bout ends up being a D = KN dimensional vector, .

3.4 Sliding window classification

In this paper we focus on detection by exhaustive classification, in particular we
compare two different architectures: Sliding window classification which refers to
classifying fixed size windows that move frame-by-frame over a video sequence,
and structured output classification which refers to detection by optimizing over all
possible segmentations of a sequence into actions. Both schemes involve a training
algorithm that learns an action classifier from n labeled sequences, {(x;,yi) }ie(1....a},
and an inference algorithm that takes a new sequence x and predicts y := {y/} =
{(s/,el,c))}, where yj is the jth bout in the segmentation of x, s/ and ¢/ mark the
start and end of the bout and ¢/ is its class label. We treat the problem of detecting
different actions as disjoint detection problems, mainly because the data that we are

interested in has many overlapping actions.

Our sliding window implementation has 4 main components: a training algorithm
that learns a classifier from labeled sequences, a classifier module, an inference
algorithm that predicts labels for unseen sequences, and a post processing module

that promotes continuity in the prediction labels.

Training: The training algorithm converts each sequence of input labels, {y;} =
{(s/,el,¢);}, to indicator vectors, {z;}, that specify whether a frame belongs to
an action or not. It extracts normalized bout features over fixed sized windows
surrounding each frame of all sequences, obtaining high dimensional data points
whose labels are the same as those of the frames around which the windows were
placed. With this data it trains a classifier using a bootstrapping scheme that over-
comes memory limitations that may be associated with large data, and allows us to
indirectly optimize with respect to performance measures that involve the number
of predicted positives. At each iteration it learns a classifier from a subset of the
data, using a learning algorithm suitable for the classifier type, applies it to all of the
data and adds misclassified samples to the training set - repeating until the desired

performance measure stops increasing.

Inference: The inference algorithm extracts bout features from a window around

each frame in x, normalized with statistics from the training data, and classifies each

36

window using the classifier obtained from the training step. The resulting sequence
of scores is thresholded to obtain an action indicator vector, Z, whose connected
components make up the predicted label sequence, ¥, assigning each bout the label,

start frame, and end frame of its component.

Post processing: Classifying a sequence frame-by-frame often results in noisy la-
bels, that is, within a bout of an action a few frames may be just below a thresh-
old and therefore split the bout into multiple bouts. To account for this we fit an
HMM to the scores to achieve smoother transitions: we convert scores to poste-
rior probabilities, P(x(#)|z(t) = 1) := 1/(1+exp(—score(t))), P(x(¢)|z(t) = 0) :=
1 — P((t)|z(t) = 1), compute prior probabilities, P(z(1) = c¢), and transition ma-
trix, P(z(t+1) = ¢;|z(¢) = ¢;), from the training data, and run the Viterbi algorithm
[Vit67] to find the most probable frame-wise sequence of actions.

Classifier: The classifier module consists of a binary classifier and its associated
learning algorithm. For comparison with our structured SVM implementation, we
choose to use a linear SVM classifier, learnt using the LIBLINEAR implementa-
tion described in [Fan+08]]. The classifier can be substituted by any other binary

classifier, such as boosting, regression, neural net, or a generative model.

This approach can be converted to a frame-based detector, by simply substituting

the bout features around a frame with its per-frame features.

3.5 Structured output classication
Structured output detectors differ from sliding windows in that they optimize over
all possible segmentations of a sequence into action intervals, finding the best start

and end frame of all bouts, allowing for varying sized intervals.

Structured SVM

We extend the structured SVM [T'so+05]] to train a model that can be utilized for
segmenting sequences into actions, by defining a score function, f(x,y), which
assigns high scores to good segmentations, and a loss function, L(y,y), which pe-

nalizes poor segmentations.

Training: The goal is to learn the weights w of a score function from a given
training set, such that for each training example the score of the true segmentation
y; is higher than the score of any other segmentation y by at least L(y;,y). If these

constraints cannot be satisfied, a hinge loss is suffered. To learn these weights we

37

use the primal structured SVM objective:

. 1<
w* « arg min wl|> + C= Z (max [f(xi,y) + Li,)] = f(xi,y0)
v Ny

which we minimize using a cutting plane algorithm [Tso+035] that iteratively finds
the most violated constraint: § = argmax, [f(x;,y) + L(yi,y)]. Searching over
all possible segmentations is intractable, but since our score- and loss functions are

linear in the bouts of y, dynamic programming [Bel56] can solve for the optimal y.

Score function: We define a score function f(x,y), which measures how well y
segments x into actions and can be represented as the sum of a bout score, unary

cost, transition cost, and duration cost, over all bouts in the segmentation:

f(x,y) = Z [w,i -w(x,sj,ej) - /l(cj_l,cj) - y(cj,sj,ej) - T(Cj)].
(s/ el cT)ey
Weights w,,; are used to calculate the score for a bout of class ¢/, 7(c/) is the cost
of detecting a bout of class ¢/, 1(¢/~!,¢/) is the cost of moving from action ¢/~! to
¢/, and y(c/,s/,e’) is the cost of spending ¢/ — s/ + 1 frames in action ¢/. These

terms are inspired by a hidden semi Markov model, comparable to [Shi+11].

Loss function: The loss function penalizes discrepancies between ground truth
segmentation y and a predicted segmentation y, and should be constructed such

that a small loss indicates satisfactory results. We define it as:

son= 3 () 2 (o)

(s,e,c)ey (5,6,6)ey

where () $.6+¢ (b, e) 18 the number of frames in § intersecting with [b e] with different
action class ¢ # c, f;n is the cost for missing a bout of class ¢, and fj;p is the
cost for incorrectly detecting a bout of class ¢. This loss function softly penalizes
predictions where the start or end of the bout is slightly incorrect. On the other
hand, since the loss is normalized by the bout duration, it effectively counts the
number of incorrectly predicted bouts and, unlike a per-frame loss, long actions are

not deemed to be more important than short ones.

Inference: Given a score function, f(x,y), and an input x, the optimal segmenta-
tion can be found by solving § = argmax, f(x,y). Again, similarly to the learning
phase, searching over all possible segmentations is intractable but we can solve for

y using dynamic programming.

38

Semi-structured SVM

This approach is a hybrid of the sliding window SVM and the structured SVM;
its inference algorithm optimizes over possible segmentations of a sequence, using
dynamic programming, but the classifiers are trained using a linear SVM on fixed

bouts from the training set, similar to [HLD11].

Training: We extract bout features from the positive bouts, {(s/i,e/')};, for each
sequence x; in the training set, and from randomly sampled negative bouts. We
consider a bout as negative if its intersection with a positive bout is less than half
of their union, so that large intervals containing positive bouts and small intervals
that are parts of a positive bout are still considered as negatives. Inference involves
considering all possible intervals of any duration as potential action bouts, however
training on all such possible intervals would be intractable. Instead, we generate
a limited number of randomly sampled negatives and use a bootstrapping training
process that gradually adds useful negative samples. At each iteration we train a
classifier on the current training data, run inference with the learnt classifier, and
add falsely detected positives to the set of negative training samples - repeating

until no new false positives are detected.

Inference: Here the goal is the same as in the structured SVM approach, to find the
optimal segmentation of a new input sequence x, § = arg max, f(x,y), but with a
simpler score function: f(X,y) = (s ei ciyey Wei - ¥ (X, 57, €7). Again, we solve this
using dynamic programming. We speed up the inference by setting upper limits on

the duration of an action, which we obtain from the training set.

3.6 Experiments and analysis

Measures

The performance measure used to compare algorithms should favor desirable pre-
dictions; in the case of action detection for behavior analysis it is important that
there are few false hits and misses compared to the number of true action instances,
which becomes difficult the more sparsely actions occur in the data. We have gen-
erated a synthetic ground truth sequence with five sporadic action classes, and two
different prediction sequences, to demonstrate the difference between three com-
mon measures: a confusion matrix, ROC curves, and precision-recall curves. This
comparison shows that precision-recall most effectively emphasizes the large per-

formance discrepancy between the two predictions (see Figure [3.7).

39

Confusion matrix Confusion matrix “precision” ROC Precision / Recall
- 1 I
g action 1
E=1 !
9 g action 2 % 0.8
g ‘B action 3 = c) aélwoﬁ 1
s 5 S oo 2 0o action 2
o D action 4 k] z o
) :5_ 3 g action 3 E}
= action 5 a 04 5 04 action 4 A
g g action 5 . .
z other] S o 0] O frame based
S [0 boutbased : M a
(2]
OO 0.2 04 0.6 0.8 1 [0.2 0.4 0.6 0.8 1
false positive rate recall
N
1 1
5 —
.‘3
o 0 08
5 s £°%
o 2 =
o B o S
[-% 2 > 06 O 06
o 3 g z
= < 8 o
-Au-s a ug)_ 0.4 E_ 04
= 2
S, + 02 0.2
) T ¢ EE L
; 2 2 8 8 £ 3 o
8 § &§ § &8 8 o 02 04 06 08 1 0 02 04 06 08 1
prediction (83%) ground truth (89%) false positive rate recall

Figure 3.7: Confusion matrices and ROC are unreliable diagnostics for assessing
experimental results. Each row shows the result of a different synthetic experiment.
The confusion matrices (first column) and the ROC (third column) suggest that both
experiments yield the same result and hide the large difference in the number of
false detections. This fact is revealed by the “precision" confusion matrix (second
column) and by the precision-recall curve (fourth column). The last column also
shows how bout-wise and frame-wise measurements can differ.

Precision-recall curves, used for measuring detection performance for a single
class, plot precision against recall, favoring minimum number of false positives
and false negatives with respect to the number of positives. ROC curves are sim-
ilar but instead of precision they plot the false positive rate, which places little
emphasis on false positives when negatives take up vast majority of the frames. A
confusion matrix, used in multi-class classification, is a square matrix whose entry
(i,) represents the fraction of ground truth instances of class i that are predicted as
class j, and is commonly summarized by its diagonal mean. However, its diagonal
effectively measures the recall of each class and fails to emphasize false positive
instances which get absorbed into the grab-bag class other. To account for this,
one must also look at the ‘dual’ confusion matrix, where entry (i, j) represents the
fraction of predicted instances of class i that belong to class j according to ground
truth, in which case the diagonal effectively measures the precision of each class.
We conclude that “precision” and “recall" confusion matrices are good measures
for multi-class detection problems, where classes are mutually exclusive, but for
experiments such as ours, where classes overlap and false positives are expensive,

precision-recall curves are the best performance measurement tools.

40

B: m time

—H—H—!—H—!—H—E—O—H—E—H—FFH—FFH—FH—O—H—E—H—O—FH—%FFH time

i) A R ime

iV) A A fime

B: A time

Figure 3.8: Examples of frame-bout performance discrepancies. Red squares de-
note missed/false detections, depending on whether A or B is ground truth. A lower
bout than framew ise performance can be due to scenarios such as i) and ii), and
lower frame than bout wise perforamnce due to scenarios such as iii) and iv)

For behavior analysis, correctly counting the number of action instances is equally
important as correctly measuring the duration spent in an action, hence we must
also measure the bout-wise performance. To do that we use an overlap criteria,

that deems a ground truth bout (s, eg, b) and predicted bout (s, e), b) to match only
if min(eg,ep)—max(sg,Sp)
> max(eg.ep)—min(sg,sp)

> threshold. If multiple bouts fit that criteria, we match the
one with the highest ratio. Figure shows that there can be large discrepancies
between frame-wise and bout-wise performance. This is the case when predicted
bouts are more fragmented than ground truth bouts, or when bouts are consistently

predicted to be shorter than, or offset from, the ground truth (see Figure [3.8).

In order to rank different methods we combine precision and recall into a single
value using the F-score, defined as Fg = (1+ %) =£ recisionrecall _ o hich for f = 1

B2-precision+recall’
represents the harmonic mean that favors balanced precision-recall combinations.

To further combine bout-wise and frame-wise performance we define the F'*-score

as the harmonic mean of F1-frame and F1-bout.

Human performance

We trained novice annotators to learn to detect actions in the Fly-vs-Fly dataset, by
showing them a subset of annotated movies, having them annotate another subset
and providing them with feedback such that they could adjust their detection crite-
ria. Once trained, they re-annotated a large portion of the test data, enough to give

precision

Boy meets boy Aggression
1 1
()
® touch
08} @ lunge 08 8
wing threat]
® charge L)'
5 os wing extension 5 os
@ hold: @
5 tussle] o
5 04 circle B 04
® copul. attempt
® copulation
0.2} O frame based 02
[J. bout based
0 0
0 0.2 0.4 0.6 0.8 o 0.2 0.4 0.6 08

recall

recall

0.8

0.6

0.4

0.2

41

Courtship

d

0.2 0.4 0.6 0.8 1
recall

Figure 3.9: Human performance measured in terms of frame based (circles) and
bout based (squares) precision-recall

Charge (Boy meets boy)

GT I I I I [

Human = I I I =

Wing threat (Aggression) 1 1sec
G »&@—— E— >
Human §—— il ! 1 P>

Tussle (Aggression)
GT

Human —

Circle (Courtship) f—— 1sec
GT —3 — — - {0 - - 0
Human —3 I— E— - E— - -
Figure 3.10: Segmentation samples of actions with high frame-bout performance

discrepancy. Here GT refers to experts and Human to trained annotators.

an idea about the difficulty of detecting each action. Overall, the trained annota-

tors achieved best performance on the Courtship sub-dataset, which they described

as being easier to annotate than the other two sub-datasets, with actions seemingly

less ambiguous. Figure[3.9shows the bout- and frame wise precision-recall for each

action in Fly-vs-Fly, and Figure [3.10] explains bout-frame performance discrepan-

cies. The human performance is a good indicator for what to expect from automatic

detection algorithms; we do not expect perfection, due to action ambiguity and im-

perfections in ground truth annotations, but ideally they should achieve at least as

good a performance as humans.

Rank histogram

Bout vs frame F1-score

42

Performance vs. time

Frame SVM + HMM 3 1 2 @ Human real time __
® Frame SVM + HVIM (30 Hz) : Q.84
08 Wiridow SVM + HMM H
) Semi-struct SVM @) 0.8
Structured SVM Structured SVM o
JAABA + filtering [20] ©) s Q.76 :
JAABA + filtering 1| gos 8 osl O72 Q.7
© Pl '
L= o Lo H
0 .66
Semi-struct SVM 2 04 S o
§ 0.6
Window SVM + HMM 2
0.2
Human 1 1 1 2 n 08 @ 48
0
5 4 3 2 1 0 0.2 04 0.6 0.8 1 10%0 10M 1042 10/3 100
rank F1-bout Inference time for 1m frames (minutes)

Figure 3.11: Method comparison on the Fly-vs-Fly dataset. Left: Histogram of
method ranks over all actions, based on their F*-score, ordered by mean rank. Cen-
ter: Comparison of Fl-scores of each method, averaged over all actions. Right:
F*-score of each method as a function of inference time.

Method comparison

Here we explore how a window based SVM compares to structured, and semi-
structured SVMs, which we find very interesting as they all make use of linear
classifiers and the same bout features, but differ in their training and inference pro-
cedures. In addition, we compare them with a frame based SVM to get a sense
for how much bout features contribute to performance, and to JAABAs back-end
[Kab+12]], another window based detector, for comparison with methods currently

deployed in action detection systems.

Each method’s free parameters were optimized using a subset of the training data
for validation, and we found that HMM post processing improved the mean F*-
score of the window- and frame based SVMs by 11% and 3% respectively. For
comparison with JAABA we trained detectors by substituting their boosting classi-
fier implementation into the learning and inference modules of our window based
framework. JAABA as presented in [Kab+12] does not include post processing,
but here we apply a box filter suggested on their project website for a fair bout-wise

performance comparison, improving its mean F*-score by 6%.

To measure the performance of our action detectors, we computed bout- and frame-
wise precision, recall and F1-scores, and the F*-score which can be used to rank the
different methods. These measures, broken down for each behavior in Figures[3.15}
show considerable variation in method rank depending on the action. Here we
summarize the results in a detector rank histogram (Figure 3.T1)), which shows the

number of times each detector achieved each rank and orders methods according to

43

F*-clustering of actions Top weighing features

o 3¢ touch BMB
’ wing threat BMB
02 .\O wing threat
3¢ charge BMB
@ charge
3 lunge BMB
@ lunge
hold
tussle
wing ext. BMB
wing ext.
circle

05 @ copul. attempt
' e copulation
08 -06 -04 -02 0 02 04 06 . @ @ X 0 0 & L o @ O
L S 'C\o @ (\Q\v (\q} (\% ('bo P 6’2’6 &z ,b(\(' (\éé &
1st principal component O 20 ¥ 'zv%\e_‘._\c, o0 &,,x an'v &
QSRS o O ° NN
G) &)
X SO

2nd principal component

Figure 3.12: Left: clustering of actions based on F*-score of all methods. Right:
top weighted features determined by the trained SVM detectors.

their mean rank. For a finer resolution view of how the methods line up we show
the mean F1-scores, averaged over all actions, and the mean F*-score as a function
of time it takes to run the detector on 1 million frames. This view mostly preserves
the rank observed in the rank histogram, but it also shows that most methods cluster
around 70% performance, apart from humans at 84% and frame based SVM at
48%. In addition, it shows that the window based methods perform slightly better

than the structured output counterparts, in spite of being orders of magnitude faster.

These summary measures abstract away information about performance patterns
between actions that may give insights into the different types of actions. To explore
that, we cluster actions based on their F*-score for each method, by applying prin-
cipal component analysis to the F*-matrix, and fitting k-means to the dimension-
reduced matrix, splitting actions into 4 groups. Figure [3.12] shows that this clus-
tering groups together lunge, charge, and copulation attempt, which all share the
characteristic of being short and concise but poorly captured by the frame based
detector, and, as one might expect, it groups actions (wing threat and wing exten-
sion) from different sub-datasets together. From the learnt detectors of the three
different SVM approaches we found that the window based detector made most use
of the bout statistics and histogram features, while structured ones used boundary
dependent features to a similar extent, and that the top per-frame features used by
all methods are those listed in Figure [3.12] showing that each feature is the highest

contributing feature to at least one action.

44
Performance on CRIM13

Finally, to give a better idea of where these methods place within state of the art, we
test the top ranked detector on the most recently published animal dataset, CRIM 13,
and compare our results with those presented in [Bur+12a]. Actions in CRIM13
are non-overlapping, and the detection problem is treated as multi-class. To make
a similar comparison we covert our binary action detectors to a single multi-class
detector by fitting them to an HMM with 13 states. By shifting output scores of
individual binary classifiers, before converting them to posterior probabilities, we
can trade off the performance of different classes. We obtain the optimal shift-
parameters by greedily maximizing w.r.t. the diagonal mean of the “recall" confu-
sion matrix, to match the measure used in [[Bur+12al], and since we are interested
in high precision-recall combination, we also optimize w.r.t. the mean F1-score
of the “recall" and “precision" matrix diagonals. Figure [3.14]shows the confusion
matrices produced for each of our optimization criteria, and Figure [3.13| shows our
results compared with those presented in [Bur+12a]. We ran our algorithm only on
tracking features (TF) provided with the CRIM13 dataset, obtaining performance
just above the top results reported in [Bur+12a]], which includes spatial-temporal
features (STF), and 3.2% higher than their performance on tracking features alone.
Optimizing w.r.t. Fl-score results in approximately 6% F1-performance gain over

the “recall" optimization.

Method mean recall mean F1
Boosting (TF) + Autocontext [1] 58.30% -
Boosting (TF + STF) + Autocontext [1] 61.20% -
Window SVM+HMM (recall shift) 61.66% 40.76%
Window SVM+HMM (F1 shift) 45.42% 47.22%

Figure 3.13: Comparison of the window based SVM to the methods used in
[Bur+12al], showing performance on the CRIM13 test dataset.

45

Confusion matrix Confusion matrix transpose
o] approach approach 38
Q attack attack 34
ﬁl coitus coitus 30
§ chase chase 27
B < circle circle 11
Q 5 c
o 2 drink O drink 6
-_— P =]
(—“ - eat 39 _‘é eat 10
c
Q 3 clean 0 clean 28
& 5 human d 2 human
é sniff sniff
© up up 31
(] walk walk 39
E other 39 other
£ X © 0 0 X FES CE QXF £ X 0 0 © X F S S E QX5
SEZE25°8E5 78 §8288E5°8¢85°3¢
g 53&60©™©° © 3 ° g 3% ©™© © 3 ©
Q. Q.
© prediction (62%) © ground truth (36%)
approach m 1 approach
ho} attack 42 1 attack
ﬂ coitus m 1 coitus 40
g chase 35 1 chase
= S circle 33 1 c circle
=} . .
drink 14 (] drink
o = R
'g eat 22 5 eat 30
E 3 clean 40 @ clean
%
é 50 human 1 human
(] sniff 1 sniff
QEJ up 27 up
walk 42 walk
Other L L L L L L L L L n L L Other L L L L L L L L L
£ X Q2 0 0 X g S C i QX5 £ X 0 0 0 X FE e cE QX g
§8=282c88¢g5°3 2 §8=28cc88g5°38
g 5886097 © 3 © g_ T36°0°7° © 2 °
Q. Q.
5 ®

prediction (45%) ground truth (53%)

Figure 3.14: Confusion matrices for Window SVM + HMM on the CRIM13 test
dataset. Left: performance optimized w.r.t. the diagonal mean of confusion matrix.
Right: performance optimized w.r.t. “recall" and “precision" confusion matrices.

46

3.7 Discussion

We collected a large dataset of fruit fly videos that, with its natural and sporadic
interactions and rich set of articulated pose features, fills a gap in existing datasets.
We developed a framework for comparing action detection performance, showing
that precision and recall are the best suited measures for evaluating detection algo-
rithms, and that results should be reported both in terms of bout- and frame-wise
performance. Using these measures, we showed that bout features highly improve
performance upon frame-level features. We compared sliding window classifiers
to the more sophisticated structured output detectors, and found that window based
classifiers outperformed their structured counterparts, despite having much lower
time complexity. This was surprising to us as the structured output methods allow
for elastic sized windows which should better capture structure within bouts. A
caveat is that the more complex actions in our dataset have low duration variation,
therefore fixed sized window classifiers with good bout features may suffice. Our
results also show (Figures[3.15}{3.17)) that the structured output methods suffer from
over-segmenting long bouts of actions that do not have much structure, which leads
to a lower bout-wise performance. We believe this may be overcome by incorporat-
ing higher order Markov terms in the score function, and will explore that in future
work. In our experiments, the top performing algorithm, window SVM+HMM,
reached 90% of human performance (76% compared to 84% F*-score) and matches
the performance of the best published method on CRIM13.

This performance does not come at a low cost, each of the methods presented re-
quire a large number of annotated training data which can be difficult to obtain. In
addition, annotators are not always in agreement with one another, especially in the
cases where actions look ambiguous. Training an action detector on ambiguous ac-
tions may negatively affect the performance of the algorithm. In the next chapter we
address both of these problems, we propose an algorithm that requires significantly

fewer labeled data and can be trained on partially labeled sequences.

Count scatter PR - frame PR - bout F1-score F* rank

Duration scatter

Predicted count Precicion Precicion F1-frame

Predicted duration

47

touch lunge wing threat charge wing extension
O Window SVM + HMM @ Human @ Human © JAABA + filtering @ Human
@ Frame SVM + HUM O Window SVM + HMM O Structured SVM O Semi-struct SVM O Window SVM + HMM
© JAABA + filtering O Structured SVM O Window SVM + HMM © Window SVM + HMM © JAABA + filtering
@ Human © JAABA + filtering © JAABA + filtering O Structured SVM @ Frame SVM + HMM
O Semi-struct SVM O Semi-struct SVM @ Frame SVM + HUM @ Human O Semi-struct SVM
O Structured SVM @ Frame SVM + HMM O Semi-struct SVM @ Frame SVM + HMUM O Structured SVM
1 1 1 1 1
08 08 & s 005% 08 08
: @ :
0.6 0.6 0.6 0.6 ° 0.6
(¢}
0.4 0.4 0.4 ° 0.4 0.4
]
0.2 0.2 0.2 0.2 0.2
0 0/ @ 0 0 0
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
F1-bout
1 1 D= 1 1 1
°eo o %: o ¢
0.8 o 0.8 0.8 5 ® 0.8 0.8 Oe
: : ° : . o
0.6 ° 0.6 0.6 e : 0.6 e 0.6 ° :
. X . o X ® .
@ °
0.4 0.4 0.4 0.4 0.4
0.2 0.2 ' 0.2 0.2 0.2
0 0 0 0 0
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
Recall
1 1 1 1 I—o——a
q oce og ®
08 o 08 50 08 e o o8 S| o8 e
: : o :
0.6 ‘5 0.6 0.6 0.6 o 0.6 °
0.4 0.4 0.4 0.4 0.4
0.2 0.2 0.2 0.2 o 0.2
9 o e 0 o 0
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
Recall
o 40 @ 40 30 =
<]
300 o 25 20
S 8 30 30 o © ° °
o (<] 20 © 15
200 2 g °
8 20 ° 15
° o o 0 g
100 =, ° 10} o °
10 5
. &
oLe 0e
0 100 200 300 0 20 40 20 40 0 10 20 30 0 10 20
Ground truth count
120 Sl
100 40 5 15
o 4 L]
80 . © 30
60 o 3le 10 s
20 ° °
o 2 |28 8
20 10g0 1l o e
[}
0 0 0
0 50 100 20 40 0 2 4 6 0 5 10 15

Ground truth duration

Figure 3.15: Results on Boy meets boy

Count scatter PR - frame PR - bout F1-score F* rank

Duration scatter

Predicted count Precicion Precicion F1-frame

Predicted duration

48

lunge wing threat charge hold tussle
O Semi-struct SVM O Semi-struct SVM @ Human @ Human O Window SVM + HMM
@ Human @ Human O Semi-struct SVM © JAABA + filtering O Semi-struct SVM
© Window SVM + HMM O Structured SVM © JAABA + filtering © Window SVM + HMM @ Human
O Structured SVM O Window SVM + HMM © Window SVM + HMM O Structured SVM © JAABA + filtering
© JAABA + filtering @ Frame SVM + HMM O Structured SVM O Semi-struct SVM O Structured SVM
@ Frame SVM + HMM © JAABA + filtering @ Frame SVM + HMM @ Frame SVM + HMM @ Frame SVM + HMM
1 1 1 1 1
)
0.8 0.8 0.8 0.8 0.8 °
o
0.6 : 0.6 0.6 0.6 : 0.6 :
o © %% 0./ °
0.4 0.4 (4 0.4 o 0.4 0.4
] © o
0.2 0.2 0.2 o 0.2 ° 0.2
0 0 0 0 0
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 0 02 04 06 08 1
F1-bout
1 1 1 1 1
08 P 6 08 08 08 08 e
: g] :
06 06 : 06 ® 06 o 06 ° O%
[o [eXe)
04) @ 0.4 ® 0.4 0.4 ° 0.4
(e}
0.2 0.2 o 0.2 o 0.2 5] 0.2
0 0 ol® 0 0
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 0 02 04 06 08 1
Recall
1 1 ° 1 1 1
[8 b
0.8 o 0.8 0.8 0.8 0.8 %
°. e . ‘o ‘o
0.6 : 0.6 0.6 : 0.6 : 0.6 :
e}
0.4 0.4 o 0.4 © 0.4 o ° 0.4 ®
& 5°
0.2 ® 0.2 0.2 0.2 0.2
: o °
0 0 ol —@ 0 0
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 0 02 04 06 08 1
Recall
100 8
80
300 200 % ° ° 0
80 °
20 e 60 8 g
S 150 ° 8
200 ° 60 150 8 w0
100
100 ° q 40 10 O§ g o
¢} (-1] o,
o 8o° 50 209 /6 s 20 o o
(]
06 o
0 100 200 300 0 100 200 0 50 100 0 10 20 0 20 40 60 80
Ground truth count
200 12 50 14
° 250
150| © 10 40 60 [}
oe 200
¢ 8 30 S
100 150 40 -4
L] 3 6 20
100P g 4 ©
50 @ 20
g 50 ° 2l @ 10
(]
0 0 0 o
0 100 200 0 100 200 0 5 10 0 20 40 0 20 40 60

Ground truth duration

Figure 3.16:

Results on Aggression

Count scatter PR - frame PR - bout F1-score F* rank

Duration scatter

Predicted count Precicion Precicion F1-frame

Predicted duration

wing extension

@ Human

© Window SVM + HMM
© JAABA + filtering

O Semi-struct SVM

@ Frame SVM + HMM
O Structured SVM

circle

@ Human

O Semi-struct SVM

O Window SVM + HMM
© JAABA + filtering

O Structured SVM

@ Frame SVM + HMM

copul. attempt

@ Human

© JAABA + filtering

O Structured SVM

O Window SVM + HMM
O Semi-struct SVM

@ Frame SVM + HMM

copulation

(¢]
(*]
o
(¢]
o
o

Human

Frame SVM + HMM
Window SVM + HMM
Structured SVM
JAABA + filtering
Semi-struct SVM

° o
0.8 0.8 0.8 O 0.8
(o) ° O(n %
06 0.6 0.6 % 0.6
o
0.4 0.4 0.4 0.4
0.2 0.2 0.2 0.2
°
0 0 0 0
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
F1-bout
1 1 1 1 ®
ol
0 o'qg
08 9 o8 .9 0.8 o| o8
IS} o)
06 0.6 06 06
0.4 0.4 0.4 ® 0.4
0.2 0.2 0.2 0.2
0 0 [0
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
Recall
1 1 1 1 o
Dg ® o ® °
0.8 o 0.8 o 0.8 o] 0.8
® e o
06 o 0.6 o 0.6 0.6
0.4 0.4 .~ 0.4 0.4
0.2 0.2 0.2 0.2
°
0 0 0 0
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
Recall
3 60 ry 14 400
0 o 12 °
° 10 30
100 “ w0
o 8
o
° 30 6 20
50 20(0 °
108
° 10|L 2
0
0 50 100 0 20 40 60 0 5 10 0 10 20 30 40
Ground truth count
1500 o
40 ° 15
o
L]
30 ° ° 1000 o
° 10
%o 8 ..o
20| ,®2
5 @ 500
0@ 2
o 0 0 0
0 50 100 150 0 10 20 30 40 0 5 10 15 0 500 1000 1500

Ground truth duration

Figure 3.17:

Results on Courtship

49

50
Chapter 4

BEHAVIOR MODELING

In this chapter we address the problem of detecting and classifying actions in se-
quential data, given an abundance of unlabeled sequences and a small set of labeled
actions. Supervised learning is a powerful tool for learning action classifiers from
expert-labeled examples [Jhu+10b; Bur+12b; Kab+13; Eyj+14]]. However, it has
two drawbacks. First, it requires a lot of training labels which involves time con-
suming and painstaking annotation. Second, behavior measurement is limited to
actions that a human can perceive and believes to be important. We propose a
framework that takes advantage of both labeled and unlabeled sequences; it simul-
taneously learns to predict future motion and detect actions, allowing the system to

learn from fewer expert labels and discover unbiased behavior representations.

The framework models the sensory-motor relationship of an agent, predicting mo-
tion based on its sensory input and motion history. It can be used to simulate an
agent by iteratively feeding motion predictions as input to the network and updat-
ing sensory inputs accordingly. A model that can simulate realistic behavior has
learnt to emulate the generative control laws underlying behavior, which could be a

useful tool for behavior analysis [Sim96; Bra84].

Our model is constructed with the goal that it will learn to represent and discover
behaviors at different semantic scales, offering an unbiased way of measuring be-
havior with minimal human input. Recent work by [Ber+14] and [Wil+15]] shows
promising results towards unsupervised behavior representation. Compared to their
work our framework offers three advantages. Our model learns a hierarchical em-
bedding of behavior, can be trained semi-supervised to learn specific behaviors of
interest, and our sensory-motor representation enables the model to learn interac-

tive behavior of an agent with other agents and with its environment.

Our experiments focus mainly on the behavior of fruit flies, Drosophila Melanogaster,
a popular model organism for the study of behavior [SKO09]]. To explore the general-
ity of our approach we also test our model on online handwriting data, an interesting

human behavior that produces two dimensional trajectories.

To summarize our contributions:

51

1) We propose a framework that simultaneously models the sensory-motor rela-
tionship of an agent and classifies its actions, and can be trained with partially

labeled sequences.

2) We show that motion prediction is a good auxiliary task for action classification,

especially when training labels are scarce.

3) We show that simulated motion trajectories resemble trajectories from the data

domain and can be manipulated by activating discriminative cell units.

4) We show that the network learns to represent high level information, such as
gender or identity, at higher levels of the network and low level information,

such as velocity, at lower levels.

5) We test our framework on the spontaneous and sporadic behavior of fruit flies,

and the intentional and structured behavior of handwriting.

4.1 Background

Hidden Markov models (HMMs) have been extensively used for sequence classi-
fication. The motivating assumption for HMMs is that there exists a process that
transitions with some probability between discrete states, each of which emits ob-
servations according to some distribution, and the objective is to learn these func-
tions given a sequence of observations and states. This model is limited in that its
transition functions are linear, state space is discrete, and emission distribution is
generally assumed to be Gaussian, although generalizations of the model that fall

under the category of dynamic Bayesian networks are more expressive [Mur02].

Recurrent neural networks (RNNs) have recently been shown to be extremely
successful in classifying time series data, especially with the popularization of
long short term memory cells [HS97]], in applications such as speech recognition
[GMH13]]. RNNs have also been used for generative sequence prediction of hand-
writing [|Gral3|] as well as speech synthesis [Chu+135].

Imitation learning involves learning to map a state to an action, from demon-
strated sequences of actions. This is a supervised learning technique which, when
implemented as an RNN, can be trained via backpropagation using action-error
computed at every time step. The problem with this approach is that the domain
of states that an agent is trained on consists only of states that the demonstrators
encounter, and when an agent makes a mistake it finds itself in a situation never ex-

perienced during training. Reinforcement learning handles this by letting an agent

52

explore the domain using an action policy, and updating the policy based on a goal-
specific penalty or reward which may be obtained after taking several actions. This
exploration can be extremely expensive, and therefore it is common to precede re-
inforcement learning with imitation learning to start the agent off with a reasonable
policy. This strategy is used in [Mni+15] where an agent is trained to play Atari
games, and in [Sil+16] for mastering the game of GO.

Autoencoders [RHWS86] have been used in semi-supervised classification to pre-
train a network on an auxiliary task, such as denoising, to prevent overfitting on a
small number of labeled data [Ball2]]. Recent work in this area [Ras+135]] proposes
to train on the primary and auxiliary task concurrently and using lateral connections
[Val15]] between encoding and decoding layers to allow higher layers of the network

to focus on high level features.

Our framework takes inspiration from each of the works described here.

4.2 Model

Our model is a recurrent neural network, with long short term memory, that simul-
taneously classifies actions and predicts future motion of agents (insects, animals,
and humans). Rather than actions being a function of the recurrent state, as is
common practice, our model embeds actions in recurrent state units. This way the
recurrent function encodes action transition probabilities and motion prediction is a
direct function of actions, similar to an HMM. The network takes as input an agent’s
motion and sensory input at every time step, and outputs the agent’s next move ac-
cording to a policy, which is effectively learnt via imitation learning. Similar to
autoencoders, our model has a discriminative path, used to embed high level infor-
mation, and a generative path used to reconstruct the input domain, in our case fill-
ing in the future motion. Each discriminative recurrent cell is fully connected with
its corresponding generative cell, allowing higher level states to represent higher

level information, similar to the idea of Ladder networks [[VallJ5].

Architecture

The model can be thought of as two parallel recurrent networks: The discrimina-
tive network takes as input an agent’s motion, x, and environmental sensory input,
v, and propagates them up through its hidden states which encode high level in-
formation, including action labels, y. The generative network decodes the states
of the discriminative network, propagating information down to predict the agent’s

motion at the next time step, X. The two networks have the same number of lay-

53

A
--------- * generative hzﬁl

discriminative

.
> bl

A
hli+l

[xi,vi]

Figure 4.1: Left: A 3D depiction of our network unrolled for 3 timesteps. The
highlighted cells show the path from an input through a classification cell to a mo-
tion prediction output. During training, motion prediction loss £, is computed at
every timestep, and classification loss L, is computed only at frames for which la-
bels are provided. The diagonal connections between discriminative and generative
cells enable higher levels of the network to represent high level information. Vector
v represents agent’s sensory input, x its motion, / its internal state, and y labeled
actions. Right: A zoom in on the blue and green cells showing the recurrent state
(horizontal arrows) and inputs to the recurrent cell function f. Merging of arrows
represents vector concatenation, and branching vector duplication.

ers and are connected diagonally at each layer such that the information encoded
in the hidden units of the discriminative network is propagated to the correspond-
ing layer of the generative network at the next time step. Intuitively, these can be
thought of as skip connections or “shortcuts” which let low level motion informa-
tion propagate directly through lower levels of the network, leaving higher levels
of the network free to represent high level phenomena, such as goals or individual
characteristics. Our experiments confirm this intuition. The model can be trained
without any action labels, in which case the hidden state may be used to discover
high level information about the data, or with action labels for a subset of the data,
in which case each action is assigned to a hidden state unit and will thus contribute

to subsequent motion prediction and action classification.

The flow of information through the network and the cost associated with its clas-

sification and prediction is expressed by the following equations:

54

Discriminative Generative Cost
W= fvid bl By = fRERD Co= Y L)
nl= fhl) L= FAL LR Cy = Z; Ly (xist, Rir1)
$i=(hf(1: N)+1)/2 %41 = g(h},)) C=ACy + (1 - D)Cx

where f is a recurrent cell function, g is a transformation, £, computes classi-
fication loss (on frames for which labels are provided) and £, computes motion
prediction loss. The total cost, C, combines the misclassification cost, Cy, and mis-
prediction cost, Cy, using A to trade off the two. N is the number of labeled action
classes, L the number of levels, 7' the number of frames, [is the layer index and i
the frame index. The first N units of state hZ are forced to be classification units,
they are scaled from [-1 1] to [0 1] (assuming f’s activation function is tanh) and

assigned to 3.

The model is presented as part of a general framework where f, g, and number
of levels/units are architectural choices to be optimized for each dataset. For our
experiments we found that 2-3 levels of recurrent cells with 100-200 units worked
well, with f as a gated recurrent unit (GRU) cell [Cho+14]] and g as linear trans-
formation. The choice of loss functions depends on the target type; sigmoid cross
entropy for multitask classification (where actions can co-occur), softmax cross en-
tropy for multiclass classification (where actions are mutually exclusive), and sum
of squared differences for regression (where outputs are real valued). The optimal
value for A depends both on the output domain of £, and L, and whether the

primary goal is classification or simulation.

Multimodal prediction

Evidence suggests that animal behavior is nondeterministic [Rob+16]; thus, motion
prediction may be better represented as a probability distribution than a function.
When future motion is multimodal, the best regression model will pick the average
motion of the different modes which may not lie within any of the actual modes
(visualized in supplementary material)f] This observation has been made by others
in the context of modeling real-valued sequences with RNNs, [[Gral3|] model the
output of an RNN as a Gaussian mixture model and [Chu+15] additionally model

the hidden recurrent states as random variables. We take a nonparametric approach,

lwww.vision.caltech.edu/~eeyjolfs/behavior_modeling

http://www.vision.caltech.edu/~eeyjolfs/behavior_modeling#multimodality
www.vision.caltech.edu/~eeyjolfs/behavior_modeling

55

making no assumption about the shape of the distribution. We discretize motion into
bins and treat the task of predicting future motion as independent multiclass classi-
fication problems for each motion feature, which results in a probability distribution
over all bins for each dimension. More concretely, each dimension of x is assigned
n bins and the target for £;,; becomes the binned version of x;,, denoted as X1,
which has exactly one nonzero entry for each dimension of x. The prediction X;
then becomes a discrete distribution over the bins for each feature dimension and
the motion prediction loss becomes L, (x;+1,Xi+1) = X g(crossentropy (Xit1, Xi+1)),
as opposed to the Euclidean distance in the case when x is a real valued vector. The
number of bins determines the granularity of the motor control; a greater number

of bins means more precise motion control but is also more expensive to train.

Training details
In order to efficiently train on long temporal sequences that contain sporadic actions

we introduce the two following ideas to the training routine:

Maintaining temporal dependency Recurrent neural networks are in theory able
to pass information from the beginning of a sequence to any subsequent time step,
but in practice, propagating a loss term several frames backwards is expensive and
results in vanishing gradients. This is generally handled by splitting longer se-
quences into sub-sequences of length /, such that gradients are propagated back by
at most / time steps. When processed sequentially, this approach can maintain tem-
poral dependency by initializing hidden states of subsequences with the final state
of preceding sub-sequences, however, for computational efficiency it is common
practice to process samples in batches and in stochastic order which makes that
impossible. One way around this is to set the initial state of each sub sequences
to 0, however, doing that breaks the temporal dependency beyond [/ time steps. In-
stead, we approximate the true initial state of each sub-sequence be setting it to
be the latest computed state for that time step (computed at the previous epoch).
The approximate state therefore corresponds to a previous version of the model, but
as the model converges so does this approximation. This means that although the
loss is only propagated back by [frames, the model can make classifications and

predictions based on events that occurred more than / frames ago.

Importance sampling When analyzing behavior of animals over long durations
of time it is often the case that behaviors of interest are temporally sparse, so the

datasets tend to be extremely imbalanced with the negative class taking up majority

56

of the frames. To prevent the negative class from dominating the cost, one may
choose to train on a subset of the negative samples or on repeated samples from the
rare classes, to artificially balance the data. Our approach is similar to this idea, but
rather than setting a fixed sample size for each class and randomly selecting samples
from it, we dynamically update the class- and sample probabilities after each epoch,
such that classes with low recall are sampled more often, and misclassified frames
are more likely to be sampled for each class. This allows us to effectively optimize
the precision and recall of each class, which cannot be directly done using the cost

function as precision depends on the total number of predicted positives.

4.3 Applications

Classification

When the goal is to classify actions of an agent, the generative part of the network
can be discarded and inference done by sequentially applying the discriminative
equations from Section[4.2]to the input sequence. The output is a soft classification
for every class at every frame, with values in the range [0, 1]. To obtain hard
classification the output is thresholded (in the case of multitask classification) or

the argmax over all classes selected (in the case of multiclass classification).

In our experiments we make two adjustments to improve classification performance.
1) The recurrent function between classification units should ensure smoothness in
the labels, but for further smoothness we filter the raw output with a linear kernel
before making the hard classification. 2) The network can in theory keep track of
inputs from previous frames, but has no information about the future. We trained a
window variant of the our model, where hl.l = [([Xicrseeos Xirs Viers ooy Vigrl, hl.l_l)

and the predicted future motion is X4,+1 = gx(le.l 1), for a window with radius r.

Simulation

Given a model that can predict an agent’s future motion from its current state, a
virtual agent can be simulated by iteratively feeding predicted motion X;;; as in-
put x;41 to the network. We pick a bin by sampling from the distribution given
by %;+1 and assign a real value to x;;; by sampling uniformly from the selected
bin. An agent’s perception of the environment depends on the agent’s location, and
therefore sensory features v;;1 must be updated for each forward simulation step to
correspond to the agent’s perspective at time i + 1. When simulating multiple agents
that interact with one another, each agent is moved according to its x;;; and then

vi+1 1s computed for each agent based on the new configuration of all agents.

57

Discovery

Whether the model is trained unsupervised or supervised, its hidden units may be
used to discover phenomena not explicitly encoded in the model. One way to do
this is to visualize the data responsible for the activation of individual units, or by
activating individual units during simulation and observing its effect on the agent’s
behavior. Using synthetically generated data, our experiments revealed individual

neurons encoding generative control laws (see Section {.5)).

High level phenomena may not be represented by a single neuron but encoded by a
group of neurons. To look for such patterns we map the output of all units from a
single recurrent cell to low dimensional representation, using t-distributed stochas-
tic neighbor embedding (tSNE) [MHOS|| and examine data points within a cluster.
We tested this by training a network fully unsupervised, and visualizing high level
phenomena, such as gender, individuality, and actions, in the low dimensional rep-
resentation of individual recurrent cells, and found that different phenomena were

grouped together at different levels of the network (see Section [.5]).

4.4 Data

Our framework is agent centric, it models the behavior of each agent individually
based on how it moves and senses its surroundings, including other agents. It is ap-
plicable to any data that can be represented in terms of motor control (e.g. joystick
controller) and sensory input that captures context from the environment (e.g. 1st
person camera). We test our model on two types of data, fly behavior and online
handwriting. Both can be thought of as a type of behavior represented in the form
of trajectories, but the two are complementary. First, flies behave spontaneously,
performing actions of interest sporadically and in response to their environment,
while handwritten text is intensional and highly structured. Second, handwriting
varies significantly between different writers in terms of size, speed, slant, and pro-
portions, while inter-fly variation is relatively small. We use 4 datasets for our
experiments (listed below) with the aim to answer the following questions: 1) does
motion prediction improve action classification, 2) can the model generate realistic
simulations (does it learn the sensory-motor control), and 3) can the model discover

novel behavioral phenomena?

Fly-vs-fly [Eyj+14] contains pairs of fruit flies engaging in 10 labeled courtship-
and aggressive behaviors. We include this dataset in our experiments to see how

our model compares with our work described in the previous chapter.

58

Fly-vs-Fly FlyBowl IAM-OnDB
' 4 | i . I
\: Tien Viniwes o lesve ol neney.
s Fachofdson s i Hud dinedlion)
—y O o .
i ne Tilm versioa o0 (Ui Jheloain
- i i f r y ©
Ligianen 5 hilem o Tosle. 0% "\ reu
v !

!
s

total # .| #agents | #labeled | total# |, SynthFly - control laws:
trials . N . % frames

frames pertrial | actions | instances 1) walk forward with random noise
Fly-vs-Fly 3.7M 47 2 10 8599 10 2) at wall, rotate in direction of least resistance
FlyBowl 0.6M 1 20 1 961 5 3) when object in front visual field, walk towards it

4) extend either left or right wing (random)

SynthFly 0.4M 4 1 0 0 0 5) at object, rotate left or right (alternating)
IAM-OnDB* | 1.5M 45 1 26 12049 88 6) repeat 1)

Figure 4.2: Snapshots from the three labeled datsets used for our evaluation and a
list of control laws used to generate synthetic fly trajectories. The table summarizes
the statistics of each experimental dataset, where total # frames sums over all trials
(videos / text documents) within an experiment and agents within a trial, total #
instances sums over all action classes, and % frames is the percent of frames in
labeled sequences containing actions of interest. IAM-OnDB* is a subset of [AM-
OnDB with additional annotations for 10 of its trials.

FlyBowl is a video of 10 male and 10 female fruit flies interacting and is labeled
with male wing extensions which is part of their courtship behavior. With this
dataset we were particularly interested in whether our model could simulate a vir-

tual fly in a complex, dynamic environment.

SynthFly is a synthetic dataset containing a single fly moving inside of a rectangu-
lar chamber with a stationary object located in the center. The fly is synthesized to
move according to the control laws listed in Figure [4.2] The purpose of this dataset
is to test whether our model could learn generative control rules, particularly ones

that enforce non-deterministic behavior (see laws 4 and 5).

IAM-OnDB [LBO05] contains handwritten text from 195 different writers, acquired
using a smart whiteboard that records a list of (x, y) coordinates for each pen stroke.
The data is weakly labeled, with each sequence separated into short lines of tran-
scribed text. For consistency with our framework we hand annotated strokes of 10
writers, marking the start and end of the 26 lower case characters, which we use

along with data from 35 unlabeled writers for our experiments.

vil W || flies
] walls ,"‘ 2, Lo L S
¢ 19 1 o 3
. 'Y 1 s
X fwd oo " L o')
» z=1
yaw R o
side |len .
] dy L’.
‘\\‘\‘ T i R
- N
\\‘\‘ i g - left_wing_len Ve [}
] LN : °
e :) [
= - I~ \
. !]
/ l \ left_wing_ang o

Figure 4.3: Left: Sensory input v for fruit flies represents how a fly sees other
flies and chamber walls, their motor control x lets them move their body along 8
dimensions (incl. right_wing_ang/len). Right: Motor control x for handwriting
is represented as vector (dx, dy) along with binary stroke visibility z (pen on/off
whiteboard).

Fly representation: Motor control features, x, describe the locomotion of a fly.
The flies are tracked from video using FlyTracker] and from the tracked fly poses
we extract motion features represented in the fly’s frame of reference. The 8 motion
features, displayed on top of the close-up flyfin Figure 4.3 are designed such that
they can animate virtual fly agents. Sensory input features, v, are inspired by a fly’s
compound eye which consist of 750 compactly aligned ommatidia. Approximating
its vision as a one dimensional 360° view, we place 72 5° circular sectors around
a fly agent, aligned with its orientation, and project flies that overlap with a sector
onto its artificial retina with intensity inversely proportional to their distance to the
agent. Thus, flies close to the agent yield high intensity in several pixels and flies
that are far away take up few pixels with low intensity (compare scene in Figure
4.3 with v sensed by the agent). We represent chamber walls similarly, projecting
them onto a separate channel decreasing intensity exponentially with distance to the
agent. This representation is invariant of the shape of the chamber and the number

of flies present in the chamber.

In order to compare our model with methods presented in [Eyj+14], independently
of feature representation, we use the 36 features provided with the Fly-vs-Fly dataset.
We assign the first 8 dimensions (describing fly’s motion) as motor control x, and
the remaining features (describing fly’s position relative to the other fly, and feature

derivatives) as sensory input v.

Zwww.vision.caltech. edu/Tools/FlyTracker

3Original photograph from gompel . org/drosophilidae

www.vision.caltech.edu/Tools/FlyTracker
gompel.org/drosophilidae

60

Handwriting representation: We represent the motor control, x, as (dx, dy, z)
where dx and dy are the x and y displacements from the previous pen recording
and z is a binary variable denoting segment visibility. We normalize dx and dy for
each writer, providing invariance to writing speed, but character size (number of
points per character), slant, and other variations are not explicitly accounted for. As
handwriting is not influenced by a changing environment, but rather a function of
the internal state and current motion of the writer, we leave the sensory input, v,

empty.

4.5 Experiments and analysis

We evaluate our framework on three objectives: classification, simulation, and dis-
covery. For classification we show the benefit of motion prediction as an auxiliary
task, compare our performance on Fly-vs-Fly with previous work, and analyze the
performance on IAM-OnDB. We qualitatively show that simulation results for fly
behavior and handwriting look convincing, and that the model is able to learn con-
trol laws used to generate the SynthFly dataset. For discovery we show that hid-
den states of the model, trained only to predict motion (without any action labels),
cleanly capture high level phenomena that affect behavior, such as fly gender and

writer identity.

Model details: We trained a separate model for each dataset, using a sequence
length of 50, a batch size of 20, and 51 bins per dimension for motion prediction.
For fly behavior data we used 2 levels of GRU cells (4 cells total) of 100 units
each, and for handwriting we used 3 levels of GRU cells (6 cells total) of 200 units
each. Parameters were determined using a rough parameter sweep on a subset of

the training data. Our model is implemented in Tensorflow [Mar+15].

Classification

Action labeling involves recording the start frame, end frame, and class label, of
each action interval, which we refer to as a bout. From a sequence of frame-wise
classifications, consecutive frames of the same class prediction are consolidated
into a single bout. To measure both duration and counting accuracy we use the
performance measures described in [Eyj+14], namely the F1 score (harmonic mean
of precision and recall), on a per-frame and per-bout level. Bout-wise precision and
recall is computed by assigning predicted bouts to ground truth bouts one-to-one,
maximizing intersection over overlap. F* is the harmonic mean of the F1-frame

and F1-bout scores.

61

a) benefit of auxiliary task b) Fly-vs-Fly comparison with prior work
1 T T T
F1 frame F1 bout F*
= Flybowl —— BESNet i
09 [e Fly-vs-Fly = ===== BENet q hand crafting +
 AvonDB windowSVM + Hmm | 0760 0770 0765
08F oo o - - =T 4 T T
BENet 0717 0665 0.690
07 | BENet + filter 0716 0739 0727
06 | BESNet 0734 0627 0677
BESNet + filter 0752 0724 0738

05 -

F1 frame

c) IAM-OnDB example
: have appfavef(o Such po//c7
‘mﬂ “W‘ CTTTTTTTTm
il |

h aveap proved any s uchpolicy

|
|
Ariﬂ | I ;’«“(‘h‘. wﬂ ‘, ‘h ‘;f

]
1

04 -

=

03 |

0.2 |

<

0.1 |

>

3 6 12 25 50 100 WiINg" N
% training labels time

Figure 4.4: a) Performance of model trained with (solid, BESNet) and without
(dashed, BENet) motion prediction, showing that BESNet requires significantly
fewer labels to match the performance of BENet. b) Our model reaches perfor-
mance competitive with [Eyj+14], without handcrafting or context from future
frames. ¢) Input x, label y, and classification score ¥, colored according to character
label, showing high confusion at the beginning of characters, partly explaining the
lower F1-frame performance on IAM-OnDB.

Our goal for classification is to reduce the number of training labels without loss
in performance. To measure the benefit of motion prediction as an auxiliary task
we compare our model, which we will refer to as Behavior Embedding Sensory-
motor Network (BESNet), with our model without its generative part (similar to
a standard RNN but with action labels embedded in hidden states, shown in Fig-
ure {.6), referred to as Behavior Embedding Network (BENet). We trained both
models on each dataset using 3-100% of available labels. As BESNet is trained to
predict future motion it makes use of unlabeled sequences during training whereas
BENet does not. Figure {.4] a) shows the frame-wise F1 score for each of the 36
trained models (3 datasets, 6 label fractions, 2 model types), averaged over all action
classes in a dataset. This experiment shows that motion prediction as an auxiliary
task significantly improves classification performance, especially when labels are

scarce.

In Figure 4.4)b) we compare the performance of our network with the best per-
forming method on Fly-vs-Fly, a window based support vector machine (SVM)
that uses hand crafted window features and fits an HMM to the output for smoother
classification — outperforming sophisticated methods such as structured SVM. For

this comparison we used the features published with the dataset as described in

62

Section 4.4l Although recurrent networks implicitly enable smooth classification,
different actions require different levels of smoothness. To avoid over segmentation
of action intervals, we smooth the output of our network by applying a flat filter, of
size equal to 10% of the mean duration of each class. Our results show that filtering
significantly improves the bout-wise performance and that our performance on the
Fly-vs-Fly test set is comparable with that of [Eyj+14]], using no handcrafting and

no context of future frames (apart from smoothing).

We applied the same type of filtering to the classification output of IAM-OnDB as
we did for Fly-vs-Fly and obtained an F1-(frame, bout) of (0.445, 0.585) averaged
over all classes, and (0.567, 0.690) averaged over all instances (weighted average of
classes). Figure 4.4 c) demonstrates that at the beginning of some characters there
tends to be more confusion in y than towards the end, which is unsurprising as the

beginning of these characters looks approximately the same.

Architecture exploration: To explore the effect of the diagonal connections on the
classification performance, we trained our model on IAM-OnDB, with and without
diagonal connections, for 2, 3, and 4 levels of GRU cells, with 10, 20, 50, 100,
and 200 units. Results on the validation set, shown in Figure {.5| showed that the
objective cost was lower for diagonal models, especially for models of higher levels,
and that convergence was obtained in fewer iterations, especially for models with a

lower number of units, supporting the use of diagonal connections between layers.

108 o # units # levels diagonal connections
' | e 10 CY @ vith
1.06 | T e 20 ® 3 O without
|| ® 50
3104t ® 4
T ® 100
+
102 @ 200
o
1t
Average | # iterations|F1 score: Cy Cx
0.98)
with 224 0.483 0.151 | 0.0565
100 1000 without 386 0.468 0.157 { 0.0577

training iterations

Figure 4.5: Effect of diagonal connections on validation cost, wtih/without diagonal
connections, for varying number of layers and units per layer.

63

a) network variants b) FlyBowl: motion prediction
-loglik(x)
BENet BESNet BESNet BESNet RNN uniform distribution 119212
no diagonals no recurrence - T
training distribution 75312
<. <. O> <'. O> .AO <’O last motion 104334
i 1 last motion smoothed 72256
QO 00 00 O |
1 1 BESNet no recurrence 74524
O O O O O O O O O BESNet no diagonals 57903
BESNet 57798

Figure 4.6: a) Network variants used in experiments (compare BESNet to high-
lighted cells in its unrolled visualization in Figured.1). b) 1-step motion prediction
performance on FlyBowl testset, see text above for explanation.

Motion prediction
Before we look at simulation results, we quantitatively measure the accuracy of

one-step predictions. We compute the log-likelihood of FlyBowl test sequences

under the motion prediction model: loglik(x) = T_l ZZ | log()’c“l‘{rl x4 .1)» where
xld+1 is the ground truth indicator vector for bins of motion dimension d, and xl Wl

a probability distribution over the bins predicted by the model.

We compare our model with the following motion prediction policies: 1) uniform
distribution over bins, 2) distribution over bins computed from training set, 3) con-
stant motion policy that copies previous indicator vector as motion prediction, and
4) a smooth version of 3) filtered using an optimized Gaussian kernel. The results,
shown in Figure {.6] demonstrate that the recurrent models learn a significantly
better policy. In addition, we compare variants of our model and a standard RNN
within our framework (with the same sensory-motor representation, multimodal
output, and GRU cells) which shows that recurrence is essential for good motion
prediction and that diagonal connections provide a slight performance gain. In Sec-

tion 4.5 we show the main benefit of the diagonals.

Simulation

One-step prediction performance does not clearly reveal whether a model has learnt
the generative process underlying the training data. In order to get a better notion
of that we look at simulations produced by the learnt models, which can be thought
of as very long term predictions. As motion prediction is probabilistic, comparing
long term predictions with ground truth becomes difficult as the domain of probable
positions becomes exponentially large. Qualitative inspection, however, gives a

good intuition about whether the simulated agent has learnt reasonable control laws.

64

a) 10 x 20-frame lookaheads for test flies b) simulated trajectories c) real trajectories

Figure 4.7: a) 10 x 20-frame lookaheads (simulations) for each test fly from its
current location, demonstrating the non-deterministic nature of the motion predic-
tion. Comparison of 1000-frame trajectories for simulated flies (b) and real flies (c)
shows that the model has learnt a preferencce for staying near the boundary and to
avoid walking through it.

While the underlying generative process for the motion of real flies is unknown,
simulations from the model trained to imitate them suggest that the model has learnt
a reasonable policy. During simulation we place no physical constraints on how the
flies can move but our results show that simulated FlyBowl agents avoid collisions
with the chamber walls and with other flies, and that agents are attracted to other
flies and occasionally engage in courtship-like behavior. This is shown in Figure

and better visualized as video in supplementary material.

The Courtship subdataset of Fly-vs-Fly contains male and female fruit flies, and
our model is trained only on the males. In the beginning of each video flies tend
to be agitated, flying around the chamber and walking along the boundary, and
eventually the male will court the female and copulate. The simulated agent seemed
to also fly around the chamber, walk along the boundary, and extend its wing, as
shown in Figure 4.8l When flying around the chamber the agent did sometimes
exit the chamber, but interestingly, as it approached the walls its body length would

decrease, as is the case when real flies rear up against the wall.

Simulated handwriting is easier to visualize in an image and we are used to recog-
nizing the structure it should produce. Figure .9 shows that the model trained on
IAM-OnDB produces character-like trajectories in word-like combinations. Note
that handwriting is generated one (dx, dy, z) vector at a time, and each character is
composed of roughly 20 such points on average. On the right hand side of Figure
M.9]we show that we can increase the generation of specific characters by activating

their classification units (forcing their values to 1 and others to 0) during simulation.

http://www.vision.caltech.edu/~eeyjolfs/behavior_modeling#flybowlsim

65

walking on wall flying wing extension
e
k ¢ &I 7
* - L 9
— @ —
Q
- -
») s
A\ R
%
- ®
& o ") |
o .
-« g’ : e
~ e %o

Figure 4.8: Frames from simulation using model trained unsupervised on Fly-vs-

Fly (Courtship), showing examples of learnt behaviors.

generated text

Pruwedny § Ukwaro a0 vl S
Puap] of'fiow f o gn <o &
< Cowwb\(ﬁzyemw utf (MWCj q
[afetre R on- o frevad dem

w Bols df & (v

- %a& 4@%)&4@{@,

crd 089 Cd e ey dﬁc Ao <

character injections

leecon Wmeemwmz aeriliarme e s o

=0 C oL e

Ml ety og™ pesa i te

e B Sonl w5 %/g B Sas

00 % W o o o L 4P

“g”

NS e Vo O O o

heprem — e i Yen 1\74

Figure 4.9: Left: Text generated by our model, one vector at a time (approximately
20 vectors per character). Right: Text generated by the same model while "acti-
vating" character classification units of the model during simulation, shown in two

lines per character.

66

synthetic fly simulation

= M AT

v e
- e

distance r

to object

0 MOV L L NV, T ST PV S | A
turn r1 r 1 r 1 r I r 1 r 1 r 1 r I r r 1 r 1 1 1 1 1 r 1

time time

Figure 4.10: Comparison between synthetic fly (ground truth) and simulation by
our model. The wing angles, distance to object, and left/right turn show the agent’s
motion over time, and the two hidden units indicate that the model has learnt to
represent control laws 4 (to extend left or right wing and random) and 5 (to alternate
between left and right/right avoidance) used to generate the synthetic trajectories.

Figure 4.10] shows the output of two recurrent units of the SynthFly model that
indicate that the model was able to learn control rules that were designed to ensure a
multimodal motion prediction target. One unit fires in correlation with either left or
right wing extension, and the other toggles between a negative and positive state as
the agent turns left or right to avoid the object. In supplementary material we show a
video of this simulation and compare it to a simulation from the model trained with
deterministic motion prediction. This comparison clearly demonstrates the benefit
of treating motion prediction as a distribution over bins, as the deterministic agent

quickly becomes degenerate.

Discovery

We motivated the structure of our network, specifically the diagonal connections
between discriminative and generative cells, with the intuition that it would allow
higher levels of the network to better represent high level phenomena. To verify this
we train models to only predict future motion, with no classification target, and
visualize what the hidden states capture. We apply the model to [x,v], obtaining
hidden state vectors i’ and A’ , 1 € {1,...,L}, and prediction X, map the data points
(time steps of each fly/writer) from each state to 2 dimensions using t-distributed
stochastic neighbor embedding (tSNE, [MHOS]), and plot them in colors based on

known phenomena.

http://www.vision.caltech.edu/~eeyjolfs/behavior_modeling#synthflysim

female @ right wing extension

® male left wing extension (i N , _________________ _________ .
35 '

A

h2i S Sy

Figure 4.11: tSNE mapped input, output, and hidden state values of FlyBowl model
(trained without any labels), colored by gender and male wing extension.

In Figure 4.12| we plot the data points of a 2 level (L=2) model trained on IAM-
OnDB in this low dimensional embedding, color coded by to gender and left/right
wing extension. This visualization shows that gender is very mixed in the input and
output states but well separated in the top generative state, while lower level infor-

mation such as wing extension is well represented at lower levels of the network.

We similarly visualize a 3 level model trained on IAM-OnDB, coloring data points
according to three criteria: stroke length, character class, and writer identity. The
results show that stroke length is well clustered at low levels but not at high levels,
characters are best clustered at mid to top discriminative levels, and writer identity
is extremely well clustered at the top generative level but not at low levels. We ran
the same experiment for the model trained without diagonal connections (which
without a classification target is effectively a standard RNN with 6 levels of GRU
cells), which did not learn to represent writer identity in any of its hidden states.
Intuitively this is because the network has to carry low level information through
every state to predict low level information at the other end, whereas BESNet carries
it directly through the low level diagonal connections leaving higher hidden states

free to capture high level information.

We quantify this by computing the probability of a class a given the distribution of
data points in state S, as P(a|S) = P(S|a) = P(a)/P(S), where P(S|a) is the 2D
histogram of data points belonging to class a in state S, P(a) is the probability of
class a, P(S) is the 2D histogram of all data points in state S. Figure 4.13] shows

68

i stroke length character writer identity

diagonal

no diagonal

Figure 4.12: Hidden state values of a 3 level model trained without any labels on
IAM-OnDB, reduced to 2 dimensions using tSNE mapping. The network discovers

writer identity at the highest level, while lower level phenomena such as stroke
length are represented at lower levels.

69

o
4

w/ diagonal
....... w/o diagonal

I
i

o
w

P(action | Sj)

o
(¥

P(S|a)*P(a)/P(S)

°
o

Figure 4.13: Quantitaive measure of the separability of actions and actors from
hidden states of model with/without diagonal connections.

the mean probability of an action and an actor at every hidden state of the network,
for the full architecture (solid) and the architecture without diagonal connections
(dashed). It clearly shows that our architecture can much better represent actors at

its top level, while action is represented only at the second cell state.

4.6 Discussion

We have proposed a framework for modeling the behavior of animals, that simul-
taneously classifies their actions and predicts their motion. We showed empirically
that motion prediction (a target that requires no labeling) is a good auxiliary task
for training action classifiers, especially when labels are scarce. We also showed
that the generative task can be used to simulate trajectories that look natural to the
human eye, and that activating classification units increases the frequency of that
action in the simulation. Finally, we showed that our model lends itself well to dis-
covery of high level information from the data, by visualizing what is captured in

its hidden states.

We tested the framework on two types of data, fly behavior and online handwriting,

and we anticipate that it will scale to more complex data with appropriate tuning of

70

hyperparameters and abstraction of visual input. For example, application to human
motion capture with 1st person video as sensory input might require greater model
complexity to account for the higher dimensional motor control and pre-processing
of the sensory input, e.g. with a convolutional neural network, to extract a higher

level sensory representation before feeding it to the dynamical system.

Moving forward, we are interested in working on hierarchical label embedding in
the states, assigning higher order activities to units higher in the network. Along
those lines, a discrete recurrent network could be trained separately on the wealth
of available text, and be placed on top of a real-valued handwriting network. We
also aim to explore how this framework can be used to understand the neural mech-

anisms underlying the generation of behavior in flies.

71
Chapter 5

CONCLUSION

In this thesis we set out to develop computational tools for automating behavior
analysis. We introduced a fly tracking tool that combines capabilities of state of
the art trackers currently available, and showed how its raw output can be used to
quantify behavior. On top of those features we trained supervised learning algo-
rithms to detect and classify social actions between flies, reaching 90% of human
performance. In order to alleviate the need for fully labeling the training videos,
and to make use of the abundance of unlabeled videos available, we presented a
semi-supervised learning algorithm that requires only half of the training labels to
reach the same performance as its supervised counterpart. This was achieved by
using motion prediction as an auxiliary task, which we chose based on our intuition
that a model that can predict how a fly will move must have some notion about high
level information such as the fly’s goals or current activity. Further confirming our
intuition we found that, when trained unsupervised, the model learned to represent
high level information such as actions and gender in its hidden states. Furthermore,
by representing the environment as seen from an agent, and its motion features as
motor controls, we showed that predicted motion can be used to simulate a fly that

interacts with a dynamically changing environment.

We see promising future research directions in the following areas: Tracking:
While FlyTracker might currently be the most feasible fly tracking software freely
available, we showed that idTracker has higher identity accuracy than FlyTracker
under the right conditions at a significant time cost. Combining the strengths of
the two algorithms could be worthwhile. Learning from few labels: Although our
semi-supervised model significantly reduces the need for training labels, it still re-
quires more labels than we would like it to. We believe that active learning is the
next step towards further reducing the number of labels needed, helping the expert
find the most useful samples to label. This could perhaps be done by training the
model unsupervised and selecting samples that are dissimilar in the hidden space.
Performance: We have proposed a framework that is a good starting point for
sensory-motor modeling; our simulation and classification results look promising
but there is ample room for improvement. Possible future directions are 1) further

exploration of the architecture, 2) defining objective functions that enforce label

72

smoothness, 3) defining what constitutes a good/bad simulation and further train
the model with reinforcement learning, 4) predicting not only the future motion of
an agent but also how the environment evolves, and 5) richer sensory input rep-
resentation, for instance adding a channel for the gender of the other flies or for
the action classification output of the other flies. Discovery: We demonstrated that
our model can be used to discover higher level phenomena and we think this could
be further explored, specifically, finding out what type of new information can be

discovered and how to extract it from the hidden states.

Behavioral scientists are trying to understand intelligence and Al researchers are
trying to create intelligence, in our view the two are mutually beneficial. If we
knew how the brain worked we might create an artificial one, and if we could imitate

intelligent behavior we might better understand its true underlying mechanism.

73

BIBLIOGRAPHY
[A+03] Yasemin Altun, Ioannis Tsochantaridis, Thomas Hofmann, et al. “Hid-
den markov support vector machines”. In: ICML. Vol. 3. 2003, pp. 3—
10.
[AP14] David J Anderson and Pietro Perona. “Toward a Science of Computa-

tional Ethology”. In: Neuron 84.1 (2014), pp. 18-31.

[Asa+14] Kenta Asahina, Kiichi Watanabe, Brian J Duistermars, Eric Hoopfer,
Carlos Roberto Gonzdlez, Eyrin Arna Eyj6lfsdéttir, Pietro Perona,
and David J Anderson. “Tachykinin-Expressing Neurons Control Male-
Specific Aggressive Arousal in Drosophila”. In: Cell 156.1 (2014),

pp- 221-235.

[Bal12] Pierre Baldi. “Autoencoders, unsupervised learning, and deep archi-
tectures.” In: ICML unsupervised and transfer learning 27.37-50 (2012),
p. 1.

[Bel56] Richard Bellman. “Dynamic programming and Lagrange multipliers”.

In: Proceedings of the National Academy of Sciences of the United
States of America 42.10 (1956), p. 767.

[Ben+08] Yannick Benezeth, Pierre-Marc Jodoin, Bruno Emile, Héléne Laurent,
and Christophe Rosenberger. “Review and evaluation of commonly-
implemented background subtraction algorithms”. In: Pattern Recog-
nition, 2008. ICPR 2008. 19th International Conference on. IEEE.
2008, pp. 14.

[Ber+14] Gordon J Berman, Daniel M Choi, William Bialek, and Joshua W
Shaevitz. “Mapping the stereotyped behaviour of freely moving fruit
flies”. In: Journal of The Royal Society Interface 11.99 (2014), p. 20140672.

[Bra+09] Kristin Branson, Alice A Robie, John Bender, Pietro Perona, and Michael
H Dickinson. “High-throughput ethomics in large groups of Drosophila”.
In: Nature methods 6.6 (2009), pp. 451-457.

[Bra84] Valentino Braitenberg. Vehicles Experiments in Synthetic Psychology.
MIT Press, 1984.

[Bur+12a] Xavier P Burgos-Artizzu, Piotr Dollar, Dayu Lin, David J Anderson,
and Pietro Perona. “Social behavior recognition in continuous video”.
In: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference on. IEEE. 2012, pp. 1322-1329.

[Bur+12b] Xavier P Burgos-Artizzu, Piotr Dollar, Dayu Lin, David J Anderson,
and Pietro Perona. “Social behavior recognition in continuous video”.
In: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference on. IEEE. 2012, pp. 1322-1329.

74

[Che+02] Selby Chen, Ann Yeelin Lee, Nina M Bowens, Robert Huber, and
Edward A Kravitz. “Fighting fruit flies: a model system for the study

of aggression”. In: Proceedings of the National Academy of Sciences
99.8 (2002), pp. 5664-5668.

[Cho+14] Kyunghyun Cho, Bart Van Merriénboer, Caglar Gulcehre, Dzmitry
Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. “Learn-
ing phrase representations using RNN encoder-decoder for statistical
machine translation”. In: arXiv preprint arXiv:1406.1078 (2014).

[Chu+15] Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron
C Courville, and Yoshua Bengio. “A recurrent latent variable model

for sequential data”. In: Advances in neural information processing
systems. 2015, pp. 2962-2970.

[Dan+09] Heiko Dankert, Liming Wang, Eric D Hoopfer, David J Anderson, and
Pietro Perona. “Automated monitoring and analysis of social behavior
in Drosophila”. In: Nature methods 6.4 (2009), pp. 297-303.

[De +09] Fernando De la Torre, Jessica Hodgins, J Montano, S Valcarcel, R
Forcada, and J Macey. Guide to the carnegie mellon university multi-
modal activity (cmu-mmac) database. Tech. rep. Citeseer, 2009.

[Del+14] Anthony I Dell, John A Bender, Kristin Branson, Iain D Couzin, Gon-
zalo G de Polavieja, Lucas PJJ Noldus, Alfonso Pérez-Escudero, Pietro
Perona, Andrew D Straw, Martin Wikelski, et al. “Automated image-
based tracking and its application in ecology”. In: Trends in ecology
& evolution 29.7 (2014), pp. 417-428.

[DLR77] Arthur P Dempster, Nan M Laird, and Donald B Rubin. “Maximum
likelihood from incomplete data via the EM algorithm”. In: Journal of

the royal statistical society. Series B (methodological) (1977), pp. 1-
38.

[Dol+05] P. Dollér, V. Rabaud, G. Cottrell, and S. Belongie. “Behavior Recog-
nition via Sparse Spatio-Temporal Features”. In: VS-PETS. Oct. 2005.

[Eyj+14] Eyrun Eyjolfsdottir, Steve Branson, Xavier P Burgos-Artizzu, Eric D
Hoopfer, Jonathan Schor, David J Anderson, and Pietro Perona. “De-
tecting social actions of fruit flies”. In: Computer Vision-ECCV 2014.
Springer, 2014, pp. 772-787.

[Fan+08] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and
Chih-Jen Lin. “LIBLINEAR: A library for large linear classification”.
In: The Journal of Machine Learning Research 9 (2008), pp. 1871-
1874.

[GMH13] Alan Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. “Speech
recognition with deep recurrent neural networks”. In: Acoustics, Speech
and Signal Processing (ICASSP), 2013 IEEE International Confer-
ence on. IEEE. 2013, pp. 6645-6649.

[Gom+14]

[Gor+07]

[Gral3]

[Hal94]

[HLDI1]

[Hoo+15]

[Hoy+08]

[HS97]

[Jhu+10a]

[Jhu+10b]

[Kab+12]

[Kab+13]

75

Alex Gomez-Marin, Joseph J Paton, Adam R Kampff, Rui M Costa,
and Zachary F Mainen. “Big behavioral data: psychology, ethology

and the foundations of neuroscience”. In: Nature neuroscience 17.11
(2014), pp. 1455-1462.

Lena Gorelick, Moshe Blank, Eli Shechtman, Michal Irani, and Ronen
Basri. “Actions as Space-Time Shapes”. In: Transactions on Pattern
Analysis and Machine Intelligence 29.12 (Dec. 2007), pp. 2247-2253.

Alex Graves. “Generating sequences with recurrent neural networks”.
In: arXiv preprint arXiv:1308.0850 (2013).

Jeffrey C Hall. “The mating of a fly”. In: Science 264.5166 (1994),
pp. 1702-1714.

Minh Hoai, Zhen-Zhong Lan, and Fernando De la Torre. “Joint seg-
mentation and classification of human actions in video”. In: Computer
Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on.
IEEE. 2011, pp. 3265-3272.

Eric D Hoopfer, Yonil Jung, Hidehiko K Inagaki, Gerald M Rubin,
and David J Anderson. “P1 interneurons promote a persistent internal

state that enhances inter-male aggression in Drosophila”. In: Elife 4
(2015), el1346.

Susanne C Hoyer, Andreas Eckart, Anthony Herrel, Troy Zars, Su-
sanne A Fischer, Shannon L Hardie, and Martin Heisenberg. “Oc-
topamine in Male Aggression of Drosophila”. In: Current Biology

18.3 (2008), pp. 159-167.

Sepp Hochreiter and Jiirgen Schmidhuber. “Long short-term mem-
ory”. In: Neural computation 9.8 (1997), pp. 1735-1780.

Hueihan Jhuang, Estibaliz Garrote, Xinlin Yu, Vinita Khilnani, Tomaso
Poggio, Andrew D Steele, and Thomas Serre. “Automated home-cage
behavioural phenotyping of mice”. In: Nature communications 1 (2010),
p. 68.

Hueihan Jhuang, Estibaliz Garrote, Xinlin Yu, Vinita Khilnani, Tomaso
Poggio, Andrew D Steele, and Thomas Serre. “Automated home-cage
behavioural phenotyping of mice”. In: Nature communications 1 (2010),
p. 68.

Mayank Kabra, Alice A Robie, Marta Rivera-Alba, Steven Branson,
and Kristin Branson. “JAABA: interactive machine learning for auto-
matic annotation of animal behavior”. In: nature methods (2012).

Mayank Kabra, Alice A Robie, Marta Rivera-Alba, Steven Branson,
and Kristin Branson. “JAABA: interactive machine learning for auto-
matic annotation of animal behavior”. In: nature methods 10.1 (2013),

pp. 64-67.

[KGS12]

[Kue+11]

[Kuh55]

[LBO5]

[Lim+14]

[LLFO9]

[Mar+15]

[MHO8]

[MLS09]

[Mni+15]

[Moo02]

[Miil+07]

76

Hema Swetha Koppula, Rudhir Gupta, and Ashutosh Saxena. “Learn-
ing human activities and object affordances from rgb-d videos”. In:
arXiv preprint arXiv:1210.1207 (2012).

H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. “HMDB: a
large video database for human motion recognition”. In: Proceedings
of the International Conference on Computer Vision (ICCV). 2011.

Harold W Kuhn. “The Hungarian method for the assignment prob-
lem”. In: Naval research logistics quarterly 2.1-2 (1955), pp. 83-97.

Marcus Liwicki and Horst Bunke. “IAM-OnDB-an on-line English
sentence database acquired from handwritten text on a whiteboard”.
In: Document Analysis and Recognition, 2005. Proceedings. Eighth
International Conference on. IEEE. 2005, pp. 956-961.

Rod S Lim, Eyriun Eyjolfsdéttir, Euncheol Shin, Pietro Perona, and
David J Anderson. “How food controls aggression in Drosophila”. In:
PloS one 9.8 (2014), €105626.

Daniel A Levitis, William Z Lidicker, and Glenn Freund. “Behavioural
biologists do not agree on what constitutes behaviour”. In: Animal be-
haviour 78.1 (2009), pp. 103—110.

Martin Abadi et al. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. Software available from tensorflow.org. 2015.
URL: http://tensorflow.org/.

Laurens van der Maaten and Geoffrey Hinton. “Visualizing data us-
ing t-SNE”. In: Journal of Machine Learning Research 9.Nov (2008),
pp- 2579-2605.

Marcin Marszatek, Ivan Laptev, and Cordelia Schmid. “Actions in
Context”. In: IEEE Conference on Computer Vision & Pattern Recog-
nition. 2009.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu,
Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, An-
dreas K Fidjeland, Georg Ostrovski, et al. “Human-level control through
deep reinforcement learning”. In: Nature 518.7540 (2015), pp. 529-
533.

J Moore. “Some thoughts on the relation between behavior analy-
sis and behavioral neuroscience”. In: The Psychological Record 52.3
(2002), p. 261.

Meinard Miiller, Tido Roder, Michael Clausen, Bernhard Eberhardt,
Bjorn Kriiger, and Andreas Weber. “Documentation mocap database
hdmO05”. In: (2007).

http://tensorflow.org/

7

[Mur02] Kevin Patrick Murphy. “Dynamic bayesian networks: representation,
inference and learning”. PhD thesis. University of California, Berke-
ley, 2002.

[NCF10] Juan Carlos Niebles, Chih-Wei Chen, and Li Fei-Fei. “Modeling tem-
poral structure of decomposable motion segments for activity classi-
fication”. In: Computer Vision—-ECCV 2010. Springer, 2010, pp. 392—
405.

[Oh+08] Sang Min Oh, James M Rehg, Tucker Balch, and Frank Dellaert. “Learn-
ing and inferring motion patterns using parametric segmental switch-

ing linear dynamic systems”. In: International Journal of Computer
Vision 77.1-3 (2008), pp. 103—-124.

[Oh+11] Sangmin Oh, Anthony Hoogs, Amitha Perera, Naresh Cuntoor, Chia-
Chih Chen, Jong Taek Lee, Saurajit Mukherjee, JK Aggarwal, Hyung-
tae Lee, Larry Davis, et al. “A large-scale benchmark dataset for event
recognition in surveillance video”. In: Computer Vision and Pattern
Recognition (CVPR), 2011 IEEE Conference on. IEEE. 2011, pp. 3153—
3160.

[OZR11] Tyler A Ofstad, Charles S Zuker, and Michael B Reiser. “Visual place
learning in Drosophila melanogaster”. In: Nature 474.7350 (2011),
pp- 204-207.

[Pér+14] Alfonso Pérez-Escudero, Julidn Vicente-Page, Robert C Hinz, Sara
Arganda, and Gonzalo G de Polavieja. “idTracker: tracking individu-
als in a group by automatic identification of unmarked animals”. In:
Nature methods 11.7 (2014), pp. 743-748.

[RA10] MS Ryoo and JK Aggarwal. UT-Interaction Dataset, ICPR contest on
Semantic Description of Human Activities (SDHA). 2010.

[Ram+15] Pavan Ramdya, Pawel Lichocki, Steeve Cruchet, Lukas Frisch, Win-
nie Tse, Dario Floreano, and Richard Benton. “Mechanosensory inter-

actions drive collective behaviour in Drosophila”. In: Nature 519.7542
(2015), pp. 233-236.

[Ras+15] Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, and
Tapani Raiko. “Semi-Supervised Learning with Ladder Networks”. In:

Advances in Neural Information Processing Systems. 2015, pp. 3532—
3540.

[RHW86] DE Rumenlhart, Geoffrey E Hinton, and Ronald J Williams. “Learn-
ing Internal Representation by Error Propagation, Parallel Distributed

Processing”. In: Explor. Microstruct. Cognition 1 (1986), pp. 318—
362.

78

[Rob+16] William M Roberts, Steven B Augustine, Kristy J Lawton, Theodore H
Lindsay, Tod R Thiele, Eduardo J Izquierdo, Serge Faumont, Rebecca
A Lindsay, Matthew Cale Britton, Navin Pokala, et al. “A stochastic
neuronal model predicts random search behaviors at multiple spatial
scales in C. elegans”. In: eLife 5 (2016), e12572.

[SBO6] Leonid Sigal and Michael J Black. “Humaneva: Synchronized video
and motion capture dataset for evaluation of articulated human mo-
tion”. In: Brown Univertsity TR 120 (2006).

[Shi+11] Qinfeng Shi, Li Cheng, Li Wang, and Alex Smola. “Human action
segmentation and recognition using discriminative semi-Markov mod-

els”. In: International journal of computer vision 93.1 (2011), pp. 22—
32.

[Sil+16] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent
Sifre, George Van Den Driessche, Julian Schrittwieser, [oannis Antonoglou,
Veda Panneershelvam, Marc Lanctot, et al. “Mastering the game of

Go with deep neural networks and tree search”. In: Nature 529.7587
(2016), pp. 484—489.

[Sim96] Herbert A Simon. The sciences of the artificial. MIT press, 1996.

[SK09] Kathleen K Siwicki and Edward A Kravitz. “Fruitless, doublesex and
the genetics of social behavior in Drosophila melanogaster”. In: Cur-
rent opinion in neurobiology 19.2 (2009), pp. 200-206.

[SLCO04] Christian Schuldt, Ivan Laptev, and Barbara Caputo. “Recognizing hu-
man actions: a local SVM approach”. In: Pattern Recognition, 2004.
ICPR 2004. Proceedings of the 17th International Conference on. Vol. 3.
IEEE. 2004, pp. 32-36.

[Sun+12] Jaeyong Sung, Colin Ponce, Bart Selman, and Ashutosh Saxena. “Un-
structured human activity detection from rgbd images”. In: Robotics
and Automation (ICRA), 2012 IEEE International Conference on. IEEE.
2012, pp. 842-849.

[SZS12] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. “UCF101:
A Dataset of 101 Human Actions Classes From Videos in The Wild”.
In: arXiv preprint arXiv:1212.0402 (2012).

[TBBO9] Moritz Tenorth, Jan Bandouch, and Michael Beetz. “The TUM kitchen
data set of everyday manipulation activities for motion tracking and
action recognition”. In: Computer Vision Workshops (ICCV Workshops),
2009 IEEE 12th International Conference on. IEEE. 2009, pp. 1089—
1096.

[Tso+05] Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and
Yasemin Altun. “Large margin methods for structured and interde-
pendent output variables”. In: Journal of Machine Learning Research.
2005, pp. 1453-1484.

79

[Vall5] Harri Valpola. “From neural PCA to deep unsupervised learning”.
In: Adv. in Independent Component Analysis and Learning Machines
(2015), pp. 143-171.

[Vit67] Andrew Viterbi. “Error bounds for convolutional codes and an asymp-
totically optimum decoding algorithm”. In: Information Theory, IEEE
Transactions on 13.2 (1967), pp. 260-269.

[WA10] Liming Wang and David J Anderson. “Identification of an aggression-
promoting pheromone and its receptor neurons in Drosophila”. In: Na-
ture 463.7278 (2010), pp. 227-231.

[Wan+11] Liming Wang, Xiaoqing Han, Jennifer Mehren, Makoto Hiroi, Jean-
Christophe Billeter, Tetsuya Miyamoto, Hubert Amrein, Joel D Levine,
and David J Anderson. “Hierarchical chemosensory regulation of male-
male social interactions in Drosophila”. In: Nature neuroscience 14.6
(2011), pp. 757-762.

[Wil+15] Alexander B Wiltschko, Matthew J Johnson, Giuliano lurilli, Ralph E
Peterson, Jesse M Katon, Stan L Pashkovski, Victoria E Abraira, Ryan
P Adams, and Sandeep Robert Datta. “Mapping sub-second structure
in mouse behavior”. In: Neuron 88.6 (2015), pp. 1121-1135.

	Abstract
	Published Content and Contributions
	Table of Contents
	List of Illustrations
	Introduction
	Behavior analysis and its automation
	Contributions and thesis outline

	Tracking
	Evaluation
	Detection
	Tracking
	Pose estimation
	Behavior quantification

	Action detection
	Background
	Fly-vs-Fly
	Feature representation
	Sliding window classification
	Structured output classication
	Experiments and analysis
	Discussion

	Behavior modeling
	Background
	Model
	Applications
	Data
	Experiments and analysis
	Discussion

	Conclusion
	Bibliography

