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ABSTRACT

This thesis introduces a new way of looking at incompressible fluid dy-
namics. Specifically, we formulate and simulate classical fluids using a
C2-valued Schrödinger equation subject to an incompressibility constraint.
We call such a fluid flow an incompressible Schrödinger flow (ISF). The
approach is motivated by Madelung’s hydrodynamical form of quantum
mechanics, and we show that it can simulate classical fluids with particular
advantage in its simplicity and its ability of capturing thin vortex dynam-
ics. The effective dynamics under an ISF is shown to be an Euler equation
modified with a Landau-Lifshitz term. We show that the modifying term
not only enhances the dynamics of vortex filaments, but also regularizes
the potentially singular behavior of incompressible flows.

Another contribution of this thesis is the elucidation of a general, geometric
notion of Clebsch variables. A geometric Clebsch variable is useful for
analyzing the dynamics of ISF, as well as representing vortical structures
in a general flow field. We also develop an algorithm of approximating a
“spherical” Clebsch map for an arbitrarily given flow field, which leads to
a new tool for visualizing, analyzing, and processing the vortex structure
in a fluid data.
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C h a p t e r 1

INTRODUCTION

This thesis is based on the work I did since 2015 Summer with the as-
sociated publications [Chern, Knöppel, Pinkall, Schröder, and Weißmann,
2016] and [Chern, Knöppel, Pinkall, and Schröder, 2017].

In the first paper, Schrödinger’s Smoke, we proposed a novel method for
fluid simulations by solving a Schrödinger equation. The relation between
hydrodynamics and quantum mechanics was long known since Madelung
[1926], but this relation had not been turned into a numerical approach
for computing classical fluids. Through collaborative mathematical deriva-
tions, we settled the framework of Incompressible Schrödinger Flow (ISF) pre-
sented in the paper and in this thesis. The paper showed that Madelung’s
hydrodynamical form of quantum mechanics can be practically used in
fluid simulations. Besides its simplicity and intriguing relation to quantum
physics, ISF is particularly competitive in simulating vortex dynamics.

On the theoretical aspect, ISF reveals a deep relation between Clebsch vari-
ables in hydrodynamics and spins in quantum mechanics. Their dynamics
under ISF is an Euler equation modified with a Landau-Lifshitz term. This
modifying term for the Euler equation had not been considered in the fluid
dynamics literature. In this thesis I give the analysis of the impact of this
modifying term on the Euler equation, which explains the numerical qual-
ity empirically observed in the Schrödinger’s Smoke paper.

One important fact about Clebsch variables is that they can be used to vi-
sualize the vortical structures in a fluid naturally. This idea was published
in the second paper, Inside Fluids: Clebsch Maps for Visualization and Process-
ing, where we proposed a novel method of finding a Clebsch map from
any given flow data and thereby we provided new tools for analyzing and
visualizing the dataset.

In this thesis, I will first present the basic formulation and numerical results
of ISF. In Part II, I will develop the mathematical framework for general,
geometric Clebsch variables. The application of this new notion of Clebsch
variables is presented in the end of Part II. In Part III, I will talk about the
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mathematical theory about the dynamics of the Clebsch variables. In par-
ticular, the Landau-Lifshitz term is revealed in the discussion. With a better
understanding on comparing a Schrödinger equation and the Euler equa-
tion through the dynamics of the Clebsch variables, I give a few examples
on how to apply special forces (Coriolis force and buoyancy force) on the
fluid in the end of Part III.

To manage the abstract definition of Clebsch variables in Part II and the
derivations in Part III, I employ the formalism of exterior calculus. I give a
note on exterior calculus in Appendix A collecting the important operators
and identities for the context of fluids. Using it, I give a preliminary note
(Chapter 2) on the important facts in classical fluids.

1.1 Hydrodynamics and Quantum Mechanics

An incompressible, nearly inviscid fluid is modeled as a continuum gov-
erned by the incompressible Euler equations




∂
∂t u + (u · ∇)u = −∇p

div u = 0,
(1.1)

where u is the velocity vector field and p the pressure. One can understand
this equation as the consequence of

• the law of inertia. Without forces, the velocity u is purely transported
by the velocity itself ∂

∂t u + (u · ∇)u = 0;
• the only existing force in the fluid is a potential force −∇p; i.e. no

friction.
• the fluid is incompressibile: div u = 0.

The potential (pressure) force −∇p is given uniquely to fulfill the incom-
pressibility constraint.

The inertial- and pressure-driven motion of the fluid is the macroscopic
phenomenon arising from the numerous flowing and colliding molecules.
When the number of fluid particles is fewer, such as in a rarified gas or at
a mesoscopic scale, the fluid is no longer a continuum and is modeled by
kinetic models or many-body Newtonian mechanics. Surprisingly, when
one goes further down to the quantum mechanical level, the inertial- and
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pressure-driven dynamics reappears with a different physical reason but a
similar mathematical form.

In quantum mechanics, a single particle at the atomic scale is modeled as a
complex-valued wavefunction ψ which satisfies the Schrödinger equation

i} ∂
∂tψ = −

}2

2
∆ψ + pψ. (1.2)

The linear equation i} ∂
∂tψ = −

}2

2
∆ψ is a dispersive wave equation. That

is, waves with different wavelengths travel at different speeds. The group
velocity for the Schrödinger equation is given by v = }k where k = ∇ argψ
is the wavenumber. Physically, the amplitude squared of the wavefunction
q = |ψ |2 represents the probability density of the location of the parti-
cle, and the group velocity }∇ argψ represents the particle velocity field.
Both the velocity field (wave frequency) and the density (amplitude) are
carried along by the group velocity, and therefore we obtain an inertial
motion similar to a fluid. The term pψ in (1.2) represents the potential en-
ergy, which generates a potential force −∇p that acts on the velocity field.
This fluid analogy of quantum mechanics was first pursued by Madelung
[Madelung, 1926; Madelung, 1927] in an effort to elucidate the then new
quantum mechanics. The derivation can be found in Appendix 1.A

An important fact one can already see is that the inertial motion in the
Euler equation is described by a nonlinear equation ∂

∂t u + (u · ∇)u = 0,
whereas its counterpart in the Schrödinger equation is a linear equation
i} ∂

∂tψ =
}2

2
∆ψ. This gives us motivation to study and numerically simulate

the fluid equations using a Schrödinger equation.

1.2 Incompressible Schrödinger Equations

Since the Schrödinger equation corresponds to a compressible fluid, we need
to impose incompressibility ∇ · u = 0 and q = 1. Moreover the velocity
is represented by u = }∇θ, which means that there will be no vorticity
w = ∇× u anywhere except where q = 0 (and ∇θ is singular). If we impose
q = 1, the only flow in a Schrödinger system would be potential flow.

To include vorticity we consider a 2-component (C2-valued) wavefunction.*

For a C2-valued wavefunction Ψ = (r1eiθ1 , r2eiθ2 )ᵀ, the hydrodynamical vari-

*The physical interpretation for such a wavefunction is that it describes a spin-1/2

particle.
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ables are given by

q = r2

1
+ r2

2
= |Ψ|2 = Ψᵀ

Ψ

u =
r2

1
}∇θ1 + r2

2
}∇θ2

r2

1
+ r2

2

= 1

q}Re
(
−Ψᵀi∇Ψ

)
.

Since u is no longer a pure gradient of a function, it admits nontrivial
vorticity.

The Schrödinger equation for a C2-valued wavefunction is given similar to
the one-component case

i} ∂
∂tΨ =

}2

2
∆Ψ + pΨ.

Finally, just as in the incompressible Euler equation, we let the potential p

be chosen so that the fluid is incompressible; that is, ∇ · u = 0 and q = 1. In
terms of Ψ the condition ∇ · u = 0 can be written as †

Re
(
Ψ
ᵀi∆Ψ

)
= 0.

We therefore write down the Schrödinger equation with an incompressibil-
ity constraint:




i} ∂
∂tΨ =

}2

2
∆Ψ + pΨ

Re
(
Ψᵀi∆Ψ

)
= 0.

(1.3)

If the initial condition for this equation satisfies the uniform density condi-
tion, q = |Ψ|2 = 1, one can see that |Ψ|2 = 1 holds at all later times because

∂
∂t |Ψ|

2 = 2 Re
(
Ψ
ᵀ ∂
∂tΨ

)
= 2 Re

(
Ψ
ᵀ i}

2
∆Ψ − i

}p|Ψ|2
)
= 0

where in the last equality we used the condition Re
(
Ψᵀi∆Ψ

)
= 0 and the

fact that i |Ψ|2 is purely imaginary.

We call (1.3) the incompressible Schrödinger equations and the corresponding
flow the incompressible Schrödinger flow (ISF).

1.3 Basic Algorithm

ISF is computationally very attractive. Using a splitting method for time
integration, each step requires only linear Schrödinger evolution for a short
time period ∆t,

∂
∂tΨ =

i}
2
∆Ψ

†When q = 1 the velocity is given by u = }Re
(
−Ψᵀi∇Ψ

)
. Therefore ∇ · u =

}Re
(
−i |∇Ψ|2 −Ψᵀi∆Ψ

)
= −}Re

(
Ψᵀi∆Ψ

)
.
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followed by a phase shift Ψ ← e−iϕ/}Ψ for some real-valued function ϕ,
i.e. a general solution to

∂
∂tΨ = −

i
}pψ.

Observe that applying a phase shift Ψ = e−iϕ/}Ψ̃ results in a change in the
velocity by

u = ũ −∇ϕ.

Therefore for an arbitrary Ψ̃ one can find a unique (up to a global constant)
ϕ so that the velocity after the phase shift Ψ = e−iϕ/}Ψ̃ is divergence-free
∇ · u = 0. This phase function ϕ is found by solving a Poisson problem

∆ϕ = ∇ · ũ. (1.4)

The process of taking an arbitrary Ψ̃, solving (1.4) and returning Ψ =

e−iϕ/}Ψ̃ is called the pressure projection.

The overall algorithm for ISF is alternating between a linear Schrödinger
flow and a pressure projection (Alg. 1). Though in the smooth theory
|Ψ| = 1 is always maintained in ISF, in discrete time stepping |Ψ| may
drift away from 1. We therefore supply a normalization step between the
Schrödinger step and the pressure projection step.

Algorithm 1 Basic ISF

Input: Ψ(0), ∆t,} . Initial state and parameters
1: for j ← 0, 1, 2, . . . do
2: Ψtmp ← Schrödinger(Ψ( j), ∆t,}) . Appendix 1.B
3: Ψtmp ← Ψtmp/|Ψtmp | . Normalization
4: Ψ( j+1) ← PressureProject(Ψtmp) . Appendix 1.B
5: end for

All inertial motion of the fluid happens within the Schrödinger evolution,
no separate nonlinear advection step is needed. For time integration for
the Schrödinger evolution, we adopt the spectral method if the domain is a
regular grid, and solve the diagonalized system in the Fourier domain ex-
actly. If the domain does not allow a straightforward spectral method, we
discretize the Laplacian and adopt the Crank-Nicolson method to march
in time. The resulting algorithm is unconditionally stable and straightfor-
ward to implement.
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Fig. resolution size (m3) ∆t (s) } (m2/s) Video

1.1 128 × 64 × 64 10 × 5 × 5 1/24 0.1 00:05

1.2 64
3

2
3

1/24 0.01 01:17

1.3 64
3 resp. 128

3
5

3
1/24 0.05 00:39

1.4 128
3

4
3

1/48 0.02 01:42

1.5 128 × 64 × 64 4 × 2 × 2 1/48 0.02-0.04 02:18

1.6 512 × 12 × 208 20 × 1/2 × 8 1/48 0.03 02:48

1.7 192 × 64 × 64 6 × 2 × 2 1/48 0.015 03:41

1.8 192 × 64 × 64 6 × 2 × 2 1/48 0.015 03:56

1.10 96 × 192 × 96 3 × 6 × 3 1/48 0.02 04:09

1.12 128
3

5
3

1/48 0.03 04:48

Table 1.1: Parameters for simulations.

1.4 Numerical Results

With the basic algorithm in place, we now discuss its use, beginning with
simple benchmark simulations and building up a set of straightforward
tools capable of describing a large set of interesting simulation scenarios.‡

Parameters and the video pointers§ for the simulations are listed in Ta-
ble 1.1. Performance is controlled by the cost of the FFT. A single step of
Alg. 1 takes less than 1s at 128

3 resolution and less than 9s at 256
3 on a

3.5GHz i7 iMac.

Vortex Filaments

We perform a few benchmark tests simulating the dynamics of vortex fila-
ments, i.e. flows with vorticity concentrated in space curves. Initialization
for Ψ representing vortex filaments is given in Appendix 1.D.

Leapfrogging Vortex Rings A classic example of interesting filament dy-
namics are the leapfrogging vortex rings [Lim, 1997]. Two closely spaced
circular vortex filaments will alternately leapfrog one another. This phe-
nomenon is typically very hard to reproduce in standard fluid solvers
but runs without difficulty in our method. Fig. 1.1 shows a comparison
between a state of the art 5

th order HJWENO [Osher and Fedkiw, 2003,
‡All examples used our native implementation in Houdini 15.
§The videos for the simulations can be found at https://youtu.be/5C9BLAXCe1I

http://sidefx.com/
https://youtu.be/5C9BLAXCe1I
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Ch. 3.4] velocity advection method with 2
nd order MacCormack time step-

ping [Selle et al., 2008], and our ISF. HJWENO/MacCormack is never able
to complete even the first leapfrog cycle, quickly yielding only a merged,
single vortex ring while our method goes through the correct cycle and is
still proceeding after 2000 time steps (approx. four cycles).

Figure 1.1: Leapfrogging vortex rings using HJWENO/MacCormack (top) and
ISF (bottom). Left to right: iteration 45, 360, 2000 (cmp. to [Lim, 1997, Video]).

Knotted Vortex Filament Producing an initial condition Ψ as described
in Appendix 1.D we can simulate the evolution of the trefoil knot (Fig. 1.2).
We correctly replicate the reconnection event which occurs when the ini-
tial filament crosses itself. This produces two separate filaments with the
smaller one moving off and matches experiments [Kleckner and Irvine,
2013, Video].

Oblique Collision A further example of vortex filament dynamics, which
are challenging to simulate, are the obliquely colliding vortex rings [Lim,
1989, Videos front & top]. Fig. 1.3 compares our method with stable fluids
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Figure 1.2: Evolution of a trefoil knot with ISF showing frames 50, 100, 210 (cmp.
to [Kleckner and Irvine, 2013, Video]).

Initial condition Stable fluid HJWENO/
MacCormack ISF

64
3

128
3

Figure 1.3: Comparison of methods for oblique smoke ring collision at resolution
64

3 (top) and 128
3 (bottom) showing from left to right the initial configuration,

stable fluids with RK4 back trace, HJWENO/MacCormack, and ISF, each at frame
600. The vortex filaments have strength 2π} for } = 0.05 m2/s, they are of radius
0.6 m making an angle of ±45

◦ to the domain with their centers separated by 2 m
(cmp. to [Lim, 1989, Videos front & top]).

and HJWENO/MacCormack at two resolutions. Stable fluids, due to its ex-
cessive numerical diffusion cannot reproduce this experiment. HJWENO/-
MacCormack does better and successfully reproduces the reconnection
event, but only at high resolutions. ISF on the other hand produces the
correct dynamics already at a moderate resolution 64

3.
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Figure 1.4: Two regions of red and blue ink are initialized to constant velocities
pointing towards each other. Running ISF with this initial condition produces
the corresponding inertial motion dynamics (left to right, top to bottom) at frames
1, 25, 85, and 270. The Bunny and Teapot centers were 2 m apart, each moving
towards the other at 1 m/s.

Velocity Constraints

Being able to prescribe velocity in a particular region is a basic tool for the
construction of initial conditions as well as while a simulation is running.
To accomplish this we adopt the volume penalization method [Arquis and
Caltagirone, 1984; Angot et al., 1999; Carbou and Fabrie, 2003; Jause-Labert
et al., 2012]. This method was devised for standard fluid simulation meth-
ods.¶ As shown in Appendix 1.E the method can be translated into our
context involving wavefunction Ψ.

Consider now the scenario of setting up an initial, divergence free, velocity
field with two regions, say the Bunny and the Teapot, each having some
constant but different velocity, e.g., pointing at one another. Using the cor-
responding Ψ as initial condition, we can simulate the consequent inertial
motion dynamics (Fig. 1.4).

By enforcing a fixed nonzero velocity in a fixed region, we can simulate a
jet (Fig. 1.5). Fig. 1.5 shows the resulting simulation also illustrating the

¶When using the volume penalization method one treats solid objects as part of the
fluid with a velocity constraint. Since objects do not introduce a new boundary for the
simulation, this method is favored by spectral-method-based fluid solvers.
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Figure 1.5: Jet of 1 m/s velocity and a nozzle opening radius of 0.3 m. Left to right
the parameter } = 0.04, 0.03, 0.02 m2/s, illustrating the finer vortical structures
with decreasing } due to more plentiful and narrowly spaced vortex filaments. The
bottom row visualizes filaments as level set surfaces |ψ1 |

2 − |ψ2 |
2 = 0.

Figure 1.6: Von Kármán vortex street forming behind a cylindrical obstacle at
frame 1050.

effect of different values for }. With decreasing } the strength of each
vortex filament is lowered and correspondingly their number increased,
resulting in higher nucleation rate of vortices (and thus more turbulence)
in the flow. This can also be seen in the direct visualization of the filaments
as level set surfaces.

Maintaining a velocity constraint for some region Ω can also be used to
incorporate obstacles into our simulation. In that case ηΩ = 0 while Ω may
or may not be a function of time. Fig. 1.6 and Fig. 1.7 show examples of
a stationary obstacle in a background flow while Fig. 1.8 shows a moving
obstacle.

Arbitrary Initial Conditions

Prescribing velocity using the method mentioned above (Appendix 1.E) is
limited to setting constant velocity in a region. In Chapter 6 and Chap-



12

Figure 1.7: Frame 600 of a spherical obstacle of radius 0.4m in a 1m/s flow.

Figure 1.8: Example of a moving obstacle at frames 1, 100, and 240.

ter 7 we describe a method to construct a wavefunction Ψ that represents
an arbitrarily given velocity. Fig. 1.9 shows an ISF simulation with initial
velocity set to be a rigid body rotation (constant vorticity field) in a general
region. Unlike the relation between constant velocities and plane waves, a
rigid rotating flow does not admit a closed form expression for the wave-
function. Therefore the technique explained in Chapter 6 is required for
this example.

Gravity and Buoyancy

Both gravity and buoyancy are important forces in simulations. A simple
way to include two phases of heavy and light fluids is to let |ψ1 |

2 (resp.
|ψ2 |

2) indicate the density of the light (resp. heavy) fluid. Note that ISF is
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Figure 1.9: Fluid simulation by ISF with initial Ψ derived from a general u.
Here u is the divergence-free projection of a rigid-body rotation interior to the
bunny (and zero velocity else). The corresponding initial vorticity is uniform in
the bunny driving a rigid rotation, and has a concentrated vortex sheet on the
surface giving rise to a Kelvin-Helmholtz instability.

Figure 1.10: A jet subject to a buoyancy force which “bends” it upwards from its
tilted initial trajectory at frame 150, 350, and 500.
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invariant under unitary transforms of C2.|| We exploit this gauge symme-
try by assigning physical meaning to the component densities |ψ1 |

2, |ψ2 |
2.

Now buoyancy and gravity enter at the level of the Schrödinger equation
as linearly varying potentials applied differently to each component

i} ∂
∂tΨ = −

}2

2
∆Ψ + pΨ +



〈g, x〉 0

0 −〈g, x〉





ψ1

ψ2


(1.5)

with the vector g ∈ R3 controlling magnitude and direction while x ∈ R3 is
the spacial coordinate.

A mathematical justification for the model equation (1.5) is presented in
Section 11.2. Before going there, let us discuss it phenomenologically.

The vortices generated at the interface of the two fluids tend to form vor-
tex filaments in each fluid component. Due to the nature of how vortex
filaments are represented by Ψ (this will be clear in a later part of this the-
sis), in the part where |ψ1 |

2 is mostly 1 (light fluid), the vortex cores are
the locations when |ψ1 |

2 “dips down” to zero. Therefore, our model (1.5)
will treat these vortex filaments as heavy/buoyant vortex filament, which
agrees with the model proposed in [Saffman, 1992, Sec. 5.8] in the context
of classical fluid dynamics.

Since the new potential term in (1.5) does not depend on time, integration
is straightforward and amounts to multiplying each component of Ψ with
the plane wave (with wave number ±g/}) after normalization but before
pressure projection in Alg. 1.

Fig. 1.10 shows an example of a jet with buoyancy causing a gentle up-
ward bend. Fig. 1.11 shows a swirling cigarette smoke whose vortices are
developed due to the buoyancy. Fig. 1.12 shows a simulation of heavy dry
ice vapor (middle) and the location of vortex filaments visualized as the
level-set |ψ1 |

2 = |ψ2 |
2 (bottom).

General Domain

Note that the only spatial operator involved in the incompressible Schrödinger
equation is the Laplacian. Laplacian can be defined for a very “weak” do-
main such as for a manifold, a graph or even a point cloud. One can

||This symmetry leads to conservation of spin angular momentum ΨᵀσiΨ for i = 1, 2, 3

where σi’s are the Pauli matrices. This is an additional conservation law that is not present
in the classical fluid (Section 8.3 and 9.6).
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Figure 1.11: A swirling cigarette smoke simulated with ISF driven by a buoyancy
force.

talk about and simulate fluids on these domains without additional effort.
Fig. 1.13 shows an example of simulating fluid dynamics on a curved sur-
face using ISF, where the Laplacian is given by the cotan-Laplacian [Pinkall
and Polthier, 1993] (or the finite element stiffness matrix) for the triangu-
lated mesh.

1.5 Significance and Related Work

Simulations of nearly inviscid incompressible fluids has been a challenge
due to a number of reasons. First, fluid equations involve a nonlinear term
u · ∇u which requires a carefully designed numerical scheme. In addition,
vorticity tends to concentrate in thin filaments [Saffman, 1992] whose dy-
namics is sensitive to the resolution of the computation grid (ibid, p. 201).

We propose a new approach of approximating fluid dynamics using an
incompressible Schrödinger flow (ISF). In ISF the nonlinear advection is
replaced by a linear Schrödinger equation. As shown in Section 1.4, ISF
is able to capture thin vortex dynamics on a relatively coarse computation
grid. ISF also provides a new mathematical framework of describing fluid
dynamics, which may give additional insight to the nature of fluid dynam-
ics. Finally, our study of ISF gives a profound theory that connects many
different fields of science.
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Figure 1.12: Comparing experiment (dry ice vapor, top) with ISF simulation
(middle), followed by a visualization of the underlying wave function ψ. Vorticity
is concentrated within the green region.
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Figure 1.13: ISF simulated on a general surface.

Quantum Mechanics and Superfluids

The hydrodynamical form of quantum mechanics was first discovered by
Madelung [1926]. He described that the one-component (C-valued) Schrö-
dinger equation is equivalent to a quantum Euler equation. The Madelung
transform is then applied to m-component Schrödinger equation by Schön-
berg [1954]. Sorokin [2001] gave a version of a C2-valued Schrödinger equa-
tion (with non-linear potential) so that it recovers the classical barotropic
Euler equation. Madelung’s quantum hydrodynamics was not paid much
attention in fluid mechanics, whereas quantum physicists’ attention were
drawn to a similar theory called Bohmian mechanics [Tsekov, 2009].

Another instance where Schrödinger equation arises in the context of fluids
is in the study of superfluids. A superfluid is a condensed state of a bunch
of bosonic atoms such as liquid helium-II. In it the vortices are topological
features their vortex dynamics similar to those of ordinary fluids [K. W.
Schwarz, 1985; Stagg et al., 2014]. Due to the “topological protection” the
filaments are far more persistent and computationally resolvable even at
relatively modest resolutions. This feature about superfluids was also a
motivation of ISF.

Early on in the history of the study of superfluids it was recognized that
they carry quantized vorticity in atomic scale filaments [Onsager, 1949;
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Feynman, 1955]. A mathematical model for the observed physics of su-
perfluids was developed by Gross [1961] and Pitaevskii [1961] (and earlier
Ginsburg and Pitaevskii [1958]). This model is now known as the Gross-
Pitaevskii (GP) equation, or simply the non-linear Schrödinger (NLS) equa-
tion

i} ∂
∂tψ = −

}2

2
∆ψ + 1

a2

(
|ψ |2 − 1

)
ψ,

for ψ : M → C and a parameter a > 0 which for us corresponds to the core
radius of vortex filaments. The non-linear (cubic) term acts as a potential
opposing the deviation of the density q = |ψ |2 from 1. Indeed, in the solu-
tions to the GP equation the density is near 1 in most of the domain, save
for the zero set of ψ in whose vicinity the density smoothly decreases to
zero [Stagg et al., 2014]. Taking the limit a → 0 one expects the non-linear
term to converge to the incompressible limit and hence the GP equation to
recover the Euler equations for its hydrodynamical variables. In 2D this has
been rigorously established [Lin and Xin, 1999; Jerrard and Spirn, 2015].

So why not simulate fluids using the GP equation? As a practical matter,
choosing a small a in the cubic term leads to very stiff numerical prob-
lems. Since we are only interested in the incompressible setting, we can
replace the cubic non-linearity with the incompressibility constraints. For
single component wave functions the uniform density constraint |ψ |2 = 1

yields singular ψ and allows for irrotational velocity fields only. Using
instead a two-component wave function Ψ : M → C2 leaves Ψ smooth un-
der the constraint |Ψ|2 = 1. Additionally it allows for smoothly varying
vorticity [Schönberg, 1954; Sorokin, 2001].

Two threads from Physics have influenced our work. On one hand the hy-
drodynamical form of quantum physics and on the other the GP equation
for the modeling of superfluids. In our work we use a C2-valued wavefunc-
tion and impose an incompressibility constraint with pressure projection.
It turns out that by going to C2 there reveals a fundamental connection
between the spin in the Schrödinger equation and the Clebsch variables in
classical fluids.

Clebsch Variables

In the study of hydrodynamics, Alfred Clebsch in 1859 proposed what is
now known as the Clebsch representation [Clebsch, 1859]. It encodes the
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fluid velocity field u with the aid of scalar functions λ, µ, ϕ, writing

u = λ grad µ− grad ϕ.

The vorticity vector field w, in turn, is represented by

w = curl u = grad λ × grad µ.

A set of Clebsch variables λ, µ, ϕ is shown to be important variables de-
scribing the Euler fluid flow as a Hamiltonian system [Jerrold Marsden and
Weinstein, 1983]. In addition, by the way vorticity fields are encoded, Cleb-
sch variables are useful for flow visualization Kotiuga, 1991, analysis Jeong
and Hussain, 1995, simulation He and Yang, 2016; Yang and Pullin, 2010;
Brandenburg, 2010; Cartes et al., 2007, and enhancement among others.

However, the Clebsch representation can only represent fields with zero
helicity. This problem is usually addressed with multi-component Clebsch
variables [Cartes et al., 2007; Graham and Henyey, 2000; Zakharov and
Kutznetsov, 1997]. Unfortunately, the vorticity is no longer represented in
a way useful for understanding the vortex structure (this requires (λ, µ)
together be 2-dimensional-valued).

Kuznetsov and Mikhailov [1980] proposed a different type of generalized
Clebsch variables. In the original Clebsch variables, vorticity is represented
using (λ, µ) together as an R2-valued map. Kuznetsov and Mikhailov con-
sidered an S2-valued map in place of R2. Such spherical Clebsch maps are
proven capable of representing fields with non-zero helicity. At the same
time spherical Clebsch maps is 2-dimensional-valued and hence it is po-
tentially useful for flow visualization and analysis. However, there had
not been a numerical approach finding an approximated spherical Clebsch
map for the latter purpose.

Now the threads of quantum physics connect to Clebsch variables in fluid
dynamics. The spin vector (also known as the Bloch vector) in a C2-valued
wavefunction is a spherical Clebsch variable. In other words, the variables
for ISF are also useful for visualize vortex structures by extracting their spin
vectors. While it is easy to extract the velocity from the wavefunction, the
solution to its inverse problem is not that obvious. Our work also include
a practical algorithm for approximating a wavefunction, and therefore a
spherical Clebsch map, for an arbitrary given flow data.
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Theoretical Euler’s Equation

Understanding the nature of incompressible flow is a long standing math-
ematical problem. In particular, at the PDE level the Euler equation is
known to have singular nature. For example the weak solution to the Eu-
ler equation is not unique [Shnirelman, 1997]. Moreover, there are strong
evidences that a finite time blow up solution can occur even for smooth
initial condition [Luo and Hou, 2014; Hou et al., 2017]. A standard way
to proceed approaching such a singular equation is to perturb the equa-
tion by a regularization term. An obvious choice of such a modifying term
is a diffusion term (viscosity force). However, the regularity problem on
the resulting Navier-Stokes equation is not simpler. Besides, most modifying
term will not maintain the vortex structures in the fluid. For example the
viscosity term diffuses vortex cores and slows down their motion.

We show that ISF is an Euler equation modified with a Landau-Lifshitz
term. More precisely, there is an additional variable, the spin, which is
subject to not only an equation that gives rise to an Euler flow, but also
a gyromagnetic force that appears in the theory of Landau-Lifshitz ferro-
magnetism. This Landau-Lifshitz term essentially turns the Euler equation
into a Schrödinger equation, with straightforward a priori estimate on the
regularity of the spin vectors due to conservation of energy. Moreover,
the additional Landau-Lifshitz term will not only maintain but enhance
the vortex structure in the fluid. The vortex filaments in an ISF will move
slightly faster than the same ones in an Euler fluid, as if they are vortex
filaments in an Euler fluid but with a smaller vortex radius (a more concen-
trated vortex).

These qualities of ISF may also lead to an approach for understanding
Euler equation at a fundamental level.

1.A Madelung Transform

The Schrödinger equation for a C-valued wavefunction ψ is given in (1.2),
or equivalently

∂
∂tψ =

i}
2
∆ψ − i

}pψ. (1.6)

Write ψ = reiθ . Let q = r2 and u = }∇θ which represents fluid density
and velocity respectively. Now, in terms of r and θ the derivatives of ψ are
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given by

∇ψ = ∇reiθ + ir∇θeiθ

∂
∂tψ =

∂r
∂t eiθ + ir ∂θ∂t eiθ

∆ψ = ∇ · (∇ψ) = ∆reiθ + 2i∇r · ∇θeiθ + ir∆θeiθ − r |∇θ |2eiθ .

Therefore the Schrödinger equation (1.6) becomes

∂r
∂t + ir ∂θ∂t =

i}
2
∆r − }∇r · ∇θ − }

2
r∆θ − i}

2
r |∇θ |2 − i

}pr (1.7)

where we have eliminated the common factor eiθ . Now the real and the
imaginary parts of (1.7) read

∂
∂t r = −}∇r · ∇θ − }

2
r∆θ (1.8)

r ∂
∂t θ =

}
2
∆r − }

2
r |∇θ |2 − 1

}pr . (1.9)

Multiply 2r to (1.8), make the substitutions q = r2, u = }∇θ, and use the
fact that 2r∇r = ∇(r2) and 2r ∂

∂t r =
∂
∂t (r2) to obtain

∂
∂t q = −u · ∇q − q∇ · u

which can be rewritten as

∂
∂t q +∇ · (qu) = 0. (1.10)

Divide (1.9) by r , take }∇, and make the same substitutions to obtain

∂
∂t u = ∇

(
}2

2

∆
√

q
√

q

)
− 1

2
∇|u|2 −∇p

= ∇

(
−p + }2

2

∆
√

q
√

q

)
− u · ∇u. (1.11)

Combining the continuity equation (1.10) and the momentum equation (1.11),
one concludes that under the Schrödinger flow, the hydrodynamics vari-
ables q and u satisfy




∂
∂t q +∇ · (qu) = 0,
∂
∂t u + (u · ∇)u = −∇

(
p − }2

2

∆
√

q
√

q

)
.

(1.12)

Equation (1.12) is also called the quantum Euler equation. The term −}2

2

∆
√

q
√

q

is called the Bohm potential.

Here we only show the C-valued Madelung transform. In our work we
use the C2-valued Madelung transform, in which the effect of the Bohm
potential is eliminated by imposing q = 1.
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Figure 1.14: In all, 9 reals are stored at vertices: Ψv, ξv, qv, and the three circula-
tions (η1, η2, η3)ᵀv associated with the edges emanating in the positive coordinate
directions. The divergence ξv is the normalized sum of the face fluxes Avw

`vw
ηvw on

the enclosing cube.

1.B Implementation Details

Here we include the implementation details for ISF (Algorithm 1) on a
regular 3D grid.

A typical simulation is performed on a 3D lattice with vertex set V =

{0, . . . ,Nx − 1} × {0, . . . ,Ny − 1} × {0, . . . ,Nz − 1}. For a periodic domain, in-
dices are taken modulo their respective dimension. The set of directed
edges E consists of ordered adjacent vertices vw ∈ E. Vertices, v ∈ V , need
to store samples of the wave function Ψv ∈ C2, the real-valued potential
ϕv ∈ R, and the real-valued divergence ξv ∈ R. The discrete velocity is
stored as the circulation along directed edges vw ∈ E

ηvw := } arg
(
Ψ
ᵀ
vΨw

)
≈

∫ w

v
u · d` (1.13)

with ηvw = −ηwv (App. 1.C).

The discrete divergence, ξ = div u, is the usual signed sum over incident
edges, weighted by the quotient of dual facet area Avw to edge length `vw

and normalized by dual cell volume Vv (Fig. 1.14)

ξv =
1

Vv

∑
vw∈E

Avw
`vw

ηvw, (1.14)
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following standard Discrete Exterior Calculus (DEC) conventions [Desbrun
et al., 2008; Crane et al., 2013].

Schrödinger integration diagonalizes in the Fourier domain, leading us
to use the FFT (on periodic domains). In a closed box, the no-through
boundary condition u · n = 0 is described with the Neumann boundary
condition ∂

∂nΨ = 0, which is achieved with the discrete cosine transform
(DCT). Here λv are the eigenvalues of the continuous 3D Laplace operator.**

Algorithm 2 Time integration of Schrödinger equation

1: function Schrödinger(Ψ, ∆t,})
2: Ψ̂ ← FFT3D(Ψ)
3: Ψ̂ ← eiλ∆t}/2Ψ̂

4: return InvFFT3D(Ψ̂)
5: end function

Pressure projection requires solving the Poisson problem (1.4). We use
an FFT (or DCT) to invert the Poisson problem using eigenvalues λ̃v of the
discrete Laplacian (1.15) for discretely divergence free velocity fields.††

** Letting the index of a vertex be v = (x, y, z), the spatial resolution becomes a triple
of edge lengths ` = (`x, `y, `z), and the overall cube measures L = (`xNx , `yNy , `zNz ). The
eigenvalues for the discrete (λ̃) resp. continuous (λ) Laplacian on a periodic domain are

λ̃v = −
4

`2

x
sin2

(
πx
Nx

)
−

4

`2

y
sin2

(
πy
Ny

)
−

4

`2

z
sin2

(
πz
Nz

)
(1.15)

λv = −(2π)2

(
x2

L2

x
+

y2

L2

y
+ z2

L2

z

)
. (1.16)

The corresponding eigenvalues for the 3D Laplacian with Neumann boundary conditions,
i.e., flow tangential to the wall, arise from Eqs. (1.15) and (1.16) by replacing L ← 2L. In
that case the DCT replaces the FFT in Algs. 2 and 3.

In the continuous case (1.16) can be checked by direct differentiation of the Fourier basis,
while (1.15) uses a centered second difference and some straightforward trigonometric
identities.

††Note that the result of Algorithm 3 is independent of the choice of the constant }.
One sees this by rewriting Algorithm 3 in terms of the variables η̃/}, ξ/}, ϕ/} instead of
η, ξ, ϕ. In practice we set } = 1 in Algorithm 3.
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Algorithm 3 Divergence free constraint

1: function PressureProject(Ψ)
2: for each vw ∈ E do . Velocity circulation on edges
3: η̃vw = } arg

(
Ψ
ᵀ
vΨw

)
. (1.13)

4: end for
5: for each v ∈ V do . Divergence at vertices
6: ξv =

1

Vv

∑
vw∈E

Avw
`vw

η̃vw . (1.14)
7: end for
8: ξ̂ ← FFT3D(ξ)

9: ϕ̂← ξ̂ ·



1/λ̃ if λ̃ , 0

0

10: ϕ← InvFFT3D(ϕ̂)
11: return e−iϕ/}Ψ

12: end function

This completes the description of the basic algorithm. While we make ex-
tensive use of the FFT (or DCT) the method is not tied to regular grids.
For example, once the Laplacian is discretized the Schrödinger integration
could use the Crank-Nicolson method or other matrix exponential meth-
ods [Al-Mohy and Higham, 2011], while the pressure projection step might
employ [McAdams et al., 2010].

1.C Discrete Circulation

Here we prove that the discrete velocity 1-form is given by

ηvw = } arg
(
Ψ
ᵀ
vΨw

)
,

and arises, as is standard, from computing the circulation of the smooth
velocity 1-form along the straight edge vw

ηvw = }
∫

vw
Re

(
−Ψᵀi dΨ

)
.

This formula presupposes that we have chosen along vw a curve γ : [0, 1] →

C2, |γ(t) |2 = 1 that interpolates between Ψv and Ψw. We will assume
Ψ
ᵀ
vΨw , 0, so there is a unique shortest geodesic path c : [0, 1] → CP1 � S2

with c(0) = [Ψv] and c(1) = [Ψw] where [·] : C2 → CP1 is the canonical
projection, or the Hopf map presented in later chapters. We will construct γ
in such a way that [γ] = c.

We distinguish two cases: (1) Ψv and Ψw are linearly dependent or (2)
independent, and construct γ explicitly in each case.
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Suppose they are dependent, i.e., Ψw is a complex scalar multiple of Ψv,
then in fact Ψw = eiηvwΨv. Letting α : [0, 1] → R with α(0) = 0 and α(1) =
ηvw, γ(t) := eiα(t)Ψv will serve our purposes and

}
∫

1

0

Re
(
−γᵀi dγ

)
= }

∫
1

0

dα = ηvw = } arg
(
Ψ
ᵀ
vΨw

)
. (1.17)

Suppose now that Ψv and Ψw are independent, i.e., Ψᵀ
vΨw = cos(β)eiηvw ,

with ηvw ∈ (−π, π) and β ∈ (0, π/2). Define Φ := csc(β)(e−iηvwΨw − cos(β)Ψv).
One easily checks that Ψᵀ

vΦ = 0, |Φ|2 = 1 and

Ψw = eiηvw
(
cos(β)Ψv + sin(β)Φ

)
Let now γ(t) := eiα(t) (cos(βt)Ψv + sin(βt)Φ) and substitute in (1.17) to find
the desired result.

1.D Wavefunctions for Vortex Filaments

To simulate interacting vortex filaments we need an initial Ψ which repre-
sents one or more vortex filaments. Since Ψ for multiple filaments are just
the componentwise product of single filament Ψ functions, we begin by
describing a simple method for the construction of Ψ for a single filament
curve γ.

Suppose γ is the boundary of an embedded topo-
logical disk, γ = ∂Σ. We first construct a com-
plex function eiθ which has γ as its branch singu-
larity. Consider the volume created by a positive
and negative offset of the oriented surface Σ along
its normal direction for distance r > 0 (see inset). In this “slab” of thickness
2r with Σ as its middle surface, set

θ = π
(
1 + d

r

)
for d the signed distance function of Σ. Letting θ = 0 outside the slab, we
define Ψ = (eiθ , c) for a small constant c (say c = 0.01). At this step Ψ

corresponds to a flow field that has an impulse velocity pointing normal to
Σ and supported on the slab. Pointwise normalizing and pressure project-
ing Ψ then gives us the desired wavefunction encoding the divergence-free
velocity field with its curl concentrated on the curve γ = ∂Σ.
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This method also works for far more com-
plex filaments since there always exists a
Seifert surface, i.e., an embedded, oriented
surface Σ, which is bounded by the closed
curve γ [Seifert, 1935]. Software to con-
struct it is readily available [van Wijk and
Cohen, 2005, SeifertView]. The inset shows the Seifert surface for the trefoil
knot.

1.E Volume Penalization for Wavefunctions

Incorporating obstacles and building initial conditions for simulations such
as Fig. 1.4 require prescribing constant velocity in certain regions. In the
context of our wavefunction Ψ this amounts to enforcing a plane wave in a
particular region. Given a wave vector k ∈ R3, a plane wave is given by the
function

ξk,t,} = exp
(
ik · x − i}/2|k|2t

)
.

Ψ(x, t) = ξk,t,}(c1, c2)ᵀ (for any constants c1, c2 ∈ C with |c1 |
2 + |c2 |

2 = 1) is
then a solution of ISF corresponding to the constant velocity field u = }k.

Formally, we seek a Ψ corresponding to a divergence free u, constrained to
have uΩ in some subset Ω of the fluid domain.

u��Ω = uΩ and div u = 0. (1.18)

Ω may have several connected components, and uΩ correspondingly spec-
ify a velocity for each component representing translating objects. We con-
struct a (1.18)-satisfying u through alternating projection, which enforces the
velocity constraint and subsequently ensures vanishing divergence through
pressure projection.

Algorithm 4 Velocity constraint projection

1: function ConstraintProjection(Ψ,Ω, k,}, t)
2: Ψtmp ← Ψ

3: Ψtmp |Ω ← ξk,t,}(|ψ1 |, |ψ2 |)ᵀ

4: return PressureProject(Ψtmp)
5: end function

Starting with an initial guess with Ψ|Ω = (c1, c2)ᵀ, iterating Alg. 4 is guaran-
teed to converge [Cheney and Goldstein, 1959]. We find that 5-10 iterations
are sufficient in practice.
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The volume penalization method includes one or a few calls of Alg. 4 in
each time step of the fluid simulation. In the context of a standard Navier-
Stokes equation solver, one effectively solves

∂
∂t u + (u · ∇)u = ν∆u −∇p − 1

α χΩ(u − uΩ) and div u = 0.

Here ν is the kinematic viscosity and χΩ the characteristic function of Ω.
For the parameter α → 0 the solution converges to a solution of the Navier-
Stokes equation which respects the constraints [Angot et al., 1999; Carbou
and Fabrie, 2003]. By adopting the implicit Euler method for integrating
∂
∂t u = −

1

α ξΩ(u − uΩ) [Jause-Labert et al., 2012], we can take the limit of
α → 0 directly. In terms of Ψ, it amounts to a single call of Alg. 4.
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C h a p t e r 2

PRELIMINARY: CLASSICAL FLUID DYNAMICS

In this chapter we take a journey through a brief history of the Euler equa-
tion during the 18th and 19th century. We exposit the results for hydro-
dynamics from that time, but we write them in the language of modern
differential geometry. We also take this chance to introduce the notations
used in this dissertation.

Most of the historical reference follows [Frisch and Villone, 2014] and the
original papers by the mentioned scientists.

2.1 Euler Equations

In a series of memoirs published in the 1750s [Euler, 1755; Frisch, 2008],
Leonhard Euler (1707-1783) gave the equations of motion for inviscid, in-
compressible fluids in R3




∂
∂t u + (u · ∇)u = −∇p + g

∇ · u = 0

(2.1)

and the compressible one




∂
∂t q +∇ · (qu) = 0

∂
∂t u + (u · ∇)u = − 1

q∇p + g.
(2.2)

Here the time-dependent vector field u : R3 → R3 denotes the velocity,
g : R3 → R3 the external acceleration, and q : R3 → R the fluid density.
The scalar function p : R3 → R is the fluid pressure giving the internal
potential force.

Euler derived (2.1), (2.2) by tracing a fluid element flowing with the fluid
in an infinitesimal time period, and applying Newton’s law of motion. We
follow Euler’s arguments in his original memoir but encapsulate his coor-
dinate notations into coordinate-free forms. By doing so the fluid equations
can be derived on a Riemannian manifold M with an arbitrary dimension.
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Derivation

Let time-dependent vector fields ut ∈ Γ(TM) and gt ∈ Γ(TM) represent the
observed velocity field and external acceleration respectively. Let time-
dependent functions pt , qt : M → R be the pressure and the density respec-
tively. For each time t ∈ [0, ε ] let φt : M → M be the flow map integrated
from the velocity:

φ0(x) = x, ∂
∂t φt (x) = ut

(
φt (x)

)
. (2.3)

Then a flowing particle with time-dependent position φt (x) experiences an
acceleration at t = 0 given by

∂2

∂t2

���t=0

φt (x) = ∂
∂t

���t=0

(
ut ◦ φt (x)

)
= u̇0(x) +∇u0

u0(x) (2.4)

where ∇ is the Levi-Civita connection (covariant derivative) for spacial
derivatives of tangent vector fields.

Now we seek for the forces acting on an small volume element (Euler took
an infinitesimal parallelpiped) around the above accelerating particle. In
the modern language we look at the top-dimensional differential forms.
The mass of a volume element is given by

ρ = ?q (2.5)

where ? is the Hodge star on M . In R3, ρ = qdxdydz. Let Ω be a small
neighborhood of x whose mass is given as

∫
Ω
ρ. The total force fp due to

pressure acting on Ω is given by the integral of −pN over the surface ∂Ω

where N is the surface unit outer normal.

Note that there is a subtlety that the integrand pN are vectors at different
locations on a manifold and there is no meaningful way of summing them.
To get around this problem we project the force onto an auxilieary vector
field.

For each direction X ∈ Tx M we extend X to a vector field on Ω so that
div(X ) = 0. (In R3 X is usually taken as a constant vector e.g. a coordinate
axis). The total force fp on Ω projected in the direction X is given by

〈 fp, X〉 = −
∫
∂Ω

p〈N , X〉(?∂Ω1) = −
∫
∂Ω

p ιX (?1) (2.6)
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where ?∂Ω is the Hodge star on the submanifold ∂Ω and ιX is the interior
product with X . By Stokes’ Theorem,

〈 fp, X〉 = −
∫
Ω

d(p ιX (?1)) = −
∫
Ω

dp∧ ιX (?1) −
∫
Ω

p d ιX (?1)

= −

∫
Ω

( ιX dp)? 1 −

∫
Ω

pLX (?1)︸   ︷︷   ︸
?div X=0

=

∫
Ω

−〈grad p, X〉? 1.

Together with the external acceleration g, the acceleration at x in the direc-
tion X is given by

lim
Ω→{x}

∫
Ω
−〈grad p, X〉? 1∫

Ω
ρ

+ 〈g, X〉 =
〈
− 1

q grad p + g, X
〉

.

Therefore the acceleration vector at x equals to − 1

q grad p + g. Finally one
equates this acceleration with the observed acceleration (2.4) and gets the
momentum equation

u̇ +∇uu = − 1

q grad p + g. (2.7)

For the continuity equation, Euler computed that the rate of change in den-
sity along particle path q̇ + dq(u) equals to −q div u, since q is inversely
proportional to the volume, and Lu(?1) = (div u)? 1. Using

?div(qu) = Lqu (?1) = d
(
q ιu(?1)

)
= dq ∧ ιu(?1) + q(div u)? 1

=
(
( ιu dq) + q div u

)
? 1

one has
q̇ + div(qu) = 0. (2.8)

Incompressible Flow

If the fluid is incompressible, there is no change in volume Lu(?1) = 0

along the flow. In this case, we have

div u = 0. (2.9)

Divergence free vector field is also called solenoidal, meaning “as if flowing
in a pipe.” Such flow property was first described by d’Alembert. We
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also use the term “solenoidal” for coclosed 1-forms, the differential form
counterpart of divergence-free vector fields.

From now on we consider only incompressible fluids with homogeneous
density:




u̇ +∇uu = − 1

q grad p + g

div u = 0.
(2.10)

Euler mentioned in his memoir that the community at the time only knew
how to deal with potential forces and potential flows, and there were no
mature analytical tools beyond it. He gave multiple non-potential flow
examples such as rotating flow and shear flow satisfying his fluid equation.

“...it is not the laws of Mechanics that we lack in order to pursue this
research but only the Analysis, which has not yet been sufficiently
developed for this purpose. It is therefore clearly apparent what dis-
coverties we still need to make in this branch of Science before we can
arrive at a more perfect Theory of the motion of fluids.”

— Leonhard Euler, 1755

translated by Uriel Frisch

2.2 Lagrange’s 1-form

Lagrange (1736-1813) introduced a different viewpoint for describing con-
tinuum mechanics and derived with it the incompressible Euler equation
in his book published in 1788 [Lagrange, 1788]. High level speaking, La-
grange’s description uses differential forms (co-vectors) instead of vectors.

For a continuum a deformation is described by a map φt : M0 → Mt where
t indicates time. Instead of formulating the law of motion on Mt at each
instance of time (Eulerian coordinate), Lagrange described the law of mo-
tion for the deformation φt as a function on the domain M0 (Lagrangian
coordinate).

Law of Motion in Lagrangian Coordinates

Suppose f t ∈ Γ(TMt ) is an accleration field due to external force. Let a ∈ M0

be a point in the Lagrangian coordinate. Let A ⊂ M0 be a small neighbor-
hood of a viewed as a volume element. Now, for each vector X ∈ Ta M0, we
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extend it to a continuous vector field on A. Using this auxiliary vector field
X , we examine how the external acceleration acts on the deforming body
φt (A). Let us further denote qt : Mt → R as the material density and ?t1 as
the volume form at time t. Let ρt = qt (?t1) ∈ Ωn(Mt ) be the density form.
Then the total force acting on the deformed vector dφt (X ) in the deforming
body φt (A) is given by∫

φt (A)
〈 f t , dφt (X )〉ρt =

∫
A
〈 f t ◦ φt , dφt (X )〉 φ∗t ρt

where φ∗t is the pullback operator. By the conservation of mass, for any
region Ω ⊂ M0 one has

∫
Ω
φ∗t ρt =

∫
φt (Ω) ρt =

∫
Ω
ρ0. Therefore φ∗t ρt = ρ0 =

q0?0 1. Now, with the limit A→ {a} the total force on the deforming body
per unit volume at a is given by

lim
A→{a}

∫
A〈 f t ◦ φt , dφt (X )〉ρ0∫

A?01

= 〈 f t ◦ φt , dφt (X )〉q0.

In terms of the 1-form f t
[ ∈ Ω1(M ; R) associated with f t ∈ Γ(TMt ), this force

per volume is written as q0 φ
∗
t ( f t

[)(X ). Now one can drop the auxiliary
vector X and describe the force as a 1-form on M0:

q0 φ
∗
t ( f t

[) ∈ Ω1(M0; R). (2.11)

Similarly, the force (per volume) due to inertia (fictitious force) experienced
in the Lagrangian coordinate is given by

−q0 φ
∗
t

(
(φ̈t )[

)
∈ Ω1(M0; R).

By Newton’s law of motion, or by the least action principle, the equation
of motion for a deforming body on M0 is given by

−q0φ
∗
t

(
(φ̈t )[

)
+ q0φ

∗
t ( f [t ) = 0. (2.12)

Lagrangian Hydrodynamics

Now one applies Lagrange’s Law of Motion to incompressible fluids with
q0 = 1. In this case, one has f t

[ = (−grad pt + gt )[ = − dpt + g
[
t . Let ut ◦ φt = φ̇t

be the velocity field which takes values in Γ(TMt ). Denote its associated 1-
form by

ηt = ut
[ ∈ Ω1(Mt ; R).
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Then

φ∗t ηt = 〈ut ◦ φt , dφt〉 = 〈φ̇t , dφt〉 ∈ Ω
1(M0; R).

Now the rate of change of φ∗t ηt with respect to time is

∂
∂t (φ∗t ηt ) = 〈φ̈t , dφt〉 + 〈φ̇t , φ∗t (∇ut )〉

= φ∗t
(
(φ̈t )[ + 1

2
d |ut |

2

)
.

Using (2.12) and f t
[ = − dpt + gt , one has

∂
∂t (φ∗t ηt ) = d

(
−pt ◦ φt +

1

2
|ut ◦ φt |

2

)
+ φ∗t g

[
t (2.13)

where we used the fact that φ∗t commutes with d. In the case that g[t is just
a differential of a potential, g[t = dλt , then we find

∂
∂t (φ∗t ηt ) = d

((
−pt +

1

2
|ut |

2 + λt
)
◦ φt

)
. (2.14)

The new pressure term (−pt +
1

2
|ut |

2 + λt ) is recognized as the Lagrangian
pressure.

Equation (2.14) is coupled with the incompressible condition, which is
written straightforward

∂
∂t

(
φ∗t (?t1)

)
= 0. (2.15)

Lie Advection of Velocity 1-form

Lagrange’s momentum equation (2.14) can be written in a form more
appealing to Eulerians. By the definition of Lie derivatives, ∂

∂t (φ∗t ηt ) =
φ∗t (η̇t +Lut ηt). Dropping the pullback operator, we write (2.14) as

η̇ +Lu η = − d
(
p − 1

2
|u|2

)
+ g[. (2.16)

Similarly, the incompressible condition (2.15) becomes

?̇1 +?(div u) = 0, (2.17)

or
d ?η = −?̇1. (2.18)

In most cases ? is fixed in time and thus d ? η = 0, i.e. η is coclosed, or
solenoidal.



34

Note that one can recover Euler’s momentum equation from (2.16) by ap-
plying Lemma A.2, which gives

Lu η = (∇uu)[ − 〈∇u, u〉 = (∇uu)[ − 1

2
d |u|2.

Therefore (2.16) reads (
u̇ +∇uu = − dp + g

)[ .

2.3 Pressure Projection

From (2.14) or (2.16) we see that if the external force acting on the fluid
is only a potential, the quantity φ∗t (ηt ) varies only by an exact differential
d(φ∗t (−ϕ̇t )) where ϕ̇t = pt −

1

2
|ut |

2 is uniquely determined (up to the kernel
of d) so that the flow is incompressible at all space and time. This process
also determines the pressure pt .

Rephrasing it, we may just go ahead and say φ∗t (ηt ) is invariant modulo
exact differentials. The pressure term − dϕ̇ is added to retrieve the actual
velocity from the modulo. This differential − dϕ̇ is determined using the
information of incompressibility and boundary conditions. The process
of finding the differential − dϕ̇ is called pressure projection widely used in
numerical methods since Chorin [1968].

“Pressure projection” originally means projecting a vector field (not nec-
essarily divergence-free) onto the space of divergence-free vector fields or-
thogonally in the L2 space of vector fields. It is usually interpreted as
finding the closest divergence-free vector field from a given one. Here we
make a subtlely different interpretation: the pressure projection serves the
purpose of velocity retrieval from the space where we find useful conserva-
tion laws.

At each time t let Mt be the fluid body. The equation ∂
∂t (φ∗t ηt ) = − d(φ∗t ϕ̇t )

suggests that the quantity φ∗t ηt ∈ Ω
1(M0; R) never leaves the affine space

η0 + dΩ0(M0; R) ∈
Ω1(M0; R)
dΩ0(M0; R)

where the subspace dΩ0(M0; R) ⊂ Ω1(M0; R) denotes the image ofΩ0(M0; R)
under d, i.e. exact 1-forms. Let us denote the element in the quotient space
Ω1(M0; R)/ dΩ0(M0; R) associated to αt ∈ Ω

1(Mt ; R) by

[αt ] B αt + dΩ0(Mt ; R).
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Then [φ∗t ηt ] is invariant in an Euler fluid:

∂
∂t [φ

∗
t ηt ] = [0]. (2.19)

Written in the Eulerian framework

∂
∂t [η] +Lu [η] = [0] (2.20)

using the fact that d commutes with pullbacks and Lie derivatives.

The conservation law (2.19) or (2.20) describes the fluid using the state [η]

instead of η. Each of these conservation law equation would fully describe
the Euler equation if we can reconstruct the velocity η or u from the state
of fluid [η], which is essential for telling how φt evolves or defining the
operator Lu.

Theorem 2.1 (Velocity retrieval). Let f ∈ Ω0(M ; R) and g ∈ Ω0(∂M ; R) be
functions on M and ∂M satisfying the condition that for any connected component
Mi of M , ∫

Mi

? f =
∮
∂Mi

?∂g.

Then for each [η̃] ∈ Ω1(M ; R)/ dΩ0(M ; R) there exists a unique representative
η ∈ [η̃] such that




d ?η = ? f in M

ιNη = g on ∂M ,
(2.21)

where N is the unit outer normal of ∂M .

Proof. We prove the theorem using the full Hodge-Morrey-Friedrich de-
composition [G. Schwarz, 1995, Corollary 2.4.9], which states that each
η̃ ∈ [η̃] can be uniquely and orthogonally decomposed into

η̃ = dϕ̃ + d† β + d ξ̃ + ζ

for

ϕ̃ ∈ Ω0(M), ϕ̃|∂M = 0,

β ∈ Ω2(M), ιN β |∂M = 0,

ξ̃ ∈ Ω0(M), d† d ξ̃ = 0,

ζ ∈ Ω1(M), dζ = 0, d†ζ = 0, ιN ζ = 0.
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By “unique,” we mean that the value of dϕ̃, d† β, d ξ̃, ζ are unique, but of
course ϕ̃ itself may not be unique by ker( d) with zero Dirichlet boundary
condition. Note that a 1-form is in [η̃] if and only if it shares the same d† β

and ζ component with η̃. Now all we have to do is to determine a new
exact component d(ϕ + ξ) so that

η = dϕ + d† β + dξ + ζ ∈ [η̃]

satisfies the desired condition (2.21). This problem is solved by [G. Schwarz,
1995, Corollary 3.1.3] where our d(ϕ + ξ) is the exact component of their
ω. �

2.4 Cauchy’s Invariants

In 1813 French Academy of Sciences set up a mathematics prize for “the
problem of waves on the surface of a liquid of arbitrary depth.” Cauchy
(1789-1857) sent a manuscript [Cauchy, 1815] to the Academy in 1815 and
was rewarded the prize 1815 Grand Prix.

Cauchy tackled the problem using Lagrangian formulation and arrived at
(2.14). He not only described the dynamics of the free surface of liquid re-
quested by the prize, but also obtained important results for the fluid inte-
rior. The latter includes the discovery of the invariance of vorticity 2-form,
which is now known as Kelvin’s Circulation Theorem though Cauchy had
a version of it 54 years earlier than Kelvin.

Cauchy found that the right-hand side of Eq. (2.14) is a total derivative. So,
if one takes another exterior derivative (or a curl in R3), one obtains

∂
∂t

(
φ∗t dηt

)
= 0.

Here we used d commutes with pullback operators, and d ◦ d = 0. The
quantity ωt B dηt ∈ Ω

2(Mt ; R) is the vorticity 2-form. Remarkably φ∗tωt ∈

Ω2(M0; R) is invariant under Euler fluid flow.

Recall that φ∗t ηt = 〈ut ◦ φt , dφt〉. Taking d Cauchy expressed

φ∗tωt = 〈φ
∗
t (∇ut ) ∧ dφt〉. (2.22)

This quantity, Cauchy’s invariant, is also a special case of a Clebsch repre-
sentation for vorticity explained in Sec. 2.8.

Using the invariance of φ∗tωt , Cauchy also proved that if an Euler fluid is
initially a potential flow, it stays potential for all time.
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2.5 Hankel-Kelvin Circulation Theorem

Cauchy’s discovery of vortex dynamics in 1815 is nevertheless almost for-
gotten. Hermann Hankel (1839-1897) was one of the few mathematicians
who acknowledged Cauchy’s result.

Without noticing Cauchy’s vortex dynamics, in 1858 Helmholtz (1821-1894)
established vortex dynamics written in the Eulerian framework (which will
be discussed in Sec. 2.6). Many scientists were intrigued by Helmholtz’s re-
sults and asked for the corresponding theory in the Lagrangian framework.
The question was answered by Hankel [1861], who connected Cauchy’s in-
variant to Helmholtz’s vorticity. He applied Stokes Theorem and arrived
at what is now known as Kelvin’s Circulation Theorem [Thomson, 1868].

Using exterior calculus, the circulation theorem is just one step ahead from
Cauchy’s invariant equation ∂

∂t (φ∗tωt ) = 0. Take each 2-dimensional surface
S ⊂ M0 and integrate φ∗tωt over S:

0 = d
dt

∫
S
φ∗tωt =

d
dt

∫
φt (S)

ωt .

This says that the vorticity flux over an advected surface φt (S) stays con-
stant in time. Applying Stokes’ Theorem, with ωt = dηt , one has

0 = d
dt

∫
φt (S)

dηt =
d
dt

∮
∂φt (S)

ηt =
d
dt

∮
φt (∂S)

ηt .

That is, the circulation of the velocity along an advected closed loop initial-
ized as C = ∂S is constant in time.

2.6 Helmholtz’s Theorems

Hermann Helmholtz (1821-1894) published a paper in 1858 “On Integrals
of the Hydrodynamical Equation, which express Vortex-motion” that laid
down the foundation of vortex dynamics [Helmholtz:1858:VM]. In the
paper he introduced (independently from Cauchy) the vorticity field, and
derived the vorticity equation. He introduced the notion of vortex lines and
vortex filaments (vortex tubes.) He also described how to reconstruct the
divergence-free velocity from the vorticity through stream functions (vectors)
and Helmholtz decomposition. He also made the analogy that such velocity
from vortices is similar to the magnetic field rising from an electric current.
He introduced the idea of potential flows of the second class, which are irrota-
tional fields in non-simply-connected domain regarded as the differential
of multivalued potential functions.
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In a 3-manifold a vortex line is an integral curve of of the vorticity (pseudo)vector
field w B (?ω)]. In other words, a vortex line is a curve γ such that its tan-
gent vectors γ′ satisfies ιγ′ω = 0.

A vortex tube is the union of a collection of vortex lines U =
⊔

x∈S Cx where
S is a cross section surface, and Cx is the vortex line passing through x.
Slender tubes are also called vortex filaments. To avoid possible trouble, at
the moment assume w is nowhere vanishing. Also note that w is divergence
free since dω = 0. Moreover φ∗t (ωt ) is constant during advection. This gives
Helmholtz’s 3rd* Theorem: (assuming that forces acting on the fluid have
a potential)

The product of the section and the angular velocity of an infinitely
thin vortex filament [that is, the strength

∫
Ω
ω where Ω is a cross-

sectional surface of the vortex tube] is constant throughout its
whole length, and retains the same value during all displacement of
the filament. Hence vortex filaments must either be closed curves, or
must have their ends in the bounding surface of the fluid.

Helmholtz’s 1st (resp. 2nd) Theorem states that if the fluid is initially irro-
tational (resp. belonging to a vortex line), then it stays irrotational (resp. on
a vortex line) for all later time. This was proven by Cauchy earlier.

Vorticity Equation

Helmholtz derived the vorticity equation directly from the Euler equation
in the Eulerian coordinate. Here we derive it using Cauchy’s invariant
∂
∂t (φ∗tωt ) = 0, which gives us

ω̇ +Lu ω = 0. (2.23)

Note that (2.23) holds in any dimension. The version of vorticity equation
Helmholtz and most fluid mechanics texts present is written in terms of
the vorticity pseudovector field w = (?ω)] in 3D. By Lemma A.3 with u

divergence free, we have (2.23) written in vectors as

ẇ +∇uw = ∇wu. (2.24)

The right-hand side ∇wu is known as the vortex stretching term.
*We use Helmholtz’s original labels of the theorems.
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Note Today Equation (2.24) is more well-known to fluid mechanics com-
munity in which exterior calculus is not in the standard curriculum. How-
ever, the 2-form ω is a much more natural object here than the vector w

in the following sense. First of all, (2.23) reveals the conservation law of
vorticity better than (2.24). And (2.23) works in any dimension, whereas
(2.24) works only in 3D. Moreover, if one treats both velocity and vorticity
as vectors, they together violate the parity (reflection) symmetry of the law
of fluid dynamics. This forces one to call the vorticity vector a pseudovector,
which is a good indication that it requires a framework involving a graded
exterior algebra.

Vortex Tubes

Given the characterization of vortex tubes by Helmholtz, we may redefine
vortex tubes as the following.

Definition 2.1. Suppose η is a 1-form on a 3-manifold M , and ω = dη. A vortex
tube is a 3-dimensional region of the fluid U ⊂ M such that j∗

∂U\∂Mω = 0 where
j∂U\∂M : ∂U \ ∂M ↪→ M denotes the inclusion map.

In short, a vortex tube is any region so that vorticity does not “escape”
through the boundary of the region except for its interface with ∂M . This
definition allow vortex tubes to have branches and complicated topology.
However for vortex tubes with complicated topology it becomes unclear
how to measure the vortex strength since there is no unique cross section
of the tube. For such a vortex tube, we define the stength as a function of
the 1st homology classes of the tube boundary:

Definition 2.2. The strength of a vortex tube U is a homomorphism

κU : H1(∂U \ ∂M ; Z) → R

defined by

κU
(
[C]

)
B

∮
C
η.

Here H1(.; Z) is the first Z-coefficient homology group. Thus C are typi-
cally non-contractable loops around the vortex tube. The well-definedness
of the above strength functional is analogous to Helmholtz’s 3rd Theorem.
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Theorem 2.2 (Helmholtz’s Theorem). κU is well-defined.

Proof. Given two curves C1, C2 as representitives of the same homology
class, i.e. [C1 − C2] = 0 in H1(∂U \ ∂M ; Z), there is a 2-chain Σ ∈ C2(∂U \

∂M ; Z) such that ∂Σ = C1 − C2. Thus,
∮

C1

η −
∮

C2

η =
∮

C1−C2

η =
∮
∂Σ
η =∫

Σ
dη = 0 using j∗

∂U\∂Mω = 0. �

2.7 Velocity from Vorticity

The vorticity equation (2.23) would fully describe the motion of a fluid,
with ω being the primary variable, if we can reconstruct u (or η) from ω. Re-
trieving velocity η from ω = dη is in analogy with Section 2.3. Helmholtz
solved the problem of finding the velocity from vorticity in the same 1858

vortex theory paper. His method is now known as Helmholtz decomposi-
tion.

Helmholtz also found the analogy that the reconstructed velocity from a
given vorticity field is the same as the magnetic field rising from a elec-
tric current. He thought of the distant interaction of vortex filaments is re-
lated to the electromagnetic action of current-conducting wires (Biot-Savart
1820). He also described the flow between filaments as the differential of
a multivalued potential with infinite number of branches. He called such
a flow a potential flow of the second class (and the regular potential flow is
classified as the first class).

In our exposition we use the full Helmholtz-Hodge-Morrey-Friedrich de-
composition [G. Schwarz, 1995] that takes care of general topology and
boundary conditions. Using this decomposition the velocity 1-form can be
uniquely written as

η = dα + d† β + dϕ + γ (2.25)

where α ∈ Ω0

D (M ; R), β ∈ Ω2

N (M ; R), ϕ ∈ Ω0(M ; R) satisfying d† dϕ = 0,
and γ ∈ H1

N (M ; R) � H1(M ; R). Applying d to Eq (2.25) we get

ω = d d† β.

Together with the boundary condition β ∈ Ω2

N (M ; R) and fixing the Coulomb
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gauge in the kernel of d†, we solve




( d d† + d† d) β = ω in M ,

j∗
∂M ? β = 0 on ∂M ,

j∗
∂M dβ = 0 on ∂M ,

⟪β, ξ⟫ = 0 ∀ ξ ∈ H2

N (M ; R).

(2.26)

The solution to (2.26) produces a velocity field d† β that may differ from η

by an exact form d(α + ϕ) and a Neumann harmonic field γ ∈ H1

N (M ; R).
The exact form d(α + ϕ) can be identified using the pressure projection,
namely Theorem 2.1, for a given boundary data ιNη and a desired value
of d†η.

Harmonic Component Unfortunately, the Neumann harmonic compo-
nent γ cannot be determined from the quantities ω, d†η in M and ιNη on
∂M . Therefore, in order to recover the velocity field, one needs not only
the above quantities but also the circulations

∮
Ci
η along a set of genera-

tors Ci for H1(M ; R). The harmonic field γ is added to the reconstruced
velocity to match the desired values of the circulations. Note that although
we still have Hankel-Kelvin Circulation Theorem along the generators, the
harmonic component γ may vary in time depending on how the generator
curves are advected.

Biot-Savart Law Suppose M is a simply-connected region in R3, and sup-
pose ω is supported in a region U ⊂ M . Picture U be the set of vortex
filaments. Using the cartesian coordinate in R3 one writes η =

∑3

k=1
uk dxk ,

ω =
∑3

k=1
wk ? dxk , and β =

∑3

k=1
bk ? dxk . Then the solution to the Poisson

equation (2.26) can be explicitly written as the integral using the Green’s
function in R3: at each r ∈ R3

bk (r) = −
1

4π

∫
U

wk (r̃)
|r − r̃|

(?1)r̃ (2.27)

and thus, by η = d(α + ϕ) + d† β and by calling P = α + ϕ,

u(r) = grad P + curl b = grad P +
1

4π

∫
U

w × (r − r̃)
|r − r̃|3

(?1)r̃. (2.28)

Here d†η = div u = 0, which implies the potential is harmonic ∆P = 0
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2.8 Clebsch Variables

A year after Helmholtz’s 1858 paper, Alfred Clebsch (1833-1872) published
a paper in the same journal with a similar title “On the Integration of the
Hydrodynamic Equations.” Although Clebsch did not mention Cauchy, he
gave a framework describing fluid dynamics whcih we view as a general-
ization of Cauchy’s invariant, and is written entirely in differential forms.

Clebsch Representation

Clebsch started off by saying η = 〈u, dφ0〉may not be a complete differential
− dϕ (potential flow), but in general

η = − dϕ + 〈λ, dµ〉 (2.29)

for some scalar function ϕ : M → R and Rm-valued functions λ, µ : M →

Rm where m is some dimension of choice that does not need to be the
dimension of M .† Clebsch took a d to (2.29) to eliminate dϕ and made a
remark that the result is related to the vorticity introduced by Helmholtz:

ω = 〈 dλ ∧ dµ〉. (2.30)

Using the viewpoint from Section 2.3, one may also rephrase (2.29) by
saying that η is the pressure projection of [〈λ, dµ〉] ∈ Ω1(M ;R)

dΩ0(M ;R) (using Theo-
rem 2.1).

Clebsch commented in his footnote that when M is 3D it is enough to use 1

dimensional (λ, µ) pair, i.e. η = − dϕ+ λ dµ, and the task of finding (λ, µ) for
a given η is known as a Pfaffian problem. However it is known today that
for general η in 3D η = − dϕ + λ dµ may not be solvable globally or even
locally [Graham and Henyey, 2000]. Despite that, in Clebsch’s original 1859

paper all results are stated in the general case using arbitrary dimensional
(λ, µ).

Clebsch’s general statement using multicomponent (λ, µ) seems to be long
forgotten. Today Clebsch representation is often referred as η = − dϕ +

λ dµ. The multicomponent Clebsch representation was reproposed in re-
cent years and is nowadays called generalized Clebsch representation.

†Clebsch wrote in his §2 with the symbols and signs
∑

k ukδxk = δϕ +
∑

r mr δϕr with
arbitrary dimensions on u and (mr ), (ϕr ). Here δ is our d.
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Equations of Motion

Clebsch substitutes his representation (2.29) and (2.30) into the Euler equa-
tion of the form (??) with

ιuω = ιu〈 dλ ∧ dµ〉 = 〈 duλ, dµ〉 − 〈 dλ, duµ〉,

η̇ = − dϕ̇ + 〈λ̇, dµ〉 + 〈λ, d µ̇〉

and obtains

0 = η̇ + ιuω + d
(
p + 1

2
|u|2

)
= 〈λ̇ + duλ, dµ〉 − 〈 dλ, duµ〉 + 〈λ, d µ̇〉 + d

(
−ϕ̇ + p + 1

2
|u|2

)
= 〈λ̇ + duλ, dµ〉 − 〈 dλ, µ̇ + duµ〉 + d

(
−ϕ̇ + p + 1

2
|u|2 + 〈λ, µ̇〉

)
. (2.31)

From it Clebsch sees that an obvious equation of motion for λ, µ that solves
(2.31) is pure advection




λ̇ + duλ = 0

µ̇ + duµ = 0
(2.32)

in which case ϕ =
∫

dt
(
p + 1

2
|u|2 + 〈λ, µ̇〉

)
or equivalently any potential that

keeps η = − dϕ + 〈λ, dµ〉 solenoidal.

Clebsch also gave the full general alternative equations of motion. Let
Π : Rm ×Rm → R be an arbitrary function (could be time dependent). Then
d(Π(λ, µ)) = 〈D1Π, dλ〉+ 〈D2Π, dµ〉where D1Π (resp. D2Π) denotes the vec-
tor in Rm by taking the gradient with respect to the 1st (resp. 2nd) argument
of Π. Hence if




λ̇ + duλ = D2Π

µ̇ + duµ = −D1Π.
(2.33)

then the first two terms of (2.31) becomes dΠ, and in this case (2.31) is
solved by constructing ϕ =

∫
dt

(
p + 1

2
|u|2 + 〈λ, µ̇〉 +Π(λ, µ)

)
. Note that any

choice of the function Π would have (2.33) equivalent to the Euler equation.

Lagrangian Interpretation

The equations of motions (2.32) and (2.33) were derived by inspecting the
rewrite of the Euler equation (2.31). Here we give a Lagrangian interpreta-
tion to these equations. Though this section is not part of Clebsch’s original
paper, but the additional geometric view would give us better intuition for
these evolution models.
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Let (p, q) be the coordinate of Rm ×Rm, which gives rise to a symplectic
form σ = 〈 dp ∧ dq〉 on Rm ×Rm and a symplectic potential ϑ = 〈p, dq〉
satisfying dϑ = ω. Now let s = (λ, µ) : M → Rm ×Rm. Then Clebsch’s
representation for vorticity (2.30) (resp. velocity (2.29)) is the pullback of
the symplectic form (resp. the tautological form up to an exact differential)

ω = s∗(σ), η = s∗(ϑ) − dϕ.

The pure advection model (2.32) says that, in the Lagrangian point of
view, φ∗t (st ) = st ◦ φt is time invariant, which implies φ∗t (ωt ) = φ∗t s∗t (σ) =
(st ◦ φt )∗(σ) is time invariant. Therefore we recover (2.23), or equivalently
the Hankel-Kelvin circulation property. The same argument applies to the
velocity: ∂

∂t
(
φ∗t (ηt )

)
= ∂

∂t (st ◦ φt )∗(ϑ) is an exact differential, and therefore
recovers (2.14) or equivalently the incompressible Euler equation.

One may have already noticed that what is needed for recovering the Eu-
ler equation is the time-invariance of φ∗t s∗t (σ) or φ∗t s∗t (ϑ) up to an exact
form. In particular one may post-compose a flow s̃t = ξt ◦ st for some
ξt : Rm ×Rm → Rm ×Rm. In that case the time-invariance of φ∗t s̃∗t (σ) =
φ∗t s∗t ξ

∗
t (σ) can be achieved by requesting ξ∗t (σ) = σ is time invariant. That

is, ξt is a symplectomorphism; in the case of n = 1, ξt is an area-preserving
diffeomorphism on R1 × R1. Since Rm × Rm is simply-connected, sym-
plectomorphisms coincide with symplectic flows (Liouville’s Theorem and
its converse), giving rise to the right-hand sides of (2.33) with a generic
Hamiltonian Π : Rm ×Rm → R.

Clebsch’s Action

Let us switch back to Clebsch’s original paper. Clebsch described that
(2.33) is the Euler-Lagrange equation whose solution extremizes the action

S =

∫ T

0

dt
∫

M

(
〈λ, µ̇〉 + 1

2
|u|2 +Π(λ, µ) − ϕ̇

)
? 1. (2.34)

The term
∫

M ?〈λ, µ̇〉 is the canonical action corresponding to a Hamiltonian
flow. The term

∫
M

1

2
|u|2 ? 1 =

∫
M

1

2
(〈λ, dµ〉 − dϕ) ∧?(〈λ, dµ〉 − dϕ) is the

kinetic energy of the fluid. The final two terms do not affect the motion of
the fluid;

∫
M Π(λ, µ) ? 1 is an additional potential energy on the values of

(λ, µ), and
∫

M ϕ̇?1 is a complete time derivative which does not contribute
to the action. By keeping only the essential terms, the motion of the fluid
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extremizes the action

S =

∫ T

0

dt
∫

M

(
〈λ, µ̇〉 + 1

2
|u|2

)
? 1 (2.35)

where u is retrived from [〈λ, dµ〉] ∈ Ω1(M ;R)
dΩ0(M ;R) using Theorem 2.1.
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Geometric Clebsch Maps
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C h a p t e r 3

CLEBSCH VARIABLES REVISITED

The state of an incompressible flow on a domain M is often represented
by the velocity field u ∈ Γ(TM) or its associated 1-form η ∈ Ω1(M ; R). It
is also common that the fluid state is represented by its vorticity 2-form
ω = dη or the vorticity pseudovector field w = curl u, which is based on the
fact that when M is simply-connected the solenoidal velocity η is uniquely
recovered by the vorticity ω = dη (Section 2.7).

Clebsch’ formulation for hydrodynamics (Section 2.8) gives yet another
type of representation for fluid states. In 1859 Clebsch proposed to use
maps (λ, µ) : M → Rm ×Rm to represent η as

η = 〈λ, dµ〉 − dϕ

where 〈·, ·〉 is the standard scalar product on Rm, and ϕ is some scalar
function that ensures η is solenoidal.

Clebsch’ representation provides fundamental insights to fluid dynamics.
For instance, the dynamics of an Euler fluid can be written as a Hamilto-
nian system, where the variables (λ, µ) are the generalized coordinate and
its associated momentum [Jerrold Marsden and Weinstein, 1983]. Another
important element of Clebsch’ representation is that the Clebsch variables
are functions (0-forms), as opposed to other geometric objects such as vec-
tor u ∈ Γ(TM), pseudovector w = curl u, 1-form η ∈ Ω1(M ; R), and 2-form
ω ∈ Ω2(M ; R). In a convection process, the advection of a multicomponent
function is simpler than advection of a single higher-degree tensor.

In the special case when n = dim(M) = 3 and m = 1, which is the case
“Clebsch variable” usually refers to, a Clebsch variable is a codimension-2
level set function for the vortex lines. We see in this case the Clebsch vari-
ables are a pair of functions s B (λ, µ) : M → R ×R representing velocity
as η = λ dµ− dϕ. It follows that the vorticity 2-form is given by

ω = dλ ∧ dµ.

Suppose σR2 = dx ∧ dy is the standard area 2-form on R2. Then ω =

s∗σR2 . Thus computing vorticity flux through a surface Σ ⊂ M amounts to
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computing the (signed) area (with multiplicity) of the image of the surface
under s: ∫

Σ

ω =

∫
Σ

s∗σR2 =

∫
s(Σ)

σR2 .

In particular, given an open set Ω ⊂ R2, the preimage U B s−1(Ω) ⊂ M

is a Helmholtz vortex tube. And the preimage s−1({p}) of a point p ∈ R2

is a vortex line. This level set property of Clebsch variables is therefore
valuable for vortex detection, visualization [Kotiuga, 1991] and analysis
[Jeong and Hussain, 1995].

However, representation of the fluid state via Clebsch variables has drawn
less attention in the literature. There are several reasons for that. First of all,
for more than a century the Clebsch variable is only known for m = 1 (and
n = 3). When m = 1, namely η = λ dµ− dϕ, the total helicity

∫
M η ∧ω must

vanish in a closed system with ω having compact support (Theorem 6.1).
Helicity becomes a topological obstruction for the classical (m = 1) Clebsch
representation. In other words, the field a classical Clebsch variable can
represent is largely limited. Moreover, near points of vanishing vorticity,
smooth (λ, µ) do not exist even locally [Graham and Henyey, 2000]. In ad-
dition to the theoretical limitation, another obstacle for the use of a classical
Clebsch representation is the difficulty of finding Clebsch variables given
a velocity field.

The above challenges can be solved by considering m > 1. For instance,
for M being a subset of R3, one may simply choose λ = u and µ = x.
This consideration goes back to Lagrange and Cauchy, η = 〈u, dx〉 − dϕ,
ω = 〈 du ∧ dx〉 (cf. Eq. 2.22). Unfortunately, most of these “Generalized
Clebsch variables” (m > 1) no longer yield a level set representation for
vortex lines.

In the coming chapters, we no longer consider Clebsch variables limited to
the form (λ, µ) : M → Rm ×Rm with different choices of m. In Chapter 4

we generalize Clebsch variables as maps taking values in some arbitrary
symplectic manifold in place of R2m. A special case of these Clebsch maps
take values in S2, which we call spherical Clebsch maps discussed in Chap-
ter 6. The spherical Clebsch map still yields the level set representation for
vortex lines, and it is able to represent 3D flow with nonzero helicity. Upon
these desirable properties, for an arbitrarily given velocity, the associated
Clebsch map can be approximated by minimizing a Ginzburg-Landau en-
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ergy. We show numerical examples of finding a spherical Clebsch map and
various applications in 3D vortex detection. What is more, the evolution
of the spherical Clebsch maps can be approximated by an incompressible
Schrödinger flow discussed in Part III.
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C h a p t e r 4

GEOMETRIC CLEBSCH VARIABLES

Throughout this chapter, M is an n-dimensional oriented Riemannian man-
ifold, η ∈ Ω1(M ; R) is a solenoidal velocity 1-form and ω = dη ∈ Ω2(M ; R)
is the vorticity 2-form.

Definition 4.1 (Vorticity Clebsch map). Suppose Σ is a symplectic manifold
with symplectic form σΣ. Then a map s : M → Σ is called a vorticity Clebsch
map if ω = s∗σΣ.

For example, in the classical Clebsch map, Σ = R2 has a symplectic form
σR2 = dx ∧ dy. A classical Clebsch map s = (λ, µ) : M → R2 has the
property ω = s∗σR2 .

One also finds that σR2 has a symplectic potential ϑR2 = x dy so that σR2 =

dϑR2 . Note that the classical Clebsch map satisfies not only ω = s∗σR2 but
also η = s∗ϑR2 + dϕ for some pressure projection factor dϕ. When M is not
simply-connected, the latter condition is strictly stronger than the former.

This suggests that we should define a “velocity Clebsch map” s : M → Σ

satisfying the criterion η = s∗ϑΣ + dϕ where ϑΣ is a symplectic potential,
i.e. dϑΣ = σΣ. However, for a generic symplectic manifold Σ there may not
exist a symplectic potential globally defined on Σ; i.e. σΣ may not be exact.

Fortunately, there is an alternative way to approach a velocity Clebsch map
without relying on the existence of a symplectic potential. Instead of view-
ing the classical Clebsch representation η = λ dµ + dϕ as η = s∗ϑR2 + dϕ,
we write

η = ψ∗ϑR3

where ψ = (λ, µ, ϕ) : M → R3 and ϑR3 = x dy + dz is 1-form on R3. We
call ψ a velocity Clebsch map. Note that ψ takes value in a space (R3) one
dimension higher than the space (R2) where the vorticity Clebsch map
takes values. To relate the velocity Clebsch map to the vorticity Clebsch
map, consider the projection π : R3 → R2, (x, y, z) 7→ (x, y). Then dϑR3 =
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dx ∧ dy = π∗σR2 . Thus one discovers that the vorticity

ω = dη = ψ∗ dϑR3 = ψ∗π∗σR2 = (π ◦ ψ)∗σR2 ,

where we used the fact that d commutes with the pullback operator. There-
fore if ψ is a velocity Clebsch map, then s = π ◦ψ is a vorticity Clebsch map.

The 1-form ϑR3 = x dy+ dz is called a contact 1-form on R3 studied in contact
geometry. Contact geometry provides a natural generalization of a velocity
Clebsch map that may take value in a more general manifold.

4.1 Contact Geometry

The classical subject studied in contact geometry is the 1-form

ϑ =

m∑
i=1

xi dyi + dz (4.1)

in R2m+1 where (x1, . . . , xm, y1, . . . , ym, z) are the coordinate functions. In
short, the main geometric interest of the form (4.1) is in the hyperplane
field ker(ϑ). The hyperplane field associated to the form (4.1) is nowhere
Frobenius integrable [Geiges, 2006], i.e. the hyperplane field cannot be as-
sembled into foliation of hypersurfaces. See [Delphenich, 2017] for the use
of (4.1) in various topics in classical physics.

We now take the lens of contact geometry to look at Clebsch variables in
hydrodynamics.

Definition 4.2 (Contact structure). Let Q be a (2m + 1)-dimensional oriented
manifold. A contact structure is a 1-form ϑ ∈ Ω1(Q; R) such that ϑ ∧ ( dϑ)m is
nowhere vanishing. An odd dimensional manifold Q with a contact structure is
called a contact manifold.

Definition 4.3 (Contactomorphism). Suppose (Q, ϑ) is a contact manifold. A
diffeomorphism g : Q → Q is called a contactomorphism if g∗ϑ = ϑ.

Take (4.1) as an example: any uniform translation in the z direction is a
contactomorphism.

Definition 4.4 (Contact vector field). A vector field X ∈ Γ(TQ) on a contact
manifold (Q, ϑ) is called a contact vector field if LX ϑ = 0.
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A contact vector field is viewed as an infinitesimal contactomorphism,
since the flow φt : Q → Q generated by a contact vector field X satisfies
∂
∂t φ
∗
t ϑ = φ

∗
t (LX ϑ) = 0 and thus φ∗t ϑ = ϑ. For example, for the contact struc-

ture (4.1) on R2m+1, any uniform z-direction vector field X = c ∂
∂z (c is a

constant) is a contact vector field.

Definition 4.5 (Reeb vector field). A Reeb vector field V ∈ Γ(TQ) on a contact
manifold (Q, ϑ) is a contact vector field which satisfies ϑ(V ) = 1.

In the example of (4.1), the unit parallel vector field V = ∂
∂z is a Reeb vector

field. One may view a Reeb vector field as a “vertical direction” in Q.

Group Actions on Contact Manifolds

A Reeb vector field V on a contact manifold (Q, ϑ) generates a one-parameter
family of contactomorphisms. In the example of Q = R2m+1 with contact
form (4.1), the Reeb vector field V = ∂

∂z generates all translations in the z

direction.

In general there is a one-dimensional Lie group G which acts on Q by G ×

Q → Q, denoted by (g ∈ G, q ∈ Q) 7→ g · q, and each group element acts on Q

as a contactomorphism (g·)∗ϑ = ϑ. Let g � R be the Lie algebra associated
to G, where we denote i : R

�
−→ g as the isomorphism. Let exp : g → G be

the exponential map. Hence each element in G can be written as exp(it)
for some t ∈ R. This group action is related to the Reeb vector field V by
that for each q ∈ Q

d
dt

���t=0

exp(it) · q = Vq.

From each q ∈ Q the orbit {g · q | g ∈ G} is a vertical fiber. Next, we will
consider that Q is a fiber bundle with one dimensional fibers being the
orbits of the group action associated with a Reeb vector field.

4.2 Prequantum Bundle

We observe that the classic example (4.1) has the structure that dϑ =∑m
i=1

dxi ∧ dyi, which is the symplectic form of R2m with coordinate func-
tions (x1, . . . , xm, y1, . . . , ym). The dimension that is dropped from R2m+1 is
the z direction, a Reeb vector field.

This motivates us to consider the following setup.
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Definition 4.6 (Prequantum bundle). Suppose Q
π
−→ Σ is a fiber bundle, where

(Q, ϑ) is a (2m+1)-dimensional contact manifold, and (Σ,σ) is a (2m)-dimensional
symplectic manifold. Then the bundle Q

π
−→ Σ is called a prequantum bundle

or prequantization if there is a one-dimensional Lie group G acting on Q as
contactomorphisms such that

1. G preserves the fibers. That is, π(g · q) = π(q) for all g ∈ G and q ∈ Q;
2. G acts freely and transtive on each fiber. That is, for any q, q̃ ∈ Q on the

same fiber π(q) = π(q̃), there exists a unique g ∈ G such that q̃ = g · q;
3. the vector field V ∈ Γ(TQ) rising from the generator Vq =

d
dt

���t=0

exp(it) · q
is a Reeb vector field;

4. dϑ = π∗σ.

In other words, a prequantum bundle π : Q → Σ is a principal G-bundle
(condition 1. and 2.) with an Ehresmann connection ϑ (condition 3.) whose
corresponding curvature form on the base manifold Σ equals to the sym-
plectic form (condition 4.).

The name “prequantization” is borrowed from geometric quantization, a pro-
cess which turns a classical mechanical system into a quantum mechanical
system. Definition 4.6 is a fundamental building block not only in geomet-
ric quantization but also in geometric Clebsch variables.

Wavefunctions

What is the intuition behind the bundle Q over Σ? You can think of that
each point q ∈ Q has the information of its base point π(q) in Σ with an
additional information about its location on the 1D fiber. The location on
the fiber is referred as the phase. The structure group G underneath the
bundle Q is the group of phase shifts.

By interpreting elements in Q as an object in Σ with an additional phase
information, we call a Q-valued function ψ : M → Q a wavefunction. Here
M can be an arbitrary domain of interest.

4.3 Hopf Fibration

In the previous sections, we only looked at Q = R2m+1, ϑ =
∑m

i=1
xi dyi + dz,

Σ = R2m, σ =
∑m

i=1
dxi ∧ dyi as an example of prequantum bundle. In this

section, we give another example of prequantum bundle.
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Let Σ = S2 with the symplectic form

σ = 1

2
}σS2 (4.2)

where σS2 is the standard area form on S2. The scaling factor 1

2
} makes

it so that the total effective area of the sphere is 2π} computed using the
2-form σ.

This is an example that the symplectic form is not exact.

Let Q = S3 be the set of unit quaternions

S3 =
{
q ∈ H

��� |q | = 1

}
.

We define f : S3 → S3 as the identity map, which is useful to define the
following functions. Define

π = f i f

which always takes value in purely imaginary quaternions with norm 1;
i.e. π : S3 → S2. For that being said, we also treat elements in S2 as quater-
nions. The projection π is known as the Hopf map.

Next we see that the 3-sphere S3 is a principal U (1)-bundle over S2, where
the group U (1) = {eiϕ/} | ϕ ∈ R}. The group action on S3 is the left quater-
nionic multiplication. One checks that U (1) preserves the fibers and it acts
freely and transitively on the fibers:

• For q ∈ S3 and eiϕ/} ∈ U (1), π(eiϕ/}q) = qe−iϕ/}ieiϕ/}q = qiq = π(q).
That is, eiϕ/}q stays on the same fiber with q.

• Suppose q̃ ∈ S3 is another element on the fiber of q, i.e. π(q̃) = π(q).
We claim that there is a unique eiϕ/} ∈ U (1) such that q̃ = eiϕ/}q. First
we write q̃iq̃ = qiq. This implies iq̃q = q̃qi, i.e. the quaternion q̃q com-
mutes with i. Hence q̃q as a unit quaternion has no j, k component,
so q̃q = eiϕ/} for some unique eiϕ/} ∈ U (1). Therefore q̃ = eiϕ/}q,
which proves our claim.

Therefore, π : S3 → S2 is a principal U (1)-bundle.

Note that the vector field V corresponding to the generator is given by
Vq =

d
dt

���t=0

eit/}q = i 1

}q. In terms of the identity map we have

V = i 1

} f .
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For quaternions a, b ∈ H, we denote 〈a, b〉 = Re(ab) as the real inner prod-
uct, which is the same as treating a, b as R4 vectors. This Euclidean metric
of R4 induces a metric 〈·, ·〉 on the tangent spaces of S3 ⊂ R4. Using this
metric we construct the following 1-form

ϑ = }2V [ = }〈i f , df 〉 ∈ Ω1(S3; R). (4.3)

The scaling factor } is put in such a way that ϑ(V ) = 1. Now, one checks
that ϑ is a contact form, that is ϑ ∧ dϑ , 0.

Proposition 4.1. ϑ ∧ dϑ = 2}2 · (the volume form of S3).

Proof. Using the orthonormal basis {i f , j f , k f } for TS3 we express the vector-
(tangent to S3)-valued 1-form df as

df = ϑ̃i f + α j f + βk f ,

where the real-valued 1-form ϑ̃ = 〈i f , df 〉 as defined earlier without the
factor }, and the other real-valued 1-forms are defined analogously α =

〈 j f , df 〉, β = 〈k f , df 〉. Since df is the identity map, the volume form of S3

written in this basis is given by ϑ̃ ∧ α ∧ β. Now

dϑ̃ = 〈i d f ∧ df 〉

= Re
(
− d f ∧ i d f

)
where i d f =

(
−ϑ̃ − β j + αk

)
f and − d f = f

(
ϑ̃i + α j + βk

)
. Therefore

dϑ̃ = Re
(

f
(
(ϑ̃i + α j + βk) ∧ (−ϑ̃ − β j + αk)

)
f
)

= Re
(
(ϑ̃i + α j + βk) ∧ (−ϑ̃ − β j + αk)

)
= 2α ∧ β,

where we used the fact that a similarity transform · 7→ f (·) f preserves the
real and imaginary splitting. Hence ϑ̃ ∧ dϑ̃ = 2ϑ̃ ∧ α ∧ β is two times the
volume form on S3. The proof then follows with ϑ = }ϑ̃. �

One also checks that the U (1) group actions are contactomorphisms with
respect to the contact form ϑ on S3. For each fixed eiϕ0/} ∈ U (1),(

eiϕ0/}·
)∗
ϑ(X ) = }〈ieiϕ0/} f , eiϕ0/} df 〉 = }〈i f , df 〉 = ϑ(X )
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where we used the fact that application of eiϕ0/} is just a linear rotation and
that i commutes with eiϕ0/}. We also find that ϑ(V ) = 1 by construction.
Therefore the generator vector field V is a Reeb vector field with respect to
ϑ.

Finally, we show that (S3, ϑ) is a prequantization of (S2,σ).

Theorem 4.1. For ϑ defined in (4.3) and σ defined in (4.2), we have dϑ = π∗σ.

Proof. First of all one discovers that

dπ = d
(

f i f
)
= d f i f + f i d f

= f (−i) df + f i d f = 2 Im
(

f i d f
)

.

On the other hand the real part of the similar expression

Re
(
− f i d f

)
= 〈i f , df 〉 = 1

}ϑ.

Therefore the quaternion-valued 1-form µ B − f i d f has the real and imag-
inary part splitting as

µ = 1

}ϑ −
1

2
dπ.

Now observe that dϑ = } dµ and

π dµ = − f i f d f︸︷︷︸
=− df f

∧i d f = f i d f ∧ f i d f = µ∧ µ = 1

4
dπ ∧ dπ.

Because π takes on values in S2 we have dπ ∧ dπ = 2π(π∗σS2 ). Explicitly,
for X ,Y ∈ TS3,

π∗σS2 (X ,Y ) = σS2 ( dπ(X ), dπ(Y )) = 1

2
〈π, dπ ∧ dπ〉(X ,Y ).

Hence dϑ = } dµ = }
2
π∗σS2 = π∗σ. �

4.4 Velocity Clebsch Map

Recall Definition 4.1 that a vorticity Clebsch map is a function s : M → Σ,
where (Σ,σ) is symplectic manifold, so that the vorticity ω = s∗σ. Since
the symplectic form σ may not be exact, a Clebsch representation for the
velocity 1-form η = s∗ϑΣ may not be available. We therefore introduce
prequantization (Section 4.2), a separate manifold Q that has a projection
π : Q → Σ and a 1-form ϑ ∈ Ω1(Q; R) so that dϑ = π∗σ. We demonstrate in
Section 4.3 that a prequantization is possible even when σ is not exact.
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Definition 4.7 (Velocity Clebsch Map). Let M be the fluid domain and η ∈

Ω1(M ; R) be the velocity 1-form. Suppose (Q, ϑ) is a prequantization over a
symplectic manifold (Σ,σ). Then a (wave)function ψ : M → Q is called a velocity
Clebsch map if η = ψ∗ϑ.

Proposition 4.2. Suppose (Q, ϑ) with π : Q → Σ is a prequantization over (Σ,σ).
If ψ : M → L is a velocity Clebsch map, then s = (π ◦ ψ) : M → Σ is a vorticity
Clebsch map.

Proof. Taking d on η = ψ∗ϑ, we have ω = ψ∗ dϑ = ψ∗π∗σ = (π ◦ ψ)∗σ =
s∗σ. �

For each wavefunction ψ : M → Q, we call its phase differential ψ∗ϑ the
velocity 1-form associated to ψ, which is the velocity for which ψ is the
velocity Clebsch map.

Here are a few examples for velocity Clebsch maps.

Classical Clebsch Variables

Clebsch’s original Clebsch variable fits into our framework. Let Σ = Rm ×

Rm with coordinate functions (p, q) and symplectic form σ = 〈 dp ∧ dq〉.
Let Q = Σ ×R with coordinate function (p, q, z) and connection 1-form ϑ =

〈p, dq〉+ dz. Now, a wavefunction ψ : M → Q can be written in components
ψ = (λ, µ, ϕ), each of which takes values in a component of Q = Rm ×Rm ×

R. Then the velocity associated to ψ is the classical Clebsch representation
ψ∗ϑ = 〈λ, dµ〉 + dϕ.

Madelung Transform

Another example for a geometric velocity Clebsch map is in the hydro-
dynamic form of quantum mechanics. In Chapter 1 we talked about that
the state of a quantum particle is described by a C-valued wave func-
tion ψ1 : M → C. The function ψ1 encodes the probability density of the
location of the particle in its squared amplitude |ψ1 |

2, and the probabil-
ity flow velocity in its wave vector measured by the gradient of the phase:
η = } d arg(ψ1) = }

|ψ1 |
2 Re(iψ1 dψ1). Note that under the condition |ψ1 |

2 , 0,
the vorticity dη must vanish.

As introduced in Chapter 1, we consider a two-component wavefunctions
Ψ = (ψ1,ψ2)ᵀ to include vorticity. Its madelung transform takes a similar
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form: the density is given by |Ψ|2 = |ψ1 |
2 + |ψ2 |

2 and the velocity is given
by η = }

|ψ |2 Re
(
iΨᵀ dΨ

)
. In expansion one sees that

η = }
|ψ |2

(
|ψ1 |

2 d arg(ψ1) + |ψ2 |
2 d arg(ψ2)

)
is no longer a pure gradient, and hence it allows nontrivial vorticity.

The C2-valued wavefunction Ψ can be identified with a quaternion-valued
function ψ by ψ = ψ1 + ψ2 j introduced in Section B.4. In particular this
identification respects multiplication of eiϕ from the left. In terms of quater-
nions, the Madelung transform for velocity is written as η = }

|ψ |2 〈iψ, dψ〉.
Here 〈·, ·〉 is the Euclidean inner product in H � R4 (see Section 4.3 and
Section B.4).

For a wavefunction corresponding to a flow with constant density, ψ is
an S3-valued function. Then one sees that the Madelung transform η =

}〈iψ, dψ〉 is a Clebsch representation using the Hopf fibration (Section 4.3)
as the prequantization. That is, Σ = S2. Let the symplectic form on Σ be σ =
}
2
σS2 where σS2 is the area form on the unit sphere. The prequantization is

given by Q = S3 with ϑ = }〈i f , df 〉 where f : S3 → S3 is the identity map.
Then, the velocity rising from a wavefunction ψ : M → S3 coincides with
the Madelung transform ψ∗ϑ = }〈iψ, dψ〉.

4.5 Pressure Projection for Wavefunctions

The one-dimensional Lie group structure in the prequantum bundle (Q, ϑ)
makes it natural to talk about pressure projection for wavefunctions.

Recall the notations that the Lie algebra associated to the Lie group G

is g � R with the exponential map exp : g → G and the isomorphism
i : R

�
−→ g. Let ψ : M → Q be a wavefunction with its associated velocity

ψ∗ϑ.

First we observe that for a fixed constant ϕ0 ∈ R, the constant phase shift
ψ̃ B exp(iϕ0) · ψ leaves the velocity invariant ψ̃∗ϑ = ψ∗ϑ. This is because
the group acts on Q as contactomorphisms ϑ = (exp(iϕ0)·)∗ϑ. However, if
the phase factor ϕ is a function that varies over M , ϕ : M → R, the transfor-
mation ψ̃ B exp(iϕ) · ψ modifies the velocity by ψ̃∗ϑ = ψ∗ϑ + dϕ as shown
in the following lemma. Addition of an exact differential is exactly the de-
gree of freedom for pressure projection for a velocity field (see Section 2.3).
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This correspondence allow us to apply pressure projection on the level of
wavefunctions.

Lemma 4.1. Let ψ : M → Q and ϕ : M → R. Then(
exp(iϕ) · ψ

)∗
ϑ = ψ∗ϑ + dϕ.

Proof. To show the equality of 1-forms we stick in a vector. Let x0 ∈ M ,
X ∈ Tx0

M , and let γ(·) : (−ε , ε ) → M be a curve so that γ0 = x0 and γ′
0
= X .

Let us denote ϕ0 = ϕ(x0) ∈ R, ψ0 = ψ(x0) ∈ Q, and ψ̃0 = exp(iϕ0) · ψ0 ∈ Q.
Then ((

exp(iϕ) · ψ
)∗
ϑ
)

(X )

= ϑ
(

d
(
exp(iϕ) · ψ

)
(X )

)
= ϑ

(
d
dt

���t=0

exp(iϕ(γt )) · ψ(γt )
)

= ϑ
(

d
dt

���t=0

exp(iϕ(γt )) · ψ0

)
+ ϑ

(
d
dt

���t=0

exp(iϕ0) · ψ(γt )
)

= ϑ
(

dϕ(X )V |ψ̃0

)
+

(
(exp(iϕ0) · ψ)∗ϑ

)
(X )

= dϕ(X ) + (ψ∗ϑ)(X ).

At the last equality, we used the fact that ϑ(V ) = 1 in the first term, and
we observed that exp(iϕ0) · ψ in the second term is a constant phase shift
of the function ψ. �

In analogy with Section 2.3, define an equivalence relation ∼ on C∞(M ; Q)
by

ψ ∼ ψ̃ if and only if ψ̃ = exp(iϕ) · ψ for some ϕ ∈ C∞(M ; R).

Note that two wavefunctions are equivalent ψ ∼ ψ̃ implies that they project
to the same s = π ◦ ψ = π ◦ ψ̃. The converse is true when M is simply
connected. In general, there might be elements from different equivalence
classes projecting to the same s. This phenomenon is analogous to that
velocities with different harmonic components may correspond to the same
vorticity, but their difference is not a pure differential.

Now, let the space of equivalent classes be

M B C∞(M ; Q)/ ∼ .

Each element [ψ] ∈ M is a set of wavefunctions ψ̃ ∈ [ψ] whose velocity ψ̃∗ϑ

differs from ψ∗ϑ only by an exact differential.



60

Theorem 4.2 (Wavefunction retrieval). Suppose M is a connected domain. Let
f ∈ Ω0(M ; R) and g ∈ Ω0(∂M ; R) be functions on M and ∂M satisfying the
condition that ∫

M
? f =

∮
∂M

?∂g.

Then for each [ψ̃] ∈ M there exists a representative ψ ∈ [ψ̃],ψ : M → Q, such that
the corresponding velocity η = ϑ∗ψ satisfies




d ?η = ? f in M

ιNη = g on ∂M ,

where N is the unit outer normal of ∂M . This representative ψ is unique up to a
global phase ψ 7→ exp(ic) · ψ (c is a constant).

Corollary 4.1. Let g ∈ Ω0(∂M ; R) describe the in flow and out flow at the bound-
ary of a connected domain M . Assume

∫
∂M ?∂Mg = 0. Then for each wavefunction

ψ̃ : M → Q there exists a phase factor ϕ : M → R unique up to an additive con-
stant, such that ψ = exp(iϕ)ψ̃ has a velocity η = ψ∗ϑ that is solenoidal d?η = 0

and matches the in/out flow requirement ιNη = g on ∂M .
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C h a p t e r 5

*MORE ON GEOMETRIC CLEBSCH MAPS

In Chapter 4 we introduced geometric Clebsch maps representing a flow
field on a fluid domain M . To set up, one requires a prequantum bundle
π : (Q, ϑ) → (Σ,σ) where the contact 1-form ϑ and the symplectic 2-form
σ are related by dϑ = π∗σ. The velocity 1-form on the fluid domain, η,
is then represented by a map ψ : M → Q via pullback η = ψ∗ϑ. With ψ in
hand, the vorticity field ω = dη can be represented by the map s = π ◦ ψ

by ω = s∗σ. The function ψ is called a wavefunction and a velocity Clebsch
map. The function s is called a vorticity Clebsch map.

(Q, ϑ)

π
��

M

ψ
99

s=π◦ψ
// (Σ,σ)

In order to talk about pressure projection, we also imposed a structure
group G which acts on Q representing phase shifts.

The prequantum bundle can be viewed as a geometric generalization of
Clebsch’ original consideration — the velocity η is the pullback of the con-
tact form ϑ = 〈x, dy〉+ dz on Q = R2m+1 through the map ψ = (λ, µ, ϕ), and
the vorticity is represented only using 〈x ∧ y〉 on Σ. On the other hand the
prequantum bundle can be viewed as a principal G-bundle with ϑ being
an Ehresmann connection. In this chapter we elaborate the latter geometric
picture.

As mentioned above, every velocity Clebsch map ψ : M → Q gives rise to
a vorticity Clebsch map s = π ◦ ψ. The converse is not that obvious. In
Section 5.3 we show an important result that every vorticity Clebsch map
s : M → Σ (with s∗σ being exact) admits a velocity Clebsch map ψ : M → Q such
that s = π ◦ ψ. The geometric picture elaborated in this chapter is used to
show this result.
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5.1 Connections and Curvatures

In this section we briefly introduce the standard notion of connections and
curvatures on principal bundles. Since we only consider the case that the
structure Lie group G is one-dimensional, many definitions here are sim-
plified versions of the full theory one would find in a text book of the
related subject.

Principal Bundle For a one-dimensional Lie group G, let i : R
�
−→ g be the

isomorphism between R and the Lie algebra g, and let exp : g → G be the
exponential map. Then we call a fiber bundle Q

π
−→ Σ a principal G-bundle if

there is a group action G ×Q → Q that preserves the fibers and acts freely
and transitively along the fibers; (see Definition 4.6 Conditions 1. and 2.)

Ehresmann Connection The group action generates a vertical (tangent-
to-fiber) vector field V ∈ Γ(TQ) defined by

V (q) = d
dt

���t=0

exp(it) · q,

for each q ∈ Q. A real-valued 1-form α ∈ Ω1(Q; R) is an Ehresmann connec-
tion on Q if

1. α is equivariant; that is, (g·)∗α = α;
2. α(V ) = 1.

An Ehresmann connection induces a connection derivative (or simply connec-
tion) ∇α acting on local sections of Q. For an open set U ⊂ Σ a local section
F is a smooth function F : U → Q such that π ◦ F = id|U . For each local
section the connection derivative ∇αF is defined by the g-valued 1-form

∇αF B iF∗α ∈ Ω1(U; g).

Explicitly, for a tangent vector X ∈ TpΣ at a point p ∈ U, ∇αX F = iα( dF (X ))
measures the “vertical” change in F as an element of g.

Local Phase Shifts of Sections Suppose a local section F : U → Q, π ◦ F =

id|U , is shifted by a phase F̃ B exp(iϕ) · F for some ϕ : U → R. Then the
resulting connection derivative changes according to

∇α F̃ = ∇αF + i dϕ. (5.1)
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This can be seen by following the proof of Lemma 4.1 with M = U and
ψ = F.

Change in Connections One can also modify a given connection α through
a 1-form on Σ. Suppose ξ ∈ Ω1(Σ; R) is a 1-form. Then α̃ = α + π∗ξ ∈

Ω1(Q; R) is another Ehresmann connection. This is because for each g ∈ G

the group action (g·) preserves the fiber, i.e. π ◦ (g·) = π, and therefore
(g·)∗π∗ξ = (π ◦ (g·))∗ξ = π∗ξ. By the same reason one has dπ(V ) = 0, and
therefore π∗ξ (V ) = 0. Thus the 1-form α̃ indeed satisfies (g·)∗α̃ = α̃ and
α̃(V ) = 1.

Conversely, any change in connection always takes the form α̃ = α + π∗ξ

for some ξ ∈ Ω1(Σ; R). The 1-form ξ can be constructed by that at each
p ∈ Σ choose an arbitrary local section F on U 3 p, and let ξp B F∗(α̃ − α) |p.
Any different choice of local section F̃ = exp(iϕ) · F for some ϕ : U → R

gives rise to the same result

F̃∗(α̃ − α)
(5.1)
= F∗α̃ + dϕ − F∗α − dϕ = F∗(α̃ − α).

The effect of modifying a connection α̃ = α+ π∗ξ on the level of the operator
∇α is that

∇α̃F = ∇αF + iξ

for each local section F : U ⊂ Σ → Q, π ◦ F = id|U . One may check it by a
direct substitution:

∇α̃F = iF∗α̃ = iF∗α + iF∗π∗ξ = iF∗α + i(π ◦ F)∗ξ = ∇αF + iξ.

Parallel Transport The connection ∇α induces a parallel transport Π. Given
a path γ : [0, 1] → Σ, the parallel transport associated to γ is a t ∈ [0, 1]-
parameterized family of maps between fibers

Π
t
γ : π−1(γ(0)) → π−1(γ(t))

defined so that

α
(
∂
∂tΠ

t
γq

)
= 0 for all t ∈ [0, 1], q ∈ π−1(γ(0)).

That is, for a section F satisfying F (γ(t)) = Πt
γF (γ(0)), one has ∇αγ̇F = 0

along the path.
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The existence and uniqueness of the parallel transport follows from the
unique existence of ODEs. Since α(V ) = 1, the fiber is always transversal to
the hyperplane field ker(α) (called horizontal subspaces). Thus for a given
tangent vector γ̇ ∈ TγΣ, there is a unique vector Xq at every point q ∈ π−1(γ)
in the fiber so that α(Xq) = 0 and dπ(Xq) = γ̇. Finally one observes that
t 7→ Πt

γq is just the integral curve of the vector field X .

As a map between fibers, the map Πt
γ commutes with group action:

Π
t
γ ◦ (g·) = (g·) ◦Πt

γ.

This is a consequence of equivariance of the connection.

One may also ask what happens to the parallel transport under a change
in the connection α̃ = α + π∗ξ for some 1-form ξ ∈ Ω1(Σ; R). Let Π̃ be the
parallel transport associated to α̃. Then for each path γ : [0, 1] → Σ

Π̃
t
γq = exp

(
−i

∫
γ([0,t]) ξ

)
·Πt

γq.

One checks that ∂
∂t Π̃

t
γq = ∂

∂tΠ
t
γq − ξ (γ̇)V |Πt

γq, and therefore

α̃
(
∂
∂t Π̃

t
γq

)
=

(
α + π∗ξ

) (
∂
∂tΠ

t
γq

)
− ξ (γ̇) = 0 + ξ (γ̇) − ξ (γ̇) = 0.

Holonomy When the path γ : [0, 1] → Σ is a closed curve, the parallel
transport Π1

γ is a map from the fiber π−1(γ(0)) to itself. The map Π1

γ is a
group action, where the group element is given by the unique g0 ∈ G so
that Π1

γq = g0 · q; this g0 is independent of the choice of q using the fact that
Π1

γ ◦ (g·) = (g·) ◦ Π1

γ for all g ∈ G, and that G is abelian. The group action
Π1

γ is called the holonomy.

The holonomy can also be computed in the following way. Let F : γ([0, 1]) →
Q be a section supported on the closed curve. Then

Π
1

γ = exp
(
−

∫
γ
∇αF

)
.

Curvature An Ehresmann connection α also gives rise to a curvature Rα ∈

Ω2(Σ; g) defined by the following. At each point p ∈ Σ, let U 3 p be a
neighborhood and F : U → Q, π ◦ F = id|U , be a local section. Then one
defines

Rα |p B i
(
F∗ dα

)
p =

(
d∇αF

)
p . (5.2)
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The well-definedness follows from that any other local section F̃ can be
written as F̃ = exp(iϕ) · F for some phase function ϕ : U → R. Hence
replacing F by F̃ leaves d∇αF unchanged due to (5.1) and the fact that
d ◦ d = 0.

The curvature and the holonomy are related by the Gauss-Bonnet Theorem.
Suppose D ⊂ Σ is a contractable 2-dimensional surface and let γ = ∂D be
its boundary loop. Let F be a local section on D. Since γ is a closed path,

its parallel transport is the holonomy Π1

γ = exp
(
−

∫
γ
∇αF

)
. By Stokes’

Theorem

Π
1

γ = exp
(
−

∫
D d∇αF

)
= exp

(
−

∫
D Rα

)
.

Note that although the curvature (5.2) appears to be the differential of
some one form ∇αF, the function F is defined only locally; so Rα is not
necessarily exact. If there exists a global section F : Σ → Q, then Rα is
exact.

Let us look at how curvature responds to a change in the connection α̃ =

α + π∗ξ for some ξ ∈ Ω1(Σ, R). Given a local section F,

Rα̃ = iF∗ d
(
α + π∗ξ

)
= Rα + i d(π ◦ F)∗ξ = Rα + i dξ.

Therefore the curvature after a change in the connection is shifted by an
exact 2-form

Rα̃ = Rα + i dξ.

Prequantum Bundle One readily sees that a prequantum bundle (Defini-
tion 4.6) (Q, ϑ)

π
−→ (Σ,σ) is a principal G-bundle over a symplectic manifold

(Σ,σ) with an Ehresmann connection ϑ that satisfies

Rϑ = iσ.

5.2 Pullback of the Prequantum Bundle

Suppose M is the fluid domain and let (Q, ϑ)
π
−→ (Σ,σ) be a prequantum

bundle. Now let s : M → Σ be a smooth map, and let us define ω =

s∗σ. That is, s is a Clebsch representation to the closed 2-form ω ∈ Ω2

(closedness comes from the fact that σ is closed.)
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Note that the 2-form ω is closed but ω may not be exact. Since a legitimate
vorticity ω = dη must be exact, we cannot really say that s is a “vorticity”
Clebsch map. Nonetheless in this and the next section we still call ω a
vorticity, and we call s a vorticity Clebsch map for ω.

The map s to the base manifold Σ of a fiber bundle Q
π
−→ Σ induces a

pullback bundle P B s∗Q over M with a projection π1 : P → M . Each fiber
π−1

1
(x) attached to x ∈ M is a copy of the fiber π−1(s(x)) in Q. That is, there

is an identification map j : P → Q (identity map on each fiber) such that
the following diagram commutes:

P
j //

π1

��

Q

π
��

M s
// Σ

(5.3)

Since the fibers of P are just fibers of Q, the structure group G acting on
the fibers of Q also acts on the fibers P in the same way. Therefore, P

π1

−−→ M

is a principal G-bundle with

(g·) ◦ j = j ◦ (g·), for each g ∈ G. (5.4)

The Ehresmann connection ϑ on Q also gives rise to an Ehresmann con-
nection j∗ϑ on P. To see this one checks that for each g ∈ G, one has
equivariance (g·)∗( j∗ϑ) = j∗ϑ and ( j∗ϑ)(V ) = 1 where V is the unit vertical
vector field generated by the group action. The latter fact follows from that
j is fiberwise an identity map. The former fact is also easily checked:

(g·)∗( j∗ϑ) = ( j ◦ (g·))∗ϑ
(5.4)
= ((g·) ◦ j)∗ϑ = j∗(g·)∗ϑ = j∗ϑ.

The last equality is due to the equivariance of ϑ on Q.

Now we look at the curvature R j∗ϑ associated to the connection j∗ϑ on P.
It turns out that when Q → Σ is a prequantum bundle ( dϑ = π∗σ), the
curvature R j∗ϑ = iω becomes the vorticity 2-form.

To see this, consider any local section F : U ⊂ M → P with π1 ◦ F = id|U .
Then the curvature is given by

R j∗ϑ = i dF∗ j∗ϑ = i( j ◦ F)∗ dϑ = i( j ◦ F)∗π∗σ

= i(π ◦ j ◦ F)∗σ
(5.3)
= i(s ◦ π1 ◦ F︸︷︷︸

id|U

)∗σ = is∗σ = iω.
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Viewing the vorticity ω = s∗σ as the curvature (up to i) of the pullback
bundle P = s∗Q is a fundamental step to show the theorem in the next
section.

5.3 Lifting Condition

Here we discuss a topological question about geometric Clebsch maps.

Any wavefunction ψ : M → Q can be viewed as a velocity Clebsch map of
its own associated velocity, i.e. η = ψ∗ϑ. By composing with the projection
π : Q → Σ we also obtain a vorticity map s = π ◦ ψ, i.e. ω = dη = s∗σ.

Q

π
��

M

ψ
>>

s
// Σ

(5.5)

Now we can ask the converse question. Given any vorticity Clesbch map
s : M → Σ, does there exist a map ψ : M → Q so that s = π ◦ ψ? Namely,
does there exist a lift ψ that makes the diagram (5.5) commute?

The answer is not always true. For example if M = Σ = S2 and s is given
as the identity map. Then the existence of ψ would become the existence
of a global section of the Hopf fibration S3

π
−→ S2. However, S3

π
−→ S2 is a

non-trivial bundle, i.e. there is no global section.* Hence in that case ψ does
not exist. Therefore a natural question to ask is what is the class of s that
allows the existence of ψ? The following theorem answers this question.

Theorem 5.1 (Lifting Condition). A continuous function s : M → Σ admits a
lift ψ : M → Q in (5.5) if and only if the closed 2-form ω = s∗σ ∈ Ω2(M ; R) is
exact.

The vorticity in a fluid flow ω = dη is always exact. Hence if s is a legiti-
mate vorticity Clebsch map ω = s∗σ, by Theorem 5.1, ψ always exists.

Proof of Theorem 5.1. First of all consider the pullback bundle P = s∗Q over
M as in Section 5.2. We use the same notations summarized in the com-

* Non-existence of a global section of the Hopf fibration bundle S3 → S2 can be seen
by the following. Suppose there were a continuous map ψ : S2 → S3 with π ◦ ψ = id. Then
ψ(x)iψ(x) = x for each x ∈ S2. As a result, using the imaginary quaternion j, the unit
imaginary quaternion ψ(x) jψ(x) is always orthogonal to x in R3. Therefore x 7→ ψ(x) jψ(x)
is a continuous unit vector field on S2, which is a contradiction to the hairy ball theorem.
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mutative diagram

P
j //

π1

��

Q

π
��

M s
// Σ

(5.6)

Now, a lift ψ : M → Q is a function such that π ◦ ψ = s; in particular for
each x ∈ M , ψ(x) takes value in the fiber π−1(s(x)). Hence each lift ψ
can be identified as a global section F : M → P, F (x) ∈ j−1

(
π−1(s(x))

)
, by

F = j−1 ◦ ψ. Conversely any global section F : M → P with π1 ◦ F = id|M
corresponds to a lift ψ = j ◦ F, where one finds π ◦ ψ = π ◦ j ◦ F

(5.6)
=

s ◦ π1 ◦ F = s. Hence the existence of a lift is the same as the existence of a
global section of the pullback bundle P

π1

−−→ M .

If there exists a global section F ∈ Γ(P), then the curvature R j∗ϑ = iω can
be expressed as

R j∗ϑ = i d
(
F∗ j∗ϑ

)
.

Therefore ω is exact.

Now we show the converse statement in Theorem 5.1. Suppose ω is exact.
Then there exists a 1-form η ∈ Ω1(M ; R) such that ω = dη. Define an
Ehresmann connection α = j∗ϑ − π∗

1
η on P. Then the associated curvature

vanishes

Rα = R j∗ϑ − i dη = 0.

As a result the holonomy is trivial Πγ = id for every boundary curves γ.
This gives rise to a group homomorphism h : H1(M) → G given by h([γ]) =

Πγ. Now let ζ be a closed 1-form on M so that h([γ]) = exp
(
i
∫
γ
ζ
)

for all
[ζ ] ∈ H1(M). Using ζ we further modify the connection α as α̃ = α − π∗

1
ζ .

The curvature Rα̃ remains 0; what is more, the parallel transport along each
global loop γ is also trivial

Π̃γ = exp
(
−i

∫
γ
ζ
)
·Πγ = exp

(
−i

∫
γ
ζ
)
· h([γ]) = id.

Therefore we can construct a global parallel section F : M → P. This com-
pletes the proof. �
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C h a p t e r 6

SPHERICAL CLEBSCH MAPS

Clebsch maps encode velocity fields through wavefunctions ψ : M → Q.
These functions contain valuable information about the velocity field. For
example, when M is 3-dimensional and Σ is 2-dimensional, the vortex lines
are the level lines of the vorticity Clebsch map s = π ◦ ψ. This makes
Clebsch maps useful for visualization and fluid dynamics analysis.

Though Clebsch maps have proven important in the theoretical study of
the equations of fluid flow [Zakharov and Kutznetsov, 1997], and certain
generalizations have found use in numerical studies [He and Yang, 2016;
Yang and Pullin, 2010; Brandenburg, 2010; Cartes et al., 2007], a major
obstacle to their more widespread use in numerical practice is the difficulty
of finding a Clebsch map for a given velocity field.

In this chapter we describe an algorithm which produces spherical Clebsch
maps ψ, namely with Q = S3 and Σ = S2 as described in Section 4.3, which
approximate a numerically given velocity 1-form η on a 2- or 3-dimensional
M . The desired ψ is found through minimization of a Dirichlet energy
encapsulating both a fidelity and a smoothness term with a variable trade-
off between the two. The minimization is performed with straightforward
gradient descent. We apply our algorithm to benchmark problems and
demonstrate its utility with example applications.

Throughout this chapter we assume M is 2- or 3-dimensional, and we use
the setup in Section 4.3. Specifically we have f : S3 ↪→ H be the identity
map written as quaternions, which expresses π : S3 → S2 as π = f i f . The
contact form on S3 and the symplectic form on S2 are given by ϑ = }〈i f , df 〉

and σ = }
2
σS2 , where σS2 is the standard area form on S2.

6.1 Why S3 → S2?

Most applications take place on a 3-dimensional domain M . One important
use of a (vorticity) Clebsch map s : M → Σ is to represent vortex lines as
the pre-images of points on Σ via the map s. To have such accessibility of
vortex lines we require dim(Σ) = 2.
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Clebsch’ original proposal [Clebsch, 1859] uses π : Q = R3 → Σ = R2 with
ϑ = x dy + dz, σ = dx ∧ dy, and π(x, y, z) = (x, y). However it can only
represent fields with zero helicity when the vorticity has compact support
in M . This problem is solved with higher dimensional Q = R2m+1 and
Σ = R2m. Unfortunately these no longer yield a level set representation for
vortex lines.

A spherical Clebsch map uses π : Q = S3 → Σ = S2 which maintains the
low dimensions of Q and Σ so that it recovers vortex lines as pre-images
of points. What is more, it approximates velocity fields of nontrivial helic-
ity. The representation of velocity and vorticity Clebsch map can also be
compactly expressed through quaternions: η = }〈iψ, dψ〉, s = ψiψ.

6.2 Helicity

Consider a vorticity field ω ∈ Ω2(M ; R) (an exact 2-form) on a 3-dimensional
manifold M . Then there is a 1-form η ∈ Ω1(M ; R) such that dη = ω. Sup-
pose further that there is no vorticity flux through the boundary, i.e. j∗

∂Mω =

0 where j : ∂M ↪→ M is the inclusion map. Then the quantity

Hel(ω) B
∫

M
η ∧ω

is called the helicity of ω, which depends only on the cohomology class of
η. In particular, the value of Hel(ω) is unique when M is simply-connected.

To see the dependency on the cohomology class, consider another element
η̃ = η + dϕ which also has dω̃ and belongs to the same cohomology class
of η. Then ∫

M
η̃ ∧ω =

∫
M

(η + dϕ) ∧ω

=

∫
M
η ∧ω +

∫
∂M

ϕω −

∫
M
ϕ dω =

∫
M
η ∧ω

by j∗
∂Mω = 0 and dω = 0.

Helicity is first introduced by Woltjer [1958] in the context of magnetic
fields in a plasma fluid (with ω resp. η being the magnetic field resp. vector
potential). The name helicity is given by Moffatt [1969] in the context of
Euler fluids. Helicity is an important quantity since (as shown by Woltjer
[1958]) the helicity is a conserved quantity in a system where η̇ + LX η =

− dp for any smooth vector field X . (The conservation of helicity can be
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Figure 6.1: Example of two linked curves (linking number −4).

checked easily by realizing that η ∧ ω is Lie-advected.) Moffatt further
describes that the helicity is a measure of knottedness of vortex lines. See
also [Arnold and Khesin, 1998, Ch. III].

To understand the geometric meaning of helicity consider two closed vor-
tex lines, one through x ∈ M and the other through x′ ∈ M . Let lk(x, x′)
denote their linking number [Gauß, 1833, p. 605], an integer indicating how
often one vortex line winds around the other (Fig. 6.1). For arbitrary
x, x′ ∈ M , whether the vortex lines through x and x′ close up or not, one
can still define lk(x, x′) even though it is no longer an integer [Arnold and
Khesin, 1998, Chapter III, §1]. As before, lk(x, x′) measures the amount by
which the two curves “spiral around each other.”

The relevant fact for us is that helicity can be expressed in terms of these
(generalized) linking numbers

Hel(ω) =
∫

M

∫
M

lk(x, x′)

So we see that helicity measures the average linking of vortex lines in a
field. This reveals the main reason that classical Clebsch maps are of lim-
ited use:

Theorem 6.1 (Vanishing Helicity). If ω satisfying j∗
∂Mω = 0 can be represented

by an R2-valued Clebsch map then Hel(ω) = 0.

Proof. Suppose ω comes from a classical Clebsch map, i.e., η = λdµ − dφ,
ω = dλ ∧ dµ then

Hel(ω) =
∫

M
− dφ ∧ dλ ∧ dµ =

∫
M
− d(φ dλ ∧ dµ) =

∫
∂M
−φω = 0,

proving the theorem. �
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On the other hand, for S2-valued Clebsch maps helicity can be non-zero,
but is quantized, as shown in the next section.

6.3 Quantized Helicity

The consideration of topological charges of a spherical function can be
traced back to Faddeev [1976] on generalized sine-Gordon models. Kuznetsov
and Mikhailov [1980] then brought the representation ω = }

4
〈s, ds ∧ ds〉

(i.e. ω = s∗σ) from [Faddeev, 1976] into the context of incompressible flu-
ids. They show that in the case of M = R3, using ω = }

2
〈s, ds∧ ds〉 produces

nontrivial helicity (with the boundary condition s → constant at infinity).

Theorem 6.2 (Kuznetsov and Mikhailov 1980). Suppose a flow η ∈ Ω1(R3; R)
on R3 has its vorticity ω = dη represented by a spherical Clebsch map s : R3 → S2

with ω = dη = s∗σ. Assume that |η | → 0 and s → p (a constant) rapidly for
|x | → ∞ on R3. Then there is an integer n ∈ Z so that the helicity

Hel(ω) = n · h2, h B 2π}.

Proof. For the given class of flow R3 is isomorphic to S3. Now, since ω =
s∗σ is exact by Theorem 5.1 there exists ψ : S3 → S3 so that s = π ◦ ψ; in
particular η̃ = ψ∗ϑ produces the same vorticity dη̃ = ω. Note that the
classification of smooth maps S3 → S3 is given by the mapping degree
π3(S3) = Z. Now, Hel(ω) =

∫
S3
ψ∗(ϑ ∧ dϑ). By Prop 4.1, ϑ ∧ dϑ = 2}2µS3

where µS3 is the standard volume form of S3. Thus Hel(ω) = 2}2n · (2π2),
where n is the mapping degree of ψ : S3 → S3 and (2π2) is the total volume
of S3. �

A version of Theorem 6.2 also works in a bounded region without the
assumption that s tends to a constant at infinity (or on the boundary).

Theorem 6.3. Suppose M is simply-connected volumetric region with smooth
boundary in R3 on which a vorticity field ω = dη does not escape the boundary,
i.e. j∗

∂Mω = 0 where j∂M : ∂M ↪→ M is the inclusion map. If ω can be represented
by a spherical Clebsch map ω = s∗σ, then there is an integer n such that Hel(ω) =
n · h2, h = 2π}.

Proof. Since M is simply-connected, the helicity depends only on the vor-
ticity ω and thus is determined by s. The goal here is to design an exten-
sion s : R3 ∪ {∞} → S2 of s : M → S2 with no vorticity exterior to M ; after
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that the rest of the proof follows from Theorem 6.2. Since the pullback
ω = s∗σ of the area form of S2 vanishes on ∂M , the derivative of the map
ŝ0 B s |∂M : ∂M → S2 does not have full rank anywhere. Sard’s Lemma
[Milnor, 1965, §2] then asserts that there is a point p ∈ S2 that is not in the
image of ŝ. Therefore we can smoothly homotope ŝ0 to the constant map
ŝ1 = −p through ŝt = mt ◦ ŝ0 with a family of Möbius transforms {mt }t∈[0,1]

that flow every point except for p on S2 to −p. Enlarge M on the outside
of ∂M by a collar diffeomorphic to ∂M × [0, 1] and extend s in ∂M × [0, 1]

by s(x, t) = ŝt (x). Finally we can extend s to R3 ∪ {∞} by assigning s = −p

everywhere else, and recover the case of Theorem 6.2. �

Remark 6.1. Both Theorem 6.2 and Theorem 6.3 state the quantization of helicity
provided some conditions on the vorticity representable by S2-valued maps. Both
theorems require that the vorticity flux vanishes at the boundary (or at infinity)
and the domain is simply-connected, since only then the helicity is uniquely de-
termined by the vorticity. The helicity can still take continuous values by letting
vortex lines escape through the boundary or by adding harmonic velocity fields
from the 1st cohomology.

6.4 Finding a Spherical Clebsch Map

Now let us set out to numerically find a spherical Clebsch map ψ for a
given velocity field η0 such that

η B ψ∗ϑ = η0. (6.1)

Note that such an algorithm will also provide a vorticity Clebsch map
s = π ◦ ψ.

However, any solution ψ to (6.1) gives rise to infinitely many more solu-
tions ψ̃. This is because if ξ : S2 → S2 is any area-preserving map, then
s̃ = ξ ◦ π ◦ ψ is also a Clebsch map for ω = dη. By Theorem 5.1 there is
another Clebsch map ψ̃ for η (up to harmonic fields) with π ◦ ψ̃ = s̃. To fix
this degree of freedom we seek a solution ψ for (6.1) which minimizes the
Dirichlet energy of s

min
ψ : M→S3

1

2

∫
M
| ds |2 s.t. η = η0. (6.2)

Many numerical approaches to this type of constrained optimization prob-
lem are based on iteratively searching for the minimum while keeping the



74

iterant in the constraint set. Those include barrier methods (interior point
methods) and methods that couple unconstrained optimization with con-
straint projection. However in our case finding one point in the constraint
set is just our original challenge.

We therefore use a method based on Lagrange multipliers. Introduce a
parameter ε > 0 and subsequently solving a sequence of unconstrained
problems

min
ψ : M→S3

Eε (ψ) where Eε B

∫
M

1

2}2
|η − η0 |

2 + ε2

8
| ds |2 (6.3)

for decreasing ε . Here the constraint is written as
∫

M
1

2
|η − η0 |

2 = 0 and 1

ε2

serves as a Lagrange multiplier for the constraint. This leads to the basic
algorithm (Algorithm 5).

Algorithm 5 Optimization scheme for (6.2)

Input: η0 ∈ Ω
1(M ; R) and } > 0.

Randomize ψ (0) : M → S3;
ε (0) = 1;
for k = 0, 1, 2, . . . do

ψ (k+1) ← argminψ Eε (k)
(ψ) with initial guess ψ (k).

ε (k+1) ← ε (k)/10.
end for

6.5 Ginzburg-Landau Energy with Berger Metric

The remaining problem in Algorithm 5 is to find the minimizer of Eε for
each given ε ≥ 0. Simply substituting the definitions η = ψ∗ϑ and s = ψiψ

into (6.3) and minimizing the resulting expression over S3-valued functions
ψ appears at first sight to be rather unpleasant. Below we will show that Eε

is nothing but a Dirichlet energy for ψ under a suitable choice of connection
and metric.

Covariant Derivative

In a first step we use the 1-form η0 to define the covariant derivative ∇η0

for S3-valued functions ψ as

∇η0ψ B dψ − i 1

}η0ψ. (6.4)

In short ∇η0 = d − i 1

}η0. We will now split ∇η0 into two parts which will
give rise to the two summands in Eε .



75

Observe that ∇η0ψ ∈ Ω1(M ; H) is a quaternion-valued 1-form. In particular
at a point x ∈ M , (∇η0ψ)x is a linear map from Tx M to Tψ(x)S

3 ⊂ H. For each
fixed q ∈ S3 ⊂ H, use {q, iq, jq, kq} as an orthonormal basis for H. Note
that TqS3 = Span{iq, jq, kq}x . Now split H into the orthogonal sum of the
two subspaces

Cq B Span{q, iq} and C jq B Span{ jq, kq}.

Now project (∇η0ψ)x , which takes values in Tψ(x)S
3 ⊂ H, into these sub-

spaces

(∇η0ψ)x = PCψx
(∇η0ψ)x + PC jψx

(∇η0ψ)x . (6.5)

Observe that from s = ψiψ we have ds = 2 Im(ψi dψ); on the other hand
η = }〈iψ, dψ〉 = −}Re(ψi dψ). Hence −ψi dψ = 1

}η −
1

2
s. Using the definition

∇η0 = d − i
}η0 we see that

−ψi∇η0ψ = −ψi dψ − 1

}η0 =
1

} (η − η0) − 1

2
ds

and thus

∇η0ψ = 1

} (η − η0)iψ − 1

2
iψ ds. (6.6)

Evidently the first summand takes values in Cψ = Span{ψ, iψ}. The second
summand takes values in (Cψ)⊥ = C jψ since

〈ψ, iψ ds〉 = Re
(
ψiψ ds

)
= Re(s ds) = −1

2
d |s |2 = 0,

〈iψ, iψ ds〉 = Re( ds) = 0.

Hence (6.6) is the orthogonal splitting of ∇η0ψ onto the subspaces Cψ and
C jψ in (6.5). That is,

PCψ (∇η0ψ) = 1

} (η − η0)iψ and PC jψ (∇η0ψ) = −1

2
iψ ds.

Berger Metric

To recover the integrand of (6.3), we only need an anisotropic metric on S3.
At each point q ∈ S3 define a norm on tangent vectors X ∈ TqS3 ⊂ H as

|X |2ε B |PCq(X ) |2 + ε2 |PC jq(X ) |2. (6.7)

Such a metric on S3, with an anisotropy along the iψ direction, is known as
a Berger metric and S3 with such a metric as the Berger sphere.
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In conclusion, the energy Eε can be expressed as

Eε (ψ) =
∫

M

1

2
|∇η0ψ |2ε (6.8)

and hence Eε is the Dirichlet energy of ψ using the covariant derivative ∇η0

and the Berger metric (see Section 6.8 for implementation details).

Ginzburg-Landau Model

The energy (6.8) is closely related to the Ginzburg-Landau energy of con-
densed matter physics

Egl(ψ) =
∫

M

1

2
|∇η0ψ |2 + c(1 − |ψ |2)2

which models the coherent collective behavior of particles at low temper-
atures through an Egl-minimizing ψ. In that setting ψ is called the order
parameter whose norm |ψ | indicates whether the matter at the site is in co-
herent condensed state (|ψ | = 1) or in disorder (|ψ | = 0). Examples of con-
densed states are electron pairs in a super conductor, and helium atoms in
a liquid helium superfluid. The 1-form η0 in the covariant derivative in the
Ginzburg-Landau model is the “vector” potential of a magnetic field (or in
general a gauge field). The quartic nonlinear term c(1 − |ψ |2)2 penalizes or
encourages the deviation of |ψ |2 from 1 depending on the temperature. In a
perfect coherent state |ψ |2 = 1 the remaining phase degree of freedom in ψ

form patterns called “texture” affected by the field η0.

For an introduction to the Ginzburg-Landau theory in physics see [Pismen,
1999]. Minimizing a Ginzburg-Landau-type energy has also been used in
computer graphics. In the case when the phase of ψ takes values in S1

(texture space), it is used for vector field designs [Knöppel et al., 2013]
and stripe pattern syntheses [Knöppel et al., 2015] on 2D surfaces, and
for extracting vortex filaments from a fluid velocity data on 3D domains
[Weißmann, Pinkall, and Schröder, 2014].

Eq. (6.8) can be understood as a Ginzburg-Landau energy with the texture
space being a Berger sphere, and with the quartic nonlinear term replaced
by the constraint |ψ |2 = 1.

Summary

We cast the problem of finding spherical Clebsch maps, which approximate
user supplied velocity fields η0, as a minimization problem. The objective
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is the Dirichlet energy of ψ using the covariant derivative induced by η0

employing a Berger metric. The metric anisotropy parameter ε controls
how much of the regularizer |ds |2 is added to the fidelity term |η − η0 |

2.
For each fixed ε , in a decreasing sequence, we approximate the minimum
of the objective through gradient descent steps (the corresponding flow is
known as a time-dependent Ginzburg-Landau flow) which will be introduced
in Section 6.7. This requires a discrete version of the energy, detailed in
Section 6.8, and a sparse linear solver for Poisson problems with magnetic
Laplacians.

6.6 Berger Metric in terms of Pauli Matrices

For implementation (Section 6.8) it turns out to be convenient to realize
quaternions ψ ∈ H as C2-vectors Ψ = (ψ1,ψ2)ᵀ through the relation ψ =

ψ1 + ψ2 j explained in Section B.4.

Using Ψ = (H→ C2) ψ as our representation, the projectors PCψ resp. PC jψ

can be expressed in terms of the Pauli matrices σ1,σ2,σ3 given in (B.1):

σ1 B


0 1

1 0


, σ2 B



0 −i

i 0


, σ3 B



1 0

0 −1


.

Even though the projectors appear to be functions of ψ, they are in fact
only functions of s = ψiψ = s1i + s2 j + s3k. Recall (B.3) that (s1, s2, s3)ᵀ are
related to the Bloch vector (z1, z2, z3)ᵀ with zi B ΨᵀσiΨ, i = 1, 2, 3, as

s1 = z3 = |ψ1 |
2 − |ψ2 |

2,

s2 = −z2 = 2 Re
(
iψ1ψ2

)
,

s3 = z1 = 2 Re
(
ψ1ψ2

)
.

To find the C2×2 representation of PCψ we note that the underlying sub-
space is spanned by complex multiples of Ψ = (ψ1,ψ2)ᵀ and hence

PCψ = ΨΨ
ᵀ =



|ψ1 |
2 ψ1ψ2

ψ1ψ2 |ψ2 |
2


= 1

2

(
I + z1σ1 + z2σ2 + z3σ3

)
(6.9)

where I is the C2×2 identity matrix. Due to their orthogonality, PC jψ is just
the residual

PC jψ = I − PCψ =
1

2

(
I − z1σ1 − z2σ2 − z3σ3

)
. (6.10)
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We use the boldface symbols z ·σ (not to confuse with the symplectic form
σ) to denote the Hermitian matrix

z · σ = z1σ1 + z2σ2 + z3σ3 ∈ C2×2.

It is then convenient to combine both projectors* as

Pε
s B PCψ + εPC jψ =

1

2

(
(1 + ε )I + (1 − ε )z · σ

)
(6.11)

and rewrite (6.7) for a vector X ∈ TψS3 ⊂ H as

|X |2ε = |P
ε
s X |2. (6.12)

Therefore the energy (6.8) can be expressed as

Eε (ψ) =
∫

M

1

2

��Pε
s∇

η0ψ��2 (6.13)

=

∫
M

1

8

���
(
(1 + ε )I + (1 − ε )z · σ

)
∇η0Ψ

���
2

.

6.7 Minimizing Flow

To seek for a minimizer for Eε we consider the gradient flow of Eε . Sim-
ilar to a heat equation, which is the gradient flow to a standard Dirichlet
energy, the gradient flow of Eε is given by:

∂
∂tψ = ∆

η0

ε ψ −Uψ. (6.14)

This is obtained by taking variation to the expression (6.13). Here U is a
real scalar function that ensures |ψ | = 1 pointwise at all time. The magnetic
Laplacian in Berger metric ∆η0

ε is given by

∆
η0

ε ψ = −
(
Pε

s∇
η0

)† (
Pε

s∇
η0

)
ψ

= ?
((

d − i 1

}η0∧
)
?

(
Pε

s
)

2

(
dψ − i 1

}η0ψ
))

where (·)† denotes the adjoint operator with respect to the inner product
for differential forms. In particular we have used d†α = − ? d ? α and
(η0∧)†α = ι

η
]
0

α = ?(η0∧)?α when α is a 1-form, and i† = −i. We also used
the fact that Pε

s is Hermitian.

We call (6.14) a Berger-spherical Ginzburg-Landau flow.

*Both the matrix PCψ = ΨΨ
ᵀ and (I − PCjψ) are known as density matrices of pure states

in quantum statistical mechanics. The combined matrix (6.11) is known as the density
matrix (up to a trace 1 normalization) of a mixed state.
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Note that ∆η0

ε is an operator that depends on ψ itself since Pε
s does. There-

fore (6.14) is still a nonlinear equation in the diffusion term ∆
η0

ε ψ whenever
ε , 1. In the case ε = 1 the Berger metric reduces to the standard metric,
and ∆

η0

1
becomes the standard magnetic Laplacian.

Here the normalization term Uψ is also a nonlinear term which is relatively
simpler. In practice Uψ is replaced by a normalization in each iteration in
numerical implementation.

6.8 Implementation for the Minimizing Flow

In this section we give all the necessary details for the numerical imple-
mentation for Algorithm 5.

We use a standard discrete exterior calculus (DEC) [Crane et al., 2013]
discretization for the energy (6.8). It requires a graph G = (V , E) where V
is the set of vertices and E the set of directed edges. All examples in this
thesis take G as the 1-skeleton of a 2D or 3D lattice. Each vertex i ∈ V has
a vertex weight wi > 0 and each edge ij ∈ E has an edge weight wij > 0.
Functions (0-forms) are discretized as values per vertex, e.g., f i = f (xi)
while 1-forms α are discretized as values per directed edge αij =

∫
ij α.

The vertex weights and edge weights are designed to give the approxima-
tion ∫

M
| f |2 ≈

∑
i∈V

wi | f i |2,
∫

M
|α |2 ≈

∑
ij∈E

wij |αij |
2.

On a regular 3D lattice wi = Vi and wij =
Aij
`ij

where Vi is the volume of the
dual cell surrounding xi, Aij the area of the face dual to ij, and `ij the length
of the edge xj − yi.

Covariant Derivative Given a C2-valued function Ψ = (ψ1,ψ2)ᵀ on ver-
tices and an R-valued 1-form η0 on edges, the C2-valued discrete 1-form
∇η0Ψ is given [Weißmann, Pinkall, and Schröder, 2014, Eq. 10] by the dif-
ference

(∇η0Ψ)ij = e−i
(η0)ij

2} Ψj − ei
(η0)ij

2} Ψi. (6.15)

The basic idea of (6.15) is that (∇η0Ψ)ij measures the difference at the mid-
point of the edge ij, while the values Ψi, Ψj from each end of the edge are
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parallel transported to the midpoint. Here, a function Ψ defined along i j is
called parallel if (∇η0Ψ) = dΨ − i

}η0Ψ = 0 along ij. Therefore, the parallel

transport of Ψi from i to the midpoint of ij is given by ei
(η0)ij

2} Ψi.

Projection Operators Using (ψ1,ψ2)ᵀ as our representation, the projector
Pε

s can be expressed as (6.11), and the energy Eε is given by (6.13). Note
that Pε

s depends only on the variable s. Since ∇η0Ψ is a 1-form on edges,
we need Pε

sij
for sij =

si+sj
|si+sj |

the edge midpoint value of s.

The Discrete Energy Using (6.13) we arrive at the discrete energy in
terms of the vector ~Ψ = (Ψi)i∈V

Eε (~Ψ) =
∑
ij∈E

wij
����P

ε
sij

((
∇η0 ~Ψ

)
ij

) ����
2

= ~ΨᵀL~Ψ.

Here the quadratic form L is a |V | × |V| sparse matrix of 2 × 2 complex
blocks. Each edge ij ∈ E gives rises to four blocks which are accumulated
into the global L, summing over all edges

Lii = wij(Pε
sij

)2 Lij = −wije−i
(η0)ij
} (Pε

sij
)2

Lji = −wijei
(η0)ij
} (Pε

sij
)2 Ljj = wij(Pε

sij
)2.

Minimization To minimize the discrete energy for a given ε , we use a
semi-implicit gradient descent step followed by pointwise normalization
of ~Ψ, as an integrator for Equation (6.14). Each gradient step is the solution
~Ψ(k+1) to

(MV + ∆tL(k))~Ψ(k+1) = MV ~Ψ(k),

with MV the vertex mass matrix and step size ∆t > 0. We typically take 10

steps with 0.1 < ∆t < 1 before decreasing ε (Alg. 5).

6.9* More on Berger-Spherical Ginzburg-Landau Flow

We mentioned in Section 6.7 that the Berger-spherical Ginzburg-Landau
flow (6.14) ∂

∂tψ = ∆
η0

ε ψ −Uψ is a diffusion via a nonlinear (ε , 1) differential
operator ∆η0

ε . A straightforward way to understand this nonlinear flow is
by viewing it as the gradient flow for minimizing (6.3)

Eε (ψ) =
∫

M

1

2} |η − η0 |
2 + ε2

8
|ds |2.
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Under (6.14) the wavefunction ψ relaxes to an equilibrium between fidelity
η ≈ η0 and regularity |ds |2 ≈ 0. The operator ∆η0

ε also has a straightfor-
ward discretization (Section 6.8) that can be used directly for applications
(Chapter 7).

Yet, from a physical point of view the operator ∆η0

ε may still look obscure.
In this section we rewrite the flow (6.14) in terms of standard operators.
Many of those turn out to generate complicated dynamics and are numer-
ically challenging to approach. Therefore it is important to keep in mind
on the way that the resulting equation is still equivalent to the original
variational problem which we know how to simulate robustly.

Precession Term

Comparing ∇η0ψ in the standard metric | · |2 and a Berger metric | · |2ε

��∇η0ψ��2 = 1

}2
|η − η0 |

2 + 1

4
| ds |2,

��∇η0ψ��2ε = 1

}2
|η − η0 |

2 + ε2

4
| ds |2,

we can write

��∇η0ψ��2ε = ��∇η0ψ��2 − 1−ε2

4
| ds |2.

Therefore one may express the negative gradient (the flow direction) of∫
M

1

2
|∇η0ψ |2ε as the combination of the negative gradient of the standard

magnetic Dirichlet energy
∫

M
1

2
|∇η0ψ |2 and the negative Dirichlet energy

−
∫

M
1

2
| ds |2 of s with a weight 1−ε2

4
.

The gradient flow for the part
∫

M
1

2
|∇η0ψ |2 is the Ginzburg-Landau flow in

the standard metric

ψ̇ = ∆η0ψ −Uψ (6.16)

where Uψ again indicates that ψ is kept S3-valued, and the magnetic Lapla-
cian ∆η0 is given by

∆
η0ψ =

(
∇η0

)† (
∇η0

)
ψ =

(
? d ?− i

} ιu0

) (
dψ − i

}η0ψ
)

.

To obtain the gradient flow for −
∫

M
1

2
| ds |2 we take the variation of the

functional in a direction ψ̊ of the variable ψ. We only consider the variation
direction ψ̊ that keeps ψ S3-valued; that is ψψ̊ ∈ Im H. In the following we
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will denote d∇ the exterior derivative of tangent vectors of S2 using the
Levi-Civita connection on S2. Namely d∇ is the standard d for R3-valued
forms followed by a projection onto the tangent plane of S2 at the point.
Now, using the definition s = ψiψ, the variation is given by(

−

∫
M

1

2
| ds |2

)̊
= −

∫
M
〈 ds̊ ∧? ds〉 =

∫
M
〈s̊, d∇? d

C?∆S2

s〉

=

∫
M
?
〈
2 Im

(
ψi

sψ

ψ̊
)
,∆S2

s
〉
=

∫
M

2?
〈
s ×

(
ψψ̊

)
,∆S2

s
〉

=

∫
M
−2?

〈
ψψ̊, s × ∆S2

s
〉
=

∫
M
−2?Re

(
ψ̊ψ

(
s × ∆S2

s
))

=

∫
M
?

〈
ψ̊,−2ψ (s × ∆s)

〉
.

The inner product of the last equality is the standard R4 inner product on
H. And we replaced s × ∆S2

s by s × ∆s since s × (·) gets rid of the vector
component in ∆s orthogonal to TsS

2. Therefore the functional gradient

δ
δψ

(
−

∫
M

1

2
| ds |2

)
= −2ψ(s × ∆s).

Note that the expression −2ψ(s × ∆s) lies in TψS3, which is why we need
not add a Uψ term (cf. (6.16)). Thus the corresponding gradient flow is
given by

ψ̇ = 2ψ(s × ∆s). (6.17)

Now by combining (6.16) and (6.17) we obtain the alternative expression
for the Berger-spherical Ginzburg-Landau flow (6.14).

Theorem 6.4. The Berger-spherical Ginzburg-Landau flow

∂
∂tψ = ∆

η0

ε ψ −Uψ

can be rewritten as

∂
∂tψ = ∆

η0ψ + 1−ε2

2
ψ(s × ∆s) −Uψ. (6.18)

The term Uψ ∈ Rψ in each equation keeps ψ S3-valued.

Proof. See derivations above. �

Corollary 6.1. Representing ψ by C2-valued function Ψ, (6.18) can be written as

∂
∂tΨ = ∆

η0Ψ + 1−ε2

2
(z × ∆z) · σΨ −UΨ. (6.19)
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Proof. By (B.2), for each B ∈ R3 the quaternion multiplication ψB in C2

form is given by B̃ ·σΨ with the transformation B̃1 = B3, B̃2 = −B2 and B̃3 =

B1. Note that this transformation is an orientation preserving isometry (a
rotation), and it transforms s into z. Therefore it transforms s × ∆s into
z × ∆z. �

The type of equations like (6.17) can be viewed as a precession motion.†

For each R3 vector B, the equation ψ̇ = 1

2
ψB generates a motion in s as a

precession clockwise about B

ṡ = s × B.

One can see this by a direct substitution ṡ = 2 Im(ψiψ̇) = Im(ψiψB) = s × B.

Now we substitute B = (1 − ε2)(s × ∆s) and observe that the term ψ̇ =
1−ε2

2
ψ(s × ∆s) in (6.18) gives rise to an anti-diffusion in s:

∂
∂t s = (1 − ε2)s × s × ∆s = −(1 − ε2)∆S2

s. (6.20)

Here we assumed the typical range 0 < ε < 1 for ε .

The standard Ginzburg-Landau flow ψ̇ = ∆η0ψ −Uψ is the minimizing
flow for

∫
1

2}2
|η − η0 |

2 + 1

8
| ds |2, in which

∫
1

8
| ds |2 induces a diffusion in

s. The precession term 1−ε2

2
ψ(s × ∆s) in (6.18) effectively generates an anti-

diffusion that counteracts the diffusion in s.

Equation for s

In (6.18) the Berger-spherical Ginzburg-Landau flow is written in terms
of a standard Ginzburg-Landau flow with an additional precession term.
Here we rewrite the equation as a time evolution for the spin vector s.

Theorem 6.5. Under the Berger-spherical Ginzburg-Landau flow (6.14) or equiv-
alently (6.18), the spin vector s satisfies

∂
∂t s = 2

} s ×Lu−u0
s + ε2

∆
S2

s. (6.21)
† Precessions of spin due to a magnetic field are called the Larmor precession. Its

equation of motion is known as the Bloch equation. Written in terms of ψ the associated
term is also recognized as a Stern-Gerlach term.
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Proof. From the definition s = ψiψ and (6.18) we have

∂
∂t s = 2 Im

(
ψi

=sψ

∂
∂tψ

)
= 2 Im

(
sψ

(
∆
η0ψ + 1−ε2

2
ψ(s × ∆s) −Uψ

))
where Uψ ∈ Rψ is given so that ψ

(
∆η0ψ + 1−ε2

2
ψ(s × ∆s) −Uψ

)
is purely

imaginary (i.e. 〈ψ, ∂
∂tψ〉 = 0.) Therefore the above expression can be rewrit-

ten as

∂
∂t s = 2s × Im

(
ψ∆η0ψ + 1−ε2

2
s × ∆s

)
.

Now apply Lemma 6.1 in Appendix 6.A and use s × (s × ∆s) = −∆S2

s to
obtain

∂
∂t s = 2s ×

(
1

} Lu−u0
s + 1

} div(u − u0)s − ε2

2
s × ∆s

)
= 2

} s ×Lu−u0
s + ε2

∆
S2

s.

�

Relation to the Cauchy-Riemann Equation

To understand the nature of (6.21), particularly the term

∂
∂t s = s ×Lu−u0

s,

one may consider a simplified version of the equation. Suppose M = R,
and hence s = s(x, t) is just an S2-valued function of the spacetime R ×R.
To study the local behavior one further replaces (u − u0) with a real scalar
constant a. That is,

∂
∂t s = as × ∂

∂x s. (6.22)

Now one recognizes that (6.22) is the Cauchy-Riemann equation for mero-
morphicity of s : R ×R → S2. Here we identify the domain R ×R � C by
(x, t) ↔ x + iat, and identify the range S2 � C ∪ {∞} with a stereographic
projection (i.e. S2 is the Riemann sphere).

6.A The Magnetic Laplacian

Here we collect an algebraic fact about the magnetic Laplacian ∆η0 . Recall
that for an S3 ⊂ H-valued wavefunction ψ, the associated velocity and spin
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vector are given by η = }〈iψ, dψ〉 and s = ψiψ. For an arbitrary real 1-form
η0, the magnetic Laplacian is given by

∆
η0ψ =

(
∇η0

)† (
∇η0

)
ψ =

(
? d ?− i

} ιu0

) (
dψ − i

}η0ψ
)

.

Here u (resp. u0) is the associated vector to the 1-form η (resp. η0).

Lemma 6.1. The quaternionic product ψ∆η0ψ can be written in terms of s and
(u − u0) as

ψ∆η0ψ = −1

2
s × ∆s + 1

} Lu−u0
s + 1

} div (u − u0) s

− 1

}2
|u − u0 |

2 − 1

4
| ds |2.

(6.23)

Proof. First we observe from ψ(−i) dψ = 1

}η −
1

2
ds that

dψ = iψ
(

1

}η −
1

2
ds

)
. (6.24)

Now expand ∆η0ψ with (6.24)

∆
η0ψ =

(
? d ?− i

} ιu0

) (
iψ

(
1

}η −
1

2
ds

)
− i

}η0ψ
)

= ? d
(
iψ ?

(
1

} (η − η0) − 1

2
ds

))
+ 1

}〈u, u0〉ψ −
1

2}ψ Lu0
s − 1

}2
|u0 |

2ψ

= ?
(
i dψ ∧?

(
1

} (η − η0) − 1

2
ds

))
+ iψ ? d ?

(
1

} (η − η0) − 1

2
ds

)
+ 1

}〈u, u0〉ψ −
1

2}ψ Lu0
s − 1

}2
|u0 |

2ψ.

Now write ? d ? (η − η0) = div(u − u0) and ? d ? ds = ∆s in the second
summand, and replace dψ once again by (6.24) in the first summand:

∆
η0ψ = ?

(
−ψ

(
1

}η −
1

2
ds

)
∧?

(
1

} (η − η0) − 1

2
ds

))
+ iψ div(u−u0)

} − iψ 1

2
∆s + 1

}〈u, u0〉ψ −
1

2}ψ Lu0
s − 1

}2
|u0 |

2ψ

= ψ
(
− 1

}2
|u|2 + 1

}2
〈u, u0〉 +

1

2} Lu s + 1

2} Lu s − 1

2} Lu0
s + 1

4
|ds |2

)
+ iψ div(u−u0)

} − iψ 1

2
∆s + 1

}〈u, u0〉ψ −
1

2}ψ Lu0
s − 1

}2
|u0 |

2ψ

using the fact | ds |2 = ?〈 ds ∧? ds〉 = −? ( ds ∧? ds). By rearranging the
terms we have

∆
η0ψ = ψ

(
− 1

}2
|u − u0 |

2 + 1

} Lu−u0
s + 1

4
| ds |2

)
+ iψ

(
1

} div(u − u0) − 1

2
∆s

)
.

Now multiply ψ from the left and obtain

ψ∆η0ψ = − 1

}2
|u − u0 |

2 + 1

} Lu−u0
s + 1

4
| ds |2 + 1

} div(u − u0)s − 1

2
s∆s.



86

Finally, split the last term −1

2
s∆s into the real and imaginary parts followed

by a product rule:

−1

2
s∆s = 1

2
〈s,∆s〉 − 1

2
s × ∆s

= 1

2
? d ? 〈s, ds〉 − 1

2
? 〈 ds ∧? ds〉 − 1

2
s × ∆s

= −1

2
| ds |2 − 1

2
s × ∆s

where we used the fact that 〈s, ds〉 = 0 for an S2-valued function s. There-
fore,

ψ∆η0ψ = − 1

}2
|u − u0 |

2 − 1

4
| ds |2 − 1

2
s × ∆s + 1

} Lu−u0
s + 1

} div(u − u0)s.

�

Lemma 6.1 is particularly useful when we need to derive the time evolution
equation for s when ψ is subject to a time evolution equation involving
a Laplacian or a magnetic Laplacian. We will use this formula (6.23) in
several places including Section 6.9, Section 9.1, and Section 11.1.
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C h a p t e r 7

APPLICATIONS OF SPHERICAL CLEBSCH MAPS

In Chapter 6 we introduced a method for finding a spherical Clebsch map
ψ, s for a given velocity field η0. This problem has been reduced to finding
a minimizer of the Dirichlet energy of ψ using a covariant derivative ∇η0

(Eq. (6.8)). While we can hope for good approximations there are theoreti-
cal obstacles to finding exact solutions:

1. Isolated zeros in the vorticity field cannot be recovered by a spherical
Clebsch map.

2. Vortex lines for S2-valued Clebsch maps are always closed (or begin
and end on the domain boundary) with a finite length, while generi-
cally they do not.

3. Spherical Clebsch maps have quantized helicity, while general veloc-
ity fields can have arbitrary helicity.

In Section 7.1 we demonstrate that these theoretical limitations do not stand
in the way of the practical utility of the approximate maps we compute.

Fig. Resolution #(steps) time ‖η−η0‖L2

‖η0‖L2

7.1 128
2

100 1:08 1.8 × 10
−4

7.3 50
3

130 6:10 1.9 × 10
−2

7.4 64
3

150 20:00 5.4 × 10
−2

7.5 64
2 × 48 30 2:12 1.6 × 10

−1

7.6 81 × 41
2

100 6:04 3.0 × 10
−2

7.8 64
3

120 9:55 1.8 × 10
−1

1.9 64
3

100 8:00 8.4 × 10
−2

7.10 64 × 32
2

120 1:25 1.3 × 10
−2

Table 7.1: Performance statistics. Time is given in units of minutes on a MacBook
Pro, while “steps” gives the number of time discrete steps taken by the minimizer.
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7.1 Validation

Before discussing benchmark problems we briefly describe our approach
to visualization.

To visualize Clebsch maps we use pre-images of sets on S2 under s. For
individual points p ∈ S2, s−1({p}) ⊂ M gives vortex lines, while pre-images
of regions Ω ⊂ S2 yield vortex tubes.

To construct s−1({p}) we represent s as a complex function ζ : M → C

through stereographic projection from the antipode −p. The set {x ∈ M | s(x) =
p} is then given by the zeros of ζ and extracted as in [Weißmann, Pinkall,
and Schröder, 2014, Sec. 3].

To visualize a vortex tube s−1(Ω) ⊂ M we take some level set function on S2,
χ : S2 → R with χ = 0 on ∂Ω. Extracting the zero iso-contour of χ ◦ s then
yields the vortex tube surface in M . For the images of vortex tubes shown
in this chapter we used s = (s1, s2, s3)ᵀ directly, drawing s1 = 0.8 in gold
and s1 = −0.8 in blue. The opacity of the vortex tube was set proportional to
vorticity magnitude, making it inversely proportional to the cross-sectional
area of the vortex tube. Treating p = (±1, 0, 0)ᵀ as the north resp. south pole
of S2, the longitude angle arg(ψ1) − arg(ψ2) for ψ = (ψ1,ψ2)ᵀ was used as a
texture coordinate on the vortex tube surfaces for a brush texture, making
the brush “lines” tangent to vortex lines.

2D Example

Fig. 7.1 shows a velocity field and its S2-valued vorticity Clebsch map.
The disk, rotating rigidly, has constant, non-zero vorticity. This forces the
Clebsch map to wrap the central disk multiply around a small (} = 0.15)
2-sphere in an area-preserving manner. Simultaneously, the map is as con-
formal as possible, since the Dirichlet energy of s is the same as the con-
formal energy, up to a constant area term [Hutchinson, 1991]. Outside the
central disk, due to vanishing vorticity, the map is (nearly) constant, i.e.,
it “covers” no area. This shows that our minimizers are not necessarily
smooth. However, they appear (empirically) to be Lipschitz and smooth
away from finitely many points. Fig. 7.2 shows the convergence plot for
Fig. 7.1 which is typical of all the examples shown in this chapter.
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Figure 7.1: A velocity field on a square (left) and its S2-valued vorticity Cleb-
sch map (right; visualized via an earth texture). The velocity field has non-zero,
constant vorticity in the gray disk and zero vorticity outside.
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Figure 7.2: Convergence of the Clebsch map in Fig. 7.1 as a function of gradient
descent iterations with ∆t = 1 and ε (0) = 1 (0-20), ε (1) = 0.1 (20-40), ε (2) = 0.01

(40-60), ε (3) = 0.001 (60-80), and ε (4) = 0 (>80).



90

Figure 7.3: On the left vortex lines traced in the vorticty vector field w =

(x, y,−2z)ᵀ on a cube with side length three. On the right the pre-image of ten
points on S2 for our Clebsch map approximating w (} = 0.05).

Presence of Isolated Zeros

[Graham and Henyey, 2000] proved that a vorticity field w with an isolated
zero at some point x ∈ M does not admit an R2 valued Clebsch representa-
tion in the vicinity of x. Their argument also applies to S2 valued Clebsch
maps. In our case the presence of the regularizer ensures that an approx-
imate solution is found nevertheless. Fig. 7.3 shows a Clebsch map for a
linear vorticity field on R3, and we see that our algorithm deals gracefully
with the isolated zero at the origin.

Even though no exact Clebsch map (at least not a smooth one) can exist for
this field at the origin, we still get meaningful approximations of the field,
as visualized with the vorticity integral curves.

Non-Closed Vortex Lines

In a generic flow most vortex lines are not closed. But Clebsch maps with
target space R2 or S2 possess only closed (or beginning and ending on the
boundary) vortex lines. Hence flows with vortex lines that neither close
nor hit the boundary do not possess such a Clebsch map [Hadamard, 1903,
§68].

By the Poincaré recurrence theorem [Poincaré, 1890], almost every such
vortex line will return arbitrarily closely to its initial point, making it “al-
most closed.” Our Clebsch maps approximate these almost closed vortex
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Figure 7.4: Clebsch map for a vorticity field w = 1.5w1 +w2, confined to a ball,
with w1 = (xz, yz, 1 − 2(x2 + y2) − z2)ᵀ and w2 = (−y, x, 0)ᵀ. Both w1, w2 have
closed vortex lines, but the ratio of their respective periods is irrational, ensuring
that most vortex lines of w are non-closed. The field generated by the Clebsch map,
visualized as pre-images of areas on S2 (left, blue tubes), approximates the field w
(left, green trails) in a way that each vortex line is closed (right, two such vortex
lines, i.e., pre-images of two points on S2).

lines by closed ones. Note that this “closure” depends on the resolution of
the data. Fig. 7.4 gives an example of such a situation where most vortex
lines of the original field do not close up, while the vortex lines of the field
corresponding to the Clebsch maps are all closed.

Even though no exact Clebsch map exists for such fields, we still get a
meaningful approximation with our method.

Quantized Helicity

In Section 6.3 we showed that S2-valued Clebsch maps can take non-zero
but quantized helicity. Even though the helicity is quantized to integer
multiples of (2π})2 (usually small), it does not present a practical obstacle
to the approximation of fields with arbitrary helicity (Fig. 7.5).

Summary In this section we demonstrated that spherical Clebsch maps
perform well in practice even in the presence of otherwise challenging in-
put fields. Specifically, they yield good approximations in the presence of
isolated zeros, gracefully approximate non-closed vortex lines, and work
well with fields carrying non-zero helicity.
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Figure 7.5: Clebsch maps for vorticity fields, supported in the interior of a torus,
with increasing helicity and a fixed } = 0.2. The graph shows the helicity recovered
by the Clebsch map and the L2 error in velocity. Each cross section of the torus
is passed by 5 vortex tubes for each of the two colors. In this case the linking
number between any two tubes must be a multiple of 5 [Bush et al., 2017], giving
rise to the gaps 5(2π})2 ≈ 7.9 in each jump discontinuity in the plot of helicity.
Note that vortex lines connecting to the boundary allow continuous helicity; such
events occur at large given helicity.

7.2 Vorticity Visualization

Vorticity fields are of great interest in the study of low Mach number flows
because the evolution of vorticity reveals much about the underlying flow
dynamics [Saffman, 1992]. One way to visualize vorticity is through vortex
lines. A challenge in using vortex lines is the difficulty of selecting seed
points so that the vortex lines have a spatial density proportional to vor-
ticity magnitude. For S2-valued vorticity Clebsch maps this is achieved by
picking points on S2 equidistributed with respect to area.

More specialized methods try to identify regions associated with vortices
(for a comprehensive review see [Jiang et al., 2005]). One such method
visualizes level sets of the vorticity norm |w| to capture regions of high
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Figure 7.6: Vorticity visualized through a |w| iso-surface (top-left), the λ2-
method (top-right), and a Clebsch map (bottom) for the Delta Wing data set [Eka-
terinaris and Schiff, 1990] (40

◦ angle of attack, Mach 0.3, Reynolds number 10
6).

Gray lines in the background are integral curves of the velocity field to give an
overall sense of the flow.

vorticity (Fig. 7.6, upper left). Since directional information is ignored
the resulting surfaces are misaligned in general, no longer being tangent
to the vorticity field. A more sophisticated approach, the so-called λ2-
method [Jeong and Hussain, 1995], analyses the velocity gradient tensor,
but can still yield results which do not correctly represent the underlying
vortex lines (Fig. 7.6; cf. Fig. 7.7). In contrast, with a vorticity Clebsch map
one can draw the pre-image of one or several closed curves on S2, yielding
proper vortex tubes (Figs. 7.6 and 7.8).

The Parameter } Since the parameter } shows up as the factor in ω =
}
2

s∗σS2 , the vortex tubes drawn by the pre-image s−1(Ω) of a region Ω ⊂ S2

have strength }
2

Area(Ω). For a given flow and a region Ω, the parameter }
controls the spatial frequency of visualized vortex tubes, increasing them
as } is lowered. To avoid aliasing artifacts } must be chosen relative to the
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Figure 7.7: Comparison of vortex tubes from the vorticity Clebsch map with
traced integral curves of the original vorticity field (seeded at the wing edges),
verifying the Clebsch map result (cf. Fig. 7.6; bottom).

sampling rate ∆x (inverse grid resolution) and velocity magnitude ‖u‖∞ to
satisfy π} > 2∆x‖u‖∞ (} has physical dimension m2/s).

Time Coherence We visualize pre-images of fixed sets in S2. However,
the vorticity Clebsch map s arising from the minimizers ψ of (6.8) are only
unique up to a global rotation of S2. Hence, the locations of the selected
vortex geometries depend on the initial guess ψ (0) in Algorithm 5. For a
discrete time sequence of flow data sets one can ensure time coherence
by initializing Algorithm 5 with the time advected minimizer from the
previous time step.

7.3 Initial Data for Incompressible Schrödinger Flow

In Chapter 1 we introduced ISF as a method for simulating incompressible
fluids. In ISF the velocity η is encoded in a C2-valued function Ψ as η =
}Re

(
Ψᵀ(−i) dΨ

)
. One major challenge in setting up an ISF simulation is

to craft an initial Ψ that represent a desired initial velocity field.

Now identify Ψ : M → C2 with ψ : M → H using Section B.4. Then we
see that the velocity in ISF η = }〈iψ, dψ〉 = ψ∗ϑ is represented by ψ as a
spherical Clebsch map. Our method for searching a spherical Clebsch map
can then provide an initial condition for ISF, which is an optimally close
representation for an arbitrary input velocity field (Fig. 1.9).
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Figure 7.8: Visualization of the vorticity field produced by the flapping wings of a
Hummingbird. Flow data and photogrammetrically acquired bird geometry cour-
tesy Haibo Dong, Flow Simulation Research Group, University of Virginia [Ren
et al., 2016].

7.4 Flow Processing

A vorticity Clebsch map encodes vortex lines as level sets of s. This makes
it easy to “rearrange” the vortex lines through manipulating ψ (and thus
s), enabling a whole new class of flow processing approaches.

An example of this is post-composition ψ̃ B Ξ ◦ ψ with a map Ξ : S3 → S3.
Here we only consider maps Ξ with a corresponding ξ : S2 → S2 satisfying
π ◦ Ξ = ξ ◦ π. Under this assumption the modification of ψ corresponds to
a modification s̃ B ξ ◦ s of s.

An interesting example of ξ : S2 → S2 “wraps” S2 multiple times over itself
(Appendix 7.A gives an explicit example of a multiple, branched covering).
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Figure 7.9: Top: Jet simulation using RK4 backward advection and MacCormack
time marching. Middle: the same scheme with an additional flow processing step
(Section 7.4) at an earlier time to represent finer vortical structures aligned with
coarse ones. Bottom: the result of adding isotropic turbulence at an earlier step.
All simulations on a 256 × 128 × 128 grid while the Clebsch map finder used a
resolution of 64 × 32 × 32 (due to performance reasons) which was interpolated to
the high resolution grid.

The number of times ξ wraps around S2 is called the mapping degree

mξ B
Area(ξ (S2))

Area(S2)
where Area(·) computes the signed area with multiplicity. The mapping
degree mξ shows up as a renormalization when reading off the processed
velocity η̃ B }

mξ
〈 dψ̃, iψ〉, ensuring the overall vorticity flux remains un-

changed.

In Fig. 7.9 we modify a velocity field at a single frame of a jet simulation
by Algorithm 6 with a degree four map ξ = ξmobius ◦ ξtetra (Appendix 7.A).
This particular modification cascades each vortex into four finer ones, and
then concentrates the vorticity in the fine scale as shown in Fig. 7.10. Effec-
tively this adds small eddies aligned with the large scale vortex direction in
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Algorithm 6 Flow Processing

Input: η0, }, Ξ
ψ ← Find Clebsch map (η0,})
ψ̃ ← Ξ ◦ ψ
η̃ ← }

mξ
〈 dψ̃, iψ̃〉

return PressureProject
(
η̃
)

Figure 7.10: A Clebsch map s (left) obtained from the velocity data of a jet
simulation is modified (right) by s̃ = ξ ◦ s with a sphere map ξ : S2 → S2 that
effectively concentrates vorticity. This flow processing is used for Fig. 7.9 middle.

a vorticity conserving fashion (Fig. 7.9, middle) as predicted by the Kelvin-
Helmholtz instability that is otherwise not captured at the current reso-
lution of the simulation (top) or by adding isotropic turbulence [Bridson
et al., 2007] (bottom).

7.A Rational Maps for Flow Processing

Any map ξ : S2 → S2 can be written as a function on the extended complex
plane by identifying S2 � C∪ {∞} through stereographic projection s 7→ ζ =

s2

1−s1

+
s3

1−s1

i and its inverse s = (1 + |ζ |)−1(−1 + |ζ |, 2 Re ζ ,−2 Re(iζ )). Simi-
larly, each map Ξ : S3 → S3 is a map Ξ : C2 → C2, Ξ(ζ1, ζ2) = (Q1(ζ1, ζ2), Q2(ζ1, ζ2))
where ζ1, ζ2 ∈ C. Thus designing a sphere map for Section 7.4 amounts to
finding functions ξ on the extended complex plane and Ξ on C2 so that
π ◦ Ξ = ξ ◦ π.

For our purpose good candidates for ξ are the rational functions ξ (ζ ) =
P1(ζ )(P2(ζ ))−1 where P1, P2 are polynomials without common divisor. Ra-
tional functions give all the conformal maps S2 → S2. The mapping degree
mξ is given by max{deg(P1), deg(P2)}. For each rational function ξ a func-
tion Ξ = (Q1, Q2) with π ◦Ξ = ξ ◦ π is easily found with both Q1, Q2 : C2 → C

homogeneous polynomials: ξ (ζ ) = Q1(ζ , 1)(Q2(ζ , 1))−1. Simple examples
are scaling, ξmobius(ζ ) = aζ ,
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Figure 7.11: A degree-4 rational map on S2 visualized with a world map texture.

corresponding to Ξmobius(ζ1, ζ2) = (aζ1, ζ2), and squaring ξsq(ζ ) = ζ2 with
Ξsq(ζ1, ζ2) = (ζ2

1
, ζ2

2
). Belyi gave a gallery of functions that have particular

discrete symmetries. For instance,

Ξtetra(ζ1, ζ2) = *
,

2

√
2ζ

4

2
+ 8ζ

3

1
ζ2

2

√
2ζ

4

1
− 8ζ1ζ

3

2

+
-

gives ξtetra that maps the four vertices of a tetrahedron on S2 to the same
point [Magot and Zvonkin, 2000]. Fig. 7.11 shows the result of applying
ξtetra to a world map on S2.

To randomize the choice of the scrambling map with rotational symmetry,
given a desired mapping degree m, one can choose Ξ = (Q1, Q2) with

Q j (ζ1, ζ2) =
m∑

k=0

Z j k
√

k !(m − k)!
ζ k

1
ζm−k

2

where Z j k ∈ C are independent, normally distributed random numbers for
j = 1, 2 and k = 0 . . .m [Woit, 2017, Sec. 8.2].
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C h a p t e r 8

EULER EQUATION WITH GEOMETRIC CLEBSCH
VARIABLES

In Part II (Chapter 3–7), we introduced geometric Clebsch variables encod-
ing a fluid state (a velocity 1-form η on a fluid domain M) through function
maps into a prequantization.

In this chapter, we move on to the discussion on the time evolution equa-
tions for these Clebsch variables.

A Summary of Geometric Clebsch Maps

Let us briefly recall what a prequantization is. One first prescribes a
principal bundle Q

π
−→ Σ over a symplectic manifold (Σ,σ). The struc-

ture group for the bundle Q is a one-dimensional Lie group written as
G = {exp(iϕ) | ϕ ∈ R}. Here i : R

�
−→ g where g is the Lie algebra of G.

Each Lie group element acts on G in a way that the orbits are exactly the
fibers

{
π−1{p} | p ∈ Σ

}
. The generator of the group action is a vector field

V ∈ Γ(TQ), tangent to each fiber, given by Vq =
d
dt

���t=0

exp(it) · q. Upon the
prescription of the bundle Q, we further request a 1-form ϑ ∈ Ω1(Q) so that
dϑ = π∗σ. As a normalization, we also impose ϑ(V ) = 1. The structure
(Q, ϑ)

π
−→ (Σ,σ) meeting the above conditions is called a prequantization.

Now, a velocity Clebsch variable is a map ψ : M → Q that represents the
velocity 1-form η by η = ψ∗ϑ. A velocity Clebsch variable also gives rise
to a vorticity Clebsch variable s : M → Σ by function composition s = π ◦ ψ.
The vorticity Clebsch variable represents the vorticity 2-form ω = dη as
ω = s∗σ.

The above definition of geometric Clebsch maps is a coordinate-free gener-
alization to Clebsch’ original proposal where Q = R2m+1, Σ = R2m, ϑ =
〈x, dy〉 + dz and σ = 〈 dx ∧ dy〉. In addition, the notion of geometric
Clebsch maps unifies the Madelung transform for multi-component wave-
functions. We focus on the spherical Clebsch maps where Q = S3 ⊂ H

with inclusion map f : S3 ↪→ H, Σ = S2, ϑ = }〈i f , df 〉, π = f i f , and
σ = }

2
σS2 where σS2 is the standard area form on S2. In particular η =
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ψ∗ϑ = }〈iψ, dψ〉 is Madelung’s representation for the velocity, and s = ψiψ

is the spin (Bloch) vector.

8.1 Symplectic Manifolds for Incompressible Flows

In this section we describe the symplectic structure for the space of geomet-
ric Clebsch maps that give rise to incompressible flows. This is the prepa-
ration for describing the Hamiltonian formulation for the Euler equation
in the next section.

An arbitrary function ψ : M → Q can represent a 1-form η = ψ∗ϑ on M .
However, to talk about incompressible fluids, we only need those velocity
1-forms that are solenoidal. To narrow down to incompressible Clebsch
maps, we recall Section 4.5. As a summary, define the equivalence relation
∼ on C∞(M ; Q) as that ψ ∼ ψ̃ if and only if ψ̃ = exp(iϕ)ψ for some ϕ ∈

C∞(M ; R). Then define

M B C∞(M ; Q)/∼.

By Theorem 4.2 (Section 4.5), or its special case Corollary 4.1, each equiva-
lence class [ψ] ∈ M admits a representative ψ so that η = ψ∗ϑ is solenoidal
and satisfies a prescribed in-flow/out-flow boundary conditions. Such a
representative ψ is unique up to a constant phase shift ψ 7→ exp(iϕ0) · ψ,
and the associated solenoidal η is unique.

Since each element [ψ] ∈ M exactly represents a solenoidal velocity 1-form
η (meeting the boundary conditions), we use M as the phase space of the
fluid dynamical system. In fact, M is a symplectic manifold.

Let us begin with some notations. Let ψt be a t-dependent function on
C∞(M ; S3) and let ψ̇ = ∂

∂t
���t=0

ψt ∈ TψC∞(M ; S3) be a variation about ψ0. Then
we denote the induced variation on M by

[ψ̇]∗ B
∂
∂t

���t=0

[ψt ] ∈ T[ψ0]M.

The notation [·]∗ is the pushforward of the quotient map [·] : C∞(M ; S3) →
M.

To introduce the symplectic structure on M, it is convenient to first look at
the space of vorticity Clebsch maps

S B C∞(M ; Σ).
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Using the symplectic structure σ of Σ, we have a symplectic structure on
the function space S. At each s ∈ S, given two variations ṡ, s̊ ∈ TsS, define

σS (ṡ, s̊) B
∫

M
σ (ṡ, s̊)? 1.

Here ṡ, s̊ are sections of the pullback bundle s∗TΣ, i.e. TΣ-valued functions
with ṡ(x), s̊(x) ∈ Ts(x)Σ. The expression σ(ṡ, s̊) in the integrand is a real-
valued function on M , whose value at x ∈ M is given by σ |s(x) (ṡ(x), s̊(x)).

We will use the symplectic structure σS on S to define a symplectic struc-
ture σM on M.

Note that there is a natural projection Π : M → S defined by that for each
[ψ] ∈ M,

Π
(
[ψ]

)
= π ◦ ψ

where ψ is any representative of the equivalence class [ψ]. Though the
definition Π involves a choice of representative, it is well-defined since
π ◦ (exp(iϕ)ψ) = π ◦ψ using the fact that the group action exp(iϕ)· preserves
the fibers of Q

π
−→ Σ.

Now for s = Π
(
[ψ]

)
, any variation [ψ̇]∗ ∈ T[ψ]M induces a variation ṡ ∈ TsS

through the tangent map of Π, i.e. ṡ = dΠ
(
[ψ̇]∗

)
. Written explicitly in

terms of a representative, if a variation ψ̇ gives rise to a variation [ψ̇]∗ in its
equivalence class, then ṡ = dΠ

(
[ψ̇]∗

)
= dπ

(
ψ̇
)
. Now define for every two

variations [ψ̇]∗ , [ψ̊]∗ ∈ T[ψ]M

σM
(
[ψ̇]∗ , [ψ̊]∗

)
= σS

(
dΠ

(
[ψ̇]∗

)
, dΠ

(
[ψ̊]∗

))
= σS (ṡ, s̊)

as the symplectic form on M.

With this construction of σM, we only need to check σM is non-degenerate.
Since σS is non-degenerate, the non-degeneracy of σM amounts to the
non-degeneracy of dΠ. Suppose dΠ is degenerate; that is, there exists
a variation [ψ̇]∗, given rise from a variation of a representative ψ̇, so that
ṡ = dΠ

(
[ψ̇]∗

)
= dπ

(
ψ̇
)
= 0. But dπ

(
ψ̇(x)

)
= 0 implies that ψ̇(x) ∈ Tψ(x)Q

is vertical, so for each x ∈ M there exists ϕ(x) ∈ R such that ψ̇(x) =
ϕ(x)V |ψ(x). With it we can generate a path, parameterized by t ∈ [−ε, ε],
ψt (x) = exp(iϕ(x)) ·ψ(x) that recovers the variation ψ̇ = ∂

∂t
���t=0

ψt . Clearly the
corresponding variation in its equivalence class ∂

∂t [ψt ] =
∂
∂t [ψ] = 0. There-

fore, dΠ is non-degenerate, and thus σM is non-degenerate.
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Summary In this section, we defined the infinite dimensional manifold M

as the space of states for incompressible flows. We also found a symplectic
form σM on M. To show that the given symplectic structure is useful, we
next demonstrate that it gives rise to the Euler equation.

8.2 Hamiltonian Formulation for the Euler Equation

Here we present that the Euler equation is the symplectic gradient flow of
the following Hamiltonian on M:

EEuler : M→ R, EEuler
(
[ψ]

)
=

∫
M

1

2
η ∧?η

where η = ψ∗ϑ is the unique solenoidal 1-form for the equivalence class
[ψ]. Physically, EEuler is the total kinetic energy.

Theorem 8.1. Under the symplectic gradient flow of EEuler on (M,σM), the vor-
ticity Clebsch map s = Π

(
[ψ]

)
satisfies

ṡ +Lu s = 0 (8.1)

where u = η] is the velocity vector field.

Proof. Let us take the variation of EEuler with respecto to a variation ψ̊ about
a representative ψ ∈ [ψ] that expresses the solenoidal velocity η = ψ∗ϑ:

E̊Euler =

∫
M
η̊ ∧?η.

Now, since η = ψ∗ϑ, its variation is given by

η̊ = d
(
ψ∗ ιψ̊ϑ

)
+ ψ∗ ιψ̊ dϑ

= d
(
ϑ

(
ψ̊
))
+ ψ∗ ιψ̊π

∗σ

= d
(
ϑ

(
ψ̊
))
+ ψ∗π∗ ι dπ(ψ̊)σ

= d
(
ϑ

(
ψ̊
))
+ s∗ ιs̊σ.

Therefore, using integration by parts we have

E̊Euler =

∫
M

d
(
ϑ

(
ψ̊
))
∧?η + s∗ ιs̊σ ∧?η

= −

∫
M
ϑ

(
ψ̊
)
∧ d ?η︸︷︷︸

=0

+ ιus∗ ιs̊σ? 1

=

∫
M
σ (s̊, ds(u))? 1

= σS (s̊, ds(u)) C σM
(
[ψ̊]∗, sgradEEuler

)
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That is, the symplectic gradient, sgradEEuler, satisfies

dΠ
(
sgradEEuler

)
= ds(u) = Lu s.

Now, suppose [ψ] evolves under the symplectic gradient flow

[ψ̇]∗ = − sgradEEuler.

Then by applying dΠ to both sides of the equation, we obtain

ṡ = −Lu s.

�

The evolution equation (8.1) for the vorticity Clebsch map can then be used
to show that η satisfies the Euler Equation.

Theorem 8.2. Under the symplectic gradient flow of EEuler on (M,σM), the ve-
locity 1-form η satisfies

η̇ +Lu η = − dp

for some exact 1-form dp.

Proof. Along the time-dependent [ψ], let ψ be a representative of [ψ] so that
η = ψ∗ϑ is the solenoidal 1-form. Now take the time derivative of η

η̇ = d
(
ψ∗ ιψ̇ϑ

)
+ ψ∗ ιψ̇ dϑ

= d
(
ϑ(ψ̇)

)︸  ︷︷  ︸
C−p̃

+ψ∗ ιψ̇π
∗σ

= − dp̃ + ψ∗π∗ ι dπ(ψ̇)σ

= − dp̃ + s∗ ιṡσ.

By Theorem 8.1, s satisfies ṡ = −Lu s = − ds(u). Therefore,

η̇ = − dp̃ − s∗ ι ds(u)σ

= − dp̃ − ιus∗σ

= − dp̃ − ιu dη

= − dp̃ + d
(
|u|2

)︸             ︷︷             ︸
C− dp

−Lu η.

�
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8.3* Gauge Symmetries from Hamiltonian Group Actions on Σ

A physically observed fluid state is a solenoidal 1-form η, which is de-
termined by the vorticity ω = dη and the harmonic component of η. As
we represent these physical quantities using Clebsch variables, we have
introduced additional gauge symmetries. For example, the vorticity is rep-
resented as ω = s∗σ. If we post-compose s by a symplectomorphism
τ : Σ → Σ, τ∗σ = σ, then (τ ◦ s)∗σ = s∗τ∗σ = s∗σ = ω still represents the
same physically observed vorticity. When the domain M and the space Σ
have non-trivial topology, invariance of vorticity itself may not be enough.
In this section, we discuss the gauge symmetries in the fluid system rep-
resented by Clebsch variables with general topology, and their associated
conserved quantities.

Hamiltonian Group Actions on Σ

We begin with the group Symp(Σ,σ), the group of symplectic diffeomor-
phisms (i.e. symplectomorphisms) acting on Σ. That is, each element τ ∈
Symp(Σ,σ) is a smooth map τ : Σ → Σ that satisfies τ∗σ = σ. Let symp(Σ,σ)
be the Lie algebra associated to Symp(Σ,σ). Then the condition τ∗σ = σ

for τ ∈ Symp(Σ,σ) can be described infinitesimally by

LX ξ σ = 0 for all ξ ∈ symp(Σ,σ)

where X ξ is the tangent vector field on Σ generated by ξ, i.e. for each p ∈ Σ,
X ξ (p) B ∂

∂t
���t=0

exp(tξ) · p. Since 0 = LX ξ σ = d ιX ξσ + ιX ξ dσ = d ιX ξσ, one
sees that ιX ξσ is always closed.

In the case that ιX ξσ is not only closed but also exact, the vector field
X ξ is said to be Hamiltonian. The Lie algebra elements ξ ∈ symp(Σ,σ)
that produce Hamiltonian vector fields X ξ form a subalgebra ham(Σ,σ) ⊂
symp(Σ,σ). And ham(Σ,σ) generates the group of Hamiltonian group ac-
tions Ham(Σ,σ) ⊂ Symp(Σ,σ). See [Polterovich, 2012] for more discussion
on the groups Symp(Σ,σ) and Ham(Σ,σ).

Moment Map

For each ξ ∈ ham(Σ,σ), ιX ξσ is exact. Therefore for each ξ there exists
a function Uξ : Σ → R so that dUξ = ιX ξσ. In fact, the values of Uξ can
be chosen so that they are linear in ξ ∈ ham(Σ,σ). That is, there is a
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ham∗(Σ,σ)-valued function

µΣ : Σ → ham
∗(Σ,σ)

that expresses Uξ as Uξ
��p =

〈
µΣ��p, ξ

〉
, where 〈·, ·〉 denotes the pairing be-

tween ham∗(Σ,σ) and ham(Σ,σ). In other words, µΣ satisfies

d
〈
µΣ, ξ

〉
= ιX ξσ. (8.2)

(In some context µΣ is further required to be equivariant under the co-
adjoint actions of Ham(Σ,σ) on ham∗(Σ,σ)). A function µΣ : Σ → ham∗(Σ,σ)
satisfying (8.2) is called a moment map.

The values of a moment map 〈µΣ, ξ〉, or simply Uξ , are the possible con-
served quantities associated to ξ ∈ ham(Σ,σ).

Noether’s Invariants

Although our dynamical system happens on function spaces M and S, in
order to make a simpler explanation of Noether’s invariants, let us consider
dynamical systems on the finite dimensional space Σ. Suppose H : Σ → R

is a Hamiltonian giving rise to the Hamiltonian flow on (Σ,σ)

ṗ = − sgrad H ���p

for time-dependent p on Σ. Here the symplectic gradient sgrad H is defined
by dH = σ

(
·, sgrad H

)
. Now, suppose the Hamiltonian H is invariant

under a Hamiltonian group action, i.e. there is ξ ∈ ham(Σ,σ) so that

LX ξ H = 0.

Then under the Hamiltonian flow ṗ = − sgrad H the value Uξ =
〈
µΣ, ξ

〉
is

an integral of motion.

To see this, take the time derivative of Uξ . Using the fact that dUξ = ιX ξσ

we have

U̇ξ = dUξ
(
ṗ
)
= − dUξ

(
sgrad H

)
= −

(
ιX ξσ

) (
sgrad H

)
= −σ

(
X ξ , sgrad H

)
= dH

(
X ξ

)
= LX ξ H = 0.

Therefore Uξ is conserved along the Hamiltonian flow of H whenever H

has the symmetry LX ξ H = 0.
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Hamiltonian Group Actions on S

Our dynamical system for fluids happens on the symplectic manifold (M,σM),
whose symplectic structure is given by (S,σS). We have seen that Hamil-
tonian group actions on Σ have an associated moment map that repre-
sents the candidates for conserved quantities. These notions on (Σ,σ) can
be carried along to (S,σS). As a quick reminder, note that S consists of
functions s mapping into Σ, and the symplectic structure σS is given by
σS(ṡ, s̊) =

∫
M σ(ṡ, s̊)? 1.

Now, each Hamiltonian group action τ ∈ Ham(Σ,σ) gives rise to a sym-
plectomorphism on (S,σS) by post-composition. Explicitly, let us denote
j : Ham(Σ,σ) ↪→ Symp(S,σS) defined by that for each τ ∈ Ham(Σ,σ), the
action j (τ) : S→ S is given by

j (τ) · s B τ ◦ s, s ∈ S.

Here we check that j (τ) is indeed a symplectomorphism. For each ṡ, s̊ ∈

TsS, by chain rule the resulting variations mapped by the tangent map of
the action j (τ) are

d
(

j (τ)·
)

(ṡ) = dτ(ṡ), d
(

j (τ)·
)

(s̊) = dτ(s̊).

Therefore, ( (
j (τ)·

)∗ σS
)
(ṡ, s̊) = σS

(
d

(
j (τ)·

)
ṡ, d

(
j (τ)·

)
s̊
)

=

∫
M
σ ( dτ(ṡ), dτ(s̊))? 1

=

∫
M
σ(ṡ, s̊)? 1 = σS(ṡ, s̊).

Next, we show that elements of j (Ham(Σ,σ)) are not only symplectomor-
phisms on S but furthermore Hamiltonian actions. That is, j (Ham(Σ,σ)) ⊂
Ham(S,σS). We show it by directly constructing the associated moment
map for j (Ham(Σ,σ)).

Let j∗(ham(Σ,σ)) ⊂ symp(S,σS) be the Lie algebra for j (Ham(Σ,σ)) ex-
pressed by pushforwards. Let ⟪·, ·⟫ be the pairing between j∗(ham(Σ,σ))
and its dual space.
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Theorem 8.3. The map

µS : S→
(

j∗(ham(Σ,σ))
)∗

,

⟪µS, j∗ξ⟫ B
∫

M
s∗

〈
µΣ, ξ

〉
? 1, for ξ ∈ ham(Σ,σ),

is a moment map for the symplectomorphisms j (Ham(Σ,σ)), which are therefore
Hamiltonian actions.

Proof. We need to check that the variation of ⟪µS, j∗ξ⟫ with respect to a
variation s̊ ∈ TsS is σS

(
X j∗ξ , s̊

)
. Here, the vector X j∗ξ ���s ∈ TsS is given by the

variation

X j∗ξ ���s =
∂
∂t

���t=0

(
j (exp(tξ)) · s

)
= ∂

∂t
���t=0

((
exp(tξ) ·

)
◦ s

)
= X ξ ◦ s.

Now let us take the variation of ⟪µS, j∗ξ⟫ =
∫

M s∗
〈
µΣ, ξ

〉
? 1:

⟪µS, j∗ξ⟫̊ =
∫

M
s∗ ιs̊

(
d
〈
µΣ, ξ

〉)
? 1

=

∫
M

s∗
(
ιs̊ ιX ξσ

)
? 1

=

∫
M
σ

(
X ξ ◦ s, s̊

)
? 1

= σS
(
X j∗ξ , s̊

)
.

�

Corollary 8.1. Suppose E : S→ R is a Hamiltonian with the symmetry that E̊ =
0 under the variation s̊ = X ξ ◦ s for some ξ ∈ ham(Σ,σ). Then

∫
M s∗

〈
µΣ, ξ

〉
? 1

is an integral of motion under the Hamiltonian flow of E on (S,σS).

Proof. It follows from Noether’s invariants. �

Corollary 8.2. Let E : M → R be a Hamiltonian defined on M, and let ξ ∈
ham(Σ,σ). Suppose E has the symmetry that E̊ = 0 under any variation [ψ̊]∗
satisfying s̊ = dΠ

(
[ψ̊]∗

)
= X ξ ◦ s. Then∫

M
s∗

〈
µΣ, ξ

〉
? 1

is an integral of motion under the Hamiltonian flow of E on (M,σM).



109

Gauge Invariance

Now we show that EEuler has the symmetry described in Corollary 8.2.

Theorem 8.4 (Gauge invariance). Suppose η is the solenoidal 1-form associated
to a given [ψ] ∈ M. Then for every ξ ∈ ham(Σ,σ), η is invariant under any
variation [ψ̊]∗ with dΠ

(
[ψ̊]∗

)
= X ξ ◦ s.

Proof. Let η̃ = ψ∗ϑ be the velocity 1-form given by any representative ψ ∈
[ψ]. That is, η̃ = η + dϕ for some ϕ : M → R where η is the solenoidal 1-
form associated to [ψ]. Now take a variation ψ̊ such that the corresponding
variation s̊ = dπ(ψ̊) is s̊ = X ξ ◦ s. Then the variation in η̃ = ψ∗ϑ is

˚̃η = d
(
ψ∗ ιψ̊ϑ

)
+ ψ∗ ιψ̊ dϑ

= d
(
ϑ(ψ̊)

)
+ ψ∗ ιψ̊π

∗σ

= d
(
ϑ(ψ̊)

)
+ ψ∗π∗ ι dπ(ψ̊)σ

= d
(
ϑ(ψ̊)

)
+ s∗ ιs̊σ

= d
(
ϑ(ψ̊)

)
+ s∗ ιX ξσ.

Now using the moment map we have ιX ξσ = d〈µΣ, ξ〉. Therefore

˚̃η = d
(
ϑ(ψ̊) + s∗

〈
µΣ, ξ

〉)
.

That is, η̃ stays in the same cohomology class under such a variation. Thus
the solenoidal representative η stays invariant. �

Remark 8.1. Theorem 8.4 is true for ξ ∈ ham(Σ,σ) but not for ξ ∈ symp(Σ,σ)
in general. For example, if ιX ξσ is closed but not exact on Σ, then

˚̃η = d
(
ϑ(ψ̊)

)
+ s∗ ιX ξσ

leaves the cohomology class. The effect of such a variation is that the vorticity field
dη still stays invariant, but the circulations

∫
Γ
η along global loops Γ do not.

One the other hand, if any of M and Σ is simply-connected, then Theorem 8.4
holds for all ξ ∈ symp(Σ,σ).

Corollary 8.3 (Conservation Laws associated with the Gauge Invariance).
When an Euler fluid flow is formulated as a Hamiltonian flow of EEuler

(
[ψ]

)
=

1

2

∫
η ∧?η on (M,σM), (η is the solenoidal 1-form associated to [ψ],)∫

M
U (s)? 1

is a conserved quantity for any smooth function U : Σ → R.
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Proof. By Corollary 8.2, the quantity
∫

M s∗
〈
µΣ, ξ

〉
? 1 is conserved for all

ξ ∈ ham(Σ,σ). By writing Uξ =
〈
µΣ, ξ

〉
: Σ → R, we see

∫
M Uξ (s) ? 1 is

conserved. Up to additive constants on connected components of Σ, the
function Uξ is characterized by its derivative dUξ = ιX ξσ. Now, allowing
ξ be arbitrary element in ham(Σ,σ) yields X ξ be arbitrary function Hamil-
tonian vector field. In particular dUξ can be the differential of an arbitrary
function on Σ. That is, for any smooth function U : Σ → R, there exists
ξ ∈ ham(Σ,σ) and some C : Σ → R constant per connected component of Σ,
so that U = Uξ +C. By the conservation of

∫
M Uξ (s) ? 1 and the continuity

of s with respect to time, we have the conservation of
∫

U (s)? 1. �

Note that Corollary 8.3 is also obvious from the evolution equation (8.1) for
s from Theorem 8.1. The equation ṡ +Lu s = 0 suggests that the values of
s is just being advected. Therefore the “statistics”

∫
M U (s)? 1 is conserved

for arbitrary U : Σ → R.

This section gives an insight that this conservation law of s is associ-
ated with the gauge invariance of the physical fluid state η under post-
composition of s by Hamiltonian group actions on Σ.

Such a relation between the conservation of s and the gauge invariance
was described in [Jerrold Marsden and Weinstein, 1983] with the classical
setting Σ = R2. since R2 is simply-connected, Marsden and Weinstein
describe the gauge group by Symp(R2,σR2 ). We clarify that the gauge
group should be narrowed down to Ham(Σ,σ) ⊂ Symp(Σ,σ) when Σ has
a more general topology.
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C h a p t e r 9

DYNAMICS OF ISF

In Section 1.4 we observe empirically that the incompressible Schrödinger
equation (1.3)




∂
∂tΨ = i }

2
∆Ψ − i 1

}pΨ

Re
(
Ψᵀi∆Ψ

)
= 0

(9.1)

generates dynamics similar to those of classical fluids. Here the time-
dependent function Ψ : M → C2 has |Ψ| = 1 at all point of space and
time. The (time-dependent) scalar function p : M → R gives infinitesi-
mal pressure projection in the time evolution so that Ψ is kept solenoidal
(Re

(
Ψᵀi∆Ψ

)
= 0). The physical velocity 1-form η is encoded in Ψ as

η = }Re
(
Ψᵀ(−i)dΨ

)
.

Using the identification between C2 and H, (see Section B.4,) we may
rewrite (9.1) in terms of ψ : M → S3 ⊂ H




∂
∂tψ = i }

2
∆ψ − i 1

}pψ

〈iψ,∆ψ〉 = 0

(9.2)

where 〈·, ·〉 is the real inner product of H � R4. The velocity 1-form is
given by η = }〈iψ, dψ〉. Such a representation for the velocity is a geometric

Clebsch representation. Specifically, Q = S3
f
↪→ H, ϑ = }〈i f , f 〉 ∈ Ω1(S3; R),

and η = ψ∗ϑ. Using the Hopf map (Section 4.3) π = f i f : S3 → S2, which
satisfies dϑ = π∗σ for σ = }

2
σS2 , the wavefunction ψ representation of

fluids also comes with a vorticity Clebsch map s = π ◦ ψ = ψiψ : M → S2.
In particular, ω = dη = s∗σ.

In (9.2), ∆ψ is the ordinary componentwise Laplacian for the H(� R4)-
valued function ψ. Note that ∆ψ is different from ∆S3

ψ, which is the projec-
tion

∆
S3

ψ = ∆ψ − 〈ψ,∆ψ〉ψ

so that the value of ∆S3

ψ is always tangent to S3 at ψ. Since ψ is naturally
regarded as an S3-valued function, it is more natural to discuss the intrinsic
Laplacian ∆S3

ψ. For those discussions, we replace the Laplacians in (9.2) by
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∆S3

by having the normal component 〈ψ,∆ψ〉ψ absorbed into the pressure
term, and by 〈iψ,ψ〉 = 0:




∂
∂tψ = i }

2
∆S3

ψ − i
(

1

}p − }
2
〈ψ,∆ψ〉

)
ψ〈

iψ,∆S3

ψ
〉
= 0.

(9.3)

9.1 Evolution of s

It is instructive to look at the evolution of the vorticity Clebsch variable s in
order to understand the dynamics underneath an incompressible Schrödinger
flow (ISF).

Theorem 9.1. If a time-dependent ψ : M → S3 satisfies (9.2), then s = ψiψ

satisfies
∂
∂t s +Lu s = }

2
s × ∆s. (9.4)

That is, s satisfies the Euler equation ∂
∂t s + Lus = 0 modified with a Landau-

Lifshitz equation ∂
∂t s = }

2
s × ∆s.

Proof. We give a quick derivation by applying Lemma 6.1 from Appendix 6.A.
Taking time derivative of s = ψiψ, we have

ṡ = 2 Im
(
ψiψ̇

)
= 2 Im

(
ψi

(
i }

2
∆ψ − i 1

}pψ
))
= −} Im

(
ψ∆ψ

)
.

Now by taking the imaginary part of Lemma 6.1 with η0 = 0, and with
div(u) = 0, we have

ṡ = −}
(
−1

2
s × ∆s + 1

} Lu s
)
= −Lu s + }

2
s × ∆s.

�

In Section 9.4, we will further derive the evolution of the velocity η using
(9.4). In Chapter 10 we will discuss the effect of the Landau-Lifshitz term
}
2

s × ∆s in the modified Euler equation (9.4). It turns out that the Landau-
Lifshitz term regularizes the Euler equation in a way that the motion of
vortex filaments (in the case when M is 3D) are “enhanced” with an addi-
tional localized induction. The latter phenomenon is used to explain the
benchmark reproduction of the leapfrogging vortex rings (Figure 1.1) even
on a coarse computation grid.
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Before going down that path, let us rederive the equivalence (9.3) and (9.4)
in a Hamiltonian picture. The Hamiltonian formulation is important for a
generalization for ISF presented in 9.3, where s satisfies

∂
∂t s +Lu s = ε2}

2
s × ∆s

where ε is a parameter controlling the amount of the Landau-Lifshitz per-
turbation while keeping the parameter } fixed.

9.2 Hamiltonian Formulation of ISF

The state ψ of ISF is a function ψ : M → S3 whose associated velocity η =

ψ∗ϑ is solenoidal. Such a ψ is uniquely determined (up to a global phase)
by the equivalence class [ψ] as a member in M. In this section we will
describe ISF as a Hamiltonian system on the symplectic manifold M.

Recall that the symplectic structure σM is given by

σM
(
[ψ̇]∗ , [ψ̊]∗

)
= σS (ṡ, s̊) =

∫
M
σ(ṡ, s̊)? 1

for each pair of variations [ψ̇]∗ , [ψ̊]∗ ∈ T[ψ]M. Note that using ψ̇, ψ̊ ∈
TψC∞(M ; S3) that represent [ψ̇]∗ and [ψ̊]∗, we have ṡ = dπ(ψ̇) and s̊ = dπ(ψ̊).
Thus one may also express

σM
(
[ψ̇]∗ , [ψ̊]∗

)
=

∫
M
σ(ṡ, s̊)? 1

=

∫
M

(π∗σ)(ψ̇, ψ̊)? 1 =

∫
M

( dϑ)(ψ̇, ψ̊)? 1.

On S3, ϑ = }〈i f , df 〉 (where f : S3 ↪→ H), and so dϑ = }〈id f ∧ df 〉. There-
fore

σM
(
[ψ̇]∗, [ψ̊]∗

)
=

∫
M
}

(
〈iψ̇, ψ̊〉 − 〈iψ̊, ψ̇〉

)
? 1 =

∫
M

2}〈iψ̇, ψ̊〉? 1.

Now, we may rewrite ISF (9.3) as the following flow on M




[ψ̇]∗ = [i }
2
∆S3

ψ]∗,

ψ ∈ [ψ] is the solenoidal representative.
(9.5)

by applying [·]∗ to (9.3). This flow can then be characterized by the follow-
ing Hamiltonian flow.
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Theorem 9.2. The incompressible Schrödinger flow (9.5) is the Hamiltonian flow
on M with respect to the Hamiltonian EISF : M→ R

EISF
(
[ψ]

)
B

∫
M

}2

2
| dψ |2? 1

where ψ is a representative (which is unique up to constant phase and therefore
EISF is well-defined) of [ψ] such that η = ψ∗ϑ is solenoidal.

Proof. To derive the Hamiltonian flow of EISF we take its variation with
respect to a variation [ψ̊]∗ ∈ T[ψ]M. We consider a representative (ψ, ψ̊) ∈
TC∞(M ; S3) so that η = ψ∗ϑ is solenoidal. Note that ψ̊ can be replaced
arbitrarily by the form ψ̊ + i

}pψ, where p : M → R is arbitrary, since [ψ̊ +
i
}pψ]∗ = [ψ̊]∗. Under such a variation,

E̊ISF =

∫
M
}2

〈
dψ̊ ∧? dψ

〉
= −

∫
M
}2

〈
ψ̊, d∇? d︸  ︷︷  ︸

?∆S3

ψ
〉

using integration by parts. We ignore the boundary term by considering
only interior variations. Here d∇ is the covariant exterior derivative for
TS3-valued (n − 1)-form ? dψ using the Levi-Civita connection on TS3. To
match an expression with the symplectic form σM, we write

E̊ISF = −

∫
M
}2

〈
ψ̊,∆S3

ψ
〉
? 1

=

∫
M
}2

〈
iψ̊,−i∆S3

ψ
〉
? 1

= }
2
σM

(
[ψ̊]∗, [ − i∆S3

ψ]∗
)

.

That is,

sgradEISF = −
}
2
[i∆S3

ψ]∗.

Therefore the symplectic gradient flow [ψ̇]∗ = − sgradEISF gives (9.5).

�

Next, we recall (Eq. (6.6) in Section 6.5 with η0 = 0) that dψ has the orthog-
onal splitting

dψ = 1

}ηiψ − 1

2
iψ ds.
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In particular,

| dψ |2 = 1

}2
|u|2 + 1

4
| ds |2 (9.6)

Therefore, the energy EISF can be split into

EISF
(
[ψ]

)
=

∫
M

1

2
|u|2? 1︸         ︷︷         ︸

EEuler([ψ])

+

∫
M

}2

8
| ds |2? 1︸             ︷︷             ︸

CELL([ψ])

. (9.7)

Theorem 9.3. Define for each [ψ] ∈ M the Landau-Lifshitz energy

ELL
(
[ψ]

)
=

∫
M

}2

8
| ds |2? 1.

Then under the Hamiltonian flow of ELL on (M,σM), s = Π
(
[ψ]

)
satisfies the

Landau-Lifshitz equation

ṡ = }
2

s × ∆s.

Proof. For a variation [ψ̊]∗ which gives rise to a variation s̊ ∈ TsS, the varia-
tion in the energy is given by

E̊LL =

∫
M

}2

4
〈 ds̊ ∧? ds〉

= −

∫
M

}2

4

〈
s̊, d∇? d︸  ︷︷  ︸

?∆S2

s
〉
.

Note that the symplectic form σS is given by that

σS(ṡ, s̊) =
∫

M
σ(ṡ, s̊)? 1 =

∫
M

}
2
σS2 (ṡ, s̊)? 1

=

∫
M

}
2
〈s, ṡ × s̊〉? 1 = −

∫
M

}
2
〈ṡ, s × s̊〉? 1.

So

E̊LL = −

∫
M

}2

4

〈
s̊,∆S2

s
〉
? 1

= −

∫
M

}2

4

〈
s̊,−s × (s × ∆s)

〉
? 1

= σS (s̊,−s × ∆s) .

Therefore dΠ
(
sgradELL

)
= −s × ∆s. Hence, by taking dΠ on both sides of

the symplectic gradient flow [ψ̇]∗ = − sgradELL we obtain

ṡ = }
2

s × ∆s.

�
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Corollary 9.1. By the orthogonal splitting (9.7), one observes that under an ISF
(which is the symplectic gradient flow of EISF according to Theorem 9.2), the vor-
ticity Clebsch variable s satisfies (9.4) as a consequence of Theorem 8.1 and Theo-
rem 9.3.

9.3 ISF with Berger Metric

In Section 9.1 we discover that under an ISF s satisfies a modified Euler
equation

ṡ +Lu s = }
2

s × ∆s.

The constant } appears to be the parameter for the perturbation of the
Landau-Lifshitz term. However, as we vary the parameter } with a fixed
state [ψ], we have a change not only in the coefficient in front of s ×∆s, but
also the value of u = η] = }(ψ∗ϑ)].

An ideal form for the Landau-Lifshitz-modified Euler equation would be

ṡ +Lu s = ε2}
2

s × ∆s (9.8)

with an additional parameter ε ≥ 0 independent of }. In that case, one may
vary the parameter ε and leave the values of ψ, s,} and η intact. When ε = 0

(9.8) becomes the Euler equation. When ε = 1 it recovers ISF. When ε →

∞ the Landau-Lifshitz part dominates the dynamics, and (9.8) becomes a
Landau-Lifshitz equation after a proper time rescaling. For other values of
ε (9.8) gives a dynamics interpolating among the Euler equation, Landau-
Lifshitz equation, and ISF.

Now, using what we learn from Section 9.2, (9.8) is the symplectic gradient
flow of

EεISF
(
[ψ]

)
B EEuler

(
[ψ]

)
+ ε2ELL

(
[ψ]

)
=

∫
M

1

2
|u|2? 1 +

∫
M

ε2}2

8
| ds |2? 1. (9.9)

As introduced in Section 6.5 (with the special case η0 = 0) the energy EεISF
can be expressed using a Berger metric (6.7) on S3

EεISF
(
[ψ]

)
=

∫
M

}2

2
| dψ |2ε ? 1.

Hence we call the flow (9.8) a Berger-ISF.

Next we derive the evolution equation for ψ under a Berger-ISF.
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Lemma 9.1. Let ∇ηψ = dψ − i 1

}ηψ where η = ψ∗ϑ = u[ is solenoidal. Then

��∇ηψ��2 = 1

4
| ds |2. (9.10)

Proof. By direct expansion

��∇ηψ��2? 1 = Re
((

dψ − i 1

}ηψ
)
∧?

(
dψ − i 1

}ηψ
))

= Re
((

dψ + 1

}ηψi
)
∧?

(
dψ − i 1

}ηψ
))

= Re
(

dψ ∧? dψ
)
+ 2

1

}η ∧?Re
(
ψi dψ

)︸        ︷︷        ︸
−η/}

+ 1

}2
η ∧?η

= | dψ |2? 1 − 1

}2
|u|2? 1.

Finally, by (9.6), | dψ |2 − 1

}2
|u|2 = 1

4
| ds |2. �

Now, by Lemma 9.1,

}2

2

∫
M

��∇ηψ��2? 1 = ELL.

Hence we may rearrange the terms in (9.9) as

EεISF = EEuler + ε
2ELL

= EEuler + ELL︸         ︷︷         ︸
EISF

−(1 − ε2)ELL

= }2

2

∫
M
| dψ |2? 1 − (1 − ε2) }

2

2

∫
M

��∇ηψ��2? 1 (9.11)

By a similar derivation as in the proof of Theorem 9.2, the symplectic gra-
dient flow of EεISF on (M,σM) is characterized by the following evolution
of a solenoidal ψ




ψ̇ = i }
2
∆ψ − i(1 − ε2) }

2
∆ηψ − i 1

}pψ

〈iψ,∆ψ〉 = 0

(9.12)

Note that i∆S3

ψ in the proof of Theorem 9.2 is replaced by i∆ψ by letting
their difference absorbed into the i 1

}pψ term. A similar argument applies
to i(∆η )S3

.
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Now expand

∆
ηψ = −

(
d − i

}η∧
)† (

d − i
}η

)
ψ

=
(
? d ?− i

} ιu
) (

dψ − i
}ηψ

)
= ∆ψ − 2i 1

} Lu ψ −
1

}2
|u|2ψ − i

}
(
? d ?η

)︸     ︷︷     ︸
=0

ψ.

Hence the time evolution equation (9.12) becomes

ψ̇ = i }
2
∆ψ − i(1 − ε2) }

2
∆ψ − (1 − ε2) Lu ψ + i(1 − ε2) 1

2} |u|
2 − i 1

}pψ

= iε2 }
2
∆ψ − (1 − ε2) Lu ψ − i 1

}

(
p − (1 − ε2) |u|

2

2

)
ψ.

From here we conclude the following theorem.

Theorem 9.4. For each ε ≥ 0, the symplectic gradient flow of EεISF = EEuler +

ε2ELL on (M,σM) is described by




∂
∂tψ + (1 − ε2) Lu ψ = iε2 }

2
∆ψ − i 1

}

(
p − (1 − ε2) |u|

2

2

)
ψ

〈iψ,∆ψ〉 = 0

(9.13)

where u = η] = }〈iψ, dψ〉]. Under this flow, the vorticity Clebsch variable s =

ψiψ satisfies
∂
∂t s +Lu s = ε2 }

2
s × ∆s. (9.14)

Proof. See the derivation above. �

One may replace the pressure term
(
p − (1 − ε2) |u|2/2

)
by another scalar

function p̃ since the term serves only as the pressure projection. However,
we keep the expression for the following discussion.

When ε2 = 1, (9.13) becomes the incompressible Schrödinger equation. In
particular, the non-linear self-advection term Lu ψ vanishes. Importantly,
up to the pressure projection (which determines p) the equation is linear

∂
∂tψ = i }

2
∆ψ − i 1

}pψ.

Even so, the advection effect Lu s in the s equation (9.14) remains intact.

At this choice of parameter ε2 = 1, the pressure term consists only of p.
In the context of quantum mechanics, the term p is a physical potential
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defined on an Eulerian coordinate, as opposed to the Lagrangian pressure(
p − |u|2/2

)
seen from a Lagrangian coordinate.

When ε2 = 0, the first line of (9.13) becomes

∂
∂tψ +Lu ψ = −i 1

}

(
p − |u|

2

2

)
ψ. (9.15)

The vorticity Clebsch variable is purely advected by the velocity

∂
∂t s +Lu s = 0

and the phase of ψ is shifted in the rate of the Lagrangian pressure
(
p − |u|2/2

)
.

To see the Lagrangian nature of (9.15), consider the flow map φt generated
by u. Then on the Lagrangian coordinate, the pulled-back variables satisfy

∂
∂t

(
s ◦ φt

)
= 0, ∂

∂t
(
ψ ◦ φt

)
=

(
−i 1

}

(
p − |u|

2

2

)
ψ
)
◦ φt .

The latter implies that the pullback 1-form φ∗t η satisfies

∂
∂t

(
φ∗t η

)
= ∂

∂t
(
φ∗t ψ

∗ϑ
)
= ∂

∂t
(
(ψ ◦ φt )∗ϑ

)
= − d

((
p − |u|

2

2

)
◦ φt

)
and recovers Lagrange’s equation (2.14).

Remark 9.1. As ε is tuned from 0 to 1, the Euler equation represented by velocity
Clebsch map (9.15) blends into a Schrödinger equation. At the same time, the
pressure term changes from a Lagrangian pressure to an Eulerian pressure. Mean-
while, the evolution equation of s is modified by an increasing Landau-Lifshitz
term.

9.4 Momentum Equation

In this section, we derive the evolution equation for η under an incom-
pressible Schrödinger flow. To keep generality we consider a Berger-ISF
with parameter ε . Its evolution equation is given by (9.13), and the corre-
sponding evolution equation for s is given by (9.14). The original ISF is the
special case of ε = 1.

Theorem 9.5 (Momentum equation). Under the Berger-ISF (9.13), the velocity
1-form η satisfies

∂
∂t η +Lu η = −ε

2 }2

4
〈∆s, ds〉 − d

(
p − |u|

2

2
+ ε2 }2

8
| ds |2

)
, d ?η = 0, (9.16)

where s satisfies (9.14). In terms of the velocity vector u the momentum equation
is given by

∂
∂t u +∇uu = −ε2 }2

4
〈∆s, grad s〉 − grad

(
p + ε2 }2

8
| ds |2

)
, div u = 0. (9.17)
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Proof. To study the time evolution of η we take the time derivative to η =

ψ∗ϑ:

η̇ = d
(
ψ∗ ιψ̇ϑ

)
+ ψ∗ ιψ̇ ( dϑ) = d

(
ϑψ (ψ̇)

)
+ ψ∗ ιψ̇ (π∗σ)

= d
(
ϑψ (ψ̇)

)
+ ψ∗π∗ ιṡσ = d

(
ϑψ (ψ̇)

)
+ s∗ ιṡσ. (9.18)

Now we substitute (9.13) and (9.14) for ψ̇ and ṡ. Note that ϑψ (ψ̇) = }〈iψ, ψ̇〉,
and therefore

ϑψ (ψ̇) = −(1 − ε2) } 〈iψ,Lu ψ〉︸        ︷︷        ︸
}〈iψ, dψ〉(u)=|u|2

+ε2 }2

2
〈iψ, i∆ψ〉︸     ︷︷     ︸
〈ψ,∆ψ〉

−p + (1 − ε2) 1

2
|u|2

= −
(
p + (1 − ε2) |u|

2

2
− ε2 }2

2
〈ψ,∆ψ〉

)
.

Now, for the s∗ ιṡσ we have

s∗ ιṡσ = s∗ ι−Lu sσ + ε
2 }

2
s∗ ιs×∆sσ.

The first summand is

s∗ ι−Lu sσ = −s∗ ι ds(u)σ = − ιus∗σ = − ιu dη;

and the second summand can be written as

ε2 }
2

s∗ ιs×∆sσ = ε
2 }2

4
s∗ ιs×∆sσS2

= ε2 }2

4
〈s, (s × ∆s) × ds〉

= −ε2 }2

4
〈s × ∆s, s × ds〉

= −ε2 }2

4
〈∆s, ds〉.

Note that − ιu dη can be written as − ιu dη − d( ιuη) + d( ιuη) = −Lu η + d |u|2.
Combining the terms we obtain the evolution equation of η

∂
∂t η +Lu η = −ε

2 }2

4
〈∆s, ds〉 − d

(
p − (1 + ε2) |u|

2

2
− ε2 }2

2
〈ψ,∆ψ〉

)
.

Now apply Lemma 6.1 in Appendix 6.A (with η0 = 0) to get

−ε2 }2

2
〈ψ,∆ψ〉 = −ε2 }2

2
Re

(
ψ∆ψ

)
= ε2 1

2
|u|2 + ε2 }2

8
| ds |2.

Therefore

∂
∂t η +Lu η = −ε

2 }2

4
〈∆s, ds〉 − d

(
p − |u|

2

2
+ ε2 }2

8
| ds |2

)
.

�

The actual modifying term in momentum equation (9.16) that differs from
the Euler equation is −ε2 }2

4
〈∆s, ds〉. The exact differential term − d(p −

|u|2/2 + ε2}2/8| ds |2) is determined by the incompressibility constraint.
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9.5 ISF in Advection Form

In this section, we transform both (9.14) and (9.16) into alternative expres-
sions that may provide more insight in their dynamics. In the end of this
section, we will obtain that the equations of motion are given by pure ad-
vections




∂
∂t η +Lûη = − dp̃, d ?η = 0,
∂
∂t s +Lû s = 0

with a suitably chosen vector field û perturbed from u = η].

The transformation we will make requires s : M → S2 be a submersion. Let
us briefly state the requirement.

Consider that the dimension of the domain dim(M) ≥ dim(S2) = 2. Let
s : M → S2 be a smooth map. A point x ∈ M is called a regular point if
the linear map ds |x : Tx M → Ts(x)S

2 has full rank dim(S2) = 2. The map s

is said to be a submersion on an open set U ⊂ M if every point in U is a
regular point.

For each regular point x ∈ M , consider the pseudo-inverse ( ds−1)x defined
such that

1. ( ds)x ◦ ( ds−1)x is the identity map on Ts(x)S
2, and

2. im( ds−1)x ⊂ Tx M is the orthogonal complement of ker( ds)x .

The second condition is equivalent to that im( ds−1) is orthogonal to the
vortex directions (subspace) {w ∈ Tx M | ιwω = 0}. The first condition allows
us to perform commutation of pullback and interior product with the aid
of the pseudo-inverse

s∗ ιs̊α = ι ds−1(s̊)s∗α

for each s̊ ∈ Γ(s∗TS2) (i.e. s̊(x) ∈ Ts(x)S
2) and α ∈ Ωk (S2).

Remark 9.2. The target space S2 can be replaced by a general manifold Σ (with
dim(Σ) ≤ dim(M)) and the above definitions and arguments still follow.

Theorem 9.6. Under a Berger-ISF (9.13) with parameter ε , at each regular point
of s on M the velocity 1-form η and s satisfy




∂
∂t η +Lûη = − dp̃, d ?η = 0,
∂
∂t s +Lû s = 0

(9.19)
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where

û B u − ε2 }
2

ds−1 (s × ∆s) . (9.20)

Proof. Recall that under a Berger-ISF (9.13), s satisfies Equation (9.14)

ṡ +Lus = ε2 }
2

s × ∆s.

By inserting an identity ( ds) ◦ ( ds−1) on the right-hand side, we have

ṡ +Lus = ε2 }
2

ds
(

ds−1(s × ∆s)
)

= ε2 }
2
L ds−1(s×∆s) s.

Therefore, using (9.20) we obtain

ṡ +Lû s = 0.

For the velocity equation, we follow (9.18) and obtain the time derivative
of η

η̇ = − d ˜̃p + s∗ ιṡσ

for some exact differential d ˜̃p. Using ṡ +Lû s = 0 we have

η̇ = − d ˜̃p + s∗ ι−ds(û)σ = − d ˜̃p − ιûs∗σ

= − d ˜̃p − ιû dη = − dp̃ −Lû η

for some exact differential p̃. �

Note that the description of (Berger-)ISF using (9.19) is valid only on reg-
ular points of s. It is not clear to what extent û can be understood at the
point of vanishing vorticity that occurs in crossing or branching vortex
tubes. Nevertheless, in a vortex tube consisting of regular points, (9.19) is
an informative description that tells us how the dynamics of the vortex is
modified.

Corollary 9.2. The vorticity 2-form ω = dη = s∗σ is Lie advected

∂
∂tω +Lû ω = 0 (9.21)

by the modified velocity û (9.20) determined by u and the underlying vorticity
Clebsch variable s. For a vortex filament where vorticity is concentrated along a
thin curve γ : S1 → M , the filament is advected by the modified velocity û

∂
∂t γ = û��γ. (9.22)
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9.6* Broken Gauge Symmetry

In this section we return to the discussion on the gauge symmetry in
a Clebsch representation (Section 8.3). As discussed in Section 8.3, the
Hamiltonian for the Euler flow is gauge invariant under the gauge group
Ham(S2,σ) acting on S = C∞(M ; S2) by post-composition s 7→ τ ◦ s, for
τ ∈ Ham(S2,σ). However, these gauge symmetries are redundant for Euler
fluids [Jerrold Marsden and Weinstein, 1983], and their associated conser-
vation laws give no more integrals of motion at the level of η. In an ISF,
due to the additional Landau-Lifshitz energy in the Hamiltonian, most of
the above gauge symmetries are no longer present.

In Section 8.3, we see that under the group action of Ham(S2,σ) on S,
the solenoidal velocity 1-form η remains invariant. Since the Hamiltonian
EEuler =

∫
M

1

2
η ∧?η for an Euler flow is written only in terms of η, it is also

Ham(S2,σ)-gauge invariant. The gauge invariance gives rise to the conser-
vation of

∫
M (U ◦ s)?1 for every smooth function U : S2 → R (Corollary 8.3).

However, these integrals of motion only amount to the fact that the hidden
variable s is advected by the flow, revealing no new integrals of motion for
the Euler equation at the level of physical variable η. The variable s has a
large degree of freedom in representing fluid states that is redundant.

The additional Landau-Lifshitz energy ELL =
}2

8

∫
M | ds |2? 1 breaks most of

the above gauge symmetries. A generic post-composition s 7→ τ ◦ s with a
map τ ∈ Ham(S2,σ) changes the Dirichlet energy

∫
M | ds |2?1. Accordingly,

for an arbitrary function U ∈ C∞(S2, R), the integral
∫

M (U ◦ s)?1 no longer
need to be invariant.

The Euler equation Clebsch variable s is hidden in the Euler equation,
whose momentum equation is written only in terms η. On the contrary,
the momentum equation for ISF needs to be coupled with the evolution
equation for s; otherwise ISF would have the same gauge symmetry η has.
The Clebsch variable s is no longer a hidden variable but an additional
quantity that interacts with η.

Although most of the gauge symmetries from Ham(S2,σ) are broken in an
ISF, there are still remaining symmetries. The Dirichlet energy

∫
M | ds |2? 1

is invariant under rigid rotations on S2. The associated conserved quanti-
ties are

∫
M〈a, s〉? 1 for arbitrary constant R3 vectors a.
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C h a p t e r 10

LANDAU-LIFSHITZ MODIFIED FLUID

In Chapter 9 we showed that the dynamics of ISF arise from the standard
kinetic energy of η, which would correspond to an ideal fluid, with an }2

8
-

multiple of the Dirichlet energy of s added in. The latter by itself would
have resulted in Landau-Lifshitz dynamics. What is the impact of this
modification from the point of view of incompressible fluid simulation?
We begin with some basic observations.

Vorticity in actual 3D low-viscous fluid dynamics has the tendency to con-
centrate in one-dimensional filaments. Hence for a large set of interesting
simulation scenarios, the vorticity vanishes in most portions of the fluid
domain exterior to a small neighborhood of vortex filaments.

The initial data ψ��t=0
for ISF capturing such a scenario must have the as-

s

Figure 10.1: A slice of a 3D domain with a vortex filament moving to the left.
The color on the plane visualizes s according to the color map on the sphere. Large
regions of the plane are nearly the same color, i.e., covering a small area on the
sphere = little vorticity. As the filament translates the gridded region maps to an
ever larger area on the sphere. The preimage of the equator (the level set |ψ1 |

2 −

|ψ2 |
2 = 0) visualizes the vortex tube (see also Fig. 1.5).
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sociated vorticity Clebsch map s satisfy s∗σ = 0 on most parts of the fluid
domain. With an additional request that | ds | should be as small as possi-
ble, s would be asymptotically constant for most part of the domain where
the vorticity vanishes.

ISF is invariant under SU (2) transformations on Ψ = (ψ1,ψ2)ᵀ ∈ C2. (In
terms of quaternions the system is invariant under multiplying unit quater-
nions on ψ from the right.) Consequently the system is invariant under the
SO(3) actions on s. We exploit this symmetry by initializing the simula-
tions with |ψ1 |

2 = 1 and |ψ2 |
2 = 0, i.e. s = (1, 0, 0), for most part of the

domain exterior to vortices. Only near the zero set of ψ1, which generi-
cally consists of closed curves in 3D (or curves beginning and ending on
the boundary), does |ψ2 | take up significant mass due to |ψ |2 = 1. Near
those points where ψ1 = 0 the spin vector s moves toward (−1, 0, 0). In be-
tween, s sweeps over the entire sphere S2 (Fig. 10.1), representing a vortex
with strength }

2
Area(S2) = 2π}. In particular, under such a construction

filaments in ISF carry vorticity quantized to 2π}.

This characterization of s continues to hold as the simulation progresses
since the mean of each component of s is an invariant of the flow. This
invariance follows from the SO(3) gauge symmetry on s (Section 9.6).

But what does this imply for the Landau-Lifshitz energy? Since the Dirich-
let integrand is bounded below by the absolute value of the area density,
ω = s∗σ implies

1

2
|ds |2 ≥ 2

} |w|,

with equality achieved for a conformal map s. Here |w| is the norm of the
corresponding vorticity vector field w = (?ω)]. In practice we observe that
the Landau-Lifshitz energy is near this minimum and hence the Dirich-
let integrand supported mostly in the vicinity of the filaments, with an
integral over a surface transversal to the filament yielding approximately
2π} independent of the thickness of the filament. Consequently, the integral
of the Dirichlet energy for a tubular neighborhood of a filament Γ yields
≈ 4π Length(Γ).

What then are the dynamics consequences of the Landau-Lifshitz energy
term? In examples of ISF we observe phenomena which are difficult to re-
produce using grid simulations without excessively high resolution (Figs. 1.1,
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Figure 10.2: Energy plot for the leapfrogging vortex filaments (Fig. 1.1). The
kinetic energy tracks closely between HJWENO/MacCormack and ISF. The addi-
tional Landau-Lifshitz component in the latter stays nearly constant, keeping the
vortex filaments “alive” in ISF.

10.3, 1.3). Since such phenomena arise from vortex filaments whose thick-
ness is comparable to the grid resolution, a velocity or vorticity representa-
tion of fluids tends to lose the energy contained in the vortex cores, directly
impacting the dynamics of the coherent vortical structures. For ISF the
Landau-Lifshitz energy, proportional to the total length of the filaments in-
dependent of their thickness, maintains this otherwise lost energy. Fig. 10.2
demonstrates this quantitatively for the simple example of the leapfrogging
vortex filaments of Fig. 1.1.

Additionally, Length(Γ) of filaments is also the Hamiltonian of the local
induction approximation (LIA) for the motion of thin vortex filaments [Rios,
1906; Hasimoto, 1972] (see [Saffman, 1992, Ch. 11] for a modern exposi-
tion). This hints at a deeper relation between the LIA and the Landau-
Lifshitz term in ISF. Fig. 10.3 shows the simulation of the Teapot/Bunny
collision using Eulerian HJWENO/MacCormack (top left) and a Lagrangian
filament method [Weißmann and Pinkall, 2010] (top center), comparing it
to our ISF (top right; see also Fig. 1.4 bottom right). Remarkably, the La-
grangian filament simulation which uses sub-grid scale vortex thickness
and explicitly includes the LIA forces, yields qualitatively the same results
as our Eulerian ISF method.

In Section 10.1 we analyse the effect of the Landau-Lifshitz term in the scale
of }. In particular we show that ISF is a regular perturbation to the Euler
equation when approximating a smooth vorticity field. In Section 10.3 we
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Figure 10.3: Frame 270 from colliding Teapot/Bunny simulation using Eulerian
HJWENO/MacCormack (top left), Lagrangian vortex filaments [Weißmann and
Pinkall, 2010] (top center), and our Eulerian ISF (top right). The center bottom
shows the filaments of Weißmann and Pinkall which, at thickness 0.017 m, are
below the grid size of the ISF simulation. ISF vortex tubes (|ψ1 |

2 − |ψ2 |
2 = 0) and

their cores (ψ1 = 0) are shown on the bottom right.

study the effect of the Landau-Lifshitz term to vortex dynamics with a
finite }, giving a precise statement about the LIA effect mentioned above .

10.1 Scaling Laws

Under ISF the velocity η satisfies (9.16), which is the Euler equation modi-
fied by a term involving s. Let us consider the case ε = 1 which is the case
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Figure 10.4: The velocity field of Fig. 7.1 on a 2D domain (left) and its S2-valued
vorticity Clebsch map s with } = 0.15 (middle) and } = 0.05 (right). The map s is
visualized via an earth texture on S2. When } is scaled down by a factor of 3, the
number of copies of each continent is tripled, whereas the shapes of each continent
is kept roughly similar in each copy at each scale.

for all performed simulations:

∂
∂t η +Luη = −

}2

4
〈∆s, ds〉 − dp̃, d ?η = 0 (10.1)

coupled with
∂
∂t s +Lus = }

2
s × ∆s. (10.2)

The modifying term }2

4
〈∆s, ds〉 on the right-hand side of (10.1) has an }2

coefficient, which seems to vanish as }→ 0. However, as }→ 0, the velocity
}〈iψ, dψ〉would also scale down to zero. To obtain a more interesting limit,
one has to fix the scale of η as }→ 0. To achieve this, ψ and s must depend
on }. In particular, on each small 2 dimensional surface Ω ⊂ M , since the
vorticity flux

∫
Ω
ω = }

2

∫
Ω

s∗σS2 is fixed, s : Ω → S2 must “wrap” around S2

more times as } gets smaller. Therefore s picks up higher spatial frequency,
and the right-hand side of (10.1) and (10.2) require careful scaling analysis.

The vorticity field at a regular vortex tube (without branching) can be con-
sidered as a 2D vorticity field locally cross section

For each given }, a smooth vorticity field on a 2D domain can be repre-
sented by ω = }

2
s∗σS2 with area preserving maps onto S2. Such a map can

be obtained by the method presented in Chapter 6. For a generic point
in 3D a similar structure is constructed by extending the 2D vortex patch
along the vortex direction.
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As demonstrated in Figure 10.4, as } is scaled down, the mapping degree
of s on a 2D vortex patch (or a cross section of a 3D vortex tube) increases
in the order of N ∼ O(1/}). Importantly, the map s at different values of } is
similar shown by the texture in Figure 10.4. Namely, each branch image of
s−1(S2) takes a similar shape with area scale O(1/N) ∼ O(}), and therefore
with length scale O

(√
}
)
. Consequently, the derivatives of s scales like

ds ∼ O
(
1/
√
}
)

and ∆s ∼ O(1/}). Hence, the above construction of the }-
dependent s, the right-hand side of (10.1)

}2

4
〈∆s, ds〉 ∼ O

(√
}
)

.

Therefore the modification term in the momentum equation (10.1) is only
a regular perturbation to the Euler equation at regions on smooth vortex
tube.

Note that the above argument may not hold near the event of vortex recon-
nection, branching vortices, or with singular vorticity field.

While the modification term in the momentum equation converges to 0,
the Landau-Lifshitz term in the s-equation (10.2) does not:

}
2

s × ∆s ∼ }O
(
1/}

)
∼ O(1).

While the momentum equation (10.1) converges to the Euler equation in
the limit } → 0, the right-hand side of (10.2) picks up a non-negligible
process which “rearranges vortex lines.”

Since the preimage of each point s−1({p}), p ∈ S2, are vortex lines, one
may view the values of s as the “labels” for vortex lines. A pure advection
ṡ+Lus = 0 describes that vortex lines are “frozen” in the flow. But ṡ+Lus =

0 is not the only way to describe such a vortex dynamics. Note that the
associated vorticity field represented by s is invariant under relabeling of
vortex lines (Section 8.3).

Without vortex relabeling, the value of the Dirichlet energy
∫

M | ds |? 1 can
be arbitrarily large under pure advection of s (initially close can be sep-
arated with arbitrarily large distance under an incompressible flow). But
with however small } > 0 included in the Hamiltonian EISF = EEuler +
}2

8

∫
M | ds |2 ? 1, since EISF is conserved in the flow,

∫
M | ds |2 ? 1 is bounded

above at all time. A non-negligible vortex relabeling process must take
place whenever } > 0.
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10.2 Landau-Lifshitz Regularization

From the arguments made in the last section, Landau-Lifshitz term can
be viewed as a regularization for the Euler equation. Here we consider a
general Berger-ISF (9.13).

Theorem 10.1 (A Priori Estimate). Let M be a smooth compact manifold. Sup-
pose a time-dependent function ψt ∈ W 1,2(M ; H) with |ψ |2 = 1 satisfies (9.13)
with 0 < ε ≤ 1 for t ∈ [0, T ]; i.e. ψt satisfies the symplectic flow of

EεISF = EEuler + ε
2ELL.

Then ∫
M
| dψt=T |

2? 1 ≤ 1

ε2

∫
M
| dψt=0 |

2? 1 (10.3)

is uniformly bounded by the W 1,2-norm of the initial condition.

Proof. Since ψt is a symplectic flow of EεISF =
1

2

∫
M η ∧?η + ε2}2

8

∫
| ds |2 ? 1,

the value EεISF([ψt ]) is invariant due to [Chernoff and J.E. Marsden, 1975].
Therefore∫

M
| dψt=T |

2? 1

(9.6)
=

∫
M

1

}2
|η2

t=T |? 1 +

∫
M

1

4
| dst=T |

2? 1

≤
(ε≤1)

1

ε2

(∫
1

}2
|ηt=T |

2? 1 +

∫
M

ε2

4
| dst=T |

2? 1

)
= 1

ε2

(∫
1

}2
|ηt=0 |

2? 1 +

∫
M

ε2

4
| dst=0 |

2? 1

)
≤ 1

ε2

∫
M
| dψt=0 |

2? 1.

�

Note that the control (10.3) on W 1,2-norm of ψ is present only when ε > 0.

Remark 10.1. If a short time existence of solution in W 1,2 space for Berger-ISF
can be shown for all W 1,2 initial condition ψ, then by Theorem 10.1 we would have
all time existence.

10.3 Vortex Filaments Motion

From Section 10.1 we learn that the dynamics generated from ISF converges
to those generated from the Euler equation in regular vortices when }→ 0.
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However } is never set to zero in an actual simulation. In this section we
investigate the contribution of the Landau-Lifshitz term to the motion of a
vortex filament.

Recall (Section 9.5) that under a (Berger-)ISF, at each regular point of s, η
and s satisfies




∂
∂t η +Lûη = − dp̃, d ?η = 0,
∂
∂t s +Lû s = 0

where the perturbed velocity is given by

û B u − ε2 }
2

ds−1 (s × ∆s) . (10.4)

The value of û at a point on the vortex core reveals the velocity of the
moving filament.

In the following calculation we take M as a region in R3, and we assume
that the vortex filament has a similar structure as in Fig. 10.1. In particular,
s has a constant value away from the vortex tube, which has a radius much
smaller than the curvature radius of the vortex core. On each orthogonal
cross section of the vortex tube, s is a conformal map covering the entire
S2 once.

Construction of s

Such a function s can be written explicitly in terms of a centroid curve and
a stereographic projection from the normal plane of the curve to S2. Let
Γ ⊂ M be a space curve arclength-parameterized by γ : I ⊂ R → Γ ⊂ R3,
with the Frenet frame (T , N , B), the curvature κ and the torsion τ defined
through

T = γ′, T ′ = κN , B = T × N , N ′ = −κT + τB.

Let U be a tubular neighborhood of Γ

U B
{
x ∈ M ��� dist(x, Γ) < R

}
, R � 1/κ, R � 1/τ.

Define the closest point projection cp : U → Γ

cp(x) B argmin
γ(`)∈Γ

dist
(
x, γ(`)

)
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which makes U
cp
−−→ Γ a disk bundle. Using the closest point projection,

extend the frame (T , N , B) to an orthonormal basis defined on U:

T B T ◦ cp, N B N ◦ cp, B B B ◦ cp .

There are also unique functions r : U → R and θ : U → R/(2π) such that
each x ∈ U is expressed by

x = cp(x) + r (x) cos(θ(x))N + r (x) sin(θ(x))B.

Now, let F : C→ S2 be the stereographic projection

F : z ∈ C 7→
(
2 arctan 1

|z | , arg(z)
)
∈ S2

where the right-hand side is written in spherical coordinates. By function
composition, we construct s : U → S2 as

s = F ◦ Z

where Z : U → C is an identification of each normal plane cp−1(γ(`)) with
the complex plane:

Z (x) B r (x)
r1

ei(θ(x)+(ϕ◦cp)(x)−(α◦cp)(x)). (10.5)

Here r1 is a constant with r1 < R parameterizing the thickness of the vortex
filament. In particular the set {|ψ1 |

2 = |ψ2 |
2} visualized in Fig. 10.1 agrees

with the set {r = r1}. The angle-valued function ϕ : Γ → R/(2π) is given by
ϕ =

∫ `
τ, which is angle between N and a parallel normal vector field of Γ.

The angle-valued function α : Γ → R/(2π) is the angle the real axis Z−1(1)
made with a parallel normal vector field. In other words, α is a parameter
such that α′ describes the amount of twist of vortex lines.

Properties of Stereographic Projection

To compute the perturbed velocity (10.4) we need to evaluate ∆s, rotate 90

degree, and take the inverse map ds−1. For a first step we compute the
Laplacian ∆s. By the chain rule for Laplacian, we have

∆s = ∆(F ◦ Z )

=
∑

X∈{T ,N ,B}

(Hess F)Z ( dZ (X ), dZ (X )) + ( dF)Z (∆Z ).
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Therefore,

s ×∆s =
∑

X∈{T ,N ,B}

F��Z × (Hess F)Z ( dZ (X ), dZ (X )) + F��Z × ( dF)Z (∆Z ). (10.6)

This expression can be largely simplified using the following properties of
the stereographic projection F.

First of all, F is conformal, which implies that

F��Z × dF (∆Z ) = dF (i∆Z ). (10.7)

Another fact is that F : C → S2 is harmonic. That is, treating F as an R3-
valued function, one has

∆F = −| dF |2F.

In particular, after projecting the result onto the tangent space of S2,

∆
S2

F = 0, F × ∆F = 0.

By writing the Laplacian in terms of the Hessian, one also has

F��Z ×
(
(Hess F)Z (ζ , ζ ) + (Hess F)Z (iζ , iζ )

)
= 0 (10.8)

for any ζ ∈ C.

Later, we will also need to evaluate F��Z × (Hess F)Z (iZ , iZ ). This quantity
is the 2nd derivative of F with respect to the angle of the polar coordinate
on C.

Lemma 10.1. F��Z × (Hess F)Z (iZ , iZ ) = ( dF)Z
(

1−|Z |2
1+|Z |2 iZ

)
.

Proof. With the spherical coordinate (A, B) 7→ (cos A, sin A cos B, sin A sin B)
the stereographic projection F (Z ) is represented by A(Z ) = 2 arctan 1

|Z |

and B(Z ) = arg(Z ). In particular, the variation iZ ∈ TZC is mapped to
( dF)Z (iZ ) = ∂

∂B F. Hence

( dF)Z (iZ ) = ∂
∂B F = (0,− sin A sin B, sin A cos B),

(Hess F)Z (iZ , iZ ) = ∂2

∂B2 F = (0,− sin A cos B,− sin A sin B).
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Therefore

F��Z × (Hess F)Z (iZ , iZ ) = (cos A, sin A cos B, sin A sin B)

× (0,− sin A cos B,− sin A sin B)

= (0, cos A sin A sin B,− cos A sin A cos B)

= − cos A ( dF)Z (iZ ).

The proof follows after one applies the identity cos(2 arctan 1

|Z | ) =
|Z |2−1

|Z |2+1
. �

Tubular Neighborhood Coordinate

As later we will compute the derivatives of Z (10.5) in (10.6) that is written
in the coordinate functions cp, r and θ, we give some useful formulas
involving these coordinate functions.

Lemma 10.2. The derivatives of cp, r and θ are

d cp = 1

1−κr cos(θ)TT[,

dr = cos(θ)N[ + sin(θ)B[,

dθ = − τ
1−κr cos(θ)T

[ − 1

r sin(θ)N[ + 1

r cos(θ)B[.

Proof. These derivatives are obtained by taking directional derivatives of
cp, r , and θ in the directions T , N , B. Since cp projects orthogonally to Γ,
one has d cp(N ) = d cp(B) = 0. Now, as one moves infinitesimally along
the curve, the normal plane γ(`) + RN (`) + RB(`) turns about a hinge,
which is a line parallel to B and passing through the center of the osculat-
ing circle. In particular, as ` moves forward by ∆`, a point on the normal
plane is lifted by (1− κr cos(θ))∆` in the T direction, depending on the rel-
ative position (r , θ) on the normal plane. Therefore, d cp(T ) = 1

1−κr cos(θ)T .

The derivative dr , and the N[, B[ components of dθ follow from the stan-
dard cylindrical coordinate. For dθ(T ), note that the coordinate vector N

turns positively in the rate of τ with respect to the arclength on Γ. Hence
the value of θ varies negatively in the rate of τ with respect to arclength.
Thus by chain rule dθ(T ) = −τ〈T , d cp(T )〉 = − τ

1−κr cos(θ) . �

Lemma 10.3. The covector fields T[, N[, B[ satisfy

? d ?T[ = 0, ? d ? N[ = − κ
1−κr cos(θ) , ? d ? B[ = 0.
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Proof. Each of these codifferential quantities is the divergence of the asso-
ciated vector field. At the level of vectors, we compute the derivatives (in
the following the connection ∇R3

on R3 is just the usual d)

∇R3

T = d
(
T ◦ cp

)
=

(
∂
∂`T

)
〈T , d cp〉 = κ

1−κr cos(θ) NT[.

Similarly

∇R3

N = − κ
1−κr cos(θ)TT[ + τ

1−κr cos(θ) BT[,

∇R3

B = − τ
1−κ cos(θ) NT[.

As a result, the divergence

div T = tr
(
∇R3

T
)
=

∑
X∈{T ,N ,B}

〈
X ,∇R3

T (X )
〉
= 0,

div N =
∑

X∈{T ,N ,B}

〈
X ,∇R3

N (X )
〉
= − κ

1−κr cos(θ) ,

div B =
∑

X∈{T ,N ,B}

〈
X ,∇R3

B(X )
〉
= 0.

�

Lemma 10.4. The differential of Z defined in (10.5) is given by

dZ =
(
−i α′

1−κr cos(θ)T
[ + 1

r e−iθN[ + 1

r ie−iθB[
)

Z .

Proof. With the aid of Lemma 10.2,

dZ = 1

r1

drei(θ+ϕ◦cp−α◦cp) + r
r1

i
(

dθ + (ϕ′ − α′)〈T , d cp〉
)

ei(θ+ϕ◦cp−α◦cp)

=
(

1

r

(
cos(θ)N[ + sin(θ)B[

)
+ i

(
− α′

1−κr cos(θ)T
[ − 1

r sin(θ)N[ + 1

r cos(θ)B[
) )

Z

=
(
−i α′

1−κr cos(θ)T
[ + 1

r (cos(θ) − i sin(θ))N[ + 1

r (sin(θ) + i cos(θ))B[
)

Z

=
(
−i α′

1−κr cos(θ)T
[ + 1

r e−iθN[ + 1

r ie−iθB[
)

Z .

�

Lemma 10.5. The Laplacian of Z defined in (10.5) is given by

∆Z =
(
− κ

1−κr cos(θ)
e−iθ

r −
α′2+iα′′

(1−κr cos(θ))2

− i α
′κ′ cos(θ)+α′κτ sin(θ)

(1−κr cos(θ))3 r
)
Z .
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Proof. From Lemma 10.4 we have

? dZ =
(
−i α′

1−κr cos(θ) ?T[ + 1

r e−iθ (?N[ + i? B[)
)

Z .

Therefore,

d ? dZ = Z−1 dZ ∧? dZ + d
(
−i α′

1−κr cos(θ) ?T[ + 1

r e−iθ (?N[ + i? B[)
)

Z .

The first part

Z−1 dZ ∧? dZ =
((
−i α′

1−κr cos(θ)

)
2

+
(

1

r e−iθ
)

2

+
(

1

r ie−iθ
)

2
)

Z

= − α′2

(1−κr cos(θ))2 Z ;

and for the second part we note that only d? N[ among d?T[, d? N[, d?

B[ is non-zero:

d
(
−i α′

1−κr cos(θ) ?T[ + 1

r e−iθ (?N[ + i? B[)
)

Z

=
(

e−iθ
r d ? N[ − i α′′

(1−κr cos(θ))2 T[ ∧?T[ − i α′

(1−κr cos(θ))2 d(κr cos θ) ∧?T[︸                 ︷︷                 ︸
κ ′r cos θ+κrτ sin θ

1−κr cos θ ?1

− e−iθ
r i

(
− τ

1−κr cos(θ)T
[ −

sin(θ)
r N[ +

cos(θ)
r B[

)
∧?

(
N[ + iB[

)
− e−iθ

r2

(
cos(θ)N[ + sin(θ)B[

)
∧?

(
N[ + iB[

) )
Z

=
(
− e−iθ

r
κ

1−κr cos(θ) − i α′′

(1−κr cos(θ))2 − i α
′κ′ cos(θ)+α′κτ sin(θ)

(1−κr cos(θ))3 r

+ e−iθ
r2 i sin(θ) + e−iθ

r2 cos(θ) − e−iθ
r2 cos(θ) − e−iθ

r2 i sin(θ)︸                                                                ︷︷                                                                ︸
=0

)
Z

The result follows when the two terms are combined. �

Landau-Lifshitz Velocity

Now we are ready to evaluate ds−1(s × ∆s).

We continue from (10.6), which gives

s × ∆s =
∑

X∈{T ,N ,B}

F��Z × (Hess F)Z ( dZ (X ), dZ (X )) + ( dF)Z (i∆Z ),

where we have applied (10.7). Using the formula for dZ from Lemma 10.4,
the Hessian term ∑

X∈{T ,N ,B}

F��Z × (Hess F)Z ( dZ (X ), dZ (X ))

= F��Z × (Hess F)Z
(
−i α′

1−κr cos(θ) Z ,−i α′

1−κr cos(θ) Z
)

+ F��Z × (Hess F)Z
(

1

r e−iθZ , 1

r e−iθZ
)

+ F��Z × (Hess F)Z
(

1

r ie−iθZ , 1

r ie−iθZ
)

.
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By (10.8) the last two summand combines to zero. Now, by Lemma 10.1
the first summand becomes

= α′2

(1−κr cos(θ))2 ( dF)Z
(

1−(r/r1)2

1+(r/r1)2
iZ

)
.

Therefore, with Lemma 10.5 applied, the expression s × ∆s becomes

s × ∆s = ( dF)Z
(
− i κ

1−κr cos(θ)
e−iθ

r Z + iα′′
(1−κr cos(θ))2 Z

+
α′κ′ cos(θ)+α′κτ sin(θ)

(1−κr cos(θ))3 r Z − i α′2

(1−κr cos(θ))2

r2

r2+r2

1

Z
)
.

Since we are interested in the value of this expression near the vortex core
r = 0, let us study the first order asymptotic value for r → 0. Using the
definition of Z (10.5), we have

s × ∆s ∼ ( dF)Z
(
−iκ 1

r1

+O(r)
)

.

Now,

ds−1 (s × ∆s) = ( dZ−1)( dF−1)(s × ∆s)

∼ dZ−1

(
−iκ 1

r1

+O(r)
)

.

At r = 0, the pseudo-inverse dZ−1 takes value in the normal plane Span{N , B}.
Now, from Lemma 10.4, the restriction of dZ on Span{N , B} is given by

( ιT ◦T[∧) dZ =
(

1

r e−iθN[ + 1

r ie−iθB[
)

Z

= 1

r1

N[ + 1

r1

iB[.

Therefore

ds−1(s × ∆s) ∼ −κB +O(r).

We conclude the calculation in this section by the following theorem.

Theorem 10.2. Let Γ be a space curve in M ⊂ R3, and let U be a tubular neigh-
borhood of Γ with a radius R smaller than the curvature radius of Γ. Suppose
s : U → S2 wraps around S2 once conformally on each normal cross section of U

within a sufficiently small radius, then

ds−1(s × ∆s)��x ∼ −κB +O(dist(x, Γ))

where κ is the curvature and B is the binormal of the curve.
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The above description about s is made precise by the following construction. Let
(r , θ̃) be a polar coordinate for each normal cross section of U with θ̃ given relative
to a smooth reference normal vector field of Γ. Identify each cross section of U with
C by Z : U → C, Z B r

r1

eiθ̃ with some r1 � R. Then s : U → S2 is considered to
be s = F ◦ Z where F : C→ S2 is the stereographic projection.

Remark 10.2. Note that the asymptotic value ds−1(s×∆s) ∼ −κB is independent
of the choice of the vortex thickness r1.

Corollary 10.1. Under the assumptions in Theorem 10.2, the perturbed velocity
(10.4) near the vortex core is given by

û ∼ u + ε2 }
2
κB.

10.4 Effective Vortex Radius

For a classical fluid in R3 consisting of vortex filaments Γ of strength h, the
motion of the filaments can be described using the Biot-Savart integrals.
Let x ∈ Γ be a point on the vortex and suppose the vortex has a thickness
r1 at x. Then the velocity at x is given by

u(x) =
h

4π

∫
Γ\Br1 (x)

−
x − x̃
|x − x̃ |

× d` x̃ .

The integral blows up when r1 → 0 with an order of log(r1). To study
the asymptotic behavior of in the variable r1, we focus on the integral only
near x.

A standard procedure is that one chooses another larger distance r2 >

r1, which is still sufficiently small r2 �
1

κ so that the curve Γ in the r2-
neighborhood of x can be approximated by an arc of curvature κ. Then
one breaks the integral into the “far field” part and a “near field” part:

u(x) =
h

4π

∫
Γ\Br2 (x)

−
x − x̃
|x − x̃ |

× d` x̃ +
h

4π

∫
Γ∩(Br2 (x)\Br1 (x))

−
x − x̃
|x − x̃ |

× d` x̃ .

Replacing the near field integration domain by the arcs from the osculating
circle, one can evaluate the integral and obtain

u(x) ∼
h

4π

∫
Γ\Br2 (x)

−
x − x̃
|x − x̃ |

× d` x̃ +
h

4π
log(r2)κB −

h
4π

log(r1)κB. (10.9)

Note that the last term − h
4π log(r1)κB, which will dominate all other terms

when r1 → 0, is called the localized induction approximation (LIA) first dis-
covered by Da Rios [Rios, 1906].
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Now, according to Corollary 10.1, in a (Berger-)ISF simulation the vortex
core has the following modified velocity

û(x) ∼ u(x) + ε2
h

4π
κB

where we have used the fact that h = 2π} is the strength of a vortex rep-
resented by s sweeping the entire S2 once. Combining our û formula with
(10.9), we obtain

û(x) ∼
h

4π

∫
Γ\Br2 (x)

−
x − x̃
|x − x̃ |

× d` x̃ +
h

4π
log(r2)κB −

h
4π

log(r1)κB + ε2
h

4π
κB

=
h

4π

∫
Γ\Br2 (x)

−
x − x̃
|x − x̃ |

× d` x̃ +
h

4π
log(r2)κB −

h
4π

log
(

r1

eε2

)
κB. (10.10)

Comparing (10.10) and (10.9), the modified velocity û is effectively the ve-
locity that arises from a vortex of a different thickness r̂1 = r1/eε

2 . Impor-
tantly, the effective vortex thickness is always thinner than the actual vortex
thickness.

The dynamics of a vortex in an actual fluid is contributed from far field
interaction (Biot-Savart integral) and a local induction term reflecting its
vortex thickness. In an ISF simulation (ε2 = 1), the vortex dynamics faith-
fully reproduces the far field interaction. As for the local induction part, a
vortex will move faster than it is suppose to move at that vortex thickness.
A vortex in ISF moves at a speed as if the vortex is 1/e thinner than its ac-
tual thickness. This property of ISF allows one to simulate intricate vortex
dynamics on a relatively coarse grid even when the vortex cores are not
well-resolved on the grid.
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C h a p t e r 11

SPECIAL FORCES

A fluid simulation using ISF can benefit from its numerical simplicity and
its ability to capture thin vortex dynamics. Yet, one drawback in ISF is that
it is not clear how to add external forces to the system. When computing
the classical Euler equation, one would just add an additional acceleration
to the velocity field followed by a pressure projection. However, this pro-
cedure does not directly translate to fluids represented by a wavefunction.
For a Schrödinger equation in quantum mechanics, the straightforward
forces that can be added arbitrarily to a wavefunction are the forces coming
from the potential term. However these potential forces will be eliminated
during the pressure projection.

While there is not yet a general formula for adding external force to ISF,
there are methods for adding a few physically meaningful forces. Here,
we present how to add a Coriolis force for fluids on a rotating body, and a
buoyancy force when there is a mixture of buoyant/heavy fluid.

11.1 Coriolis Effect by Magnetic Field

Fluids modeled with Coriolis force are important for studying the atmo-
spherical flow on a rotating planet.

A moving particle in a rotating frame will experience a fictitious force
called the Coriolis force. If a particle is moving at a velocity u ∈ R3 while
the background angular momentum is given by Ω ∈ R3, then the Coriolis
force is given by 2u ×Ω. Suppose 2Ω = B = curl A where A is twice vector
field describing the background motion. Then the force exerting on the
moving particle is also written as u× curl A = u× B. Note that we assume A

is time-independent, and we do ignore the centrifugal force because it will
be eliminated by the pressure projection when we talk about incompress-
ible fluids.

Interestingly, this is a force with the same expression as the Lorentz force
u× B for an electrically charged particle moving at a velocity u in a magnetic
field B [Royer, 2011].
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Figure 11.1: Flow on a rotating planet simulated by magnetic ISF. The background
α is given by the rigid rotation α = dϕ where ϕ is the longitude angle of the planet.

We therefore simulate the Coriolis force by simulating a Schrödinger equa-
tion for a charged particle subject to a (possibly time-dependent) magnetic
field set to be the background angular momentum. For our 2-component
Schrödinger equation, the resulting system is known as the Pauli equation
(non-relativistic Dirac equation) describing the dynamics of a charged spin-
1/2 particle in a magnetic field [W. Pauli, 1927]. If one ignores the effect
of the spin-magnetic field interaction, the system is called the magnetic
Schrödinger equation.

The Coriolis/Lorentz force u × B has a more general expression that works
on manifolds other than R3. Expressed using exterior calculus, the angu-
lar momentum resp. magnetic field should be an exact 2-form β = dα ∈

Ω2(M ; R). We let A = α]. In the special case of M = R3, the (pseudo)vector
B is given by B = (?β)] = curl A. In terms of β on a general Riemannian
manifold M , the Coriolis/Lorentz force is given by the 1-form − ιu β. The 1-
form potential α is chosen solenoidal (Coulomb gauge), and in the context
of Coriolis force α is the velocity of the background rotating body.
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Now let us consider the Pauli equation written in terms of quaternion-
valued ψ:

∂
∂tψ = i }

2
∆
αψ − ipψ −1

2
ψB︸ ︷︷ ︸

S.G. term

. (11.1)

Here ∆α = −(∇α)†(∇α) is the magnetic Laplacian, where the covariant
derivative ∇α =

(
d − i 1

}α
)

(Appendix 6.A). The term −}
2
ψB in (11.1) is

called the Stern-Gerlach term that gives rise to the precession of a spinning
electron. Here B is the R3 � Im H representation for β, and the product
ψB is a quanternion product.* While the Stern-Gerlach term gives impor-
tant physics for the interaction between the spin of the charged particle
and the background magnetic field, one may choose to drop this term in
the context of fluid simulations since it does not contribute to the Lorentz
force exerting on the linear momentum. We will mark the Stern-Gerlach
term in the following equations to keep track of the effect of keeping or
dropping the term.

Now impose the incompressible constraint and obtain an incompressible
Pauli equation (or magnetic ISF)




∂
∂tψ = i }

2
∆αψ − ipψ−1

2
ψB

〈iψ,∆ψ〉 = 0.
(11.2)

Following the straightforward proof of Theorem 9.1 using Lemma 6.1, we
obtain the corresponding evolution equation for s:

∂
∂t s +Lu−A s = }

2
s × ∆s + B × s︸︷︷︸

S.G. term

= }
2

s × (∆s − 2

}B︸︷︷︸
S.G. term

). (11.3)

Then by a similar derivation as for Theorem 9.5, we have the momentum
equation for the incompressible Pauli equation (magnetic ISF)

∂
∂t η +Lu−A η = −

}2

4
〈∆s − 2

}B︸︷︷︸
S.G. term

, ds〉 − dp̃, d ?η = 0. (11.4)

Now, introduce a new velocity

η̃ = η − α, ũ = u − A

*Using Section B.4 the product ψB can be translated into
∑3

j=1
Bjσ jΨ up to a global

axis rotation, where σ j ’s are the Pauli matrices.
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which is the velocity relative to the background velocity α. In the context
of quantum mechanics with magnetic field, η̃ = }〈iψ,∇αψ〉 is the covariant
momentum. In terms of η̃, (11.4) becomes

∂
∂t η̃ +Lũ η̃ = −Lũ α −

}2

4
〈∆s − 2

}B︸︷︷︸
S.G. term

, ds〉 − dp̃, d ?η = 0,

which is a Landau-Lifshitz modified Euler equation with the fictitious force
− ∂
∂tα − ιũ β

∂
∂t η̃ +Lũ η̃ = − ιũ β︸︷︷︸

Coriolis force

−}2

4
〈∆s − 2

}B︸︷︷︸
S.G. term

, ds〉 − dp̃, d ?η = 0. (11.5)

As a conclusion, to simulate an incompressible fluid with Coriolis effect,
all one has to solve is the incompressible Pauli equation (magnetic ISF)
(11.2) and extract the velocity by η̃ = }〈iψ,∇αψ〉. The resulting velocity
field will satisfy a Landau-Lifshitz modified Euler equation subject to a
Coriolis force. Fig. 11.1 shows an example of such a simulation.

11.2 Buoyancy by Stern-Gerlach Effect

In Section 1.4 we have already demonstrated how to add buoyancy/gravity
force to an ISF simulation. Specifically one adds an extra “component-
dependent” potential to the Schrödinger equation as in (1.5). Here we
explain this treatment more geometrically. First of all, note that in terms of
quaternionic ψ, (1.5) can be written as




∂
∂tψ = i }

2
∆ψ − ipψ − 1

}U (x)ψi

〈iψ,∆ψ〉 = 0

(11.6)

where U (x) is a gravitational potential. Here we have used that the quater-
nion representation for iσ3Ψ is ψi (Eq. (B.2)). In the case presented in
Section 1.4 we wrote U (x) = 〈g, x〉 where g is the vector of gravitational ac-
celeration. In particular, the term U (x)ψi, with an imaginary quaternion i

multiplied from the right, is a Stern-Gerlach term appeared in Section 11.1.
It generates precession in the spin vectors s with a space-dependent Larmor
frequency 2

}U (x). Before returning to (11.6), let us talk about the scenario of
buoyant fluid that we want to simulate, and see how (11.6) naturally arises.

A full physical model for buoyancy of a hot air requires considering fluids
with non-constant density. But one may omit this fact and dealing only
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with constant density by adopting Boussinesq approximation. In this model,
an acceleration due to gravity − dU is applied to the velocity weighted
differently depending on, for example, the temperature. Now let a function
µ : M → [−1, 1] denote this temperature parameter. Under no-dissipation
assumption, in an Euler fluid, this parameter is just being advected

∂
∂t µ+Lu µ = 0. (11.7)

In terms of µ, the Euler equation with a buoyancy force is given by

∂
∂t η +Lu η = −µ dU − dp, d ?η = 0.

By taking d we obtain the corresponding vorticity equation

∂
∂tω +Lu ω = − dµ∧ dU.

This vorticity equation suggests that if the fluid is driven only by the buoy-
ancy, then ω admits a Clebsch representation

ω = dλ ∧ dµ

where λ : M → R satisfies

∂
∂t λ +Lu λ = U. (11.8)

Now let us “wrap” the (λ, µ)-coordinate onto S2 by the Lambert cylindrical
projection ξ : R × [−1, 1] → S2,

ξ (λ, µ) B
(
µ,

√
1 − µ2 cos

(
2λ/}

)
,
√

1 − µ2 sin
(
2λ/}

))
.

One can check that

dλ ∧ dµ = }
2
ξ∗σS2 .

Therefore, the fluid state is represented by a spherical Clebsch map s : M →

S2. In particular s has the cosine of its polar angle (ranging [0, π]) represent
the temperature µ (which equals to |ψ1 |

2 − |ψ2 |
2) and the azimuthal (longi-

tude) angle represent the parameter 2

}λ (which equals to argψ1 − argψ2).
Hence, the equation for s that captures both (11.7) and (11.8) is

∂
∂t s +Lu s = 2

}Ui × s.
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The right-hand side is a precession with angular frequency 2

}U.

Now we return to (11.6). The evolution equation for s under (11.6) is ex-
actly the one for ISF with an additional precession term

∂
∂t s +Lu s = 2

}Ui × s︸   ︷︷   ︸
buoyancy

+}
2

s × ∆s

which effectively gives the buoyancy.
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C h a p t e r 12

CONCLUSION

In this thesis we presented the theory and application of describing fluids
using ISF.

On the application side, ISF is simple to implement without the need to
take care of nonlinear advection term in a standard description of fluids.
ISF is also capable of capturing thin vortex dynamics on a relatively coarse
computation grid. Clebsch variables for the fluid represented by ISF also
comes naturally in the variables used in ISF. With a numerical method for
finding a wavefunction from a given velocity field, we also develop a tool
for visualizing vortex structure of a flow data through Clebsch maps.

On the theory side, we proposed a general mathematical framework for ge-
ometric Clebsch maps. Using it, the dynamics of Euler fluid and ISF is then
written as symplectic flows of their respective Hamiltonians. A Berger-ISF
is also proposed as a dynamical system that interpolates ISF and Euler
flow. ISF is a Landau-Lifshitz-modified Euler equation. A preliminary
analysis for the Landau-Lifshitz term in ISF was carried out. In particular
we showed that at a regular vortex core, the effect of the Landau-Lifshitz
term on the vortex velocity is an additional localized induction. Effectively
the dynamics of a vortex in ISF is similar to that in an Euler flow but
with a thinner vortex core. We also argued that the Landau-Lifshitz is a
regularizer in the sense that the regularity of the spin vector is uniformly
estimated in time.

Beyond the scope of this thesis, there are still many open questions. We
have a prior estimation for ISF, but the complete well-posedness of ISF has
not been shown. If it is established, does it help to understand the nature
of the Euler equation?

We only investigated the behavior of a vortex core when the vortex is a
regular tube away from the critical points of the vorticity Clebsch map.
What happens at those critical points under an ISF, and what are their
limiting behavior as }→ 0?
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How well does ISF serves beyond simulating vortex dynamics? Does it cap-
ture and give more insight to turbulence? Can one simulate a slightly vis-
cous fluid with a desired Reynolds number? How to add arbitrary forces,
couple with solids, or couple with other physics such as for magnetohy-
drodynamics? Can the ideas in ISF work for compressible fluids or even
general conservation laws?

The numerical method for finding a Clebsch map is suffer from the in-
efficiency. A better preconditioner for magnetic Laplacians needs to be
developed. Numerical simulation of ISF also suffers from numerical error
due to the time splitting. A better numerical scheme is to be explored.

We are only at the beginning stage of exploring this whole new approach
of looking at fluids. It is hopeful that some of these open questions will be
answered in the near future, and new mathematical, physical, and simula-
tion tools will spring from it.
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A p p e n d i x A

EXTERIOR CALCULUS

The mathematical formulation for fluid mechanics is usually based on vec-
tor calculus. Vector calculus is the multivariable calculus involving vector
fields on R2 or R3. Though it appears to be straightforward formulating
classical mechanics using vector calculus in R3, it becomes exceedingly
complicated when one expresses vector identities in higher dimensional
spaces or on a deformed coordinate system.

Exterior calculus uses coordinate-free notations that generalize identities of
vector analysis to arbitrary manifolds. It also unifies many vector identities
with much fewer exterior calculus identities and simpler expressions. At
a more fundamental level, exterior calculus reveals deeper geometric and
topological insights that were not present with the vector calculus counter-
part.

My exposition for the most part of the thesis is heavily based on exterior
calculus. In this appendix I give the essential identities from exterior cal-
culus. The reader can then go over Chapter 2 to see exterior calculus in use
for an introduction of classical fluids.

Throughout we assume the domain M is an n-dimensional oriented smooth
manifold. For each p ∈ M we let TpM denote the n-dimensional tangent
space of M at p. Notationwise, a tangent vector field X is denoted as an
element X ∈ Γ(TM). Briefly speaking, TM �

⊔
p∈M TpM is the formal col-

lection of all tangent spaces, and is called the tangent bundle. Each element
X ∈ Γ(TM) is called a section of the tangent bundle, which is a function
X ∈ M → TM that satisfies X (p) ∈ TpM . Depending on the surrounding ex-
pressions we may use X |p or Xp for representing the value X (p). Although
in many applications M = Rn and one writes p ∈ Rn and Xp ∈ TpRn � Rn,
one should draw a distinction between points p ∈ M and vectors Xp ∈ TpM .
A vector Xp is a geometric object that represents an infinitesimal displace-
ment about p.
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A.1 Differential Forms

A differential form is a field on M that is “to be integrated”. That is, a
differential k-form α (for an integer 0 ≤ k ≤ n), for which we write α ∈

Ωk (M), can be evaluated on each oriented k-dimensional submanifold Σ ⊂

M denoted by ∫
Σ

α.

For k = 0, a 0-form f is just a smooth function defined on M , which can
be evaluated at every point p ∈ M ,

∫
p f = f (p). For that being said, a

tangent vector field X ∈ Γ(TM) is also regarded as a TM-valued 0-form
(or vector-valued 0-form). The integration

∫
(·) (·) as a pairing between k-

dimensional geometries and k-forms is bilinear. That is, c1

∫
Σ
α1 + c2

∫
Σ
α2 =∫

Σ
(c1α1 + c2α2), and

∫
n1Σ1+n2Σ2

α = n1

∫
Σ1

α + n2

∫
Σ2

α, where α1, α2 are k-
forms, Σ1, Σ2 are oriented k-dimensional surfaces, c1, c2 are scalars, n1, n2

are signed integers, and n1Σ1 + n2Σ2 is a chain representing the formal linear
combinations of surfaces.

For example, a mass density ρ is a mass-valued n-form. We denote it
by ρ ∈ Ωn(M ; R kg). The mass density is defined by assigning values to∫

V ρ ∈ R kg for every volume V ⊂ M . For another example, a mass flux σ

of a flow is an (n− 1)-form taking values in R kg/s (i.e., σ ∈ Ωn−1(M ; R kg/s).)
The value

∫
Σ
σ can represent the amount of matter passing through a hy-

persurface Σ per unit time.

Alternating Forms

To formally define differential forms, one considers the infinitesimal ver-
sion of the above integral quantities. Under some smoothness conditions, if
we let a k-dimensional surface Σ shrink to a infinitesimal parallelepiped Σε

about a point p with diameter O(ε), we have that the integral
∫
Σε
α ∼ O(εk ).

In this linearized regime, the value limε→0

1

εk

∫
Σε
α is linear in the orienta-

tion and the shrinking rate of the parallelepiped Σε. Such a Σε can be
represented by

(εX1, . . . , εXk ) = εk (X1, . . . , Xk ),

where (X1, . . . , Xk ) is the parallelepiped spanned by the k vectors X1, . . . , Xk ∈

TpM at p ∈ M .* The object (X1, . . . , Xk ) is defined to be linear in each argu-

*Keyword: Grassmann algebra.
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ment. Interchanging the arguments flips the orientations:

(X1, . . . , Xi, . . . , X j , . . . , Xk ) = −(X1, . . . , X j , . . . , Xi, . . . , Xk ).

Now, one denotes for a k-form α

α
���p(X1, . . . , Xk ) ≡ lim

ε→0

1

εk

∫
Σε
α, Σ

ε ∼ εk (X1, . . . , Xk ).

That is, a differential form α at a point p is just a linear functional on
{(X1, . . . , Xk ) | X1, . . . , Xk ∈ TpM }. In short, a differential k-form is an al-
ternating k-linear form depending smoothly on the location p ∈ M . Con-
versely, once such an alternating k-linear form field is defined, its integral
over a finite surface Σ is given by the limit of the Riemann sums. More
precisely, take partitions Σ =

⊔N
j=1
Σ j and approximate Σ j by

(
Y ( j)

1
, . . . ,Y ( j)

k

)
at some point p( j) ∈ Σ j ; then∫

Σ

α ≡ lim
partition
refines

N∑
j=1

α
���p( j)

(
Y ( j)

1
, . . . ,Y ( j)

k

)
.

Wedge Product

The wedge product ∧ is an associative product between alternating multi-
linear forms. Let α |p be an alternating k-linear form and β |p be an alternat-
ing `-linear form. Then α |p ∧ β |p is a (k + `)-linear form given by(

α��p ∧ β��p
)

(X1, . . . , Xk+`)

=
∑

σ∈Shk,`

sgn(σ) α��p
(
Xσ(1), . . . , Xσ(k)

)
β��p

(
Xσ(k+1), . . . , Xσ(k+`)

)
,

where Shk,` (called the set of (k, `)-shuffles) is the subset of all permutations
σ of (1, . . . , k + `) satisfying σ(1) < · · · < σ(k) and σ(k + 1) < · · · < σ(k + `).

A wedge product can also be built upon a more general multiplication.
For example if α and β are vector-valued k- and `-form, and suppose 〈·, ·〉
denotes the inner product on the vector space in which α and β can take
value. Then 〈α ∧ β〉 is a scalar-valued (k + `)-form defined analogously

〈α ∧ β〉(X1, . . . , Xk+`)

=
∑

σ∈Shk,`

sgn(σ)
〈
α(Xσ(1), . . . , Xσ(k)), β(Xσ(k+1), . . . , Xσ(k+`))

〉
.
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Exterior Derivative

The exterior derivative is an operator d : Ωk (M) → Ωk+1(M), which can be
best understood in integral form. For a k-form α, the (k + 1)-form dα is
defined so that ∫

Σ

dα =
∫
∂Σ
α (A.1)

for every (k + 1)-dimensional surface Σ. Here ∂ is the boundary operator.
Using the infinitesimal alternating multilinear form point of view for a
differential form, d satisfies the following axioms

1. d ◦ d = 0;
2. d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ when α is a k-form (Leibniz rule);
3. for a 0-form f , the 1-form df satisfies df (X ) = X f for each tangent

vector X . Here X f denotes the directional derivative of f along X .

Depending on the context, we may use the notation X f , dX f or df (X ) for
the directional derivative of a function.

Starting from these axioms, one can also show (A.1) known as Stokes Theo-
rem.

Tangent Maps Here is a special case of exterior derivative. Given a
smooth map φ : M → N between two manifolds M and N (i.e., φ is an
N-valued 0-form on M), dφ is called the tangent map. The counterpart of
dφ in vector calculus is the Jacobian matrix. dφ is a vector-valued 1-form.
At each point p ∈ M , ( dφ)p : TpM → Tφ(p) N is a linear map, such that for
each curve γ : [−ε, ε] → M one has the chain rule

d
dt

(
φ ◦ γ

)
= dφ

(
d
dt γ

)
.

Pullback Operators

Given a smooth map φ : M → N between two manifolds M and N , and a
differential form η ∈ Ωk (N ), the pullback of η through the map φ is denoted
by φ∗η ∈ Ωk (M). Its definition is given formally in the integral form:∫

Σ

φ∗η =

∫
φ(Σ)

φ (A.2)
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for all k-dimensional Σ. This corresponds to change of coordinate for in-
tegrals in vector calculus. In the multilinear-form picture for differential
forms, the pullback is defined by that for X1, . . . , Xk ∈ TpM

φ∗η��p (X1, . . . , Xk ) B η��φ(p)
(

dφ(X1), . . . , dφ(Xk )
)

.

In the special case of applying to a 0-form f ∈ Ω0(N ), the pullback is
simply φ∗ f = f ◦ φ. Note that the pullback operator φ∗ commutes with d

and distributes over ∧’s

d(φ∗η) = φ∗( dη); φ∗(α ∧ β) = (φ∗α) ∧ (φ∗ β).

A.2 Metric Induced Dualities

A metric is a symmetric positive-definite bilinear form 〈·, ·〉p defined on
each tangent space TpM that smoothly depends on p ∈ M . Note that the
operators defined above — the wedge product ∧, the exterior derivative d,
and the pullback operators φ∗ — do not depend on or require a metric on
the domain M . Here we take a look at a few operators rising from a metric
〈·, ·〉.

A manifold with a metric is called a Riemannian manifold.

Musical Isomorphisms

A 1-form α ∈ Ω1(M) is an object to be integrated along a curve
∫
Γ
α. Such

an oriented line integral can be interpreted as a circulation of a vector
field. In fact, using vector calculus notation, there is a unique vector field
A such that the circulation

∫
Γ

A · d` =
∫
Γ
α for all smooth curve Γ. The

isomorphism between 1-forms and vectors are the musical isomorphisms,
which include the flat operator [ and the sharp operator ].

In the picture where differential forms are multilinear forms, the flat oper-
ator is defined pointwise (·)[ : TpM → Ω1

p(M) = T∗p M by that

A[(X ) = 〈A, X〉p for all X ∈ TpM ,

and the sharp operator is its inverse (·)] : Ω1

p(M) → TpM . That is, α |]p is the
unique vector in TpM so that〈

α |
]
p, X

〉
p
= α |p(X ) for all X ∈ TpM .
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Let φ0 = id : M → M be the identity map, and let dφ0 be its tangent map.
Note that dφ0 is just the identity vector-valued 1-form dφ0(X ) = X . Using
dφ0, we can also write

A[ = 〈A, dφ0〉.

From this we see that the circulation of a vector field A over a curve Γ is
indeed ∫

Γ

〈A, dφ0〉 =

∫
Γ

A[ =
∫
Γ

α.

Hodge Stars

The Hodge star ? is defined pointwise ? : Ωk
p(M) → Ωn−k

p (M) so that for
each positively oriented orthonormal frame (X1, . . . , Xn) for TpM ,(

?α |p
)

(X1, . . . , Xn−k ) = α |p(Xn−k+1, . . . , Xn).

It is convenient to use the Hodge star to express the following measures.
When ? is applied on 1, we obtain the volume form ?1 ∈ Ωn(M); i.e.,

∫
V ?1

is the volume of V under the current metric. If X is a vector field, then
?X[ ∈ Ωn−1(M) is the flux form of X . That is, given a oriented hypersurface
Σ, the flux of X through Σ is

∫
Σ
〈X , N〉 dA =

∫
Σ
?X[, where N is the unit

normal vector of Σ.

We list some notes for calculations involving ?’s. First, ? “passes through”
0-forms. If f is a 0-form and α is a k-form, then ?( f α) = f ?α. Another
useful fact is that ?? α = (−1)k (n−k)α for each k-form α. In particular
?−1 = (−1)k (n−k)?.

Inner Products between Forms

Observe that for vectors X ,Y ∈ TpM , we have

〈X ,Y 〉? 1 = X[ ∧?Y [.

This can be seen by plugging in an orthonormal basis (e1, . . . , en) for TpM

and using the definitions of ∧ and ?:

(X[ ∧?Y [)(e1, . . . , en) =
n∑

j=1

X[(e j )Y [(e j )

=

n∑
j=1

〈e j , X〉〈e j ,Y 〉 = 〈X ,Y 〉.
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We define the inner product between the co-vectors (1-forms) X[,Y [ by
〈X[,Y [〉 B 〈X ,Y 〉 = ?(X[ ∧?Y [). The inner product between forms ?(· ∧?·)
can be extended to higher degree forms. For α, β ∈ Ωk (M), define

〈α, β〉 B ?(α ∧?β).

Expressed with an orthonormal basis (e1, . . . , en) for TpM ,

〈α, β〉 = (α ∧?β)(e1, . . . , en)

=
∑

σ∈Shk,n−k

α
(
eσ(1), . . . , eσ(k)

)
β

(
eσ(1), . . . , eσ(k)

)
.

While 〈α, β〉 is the pointwise inner product between forms, we define the
L2-inner product by

⟪α, β⟫ =
∫

M
α ∧?β.

A.3 Levi-Civita Connection

We have talked mostly about operations on scalar-valued differential forms.
What about vector-valued differential forms? In this section we talk about
how to take a general spatial derivative of vectors, differential forms, and
vector-valued differential forms when a metric is assigned to the manifold.

Since each tangent space TpM at different p ∈ M is a different linear space,
there is no obvious way to take spatial derivative of a vector field. In fact,
in order to take derivative to a vector-valued form, one has to introduce a
new notion called connection denoted by ∇. For a vector field Y ∈ Γ(TM),
∇Y is a vector-valued 1-form such that in a direction X , the vector ∇XY

represents how much Y deviates from being parallel. A canonical choice
for a connection on TM is the Levi-Civita connection defined uniquely by the
following axioms

1. ∇ f XY = f∇XY and ∇X ( f Y ) = ( dX f )Y + f∇XY for each X ,Y ∈ Γ(TM)
and f ∈ Ω0(M). (Affine)

2. d〈X ,Y 〉 = 〈∇X ,Y 〉 + 〈X ,∇Y 〉. (Compatible with metric)
3. ∇XY −∇Y X = [X ,Y ]. (Torsion free)

Here the Lie bracket [X ,Y ] is the vector so that [X ,Y ] f = XY f − Y X f for
each function f where X f denote the directional derivative.
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Covariant Derivative of Differential Forms

The Levi-Civita connection also induces a covariant derivative, also de-
noted by ∇, on (scalar-valued) differential forms on M . For each Y ∈ Γ(TM),
define

∇Y : Ωk (M ; R) → Ωk (M ; R)

(∇Yα)(X1, . . . , Xk ) B dY
(
α(X1, . . . , Xk )

)
−

k∑
j=1

α
(
X1, . . . ,∇Y X j , . . . , Xk

)
.

(A.3)

One can check that (∇Yα)(X1, . . . , Xk ) only depends on the pointwise value
of X1, . . . , Xk as a differential form does. One can also show that ∇ on
Ω(M ; R) is also compatibile with the inner product 〈α, β〉 = ?(α ∧?β):

∇〈α, β〉 = 〈∇α, β〉 + 〈α,∇β〉.

In particular,

∇(?α) = ?(∇α), ∇(?1) = 0.

Using the torsion-free condition of the Levi-Civita connection, one would
also find the the exterior derivative can be expressed

( dα)(X0, . . . , Xk ) =
k∑

j=0

(−1) j (∇X jα)(X0, . . . , X̂ j , . . . , Xk ).

That is, dα is the anti-symmetrization of tensor ∇α.

Derivatives on Vector-valued Differential Forms

Suppose now ξ is a vector-valued differential form, denoted by ξ ∈ Ωk (M ; TM).
Then its covariant derivative is given analogously to (A.3)

(∇Y ξ)(X1, . . . , Xk ) B ∇Y
(
ξ (X1, . . . , Xk )

)
−

k∑
j=1

ξ
(
X1, . . . ,∇Y X j , . . . , Xk

)
.

In particular for vector-valued forms ξ one also has

∇(?ξ) = ?(∇ξ).

Now, using the Levi-Civita connection, one can consider the covariant exte-
rior derivative d∇

d∇ : Ωk (M ; TM) → Ω
k+1(M ; TM)

by that
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1. d∇(α∧ ξ) = dα∧ ξ + (−1)kα∧ d∇ξ for α ∈ Ωk (M ; R) and ξ ∈ Ω` (M ; R).
2. d∇ = ∇ when applied on a vector field (vector-valued 0-form).

Again, by the torsion-free condition of a Levi-Civita connection, d∇ξ for
ξ ∈ Ωk (M ; TM) is also the anti-symmetrization of ∇ξ:

( dξ)(X0, . . . , Xk ) =
k∑

j=0

(−1) j (∇X j ξ)(X0, . . . , X̂ j , . . . , Xk ).

Let us list down some important facts regarding to the covariant exterior
calculus on vector-valued differential forms.

• d〈ξ ∧ τ〉 = 〈 d∇ξ ∧ τ〉 + (−1)k〈ξ ∧ d∇τ〉 for ξ ∈ Ωk (M ; TM) and τ ∈

Ω` (M ; TM).
• Let φ0 : M → M be the identity map, and dφ0 be the identity tangent

map. Then d∇ dφ0 = 0 and d∇? dφ0 = 0.
• d∇ ◦ d∇ is not necessarily zero. Its value is related to the Riemannian

curvature.

A.4 Interior Products

Interior products form another fundamental building block for exterior
calculus. Given a metric 〈·, ·〉 for TpM and a vector X ∈ TpM , the inte-
rior product is a pointwise linear operator ιX : Ωk+1

p (M) → Ωk
p(M) which

satisfies

1. ιX ◦ ιX = 0;
2. ιX

(
α ∧ β

)
= ( ιXα) ∧ β + (−1)kα ∧ ( ιX β) where α ∈ Ωk

p(M) (Leibniz
rule);

3. for Y [ ∈ Ω1

p(M), ιXY [ = 〈X ,Y 〉.

Since ιX satisfies the same 1st and 2nd axioms as those for d, an interior
product is also called an interior derivative. However, no differentiation is
taken when applying ιX . Effectively, for each α ∈ Ωk+1

p (M),

( ιXα)(X1, . . . , Xk ) = α(X , X1, . . . , Xk )

for all X1, . . . , Xk ∈ TpM .
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Duality with Wedge Products

An important identity for the interior products is that if α ∈ Ωk
p(M) then

(−1)k ιX ?α = ?(X[ ∧ α). (A.4)

To check this, consider X = X0 be part of an orthonormal basis {X0, X1, . . . ,
Xn−1} for TpM . Also consider its dual basis {X[

0
, X[

1
, . . . , X[

n−1
} for Ω1

p(M).
Then α can be represented by a linear combination of X[

σ(0) ∧ · · · ∧ X[
σ(k−1)

for σ ∈ Shk,n−k , and we only need to check (A.4) for basis elements. There
are two types of basis elements, the ones involving X[

0
and the ones with-

out. For a basis of the former kind, say α = X[ ∧ X[
1
· · · ∧ X[

k−1
, then we have

the right-hand side of (A.4) obviously zero; and so is the left-hand side
since ιX (?α) = ιX (X[

k ∧ · · · ∧ X[
n−1

) = 0 using Leibniz rule. Now, for a basis
element not involving X[, let us consider X[

1
∧ · · · ∧ X[

k . Then the right-hand
side of (A.4) is

?(X[ ∧ X[
1
∧ · · · ∧ X[

k ) = X[
k+1
∧ · · · ∧ X[

n−1

which agrees with the left-hand side:

(−1)k ιX ? (X[
1
∧ · · · ∧ X[

k ) = ιX (X[ ∧ X[
k+1
∧ · · · ∧ X[

n−1
)

= X[
k+1
∧ · · · ∧ X[

n−1
.

The identity (A.4) also implies that for each α ∈ Ωk+1

p (M) and β ∈ Ωk
p(M)

( ιXα) ∧?β = α ∧?(X[ ∧ β),

since

( ιXα) ∧?β = ιX (α ∧?β︸  ︷︷  ︸
(n+1)-form=0

) − (−1)k+1α ∧ ιX ? β

= (−1)kα ∧??−1 ιX ? β = α ∧?(X[ ∧ β).

Therefore ιX is regarded as the dual operator of X[∧ under the pairing
(·) ∧?(·).

Examples of Interior Products and Wedge Products

We list down a few useful special cases of interior products and wedge
products. All of them can be easily checked using their definitions and
(A.4).
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• If f is a 0-form and α is a k-form, then ιX ( f α) = f ιXα.
• If ?1 is the volume form, then ιX (?1) = ?X[.
• Suppose M = R3. Let α be a 1-form associated with A = α]. Then
ιXα = 〈X , A〉 and X[ ∧ α = ?(X × A)[. Here × is the cross product on
R3.

• Suppose M = R3. Let β be a 2-form, which is associated with a vector
B by B = (?β)]. Then ιX β = −(X × B)[ and X[ ∧ β = ?〈X , B〉.

• The Leibniz rule ιX (A[ ∧ B[) = ( ιX A[)B[ − A[( ιX B[) is translated to
the vector identity −X × (A× B) = 〈X , A〉B − 〈X , B〉A.

Projection and Rejection

Using the interior products and wedge products together one can express
the projection of k-forms onto the orthogonal complement of X ∈ TpM .
Suppose |X | = 1. Then ιX ◦ (X[∧) is a projection so that for each α ∈ Ωk

p and
Y1, . . . ,Yk ∈ TpM

ιX (X[ ∧ α)(Y1, . . . ,Yk ) = α(PX⊥Y1, . . . PX⊥Yk )

where PX⊥ is the orthogonal projection to the orthogonal complement X⊥.
The remainder of the projection, i.e. the rejection, is given by (X[∧) ◦ ιX by
checking that

ιX ◦ (X[∧) + (X[∧) ◦ ιX = id.

There is a special scenario when the projection and rejection operators are
useful. Suppose ∂M denotes the boundary of M viewed as an (n − 1)-
dimensional submanifold using the inclusion map j∂M : ∂M ↪→ M . Let N

be the unit normal vector of ∂M . Then t = ιN ◦ (N[∧) and n = (N[∧) ◦ ιN re-
spectively extract the tangent and normal components at the boundary, as
introduced in [G. Schwarz, 1995, pp. 27]. In particular t is often identified
with the pullback j∗

∂M .

Extrusion

Interior products applied on a differential form can also be understood in
the framework where differential forms are treated as integrated objects
[Mullen et al., 2011]. It turns out that the interior products are the dual
of extrusion. Extrusion means “growing” a point into a curve, a curve into
a surface, or a surface into a volume along a vector field. Let X ∈ Γ(TM)
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be a vector field, and let φX
t be a flow φX

t : M → M satisfying the initial
condition

φX
0
= id, ∂

∂t
���t=0

φX
t = X .

For each k-dimensional surface Σ we denote φX
t (Σ) the resulting surface

transported by the flow map φX
t . Now, let extX

ε (Σ) denote the trajectory of
the flowing geometry

extX
ε (Σ) B

⋃
0≤t≤ε

φX
t (Σ).

and we call it an extrusion (with ε amount) of Σ with initial velocity X . One
may also think of φX as a map on an extended domain that includes the
time variable

φX : Σ × [0, ε] → M

which serves as a homotopy between Σ = φX (Σ × {0}) and φX
ε (Σ) = φX (Σ ×

{ε}). Then the extrusion is simply the (k + 1)-dimensional image

extX
ε (Σ) = φX (

Σ × [0, ε]
)

.

In particular, using the natural orientation

∂
(
Σ × [0, ε]

)
= −∂Σ × [0, ε] + Σ × ∂

(
[0, ε]

)
= −∂Σ × [0, ε] + Σ × {ε} − Σ × {0}

we have the relation

φX
ε (Σ) − Σ = ∂

(
extX

ε (Σ)
)
+ extX

ε (∂Σ). (A.5)

Now, turning back to the interior product. The geometric meaning of the
interior product ιX : Ωk+1(M) → Ωk (M) can be described using an extru-
sion operator. For every (k + 1)-form α and every k-dimensional surface Σ,
the evaluation of ιXα on Σ can be written as∫

Σ

ιXα = lim
ε→0

1

ε

∫
extXε (Σ)

α. (A.6)

for any extrusion extX
ε with initial velocity X .

Take ιX (?1) on the volume form (?1) for example. We know previously
that ιX (?1) = ?X[ is the (n − 1)-form describing the flux of X . One can
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visualize this relation by that over an (n − 1)-dimensional surface Σ, the
total flux of the flow generated by X is “the amount of volume passing
through Σ per unit time.” This is indeed given by limε→0

1

ε Vol(extX
ε (Σ))

which equals to
∫
Σ
ιX (?1) =

∫
Σ
?X[ by (A.6).

A.5 A Short Summary

Up to now, we have introduced all the fundamental operations we need on
differential forms. They include metric-independent operations, which are
wedge products ∧, exterior derivatives d and pullback operators φ∗. There
are also metric-dependent operations such as the musical isomorphisms ],
[, the Hodge dual ?, and the interior product ιX . When a differential form
is vector-valued, one uses the Levi-Civita connection ∇ and its associated
covariant exterior derivative d∇.

Here we collect some useful identities. Below the greek letters represent
some α ∈ Ωk (M ; R), β ∈ Ω` (M ; R), ξ ∈ Ωk (M ; TM) and τ ∈ Ω` (M ; TM).

First there are identities in the duality with respect to the paring
∫

(·) (·):

•
∫
Σ

dα =
∫
∂M α. (Stokes Theorem, (A.1).)

•
∫
Σ
φ∗α =

∫
φ(Σ) φ. (Eq. (A.2).)

•
∫
Σ
ιXα = limε→0

1

ε

∫
extXε (Σ) α. (Eq. (A.6).)

Next, there are the closedness rules and the Leibniz rules:

• d ◦ d = 0.
• ιX ◦ ιX = 0.
• d∇ dφ0 = 0 and d∇? dφ0 = 0.
• d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ.
• ιX (α ∧ β) = ιXα ∧ β + (−1)kα ∧ ιX β.
• d〈ξ, τ〉 = 〈 d∇ξ ∧ τ〉 + (−1)k〈ξ ∧ d∇τ〉.

The following facts about pullback operators are also important:

• (φ1 ◦ φ2)∗ = φ∗
2
φ∗

1
.

• d ◦ φ∗ = φ∗ ◦ d.
• φ∗(α ∧ β) = (φ∗α) ∧ (φ∗ β).
• ιX (φ∗α) = φ∗( ι dφ(X )α).
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There is a duality of between interior products and wedge products:

• X[ ∧ α = (−1)k ?−1 ιX ?α.
• (X[∧) ◦ ιX + ιX ◦ (X[∧) = |X |2id.

Finally, there are dualities between vectors and differential forms. For the
items involving B we assume M = R3, otherwise M is an arbitrary Rieman-
nian manifold:

• A[ = 〈A, dφ0〉.
• ιX A[ = 〈X , A〉.
• ιX (?B[) = −(X × B)[.
• X[ ∧ B[ = ?(X × B)[.
• X[ ∧ (?A[) = 〈X , A〉.
• ιX (?1) = ?X[.

Using these operators and their identities, the rest of the discussion can be
written free of coordinate.

A.6 Lie Derivatives of Differential Forms

A Lie Derivatives appears when taking the time derivative to an expression
involving a time-dependent pullback operator. Suppose X ∈ Γ(TM) is a
vector field, and let φt be its associated flow. Then for each k-form α ∈

Ωk (M), its Lie derivative along X is defined by

LX α B
∂
∂t

���t=0

(
φ∗t α

)
.

Lie derivatives are useful when measuring the rate of change of a differ-
ential form evaluated on a moving geometry. Specifically, suppose Σ is
a k-dimensional submanifold, which is then advected by the flow φt (Σ).
Then

d
dt

�����t=0

∫
φt (Σ)

α =

∫
Σ

LX α.
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Using (A.5), (A.6) and (A.1) one finds that

d
dt

�����t=0

∫
φt (Σ)

α = lim
ε→0

1

ε

(∫
φt (Σ)
−

∫
Σ

)
α

= lim
ε→0

1

ε

(∫
extXε (∂Σ)

α +

∫
∂(extXε (Σ))

α

)
=

∫
Σ

(
d( ιXα) + ιX ( dα)

)
.

For this to be true for every Σ, we obtain Cartan’s homotopy formula (or
Cartan’s magic formula)

LX = d ◦ ιX + ιX ◦ d. (A.7)

Divergence of a Vector Field

The divergence of a vector field is the rate of change of the volume of
an infinitesimal region advected by X . This geometric description can be
written in terms of LX :

(div X )? 1 B LX (?1).

By (A.7)

?(div X ) = d( ιX ? 1) = d ? X[, or div X = ? d ? X[.

Using X[ = 〈X , dφ0〉 one also finds

div X = ? d〈X ,? dφ0〉 = ?〈∇X ∧? dφ0〉,

which is the trace of ∇X . (One can see this by expressing it with an or-
thonormal basis {ei}

n
i=1

, ?〈∇X ∧? dφ0〉 =
∑n

i=1
〈∇ei X , ei〉.)

Notes on Material Derivatives

If α is time dependent, then

∂
∂t

���t=0

(
φ∗t α

)
= ∂

∂t
���t=0

α +LX α

or in integral form

d
dt

�����t=0

∫
φt (Σ)

α =

∫
Σ

(
∂
∂t +LX

)
α.

When the geometry Σ on which we evaluate forms is just a point (k = 0),
and when α is a 0-form, then

(
∂
∂t +LX

)
is also called the material derivative.
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Explicitly, if f is a 0-form, then LX f = df (X ) is just the directional deriva-
tive. While material derivatives play a central role in continuum mechanics,
their counterpart

(
∂
∂t +LX

)
for higher degree forms are not widely known

to the community. Instead,
(
∂
∂t +LX

)
α is usually expressed in terms of the

material derivatives of 0-forms for the coefficients of α under a coordinate
basis, supplied with extra correction terms.

In the following, we demonstrate that some frequently seen directional
derivatives with correction terms are just Lie derivatives LX applied on
forms of some nonzero degrees.

Special Cases of Lie Derivatives

Here we give the formula for the Lie derivatives applied on forms of vari-
ous degrees in terms of the associated vector expressions.

Lemma A.1 (Lie Derivative on 0-forms). If f is a 0-form, then

LX f = df (X ).

Proof. LX f = ιX ( df ) = df (X ). �

Lemma A.2 (Lie Derivative of 1-forms). Suppose α is a 1-form associated with
a vector field A by α = A[. Then

LX α = (∇X A)[ + 〈A,∇X〉

Proof. Using the identity tangent map dφ0, we can write α = 〈A, dφ0〉. Then
by Leibniz rule for both ιX and d, we have

LX α = d( ιX 〈A, dφ0〉) + ιX ( d〈A, dφ0〉)

= d〈A, X〉 + ιX 〈∇A∧ dφ0〉

= 〈∇A, X〉 + 〈A,∇X〉 + 〈∇X A, dφ0〉 − 〈∇A, X〉

= 〈A,∇X〉 + (∇X A)[.

�

Lemma A.3 (Lie Derivative of 2-forms on a 3-manifold). Suppose β is a
2-form on a 3-manifold M . Let B = (?β)] be its associated vector field. Then

?LX β =
(
∇X B −∇B X + (div X )B

)[
.
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Proof. First observe from

?(B[ ∧ X[) = − ιB ? X[ = ιX ? B[

that

〈B, ιX ? dφ0〉 = ιX 〈B,? dφ0〉 = ιX ? B[

= − ιB ? X[ = −〈X , ιB ? dφ0〉. (A.8)

Now, writing β = 〈B,? dφ0〉, the Lie derivative becomes

LX β = d( ιX ? B[) + ιX ( d ? B[)

= d(〈B, ιX ? dφ0〉︸           ︷︷           ︸
−〈X , ιB? dφ0〉

) + ιX (?div B)

where the first term under derivative has two alternative expressions due
to (A.8). We use this fact when we take the derivative as the sum of partial
derivatives varying only one of X and B:

d(〈B, ιX ? dφ0〉) = 〈∇B ∧ ιX ? dφ0〉 − 〈∇X ∧ ιB ? dφ0〉.

Using the Leibniz rule for interior products, we further have

d(〈B, ιX ? dφ0〉) = − ιX 〈∇B ∧? dφ0〉 + 〈∇X B,? dφ0〉

+ ιB〈∇X ∧? dφ0〉 − 〈∇B X ,? dφ0〉

= −(div B)? X[ +?(∇X B)[ + (div X )? B[ −?(∇B X )[.

Therefore,

LX β = ?
(
∇X B −∇B X + (div X )B

)[
.

�

Lemma A.4 (Lie Derivative of n-forms). Let ρ be an n-form associated with a
0-form q by ρ = ?q. Then

?LX ρ = dq(X ) + (div X )q.

Proof. Using Cartan’s formula, we have

LX (?q) = d( ιX ? q) + ιX ( d ? q)︸  ︷︷  ︸
=0

= d(q? X[) = dq ∧?X[︸     ︷︷     ︸
? ιX dq

+q d ? X[︸ ︷︷ ︸
?(div X )

and the proof follows. �
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A.7 General Variation Formula for Pullback Forms

In this section we introduce a formula for the variation of a pullback of a
differential form, which is similar but more general to Cartan’s formula for
Lie derivatives. Suppose M and N are manifolds (possibly with different
dimension) and suppose N is Riemannian. Let {ψt }t∈[0,1] be a family of
smooth map ψt : M → N smoothly depending on t, and let α ∈ Ωk (N ; R)
be a fixed k-form on N . Now, we are interested in the variation

∂
∂t

���t=0

(
ψ∗t α

)
of the t-dependent form ψ∗t α ∈ Ω

k (M ; R).

Let us write ψ̇t =
∂
∂t̃

���t̃=t
ψt̃ , which is a function

ψ̇t : M → TN such that ψ̇t (x) ∈ Tψt (x) N .

Then the variation formula is given by

∂
∂t

���t=0

(
ψ∗t α

)
= d

(
ψ∗

0
ιψ̇0

α
)
+ ψ∗

0
ιψ̇0

dα. (A.9)

To see this is true, first we let the time variable be part of an extended
domain, and write ψ as a smooth function ψ : M × [0, 1] → N . In particular,
for each k-dimensional submanifold Σ ⊂ M and t ∈ [0, 1], the restriction
ψ��Σ×[0,t] serves as the homotopy between ψ��Σ×{0} and ψ��Σ×{t}. In particular
one has

∂
(
ψ

(
Σ × [0, t]

) )
= ψ(Σ × {t}) − ψ(Σ × {0}) − ψ

(
∂Σ × [0, t]

)
(A.10)

We also recognize that

ψ
(
Σ × [0, t]

)
= extt (ψ0(Σ)), ψ

(
∂Σ × [0, t]

)
= extt (ψ0(∂Σ))

where extt is an extrusion operator on N with initial velocity ψ̇0. Now we
can compute∫

Σ

∂
∂t

(
ψ∗t α

)
=
∂

∂t

�����t=0

∫
Σ

ψ∗t α = lim
ε→0

1

ε

(∫
ψt (Σ)

α −

∫
ψ0(Σ)

α

)
(A.10)
= lim

ε→0

1

ε
*
,

∫
extt (ψ0(∂Σ))

α +

∫
∂(extt (ψ0(Σ)))

α+
-

,

and now using
∫
Σ

dα =
∫
∂Σ
α,

∫
Σ
ψ∗

0
α =

∫
ψ0(Σ) α and

∫
Σ
ιψ̇0

α = limε→0

1

ε

∫
extε (Σ) α,

we get ∫
Σ

∂
∂t

(
ψ∗t α

)
=

∫
Σ

(
d
(
ψ∗

0
ιψ̇0

α
)
+ ψ∗

0
ιψ̇0

dα
)

and hence (A.9).
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A.8 Codifferential and Laplacian

As the last topic on exterior calculus, let us briefly talk about codifferential
and Laplacian. Using Leibniz rule, we have that for α ∈ Ωk−1(M) and
β ∈ Ωk (M),

d(α ∧?β) = ( dα) ∧?β + (−1)k−1α ∧ d ? β

= ( dα) ∧?β − (−1)kα ∧?(?−1 d ? β).

Taking the integral over M we get∮
∂M

α ∧?β︸         ︷︷         ︸∫
M

d(α∧?β)

= ⟪ dα, β⟫ − ⟪α, (−1)k ?−1 d ? β⟫ .

Therefore, up to a boundary condition so that
∫
∂M α ∧?β = 0, the adjoint

of d with respect to ⟪·, ·⟫ is

d† = (−1)k ?−1 d?

when applied to a k-form. The operator d† is called the codifferential.

Using the exterior derivative and the codifferential operator, the Dirichlet
energy of a k-form α is defined by

ED(α) B 1

2
⟪ dα, dα⟫ + 1

2
⟪ d†α, d†α⟫.

If one takes a variation α̊ in α, then the variation of the Dirichlet energy is
given by

E̊D = ⟪ dα̊, dα⟫ + ⟪ d†α̊, d†α⟫
= ⟪α̊, d† dα⟫ + ⟪α̊, d d†α⟫ +

∮
∂M

α̊ ∧? dα −
∮
∂M

d†α ∧?α̊ (A.11)

which motivates the consideration of the negative (semi-)definite operator
called Laplacian

∆ = −( d† d + d d†).

We will not go further to the Hodge decomposition, which is usually the next
after the Laplacian is introduced. Hodge decomposition is important in hy-
drodynamics. In fact it was first proposed by Helmholtz [1858] discussing
hydrodynamics. We refer the reader to [G. Schwarz, 1995] for a full theory
written in exterior calculus.
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A p p e n d i x B

QUATERNIONS

Since quaternion numbers will be largely used in Section 4.3, the entire
Chapter 6 and onward, we make a note on quaternion algebra for those
unfamiliar with it.

B.1 The Basics

The space of quaternions H is R4 equipped with a multiplication. We
write R4 = R ⊕R3, that is (α, v1, v2, v3) ∈ R4 is identified as α + (v1, v2, v3) =
α + v ∈ R ⊕R3. The multiplication assigned to R4 vectors is defined by

(α + v)(β +w) = αβ + αw + βv + vw, where

vw B −〈v, w〉 + v ×w for v, w ∈ R3.

Equivalently one writes

H =
{
α + v1i + v2 j + v3k ��� α, v1, v2, v3 ∈ R

}

with the multiplication rules

i2 = j2 = k2 = −1, i j = − ji = k, j k = −k j = i, ki = −ik = j.

Define also the following notions analogous to those for complex numbers:
for q = α + v ∈ H,

Re(q) B α ∈ R, Im(q) B v ∈ R3, q B α − v ∈ H,

|q |2 B |α |2 + |v|2 = qq = qq ≥ 0,

eq B eα
(
cos(|v|) + sin(|v|) v

|v|

)
;

and for p, q ∈ H

〈p, q〉 = 〈q, p〉 B Re(pq)

which coincides with the Euclidean R4 inner product when we view p, q ∈

R4.

One also checks the following facts
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• q−1 = 1

|q |2 q.
• For p, q ∈ H, |pq | = |p| |q |.
• For p, q ∈ H, pq = qp.
• The quaternionic multiplication is associative. That is (pq)r = p(qr)

for p, q, r ∈ H.

B.2 3D Rotations

Quaternions can represent 3D rotations in the following way. Suppose
v ∈ R3, |v| = 1 is a rotation axis and θ ∈ R. Then the rotation about v by
angle θ is given by*

y 7→ qyq, where q = e−(θ/2)v = cos
(
θ
2

)
− sin

(
θ
2

)
v.

One can check that y 7→ qyq is a linear map from R3 to R3, an isometry
|y| = |qyq | with det(y 7→ qyq) = 1, qvq = v, and every w⊥v is sent to
qwq = cos(θ)w − sin(θ)v ×w.

As a corollary, every unit quaternion q ∈ H, |q | = 1, gives rise to a
3D rotation y 7→ qyq since unit quaternions always take the form q =

cos(θ/2) − sin(θ/2)v for some θ ∈ R and unit vector v ∈ R3.

B.3 Hopf Map

The space of unit quaternions is precisely S3, the set of unit vectors in
R4 � H. Now using the first unit imaginary i ∈ R3 consider

π : S3 → S2

q 7→ qiq.

The map π is called the Hopf map. The Hopf map has the property that
π(eiθq) = π(q) for all q ∈ S3 and θ ∈ R. Conversely if π(p) = π(q) for
p, q ∈ S3, there exists a unique eiθ ∈ S1 such that p = eiθq. This turns S3 into
a fiber bundle over S2 with the Hopf map being the projection map S3

π
−→ S2.

Each fiber of the bundle S3
π
−→ S2 is a circle parameterized by the action eiθ .

More details of this Hopf fibration are given in Section 4.3.

*One may find a different convention that the rotation is written as y 7→ qyq with
q = e(θ/2)v. We choose the convention y 7→ qyq to keep the expression qyq linear in q from
the right and antilinear (conjugate-linear) in q from the left.
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B.4 Quaternions and C2 Vectors

Since complex numbers are more well-acquainted in most science commu-
nity and more accessible in most numerical libraries, it is often convenient
to realize quaternions a + bi + c j + dk ∈ H as elements (a + bi, c + di)ᵀ of C2.
By identifying the i in H with the i in C, the correspondence H � C2 can
be expressed as

(C2 →H) : Ψ =


ψ1

ψ2


7→ ψ = ψ1 + ψ2 j,

(H→ C2) B (C2 →H)−1.

Note that this choice of identification respects complex linearity from the
left:

(C2 →H) (a + bi)Ψ = (a + bi)ψ for a + bi ∈ C.

Inner Products Suppose Φ,Ψ ∈ C2 correspond to φ,ψ ∈ H respectively.
Then the real inner product

〈φ,ψ〉 = Re
(
φψ

)
= Re

(
Φ
ᵀ
Ψ

)
.

We also define a complex inner product 〈·, ·〉C : H ×H→ C by

〈φ,ψ〉C B Φ
ᵀ
Ψ = 〈φ,ψ〉 + 〈iφ,ψ〉i

with the complex Hermitian property 〈φ,ψ〉C = 〈ψ, φ〉C.

Pauli Matrices The quaternion multiplication from the right ψ 7→ ψi,
ψ 7→ ψ j, ψ 7→ ψk still leaves the expression having the property that ψ
is complex linear from the left. Therefore each of ψi,ψ j,ψk written in C2 is
an expression linear in Ψ in the linear algebra over C. Hence each of them
can be written in the form of Aψ for some C2×2 matrix A. In physics the
Pauli matrices σ1,σ2,σ3 are the Hermitian 2 × 2 matrices given by

σ1 B


0 1

1 0


, σ2 B



0 −i

i 0


, σ3 B



1 0

0 −1


. (B.1)

Now one may check (by expanding and comparing the terms) that

(H→ C2) ψi = iσ3Ψ, (B.2a)

(H→ C2) ψ j = −iσ2Ψ, (B.2b)

(H→ C2) ψk = iσ1Ψ. (B.2c)
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Pauli Spin Vector Given a unit quaternion ψ ∈ S3 its image under the
Hopf map s = π(ψ) = ψiψ ∈ S2 is called the spin vector. In physics, the
Bloch vector z = (z1, z2, z3)ᵀ rising from Ψ ∈ C2, |Ψ|2 = 1, is also an S2-valued
vector. The Bloch vector (z1, z2, z3)ᵀ is given by

zi = Ψ
ᵀσiΨ, i = 1, 2, 3.

Now one can check that the two notions of spin vectors s = (s1, s2, s3)ᵀ and
z = (z1, z2, z3)ᵀ are related by

s1 = z3, s2 = −z2, s3 = z1. (B.3)

To see this, use s1 = 〈i, s〉 = Re
(
−iψiψ

)
= Re

(
(ψi)iψ

)
and (B.2) to obtain

s1 = Re
(
(iσ3Ψ)ᵀiΨ

)
= Ψᵀσ3Ψ = z3.

The rest of (B.3) can be shown similarly.
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