Aspects of Effective Field Theories
from Scattering Amplitudes

Thesis by
Chia-Hsien Shen

In Partial Fulfillment of the Requirements for the
Degree of
Doctor of Philosophy

Caltech

CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California

2017
Defended May 15, 2017



© 2017

Chia-Hsien Shen
ORCID: 0000-0002-5138-9971

All rights reserved

1



1ii

ACKNOWLEDGEMENTS

The journey of graduate study is rewarding, but definitely a strenuous one.
Along the way, many people helped and supported me to overcome all the
challenges. All I can do is to use a tiny amount of paragraph to express my
gratitude. The number of people who I should be thankful to are uncountable
after six years. This acknowledgment only reflects a subset of people whose

influence is so substantial that even a ignorant person like me cannot forget.

First of all, I would like to thank my advisor, Prof. Clifford Cheung. Cliff
establishes himself as a great role model for me to follow. He pushes me
forward with his endless passion for physics, demonstrates his fearless attitude
in attacking a problem, and trains me to focus on the essence. I still remember
asking stupid questions or writing terrible drafts back in the day. But Cliff
still kept teaching me despite my ignorance. Once in a while, I got lost in
the dark and did not know how to move forward. Nevertheless, Cliff did not
give up on me and still patiently guided me through. It is his belief in me
that motivates me to keep fighting. This PhD degree would not be possible
without his unconditional support. I cannot emphasize more how grateful I
am toward Cliff.

Second, I am extremely lucky to learn from another great physicist— Jaroslav
Trnka. Although he started at Caltech as a postdoc, he treats me like his own
student. Whenever we talk about physics, I am always amazed by his deep
insight and breadth of knowledge on various aspects of amplitudes. Working
with Jaroslav is a great pleasure, because he always challenges me with critical
questions and provides a great vision for overall direction. I also thank him for
providing a lot of opportunities to introduce me to the amplitude community.
The only thing I regret is not having learned more from him while he was
at Caltech. Under the supervision of Cliff and Jaroslav, it was a certainly

privilege to learn from two young stars of their generation.

Many other senior faculties were very kind to advise a ignorant young stu-
dent like me. I am indebted to Mark Wise for providing generous support
which spanned from my postdoc application, building a great environment
for the Caltech theory group, and serving on my committee. I also appre-

ciate Sean Carroll and Frank Porter for serving on my committee as well.



iv
My research would not be fruitful without my wonderful collaborators: Karol
Kampf, Jiri Novotny, and Congkao Wen. I also thank Zvi Bern, Jacob Bour-
jaily, Lance Dixon, David Kosower, Song He, Yu-tin Huang, Oliver Schlotterer,

John Joseph Carrasco and Henrik Johansson for advice and discussion.

Interaction with other fellow students is equally crucial to the growth of a
PhD student. My PhD experience would be totally different without Enrico
Herrmann. Although we have never written papers together, Enrico is always
passionate and never stops asking me about my latest progress or discussing
physics. Seeing his passion, working discipline, and breath of knowledge in
physics motivates me to keep working harder. Both Cliff and Jaroslav are
role models of a caliber that I probably could never achieve, but I hope I can
be as good as you, Enrico. We also have been to so many places together,
from TASI, Hong Kong, Montreal, Taiwan, Davis, Stockholm, KITP, and the
coming trip in Edinburgh. I hope the list will keep growing, and we will have a
chance to be actual collaborators in the future. I wish we all have a successful

career as postdocs.

I had a fine time enjoying an office of my own, until the arrival of Alek Ridgway.
He makes time in office not just fine, but quite happy. Working in the office
during weekends is not lonely anymore. I will miss all the jokes and discussion
in this office. It is impressive to see you grow so quickly. I am looking forward

to your future papers written in Downs 418.

[ am also grateful to other colleagues in the Caltech Theory Group for creating
an lovely environment, including Tony Bartolotta, Charles Chun Jun Cao,
Aidan Chatwin-Davies, Murat Kologlu, Petr Kravchuk, Ying-Hsuan, Tristan
Mckinney, Du Pei, Jason Pollack, Grant Remmen, Ingmar Saberi, Ashmeet
Singh, and Bogdan Stoica. It is my pleasure to be at Caltech with you all. I
was also fortunate to know many excellent students in other schools, including
Alex Edison, Michael Enciso, Sean Litsey, Andrew McLeod, Josh Nohle, JJ

Stankowicz, and Julio Parra Martinez, whom I learned a lot from.

The friendship built during six years at Caltech will never be forgotten. I will
miss forever the life shared with my dear VolleyBobo family, Ho-Hsuan and
Chia-Wei, Lulu, Bobo, Sunny, Shun-Jia, Yi-Yin, Riva and Hanky. You guys
are not just friends, but more like my family. I had a lot of ups and downs
these years. Thanks to you, I could find a harbor to rest, to share the laughter

and tears, and find courage for the future. The person always attached to our



v

gathering is my roommate Guagua. He is probably not the best roommate
by usual standard but he is kind and never hesitates to help. In addition, I
would like thank Min-Feng, Linhan, Josiane, and Hsieh-Chen for friendship

and support, especially in the early years.

Let me also thank Hui Chiu and Cicada Lin. It is amazing that we are such
good friends even from just knowing each other very recently. I will never
forget the support and life lessons you two gave me. There are other friends
who played important parts in my life. If you did, you know you are in my

heart even if your names are not listed here.

I cannot say how lucky I am to keep a close friendship with Maomao. I have
always learned from you since my undergrad days. Thanks for your company
all these years. Often I forget the importance of your support until the moment

I need it. I hope we both can find some happiness in life in the future.

Lastly, being abroad limits my time spent with my family. I wish we could
share more time together. I thank my family and in particular, my parents

for their endless love.



vi

ABSTRACT

On-shell methods offer an alternative definition of quantum field theory at
tree-level. We first determine the space of constructible theories solely from
dimensional analysis, Lorentz invariance, and locality. We show that all ampli-
tudes in a renormalizable theory in four dimensions are constructible, but only
a subset of amplitudes is constructible in non-renormalizable theories. The ob-
structions to effective field theories (EFTs) are then lifted for the non-linear
sigma model, Dirac-Born-Infeld theory, and the Galileon, using the enhanced

soft limits of their amplitudes.

We then systematically explore the space of scalar EFTs based on the soft lim-
its and power counting of amplitudes. We prove that EFTs with arbitrarily soft
behavior are forbidden by on-shell momentum shifts and recursion relations.
The exceptional EFTs like the non-linear sigma model, Dirac-Born-Infeld the-
ory, and the special Galileon lie precisely on the boundary of allowed theory
space. Our results suggest that the exceptional theories are the natural EFT
analogs of gauge theory and gravity because they are one-parameter theories

whose interactions are strictly dictated by properties of the S-matrix.

Next, a new representation of the nonlinear sigma model is proposed to man-
ifest the duality between flavor and kinematics. The action consists of only
cubic interactions, which define the structure constants of an underlying kine-
matic algebra. The action is invariant under a combination of internal and
spacetime symmetries whose conservation equations imply flavor-kinematics
duality, ensuring that all Feynman diagrams satisfy kinematic Jacobi identi-
ties. Substituting flavor for kinematics, we derive a new cubic action for the
special Galileon. The vanishing soft behavior of amplitudes is shown as a

byproduct of the Weinberg soft theorem.

Finally, we derive a class of one-loop non-renormalization theorems that strongly
constrain the running of higher dimension operators in four-dimensional quan-
tum field theory. Our derivation combines unitarity and helicity selection rules
at tree level. These results explain and generalize the surprising cancellations
discovered in the renormalization of dimension six operators in the standard

model.
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Chapter 1

INTRODUCTION

Quantum field theory is a cornerstone of modern theoretical physics, whose
conventional approach is to write down a Lagrangian and then derive all struc-
tures therein. However, there has been tremendous progress in the modern
S-matrix program revealing many symmetries and dualities obscured by the
traditional approach. These new structures show up in a wide range of theo-
ries, including Yang-Mills (YM), gravity, and effective field theories (EFTs).

The initial motivation of the modern S-matrix program is to reduce the com-
plexities of the usual method of Feynman diagrams. Feynman diagram calcu-
lation introduces off-shell redundancies from gauge invariance and a choice of
field basis which appear in intermediate processes but are absent in observ-
ables. The modern S-matrix program exploits physical criteria like Lorentz
invariance and unitarity to construct scattering amplitudes directly and with-
out the aid of a Lagrangian. The history can be traced back to the unitarity
methods [1, 2] developed in the 90’s for loop-level calculation. The second
wave of revolution was led by the celebrated BCF'W recursion relations which
compute S-matrices in YM without using Feynman diagrams at all [3, 4].
On-shell recursion relations were soon extended to gravity theories [5, 6], su-
persymmetric theories [7], and, eventually, all renormalizable and some non-
renormalizable theories [8]. In the context of planar N = 4 super Yang-Mills
theory, on-shell recursion is even generalized to all-loop order [9]. These de-
velopments made traditionally intractable calculations possible, and generated
many surprisingly simple formulae of scattering amplitudes. Since the devel-
opment of on-shell recursion relations, many other alternative formulations of
S-matrix have been invented, e.q., on-shell diagrams and positive Grassman-
nian [10, 11], Cachazeo-He-Yuan (CHY) formula [12-14], hexagon bootstrap
[15, 16], flux tube S-matrix [17, 18], twistor methods [19-27], and amplituhe-
dron [28, 29]. We refer readers interested in more detail to the pedagogical

review [30].

Many surprising properties of field theory were discovered with the aid of the

S-matrix program. These properties are usually very obscured or remained
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unexplained at the level of the Lagrangian, but manifest in the alternative
formulations of amplitudes. For example, there is a remarkable squaring rela-
tion that connects gauge and gravity first discovered in string theory [31] and
much later generalized as a color-kinematics duality by Bern, Carrasco, and
Johansson (BCJ) [32-34], which applies at loop level. Later on, the structure
was made manifest in the context of CHY formula [14] and generalized into a

wider range of theories including EFTs.

Nevertheless, if we aim to find an on-shell reformulation of quantum field the-
ory, we need to know “what is the space of on-shell reconstructible theories?”
We systematically survey the landscapes of reconstructible theories in four di-
mensions in Chap. 2, simply based on locality, gauge invariance, and power
counting. The space spans a wide range of theories, including all renormal-
izable theories. The recursion can even be simplified for specific cases such
as the standard model and supersymmetric theories. For non-renormalizable
theories, only a subset of amplitudes are constructible. That obstruction oc-
curs in non-renormalizable theories is expected, since higher point vertices are

independent of lower point ones.

However, there is a class of EFTs whose amplitudes are still surprisingly on-
shell constructible. To achieve this, Chap. 3 uses soft limits as the defining
properties of amplitudes. In cases of the non-linear sigma model (NLSM),
Dirac Born-Infield, and the special Galileon, the enhanced soft limits dictate
the infinite tower of interactions as gauge invariance in gravity, which enables
the S-matrix to be constructible. The studies in Chap. 2 and 3 demonstrate
both the potential and limitations of recursion relations as a self-contained

formulation of quantum field theory.

In Chap. 4, we classify EFTs by the soft limits of their scattering amplitudes.
This unifies seemingly different EFTs into a periodic table, calling for a deeper
connection among these EFTs. Using only the factorization and soft limits of
the S-matrix, we carve out whole swaths of EFT space, making the space of
interesting theories very limited. This is analogous to the “four-particle test”
in [35, 36, which rules out higher spin theories based on on-shell consisten-
cies. Our proof relies heavily on the recursion relations for EFTs developed
in Chap. 3, since they have soft limits built into the expressions. This no-go
theorem establishes the NLSM, Dirac Born-Infield, and the special Galileon as

the unique exceptional theories with enhanced soft limits, that are the scalar



analogs of YM and gravity whose structures are fixed by gauge invariance.

In Chap. 5, we further investigate the connection between the previously men-
tioned EFTs and their resemblance to YM and gravity. The same squaring
relation observed in gauge and gravity turns out also occur between the NLSM
and the special Galileon. This serves as a novel example of double copy rela-
tions, given that EFTs do not appear in string theory as easily as in YM and
gravity, suggesting a pure field theory origin. The full explanation of double

copy structure remains an open question (cf. [37] and references therein).

Without the simultaneous complications of gauge invariance and field redefini-
tion, we first propose an action for the NLSM to manifest the flavor-kinematics
duality. The Feynman vertices in this action serve as the structure constant of
the associated kinematic algebra. The action enables us to identify the sym-
metry origin for flavor-kinematics duality. As a byproduct, we show the Adler
zero of pions is related to the Weinberg soft theorem in YM. These further
strengthen the connection between these EFTs and YM /gravity.

In Chap. 6 we demonstrate a novel example of the power of the S-matrix pro-
gram at loop level. Technical naturalness dictates that all operators not for-
bidden by symmetry are compulsory—and thus generated by renormalization.
The vanishing of ultraviolet divergences are in turn a telltale sign of underly-
ing symmetry. This is famously true in supersymmetry, where holomorphy en-
forces powerful non-renormalization theorems. Recent calculations in the stan-
dard model effective field theory [38] found miraculous non-renormalization
among many of them which raises the question: “Is there any new symmetry

in the standard model?”

We prove and generalize this non-renormalization to all higher dimensional
operators in generic field content in four spacetime dimensions. However,
this non-renormalization is not a consequence of new symmetry. The key is
to map operator mixing into 1-loop amplitudes. The mixing occurs only if
the associated 1-loop amplitude has non-vanishing cuts as products of tree
amplitudes. However, there are certain helicity selection rules which forbid
certain tree amplitudes and the associated 1-loop process. The results can
be summarized into simple rules that constrain the renormalization of general
EFT. Once again, we see the seemingly miraculous results in quantum field

theory have neat derivations in terms of scattering amplitudes.



Chapter 2

RECURSION RELATIONS IN FOUR DIMENSIONS

2.1 Introduction

On-shell recursion relations are a powerful tool for calculating tree-level scat-
tering amplitudes in quantum field theory. Practically, they are far more
efficient than Feynman diagrams. Formally, they offer hints of an alterna-
tive boundary formulation of quantum field theory grounded solely in on-shell
quantities. To date, there has been enormous progress in computing tree-level
scattering amplitudes in various gauge and gravity theories with and without

supersymmetry.

In this chapter we ask: to what extent do on-shell recursion relations define
quantum field theory? Conversely, for a given quantum field theory, what is
the minimal recursion relation, if any, that constructs all of its amplitudes?
Here an amplitude is “constructible” if it can be recursed down to lower point
amplitudes, while a theory is “constructible" if all of its amplitudes are either
constructible or one of a finite set of seed amplitudes which initialize the

recursion.

For our analysis we define a “covering space” of recursion relations, shown in
Eq. (2.2), which includes natural generalizations of the BCFW [4] and Ris-
ager [39] recursion relations. These generalizations, defined in Eq. (2.12) and
Eq. (2.13), intersect at a new “soft” recursion relation, defined in Eq. (2.15),

that probes the infrared structure of the amplitude.

As usual, these recursion relations rely on a complex deformation of the exter-
nal momenta parameterized by a complex number z. By applying Cauchy’s
theorem to the complexified amplitude, M(z), one relates the original ampli-
tude to the residues of poles at complex factorization channels, plus a boundary
term at z = oo which is in general incalculable. Consequently, an amplitude
can be recursed down to lower point amplitudes if it vanishes at large z and

no boundary term exists.

The central aim of this chapter is to determine the conditions for on-shell

constructibility by determining when the boundary term vanishes for a given
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Theory | YM | YM + ¢ | YM + ¢ | YM + ¢ + ¢ | Yukawa | Scalar | SUSY | SM |
m | 2] 2 | 5@ | 5@ | 3 |5@] 3 |3

Table 2.1: Summary of the minimal m-line recursion relation needed to con-
struct all scattering amplitudes in various renormalizable theories: Yang-Mills
with matter of diverse spins and arbitrary representations, Yukawa theory,
scalar theory, supersymmetric theories, and the standard model. The values
in parentheses apply if every scalar has equal charge under a U(1) symmetry.
Here ¢ and 1 denote scalars and fermions, respectively.

amplitude. We define the large z behavior, ~, of an amplitude by
M(z — o0) = 27, (2.1)

for an m-point amplitude under a general m-line momentum shift, where
m < n. Inspired by Ref. [40], we rely crucially on the fact that the large
z limit describes the scattering of m hard particles against n — m soft par-
ticles. Hence, the large z behavior of the n-point amplitude is equal to the
large z behavior of an m-point amplitude computed in the presence of a soft
background. Fortunately, explicit m-point amplitudes need not be computed,
as v can be stringently bounded simply from dimensional analysis, Lorentz
invariance, and locality, yielding the simple formulas in Eq. (2.26), Eq. (2.27),
Eq. (2.29), and Eq. (2.32). From these large z bounds, it is then possible
to determine the minimal m-line recursion relation needed to construct an n-
point amplitude for any given theory. If every amplitude, modulo the seeds,

are constructible, then we define the theory to be m-line constructible.

Our results apply to a general quantum field theory of massless particles in

four dimensions, which we now summarize as follows:

Renormalizable Theories

o Amplitudes with arbitrary external states are 5-line constructible.
o Amplitudes with any external vectors or fermions are 3-line constructible.

o Amplitudes with only external scalars are 3-line constructible if there is

a U(1) symmetry under which every scalar has equal charge.

o The above claims imply 5-line constructibility of all renormalizable quan-

tum field theories and 3-line constructibility of all gauge theories with
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fermions or complex scalars in arbitrary representations, all supersym-
metric theories, and last but not least the standard model. The associ-

ated recursion relations are defined in Eq. (2.12) and Eq. (2.13).
Non-renormalizable Theories

o Amplitudes are m-line constructible for (m —1)-valent interactions with-

out derivatives.

o Amplitudes are constructible for interactions with derivatives up to a

certain order in the derivative expansion.

o The above claims imply m-line constructibility of all scalar and fermion
@™1)"2 theories for mi+mg = m—1, and of certain amplitudes in higher
derivative gauge and gravity theories. The associated recursion relations
are defined in Eq. (2.2).

Constructibility conditions for some familiar cases are presented in Tab. 2.1.

These cases fully span the space of all renormalizable theories.

As we will see, our covering space of recursion relations naturally bifurcates
according to the number of z poles in each factorization channel: one or two.
For the former, the recursion relations take the form of standard shifts such as
BCFW and Risager, which is the case for the 5-line and 3-line shifts employed
for renormalizable theories. For the latter, the recursion relations take a more
complicated form which is more cumbersome in practice, but necessary for

some of the non-renormalizable theories.

The remainder of our chapter is as follows. In Sec. 2.2, we present a covering
space of recursion relations for an m-line shift of an n-point amplitude, tak-
ing note of the generalizations of the BCFW and Risager momentum shifts.
Next, we compute the large z behavior for these momentum shifts in Sec. 2.3.
Afterwards, in Sec. 2.4, we present our main result, which is a classification
of the minimal recursion relations needed to construct various renormalizable
and non-renormalizable theories. Finally, we discuss examples in Sec. 2.5 and

conclude in Sec. 2.6.



2.2 Covering Space of Recursion Relations

Definition

Let us now define a broad covering space of recursion relations subject to a
loose set of criteria. In particular, we demand that the external momenta
remain on-shell and conserve momenta for all values of z. In four dimensions,
these conditions are automatically satisfied if the momentum deformation is
a complex shift of the holomorphic and anti-holomorphic spinors of external

legs?,

/\i — Ai(z)=/\i+zm, 1€l
N = M) =N\ +zm, i€, (2.2)

where n; and 7; are reference spinors that may or may not be identified with
those of external legs, and Z and 7 are disjoint subsets of the external legs. As
shorthand, we will refer to the shift in Eq. (2.2) as an [Z, Z)-line shift. When
the specific elements of Z and Z are not very important, we will sometimes
refer to this as an [|Z|, |Z])-line shift, where the labels are the orders of Z and
Z. For an m-line shift, m = |Z| + |Z|. In this notation, the BCFW and Risager
shifts are [1, 1)-line and [3, 0)-line shifts, respectively.

As we will see, the efficacy of recursion relations depends sensitively on the
correlation between the helicity of a particle and whether its holomorphic or
anti-holomorphic spinor is shifted. Throughout, we will define “good” and

“bad” shifts according to the choices

- (+, —), good shift
T.7) = (2.3)
(—,+),  bad shift.
For example, the bad shift for the case of BCFW yields a non-vanishing con-

tribution at large z in non-supersymmetric gauge theories.

The resulting tree amplitude, M(z), is then complexified, but the original
amplitude, M (0) is obtained by evaluating the contour integral 95 dz M(z)/z
for a contour encircling z = 0. An on-shell recursion relation is then obtained
by applying Cauchy’s theorem to deform the contour out to z = oo, in the

process picking up all the residues of M(z) in the complex plane.

IThere is a more general class of shifts in which both \; and \; are shifted for every particle.
However, in the case momentum conservation imposes complicated non-linear relations
among reference spinors which makes the study of large z behavior difficult.
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As noted earlier, the momentum conservation must apply for arbitrary values
of z, implying
Somidi+ > Aifli = 0, (2.4)
1€L ’LE%
which should be considered as four constraints on 7; and 7;, which are easily

satisfied provided the number of reference spinors is sufficient.

Factorization
Next, consider a factorization channel of a subset of particles /. The complex

deformation of the momenta in Eq. (2.2) sends
P — P(z) = P+ 20, (2.5)

where P is the original momentum flowing through the factorization channel
and ( is the net momentum shift, so

P = Z )\Z‘:\i, Q = Z 771'5\1' + Z /\iﬁiv (2'6)

1e€F 1€F) iG]'-')T
where F) and ‘FX are intersection of F with Z and Z.

As we will see, the physics depends crucially on whether Q2 vanishes for all
factorization channels or not. First of all, the large z behavior is affected
because propagators in the complexified amplitude scale as

1 21 Q%=0

PreQr = e 0240 (2.7)

9

for a given factorization channel. Second, there is a very important difference
in the structure of the recursion relation depending on whether Q) vanishes in

all channels. If so, then each factorization channel has a simple pole at
z. = —P%/2P-Q, (2.8)
and the on-shell recursion relation takes the usual form,

M©O) = > Plz/\/l]:(z*)/\/l]_-(z*) + (pole at z = 00), (2.9)
f

where the sum is over all factorization channels and intermediate states, and
Mx and Mz are on-shell amplitudes corresponding to each side of the fac-

torization channel. However, if Q? does not vanish, then each propagator is a



quadratic in z and thus carries conjugate poles at

—P-Q:I:\/(P-Q)z—PzQQ

Zy = 02 (2.10)
Summing over both of these roots, we find a new recursion relation,
1 Mz )Mz(z2) — 22 M Mz
Mo = ¥ [z+ FEIMp(z) = 2o My () Mp(z)
F Zy — R—
+(pole at z = 00). (2.11)

Under conjugation of the roots, z; <> z_, the summand is symmetric, so
crucially, square roots always cancel in the final expression in the recursion
relation. Of course, the intermediate steps in the recursion are nevertheless

quite cumbersome in this case.

Recursion Relations

All known recursion relations can be constructed by imposing additional con-
straints on the momentum shift in Eq. (2.2) beyond the condition of momen-
tum conservation in Eq. (2.4). In the absence of extra constraints, the reference
spinors 7; and 7j; are arbitrary so by Eq. (2.6), Q@ # 0 generically. In this case

the recursion relation will have square roots in intermediate steps.

On the other hand, if Q% = 0, then Q must be factorized into the product
of two spinors. If @) is factorizable, then in the summand of Eq. (2.6) either
the n; and \; are proportional or the 7; and \; are proportional. For general
external kinematics, i.e. the \; and \; are independent, these proportionality
conditions can involve at most one external spinor. As we will see, this implies

two distinct classes of recursion relation which can accommodate Q2 = 0.

The first possibility is to shift only holomorphic spinors or only anti-holomorphic
spinors subject to the constraint that the n; = ¢;n and 1; = ¢;n are all propor-
tional to universal reference spinors 7 and 7. In each case, Eq. (2.6) factorizes
into the form @ =n(...) and @ = (...)n, respectively. In mathematical terms,

these scenarios correspond to the [0, m)-line and [m, 0)-line shifts,

ANi = N(2) =M+ zein, 1€X1

[0, m)-line: N
>ierciNi =0

}\i—>5\i2 :;\i+25i~7 Z'Gj,—
[m, 0)-line: N ®) 7 (2.12)
Tz ki =0
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where the constraints on ¢; and ¢; arise from momentum conservation. Of
course, the [0, m)-line and [m, 0)-line shifts are simply generalizations of the

Risager shift with the only difference that here m < n is arbitrary.

The second possibility is to shift only holomorphic spinors except for one or
only anti-holomorphic spinors except for one. In this case the reference spinors
must be proportional to a spinor of a specific external leg, which we denote
here by A; or Xj. Thus, in each case, 7; = ¢;\j and 7); = 515\]', so we again have
factorization, but of the form @ = A;(...) and Q = (.. .)Xj. These correspond
to [1,m — 1)-line and [m — 1, 1)-line shifts,

ANi = N(R) =M+ ZCZ‘)\]', 1€1

[1,m — 1)-line: N ~ N -
)\j —>)\j(2) :)\j_ZZiEICi)\ia j:I

S\Z—>S\Z(Z’) ZS\Z‘+Z@'5\]‘, 7 G.'Z-

/\j —>)\j(z):/\j—zzief5i/\i, j:I

[m — 1, 1)-line: (2.13)

where we have chosen a form such that momentum conservation is automati-
cally satisfied. Note that the case m = 2 corresponds precisely to BCFW, so

these shifts are a generalization of BCFW to arbitrary m < n.

Note that for m < 3, any momentum shift is necessarily of the form of the first
or second possibility, so @? = 0 automatically. Thus, Q? # 0 is only possible
it m > 3.

Remarkably, while the recursion relations in Eq. (2.12) and Eq. (2.13) are
naturally the generalizations of Risager and BCFW, they actually overlap for a
specific choice of reference variables! In particular, consider the [0, m)-line and
[m, 0)-line shifts in Eq. (2.12) for the case of = \; and 7 = );, and modifying
the constraint from momentum conservation such that > ;<7 cixi = Xj and
Dt ¢iAi = Aj, respectively. In this case the recursion coincides with the form
of the [1,m — 1)-line and [m — 1, 1)-line shifts in Eq. (2.13), with a curious
feature that A\;(z) = A\;(1 — 2) and Xj(z) = Xj(l — 2). We dub these “soft”

shifts for the simple reason that when z = 1 the amplitude approaches a soft
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limit. For m = 3, the soft shift takes a particularly elegant form,

Al — )\1(2) AL+ ZE‘H )\3
3-line soft shift: Ao — Aa(2) = Ao + 2{12} A3, oOr (2.14)

A3 = A3(2) = A3(1 — 2)

5\1 — 5\1(2’) /\1 + Z§21§ /\3
5\2 — 5\2(2) )\2 + 2212§ )\3 . (2-15)

)\3 — )\3(2) = )\3(1 — Z)

This shift offers an on-shell prescription for taking a soft limit. We will not
make use of this shift in this chapter but leave a more thorough analysis of
this soft shift for future work.

2.3 Large 2 Behavior of Amplitudes

The recursion relations in Eq. (2.9) and Eq. (2.11) apply when the amplitude
does not have a pole at z = oo. In this section we determine the condi-
tions under which this boundary term vanishes. Although one could study
the boundary term in BCFW or Risager shift instead, as in Ref. [41, 42], we
will not proceed in this direction. Concretely, take the n-point amplitude,
M, deformed by an m-line shift where m < n. At large z, the shifted ampli-
tude describes the physical scattering of m hard particles in a soft background
parametrizing the remaining n — m external legs. Thus, we can determine
the large z behavior by applying a background field method: we expand the
original Lagrangian in terms of soft backgrounds and hard propagating fluc-
tuations, then compute the on-shell m-point “skeleton” amplitude, M. If the
skeleton amplitude vanishes at large z, then the boundary term is absent and
the recursion relation applies. A similar approach was applied in Ref. [40] for
BCFW for the case of a hard particle propagator, i.e. the skeleton amplitude

for m = 2.

Crucially, it will not be necessary to explicitly compute the skeleton amplitude.
Rather, from Lorentz invariance, dimensional analysis, and the assumption of
local poles, we will derive general formulae for the large z behavior of m-line
shifts of n-point amplitudes. Hence, our calculation of the large z scaling
combines and generalizes two existing proofs in the literature relating to the
BCFW [40] and all-line recursion relations[8].
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Ansatz

The basis of our calculation is a general ansatz for the m-point skeleton am-

plitude for m < n,

M=gx Y (Fx ITex 11 u) (2.16)

diagrams vectors  fermions

where the sum is over Feynman diagrams F', which are contracted into prod-
ucts over the polarization vectors ¢ and fermion wavefunctions v of the hard
particles?. Here g = g x B where ¢ is a product of Lagrangian coupling
constants and B is a product of soft field backgrounds and their derivatives.
Note that g has free Lorentz indices since it contains insertions of the soft
background fields and their derivatives. Crucially, since B is composed of

backgrounds, it is always non-negative in dimension, so [B] > 0 and

[9] = [g] + [B] > [g]- (2.17)

For the special case of gravitational interactions, each insertion of the back-
ground graviton field is accompanied by an additional coupling suppression
of by the Planck mass, so [g] = [g]. This is reasonable because the back-
ground metric is naturally dimensionless so insertions of it do not change the

dimensions of the overall coupling.

Note the skeleton amplitude receives dimensionful contributions from every
term in Eq. (2.16) except the vector polarizations, so
Ml=4—m=[g+[F]+ > 1/2 (2.18)
fermions
via dimensional analysis. This fact will be crucial for our calculation of the
large z scaling of the skeleton amplitude for various momentum shifts and

theories.

Large 2 Behavior

We analyze the large z behavior of Eq. (2.16). The contribution from each
Feynman diagram F' can be expressed as a ratio of polynomials in momenta,
so F'= N/D. Here N arises from interactions while D arises from propagators.
We define the large z behavior of the numerator and denominator as vy and

vp where

N ~ 2N, D ~ 2P, (2.19)

2Note that polarization vectors arise from any particle of spin greater than or equal to one.
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We now compute the large z behavior of the external wavefunctions, followed
by that of the Feynman diagram numerator and denominator, and finally the

full amplitude.

External Wavefunctions. First, we study the contributions from external
polarization vectors and fermion wavefunctions. For convenience, we define
a “weighted” spin, §, for each shifted leg of +/— helicity, which is simply
the spin s multiplied by + if the angle/square bracket is shifted and — if the

square/angle bracket is shifted. In mathematical terms,

N +, good shift
§ = sx : (2.20)
-, bad shift

where good and bad shifts denote the correlation between helicity and the
shift of spinor indicated in Eq. (2.3). As we will see, a multiplier of +/— tends
to improve/worsen the large z behavior. In terms of the weighted spin, it is
now straightforward to determine how the large z scaling of the polarization
vectors and fermion wavefunctions,

-3

279, boson

external wavefunction ~ (2.21)

2 G=1/2) , fermion

So more positive values of s, corresponding to good shifts, imply better large

Z convergence.

Numerator and Denominator. The numerator N of each Feynman dia-
gram depends sensitively on the dynamics. However, for a generic shift, we
can conservatively assume no cancellation in large z so the numerator scales

at most as its own mass dimension,
v < [N]. (2.22)

The denominator D comes from propagators which are fully dictated by the
topology of the diagram. Each propagator can scale as 1/22 or 1/z at large 2,
depending on the details of shifts. Thus, the large z behavior of the denomi-
nator is constrained to be within

[D]

S <w< (D] (2.23)
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Figure 2.1: A skeleton diagram for a Q? # 0 shift. Here straight lines are
hard particles and curved lines are soft backgrounds. Color segments are
propagators, and red and green denotes those that scale as 1/z and 1/z? at
large z, respectively.

For the Q? = 0 shifts, every propagator scales as 1/z so yp = [D]/2. On
the other hand, for the Q% # 0 shifts, we would naively expect that there
is a 1/22 from each propagator given that the reference spinors are arbitrary.
However, this reasoning is flawed due to an important caveat. Since the theory
contains soft backgrounds, the Feynman diagram can have 2-point interactions
of the hard particle induced by an insertion of the soft background. If the 2-
point interactions occur before the hard particle interacts with another hard
particle, then () is simply the momentum shift of a single external leg, so
Q? = 0 accidentally, and the corresponding propagator scales as 1/z rather
than 1/z2. It is simple to see that the number of such propagators is [D] —vp.
See Fig. 2.1 for an illustration of this effect. Thus the large z behavior is
constrained within the range of Eq. (2.23).

From our knowledge of Feynman diagrams, we can further relate the total
number of propagators to the number of hard external legs, m, and the valency
of the interactions, v, yielding

7 =(im2) 220

where v > 3 is the valency of the interaction vertices in the fundamental
theory and the [B] term arises because we have conservatively assumed that

every single background field insertion contributes to a 2-point interaction to
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the amplitude.

Full Amplitude. Combing in the large z scaling of the external wavefunc-
tions in Eq. (2.21) with that of the numerator and denominator of the the
Feynman diagram in Eq. (2.19), we obtain

Y = w—Ip— Y, 85— >, (5§—-1/2)

bosons fermions

< 4—m—[g]-> 5+ [D]—~p—[B], (2.25)
all

where in the second line we have plugged in the inequality from Eq. (2.22),
replaced [N] = [F] +[D], and eliminated [F] by solving Eq. (2.18). This is the
master formula from which we will derive corresponding large z behaviors in
Q? # 0 and Q? = 0 shifts. As expected, the above bound can be improved for
(Q)? = 0 shifts because in this case the product of any two hard momenta only

2

scales as z rather than z“. We render the specific derivation in subsequent

sections.

The general formula in Eq. (2.25) can be reduced to more illuminating forms
by making the assumption of specific shifts. We consider the large z behavior
for the @2 # 0 and Q? = 0 shifts in turn.

(Q*#0)

To start, we calculate the large z behavior for a general momentum shift
defined in Eq. (2.2). As noted earlier, for arbitrary reference spinors, Q? # 0
as long as m > 3, which we assume here. The large z behavior is given by
Eq. (2.25). The offset [D] — 7p is the number of propagators with Q2 = 0 as
discussed before. As shown for an example topology in Fig. 2.1, there is at
least one soft background associated with each propagator for which Q2 = 0.
The canonical dimensions of fields leads to [D] —yp — [B] < 0. We conclude
that

y<4-—m—[g] - > s (2.26)
all

The large z convergence is best for the largest possible value for s, which occurs
if we only apply good shifts to external legs, so s = s. As we will see, this
particular choice has the best large z behavior of any shift. There is an inherent
connection between Q? # 0 and improved z behavior of the amplitude, simply

because in this case, propagators fall off with z? in diagrams.
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Next, we compute the large z behavior of the momentum shift in Eq. (2.2)
when Q% = 0. In these shifts, substituting vp = [D]/2 and Eq. (2.24) into
Eq. (2.25) yields

yei- (P - -l -8 (2.27)

all

For trivalent interactions, v = 3, the bound is independent of m. For quadri-
valent vertices, v = 4, the bound improves for larger numbers of shifted legs,

m.

We showed previously that Q% = 0 can only occur for the [0,m)-, [m,0)-,
[1,m — 1)-, and [m — 1,1)-line shifts defined in Eq. (2.12) and Eq. (2.13).
Hence, we can learn more by considering the specific form of the large z shifts.
In the subsequent sections we consider each of these cases in turn to derive

additional bounds on the large z behavior.

[0,m)-Line and [m,0)-Line Shifts. The [0, m)-line and [m, 0)-line shifts
defined in Eq. (2.12) are a generalization of the Risager momentum shift, for
which Q2 = 0. To begin, let us consider the large z behavior of the [0, m)-line
shift; an identical argument will of course hold for the [m,0)-line shift. We
only have to keep track of holomorphic spinors, since anti-holomorphic spinors
are not shifted. To conservatively bound the large z behavior of the numerator
of Eq. (2.16), we can simply sum the total number of holomorphic spinors and
divide by two, since the reference spinors are proportional and thus vanish
when dotted into each other. However, note that we must remember to count
the holomorphic spinors coming from the numerator N as well as from the
soft background B and external wavefunctions. Overall Eq. (2.21) gives the

correct number of holomorphic spinors. Including all contributions yields

1
v < 2([NJ+nB— Ay <§—1/2>—[D]), (2.28)
bosons fermions

where np is the number of holomorphic spinor indices that come from soft

background insertions. Again solving for [F] with Eq. (2.18), and applying
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our arguments to both shifts, the large z behavior is

% 4—m—[g]—2h+A>, [0, m)-line
)< z (2:29)
3 4—m—[g]+Zh+A>, [m, 0)-line
all
where h denotes helicity and we have defined
A=np—[B]. (2.30)

In a theory with only spin s < 1 fields, soft background insertions contribute
at most one holomorphic or anti-holomorphic spinor index to be contracted
with. Thus, np is balanced by the dimension [B], so A < 0 in these theories.
On the other hand, for a theory with spin s < 2 fields, e.g., gravitons, then
an insertion of a graviton background yields two spinor indices but only with

one power of mass dimension. For these two cases we thus find

0, theories with s <1
A < : (2.31)

n—m, theories with s < 2

Egs. (2.29) and (2.31) together give our final answer. For an all-line shift,
m =mn, so A =0 and this bound reduces to known result from Ref. [8]. Note
that in some cases Eq. (2.27) is stronger than Eq. (2.29) so we have to consider

both bounds at the same time.

[1,m—1)-Line and [m—1, 1)-Line Shifts. The [1, m—1)-line and [m—1,1)-
line shifts defined in Eq. (2.13) are a generalization of the BCEW momentum
shift, for which Q? = 0. To start, consider a [1, m—1)-line shift, where particle j
has a shifted in anti-holomorphic spinor and all other shifts are on holomorphic
spinors. To determine the large z behavior of the [1,m — 1)-line shift, we start
with our earlier result on the [0, m)-line shift. By switching the deformation
on particle j from a shift of |j] to a shift of |j), all the angle brackets associated
with j change their scaling from 1 to z at large z for generic choice of ¢; in
Eq. (2.13). In the mean time, all square brackets involving particle j reduce
from z to 1 because the reference spinor is |j]. The change in large z behavior
from a [0, m)-line shift to a [1,m — 1)-line shift is exactly the difference of the

degrees between anti-holomorphic and holomorphic spinors of 7, which is fixed
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by little group. Applying the reasoning to both shifts, we obtain

(NI

4—m—|g] —Zh+A> +2hi,  [1,m — 1)-line
'Y< all

< (2.32)
4—m—[g]+2h+A> — 2h;, [m — 1,1)-line

N —

all

where h; is the helicity of particle j. We then see that the [1,m — 1)-line shift
improves large z behavior of the [0, m)-line shift if ~; > 0.

The above argument has a caveat in the special case of the [1,1)-line shift,
i.e. the BCFW shift. Shifting the anti-holomorphic spinor of particle ¢ and
the holomorphic spinor of particle j, then the angle bracket (ij) does not scale
as z at large z so Eq. (2.32) does not apply. Nevertheless, we can still use
Eq. (2.27) which is valid for BCFW shift.

2.4 On-Shell Constructible Theories

In this section we at last address the question posed in the introduction: what
is the simplest recursion relation that constructs all on-shell tree amplitudes
in a given theory? To find an answer we consider the Q? # 0 momentum shift
defined in Eq. (2.2) and the Q? = 0 momentum shifts defined in Eq. (2.12)
and Eq. (2.13). We utilize our results for the large z behavior in Eq. (2.26),
Eq. (2.27), Eq. (2.29), and Eq. (2.31). Throughout the rest of the chapter we
restrict to the good momentum shifts defined in Eq. (2.3). Thus, we only shift
the holomorphic spinors of plus helicity particles and the anti-holomorphic
spinors of negative helicity particles, and the weighted spin of each leg is
equal to its spin, s = s. Unless otherwise noted, we henceforth denote any

scalar /fermion/gauge boson/graviton by ¢/v/A/G.

Renormalizable Theories

To begin we consider the generic momentum shift defined in Eq. (2.2), which
has large z behavior derived in Eq. (2.26). Since a renormalizable theory only
has marginal and relevant interactions, the mass dimension of the product of
couplings in any scattering amplitude is [g] > 0. Plugging this into Eq. (2.26),
we find that a 5-line shift suffices to construct any amplitude. This is also
true for the 5-line shifts defined in Eq. (2.12) and Eq. (2.13), whose large z
scaling is shown in Eq. (2.29) and Eq. (2.32) by conservatively plugging in
A = 0 for renormalizable theories. Consequently, 5-line recursion relations

provide a purely on-shell, tree-level definition of any renormalizable quantum
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field theory. We must take as input the three and four point on-shell tree
amplitudes, but this is quite reasonable, as a renormalizable Lagrangian is

itself specified by interactions comprised of three or four fields.

Fortunately, simpler recursion relations are sufficient to construct a more re-
stricted but still enormous class of renormalizable theories. To see this, con-
sider a general 3-line momentum shift and its associated large z behavior shown
in Eq. (2.27). The amplitude vanishes at large z provided the sum of the spins
of the three shifted legs is greater than one. This is automatic if all three
shifted particles are vectors or fermions. Such a shift can always be chosen
unless the amplitude is composed of 7) one vector and scalars, i7) two fermions
and scalars, or 77) all scalars. In case 7), we can apply a 3-line shift of the
form [{¢, ¢}, {A*}) or [{A™}, {6, ¢}), while in case i), we can apply a 3-line
shift of the form [{¢, ¢}, {¢/*}) or [{vv™},{¢,¢}). In both cases the large z
behavior is vanishing according to Eq. (2.32). Hence, any amplitude with an

external vector or fermion is 3-line constructible.

This leaves case #7), which is the trickiest scenario: an amplitude with only ex-
ternal scalars. In general, such an amplitude is not 3-line constructible, but the
story changes considerably if the scalars are covariant under a global or gauge
U(1) symmetry. Concretely, consider a 3-line shift of the form [{¢, ¢, ¢},0) or
[0,{®, ¢, d}). Moreover, let us assume that the shifted legs carry a net charge
under the scalar U(1) which is not equal to the charge of any other scalar
in the spectrum. In this case, invariance under the scalar U(1) requires that
the amplitude has more than one additional external scalar with unshifted
momenta. The charge cannot be accounted for by an external fermion with
unshifted momenta, since the amplitude only has external scalars. From the
perspective of the skeleton diagram describing the scattering of three hard
particles in a soft background, the additional scalars correspond to more than
one insertion of a soft scalar background, so as defined in Eq. (2.30), A < —1.
Thus, according to Eq. (2.29), the 3-line shift has vanishing large z behavior
and the associated amplitudes are constructible. Note that the charge condi-
tion we have assumed is automatically satisfied if every scalar in the theory

has equal charge under the scalar U (1) and we shift three same-signed scalars.

It seems impossible for this 3-line recursion to construct all equal-charged U (1)
scalar amplitudes, especially with the presence of quartic potential. However,

as three same-signed scalars are only available from six points, this 3-line re-
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cursion still takes three and four point amplitudes as seeds. The information of
quartic potential still enters this special 3-line recursion. We will demonstrate

with a simple ¢* theory in the next section.

Putting everything together, we have shown that a 3-line shift can construct
any amplitude with a vector or fermion, and any amplitude with only scalars
if every scalar carries equal charge under a U(1) symmetry. Immediately, this
implies that any theory of solely vectors and fermions—i.e. any gauge theory
with arbitrary matter content—is constructible3. Moreover, all amplitudes
in Yukawa theory necessarily carry an external fermion, so these are likewise
constructible. The standard model is also 3-line constructible simply because
it has a single scalar—the Higgs boson—which carries hypercharge. Finally, we
observe that all supersymmetric theories are constructible. The reason is that
without loss of generality, the superpotential for such a theory takes the form
W' = Nijk®i®;Pr, where we have shifted away Polonyi terms and eliminated
quadratic terms to ensure a massless spectrum. For such a potential there is
a manifest R-symmetry under which every chiral superfield has charge 2/3.
Consequently, all complex scalars in the theory have equal charge under the
R-symmetry and all amplitudes are 3-line constructible. This then applies to
theories with extended supersymmetry as well. The conditions for on-shell

constructibility in some familiar theories is summarized in Tab. 2.1.

Non-renormalizable Theories

In what follows, we first discuss non-renormalizable theories which are con-
structible, i.e. for which all amplitudes can be constructed. As we will see,
this is only feasible for a subset of non-renormalizable theories, so in general,
the covering space of recursion relations does not provide an on-shell formula-
tion of all possible theories. Second, we consider scenarios in which some but
not all amplitudes are constructible within a given non-renormalizable the-
ory. In many cases, amplitudes involving a finite number of higher dimension

operator insertions can often be constructed by our methods.

Our analysis will depend sensitively on the dimensionality of coupling con-
stants, which we saw earlier have a huge influence on the the large z behavior

under momentum shifts. Table 2.2 summarizes the dimensions of coupling

3Note that such theories are constructible from BCFW, via a shift of any vector [43] or any
same helicity fermions [44].
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Theory H X ‘ WY ‘ F? ‘ R ‘ Einstein (+ Maxwell) ‘
lg) [ u—v) [ u@-3v/2) | u@—20) [ 2—n—2u@w-1) | 2—n |

Table 2.2: The dimensionality of the coupling constant, [g], for an n-point am-
plitude, where u denotes the number interaction vertices, which have minimal
valency v.

constants in various theories*. Here v is the (minimal) valency of the vertex.
F and R defined as vector field strength and Riemann tensor, respectively,
and we have omitted indices and complex conjugations for simplicity. The
superscript of an external state specifies its helicity. We keep the number of
operator insertions, u, as a free parameter. At tree-level, it is constrained by

the number of propagators, v < [D]/2 + 1, where [D]/2 is given in Eq. (2.24).

Constructible Theories. To start, consider a theory of scalars interacting
via a ¢" operator. Following Eq. (2.24), and using that the dimensionality of
backgrounds is positive, [B] > 0, we can bound the number of propagators by
[D]/2 > (m —v)/(v — 2) for an m-point skeleton amplitude. The number of
interaction vertices exceeds the number of propagators by one, so u = [D]/2+1.
In an [m, 0)-line shift, substituting [g] = w(4 —v) from Table 2.2, and plugging
into Eq. (2.29) with A = —[B] < 0 for scalars, we have
v—m

v—2

Thus, we find that all amplitudes in ¢ theory are constructable for an [m, 0)-

v (2.33)

line shift where m > v and the v point amplitude is taken as the input of the
recursion relation®. Since the scalars have no spin, this large z also applies for
the conjugate [0, m)-line shift. Of course, this conclusion is completely obvious
from the perspective of Feynman diagrams. In particular, since ¢ theory does
not have any kinematic numerators, its amplitudes are constructible provided

there is even one hard propagator, which happens as long as m > v.

Analogously, consider a theory of fermions interacting via ¥ operators. Con-
servatively, we assume all soft fermions in the skeleton amplitude are emitted
from Q? = 0 propagators

ny 3

(D] =0 =Bl = —= = 5y, (2.34)
4As pointed out in Ref. [8], we need to choose the highest dimension coupling if there are
multiple of coupling constants.

5In fact, m = v suffices to construct any amplitude with v + 1 points or above. This can be
derived if we treat soft background in [D]/2 more carefully.
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where ny is the number of soft fermion insertions. Substituting the above
equation and the number of vertices u = (m +ny —2)/(v — 2) into the large z
behavior for a general m-line shift in Eq. (2.25), we find exactly the same ex-
pression for v in Eq. (2.33). Thus, all amplitudes in 9" theory are constructible
with generic m-line shift for m > v, and taking the v point amplitude as an
input. Again, it is not surprising from Feynman diagrams. Note that we here
required a general m-line shift with Q? # 0, such that the fermionic propaga-
tors JP/P? scale as 1/z at large z. On the other hand, the recursion relation
cannot work for a Q% = 0 momentum shift because the fermionic propagators

do not fall off at large z.

It is straightforward to generalize the arguments above to a theory of scalars
and fermions interacting via a ¢"'¢"2. We find that this theory is fully con-

structible with a general m-line shift for m > v + vs.

Finally we consider perhaps the most famous constructible non-renormalizable
theory: gravity. As is well-known, all tree-level graviton scattering amplitudes
can be recursed via BCEW [40], taking the 3-point amplitudes as input. Still,
let us see how each of our m-line shifts fare relative to BCFW. Throughout,
we consider only good shifts, as defined in Eq. (2.3). Using Eq. (2.26) and
Eq. (2.27), the large z behaviors of m-line shifts are

n+2—3m, Q%% 0 shift
v < : (2.35)

n—1-—2m, @Q?=0 shift
With the Q? # 0 shifts, we can always construct an n-point amplitude with
m > (n+ 2)/3. Applying the above result to NMHV amplitudes for m = 3,
we find M < 2”7 under a Risager 3-line shift, consistent with the known
behavior 2”712 [45]. Generally, graviton amplitude can be constructed with
Q? = 0 shifts if m > n/2. Ref. [8] shows amplitudes with total helicity |h| < 2
cannot be constructed from anti-holomorphic/holomorphic all-line shifts. We
see this can be resolved if we choose to do “good” shift on only plus or negative
helicity gravitons. Our large 2z analysis predicts the scaling grows linearly with
n and this is indeed how the real amplitude behaves. From this point of view,
the amplitude behaves surprisingly well under BCFW shift because the scaling

doesn’t grow as n increases.

An interesting comparison of our large z behavior is to use the KLT rela-

tions [31]. Consider the large z behavior of n point amplitudes under a
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(m > 4)-line Q% # 0 shift. A n point graviton amplitude Mgray can be
schematically written as a “square” of gauge amplitudes M2 by the KLT

gauge

relation

n—3 2
MgraV'z%oo ~ S Mgauge’zﬁoo

Zn+273m Z Zn732874m :Zn+574m7 (236)

where we neglect all the permutation in particles and details of s-variables®.
The KLT relation actually predicts a better large z behavior than our dimen-

sional analysis.

Constructible Amplitudes. The above non-renormalizable theories are
some limited examples which can be entirely defined by our on-shell recursions.
Modifying these theories generally breaks the constructibility! For instrance,
a theory of higher dimensional operator 9?¢” cannot be constructed. This is
clear from Feynman diagrams because the derivatives in vertices compensate
the large z suppression from propagators. This implies the chiral Lagrangian
is not constructible even with the best all-line shift?. In gauge theories, we
cannot construct amplitudes where all vertices are higher dimensional F" op-

erators either.

Fortunately, we are usually interested in effective theories with some power
counting on higher dimensional operators. If the number of operator inser-
tions is fixed, then we can construct amplitudes with generic multiplicity. To
illustrate this, consider amplitudes in a renormalizable theory (spin < 1) with
a single insertion of a d-dimensional operator. If we apply a general m-line
Q? # 0 momentum shift, Eq. (2.26) gives

Ygen < d —m — s. (2.37)

In the worst case scenario, s = 0, we see an (d+1)-line shift suffices to construct
any such amplitude. For [0, m)- and [m, 0)-line shifts, the sum of their large z
scaling is

Yo,m) + Ym0y < d —m, (2.38)
where we use A = 0 for theories with spin < 1. The amplitude can always be

constructed from one of them provided m > d. We see the input for recursion

6The inequality holds for m > 4 which is satisfied in any Q2 # 0 shift.

7The chiral Lagrangian has the additional complication that there is an infinite tower of
interactions generated at each order in the pion decay constant. To overcome this, it is
important to use soft limits to relate them and construct the amplitudes [46].
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relations are all amplitudes with d points and below. It is not surprising. After
all, we need this input for a ¢” operator. If the amplitude has higher total
spin/helicity, less deformation is needed to construct it. We will demonstrate
this with the FV operator in the next section. The result is similar to the
conclusion of Ref. [8], but we can be more economical by choosing (d + 1)-line

or less rather than an all-line shift.

2.5 Examples
In this section, we illustrate the power of our recursion relations in various

theories. The calculation is straightforward once the large z behavior is known.

YM + ¢ 4+ ¢. Consider a gauge theory with fermion and scalar matter in
the adjoint representation. In addition to the gauge interactions, there are
Yukawa interactions of the form Tr(¢{,1}). Here we construct the color-
ordered amplitude M ™,¢™, ¢, ¢, ») via a 3-line shift [{2}, {3,4}). The seed

amplitudes for the recursion relation are

M@~ 97, ¢) = y(12)
M@~ gt A7) = g(31)?/(12)
M6, A7) = g(31)(23)/(12) (239
~ [13]2[24]2 '
#6,6:6.0) = {1+ (oo
o 5 [23][24] [24]
M”07 6.0) = 0 iz — Y [

where y and g are the Yukawa and gauge coupling constants, respectively.
There are only two non-vanishing factorization channels. Based on these seeds,

it’s straightforward to write down

o _ 1 [14]2[35]? [35][34]
MW™1970:0:0) =05 (o7 T~ ) 210
3 |
PR E)

Note that the spurious pole [13] cancels between terms. From the final answer,
we see that neither the BCFW shifts, like [{2},{3}) and [{1},{2}), nor the
Risager shift on [{2,3,4},0) can construct the amplitude. Thus, a 3-line shift
such as [{2},{3,4}) is necessary to construct theories with both gauge and

Yukawa interactions.



25

N =1 SUSY. We have shown all massless supersymmetric theories are 3-
line constructible. Consider an N = 1 supersymmetric gauge theory with an
SU(3) flavor multiplet of adjoint chiral multiplets ®,. We assume a superpo-
tential

W = iATr(0g[@p, D)), (2.41)

where a, b, c are fixed SU(3) flavor indices, no summation implied. We ap-
ply our recursion relations on the (color-ordered) 6-point scalar amplitude
Moy, 0y b0, 08, 0F, di), where the superscripts and subscripts denote R-
symmetry and flavor indices, respectively. In the massless limit, all scalars in
the chiral multiplets carry equal R-charge. Therefore we can shift the three
holomorphic scalars, namely, [{1,2,3},0). The relevant lower point amplitudes

for recursion are

_ 3 (31)(12)
M(A ,ﬁ,ﬁ)—w
MGy 67, 65,60) = m LN (2.42)
bl (24)(53) (52)
M(A ,¢a,¢b,¢b,¢a>—m+(1—v>w.

Crucially, all of them are holomorphic in spinors. Under [{1,2,3},0) shift, it
is straightforward to obtain the result by an MHV expansion from the above
amplitudes [39, 47]

Moy, 0y > b0 s o D D)
- [611<5££:1]7[;172P6m] <<2?;51§3> Ha- Ww)

* [34J<2E;Zj¢[77]7?;¢34m ((51{)}%6) ) >
i Larein + 0 =) (shesen *
i (opean =) (Gpiten 0 -

where 7 is the reference spinor and Pr denotes the total momentum of the

(2.43)

(1— V))

[

states in the factorization channel F. We have verified numerically that the
answer is, as expected, independent of reference 7. Since the scalar amplitude
is independent of the fermions, this result applies to any theory with the same
bosonic sector. When A = 1, the SU(3) flavor symmetry together with the
U(1) R-symmetry combine to form the SU(4) R-symmetry of N = 4 SYM.

Our expression agrees with known answer in this limit.
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(a) general scalar. (b) U(1) charged scalar.

Figure 2.2: Factorization channels in the 6-point scalar amplitude in ¢* theory.
The left and right diagrams show the factorization channels for the general case
and the case of a U(1) charged scalar, respectively.

¢* Theory. Next, consider amplitudes in a theory of interacting scalars. We
have shown that a 5-line shift is sufficient to construct all amplitudes, while
a 3-line shift suffices if every scalar has equal charge under a U (1) symmetry.
It is straightforward to see how these apply to the 6-point scalar amplitude
in ¢* theory. Applying a 5-line shift, the factorization channel is depicted
in Fig. 2.2 where we sum over all non-trivial permutations of external particles.
If the scalar is complex and carries U(1) charge, namely |¢|* theory, then only
channels satisfying charge conservation can appear. Thus, three plus charged
scalars never appear on one side of factorization. Consequently, shifting three

plus charge scalars will construct the amplitude by exposing all physical poles.

Y* Theory. From our previous discussion, we know four fermion theory can
be constructed by a Q? # 0 5-line shift. Consider a 6pt M(¢*, =, ¥+, Y=, ¢*, ™)
amplitude. Using a [{2,4},{1,3,5}) shift, we find

M@ ™ T T T )
- 113](46) (Z+,456(2|13456|5]|z,456 — (24,456 < Z—,456))
(—1) ,
73(1,3,5;?(27476) 4Pfsq
- 3 (—1)° [13](46) (2| Py56|5]

2 )
P(1,3,5),P(4,5,6) 4 P56

24,456 — Z— 456

(2.44)

where hatted variable is evaluated at factorization limit and z4 456 are the two
solutions of ]54256 = 0. The result is summed over permutation of (1,3,5) and

(2,4, 6) with o being the number of total permutations. In the last line, we use
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the fact that (2|Ps6/5] is linear in z and only the non-deformed part survives
after exchanging z4 456. We see the final answer has no square root as claimed

before.

Maxwell-Einstein Theory. We discuss the theory where a U(1) photon
minimally couples to gravity. The coupling constant has the same dimension
as in GR (see Table 2.2). But as a photon has less spin than a graviton, the
large z behavior is worse. We focus on the amplitudes with only external
photons given that any amplitude with a graviton can be recursed by BCFW
shift[43]. Using a m-line Q2 # 0 shift, we find M < 22727 at large z;
thus, it’s always possible to construct such an amplitude when m > (n+2)/2.
Together with BCFW shift on gravitons, the theory is fully constructible!
Using Eqgs. (2.29) and (2.32), the results for Q% = 0 m-line shifts are

1+n—3m/2, for [{—,—,..},0) | (2.45)
n—3m/2, for [{—, —, ..}, {+})

For the 4pt M(A™, A7, A", A*) amplitude, we choose a [{1,2};4) shift so
~v < 0. The inputs for recursions are 3pt functions obtained from consistency
relation [35], M(A~, A*, G7) = (31)4/(12)? and M(A~, A*,G*) = [23]4/[12]%
The amplitude then follows

_ . 1Pp4)4]* 2P4|4]*
M(AT, A7 AT AT) = W*W
_ 1 1
= <12>2[34]2 (P224 + PIQ4> . (246)

F"Y Operators. Consider amplitudes with a single insertion of a F'¥ operator.
Applying an [m, 0)-line shift on minus helicity gluons and [m — 1,1) m-line
shift on all-but-one minus helicity gluons, Eq. (2.29) and Eq. (2.32) predict

< v —m, for [{—,—,...},0) ' (2.47)

v—1—m, for [{—,—, ..}, {+})
We conclude [v+1, 0)- and [v—1, 1)-line shifts suffice to construct the amplitude

with the given helicity configuration.

The case of the F'3 operator has been studied extensively in Ref. [48]. Given
the large z behavior above, the general MHV-like expression in Ref. [49] can

be proven inductively by a [{—, —},{+}) shift. In addition, the vanishing of
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the boundary term in the [{—, —,...},0) shift directly proves the validity of
CSW-expansion in Ref. [48]. We demonstrate it with the MHV-like amplitude
M(A=, A=, A=, A*) where a single F? operator is inserted. Note that the all-
minus amplitude M(17,27,37) = (12)(23)(31) is induced by an F* operator.
Taking this as an input for the [{2,3},4) shift, we find

o 2 a2

M(A™, A" A, AY) =(12)(23)(31) ((34}(221) 210 (41)(24) |Z23) (2.48)
_ (122028231 |
~(12)(23) (34) (1)’

This agrees with the result in Ref. [49, 50].

The case of the ¢ tr(F'F) operator, which is popular for the study of Higgs
phenomenology, is very similar to F% operator. The MHV-like formula and

CSW expansion in Ref. [49] can also be proved analogously.

RY Operators. Such operators often arise in effective theories from string
action. Consider amplitudes with a single insertion of an R" operator. The

2v+n—3m

amplitude scales as z under an m-line Q? # 0 shift. For a given R"

operator, any (n > v)-pt amplitude can be constructed under an all-line Q2 # 0
shift. If we use Q? = 0 shifts, Eq. (2.29) and Eq. (2.32) give

;< { n+uv—2m, for [{—,—,...},0) . (2.49)

n+v—2-—2m, for [{—,—, ..}, {+})
So if the helicity configuration is available, the amplitude is constructible under
the [m,0)- and [m — 1, 1)-line shifts for m > (n+v)/2 and m > (n+v)/2 — 1,

respectively.

Consider the 4pt M(G~,G~,G~,G*) amplitude with one R? operator inser-
tion. We adopt the [{2,3};4) shift to construct it. The amplitude factorizes
into the anti-MHV amplitude in GR and M(G~,G~,G7) = (12)(23)(31) in-
duced by one insertion of R3 operator. We find
MG ,G7,G7,GY)
(12)2]41]
=((12)(23)(31))? x | ot
< |
[M@V+WMW+HW@1
(41)(€4)? ~ (42)(€4)*  (43)(&4)?
=P M(14, 2,45, 3 )M, 24,35, 43),

+ (cyclic in (1,2,3))1 ,
(2.50)
=((12)(23)(31))?
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where [£) is a reference spinor in 3-line shift. The result in the second line
manifest the leading soft factor of particle 4. After canceling the reference
spinor, the result in the last line is expressed in a KLT-relation form, where
M(1,,25,34,4%) is the corresponding amplitude in gauge theory with the
F3 operator given in Eq. (2.48). It agrees with Ref. [48]. It obvious from the

answer that any [m,0) shift cannot construct the amplitude.

2.6 Outlook

In this chapter we have determined the minimal set of recursion relations
needed to construct renormalizable and non-renormalizable field theories of
massless particles in four dimensions. We have shown that all renormalizable
theories are constructible from a shift of five external momenta. Quite surpris-
ingly, a shift of three external momenta suffices for a more restricted but still
enormous class of theories: all renormalizable theories in which the scalars, if
present, are charged equally under a U(1) symmetry. Hence, we can construct
all scattering amplitudes in any gauge theory with fermion and complex scalar

matter, any supersymmetric theory, and the standard model.

Our results suggest several avenues for future work. Because our analy-
sis hinges solely on dimensional analysis, Lorentz invariance, and locality, it
should be possible to generalize our approach to a broader class of theories.
In particular, there is the question of theories residing outside of four dimen-
sions and involving massive particles. Moreover, one might study an expanded
covering space of recursion relations that include multiple complex deforma-
tion parameters or simultaneous shifts of holomorphic and anti-holomorphic

spinors of the same leg.

The recursion relations presented here might also offer new tools for studying
the underlying properties of amplitudes. For example, the enhanced large z
behavior of amplitudes at large momenta implies so-called “bonus relations”
whose nature remains unclear. In addition, the soft shift defined in Eq. (2.15)
gives a nicely on-shell regulator for the soft limit of the amplitude. Precise
knowledge of the soft limit can uniquely fix effective theories [51], and will
be useful next chapter. Finally, given a more complete understanding of on-
shell constructibility at tree-level, we are better equipped to attack a much
more difficult problem, which is developing a recursive construction for the

loop integrands of general quantum field theories. This was accomplished for
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amplitudes in planar N' = 4 SYM [9], but with a procedure not obviously gen-
eralizable for less symmetric theories, where standard BCFW recursion induces
ill-defined contributions in the forward limit. In principle, this somewhat tech-
nical obstruction might be eliminated by considering alternative momentum
shifts.
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Chapter 3

RECURSION RELATIONS FOR EFFECTIVE FIELD
THEORIES

3.1 Introduction

As we have seen from the previous chapter, the on-shell recursion relations are
typically inapplicable to EFTs. Such an limitation is unfortunate, as effective
field theories provide a universal description of spontaneous symmetry break-
ing in all branches of physics, ranging from superconductivity to the strong

interactions [52-54] to cosmology [55].

The aim of this chapter is to fill this gap. We derive a new class of recursion
relations that fully construct the S-matrices of certain scalar effective field
theories by harnessing an additional physical ingredient: the vanishing of am-
plitudes in the soft limit. This approach is logical because the soft behavior
of the S-matrix actually encodes the interactions and symmetries of the corre-
sponding effective field theory [51], thus giving a theory classification purely in
terms of on-shell data. Our new recursion relations apply to any theory with
enhanced soft limits, including the non-linear sigma model, Dirac-Born-Infeld
theory, and the Galileon [56, 57].

3.2 Recursion and Factorization

On-shell recursion relations act on an initial seed of lower-point on-shell am-
plitudes to bootstrap to higher-point. Criteria like Lorentz invariance—which
prescribes strict little group covariance properties of the amplitude [30]—are
manifest provided the initial amplitudes and recursion relation maintain these

properties at each step.

The property of factorization, on the other hand, enters less trivially. To access
multiple factorization channels, the BCFW recursion relations [3, 4] employ a

complex deformation of two external momenta,
p1—p1+2q and ps = p2 — 2q, (3.1)

where ¢ is fully fixed up to rescaling the on-shell conditions ¢*> = ¢-p1 = ¢-p2 =

0. The original amplitude is extracted from the complexified amplitude A,,(2)
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by contour integrating over an infinitesimal circle centered around z = 0.

Cauchy’s theorem then yields a new expression for the original amplitude,

1 dz _ An(2)
An(0) = 5 p T ) = ;Res( ),

(3.2)

where I labels factorization channels at which the intermediate momentum
Pr(2) goes on-shell, so zy is defined by P;(z7)? = 0. The residue at each pole

1S

—Res

Z=Zy

An(2) 1
(F22) - A 1) A, ) (3.3)
establishing a recursion relation in terms of the lower-point amplitudes A,,

and Ay, where ny +ny =n+ 2.

The above derivation fails when there is a non-zero residue at z = oco. However,
this boundary contribution is calculable in certain circumstances [41, 42, 58, 59
and moreover there exist any number of generalizations of BCFW recursion
for which the amplitude vanishes at large z [8, 43]. Ultimately, this is not
surprising because the boundary term literally encodes a class of factorization
channels [40, 43]. Since BCFW recursion and its extensions apply to all renor-
malizable and some non-renormalizable theories [8, 43, 60], the corresponding

S-matrices are completely fixed by Lorentz invariance and factorization.

3.3 Recursion and Soft Limits

In effective field theories, BCFW recursion and its generalizations are hindered
by a non-zero boundary term at z = oo.! Naively, this is attributable to
the divergent behavior of non-renormalizable interactions at large momenta,
but this is plainly false in gravity theories, which have terrible high energy
behavior but are perfectly constructible via BCFW recursion. For effective
field theories, the problem is simply more fundamental: amplitudes are not
just fixed by factorization, and additional information is needed. In hindsight
this is obvious since high-order contact operators in effective field theories are
typically related to low-order contact operators not by factorization but by

symmetries.

Since existing recursive technology already exploits amplitudes’ singularities,

a natural candidate for new physical information is amplitudes’ zeros. The

Tn previous work [46], we derived semi-off-shell recursion relations for the non-linear sigma
model, though these methods do not generalize straightforwardly.



33

former are dictated by factorization while the latter require special kinematics
at which the amplitude vanishes. Amplitudes in effective field theories typi-
cally vanish in the limit that p — 0 for the momentum of an external particle,
so there exists a classification of theories according to the degree of their soft
behavior [51], o, where

A, ~p° for p—0, (3.4)

and o > 1 is an integer. As shown in [51], higher values of o correspond to

more symmetry in the theory.

To exploit Eq. (3.4) we need a momentum shift that probes the soft limits of
external legs. This is not accomplished by the BCFW shift in Eq. (3.1), which
probes collinear but not soft behavior. For our purposes we define a “rescaling
shift" on all external legs,

pi — pi(l — za;), (3.5)

where the a; are defined up to an overall rescaling and
n
Z a;p; = 07 (36)
i=1

to maintain momentum conservation. For n < D+1, a generic set of momenta
p; are linearly independent, so the only solution to Eq. (3.6) has all a; equal,
corresponding to total momentum conservation. Since this momentum shift
simply rescales of all the momenta, it is not useful for recursion. Forn > D+1,
Eq. (3.6) is solved by

a; = (—1)"p1 ... pi—1Pis1 - - - PD+1] (3.7)

forv=1,...,D + 1 with all other a; = 0. When n = D + 1, this solution again
trivializes to a; all equal, but for n > D +1 it is always possible to find distinct

a; provided p; represent a general kinematic configuration.

The scaling shift in Eq. (3.5) is purposely chosen so that
Ap(z) ~ (1 = zay)? for z—1/a;, (3.8)

due to Eq. (3.4), thus recasting the soft behavior as a degree o zero of the
amplitude. To compute the amplitude we apply Cauchy’s theorem to a contour

encircling all poles at finite 2

dz Ap(2) _
55 ENC RN (3.9)
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where the denominator factor is defined to be

n
Fo(2) = [ = a;2)’. (3.10)
i=1
The integrand of Eq. (3.9) is engineered to be non-singular at z = 1/a; since
the poles introduced by F},(z) are cancelled by zeroes of the amplitude. Thus,
the integrand of Eq. (3.9) has poles from factorization channels only, so in
analogy with BCFW, the amplitude is

N A, (2)
An(0) = =3 Res (an(z))’ (3.11)

where I again labels factorization channels. In contrast with BCFW, each

factorization channel in P;(z) yields two poles zy+ corresponding to the roots

of
P?+2Pr-Qrz+ Q322 =0, (3.12)

where Pr(z) = Pr + zQ); and where
P = Zpi and Q= — Zaipi. (3.13)
icl il
Each residue is a product of lower-point amplitudes which can be rearranged

into a new recursion relation,

1 A (z1-) Ay (21-)
Ap(0) =Y I
(0) Zlf PZ(1— 21 /214) Fuzr-)

+ (Z[+ A Z[_). (3.14)

Again, we assume a vanishing boundary term at z = oo, which is achievable
because Fj,(z) substantially improves the large z behavior of the integrand of
Eq. (3.9). In the next section we determine the precise conditions under which

the boundary term is zero.

3.4 Criteria for On-Shell Constructibility

Next, we determine the conditions under which the boundary term vanishes
and the new recursion relation in Eq. (3.14) applies. Under the rescaling shift
in Eq. (3.5), all momenta scale as z at large z. Consequently, if the n-point
amplitude scales with m powers of momenta, then A, (z) ~ 2™ and F,,(2) ~ no

SO

An(z) ~ Zm—na

F.(2) (3.15)
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Demanding falloff at z = oo implies that

on-shell constructible <> m/n <o. (3.16)

At the level of the contact terms this is ezactly the condition at which the
soft limit of the amplitude is enhanced beyond the naive expectation given by
the number of derivatives per field. So the set of amplitudes with special soft

behavior are on-shell constructible.

To lift the criterion for on-shell constructibility from amplitudes to theories,
we adopt the (p, o) classification of scalar effective field theories presented in
[51]. In particular, for operators of the form 0™¢", we define a derivative

power counting parameter
m — 2

n—2"

so that an amplitude of a given p can factorize into two lower-point amplitudes

p= (3.17)

of the same p. The simplest effective theories have a fixed value of p but mixed
p theories also exist. The derivative power counting parameter p in Eq. (3.17),
together with the soft limit degree o defined in Eq. (3.4) define a two parameter

classification of scalar effective field theories.

In terms of the (p, o) classification, the criterion of on-shell constructibility in
Eq. (3.16) becomes

1
(p—1) <(c—-1) <1—2/n>' (3.18)

For an effective field theory to be on-shell constructible requires that recursion
relations apply for arbitrarily high n. In the large n limit, Eq. (3.18) yields a

simple condition for on-shell constructibility,

on-shell constructible <+ p <o and (p,0) # (1,1), (3.19)

which precisely coincides with the class of theories that exhibit enhanced soft

behavior.

Examples of on-shell constructible theories are the non-linear sigma model
(p,0) = (0,1), Dirac-Born-Infeld theory (p, o) = (1,2), and the general /special
Galileon (p,0) = (2,2)/(2,3) [51]2. Among these theories, we dub those with

especially good soft behavior, p = ¢ — 1, “exceptional” theories. Exceptional

2Theories with higher shift symmetries [61, 62] violate this bound.
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theories have a very interesting property: their soft behavior is not manifest
term by term in the Feynman diagram expansion, and is only achieved after
summing all terms into the amplitude. Note the close analogy with gauge
invariance in Yang-Mills theory or diffeomorphism invariance in gravity, which
similarly impose constraints among contact operators of different valency. The
exceptional theories also play a prominent role in the scattering equations [14]
and ambitwistor string theories [25], suggesting a deeper connection between

these approaches and recursion.

For the exceptional theories, Eq. (3.19) is more than satisfied, yielding better
large z falloff than is even needed for constructibility. Thus, our recursion rela-
tions generate so-called bonus relations defining identities among amplitudes.
In principle this can be exploited, for example by introducing factors of P;(z)?
into the numerator of the recursion relation to eliminate certain factorization
channels from the recursion relation. This is an interesting possibility we leave

for future work.

Finally, let us address a slight caveat to the z scaling arguments discussed
above. While all momenta scale as z at large z, it is a priori possible that
cancellations modify the naive scaling of A,, ~ 2™ for an amplitude with m
derivatives. This is conceivable because the a; parameters in the momen-
tum shift are implicitly related by the momentum conservation condition in
Eq. (3.6). In particular, our recursions would fail if there were cancellations
in propagator denominators such that they scaled less severely than z2. That
there is always a choice of a; for which no such cancellations arise can be
shown via proof by contradiction. In particular, assuming no such choice ex-
ists implies that cancellations occur for all values of a;. But we can always
perturb a given choice of a; away from such a cancellation point by applying
an additional infinitesimal momentum shift on a subset of D + 1 external legs
as defined in Eq. (3.7). Thus the starting assumption is false and there are

generic values of a; for which A, ~ 2z scales as expected.

3.5 Example Calculations

In this section we apply our recursion relations to scattering amplitudes in var-
ious effective field theories. We begin with amplitudes in exceptional theories.
Curiously, the six-point amplitudes in the non-linear sigma model, Dirac-Born-

Infeld, and the special Galileon, are, term by term, the “square' and “cube'
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of each other, reminiscent of the result of [14]. Afterwards, we consider the

general Galileon, which is marginally constructible.
Non-Linear Sigma Model: (p,0) = (0,1)

As shown in [63], flavor-ordered scattering amplitudes in the non-linear sigma
model vanish in the soft limit. We derive the flavor-ordered six-point amplitude

Ag by recursing the flavor-ordered four-point amplitude,
A4 = S12 + S923. (320)

Since Ag has three factorization channels, the recursion relation in Eq. (3.14)

takes the form
Ag = Aé123) + AéQM) + Ag’%), (3.21)

corresponding to when Pjo3, Pa3y4, and Psy5 go on-shell. Consider first the pole

at PZ3(2) = 0, whose roots are

_ —(Pr2g- Quaz) £ \/(P123 - Q123)% — PPy3Qlas

2y = (3.22)
Qo3
Plugging Eq. (3.13) into Eq. (3.14) we obtain
(123) B
A6 = 59 X Z C’L]kl + (Z+ < 27), (323)
123 45e{12,23}
kle{45,56}
where for later convenience we have defined
Sij Skl
Ciipl = J 3.24
ijkl I (1 — CLmZ,)7 ( )
me{i,jk,l}

and B = (1 — z_/z.)~'. We observe that Aém?’) is equal to the residue of a

new function

(123) _ (812(2) + 523(2))(845(2) + $56(2))
AT =R [ 2Phy3(2) Fo(2) ]
_ (512 + 523) (545 + 556)
Py
6
(512(2) + 523(2))(845(2) + 856(2))
+2_Res l 2Py (2) Fy(2) ] ’

(3.25)

i=1
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which we have recast in terms of residues at z = 0 and z; = 1/a; by Cauchy’s
theorem. Summing over factorization channels, we simplify the z; = 1/a;

residues to .

s12(2) + ...
Res ———— = — + ... 3.26
i:zl R = R0 (s12+...), (3.26)
where ellipses denote cyclic permutations and we have again applied Cauchy’s

theorem. Our final answer is

(512 + 523) (845 + S56)
5
Pfys

A6: + ... —(812+...), (327)

which is the expression from the Feynman diagrams.
Dirac-Born-Infeld Theory: (p,0) = (1,2)

Amplitudes in Dirac-Born-Infeld theory are computed similarly with the no-
table exception that there is no flavor-ordering, so all expressions are permu-

tation invariant. The four-point amplitude takes the form

which is the “square" of Eq. (3.20). The six-point scattering amplitude takes

the form
Ag = A+ (3.29)

where the ellipses denote permutations, totaling to the ten factorization chan-
nels of the six-point amplitude. As in Eq. (3.22), each factorization channel

has two roots in z, so recursion yields

B
J ) D TR (3.30)
123 e{1,2,3}
k1€{4,5,6}

which like before can be shown to be equal to the Feynman diagram expression.

Interestingly, Eq. (3.30) is precisely the “square" form of Eq. (3.23).
Special Galileon: (p,0) = (2,3)

Next, consider the special Galileon [14, 51], whose existence was conjectured
in [51] due to the existence of an S-matrix with the same derivative power

counting as those in the Galileon but with even more enhanced soft behavior
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(at the same time the amplitudes in this theory were obtained using scattering
equations [14]). Shortly after this work it was shown in [64] that this theory is
a subset of the Galileon theories with a higher degree shift symmetry related
by an S-matrix preserving duality [65-67].

Since the Galileon does not carry flavor, its amplitudes are permutation in-

variant. The four-point amplitude is

which is the “cube" of Eq. (3.20). Permutation symmetry implies that the
amplitude is again of the form of Eq. (3.29), except here we find

B
A§2 = ——x 3 ijkl + (24 & 22), (3.32)
123 je{1,2,3}
kle{4,5,6}

which is the “cube" of Eq. (3.23).
General Galileon: (p,0) = (2,2)

Finally, let us compute amplitudes in the general Galileon. As shown in [65],

each n-point vertex of the D-dimensional Galileon is a Gram determinant,

Vo = G@1,p2,---.00) =GP1,P2,---,Pn) = - - -, (3.33)

which is simply the determinant of the matrix s;; with the row and column
corresponding to the hatted momentum removed. The Gram determinant is

by construction symmetric in its arguments. Furthermore,

G()\p17p27 R 7p’I’L) = )\QG(p17p27 oo ;pn)7 (334)

so crucially, the rescaling shift in Eq. (3.5) acts homogenously on the vertex.
This allows for a major simplification of our recursion relation. Here we define
the seed amplitudes for the recursion to be lower-point amplitudes for n =
4,5,...,D+1.

For a concrete example, we now apply our new recursion relations to the
eight-point amplitude Ag for the Galileon with just a five-point vertex in D =

4. The amplitude factorizes into two five-point amplitudes which are simply

vertices, e.g., As = Vs = G(p1,p2,p3,pa) and Az = Vi = G(ps, ps, p7,P8):
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with the intermediate leg corresponding to the missing column in the Gram
determinant. We find that

A5(2)A5(2) _ V5(2)V5(2)
Fy(2) Fy(2)

= V5(0)V5(0), (3.35)

applying the homogeneity property from Eq. (3.34) to cancel factors of (1 —
a;z)? in the numerator and denominator. Summing over factorization channels

yields
B V5(0) V5(0)

A = + (21 © 21-) + ...
ST Phy (2 fan
1
= G(PLp2,p3,p4)PTG(P5,p6,p7,p8) +..., (3.36)
1234

where the ellipses denote permutations. This expression is manifestly equal to

the Feynman diagram expression.

Note the similarity between the above manipulations and the derivation of
the CSW rules for Yang-Mills amplitudes. While MHV amplitudes are invari-
ant under square bracket shifts, the Galileon vertices literally rescale under
the rescaling shift. Just as the CSW rules can be proven using the Risager
three-line momentum shift [39], the Feynman diagram expansion of the general

Galileon can be proven using our new recursion relations.

3.6 Outlook

We have derived a new class of recursion relations for effective field theories
with enhanced soft limits, 7.e., the non-linear sigma model, Dirac-Born-Infeld
theory, and the Galileon. Like gauge and diffeomorphism invariance, soft

behavior dictates non-trivial relations among interactions of different valencies.

Our results open many avenues for future work. In particular, while we
have considered fixed p theories here, it should be straightforward to gen-
eralize our results to mixed p theories such as the DBI-Galileon [68]. Also
interesting would be to extend our results to theories with universal albeit
non-vanishing soft behavior. For example, in the conformal Dirac-Born-Infeld
model—corresponding to the motion of a brane in AdS—the soft limits of an
n-point amplitude are not zero but related to the derivative of the (n—1)-point
amplitude with respect to the AdS radius parameter. Last but not least, there
is the question of how to utilize collinear or double-soft limits of amplitudes

(for recent discussion see [69-72]).
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Chapter 4

A PERIODIC TABLE OF EFFECTIVE FIELD THEORIES

4.1 Introduction
While much of the progress in S-matrix has centered on gauge theory and
gravity, another important class of theories—effective field theories (EFTs)—
have received substantially less attention, even though they play an important
and ubiquitous role in many branches of physics. At the very minimum, the
EFT approach provides a general parameterization of dynamics in a particular
regime of validity, usually taken to be low energies. If the EFT has many free
parameters then its predictive value is limited. However, in many examples
the interactions of the EFT are dictated by symmetries, e.g as is the case for
the Nambu-Goldstone bosons (NGBs) of spontaneous symmetry breaking. At
the level of scattering amplitudes, these rigid constraints are manifested by
special infrared properties. The archetype for this phenomenon is the Adler
zero [73],

lig A(p) =0, (4.1)

which dictates the vanishing of amplitudes when the momentum of an NGB
is taken to be soft. This imprint of symmetry on the S-matrix is reminiscent

of gravity, which is also an EFT with a limited regime of validity.

At the same time, the longstanding aim of the modern amplitudes program is
to construct the S-matrix without the aid of a Lagrangian, thus relinquishing
both the benefits and pitfalls of this standard approach. But without a La-
grangian, it is far from obvious how to incorporate the symmetries of an EFT
directly into the S-matrix. However, recent progress in this direction [51] has
shown that the symmetries of many EFTs can be understood as the conse-
quence of a “generalized Adler zero” characterizing a non-trivial vanishing of
scattering amplitudes in the soft limit. Here an amplitude is defined to have
a “non-trivial” soft limit if it vanishes in the soft limit faster than one would

naively expect given the number of derivatives per field.

By directly imposing a particular soft behavior at the level of the S-matrix,
one can then derive EFTs and their symmetries from non-trivial soft behavior.

From this “soft bootstrap” one can rediscover a subclass of so-called “excep-
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Figure 4.1: Plot summarizing the allowed parameter space of EFTs. The
blue region denotes EFTs whose soft behavior is trivial due to the number
of derivatives per interaction. The red region is forbidden by consistency
of the S-matrix, as discussed in Sec. 4.5. The white region denotes EFTs
with non-trivial soft behavior, with solid black circles representing known
standalone theories. The d-dimensional WZW term theory corresponds to
(p,o0) = (%, 1). The exceptional EFTs all lie on the boundary of allowed
theory space and (p, o) = (3, 3) is forbidden.

tional” EFTs [51] whose leading interactions are uniquely fixed by a single
coupling constant. These exceptional theories include the non-linear sigma
model (NLSM) [52-54], the Dirac-Born-Infeld (DBI) theory, and the so-called
special Galileon [51, 64].

In [74], it was shown that the space of exceptional EFTs coincides precisely
with the space of on-shell constructible theories via a new set of soft recursion
relations. These very same EFTs also appeared in a completely different con-
text from the CHY scattering equations [14], which are simple constructions
for building the S-matrices for certain theories of massless particles. Alto-
gether, these developments suggest that the exceptional theories are the EFT
analogs of gauge theory and gravity. In particular, they are all simple one-
parameter theories whose interactions are fully fixed by simple properties of

the S-matrix.

In this chapter, we systematically carve out the theory space of all possible

Lorentz invariant and local scalar EF'Ts by imposing physical consistency con-
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ditions on their on-shell scattering amplitudes. Our classification hinges on a
set of physical parameters (p, o, v,d) which label a given hypothetical EFT.
Here p characterizes the number of derivatives per interaction, with a corre-

sponding Lagrangian of the schematic form
L =d*¢*F(0r), (4.2)

for some function F. This power counting structure is required for destructive
interference between tree diagrams of different topologies [51]. Meanwhile, the
parameter o is the soft degree characterizing the power at which amplitudes

vanish in the soft limit,
lim A(p) = O@®?). (4.3)
p—0

Obviously, for sufficiently large p, a large of value ¢ is trivial because a theory
with many derivatives per field will automatically have a higher degree soft

limit. As shown in [51] the soft limit becomes non-trivial when

o>p for p>1,
o>p for p<I1. (4.4)

The other parameters in our classification are v, the valency of the leading

interaction, and d, the space-time dimension.

Taking a bottom up approach, we assume a set of values for (p,o,v,d) to
bootstrap scattering amplitudes which we then analyze for self-consistency.
Remarkably, by fixing these parameters—without the aid of a specific La-
grangian or set of symmetries—it is possible to rule out whole swaths of EF'T
space using only properties of the S-matrix. Since our analysis sidesteps top
down considerations coming from symmetries and Lagrangians, we obtain a
robust system for classifying and excluding EFTs. This approach yields an
overarching organizing principle for EFTs, depicted pictorially in Fig. 4.1 as
a sort of “periodic table” for these structures. See Appendix A.3 for a brief
summary of the EFTs discussed in this chapter. Our main results are as fol-

lows:

o The soft degree of all EFTs is bounded by the number of derivatives
per interaction, so in particular, o < p + 1. The exceptional EFTs—the
NLSM, DBI, and the special Galileon—all saturate this bound.
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o The soft degree of every non-trivial EFT is strictly bounded by o < 3,

so arbitrarily enhanced soft limits are forbidden.

o Non-trivial soft limits require the valency of the leading interaction be
bounded by the spacetime dimension, so v < d+ 1. For 4 < v < d+ 1,
this is saturated by the Galileon [57, 75] and the Wess-Zumino-Witten
(WZW) term for the NLSM [76, 77].

o The above constraints permit a theory space of single scalar EFTs and
multiple scalar EFTs with flavor-ordering in general d populated by
known theories: NLSM, DBI, the Galileon, and WZW. In principle this
allows for new theories at the these same values of (p,o,d,v) but we

exclude this possibility in d = 3,4, 5 by direct enumeration.

The core results of this chapter focus on the soft behavior of EFTs of a single
scalar, or multiple scalars where there is a notion of flavor-ordering. However,
we also briefly discuss the space of general EFTs with multiple scalars, as well

as alternative kinematical regimes like the double soft or collinear limits.

This chapter is organized as follows. In Sec. 4.2, we define the parameters of the
EFT theory space and outline our strategy for classification. We then derive
soft theorems from general symmetry considerations in Sec. 4.3. The tools for
classification—soft momentum shifts and recursion relations—are summarized
in Sec. 4.4, and then applied to carve out the space of allowed EFTs in Sec. 4.5.
In the permitted region, we search and enumerate EF Ts numerically in Sec. 4.6.
Other kinematics limits and more general classes of theories are considered in

Sec. 4.7. Finally we conclude in Sec. 4.8.

4.2 Classification Scheme

As described in the introduction, scalar EFTs are naturally classified in terms
of the set of parameters (p, o, v, d). Here we review the definitions and motiva-
tions for these parameters, first in terms of the Lagrangian and then in terms

of the S-matrix.

Lagrangians
The power counting parameter p is a measure of the number of powers of
momentum associated with each interaction. As shown in [51], destructive in-

terference among diagrams, 7.e. cancellations, imposes a strict power counting
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condition relating the interactions of the EFT. In particular, suppose that the

Lagrangian has a schematic form

oo o
L2353 A 076", (4.5)
m=0n=v
where A, , are coupling constants. Cancellations can occur between couplings

of fixed
m— 2

n—2"

where p is a fixed non-negative rational number. Here Eq. (4.5) is schematic,

p= (4.6)

since we have suppressed Lorentz and internal indices so at a given order in
m,n there are actually many coupling constants A, ,. This restriction still

leaves a huge parameter space of viable EFTs.

In principle, one can combine interactions of different values of p into the same
theory. However, cancellations among the interactions with either the smallest
or the highest value of p are closed, so it is natural to focus first on fixed p

theories.

In Eq. (4.5), v denotes the valency of the leading interaction. Naively, the
minimum of possible valency is v = 3. However, the leading cubic vertex in
a derivatively coupled theory of massless scalars can always be eliminated by
equations of motion. This is obvious because the only possible non-zero 3pt
amplitude of scalars is a constant, corresponding to a cubic scalar potential
interaction. On the other hand, the on-shell 3pt amplitude for derivatively
coupled scalars will vanish because there is no non-zero kinematic invariant
built from three on-shell momenta. So without loss of generality we can take

v =4 as the minimum valency.

For concreteness, let us briefly enumerate a few simple examples of Lagrangians
with fixed p. Consider first the very simplest case, p = 0, for a theory of a

single scalar with only even interactions,
Lm0 = X2,4(3*¢") + Ao 6(9%¢°) + Ao g(020°) + ... (4.7)

Since each term only has two derivatives, the Lorentz structure of these terms
is simple:

¢" (0" 0 . (4.8)

It is straightforward to see that all on-shell tree-level scattering amplitudes

in this theory are zero, corresponding to the fact that all the interactions are
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related by a field redefinition to the action for a free scalar. For a multiplet of
scalars, this is no longer true, and the theory can have non-trivial scattering

amplitudes.

For p =1 the Lagrangian for a scalar with even interactions is
ﬁpzl = )\4’4(84(?4) + )\6,6(86¢6) + )\8,8(8%8) +... (4.9)

In this case, even for a single scalar field there are many possible ways to
contract Lorentz indices. For example, the first term above could represent

any of three different interactions,

AL 09)(0,0) (0" 9) (0 0) + AL (D" $)(D,000) + AELH(D D 6)(0,0) (D)

(4.10)
In fact, we can eliminate two of these terms via integration-by-parts identities
and equations of motion. These relations are harder to track down for more
complicated Lagrangians, but for our analysis we will thankfully not need to

determine all of these identities.

Finally, let us stress that p need not be an integer, but is more generally an
arbitrary rational number. As we will later see, a case of particular interest is

p =2/3, for which

L = )\4’5(84¢5) + )\6’8(86¢8) + )\8’11(88(2511) + ... (4.11)

p=3
A priori, quite extreme values of p are possible. For example, for p = 13/11

we have

ﬁng = Mg 24(07%90%) + N54.46(0°¢%%) + ... (4.12)

For such peculiar values of p, the leading valency v of the theory can be very
high. Naively, this signals a serious obstruction to any program for explicit
construction of all possible EFTs. In particular, any exhaustive search for
EFTs at a fixed valency will always miss possible EFTs at higher valency. After
all, the space of rational numbers p is dense. Remarkably, we will later on find
general arguments bounding the allowed maximum valency of a consistent

EFT, making an enumerative procedure feasible.

Although only theories with fixed p are considered in this thesis, we briefly
comment on the scenario with multiple p interactions. This generally arises
from loop induced interactions. For instance, the 1-loop correction of Eq. (4.9)
yields

L= X5 4(0%¢") + M0,6(0'76°%) + A2 g (09" + . .. (4.13)
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The single insertion of the above operators corresponds to p = 3,2, 5/3 for four,
six, and eight points respectively. Given fixed loop order counting, we find the
value of p decreases for higher point interactions. Suppose the associated
amplitudes have soft limit ¢ = 2 (which we expect for the loop-correction of
DBI theory). The amplitudes will have trivial soft limits at four points but
become non-trivial starting at six points. We leave the study of multiple p

theories to future work.

Scattering Amplitudes

Starting from a general Lagrangian of fixed power counting parameter p one
can calculate the n-pt tree-level scattering amplitude using the corresponding
Feynman rules. The resulting answer is a function of kinematical invariants
together with the coupling constants A, ,. In turn, the A, , can be con-

strained by demanding that the amplitude conform to the enhanced soft limit
of Eq. (4.3).

In principle, the soft degree o can be any integer. However, o < 0 corresponds
to singular behavior in the soft limit, which is only possible if there are cubic
interactions in the theory. As we argued previously, though, all such cubic in-
teractions can be eliminated by equations of motion in a theory of derivatively
coupled scalars. In contrast, such cubic interactions are physical in YM and

gravity, where ¢ = —1. In any case, for scalar EFTs we have that o > 0.

As the number of derivatives per field increases, so too will the soft degree.
However, something interesting occurs when the soft degree exceeds the num-
ber of derivatives per field,

m

> — 4.14
o> (414)

which is only possible if there is cancellation among diagrams. We define this
to be an enhanced soft limit (see [51]). Rewriting this inequality in terms of

p, we obtain )
(0—1)>(p—1)><<1—n> : (4.15)

For a theory with enhanced soft behavior, this inequality should be true of all
amplitudes. Thus we can take the large n limit, in which case the inequality
approaches the inequalities in Eq. (4.4). This range defines a swath of EFT

space that has enhanced soft behavior, which will be of our primary interest.
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Ansatze

Fixing the power counting parameter p, the soft degree o, the valency of
the leading interaction v, and the spacetime dimension d, we can now place
stringent constraints on the space of scalar EFTs. One way to compute the
associated scattering amplitudes would be natural to enumerate all possible
Lagrangian terms and calculate using Feynman diagrams. While this approach
is straightforward, it is plagued with redundancies since integration-by-parts
identities and field redefinitions induce an infinite set of Lagrangians corre-
sponding to identical physics. Indeed, even a systematic enumeration of higher
dimension operators in EFTs is a non-trivial task that remains an active area
of research [78].

Here we bypass this complication by directly constructing the scattering ampli-
tudes using ansatze. For a theory of scalars, the tree-level scattering amplitude
Ay, is a rational function of kinematic invariants s;; = (p; + pj)Q, where A,, has
poles only when s;,i, i, = (Diy + Piy + -+ + pik)2 = 0. Note the absence of
two particle poles, s;; = 0, since the 3pt amplitude vanishes in a theory of
derivatively coupled scalars. Schematically, the scattering amplitude ansatz is
N(sij)
D(si;)

An,m(sij) = Z

topology

+ Acontact(sij) ) (4'16)

where m = p(n — 2) + 2 is the dimension of the amplitude, and counts the
net power of momenta in the amplitude. Here the summation runs over all
topologies involving internal exchanged scalars, allowing for all possible inter-
actions consistent with p. These terms enter with propagator denominators
collected into the function D, and the remaining numerator function is N. The
second term Acontact corresponds to contributions that do not have propagator

denominators, and is thus a local function of the kinematic invariants.

The amplitudes ansatz should satisfy several consistency conditions. First, it

must factorize properly on poles, so

AL AR
pz

where P = (p;, +pi, + - -+ p;,) and the sum runs over internal states. Second,

lim A =
p2so M 2

(4.17)
the amplitudes ansatz should respect all the permutation symmetries of a
given diagram. For example, in a theory of a single scalar, all vertices should
be permutation invariant under the exchange of external legs and all diagrams

of the same topology should be related by permutations.
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An ansatz consistent with the above conditions is a genuine scattering ampli-
tude corresponding to the conjugacy class of physically equivalent Lagrangians
that are identical up to off-shell redundancies like field redefinitions and iden-
tities from integration by parts. The immense advantage of these amplitudes
ansatze is that these objects are free from such off-shell ambiguities and thus

uniquely label distinct theories.

To be concrete, let us spell out this ansatz construction explicitly for the 4pt
and 6pt amplitudes for a p = 1 theory. The unique 4pt amplitude for such a
theory is

Ay = Ag1(859 + 875+ 533) . (4.18)

Since there is only one possible invariant, the corresponding Lagrangian must

only describe one physical interaction parameterized by A4 1.

The 6pt amplitudes ansatz has a contact term and ten factorization terms,

+ permutations | + Ag contact ;

(4.19)

where the permutations run through the other nine factorization channels. The

2 .2 2 2 N2 2 2
A (M,l(slz + 573 + $33) (S35 + Sig + S5g)
6 =

$123

factorization term is written so as to factorize properly into 4pt amplitudes

while the contact term is

3 2 2
A contact = 157 + (25719513 + 13579534 + (14512513523 + (5512513514 + (46512523534

+ (7512593545 + (8S12534556 + Symmetrization in (123456) .
(4.20)

Not all these terms are independent, but kinematical identities eliminate all
but two terms which can be chosen to be the terms proportional to aq, as, ay,

as.

In general, it is difficult to enumerate all of these kinematical identities ana-
lytically in order to reduce the ansatz to an independent basis of terms. Such
a task is essentially equivalent to identifying an independent set of Lagrangian
operators. However, by working with the ansatz directly, we can evaluate the
ansatz numerically in order to remove the elements that generate numerically

identical amplitudes.

Lastly, we note that in analogy with color-ordering in YM theory, it is some-

times possible to cleanly disaggregate the Lie algebraic and kinematic elements
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of the amplitude in an EFT of multiple scalars. For example, in the NLSM,
a scattering amplitude A,, can be written as a sum over flavor-ordered ampli-
tudes [46, 63|

Ap= > Tr(Ta T ... T9) A (04, Oays - - - Tay) - (4.21)

S/Zn,
After stripping off the Lie algebra structure, the flavor-ordered amplitudes
are cyclically invariant with poles only in adjacent factorization channels like
s123 = 0 and so9345 = 0. For these flavor-ordered amplitudes, the procedure for
contracting ansatze is the same as before, only subject to the extra conditions

of adjacent factorization and cyclic symmetry.

A priori, flavor ordering is not always possible in a general EFT of multiple
scalars. In certain cases the flavor decomposition will involve multitrace terms,
even in the tree-level scattering amplitude. While the bulk of this chapter is
focused on the amplitudes for scalar field or the flavor-ordered amplitudes for
multiple scalars, in Sec. 4.7 we also discuss some results for genuine multiple

scalar field theories where the flavor-ordering is not assumed.

4.3 From Symmetries to Soft Limits

In this section we revisit the traditional field theory approach whereby the soft
limit is derived from a byproduct of symmetry. From this perspective the van-
ishing of scattering amplitudes—e.g. the so-called Adler zero of NGBs—arises
from spontaneous symmetry breaking in the EFT. Here the key observation
is that the scattering amplitude of a soft NGB is closely related to the ma-
trix element of the corresponding Noether current J#, in particular with a
certain regular remainder function R*(p) obtained when the one-particle pole
of the soft NGB is subtracted (cf. Eq. (4.28)) below!). Therefore, the soft
behavior of amplitudes is dictated by the properties of the Noether currents

of spontaneously broken symmetries.

The EFTs we consider here are derivatively coupled. Most of them are invari-

ant with respect to the simple shift symmetry,

o(xr) — ¢(x) +a, (4.22)

which is spontaneously broken, yielding a corresponding NGB field ¢. Pro-

vided we have additional information on the Noether current of the shift sym-

For further details see e.g. the textbook [79] and references therein.
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metry at our disposal, we can further deduce soft limit properties of the scat-
tering amplitudes beyond the leading Adler zero. This additional information

is obtained from the enhanced symmetries of the theory.

While the technical steps of the subsequent analysis are somewhat complicated,
our final conclusion is quite simple. In order to obtain an enhanced O (p’”l)
soft behavior of the amplitudes, it is sufficient that there is an additional

non-linear (i.e. spontaneously broken) symmetry of the action of the form
06 (x) = Oy, [0 29 + A ()] (4.23)

where A®t % () is linear combination of local composite operators comprised
of ¢ with coefficients that have polynomial dependence on x. More precisely,
under some regularity assumptions (e.g.. absence of cubic vertices), and (al-
most) irrespective of the explicit form of A% (z), the very presence of the
symmetry in Eq. (4.23) is sufficient condition for the O (p”“) behavior of the
resulting scattering amplitudes corresponding to ¢ = n + 1. Let us note that
this result depends only on the c—number part of the general symmetry trans-
formation Eq. (4.23). Therefore, theories invariant with respect to the trans-
an

formation in Eq. (4.23) with the same polynomial a(z) = 04, a,2% ...

form a universality class of the same soft behavior.

We relegate the details of our proof to Appendix A.1, but here simply sketch
the main steps of the argument. A crucial ingredient of the proof is an obser-
vation that the Noether currents of the shift symmetry and of the enhanced
symmetry in Eq. (4.23) are in fact closely related (for more details see [80]).
For single scalar EFTs this can be easily understood intuitively: there is only
one NGB (which corresponds to the shift symmetry) but more than one non-
linear (i.e. spontaneously broken) symmetry; thus the Noether currents cannot
be independent. At the classical level there is another more precise argument.
When we promote the global symmetries to local ones (i.e. when the param-
eters a and 0, ., become space-time dependent), the localized symmetry in
Eq. (4.23) can be treated as a localized shift symmetry Eq. (4.22) with very

special parameter
a— a(x) =0u,. a, (@) [ 2 + A9 (2)]. (4.24)

The above relations between currents express the Noether currents of the sym-

metry Eq. (4.23) in terms of the shift symmetry current J#, and more impor-
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tantly put a constraint on the possible form of J# itself. At the quantum level?

this constraint reads
(a,out|JH (z) |B,in) Opz® ... 2" = 0, (cv, out|TH¥ " (2) |B,in) ,  (4.25)

where THALn (1) = ALY (2) O4 (z) is some linear combination of local
composite operators O (z) with coefficients v4****" () with polynomial de-
pendence on z. The explicit form of ['#*1-%" (z), which depends on A%t (x),

is irrelevant for the proof of the soft theorem.

Subtracting the one-particle pole in p (where p = P3 — P, is a difference of
momenta in the in and out state) on both sides of the relation in Eq. (4.25), we
obtain a relation between the regular remainder function R* (p) of the matrix
element of the shift current and the regular remainders R* (p) of the local

operators O4 (z). Such a relation reads
e T g R (p) = Oy VAT (@) e P RA(p) . (4.26)

Assuming regularity? of the remainders for p — 0, we can integrate over d%z
to obtain

PR (PO 0P (p) = 0. (4.27)

The latter formula, together with

1
(@ + ¢(p), out|f, in) = =p R (p) , (4.28)

which relates the remainder function to the NGB amplitude, is at the core of

the soft theorems for theories with the enhanced symmetry in Eq. (4.23).

As an example let us consider theories which belong to the universality class

of theories invariant with respect to Eq. (4.23) for which
a(r)xb-x. (4.29)

Prominent members of this class are the general Galileon and DBI. While the

former is invariant with respect to the linear shift

00 () =0 -z, (4.30)

2Such a relation holds automatically at tree-level and we assume here that it is not spoiled
by the quantum corrections.
3Regularity of R* for p — 0 is guaranteed in the absence of the cubic vertices.
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the latter has a nonlinearly realized (d + 1)-dimensional Lorentz symmetry
Spd (x) =0 -2 — F~% - ¢p(2)0¢ () . (4.31)

Inserting the above a (x) into Eq. (4.27) we get

0 = puRMP)I*§D(p)

= (076D )] [t p R )] = 5V p) [t 0% ()| - (432)

We recover thus not only the Adler zero condition

. .
;g%puR (p) =0, (4.33)

but also an enhanced O (pQ) soft behavior corresponding to
o " Bl A0 o\
Il)% 0% (puR"(p)) lejlg%(‘? (a+ ¢(p),out|f,in) =0, (4.34)

implying an Adler zero of the second degree. Further applications and gener-

alizations can be found in Appendix A.1.

4.4 On-shell Reconstruction

As demonstrated in Chap. 3, enhanced soft behavior can be sufficiently con-
straining so as to fully dictate all tree amplitudes up to a single coupling con-
stant. So for these exceptional EFTs, soft limits and factorization are enough
information to fully determine the S-matrix. Since these EFTs are so special,
they naturally reside near the boundary of the allowed regions of EFT space,

which we verify explicitly in Sec. 4.5.

In the present section, we summarize the notion of on-shell constructibility
in the previous two chapters. The concept of on-shell constructibility arose
originally in YM theory and gravity, where tree-level amplitudes are fully
fixed by two conditions: gauge invariance and factorization. The factorization
condition, shown in Eq. (4.17), can then be imposed sequentially until all
higher point amplitudes are reduced in terms of a set of input 3pt amplitudes.
Said another way, the physical n-pt amplitude is the unique gauge invariant

function which satisfies Eq. (4.17) in all channels.

Conveniently, the dual conditions of gauge invariance and factorization can

be imposed automatically in YM and gravity using the celebrated BCFW
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recursion relations [3, 4]. These work by applying a complex shift of the

momenta,

pi = pitzq,  pj—pj—2q, (4.35)
where ¢% = (p; - q) = (pj - @) = 0 and the momentum conservation is preserved.
Applying Cauchy’s formula to the shifted amplitude A, (z), we can then re-
construct the original A,, using the products of shifted lower point amplitudes,

dz Ap(2) Ap(zi)Ar(21)
/Z:O oA, =Y kPQR K

(4.36)
k
where the sum is over all factorization channels for which P?(z;) = 0. Later

on, the BCFW recursion relations were generalized to apply to a much broader
class of theories [8, 43, 60].

An important requirement of Eq. (4.36) is that the shifted amplitude falls off at
infinity, A,(z) ~ % for z — oo. If this is not true, then the recursion includes
boundary terms which are difficult to calculate, though some progress has
been recently made on that front [42, 58, 59]. For EFTs, amplitudes typically
grow at large z as A, (2) ~ 2P where p > 0, so none of the standard recursion

relations can be used.

This obstruction to recursion in EFTs is obvious from a physical perspective:
typically there is an infinite tower of interactions in EFTs which produces
contact terms in amplitudes. These contact terms cannot be constrained by
factorization. So we need additional information to fix these unconstrained
contact terms. In YM and gravity, gauge invariance dictates the appearance
of contact terms and makes reconstruction feasible. In principle, it may be
possible that these contact interactions can be fixed by leading and subleading
soft theorems, and in particular recent work on conformal field structures for

amplitudes suggest this may occur [81].

In scalar EFT, there is no gauge invariance to speak of, so it is natural to
consider soft structure to relate cancellations between contact and pole terms.
In particular, we call the amplitude A,, soft limit constructible if it is the unique

function satisfying two conditions:

1. Tt has local poles and factorizes correctly on them according to Eq. (4.17).

2. Tt has required soft limit behavior A,, = O(p?).
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Soft Shift Applicability ‘ # of Soft Limits Bound
All-Line n>d+1 n % > v
All-But-One-Line n>4 n—1 g;_% > %
All-But-Two-Line | n >3 and d > 4 n—2 p>0— U%

Table 4.1: The first and second columns list soft momentum shifts and the
conditions under which they can be applied to an amplitude with n legs to
probe its soft limits. The third column lists the number of soft limits that
are accessible by each soft shift when these criteria are satisfied. The fourth
column lists the resulting constraints on EFTs with fixed (p, o, d, v) proved in
Section 4.5. As discussed in text, these constraints are derived by applying
each soft shift to the leading non-trivial amplitude, which is an amplitude with
n = v legs.

Soft limit constructibility imposes non-trivial conditions on our classification
parameters (p, o) which we will review soon. In the subsequent sections we
discuss how to probe soft limits while maintaining on-shell kinematics, as well

as the construction of amplitudes from the above two criteria.

Soft Momentum Shifts

Our analysis makes heavy use of the soft momentum shift proposed in Chap. 3.
This deformation maintains total momentum conservation and on-shell con-
ditions while probing the soft limits of external particles. In [74] these mo-
mentum shifts were used to construct new recursion relations for scattering
amplitudes in EFTs. However, here we need them as just a tool for probing

the kinematics of scattering amplitudes.

The original soft momentum shift is applicable only when there are more than
d + 1 external legs in d spacetime dimensions. In order to probe the full EFT
space, we develop a number of simple variations on the soft momentum shift.
Although it seems to be a technical obstruction, we will see that the applica-
bility has a one-to-one correspondence to the non-trivial soft limits in Sec. 4.5.
We now discuss each momentum shift, whose properties are summarized in
Table 4.1.

All-Line Soft Shift
We define the all-line soft shift by

pi — pil —za), 1<i<n, (4.37)
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where the shifted momenta are automatically on-shell but momentum conser-

vation requires
n
Z aip; = 0. (4.38)
i=1

Since this constraint is a relation among the momenta, it may or may not be
satisfied depending on the number of momenta n relative to the space-time

dimension d.

There are two configurations of a; that are unphysical or not useful for probing
the soft kinematic regimes of the amplitude. First, one can rescale all the a;
uniformly. This corresponds simply to a rescaling of the momentum deforma-
tion parameter z and therefore is not a new solution. Second, consider the
case where the a; all equal. This corresponds to a shift of the momentum of
each leg by a constant times the momentum, which is also equivalent to a total
rescaling of all the momenta. This class of momentum shifts does not probe
any interesting kinematic regime of amplitudes provided the amplitude is a

homogeneous function of momentum, which we assume here.

The above two configurations can be viewed as the “pure gauge” configurations
of a;. We can uniformly rescale or translate any solution of a; and the result is
still a solution by Eq. (4.38). When counting degrees of freedom, the two pure
gauge directions need to be excluded. Subtracting these two configurations,
only n—2 degrees of freedom among the a; are of interest. The d constraints of
Eq. (4.38) then reduce these to n —d —2 independent variables. Consequently,
for n < d + 1, the momenta are linearly independent so there are either no
solutions to Eq. (4.38) or we have the trivial configuration where all a; are

equal.

Only for scattering amplitudes with sufficient numbers of external particles
n > d+ 2 can we apply the soft shift in Eq. (4.37) with distinct a;. In the
marginal case n = d+2, the parameters a; are completely fixed up to rescaling
and translation. There are residual degrees of freedom when n > d + 2. Note
that the momentum conservation constraint in Eq. (4.38) implies that the
a; are implicitly dependent on the p;, constrained so they actually represent

n — d — 2 independent parameters.

Moreover, z — 1/a; corresponds to taking the soft limit of particle i. So for
n > d + 2 it is possible to apply an all-line soft shift that probes all the soft

kinematic limits of the amplitude.
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All-But-One-Line Soft Shift

Similarly, we can define an all-but-one-line shift by
pi — pill —za), 1<i<n-—1 (4.39)
Pn — Dn+ 2Gn, (4.40)
where momentum conservation and the on-shell conditions imply that
n—1
G =D aipi, G = qupn = 0. (4.41)
i=1
Here we are shifting all the external legs, but in such a way that all but one

of the soft limits can be accessed by taking z — 1/a;.

The all-but-one-line shift is defined by n — 1 parameters a;. As before, the
rescaling of a; and the case where all a; are equal correspond to a uniform
rescaling of all the momenta, so only a subset of n — 3 of these parameters are
kinematically useful. Finally, the two on-shell conditions reduce these to n —5

independent variables, corresponding to distinct values of a;.

In summary, the all-but-one-line shift acts non-trivially on any amplitude with

n > 5 legs in all dimensions, and which can probe n — 1 soft limits.

All-But-Two-Line Soft Shift

Lastly, we consider an all-but-two-line soft shift defined by

pi — pil —za), 1<i<n-2 (4.42)
Pn—1 — DPn—1+2qn-1, (4.43)
Pn = Dn+ 2Gn, (4.44)

where momentum conservation and on-shell conditions imply

n—2

Gn-1+qn = a;p;, Qo1 =G = Gn-1Pn—1 = @upn =0. (4.45)
i=1

Here we treat the n — 2 parameters a; as free variables so that the two d-
dimensional vectors ¢, 1 and ¢, are constrained by the d constraints from
momentum conservation. This corresponds to d degrees of freedom subject to
four constraints, leaving d — 4 degrees of freedom in ¢,_; and ¢,. Removing
rescaling and translation as before, there are n — 4 degrees of freedom in a;.

So the total number of independent variables are (n — 4) + (d — 4).
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In summary, for the general case n > 5, we find that the all-but-two-line soft
shift acts nontrivially on any amplitude in d > 3 dimensions. For the special
case of 4pt, the all-but-two-line soft shift only works for d > 4 but not d = 3.

Soft Recursion Relations

Next, we review the recursion relations for EFTs in [74] (see also the gener-
alization in [82]) which is a crucial tool for bounding the space of consistent
EFTs. To compute the n-pt amplitude, we first deform the momenta by any
of the available soft shifts in Sec. 4.4. This promotes the amplitude A,, into a
function of z,

Ap = An(2). (4.46)

Then consider the contour integral

dz Ap(2)
55 ECR A

where the denominator F,,(z) = [T (1 — a;2)?. The product in F,(z) runs

from 1 to ng, the number of external legs whose soft limits are accessible by the
soft shift, given by the third column in Table 4.1. We can retrieve the original
amplitude A, (0) by choosing the contour as an infinitesimal circle around
z = 0. Cauchy theorem then relates the original amplitude as the (opposite)
sum of all other residues. The possible poles correspond to factorization (poles
in A,(2)), soft limit (F,(z) = 0), and the pole at infinity. However, the
integrand is designed such that A,(z)/F,(z) has no pole in the soft limit

z = 1/a; since the amplitude vanishes as
Az = 1/a) ~ (1 — a;2)?, (4.48)

as we define in Eq. (4.3). If there is no pole at infinity, the original amplitude is
equal to the sum of residues from factorization channel. For each factorization

channel I, there are two poles zr+ corresponding to the roots of
Pi(2) = P} +2Pr-Qrz+ Q3% =0, (4.49)
where Pr(2) = Pr + zQ); and where
Pr = Zpi and Qr=— Zaipi ) (4.50)
icl iel
By locality, each residue is a product of lower-point amplitudes. Applying
Cauchy theorem then yields the recursion relation

1 Ap(zr-) Ar(zr-)
Ap(0) = 52
(0) z{: P21 —zr—/z10)F(21-)

+ (Z[+ ad Z]_) . (4.51)
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The recursion relation above hinges on the absence of pole at infinity. The
large z behaviors are F,(2) ~ 2% and A, (2) ~ 2" where A, has m powers of
momenta defined by Eq. (4.5). The function A,,(2)/F,(z) vanishes at infinity
provided m < ngo which can be written as
24+ (n—2
o> (n—2)p

- (4.52)

in terms of p defined by Eq. (4.6). Remember that depending on n and d,
each shift has its own applicability (see Table 4.1). For exceptional theories,
o = p+ 1, we can use any of the three shifts in Sec. 4.4 to construct the
amplitude starting from 5pt. This implies 4pt amplitudes dictate all other
amplitudes. For theories on the non-trivial line o = p, all-line and all-but-one-
line soft shift can construct amplitudes with ¢ > 1 and o > 2 respectively.
Note that all-but-two-line is no longer applicable on this line. According to
Table 4.1, theories with ¢ = p = 2 like the general Galileon need the 4pt to

(d + 1)pt scattering amplitudes as seeds for the recursion relation.

Example: Six point amplitude in NLSM

As an illustration of these recursion relations, consider the 6pt amplitude in
NLSM. We use the all-but-one line soft shift so that our results apply in general
dimensions. This momentum shift is applicable in all exceptional theories for

amplitudes above 4pt. The flavor-ordered 4pt amplitude reads
A4 = S12 + S23. (453)

The recursion relation in Eq. (4.51) can be rewritten as

AL(Z)AR(Z)> _

Aﬁ(O) = — ; Reszli (Z_P?(Z)P’(Z) (454)

Note that we only probe soft limits of the first five legs, so F(z) = H?:l fi(2)
where f;(z) = (1 — a;2z). For 6pt amplitude, the sub-amplitudes A (z), Ar(2)
are 4pt which have no poles. Thus, we can use the Cauchy theorem again term

by term in the above equation

_ ALAR Ap(2)Ag(2)
Aﬁ‘z{ pr 2 R (p<>F<>>}

T
+3 Res (AL(Z)AR(Z)> ,

_ (512 + 523) (845 + S56)
P}, ~ 2=1/a; \ 2PF(2)F(2)

(4.55)
+ ...
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where the first term is the residue at z = 0, the second term sums over the
residues from F'(z) = 0 which corresponds to the soft limits, and ellipses denote
cyclic permutations. We will identify the second term as the contact term in

the amplitude.

AG,contact = Z Res

il z=1/a;

zPIz(z)F(z)

For the flavor-ordered 6pt amplitude there are three factorization channels
corresponding to when Pjo3, Po34, and Psy5 go on-shell. The above contact

term can be decomposed into
_ 4(123) (234) (345)
AG,contact - A6,contact + A6,contact + A (457)

6,contact *

Considering the first term, we can plug Eq. (4.53) into Eq. (4.56), yielding
4023) _ <§45 + §56> B <§45 + §56> B <§12 + §23>
’ =tar \fufafifs) 1=V \ fifafsfs

Jafsfafs
Here 3;; is the Mandelstam variable evaluated at shifted kinematics. Note

z=1/ay )

(4.58)

that one of the sub-amplitudes cancels the propagator on the soft limit. For
example, PZ3(1/a1) = 823 = Ar(1/a1). The residue at z = 1/a; only shows
up in A8? and AZ*Y. Combining the two yields

B <§23 + 834 + 845 + §56>

Jof3fafs

B . S19 + S93 + S34 + S45 + S56 + S61
s=l/ar  2=1/a zfifafsfats ’
(4.59)

where we include §12 + Sg1 in the numerator in the right-hand side since they
vanish at z = 1/a;. All residues at z = 1/a; can be combine into such form.

Summing all of such gives

5 A ~ N A N A
S12 + 823 + 834 + S45 + S56 + S61

Z Res

1

zf1faf3fafs

= — (812 + 523 + S34 + S45 + S56 + S61), (4.60)

1 z=1/a;

where we use Cauchy theorem again to recast the sum into residue at the

origin. Combining the non-contact terms, the final answer is

(512 + 523) (845 + S56)
2
Prog

A6:[ +...]—(512+...), (461)

where ellipses again denote cyclic permutations. The above expression is the

same one obtained via Feynman diagrams.
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4.5 Bounding Effective Field Theory Space

With an arsenal of momentum shifts and on-shell recursion relations, we are
now ready to ascertain the allowed parameter space of EF'Ts. The aim of this
section is to study the parameter space of EFTs as a function of (p,o,d,v)
and determine regions of theory space which are inconsistent with locality
and Lorentz invariance. To exclude swaths of EFT parameter space, we will
consider several consistency checks. The first will be a study of the soft limit
of the leading interaction vertex of the EFT. The second will be a study of the
locality properties of higher point amplitudes.

Soft Limit of the Leading Interaction

Consider an EFT with the fixed (p, o, d,v). All amplitudes in this EFT have
soft degree o by assumption, including the leading non-vanishing amplitude
Ay, where v is the valency of the lowest point interaction. Since A, is comprised
of a single vertex it has no factorization channels and is simply a polynomial
function of the momenta. Given the definition of p in Eq. (4.6), this function

contains p(v — 2) + 2 powers of momentum.

To begin, consider a soft momentum shift in Sec. 4.4 applied to A,, lifting it
to a complex function of z, so A, — A,(z). Since A, is a contact amplitude,
Ay(2) is simply a polynomial in z. The degree of this polynomial is fixed by
the mass dimension p(v — 2) + 2, since each momentum in the shift is linear

in z.

At the same time, the vanishing soft limit corresponds to zeros of this polyno-
mial. In particular, if v, is the number of external legs whose soft limits can
be probed by the soft momentum shift, then the total number of zeros are vgso
according to Eq. (4.3). Comparing the degree of polynomial with the number

of zeros yields

V0 — 2
v—2
Therefore, the most stringent bound on p requires the maximal vs. Crucially,

p> (4.62)

this depends on v and d as shown in Sec. 4.4 and so does the bound on p.

These bounds are summarized in the fourth column of Table 4.1.

Altogether these bounds place a lower bound on p as a function of ¢ and
v which excludes almost all possible EFTs with non-trivial soft limits. To

explain these constraints, let us consider each of these bounds as a function
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of the leading interaction valency v relative to the space-time dimension d.

Throughout, we assume space-time dimension d > 4.

The most general possible bounds arise from the all-but-two-line shift. As we
are concerned with scalar theories, the lowest possible valency of the leading
interaction is v = 4. From Table 4.1, the bound is weakest—that is, places
the smallest lower bound on p—for v = 4 and becomes stronger as v grows.
So conservatively, we can evaluate the all-but-two-line shift constraint from

Table 4.1 for v = 4 to obtain a universal and remarkably stringent bound of
p > o—1. (4.63)

Notably, this bound is exactly saturated by the exceptional theories discussed
in [51], corresponding to the NLSM (p, o) = (0, 1), DBI theory (p, o) = (1, 2),
and special Galileon (p,0) = (2,3). Unsurprisingly, this result verifies that
there are no theories with p = 0,1, 2 with soft limits that are super-enhanced
beyond these exceptional theories. This is expected because these exceptional
theories each have a single coupling constant and are thus already so con-
strained by soft limits that they have no additional free parameters. Demand-
ing a super-enhanced soft limit will over-constrain these theories, so no EFT
exists with such properties. Less obvious is the statement that for general
p—including rational but non-integer values—there are no theories with soft
limits enhanced beyond the exceptional line defined by Eq. (4.63). Note that
the proof here uses all-but-two-line shift which is valid only in d > 4. The

same conclusion holds in d = 3, which we will revisit in the end.

For the all-line and all-but-one-line shifts we obtain more stringent constraints
which are applicable only in specific ranges for v and d. First, consider the
constraint in Table 4.1 from the all-line shift, which is applicable only when
the valency v of the leading interaction is greater than d + 1. The resulting
bound on p is a line that intersects the point at (p, o) = (1, 1), which describes
a derivatively coupled theory of a single NGB, sometimes called P(X) theory
(see Appendix A.3). The slope of the boundary is v/(v — 2) > 1 so it is
steeper than the p = o line that delineates the boundary between theories
with trivial versus non-trivial soft limits. Since o is a positive integer, we can
exclude all EFTs with non-trivial soft limits for which v > d + 1. This result
is consistent with the properties of known EFTs. In particular, the Galileon
theory is known to have interaction vertices up to v = d + 1 valency but not

higher.
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Second, consider the constraint in Table 4.1 from the all-but-one-line shift,
which is applicable only when 4 < v < d + 1. Here the resulting bound
intersects the Galileon theory at (p, o) = (2, 2) with a slope of (v—1)/(v—2) >
1, which is again steeper than p = 0. Hence, this bound eliminates all EFTs
with non-trivial soft limit ¢ > 2 and v > 4. The only allowed possibilities are
then (p,0) = (2,2), which is consistent with the known Galileon theory, or
o =1 with p > (v —3)/(v — 2), which is saturated by WZW theory. We will

discuss the allowed region in depth in Sec. 4.6.

The above bounds significantly simplify the numerical search of possible the-
ories. For a given dimension d, we only need to search leading amplitudes up
to v = d + 1. The inverse question is, given the leading valency v, what are
the upper bounds on spacetime dimensions for which we do not expect to find

new non-trivial amplitudes?

The answer is given by a simple statement in kinematics. For example, the
4pt kinematics in any d > 3, effectively lies in a three-dimensional subspace.
This is easily seen in the center of mass frame, where the four spatial momenta
lie in a plane. The generalization to high dimension is straightforward: the
v-pt kinematics in the d > v — 1 dimension only live in a (v — 1)-dimensional
subspacetime. If this is true, we can always take the soft limits within this
(v — 1)-dimensional subspacetime. It implies the enhanced soft limit at v-pt
in d > v — 1 dimensions must be present in d = v — 1 already. The numerical
search up to d = v — 1 can saturate all non-trivial amplitudes at arbitrarily
higher dimensions, which significantly reduces the space of possible theories
that need to be checked.

The proof is analogous to 4pt. First consider the center of mass frame of the

first two particles whose momenta are chosen as

E
b1 :%(:hlaov'” 70)7

4.64
_ EBeu (4.64)

=M _1.0.---.0).
5 (1,-1,0,---,0)

b2

Next, due to total momentum conservation, only v —3 momenta of the remain-
ing v — 2 particles are independent. Using spatial rotations (or the standard
Gram-Schmidt decomposition), we can choose a basis where these v — 3 mo-
menta lie in a (v — 3)-dimensional subspace. Together with the spatial part

p1,2, all spatial momenta can be chosen to reside in the first v — 2 spatial
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components

pi:(Ehpila”' 7pi,?)—2707"' )0)7 VZ:{37 7U}' (465)

Combining with the temporal component, we find the v-pt kinematics only

live in a (v — 1)-dimensional sub-spacetime as we claimed.

Let us come back to the case of d = 3. First, the same bound from the all-but-
one-line and all-line shifts applies for v > 5 and v > 6 respectively. So we only
need to consider the 4pt case in d = 3. Although we cannot use momentum
shifts to prove Eq. (4.63), the 4pt kinematics always live in a three-dimensional
subspace. Therefore, the 4pt kinematics should still satisfy p = o + 1 as in
higher dimensions, which can be verified explicitly. So all the bounds are the

same for d = 3.

In summary, the leading valency v of EFTs with an enhanced soft limit must
satisfy
v<d+1, (4.66)

while the enhanced soft limit should be present in
d=v—1. (4.67)

These imply that for the numerical search of the non-trivial leading amplitudes,
we can focus on the line of v = d + 1. Moreover, if v > 4, then the soft degree

and power counting parameters are bounded by

c=1lor2, and p>wW-3)/(v—2). (4.68)

Locality of Higher Point Amplitudes

The bounds derived in the previous section imply that the soft degree of an
EFT cannot exceed those of the exceptional EFTs. Nevertheless, these con-
straints still permit an infinite band in EFT space between the exceptional
line p = 0 — 1 and non-trivial line p = o, as shown in Fig. 4.1. While we can
constructively identify the known theories with o = 1,2, 3, there is a priori no
restriction on EFTs of arbitrarily high soft degree beyond o > 3, which we
dub “super-enhanced” soft behavior. However, in this section we show how

EFTs with such super-enhanced soft behavior are impossible.

As discussed in the previous section, an exceptional EF'T must have a valency

v = 4 for the leading interactions. Without loss of generality, the corresponding
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4pt contact amplitude takes the form

p+1
A4 = Z )\b 8?3 ngl_b, (4.69)

b=0
where )\, are coupling constants. From Eq. (4.69) we see that the soft degree
is 0 = p+ 1 but can in principle be arbitrarily large. Hence, there is of yet no

obvious obstruction to a theory with arbitrary high soft degrees.

To exclude such theories, we exploit the fact that exceptional theories are on-
shell constructible [74]. Furthermore, in the previous section we showed that
for ¢ > 2, the only contact amplitudes consistent with non-trivial soft be-
havior enter at 4pt. Altogether, this implies that all higher point amplitudes
are fixed in terms of the 4pt amplitudes in Eq. (4.69) via on-shell recursion.
Self-consistency then requires that the resulting higher point amplitude be in-
dependent of the precise way in which recursion is applied. Concretely, the
recursion relation should produce scattering amplitudes which are indepen-
dent of the specific momentum shift employed. For soft recursion relations,
this means that the intermediate and unphysical momentum shift parameters
a; should cancel in the final expression, since the physical amplitude should
only depend on Mandelstam variables. As shown in the example in Sec. 4.4,
such a cancellation is highly non-trivial. In the following, we study this cancel-
lation and use it to derive a no-go theorem for the existence of super-enhanced

theories.

Our approach mirrors the so-called “four-particle test” of [35] (and see also
[36]), where the consistency of higher spin theories was similarly studied via
on-shell recursion. There it was shown that for theories of massless particles
of spin greater than two, recursion relations yield different answers depending
on the momentum shift used. This failure of recursion relations indicates
an underlying tension between locality, factorization, and gauge invariance in
the underlying theory. The same logic can be applied here: if soft recursion
relations yield dependence on unphysical parameters in the final answer, then
it is impossible to construct higher point amplitudes which are simultaneously

local with the correct soft and factorization properties.

Since the details of the proof are rather technical, readers can skip the following
and move to Sec. 4.6 if they are uninterested in the details. However, our final

results from this analysis are that:
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\'\ I r/
/\Aﬂ \Ai\ 2
Figure 4.2: Factorization channel with spurious pole as.

o All EFTs with non-trivial soft behavior have p < 3. This claim is in-

dependent of flavor structure, and applies for single or multiple scalar
EFTs.

e The NLSM is the unique EFT with flavor-ordered amplitudes that ex-
hibit exceptional soft behavior, o = p + 1.

We find the locality test imposes a stringent bound on the theory space of
EFTs, as shown in Figure 4.1. Galileon theories live on the boundary of the

allowed region.

Details of the Proof

We diagnose the self-consistency of super-enhanced soft behavior by analyzing
the 6pt amplitude, by analogy with the 4pt test in higher spin gauge theory.
Specifically, we consider the 6pt kinematics in d = 3 where we are allowed
to apply all-line soft shift. For higher dimensional theories, we can always
take a special 6pt kinematics restricted to d = 3. One might worry that the
6pt amplitude vanishes in this limit and thus trivializes the test. However, the
non-trivial soft limits with p > 2 fix all amplitudes from 4pt amplitudes via the
recursion relations. As we discussed in Section 4.5, the 4pt kinematics in d = 3
is already generic. We will see the spurious pole cancellation put constraints
on the 4pt coupling constants. If the only consistent coupling constants are
zero in the d = 3 special kinematics, then the 6pt amplitudes, which are given
by the recursion, must be trivial even in generic kinematics. Therefore, the

proof here applies to general d > 3.

Let us consider the 6pt amplitude obtained from recursion relations. As shown

in Eq. (4.55), it can be decomposed into factorization terms (comprised of



67

two 4pt vertices and a propagator) and the contact term (comprised of one
6pt vertex). The example presented in Eq. (4.55) is for the NLSM, but this

decomposition is generally applicable.

First, we see that the factorization terms are manifestly independent of the
shift parameters a;. Hence, these cannot contain any spurious dependence on
the momentum shift so we can ignore them. On the other hand, the contact

term reads

A6,contact = Z Res

A Z A z
( L( ) R( )) 7 ( ‘ )
i,[ z——l/ai

zPlz(z)F(z)

which can in principle depend on a;, yielding an inconsistency. Conversely,
consistency implies that Eq. (4.70) is a; independent, so all spurious poles in
these parameters must cancel. Here unphysical poles in a; can only appear
in the denominator of Eq. (4.70) because Ar r are 4pt amplitudes which are

local functions of momenta, and thus local functions of a;.

Let us determine what kind of spurious poles can arise from the above equation.
Recall that F'(z) = H?:l 17 (2), where f;(2) = 1—a;z is the product of rescaling
factors. Furthermore, observe that the rescaling factor of leg j evaluated at
z = 1/a; is proportional to (a; — a;), which induces a spurious pole. In general,
the shifted propagator can also contain a similar form of spurious pole: for

example, P1223(1/a2) = f1f3s13 is proportional to (a2 — a1)(az — as).

In what follows we analyze the unphysical pole at a; — a2 and show that
the criterion that this singularity cancels in the final amplitude imposes a
constraint on allowed EFTs. Here it is important that we can take the all-line
soft shift in d = 3 at 6pt, so it is possible to send a; — as while keeping all
other a; distinct. Taking residue at z = 1/ag is then reminiscent of a double
soft limit, where leg 2 is exactly soft, pa(1/a2) = 0, and leg 1 approaches soft
p1(1/ag) ~ (a1 — az)p1 as a; — ag. As explained in the previous paragraph,
the spurious pole in a; — az only appears when taking the residue at z = 1/a;
or z =1/ay. Legs 1 and 2 either appear on opposite sides of the factorization

channel, or the same side, and we now consider these in turn.

If legs 1 and 2 are on different sides of factorization channel, we can always
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parametrize the 4pt amplitudes as

p+1
Ap(z) = Z b §I{Z §;1>;r1 b p+1(z)’

b=0

prl . (4.71)
Ap(z) =3 Ny 85, 85/ 7 (2),

b=0

where 7, 7, k, [ label the on-shell legs in the amplitude other than legs 1 and 2.
Recall that hatted Mandelstam variables are evaluated at shifted kinematics.
Meanwhile, the internal propagator, PIQ(Z), will never be singular as a; — ao,
since the double soft limit does not yield a singularity from the propagator in
this channel. Since F'(z) o f1(2)? f2(2)?, Eq. (4.71) implies that the overall
scaling of the contact factorization term is (f1 f2)®, where for later convenience

we define
A=p+1—o0. (4.72)

Here A = 0 for exceptional EFTs, while A = 1 for EFTs with non-trivial be-
havior. Meanwhile, A > 1 EFTs have trivial soft behavior that is guaranteed
simply by large numbers of derivatives, and A < 0 is forbidden by the argu-
ments from the contact amplitude in the previous section. Putting this all
together, since A is strictly non-negative, these terms can never produce a

spurious pole as a; — as.

Therefore, the spurious pole only appears when legs 1 and 2 are on the same
side of the factorization channel. Namely, we only need to consider factoriza-
tion channel I = 123,124,125,126 as shown in Figure 4.2. In this case it is
convenient to parametrize the 4pt amplitude

+1
M) = S sl o (4.73)
b=0
without loss of generality and where ¢+ = 3,4,5,6. This is chosen so that the
4pt amplitude carries a factor of ff +1(z) that will overpower the f{(2) factor
in the denominator of the recursion. Thus, we find that spurious poles in
a; — ag are localized to the residue from fy, i.e. the residue at z = 1/ag in
four factorization channels [ = 123,124,125, 126.

Consider the factorization I = 12:. We now combine the parameterization

of the 4pt amplitude in Eq. (4.73), together with the recursion relation in
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Eq. (4.70) to localize the spurious pole in a; — as. We need to take the

residue at z = 1/ay from

AL(DAR(z) P+18p+1_b AL(2) Aipsh f11(2) @
2P (2)F(z) & 712 2P2(2) Fas(2) f22(2) | '

b=0
where s,; = 2p1-p;i(2), F3456(2) = (f3f1f5f6)7, and A is defined as in Eq. (4.72).

Here we have kept the dependence of the coupling constant on ¢. The pole at

z = 1/ay in the above equation is generally not a simple pole. The residue is
then obtained through taking derivatives. However, the inverse propagator at

z = 1/ag contains a spurious pole but not its derivative:

Pi(1/az) = fi(2)s;
aP}
dz

z=1/ay

(4.75)
(1/az) 2% —as(sy; + 557

z=1/as"

Therefore, the leading spurious pole in the residue occurs when all the deriva-
tives act on PIQ(Z) but not on the numerators. The worst spurious pole occurs
for the maximal b with A, # 0 in Eq. (4.74).

Now we combine everything together. First take the residue from Eq. (4.74)
and only keep the leading spurious term from by,4,. Then, sum over factoriza-
tion channels I = 123,124,125,126. Finally we find

1
(a1 — ag)bma=—2

6
5% D0 AL/2) N, 53505y + 552 (476)
i=3 z=1/az
where we drop the irrelevant proportional constant. The spurious pole cancel-
lation implies the numerator in the square bracket must vanish whenever the

spurious pole forms, i.e., by > 2A.

In principle, there are several ways the above numerator can vanish. The most
naive way is to forbid coupling constants whenever the spurious pole appears.
The cancellation could also happen in the state sum in the multiple scalar
case. The second possibility is to cancel the numerator in the summation
of factorization channels. We only know the sufficient conditions for this to
happen, which we will describe soon. But a priori, there could be accidental
cancellations beyond our expectation and we have to check numerically for a
given by, Strictly speaking, this is a loophole since we cannot check arbitrary
high by qr numerically. However, we can localize the spurious pole to one

single factorization using the so-called “bonus” relation. In such a case, the
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spurious pole cannot appear at all. We can close the loophole by combining
numerical checks to sufficiently high b,,,, and after that using the proof via
bonus relations. This proof using bonus relations is presented in Appendix A.2.

Hence, we will assume no such accidental cancellation in what follows.

In the following, we will first discuss sufficient conditions for the spurious pole
cancellation, which are satisfied by all known EFTs. These conditions are also
necessary as supported by numerical checks and proofs from bonus relations.

We will then show bounds in single and multiple scalars in turn.

Locality Test in Known EFTs

In the case of a single scalar, all the above constraints simplify dramatically
since there is no state sum over flavors and the coupling constants \? are
universal. Moreover, when a; — a2 and z is evaluated at 1/a9, particle 1 and
2 are both soft. The left sub-amplitude Ay, is then the universal 4pt amplitude
of particle 3,4,5, and 6, which cannot be zero. We can furthermore factor out
Ar in Eq. (4.76).

Consider exceptional theories in which A = 0. Stripping off the universal Ay,

and coupling constants in Eq. (4.76) yields the numerator

6

S (sy; + sy e (4.77)
=3

which is evaluated at z = 1/ag. This has to vanish for by, > 0 in generic
kinematics. Recall that z = 1/ag corresponds to the double soft limit on the

first two legs. The rest of momenta p; form a 4pt kinematics, 2?23 Dilz=1/as = 0.
Therefore Eq. (4.77) is satisfied if

We check numerically up to by, = 10, above which are ruled out by the bonus

relations in Appendix A.2.

DBI straightforwardly satisfies the constraint because p = 1. On the other
hand, the cancellation of spurious pole in special Galileon realizes in an inter-
esting way

Ay =53 + 535 + 555 = —3579513 — 3512553 . (4.79)

3

Although the amplitude has terms ~ s°, on-shell kinematics cancels the leading

term and satisfies the locality constraint.



71

For theories with flavor-ordered amplitudes, e.g., NLSM, the analysis is similar
to the single scalar case except that we only sum over adjacent factorization
channels and A, depends on the ordering. We cannot cancel the spuri-
ous pole from by, = 2 because global momentum conservation is no longer
available when only adjacent factorization channels are summed. This can
be checked numerically or be proven by the bonus relations in Appendix A.2.

However, the spurious pole for by, = 1 can be canceled if
)\3’1 + )\671 =0. (4.80)
We can check explicitly that the cyclic 4pt amplitudes in the NLSM are

Au(1,2,3, I123) = —s13,

(4.81)
Ay(6,1,2, Ig12) = S16 + S12.-

So the coupling constants indeed have opposite sign and cancel the spurious

pole.

For theories on non-trivial line, A = 1. There is an extra factor of s;; that
ruins all the previous cancellation. Therefore, we do not know any sufficient

condition to cancel spurious pole in the sum. This constrains
bmar < 2. (4.82)

The bound is the same for exceptional theories. Again, we check numerically

up to by, = 10, beyond which is ruled out by the bonus relations.

We point out there is an intriguing similarity between exceptional EFTs and
YM and gravity. Here we find the locality in DBI and special Galileon hinges
on global momentum conservation, and locality in NLSM relies on cancellation
between adjacent channels. This is completely analogous to the mechanism
of how gauge invariance is realized in soft theorems in YM and gravity [83].
This could be a hint that these exceptional EFTs are closely related to YM
and gravity.

Bounds on Single Scalar EFTs

As discussed before, we can factor out coupling constants and the sub-amplitude
Ay in the case of single scalar. The locality test then demands by, < 2. On
the other hand, any pair of a;,a; could form a spurious pole. We can check

the spurious pole in a; — ag from the parametrization of Eq. (4.73). The same
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bound applies if we replace b with p+1 —b. Combining the two bounds on b,
we find
2>2b>p+1—-2, (4.83)

which could be satisfied if p < 3. We find that p cannot be arbitrary.

Moreover, we can discuss the spurious pole in as — ag and parametrize the
4pt amplitude using any two of the Mandelstam variable, ss3, s21,531. The
same bound 2 > b in Eq. (4.83) still applies to the power of any Mandelstam
variable in any parametrization. From Eq. (4.83), the only permitted ansatz
in p =3 is Ay x s33575. This is not allowed in the basis where we replace s13
with —(s12 + s93). We conclude that for any non-trivial theories with a single
scalar,

p<2, (4.84)
which is saturated by Galileon theories.

We can also bound theories with flavor-ordered amplitudes. They are very
similar to single scalar theory except that only adjacent factorization channels
are included. The spurious pole of a; —as only appears in channels [ = 123,612
and the spurious pole of a1 — ag only appears in I = 123. As discussed in the
locality test of the NLSM, the cancellation of a1 —as only works with by, < 1
because we lose momentum conservation. On the other hand, the spurious pole
of a; — as only appears in I = 123 and there is no cancellation. This demands
p+ 1 —bper =0 in the ansatz of Eq. (4.73). Combining both, we find

p=0 (4.85)

for exceptional theories with stripped amplitudes. The 4pt stripped amplitude
with p = 0 is unique, which coincides with the NLSM one. As higher point
amplitudes are uniquely specified by recursion, we conclude that NLSM is the

unique exceptional theory with flavor ordering.

Bounds on Multiple Scalar EFTs

Next, let us consider the case of EFTs with multiple scalars. As noted earlier,
some such theories admit flavor-ordered amplitudes, but this is not generic.
We consider the generic multi-scalar case without assuming flavor-ordering

here.
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There are two complications in the case of multiple scalars. First, the coupling
constant \; ;, now depends on the scalar species. Second, we need to sum over
all possible intermediate states in Fig. 4.2. The sub-amplitude Ay is not

universal and can no longer be factored out.

For example, consider the factorization channel I = 123. The subamplitude

ansatze are

p+1

As(1230) = Miozrp iy sha ',

b=0

- » (4.86)
Ay (4561) = Z 4561,/ 5?15 546 o

bv'=0

where [ labels an internal state. The key observation is that the internal
state dependence only affects the coupling constants. So in the recursion, the

coupling constants will only appear in a particular form
Ny = Z A1231,b M561.0/ (4.87)

where intermediate states I are summed over.

Even without knowing individual coupling constants, it is sufficient to con-
strain the )\ll,?bzf’, which we dub “coupling constant square”. If all of them are
zero, then the 6pt amplitude must be trivial from recursion. This implies the
8pt amplitude is zero because it factorizes into the 4pt and 6pt ones. All the
higher point amplitudes are then trivial by iterating this argument. We will

focus on the constraints on these coupling constants squares in the following.

Plugging the ansatze in Eq. (4.86) into Eq. (4.76), the spurious pole cancella-

tion requires

6 pt+l

> Z %ilm, ( 4l5 sggl b) s%(slg T 5y)tmes A1 = (4.88)
1=3 b=

for byar > 2A. We can check numerically if there is any choice of )\122 L. that
can solve the above equation for generic kinematics for given b4, and p. We
do not find a numerical solution for by, > 2 for both exceptional theories and
non-trivial theories, up to p = 9. The bonus relations in Appendix A.2 further
rule out any such solution with p > 9. This constrains the coupling constant

square )\%’sz‘/ to have b < 2 for any V.
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Following the same the spurious pole analysis on any pair of a; — a;, both
indices of the coupling constant square >\l%’2b§ are restricted to be less than or
equal to two, in any choice of Mandelstam variable basis. We find the same
bound as in Eq. (4.83). As before, the ansatz of p = 3 is restricted to s?,s%4
which is ruled out when switching to the basis of 5%2(512 + 593)%. We conclude

that the bounds on multi-scalar EF'Ts are identical to single scalar EFTs.

4.6 Classification of Scalar EFTs
In the previous sections we derived stringent exclusions on the (p, o, v,d) pa-
rameter space of EF'Ts. However, these exclusions still allow for EFTs to exist

in the range
clv—1)—2

v—2
In what follows, we explicitly enumerate all scalar EFTs with non-trivial soft

d+1>v and 3>p> (4.89)

behavior, as defined by the window in Eq. (4.4). A priori, this would require
scanning over values of (p, o, v,d) and numerically determining whether there
exists an amplitudes ansatz consistent with these assumptions. However, as
shown earlier, for a given choice of (p, o, v) it is always sufficient to check for
the existence of EFTs in d = v — 1 dimensions, since no new theories can
appear for d > v — 1. Thus for a given v we only have to check all possible

(p,0) regions in d = v — 1 dimensions.

In this section we enumerate and classify all possible EFTs for v = 4,5,6,
which in turn exhausts all possible theories in d = 3,4,5. Our analysis begins
with v = 5 and v = 6 theories, checking n = v amplitudes. The v = 4 is
special because the 4pt amplitude does not give any constraints since 0 = p+1
from 4pt kinematics. In this case we have to proceed further and consider 6pt

amplitudes.

We distinguish between cases with permutation invariance among legs (corre-
sponding to amplitudes of a single scalar) or cyclic invariance (corresponding
to flavor-ordered amplitudes of multiple scalars). Note that for a single scalar
with p = 0, the permutation invariant amplitudes ansatz vanishes identically
because any Lagrangian of that form is just field redefinition of free scalar field
theory. However, for multiple scalars with flavor-ordering, there is a non-trivial

amplitudes ansatz.
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Low Valency
In this subsection we enumerate scalar EFTs whose leading interactions are at

low valency, corresponding to v = 4,5, 6.

Case 1: v=5

We begin with the case of leading valency v = 5. Here the corresponding
critical dimension is d = 4, by which we mean that it is sufficient to scan for
theories in d = 4 dimensions to enumerate all possible EFTs. Analyzing ampli-
tudes in higher dimensionality is unnecessary simply because the kinematics

of the v = 5 amplitude are constrained to d = 4 anyway.

We only consider EFTs which have non-trivial soft behavior and are thus on-

shell constructible, so ¢ > p. Moreover, we restrict to the region defined in

Eq. (4.89),
4o — 2
3>p2—5—, (4.90)

which is in principle still permitted from our previous arguments. For v =
5, the only possible allowed pairs of (p, o) compatible with (4.90) and non-
triviality bound are (p,0) = (3,1) and (p,0) = (2,2).

In Figure 4.3, we use the symbol {a,b} where a denote the number of solu-
tions in the permutational invariant case and b the number of solutions in the
cyclically invariant case. We also performed checks for cases satisfying o > p
and p < 3 bounds but failing to meet Eq. (4.90). There is no solution and the

previous proof is confirmed.
We see from the diagram that there is one interesting 5pt cyclically ordered
amplitude for (p, o) = (%, 1),
(3.1
A = €uasph DDy (4.91)

which arises precisely from the WZW term on the NLSM mentioned earlier.
The presence of the Levi-Civita tensor implies that this solution exists only in

d = 4 and not other dimensions.

Another interesting solution appears for (p,o) = (2,2), and in d = 4 can be

compactly represented by

2,2 v 2
AG? = (euasphpspspl) (4.92)
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In higher dimensions d > 4 this amplitude takes the form

2,2
Ag ) = [ ST VY A 7 (4.93)
which is equal to the Gram determinant since §}!-/m = det(dﬁ;’ ij=1- Such

amplitudes are both cyclic and permutational invariant in all legs. This am-
plitude arises from the 5pt interaction of the Galileon theory, for both a single
and multiple scalar fields (cf. Appendix A.3), which exists in d > 4. This

exhausts all interesting cases for leading valency v = 5.

Case 2: v=6

For valency v = 6, it is sufficient to study EFTs restricting to the critical

dimension d = 5 and the region in Eq. (4.89),

50 — 2

3>p>
P="

(4.94)

For v = 6, the only non-trivial pairs (p, o) satisfying (4.94) are (p,0) = (%, 1)
and (p,0) = (2,2). Indeed, there are two solutions for amplitudes, one for

each point in the parametric space,

1,1
A = s PSSP | (4.95)

valid only in d = 5 which corresponds to the WZW model. The other solution
is the 6pt Galileon, written in d = 5 as

2,2 2
AG? = (euassphPspspiv)” (4.96)

but in general d > 4 it takes the form (4.93) with five momenta involved.

Special Case: v =4

As was discussed earlier the 4pt amplitudes are special due to 4pt kinemat-
ics. All kinematical invariants vanish if we set one of the momenta to zero.
Therefore, for (0™¢*) we have p = mT_Q and o = 7 which implies p = 0 — 1.
But we still have the inequality p < 3 and therefore, the only allowed cases
are (p,0) = (0,1),(1,2),(2,3). We can now directly explore all these cases
with numerical methods and determine how many solutions are in each point
of (p, o) space. In order to check the existence of such theories we have to per-
form the test for 6pt amplitudes. The ansatz now contains the factorization

terms with 4pt vertices as well as the 6pt contact term from the Lagrangian,
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Figure 4.3: Plot summarizing the numerical search of EFTs with v = 5,6. The
blue region denotes the same trivial region as in Figure 4.1. The red region
has no solution numerically. The only two points with solutions are the d-
dimensional WZW theory, (p,0) = (2=2.1), and the Galileon (p,0) = (2,2).

v—27
The label “Sol:{a,b}” denotes the number of solutions in permutation invariant

and cyclic invariant amplitudes respectively.

L, = (0**2ph) + (0**2¢5). (4.97)

We perform the check in d = 3,4, 5 as these are the only interesting cases. The
results are summarized in Figure 4.4. The first solution for (p,o) = (0,1) is
with cyclic symmetry,
[4811) _ (512 + 593) (845 +'S56)_+ (823 + $34)(S56 + S61) +_(534 + 845)(S61 + S12)
5123 5234 5345
— (812 + 523 + 534 + S45 + S56 + S61) (4.98)

which is the 6pt amplitude in the SU(/N) non-linear sigma model in any d.

The solution for (p, o) = (1,2) is with permutational symmetry,

AL _ (812523 + $13523 + 512513) (845546 + S46556 + S45556)
2 =
5123

—519834856+permutations,
(4.99)

which is the 6pt amplitude in the Dirac-Born-Infeld theory in any d. The last

solution is a 4pt Galileon for (p,o) = (2,2) which exists for both single and

multiple scalar cases for d > 2. In the single scalar case there is an extra
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Figure 4.4: Plot summarizing the numerical search of EFTs with v = 4. The
blue region denotes the same trivial region as in Figure 4.1. The red region has
no solution numerically. The label “Sol:{a,b}” denotes the number of solutions
in permutation invariant and cyclic invariant amplitudes respectively.

o = 3 behavior giving us the special Galileon with (p, o) = (2, 3) while for the

flavor-ordered case this enhanced soft limit is not present.

High Valency

The set of all possible values of p is p = %_22 where m is the number of

derivatives in the interaction with constraint
m—2 _ ocwv—1)—2

3> > 4.100
v—2" w-2) (4.100)

and also ¢ > p for 0 = 1 and 0 > p for ¢ > 1. These inequalities can be
easily solved and we can find all integers p which satisfy them, which would

enumerate all possible solutions. For ¢ = 1 the constraint becomes

v>m>v-—1, (4.101)

which only has a solution if m = v — 1. Therefore, the only possible allowed

v—3
v—2"

invariant amplitude with ¢ = 1 behavior — for a single scalar the theory must be

case is (p,0) = ( 1). As this has p < 1 there can not be any permutational

derivatively coupled. However, we can have cyclically invariant v-pt amplitude,

(=30 v
A" = €agasa, i PTPR - DT (4.102)
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This corresponds to the WZW term which exists only in d = v — 1 dimensions.
Of course, this is the only possible term if the number of derivatives m = v —1
is odd. For general v, we can not prove that the WZW term is the only solution
for v > 6, but all theories have to sit at the point (p, o) = (=3 1).

v—2)
For ¢ = 2 the inequality becomes 2(v — 2) > m > 2(v — 2) which forces
m = 2(v — 2) and p = 2. So the only allowed case is (p,0) = (2,2). We
know that this is exactly the powercounting of the vpt Galileon; ind =v — 1

dimensions it is
AP? = (earan.ar iP5 - Do 1)?, (4.103)

but there is a general form analogous to (4.93) in any d > v — 2. Note that
this solution exists for both cyclic and permutational cases. What we cannot
prove is that there are no solutions other than Galileon for v > 6, but they all
have to sit at the point (p, o) = (2, 2).

Exclusion Summary

To summarize, by direct evaluation we found all possible amplitudes with
enhanced soft limit for v = 4,5,6 which gives all interesting theories for d =
3,4,5. We found that for v = 4 these theories are NLSM, DBI, Galileon and
WZW theory. For v = 5,6 we have only Galileon and WZW. Both of these
theories exist for v > 6, and in fact they both populate the only allowed points
in the (p, o) plane.

As a result, for v = 4,5,6 we enumerated all such theories and there cannot
be any new ones. For v > 6, which is relevant only for d > 5, there is a
possibility new theories can appear but they have to sit in the same (p, o, v, d)

spots degenerate with WZWs and Galileons.

4.7 More Directions

In this section we discuss several directions not included in the classification
above. In particular, we first make some comments about the theories of
multiple scalars that cannot be flavor-ordered. We solve this problem for the
two flavor case and make some comments about three flavors. The landscape

of theories for any number of flavors is still unknown.

We also explore more kinematical limits other than just the soft limit. In
particular, we discuss the double soft limit when two momenta go to zero

simultaneously, and the collinear limit when two of the momenta become pro-
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portional.

Multiple Scalars

This analysis exactly mirrors the strategy of [51], which constructed all single
scalar effective theories consistent with factorization and a prescribed value
of (p,o). This procedure uniquely lands on well-known theories such as DBI
and the Galileon, but also suggested evidence for a new effective theory known
as the so-called special Galileon, whose enhanced shift symmetry is now fully
understood [64].

Here, we apply the same procedure but allow for multiple species. As this
constructive procedure is open ended, we restrict to the simplest case of N = 2

flavors throughout. We save N = 3 and higher to future work.

We start at 4pt, demanding that a general theory of the scalars ¢; and ¢o
has an enhanced soft limit. However, we can see that this is automatic by the
following argument. At a fixed value of the power counting parameter p, the
4pt amplitude A4 should contain 2(p + 1) powers of momenta, so it is some
polynomial in s,t,u with that degree. As we can always go to a basis that
manifests a particular soft limit, e.g. the soft limit for leg 1 with s = pipo,

t = pip4, u = p1p3, then we have that

Ay PR0 pprt (4.104)
which means that ¢ = p+ 1 generically, which corresponds to an enhanced soft
limit at 4pt.

To move beyond the 4pt amplitude we must explicitly enumerate the ver-
tices. First, it is easily seen that any cubic scalar interactions with derivatives
can be eliminated via equations of motion, so, for example, the interaction

M0 i0" & dr can be removed by a field redefinition of the form
Gi = ;i + )\g";)gcbjcﬁk. (4.105)

Thus we can assume the absence of a 3pt vertex. With interactions that start
at the 4pt vertex, the first amplitude of interest is a 6pt, which can receive

contributions from the 4pt and 6pt vertex.

For the two derivative case, p = 0, the general action for N = 2 flavors is

1
Lomo = 50u610" 0501 + Nju@kdt + Ny Oxd16m i + ), (4.106)
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without loss of generality. For p = 1, the general action is

1
Lom = 50u0i0" 05 (03 + Njra 000"
A 0.080" G10, om0+ . .. ) (4.107)

ijklmn
and there is a straightforward generalization to p = 2.

To construct the theory we then computed the 6pt scattering amplitude and
demanded o = 1,2, 3 soft limits for the p = 0,1,2 cases. For p = 0 we find
a single solution which corresponds to the SO(3)/SO(2) NLSM, where the
N = 2 flavors correspond to the two massless NGBs. For p = 1, we find
two solutions. The first solution is simply two copies of the DBI theory for
a 4D brane moving in 5D. The second solution is the DBI theory describing
a 4D brane moving in 6D. Finally, for p = 2, the only possible theory in 4D
corresponds to the single scalar special Galileon. In these cases the multi-flavor
EFTs have the property that they can be rewritten as a sum of independent
one-flavor Lagrangians after an orthogonal transformation. As a result, the
Feynman rules for vertices are blind to the actual flavor combination of the

legs.

Double Soft Limits

To begin, we consider the simultaneous soft limit of two particles, p;, p. — 0.
In the context of the NLSM, this limit is sensitive to the structure of the coset
space [7, 63, 71, 84], and has been applied in the context of the scattering
equations [85]. More recently, this kinematic regime was studied for gauge

theory and gravity [70, 72].

Here we consider the double soft limit for a general scalar EFT. In this case the
distinction between theories with trivial versus non-trivial behavior is different
from that of the single soft limit since poles in the denominator can blow up.
If p1,p2 — 0 then all poles sj3, — 0 where a = 3,4,...,n. For this reason
factorization terms typically are singular, and will not have a smooth double

soft limit.

For concreteness, let us consider two momenta, po, p3, to be sent to zero,

p2(t) =tp2,  p3(t) = atps. (4.108)

We also shift all other momenta in order to satisfy momentum conservation.

The shifted amplitude is then inspected based on the degree of vanishing as
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t— 0,
An(t) = O@%). (4.109)

It is simple to see that Hpt amplitudes are not interesting in this limit since
t — 0 yields an on-shell 3pt amplitude which is identically zero by our earlier
kinematic arguments. Therefore, the first non-trivial case is the 6pt amplitude,
which we now consider in detail. Furthermore, it is sufficient to fix to d = 5
for 6pt kinematics. No new solutions can exist for d > 5 but some of them
can disappear when going to d = 4. For interesting cases in d = 5 we check
if they are present in d = 4. While we do not have similar exclusion bounds
as in the single soft limit case—presumably they do exist as well as double
soft recursion relations—we can still fix n = 6 and increase the number of

derivatives.

The first question is what is the meaning of “non-trivial" from the point of
view of the double soft limit. Here it matters critically if we have v = 4 or
v = 6. For v = 6 we have only a contact term and therefore o > 2p to get
non-trivial soft limit behavior. If we have v = 4 then there are propagators in
factorization terms which blow up for po, p3 — 0 and therefore, the behavior
is not just the naive square of the single scalar soft limit. In particular, we get
o > 2p— 1. In Table 4.2 we summarize the number of solutions for v = 4 and
v = 6. Note that v = 4 exists only for integer p. For p = 1 we have the straight

inequalities for a non-trivial bound.

p=3|p=1|p=3%|p=2|p=3
c=1 0
o=2 0
o=3 0 0
oc=4 1
o=25 0

Table 4.2: Number of solutions for double soft limit. We denote n the number
of solution for v = 4 and n the number of solutions for v = 6.

We see that there are two interesting cases for p = 2, one for v = 4 and one
for v = 6. We can easily identify both of them with Galileons. For v = 4 it
is the 4pt Galileon (which also exists for d = 4) while for v = 6 it is the 6pt

Galileon which is absent in d = 4 and lower. This can be easily shown from the
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representation of the Galileon vertex as a Gram determinant. As was shown
before, each Gram determinant (for any number of points) scales like O(t?)
in the soft limit. For v = 6 we can obtain O(t*) in the double soft limit. For
v = 4 this is reduced by one power due to the propagators (when ps and p3
are on the same side) which also scale like O(t), and in the end we get O(t?).
Note that the O(t?) behavior of the special Galileon in the single soft limit is
not propagated into the double soft limit case, and only the O(t?) behavior
is relevant. Here we performed the checks only for p < 3 but in principle, we
should consider higher p or prove the same bound as in the single scalar field

case.

Collinear Limits

The other natural limit to consider is the collinear limit where two of the
momenta become proportional. This was recently studied from scattering
equations [86]. We study it again in the context of single scalar EFT so we
can choose p3 = apy (for some parameter «) without a loss of generality.
Unlike the single soft limit and double soft limit cases there are no theoretical
expectations of how the amplitude should behave. In the Yang-Mills theory
and gravity collinear limits are well understood and provide a pole and phase
factor, respectively. In our case the situation is different as there are no 3pt
vertices and the collinear limit never diverges. Therefore, we can pose the
question in a similar way as in the soft limit case: when does the amplitude

vanish at a given rate o?

To be more specific, we have to introduce a small parameter ¢ which will
control the distance from the collinear region. We shift momentum p3 — p3(t)

where

523
) =a(l —t)p2 —at(l -1 13 4.110
p3(t) = a(l = )p2 — at( )a(l st sl TP ( )

where s, are the invariants of unshifted momenta. In order to preserve the
momentum conservation we have to shift also other momenta py, ..., p, but
in a way which is regular for any value of t. The shift in Eq. (4.110) is
more complicated in order to preserve the on-shell condition p3(¢)? = 0 and
also control how we approach the collinear region. Note that for ¢ = 1 we
recover the original configuration, p3(t) = ps3, and also other momenta become

unshifted, while for t = 0 we get ps = aps. Then the question is what is the
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rate at which the shifted amplitude A, (¢) vanishes,

An(t) = O@%). (4.111)

Unlike in the soft limit case there is no statement symmetry — collinear limit.
Therefore, we have to rely just on the kinematical check. The only kinematical
invariant which vanishes in this limit is ss3. Naively, in order to get the
vanishing collinear limit in any pair of momenta each Feynman diagram would
have to contain the product of all invariants s;;, which pushes the derivative
degree very high. We also do not have any argument about the leading valency

of the Lagrangian.

We did the checks for 5pt amplitudes up to 18 derivatives, 6pt amplitudes up
to 14 derivatives and 7pt amplitudes up to 10 derivatives, with no interesting
results (no vanishing collinear limits) except one class of theories which are

Galileons.

Galileons from collinear limits

For the Lagrangians of the type (0%¢°) there is one solution for the collinear
limit vanishing for d > 4, and for (9'°¢%) there is also one solution for d > 5.
The solutions can be identified with the 5pt and 6pt Galileons which are then
unique solutions to the problem of vanishing collinear limit. Moreover, the
amplitudes in both cases vanish as A(t) ~ O(t?). This can be understood
from the definition of the Galileon vertex. The Gram determinant for n = 5

in d = 4 behaves by definition as

Grama=an=s [p1, p2, p3(1), Pa(t), ps (V)] = (EuapP1up2vpsa Opas()? = OF?)

(4.112)
and similarly for n = 6 and d = 5. In higher dimensions some of indices are
contracted together from both e tensors but the scaling property is still valid.
However, the collinear vanishing is the property of the contact term only, not
the amplitude for higher n. The factorization terms spoil this property as they
do not vanish in the collinear limit when both legs are on the opposite sides
of the channel. In principle, there could be a cancellation between different
Feynman diagrams, but this does not happen as the numerical checks show.
We can also see it in the (9'¢%) case where there is no solution for the 6pt

amplitude coming from the 4pt Galileon (9%¢?).
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But still it is interesting to note that the collinear limit can be used to define
the Galileons as unique theories based on the behavior in the collinear limit.
It would be interesting to explore the kinematical space more exhaustively and

also do it for multiple scalars.

4.8 Outlook

In this chapter we have mapped out the theory space of Lorentz invariant and
local scalar effective field theories by studying the soft behavior of scattering
amplitudes. The bulk of our discussion has focused on theories of a single
scalar or multiple scalars which allow for flavor-ordering. We have derived
bounds on the power counting and soft behavior of all possible consistent
theories with enhanced soft limit and classified completely all the non-trivial
cases in d < 6. Our final catalog of EFTs include NLSM, DBI, Galileon, and
WZW term theory. A main takeaway of this chapter is that these theories are
truly unique. We also commented on the theories with generic multiple scalars

and different kinematical limits.

Remarkably, the exceptional theories discussed here coincide precisely with the
EFTs constructed from the CHY representation [14] and which satisfy BCJ
duality [87]. Moreover, there is evidence of new theories which are extensions
of these exceptional theories [88, 89], suggesting a rich interplay between soft
limits, BCJ duality, and CHY representation. Classifying theories based on
various aspects can illuminate the relations among them. Insights into the
soft structure of the S-matrix have also arisen in the program of asymptotic

symmetries [69, 81, 83, 90-105].

There are many other directions viable for constructing theories from the prop-
erties of scattering amplitudes. The most natural direction is to consider other
particle content (higher spins), other kinematical regimes (like the double soft
limit or the collinear limit briefly mentioned in the chapter), loop-level correc-
tion [106], or curved backgrounds. More ambitiously, one might also consider
non-relativistic theories [62], where amplitudes satisfy less symmetry, but must
nevertheless exhibit locality and factorization. A priori, one would expect a
far greater diversity in non-relativistic EFTs, so there is also the possibility

that new theories might yet lie undiscovered.

This is the first step in the program of extending the developments in the study

of scattering amplitudes in gauge theory and gravity to other quantum field
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theories, and EFTs are the furthest possible cousins. The recent progress on
recursion relations and CHY representation in these theories show that there

should be a completely new formulation for scattering in general QFTs.
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Chapter &

SYMMETRY FOR FLAVOR-KINEMATICS DUALITY FROM
AN ACTION

5.1 Introduction

The study of scattering amplitudes has uncovered a beautiful duality be-
tween gauge theory and gravity concisely summarized by the mantra, gravity
~ gauge?. Bern, Carrasco, and Johansson (BCJ) [32] proposed a remark-
able generalization of this squaring relation known as color-kinematics duality.
BCJ showed that tree amplitudes in YM theory can be rearranged into the

schematic form,

(5.1)

Any

where ¢ sums over cubic topologies with propagator denominators D;, color

CiN;
D; ’

structures C;, and kinematic numerators N;. Here C; and N; satisfy Jacobi

identities,
C¢+Cj+Ck:O and Ni-i-Nj-I-Nk:O, (52)

where i, j, k denote any triplet of cubic topologies which are the same except
for a single propagator. That there exist NV; with the same algebraic relations
as C; is at the heart of color-kinematics duality. Since N; and Cj; are in this
sense interchangeable, we can substitute the latter with the former, yielding

the double copy,

N; N;
D (5.3)

M~y
which is the graviton tree amplitude [33, 34]. The double copy has been
generalized to include loops, supersymmetry, and matter fields (cf. [37] and

references therein).

While color Jacobi identities are trivialized by an underlying Lie algebra, this
is not so simple for kinematics. BCJ strongly suggests an underlying algebra
for kinematic numerators, but this structure remains elusive except in limited
contexts, e.g. for YM in the self-dual sector [107] and in the formalism of
Cachazo, He, and Yuan (CHY) [12, 13, 108, 109].
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In constrast, the nonlinear sigma model is a theory of Nambu-Goldstone bosons
unburdened by gauge symmetry, thus offering a simpler path to the kinematic
algebra. Flavor-kinematics duality in the NLSM has been explored at tree-
level and on the worldsheet [87, 89, 110], though without mention of the double

copy.

In this chapter, we present a new formulation of the NLSM in general spacetime
dimension. This action is remarkably simple, comprised of just a handful of
fields interacting via cubic Feynman vertices that play the role of structure
constants in an underlying kinematic algebra. Flavor-kinematics duality then
emerges as a symmetry: the kinematic Jacobi identities are literally the current
conservation equations for a certain combination of internal and spacetime
symmetries. In turn, all Feynman diagrams automatically satisfy Eq. (5.2).
Applying the double copy construction, we then derive a new cubic action
for the special Galileon theory [14, 51, 64], which describes a scalar coupled
through a tower of higher derivative interactions. Lastly, we show how these

formulations reproduce the vanishing soft behavior of amplitudes.

5.2 Warmup
As a preface to our main results, let us briefly review the theory of a biadjoint
scalar. Though trivial in structure, this theory nicely illustrates how Jacobi

identities arise from considerations of symmetry. The action is
1 .z = A e
S = 2% 4 2 abc pabc Laa 4 bb cc7 5.4
[ gommett 4 S e o (54)

where f%¢ and f‘_J’E are the structure constants for a pair of global flavor

symmetries. The equations of motion are

08

_ = aa A abc pabé ;bb cé‘ 5.5
S = 00" F AT (5.5)

The action is invariant under the global flavor rotations,
5¢a& — fabceb(bcd’ (56)

whose associated Noether current is
‘];CLL — _fabcgbbéaugbcd‘ (57)
Noether current conservation then implies that

ajd — _fdae¢ad<a¢ed =0 (58)
N o
— gfabcqbaa¢I)b¢cc (fdaefebc + fdbefeca + fdcefeab> ’
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which is the Jacobi identity. Here 0= %(E — 0) and we have used Eq. (5.5)
together with the cyclicity of fa€.

The above derivation is actually equivalent to the diagrammatic representa-
tion of the Jacobi identity that typically appears in the study of scattering
amplitudes. In terms of Feynman diagrams, the d’Alembertian in Eq. (5.8)
has the effect of canceling an internal propagator. The resulting triplet of
objects—each equal to the Feynman diagrammatic numerator associated with

a given cubic topology—satisfies the Jacobi identity.

5.3 Action
The strategy above can be applied directly to the NLSM, though doing so

requires an alternative formulation of the theory. To begin, let us introduce
the fields

Y, Z* (5.9)

123

in the adjoint representation of a flavor symmetry. The XY Z fields interact

via the remarkably simple action
1
sz/zaﬂmxg+2yamya, (5.10)
where we have defined a modified d’Alembertian,
B0 = 00 + 2f%Z%9,0)°. (5.11)
Expanded fully, the action becomes
1
S = / Z'oXy + §Y“DY“
b b by
= g (202X 4 20, ), (5.12)

where X, = 0,X, — 9,X,, and at = %(8_; — é_u)- As we will soon see, the
Nambu-Goldstone bosons of the NLSM are simultaneously described by Y
and Z, so this formulation obscures Bose symmetry. Moreover, the cubic
structure of the action hides the underlying parity of the NLSM interactions.
These properties come at the cost of manifesting flavor-kinematics duality as

a symmetry.
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5.4 Scattering Amplitudes

The structure of the action in Eq. (5.10) is reminiscent of a “colored scalar”,
Y, coupled to the (—) and (+) components of a “YM field”, X and Z. The
interactions in Eq. (5.12) are then analogous to cubic MHV vertices. By
general arguments in [111], all tree amplitudes trivially vanish except those
with exactly two Y states or exactly one X state, with all other states given
by Z.

Our claim is that the tree amplitudes of the NLSM are equal to the tree

amplitudes
A YY), (5.13)

where ¢, are arbitrary and the ellipses denote all other external particles,
taken to be longitudinally polarized Z states for which ¢, = ik, in units of
the NLSM decay constant. Note that Bose symmetry is ultimately preserved
since the final amplitude does not depend on which particles are chosen to be
Y states.

As an illustration of this, let us turn to the four-particle amplitude. Using
Feynman diagrams, we compute the kinematic numerators for the half-ladder

topology for (Y1, Zo, Z3,Yy), yielding
Ny=s%, Ny=s>—u? N, =1u? (5.14)

where Ny = Ny — N, so the kinematic Jacobi identity is satisfied. Moreover,

the resulting flavor-ordered amplitude precisely matches that of the NLSM,
1
Ay = 5(3 + 1), (5.15)

in the convention that [T'%, T?] = i1/2f®°T°. Squaring the numerators via the

double copy procedure, we obtain
My = —stu, (5.16)

which is the amplitude of the special Galileon.

Alternatively, we could have instead computed the kinematic numerators for
the choice (Y1, Ys, Z3, Z4),

Ny=t>—u?, N,=t* N, =—u? (5.17)
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or for the choice (Y7, Zo,Y3, Zy4),

Ny=—-s% Ny=—t>, N,=t>—¢% (5.18)
which give different numerators but the same amplitude.

We can generalize to n-particle scattering by computing all the kinematic
numerators for half-ladder topologies, which form a complete basis for all tree

amplitudes [32, 112]. For later convenience, we define
Ti=—2p; »_p; and (Tii)u” = 0,7 &+ 2piup;, (5.19)
j<t
as well as the kinematic variables
ZZ’]’ =T;Ti+1 - - .7']'_17‘]‘
+ + £ + _+

For each choice of Y states, it is a straightforward exercise to calculate the

corresponding half-ladder numerators via Feyman diagrams, yielding

N1, ..., Y,) = =221
N(Yi,..., Vi) = S0, 137,
NG Yoo Ya) = =51 it
N(..,Y;,....Y;,. )= 2f7i2i+17j,12;n, (5.21)

where the ellipses denote external Z states. The first line of Eq. (5.21) is the
simple numerator proposed in [89, 113]. We have checked that these expres-

sions reproduce the tree amplitudes of the NLSM up to ten-particle scattering.

5.5 Equations of Motion

With the help of Feynman diagrams it is simple to check flavor-kinematics
duality in specific examples. However, to derive more general principles, it
will be convenient to study the classical field equations, which are a proxy to

tree-level Feynman diagrams [114]. The Euler-Lagrange equations of motion
for Eq. (5.10) are

0% nZm g [0, 2 + 20,77 Z) = 0
(5Xﬁ

05 a abc bv c bvy ¢

S = OV fUQZMO,Y 0,2V ) =0

0S

S7an = OXi— 17 (227 X5, +Y'9,Y°) =0, (5.22)
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where the divergence of the first equation yields 00, Z" = 0. This implies the
classical field condition

9, 7" =0, (5.23)

whenever Z is an off-shell source. If Z is on-shell, then by the prescription
of Eq. (5.13) it is longitudinally polarized, so Eq. (5.23) is still valid because
of the on-shell condition. In any case, the bottom line is that Eq. (5.23) is

generally true whenever the equations of motion are satisfied.

Since Eq. (5.23) is a constraint on classical fields, its implications for ampli-
tudes are actually somewhat subtle. In particular, due to the nondiagonal
kinetic term, an off-shell source Z propagates into X, which can then only in-
teract via the field strength combination in Eq. (5.12). From this perspective
Eq. (5.23) simply says that the longitudinal polarizations of X are projected

out.

5.6 Symmetries
The action in Eq. (5.10) has a surprisingly rich set of local and global symme-
tries. We now present these symmetries and derive their associated Noether

currents.
Local Transformation
To begin, consider the local transformation,
0X, = 0,0, (5.24)

for an adjoint-valued gauge parameter . Modulo boundary terms, the action

shifts by

08 = —/%Z““DH“, (5.25)
which is zero on the equations of motion by Eq. (5.23).
Global dx Transformation

The first global symmetry transformation is
Ox Xy =0x2"
oxY =0
oxZH =0, (5.26)
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where 0x,, = 0,0x, — 0,0x, is a constant antisymmetric matrix. While 0y,
is technically spacetime-dependent, it always enters with a derivative so the

symmetry is still global. The action shifts by
0xS = 0x,u / fabeq,z0 7%z (5.27)
which again vanishes on the equations of motion.

Global dy Transformation

The second global symmetry transformation is

Sy X, = Oy, Y
SyY = —by, 2"
Sy ZM =0, (5.28)

where 0y, = 0,0y is a constant vector. Again, 0y is spacetime-dependent but

the symmetry is still global. The action transforms as
oy S = by, / 1o,z 70y, (5.29)
which is zero on the equations of motion.

Global dz Transformation

The third global transformation is

07X, =0%0,X, +0,07X,
ozY =607,0,Y
672" = 0%0,Z" — 8,045,727, (5.30)
for a transverse parameter, 8M9§ = 0. This transformation is an infinitesmal
diffeomorphism, where Y transforms as a scalar and X and Z as vectors. Here

we will restrict to Poincare transformations, 6, = a* + b*,z", where a is a

constant translation vector and b is a constant antisymmetric rotation matrix.

Noether Current Conservation
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The global transformations dx, dy, 0z are associated with a set of equations

for Noether current conservation,

—0x,0J5 = 5X55i§ﬁ
—0y0Jy = 5Xl‘j;)€% + Y ;}i
—0%0J7, = 5X3;)i,i + 6Y“;§i +0ZM 5(;5&#’ (5.31)
which with the transverse condition on 6 imply
ok = —22™309, 7%
dJy = —27°00,Y"
0Jz, = 22 BX2, + Y00,V (5.32)

which is the analog of Eq. (5.8) for the NLSM. Note that the cubic interac-
tions also happen to be invariant under the local versions of the dx, dy, dz

transformations.

5.7 Kinematic Algebra
To derive the kinematic algebra it is useful to introduce a unified description

of the XY Z fields in terms of an adjoint-valued multiplet,

Xu
Wa=|v |, (5.33)
AL
so the action in Eq. (5.12) becomes
1 1
S = / 0 PWADWE + o [ FAPCWAWEIWE. (5.34)

Here capital Latin indices are raised and lowered by

0 0 o~ 0 0 o
gap=10 1 0| and ¢*P=] 0 1 0 |. (5.35)
0 0 50 0

FABC

The kinematic structure constant is a differential operator acting mul-

tilinearly on the fields, and it describes the cubic Feynman vertex. Contracted
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with a single field, FABCTVg is represented by a matrix,

— <~
0 0 —10Z + 0, 2"
— — —
0 Wz0-02) 10.Y-0Y) |, (5.36)
v 3 1/H 1 iy
0420 — 20 $(=YOu+9Y) 0uX, — X,

which is manifestly antisymmetric as required. The commutative subgroup
of the 0, transformations, i.e., spacetime translations, form a natural Cartan
subalgebra. In turn, the root vectors are literally momenta while dx and dy
are raising and lowering operators. We leave a full analysis of the kinematic

algebra for future work.

The equations of motion in Eq. (5.22) then become

05

~ oW + fPABCTRIE = 0, (5.37)
oW§

where hereafter ~ will denote equality up to terms that vanish on the equations

— —
of motion either by Eq. (5.23) or by integration by parts, e.g. 9,Y +0,Y+Y 0, =
0. The field variations in Eq. (5.26), Eq. (5.28), Eq. (5.30) become

VAL
WA= | sy | ~ FABCogw, (5.38)
5X,,

with the associated conservation equation,

Q"
I = | a1y | =~ —FABWEOWE, (5.39)
0.y,

which is the kinematic analog of Eq. (5.8), proving
FDAEFEBC + FDBEFECA + FDCEFEAB ~ O, (540)

which is precisely the kinematic Jacobi identity.

At the level of scattering amplitudes, these manipulations imply that all Feyn-
man diagrams computed from Eq. (5.10) will automatically satisfy Jacobi iden-

tities up to terms that vanish on the transverse condition in Eq. (5.23).
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5.8 Double Copy

The double copy procedure maps Eq. (5.1) to Eq. (5.3) via a simple substitu-
tion of flavor with kinematics. It is simple to show that the resulting double
copy theory is the special Galileon, and in fact this is naturally anticipated by
the CHY construction [14].

At the level of the action, the double copy is derived by mechanically dropping
all flavor indices and doubling all kinematic structures in the interactions.
Since the action in Eq. (5.10) is cubic, this is a trivial procedure. To see how

this works, we introduce the fields
Xup Y, ZM (5.41)

which have doubled index structure relative to the NLSM. These new XY Z

fields couple via the action
— Hefe 1
S= [ ZMoX,;+ §Y|:|Y
_ _ _ >
+2 (Z““ZWXW;”; ¥ Zﬂﬂ(yaﬂaﬂn) , (5.42)

where we have defined an analog of Riemann curvature, X7 = 0,0:Xu5 +
0,05 X, — 0,05 X5 — 0,0; X 4. Note that the barred and unbarred indices in
Eq. (5.42) are separately contracted, exhibiting the expected twofold Lorentz

invariance of the double copy.

Tree amplitudes of the special Galileon are then given by Eq. (5.13) except
where the ellipses denote doubly longitudinal polarizations of the Z for which
€un = tkyky. It would be interesting to understand how this construction

relates to the Galileon as the longitudinal mode of massive gravity [57].

5.9 Infrared Structure

Lastly, we turn to infrared properties. Asthe momentum p of a particle is taken
to be soft, amplitudes in the NLSM and the special Galileon scale as O(p)
[73] and O(p?) [51, 64], respectively. Remarkably, these properties dictate
virtually everything about these theories [51, 115], and can be leveraged to
derive recursion relations for their amplitudes [74]. While this soft behavior
is usually obscured at the level of the action, the O(p) scaling of the NLSM
and O(p?) scaling of the special Galileon have a simple explanation in our

formulation.
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In particular, consider the soft limit of a Nambu-Goldstone boson, taken here
to be a longitudinal Z of the NLSM amplitude in Eq. (5.13). Since Z enters
with a derivative, the corresponding kinematic numerator trivially scales as
O(p). However, the hard leg from which Z is emitted enters with a nearly on-
shell propagator with O(p~1), so the net scaling of the amplitude is O(1). Now
observe from Eq. (5.12) that cubic interactions of Z take the form of gauge
interactions modulo terms that vanish for longitudinal Z components. Al-
though the action lacks the requisite quartic interactions needed for a genuine
Z gauge symmetry, the soft Z limit is dictated solely by cubic interactions. In
turn, the Z soft limit obeys the usual Weinberg soft theorems for gauge bosons
[83], dropping contributions from lower point amplitudes with a longitudinal
Z since they are odd and hence vanish by the underlying parity of the NLSM.
Gauge invariance then implies that the amplitude for soft longitudinal Z emis-
sion is zero, eliminating the leading O(1) contribution but leaving the residual
O(p) scaling of the NLSM. This cancellation can be verified via Feynman di-
agrams. Similarly, the O(p) contribution of the special Galileon vanishes by
the Weinberg soft graviton theorem, however the further cancellation of O(p?)

terms is not obvious.

Remarkably, the leading nontrivial soft behavior of NLSM amplitudes is ac-
tually characterized by an underlying extended theory [88]. We can accom-
modate the structure by promoting Y to a biadjoint field with the additional
cubic coupling, fab¢ fabeyaaybby et which preserves all the Jacobi identities of
the full action. We have verified that this modification reproduces the soft

theorem in [88] up to ten-particle scattering.

5.10 Summary

In summary, we have reformulated the NLSM and special Galileon as theories
of purely cubic interactions. At the expense of explicit Bose symmetry and
parity of the Nambu-Goldstone bosons, these representations exhibit several
elegant properties. In particular, they manifest flavor-kinematics duality as a
symmetry, trivialize the double copy structure, and explain the vanishing soft

behavior of amplitudes via the Weinberg soft theorem.
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Chapter 6

NON-RENORMALIZATION THEOREM WITHOUT
SUPERSYMMETRY

6.1 Introduction

In this chapter we derive a new class of non-renormalization theorems for non-
supersymmetric theories. Our results apply to the one-loop running of the
leading irrelevant deformations of a four-dimensional quantum field theory of

marginal interactions,
AE = Zci0i7 (61>
i

where O; are higher dimension operators. At leading order in ¢;, renormaliza-

tion induces operator mixing via

de;
Am)P—— =" i5¢ 6.2
(4m) dlogu ; VijCj, ( )
where by dimensional analysis the anomalous dimension matrix ~;; is a func-

tion of marginal couplings alone.

The logic of our approach is simple, making no reference to symmetry. Renor-
malization is induced by log divergent amplitudes, which by unitarity have
kinematic cuts equal to products of on-shell tree amplitudes [1, 2|. If any of
these tree amplitudes vanish, then so too will the divergence. Crucially, many
tree amplitudes are zero due to helicity selection rules, which e.g. forbid the

all minus helicity gluon amplitude in Yang-Mills theory.

For our analysis, we define the holomorphic and anti-holomorphic weight of

an on-shell amplitude A by!
w(A) = n(A) — h(A), W(A) = n(A) + h(A), (6.3)

where n(A) and h(A) are the number and sum over helicities of the external
states. Since A is physical, its weight is field reparameterization and gauge

independent. The weights of an operator O are then invariantly defined by

"Holomorphic weight is a generalization of k-charge in super Yang-Mills theory, where the
NFMHV amplitude has w = k + 4.
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minimizing over all amplitudes involving that operator: w(Q) = min{w(A)}
and w(O) = min{w(A)}. In practice, operator weights are fixed by the leading
non-zero contact amplitude? built from an insertion of O,

w(0) = n(0) — h(O), W(0) = n(0) + h(O), (6.4)

where n(Q) is the number of particles created by O and h(Q) is their total
helicity. For field operators we find:

(@) Fa,B % ¢ 1/;a Faﬂ
hoo| 41 +1)2 0 ~1/2 | -1
(w,w) | (0,2) | (1/2,3/2) | (1,1) | (3/2,1/2) | (2,0)

where all Lorentz covariance is expressed in terms of four-dimensional spinor

indices, so e.g. the gauge field strength is F app = Fopesp + ngeag. The

«
weights of all dimension five and six operators are shown in Fig. 6.1.

As we will prove, an operator O; can only be renormalized by an operator
O; at one-loop if the corresponding weights (w;,w;) and (w;,w;) satisfy the

inequalities
w; > wj and w; > wjy, (6.5)

and all Yukawa couplings are of a “holomorphic” form consistent with a su-

perpotential. This implies a new class of non-renormalization theorems,
Yij = 0 if w; <wj or w; <Wj, (66)

which impose mostly zero entries in the matrix of anomalous dimensions. The
resulting non-renormalization theorems for all dimension five and six operators
are shown in Tab. 6.1 and Tab. 6.2.

Because our analysis hinges on unitarity and helicity rather than off-shell
symmetry principles, the resulting non-renormalization theorems are general.
Moreover, they explain the ubiquitous and surprising cancellations [38] in the
one-loop renormalization of dimension six operators in the standard model
[116-122]. Absent an explanation from power counting or spurions, the au-
thors of [38] conjectured a hidden “holomorphy” enforcing non-renormalization
among holomorphic and anti-holomorphic operators. We show here that this
classification simply corresponds to w < 4 and W < 4, so these cancellations

follow immediately from Eq. (6.6), as shown in Tab. 6.2 .

2By definition, all covariant derivatives D are treated as partial derivatives @ when comput-
ing the leading contact amplitude.



100

dimension 6

dimension 5 F242
S A ¢°
50 F2¢ 1/)2(;52 ¢5 w4
2 _
Fw w,ipagD ~
4 w2¢2 w2¢3
¢4D2
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Figure 6.1: Weight lattice for dimension five and six operators, suppressing
flavor and Lorentz structures, e.¢g. on which fields derivatives act. Our non-
renormalization theorems permit mixing of operators into operators of equal
or greater weight. Pictorially, this forbids transitions down or to the left.

6.2 Weighing Tree Amplitudes

To begin, we compute the holomorphic and anti-holomorphic weights (w,,, wy,)
of a general n-point on-shell tree amplitude in a renormalizable theory of
massless particles. We start at lower-point and apply induction to extend to

higher-point.

The three-point amplitude is

r3 2 T1 1 T2 hz <
APgeghy = (12)7 { 32 (3 7> ;o 22ihi <0 6.7)
[12]3[23]"1[31)2, S5, hi >0

where g is the coupling and each case corresponds to MHV and MHV kinemat-
ics, |1] o< |2] o< |3] and |1) o |2) o |3). Lorentz invariance fixes the exponents
to be r; = —7; = 2h; — > ;hj and };7; = ;7 = 1 — [g] by dimensional
analysis [35]. According to Eq. (6.7), the corresponding weights are

4 — a2 + 5 Z’L hl S 0
(s, W) = (4—1[g],2+ gD (63)
2+[gl,4—1[gD), Xihi=0.

In a renormalizable theory, [g] = 0 or 1, so we obtain

ws, Wy > 2, (6.9)
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for the three-point amplitude.

The majority of four-point tree amplitudes satisfy wy,ws > 4 because wy <
4 and w4 < 4 require a non-zero total helicity which is typically forbidden
by helicity selection rules. To see why, we enumerate all possible candidate

amplitudes with wy < 4. Analogous arguments will apply for wy < 4.

Most four-point tree amplitudes with wy = 1 or 3 vanish since they have no

Feynman diagrams, so

0= A(FTFYF*¢) = A(F*Fryty®)
= A(FTF~ ™)) = A(F" Y™™ ¢)
= AW Ty,

Furthermore, most amplitudes with w4 = 0 or 2 vanish due to helicity selection

rules, so

0 — A(F+F+F+Fi) — A(F+F+¢+1/}_)
= A(FTF ¢ ¢) = A(F™ YY" ).

While Feynman diagrams exist, they vanish on-shell for the chosen helicities.

This leaves a handful of candidate non-zero amplitudes,

0 # A@""Y"), AFT G ¢ ¢), AW Y7 ¢ ¢),

with wy = 2,3, 3, respectively. These “exceptional amplitudes” are the only

four-point tree amplitudes with w4 < 4 that do not vanish identically.

The exceptional amplitudes all require internal or external scalars, so they
are absent in theories with only gauge bosons and fermions, e.g. QCD. The
second and third amplitudes involve super-renormalizable cubic scalar interac-
tions, which we do not consider here. The first amplitude arises from Yukawa
couplings of non-holomorphic form: that is, ¢1/? together with ¢?, which in
a supersymmetric theory would violate holomorphy of the superpotential. In
the standard model, Higgs doublet exchange generates an exceptional ampli-
tude proportional to the product up-type and down-type Yukawa couplings.
This diagram will be important later when we consider the standard model.

In summary,

wy, Wy 2 4, (6.10)
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factorize

e ool
o

cut

w; = Wj + W, —
Aloop

Figure 6.2: Diagrams of tree factorization and one-loop unitarity, with the
weight selection rules from Eqgs. (6.12) and (6.18).

A; Ag

for the four-point amplitude, modulo exceptional amplitudes.

Finally, consider a general higher-point tree amplitude, A;, which on a factor-

ization channel equals a product of amplitudes, A; and Ay,
1 _
fact[A;] = 7 gAj(zh)Ak(—e my, (6.11)

depicted in Fig. 6.2. If the total numbers and helicities of A;, A;, and Ay, are
(ni, hy), (nj, hj), and (ng, hy), then n; = nj+n,—2 and h; = hj+hy, since either
side of the factorization channel carries equal and opposite helicity. Thus, the
corresponding weights, (w;,w;), (wj,w;), and (wy, W), satisfy the following
tree selection rule,

wi:wj+wk—2

tree rule: (6.12)

Wi =W; + Wk — 2.
We have already shown that w3, w3 > 2 and w4, w4 > 4 modulo the exceptional
diagrams. Since all five-point amplitudes factorize into three and four-point
amplitudes, Eq. (6.12) implies that ws, w5 > 4. Induction to higher-point then
yields the main result of this section,
2, n=3
W, Wy, > (6.13)
4, n >3,
which, modulo exceptional amplitudes, is a lower bound on the weights of
n-point tree amplitudes in a theory of massless particles with marginal inter-

actions. Note that even when exceptional amplitudes exist, w,,, w, > 2.

An important consequence of Eq. (6.12) is that attaching renormalizable inter-
actions to an arbitrary amplitude A;—perhaps involving irrelevant interactions—

can only produce an amplitude A; of greater or equal weight. To see why, note
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that A; factorizes into A; and an amplitude A; composed of only renormaliz-
able interactions, where wy, Wy > 2 by Eq. (6.13). Eq. (6.12) then implies that
w; > w; and W; > wj, so the minimum weight amplitude involving a higher
dimension operator is the contact amplitude built from a single insertion of

that operator.

6.3 Weighing One-Loop Amplitudes

The weights of one-loop amplitudes are obtained from generalized unitarity
and the tree-level results of the previous section. The leading order renormal-
ization of higher dimension operators is encoded in the anomalous dimension
matrix 7;; describing how O; is radiatively generated by O; and loops of
marginal interactions. In practice, 7;; is extracted from the one-loop ampli-
tude AiOOp built around an insertion of O; with the same external states as
the tree amplitude A; built around an insertion of O;. Any divergence in AiOOp
must then be absorbed by the counterterm A;, which implies non-zero ;;.
By dimensional analysis, a necessary condition for renormalization is that O;
and O; have equal mass dimension, but as we will see, this is not a sufficient

condition because of our non-renormalization theorems.

The Passarino-Veltman (PV) reduction [123] of the one-loop amplitude AiOOp
is
Aio"p = Zd4_f4 + Z dsls + Z dols + rational,
box triangle bubble

which sums over topologies of scalar box, triangle, and bubble integrals, Iy,
I3, and I,. Tadpole integrals vanish for massless particles. The integral co-
efficients d4, d3, and dy are rational functions of external kinematic data.
Ultraviolet log divergences arise from the scalar bubble integrals in the PV

reduction, where in dimensional regularization, Iy — 1/(47)%. Separating

ultraviolet divergent and finite terms, we find

1
Aloor Y dy + finite, (6.14)
' (4m)%€ S

which implies a counterterm tree amplitude,
1
A = - Z da, (6.15)

- 2
(47)%€ | hble

SO Ai(mp + A; is finite.
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Generalized unitarity [1, 2] fixes integral coefficients by relating kinematic
singularities of the one-loop amplitude to products of tree amplitudes. The

two-particle cut in a particular channel is

cut[ AL = 3 A B A" ), (6.16)
ha,ho
where /1, /> and hy, hy are the momenta and helicities of the cut lines and
Aj and Ay are on-shell tree amplitudes corresponding to the cut channel, as
depicted in Fig. 6.2.

Applying this cut to the PV reduction, we find
cut[A°°P] = dy + terms depending on (1, (s, (6.17)

where the (1, ¢s dependent terms correspond to two-particle cuts of triangle
and box integrals. Famously, the divergence of the one-loop amplitude is
related to the two-particle cut [7, 124, 125]. However, a kinematic singularity
is present only if A; and Ay, are four-point amplitudes or higher, corresponding
to “massive” bubble integrals. When A; or A;, are three-point amplitudes, the
associated “massless” bubble integrals are scaleless and vanish in dimensional
regularization. We ignore these subtle contributions for now but revisit them

later.

Egs. (6.15), (6.16), and (6.17) imply that the total numbers and helicities
(ni, hi), (nj, hj), (ng, hy) of A;, Aj and Ay satisfy n; = n; + ny — 4 and
hi = hj + hy, and thus the one-loop selection rule,

w; = wj +wg —4
one-loop rule: (6.18)

W; =W, + Wy — 4
where (w;, w;), (w;,w;), and (wy, Wy,) are the corresponding amplitude weights.
For each v;; we identify A; and A; with tree amplitudes built around insertions
of O; and Oj, and A, with a tree amplitude of the renormalizable theory. As
noted earlier, the amplitudes on both sides of the cut must be four-point or
higher for a non-trivial unitarity cut, so Eq. (6.13) implies that wg, W > 4,
absent exceptional amplitudes. Eq. (6.18) then implies that w; > w; and
w; > W;, which is the non-renormalization theorem of Eq. (6.5). If exceptional
amplitudes with wy,w; = 2 are present from non-holomorphic Yukawas, then

Eq. (6.5) is violated by exactly two units.
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F2¢ sz w2¢2 F@Q F2¢ 2/;2¢2 ¢5

(w,w) | (1,5) (1,5 3,5 | ((,1) (5b,1) (5,3)](5,5)
F2¢  (1,5)
Fy?  (1,5)
V2% (3,5)
F2¢  (5,1)
Fy?  (5,1)
V2% (5,3)
P (5,5

Table 6.1: Anomalous dimension matrix for dimension five operators in
a general quantum field theory. The shaded entries vanish by our non-
renormalization theorems.

Fig. 6.1 shows the weight lattice for all dimension five and six operators in a
general quantum field theory. We employ the operator basis of [126], so redun-
dant operators, e.g. those involving O¢, are eliminated by equations of motion.
Our non-renormalization theorems imply that operators can only renormalize
operators of equal or greater weight, which in Fig. 6.1 forbids transitions that
move down or to the left. The form of the anomalous dimension matrix for all

dimension five and six operators is shown in Tab. 6.1 and Tab. 6.2.

6.4 Infrared Divergences

We now return to the issue of massless bubble integrals. While these con-
tributions formally vanish in dimensional regularization, this is potentially
misleading because ultraviolet and infrared divergences enter with opposite
sign 1/e poles. Thus, an ultraviolet divergence may be present if there is
an equal and opposite virtual infrared divergence [7, 124, 125]. Crucially, the
Kinoshita-Lee-Nauenberg theorem [128, 129] maintains that all virtual infrared
divergences are canceled by an inclusive final state sum incorporating tree-level
real emission of an unresolved soft or collinear particle. Inverting the logic, if
real emission is infrared finite, then there can be no virtual infrared divergence
and thus no ultraviolet divergence. As we will see, this is true of the massless

bubble contributions which were discarded but could a priori violate Eq. (6.5).

To diagnose potential infrared divergences in AP, we analyze the associ-
ated amplitude for real emission, Aifeal. In the infrared regime, the singular

part of this amplitude factorizes: AZI-,eal — A;Siy + AjSjy, where A; and
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F3 F22 Pyl ot op2¢8 3 2 @ Fo? é ot 2 & D22 M #2D D> ¢b

(w,w) | (0,6) (2,6) (2,6) (2,6) (4,6)|(6,0) (6,2) (6,2) (6,2) (6,4)| (4,4) (4,4 (4,4) (6,6)

F3 (0,6) x x x x x x x x x x
F26%  (2,6) x x x x x x
Fy?p  (2,6) x x x
1/)‘4 (2,6) x x x X x x X x y? X X
P2 (4,6) | x* y? x
F3 (6,0) x x x x x x x x x x
F26%  (6,2) x x x x x x
Fi?p (6,2 x >< x
1&4 (67 2) X X X X X X X X gz X X
P} (6,9 7| x
7;2 L;L‘z (4,4) x 7 X x e X X X
VYiD  (4,4) x
o*D?  (4,4) x x x x

#° 6,6) | x* x x x* x x x

Table 6.2: Anomalous dimension matrix for dimension six operators in
a general quantum field theory. The shaded entries vanish by our non-
renormalization theorems, in full agreement with [38]. Here y? and #? label
entries that are non-zero due to non-holomorphic Yukawa couplings, x la-
bels entries that vanish because there are no diagrams [127], and x* labels
entries that vanish by a combination of counterterm analysis and our non-
renormalization theorems.

A; are tree amplitudes built around insertions of O; and O;, and S;_, and
Sj_ir are soft-collinear functions describing the emission of an unresolved par-
ticle. The soft-collinear functions from marginal interactions diverge as 1/w
and 1/v/1 — cosf in the soft and collinear limits, respectively, where w and
0 are the energy and splitting angle characterizing the emitted particle. By
dimensional analysis, irrelevant interactions have additional powers of soft or
collinear momentum rendering them infrared finite—a fact we have verified
explicitly for all dimension five and six operators. Since the phase-space mea-
sure is [ dww [ dcosd, infrared divergences require that S;_,; and Sj_si both

arise from soft and/or collinear marginal interactions.

For soft emission, the hard process is unchanged [83]. Since A;S; .y and
A;S;_y contribute to the same process, A; and A; must have the same ex-
ternal states and thus equal weight, w; = w;. While massless bubbles do
contribute infrared and ultraviolet divergences not previously accounted for,
this is perfectly consistent with the non-renormalization theorem in Eq. (6.5),
which allows for operator mixing when w; = w;. Violation of Eq. (6.5) instead
requires from infrared divergences when w; < w;. However, the corresponding

soft emission would induce a hard particle helicity flip and thus be subleading
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in the soft limit and finite upon [ dw integration.

Similarly, collinear emission is divergent for w; = w; but finite for w; < wj.
Since A;S;,» and A;S;_,; have the same external states and weight, restricting
to w; < w; means that w(S;#) > w(Sj_i). Eq. (6.8) then implies that .S;_,;
and Sj_,; are collinear splitting functions generated by on-shell MHV and
MHV amplitudes. As a result, the interference term S;‘ _,#Sii carries net
little group weight with respect to the mother particle initiating the collinear
emission. Rotations of angle ¢ around the mother particle axis act as a little
group transformation on S7_, /57, yielding a net phase %% in the differential
cross-section. Integrating over this angle yields fo% d¢ €% = 0, so the collinear

singularity vanishes upon phase-space integration.

In summary, since real emission is infrared finite for w; < wj, there are
no corresponding ultraviolet divergences from massless bubbles. The non-

renormalization theorems in Eq. (6.5) apply despite infrared subtleties.

6.5 Application to the Standard Model

Our results apply to the standard model and its extension to higher dimension
operators [38, 116-122]. A tour de force calculation of the full one-loop anoma-
lous dimension matrix of dimension six operators [117-119] unearthed a string
of miraculous cancellations not enforced by a manifest symmetry and visible
only after the meticulous application of equations of motion [38]. Lacking an
explicit Lagrangian symmetry, the authors of [38] conjectured an underlying

“holomorphy” of the standard model effective theory.

The cancellations in [38] are a direct consequence of the non-renormalization
theorems in Eq. (6.5) and Eq. (6.6), based on a classification of holomor-
phic (w < 4), anti-holomorphic (@ < 4), and non-holomorphic operators
(w,w > 4), and violated only by exceptional amplitudes (w,w = 2) gener-
ated by non-holomorphic Yukawas. The shaded entries in Tab. 6.2 denote
zeroes enforced by our non-renormalization theorems. Entries marked with x
trivially vanish because there are no associated Feynman diagrams, while en-
tries marked with x* vanish because the expected divergences in 1/2¢® and ¢°
are accompanied by a counterterm of the form ¢*D? [119] which is forbidden

by our non-renormalization theorems.

The superfield formalism offers an enlightening albeit partial explanation of

these cancellations [130] and analogous effects in chiral perturbation the-
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ory [131]. These results are clearly connected to our own via the “effective”

supersymmetry of tree-level QCD [132-135], and merits further study.

6.6 Outlook

We have derived a new class of one-loop non-renormalization theorems for
higher dimension operators in a general four-dimensional quantum field the-
ory. Since our arguments follow from unitarity and helicity, they are broadly
applicable and explain the peculiar cancellations observed in the dimension

six renormalization of the standard model.

Non-renormalization at higher loop orders remains an open question. However,
Eq. (6.5) will likely fail at two-loop since helicity selection rules are violated
by finite one-loop corrections [136-139]. Another avenue for future study is
higher dimensions, where helicity is naturally extended [140] and dimensional
reduction offers a bridge to massive theories. Finally, it would be interesting
to link our results to conventional symmetry arguments like those of [130].
Indeed, our definition of weight is reminiscent of both R-symmetry and twist,

which relate to existing non-renormalization theorems.
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Appendiz A

A.1 Proof of the Soft Theorem

In this Appendix we give detailed proof of the soft theorem mentioned in
the Section 3. While the bulk of this paper focuses on tree-level scattering
amplitudes, we present here a non-perturbative proof which to our knowledge
does not exists in the literature. For simplicity we restrict ourselves to theory

with single NGB, while the generalization to multiple flavors is straightforward.

Review of the Adler Zero

For our analysis it will be helpful to briefly review the derivation of the Adler
zero for the amplitudes of NGBs (see e.g. the textbook [79] and references
therein). To begin, consider a theory of a single NGB corresponding to the
spontaneous breaking of a one-parameter continuous symmetry. In most cases

such a symmetry acts non-linearly on the NGB field according to

¢ (2) = ¢ (2) +a, (A1)

which has an associated Noether current J#(z). The NGB couples to the

current with a strength parameterized by the decay constant, F', so
(0].J*(2)|¢(p)) = ip"Fe P*. (A.2)

The matrix elements of the current J#(x) has a pole as p*> — 0 whose residue

is related to the amplitude for the NGB emission,!

(cr, out|JH#(0)| 5, in)

pig (O[J*(0)]¢(P)) (@ + ¢(p), out|B, in) + R (p)

o
3 F (a4 6(p),out] 5, in) + B (p) (A.3)

where p# = P, — Pciout is the difference between the in and out momenta,
and R*(p) denotes a remainder function which is regular as p> — 0. Due to

conservation of J# we can dot Eq. (A.3) into p* to obtain the equation

1
(@ +o(p), out|f, in) = Zp B (), (A.4)

'Here and in what follows we tacitly assume that all the momentum conservation
d—functions are removed from the matrix elements. Il.e., R* does not contain momen-
tum conservation d—functions.
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so p,R¥(p)/F can be thought of as an off-shell extension of the amplitude.
The behavior of the amplitude in the soft NGB limit p — 0 can be therefore
inferred from the properties of the remainder function R*(p). Provided the
theory does not have a cubic vertex, then R¥(p) is regular for p — 0, which
implies that

lim (a+ 0(p), out]3, in) = 7 lim p, R (5) = 0 (A.5)

This condition is precisely the Adler zero for NGB soft emission.

Classical Current Relations
It is straightforward to extend our results to the case of a generalized shift

symmetry,
¢ — ¢+ g () (A.6)

where the variation takes the form

8¢ () = 0507y (2)0 [¢] () . (A7)

Here 0; are infinitesimal parameters, ozil (x) are fixed polynomial functions,
and O4 [¢] (z) are local but generally composite operators constructed from

¢ () and its derivatives.

Classically, we can consider the local shift transformation, ¢(x) — ¢(x)+a(x),

with a shift parameter with special value of a (z) = a (x), namely with

a(z) = 6; () &y (x) 04 [¢] (z),

which coincides with the localized version of the transformation Eq. (A.7) with
parameters 6; — 0, (x). This induces a relation between the Noether current
of the shift symmetry J* (z) and the Noether current JY# (2) corresponding
to the transformation Eq. (A.7) (see [80] for general discussion and further

details)
/ dix 0a - J = / A’z 00; - J9) (x) . (A.8)

Explicitly, we obtain

/ d’x [00;0,0% [¢] + ;000,07 [¢] + ;09,007 [g] - T = / d'z 00; - J9 ().
(A.9)



111

Invariance of the action with respect to the global form of the transformation
Eq. (A.7) means that for constant 6;, the integrand on the left-hand side of

the previous equation is a total derivative
(00740 [¢] + %400 [¢]) - T = 0a (877 O [9])

where B} are known functions and O'are local composite operators. Inserting
the latter into Eq. (A.9) we get

/dd:c 00, - JO (v) = /ddx [J . 8(%-04?40‘4 (@] + 004 (5?]()[ [Qﬂ)}

and thus
JOr = o0 [g] J* — B O [¢].

To summarize, we get two algebraic off-shell identities

(00,07 (9] + o204 [9]) - T = 8- 5O (6] + B} - 00T [9]
J9 = o0 gl J - O [g],  (A.10)

which reveal the underlying dependence between the currents: conservation of

J@ is a consequence of conservation of J.

Let us now apply these relations to the case when O! [¢] = 1, i.e. when we can
rewrite Eq. (A.7) in the form

006 () = 0; [0/ (2) + o () O [¢] ()] . (A.11)

Such a transformation can be understood as a generalization of the simple
shift symmetry Eq. (A.1) or more generally of the polynomial shift symmetry
discussed in [62] and [61]. Note again that o/ (z) and 04{9 () are polynomials.
Then the first of the relations, Eq. (A.10), reads

0ol - J = =0 - (a0 [¢]J - 10" [¢]) + aKOP 8]0 - ] (A.12)

From now we will assume just this special form of the relation between currents.

Quantum Current Relations
Another important assumption is that the above mentioned relations survive
quantization, so for the renormalized quantum operators we have the current

conservation equation,

0 - <a,0ut|J(j)($)|B,in> =0 - (a,out|J(z)|5,in) = 0, (A.13)
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as well as the relation

da’ () - (o, out|J(x)|43,in)
= —0{a,outlady () OF [¢] (2) J (x) — B () OT [¢] (x) |B,in)  (A.14)
+oz% (x) <a, out|OP [¢] () 0 - J (x) |5, in> )

Evaluated between on-shell in and out states, we obtain
<a, out|OB (@] ()0 - J () |ﬁ,in> =0 (A.15)
as a consequence of the Ward identities for the current J. Therefore,
0o (x) - (o, out|J ()|, in) = 0+ (o, out|yf, () O [¢] (x) |8, in),

where we denoted collectively all the c—number functions a‘g (x) and 5} ()
as 'yé (x) and the local operators O [¢] (z) J (x) and O [¢] (z) as O [¢] ().
We then obtain

e~ PTHad (x) - (ar, out|J(0)|3,in) = 9 - [7‘70 () e_"p'm} <a, 0ut|DC (@] (0) |5, in> ,
(A.16)

P(Bin) — P(agyt) for any in and out states. For special choice

with p
(@, out| = (0] and |8, in) = |¢#(p)) we gt

da? () - (01 (O)]¢(p)) = 9+ [ (@) e ] (0197 [¢] (0) |o(p)) . (A.17)

Since the left-hand side of Eq. (A.16) has a NGB pole for p?> — 0, this must
be reproduced on the right-hand side. Therefore at least one matrix element

<a, out|9% [4] (0) |3, in> develops a pole. In general we can write

?

5 (01991l ) 16(p)) o + (), out]8, in)+ R ()

(A.18)
where R (p) is a remnant regular for p?> — 0 and therefore at least one matrix
element <O|DC [#] (0) |¢i(p)> must be nonzero.

(o, 0ut[9 [¢] (0) |,in) =

Inserting Eq. (A.3) and Eq. (A.18) into Eq. (A.16), together with Eq. (A.17),

we obtain the following relation between the remainder functions
e P90l (z) - R(p) = O - % (z) e—ip'ﬂ RE(p). (A.19)

In what follows we will assume that all the remnants are regular also for p — 0,

i.e. there are no problems with cubic vertices.
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Integrating this over d%z we get
9ad(p) - R(p) = iad (p)p - R(p) = 0, (A.20)

which should be view as distributions and the tildes here denote Fourier trans-
form. Because p - R(p) is related to the amplitude via Eq. (A.4), we can in-
fer additional information on the soft behavior of the amplitude on top of
Eq. (A.5). As we will see in the next subsection, Eq. (A.20) is the key formula
for deriving the soft theorems for NGBs. Let us note that it depends only
on the c—number part of the general symmetry transformation Eq. (A.11).
Therefore, theories invariant with respect to the transformation Eq. (A.11)
with the same o (z) form universality classes with the same soft behavior.
In the next subsection we will illustrate application of this formula in more
detail.

Derivation of Soft Theorems

As shown above, the existence of a non-linearly realized shift symmetry in
Eq. (A.1) together with the absence of cubic vertices implies the presence of
the Adler zero, i.e. that the amplitude with one soft emission behaves at least
as O (p) for p — 0.

This result and the case when for o (z) = 0 - x mentioned in the main text
can be easily generalized for the class of theories invariant with respect to the

generalized polynomial shift symmetries
066 () = Oay. 0 |2 .. 2™ + 0" () OF [¢] (1), (A.21)

which corresponds to o/ (z) — a®%(x) = Y ... 2. Instead of Eq. (4.32)

we get in this case

0 = p RMpP)I™...0%" 5D (p) (A.22)

Z " (_1)k h_f}% oM ... aakpuR/‘(p) Okl 80‘"6(4)(p)
k=0

and thus for k=0,...,n

lim 0** ... 0%p,R"(p) = 0. (A.23)

p—0

Using the correspondence in Eq. (A.4) we conclude that the amplitude has
@ (p”“) soft behavior, i.e. an Adler zero of the (n + 1)th order.
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It is also straightforward to generalize the above result to the case of sym-
metries in Eq. (A.21) with traceless tensor 6y, ...q,,. The special Galileon is a
member of this class, and is symmetric with respect to the “hidden Galileon

symmetry” [64] (see also Appendix A.3)
0 () = Oapaz®a” — 00p0% (2) 0% (),

where 0,3 = 03, satisfies 0 = 0. Instead of rewriting the general formula
Eq. (A.23) for traceless tensor 6y, 4, we will illustrate it just on this concrete

example. In this case we have from Eq. (A.11)
] v v 1 2 pv
ol () — o (x) = 2Ha¥ — 7% nt.
Taking the Fourier transform, we obtain

al (p) = —(2m) 10,055 (p) (A.24)
mHevs = gpegpB — Lppwpal (A.25)

which with Eq. (A.20) implies that

0

—po R ()T 0,050 (p)
_[ppes { (00036 (p)] Bg%pm%p)] — [0a0 ()] [;g% @apo—R“(p)}

— 056 (p)] [y Oaap(,RJ(p)} +0@(p) |lim 805851901%"(19)”-

—

We have thus soft theorems in the form?

1
. uo, v uv oo ; —
Il)m}) (77 n’r — —=ntn ) 0003 (o + ¢(p), out|f3,in) = 0. (A.26)

Taking the soft NGB momentum to be on-shell, we see that the soft limit van-

ishes with two powers of momenta, leaving O <p3> behavior for the amplitude.

To summarize, the soft theorems above hold for an EFT that is invariant with
respect to the generalized polynomial shift symmetry in Eq. (A.6). On the
quantum level this means that the relations in Eq. (A.14) and Eq. (A.15)
apply. Note that at tree-level, the relations Eq. (A.14) and (A.15) are satis-
fied automatically and therefore the symmetry (and the absence of the cubic
vertices) provides us with a sufficient condition for enhanced soft limit of the

tree-level amplitudes.

2This equation also appears in [64].
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A.2 Bounds on p from Bonus Relations

This appendix shows how to obtain rigorous bounds on the power counting
parameter p in non-trivial theories from bonus relations. We first introduce
bonus relations in recursion and then apply them to the spurious pole cancel-

lation.

In normal recursion relations, inputs from all factorization channels are needed.
However, for sufficiently high o, it is possible to eliminate certain factoriza-
tion channels from the recursion relation by introducing factors like B(z) =
P2(2)/P?%(0) directly into the recursion relation
dz Ag(2)
— B(z). A.27
P r Db (A.27

These terms evaluate to unity at z = 0, and do not spoil large z behavior,

provided the soft behavior is sufficiently enhanced. To isolate the spurious
pole cancellation, we choose B(2) = Pk, (2) Phs(2) Ph(2)/ Phy Phs Phg such
that the spurious pole of a; — as only appears in the channel P1223(z) =0. It
relies on the fact that Ag(z)/F(z) vanishes faster then 1/29

) Exceptional theory: p >4
Bonus relation: (A.28)

Non-trivial theory: p>5
which must be satisfied in order to eliminate these factorization channels from

the recursion.

We can identify the spurious pole using “bonus” recursion relations as the
derivation for Eq. (4.76). The only difference is the extra factor of B(z) which
is proportional to f$(z) when taking the residue at z = 1/ay. Since there
is only one single term, we can drop all overall kinematic invariants and the
spurious pole becomes
A3 bmaz AL(2)
(a1 — a2)bmam—2A—3’

where the spurious pole power is shifted by 3 from B(z). This has to vanish

(A.29)

identically when by, — 2A — 3. We discuss the single and multiple scalars in

turn.

For single scalar, there is no state sum and Ar(z) can be dropped. As in
Eq. (4.83), we find 2A + 3 > byr > p+ 1 — (2A + 3) which can be satisfied for

Exceptional theory: <5
P o= (A.30)

Non-trivial theory: p <9.
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These rigorous bounds truncate the range of numerical checks on the spurious
pole cancellation in Eq. (4.76). In the case of stripped amplitudes, we only need
to eliminate two factorization channels which is viable for p > 0. Specifically,
choosing B(z) = P, (2)P?4(2)/ Py Py vields a spurious pole in a3 — as
unless byqr < 1. This rigorous derivation matches the previous numerical
evidence. So we still conclude that the NLSM is the unique exceptional theory

with stripped amplitudes.

For multiple scalars, plugging ansatze in Eq. (4.86) into Eq. (A.29) gives
123 b o1l
20 Moo 515 %36 (A.31)
(a1 — ) —283

Note that the 4pt kinematics p3 456 is generic. Since the momenta p3 456 are

only constrained by 6pt kinematics with pq 2, they are sufficient to construct
generic 4pt kinematics under the shift. The two Mandelstam variables sj¢, s34
are therefore independent. The vanishing of the spurious pole then requires
/\27215’ = 0 unless b < 2A+3 for any 0'. The bounds are the same as in the single

scalar case, Eq. (A.30).

In sum, bonus relations rigorously constrain the upper limits of p. This is
supplementary to the numerical checks of Eq. (4.76), which applies to lower
p, then Eq. (A.28). Combining the two establishes the proof of p < 3 for all

non-trivial theories, independent of the flavor structure.

A.3 Catalog of Scalar Effective Field Theories
Here we list known scalar EFTs and their Lagrangians. These theories typically
have generalized shift symmetries, and most have non-trivial soft behavior in

scattering amplitudes.

Non-linear Sigma Model and WZW Term
The SU(N) non-linear sigma model can be defined by the following La-

grangian:

2 .
L= F4T7’ @ U8,Ut), where U = exp (;qﬁ) , (A.32)

where ¢ = ¢*T is the (N? — 1)-plet (octet for N = 3) of pseudoscalar mesons.
The Lagrangian is invariant under the chiral symmetry U(z) — VRU (JC)VLT
with unitary matrices Vg . The axial part of this symmetry is realized non-

linearly as ¢ — ¢ + a + ... where the ellipses stand for terms that are at least
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quadratic in field ¢ and this implies that the axial symmetry is spontaneously
broken. Following the theorem in Sec..., the soft limits of scattering amplitudes
vanish, A = O(p). This theory for N = 2, 3 is famously used for the description
of low energy degrees of freedom of QCD.

The other theory of this kind involving the same multiple of particles is the

following Lagrangian
L= iTr(ama%) + MNepvap Tr(p "¢ 07 ¢ 9% 9° ). (A.33)

It possesses the shift symmetry ¢ — ¢ + a and has thus the O(p) behavior.
This Lagrangian can be obtained as ¢ — 0 limit of the famous Wess-Zumino-
Witten term

Swzw = i e1BOPE / P TrUToUU0pUUTOcUUTOpUUTORU) , (A.34)

which corresponds to the chiral anomaly. Generalization of (A.33) beyond

d = 4 is obvious:
L= iTr(@Mba“(b) + Nepypy Tr(@ 0" @ ... 0Mp) . (A.35)

Such a theory correspons tov=d+1, 0 =1and p=(d—2)/(d—1).

Dirac-Born-Infeld Theory

The so-called DBI Lagrangian for the single scalar field in d-dimensions reads

L=—-F4/1- 0¢F~d8¢ + F?, (A.36)

The action can be obtained by description of a d-brane fluctuating in the (d+1)-

dimensional spacetime with a flat metric diag(n,3, —1). As a consequence this
theory must be invariant under the shift symmetry and (d + 1)-dimensional

Lorentz symmetry

b= d+a+0-x—F U ¢(x)dp(x). (A.37)
DBI corresponds to the theory with o =2 and p = 1.
P(X) Theory

The DBI discussed above can be considered a special case of a general class of

theories,

a¢-a¢)

£=F'P(~;

(A.38)
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occasionally referred to in the context of inflaton cosmology as P(X) theories.
Here P is a Taylor expansion of the form P(z) = %x + O(2?). This theory is
manifestly invariant under the shift symmetry ¢ — ¢ + a and thus exhibits
o =1 and p = 1. This soft behavior is trivial, since the soft degree matches

the number of derivatives per field.

Galileon

Lagrangian of the so-called Galileon in d-dimension consists of d + 1 terms

d+1
L= dypLrds, (A.39)
n=1

with the total derivative term at valency n explicitly given by

n d
Lder = ghrHaght-va [10wovo TI nuyw, = (=) Y (d—n)! det {8”&@}

i=1 j=n+l =1
(A.40)
For example in d = 4 we have
Lo = —Al
£l = —60¢
L5 = —2[(0¢)* - 00¢ : 009
£ier = — [(D¢)3 +200¢ - 906 : 00¢ — 30 - aa¢]
L = — (@) — 6(0¢)° 006 : 00¢ + 8069 - 006 : 9
~600¢ - 00 - 00¢ : 00 + 3 (200 : 99$)*] . (A.41)

This Lagrangian has a lowest interaction term with valency 3, but as shown
in [65] we can always remove it using a duality transformation, which doesn’t
change the structure of other vertices. The Galileon Lagrangian represents
the most general theory for a single scalar whose equation of motion involves
just the second derivatives of the field and is invariant under the Galilean
symimetry

p—>o+a+b-x. (A.42)
According to the soft theorem this theory has ¢ = 2 and p = 2.
Special Galileon

In [51] it was found that the Galileon with the 4pt interaction term in d = 4

has even stronger soft limit behavior than naively predicted by the symmetry
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argument. In fact, 4, ~ O(p?) rather than just 4, ~ Op?). This was a
signal for a hidden symmetry which was indeed discovered shortly after in
[64]. The special Galileon can be obtained from (A.39) with

(—1)¢ 1
en)l(d —2n + 1! a2=D "’

dzn = d2n+1 =0. (A.43)

In the case of four dimensions there is only one interaction term

1 1
Lim = 45— L5 (A.44)
The hidden symmetry is given by
gb — gb + QMV(QQI'MIEU — u¢au¢) . (A45)

According our definition this means that ¢ = 3 and p = 2.

Multi-field Galileon
There are at least two possibilities for how to generalize the Galileon La-
grangian for scalar multiplet. The first one is a straightforward U(N) sym-

metric generalization of the n—point interaction term

d
L:n = gMl-HdV1--VaTy (¢au1au1¢- . aﬂnayngb) H N,
J=n+1
where ¢ = ¢T'* and T* are the generators of U(/N). The corresponding action

is invariant with respect to the linear shift symmetry and the U(/N) symmetry

Y = QU+ + (M x

¢ — UU*, U e SU(N)

which is responsible for the O(p?) soft behavior of the scattering amplitudes.
Moreover, because of the single trace structure of the interaction terms, the
full amplitudes can be flavor-ordered and cyclically ordered Feynman rules can
be formulated. Of course we could also include interaction terms with multiple

traces without spoiling the symmetry and soft limit properties, e.g.

d
Loky,bm=d = eltohdghvd H My Tt <¢8M15V1¢~-auk18%1¢>

j=n+1

X H TI'( Ml _q+1 Vlc 1+1¢ aﬂkral/krgb) )
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however then the usual stripping of the amplitudes is not possible.

Another generalization follows the brane construction described in [64]. Such
generalization has naturally a O(/N) symmetry as a remnant of the Lorentz
symmetry of the d + N dimensional target space in which the d—dimensional
brane propagates. As shown in [64], there are only even-point vertices allowed

by symmetry and the 2n—point Lagrangian has the general form

d

— 1...4d ~V1...Vq
Lop = ehtrhie 11 Nujv;
j=2n+1

N
X Z ¢(I1 aﬂl al/1 gbal a,u2 a1/2 ¢a2 aﬂS 87/3 ¢0«2 T 8,U/2n71 aV2n71 ¢an 8N2n 8V2n ¢O‘" :

a;=1

The action is invariant with respect to the linear shift symmetry and the O(NV)

symmetry
¢ = P+ +
0" = Rj¢’, ReOW)

and thus the O(p?) soft limit is guaranteed. This generalization does not allow

for the usual stripping of the amplitudes.

Multi-field DBI

The natural generalization of the single scalar DBI Lagrangian can be obtained
as the lowest order action of the d— dimensional brane propagating in d + N

dimensional flat space. The embeding of the brane is described by
X4=y4©,

where A = 0,1,...,d + N — 1, and the parameters are £ = &* where y =

0,...,d—1. The induced metric on the brane is
ds? = napd, Y10, YBderde” = g, derde”

and the leading order reparameterization invariant action reads

S = —Fd/ddg\/(—nd—l det (g,) = —Fd/ddg\/(—nd—ldet (1AB0,Y 40,Y B)

where F'is a constant with dim F' = 1. Let us fix a new parameterization in

terms of parameters z# where

at =YH(©)
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and denote )
¢’ ()
Fd/2’

Y (¢ (1)) = j=1,...,N.
Then

1 in i a_ L ap ig i
Guv = Nuv — ﬁ Za;ﬂs au¢ = Nua 51/ - ﬁn Zaﬁgb augb
j j

and after some algebra we get

— o N (_1)71 00 noq ‘
V(D4 detg =1+ > S > 11 ETramJ

1 .
a = ﬁaqﬁl eolod
We get then for the first three terms of the Lagrangian
£N=1 = §TI'CV = Z §8¢Z . 8¢Z
7
1 Tra®> 1 s 1 R
B — (T - = i JaAd . i a4 i1 )
Ly = gy~ gy (T = g Y (06 067007 - 06— 00" 06007 - 0
3 2

Ln=3 = L Tra — lTrozTria + 1 (Tra)?

2 3 4 2 48
- o X (Lo0 0000 -0kast 06— Loek - a0tas - o0oe 00
7,0,k

Lok akasd aiing :
#4500 06 aqs-aqsaqsﬂ-aqsﬂ).

The action is invariant with respect to the linearly realized O(N) flavour ro-

tations (¢’ being in the defining representation)

and non-linearly realized Minkowski rotations and boosts in the d + N dimen-
sional space

J

(g — o ?

Ol = n T2

5(aj)¢k — Fd/2xa5jk.

The latter symmetry is responsible for the O(p?) soft limit of the scatter-
ing amplitudes. However, the structure of the Lagrangian does not allow for

introduction of flavor-ordered amplitudes.
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