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ABSTRACT

This dissertation studies the use of coding techniques to improve the reliability and
security of distributed systems. The first three parts focus on distributed storage
systems, and study schemes that encode a message into n shares, assigned to n
nodes, such that any n − r nodes can decode the message (reliability) and any
colluding z nodes cannot infer any information about the message (security). The
objective is to optimize the computational, implementation, communication and
access complexity of the schemes during the process of encoding, decoding and
repair. These are the key metrics of the schemes so that when they are applied in
practical distributed storage systems, the systems are not only reliable and secure,
but also fast and cost-effective.

Schemes with highly efficient computation and implementation are studied in Part
I. For the practical high rate case of r ≤ 3 and z ≤ 3, we construct schemes that
require only r + z XORs to encode and z XORs to decode each message bit, based
on practical erasure codes including the B, EVENODD and STAR codes. This
encoding and decoding complexity is shown to be optimal. For general r and z,
we design schemes over a special ring from Cauchy matrices and Vandermonde
matrices. Both schemes can be efficiently encoded and decoded due to the structure
of the ring. We also discuss methods to shorten the proposed schemes.

Part II studies schemes that are efficient in terms of communication and access
complexity. We derive a lower bound on the decoding bandwidth, and design
schemes achieving the optimal decoding bandwidth and access. We then design
schemes that achieve the optimal bandwidth and access not only for decoding,
but also for repair. Furthermore, we present a family of Shamir’s schemes with
asymptotically optimal decoding bandwidth.

Part III studies the problem of secure repair, i.e., reconstructing the share of a (failed)
node without leaking any information about the message. We present generic secure
repair protocols that can securely repair any linear schemes. We derive a lower bound
on the secure repair bandwidth and show that the proposed protocols are essentially
optimal in terms of bandwidth.

In the final part of the dissertation, we study the use of coding techniques to improve
the reliability and security of network communication.

Specifically, in Part IV we draw connections between several important problems
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in network coding. We present reductions that map an arbitrary multiple-unicast
network coding instance to a unicast secure network coding instance in which at
most one link is eavesdropped, or a unicast network error correction instance in
which at most one link is erroneous, such that a rate tuple is achievable in the
multiple-unicast network coding instance if and only if a corresponding rate is
achievable in the unicast secure network coding instance, or in the unicast network
error correction instance. Conversely, we show that an arbitrary unicast secure
network coding instance in which at most one link is eavesdropped can be reduced
back to a multiple-unicast network coding instance. Additionally, we show that the
capacity of a unicast network error correction instance in general is not (exactly)
achievable. We derive upper bounds on the secrecy capacity for the secure network
coding problem, based on cut-sets and the connectivity of links. Finally, we study
optimal coding schemes for the network error correction problem, in the setting that
the network and adversary parameters are not known a priori.
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C h a p t e r 1

INTRODUCTION

Distributed systems are the foundation of today’s information infrastructure. For a
system to accommodate more users or loads, one of the most common solutions is
to scale out by adding more nodes (e.g., servers) to the system, which then becomes
“more distributed”. For example, in 2015 Amazon operated more than 30 data
centers around the world, and each data center housed between 50,000 and 80,000
nodes [1]. Data centers like these serve most of our daily “online” activities, ranging
from browsing web pages and sharing files to booking a hotel room and hailing a
ride.

The first three parts of this thesis focus on designing better distributed storage
systems. Today’s storage systems face many challenges, reliability being a critical
one. While a data center should never lose data, node failures occur on a daily basis
as confirmed by the industry statistics [2]. Extensive studies on erasure coding have
established a rich theory addressing this challenge, with immense impact in practice.
Coding techniques, from early Reed-Solomon codes and MDS array codes to recent
regenerating and locally repairable codes, lie at the heart of distributed disk arrays
such as RAID [3], [4], and many large scale distributed storage systems such as
Facebook Analytics Hadoop [2], Microsoft Azure [5] and Google Colossus [6].

Security, namely protecting the privacy of the data1, is another challenge with
increasing importance for distributed storage systems. While the challenge of
reliability can be solved by using more redundancy and better erasure codes2, the
challenge of security is more complex and difficult to address. In 2016 alone, more
than 2.2 billion data records were reported stolen [7], and this number will likely
further increase: not until 2016 did Yahoo discover and disclose that 1.5 billion of
their user records were stolen in 2013 and 2014 [8], [9].

In this thesis we investigate the use of coding to strengthen the security (in addition
to reliability) of distributed storage systems. Specifically, we study the problem of
encoding a message into n shares, assigned to n nodes, such that any n−r nodes can

1Security has different meanings in different contexts. In coding theory, security usually refers
to the secrecy and privacy of information. We follow this convention in this thesis.

2Google cloud storage, for example, guarantees 99.999999999% durability of its data.
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Node 1 Node 2 Node 3 Node 4

u u⊕m1 u⊕m2 u⊕m1 ⊕m2

Figure 1.1: A simple scheme with n = 4, r = 1 and z = 1. All symbols are bits
and all operations are XORs. (m1,m2) is the message and u is a random bit. The
scheme can tolerate one eavesdropping node as the bit stored by any single node is
independent of the message. The scheme can tolerate one node failure as Node 4
stores a parity bit.

decode the message but any colluding z nodes cannot infer any information about
the message. Refer to Figure 1.1 for a simple example with n = 4, r = 1 and z = 1.
These schemes can find awide array of applications including, for example, securing
disk arrays [10] (where nodes are disks), securing cloud storage [11] (where nodes
are different availability zones of a cloud provider or different cloud providers) and
securing wireless networks [12] (where nodes are wireless devices).

From a broader perspective, we remark that security is a complex multi-faceted
goal that oftentimes requires multiple mechanisms to achieve. Access control and
encryption are two parallel approaches to achieve security. Namely, for an adversary
to mount a successful attack, it needs both the encryption key (if the message is
encrypted) and the access to the nodes storing the message. In this respect, schemes
like the one in Figure 1.1 improve security by strengthening the effect of access
control. Namely, they enable “fault-tolerant” access control in the sense that no
information will be leaked even if access control enforcement fails on any z nodes.
Therefore, the schemes allow security to be achieved in a distributed system even
if access control enforcement on individual nodes is not perfect, e.g., due to theft,
node retirement, hacking, malicious node owner/administrator and so on.

While access control and encryption aremost often used together to provide security,
there are situations that one of them is more preferable to the other. Encryption
is the only choice when access control is not practical, e.g., sending an email
over the Internet. However, for most distributed storage systems, access control is
enforced and is often advantageous to encryption in terms of performance, cost,
flexibility and security [13], [14]. Additionally, most storage systems have already
implemented certain kinds of codes for reliability. Therefore, the proposed “secure
coding schemes” find natural applications in distributed storage systems, where they
fit naturally into the current architectures and improve the effectiveness of access
control.

In the first three parts of this thesis, we study how to design such secure coding
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schemes with optimal efficiency, summarized in three central questions:

• How to design schemes with optimal computational complexity and low im-
plementation complexity? The scheme in Figure 1.1 is extremely simple and
efficient in computation and implementation, using only two XORs to encode
and one XOR to decode each message bit. But how to design schemes with
similar simplicity and efficiency for flexible parameters, e.g., for larger n, r
and z? We study this problem in Part I.

• How to design schemes with optimal communication and access complexity?
We can decode the two message bits in Figure 1.1 by accessing and com-
municating three bits stored by any three nodes. Is it possible to access and
communicate fewer bits? Surprisingly, we show that the answer is yes, if the
scheme is designed more carefully. In Part II, we study lower bounds on the
amount of bits that need to be accessed and communicated during decoding,
and how to design schemes achieving these bounds. Furthermore, we study
schemes that achieve optimal access and communication complexity not only
for decoding, but also for repair, which is the process of reconstructing the
information stored by a node in the event of a node failure.

• How to securely repair a node failure? Suppose that a node in Figure 1.1 has
failed and lost its bit. To recover from this failure, we can ask a trusted dealer
to receive the three bits from the remaining nodes, reconstruct the lost bit, and
reassign it to the failed node or a replacement node. The dealer needs to be
trusted because it will receive enough information to decode the message. If
a trusted dealer is not available, is it possible to repair the failure securely so
that no information about the message will be leaked? We study methods to
achieve secure repair and their communication complexity in Part III.

So far we have discussed how to achieve security and reliability in distributed storage
systems by the means of coding, under the assumption that nodes are connected in a
perfect network with secure and reliable channels (e.g., when a user sends/receives
a bit to/from a node). In reality, nodes in distributed systems are connected by
networks that are subject to errors, eavesdropping and connectivity constraints. In
part IV, we study how to achieve secure and reliable communication in general
networks by the technique of coding, namely, network coding. We remark that the
communication problem is a generalization of the storage problem, as storage can
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be modeled as communication over time. For network coding, we are interested in
the following questions.

• What is the optimal rate, i.e., throughput, of a network under different connec-
tion requirements? What if some of the links are subject to adversarial errors
and/or eavesdropping? How to design network codes that achieve the optimal
rate? We remark that, depending on the specific setting, many embodiments
of the above questions are central long-standing open problems. For this
case, we study the connections between these intriguing open problems using
the technique of reduction: can we reduce an open problem into other open
problems?

Below we briefly summarize the contributions of the four parts.

1.1 Secure RAID Scheme
Codes that can tolerate both node failures and node eavesdropping are initially
studied under the context of secret sharing schemes. While the literature on secret
sharing schemes is very rich and schemes with optimal space efficiency are well
known, such as Shamir’s scheme [15] and its generalizations [16], [17], application
of secret sharing schemes in practical distributed storage systems is rather limited.
An important reason is their relatively high computational and implementation
complexity. Particularly, no existing secret sharing schemes can achieve an encoding
and decoding complexity that is constant with respect to n, even for the first non-
trivial case of r = 2 or z = 2.

In Part I, we present multiple new constructions of schemes with optimal compu-
tation and simple implementation. We call these schemes secure RAID schemes,
because many of them are constructed from efficient erasure codes suitable for
practical distributed storage systems, particularly for RAID (Redundant Array of
Independent Disks), including the B [18], EVENODD [19] and STAR codes [20].
For r ≤ 3, z ≤ 3, the proposed secure RAID schemes require only r + z XORs
to encode and z XORs to decode each message bit. This encoding and decoding
complexity is shown to be optimal, in the sense that the generator matrices of the
schemes are the sparest possible. We remark that the case of r, z ≤ 3 corresponds to
the high rate regime, which is the most relevant configuration for many distributed
storage systems. Indeed, all standard RAID levels and most non-standard RAID
levels can tolerate no more than three failures.
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Furthermore, for general r and z, we construct two secure RAID schemes over a
special ring from Vandermonde matrices and Cauchy matrices. The structure of
the ring and the structure of the Vandermonde/Cauchy matrix allow the schemes to
be efficiently encoded and decoded with low implementation complexity. To the
best of our knowledge, the proposed schemes have significantly better encoding and
decoding complexity than existing XOR-based secret sharing schemes of general
parameters.

Finally, we discuss the shortening of secure RAID schemes. Shortening is a tech-
nique of modifying codes in order to obtain flexible code lengths (i.e., n). It plays an
important role in the practical deployment of codes, because it allows a specific code
to adapt to different configurations when the number of nodes varies. We show that
shortening of secret sharing schemes faces new challenges compared to shortening
of erasure codes. We show that two of the proposed secure RAID schemes have the
desirable property that they can be flexibly shortened to any length.

1.2 Communication Efficient Secret Sharing
Consider the scenario that a user wishes to decode the message by receiving infor-
mation from the nodes. Referring to the amount of information received by the user
as the decoding bandwidth, a natural and important question is to determine and
achieve the minimum decoding bandwidth.

In most existing secret sharing schemes, a common practice in decoding is that
the user will communicate with a minimum set of nodes, i.e., exactly n − r nodes
(even if more nodes are available) and receive all information stored by these nodes.
However, this paradigm is not optimal in terms of decoding bandwidth. We show
that by receiving information from more than n − r nodes, and by communicat-
ing only part of information stored by these nodes, the decoding bandwidth can
be reduced. We show a tight lower bound on the decoding bandwidth, which de-
creases strictly in the number of nodes that participate in decoding. We design
two schemes that achieve the optimal decoding bandwidth. One of them is optimal
universally, namely, the scheme achieves the optimal decoding bandwidth when d
nodes participate in decoding, universally for all n− r ≤ d ≤ n.

While we have designed schemes with optimal decoding bandwidth, it remains
an important question whether it is possible to improve the decoding bandwidth
of existing schemes, particularly the widely used Shamir’s scheme. We answer
this question affirmatively by constructing a family of Shamir’s schemes that is
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asymptotically optimal in the decoding bandwidth.

In addition to the decoding bandwidth, another important aspect of communication
efficiency in distributed storage is the repair bandwidth, which is the amount of
information communicated during the process of repairing an erasure. We design
two schemes that not only achieve the optimal decoding bandwidth, but also achieve
the optimal repair bandwidth.

Finally, the decoding and repair bandwidth are naturally related to the access com-
plexity, i.e., the amount of information that needs to be accessed and read from disks,
during decoding and repair. The lower bound on the bandwidth is naturally a lower
bound on the access complexity. For most of the schemes above, the amount of in-
formation accessed is equal to the amount of information communicated. Therefore
these schemes are optimal in terms of both bandwidth and access.

1.3 Secure Repair
In the event of a node failure, the system needs to reconstruct the information
originally stored by the failed node. With the help of a trusted dealer, this can
be achieved easily. The dealer will receive information from the available helper
nodes, reconstruct the lost information and then forward it to the failed node. The
bandwidth optimal schemes from the previous part assume such a dealer. The
challenge in this part is how to repair without such a dealer while maintaining the
security guarantee that any colluding z nodes cannot infer the message.

This problem is studied in the literature on secure regenerating codes, e.g., [21]–
[24]. The idea there is to design the code carefully and introduce more randomness
to scramble the message and protect it from the dealer, so that even the dealer cannot
infer the message. This removes the need of a trusted dealer and the failed node can
act as the dealer itself. However, achieving secure repair in this way comes at a high
cost in rate and other aspects of efficiency.

We address the problem of secure repair from a different perspective, without
needing to take the penalty in efficiency as in the case of secure regenerating codes.
The key is to utilize ideas from secure multi-party computation and allow a more
flexible repair protocol: secure regenerating codes implicitly assume a simple “one-
round” repair protocol, in which the helper nodes transmit information to the failed
nodes, but they themselves do not receive information from other nodes. We show
that, just by slightly relaxing this assumption and allowing a “two-round” protocol,
it becomes possible to securely repair any secret sharing scheme in a black-box
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manner, in the sense that the proposed repair protocol is generic and there is no
need to design or modify the secret sharing scheme. We prove a lower bound on the
secure repair bandwidth, and propose generic secure repair schemes with essentially
optimal secure repair bandwidth. We show that when n dominates z (e.g., the high
rate case), the secure repair bandwidth of the proposed repair schemes approaches
the non-secure repair bandwidth (or the repair bandwidth with a trusted dealer).

1.4 Network Coding
In network coding, a set of source nodes transmit information to a set of terminal
nodes over a network with noiseless links; internal nodes of the network may mix
received information before forwarding it. The connection requirements between
the sources and terminals range from the simplest unicast, where there is a single
source nodewhose information is demanded by a single terminal node, to the general
multiple-unicast, where there are multiple source nodes, each of them demanded by
a single and different terminal node. The central question for network coding is to
determine whether a rate (e.g., for unicast) or rate tuple (e.g., for multiple-unicast)
is achievable. Despite extensive effort, determining the achievability of a rate tuple
for multiple-unicast network coding remains an intriguing, central, open problem,
e.g., [25]–[27].

We connect multiple-unicast network coding to two other fundamental network
coding problems, namely secure network coding and network error correction, using
the idea of reduction. A reduction from problem A to problem B is a mapping that
maps a problem instanceA ∈ A to a problem instanceB ∈ B, such that the solution
to A can be derived easily from the solution to B. Therefore, given a method that
solves the instances of B, then by the reduction it also solves the instances of A.

In the secure network coding problem, a subset of links can be eavesdropped, and a
valid code design needs to ensure the security of the source message. We construct
a reduction that maps an arbitrary multiple-unicast network coding instance to a
particular unicast secure network coding instance with an extremely simple setup.
Namely, there is a single source, a single terminal, and a single eavesdropped link
which can be any link in the network. The only assumption that makes the problem
non-trivial is that non-source nodes are allowed to generate independent randomness.
It is surprising that this single assumptionmakes an otherwise trivial problem at least
as hard as multiple-unicast network coding. Conversely, we construct a reduction
that maps any unicast secure network coding instance in which at most one link can
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be eavesdropped to a multiple-unicast network coding instance, hence showing an
equivalence between the two problems.

In the network error correction problem, a subset of links are subject to adversarial
errors, and a valid code design needs to ensure the reliability of communication.
We construct a reduction that maps an arbitrary multiple-unicast network coding
instance to a particular unicast network error correction instance with an extremely
simple setup. Namely, there is a single source, a single terminal, and a single error
link. The only assumption that makes the problem non-trivial is that a subset of
links are not subject to error (i.e., the single error link can be any link in the network
except this subset). Again, it is surprising that this single assumption makes an
otherwise trivial problem at least as hard as multiple-unicast network coding. We
show that our reduction is sensitive to the precise definition of achievability, which
has an interesting implication that the capacity of a unicast network error correction
instance in general is not exactly achievable.

While finding the capacity in the secure network coding problem is hard when non-
source nodes can generate randomness, we derive an upper bound on the capacity
based on cut-sets and the connectivity of the links. We show that the bound is the
tightest possible given the information that is input to the bound.

Finally, we study code construction for the network error correction problem in the
setting that any z links are subject to error. While optimal codes are known for
this setting [28]–[31], their construction relies on the value of z and the min-cut
of the network. In many scenarios, obtaining these values a priori is difficult or
impractical. In this regard, we study coding schemes that are rateless, i.e., that do
not require prior knowledge of z and the network min-cut. Particularly, the schemes
will adapt to the correct z and min-cut during multiple stages of communication and
achieve the optimal rate.



Part I

Secure RAID Schemes

9
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C h a p t e r 2

INTRODUCTION TO SECURE RAID

In the RAID (Redundant Array of Independent Disks) architecture [3], information
is stored distributively among multiple nodes in a redundant manner that is resilient
to individual node failures. Over the past decades, RAID and the fundamental idea
of dispersing information to improve reliability, availability and performance have
become a ubiquitous principle that lies at the heart of most of today’s distributed
storage systems [4]–[6].

As distributed storage systems are increasingly being used to store critical and
sensitive data, the challenge of protecting data privacy is critical. In the first part
of this thesis, we study the design of distributed storage systems that are not only
failure-resilient, but also resistant to adversarial eavesdropping of individual nodes.
Specifically, we study the problem of storing a message among n nodes such that
any n− r nodes can decode the message but any colluding z nodes cannot infer any
information about the message. These schemes can find a wide array of applications
including, for example, securing disk arrays [10] (where nodes are disks), securing
cloud storage [11] (where nodes are different availability zones of a cloud provider
or different cloud providers) and securing wireless networks [12] (where nodes are
wireless devices).

This problem is initially studied in the literature in the context of secret shar-
ing schemes, and rate-optimal (i.e., space-optimal) schemes are known, such as
Shamir’s scheme [15] and its generalizations [16]. While secret sharing schemes
are extensively used as building blocks of numerous secure protocols in cryptogra-
phy and distributed computing, their application to distributed storage systems has
been limited by the relatively high computational complexity (in terms of encoding
and decoding) and implementation complexity (in terms of field size) [10], [32].
Secret sharing schemes with improved computational and/or implementation com-
plexity are studied in, e.g., [32], [33]. However, to the best of our knowledge, all
existing secret sharing schemes are still rather computationally intensive, limiting
their application in distributed storage. We illustrate this by an example.
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Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

u u⊕m1 u⊕m2 u⊕m3 u⊕m4 u⊕
(⊕4

i=1 mi

)
Figure 2.1: A simple and optimal secret sharing scheme with n = 6, r = 1 and
z = 1 over F2. All symbols are bits and all operations are XORs. (m1, · · · ,m4)
is the message and u is a random bit, referred to as a key. The scheme can tolerate
one eavesdropping node as the bit stored by any single node is one-time-padded
(XORed) by the key. The scheme can tolerate one node failure as Node 6 stores a
parity bit.

Motivating Example

Consider the simple scheme in Figure 2.1. The scheme uses 8 XORs to encode
4 message bits and therefore the normalized encoding complexity is 2 XORs per
message bit. This encoding complexity is optimal because in order to tolerate z
eavesdropping nodes, each message bit has to be padded by z key bits (Node 2 to 5
in the example), resulting in z = 1 XOR; and that in order to tolerate r node failures,
eachmessage bit has to be checked by r parity bits (Node 6 in the example), resulting
in another r = 1 XOR. The normalized decoding complexity of the scheme is z = 1

XOR per message bit, which is also optimal because at least z = 1 key has to be
canceled in order to decode a message bit.

Figure 2.1 can be viewed as the secure version of RAID 5 (a standard RAID level
that uses the parity code to tolerate one node failure). In many applications, we may
want to tolerate more eavesdroppers and failures. Particularly, consider a scheme
that can tolerate r = 2 failures and z = 2 eavesdroppers, e.g., the secure version of
the extensively deployed RAID 6. On account of our previous discussion, the lower
bound on the encoding complexity is z+ r = 4 XORs per message bit and the lower
bound on the decoding complexity is z = 2 XORs per message bit. Unfortunately,
all existing secret sharing schemes are not even close to meet these bounds. In
fact, no existing schemes can achieve a constant encoding or decoding complexity
with respect to n. Therefore, a natural and important question is, does there exist a
scheme with encoding and decoding complexity meeting these lower bounds?

In Chapter 4, we settle this problem affirmatively for the high rate case, i.e., the case
of r ≤ 3 and z ≤ 3, by designing secret sharing schemes with optimal encoding
and decoding complexity achieving the lower bounds. We refer to these secret
sharing schemes with efficient computation and simple implementation as secure
RAID schemes, as they are particularly suitable for the RAID architecture and many
of the schemes are constructed from practical RAID codes. Refer to Figure 2.2 for
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an example of an optimal scheme with r = 2 and z = 2. We remark that the high
rate case is arguably the most relevant regime for distributed storage. Particularly,
all standard RAID levels and most non-standard RAID levels can tolerate no more
than 3 failures.

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6
u1 u2 u3 u4 u5 u6

u3 ⊕ u5 ⊕m1 u6 ⊕ u3 ⊕m2 u2 ⊕ u1 ⊕m3 u5 ⊕ u6 ⊕m4 u1 ⊕ u4 ⊕m5 u4 ⊕ u2 ⊕m6

u2 ⊕ u6⊕ u4 ⊕ u5⊕ u6 ⊕ u4⊕ u1 ⊕ u3⊕ u3 ⊕ u2⊕ u5 ⊕ u1⊕
m3 ⊕m5 m6 ⊕m3 m2 ⊕m1 m5 ⊕m6 m1 ⊕m4 m4 ⊕m2

Figure 2.2: A secure RAID scheme constructed from the B codes [18]. Symbols are
bits and operations are XORs. Each node stores three bits. m1, ...,m6 are message
bits and u1, ..., u6 are random key bits. The scheme is able to correct r = 2 node
erasures/failures and is secure against z = 2 eavesdropping nodes. The scheme is
optimal in several senses. It has optimal rate and optimal field size. It follows a
generalized systematic form: all keys are stored uncoded in the first row; all message
bits are stored uncoded in the second row, each padded by an optimal number of two
keys necessary to resist two eavesdropping nodes; and the third row is redundant.
The systematic form implies optimal decoding complexity as the message bits can
be decoded by canceling the least amount of keys. The scheme is also optimal in
terms of encoding complexity: every key and message bit is checked by an optimal
number of two parities in the redundant (third) row necessary to correct two erasures.

Specifically, in Section 4.1 we design a secure RAID scheme with r ≤ 2, z ≤ 2, and
length n = p + 2 for any prime p from the EVENODD codes [19]. The scheme is
essentially optimal in computation, i.e., the encoding complexity is approximately
4 XORs per message bit and the decoding complexity is approximately 2 XORs
per message bit. In Section 4.4 we design a secure RAID scheme with r ≤ 3,
z ≤ 3, and n = p + 3 for any prime p from the STAR codes [20], with essentially
optimal complexity, i.e., approximately 6 XORs to encode and 3 XORs to decode
each message bit. In Section 4.5 we present a secure RAID scheme with r ≤ 2,
z ≤ 2, and length n = p − 1 for any prime p from the B codes [18]. Again the
scheme is essentially optimal in encoding and decoding. In Section 4.6, we present
a secure RAID scheme that is strictly optimal in encoding and decoding, with length
n = p − 1 for all prime p ≤ 53, again from the B code. We remark that the B,
EVENODD and STAR codes are well-known optimal erasure codes widely used in
distributed storage. To the best of our knowledge, the secure B, secure EVENODD
and secure STAR are the first schemes that have comparable computational and
implementation complexity as these practical erasure codes. They are also the first
schemes that are shown to have optimal encoding and decoding complexity.
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We highlight two ideas from our constructions: Firstly, we generalize the concept
of systematic encoding to the secure setting. Refer to Fig. 2.2 for an example
of a systematic scheme. Secondly, we leverage the results on efficient erasure
codes, notably on array codes, and construct secure schemes from them and their
dual codes. Specifically, the codeword of an array code is a t × n array; each
node stores a column of the array so erasure and distance are defined column-wise.
The B, EVENODD and STAR codes are high rate MDS array codes with optimal
computation, in the sense that their generator matrices are “low-density” (sparse),
and so encoding requires an optimal or almost optimal number of XOR operations.
Their dual codes also have “low-density” generator matrices and we show that, in
the secure setting, this implies optimal or almost optimal decoding complexity.

So far we have focused on schemes with r ≤ 3 and z ≤ 3. For the general case, we
design a secure RAID scheme for arbitrary parameters n, r and z based on Reed-
Solomon codes. The scheme can be viewed as a systematic version of Shamir’s
scheme. While the scheme is significantly more efficient than Shamir’s scheme
in encoding and decoding, it is over a finite field Fq of size q > n, which affects
computation and implementation. An interesting problem of practical importance
is to design efficient XOR-based secure RAID schemes of general parameters. We
construct two such schemes in Chapter 5. Both schemes are over a special ring
in which several important ring operations are computationally efficient, in the
sense that they can be performed by a smaller number of XORs, and are easy
to implement. Several well known families of efficient array codes including the
EVENODD and STAR codes are constructed over this ring [19], [20], [34], [35].
Our first scheme over the ring is based on Cauchy matrices. In the high rate regime,
the encoding complexity of the scheme is O(n) XORs per message bit and the
decoding complexity is O(z) XORs per message bit. Our second scheme, based
on Vandermonde matrices, is a generalization of Shamir’s scheme to the ring. In
the high rate regime, the encoding complexity of the scheme is O(n) XORs per
message bit and the decoding complexity is O(n − r − z) XORs per message bit.
To our knowledge, these schemes have the best encoding and decoding complexity
among XOR-based secret sharing schemes of general parameters (the schemes in
[32], [33] have comparable encoding complexity but significantly higher decoding
complexity).
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Node 1 Node 2 Node 3 Node 4
c1 = u c2 = m1 + u c3 = m2 + u

∑
ci = m1 + m2 + u

(a) A simple scheme with n = 4, r = 1, z = 1. u is a key bit and m1,m2 are
message bits. Security achieved by one-time-pad and reliability achieved by the
parity bit.

Node 1 Node 2 Node 3 (suppressed) Node 4
c1 = u c2 = m1 + u c3 = 0

∑
ci = m1

(b) Shortened scheme. The bit c3 is set to be 0 and does not need to be stored.
Node 3 acts as a placeholder only for the purpose of encoding. The scheme is not
secure as Node 4 leaks the message bit.

Figure 2.3: An example of naive shortening of a secure RAID scheme compromises
security.

Shortening

In coding theory, shortening is an important technique of modifying codes in order
to obtain flexible code lengths. Specifically, given any [n, k] systematic code and an
arbitrary integer 0 < s < k, one can directly obtain an [n−s, k−s] code of the same
distance as the original code, by suppressing s information symbols in the codeword
and setting them to be 0 (and therefore without needing to store them) [19]. Shorten-
ing plays an important role in the practical deployment and implementation of codes,
because it allows a specific code deployed and implemented in a system to adapt to
different configurations when the number of nodes varies. Unfortunately, for secure
RAID schemes, while the same shortening technique for codes, i.e., suppressing a
subset of entries in the codeword, will maintain the reliability parameter r, it may
reduce the security parameter z. Refer to Figure 2.3 for an example. However,
in Section 4.3 and 5.3 we show that the secure EVENODD and the secure RAID
scheme over ring based on Vandermonde matrix both have the desirable property
that they can be flexibly shortened to arbitrary lengths without compromising z, if
the entries in the codeword are carefully suppressed. As discussed, this property is
particularly important in practice.

In summary, our results in this part of the thesis suggest that building “keyless”,
information-theoretic security into distributed storage and the RAID architecture is
practical. Particularly, formany erasure coded distributed storage systems, extending
them to employ the proposed secureRAID schemes requires onlyminormodification
to the implementation, with small computational and performance overhead.

Part of the material in Chapter 3 and 4 was presented in [36] and [37].
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C h a p t e r 3

MODELS, BOUNDS AND GENERAL CONSTRUCTION
FRAMEWORK

3.1 Setup and Definitions
Let Q be an alphabet, denote {1, ..., n} by [n] and denote {m,m + 1, · · · , n} by
[m,n]. For an index set I ⊂ [n] and a vector (c1, ..., cn), denote cI = (ci)i∈I . An
(n, k, r, z)Q secret sharing scheme encodes a message of k symbols over Q into
n shares, each share a symbol over Q, such that 1) the message can be decoded
from any n− r shares, and 2) any z shares do not reveal any information about the
message. Formally, an (n, k, r, z)Q secret sharing scheme is a randomized encoding
function F that maps a (secret) messagem = (m1, · · · ,mk) ∈ Qk and a uniformly
distributed vector u = (u1, · · · , uv) ∈ Qv, also referred to as keys, to the codeword
c = (c1, · · · , cn) = F (m,u) ∈ Qn, such that:

1) (Reliability) ∀I ⊂ [n], |I| ≥ n − r : H(m|cI) = 0, implying a decoding
function DI such that DI(cI) = m.

2) (Secrecy) ∀I ⊂ [n], |I| ≤ z : I(m; cI) = 0.

We call the secret sharing schemes constructed in this part of the thesis the secure
RAID schemes, because they are efficient schemes suitable for distributed storage
and particularly for the RAID architecture. We focus on two kinds of linear schemes,
namely scalar schemes and array1 schemes. For a scalar scheme,Q is a finite field
Fq and the encoding function F is linear over Fq. For an array scheme, Q is a
vector space Ftq. In this case, mi = (mi,1, · · · ,mi,t), ui = (ui,1, · · · , ui,t) and
ci = (ci,1, · · · , ci,t). The encoding function is linear over Fq, taking mi,j’s and
ui,j’s as inputs, and outputs ci,j’s. We frequently regard the codeword c as an
t × n array over Fq, in which ci,j is the (j, i)-th entry, namely, the i-th column of
the array corresponds to ci. Note that under the array representation erasure and

1Also referred to as vector linear in the literature.
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eavesdropping are column-wise. Denote

m̄ = (m1,1, · · · ,m1,t, · · · ,mk,1, · · · ,mk,t) (3.1)

ū = (u1,1, · · · , u1,t, · · · , uv,1, · · · , uv,t) (3.2)

c̄ = (c1,1, ..., c1,t, ..., cn,1, ..., cn,t). (3.3)

Scalar schemes are special cases of array schemes with t = 1. Without loss
of generality, in the remaining part of the chapter it is assumed that the secure
RAID schemes are array schemes. An [n, k]Ftq array code C of minimum distance
dmin(C) = r + 1, where the Hamming distance is defined with respect to Ftq, is
equivalent to an (n, k, r, 0)Ftq secure RAID scheme. Denote the dual code of C by
C⊥.

The rate of an (n, k, r, z) secure RAID scheme is k/n and characterizes the space
efficiency of the scheme. The following proposition gives an upper bound on the
rate.

Proposition 3.1.1. For any (n, k, r, z) secret sharing scheme, it follows that

k ≤ n− r − z, (3.4)

and the rate of the scheme is at most n−r−z
n

.

Proof. Let the messagem be uniformly distributed, then

k = H(m)
(a)
= H(m|c[z]) (3.5)

≤ H(m, c[n−r]|c[z])

(b)
= H(m|c[n−r], c[z]) +H(c[n−r]|c[z]) (3.6)
(c)
= H(c[n−r]|c[z]) (3.7)

= H(c[z+1,n−r]) ≤ n− r − z,

where (a) follows from the security requirement, (b) follows from the chain rule,
and (c) follows from the reliability requirement.

A secure RAID scheme is associated with an encoding algorithm and multiple
decoding algorithms. The encoding algorithm is the algorithm of evaluating the
encoding function F , and the decoding algorithms are the algorithms of evaluating
the decoding functions DI for |I| ≥ n − r. We distinguish two cases: systematic
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decoding when |I| = n and erasure decoding when |I| < n. We remark that for the
application of distributed storage, systematic decoding may be the more common
and performance-critical form of decoding.

In reminiscence of linear codes, we define the generator matrix of a linear secure
RAID scheme to be a (v + k)t× nt matrix G over Fq such that (ū, m̄)G = c̄. We
refer to the first vt rows ofG as the key rows which correspond to the keys, and refer
to the remaining kt rows as the message rows which correspond to the messages.
Define the density of a vector or matrix to be the number of non-zero entries.
We are interested in designing secure RAID schemes with low-density generator
matrices. Such schemes require a small number of operations in encoding/decoding
and therefore are computationally efficient. We remark that the computational
efficiency of secure RAID schemes is of practical importance as it is closely related
to the read and write performances of the storage systems in terms of throughput
and delay.

In this part we also address the efficiency of secure RAID schemes in terms of
random access, i.e., the operation of decoding partial messages. Specifically, we
study the computational and communication efficiency of decoding a single entry
or more generally, a subset of entries ofm.

3.2 Bounds on Computation
In this section we study lower bounds on the density of the generator matrices of
secure RAID schemes. A related important problem is to determine the amount of
independent randomness, i.e., the number of keys, required by a scheme. We first
address this problem. The following lemma is useful. Note that throughout the
thesis, logarithm is base q unless otherwise specified.

Lemma 3.2.1. For any rate-optimal (n, k, r, z)Ftq secure RAID scheme, and any
J ⊂ [n] such that |J | = z, it follows that H(cJ) = zt.

Proof. Let the message m be uniformly distributed and suppose for the sake of
contradiction that there exists J ⊂ [n], |J | = z, such that H(cJ) = zt − ε for
some ε > 0. For the ease of notation, we assume without loss of generality (by
permuting the indexes if necessary) that J = [z]. By the chain rule, H(cJ) =∑z

i=1 H(ci|c[i−1]) = zt − ε, and it follows that there exists i′ ∈ [z] such that
H(ci′ |c[i′−1]) ≤ t − ε′ for some ε′ > 0. Hence H(ci′|c[z]\{i′}) ≤ t − ε′. Therefore,
without loss of generality (again by permuting the indexes if necessary) let us assume
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that i′ = 1. Recall that [i, j] = {i, i+ 1, ..., j}, it follows that

I( m; c[2,z+1])
(a)
= I(m; c[z+1])− I(m; c1|c[2,z+1])

(b)
= I(m; c[z+k])− I(m; c[z+2,z+k]|c[z+1])− I(m; c1|c[2,z+1])

(c)
= kt− I(m; c[z+2,z+k]|c[z+1])− I(m; c1|c[2,z+1])

≥ kt−H(c[z+2,z+k])− I(m; c1|c[2,z+1])

≥ kt− (k − 1)t− I(m; c1|c[2,z+1])

= t−H(c1|c[2,z+1]) +H(c1|c[2,z+1],m)

≥ t−H(c1|c[2,z+1])

≥ t−H(c1|c[2,z])

(d)

≥ ε′, (3.8)

where (a) and (b) follow from the chain rule; (c) follows from the fact thatH(m) =

kt and thatm can be decoded from c[z+k], as z + k = n− r; and (d) follows from
H(c1|c[2,z]) ≤ t − ε′. But (3.8) contradicts the secrecy requirement which implies
that I(m; c[2,z+1]) = 0. This completes the proof.

Theorem 3.2.1. A linear rate-optimal (n, k, r, z)Ftq secure RAID scheme uses at
least zt keys over Fq (i.e., v ≥ z), and the encoding of the scheme is equivalent to a
scheme that uses exactly zt keys.

Proof. Consider any linear (n, k, r, z)Ftq scheme such that k = n−r−z. Recall that
the keys is a length-v vector u over Ftq. Let the messagem be uniformly distributed.
We have

H(u) ≥ I(c[z];u|m)

= H(c[z]|m)−H(c[z]|u,m)

(e)
= H(c[z]|m)

(f)
= H(c[z])

(g)
= zt, (3.9)

where (e) follows from the fact that c[z] is a function of u andm; (f) follows from
the secrecy requirement; and (g) follows from Lemma 3.2.1. Equation (3.9) implies
that v ≥ z because H(u) ≤ vt. This proves that the scheme uses at least zt keys
over Fq. It remains to show that the scheme is equivalent to a scheme that uses
exactly zt keys (e.g., with v = z).
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Denote the generator matrix of the scheme by G, i.e., G is a (v + k)t × nt matrix
with entries from Fq. Denote by G1 the submatrix formed by the first vt rows (i.e.,
the key rows) and the first zt columns of G, denote by G2 the submatrix formed by
the last kt rows (i.e., the message rows) and the first zt columns of G, and denote
by ū′ = ūG1. Then c̄[zt] = ūG1 + m̄G2 = ū′+ m̄G2. Let J be an arbitrary subset
of [nt] such that |J | = (z + k)t, [zt] ⊂ J and such that m can be decoded from
c̄J . Clearly, the index set of the symbols stored by the first z nodes plus by any k
additional nodes is a valid J . We have,

H(c̄J |m̄, ū′) = H(c̄J)− I(c̄J ; m̄, ū′)

(h)
= H(c̄J)− I(c̄J ; m̄, c̄[zt])

≤ (z + k)t− I(c̄J ; m̄, c̄[zt])

(i)
= (z + k)t− I(c̄J ; m̄)− I(c̄J ; c̄[zt]|m̄)

(j)
= zt− I((c̄J ; c̄[zt]|m̄)

= zt−H(c̄[zt]|m̄) +H(c̄[zt]|m̄, c̄J)

(k)
= zt−H(c̄[zt]|m̄)

(l)
= zt−H(c̄[zt])

(m)
= 0, (3.10)

where (h) follows from c̄[zt] = ū′+m̄G2; (i) follows from the chain rule; (j) follows
from H(m̄|c̄J) = 0 and so I(c̄J ; m̄) = kt; (k) follows from [zt] ⊂ J ; (l) follows
from the secrecy requirement; and (m) follows from Lemma 3.2.1. For any i ∈ J ,
(3.10) implies that there exists a function f such that c̄i = f(ū′, m̄). Since the
scheme is linear, f is linear. Note that for any i ∈ [nt], there exists J such that i ∈ J .
Also note that ū′ is a vector of length-zt with entries i.i.d. uniformly distributed
over Fq. Hence there exists a matrix G′ such that c̄ = (ū′ m̄)G′, i.e., G′ is the
generator matrix of an equivalent scheme that uses exactly zt keys. This completes
the proof.

Theorem 3.2.1 shows that for rate-optimal schemes, zt keys are sufficient and neces-
sary. In the remaining part of the thesis we assume that a rate-optimal (n, k, r, z)Ftq
secure RAID scheme or secret sharing scheme uses exactly zt keys, and as such the
generator matrix G of the scheme has size (z + k)t × nt. The following theorem
lower bounds the density of G.
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Theorem 3.2.2. Consider the generator matrix of a rate-optimal (n, k, r, z)Ftq secure
RAID scheme, then the density of a key row is at least n− z + 1, and the density of
a message row is at least r + 1.

Proof. Denote by G the generator matrix. Let the message m be uniformly dis-
tributed. Let J be an arbitrary subset of [n] such that |J | = k + z, and let Z be an
arbitrary subset of J such that |Z| = z, then we have

H(c|cJ) = H(c, cJ)−H(cJ)

= H(c)−H(cJ)

(a)

≤ (z + k)t−H(cJ)

= (z + k)t−H(cJ\Z |cZ)−H(cZ)

(b)
= (z + k)t−H(cJ\Z |cZ)− zt

≤ kt− I(m; cJ\Z |cZ)

= kt−H(m|cZ) +H(m|cJ)

(c)
= kt−H(m|cZ)

(d)
= 0, (3.11)

where (a) follows from Theorem 3.2.1; (b) follows from Lemma 3.2.1; (c) follows
from the fact that m can be decoded from cJ ; and (d) follows from the secrecy
requirement. Equation (3.11) implies the erasure of any n − k − z = r entries of
c can be corrected, and so that the row space of G is a code of minimum distance
r + 1. Therefore each row of G must have at least r + 1 non-zero entries.

It remains to lower bound the density of the first zt rows ofG. Let Z be an arbitrary
subset of [n] such that |Z| = z, we have

H(u|cZ ,m) = H(u|m)− I(cZ ;u|m)

(e)
= zt− I(cZ ;u|m)

(f)
= zt− I(cZ ;u,m) + I(cZ ;m)

(g)
= zt− I(cZ ;u,m)

(h)
= zt−H(cZ)

(i)
= 0, (3.12)

where (e) follows from u ⊥m; (f) follows from the chain rule; (g) follows from the
secrecy requirement; (h) follows from the fact that cZ is a function of u andm; and
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(i) follows from Lemma 3.2.1. Equation (3.12) implies that, ifm is given, then the
erasure of any n− z entries of c can be corrected as one can first recover u and then
compute c. Therefore the row space of the submatrix formed by the first zt rows of
G is a code of minimum distance n − z + 1. Therefore the first zt rows of G each
have at least n− z + 1 non-zero entries. This completes the proof.

From Theorem 3.2.2 we obtain a lower bound on the encoding complexity of an
XOR-based (i.e., q = 2) secure RAID scheme.

Corollary 3.2.1. Encoding a rate-optimal (n, k, r, z) secure RAID scheme over Ft2
requires at least r + z + rz−z

n−r−z XORs per message bit.

Proof. By Theorem 3.2.2, the density of the key rows is at least n− z + 1 and the
density of the message rows is at least r + 1. By Theorem 3.2.1 there are zt key
rows. As the scheme is rate-optimal there are (n− r− z)tmessage rows. Therefore
the density of the generator matrix is at least zt(n− z + 1) + (n− r − z)t(r + 1)

and encoding it requires at least zt(n− z + 1) + (n− r − z)t(r + 1)− nt XORs.
Therefore, the number of XORs amortized over the message bits is

zt(n− z + 1) + (n− r − z)t(r + 1)− nt
(n− r − z)t

= n+ r +
rz − z

n− r − z
. (3.13)

3.3 Systematic Secure RAID Schemes
Codes for distributed storage are typically encoded in a systematic way. Namely,
a codeword contains two sets of symbols: the uncoded message symbols that
appear “in the clear", which are referred to as the systematic symbols, and the
set of redundant symbols. Systematic codes have important advantages in terms
of computational efficiency. Specifically, encoding systematic codes only requires
computing redundant symbols. This is especially important when the rate of the
code is high, i.e., the number of redundant symbols is small compared to the number
of systematic symbols, which is the usual case in storage. Decoding systematic
codes is trivial if no systematic symbols are erased. Likewise, random accessing
a subset of message symbols is efficient. For secure RAID schemes, conventional
systematic encoding is impossible due to the secrecy requirement. This motivates
us to generalize the concept of systematic encoding under the context of secrecy.

Definition 3.3.1. An (n, k, r, z)Ftq secure RAID scheme is systematic if
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(1). The keys ū are stored in the uncoded form in tv entries of the codeword c̄.

(2). The message symbols m̄1, ..., m̄tk are stored in the uncoded form in tk entries
of the codeword c̄, each padded by a linear function of the keys. Namely, in c̄
there is an entry of the form m̄i + fi(ū), for i = 1, ..., tk.

(3). For i = 1, ..., tk, the padding function fi(ū) can be computed efficiently.

The tv systematic key symbols and the tk systematicmessage symbols are collectively
referred to as the systematic symbols.

Similar to systematic codes, by requiring the systematic symbols to take a simple
form, systematic secureRAID schemes have strong advantages in terms of efficiency.
Specifically, in Definition 3.3.1, (1) ensures that encoding and decoding (when no
erasure has occurred) the key symbols is trivial; (2) ensures that encoding and
decoding (when no erasure has occurred) the systematic message symbols only
requires computing the padding functions fi’s; and (3) requires that the fi’s take a
form amenable to computation.

We remark on the requirement (3) in Definition 3.3.1. From the density perspective,
an optimal fi will be a function of exactly z keys (over Fq). This is because fi
has to be a function of at least z keys in order to meet the secrecy requirement.
Otherwise, an adversary can decode m̄i by looking at no more than z entries of
c̄, a contradiction. Unfortunately, constructing schemes meeting this requirement
strictly is difficult and we are able to do so in Section 4.6, but only for rather
restrictive parameters. For most of our secure RAID constructions, some of the fi’s
are functions of more than z keys. In this case, we shall show that there exists an
efficient algorithm to compute them.

Finally, note that systematic schemes are also efficient in terms of random access, in
the sense that decoding a single entry of m̄ requires communicating and canceling
a small number of keys.

3.3.1 Method of Constructing Secure RAID Schemes
We introduce a method to design systematic secure RAID schemes. The method
falls under the general framework of coset coding, which dates back toWyner’s work
[38] on the wiretap channel. However here we put special emphasis on designing
efficient and systematic schemes in the context of secure RAID.
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Consider an an [n, k1] array code C1 and an [n, k2] array code C2, both over alphabet
Ftq, such that every codeword of C1 is a codeword of C2, i.e., C1 is a subcode of
C2. Given such a pair of codes C1 and C2, we construct a secure RAID scheme
as follows. Encode C2 systematically and denote the index set of the systematic
symbols in the codeword (as a length-tn vector over Fq, see (3.3)) by I2. Encode C1

systematically such that the index set I1 of its systematic symbols satisfies I1 ⊂ I2

(which is possible as C1 ⊂ C2). For the ease of presentation, assume without loss of
generality that I1 = [tk1] and I2 = [tk2]. The secure RAID scheme is encoded in 2
steps.

Step 1: Draw tk1 random keys ū independently and uniformly from Fq. Encode
C1 by regarding the keys ū as information symbols to obtain a codeword, and then
puncture (delete) all entries in the codeword that are not in I2. Denote the punctured
codeword by d, which is the first tk2 entries of the original codeword.

Step 2: Let m̄ be the secret message of length t(k2 − k1) over Fq, and denote by
e = d + (0, m̄), where 0 is a length-tk1 zero vector. Encode C2 by regarding e as
information symbols to obtain a codeword c̄. c̄ is a a length-tn vector over Fq, and
is the output codeword of the secure RAID scheme. Note that the codeword c as
a length-n vector over the original alphabet Ftq can be obtained by collapsing each
length-t segment in c̄ into one symbol over Ftq.

An illustration of the construction method is shown in Figure 3.1.

Figure 3.1: Construction of systematic secure RAID scheme from a pair of erasure
codes C1 and C2 when I1 = [tk1] and I2 = [tk2].

In general, we can encode C1 in more flexible ways as long as there exists a I1 such
that I1 ⊂ I2 and that C1 can be decoded from the entries in I1.

Theorem 3.3.1. Let C1 be an [n, k1] array code and C2 be an [n, k2] array code,
both over Ftq, such that C1 is a subcode of C2. Then the described encoding scheme
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is an (n, k2 − k1, r, z) secure RAID scheme over Ftq, where r = dmin(C2) − 1 and
z = dmin(C⊥1 )− 1.

Proof. We need to show that the scheme meets the reliability requirement and the
secrecy requirement. Because c is a codeword of C2, and the minimum distance
of C2 is r + 1, it follows that any r erasures of the entries of c can be corrected.
Decodingm from c is simple, as one can read the systematic key entries ū from c̄,
and then calculate d from ū, and then cancel d from the systematic message entries
in e to obtain m̄. This verifies the reliability requirement.

We now prove the security of the scheme. Assume that the adversary observes cI ,
for some I ⊂ [n], |I| = z. Recall that F (m,u) is the encoding function of the
scheme, it suffices to show that Pr{FI(m,u) = cI |m} is a constant independent
of the choice ofm, where the probability is taken over the distribution of the keys.
Consider the system of linear equations defined by FI(m,u) = cI in variables u,
wherem and cI are given, we are interested in finding the number of solutions to
this system.

Let G2 be the tk2 × tn generator matrix of C2 over Fq, such that (ū, m̄)G2 = c̄.
Namely, G2 is the generator matrix of the proposed secure RAID scheme. Because
C1 ⊂ C2, by the construction method it follows that (ū,0)G2 is a codeword of C1.
Therefore, let G1 be the submatrix formed by the first tk1 rows of G2. Then G1 is a
generator matrix of C1. Denote by Ī the index set of the entries of c̄ corresponding
to the set of entries indexed by I in c, so |Ī| = tz. We claim that the set of columns
ofG1 indexed by Ī must be linearly independent. To prove the claim, assume for the
sake of contradiction that they are linearly dependent and so there exists a length-tn
vector v̄ such thatG1v̄

T = 0, and such that v̄ is non-zero only in the entries indexed
by Ī . Because G1 is a parity check matrix of C⊥1 , let v be a length-n vector over Ftq
obtained by collapsing each length-t segment in v̄ into a symbol over Ftq, then v is
a codeword of C⊥1 that is non-zero only in the entries indexed by I . Since |I| = z

but dmin(C⊥1 ) = z + 1, this is a contradiction.

Denote the submatrix formed by the last tk2 rows ofG2 byG3. For i = 1, 2, 3, denote
by Gi,Ī the submatrix formed by columns of Gi indexed by Ī . Then FI(m,u) = cI

is equivalent to ūG1,Ī = c̄Ī−m̄G3,Ī . SinceG1,Ī has full column rank, it follows that
the system of equations ūG1,Ī = c̄Ī − m̄G3,Ī in variables ū always has a solution,
and the number of solutions is exactly |Null(G1,Ī)|, where Null(A) is the left null
space of matrix A, i.e., {x : xA = 0}. By the rank-nullity theorem, |Null(G1,Ī)| =
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qt(k1−z). Because ū is uniformly distributed, we have Pr{FI(m,u) = cI |m} =

|Null(G1,Ī)|/qtk1 = q−tz, which implies cI ⊥m. This completes the proof.

An [n, k] array code C isMDS (maximum distance separable) if dmin(C) = n−k+1.
An important special case is that C1 and C2 are both MDS.

Corollary 3.3.1. If C1 and C2 are MDS codes, then the described encoding scheme
is a rate-optimal systematic (n, k2 − k1, n− k2, k1) secure RAID scheme.

Proof. We first state a known fact.

Lemma 3.3.1. [18], [39] A code C is MDS if and only if C⊥ is MDS.

Note that the lemma is true for both scalar and array codes. Therefore, dmin(C2) =

n − k2 + 1 and dmin(C⊥1 ) = k1 + 1. Hence it follows from Theorem 3.3.1 that the
scheme is an (n, k2 − k1, n− k2, k1) secure RAID scheme. Clearly the scheme has
optimal rate.

The construction method results in secure RAID schemes that are systematic, where
I1 are the systematic key symbols, and I2\I1 are systematic message symbols. The
systematic form connects the computational complexity of the scheme to that of
the codes. Specifically, the encoding complexity of the scheme is essentially the
complexity of encoding C1 and C2. A simple systematic decoding algorithm for the
scheme is to compute d by encoding C1 and then cancel it from e to obtain m̄, and
hence the complexity is dominated by encoding C1. The erasure decoding algorithm
first corrects the erasures by invoking the erasure correction algorithm of C2, and
then invokes the systematic decoding algorithm. So the complexity is essentially
the complexity of (erasure) decoding C2 plus encoding C1. In summary, to construct
efficient secure RAID schemes, it suffices to find a pair of MDS codes C1, C2 of
appropriate rates such that C1 ⊂ C2, and that C1 can be efficiently encoded, and that
C2 can be efficiently encoded and decoded.

The construction method is also promising in terms of the simplicity of implementa-
tion. Specifically, the encoder of the secure RAID scheme consists of the encoders
of C1 and C2. The decoder of the scheme consists of the encoder of C1 (used in sys-
tematic decoding) and the decoder of C2 (used in correcting erasures). Therefore, if
C1 and C2 are amenable to implementation then so is the secure RAID scheme.
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We remark that the construction method can be interpreted under the framework of
coset coding in the following way. Denote by f the codeword of C1 by encoding ū,
and denote by g the codeword of C2 by encoding (0, m̄). Because C1 is a subcode
of C2, f is exactly the codeword of C2 by encoding d (which is the punctured f ).
Therefore it follows from the linearity of C2 that c̄ = f+g. LetH1 be the systematic
parity check matrix corresponding to the systematic generator matrix of C1 that we
employ in the scheme, then H1f

T = 0. And because H1 is a systematic parity
check matrix, we have H1g

T = m̄T . Therefore H1c̄
T = H1(fT + gT ) = m̄T . In

this sense, the above encoding scheme can be understood as follows: to encode a
secret message m̄, the scheme picks a random element from the coset of C1 whose
syndrome is m̄.

3.3.2 Secure RAID from Reed-Solomon Codes
A natural choice of C1 and C2 in the construction method described in Section 3.3.1
is the Reed-Solomon codes. In fact, Shamir’s scheme can be viewed as based on
Reed-Solomon codes [40]. However, we show that a systematic scheme based on
Reed-Solomon codes has significant advantage over Shamir’s scheme in terms of
computational efficiency.

Definition 3.3.2. (Reed-Solomon Codes [41]) For n > k, let Fq be a finite field of
size q > n, and let S = {α1, ..., αn} be a set of distinct non-zero elements of Fq, the
[n, k]Fq ,S Reed-Solomon code has a generator matrix

G =


1 1 ... 1

α1 α2 ... αn
... ...

αk−1
1 αk−1

2 ... αk−1
n

 . (3.14)

An equivalent systematic generator matrix G∗ can be obtained by performing ele-
mentary row operations on G, such that G∗ contains an identity submatrix of size
k. To construct secure RAID schemes based on Reed-Solomon codes, we let C1 and
C2 to be Reed-Solomon codes defined on the same S and such that C1 has a smaller
dimension than C2.

Theorem 3.3.2. For any integer n, r and z such that n− r − z > 0 , a systematic,
rate-optimal (n, n− r− z, r, z) secure RAID scheme over Fq can be constructed by
choosing C1 to be an [n, z]Fq ,S Reed-Solomon code and C2 to be an [n, n − r]Fq ,S
Reed-Solomon code in the method described in Section 3.3.1.



27

Proof. ByDefinition 3.3.2, the generator matrix of C1 is a submatrix of the generator
matrix of C2, and hence C1 is a subcode of C2. It is well known that the Reed-Solomon
codes are MDS [41], therefore the assertion follows from Corollary 3.3.1.

Example 3.3.1. Let n = 5, r = 2, z = 2, k = 1 and q = 5. Let the generator
matrix of C2 be

G2 =

 1 1 1 1 1

1 2 3 4 5

1 4 2 2 4

 ,
and let the generator matrixG1 of C1 be the first two rows ofG2. Then the systematic
generator matrices of the codes are

G∗1 =

[
1 0 6 5 4

0 1 2 3 4

]
, G∗2 =

 1 0 0 1 3

0 1 0 4 6

0 0 1 3 6

 ,
and the generator matrix of the resulting secure RAID scheme is

G =

 1 0 6 5 4

0 1 2 3 4

0 0 1 3 6

 .
Consider an (n, k = n−r−z, r, z) systematic secure RAID scheme based on Reed-
Solomon codes. Encoding the scheme is essentially encoding C1 and C2, which
takesO((r+ z)(n− r)) operations (multiplications, divisions or additions) over Fq;
systematic decoding the scheme is essentially encoding C1, which takes O(z(n −
z − r)) operations; erasure/error decoding the scheme can be accomplished by first
erasure/error decoding C2 using the error-erasure version of the Berlekamp-Massey
decoding algorithm [39], which takes O(rn) operations, followed by systematic
decoding.

In comparison, an (n, k = n − r − z, r, z) Shamir’s (ramp) scheme can be viewed
as the non-systematic version of the proposed scheme. Encoding Shamir’s scheme
requires evaluating a polynomial of degree n−r at n points which takesO(n(n−r))
operations; decoding Shamir’s scheme (with or without erasures) requires interpo-
lating the polynomial which takesO((n−r)2) operations by Lagrange interpolation.
The proposed systematic scheme has significantly better computational efficiency
than Shamir’s scheme. Particularly, in the high rate regime in which n dominates
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r and z, encoding and systematic decoding the systematic scheme both take O(n)

operations, whereas encoding and decoding (with or without erasures) Shamir’s
scheme both take O(n2) operations. We remark that though (asymptotically) effi-
cientO(n log n) algorithms are known for encoding and decoding Shamir’s scheme,
they have large overhead factors and are not commonly used in practice [42]. Finally
the systematic scheme is also efficient in random access. Decoding one entry ofm
in the systematic scheme takes O(z) operations and requires communicating z + 1

symbols. Shamir’s scheme, however, does not support random access and all entries
ofm need to be decoded together, requiringO((n− r)2) = O((z+ k)2) operations
and the communication of z + k symbols.
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C h a p t e r 4

HIGH RATE SCHEMES WITH OPTIMAL COMPUTATION

In the previous chapter we describe a general framework of constructing secure
RAID schemes and present a construction based on Reed-Solomon codes. Reed-
Solomon codes areMDS and their parameters are flexible. However, Reed-Solomon
codes require computation over finite fields which complicates implementation and
affects computational efficiency, especially for the high rate case, i.e., when r is
small. For this case, computationally optimal XOR-based array codes, e.g., [19],
[18], are proposed and widely used in RAID. The generator matrices of these codes
are sparse, and hence encoding requires an optimal or almost optimal number of
XOR operations. In this chapter we design XOR-based secure RAID schemes with
optimal or almost optimal computational complexity from array codes. Particularly,
the schemes have low-density generator matrices that achieve or approach the lower
bounds in Section 3.2. Like the array codes, these schemes target the high rate
regime, and can tolerate a fixed number (two or three) of erasures and eavesdropping
nodes.

A key idea in our constructions is to design C2 based on high rate array codes
and design C1 based on their dual codes, in the construction method described in
Section 3.3.1. There are several benefits of doing this, as the array codes and their
duals 1) are both MDS, so that the resulting secure RAID scheme is rate-optimal;
2) have high and low rate, respectively, so that the resulting scheme has high rate;
3) both have low or lowest density generator matrices, implying optimal or almost
optimal encoding and decoding complexity for the resulting scheme. However,
array codes and their duals are rarely known to contain each other. Surprisingly, we
can often modify the codes appropriately to meet the containment condition, while
not compromising their complexity and distance. We follow this idea to construct
several families of optimal and almost optimal schemes in this chapter.

4.1 Secure EVENODD
In this subsection we construct a family of low-complexity XOR-based secure RAID
schemes from the EVENODD codes [19]. We show that the density of the generator
matrix of the scheme approaches the lower bound in Theorem 3.2.2, and that
the scheme is essentially optimal in terms of encoding complexity and systematic
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decoding complexity.

Let p be a prime, the EVENODD code is a [p + 2, p] MDS array code over Fp−1
2

of minimum distance 3 and with a low density generator matrix [19]. Refer to Fig.
4.1 for an example of p = 5. We describe our construction idea using this example.
Denote the code in Fig. 4.1 by C2, which corrects 2 column erasures. To build
secrecy into C2, consider its dual C⊥2 , obtained by switching the roles of information
bit and parity bit. Namely, in Fig. 4.1, for i ∈ [4], the information bit c6,i is checked
by all (parity) entries labeled by i in the top plot. And the information bit c7,i is
checked by all entries labeled by i and S in the bottom plot. For example, in the
dual code the (2, 2)-th entry in the array is c6,2 ⊕ c7,3. Since C2 is MDS, so is C⊥2 .
C⊥2 is a [p + 2, 2] code and can be used for secrecy against 2 eavesdropping nodes.
Namely, if we encode two columns of keys as information bits according to C⊥2 and
pad this key array to a message array, then any two columns in the sum array reveal
no information about the message. Now we have two efficient codes for reliability
and secrecy, respectively. The challenge is to combine them into a single scheme
that is both reliable and secure. The straightforward approach for combining codes
typically fails. However, as we show in Section 3.3.1, we can construct an efficient
secure RAID scheme if C1 (the code for secrecy) is a subcode of C2 (the code for
reliability). In our example, C⊥2 is not a subcode of C2. However, if we let C1 be a
variant of C⊥2 by switching the first and sixth column in its encoding, then one may
verify that C1 ⊂ C2. Based on C1 and C2 we construct a secure RAID scheme as
follows. Generate two columns of random keys; encode the keys by C1 but skip the
last two columns of the codeword; padmessage bits to the 3-rd to 5-th columns of the
key array; finally complete the last two columns by encoding C2. Note that the first 2
columns store only keys, the next 3 columns store uncoded message bits padded by
keys, and the last two columns are redundant. The encoding of keys is shown in Fig.
4.2. The scheme corrects 2 erasures, and because C1 ⊂ C2, the encoding of keys in
the last 2 columns is consistent with C1 (see Fig. 4.2), implying secrecy against 2
eavesdropping nodes. Hence we have the (7, 3, 2, 2) secure EVENODD scheme.

The construction technique can be readily generalized to any prime p. Throughout
this section, for an integer a, denote by 〈a〉 the unique integer m, 0 ≤ m < p, such
that a ≡ m (mod p). Recall from Section 3.1 that ci,j is the (j, i)-th entry in the
codeword array.

Construction 4.1.1. (EVENODD Code [19]) Let p be a prime, and mi,j , i ∈ [p],
j ∈ [p−1] be the message bits. The codewords of EVENODD form a (p−1)×(p+2)
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Figure 4.1: [7, 5] EVENODD code. Codeword is a 4× 7 array. The first 5 columns
store information bits. Parity bit c6,i is the XOR of all entries labeled by i in the top
plot. Parity bit c7,i is the XOR of all entries labeled by i and all entries labeled by S
in the bottom plot.

array, described by the following encodingmapping. The first p columns of the array
are the systematic symbols, i.e., for i ∈ [p], j ∈ [p − 1], ci,j = mi,j . The last two
columns are redundant symbols, i.e., for j ∈ [p − 1], cp+1,j =

⊕p
l=1ml,j and

cp+2,j = S +
(⊕p

l=1ml,〈j+1−l〉
)
, where S =

⊕p
l=1ml,〈1−l〉, andmi,0

def
= 0.

It is proved in [19] that the EVENODD code is MDS.

Construction 4.1.2. (Secure EVENODD) Let p be a prime. For i ∈ [p− 2], l ∈ [2]

and j ∈ [p− 1], letmi,j be the message bits, and let ul,j be the uniformly distributed
key bits. The codewords of secure EVENODD form a (p − 1) × (p + 2) array,
described by the following encoding mapping. The first two columns of the array
are the systematic key symbols, i.e., c1,j = u1,j for j ∈ [p− 1], and

c2,j = u1,j ⊕ u2,〈j+1〉 j = 1, · · · , p− 1

where u2,0
def
=
⊕p−1

j=1 u2,j . The 3-rd to p-th columns of the array are the systematic
message symbols, i.e., for i = 3, ..., p and j = 1, · · · , p− 1

ci,j = u1,j ⊕ u2,〈i+j−1〉 ⊕mi−2,j.

The last two columns of the array are redundant symbols, which are computed by
encoding the EVENODD code described in Construction 4.1.1, regarding the first
p columns of the array as information symbols.
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Figure 4.2: Encoding of keys in the (7,3,2,2) secure EVENODD. The top plot shows
how the first column of keys u1,i, i ∈ [4] are propagated in the array and the bottom
plot shows how the second column of keys u2,i, i ∈ [4] are propagated. Specifically,
in the top plot an entry of i represents the key u1,i being added to this entry in the
array. In the bottom plot an entry of i represents the key u2,i being added to this
entry in the array, and an entry of Σ represents

⊕4
i=1 u2,i being added. Note that

the padding pattern is almost optimal, in the sense that most entries are padded by
only two keys and that when more than two keys are padded, Σ only needs to be
computed once. We remark that the encoding of keys is identical to the encoding
of C1: this is trivially true for the first five columns by construction, and because
C1 ⊂ C2, it can be shown that the encoding of keys in the last two columns also
coincides with C1.

Note that secure EVENODD is rate-optimal. The following lemma gives an explicit
expression of the entries stored in the last two columns of the array.

Lemma 4.1.1. In Construction 4.1.2, cp+1,j = u1,j ⊕ u2,j ⊕
(⊕p−2

l=1 ml,j

)
, and

cp+2,j = u2,j⊕S ′⊕
(⊕p−2

l=1 ml,〈j−l−1〉
)
, for j ∈ [p−1], where S ′ =

⊕p−2
l=1 ml,〈−l−1〉.
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Proof. It follows that

cp+1,j
(a)
=

p⊕
l=1

cl,j

(b)
=

(
p⊕
l=1

u1,j

)
⊕

 p⊕
l=2

j+l 6=p+1

u2,〈j+l−1〉

⊕( p−1⊕
l=1

u2,l

)
⊕

(
p⊕
l=3

ml−2,j

)

= u1,j ⊕

 p⊕
l=2

j+l 6=p+1

u2,〈j+l−1〉

⊕( p−1⊕
l=1

u2,l

)
⊕

(
p⊕
l=3

ml−2,j

)

= u1,j ⊕

 ⊕
l∈[p−1]
l 6=j

u2,l

⊕
(
p−1⊕
l=1

u2,l

)
⊕

(
p⊕
l=3

ml−2,j

)

= u1,j ⊕ u2,j ⊕

(
p⊕
l=3

ml−2,j

)

= u1,j ⊕ u2,j ⊕

(
p−2⊕
l=1

ml,j

)
,

where (a) follows from Construction 4.1.1 and (b) follows from Construction 4.1.2.
We also have

S
(c)
=

p⊕
l=1

cl,〈1−l〉

(d)
=

(
p⊕
l=2

u1,〈1−l〉

)
⊕

(
p⊕
l=2

p−1⊕
l′=1

u2,l′

)
⊕

(
p⊕
l=3

ml−2,〈1−l〉

)

=

(
p⊕
l=2

u1,〈1−l〉

)
⊕

(
p⊕
l=3

ml−2,〈1−l〉

)

=

(
p−1⊕
l=1

u1,l

)
⊕

(
p⊕
l=3

ml−2,〈1−l〉

)

=

(
p−1⊕
l=1

u1,l

)
⊕

(
p−2⊕
l=1

ml,〈−l−1〉

)

=

(
p−1⊕
l=1

u1,l

)
⊕ S ′, (4.1)

where (c) follows from Construction 4.1.1 and (d) follows from Construction 4.1.2.
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Finally, we have

cp+2,j
(e)
= S ⊕

(
p⊕
l=1

cl,〈j+1−l〉

)

(f)
= S ⊕

 p⊕
l=1

j+1−l 6=0

u1,〈j+1−l〉

⊕
 p⊕

l=2
j+1−l 6=0

u2,j

⊕( p⊕
l=3

ml−2,〈j+1−l〉

)

= S ⊕

(
p−1⊕
l=1

u1,l

)
⊕

 p⊕
l=2

j+1−l 6=0

u2,j

⊕( p⊕
l=3

ml−2,〈j+1−l〉

)

(g)
= S ′ ⊕

 p⊕
l=2

j+1−l 6=0

u2,j

⊕( p⊕
l=3

ml−2,〈j+1−l〉

)

= S ′ ⊕ u2,j ⊕

(
p⊕
l=3

ml−2,〈j+1−l〉

)

= S ′ ⊕ u2,j ⊕

(
p−2⊕
l=1

ml,〈j−1−l〉

)
,

where (e) follows from Construction 4.1.1; (f) follows from Construction 4.1.2; and
(g) follows from (4.1).

Theorem 4.1.1. Secure EVENODD is a (p + 2, p − 2, 2, 2) secure RAID scheme
over Fp−1

2 . In particular, the average density of the key rows of the generator matrix
is 3p−1

2
, and the average density of the message rows is 4p−5

p−1
.

Proof. Since the codewords of secure EVENODD are codewords of the EVENODD
code, any two column erasures can be corrected. We focus on proving the security
of the scheme. For i ∈ [p + 2] and j ∈ [p − 1], write ci,j = c′i,j + c′′i,j , where
c′i,j is a function of the keys and c′′i,j is a function of the message bits. Denote by
C ′ the [p + 2, 2] array code given by the c′i,j’s, then to prove the security of secure
EVENODD it suffices to show that C ′ isMDS.Namely, if C ′ isMDS, then all keys can
be decoded from any two columns of the array, implying that any two columns of the
array are uniformly distributed. Therefore any two columns of secure EVENODD
are padded by uniformly distributed random variables and are independent of the
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message. By Construction 4.1.2 and Lemma 4.1.1, we have

c′i,j =


u1,j ⊕ u2,〈i+j−1〉 i = 2, ..., p+ 1

u1,j i = 1

u2,j i = p+ 2.

(4.2)

Define Ak = (a
(k)
ij ), 1 ≤ i, j ≤ p− 1 to be

a
(k)
ij =

{
1, j − i = k or i = p− k
0, otherwise.

(4.3)

For example, A0 = I , and for p = 5

A1 =


0 1 0 0

0 0 1 0

0 0 0 1

1 1 1 1

 , A2 =


0 0 1 0

0 0 0 1

1 1 1 1

1 0 0 0

 . (4.4)

Let G′ be the generator matrix of C ′ such that

(c′1,1, · · · , c′1,p−1, · · · , c′p+2,1, · · · , c′p+2,p−1) = (u1,1, · · · , u1,p−1, u2,1, · · · , u2,p−1)G′,

then we have

G′ =

[
I I I · · · I 0

0 AT1 AT2 · · · AT〈p〉 I

]
.

Switching the first and the (p+ 1)-th column blocks of G′, we obtain

G′′ =

[
I I · · · I I 0

AT0 AT1 · · · ATp−1 0 I

]
.

Note that the array code generated by G′′ is equivalent the array code generated
by G′, except that the first and the (p + 1)-th columns of the array are switched.
Therefore G′ generates a MDS array code if and only if G′′ generates a MDS array
code. Notice thatG′′ is a systematic parity-check matrix of its dual code, and so the
systematic generator matrix of the dual code is

G′′⊥ =


I 0 · · · 0 I A0

0 I · · · 0 I A1

...
... . . . ...

...
...

0 0 · · · I I Ap−1

 . (4.5)



36

Note that G′′⊥ is exactly the generator matrix of the EVENODD code in Construc-
tion 4.1.1, which is MDS. By Lemma 3.3.1, the dual EVENODD code, which is
equivalent to C ′, is also MDS. This completes the proof that secure EVENODD is
a (p+ 2, p− 2, 2, 2) secure RAID scheme.

We now analyze the density of the generator matrix of secure EVENODD. Recall
that we say a key/message bit is checked by ci,j if the entry in the generator matrix
corresponding to the key/message bit and ci,j equals 1. Then by construction, each
of the u1,j’s is checked for p+ 1 times, and each of the u2,j’s is checked for 2(p− 1)

times. Each of themi,j’s, is checked for 3 times if i+ j 6= p− 1, and is checked for
2 + p− 1 = p+ 1 times if i+ j = p− 1. This completes the proof.

By Theorem 3.2.2, a lower bound on the density of the key rows is p+ 1 and a lower
bound on the density of the message rows is 3. Therefore the scheme achieves the
lower bound within a factor of 3/2 for the key rows and within a factor of 4/3 for
the message rows.

Systematic decoding the scheme is straightforward by first decoding the keys from
the first two columns and then canceling them from the 3-rd to p-th columns. In
case of erasures/error, the erasure/error decoding algorithm of EVENODD [19] is
invoked, followed by systematic decoding. Encoding secure EVENODD according
to Construction 4.1.2 takes a total number of 4p2 − 7p + 1 XORs, or on average
4 + 3

p−2
+ 2

p−1
XORs per message bit. Systematic decoding takes a total number of

2p2−4p+1XORs, or on average 2+ 1
p−2

+ 1
p−1

XORs per message bit. By Corollary
3.2.1, encoding each message bit requires at least 4+ 2

p−2
XORs. Moreover, in order

to be secure against z = 2 eavesdroppers, each message bit has to be padded by
at least two keys, and different message bits must not be padded by the same pair
of keys, so decoding each message bit requires at least 2 XORs. Therefore secure
EVENODD has almost optimal encoding and systematic decoding complexity.

4.2 Algebraic Description of Secure EVENODD
In this subsection we present an algebraic description of the EVENODD code and
the secure EVENODD scheme. Let p be a prime, and let Mp(x) =

∑p−1
i=0 x

i be
a polynomial over GF (2). Let Rp be the ring of polynomials of degree less than
p − 1 over GF (2) with multiplication taken modulo Mp(x). We shall use the
indeterminate α to refer to polynomials in Rp, and reserve the indeterminate x for
polynomials in F2[x]. Note that the multiplicative order of α is p, i.e., αp = 1. We
interpret the p − 1 coefficients of an element of Rp as the p − 1 bits stored by a
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node, i.e., a column in the array. Below we give an alternative description of the
EVENODD code.

Construction 4.2.1. (EVENODD Code) Let p be a prime, the EVENODD code is a
[p+2, p]MDS array code overFp−1

2 . Specifically, letm1(α), ...,mp(α) be pmessage
polynomials each representing p−1 message bits. The message polynomials are en-
coded into p+2 codeword polynomials ci(α), such that ci(α) represents the p−1 bits
to be stored on the i-th node. Then (c1(α), ..., cp+2(α)) = (m1(α), ...,mp(α)) GEO,
where GEO is the generator matrix of the EVENODD code overRp:

GEO =


1 0 · · · 0 1 1

0 1 · · · 0 1 α
... ... . . . ... ... ...
0 0 · · · 1 1 αp−1

 . (4.6)

We now give an algebraic description of the secure EVENODD.

Construction 4.2.2. (Secure EVENODD over Rp) Let u1(α), u2(α) be two key
polynomials selected i.i.d. uniformly at random fromRp, and letmi(α), i ∈ [p− 2]

be the message polynomials (each representing p− 1 bits of information). Then the
codeword polynomials are

(c1(α), ..., cp+2(α)) = (u1(α), u2(α),m1(α), ...,mp−2(α)) Gpad GEO,

whereGpad is a square matrix that pads the key polynomials to the message polyno-
mials, given in (4.7), andGEO is the generator matrix of the EVENODD code, given
in (4.6).

Gpad =



1 1 1 · · · 1

0 α α2 · · · αp−1

0 0 1 · · · 0
... ... ... . . . ...
0 0 0 · · · 1


. (4.7)

Theorem 4.2.1. Construction 4.2.2 is a (p+ 2, p− 2, 2, 2) secure RAID scheme.

Proof. The scheme can correct two erasures because the EVENODD code can cor-
rect two erasures. We focus on proving the security of the scheme. Let Gtop be
the first two rows of Gpad, then GtopGEO gives the encoding of keys in the code-
word array, namely (c1(α), · · · , cp+2(α)) = (u1(α), u2(α))GtopGEO + M , where
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M is a matrix whose entries are functions of the message polynomials. Define for
short G′ = GtopGEO Then to prove security it suffices to prove that the [p + 2, 2]

code C ′ generated by G′ is MDS. Namely, if C ′ is MDS, then u1(α), u2(α) can be
decoded from any two entries (over Rp) of (u1(α), u2(α))G′, implying that any
two entries of (u1(α), u2(α))G′ are uniformly distributed and so any two entries of
(c1(α), · · · , cp+2(α)) are uniformly distributed and independent of the message.

Calculating the matrix product, we have

G′ = GtopGEO =

[
1 1 1 · · · 1 1 0

0 α α2 · · · αp−1 1 1

]
. (4.8)

Switching the first and the (p+ 1)-th column of G′, we obtain

G′′ =

[
1 1 · · · 1 1 0

1 α · · · αp−1 0 1

]
. (4.9)

Then the code generated by G′′ is equivalent to C ′. But G′′ is exactly the parity-
check matrix of the EVENODD code. Since the EVENODD code is MDS and has
minimum distance 3, any two columns ofG′′ are linearly independent. Therefore C ′

is MDS and the proof is complete.

We interpret the secure EVENODD scheme under the construction framework in
Section 3.3.1. It is clear that C2 is the EVENODD code, and from the proofs of
Theorem4.1.1 andTheorem4.2.1, C1 is a variant of the dual EVENODDcode, where
the first and the (p+ 1)-th entries of the codeword are switched. It is interesting to
note that, while Construction 4.1.2 and 4.2.2 both follow this general construction
idea, their encodings are slightly different. The reason for the difference is that,
in Construction 4.1.2, we regard the generator matrix of the EVENODD code as a
p(p− 1)× (p+ 2)(p− 1) matrix over F2, while in Construction 4.2.2, the generator
matrix is a p×(p+2)matrix overRp. Therefore, when we “transpose” the generator
matrix to obtain the generator matrix for dual code, the granularity of transposition
is different.

We now analyze the complexity of Construction 4.2.2. Consider the operation of
multiplying a polynomial f(α) =

∑p−2
i=0 fiα

i by αj . Then the resulting polynomial
is

αjf(α) =

p−2∑
i=0

〈i+j〉6=p−1

fiα
〈i+j〉 +

p−2∑
i=0

fp−1−jα
i, (4.10)
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where we define fp−1 = 0. Note that the first summation in (4.10) is simply a
cyclic shift of f(α) except that the (p − 1 − j)-th entry becomes 0. Therefore the
multiplication in (4.10) takes at most p−1XORs to compute. Consider the encoding
complexity of Construction 4.2.2. Encoding the first p columns of the array takes
p−1+3(p−1)(p−2) XORs and encoding the last two columns by the EVENODD
code takes 2(p− 1)2 + p− 2 XORs. The complexity of systematic decoding is the
same as encoding the first p columns. Therefore, normalized over the (p−2)(p−1)

message bits, the encoding complexity is approximately 5 XORs per message bit,
and the decoding complexity is approximately 3 XORs per message bit.

Particularly, Construction 4.1.2 has a slightly better encoding and decoding com-
plexity than Construction 4.2.2. On the other hand, the clean algebraic description
allows us to prove stronger properties for Construction 4.2.2, which we shall explore
in the next section.

4.3 Shortened Secure EVENODD
In this section we study the shortening of secure EVENODD. For a prime p, secure
EVENODD is a (n = p + 2, k = p − 2, r = 2, z = 2) secure RAID scheme over
alphabetFp−1

2 with essentially optimal computational and randomaccess complexity.
While the length of the secure EVENODD is restricted to p+2, in practice it is often
desirable to obtain schemes with arbitrary length. For erasure codes, this goal is
achieved by the technique of shortening. As shown in Figure 2.3, for secure RAID
schemes while the standard shortening technique for erasure codes will maintain
the reliability parameter r, it can reduce the security parameter z. However, in this
section we show that secure EVENODD has the desirable property that it can be
flexibly shortened without compromising z. Namely, from a (p + 2, p − 2, 2, 2)

secure EVENODD scheme one can obtain a (p+ 2− s, p− 2− s, 2, 2) scheme for
any 0 < s < p.

Let p be a prime, recall thatMp(x) =
∑p−1

i=0 x
i is a polynomial over GF (2), Rp is

the ring of polynomials of degree less than p − 1 over GF (2) with multiplication
taken moduloMp(x), and that we shall use the indeterminate α instead of x to refer
to polynomials in Rp. We remark that Rp is a field if and only if 2 is a primitive
element in GF (p). In this section we focus on the case that Rp is indeed a field.
This is not a significant restriction as it is conjectured that 2 is a primitive element
in GF (p) for a constant fraction (≈ 0.374) of primes p [35].

Construction 4.3.1. (Shortened Secure EVENODD) Let 0 < s < p − 2 be an
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integer. The shortened secure EVENODD of length p + 2 − s and dimension
p− 2− s is encoded by

(u1(α), u2(α),m1(α), ...,mp−2−s(α)) G′pad G
′
EO,

where u1(α), u2(α) are randomly selected key polynomials, m1(α), ...,mp−2−s(α)

are the message polynomials, andG′pad is obtained by deleting the 3-rd to (s+ 2)-th
rows and columns from Gpad, given in (4.7), and G′EO is obtained by deleting the
3-rd to (s+ 2)-th rows and columns from GEO, given in (4.6).

Note that the length and dimension of the shortened secure EVENODDare decreased
by s compared to the secure EVENODD, and so the shortened scheme is rate-
optimal. Also note that by deleting the rows and columns from the matrices we are
essentially suppressing the 3-rd to (s+2)-th entries in the codeword of Construction
4.2.2 to be 0.

We first present a standard lemma useful for proving the security of a scheme.

Lemma 4.3.1. Consider random variables c,u andm, if H(c) ≤ H(u), u ⊥m,
H(c|u,m) = 0 and H(u|c,m) = 0, then H(m|c) = H(m).

Proof.

H(m|c) (a)
= H(m)−H(c) +H(c|m)

(b)
= H(m)−H(c) +H(c|m)−H(c|u,m)

= H(m)−H(c) + I(c;u|m)

= H(m)−H(c) +H(u|m)−H(u|c,m)

(c)
= H(m)−H(c) +H(u|m)

(d)
= H(m)−H(c) +H(u)

(e)

≥ H(m),

where (a) follows from I(m; c) = H(m)−H(m|c) = I(c;m) = H(c)−H(c|m);
(b) and (c) follow from the hypothesis that H(c|u,m) = H(u|c,m) = 0; (d)
follows from d ⊥m; and (e) follows from H(c) ≤ H(u).

We remark on the use of the lemma. Typically c is the z codeword entries observed
by the adversary, u is the keys, and m is the messages. Therefore the statement
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H(m|c) = H(m) implies that no information about the message is leaked. For all
schemes discussed in this thesis, H(c) ≤ H(u), u ⊥ m and H(c|u,m) follow
trivially by construction, and to invoke the lemma, the only non-trivial condition
that one needs to establish is H(u|c,m) = 0.

We are ready to show the correctness of the shortened secure EVENODD.

Theorem 4.3.1. IfRp is a field, then the shortened secure EVENODD is a (p+ 2−
s, p− 2− s, 2, 2) secure RAID scheme.

Proof. It is easy to see that the shortened scheme maintains the same level of
reliability as secure EVENODD, and can tolerate any two erasures. Particularly,
the same decoding algorithm can be used, except that the shortened (suppressed)
entries in the codeword are set to be 0 by default. It remains to be shown that the
shortened scheme is also secure in the presence of two eavesdropping nodes.

By Lemma 4.3.1, the scheme is secure if the following claim is true: let ci1(α), ci2(α)

be any two entries of the shortened codeword, then u1(α) and u2(α) are functions
of ci1(α), ci2(α) andmi(α), i = 1, ..., p− 2− s. To prove the claim, we reformulate
it in the context of Construction 4.2.2. Note that encoding Construction 4.3.1 is
equivalent to encoding Construction 4.2.2 and suppressing the 3-rd to (s + 2)-th
entries in the codeword to be 0. Therefore, let S = {3, 4, ..., s+ 2} be the index set
of the shortened entries, then an equivalent claim is: in Construction 4.2.2, for any
i1, i2 ∈ [p+ 2]\S, u1(α) and u2(α) are functions of ci1(α), ci2(α), {ci(α) : i ∈ S},
and mi(α), i ∈ [p − 2]\S. In the following we prove this claim by showing that
one can recover u1(α) and u2(α) from ci1(α), ci2(α), {ci(α) : i ∈ S}, and mi(α),
i ∈ [p− 2]\S. Note that the generator matrix of Construction 4.2.2 is

Gpad GEO =



1 1 1 · · · 1 1 0

0 α α2 · · · αp−1 1 1

0 0 1 · · · 0 1 α2

...
...

... . . . ...
...

...
0 0 0 · · · 1 1 αp−1


. (4.11)

We remove the rows corresponding to themessage polynomialsmi(α), i ∈ [p−2]\S,
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namely the (3 + s)-th to the p-th rows from (4.11) to obtain

Gs =



1 1 1 · · · 1 1 · · · 1 1 0

0 α α2 · · · αs+1 αs+2 · · · αp−1 1 1

0 0 1 · · · 0 0 · · · 0 1 α2

...
...

... . . . ...
...

...
...

...
...

0 0 0 · · · 1 0 · · · 0 1 αs+1


.

It suffices to show that column vectors e1 = (1, 0, · · · , 0) and e2 = (0, 1, 0, · · · , 0)

are in the column span of the space generated by the 3-rd to (s+ 2)-th columns plus
the i1-th and i2-th columns of Gs. Clearly, if both the i1-th and i2-th columns are
not the last two columns of Gs, then sinceRp is a field, the i1-th and i2-th columns
span e1 and e2. In the remaining part of the proof we focus on the cases that at least
one of i1 and i2 is equal to p+ 1 or p+ 2. We also need to distinguish the case that
s is odd from the case that it is even. We begin with the case that s is odd.

Case 1 (i1 = p + 1, i2 < p + 1): sum the 3-rd to (s + 2)-th columns and the i1-th
column to obtain u = (0, 1+

∑s+1
i=2 α

i, 0, · · · , 0). This vector together with the i2-th
column span e1, e2.

Case 2 (i1 = p + 2, i2 < p + 1): for i = 3, ..., s + 2, scale the i-th column
by αi−1 and add it to the i1-th column to obtain the vector v = (

∑s+1
j=2 α

j, 1 +∑s+1
j=2 α

2j, 0, · · · , 0). Now if i2 = 1, then clearly v and the first column span
e1, e2. Otherwise, scale the i2-th column by

∑s+1
j=2 α

j and add to v to obtain
(0, 1 +

∑s+1
j=2 α

j+i2−1 +
∑s+1

j=2 α
2j, 0, · · · , 0). We only need to show that

ρ = 1 +
s+1∑
j=2

αj+i2−1 +
s+1∑
j=2

α2j 6= 0. (4.12)

Note that αp = 1 and (4.12) is trivially true when s = 1 or p = 5. Now we prove
(4.12) assuming p > 5 and s > 1. First suppose that s < p+3

2
so that the summation∑s+1

j=2 α
2j includes α4, α6 but does not include α5.

∑s+1
j=2 α

j+i2−1, however, sums
consecutive powers of α and therefore, if it includes α5, then it must include either
α4 or α6 or both. Therefore ρ must either 1) include both α4 and α6 but not include
α5, or 2) include α5 but not include at least one of α4 and α6. In both cases ρ is
not zero. Now suppose that s ≥ p+3

2
, then

∑s+1
j=2 α

2j includes α1, α3 but does not
include α2. By the same argument as above again it follows that ρ 6= 0. This proves
(4.12) and so v and the i2-th column span e1, e2.

Case 3 (i1 = p + 1, i2 = p + 2): obtain u as in Case 1 and obtain v as in Case 2.
Then u, v span e1, e2.
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We now turn to the regime that s is even.

Case 1′ (i1 = p + 1, i2 < p + 1): sum the 3-rd to (s + 2)-th columns and the i1-th
column to obtain u′ = (1, 1 +

∑s+1
i=2 α

i, 0, · · · , 0). This vector together with the
i2-th column span e1, e2.

Case 2′ (i1 = p+ 2, i2 < p+ 1): proof is identical to the proof of Case 2.

Case 3′ (i1 = p+ 1, i2 = p+ 2): obtain u′ as in Case 1′. Add u′ to the j-th column
to obtain

wj = (0, 1 +
s+1∑
k=2
k 6=j−1

αk, 0, · · · , 1, · · · , 0), j = 3, ..., s+ 2

where the entry of 1 is the j-th entry. Now scale wj by αj−1 and sum all of them to
the (p+ 2)-th column to obtain:

v′ =

(
0, 1 +

s+1∑
j=2

(
αj

(
1 +

s+1∑
l=2, l 6=j

αl

))
, 0, · · · , 0

)
(4.13)

=

(
0, 1 +

s+1∑
j=2

αj, 0, · · · , 0

)
. (4.14)

Then u′, v′ span e1, e2. The proof is complete.

4.4 Secure STAR
The secure EVENODDscheme can tolerate r ≤ 2 erasures and z ≤ 2 eavesdroppers.
A natural and important question is how to construct secure RAID schemes that can
tolerate more erasures and eavesdroppers. In this section we construct an efficient
secure RAID scheme based on the STAR code [20], which is a generalization of
the EVENODD code. The STAR code is a family of MDS array codes capable of
tolerating 3 erasures with almost optimal encoding complexity. The resulting secure
RAID scheme can tolerate r ≤ 3 erasures and z ≤ 3 eavesdroppers, with almost
optimal encoding and decoding complexity. We start with describing the STAR
code. Define Mp(x), Rp and α as in Section 4.3. Recall that the multiplicative
order of α is p.

Construction 4.4.1. (STAR code [20]) Let p be a prime, the STAR code is a
[p + 3, p] MDS array code over Fp−1

2 . Specifically, let m1(α), ...,mp(α) be p
message polynomials each representing p − 1 message bits. Then the codeword
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polynomials (c1(α), ..., cp+3(α)) = (m1(α), ...,mp(α)) GSTAR, where GSTAR is the
generator matrix of the STAR code:

GSTAR =


1 0 · · · 0 1 1 1

0 1 · · · 0 1 α α−1

... ... . . . ... ... ... ...
0 0 · · · 1 1 αp−1 α−(p−1)

 . (4.15)

We now describe the secure STAR scheme.

Construction 4.4.2. (Secure STAR) Let u1(α), u2(α), u3(α) be three key polyno-
mials selected i.i.d. uniformly at random from Rp, and let mi(α), i ∈ [p − 3] be
the message polynomials (each representing p− 1 bits of information). The key and
message polynomials are encoded into p+ 3 codeword polynomials as

(c1(α), ..., cp+3(α)) = (u1(α), u2(α), u3(α),m1(α), ...,mp−3(α)) G′′pad GSTAR

(4.16)

where G′′pad, defined in (4.17), is a square matrix that pads the key polynomials to
the message and GSTAR is defined in (4.15).

G′′pad =



1 1 1 · · · 1 1

1 α α2 · · · αp−2 αp−1

1 α−1 α−2 · · · α−(p−2) α−(p−1)

0 0 1 · · · 0 0
... ... ... . . . ... ...
0 0 0 · · · 1 0


. (4.17)

Note that the secure STAR is rate-optimal. The following result shows the correct-
ness of the secure STAR.

Theorem 4.4.1. The secure STAR is a (n = p+ 3, k = p− 3, r = 3, z = 3) secure
RAID scheme over Fp−1

2 .

Proof. Because the STAR code can tolerate three erasures and the codewords of
secure STAR are codewords of the STAR code, secure STAR can also tolerate three
erasures. It remains to be shown that the scheme can tolerate three eavesdropping
nodes.
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By Lemma 4.3.1, it suffices to show that from any three entries of the codeword
ci1(α), ci2(α), ci3(α) andmi(α), i = 1, ..., p− 3, one can recover u1(α), u2(α) and
u3(α). To prove this claim, note that the generator matrix of secure STAR is

G′′pad GSTAR =



1 1 1 · · · 1 1 1 0 0

1 α α2 · · · αp−2 αp−1 0 0 1

1 α−1 α−2 · · · α−(p−2) α−(p−1) 0 1 0

0 0 1 · · · 0 0 1 α2 α−2

...
...

... . . . ...
...

...
...

...
0 0 0 · · · 1 0 1 αp−2 α−(p−2)


.

(4.18)

LetGtop be the matrix formed by the first three rows of the matrix in (4.18), thenGtop

is a systematic parity check matrix of the STAR code if the (p+ 2)-th and (p+ 3)-th
columns are swapped. Because the STAR code is MDS, any three columns of its
parity check matrix are linearly independent. Therefore any three columns of Gtop

are linearly independent. This proves the claim and the theorem.

On account of the proof of Theorem 4.4.1, we can interpret the secure STAR scheme
under the framework of Theorem 3.3.1, where C2 is the STAR code, and C1 is the
dual STAR code.

4.4.1 Encoding Secure STAR
We analyze the computational complexity of secure STAR. As discussed in Section
4.2, multiplying an element of Rp by αi requires at most p − 1 XORs. Consider
the encoding complexity of secure STAR, in the first phase we multiply the key and
message polynomials by Gpad′′ . This takes at most 10(p − 1) + 5(p − 3)(p − 1)

XORs. The second phase, which is to encode the standard STAR code, takes at
most 3(p − 1)2 + 2(p − 2) XORs. Therefore the normalized encoding complexity
of secure STAR is

10(p− 1) + 5(p− 3)(p− 1) + 3(p− 1)2 + 2(p− 2)

(p− 3)(p− 1)
≈ 8

XORs to encode each bit of message. By Corollary 3.2.1, a lower bound on the
normalized encoding complexity is 6 + 6

p−3
≈ 6 XORs to encode each message

bit. Therefore the encoding complexity of secure STAR is almost optimal. In the
following we show an improved encoding scheme of secure STAR to further reduce
the encoding complexity. The normalized encoding complexity of the improved
scheme is approximately 6XORs per message bit, meeting the lower bound.
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Specifically, consider the (binary) generator matrix of the STAR code by regarding
a polynomial f(α) as a binary row vector of length p − 1. And so GSTAR expands
into a p(p − 1) by (p + 3)(p − 1) binary matrix, i.e., each entry in the matrix in
(4.18) expands into a (p− 1) by (p− 1) block:

G′STAR =


I 0 · · · 0 I A0 A0

0 I · · · 0 I A1 A〈−1〉
...

... . . . ...
...

...
...

0 0 · · · I I Ap−1 A〈−(p−1)〉

 (4.19)

where I is the identity matrix of order p− 1, 0 is the zero matrix, and Ak = (a
(k)
ij ),

1 ≤ i, j ≤ p− 1 is defined by:

a
(k)
ij =

{
1, j − i = k or i = p− k
0, otherwise.

(4.20)

Note that A0 = I , and refer to (4.4) for more examples. The binary parity check
matrix corresponding to the systematic generator matrix in (4.19) is :

H ′STAR =

 I I · · · I I 0 0

At0 At1 · · · Atp−1 0 I 0

At0 At〈−1〉 · · · At〈−p−1〉 0 0 I

 .

Consider the complexity of encoding the dual code of the STAR code bymultiplying
a message vector (u1,u2,u3)with the matrixH ′STAR, whereui is a binary row vector
of length p−1. ThenmultiplyinguiwithAtj is simply a cyclic shift ofui (by j entries
to the left) except that the (p − j)-th entry in the result becomes u∗i =

∑p−1
k=1 uik.

Therefore the only computation required in multiplying ui with Atj is to compute
u∗i , which only needs to be performed once for each ui.

Now to encode secure STAR, instead of using the padding matrixG′′pad in (4.17), we
use the following matrix G′pad:

I I I · · · I I

At0 At1 At2 · · · Atp−2 Atp−1

At0 At〈−1〉 At〈−2〉 · · · At〈−(p−2)〉 At〈−(p−1)〉

0 0 I · · · 0 0
...

...
... . . . ... 0

0 0 0 · · · I 0


.
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Replacing G′′pad by G′pad does not affect the security of the scheme. This is because
the first three rows of G′′pad and of G′pad span the same space, i.e., the space of the
dual STAR code, with the last three entries in the codeword deleted.

The improved padding matrix reduce the encoding complexity of the padding phase
to at most 2(p − 2) + 6(p − 1) + 3(p − 3)(p − 1) XORs. Therefore, the overall
normalized encoding complexity of the improved scheme is

4(p− 2) + 6(p− 1) + 3(p− 3)(p− 1) + 3(p− 1)2

(p− 1)(p− 3)
≈ 6

XORs per message bit, which is essentially optimal.

4.4.2 Decoding Secure STAR
Next we consider the decoding complexity of secure STAR. In general one can
decode by multiplying the codeword vector to the inverse of the generator matrix,
but matrix inversion is an expensive operation (requiring O(n6) XORs). Even if the
cost of matrix inversion is amortized (as the inverse can be pre-computed), matrix
multiplication is still expensive (requiring O(n4) XORs). In the following we show
that the construction of secure STAR entails a very efficient decoding algorithm,
requiring only O(n2) XORs in total.

The decoding algorithm can be divided into three steps: First, if any of the first
p entries in the codeword is erased, recover them by erasure decoding. Secondly,
decode the key polynomials u1(α), u2(α), u3(α) and hence all the key bits from
c1(α), c2(α), cp(α). Finally, cancel the keys from ci(α), i = 3, ..., p − 1 to obtain
the message polynomials. For the first step, since the codewords of secure STAR
are codewords of the STAR code, recovering the erased symbols is equivalent to
recovering from erasures in the STAR code. A major advantage of the STAR code is
that it has a very efficient erasure decoding algorithm [20], requiring at most O(n2)

XORs to recover any three erasures. In the following we focus on the latter two
steps that deal with the arguably more important issue of “decrypting” the message,
as erasure decoding is needed only when erasures occur, but “decryption” is always
required whenever one wants to retrieve the information.

We first describe the third step of canceling the keys, which is simply to “re-pad” the
keys to the codeword in the same way as they were padded to the messages during
the encoding phase. Since the padding scheme G′pad is almost optimal, i.e., most
entries in the array are padded by only three key bits, the minimum number of keys
to tolerate three eavesdroppers, the complexity of canceling the keys is essentially
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optimal. Namely, for most entries in the array, recovering the message bit stored in
that entry only requires 3 XORs to cancel the keys.

We now describe the second step of decoding the key polynomials. For ease of
notation, denote for short ai , u1i, bi , u2i, ci , u3i, i = 1, ..., p− 1, and a0 , u∗1,
b0 , u∗2, c0 , u∗3 (recall that u∗j =

∑p−1
i=1 uji). Then the coefficients of c1(α) are

ai + bi + ci, the coefficients of c2(α) are ai + b〈i+1〉 + c〈i−1〉 and the coefficients
of cp(α) are ai + b〈i−1〉 + c〈i+1〉, i = 1, ..., p − 1. Therefore the coefficients of
c1(α) + c2(α) are ui , bi + b〈i+1〉+ c〈i−1〉+ ci, and the coefficients of c1(α) + cp(α)

are vi , b〈i−1〉 + bi + ci + c〈i+1〉, i = 1, ..., p− 1.

For i = 0, ..., p−3, by XORing v〈i+1〉 and u〈i+2〉 we obtainwi = bi+b〈i+1〉+b〈i+2〉+

b〈i+3〉. Since b0 = u∗2 =
∑p−1

i=1 bi, we have w0 =
∑p−1

i=4 bi, and wp−3 =
∑p−4

i=1 bi. We
consider two cases: Case 1: p mod 4 = 1. Therefore 4 divides p − 5 and we can
combine the wi’s to obtain

∑p−1
i=5 bi. Canceling it from w0 we obtain b4. Similarly, 4

divides p− 9 and so we can obtain
∑p−4

i=6 bi. Canceling
∑p−4

i=6 bi and w1 from wp−3

we obtain b5. By symmetry we can also obtain c4 and c5. Case 2: p mod 4 = 3.
Therefore 4 divides p−3 and we can combine thewi’s to obtain

∑p−1
i=3 bi. Canceling

w0 from it we obtain b3. Similarly, 4 divides p − 7 and we can obtain
∑p−4

i=4 bi.
Canceling it from wp−3 we obtain b1 + b2 + b3. Finally cancel it from w1 and we
obtain b4. By symmetry we can also obtain c3 and c4.

Therefore, there always exists an i so that we can obtain bi, bi+1 and ci, ci+1. Now
cancel bi, ci and ci+1 from vi to obtain bi−1 and cancel bi+1, ci and ci+1 from ui+1 to
obtain bi+2. By symmetry we can also obtain ci−1 and ci+2. By induction we obtain
all bi, ci, i = 1, ..., p− 1. Finally, cancel the bi’s and the ci’s from the coefficients of
c1(α) to obtain ai, i = 1, ..., p− 1. This completes the decoding of all key bits.

We summarize the computational complexity of systematic decoding, i.e., the
complexity of the second and third steps of the algorithm. The second step re-
quires no more than 18(p − 1) XORs and the third step requires no more than
3(p− 1) + 3(p− 3)(p− 1) XORs. Therefore the normalized decoding complexity
is

18(p− 1) + 3(p− 1) + 3(p− 3)(p− 1)

(p− 3)(p− 1)
≈ 3

XORs per message bit. Since every message bit has to be padded by at least three
key bits in order to tolerate three eavesdropping nodes, the decoding complexity of
the scheme is essentially optimal.
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4.5 Secure B
In the previous sections of this chapter we have constructed several families of secure
RAID schemes with optimal encoding and decoding complexity; all of them are
related to the ringRp. In this section we construct another family of optimal secure
RAID schemes from the B codes [18], which are related to graph factorization.

Specifically, the B codes are equivalent to perfect one-factorization of complete
graphs [18]. For any prime p, the perfect one-factorization of Kp+1, the complete
graph of p + 1 vertexes, is known [43], and geometrically defines a family of B
codes, also equivalent to the codes in [44]. Here we present a simplified algebraic
description of this family of B codes.

We start with the dual B codes which are conceptually simpler. For any prime p,
let t = p−1

2
, the dual B code is a [p − 1, 2] MDS array code over Ft2 of minimum

distance p− 2. We refer the reader to Figure 4.3 for an example of the dual B code
of p = 7 and an informal description of the construction. Let a, b be integers, we
denote by 〈a

b
〉 by the unique integerm, 0 ≤ m < p, such that a ≡ bm (mod p).

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6
m1 m2 m3 m4 m5 m6

m2 ⊕m6 m4 ⊕m5 m6 ⊕m4 m1 ⊕m3 m3 ⊕m2 m5 ⊕m1

m3 ⊕m5 m6 ⊕m3 m2 ⊕m1 m5 ⊕m6 m1 ⊕m4 m4 ⊕m2

Figure 4.3: Dual B code of length 6. All symbols are binary bits and all operations
are XORs. The code is MDS and is able to correct 6 − 2 = 4 node (column)
erasures. Note that each message bit is checked by exactly 4 parities, implying
optimal encoding complexity because this is necessary to correct 4 erasures. In
general, dual B codes with similar properties can be constructed for any length
p− 1, where p is prime, in the following simple way: node i storesmi as well as all
sums of the formma ⊕mb such that 〈a+ b〉 = i.

Construction 4.5.1. (Dual B Code). Let p be a prime, t = p−1
2

and letm1, ...,mp−1

be the message bits. The codewords of the dual B code form a t × (p − 1) array,
described by the following encoding mapping. Let ci,j be the (i, j)-th entry of the
code array, then ci,j = m〈i·j〉 ⊕m〈(1−i)·j〉, for i ∈ [t], j ∈ [p− 1], wherem0

def
= 0.

Note that the first row of the array consists of the systematic symbols, and the 2-nd
to t-th rows consist of the parity (i.e., redundant) symbols.

Theorem 4.5.1. The dual B code is MDS.
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Proof. Note that the dual B codes have dimension k = 2 because there are p − 1

message bits and t = p−1
2
. Therefore it suffices to prove that all message bits can be

decoded from any two nodes. Suppose the two nodes are node u and v. Then by
construction, for x ∈ {u, v}, node x stores {ma +mb|a+ b = x, 0 ≤ a, b ≤ p− 1}.
Let i = 〈u/2〉 and j = 〈v/2〉. We describe a path, in which vertexes represent the
indexes of the message bits, and edges represent the encoded bits stored in node
u and v, i.e., the edge (a, b) represents ma + mb. The path consists of p vertexes
x1, ..., xp and p − 1 edges, defined as follows. Let the first vertex be x1 = i. Let
the odd edges (i.e., the 1-st, 3-rd, ..., (p− 2)-th edges of the path) come from node
v, i.e., they are elements of {(a, b)|a + b = v = 2j}, and let the even edges come
from node u, i.e., they are elements of {(a, b)|a + b = u = 2i}. The path is well-
defined by construction, namely, x2 = 2j − i, since node v stores mi + m2j−i and
stores no other encoded bits involving mi; and x3 = 3i − 2j , since node u stores
m2j−i + m3i−2j and stores no other encoded bits involving m2j−i. By induction, it
is straightforward to see that {x1, ..., xp} = {〈i+ 2a(i− j)〉|a = 0,±1, ...,±t}.

We claim that the path is simple, i.e., |{x1, ..., xp}| = p. Suppose i + 2a(i − j) ≡
i + 2a′(i − j) mod p, then because i 6≡ j mod p, it follows that a ≡ a′ mod p,
proving the claim. Because Fp has exactly p elements, it follows that {x1, ..., xp} =

{0, ..., p− 1}. Particularly, the path contains a vertex labeled by 0, whose neighbors
on the path are vertexes u and v. Since m0 = 0 is known, we cut the path at the
vertex 0, obtaining two decoding paths, such that one starts with vertex u, and the
other starts with vertex v. Following the decoding paths, all message bits on the
path can be decoded one by one by cancellation, starting with cancelingmu andmv

which are stored in the clear. This completes the proof.

In the 2t× (p− 1)t generator matrix of the dual B code, each row has exactly p− 2

1’s. This meets the obvious lower bound on the number of 1’s (the dual B code
has minimum distance p − 2), and therefore the dual B code has a lowest density
generator matrix. This matrix is a (systematic) parity check matrix of the B code,
fromwhich we can immediately obtain a generator matrix of the B code, by recalling
that [A|I(n−k)t] is a parity-check matrix of an [n, k] code C over Ftq if and only if
[Ikt| − AT ] is a generator matrix of C. We refer the readers to Figure 4.4 for an
example of the B code of p = 7 and an informal description of the construction.

Construction 4.5.2. (B Code). Let p be a prime, t = p−1
2

and let mi,j , i ∈ [t− 1],
j ∈ [p − 1] be the message bits. The codewords of the B code forms a t × (p − 1)
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Node 1 Node 2 Node 3 Node 4 Node 5 Node 6
m1,1 m1,2 m1,3 m1,4 m1,5 m1,6

m2,1 m2,2 m2,3 m2,4 m2,5 m2,6

m1,4 ⊕m1,6⊕ m1,1 ⊕m1,5⊕ m1,5 ⊕m1,4⊕ m1,2 ⊕m1,3⊕ m1,6 ⊕m1,2⊕ m1,3 ⊕m1,1⊕
m2,5 ⊕m2,3 m2,3 ⊕m2,6 m2,1 ⊕m2,2 m2,6 ⊕m2,5 m2,4 ⊕m2,1 m2,2 ⊕m2,4

Figure 4.4: B code of length 6. All symbols are binary bits and all operations are
XORs. The code is MDS and is able to correct 2 node (column) erasures. Note
that each message bit is checked by exactly 2 parities, implying optimal encoding
complexity because this is necessary to correct 2 erasures. In general, for any prime
p, B codes of length p − 1 can be constructed in the following way: construct the
dual B code of length p− 1 and switch the role of information bits and parity bits.
Specifically, in the dual B code (see Figure 4.3), an information bit mi is checked
by n− 2 parities; in the B code, these n− 2 parities become information bits, and
they are exactly the set of information bits checked by the parity bit of node i.

array, described by the following encoding mapping. The first t−1 rows of the array
consist of the systematic symbols, i.e., ci,j = mi,j , for i ∈ [t − 1], j ∈ [p − 1]. The
t-th row consists of the redundant symbols, i.e., ct,j =

⊕t−1
k=1

(
mk,〈 j

k+1
〉 ⊕mk,〈− j

k
〉

)
,

for j ∈ [p− 1].

By Lemma 3.3.1, the B codes are MDS and can correct 2 node erasures. In the
(p − 3)t × (p − 1)t generator matrix of the B code, each row has exactly three
1’s, meeting the obvious lower bound (the B code has minimum distance 3), and
therefore the B code has a lowest density generator matrix.

We are ready to describe the (n = p − 1, k = p − 5, r = 2, z = 2) secure RAID
scheme based on the B code.

Construction 4.5.3. (Secure B). Let p be a prime and t = p−1
2
. Let u1, ..., up−1

be the uniformly distributed key bits and let mi,j , i ∈ [t − 2], j ∈ [p − 1] be the
message bits. The codewords of secure B form a t× (p− 1) array, described by the
following encoding mapping. The first row of the array consists of the key symbols,
i.e., c1,j = uj ⊕ u〈2·j〉 ⊕ u〈−j〉, j ∈ [p − 1]. The 2-nd to (t − 1)-th rows are the
systematic message symbols, i.e., ci,j = u〈(i+1)·j〉⊕u〈−i·j〉⊕mi−1,j , for i ∈ [2, t−1],
j ∈ [p− 1]. The t-th row consists of the redundant symbols, which are computed by
encoding the B code described in Construction 4.5.2, regarding the first (t−1)-rows
of the array as information symbols.

An example of the scheme is shown in Fig. 4.5. On account of the construction
method discussed in Section 3.3.1, the construction idea is to let C2 be the B code
and design C1 to take a form similar to the dual B code, because it is low rate,
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Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

u1 ⊕ u2 ⊕ u6 u2 ⊕ u4 ⊕ u5 u3 ⊕ u6 ⊕ u4 u4 ⊕ u1 ⊕ u3 u5 ⊕ u3 ⊕ u2 u6 ⊕ u5 ⊕ u1

u3 ⊕ u5 ⊕m1 u6 ⊕ u3 ⊕m2 u2 ⊕ u1 ⊕m3 u5 ⊕ u6 ⊕m4 u1 ⊕ u4 ⊕m5 u4 ⊕ u2 ⊕m6

uΣ ⊕ u1⊕ uΣ ⊕ u2⊕ uΣ ⊕ u3⊕ uΣ ⊕ u4⊕ uΣ ⊕ u5⊕ uΣ ⊕ u6⊕
u4 ⊕m3 ⊕m5 u1 ⊕m6 ⊕m3 u5 ⊕m2 ⊕m1 u2 ⊕m5 ⊕m6 u6 ⊕m1 ⊕m4 u3 ⊕m4 ⊕m2

Figure 4.5: The (6,2,2,2) secure B scheme. uΣ =
⊕p−1

i=1 ui. The first row stores the
(relaxed) systematic key bits, the middle row(s) stores the systematic message bits,
and the last row is redundant. Note that the scheme is essentially optimal in key
padding, in the sense that only two keys are padded to each entry of the array except
the first and the last rows. In the last row three keys are padded (regarding uΣ as a
key), which is only slightly suboptimal. In the first row, while the keys are not stored
in the clear, the cost (less than 2p XORs) in encoding is marginal especially when
amortized over the message bits. Decoding the keys from the first row is efficient,
see Algorithm 1.

MDS, and has optimal encoding complexity. However, the dual B code is not
contained in the B code, and we need to design C1 carefully to meet C1 ⊂ C2 without
compromising efficiency. Indeed, the encoding of keys in Construction 4.5.3 is
similar to Construction 4.5.1, e.g., compare the third row in Figure 4.3 to the second
row in Figure 4.5.

The following lemma gives an explicit expression of the entries in the last row of
the array.

Lemma 4.5.1. In Construction 4.5.3,

ct,j = uΣ ⊕ uj ⊕ u〈j/2〉 ⊕

(
t−1⊕
k=2

(
mk−1,〈 j

k+1
〉 ⊕mk−1,〈− j

k
〉

))
,

where uΣ =
⊕p−1

i=1 ui.
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Proof. We have

ct,j
(a)
=

t−1⊕
k=1

(
ck,〈 j

k+1
〉 ⊕ ck,〈− j

k
〉

)
= c1,〈 j

2
〉 ⊕ c1,〈−j〉 ⊕

(
t−1⊕
k=2

(
ck,〈 j

k+1
〉 ⊕ ck,〈− j

k
〉

))
(b)
= u〈j/2〉 ⊕ uj ⊕ u〈−j/2〉 ⊕ u〈−j〉 ⊕ u〈−2j〉 ⊕ uj ⊕

(
t−1⊕
k=2

(
ck,〈 j

k+1
〉 ⊕ ck,〈− j

k
〉

))

= u〈j/2〉 ⊕ u〈−j/2〉 ⊕ u〈−j〉 ⊕ u〈−2j〉 ⊕

(
t−1⊕
k=2

(
ck,〈 j

k+1
〉 ⊕ ck,〈− j

k
〉

))
(c)
= u〈j/2〉 ⊕ u〈−j/2〉 ⊕ u〈−j〉 ⊕ u〈−2j〉⊕

t−1⊕
k=2

(
u〈 (k+1)j

k+1
〉 ⊕ u〈− kj

k+1
〉 ⊕mk−1,〈 j

k+1
〉 ⊕ u〈− (k+1)j

k
〉 ⊕ u〈 kjk 〉 ⊕mk−1,〈− j

k
〉

)
= u〈j/2〉 ⊕ u〈−j/2〉 +⊕u〈−j〉 ⊕ u〈−2j〉 ⊕

(
t−1⊕
k=2

(
u〈− kj

k+1
〉 ⊕ u〈− (k+1)j

k
〉

))
⊕

t−1⊕
k=2

(
mk−1,〈 j

k+1
〉 ⊕mk−1,〈− j

k
〉

)
(d)
= u〈j/2〉 ⊕ u〈−j〉 ⊕

(
t−1⊕
k=1

(
u〈− kj

k+1
〉 ⊕ u〈− (k+1)j

k
〉

))
⊕

t−1⊕
k=2

(
mk−1,〈 j

k+1
〉 ⊕mk−1,〈− j

k
〉

)
(e)
= u〈j/2〉 ⊕ u〈−j〉 ⊕ uΣ ⊕ uj ⊕ u〈−j〉 ⊕

(
t−1⊕
k=2

(
mk−1,〈 j

k+1
〉 ⊕mk−1,〈− j

k
〉

))

= uΣ ⊕ uj ⊕ u〈j/2〉 ⊕

(
t−1⊕
k=2

(
mk−1,〈 j

k+1
〉 ⊕mk−1,〈− j

k
〉

))
where (a) follows from Construction 4.5.2; (b) and (c) follows from Construction
4.5.3; (d) follows from merging u〈−j/2〉 and u〈−2j〉 into the summation; and (e)
follows from the fact that

⊕t−1
k=1

(
u〈− kj

k+1
〉 + u〈− (k+1)j

k
〉

)
= uΣ ⊕ uj ⊕ u〈−j〉, which

we now prove. Note that 〈 k
k+1
〉 = 〈 k′

k′+1
〉 implies 〈k〉 = 〈k′〉; 〈k+1

k
〉 = 〈k′+1

k′
〉 implies

〈k〉 = 〈k′〉; 〈 k
k+1
〉 = 〈k′+1

k′
〉 implies that 〈k+k′〉 = p−1, and therefore it follows that

in the summation, the 2(t− 1) = p− 3 summands are distinct. Denote by J the set
of the indexes of the summands, then J contains 1, 2, ..., p− 1 except two elements.
Because 〈 k

k+1
〉 6= 1 and 〈k+1

k
〉 6= 1, it follows that 〈−j〉 /∈ J . Because 〈 k

k+1
〉 =

〈−1〉 and 〈k+1
k
〉 = 〈−1〉 both imply that 〈k〉 = t, it follows that j /∈ J . Hence
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J = [p− 1]\{j, 〈−j〉}, implying
⊕t−1

k=1

(
u〈− kj

k+1
〉 ⊕ u〈− (k+1)j

k
〉

)
= uΣ ⊕ uj ⊕ u〈−j〉.

This completes the proof.

Theorem 4.5.2. Secure B is a (p− 1, p− 5, 2, 2) secure RAID scheme over Ft2, for
any prime p and t = p−1

2
. In particular, the density of the key rows of the generator

matrix is 2p− 5, and the density of the message rows is 3.

Proof. Note that t = p−1
2

and the number of message bits is (t − 2)(p − 1). So
k = (t− 2)(p− 1)/t = p− 5, and the scheme is rate-optimal.

Since the codewords of secure B are codewords of the B code, any two column
erasures can be corrected. We focus on proving that the scheme is secure. By
Lemma 4.3.1, it suffices to show that given the message bits and any two columns
of the array, all keys can be decoded. For j ∈ [p−1], consider the encoding of keys,
denoted by {c′i,j : i ∈ [t]}, in the j-th column. By Construction 4.5.3 and Lemma
4.5.1, we have

c′i,j =


uj ⊕ u〈2j〉 ⊕ u〈−j〉 i = 1

u〈(i+1)·j〉 ⊕ u〈−i·j〉 i = 2, · · · , t− 1

uΣ ⊕ uj ⊕ u〈j/2〉 i = t.

(4.21)

Encode the keys u1, · · · , up−1 as information by the dual B code, then the entries in
the j-th columns are

c′′i,j = u〈i·j〉 ⊕ u〈(1−i)·j〉 i = 1, · · · , t. (4.22)

Clearly, c′′i,j = c′i−1,j , i = 3, · · · , t− 1. Note that

t−1⊕
i=2

c′i,j = uΣ + uj + u2j + u〈−j〉 + u〈j/2〉. (4.23)

Therefore, c′′1,j = uj =
⊕t

i=1 c
′
i,j , and c′′2,j = u〈2j〉 + u〈−j〉 =

⊕t
i=2 c

′
i,j . It follows

that {c′′i,j : i ∈ [t]} are functions of {c′i,j : i ∈ [t]}. Since the dual B code is MDS,
the ui’s can be decoded from any two columns of the c′′i,j’s, and so can be decoded
from any two columns of the c′i,j’s. This completes the proof that secure B is a
(p− 1, p− 5, 2, 2) secure RAID scheme.

We now analyze the density of the generator matrixG. We say a key ui (or a message
bit mi,j) is checked by ca,b if in G the entry corresponding to ui (or mi,j) and ca,b
is 1. By construction, ui is checked by ct,b for b = 1, ..., p − 1, b 6= i, 〈2i〉, and is
checked by exactly one element of {ca,1, ..., ca,t−1} for a = 1, ..., p − 1, a 6= 〈2i〉.
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Therefore ui is checked for exactly p−2+p−3 = 2p−5 times. A message bitmi,j

is checked by ci+1,j , ct,〈(i+2)j〉 and ct,〈−(i+1)j〉. Therefore mi,j is checked for exactly
3 times. This completes the proof.

On account of the proof of Theorem 4.5.2, we can interpret the secure B scheme
under the framework of Theorem 3.3.1, where C2 is the B code, and C1 is a variant
of the dual B code.

By Theorem 3.2.2, a lower bound on the density of the key rows is p−2 and a lower
bound on the density of the message rows is 3. Therefore for the message rows, the
scheme achieves the lowest density. For the key rows, the scheme achieves the lower
bound within a factor of 2.

Algorithm 1m = Dec(c); Systematic Decoding.

1: for i← 1 to t do . Decode keys from c1,j , j ∈ [p− 1]. Recall that t = p−1
2
.

2: x← c1,〈i/4〉 ⊕ c1,〈−i/4〉 . x = u〈i/2〉 + u〈−i/2〉
3: ui ← c1,〈i/2〉 ⊕ x
4: u−i ← c1,〈−i/2〉 ⊕ x
5: end for . All keys have been decoded.
6: for i← 2 to t− 1 and j ← 1 to p− 1 do
7: mi−1,j ← ci,j ⊕ u〈(i+1)·j〉 ⊕ u〈−i·j〉 . Cancel keys to obtain message bits.
8: end for

Algorithm 1 describes a systematic decoding algorithm for the scheme. In the
case of erasures/error, the erasure/error decoding algorithm of the B code [18] is
invoked to correct the erasures, and then Algorithm 1 is invoked to decode the
message. Encoding the scheme according to Construction 4.5.3 requires a total
number of 2p2 − 9p + 7 XORs, or on average 4 + 6

p−5
XORs per message bit.

Systematic decoding the scheme according to Algorithm 1 requires a total number
of p2 − 9

2
p + 7

2
XORs, or on average 2 + 3

p−5
XORs per message bit. By Corollary

3.2.1, encoding each message bit requires at least 4 + 2
p−5

XORs, and decoding
each message bit requires at least 2 XORs. Therefore the encoding and decoding
complexity of secure B is essentially optimal.

4.6 Optimal Secure B
So far the secure RAID schemes constructed in this chapter are almost optimal in
terms of encoding, decoding and the density of generator matrix. Nevertheless, it
remains an interesting problem whether the gap can be closed, and whether there
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exist schemes achieving the bounds in Theorem 3.2.2 and Corollary 3.2.1 strictly.
In this section we provide a partial answer to this question.

Specifically, we are able to construct strictly optimal (p − 1, p − 5, 2, 2) secure
RAID schemes for any prime p ranging from 7 to 53. We conjecture that such
strictly optimal schemes exist for an infinite sequence of primes p. Like Section 4.5,
the construction is based on the B codes. Unlike Section 4.5, which slightly changes
the encoding of the dual B code for key padding, in this section we will preserve
strictly the encoding of the dual B code and its optimality. Then, in order to meet
the containment condition, we resort to permutation.

Definition 4.6.1. Let p be a prime, t = p−1
2
, and let σ : [t]→ [t] be a permutation.

We say σ is proper with respect to p if σ(1) 6= t and that for every codeword
C = (ci,j) of the dual B code,

(
cσ(i),j

)
is a codeword of the B code.

Construction 4.6.1. (Optimal Secure B) Let p be a prime, t = p−1
2
, and let σ :

[t] → [t] be a proper permutation with respect to p. Let u1, ..., up−1 be uniformly
distributed key bits. The codewords of optimal secure B form a t×(p−1) array. The
first t−1 rows of the array are the systematic key and message symbols, computed as
follows. Denote byC ′ = c′i,j the codeword of the dual B code computed by encoding
the keys as information symbols and denote i∗ = σ(1), then ci∗,j = c′1,j = uj ,
j ∈ [p − 1]; for i 6= i∗, i ∈ [t − 1], j ∈ [p − 1], ci,j = c′σ(i),j ⊕ mi,j , where the
mi,j’s are the message bits. The t-th row consists of the redundant symbols, which
are computed by encoding the B code regarding the first (t − 1)-rows of the array
as information symbols.

An example of the optimal secure B schemes is shown in Figure 2.2. The proper
permutation (in cycle representation [45]) is σ = (1)(2, 3). It would be helpful to
compare Figure 2.2 to Figure 4.3 and Figure 4.4 to see the effect of σ.

Theorem 4.6.1. Construction 4.6.1 is a (p − 1, p − 5, 2, 2) secure RAID scheme
over Ft2. In particular, the key rows of the generator matrix have optimal density
p− 2, and the message rows have optimal density 3.

Proof. Interpreting the scheme using the method described in Section 3.3.1, then C1

is the dual B code in which the rows of the codeword array are permuted according
to σ, and C2 is the B code. By Corollary 3.3.1 the scheme is a (p − 1, p − 5, 2, 2)

secure RAID scheme.
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By the optimality of the dual B code, each key bit appears in exactly p − 2 of the
ci,j’s, and by the optimality of the B code 4.5.2, each message bit appears in exactly
3 of the ci,j’s. Therefore each key row has density p− 2 and each message row has
density 3, meeting the lower bound in Theorem 3.2.2 and proving the theorem.

Encoding Construction 4.6.1 requires 4+ 2
p−5

XORs permessage bit and achieves the
lower bound of Corollary 3.2.1. Systematic decoding the scheme by first reading the
keys and then canceling them from the systematic message symbols requires 2 XORs
per message bit, again achieving the trivial lower bound. Therefore Construction
4.6.1 has optimal encoding and systematic decoding complexity.

It remains to address whether a proper permutation σ exists and how to construct
it. We are not aware of a method to construct proper permutations for arbitrary
prime p. However, for an arbitrary permutation σ, the following result is useful in
determining whether σ is proper.

Lemma 4.6.1. Let p be a prime, t = p−1
2
, and let σ : [t]→ [t] be a permutation such

that σ(1) = i∗ 6= t. Consider five multisets A1 = {〈σ
−1(i)
i+1
〉 : i ∈ [t − 1], i 6= i∗},

A2 = {〈1−σ
−1(i)
i+1

〉 : i ∈ [t − 1], i 6= i∗}, A3 = {〈−σ−1(i)
i
〉 : i ∈ [t − 1], i 6= i∗},

A4 = {〈σ
−1(i)−1

i
〉 : i ∈ [t − 1], i 6= i∗} and A5 = ∪4

i=1Ai ∪ {〈 1
i∗+1
〉, 〈− 1

i∗
〉}. Then

σ is proper with respect to p if and only if σ−1(t) and 〈1− σ−1(t)〉 are elements of
A5 with odd multiplicity and all other elements of A5 have even multiplicity.

The lemma can be proved by verifying Definition 4.6.1 according to Construction
4.5.1 and 4.5.2. With Lemma 4.6.1 we can easily check whether a given σ is proper
or not. Therefore a proper σ with respect to a given p, if exists, can be found by
exhaustive search. Proper σ with respect to 7 ≤ p ≤ 53 are listed in Table 4.1. We
conjecture that proper σ exists with respect to an infinite sequence of p.
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p σ
7 (1) (2 3)
11 (1 4 2) (3) (5)
13 (1 5 3) (2) (4) (6)
17 (1) (2 8 3 6 4 7) (5)
19 (1 2) (3 9 8 4) (5 7) (6)
23 (1) (2 11 10 3 4 9 8 7 6 5)
29 (1) (2 14) (3 13 12 11 10 7 5 4) (6) (8 9)
31 (1) (2 15 12 11 6 5) (3 4) (7 10 9 8) (13 14)
37 (1 3 8 5 4 18 17 16 15 14 11 10 9 2) (6 7) (12 13)
41 (1 9 8 7 6 5 4) (2 3) (10 20 17 14 13 12 11) (15 16) (18 19)
43 (1 15 14 13) (2 12 11 10) (3 9 8 7 18 17 16 21 20 19 6 5) (4)
47 (1 17 9 15 5 4 3 2) (6 14 13 12 7) (8 11 10 16) (18 23 22 21 20) (19)
53 (1 5 4 3 18 8 7 15 14 13 12 24 23 10 9 17 16 6 26) (2 25 11 22 21 20 19)

Table 4.1: Table of proper permutations with respect to p. We use the cycle
representation of permutations [45]. We note that proper permutations may not be
unique and this table lists only one of the proper permutation(s) with respect to a
specific p.
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C h a p t e r 5

SCHEMES OF ARBITRARY RATE OVER RING

In the previous chapter we construct several secure RAID schemes with optimal or
essentially optimal encoding and decoding complexity. These schemes are high rate
and can tolerate r ≤ 3 erasures and z ≤ 3 eavesdroppers. In this chapter we turn
to designing highly efficient schemes with general parameters. We start with diving
into a special ringRp, over which the schemes will be constructed.

5.1 TheRp Ring
Let p be a prime, and let Mp(x) =

∑p−1
i=0 x

i be a polynomial over GF (2). Let Rp

be the ring of polynomials of degree less than p− 1 overGF (2) with multiplication
taken modulo Mp(x). We shall use the indeterminate α to refer to polynomials in
Rp, and reserve the indeterminate x for polynomials in F2[x]. Secure EVENODD
and secure STAR are both linear schemes over Rp, in which the coefficients of an
element of Rp are the p − 1 bits stored by a node. It is well known that Rp has a
nice structure that is advantageous to both computation and implementation [34]. In
this section we review and summarize the important properties ofRp, which will be
useful later in the design and analysis of efficient secure RAID schemes tolerating
an arbitrary number of erasures and eavesdropping nodes.

Lemma 5.1.1. Given a(x) =
∑p−2

i=0 aix
i, let

b(x) =

p−2∑
i=0

bix
i ≡ xja(x) mod Mp(x). (5.1)

Namely, b(α) = αja(α). Then bi, i = 0, · · · , p− 2 can be computed by Algorithm
2 using no more than p XORs.

Proof. Let c(x) =
∑p−1

i=0 cix
i ∈ F2[x] be the polynomial of degree < p such that

c(x) ≡ xja(x) mod xp − 1. (5.2)

Denote a = (a0, · · · , ap−1), where ap−1 , 0. Then (c0, · · · , cp−1) is a cyclic shift
of a to the right by j positions, namely ci = a〈i−j〉p . Since xp− 1 = (x+ 1)Mp(x),
it follows that

b(x) ≡ c(x) mod Mp(x). (5.3)
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Algorithm 2 Compute b(α) = αja(α)

Input: a0, · · · , ap−2, j
Output: b0, · · · , bp−2

1: ap−1 ← 0
2: Cyclic shift (a0, · · · , ap−1) to the right by j positions.
3: for i← 0 to p− 2 do
4: bi ← ai ⊕ ap−1

5: end for

Therefore b(x) = c(x)− cp−1Mp(x), implying that for i = 0, · · · , p− 2,

bi = ci − cp−1 (5.4)

= a〈i−j〉p − a〈−j−1〉p . (5.5)

This completes the proof1.

Lemma 5.1.1 shows that multiplying an element in Rp by a power of α can be
computed efficiently. Notice that xp − 1 = (x − 1)Mp(x), implying that αp = 1.
Therefore αi has a multiplicative inverse αp−i, also denoted by α−i.

Lemma 5.1.2. αi − αj has a multiplicative inverse inRp if i 6≡ j mod p.

Proof. Let l = 〈i− j〉p 6= 0, notice that

gcd(xl − 1, xp − 1) = xgcd(l,p) − 1 = x− 1. (5.6)

Since p is an odd prime,Mp(1) 6= 0. Therefore

gcd(x− 1,Mp(x)) = 1. (5.7)

(5.6) and (5.7) imply that gcd(xl− 1,Mp(x)) = 1 and so αl− 1 has a multiplicative
inverse inRp. Therefore αj(αl− 1) = αi−αj also as a multiplicative inverse.

Denote the multiplicative inverse of αi − αj by (αi − αj)−1.

Lemma 5.1.3. Let a(α) =
∑p−2

i=0 aiα
i, and define ci = ai+

∑p−1
j=0 aj , i = 0, · · · , p−

1, where ap−1 , 0. Then for l 6≡ 0 mod p, the coefficients of

b(α) =

p−2∑
i=0

biα
i =

a(α)

αl − 1
(5.8)

1Note that since we are working over bits, + and − both refer to the operation of XOR, which is
denoted by ⊕ in the algorithm.
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are given by the recursion

b〈−kl−1〉p = b〈−(k−1)l−1〉p + c〈−(k−1)l−1〉p , (5.9)

for k = 1, · · · , p− 1, where bp−1 , 0.

Proof. By (5.8) we have (αl − 1)b(α) = a(α) and so by Lemma 5.1.1 it follows
that, for i = 0, · · · , p− 1

ai = b〈i−l〉p − b〈−l−1〉p − bi. (5.10)

Summing both sides of (5.10) over 0 ≤ i ≤ p− 1, we obtain

p−1∑
i=0

ai = b〈−l−1〉p . (5.11)

This proves the lemma for k = 1. Note that (5.10) and (5.11) imply that

b〈i−l〉p = b〈−l−1〉p + bi + ai (5.12)

= bi + ci. (5.13)

Therefore the case of k > 1 follows by substituting

i = 〈−(k − 1)l − 1〉p

into (5.13).

Note that because Fp is a field, for l 6≡ 0 mod p, {〈−kl−1〉p : k = 0, · · · , p−1} =

{0, · · · , p− 1}. Therefore all coefficients of b(α) are obtained by (5.9).

Corollary 5.1.1. Let a(α) =
∑p−2

i=0 aiα
i, and ci be as in Lemma 5.1.3. Then for

l 6≡ m mod p, the coefficients of

b(α) =

p−2∑
i=0

biα
i =

a(α)

αl − αm
(5.14)

are given by the recursion

b〈−k(l−m)−1〉p = b〈−(k−1)(l−m)−1〉p + c〈−(k−1)(l−m)+m−1〉p ,

for k = 1, · · · , p− 1, where bp−1 , 0.
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Proof. By (5.14) we have

α−m(αl − αm)b(α) = (αl−m − 1)b(α) = α−ma(α), (5.15)

implying that

b(α) =
α−ma(α)

αl−m − 1
.

Now apply Lemma 5.1.3 and the corollary is proved.

Example 5.1.1. The coefficients of b(α) = a(α)/(α4 − α) inR7 are given by

b6 = 0

b3 = b6 + c0

b0 = b3 + c4

b4 = b0 + c1

b1 = b4 + c5

b5 = b1 + c2

b2 = b5 + c6.

Corollary 5.1.1 shows that division by αl − αm in Rp, formalized in Algorithm
3, can be efficiently computed using no more than 3p XORs. We remark that in
the algorithm the calculations of indexes modulo p do not depend on the input
bits a0, · · · , ap−2. Therefore for fixed l and m, the indexes can be precomputed.
Furthermore, a simple and efficient circuit design for computing the indexes is
presented in [34].

Algorithm 3 Compute b(α) = a(α)/(αl − αm)

Input: a0, · · · , ap−2, l,m
Output: b0, · · · , bp−2

1: ap−1 ← 0, bp−1 ← 0
2: a∗ ←

⊕p−1
i=0 ai

3: for k ← 1 to p− 1 do
4: b〈−k(l−m)−1〉p ← b〈−(k−1)(l−m)−1〉p ⊕ a∗ ⊕ a〈−(k−1)(l−m)+m−1〉p
5: end for

5.2 Construction from Cauchy Matrices
In this section we propose an efficient secure RAID scheme of general parameters
over Rp from Cauchy matrices. Consider any n, r and z such that n > r + z, let
k = n − r − z and let p > n be a prime. We describe the encoding of a linear
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(n, k, r, z) secure RAID scheme over Rp, i.e., every node stores p − 1 bits. Let
the key polynomials ui(α), i ∈ [z] be selected uniformly at random from Rp, and
let mi(α) ∈ Rp, i ∈ [k] be the message polynomials. To simplify notation, in this
chapter we denote polynomials like ui(α) and mi(α) for short as ui and mi when
no confusion arises. The encoding process includes three steps.

Step 1: Compute the padding polynomials

(v1, · · · , vk) = (u1, · · · , uz)PCQ. (5.16)

Here P = diag(p0, · · · , pz−1) and Q = diag(q0, · · · , qk−1) are two diagonal matri-
ces given by

pi =
z−1∏

j=0,j 6=i

1

(αi − αj)
, i = 0, · · · , z − 1 (5.17)

qi =
z−1∏
j=0

(αz+i − αj), i = 0, · · · , k − 1. (5.18)

And C is a z by k Cauchy matrix

C =


1

1−αz
1

1−αz+1 · · · 1
1−αz+k−1

1
α−αz

1
α−αz+1 · · · 1

α−αz+k−1

...
...

...
...

1
αz−1−αz

1
αz−1−αz+1 · · · 1

αz−1−αz+k−1

 . (5.19)

Step 2: Compute partial codeword (the systematic part)

ci = ui, i = 1, · · · , z (5.20)

cz+i = vi +mi, i = 1, · · · , k. (5.21)

Step 3: Compute the remaining part of the codeword

(cz+k+1, · · · , cn) = (c1, · · · , cz+k)P ′C ′Q′. (5.22)

Here P ′ = diag(p′0, · · · , p′z+k−1) and Q = diag(q′0, · · · , q′r−1) are two diagonal
matrices given by

p′i =
z+k−1∏
j=0,j 6=i

1

(αi − αj)
, i = 0, · · · , z + k − 1 (5.23)

q′i =
z+k−1∏
j=0

(αz+k+i − αj), i = 0, · · · , r − 1. (5.24)
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And C ′ is a z + k by r Cauchy matrix

C ′ =


1

1−αz+k
1

1−αz+k+1 · · · 1
α0−αn−1

1
α−αz+k

1
α−αz+k+1 · · · 1

α−αn−1

...
...

...
...

1
αz+k−1−αz+k

1
αz+k−1αz+k+1 · · · 1

αz+k−1−αn−1

 . (5.25)

The resulting codeword is (c1, · · · , cn), i.e., node i stores the p−1 bits corresponding
to the coefficients of ci(α). Note that the scheme is rate-optimal as k = n− r − z.

We remark that the scheme is systematic: the key polynomials are stored uncoded in
the first z nodes (refer to (5.20)), and the (z + 1)-th to (z + k)-th nodes each stores
the sum of a single message polynomial and a function of the key polynomials (refer
to (5.21)). The systematic form helps reduce encoding and decoding complexity as
(5.20) and (5.21) can be computed easily. The systematic form also allows efficient
random access: in the case that one wishes to decode a single message mi instead
of all messages, it suffices to read the keys from the first z nodes, then compute
vi according to (5.16), and finally cancel vi from ci to obtain mi. In comparison,
complete decoding of all messages is required for non-systematic schemes which
induces significant read/communication/computation overheads.

We analyze the encoding complexity of the scheme. Focusing onStep 1, (u1, · · · , uz)
is first multiplied with P , then with C, and finally with Q. The first and the last
multiplications can be efficiently computed because P and Q are (sparse) diagonal
matrices. The second multiplication is also efficient because every entry in C has
the form (αl − αm)−1 and by Algorithm 3 multiplication of this form can be com-
puted efficiently. Specifically, by Algorithm 2 and 3, the first multiplication takes
no more than 3z2p XORs, the second multiplication takes no more than 3zkp XORs
and the last multiplication takes no more than 3zkp XORs. Therefore Step 1 takes
no more than 3z(z + 2k)p XORs. Step 2 clearly takes no more than kp XORs.
By a similar analysis, Step 3 takes no more than 3(z + k)(z + k + 2r)p XORs.
Overall, the encoding complexity of the scheme is no more than 6(z + k)np XORs.
We remark that the encoding complexity is amortized over k(p − 1) message bits,
and so the normalized encoding complexity is at most 6(z+k)np

k(p−1)
XORs per message

bit. Particularly, in the high rate case that k dominates z, the normalized encoding
complexity is O(6n) XORs per message bit.
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5.2.1 Correctness
We first prove a connection between Vandermonde matrices and Cauchy matrices.
This connection is well known when the entries of the matrix are from a field, see,
e.g., [46]. Below we generalize the result to matrix over rings.

Theorem 5.2.1. Let α1, · · · , αm and β1, · · · , βn be distinct elements of a (com-
mutative) ring R, such that αi − αj is a unit (i.e., has a multiplicative inverse in
R) for distinct i, j ∈ [m] and that αi − βj is a unit for i ∈ [m], j ∈ [n]. Let
pi =

∏
j∈[m],j 6=i(αi − αj)−1 for i ∈ [m], and let qi =

∏
j∈[m](βi − αj), for i ∈ [n].

Define diagonal matrices P = diag(p1, · · · , pm) and q = diag(q1, · · · , qn). Define
anm by n Cauchy matrix C = (ci,j), where ci,j = (αi− βj)−1, for i ∈ [m], j ∈ [n].
Then

PCQ = −V −1
1 V2, (5.26)

where V1 is anm bym Vandermonde matrix in which the (i, j)-th entry equals αi−1
j ,

i, j ∈ [m], V −1
1 is the inverse of V1, and V2 is a m by n Vandermonde matrix in

which the (i, j)-th entry equals βi−1
j , i ∈ [m], j ∈ [n].

Proof. For i ∈ [m], define functions

fi(x) =
f(x)

f ′(αi)(x− αi)
, (5.27)

where f(x) =
∏m

i=1(x− αi). Note that

f ′(x) =
m∑
j=1

∏
k∈[m],k 6=j

(x− αk). (5.28)

Therefore f ′(αi) =
∏

j∈[m],j 6=i(αi − αj). Since by hypothesis all factors in the
denominator of (5.27) are units, it follows that fi(x) iswell-defined, and that fi(αi) =

1 and fi(αj) = 0 for j 6= i. Write fi(x) =
∑m

j=1 fi,jx
j−1, where fi,j ∈ R, and

define am×m matrix F in which the (i, j)-th entry equals fi,j , then it follows that

FV1 =


f1,1 · · · f1,m

...
...

...
fm,1 · · · fm,m




α0
1 · · · α0

m
...

...
...

αm−1
1 · · · αm−1

m



=


f1(α1) · · · f1(αm)

...
...

...
fm(α1) · · · fm(αm)

 = I. (5.29)
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Particularly, we have F = V −1
1 . Therefore, the j-th column of V −1

1 V2 equals

F (β0
j , · · · , βm−1

j )T = (f1(βj), · · · , fm(βj))
T , (5.30)

where by construction, for i ∈ [m],

fi(βj) =

∏
k∈[m],k 6=i(βj − αk)∏
k∈[m],k 6=i(αi − αk)

. (5.31)

Now notice that the (i, j)-th entry of PCQ equals

PCQ(i, j) = piC(i, j)qj (5.32)

=

∏
k∈[m](βj − αk)

(αi − βj)
∏

k∈[m],k 6=i(αi − αk)
(5.33)

= −fi(βj). (5.34)

The proof is complete.

On account of (5.16), define another diagonal matrix Q̄ = diag(q̄0, · · · , q̄k+r−1)

where for i ∈ [0, k + r − 1],

q̄i =
z−1∏
j=0

(αz+i − αj). (5.35)

Note that the first k diagonal entries of Q̄ are identical to those of Q. Define a z by
k + r Cauchy matrix

C̄ =


1

1−αz
1

1−αz+1 · · · 1
1−αz+k+r−1

1
α−αz

1
α−αz+1 · · · 1

α−αz+k+r−1

...
...

...
...

1
αz−1−αz

1
αz−1−αz+1 · · · 1

αz−1−αz+k+r−1

 . (5.36)

Note that C consists of the first k columns of C̄. The following result relates matrix
PC̄Q̄ to P ′C ′Q′.

Lemma 5.2.1. The row space of [Iz+k|P ′C ′Q′] contains the row space of [Iz|PC̄Q̄],
where In is the identity matrix of order n.



67

Proof. By Lemma 5.1.2, the condition of Theorem 5.2.1 is met and so it follows by
the theorem that PC̄Q̄ = V −1

1 V2, and P ′C ′Q′ = V −1
3 V4, where

V1 =


1 1 · · · 1

1 α · · · αz−1

...
...

...
...

1 αz−1 · · · α(z−1)(z−1)

 (5.37)

V2 =


1 1 · · · 1

αz αz+1 · · · αz+k+r−1

...
...

...
...

αz·(z−1) α(z+1)(z−1) · · · α(z+k+r−1)(z−1)

 (5.38)

V3 =


1 1 · · · 1

1 α · · · αz+k−1

...
...

...
...

1 αz+k−1 · · · α(z+k−1)(z+k−1)

 (5.39)

V4 =


1 1 · · · 1

αz+k αz+k+1 · · · αz+k+r−1

...
...

...
...

α(z+k)·(z+k−1) α(z+k+1)(z+k−1) · · · α(z+k+r−1)(z+k−1)

 . (5.40)

Therefore, [Iz|PC̄Q̄] = [Iz|V −1
1 V2] is (by multiplying V1 on the left) row equivalent

to [V1|V2]. Similarly, [Iz+k|P ′C ′Q′] = [Iz+k|V −1
3 V4] is row equivalent to [V3|V4].

But [V1|V2] consists of the first z rows of [V3|V4]. Therefore the row space of [V3|V4]

contains the row space of [V1|V2], and the proof is complete.

We are ready to prove the correctness of the scheme.

Theorem 5.2.2. The scheme described in Section 5.2 is an (n, k, r, z) secure RAID
scheme.

Proof. Wefirst prove that the scheme can correct r erasures. In Step 3, i.e., (5.22), we
have applied a systematic erasure code C with generator matrixG′ = [Iz+k|P ′C ′Q′],
where I is the identity matrix of order z + k. On account of the proof of Lemma
5.2.1, G′ is row equivalent to the Vandermonde matrix [V3|V4]. Specifically, the
determinant of the submatrix formed by any z+ k columns of [V3|V4] is a unit. This
implies that any z+ k columns ofG′ are linearly independent and that C is an MDS
code that can correct r erasures.
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We turn to the security of the scheme. Consider any A ⊂ [n], |A| = z, and suppose
that the adversary has access to ci, i ∈ [A]. By the linearity of the scheme, for i ∈ [n]

we can write ci = si + ti, where si is a linear function of the keys (u1, · · · , uz)
and ti is a linear function of the messages (m1, · · · ,mk). Then to prove security it
suffices to show that (si)i∈A is uniformly distributed because it implies that (ci)i∈A

is uniformly distributed and independent of the messages. Write

(c1, · · · , cn) = (u1, · · · , uz,m1, · · · ,mk)G,

then by construction

G =

[
Gu

Gm

]
, (5.41)

where Gu = [Iz|PCQ] ·G′ is a z × n matrix and Gm is a k × n matrix. We have

(s1, · · · , sn) = (u1, · · · , uz)Gu. (5.42)

Let Ḡ = [Iz|PC̄Q̄]. By Lemma 5.2.1, the row space of Ḡ is contained in the row
space ofG′, namely each row of Ḡ is a codeword of C. Note that by construction, the
first z + k columns of Ḡ are [Iz|PCQ]. Because C is an MDS array code, it follows
that Ḡ is the unique matrix in the row space of G′ such that its first z + k columns
are [Iz|PCQ] (since any r entries of a codeword of C are uniquely determined by
the other z + k entries). On the other hand, Gu is in the row space of G′ and the
first z + k columns of Gu are [Iz|PCQ]. Therefore

Gu = Ḡ = [Iz|PC̄Q̄]. (5.43)

By the proof of Lemma 5.2.1, [Iz|PC̄Q̄] is row equivalent to the Vandermonde
matrix [V1|V2]whose row space is an [n, z]MDS array code. Therefore (u1, · · · , uz)
can be decoded from (si)i∈A. Because (u1, · · · , uz) is uniformly distributed, (si)i∈A
is also uniformly distributed, which implies that the scheme is secure. Alternatively,
the fact that (u1, · · · , uz) can be decoded from (si)i∈A implies that the condition
H(u|c,m) = 0 of Lemma 4.3.1 is met and so the scheme is secure. The proof is
complete.

5.2.2 Decoding
This section discusses the efficient decoding of the secure RAID scheme in Section
5.2. We remark that the efficiency of decoding is critical for most applications. For
example, in storage, the decoding complexity affects critical performance including
data read throughput and latency.
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Decoding without erasures

We distinguish two scenarios of decoding, namely decoding without erasures (i.e.,
systematic decoding) and decoding with erasures. The former scenario addresses
the situation that the complete codeword is available and no entries are erased.
The task is to “decrypt” the message bits from the codeword. The latter scenario
addresses the situation in which up to r entries of the codeword are erased, and
the task is to recover the erased entries. We note that decoding without erasures is
especially important because 1) for many applications such as storage, this is the
common situation because the nodes are usually available; 2) in the situation that
erasures do occur, after recovering the erased entries, we come back to the problem
of decoding without erasure.

Specifically, the algorithm of decoding (m1, · · · ,mk) from (c1, · · · , cz+k) is simple.
Since (c1, · · · , cz) = (u1, · · · , uz), we can compute (v1, · · · , vk) by (5.16). Now
for i ∈ [k], we havemi = cz+i + vi.

Wemake three remarks. First, the decoding process is very similar to Step 1 and Step
2 of encoding, implying that the same circuit/logic can be reused, which is helpful in
terms of implementation. Second, we only assume that the first z + k entries of the
codeword are not erased and make no assumptions on the last r entries. Therefore
if erasures do occur to the last r entries, for the sake of decoding it is not necessary
to correct them. Third, for random access, i.e., the task of decoding (mi)i∈A, for
some A ⊂ [k], |A| < k, it suffices to only compute (vi)i∈A and cancel them from
(ci)i∈A. Compared to standard (complete) decoding, this achieves savings in both
computation and the number of bits that are read and communicated.

The complexity of decoding without erasures is the same as the complexity of Step
1 and Step 2 of encoding, which amounts to no more than 3z(z + 2k)p+ kp XORs
to decode k(p − 1) message bits. For the practical high rate case that k dominates
z, the normalized decoding complexity is O(6z) XORs per message bit. From the
perspective that any message bit has to be padded by at least z key bits for the sake
of security (otherwise the adversary can decode the message bit by eavesdropping
z bits), the decoding complexity is asymptotically optimal up to a constant factor of
6.
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Decoding with erasures

We now turn to the case that 1 ≤ e ≤ r entries of the codeword are erased.
We assume that at least one of the first z + k entries is erased (otherwise, there
is no need to correct the erasures). By Theorem 5.2.2, the scheme can tolerate
any r erasures and therefore it can be decoded naively by inverting the encoding
matrix using Gaussian elimination. However, this leads to high computational2
and implementation complexity. Below we present a much more efficient erasure
decoding algorithm utilizing the structure of Rp and a result on the decomposition
of the inverse of a Cauchy matrix, credited to Boros, Kailath and Olshevsky [47,
Theorem3.1] (see also [48]). We note that although [47] studies matrices over fields,
the assumption is immaterial and the proof therein generalizes to matrices over rings
as long as the Cauchy matrix is well-defined:

Theorem 5.2.3. Let α1, · · · , αn and β1, · · · , βn be elements of a (commutative) ring
R, such that αi − αj and βi − βj are units for distinct i, j ∈ [n], and that αi − βj is
a unit for i, j ∈ [n]. Then the Cauchy matrix

C =


1

α1−β1

1
α1−β2

· · · 1
α1−βn

1
α2−β1

1
α2−β2

· · · 1
α2−βn... ... ... ...

1
αn−β1

1
αn−β2

· · · 1
αn−βn

 (5.44)

is well defined and invertible, and its inverse can be decomposed as:

C−1 = U1U2 · · ·Un−1DLn−1 · · ·L2L1, (5.45)

2Recovering e erasures requires inverting an e(p− 1)× e(p− 1) matrix and requires O(e3p3)
operations by Gaussian elimination.
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where, for k ∈ [n− 1]

Lk =



Ik
1

αk+1−α1

1
αk+2−α2

. . .
1

αn−αn−k


× (5.46)



Ik−1

1

βk − α1 αk+1 − βk
. . . . . .

βk − αn−k αn − βk


(5.47)

Uk =



Ik−1

1 β1 − αk
αk − βk+1

. . .

. . . βn−k − αk
αk − βn


× (5.48)



Ik
1

β1−βk+1

1
β2−βk+2

. . .
1

βn−k−βn


. (5.49)

and

D = diag(α1 − β1, α2 − β2, · · · , αn − βn). (5.50)

Example 5.2.1. For n = 3, it follows that
1

α1−β1

1
α1−β2

1
α1−β3

1
α2−β1

1
α2−β2

1
α2−β3

1
α3−β1

1
α3−β2

1
α3−β3


−1

= U1U2DL2L1, (5.51)

where

L1 =

 1 0 0

0 1
α2−α1

0

0 0 1
α3−α2


 1 0 0

β1 − α1 α2 − β1 0

0 β1 − α2 α3 − β1

 , (5.52)
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L2 =

 1 0 0

0 1 0

0 0 1
α3−α1


 1 0 0

0 1 0

0 β2 − α1 α3 − β2

 , (5.53)

U1 =

 1 β1 − α1 0

0 α1 − β2 β2 − α1

0 0 α1 − β3


 1 0 0

0 1
β1−β2

0

0 0 1
β2−β3

 , (5.54)

U2 =

 1 0 0

0 1 β1 − α2

0 0 α2 − β3


 1 0 0

0 1 0

0 0 1
β1−β3

 , (5.55)

D = diag(α1 − β1, α2 − β2, α3 − β3). (5.56)

Theorem 5.2.3 suggests an efficient way of multiplying a vector to the inverse of a
Cauchy matrix over the ringRp: the matrices Li, Ui and D are all sparse, and their
entries either have the form of αi − βj or the form of (αi − βj)

−1 (see Example
5.2.1). By Algorithm 2 and 3, multiplications involving these forms over Rp are
both computationally efficient and simple to implement.

We turn to the decoding algorithm. Suppose that (ci)i∈E are erased for some
E ⊂ [n], |E| = e. Let E1 = E ∩ [z + k], E2 = E\E1, e1 = |E1|, e2 = |E2| and
R1 = [z + k]\E1. Since r − e2 ≥ e1, there exists R2 ⊂ [z + k + 1, n] such that
R2∩E = ∅ and |R2| = e1. The task of erasure decoding is to recover cE1 = (ci)i∈E1 .
By (5.22), we have

cR2 = cR1P
′
R1
C ′R1,R2

Q′R2
+ cE1P

′
E1
C ′E1,R2

Q′R2
(5.57)

where P ′A andQ′A are the square matrices formed by the rows and columns of P ′ and
Q′ indexed by A, respectively, and C ′A,B is the matrix formed by the rows indexed
by A and the columns indexed by B of C ′. Therefore, the erased entries cE1 can be
recovered by

cE1 = (cR2 − cR1P
′
R1
C ′R1,R2

Q′R2
)Q
′−1
R2
C
′−1
E1,R2

P
′−1
E1

. (5.58)

We remark that (5.58) can be computed efficiently: the term cR1P
′
R1
C ′R1,R2

Q′R2

can be obtained as in Step 3 of encoding; inverting Q′−1
R2

and P ′−1
E1

is trivial since
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both matrices are diagonal; multiplying a row vector to C ′−1
E1,R2

can be efficiently
performed according to (5.45); and finally, all multiplications take the form of
multiplying a ring element by either αi − αj or (αi − αj)−1 over Rp, which can
be efficiently computed and easily implemented according to Algorithm 2 and
Algorithm 3.

We analyze the complexity of erasure decoding. The step of computing the vector
(cR2 − cR1P

′
R1
C ′R1,R2

Q′R2
) requires no more than 3(z + k+ 2r)(z + k)p XORs; the

steps of multiplying with Q′−1
R2

and P ′−1
E1

each requires no more than 3r(z + k)p

XORs; the step of multiplying withC ′−1
E1,R2

according to (5.45) requires no more than
7r2p+ 2rp XORs. The total erasure decoding complexity is O(6n(z + k)p+ 7r2p)

XORs to recover rp erased bits. We note that the erasure decoding complexity is
comparable to the encoding complexity of the scheme.

Decoding errors

We briefly discuss the problem of correcting errors in the codeword. Theorem
5.2.2 implies that the minimum distance between the codewords is r+ 1. Therefore
given any codeword with no more than d r

2
e errors, it can be decoded correctly by

exhaustive search. The question is how to correct the errors efficiently. Note that the
set of codewords of the scheme is the row space of [Iz+k|P ′C ′Q′] which is the same
as the row space of [V3|V4] by the proof of Lemma 5.2.1. Namely the codewords form
a generalized Reed-Solomon code over the ring Rp. If 2 is a primitive element in
Fp, thenMp(x) is irreducible andRp is a field [35]. In this case the codewords form
a standard Reed-Solomon code and so correcting errors in the codeword becomes
the well studied problem of error decoding for Reed-Solomon codes [39]. For the
case thatRp is not a field, decoding algorithms for generalized Reed-Solomon codes
overRp is studied in [34].

5.3 Construction from Vandermonde Matrices
In this section we present a secure RAID scheme over Rp constructed from Van-
dermonde matrices. Compared to the scheme in Section 5.2, this scheme is not
systematic, and therefore is not as efficient in terms of decoding (without erasures)
and random access. However, the scheme has the important advantage that it can
be shortened flexibly. In addition to shortening, there are several other reasons that
we believe the scheme worth discussion: 1) It is conceptually simple and is shown
to be a natural generalization of Shamir’s scheme to the ring Rp. 2) It generalizes
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the schemes discussed in [32], [33], with a vastly simplified algebraic description
and proof of correctness. 3) The new algebraic description allows us to develop an
efficient decoding algorithm, which previously was not available.

Construction 5.3.1. (Shamir’s scheme over ring) For n, r, z such that n > r+z, let
k = n− r − z and p > n be a prime. Let the keys ui, i ∈ [z] be selected uniformly
at random from Rp, and let mi ∈ Rp, i ∈ [k] be the messages. The codeword is
computed by

(c1, · · · , cn) = (m1, · · · ,mk, u1, · · · , uz)



1 1 · · · 1

1 α · · · αn−1

1 α2 · · · α2(n−1)

... ... ... ...
1 αk+z−1 · · · α(k+z−1)(n−1)


.

(5.59)

Theorem 5.3.1. Construction 5.3.1 is an (n, k, r, z) secure RAID scheme.

Proof. Anyk+z columns of the encodingmatrix in (5.59) are a squareVandermonde
matrix whose determinant, by Lemma 5.1.2, is a unit. Therefore any k+ z columns
are linearly independent and the scheme can tolerate any n− (k + z) = r erasures.
LetGlow be the submatrix formed by the last z rows of the encoding matrix, then by
a similar argument any z columns of Glow are linearly independent. Therefore the
condition H(u|c,m) = 0 of Lemma 4.3.1 is met and the scheme is secure.

We remark that the scheme is a natural generalization of Shamir’s scheme (and its
ramp version) to the ring Rp. Specifically, an equivalent encoding of the scheme
is to generate a polynomial over Rp of degree k + z − 1, in which the degree 0 to
k − 1 coefficients represent messages and the degree k to z + k − 1 coefficients
are random, and then the n codeword entries (shares) are the evaluations of the
polynomial at α0, α1, · · · , αn−1. Shamir’s original scheme corresponds to the case
that k = 1, and that the polynomial is over a field, and that the evaluation points are
arbitrarily chosen.

The scheme can be encoded efficiently. Specifically, by Algorithm 2, the encoding
complexity of the scheme is at most (z + k)np XORs to encode k(p − 1) message
bits. In the high rate case that k dominates z, the normalized encoding complexity
is O(n) XORs to encode each message bit. The encoding complexity of the scheme



75

has the same asymptotic order as the encoding complexity of the scheme in Section
5.2, and has a better constant factor.

Decoding

Schemes equivalent to Construction 5.3.1 and its variants are studied in [32], [33],
which focus on the efficiency of encoding. However, while the schemes in [32], [33]
can be efficiently encoded, an efficient decoding algorithm is not available, other
than naively inverting the encoding matrix by Gaussian elimination, which has a
high computational complexity of O((z + k)3p3). We remark that although it is
possible to pre-compute the inverse matrices, it is not practical to do so unless r is
very small because there are

(
n
r

)
different erasure patterns and each erasure pattern

requires a different inverse. Furthermore, even if the inverse is pre-computed, in
general it is a dense matrix andmultiplying a vector to it requires up toO((z+k)2p2)

XORs. Below we present a significantly more efficient decoding algorithm utilizing
the structure of Rp and a well-known result on the decomposition of the inverse of
a Vandermonde matrix credited to Bjorck and Pereyra [49]. Though [49] addresses
matrices over fields, generalizing its result to rings is straightforward as long as the
Vandermonde matrix is indeed invertible over the ring:

Theorem 5.3.2. Let α1, · · · , αn be elements of a (commutative) ring R, such that
αi − αj is a unit for distinct i, j ∈ [n]. Then the Vandermonde matrix

V =


1 1 · · · 1

α1 α2 · · · αn
... ... ... ...

αn−1
1 αn−1

2 · · · αn−1
n

 (5.60)

is invertible and its inverse can be decomposed as:

V −1 = U1U2 · · ·Un−1Ln−1 · · ·L2L1 (5.61)

where, for k ∈ [n− 1]

Lk =



Ik−1

1

−αk 1
. . . . . .
−αk 1


(5.62)
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Uk =



Ik−1

1 −1

1
. . .
. . . −1

1





Ik
1

αk+1−α1

1
αk+2−α2

. . .
1

αn−αn−k


.

(5.63)

Similar to Theorem 5.2.3, Theorem 5.3.2 suggests an efficient way of multiplying a
vector to the inverse of a Vandermonde matrix over the ringRp: the matrices Li and
Ui are sparse, and their entries are either 1, −1, αi or (αi − αj)−1. By Algorithm
2 and 3, multiplications involving these forms over Rp are both computationally
efficient and simple to implement.

We turn to the decoding algorithm. Suppose that the set of entries cR = {ci : i ∈ R}
is available for some R ⊂ [n], |R| = z + k. The task of decoding is to recover
m1, · · · ,mk from cR. By (5.59), we have

cR = (m1, · · · ,mk, u1, · · · , uz)VR, (5.64)

where VR is the square matrix formed by the columns indexed by R of the Vander-
monde matrix in (5.59). Therefore, the messages can be decoded by

(m1, · · · ,mk, u1, · · · , uz) = cRV
−1
R (5.65)

= cRU1 · · ·Uk+z−1Lk+z−1 · · ·L1. (5.66)

By Algorithm 2 and Algorithm 3, decoding the k(p − 1) message bits (as well as
the z(p− 1) key bits) by (5.66) requires at most 3(k + z)2p XORs. In the high rate
case that k dominates z, the normalized decoding complexity is O(3k) XORs per
message bit.

Finally, in the situation that there are errors in the codeword, the discussion from
Section 5.2.2 applies.

Shortening

Below we show that Construction 5.3.1 and Shamir’s scheme have the desirable
property that they can be flexibly shortened to any length, if the entries are suppressed
carefully.

We first discuss the shortening of Shamir’s scheme. We remark that the original
Shamir’s scheme has k = 1 and cannot be shortened since there is only one message
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symbol. The scheme is later generalized to the case of k > 1 in [16], [17], which
are usually referred to as ramp schemes. Below we present another generalization
that is more natural and efficient.

Construction 5.3.2. (Ramp version of Shamir’s scheme) For n, r, z such that
n > r+z, let k = n−r−z and q > n. Letm1, ...,mk be message symbols over Fq.
Construct a polynomial f(x) of degree z + k − 1 over Fq, whose degree 0 to k − 1

coefficients arem1 tomk, and the degree k to z+k−1 coefficients are random (key
symbols). The n shares are f(αi), i ∈ [n], where αi, i ∈ [n] are distinct non-zero
elements of Fq.

Theorem 5.3.3. Construction 5.3.2 is a (n, k, r, z) secure RAID scheme.

The proof of the theorem is identical to that of Theorem 5.3.1.

Construction 5.3.3. (Shortened Shamir’s scheme) Let n, r, z, k, q be as in Con-
struction 5.3.2. For 0 ≤ s < k, let m1, · · · ,mk−s be message symbols over Fq
and let u1, · · · , uz be random key symbols over Fq. Construct a polynomial f(x) of
degree z + k − 1 over Fq, whose degree 0 to k − s− 1 coefficients are the message
symbols, and the degree k to z + k − 1 coefficients are the key symbols. Let αi,
i ∈ [n] be distinct non-zero element of Fq, and define a Vandermonde matrix

V =


1 1 · · · 1

α1 α2 · · · αs
... ... ... ...

αz+k−1
1 αz+k−1

2 · · · αz+k−1
s

 . (5.67)

Then the degree k − s to k − 1 coefficients of f(x) arem′1, · · · ,m′s, given by

(m′1, · · · ,m′s) = −((m1, · · · ,mk−s)V[1,k−s] − (u1, · · · , uz)V[k+1,z+k])V
−1

[k−s+1,k],

(5.68)

where V[a,b] is the submatrix formed by the a-th to b-th rows of V . The n− s shares
are f(αi), i ∈ [s+ 1, n].

The length and dimension of Construction 5.3.3 are both reduced by s compared
to Construction 5.3.2, and so the shortened scheme is rate-optimal. Note that Con-
struction 5.3.3 can be viewed as a modified version of Construction 5.3.2. Namely,
in Construction 5.3.2, if we compute mk−s+1, ...,mk according to (5.68) instead
of regarding them as arbitrary message symbols, then this results in Construction
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5.3.3. Notice that Construction 5.3.2 outputs n shares while Construction 5.3.3 only
outputs n − s shares. This is because in Construction 5.3.3 the s “missing shares”
f(α1) = f(α2) = · · · = f(αs) = 0, i.e., they are always equal to 0 and so there is
no need to compute or store them. To see this, note that by (5.68)

(m1, · · · ,mk−s)V[1,k−s] + (m′1, · · · ,m′s)V[k−s+1,k] + (u1, · · · , uz)V[k+1,z+k] = 0

(5.69)

implying that (m1, · · · ,mk−s,m
′
1, · · · ,m′s, u1, · · · , uz)V = 0 and that f(αi) = 0,

i ∈ [s].

Theorem 5.3.4. Construction 5.3.3 is an (n− s, k − s, r, z) secure RAID scheme.

Proof. By the remark above, Construction 5.3.3 can tolerate r erasures because
Construction 5.3.2 can tolerate r erasures. To prove security, suppose that the
adversary has access to any z shares, denoted by c. By Lemma 4.3.1, it suffices
to show that H(u|c,m) = 0, where u = (u1, · · · , uz) andm = (m1, · · · ,mk−s).
Note that given c, z + s evaluations of the function f(x) are known because c
contains z evaluations and by construction (see the remark above) f(x) evaluates to
0 at s other points (i.e., αi, i ∈ [s]). Split f(x) into f(x) = f1(x) + f2(x), such that
f1(x) collects all the terms of f(x) of degree< k−s and f2(x) collects all the terms
of degree≥ k−s. Namely, the coefficients of f1(x) are themi’s and the coefficients
of f2(x) are them′i’s and the ui’s. Then given additionalm, z+s evaluations of the
polynomial f2(x) are known, by simply subtracting the evaluations of f1(x) from
the evaluations of f(x). Let f3(x) = xs−kf2(x), then the z + s evaluations of f2(x)

give z + s evaluations of f3(x). f3(x) has degree z + s− 1 and can be interpolated
by the z + s evaluations. Therefore its coefficients, the m′i’s and the ui’s, can be
decoded. Hence H(u|c,m) = 0 and the proof is complete.

Applying the same idea of shortening to Construction 5.3.1, we have

Construction 5.3.4. (Shortened Shamir’s scheme over ring) Let n, r, z, k, p be as
in Construction 5.3.1. For 0 ≤ s < k, letm1, · · · ,mk−s ∈ Rp be messages and let
u1, · · · , uz ∈ Rp be randomly selected. Define a Vandermonde matrix

V =


1 1 1 · · · 1

1 α α2 · · · αs−1

... ... ... ... ...
1 αz+k−1 α2(z+k−1) · · · α(s−1)(z+k−1)

 , (5.70)
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and computem′1, · · · ,m′s by

(m′1, · · · ,m′s) = −((m1, · · · ,mk−s)V[1,k−s] − (u1, · · · , uz)V[k+1,z+k])V
−1

[k−s+1,k],

(5.71)

where V[a,b] is the submatrix formed by the a-th to b-th rows of V . The codeword is
given by

(c1, · · · , cn−s) =(m1, · · · ,mk−s,m
′
1, · · · ,m′s, u1, · · · , uz)
1 1 · · · 1

αs αs+1 · · · αn−1

... ... ... ...
αs(z+k−1) α(s+1)(k+z−1) · · · α(n−1)(k+z−1)

 .
(5.72)

Theorem 5.3.5. Construction 5.3.4 is an (n− s, k − s, r, z) secure RAID scheme.

Proof. Theorem 5.3.5 can be proved in the same way as Theorem 5.3.4 as long as
we take proper care of the fact thatRp is a ring and may not be a field. Specifically,
we need to ensure that the polynomial f3(x) has well-defined values at the z + s

evaluation points. This is indeed true because the evaluation points take the form
of αi, which is a unit in Rp, and so the value of xs−k is well-defined at these
points. Furthermore, we need to ensure that f3(x) can be interpolated by the z + s

evaluations, namely the Vandermonde matrix corresponding to the z+ s evaluation
points is invertible. This is indeed true due to Lemma 5.1.2.

We remark on the usefulness of shortening. First, for Construction 5.3.3 or 5.3.4,
one can easily change the parameter s with very minor modification to the scheme.
Specifically, the encoding algorithm is only slightly different and the decoding
algorithm is identical. This allows one to implement a flexible schemewith adaptable
length n and dimension k, which is important for practical deployment, e.g., when
the number of nodes is not fixed a priori or may vary over time. Second, shortening
will cause overhead in encoding, i.e., computing (5.68) or (5.71). However, it is
a rather minor one because the matrix V −1

[k−s+1,k] can either be pre-computed (for
Construction 5.3.3), or be treated by Theorem 5.3.2 (for Construction 5.3.4).
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C h a p t e r 6

CONCLUDING REMARKS

In Part I, we introduce secure RAID schemes, which are secret sharing schemes with
efficient encoding, decoding and random access complexity and low implementation
complexity. We derive lower bounds on the computational complexity, generalize
systematic encoding to the secure setting, and describe a general framework for con-
structing efficient systematic schemes. For r ≤ 3, z ≤ 3, we present secure RAID
schemes with optimal computation from the B, EVENODD and STAR codes. For
general parameters, we construct efficient schemes over the ring Rp, from Vander-
monde and Cauchy matrices. We discuss methods to flexibly shorten the secure
EVENODD scheme and the secure RAID scheme over Rp based on Vandermonde
matrix.

Many interesting problems remain open, which we list a few. Regarding the high
rate regime, is it possible to design schemes with optimal computation for r ≥ 4

or z ≥ 4? We remark that for erasure codes, i.e., for z = 0, codes with optimal
computation are known up to r = 8 [35]. Furthermore, we only know how to
construct the strictly optimal scheme in Construction 4.6.1 for a finite set of lengths.
Is it possible to generalize this construction to an infinite family? Also, while the
secure B, secure EVENODD and secure STAR are infinite families of schemes,
they are not strictly optimal and are not strictly systematic. Is it possible to further
improve them? Regarding the schemes with general parameters, is it possible to
design schemes that require O(r + z) XORs to encode and O(z) XORs to decode
each message bit (the construction from Cauchy matrices requires O(z) XORs to
decode but O(n) XORs to encode each message bit)? Finally, in addition to secure
EVENODD and the scheme overRp based on Vandermonde matrices, is it possible
to shorten other secure RAID schemes and existing secret sharing schemes?



Part II

Communication Efficient Secret
Sharing
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C h a p t e r 7

INTRODUCTION TO COMMUNICATION EFFICIENT SECRET
SHARING

In Part I we study secure RAID schemes which are a class of secret sharing schemes
with low encoding, decoding and implementation complexity. In this part we study
the communication and access complexity of secret sharing schemes. We start with
introducing general secret sharing schemes.

Consider the scenario that n parties wish to store a secret message securely and
reliably. To this end, a dealer encodes the message into n shares, i.e., one share
for each party, such that 1) (reliability) a collection A ⊂ 2{1,...,n} of “authorized”
subsets of the parties can decode the message, and 2) (secrecy) a collection B of
“blocked” subsets of the parties cannot collude to deduce any information about
the message. A scheme to encode the message into shares with respect to access
structure (A,B) is called a secret sharing scheme, initially studied in the seminal
works by Shamir [15] and Blakley [50]. A secret sharing scheme is perfect if a
subset of parties is either authorized or blocked, i.e.,A∪B = 2{1,...,n}. A scheme is
often referred to as a ramp scheme if it is not perfect [16]. A natural application of
secret sharing schemes is distributed storage of private data, where each party is a
storage node. Besides, secret sharing is a fundamental cryptographic primitive and
is used as a building block in numerous secure protocols [51].

As in Part I, we focus on secret sharing schemes for the threshold access structure,
i.e., A contains all subsets of {1, ..., n} of size at least n − r, and B contains all
subsets of {1, ..., n} of size at most z. In other words, the message can be decoded
in the absence of any r parties, and any z parties cannot collude to deduce any
information about the message. Note that a threshold scheme is perfect if and only
if z = n − r − 1. The scheme is a ramp scheme if z < n − r − 1. The threshold
access structure is particularly important in practice, because for this case, efficient
secret sharing schemes are known. Specifically, Shamir [15] constructs an elegant
and efficient perfect threshold scheme using the idea of polynomial interpolation.
Shamir’s scheme is later shown to be closely related to Reed-Solomon codes [40]
and is generalized to ramp schemes in [16], [17], [52], which allow better space
efficiency, i.e., rate, than the original perfect scheme. Shamir’s scheme and the
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generalized ramp schemes achieve optimal usage of storage space, in the sense that
fixing the size of the shares, the schemes store a message of maximum size. The
schemes are computationally efficient in the sense that encoding is equivalent to
polynomial evaluation and decoding is equivalent to polynomial interpolation. An
example of Shamir’s scheme is shown in Figure 7.1. Other threshold secret sharing
schemes and generalizations of Shamir’s scheme may be found in, e.g., [32], [53].
Recently, there has been considerable interest in incorporating secrecy into erasure
codes, e.g., [21]–[23]. These codes and the secure RAID schemes studied in Part I
are also threshold secret sharing schemes.

Party 1 Party 2 · · · Party 7
f(1) = f(2) = · · · f(7) =

m1 + m2 + u1 m1 + 2m2 + 4u1 · · · m1 + 7m2 + 5u1

Figure 7.1: Shamir’s scheme (generalized ramp version, see Construction 5.3.2)
for n = 7, r = 4, z = 1, with symbols over F11. The scheme stores a message of
two symbols, denoted by m1,m2. u1 is a uniformly distributed random element of
F11. f(x) is the polynomial m1 + m2x + u1x

2. Note that the share stored by any
single party is independent of the message because it is padded by u1, and that the
message can be decoded from the shares stored by any three parties by polynomial
interpolation.

Decoding Bandwidth

In addition to space and computational efficiency, this chapter studies the commu-
nication efficiency for secret sharing schemes. Consider the scenario that a user
wishes to decode the message by downloading information from the parties that are
available. Referring to the amount of information downloaded by the user as the
decoding bandwidth, a natural question is to determine and achieve the minimum
decoding bandwidth. It is of practical interest to design secret sharing schemes that
achieve a small decoding bandwidth, or in other words, that require communicating
only a small amount of information during decoding. In such a case, decoding will
be completed in a timely manner and the communication resource will be more
efficiently utilized.

In many existing secret sharing schemes, e.g., [15]–[17], [21]–[23], [32], [40], [53],
a common practice in decoding is that the user will communicate with a minimum
set of parties, i.e., exactly n − r parties (even if d > n − r parties are available)
and download the whole share stored by these parties. Wang and Wong [54] show
that this paradigm is not optimal in terms of communication and that the decoding
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bandwidth can be reduced if the user downloads only part of the share from each
of the d > n − r available parties. Specifically, given d, for any perfect threshold
secret sharing scheme, [54] derives a lower bound on the decoding bandwidth when
exactly d parties participate in decoding, and designs a perfect scheme that achieves
the lower bound. The field size of the scheme is slightly improved in [55]. However,
two interesting and important problems remain open: 1) the schemes in [54], [55]
achieve the lower bound on the decoding bandwidth when the number of available
parties d equals a specific value fixed in code design, and do not achieve the bound
if d takes other values. This raises the question of whether the lower bound is
uniformly tight, or in other words, if it is possible to design a single scheme that
achieves the lower bound universally for all d in the range of [n − r, n]. 2) The
results in [54], [55] target the case of perfect secret sharing schemes, i.e., the case
of z = n − r − 1. By Proposition 3.1.1, the rate of the scheme is at most 1/n.
This raises the question of how to generalize the results and ideas to the case of
z ≤ n−r−1, so that the parameters and rates of the schemes aremore flexible. Both
problems are of practical importance as the first problem addresses the flexibility
of a scheme in terms of decoding, and the second problem addresses the flexibility
in terms of rate. In this chapter we settle both problems and construct schemes of
flexible rate that achieve the optimal decoding bandwidth universally. Additionally,
our schemes are computationally efficient and have optimal space efficiency.

Motivating Example

Consider Shamir’s scheme (ramp version) in the example of Figure 7.1, that stores
2 symbols securely and reliably for the setting n = 7, r = 4 and z = 1. In order
to decode the message, a user needs to download 3 symbols from any 3 parties,
and therefore the decoding bandwidth is 3 symbols. Suppose the same scheme is
repeated 3 times in order to store a message of 6 symbols, as shown in Figure 7.2a.
Then to decode the message, the decoding bandwidth is 9 symbols.

We propose a new scheme in Figure 7.2b that also stores a message of 6 symbols for
the same setting, using the same amount of storage space, and over the same field
size. In this scheme, if any 3 parties are available, then similar to Shamir’s scheme,
the message can be decoded from the 9 symbols stored by the 3 parties. However,
if any 4 parties are available, then the message can be decoded by downloading 2
symbols from each available party. Therefore, the decoding bandwidth is improved
to 8 symbols. If all 7 parties are available, then the message can be decoded by
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Party 1 Party 2 · · · Party 7
m1 + m2 + u1 m1 + 2m2 + 4u1 · · · m1 + 7m2 + 5u1

m3 + m4 + u2 m3 + 2m4 + 4u2 · · · m3 + 7m4 + 5u2

m5 + m6 + u3 m5 + 2m6 + 4u3 · · · m5 + 7m6 + 5u3

(a) Shamir’s Scheme

Party 1 · · · Party 7
f(1) = u1 + m1 + m2 + m3 + m4 + m5 + m6 · · · f(7) = u1 + 7m1 + 5m2 + 2m3 + 3m4 + 10m5 + 6m6

g(1) = u2 + m4 + m5 + m6 · · · g(7) = u2 + 7m4 + 5m5 + 2m6

h(1) = u3 + m3 + m6 · · · h(7) = u3 + 7m3 + 5m6

(b) Proposed Scheme

Figure 7.2: Two secret sharing schemes for n = 7, r = 4 and z = 1 over F11.
Both schemes store a message of six symbols (m1, ..., m6). In both schemes,
u1, u2, u3 are i.i.d. uniformly distributed random variables, i.e., keys. Scheme (a)
is Shamir’s scheme (see Figure 7.1) repeated three times. In Scheme (b), f(x) =
u1 +m1x+m2x

2 +m3x
3 +m4x

4 +m5x
5 +m6x

6, g(x) = u2 +m4x+m5x
2 +m6x

3,
h(x) = u3 + m3x + m6x

2, and party i stores evaluations f(i), g(i) and h(i). Note
that in (b), if all 7 parties are available, then the message can be decoded by
downloading only one symbol f(i) from each party i, and then interpolating f(x).
If any 4 parties are available, then the message can be decoded in the following way.
Download two symbols f(i), g(i) from each available party i and first interpolate
g(x), implying that all coefficients of f(x) of degree larger than 3 (e.g.,m4,m5,m6)
are decoded. The remaining unknown part of f(x) is a degree-3 polynomial and so
we have enough evaluations of f(x) to interpolate it, hence completely decoding the
message. Similarly, if any 3 parties are available, then themessage can be decoded in
the following way. Download all three symbols f(i), g(i), h(i) from each available
node i and interpolate h(x), which decodes the degree-3 coefficients of f(x) and
g(x). Hence the remaining unknown part of g(x) is a degree-2 polynomial and can
be interpolated, which decodes the coefficients of f(x) of degrees 4, 5, 6. Hence the
remaining unknown part of f(x) is a degree-2 polynomial and can be interpolated,
decoding the complete message. This shows that the scheme meets the reliability
requirement. In fact, for d = 3, 4, 7, Scheme (b) achieves the optimal decoding
bandwidth when d parties participate in decoding. The secrecy of the scheme
derives from the secrecy of the generalized Shamir’s scheme, as each polynomials
f(x), g(x) and h(x) individually is an instance of Construction 5.3.2, and we show
that their combination remains secure. The construction is discussed in detail in
Section 8.2.

downloading only 1 symbol from each party and so the decoding bandwidth is
further reduced to 7 symbols.

We use the examples in Figure 7.2 to highlight several ideas to reduce the decoding
bandwidth. Firstly, the necessary amount of communication decreases strictly as the
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number of available parties increases. Secondly, it is helpful to distribute multiple
subshares (symbols) to a party (essentially the idea of array schemes discussed in
Section 3.1). In contrast, Shamir’s scheme only distributes one symbol to each party
except for trivial repetitions. Thirdly, during decoding it is not always necessary to
download the complete share stored by a party. In general, a party can preprocess
its share and the user can download a function of the share.

Specifically, in Section 8.1, we prove a tight information-theoretic lower bound on
the decoding bandwidth. Particularly, let I be the set of parties participating in
decoding, we show that the decoding bandwidth for the case of |I| = n is only a
fraction of n(n−z−r)

(n−z)(n−r) of the decoding bandwidth when |I| = n − r. In Section
8.2, we construct a secret sharing scheme using the ideas described in Figure 7.2.
The construction utilizes a generalized Shamir’s scheme and achieves the optimal
decoding bandwidth universally for all I ∈ A. In Section 8.3, we construct another
secret sharing scheme from Reed-Solomon codes. The scheme achieves the optimal
decoding bandwidth when |I| = n and |I| = n− r. The decoder of the scheme has
a simpler structure compared to the decoder of the first scheme. The scheme also
offers a stronger level of reliability in that it allows decoding even if more than r
shares are partially lost.

In the application of storage where each party is regarded as a disk, it is desirable
to optimize the efficiency of disk operations. Our lower bound on the decoding
bandwidth is a natural lower bound on the number of disk access, i.e., symbol-read,
that occur during decoding. In both schemes mentioned above, the number of
disk access during decoding equals the amount of communication. Therefore, our
schemes are also optimal in terms of access complexity. In addition, by involving
more disks for decoding, our schemes balance the load at the disks and achieve a
higher degree of parallelization.

As previously discussed, the communication efficiency of Shamir’s scheme is sub-
optimal. In the standard Shamir’s scheme, in order to decode the single message
symbol (using the standard decoding algorithm), one needs to download n− r en-
coded symbols. While we have designed schemes with better decoding bandwidth,
Shamir’s scheme is still extensively used due to its simplicity and it remains an im-
portant problemwhether it is possible to reduce the decoding bandwidth of Shamir’s
scheme.

In Section 8.4 we construct a family of Shamir’s schemes that is asymptotically
optimal in the decoding bandwidth. Specifically, as opposed to the original n − r
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symbols, the decoding bandwidth reduces to n/(1 + r) symbols as the field size
increases. The decoding algorithm follows the framework proposed in [56] of in-
terpolating polynomials by querying partial polynomial evaluations. Our scheme
is inspired by the family of Reed-Solomon codes constructed in [57] which has
asymptotically optimal repair bandwidth. Decoding Shamir’s scheme and repair-
ing Reed-Solomon codes are related because both are essentially the problem of
determining the evaluation of a polynomial at a point, given the evaluations of the
polynomial at other points. Decoding Shamir’s scheme in this sense is a simpler
problem because it requires finding the evaluation at a single point, while repairing
Reed-Solomon codes requires finding the evaluation at different points, depending
on which symbol is being repaired. This simplification allows us to greatly reduce
the field size. Specifically, while the codes in [57] require the extension degree of
the field to be exponential in n, our scheme only requires an extension degree of
O(n(n− z)3), which makes it quite practical.

Repair Bandwidth

In addition to the decoding bandwidth, another important aspect of communication
efficiency in distributed storage is the repair bandwidth, which is the amount of in-
formation communicated during the process of repairing an erasure/failure. Erasure
codes with low repair bandwidth, referred to as the regenerating codes, are well
studied in the literature, e.g., [58]–[60]. Secret sharing schemes with low repair
bandwidth, referred to as the secure regenerating codes, are studied in, e.g., [21]–
[23], where lower bounds on the repair bandwidth are obtained and optimal schemes
are proposed. A natural and important question is whether it is possible to construct
a secret sharing scheme with both optimal decoding and repair bandwidth. Rawat
et al. [61], by observing that decoding the secret sharing scheme can be viewed
as repairing the message symbols in a regenerating code, propose schemes that are
bandwidth efficient in both repair and decoding. However, their construction is quite
restricted in parameters if rate-optimality is required.

In chapter 9, by formalizing the connection between regenerating codes and secret
sharing schemes, and then applying the connection to the regenerating codes in [62],
we obtain secret sharing schemes with optimal decoding and repair bandwidth for
general parameters. However, these schemes are not practical as they require an
extremely large level of sub-packetization (i.e., the number of symbols that need to
be stored by a node) that is doubly exponential in n. To reduce sub-packetization,
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we use the fact that all message symbols are “repaired” together in a centralized
manner during decoding. Therefore we essentially need a regenerating code that
allows a hybrid mode of repair: centralized repair of the set of message symbols, and
individual repair of the remaining symbols. We generalize the codes in [62] to this
model and construct secret sharing schemes with a much smaller sub-packetization
level due to the centralized repair pattern. Our generalization also leads to two
families of regenerating codes that support centralized repair of groups of nodes
of flexible sizes with reduced sub-packetization level, which is a result of separate
interest. Finally, among the two bandwidth-optimal schemes that we present, the
latter one is also optimal in access complexity during both decoding and repair.

Part of the material in Chapter 8 and 9 was presented in [63] and [64].
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C h a p t e r 8

SECRET SHARING SCHEMES WITH OPTIMAL DECODING

8.1 Lower Bound on Decoding Bandwidth
Recall the definition of an (n, k, r, z)Q secret sharing scheme from Section 3.1. By
Proposition 3.1.1 a secret sharing scheme is rate-optimal if k = n−r−z. A scheme
is a perfect scheme if z = n − r − 1 and is a ramp scheme if z ≤ n − r − 1. The
rate of any perfect scheme is at most 1/n as k = 1. Any scheme of a higher rate is
necessarily a ramp scheme.

Suppose that the n shares of the secret message are stored by n parties or distributed
storage nodes1, and a user wants to decode the message. By the reliability require-
ment, the user can decode by connecting to any n− r nodes and downloading one
share, i.e., one |Q|-ary symbol, from each node. Therefore, by communicating
n− r symbols, the user can decode a message of k ≤ n− r− z symbols. It is clear
that a communication overhead of z symbols occurs during decoding. The question
is, whether it is possible to reduce the communication overhead. We answer this
question affirmatively in this chapter.

There are two key ideas for improving the communication overhead. First, in many
practical scenarios and particularly in distributed storage systems, oftentimes more
than n − r nodes are available. In this case, it is not necessary to restrict the user
to download from only n− r nodes. Secondly, it is not necessary to download the
complete share stored by the node. Instead, it may suffice to communicate only a
part of the share or, in general, a function of the share. In other words, a node can
preprocess its share before transmitting it to the user.

Motivated by these ideas, for any I ⊂ [n], |I| ≥ n−r, define a class of preprocessing
functions EI,i : Q → SI,i, where |SI,i| ≤ |Q|, that maps ci to eI,i = EI,i(ci). Let
eI = (eI,i)i∈I , and define a class of decoding functions DI :

∏
i∈I SI,i → Qk, such

thatDI(eI) = m. For a naive example, consider any I such that |I| = n− r. Then
for i ∈ I , we can let SI,i = Q, let EI,i be the identity function, and let DI be the
naive decoding function implied by the reliability requirement. In the remaining
part of this chapter, when I is clear from the context, we will suppress it in the
subscripts of SI,i, EI,i, eI,i and eI , and denote them by Si, Ei, ei and e instead. We

1In what follows we do not distinguish between parties and nodes.
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now formally define the notion of communication overhead in decoding. Note that
all log functions are base Q = |Q|.

Definition 8.1.1. For any I such that |I| ≥ n−r, define the communication overhead
function to be CO(I) =

∑
i∈I log |SI,i| − k. Namely, CO(I) is the amount of extra

information, measured inQ-ary symbols, that one needs to communicate in order to
decode a message of k symbols, provided that the set of available shares is indexed
by I .

The following result provides a lower bound on the communication overhead func-
tion. It generalizes the lower bound in [54] for perfect schemes, i.e., schemes with
z = n− r − 1.

Theorem 8.1.1. For any (n, k, r, z)Q secret sharing scheme with preprocessing
functions {EI,i}i∈I,|I|≥n−r and decoding functions {DI}|I|≥n−r, it follows that

CO(I) ≥ kz

|I| − z
. (8.1)

Proof. Consider arbitrary I = {i1, ..., i|I|} such that |I| ≥ n− r. Assume without
loss of generality that |Si1| ≤ |Si2 | ≤ ... ≤ |Si|I| |. Recall that eI = (ei1 , ..., ei|I|) is
the output of the preprocessing functions.

H(ei1 , ..., ei|I|−z)
(a)

≥ H(ei1 , ..., ei|I|−z |ei|I|−z+1
, ..., ei|I|)

(b)
= H(ei1 , ..., ei|I|−z |ei|I|−z+1

, ..., ei|I|)

+H(m|ei1 , ..., ei|I|)
(c)
= H(m, ei1 , ..., ei|I|−z |ei|I|−z+1

, ..., ei|I|)

≥ H(m|ei|I|−z+1
, ..., ei|I|)

(d)
= H(m) = k, (8.2)

where (a) follows from the fact that conditioning reduces entropy, (b) follows from
the reliability requirement, (c) follows from the chain rule, and (d) follows from the
secrecy requirement. Therefore it follows from (8.2) that

|I|−z∏
j=1

|Sij | ≥ Q
H(ei1 ,...,ei|I|−z ) ≥ Qk,
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and so
|I|−z∑
j=1

log |Sij | ≥ k. (8.3)

It then follows from |Si1| ≤ ... ≤ |Si|I| | that,

log |Si|I|−z | ≥
k

|I| − z
,

and that,

log |Si|I|−z+j | ≥ log |Si|I|−z | ≥
k

|I| − z
, j = 1, ..., z. (8.4)

Combining (8.3) and (8.4) we have,

CO(I) =

|I|∑
j=1

log |Sij | − k ≥
kz

|I| − z
.

Theorem 8.1.1 suggests that the communication overhead decreases as the number
of available nodes increases. Define the decoding bandwidth to be the amount of
information downloaded by a use during decoding. By Theorem 8.1.1 we have the
following result.

Corollary 8.1.1. For d ≥ n − r , the bandwidth of decoding a (n, k = n − r −
z, r, z)Ftq secret sharing scheme from d nodes is at least kdt

d−z symbols over Fq.

For rate-optimal schemes, Theorem 8.1.1 implies that if |I| = n − r, then the
communication overhead is at least z, i.e., the user needs to download the complete
share from each available node. The naive decoding function implied by the reli-
ability requirement trivially achieves this bound. The more interesting scenario is
the regime in which |I| > n− r. In this case, if (8.1) is tight, then one can achieve
a non-trivial improvement on decoding bandwidth compared to the naive decoding
function. When k = n − r − z = 1 (i.e., for perfect schemes) and fixing any
d > n−r, [54] constructs a rate-optimal scheme that achieves the lower bound (8.1)
for any I such that |I| = d. However, several interesting and important questions
remain open. Firstly, is the lower bound uniformly tight, or in other words, is it
possible to construct a scheme that achieves (8.1) universally for any I such that
|I| ≥ n − r (note that the scheme in [54] does not achieve the lower bound when
|I| 6= d)? Secondly, is the bound tight when k > 1 (i.e., for ramp schemes) and how
to design such schemes? We answer these questions in the following section.
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8.2 Construction from Shamir’s Scheme
In this sectionwe construct a rate-optimal scheme that achieves the optimal decoding
bandwidth universally for all I such that |I| ≥ n− r, i.e., all sets of available nodes
that allow decoding. This implies that the lower bound in Theorem 8.1.1 is uniformly
tight. The scheme is based on a generalization of Shamir’s scheme and preserves
its simplicity and efficiency. The scheme is flexible in the parameters n, k, r, z and
hence is flexible in rate.

We first refer the readers to Figure 7.2b for an example of the scheme, and use it to
describe the general idea of the construction. To construct a scheme that achieves
the optimal decoding bandwidth when d nodes are available, for all d ∈ D, we
design a set of polynomials of different degrees. Particularly, for all d ∈ D, we
design a number of polynomials of degree exactly d − 1, and store one evaluation
of each polynomial at each node. For each polynomial, exactly z of its coefficients
are independent keys in order to meet the secrecy requirement. The remaining
coefficients encode “information”: for the highest-degree (e.g., degree dmax − 1,
where dmax = maxd∈D d) polynomials, their coefficients encode the entire message;
for other polynomials, say g(x), the information encoded in the coefficients of g(x) is
the high-degree coefficients of the polynomials of degree higher than g(x). Such an
arrangement of the coefficients enables decoding in a successive manner. Consider
decodingwhen d nodes are available, implying that d evaluations of each polynomial
are known and hence all polynomials of degree d − 1 can be interpolated. Then,
roughly speaking, the arrangement ensures that the interpolation will decode the
coefficients of degree ≥ d of some high-degree polynomials, so that the remaining
unknown parts of these polynomials can be interpolated. This in turn allows us to
decode coefficients for additional high-degree polynomials and thus to interpolate
them. The chain continues until all polynomials of degree higher than d − 1 are
interpolated, implying that the message is decoded. Note that no polynomials of
degree smaller than d − 1 are interpolated, and therefore the keys associated with
them are not decoded. This leads to the saving in decoding bandwidth and in fact
this amount is the best one can expect to save, so that the scheme achieves the
optimal bandwidth. Below we describe the scheme formally.

8.2.1 Encoding
Consider arbitrary parameters n, r, z, D and let k = n − r − z. We assume that
n−r ∈ D since it is implied by the reliability requirement. Choose any prime power
q > n, the scheme is an array scheme over Ftq. Namely, each node stores t symbols
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over Fq and the encoding function is linear over Fq. The messagem is a vector over
Fq of length |m| = kt. The choice of t is determined by D in the following way.
Let |m| be the least common multiple of {d− z : d ∈ D}, i.e., the smallest positive
integer that is divisible by all elements of the set. Note that k + z ∈ D and so k
divides |m|, and we let t = |m|

k
. This is the smallest choice of |m| (and thus t) that

ensures when d ∈ D nodes are available, the optimal bandwidth, measured by the
number of Fq symbols, is an integer.

We now construct t polynomials over Fq, evaluate each of them at n non-zero points,
and let every node store an evaluation of each polynomial. LetD = {d1, d2, ..., d|D|},
such that n ≥ d1 > d2 > ... > d|D| = n− r. For i ∈ |D|, let

pi =

{
|m|
d1−z i = 1
|m|
di−z −

|m|
di−1−z i > 1

(8.5)

We construct pi polynomials of degree di − 1. For all polynomials, their z lowest-
degree coefficients are independent random keys. We next define the remaining
di−z non-key coefficients. We first define them for the highest degree polynomials,
and then recursively define them for the lower degree polynomials. For i = 1, the
non-key coefficients of the polynomials of degree di−1 are message symbols. Note
that there are |m| message symbols and |m|

d1−z polynomials of degree d1 − 1. Each
such polynomial has d1 − z non-key coefficients and so there are exactly enough
coefficients to encode the message symbols. For i > 1, the non-key coefficients
encode the degree di to di−1 − 1 coefficients of all higher (than di − 1) degree
polynomials. Note that there are

∑i−1
j=1 pj = |m|

di−1−z higher degree polynomials and
so the total number of coefficients to encode is (di−1−di) |m|

di−1−z . On the other hand,
there are pi polynomials of degree di−1, each of them has di−z non-key coefficients,
and so the total number of non-key coefficients is (di − z)

(
|m|
di−z −

|m|
di−1−z

)
. It is

trivial to verify that the two numbers are equal and so there are exactly enough
coefficients to encode. Note that the specific way to map the coefficients is not
important and any 1-1 mapping suffices. Finally, evaluate each polynomial at n non-
zero points and store an evaluation of each polynomial at each node. This completes
the scheme. Note that indeed the total number of polynomials is

∑|D|
i=1 pi = |m|

d|D|−z
=

|m|
k

= t, implying that the scheme is rate-optimal.

8.2.2 Decoding
For any di ∈ D, we describe the decoding algorithm of the scheme when di nodes
are available. It achieves the optimal decoding bandwidth, and since d|D| = n − r
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it implies that the scheme meets the reliability requirement. We first interpolate all
polynomials of degree di − 1. After that, for all polynomials of degree di−1 − 1,
their coefficients of degree larger than di − 1 are known (as they are encoded in the
coefficients of the polynomials of degree di − 1) and so they can be interpolated.
In general, for j ≤ i, once the polynomials of degree between dj − 1 and di − 1

are interpolated, then for the polynomials of degree dj−1 − 1, their coefficients of
degree larger than di− 1 are known by construction and so they can be interpolated.
Therefore we can successively interpolate the polynomials of higher degree until
the polynomials of degree d1 − 1 are interpolated and so the message symbols are
decoded. The total number of Fq symbols communicated is di

∑i
j=1 pj = di

|m|
di−z .

By Theorem 8.1.1, the decoding bandwidth is at least

|m|+ ktz

di − z
= kt+

ktz

di − z
= kt

(
1 +

z

di − z

)
=
di|m|
di − z

Fq symbols. Therefore the optimal decoding bandwidth is achieved.

8.2.3 Secrecy
We show that the scheme is secure against z eavesdropping nodes. At a high level,
each polynomial individually can be viewed as a generalized Shamir’s scheme, and
so each polynomial individually is secure. The main idea is to show that if these
polynomials are combined, the resulting scheme is still secure. We first prove that
the generalized Shamir’s scheme is indeed a valid secret sharing scheme and so is
secure.

Theorem 8.2.1. The following is an (n, n− r− z, r, z) rate-optimal secret sharing
scheme: For q > n, let m1, ...,mn−z−r be message symbols over Fq. Construct a
polynomial f(x) of degree n−r−1 over Fq, whose degree 0 to z−1 coefficients are
random keys, and the degree z to n− r− 1 coefficients arem1 tomn−r−z. Evaluate
f(x) at n distinct non-zero points and assign one evaluation to each party.

Proof. Note that the scheme described is identical to Construction 5.3.2 except that
the positions of key and message symbols are swapped. Below we will prove the
theorem assuming a slightly more general f(x). Specifically, we allow f(x) to be
any degree-(n − r − 1) polynomial such that z of its coefficients of consecutive
degrees are random keys, and the remaining coefficients are m1 to mn−r−z. Such
a scheme generalizes Shamir’s scheme as a special case when n − r − z = 1 and
the messagem1 is set to be the constant coefficient. The proof below also follows a
similar line to the proof of Shamir’s scheme [15].
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The scheme is reliable because f(x) can be interpolated from any n − r evalua-
tions so that the message symbols can be decoded. To prove the secrecy of the
scheme, suppose that the degree i to i + z − 1 coefficients of f(x) are random
keys u1, ..., uz, and that an adversary observes C1, ..., Cz, which are the evaluations
of f(x) at z points x1, ..., xz. Then fixing a specific value of the message sym-
bols, say (m′1, ...,m

′
n−r−z), there is one and only one specific value of the keys

(u′1, ..., u
′
z) such that the evaluation of the corresponding polynomial meets the ob-

servation of the adversary. This is because given (m′1, ...,m
′
n−r−z) and C1, ..., Cz,

one knows z evaluations of the polynomial u′1xi + u′2x
i+1 + ...+ u′zx

i+z−1, denoted
by D1, ..., Dz. Then by dividing Dj by xij , j ∈ [z], z evaluations of the polynomial
u′1 + u′2x + ... + u′zx

z−1 are known. Therefore the unique (u′1, ..., u
′
z) are obtained

by interpolating this degree-(z− 1) polynomial. By construction, since every value
of the keys is equally likely, the adversary cannot deduce any information about the
message.

The following lemma shows that combining two secure schemes is still secure as
long as the keys used in the schemes meet certain independence conditions.

Lemma 8.2.1. Consider random variables M1, M2, U1, U2 such that U2 is inde-
pendent of {M1, U1}. For i = 1, 2 Let Fi be a deterministic function of Mi, Ui. If
I(M1;F1) = 0 and I(M2;F2) = 0, then I(M1;F1, F2) = 0. In addition, if U1 is
independent ofM2, then I(M1,M2;F1, F2) = 0.

Proof. We start with the first statement. Since F2 is a function of U2,M2 but U2 is
independent of {M1, U1, F1}, it follows that F2 is independent of {M1, U1, F1} con-
ditioning onM2, implying theMarkov chain {M1, U1, F1} →M2 → F2. Therefore,
I(M1, U1, F1,M2;F2) = I(M2;F2) = 0, i.e., F2 and {M1, U1, F1,M2} are inde-
pendent. Hence I(M1;F1, F2) = I(M1;F2) + I(M1;F1|F2)

(a)
= I(M1;F1|F2)

(b)
=

I(M1;F1) = 0, where (a) and (b) follows from the fact that F2 is independent from
{M1, F1}.

To prove the second statement, note that since U1 is independent of M2 and
that F1 is a function of M1, U1, we have the Markov Chain M2 → M1 →
F1, by which it follows that I(M1,M2;F1) = I(M1;F1) = 0. Similarly be-
cause U2 is independent of {M1, U1, F1} and that F2 is a function of M2, U2, we
have the Markov Chain {M1, F1} → M2 → F2. By this chain it follows that
I(M1, F1,M2;F2) = I(M2;F2) = 0, i.e., {M1, F1,M2} is independent of F2.
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Therefore I(M1,M2;F2|F1) = 0 and so I(M1,M2;F1, F2) = I(M1,M2;F1) +

I(M1,M2;F2|F1) = 0.

Suppose that the adversary compromises z nodes and obtains z evaluations of each
polynomial. Consider the i-th polynomial in the order that we define them, let
fi denote the adversary’s observation of this polynomial, let ui denote the key
coefficients of this polynomial and let mi denote the non-key coefficients. By
Theorem 8.2.1 we have

I(mi;fi) = 0, i = 1, ..., b. (8.6)

Consider the first p1 polynomials which are polynomials of the highest degree d1−1.
By construction, m1, ...,mp1 exactly encode the messagem. We invoke Lemma
8.2.1 by regardingm1,u1, f1,m2,u2 and f2 asM1, U1, F1,M2, U2 and F2. By the
second statement of the lemma it follows that I(m1,m2;f1,f2) = 0. Inductively,
for 1 < i < p1, suppose that I(m1, ...,mi;f1, ...,fi) = 0. We regard {m1, ...,mi}
as M1, {u1, ...,ui} as K1, {f1, ...,fi} as F1, and regard mi+1,ui+1,fi+1 as
M2, U2, F2. It follows from Lemma 8.2.1 that I(m1, ...,mi+1;f1, ...,fi+1) = 0.
By induction we have I(m1, ...,mp1 ;f1, ...,fp1) = 0.

We then regard {m1, ...,mp1} = m as M1, {u1, ...,up1} as U1, {f1, ...,fp1} as
F1, and regard mp1+1, up1+1, fp1+1 as M2, U2, F2. Then it follows from the first
statement of Lemma 8.2.1 that I(m;f1, ...,fp1+1) = 0. Inductively, for p1 < i <

b, suppose that I(m;f1, ...,fi) = 0. We regard m as M1, {u1, ...,ui} as U1,
{f1, ...,fi} as F1, and regard mi+1,ui+1,fi+1 as M2, U2, F2. By Lemma 8.2.1
we have I(m;f1, ...,fi+1) = 0. By induction it follows that I(m;f1, ...,ft) = 0,
implying that the adversary learns no information about the message m. This
completes the proof and we have the following theorem.

Theorem 8.2.2. For D ⊂ [n − r, n], the encoding scheme constructed in Section
8.2.1 is a rate-optimal (n, k, r, z) secret sharing scheme. The scheme achieves the
optimal decoding bandwidth when d nodes participate in decoding, universally for
all d ∈ D.

8.2.4 Discussion
We remark on some other important advantages and properties of our construction.
Firstly, the scheme also achieves the optimal number of symbol-read from disks in
decoding. To see this, notice that the lower bound (8.1) on communication is also
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a lower bound on the number of Q-ary symbols that need to be read from disks
during decoding. The number of symbol-read in the proposed scheme is equal to
the amount of communication. Therefore our scheme achieves the lower bound and
hence has optimal disk access complexity. Secondly, compared to most existing
secret sharing schemes which decode from the minimum number of n − r − z

nodes, our scheme allows all available nodes (or more flexibly, any d ∈ D nodes)
to participate in decoding and hence can help balance the load at the disks and
achieve a higher degree of parallelization. Thirdly, the encoding and decoding of
the scheme are similar to those of Shamir’s scheme and therefore are efficient and
practical. Particularly, the scheme works over the same field as Shamir’s scheme.
Fourthly, the preprocessing functions only rely on d = |I| instead of I , further
simplifying implementation. Fifthly, in practice when a user connects to more
nodes, the increased latency may offset the benefit of the reduced bandwidth. One
can overcome this issue by avoiding connections to nodes of large latency. If the
latency of the nodes are not known a priori, one can start with connecting to all
nodes and downloading the evaluations of the polynomials in decreasing order of
degree. If some nodes do not respond in time, consider them as not available and
switch adaptively to the mode of decoding from a smaller number of nodes. Finally,
the construction is flexible in the parameters, i.e., it works for arbitrary n, r and z
and D.

Connection to other schemes: An important idea in our scheme is to construct
multiple correlated polynomials of different degrees in order to facilitate decoding
when different numbers of nodes are available. Similar ideas also appear in the
schemes in [54], [55]. The main technique that enables the improvement of our
schemes is a more careful and flexible design of the number and degree of the
polynomials, as well as the arrangement of their coefficients.

Our schememaps the high-degree coefficients of the higher degree polynomials into
the coefficients of the lower degree polynomials, whereas the specific coefficient
mapping is not important and any 1-1 mapping suffices. Additionally, for all
polynomials in our scheme, the z lowest degree coefficients are independent keys.
However, in general this is not necessary: in any polynomial, we can choose any
consecutive z coefficients to be independent keys, and use the remaining coefficients
to encode information (i.e., message symbols and coefficients of higher degree
polynomials). The resulting scheme is a still valid (see the proof of Theorem 8.2.1)
and achieves the optimal decoding bandwidth universally. Under this observation,
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we note that our scheme generalizes the scheme in a recent independent work [65].
Particularly, our scheme is equivalent to the scheme in [65] if we require a specific
coefficient mapping and let the z highest (instead of lowest) coefficients of all
polynomial be keys2.

In what follows we discuss the the advantage of our framework, which allows
flexibility in choosing the coefficient mapping and the positions of the keys in a
polynomial.

Coefficient mapping: As discussed above we can choose the coefficient mapping
to be any 1-1 mapping. The flexibility in choosing the specific mapping is helpful
in practice. Particularly, it is possible to improve the (computational) encoding
complexity of the scheme substantially by choosing a mapping that maintains the
order of the coefficients. Refer to Figure 7.2b for an example. We need to compute
m4x + m5x

2 + m6x
3 in evaluating g(x), and we can reuse this computation in

evaluating f(x), because f(x) contains the same run of consecutive coefficients
m4x

4 +m5x
5 +m6x

6. This for example will save 2 multiplications and 2 additions.

Arrangement of keys: We remark that choosing the lowest degree coefficients to
be keys has several practical advantages. Decoding the scheme involves sequen-
tially interpolating the polynomials through multiple iterations, which can lead to
undesirable delay especially when |D| is large. To mitigate this issue, we wish to
decode the message symbols “on the fly” in each iteration. Specifically, if d nodes
are available, then each time a polynomial is interpolated, exactly d new message
and/or key symbols are decoded. Since the number of symbols decoded in each
interpolation, the total number of message symbols and the total number of key
symbols to be decoded are all fixed, there is a trade-off between the decoding order
of the key and message symbols. The location of keys in the polynomials plays a
crucial role in this trade-off.

Formally, let β(i) be the number of message symbols decoded after i iterations,
i.e., after i polynomial interpolations. The optimal trade-off is to maximize β(i) for
every i. We first derive a simple upper bound of β(i). Note that by the time that i
polynomials have been interpolated, di symbols are decoded and among them there
are at least zi keys since each polynomial introduces z independent keys for secrecy.
Therefore β(i) ≤ (d− z)i.

2The scheme in [65] also lets a node evaluate all polynomials at the same point, whereas this is
not necessary in our framework.
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Our scheme achieves this upper bound for all i. For example, in Figure 7.2b, if d = 3

nodes are available, then decoding involves 3 iterations and each iteration outputs
d − z = 2 message symbols. In general, each iteration in decoding our scheme
outputs d−z message symbols. This is because by construction, only coefficients of
degree higher than d|D| = n− r > z will be mapped to the coefficients of the lower
degree polynomials. Since we place the keys in the z lowest degree coefficients, they
are never mapped. Therefore for any polynomial, its coefficients of degree larger
than z − 1 encode message symbols. When a polynomial is interpolated, exactly z
keys are decoded and the remaining d− z symbols decoded are message symbols.

Achieving β(i) = (d− z)i implies that at any moment during the decoding process,
our scheme always decodes the maximum number of message symbols. In other
words the decoding delay, measured in the number of iterations, averaged over all
message symbols, is minimized. Moreover, the fact that each iteration decodes a
fixed number of d−z newmessage symbols may be helpful for implementation. On
the other hand, note that choosing the z highest degree coefficients to be keys implies
that the keys will be mapped to the coefficients of lower degree polynomials. Hence
the keys will be decoded earlier than necessary (since lower degree polynomials are
interpolated earlier) and it is not possible to achieve the optimal trade-off. Consider
the example in Figure 7.2b, if we switch the keys to high degree coefficients, then
the polynomials are f(x) = m1 + m2x + m3x

2 + m4x
3 + m5x

4 + m6x
5 + k1x

6,
g(x) = m5 +m6x+k1x

2 +k2x
3 and h(x) = m4 +k2x+k3x

2. In the case that d = 4

nodes are available, only 2 message symbolsm5,m6 are decoded in the first iteration
and the remaining 4 message symbols are decoded in the second (last) iteration. In
comparison, the original scheme performs better by decoding 3 message symbols in
each iteration. Finally, we remark that decoding the maximum number of message
symbols on the fly is also beneficial in terms of partial decoding, i.e., decoding a
subset of message symbols. In this case decoding can finish early if all symbols of
interest are decoded, and our scheme maximizes the chance of finishing early.

Finally, we remark that using the random coding argument, we can design another
secret sharing scheme that achieves the optimal decoding bandwidth universally
[66]. However, such a scheme requires a significantly lager field size.

8.3 Construction from Reed-Solomon Codes
In this section we present another rate-optimal secret sharing scheme that achieves
the optimal decoding bandwidth when all n nodes are available, namely D =
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{n− r, n}. The scheme is flexible in other parameters and hence is flexible in rate.
The scheme is directly related to Reed-Solomon codes. Particularly, the encoding
matrix of the scheme is a generator matrix of Reed-Solomon codes, and so the
scheme can be decoded as Reed-Solomon codes. This is an advantage over the
scheme in the previous section, which requires recursive decoding. The scheme
also provides a stronger level of reliability in the sense that it allows decoding even
if more than r shares are partially erased. On the other hand, unlike the previous
scheme, this scheme does not achieve the optimal decoding bandwidth universally,
but rather only for d = n − r and d = n. However, we remark that the case of
d = n is particularly important because it corresponds to the best case in terms of
decoding bandwidth and is arguably the most relevant case for the application of
distributed storage, where the storage nodes are usually highly available.

8.3.1 Encoding
Fix k = n− r− z, let q > n(k+ r) be a prime power, and letQ = Fk+r

q . Note that
each node stores a length k + r vector over Fq. For j = 1, ..., n, denote the share
of node j by cj = (c1,j, ..., ck+r,j), where ci,j ∈ Fq. The secret message m is k
symbols over Q and therefore can be regarded as a length-k(k + r) vector over Fq,
denoted by (m1, ...,mk(k+r)). The encoder generates keys u = (u1, ..., ukz) ∈ Fkzq
and u′ = (u′1, ..., u

′
rz) ∈ Frzq independently and uniformly at random. The encoding

scheme is linear over Fq, and is described by an encoding matrix G over Fq:

(c1,1, ..., c1,n, ..., ck+r,1, ..., ck+r,n) =

(m1, ...,mk(k+r), u1, ..., ukz, u
′
1, ..., u

′
rz)G. (8.7)

Note that G has k(k + r) + kz + rz = nk + rz rows and has n(k + r) columns.
In the following we discuss the construction of G based on Vandermonde matrices.
We start with some notation. Let α1, ..., αn(k+r) be distinct non-zero elements of
Fq, and let vij = αi−1

j , i = 1, ..., nk + rz, j = 1, ..., n(k + r), then V = (vij) is a
Vandermonde matrix of the same size asG. Suppose f = (f0, ..., fi) is an arbitrary
vector with entries in Fq, we denote by f [x] the polynomial f0 + f1x + ... + fix

i

over Fq with indeterminate x. We construct a set of polynomials as follows:

fi[x] = xi−1 i = 1, ..., kn, (8.8)

fkn+i[x] = xi−1

kn∏
j=1

(x− αj) i = 1, ..., rz. (8.9)
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Let fi, i = 1, ..., kn+ rz be the length-(kn+ rz) vectors over Fq corresponding to
the polynomials. Stack the fi’s to obtain a square matrix of size (kn+ rz):

T =


f1

...
fkn+rz

 .

Finally, we complete the construction by setting

G = TV.

Example 8.3.1. Consider the setting thatn = 3, r = 1, z = 1 and k = n−r−z = 1.
Let q = 7 and Q = F2

q . Thenm = (m1,m2), u = (u1) and u′ = (u′1). Construct
a Vandermonde matrix over Fq as

V =


1 1 1 1 1 1

1 2 3 4 5 6

1 4 2 2 4 1

1 1 6 1 6 6

 . (8.10)

Construct polynomials f1[x] = 1, f2[x] = x, f3[x] = x2 and

f4[x] = (x− 1)(x− 2)(x− 3) = 1 + 4x+ x2 + x3.

Therefore,

T =


f1

f2

f3

f4

 =


1 0 0 0

0 1 0 0

0 0 1 0

1 4 1 1

 ,

and the encoding matrix is given by

G = TV =


1 1 1 1 1 1

1 2 3 4 5 6

1 4 2 2 4 1

0 0 0 6 3 4

 .

The properties of G are discussed in the following lemma.

Lemma 8.3.1. Regard G as a block matrix

G =

(
G11 G12

G21 G22

)
,

where G11 has size kn× kn, G12 has size kn× rn, G21 has size rz × kn, and G22

has size rz × rn. Then,
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(i) Any (n− r)(k + r) columns of G are linearly independent.

(ii) G11 is a Vandermonde matrix.

(iii) G21 = 0.

(iv) Any rz columns of G22 are linearly independent.

Proof. By construction, the polynomials fi[x], i = 1, ..., kn + rz have distinct
degrees and therefore are linearly independent. Therefore the rows of T are linearly
independent and so T is full rank. This implies that the row space ofG is the same as
the row space of V . The row space of V is a linear (nk+nr, nk+rz)Reed-Solomon
code because that V is a Vandermonde matrix. Note that nk+ rz = (n− r)(k+ r),
and so the row space of G is a (nk+ nr, (n− r)(k+ r)) Reed-Solomon code. This
proves (i).

To prove (ii), note that by (8.8), the first kn rows of G are exactly the first kn rows
of V . Therefore G11 is a Vandermonde matrix.

To prove (iii), note that by construction the (i, j)-th entry of G21 equals fkn+i[αj].
By (8.9), αj is a root of fkn+i[x], for i = 1, ..., rz, j = 1, ..., kn. Hence G21 = 0.

Finally we prove (iv). By construction the (i, j)-th entry of G22 equals

fkn+i[αkn+j] = αi−1
kn+j

kn∏
l=1

(αkn+j − αl) = αi−1
kn+jf

∗[αkn+j], (8.11)

where f ∗[x] =
∏kn

l=1(x − αl). Since α1, ..., α(k+r)n are distinct elements, it fol-
lows that f ∗[αkn+j] 6= 0, for j = 1, ..., rn. Let 1 ≤ j1 < j2 < ... < jrz ≤
rn and consider the submatrix formed by the j1-th,...,jrz-th columns of G22.
By (8.11), the l-th column of the submatrix is formed by consecutive powers
of αkn+jl , scaled by f ∗[αkn+jl ]. Therefore the determinant of the submatrix is∏rz

l=1 f
∗[αkn+jl ]

∏
1≤u<v≤rz(αkn+jv−αkn+ju) 6= 0. This shows that any rz columns

of G22 are linearly independent.

8.3.2 Decoding
We describe the decoding procedure for two cases: 1) |I| = n, i.e., all nodes are
available, and 2) |I| < n. First consider the case that |I| = n, i.e., I = [n]. In order
to decode, for this case it suffices to read and communicate the first k symbols overFq
from each share. Formally, the user downloads e = (c1,1, ..., c1,n, ..., ck,1, ..., ck,n).
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By Lemma 8.3.1(ii), G11 is invertible. Denote the inverse of G11 by G−1
11 , then the

message can be recovered by

eG−1
11

(e)
= (m1, ...,mk(k+r), u1, ..., ukz),

where (e) follows from (8.7) and Lemma 8.3.1(iii). The decoding process involves
communicating kn symbols from Fq. The communication overhead is kz symbols
over Fq or kz

k+r
= kz

n−z Q-ary symbols, which achieves the lower bound (8.1) and
therefore is optimal.

Next consider the case that n − r ≤ |I| < n. Select an arbitrary subset I ′ of I of
size n− r, and download the complete share stored by the nodes in I ′. Hence, the
downloaded information e is a length-(n − r)(k + r) vector over Fq. By Lemma
8.3.1(i), it follows that any (n − r)(k + r) columns in G are linearly independent
and therefore the submatrix formed by these columns is invertible. The message
m can then be recovered by multiplying e with the inverse. An alternative way to
decode the message is to notice thatG is an encoding matrix of a (nk+nr, nk+rz)

Reed-Solomon code over Fq. Therefore one may employ the standard decoder of
Reed-Solomon code to correct any r(k+r) erasures or br(k+r)/2c errors of symbols
over Fq. Note that when at most r nodes are unavailable, we regard their shares as
erased and there are at most r(k+ r) erasures of symbols over Fq, and therefore can
be corrected. In general, any r(k+r) erasures or br(k+r)/2c errors of symbols over
Fq are correctable even if they occur to more than r nodes. The decoding process
involves communicating nk + rz symbols of Fq. The communication overhead is
(n− r)(k+ r)− k(k+ r) = z(k+ r) symbols over Fq, or z symbols overQ, which
achieves the lower bound (8.1) if and only if |I| = n− r.

8.3.3 Analysis

Theorem 8.3.1. The encoding scheme constructed in Section 8.3.1 is a rate-optimal
(n, k, r, z) secret sharing scheme. The scheme achieves the optimal decoding band-
width when d nodes participate in decoding, for d = n or d = n− r.

Proof. We need to verify that the encoding schememeets the reliability requirement
and the security requirement of a secret sharing scheme. An explicit decoding
scheme and its communication overhead are discussed in Section 8.3.2 and therefore
the reliability requirement is met. The scheme is rate-optimal because k = n−r−z.
We only need to show that the scheme is secure. By Lemma 4.3.1, it suffices to
show that H(k,k′|cI ,m) = 0, for all I such that |I| = z. In other words, the
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random symbols generated by the encoder are completely determined by cI and the
message. Denote the submatrix formed by the first k(k + r) rows of G by Gtop and
the submatrix formed by the remaining (k + r)z rows of G by Glow. Consider any
I = {i1, ..., iz}, and let cI = (c1,i1 , ..., c1,iz , ..., ck+r,i1 , ..., ck+r,iz). It then follows
from (8.7) that

cI = (m1, ...,mk(r+k))Gtop,I + (u1, ..., ukz, u
′
1, ..., u

′
rz)Glow,I ,

where Gtop,I is the submatrix formed by the subset of columns in {i + j|i ∈ I, j =

0, n, ..., (k+r−1)n} ofGtop, andGlow,I is the submatrix formed by the same subset
of columns of Glow. Therefore, written concisely,

(u u′)Glow,I = cI −mGtop,I . (8.12)

To study the rank of Glow,I , note that it is a square matrix of size (k + r)z, and we
regard it as a block matrix

Glow,I =

(
G′11 G′12

G′21 G′22

)
, (8.13)

where G′11 has size kz × kz, G′12 has size kz × rz, G′21 has size rz × kz and G′22

has size rz × rz. By Lemma 8.3.1(ii), G′11 is a block of a Vandermonde matrix and
therefore is invertible. By Lemma 8.3.1.(iii), G′21 = 0. Denote cI −mGtop,I by
(v1, ..., v(k+r)z), then the above two facts together with (8.12) imply that

u = (v1, ..., vkz)G
′−1
11 . (8.14)

Therefore u is a function ofm and cI . It follows from (8.12) that

u′G′22 = (vkz+1, ..., v(k+r)z)− uG′12.

By Lemma 8.3.1(iv), G′22 is invertible and therefore

u′ =
(
(vkz+1, ..., v(k+r)z)− uG′12

)
G′−1

22 . (8.15)

This shows that u′ is a function of u, cI andm, and so

H(u,u′|cI ,m) = 0. (8.16)

The proof is complete.
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Theorem 8.3.1 shows that the proposed secret sharing scheme is optimal in terms
of storage and the best-case (i.e., |I| = n) decoding bandwidth. Compared to the
scheme in the previous section, this scheme has advantages in terms of implemen-
tation and error correction because decoding the scheme is equivalent to decoding
standard Reed-Solomon codes. The scheme also provides a stronger level of reli-
ability in the sense that it allows decoding even if more than r shares are partially
erased. Similar to previous discussion, the scheme achieves the optimal number of
symbol-read from disks when |I| = n. Finally, in the scheme all operations are
performed over the field Fq, where q > n(k + r). This requirement on the field
size can be relaxed in the following simple way. Let β be the greatest common
divisor of k and r, then instead of choosing Q to be Fk+r

q , we can let Q = F
k
β

+ r
β

q ,
m = (m1, ...,m k(k+r)

β

), u = (u1, ..., u kz
β

) and u′ = (u′1, ..., u
′
rz
β

). The resulting
scheme is a rate-optimal (n, k, r, z)Q secret sharing scheme with the same decoding
bandwidth as the original scheme. For this modified construction, it is sufficient to
choose any field size q > nk+r

β
.

8.4 Shamir’s Scheme with Optimal Decoding Bandwidth
In this section we look at a different perspective on the decoding bandwidth prob-
lem. Instead of constructing new secret sharing schemes with optimal decoding
bandwidth, we study the decoding bandwidth of the classical Shamir’s scheme [15].
Though we have constructed two schemes with optimal decoding bandwidth in this
chapter, improving the decoding bandwidth of Shamir’s scheme remains an impor-
tant problem as it is extensively used due to its simplicity. Below we describe a
new family of Shamir’s scheme with asymptotically optimal decoding bandwidth
by extending the ideas recently developed in [56], [57] on repairing Reed-Solomon
codes.

Consider Shamir’s original scheme: let F be a finite field of size |F | > n, and let
α0, · · · , αt−1 be t elements in F , where α0 is the secret message and α1, · · · , αt−1

are randomly selected keys. Let λ1, · · · , λn be any n distinct non-zero elements in
F and let f(x) =

∑t−1
i=0 αix

i. Then the n shares are f(λ1), · · · , f(λn). Shamir’s
scheme is an (n, k = 1, r = n − t, z = t − 1) scheme, denoted for short as an
(n, t) threshold scheme, i.e., from any t shares α0 can be decoded by polynomial
interpolation, and any t−1 shares reveal no information about α0. Clearly, decoding
α0 by polynomial interpolation requires communication t symbols over F . In what
follows we show that by choosing F and the set of evaluation points λ1, · · · , λn
carefully, it is possible to reduce the decoding bandwidth (when all n shares are
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available) to a fraction of approximately n
t(n−t+1)

of the original bandwidth. We
need to slightly generalize the way that the secret message m is encoded: rather
than setting α0 = m, we let α0 = m−

∑t−1
i=1 λ

i
0αi, for some λ0 ∈ F . In other words

m =
∑t−1

i=0 λ
i
0αi = f(λ0). The corresponding scheme is an (n, t) threshold scheme

as long as λi 6= λ0, i ∈ [n]. Note that Shamir’s original scheme corresponds to the
case that λ0 = 0.

To reduce the decoding bandwidth, we follow the framework proposed in [56] of
interpolating polynomials by querying partial polynomial evaluations. Specifically,
let F be the extension field of degree l of a subfield K. During decoding, each of
the n nodes applies K-linear transforms to the share over F that it holds to obtain
a set of symbols over K. The decoder collects these sets of symbols and performs
K-linear transforms on them to assemble the secret message over F . Formally,
viewing F as a vector space of dimension l over K, it is shown in: [56] that

Lemma 8.4.1. For a finite field K and its degree-l extension field F , let f be a
polynomial over F of degree < t, and f(λ1), · · · , f(λn) be n evaluations. Let λ0

be an element in F , and let g1(x), · · · , gl(x) be l polynomials over F of degree
< n− t+ 1, such that {gi(λ0) : i ∈ [l]} is a basis of F over K. Then to determine
f(λ0), it suffices to know the set of values

⋃
i∈[n] {tr (gj(λi)f(λi)) : j ∈ [l]}, where

tr : F → K is the trace function.

The task of decoding the scheme is equivalent to determining f(λ0) and therefore
it suffices to download the set of values {tr (gj(λi)f(λi)) : j ∈ [l]} from node i, for
i ∈ [n]. However, due to the linearity of the trace function, we can reconstruct
this set from values in {tr(βf(λi)) : β ∈ Bi}, where Bi is a basis (over K) of
span[{gj(λi) : j ∈ [l]}]. Therefore, the number of symbols over K that we need
to download from node i equals |Bi| = dim(span[{gj(λi)}j∈[l]]). We now discuss
a way to select λi, i = 0, · · · , n as well as gi(x), i ∈ [l], so that the condition in
Lemma 8.4.1 is satisfied and that |Bi|, i ∈ [n] is minimized. We remark that our
construction idea is inspired by the codes in [57].

Construction 8.4.1. For anyn, t, let s = n−t+1 and l = τs for some τ ≥ n+1. Let
K be a finite field and h(x) ∈ K[x] be a degree l irreducible polynomial. Let β be a
root of h(x), andF be the field generated by β overK. Let λ0 = β, λi = βis, i ∈ [n],
and let {gi(x) : i ∈ [l]} = {βaxb : a = 0, s, · · · , (τ − 1)s, b = 0, · · · , s− 1}.
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Theorem 8.4.1. The (n, t) Shamir’s scheme obtained by choosing F and {λi : i =

0, · · · , n} according to Construction 8.4.1 attains a decoding bandwidth of less
than nl

s
+ n2s2

4
symbols over K.

Proof. Define {gi(x) : i ∈ [l]} according to Construction 8.4.1. Then it follows that
{gi(λ0), i ∈ [l]} = {β0, β1, · · · , βl−1}, which is a basis of F overK. Therefore the
condition of Lemma 8.4.1 is satisfied and we invoke the lemma to decode f(λ0).
We now analyze the size of {gj(λi) : j ∈ [l]}, for i ∈ [n]:

{gj(λi) : j ∈ [l]}

= {βaβisb : a = us, u ∈ [0, τ − 1], b ∈ [0, s− 1]} (8.17)

⊂ {βus : u ∈ [0, τ − 1]}∪

{βa+isb : a+ isb ≥ l, a = us, u ∈ [0, τ − 1], b ∈ [0, s− 1]}. (8.18)

Denote the two sets in the R.H.S. of (8.18) by I1 and I2, respectively. Then
|I1| = τ = l/s and the size of I2 is bounded by

|I2| ≤
s−1∑
j=1

|{βa+isb : a = (τ − (j − 1)i− k)s, k ∈ [i], b ∈ [j, s− 1]}| (8.19)

=
s−1∑
j=1

i(s− j) =
is(s− 1)

2
. (8.20)

Therefore,
n∑
i=1

dim (span[{gj(λi) : j ∈ [l]}]) ≤
n∑
i=1

|{gj(λi) : j ∈ [l]}| (8.21)

≤ nτ +
n∑
i=1

is(s− 1)

2
(8.22)

=
nl

s
+
ns(n+ 1)(s− 1)

4
(8.23)

<
nl

s
+
n2s2

4
. (8.24)

By the remarks after Lemma 8.4.1, no more than nl
s

+ n2s2

4
symbols overK need to

be downloaded, proving the theorem.

Note that by Theorem 8.1.1 the lower bound on the decoding bandwidth is nl
s

symbols over K and by Theorem 8.4.1, the decoding bandwidth of the proposed
scheme is less than (1 + ns3

4l
)nl
s

symbols. Therefore as l → ∞, the decoding



108

bandwidth is asymptotically optimal in the sense that the ratio between the actual
decoding bandwidth and the optimal decoding bandwidth approaches 1. Particularly,
to achieve optimality it suffices to choose an l that dominates ns3.
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C h a p t e r 9

SECRET SHARING SCHEMES WITH OPTIMAL DECODING
AND REPAIR

9.1 General Construction Framework
Consider a rate-optimal (n, k = n− r− z, r, z) secret sharing scheme over Ftq, and
letm be the message. Recall that t is the number of Fq symbols stored by a node and
is often referred to as the level of sub-packetization. Let d2 be the number of nodes
participating in decoding m, the decoding bandwidth is the number of symbols
over Fq to be transmitted from the d2 nodes to the decoder. The optimal decoding
bandwidth equals kd2t

d2−z by Corollary 8.1.1, referred to as the d2-optimal decoding
bandwidth. Similarly, in the case that h nodes are failed, let d1 be the number of
available nodes participating in the repair process, then the repair bandwidth is the
number of symbols over Fq to be transmitted from the d1 nodes (here we assume
that the repair process is secure, namely a trusted dealer will receive the symbols
and reconstruct the loss symbols). The (d1, h)-optimal repair bandwidth equals

hd1t
h+d1−k−z [58]. When h = 1, we refer to it as the d1-optimal repair bandwidth.
In this chapter we focus on designing secret sharing schemes with both optimal
decoding bandwidth and optimal repair bandwidth.

We first formalize a connection between MDS codes and secret sharing schemes.
The following theorem is a generalization of the result in [67] to the case of k > 1.

Theorem 9.1.1. For any k, z, let k′ = k+ z and n′ > 2k+ z, an [n′, k′] MDS code
C implies a (n = n′ − k, k, r = n − k′, z) secret sharing scheme S, obtained as
follows: Encode C systematically so that among the k′ information nodes, k of them
store secret information and the remaining z nodes store uniformly distributed keys.
Then discard the k nodes storing the secret information. The remaining n nodes
store the n shares of S.

Proof. Since the minimum distance of C is n′ − k′ + 1, the minimum distance of
the codewords of S is n′ − k′ + 1 − k = n − k′ + 1. This proves the reliability
of S. Denote the secret information by a length-k vector m and denote the keys
by a length-z vector u. Let G be the encoding matrix of S, i.e., the shares are
(m,u)G = mGup + uGlow. Then to prove the secrecy of S it suffices to prove
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that any subset of z entries of uGlow is uniformly distributed. Let G′ = [I | P ′]
be the systematic generator matrix of C, where I is the identity matrix of order k′.
Then by construction Glow = [I | P ] where I is the identity matrix of order z, and
P is a submatrix of P ′. Since C is MDS, by [39, Ch.11, Theorem 8], every square
submatrix of P ′ is non-singular and therefore every square submatrix of P is also
non-singular. Again by [39] this implies thatGlow is the systematic generator matrix
of a MDS code and therefore u can be decoded from any subset of z entries of
uGlow. Since u is uniformly distributed, it implies that any subset of z entries of
uGlow is uniformly distributed, proving the theorem.

By Theorem 9.1.1 we can construct secret sharing schemes from MDS codes.
Particularly, the resulting secret sharing schemes are rate-optimal. The next result
formally connects the decoding and repair bandwidth of the secret sharing schemes
to those of the MDS codes. A similar observation is recently made in [61].

Theorem 9.1.2. If C allows 1) repair of individual non-discarded nodes from any
d1 ≤ n − 1 of the remaining available nodes with optimal bandwidth and 2)
simultaneous repair of all k discarded nodes from any d2 ≤ n of the available
nodes with optimal bandwidth, then the resulting secret sharing scheme S achieves
d1-optimal repair bandwidth and d2-optimal decoding bandwidth.

Proof. For S, 1) corresponds to the operation of repairing individual nodes and 2)
corresponds to the operation of decoding. First consider 1). Note that the bandwidth
of repairing a node in S from d1 nodes is lower bounded by the optimal bandwidth
of repairing a node from d1 nodes in an [n, k′] MDS code (because S is a [n, k′]

MDS code) which equals d1t
1+d1−k′ symbols and is achieved by C by hypothesis.

Now consider 2), the optimal bandwidth to repair k nodes in C from d2 nodes is
kd2t

k+d2−k′ = kd2t
d2−z symbols which matches the lower bound on decoding bandwidth.

This shows that S achieves d2-optimal decoding bandwidth.

By Theorem 9.1.1 and Theorem 9.1.2, we can immediately obtain secret sharing
schemes with optimal repair and decoding bandwidth from the regenerating codes
in [62].

Corollary 9.1.1. For any n, r, z, there exists a rate-optimal (n, k = n− r− z, r, z)
secret sharing scheme with d1-optimal repair bandwidth and d2-optimal decoding
bandwidth, universally for all k + z ≤ d1 ≤ n− 1, and k + z ≤ d2 ≤ n.
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Proof. Apply Theorem 9.1.1 and Theorem 9.1.2 to Construction 3 or Construction
6 in [62].

Recall that the access complexity is the amount of symbol-read from disks. We
remark that Construction 6 in [62] is both bandwidth-optimal and access-optimal.
Therefore the resulting secret sharing scheme not only achieves the optimal repair
and decoding bandwidth universally, but also achieves the optimal access complexity
universally during repair or decoding.

We note that, however, the above schemes obtained by directly applying Theorems
9.1.1 and 9.1.2 to Construction 3 or Construction 6 in [62] are hardly practical. This
is because the degree of sub-packetization t is prohibitive. Specifically, t grows
double exponentially at the speed ofO

(
2(k+r)n

)
. In the next section we will discuss

constructions of schemes with a much smaller t. We first introduce some notation
and a general construction framework.

Denote the entries of the codewords of C by Ci, i = 1, · · · , n′. Each Ci is a column
vector of length t over a finite field F . Adopting the framework in [62], we define
C by its parity check equations:

C = {(C1, · · · , Cn′) :
n′∑
i=1

Al,iCi = 0, l = 1, · · · , r′} (9.1)

where r′ = n′−k′, andAl,i, l ∈ [r′], i ∈ [n′] are t×tmatrices overF . In this chapter
we consider array codes that resemble the structure of a Vandermonde matrix, i.e.,
we let

Al,i = Al−1
i , l ∈ [r′], i ∈ [n′] (9.2)

where Ai, i ∈ [n′] are t× t matrices (with the convention that A0 = I). In the next
section we will construct C by designing specific Ai’s.

9.2 Scheme with Optimal Decoding and Repair Bandwidth
The d2-optimal decoding bandwidth of an (n, k = n − r − z, r, z) scheme is kd2t

d2−z

symbols, implying that each of the d2 nodes participating in decoding will transmit
a fraction of k

d2−z of the symbols that it stores. We start with the case that k
d2−z = 1

ρ
,

where ρ ≥ 1 is an integer, which allows a simplified scheme. The following
construction is a generalization of Construction 2 in [62].

Construction 9.2.1. Consider any n, r, z, k = n− r − z and k + z ≤ d1 ≤ n− 1,
k + z ≤ d2 ≤ n such that k

d2−z = 1
ρ
. Let n′ = n + k, k′ = k + z, r′ = n′ − k′
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and F be a finite field of size |F | ≥ kρ + ns, where s = d1 + 1 − k′. Let
{λi,j}i∈[n],j∈{0,··· ,s−1}

⋃
{λn+i,j}i∈[k],j∈{0,··· ,ρ−1} be distinct elements in F . Consider

the code family given by (9.1) and (9.2), where t = ρsn and

Ai =
t−1∑
a=0

λi,aieae
T
a , i = 1, · · · , n

An+i =
t−1∑
a=0

λn+i,an+1eae
T
a i = 1, · · · , k.

Here {ea : a = 0, · · · , t − 1} is the standard basis of F t and we represent a using
the (n + 1)-digit notation a = (an+1, an, · · · , a1), where an+1 ∈ {0, · · · , ρ − 1}
and ai ∈ {0, · · · , s− 1}, for all i ∈ [n].

Note that Ai, i ∈ [n′] are diagonal matrices and we can expand the parity-check
equations (9.1) coordinatewise. Let ci,a denote the a-th entry of Ci, we have,

n∑
i=1

λli,aici,a +
k∑
i=1

λln+i,an+1
cn+i,a = 0, (9.3)

for a ∈ {0, · · · , t− 1}, l ∈ {0, · · · , r′ − 1}.

Lemma 9.2.1. The array code C given by Construction 9.2.1 is MDS.

Proof. Writing (9.3) in matrix form, for all a = 0, · · · , t− 1, we have
1 · · · 1 1 · · · 1

λ1,a1 · · · λn,an λn+1,an+1 · · · λn′,an+1

...
...

...
...

...
...

λr
′−1

1,a1
· · · λr

′−1
n,an λr

′−1
n+1,an+1

· · · λr
′−1
n′,an+1



c1,a

c2,a

...
cn′,a

 = 0. (9.4)

Therefore any r′ columns of the parity checkmatrix in (9.4) are linearly independent,
implying that from any n′− r′ = k′ elements of {c1,a, · · · , cn′,a} we can recover the
whole set. This shows that we can recover the set {C1, · · · , Cn′} from any of its k′

elements. Hence C is an MDS array code.

Lemma 9.2.2. The array code C given by Construction 9.2.1 attains optimal band-
width when 1) repairing a single node i, i ∈ [n], from any d1 nodes, and 2) repairing
the set of nodes {n+ 1, · · · , n′} from any d2 nodes.
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Proof. Let a(i, u) = (an+1, · · · , ai+1, u, ai−1, · · · , a1). To prove the first statement
of the theorem we claim that for i ∈ [n] and a = 0, · · · , t − 1, the set of entries
{ci,a(i,0), · · · , ci,a(i,s−1)} of Ci can be recovered from any subset of d1 symbols of
the following set of n′ − 1 symbols over F :

µ
(a)
j,i ,

s−1∑
u=0

cj,a(i,u), j ∈ [n′]\i.

The claim implies that each of the d1 nodes only needs to send one symbol in order
to recover s symbols in Ci, achieving the optimal bandwidth. To prove the claim,
by (9.3), for any i ∈ [n], a = 0, · · · , t− 1, l = 0, · · · , r′ − 1 and u = 0, · · · , s− 1,
we have:

λli,uci,a(i,u) +
∑

j∈[n]\{i}

λlj,ajcj,a(i,u) +
k∑
j=1

λln+j,an+1
cn+j,a(i,u) = 0. (9.5)

Assumewithout loss of generality that i = 1. By summing (9.5) over u = 0, · · · , s−
1 we obtain

1 · · · 1

λ1,0 · · · λ1,s−1

...
...

...
λr
′−1

1,0 · · · λr
′−1

1,s−1




c1,a(1,0)

...
c1,a(1,s−1)

 =

−


1 · · · 1 1 · · · 1

λ2,a2 · · · λn,an λn+1,an+1 · · · λn′,an+1

...
...

...
...

...
...

λr
′−1

2,a2
· · · λr

′−1
n,an λr

′−1
n+1,an+1

· · · λr
′−1
n′,an+1



µ

(a)
2,1
...

µ
(a)
n′,1

 .
(9.6)

Note that in (9.6), there are r′ equations and s+ (n′− 1− d1) unknown variables (s
from the L.H.S. and n′−1−d1 from the R.H.S.). Moreover, s+(n′−1−d1) = (d1+

1−k′)+(n′−1−d1) = n′−k′ = r′. Therefore the number of equations equals the
number of variables. Below we show that it is indeed possible to solve all variables
from (9.6). We follow an approach similar to that in [62]. Define polynomials
pi(x) = xi

∏s−1
u=0(x − λ1,u), i = 0, · · · , r′ − s − 1. Let pi(x) =

∑r′−1
j=0 pi,jx

j , and
define matrix P , (pi,j)i∈[0,r′−s−1],j∈[0,r′−1]. Then by construction, multiply P on
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the left to (9.6) we have

P


1 · · · 1 1 · · · 1

λ2,a2 · · · λn,an λn+1,an+1 · · · λn′,an+1

...
...

...
...

...
...

λr
′−1

2,a2
· · · λr

′−1
n,an λr

′−1
n+1,an+1

· · · λr
′−1
n′,an+1



µ

(a)
2,1
...

µ
(a)
n′,1

 = 0. (9.7)

The product of the first two terms in (9.7) equals Q = (qi,j)i∈[r′−s],j∈[n′−1], where

qi,j = p0(λj+1,aj+1
)λi−1

j+1,aj+1
, i ∈ [r′ − s], j ∈ [n− 1]

qi,n−1+j = p0(λn+j,an+1)λi−1
j+1,an+1

, i ∈ [r′ − s], j ∈ [k].

ThereforeQ is a Vandermonde matrix in which each column is scaled by a non-zero
constant. Therefore any r′ − s columns of Q are linearly independent, implying
that from any n′ − 1− (r′ − s) = d1 elements of {µ(a)

2,1, · · · , µ
(a)
n′,1} we can recover

the whole set. And then we can recover {c1,a(1,0), · · · , c1,a(1,s−1)} from (9.6). This
proves the claim and the first statement of the theorem.

We now prove the second statement and claim that for any a = 0, · · · , t− 1, the set
of entries {cn+i,a(n+1,j) : i ∈ [k], j ∈ [0, ρ − 1]} can be recovered from any subset
of d2 elements of the set {µ(a)

j,n+1 : j ∈ [n]}. In other words, each of the d2 nodes
only needs to send one symbol in order to decode ρ symbols, achieving the optimal
decoding bandwidth. To prove the claim, from (9.3) we have:

n∑
j=1

λlj,ajcj,a(j,u) +
k∑
j=1

λln+j,ucn+j,a(n+1,u) = 0.

Summing over u we have


1 · · · 1 · · · 1 · · · 1

λn+1,0 · · · λn+1,ρ−1 · · · λn+k,0 · · · λn+k,ρ−1

...
...

...
...

...
...

...
λr
′−1
n+1,0 · · · λr

′−1
n+1,ρ−1 · · · λr

′−1
n+k,0 · · · λr

′−1
n+k,ρ−1





cn+1,a(n+1,0)

...
cn+1,a(n+1,ρ−1)

...
cn+k,a(n+1,0)

...
cn+k,a(n+1,ρ−1)



=


µ

(a)
1,n+1
...

µ
(a)
n,n+1

 . (9.8)
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Note that in (9.8) we have r′ equations and kρ+n−d2 unknown variables (kρ from
the L.H.S. and n − d2 from the R.H.S.). But kρ + n − d2 = r′ and the number of
equations equals the number of variables. Similar to the way that we treat (9.6), we
can recover {cn+i,a(n+1,j) : i ∈ [k], j ∈ [0, ρ− 1]} by solving (9.8). This proves the
claim and the second statement of the theorem.

By Lemmas 9.2.1, 9.2.2 and Theorem 9.1.2, we have:

Theorem 9.2.1. The secret sharing scheme obtained by applying Theorem 9.1.1 to
the code given in Construction 9.2.1, where the last k nodes are discarded, is an
(n, k = n − r − z, r, z) scheme with d1-optimal repair bandwidth and d2-optimal
decoding bandwidth.

Next we generalize Construction 9.2.1 to the case of arbitrary k
d2−z .

Construction 9.2.2. For any n, r, z, k = n − r − z, k + z ≤ d1 ≤ n − 1 and
k + z ≤ d2 ≤ n, let n′ = n + k, k′ = k + z, r′ = n′ − k′ and s = d1 + 1 − k′.
Let θ = gcd(k, d2 − z), τ = k

θ
, ρ = d2−z

θ
and δ = ρ − τ . Let F be a finite field of

size |F | > sn +
∑τ

i=1(i + δ), and let {λi,j : i ∈ [n], j = 0, · · · , s − 1}
⋃
{λn+i,j :

i ∈ [k], j = 0, · · · , b i−1
θ
c + δ} be distinct elements in F . Let t = sn

∏τ
i=1(i + δ).

Consider the code family given by (9.1) and (9.2), where

Ai =
t−1∑
a=0

λi,aieae
T
a , i = 1, · · · , n

An+i =
t−1∑
a=0

λn+i,a
n+d iθe

eae
T
a i = 1, · · · , k.

Here {ea : a = 0, · · · , t−1} is the standard basis of F t and we represent a using the
(n + τ)-digit notation a = (an+τ , · · · , a1), where ai ∈ {0, · · · , s − 1}, for i ∈ [n]

and an+i ∈ {0, · · · , i+ δ − 1}, for i ∈ [τ ].

Following an argument similar to the proof of Lemma 9.2.1, it is easy to show that
the code given by Construction 9.2.2 is an MDS array code.

Lemma 9.2.3. The array code C given by Construction 9.2.2 attains optimal band-
width when 1) repairing a single node i, i ∈ [n], from any d1 nodes, and 2) repairing
the set of nodes {n+ 1, · · · , n′} from any d2 node.
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Proof. We omit the proof of the first statement because it is similar to the proof
of Lemma 9.2.2. To prove the second statement, the key idea is to divide the
(n + 1)-th to the (n + k)-th nodes into τ groups and repair the groups one by
one iteratively. Formally, let CR ⊂ {C1, · · · , Cn} be the set of nodes accessed,
with |CR| = d2. For i = 1, · · · , τ , let Ci = {Cn+(i−1)θ+1, · · · , Cn+(i−1)θ+θ}, then
we first use CR to repair C1, then use CR ∪ C1 to repair C2, · · · , and finally use
CR ∪ C1 ∪ · · · ∪ Cτ−1 to repair Cτ . By the proof of Lemma 9.2.2, we can recover Ci
from {

∑δ+i−1
u=0 cv,a(n+i,u) : an+i = 0, Cv ∈ CR ∪ C[i−1]}. Since the nodes in C[i−1]

are already recovered, it suffices to know the set of values

Ωi =

{
δ+i−1∑
u=0

cv,a(n+i,u) : an+i = 0, Cv ∈ CR

}
.

Therefore to recover all τ groups of nodes, it suffices to know the values in the set
Λ =

⋃τ
i=1 Ωi. We remark that some values in Λ can be derived from other values in

the set and so it suffices to download a spanning set of Λ. Let

Λ∗ =
τ⋃
i=1

{
δ+i−1∑
u=0

cv,a(n+i,u) : an+i = 0, an+j < δ + j − 1, j ∈ [i− 1], Cv ∈ CR

}
.

Clearly Λ∗ ⊂ Λ. We claim that every value in Λ can be determined by the values
in Λ∗. To prove the claim it suffices to show that for i ∈ [τ ], Ωi ⊂ Λ∗. We prove
by induction on i. Clearly Ω1 ⊂ Λ∗. Now suppose that Ω1, · · · ,Ωi−1 ∈ Λ∗, and
consider the set

Ωi\Λ∗ =

{
δ+i−1∑
u=0

cv,a(n+i,u) : an+i = 0, an+j = δ + j − 1, j ∈ [i− 1], Cv ∈ CR

}
.

Consider an arbitrary element
∑δ+i−1

u=0 cv,a(n+i,u) of Ωi\Λ∗, so that a satisfies an+i =

0 and an+j = δ + j − 1 for some j ≤ i− 1. Denote by

a(j, i, x, y) = (· · · , aj−1, x, aj+1, · · · , ai−1, y, ai+1, · · · ).

Since Ωj ⊂ Λ∗, it follows that
∑δ+j−1

u1=0 cv,a(n+j,n+i,u1,u2) ∈ Λ∗, for all u2 =

0, · · · , δ + i− 1. Therefore
δ+i−1∑
u2=0

δ+j−1∑
u1=0

cv,a(n+j,n+i,u1,u2) ∈ span(Λ∗). (9.9)

Moreover, by construction
∑δ+i−1

u2=0 cv,a(n+j,n+i,u1,u2) ∈ Λ for all u1 = 0, · · · , δ+ j−
2. Therefore

δ+j−2∑
u1=0

δ+i−1∑
u2=0

cv,a(n+j,n+i,u1,u2) ∈ span(Λ∗). (9.10)
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Subtracting (9.10) from (9.9) we have
δ+i−1∑
u2=0

cv,a(n+j,n+i,δ+j−1,u2) =
δ+i−1∑
u=0

cv,a(n+i,u) ∈ span(Λ∗).

This proves that Ωi ∈ span(Λ∗) and the claim. We now analyze the size of Λ∗. Let

Ω∗i =

{
δ+i−1∑
u=0

cv,a(n+i,u) : an+i = 0, an+j < δ + j − 1, j ∈ [i− 1], Cv ∈ CR

}
so that Λ∗ =

⋃τ
i=1 Ω∗i . By counting the elements of the set we have

|Ω∗i | = sn ·
i−1∏
j=1

(δ + j − 1) ·
τ∏

j=i+1

(δ + j).

We claim that
i∑

j=1

|Ω∗j | = sn
i

δ + i

τ∏
j=1

(δ + j). (9.11)

We prove (9.11) by induction on i. Clearly |Ω∗1| = sn
∏τ

j=2(δ+j) = sn 1
δ+1

∏τ
j=1(δ+

j). Now suppose that (9.11) is true up to i− 1, then it follows
i∑

j=1

|Ω∗j | =
i−1∑
j=1

|Ω∗j |+ |Ω∗i |

= sn
i− 1

δ + i− 1

τ∏
j=1

(δ + j) + sn
i−1∏
j=1

(δ + j − 1)
τ∏

j=i+1

(δ + j)

= sn

(
i− 1

δ + i− 1

i∏
j=1

(δ + j) +
i−1∏
j=1

(δ + j − 1)

)
τ∏

j=i+1

(δ + j)

= sn

(
i− 1

δ + i− 1

i∏
j=1

(δ + j) +
δ

(δ + i)(δ + i− 1)

i∏
j=1

(δ + j)

)
τ∏

j=i+1

(δ + j)

= sn
(

i− 1

δ + i− 1
+

δ

(δ + i)(δ + i− 1)

) τ∏
j=1

(δ + j)

= sn
i

δ + i

τ∏
j=1

(δ + j),

proving (9.11). Therefore |Λ∗| =
∑τ

j=1 |Ω∗j | = τ
ρ
sn
∏τ

j=1(δ + j). Note that |Λ∗|
is the number of symbols over F that need to be downloaded from CR and the
total number of symbols stored by CR is t = sn

∏τ
j=1(δ + j). Therefore a fraction

of τ
ρ
of the symbols are downloaded which attains the lower bound. The proof is

complete.
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By Lemmas 9.2.3 and Theorem 9.1.2, we have:

Theorem 9.2.2. The secret sharing scheme obtained by applying Theorem 9.1.1 to
the code given in Construction 9.2.2, where the last k nodes are discarded, is a
(n, k = n − r − z, r, z) scheme with d1-optimal repair bandwidth and d2-optimal
decoding bandwidth.

Finally, we remark that Construction 9.2.1 and Construction 9.2.2 both have a sub-
packetization level of t = O(sn), which is comparable to existing regenerating
codes, e.g., [62], of the same parameters (note that our secret sharing schemes
can be viewed as regenerating codes). In fact, an exponential t is shown to be
necessary in order to achieve the optimal repair bandwidth [68]. This suggests that
the additional optimal decoding requirement has a small impact on t. We also remark
that Construction 9.2.2 naturally generalizes to a family of regenerating codes that
supports centralized repair of groups of nodes of flexible sizes with reduced sub-
packetization, which is a result of separate interest. A similar centralized repair
problem was studied in [61] whereas the code construction therein is restricted in
parameters.

9.3 Scheme with Optimal Decoding and Repair Access
In this section we construct secret sharing schemes that not only achieve the optimal
decoding and repair bandwidth, but also the optimal access complexity during
decoding and repair. The d2-optimal decoding bandwidth and access is achieved
if a fraction of k

d2−z of the symbols stored by each of the d2 nodes are accessed
and transmitted during decoding. As before, we first study the simplified case that
k

d2−z = 1
ρ
for some integer ρ. The following construction is a generalization of

Construction 6 in [62].

Construction 9.3.1. Consider any n, r, z, k = n− r − z and k + z ≤ d1 ≤ n− 1,
k + z ≤ d2 ≤ n such that k

d2−z = 1
ρ
. Let n′ = n + k, k′ = k + z, r′ = n′ − k′

and s = d1 + 1 − k′. Let F be a finite field of size |F | > ρs(n + k), and let γ be
a primitive element of F . Consider the code family given by (9.1) and (9.2), where
t = ρsn and

Ai =
t−1∑
a=0

λieae
T
a(i,ai⊕1), i = 1, · · · , n (9.12)

An+i =
t−1∑
a=0

λn+ieae
T
a(n+1,an+1⊕1) i = 1, · · · , k. (9.13)
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Here {ea : a = 0, · · · , t − 1} is the standard basis of F t and we represent a using
the (n + 1)-digit notation a = (an+1, an, · · · , a1), where an+1 ∈ {0, · · · , ρ − 1}
and ai ∈ {0, · · · , s − 1}, for i ∈ [n]. ⊕ denotes addition modular s in (9.12) and
addition modular ρ in (9.13), respectively. λi = γi for i ∈ [n+ k].

Lemma 9.3.1. The array code C given by Construction 9.3.1 is MDS.

Proof. By [62, Lemma VII.3], an array code given by (9.1) and (9.2) is MDS if
Ai − Aj is invertible and AiAj = AjAi, for all i 6= j, i, j ∈ [n + k]. To establish
the commuting part, note that for distinct i, j ∈ [n]

AiAj = AjAi =
t−1∑
a=0

λiλjeae
T
a(i,j,ai⊕1,aj⊕1), (9.14)

and that for i ∈ [n], j ∈ [n+ 1, n+ k]

AiAj = AjAi =
t−1∑
a=0

λiλjeae
T
a(i,j,ai⊕1,an+1⊕1), (9.15)

and that for i, j ∈ [n+ 1, n+ k]

AiAj = AjAi =
t−1∑
a=0

λiλjeae
T
a(n+1,an+1⊕2). (9.16)

We now turn to the invertible part. For distinct i, j ∈ [n + 1, n + k], Ai − Aj =∑t−1
a=0(λi − λj)eae

T
a(n+1,an+1⊕1) and therefore is invertible. For i ∈ [n], j ∈ [n +

1, n + k], consider arbitrary x such that Aix = Ajx. Let x =
∑t−1

a=0 xaea, where
xa ∈ F , then

Aix =
t−1∑
a=0

λixa(i,ai⊕1)ea (9.17)

Ajx =
t−1∑
a=0

λjxa(n+1,an+1⊕1)ea. (9.18)

Therefore λixa(i,ai⊕1) = λjxa(n+1,an+1⊕1) for a = 0, · · · , t− 1, implying that

xa =
λj
λi
xa(i,n+1,ai	1,an+1⊕1). (9.19)

Repeating (9.19) ρs times, we have

xa =
λρsj
λρsi

xa(i,n+1,ai	ρs,an+1⊕ρs) =
γjρs

γiρs
xa. (9.20)

Because γiρs 6= γjρs, it follows from (9.20) that xa = 0, a = 0, · · · , t−1. Therefore
x = 0 and Ai−Aj is invertible. By a similar argument, for distinct i, j ∈ [n], it can
be shown that Ai − Aj is invertible. This completes the proof.
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Lemma 9.3.2. The array code C given by Construction 9.3.1 attains optimal band-
width and access when 1) repairing a single node i, i ∈ [n], from any d1 nodes, and
2) repairing the set of nodes {n+ 1, · · · , n′} from any d2 nodes.

Proof. We first consider the repair of the set of nodes {n+ 1, · · · , n′}. Expanding
(9.1) coordinate-wise, then for a = 0, · · · , t− 1 and l = 0, · · · , r′ − 1, we have

n∑
i=1

λlici,a(i,ai⊕l) +
n+k∑
i=n+1

λlici,a(n+1,an+1⊕l) = 0. (9.21)

Note that kρ−1 = d2−z−1 ≤ n−z−1 = r′−1. Therefore, for any a = 0, · · · , t−1

and for l = an+1, an+1 + ρ, · · · , an+1 + (k − 1)ρ, it follows from (9.21) that

n+k∑
i=n+1

λlici,a = −
n∑
i=1

λlici,a(i,n+1,ai⊕l,an+1	l) (9.22)

= −
n∑
i=1

λlici,a(i,n+1,ai⊕l,0). (9.23)

Fixing a, it is clear that the k equations given by (9.23) forms a system such that
the k variables cn+1,a, · · · , cn+k,a in the L.H.S. can be solved for if the R.H.S. is
known. Therefore the set of symbols stored in the erased nodes, i.e., {cn+i,a : i ∈
[k], a = 0, · · · , t− 1}, can be recovered from the set of symbols {ci,a : i ∈ [n], a =

0, · · · , t− 1, an+1 = 0}. We make the following claim.

Claim: the set of symbols {ci,a : i ∈ [n], a = 0, · · · , t − 1, an+1 = 0} can be
recovered from the set of symbols {ci,a : i ∈ D, a = 0, · · · , t− 1, an+1 = 0}, where
D is any subset of [n] of size d2.

The claim implies that to repair the set of nodes {n + 1, · · · , n + k}, it suffices to
access and download a fraction of 1/ρ of the symbols stored in any d2 nodes, hence
achieving the optimal repair bandwidth and access complexity.

To prove the claim, note that by construction the parity check equations are equivalent
to

A0
1 · · · A0

n
...

...
...

Ar
′−1

1 · · · Ar
′−1
n



C1

...
Cn

 = −


A0
n+1 · · · A0

n+k
...

...
...

Ar
′−1
n+1 · · · Ar

′−1
n+k



Cn+1

...
Cn+k

 . (9.24)

LetM be the set of t×tmatrices that commute with {Ai : i ∈ [n+k]}. By the proof
of Lemma 9.3.1, Ai ∈ M, for i ∈ [n + k]. Define functions pi : M →M, with
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pi(x) = xi
∏k

j=1(xρ−Aρn+j), for i = 0, · · · , r′−kρ− 1. Due to commutativity, we
can write pi(x) =

∑r′−1
j=0 pi,jx

i, where pi,j is a t× tmatrix. Define a (r′−kρ)t× r′t
matrix

P =


p0,0 · · · p0,r′−1

...
...

...
pr′−kρ−1,0 · · · pr′−kρ−1,r′−1

 . (9.25)

By construction P (A0
n+i, · · · , Ar

′−1
n+i )T = (p0(An+i), · · · , pr′−kρ−1(An+i))

T = 0,
for i ∈ [k]. Therefore multiplying P on the left to (9.24), we have

P


A0

1 · · · A0
n

...
...

...
Ar
′−1

1 · · · Ar
′−1
n



C1

...
Cn

 = 0. (9.26)

By construction P (A0
i , · · · , Ar

′−1
i )T = (p0(Ai), · · · , pr′−kρ−1(Ai))

T , for i ∈ [n].
Therefore it follows from (9.26) that

A0
1

∏k
i=1(Aρ1 − A

ρ
n+i) · · · A0

n

∏k
i=1(Aρn − A

ρ
n+i)

...
...

...
Ar
′−kρ−1

1

∏k
i=1(Aρ1 − A

ρ
n+i) · · · Ar

′−kρ−1
n

∏k
i=1(Aρn − A

ρ
n+i)



C1

...
Cn

 = 0.

(9.27)

By an argument similar to that in the proof of Lemma 9.3.1, it can be shown that
for i ∈ [n] and j ∈ [n + 1, n + k], Aρi − A

ρ
j is invertible. Therefore

∏k
j=1(Aρi −

Aρn+j) is invertible for i ∈ [n]. Hence the parity check matrix in (9.27) is a block
Vandermonde matrix in which each column is scaled by a full rank matrix. The
resulting code is an [n, n − (r′ − kρ) = d2] MDS array code, i.e., from any d2

elements of {C1, · · · , Cn} we can recover the whole set.

Note that by construction Aρn+i = λρn+iI for i ∈ [k]. Therefore, the parity check
matrix in (9.27) equals:

A0
1

∏k
i=1(Aρ1 − I) · · · A0

n

∏k
i=1(Aρn − I)

...
...

...
Ar
′−kρ−1

1

∏k
i=1(Aρ1 − I) · · · Ar

′−kρ−1
n

∏k
i=1(Aρn − I)

 . (9.28)

By construction, for i ∈ [n], Ai is a permutation matrix whose corresponding
permutation only affects the digit ai. Therefore each block of the parity check
matrix in (9.28), if expanded, is a sum of products of permutation matrices whose



122

corresponding permutations do not change an+1. For j ∈ [r′ − kρ], consider the
j-th blockwise row of (9.28)[

Aj−1
1

∏k
i=1(Aρ1 − I) · · · Aj−1

n

∏k
i=1(Aρn − I)

]
, (9.29)

then for a = 1, · · · , t − 1, the a-th row of (9.29) corresponds to a parity-check
equation of the following general form:

n∑
i=1

t−1∑
a′=0

κi,a′ci,a′ = 0, (9.30)

where by the previous discussion, κi,a′ = 0 if a′n+1 6= an+1.

LetC ′i = {ci,a : a = 0, · · · , t−1, an+1 = 0}, i ∈ [n], then the fact that {C1, · · · , Cn}
forms an [n, d2] MDS array code and the fact that any parity check equation in (9.27)
that involves an element of ∪i∈[n]C

′
i only involves elements in ∪i∈[n]C

′
i implies that

from any d2 elements of {C ′1, · · · , C ′n} the whole set can be recovered. This proves
the claim and the d2-optimal access property of the repair of the set of nodes
{n+ 1, · · · , n+ k}.

Similarly, consider the case of repairing an individual node m, m ∈ [n]. Since
s ≤ n− k′ < r′, by (9.21), for a = 0, · · · , t− 1, let l = am, we have

−λlmcm,a =
∑

i∈[n],i 6=m

λlici,a(m,i,am	l,ai⊕l) +
n+k∑
i=n+1

λlici,a(m,n+1,am	l,an+1⊕l) (9.31)

=
∑

i∈[n],i 6=m

λlici,a(m,i,0,ai⊕am) +
n+k∑
i=n+1

λlici,a(m,n+1,0,an+1⊕am). (9.32)

ThereforeCm can be recovered from the set of symbols {ci,a : i ∈ [n+k], i 6= m, a ∈
[0, t − 1], am = 0}. By setting pi(x) = xi(xs − Asm), for i = 0, · · · , r′ − s − 1,
and following the same line of arguments as before, it can be proved that {ci,a : i ∈
[n + k], i 6= m, a ∈ [0, t − 1], am = 0} in turn can be recovered from the set of
symbols {ci,a : i ∈ D, a ∈ [0, t−1], am = 0}, whereD is any subset of [n+k]\{m}
of size d1. This implies that to repair node m it suffices to access and download a
fraction of 1/s of the symbols stored in any d1 nodes, achieving the optimal repair
bandwidth and access complexity. The proof is complete.

By Lemmas 9.3.1, 9.3.2 and Theorem 9.1.2, we have:

Theorem 9.3.1. The secret sharing scheme obtained by applying Theorem 9.1.1 to
the code given in Construction 9.3.1, where the last k nodes are discarded, is a
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(n, k = n− r− z, r, z) scheme with d1-optimal bandwidth and access in repair and
d2-optimal bandwidth and access in decoding.

Next we generalize Construction 9.3.1 to the case of arbitrary k
d2−z .

Construction 9.3.2. For any n, r, z, k = n − r − z, k + z ≤ d1 ≤ n − 1 and
k + z ≤ d2 ≤ n, let n′ = n + k, k′ = k + z, r′ = n′ − k′ and s = d1 + 1 − k′.
Let θ = gcd(k, d2 − z), τ = k

θ
, ρ = d2−z

θ
and δ = ρ − τ . Let F be a finite field

of size |F | > ρ(n + k)(max(s, ρ − 1)), and let γ be a primitive element of F . Let
t = sn

∏τ
i=1(i+ δ). Consider the code family given by (9.1) and (9.2), where

Ai =
t−1∑
a=0

λieae
T
a(i,ai⊕1), i = 1, · · · , n

An+i =
t−1∑
a=0

λn+ieae
T
a(n+d i

θ
e,a

n+d i
θ
e⊕1)

i = 1, · · · , k.

Here {ea : a = 0, · · · , t−1} is the standard basis of F t and we represent a using the
(n + τ)-digit notation a = (an+τ , · · · , a1), where ai ∈ {0, · · · , s − 1}, for i ∈ [n]

and an+i ∈ {0, · · · , i+ δ − 1}, for i ∈ [τ ]. λi = γi for i ∈ [n+ k].

Lemma 9.3.3. The array code C given by Construction 9.3.2 is MDS.

Proof. Similar to the proof of Lemma 9.3.1, it can be shown that for i, j ∈ [n+ k],
AiAj = AjAi. Therefore to prove the lemma it suffices to show that for distinct
i, j ∈ [n+ k], Ai − Aj is invertible. Define a function

f(i) =

{
i i = 1, · · · , n

n+ d i−n
θ
e i = n+ 1, · · · , n+ k.

(9.33)

If f(i) = f(j), then Ai − Aj =
∑t−1

a=0(λi − λj)eaeTa(f(i),af(i)⊕1) which is invertible.
Otherwise, consider arbitrary x such that Aix = Ajx. Let x =

∑t−1
a=0 xaea, where

xa ∈ F , then

Aix =
t−1∑
a=0

λixa(f(i),af(i)⊕1)ea (9.34)

Ajx =
t−1∑
a=0

λjxa(f(j),af(j)⊕1)ea. (9.35)

Therefore for a = 0, · · · , t− 1, λixa(f(i),af(i)⊕1) = λjxa(f(j),af(j)⊕1), implying that,

xa =
λj
λi
xa(f(i),f(j),af(i)	1,af(j)⊕1). (9.36)
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Define a function

g(i) =

{
s i = 1, · · · , n

i− n+ δ i = n+ 1, · · · , n+ τ.
(9.37)

Repeating (9.36) for G = g(f(i))g(f(j)) times, we have

xa =
λGj
λGi
xa(f(i),f(j,af(i)	G,af(j)⊕G) =

γjG

γiG
xa. (9.38)

Because iG < |F | and jG < |F |, γiG 6= γjG, and it follows from (9.38) that
xa = 0, a = 0, · · · , t− 1. Therefore xa = 0 and Ai − Aj is invertible, proving the
lemma.

Lemma 9.3.4. The array code C given by Construction 9.3.2 attains optimal band-
width and access when 1) repairing a single node i, i ∈ [n], from any d1 nodes, and
2) repairing the set of nodes {n+ 1, · · · , n′} from any d2 nodes.

Proof. We omit the proof of the first statement as it is similar to the proof of
Lemma 9.3.2. To prove the second statement, the idea is to divide the (n + 1)-th
to the (n + k)-th nodes into τ groups and repair the groups one by one iteratively.
Formally, let CR ⊂ {C1, · · · , Cn} be the set of nodes accessed, with |CR| = d2. For
i = 1, · · · , τ , let Ci = {Cn+(i−1)θ+1, · · · , Cn+(i−1)θ+θ}, then we first use CR to repair
C1, then use CR ∪ C1 to repair C2, · · · , and finally use CR ∪ C1 ∪ · · · ∪ Cτ−1 to repair
Cτ . By the proof of Lemma 9.3.2, we can recover Ci from {cv,a : an+i = 0, Cv ∈
CR ∪ C[i−1]}. Since the nodes in C[i−1] are already recovered, it suffices to know the
set of values Ωi = {cv,a : an+i = 0, Cv ∈ CR}. Therefore to repair all τ groups of
nodes, it suffices to access and communicate the values in the set Λ =

⋃τ
i=1 Ωi.

We analyze the size of Λ. Define Λi =
⋃i
j=1 Ωj and note that Λτ = Λ. We prove

that |Λi| = i
δ+i
d2t by induction on i. Clearly |Λ1| = 1

δ+1
d2t. Now suppose that

|Λi| = i
δ+i
d2t is true, then

|Λi+1| = |Λi|+
1

δ + i+ 1

(
1− |Λi|

d2t

)
d2t (9.39)

=
i

δ + i
d2t+

1

δ + i+ 1

δ

δ + i
d2t (9.40)

=
(δ + i)(i+ 1)

(δ + i)(δ + i+ 1)
d2t =

i+ 1

δ + i+ 1
d2t. (9.41)

Therefore by induction |Λi| = i
δ+i
d2t for i = 1, · · · , τ . So |Λ| = |Λτ | = τ

δ+τ
d2t =

k
d2−zd2t. Therefore a fraction of k

d2−z of the symbols stored in the d2 nodes are
accessed and downloadedwhich attains the lower bound. The proof is complete.
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By Lemmas 9.3.3, 9.3.4 and Theorem 9.1.2, we have:

Theorem 9.3.2. The secret sharing scheme obtained by applying Theorem 9.1.1 to
the code given in Construction 9.3.2, where the last k nodes are discarded, is an
(n, k = n− r− z, r, z) scheme with d1-optimal bandwidth and access in repair and
d2-optimal bandwidth and access in decoding.
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C h a p t e r 10

CONCLUDING REMARKS

In this part we study the communication complexity and the access complexity of
secret sharing schemes during decoding and repair. We prove a tight lower bound
on the decoding bandwidth, and design schemes that achieve the optimal decoding
bandwidth and access when d nodes participate in decoding, universally for all
n − r ≤ d ≤ n. We also design schemes that achieve the optimal bandwidth and
access during both decoding and repair. Finally we design a family of Shamir’s
scheme with asymptotically optimal decoding bandwidth.

An interesting future direction is to combine the objectives of Part I and II, and to
design schemes that are optimal in terms of both computation and communication.
Particularly, since Construction 5.3.1 in Part I is a natural generalization of Shamir’s
scheme and the scheme in Section 8.2 is closely related to Shamir’s scheme, it seems
plausible that the ideas from both sides can be combined, resulting in schemes that
are both bandwidth optimal and highly efficient in computation.

More generally, an interesting question is whether the ideas and schemes developed
in this part can be applied to a broader scope. For example, is it possible to design
schemes with improved decoding bandwidth for non-threshold access structures?
Is it possible to extend the ideas to improve the communication efficiency of other
secure protocols, particularly those who use secret sharing schemes as building
blocks?



Part III

Secure Repair of Secret Sharing
Schemes
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C h a p t e r 11

INTRODUCTION TO SECURE REPAIR

The problem of repairing secret sharing schemes has attracted significant interests
recently. Specifically, a secret sharing scheme encodes a message into n shares, such
that the message can be decoded from any n− r shares (reliability), and that any z
shares are independent of themessage (security). In the setting of distributed storage,
a system consists of n nodes and one share is assigned to each node. Therefore a
secret sharing scheme can tolerate r node failures (erasures) as well as z colluding
adversarial nodes trying to infer information about the message. In the event of
node failures, the shares held by the failed nodes are lost and in order to maintain the
same level of reliability, the system needs to repair the failures by reconstructing the
lost shares and reassigning them to the failed (or replacement) nodes. Two problems
arise during the repair process, namely, 1) bandwidth efficiency: it is desirable to
minimize the amount of communication induced by the repair process; 2) repair
security: the system needs to maintain the security requirement that any colluding
z nodes, including the failed (or replacement) nodes, cannot infer any information
about the message, during and after the repair process.

Secure regenerating codes, e.g., [21]–[24], are a class of secret sharing schemes
that are carefully designed to address the above problems. We classify secure
regenerating codes into two categories: codes that only address the bandwidth
efficiency problem (i.e., codes with non-secure repair), and codes that address
both the bandwidth efficiency and the repair security problems (i.e., codes with
secure repair). Specifically, codes with non-secure repair focus on reducing the
repair bandwidth without worrying about the security of the repair process. For
example, the codes that tolerate Type-I adversary in [24] and the schemes constructed
in Chapter 9 belong to this category. For this case one can think of having a
trustworthy repair dealer that will receive information from the available helper
nodes, reconstruct the lost share and then forward it to the failed node. The repair
dealer may receive enough information to gain knowledge of the message, and
therefore has to be trustworthy. In comparison, regenerating codes with secure
repair guarantee by code design that such a dealer will not learn any information
about the message. This in fact removes the need for the dealer to be trustworthy
and the failed node can act as the dealer. Unfortunately, the guarantee that the dealer
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cannot learn any information about the message is shown to come at a high cost in
rate [21], [24], because more independent randomness (keys) is required in order
to protect the message from the dealer, resulting in increased overhead. Therefore,
codes with non-secure repair in general have a significantly better rate and repair
bandwidth (when normalized by rate) than codes with secure repair.

We address the problem of repair security from a different perspective, without
needing to take the heavy penalty in rate and other aspects of efficiency as in the
case of secure regenerating codes. The key idea is that we allow a more flexible
repair protocol: secure regenerating codes implicitly assume a simple “one-round”
repair protocol, in which the helper nodes transmit information to the failed nodes
but they themselves do not receive information from other nodes. This implicit
“one-round” assumption is expensive in terms of efficiency. We show that, just by
slightly relaxing this assumption and allowing a “two-round” protocol, it becomes
possible to securely repair any secret sharing scheme in a black-box manner, in the
sense that the proposed repair protocol is generic and there is no need to design or
modify the secret sharing scheme. Refer to Figure 11.1 for a simple example of the
two-round secure repair protocol.

We remark that a two-round protocol is advantageous in that more nodes are allowed
to receive information rather than only the failed node. This is intuitively beneficial
because, if d > z nodes can receive information, then we can take advantage of
the gap between d and z in the following way. During the repair process, let the
information received by any z nodes be independent randomness (so that the security
requirement is met), and let the information received by all d nodes reveal useful
information on the lost share. We then use an extra round of communication to
transmit the information on and only on the lost share from the d nodes to the failed
node so that the lost share can be reconstructed. Loosely speaking, we can think of
the repair process as letting the failed node “compute” its share securely, so that it
only learns the share but nothing else. This is naturally related to the problem of
secure multi-party computation and the ideas in [69], [70] play an important role
in our repair schemes. We remark that we adopt a formal information-theoretic
approach in our analysis and bounds, which differs from many existing works on
secure multi-party computation. We also note that relaxing the repair process to
involve more than one round is practical. For example, POTSHARDS [14] employs
a heuristic multi-round repair scheme to improve the security of the repair process.

Our generic secure repair schemes have two important advantages over secure re-
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generating codes with secure repair. First, the generic nature implies that there
is no need to compromise the efficiency of the secret sharing scheme for secure
repair. Here, aspects of efficiency at stake are not limited to the rate and repair
bandwidth discussed earlier, but also include, for example, computational complex-
ity (discussed in Part I) and decoding bandwidth (discussed in Part II), because it
is not clear how to construct secure regenerating codes with secure repair that also
achieve the optimal computation and/or decoding bandwidth. Second, most secure
regenerating codes focus on secure repair by a fixed number of helper nodes. In the
case that not enough helper nodes are available due to multiple node failures, it is
not clear how secure repair can be achieved.

We briefly summarize the contributions of the paper. In Section 12.1, we present a
generic two-round secure repair scheme based on the ideas in [69], [70]. Specifically,
in the first round each helper node encodes its share into z + 1 pieces using a secret
sharing scheme, so that any z pieces reveal no information about the share and that
the share can be decoded from z + 1 pieces. The z + 1 pieces are sent to z + 1

receiver nodes, and each receiver node receives a piece from each helper node (if
the helper node and the receiver node are the same node, then the corresponding
piece needs not be transmitted). For example, in Figure 11.1-(b), the helper nodes
and receiver nodes are both Nodes 2 and 3. The set of pieces received by all receiver
nodes contains enough information to decode the shares of all helper nodes and the
lost share. We then need to communicate the information about the lost share, but
no extra information about the shares of the helper nodes, to the failed node. To
achieve this, each receiver node locally computes a function that takes the pieces
received by the node as inputs, and outputs a “distilled” piece such that the set of
“distilled” pieces only contains information about the lost share. This set is then
transmitted from the receiver nodes to the failed node. Refer to Figure 11.1-(c) for
an example.

The generic repair scheme in Section 12.1 requires a relatively large repair band-
width. In Section 12.2, we reduce the repair bandwidth of the scheme significantly
by adopting the idea of parallelism in [17]. Instead of repairing one single share
at a time, we repair multiple shares together in parallel, therefore amortizing the
communication overhead over the multiple shares. This is achieved by letting all
n nodes be receiver nodes (instead of z + 1 nodes) and by using a secret sharing
scheme of a higher rate in the first round. The larger gap between the number of
receiver nodes and z implies that we can encode more information in the secret
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sharing scheme (so that it has a higher rate) and can repair more shares in parallel.

The generic repair schemes in Sections 12.1 and 12.2 can securely repair any scalar
linear secret sharing schemes. A more general class of schemes are vector linear
secret sharing schemes. For a vector linear scheme over a field, each node stores
multiple elements of the field instead of a single element as in the scalar linear case.
Many efficient secret sharing schemes, e.g., schemeswith efficient computation (e.g.,
Chapter 4 and Chapter 5), schemes with efficient decoding bandwidth (e.g., Chapter
8), and schemes with efficient repair bandwidth (e.g., Chapter 9), are intrinsically
vector linear. In Section 12.3 we generalize our secure repair schemes to generically
repair any vector linear schemes. In particular, this generalization allows us to
leverage the property of secret sharing schemes with efficient (non-secure) repair
bandwidth, i.e., secure regenerating codes with non-secure repair, to further reduce
the (secure) repair bandwidth.

Finally, in Section 12.4 we prove an information-theoretic lower bound on the repair
bandwidth of secure repair schemes. The bound implies that the secure repair
schemes in Sections 12.2 and 12.3 achieve the optimal repair bandwidth within a
small constant factor when n dominates z, or when the secret sharing scheme being
repaired has optimal rate.

The material in this part of the thesis was presented in part in [71].
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(a) A secret sharing scheme over F5 with r = 1 and z = 1, where m is a message symbol
and u is a random key uniformly distributed over F5. We denote the three shares by c1, c2

and c3.

(b) Repairing Node 1 (round 1): Node 2 generates a random symbol u2 and sends u2 + c2

to Node 3. Node 3 generates a random symbol u3 and sends it to Node 2.

(c) Repairing Node 1 (round 2): Node 2, having access to u2 and u3, computes and sends
2u2 + 4u3 to Node 1. Node 3, having access to u2 + c2, u3 and c3, computes and sends
2u2 + 4u3 + 2c2 + 4c3 to Node 1. Node 1 can reconstruct its share since c1 = 2c2 + 4c3.

Figure 11.1: Securely repairing a secret sharing scheme. Note that it is impossible
to securely repair any node failure under the one-round repair model of regenerating
codes, because for the failed node to reconstruct its share it has to collect the shares
from the other two nodes, which will violate the security requirement. However,
any node failure can be securely repaired by the two-round scheme shown above.
To see that the scheme is secure, note that after the repair process Node 1 has access
to c1 and 2u2 + 4u3; Node 2 has access to c2, u2 and u3; Node 3 has access to c3,
u3 and u2 + c2. Therefore, any single node has access to only one share as well as
some random symbols that are independent of the shares. Therefore no single node
can learn any information about the messagem.



133

C h a p t e r 12

SECURE REPAIR SCHEMES

12.1 Generic Secure Repair of Secret Sharing Schemes
An (n, k, r, z) secret sharing scheme over Fq is a randomized function that maps
(encodes) a message m = (m1, · · · ,mk) of k symbols over Fq to n shares c =

(c1, · · · , cn) over Fq, such that 1)m can be decoded from any subset of n−r shares;
2) any subset of z shares do not reveal information aboutm. Shamir’s scheme is a
well known secret sharing scheme with k = 1.

Construction 12.1.1. (Shamir’s scheme [15]) For any n, and z < n, let k = 1,
r = n− z−1 and Fq be a finite field of size q > n. Let ui, i ∈ [z] be i.i.d. uniformly
distributed over Fq (also referred to as keys) and let αi, i ∈ [n] be arbitrary distinct
non-zero elements of Fq. The shares corresponding to messagem1 are

(c1, c2, · · · , cn) = (m1, u1, u2, · · · , uz)


1 1 · · · 1

α1 α2 · · · αn
... ... ... ...
αz1 αz2 · · · αzn

 . (12.1)

Lemma 12.1.1. Let ci, i ∈ [n] be the shares of Shamir’s scheme (12.1) on message
m1 and keys ui, i ∈ [z], and let c′i, i ∈ [n] be the shares of the scheme on message
m′1 and keys u′i, i ∈ [z]. Then for arbitrary linear function f : F2

q → Fq, f(ci, c
′
i),

i ∈ [n] are the shares of the scheme on message f(m1,m
′
1) and keys f(ui, u

′
i),

i ∈ [z].

Proof. Follows from the linearity of (12.1).

A secret sharing scheme allows secure and reliable storage of information, i.e., it
can tolerate the loss of any r shares as well as the exposure of any z shares to an
adversary. However, the problem of repair is not addressed. Consider the situation
that one or more shares are lost or unavailable, and so in order to maintain the same
level of reliability one wishes to repair/reconstruct the lost shares. For example,
in the application of storage, the n shares are assigned to n storage nodes, and in
the situation of node failures, one wishes to repair the failures by reconstructing
the shares originally assigned to the failed nodes. The repair problem can be easily
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solved if there is a trusted dealer, who can collect the available shares, recompute
the lost shares and reassign them to the failed or replacement nodes. However, the
assumption of a trusted dealer responsible for centralized repair may not be practical
for many applications.

In this chapter we study the situation that a trusted repair dealer is not available and
the nodes holding the shares are responsible for carrying out the repair by themselves.
A naive repair scheme is to transmit the available shares to the failed node so that
it can decode the message and recompute its share. By doing so, however, we have
revealed the message to the failed node which conflicts with the underlying threat
model of a secret sharing scheme, because now it is possible for one single node to
gain knowledge of themessage. Indeed, in this case an adversary controlling a single
node can compromise security simply by reporting a node failure. Therefore, the
main question of interest is how to repair securely without a trusted dealer. This is
related to the problem of secure multi-party computation, and in particular, the ideas
developed in [17], [69], [70] for constructing secure computation protocols would
be helpful for us to design mechanisms to securely repair secret sharing schemes.
Below we formalize the notion of secure repair.

Definition 12.1.1. (Secure repair scheme) Consider an (n, k, r, z) secret sharing
scheme and n nodes such that node i holds the share ci. For any e ∈ [n], and
I ⊂ [n], suppose that node e has failed and nodes in I are available to help
repairing node e. A secure repair scheme is a protocol of communication between
the nodes, such that 1) the information sent by a node to other nodes is a function
of the share it holds, its local coin flips, and the information it received from other
nodes; 2) denote by di all the information received by node i by the end of the
protocol and denote by ui the result of coin flips at node i, then

• (Repairability) H(ce|de) = 0.

• (Security) I(m; cA, uA, dA) = 0, for all A ⊂ [n], |A| = z.

Note that Definition 12.1.1 naturally extends the threat model of secret sharing, e.g.,
it maintains the security requirement that any z nodes cannot learn any information
about the message, during and after the repair process.

Construction 12.1.2. (Secure repair of linear secret sharing schemes)Consider any
(n, k, r, z) secret sharing scheme, any e ∈ [n], and any I = {i1, · · · , i|I|} ⊂ [n],
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e /∈ I such that there exists a linear function f so that f(ci1 , ci2 , · · · , ci|I|) = ce. Let
J = {j1, · · · , jz+1} be an arbitrary subset of [n] of size z + 1. The secure repair
process involves three steps:

1) For each node i ∈ I , encode ci into ci,1, ci,2, · · · , ci,z+1 by a (z + 1, 1, 0, z)

Shamir’s scheme (in Construction 12.1.1 all nodes choose the same αi’s) and
send ci,k to node jk ∈ J .

2) For each node j ∈ J , compute c′j = f(ci1,j, ci2,j, · · · , ci|I|,j), and send c′j to
node e.

3) Node e obtains ce by decoding the (z+ 1, 1, 0, z) Shamir’s scheme, regarding
c′j1 , c

′
j2
, · · · , c′jz+1

as the z + 1 shares.

Theorem 12.1.1. Construction 12.1.2 is a secure repair scheme.

Proof. Weneed to show that Construction 12.1.2meets the repairability and security
requirements in Definition 12.1.1. By Lemma 12.1.1, c′j1 , c

′
j2
, · · · , c′jz+1

are the
shares of a (z+1, 1, 0, z) Shamir’s scheme that encodes f(ci1 , ci2 , · · · , ci|I|) = ce as
message. This proves repairability. We now focus on security. LetA be an arbitrary
set of nodes controlled by the adversary, with |A| = z. We consider two cases.

Case 1: e /∈ A. In this case dj = (ci1,j, ci2,j, · · · , ci|I|,j) if j ∈ J , and dj = 0 if
j /∈ J . Denote cA,B = {ci,j : i ∈ A, j ∈ B}, we have

I(m; cA, uA, dA) = I(m; cA, uA, cI,J∩A) (12.2)
(a)
= I(m; cA, uA, cI\A,J∩A)

(b)
= I(m; cA, uA|cI\A,J∩A) + I(m; cI\A,J∩A)

(c)

≤ I(m; cA, uA|cI\A,J∩A) + I(c; cI\A,J∩A)

(d)
= I(m; cA, uA|cI\A,J∩A)

(e)
= I(m; cA, uA)

(f)
= I(m; cA)

(g)
= 0. (12.3)

Here (a) is due to the fact that cI∩A,J is a function of cA and uA; (b) follows from
the chain rule; (c) follows from the data processing inequality and the Markov chain
m → c → cI\A,J∩A, i.e., cI\A,J∩A can be dependent onm only via c; (d) follows
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from the fact that cI\A,J∩A are the shares of |I\A| independent (z+ 1, 1, 0, z) secret
sharing schemes and that for each scheme at most |J ∩ A| ≤ z of its shares are
included; (e) follows from the fact that (m, cA, uA) ⊥ cI\A,J∩A, implied by (d); (f)
follows from (m, cA) ⊥ uA ; and (g) follows from the security of the secret sharing
scheme being repaired.

Case 2: e ∈ A. Since |A| = z and |J | = z + 1, J\A is not empty. As-
sume with out loss of generality that j1 ∈ J\A. Because c′j1 , c

′
j2
, · · · , c′jz+1

are the shares of a (z + 1, 1, 0, z) Shamir’s scheme that encodes ce, it follows
that I(ce; c

′
j2
, c′j3 , · · · , c

′
jz+1

) = 0 and that there exists a linear function g such
that g(c′j1 , c

′
j2
, · · · , c′jz+1

) =
∑z+1

k=1 gkc
′
jk

= ce. This implies that g1 6= 0 and so
c′j1 = (ce −

∑z+1
k=2 gkc

′
jk

)g−1
1 , namely,

H(c′j1 |ce, c
′
J\{j1}) = 0. (12.4)

We have,

I(m; cA, uA, dA) = I(m; cA, uA, c
′
J , cI,A∩J)

(h)

≤ I(m; cA, uA, c
′
J , cI,J\{j1})

(i)
= I(m; cA, uA, c

′
J\{j1}, cI,J\{j1})

(j)
= I(m; cA, uA, cI,J\{j1}). (12.5)

Here (h) follows fromA∩J ⊂ J\{j1}; (i) follows from (12.4); and (j) follows from
the fact that c′J\{j1} is a function of cI,J\{j1}. We continue the chain of inequality by
treating (12.5) in a similar way as Case 1. Namely, applying an argument similar to
that of (12.2) - (12.3), we have

I(m; cA, uA, dA) ≤ I(m; cA, uA, cI,J\{j1})

= I(m; cA, uA, cI\A,J\{j1})

= I(m; cA, uA|cI\A,J\{j1}) + I(m; cI\A,J\{j1})

≤ I(m; cA, uA|cI\A,J\{j1}) + I(c; cI\A,J\{j1})

= I(m; cA, uA|cI\A,J\{j1})

= I(m; cA, uA)

= I(m; cA)

= 0.

The proof is complete.



137

We remark that Construction 12.1.2 can securely repair any (scalar) linear secret
sharing scheme in a black-boxmanner, in the sense that it does not require modifying
the secret sharing scheme. This suggests that secure repair “comes for free” without
needing to compromise other aspects of efficiency of the scheme. In comparison,
the secure regenerating codes in [21]–[24] allow secure repair at the cost of effi-
ciency. We also remark that multiple failures can be repaired securely by invoking
Construction 12.1.2 multiple times.

We analyze the secure repair bandwidth, i.e., the total amount of information that is
communicated during the secure repair process. In Step 1, at most |I|(z+1) symbols
are transmitted and in Step 2, at most z + 1 symbols are transmitted. Therefore the
total repair bandwidth is at most (|I|+ 1)(z + 1) symbols, which is approximately
z + 1 times of the non-secure repair bandwidth |I|.

12.2 Reducing Secure Repair Bandwidth
While Construction 12.1.2 provides a generic approach to repair any linear secret
sharing schemes securely, it requires a large overhead in the repair bandwidth. In
this section we propose an improved secure repair scheme with a significantly better
repair bandwidth. Themain idea is that, instead of repairing one single share/symbol
at a time, we repair multiple shares together in parallel, and therefore amortizing the
communication overhead over the multiple shares. For this to work we need every
node to store multiple shares, which is typically the case because the amount of the
total information to be stored (e.g., a file) usually exceeds the amount of information
that can be stored by a single secret sharing scheme. Therefore the file will be split
and stored by multiple independent instances of a secret sharing scheme, resulting
in multiple shares to be assigned to a node. In the remainder of this section we
assume that there are enough shares in the failed node to be repaired. Then, the
main improvement is that in the first round of the repair scheme, rather than using
a low rate (z + 1, 1, 0, z) secret sharing scheme, we use a high rate (n, n− z, 0, z)
scheme. This allows one to repair n− z shares in parallel and reduce the amortized
overhead in the repair bandwidth (which are the z keys in the secret sharing schemes
of the first round) by n− z times.

Formally, we assume that each node stores n − z shares from n − z independent
instances of a secret sharing scheme. We use superscripts to index instances,
e.g., m(i) = (m

(i)
1 , · · · ,m

(i)
k ) is the message encoded by the i-th instance. In the

first round of repair we shall use the high rate secret sharing scheme defined in
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Construction 5.3.2, which is a generalization of Shamir’s scheme to the case of
k > 1. We present the same construction in matrix form below for concreteness.

Construction 12.2.1. (Ramp version of Shamir’s scheme) For any n, r, z such that
n > r+ z, let k = n− r− z and Fq be a finite field of size q > n. Let ui, i ∈ [z] be
i.i.d. uniformly distributed over Fq and let αi, i ∈ [n] be arbitrary distinct non-zero
elements of Fq. The shares corresponding to messagem = (m1,m2, · · · ,mk) are

(c1, c2, · · · , cn) = (m1, · · · ,mk, u1, · · · , uz)


1 1 · · · 1

α1 α2 · · · αn
... ... ... ...

αz+k−1
1 αz+k−1

2 · · · αz+k−1
n

 .
(12.6)

Construction 12.2.1 is an (n, k = n− r − z, r, z) secret sharing scheme.

Construction 12.2.2. (Bandwidth-efficient secure repair) Consider any (n, k, r, z)

secret sharing scheme, any e ∈ [n], and any I = {i1, · · · , i|I|} ⊂ [n], e /∈ I such
that there exists a linear function f so that f(ci1 , ci2 , · · · , ci|I|) = ce. The secure
repair process involves three steps:

1) For each node i ∈ I , encode c(1)
i , c

(2)
i , · · · , c(n−z)

i into ci,1, ci,2, · · · , ci,n by a
(n, n − z, 0, z) scheme according to Construction 12.2.1 (all nodes should
choose the same αi’s) and send ci,j to node j.

2) For each node j ∈ [n], compute c′j = f(ci1,j, ci2,j, · · · , ci|I|,j), and send c′j to
node e.

3) Node e obtains c(1)
e , c

(2)
e , · · · , c(n−z)

e by decoding the (n, n − z, 0, z) scheme,
regarding c′1, c′2, · · · , c′n as the n shares.

Theorem 12.2.1. Construction 12.2.2 is a secure repair scheme.

Proof. Similar to Theorem 12.1.1, repairability follows from the linearity of Con-
struction 12.2.1, which implies that c′[n] are the shares of a (n, n−z, 0, z) secret shar-
ing scheme that encodes (f(c

(1)
i1
, c

(1)
i2
, · · · , c(1)

i|I|
), · · · , f(c

(n−z)
i1

, c
(n−z)
i2

, · · · , c(n−z)
i|I|

)) =

(c
(1)
e , · · · , c(n−z)

e ) as message. We now focus on security. Let A ⊂ [n], |A| = z

be an arbitrary set of nodes controlled by the adversary, then c[n−z]
e ⊥ c′A. Fur-

thermore, since Construction 12.2.1 is rate-optimal, by Lemma 3.2.1 it follows that
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H(c′A) = z. We have

H(c′[n]\A|c[n−z]
e , c′A)

(a)
= H(c[n−z]

e , c′[n])−H(c[n−z]
e , c′A) (12.7)

(b)

≤ H(c[n−z]
e ) + z −H(c[n−z]

e , c′A)

(c)
= H(c[n−z]

e ) + z −H(c[n−z]
e |c′A)−H(c′A)

(d)
= H(c[n−z]

e ) + z −H(c[n−z]
e )−H(c′A)

= z −H(c′A)

(e)
= 0. (12.8)

Here (a) and (c) follow from the chain rule; (b) follows from the fact that c′[n] is a
function of c[n−z]

e and z random keys; (d) follows from c
[n−z]
e ⊥ c′A and (e) follows

from H(c′A) = z.

Consider the case that e ∈ A, we have

I(m[n−z]; c
[n−z]
A , uA, dA) = I(m[n−z]; c

[n−z]
A , uA, c

′
[n], cI,A) (12.9)

(f)
= I(m[n−z]; c

[n−z]
A , uA, c

′
A, cI,A)

(g)
= I(m[n−z]; c

[n−z]
A , uA, cI,A), (12.10)

(h)
= I(m[n−z]; c

[n−z]
A , uA, cI\A,A)

(i)
= I(m[n−z]; c

[n−z]
A , uA|cI\A,A) + I(m[n−z]; cI\A,A)

(j)

≤ I(m[n−z]; c
[n−z]
A , uA|cI\A,A) + I(c[n−z]; cI\A,A)

(k)
= I(m[n−z]; c

[n−z]
A , uA|cI\A,A)

(l)
= I(m[n−z]; c

[n−z]
A , uA)

(m)
= I(m[n−z]; c

[n−z]
A )

(n)
= 0, (12.11)

where (f) follows from (12.8); (g) follows from the fact that c′A is a function of
cI,A; (h) follows from the fact that cA,A is a function of c[n−z]

A and uA; (i) follows
from the chain rule; (j) follows from the Markov chainm[n−z] → c[n−z] → cI\A,A

and the data processing inequality; (k) follows from the fact that cI\A,A are the
shares of |I\A| independent (n, n − z, 0, z) secret sharing schemes and that for
each scheme only |A| = z of its shares are included; (l) follows from the fact that
(m[n−z], c

[n−z]
A , uA) ⊥ cI\A,A, implied by (k); (m) follows from (m[n−z], c

[n−z]
A ) ⊥

uA; and (n) follows from security of the secret sharing scheme being repaired.
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For the case that e /∈ A, we have I(m[n−z]; c
[n−z]
A , uA, dA) = I(m[n−z]; c

[n−z]
A , uA, cI,A),

which can be treated in the sameway as (12.10) - (12.11). The proof is complete.

In Step 1, at most |I|n symbols are communicated and in Step 2, at most n symbols
are communicated. Therefore the total repair bandwidth is at most (|I| + 1)n

symbols, for repairing n − z symbols. The normalized repair bandwidth to repair
each symbol is at most (|I|+1)n

n−z symbols. In the case that n dominates z, the
normalized repair bandwidth approaches |I|+ 1 symbols. Note that |I| is the non-
secure repair bandwidth and a trivial lower bound on the secure repair bandwidth.
Therefore when n dominates z (e.g., the high rate case), the secure repair bandwidth
of Construction 12.2.2 is essentially optimal. Specifically, it is essentially the
same as the non-secure repair bandwidth, implying that we can have secure repair
essentially for free, even in terms of repair bandwidth.

12.3 Vector Secure Repair
The secure repair schemes in Construction 12.1.2 and 12.2.2 deal with scalar secret
sharing schemes, i.e., schemes that are linear over a finite field and such that each
share is an element of the field. A more general class of secret sharing schemes
are vector linear secret sharing schemes, also referred to as array schemes. A
vector linear (n, k, r, z) secret sharing scheme over Ftq is a randomized function that
maps (encodes) a message m = (m1, · · · ,mk) of k symbols over Ftq to n shares
c = (c1, · · · , cn) over Ftq, such that the encoding function is linear over Fq and
that the same reliability and security requirements as before are met. We denote
mi = (mi,1,mi,2, · · · ,mi,t), where mi,j ∈ Fq, for i ∈ [k], j ∈ [t]. Similarly we
denote ci = (ci,1, ci,2, · · · , ci,t), for i ∈ [n]. Note that scalar schemes are special
cases of vector linear schemes with t = 1.

Many efficient secret sharing schemes, e.g., schemeswith efficient computation (e.g.,
Chapter 4 and Chapter 5), schemes with efficient decoding bandwidth (e.g., Chapter
8), and schemes with efficient repair bandwidth (e.g., Chapter 9), are intrinsically
vector linear. In this section we extend our secure repair framework to vector linear
schemes. This is especially interesting because it allows us to leverage the property
of secret sharing schemes with efficient (non-secure) repair bandwidth, i.e., secure
regenerating codes, to further reduce the (secure) repair bandwidth.

We remark that existing secure regenerating codes can be classified into two cat-
egories: codes with non-secure repair and codes with secure repair. Secure re-
generating codes with non-secure repair focus on reducing the repair bandwidth
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without worrying about the security of the repair process. For example, schemes
constructed in Chapter 9 belong to this category. For this case one can think of
having a trustworthy repair dealer that will reconstruct the lost share and forward
it to the failed node. As remarked previously, during the repair process the dealer
may gain information on the message and has to be trustworthy. In comparison,
regenerating codes with secure repair, by code design, guarantee that such a dealer
will not learn any information about the message. This in fact removes the need
for a trustworthy dealer as the failed node can act as the dealer. In this sense,
secure regenerating codes with secure repair naturally admit a secure repair scheme
that meets Definition 12.1.1. Particularly, the secure repair scheme is a simple
“one-round” scheme in the sense that the helper nodes will transmit information to
the failed node but they themselves do not need to receive information from other
nodes. Unfortunately, one-round secure repair comes at a high cost in rate and codes
with non-secure repair generally have a much better rate as well as repair bandwidth
(when normalized by rate) than codes with secure repair [24]. Our main result in this
section implies that this trade-off between rate and secure repair is not necessary:
we can apply our generic approach to secure regenerating codes with non-secure
repair to achieve secure repair, a good rate, and a good repair bandwidth. The only
cost is that the repair process now involves two rounds instead of one round.

Construction 12.3.1. (Vector linear secure repair) Consider any vector linear
(n, k, r, z) secret sharing scheme over Ftq, any e ∈ [n], and any I = {i1, · · · , i|I|} ⊂
[n], e /∈ I such that there exists J ⊂ [t] and a linear function f over Fq that takes
ci,j , i ∈ I , j ∈ J as input and outputs ce = (ce,1, ce,2, · · · , ce,t). The secure repair
process involves three steps:

1) For each node i ∈ I , and j ∈ J , encode c(1)
i,j , c

(2)
i,j , · · · , c

(n−z)
i,j into ci,j,1, ci,j,2,

· · · , ci,j,n by an (n, n − z, 0, z) scheme according to Construction 12.2.1
(choosing the same αi’s) and send ci,j,k to node k.

2) For each node k ∈ [n], compute (c′k,1, c
′
k,2, · · · , c′k,t) = f(ci,j,k)i∈I,j∈J , and

send c′k,j , j ∈ [t] to node e.

3) For j ∈ [t], node e obtains c(1)
e,j , c

(2)
e,j , · · · , c

(n−z)
e,j by decoding the (n, n−z, 0, z)

scheme, regarding c′1,j, c′2,j, · · · , c′n,j as the n shares.

Theorem 12.3.1. Construction 12.3.1 is a secure repair scheme.
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Proof. As inTheorem12.2.1, repairability follows from the linearity ofConstruction
12.2.1, which implies that c′1,j, c′2,j, · · · , c′n,j are the shares of a (n, n−z, 0, z) secret
sharing scheme that encodes c(1)

e,j , c
(2)
e,j , · · · , c

(n−z)
e,j as message, for j ∈ [t]. We now

turn to security, and follow a similar flow as the proof of Theorem 12.2.1. Let
A ⊂ [n], |A| = z be an arbitrary set of nodes controlled by the adversary, then
c

[n−z]
e ⊥ c′A,j = 0. Since Construction 12.2.1 is rate-optimal, by Lemma 3.2.1 it
follows that H(c′A,j) = z, for j ∈ [t]. We have, for j ∈ [t],

H(c′[n]\A,j|c
[n−z]
e,j , c′A,j) = H(c

[n−z]
e,j , c′[n],j)−H(c

[n−z]
e,j , c′A,j)

≤ H(c
[n−z]
e,j ) + z −H(c

[n−z]
e,j , c′A,j)

= H(c
[n−z]
e,j ) + z −H(c

[n−z]
e,j |c′A,j)−H(c′A,j)

= H(c
[n−z]
e,j ) + z −H(c

[n−z]
e,j )−H(c′A,j)

= z −H(c′A,j)

= 0, (12.12)

where the justification for the steps is similar to that of (12.7) - (12.8). (12.12)
implies that

H(c′[n]\A,[t]|c
[n−z]
e,[t] , c

′
A,[t]) = 0. (12.13)

Now considering the case that e ∈ A, we have

I(m[n−z]; c
[n−z]
A,[t] , uA, dA) = I(m[n−z]; c

[n−z]
A,[t] , uA, c

′
[n],[t], cI,J,A)

(a)
= I(m[n−z]; c

[n−z]
A,[t] , uA, c

′
A,[t], cI,J,A)

= I(m[n−z]; c
[n−z]
A,[t] , uA, cI,J,A), (12.14)

= I(m[n−z]; c
[n−z]
A,[t] , uA, cI\A,J,A)

= I(m[n−z]; c
[n−z]
A,[t] , uA|cI\A,J,A) + I(m[n−z]; cI\A,J,A)

≤ I(m[n−z]; c
[n−z]
A,[t] , uA|cI\A,J,A) + I(c[n−z]; cI\A,J,A)

(b)
= I(m[n−z]; c

[n−z]
A,[t] , uA|cI\A,J,A)

= I(m[n−z]; c
[n−z]
A,[t] , uA)

= I(m[n−z]; c
[n−z]
A,[t] )

= 0, (12.15)

where (a) follows from (12.13); (b) follows from the fact that cI\A,J,A are the
shares of |I\A| · |J | independent (n, n − z, 0, z) secret sharing schemes and that
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for each scheme only |A| = z of its shares are included; and the remaining equali-
ties/inequalities are similar to (12.9) - (12.11).

For the case that e /∈ A, we have

I(m[n−z]; c
[n−z]
A,[t] , uA, dA) = I(m[n−z]; c

[n−z]
A,[t] , uA, cI,J,A),

which can be treated in the sameway as (12.14) - (12.15). The proof is complete.

Consider the repair bandwidth of the scheme. In Step 1, at most n|I||J | sym-
bols (over Fq) are transmitted and in Step 2, at most nt symbols are transmitted.
Therefore, the total repair bandwidth is at most (|I||J |+ t)n symbols, for repairing
(n−z)t symbols. The normalized repair bandwidth to repair each symbol is at most
(|I||J |+t)n

(n−z)t symbols. In the case that n dominates z, the normalized repair bandwidth
approaches |I||J |

t
+ 1. Note that the normalized non-secure repair bandwidth is |I||J |

t
,

and therefore in this case the secure repair bandwidth of Construction 12.3.1 is
essentially optimal and is almost the same as the non-secure repair bandwidth.

The MSR secure regenerating codes in Construction 9.2.2, Construction 9.3.2 and
in [22] have optimal rate as well as optimal non-secure repair bandwidth (among
rate-optimal schemes). Specifically, the rate of the scheme is n−k−z

n
, and that for

|I| helper nodes to non-securely repair a failed node, each helper node will transmit
a fraction of 1

1+|I|−k−z of the symbols it stores, i.e., |J | = t
1+|I|−k−z . By applying

Construction 12.3.1 to these codes, we obtain schemes with optimal rate and low
secure repair bandwidth. In the next section, we will show that this secure repair
bandwidth is in fact optimal up to a small constant factor.

12.4 Lower Bound on Secure Repair Bandwidth
The bandwidths of Construction 12.2.2 and Construction 12.3.1 are significantly
better than Construction 12.1.2. A natural question is whether it is possible to do
even better, or in other words, what is a lower bound on the secure repair bandwidth.
As we previously remarked, when n dominates z, the bandwidths of Constructions
12.2.2 and 12.3.1 approach the non-secure repair bandwidth, which is a naive lower
bound. Therefore in this case the bandwidths of Constructions 12.2.2 and 12.3.1
are asymptotically optimal. In this section, we prove a stronger lower bound on the
secure repair bandwidth and show that the bandwidths of Constructions 12.2.2 and
12.3.1 are optimal for all parameters up to a constant factor of 2, as long as the secret
sharing scheme being repaired is rate-optimal.
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Assume that a trustworthy repair dealer is available. The dealer will receive infor-
mation from the helper nodes, evaluate a repair function that outputs the lost share,
and reassign the share. In this case, the repair bandwidth is the size of the input to
the repair function plus the size of the lost share. Now consider the situation that a
trustworthy dealer is not available and a secure repair scheme is used for repair. The
secure repair scheme essentially is a method to evaluate the repair function (e.g.,
f in Constructions 12.1.2, 12.2.2 and 12.3.1) securely at the failed node, and the
repair bandwidth again depends on the size of the input to the repair function. The
repair function is an intrinsic component of the secret sharing scheme and the size
of the input can be minimized by carefully designing the secret sharing scheme,
e.g., Chapter 9. Refer to the size of the input to the repair function as the non-secure
repair bandwidth of a secret sharing scheme. Below we prove a lower bound on the
repair bandwidth of secure repair schemes, given the non-secure repair bandwidth
of the secret sharing scheme.

Theorem 12.4.1. For any rate-optimal (n, k = n − r − z, r, z) secret sharing
scheme, let W be the non-secure repair bandwidth of the scheme, then a secure
repair scheme requires a bandwidth of at least (n−1)W

2(n−z−1)
.

Proof. By Proposition 3.1.1, k = n− r− z implies that the scheme is rate-optimal.
Let the message m = (m1,m2, · · · ,mk) be uniformly distributed. Then for any
I ⊂ [n], |I| = k + z and J ⊂ I , |J | = z, by the security and the decodability of the
scheme we have I(m; cJ) = 0 and I(m; cI) = H(m) = k. It follows that

I(m; cI\J |cJ) = H(m|cJ)−H(m|cI)

= H(m)−H(m|cI)

= I(m; cI)

= k. (12.16)

Since |I\J | = k, H(cI\J) ≤ k, and hence (12.16) implies that H(cI\J) = k and
cI\J ⊥ cJ and that

H(cI\J |m, cJ) = 0. (12.17)

Therefore among the n shares of the secret sharing scheme, any |I\J | = k shares
are uniformly distributed and that any |J | = z shares are independent of any other
k shares. This in turn implies that any k + z shares are uniformly distributed, i.e.,

H(cI) = k + z. (12.18)
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Assume that ce is lost, and for i ∈ [n]\{e}, let wi be the information sent by node i
to node e for non-secure repair, namely, the input signal to the repair function from
node i (with the convention that wi = 0 if node i does not participate in the repair).
Then wi is a function of ci and

∑
i∈[n]\{e}H(wi) = W . Now consider any secure

repair protocol, and for i ∈ [n]\{e}, j ∈ [n], let vi,j be the set of signals that are
sent to node j by node i or sent to node i by node j during the protocol (with the
convention that vi,i = ∅). Then wi must be a function of the signals incoming to
and outgoing from node i, namely, H(wi|vi,[n]) = 0, implying that

I(wi; vi,[n]) = H(wi). (12.19)

Let A be an arbitrary set of nodes controlled by the adversary such that i /∈ A,
|A| = z, and letB be an arbitrary set of nodes such that i ∈ B, |B| = k,A∩B = ∅.
We have

I(wi; vi,A) = H(wi)−H(wi|vi,A)

(a)
= H(wi|cA)−H(wi|vi,A)

≤ H(wi|cA)−H(wi|vi,A, cA)

= I(wi; vi,A|cA)

(b)

≤ I(ci; vi,A|cA)

≤ I(cB; vi,A|cA)

(c)

≤ I(m; vi,A|cA)

(d)
= I(m; vi,A|cA) + I(m; cA)

= I(m; vi,A, cA)

(e)
= 0. (12.20)

Here (a) follows from the fact that wi is a function of ci and by (12.18), ci ⊥ cA;
(b) follows from the data processing inequality and the fact that wi is a function of
ci; (c) follows from the data processing inequality and (12.17), i.e., cB is a function
ofm given cA; (d) follows from the security of the secret sharing scheme; and (e)
follows from the security of the repair scheme. Let

A∗ = argmax
A⊂[n]\{i},|A|=z

∑
l∈A

H(vi,l),
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and let Ā∗ = [n]\({i} ∪A∗), then by definition, for j ∈ Ā∗ and j∗ ∈ A∗, H(vi,j) ≤
H(vi,j∗). We have

H(vi,Ā∗) ≥ I(wi; vi,Ā∗ |vi,A)

(f)
= I(wi; vi,Ā∗|vi,A) + I(wi; vi,A)

= I(wi; vi,[n])

(g)
= H(wi),

where (f) follows from (12.20) and (g) follows from (12.19). Therefore there
exists j ∈ Ā∗ such that H(vi,j) ≥ H(wi)/|Ā∗| and so for j∗ ∈ A∗, H(vi,j∗) ≥
H(wi)/(n− z − 1). Therefore the amount of information transmitted and received
by node i is lower bounded by∑

j∈[n]

H(vi,j) ≥ H(vi,Ā∗) + |A∗| H(wi)

n− z − 1

=
(n− 1)H(wi)

n− z − 1
. (12.21)

Summing (12.21) over all i ∈ [n]\{e}, it follows that the amount of information
transmitted and received by nodes in [n]\{e} is at least (n−1)W

n−z−1
. Since the amount

of communication is counted exactly twice, i.e., when information is transmitted
and when it is received, the repair bandwidth of the scheme is lower bounded by
(n−1)W

2(n−z−1)
. This completes the proof.

The bandwidths of Constructions 12.2.2 and 12.3.1 are upper bounded by (W+1)n
n−z ,

and therefore are optimal up to a factor of approximately 2 by Theorem 12.4.1.

12.5 Concluding Remarks
We study the problem of repairing a share in a secret sharing scheme securely
without leaking any information about the message. Secure regenerating codes, a
special class of secret sharing schemes, achieve secure repair at a significant cost
of rate and other aspects of efficiency. We show that, by slightly relaxing the repair
model and allowing an efficient and simple 2-round repair protocol, any linear secret
sharing schemes can be securely repaired in a generic manner. We derive a lower
bound on the secure repair bandwidth, and show that the proposed secure repair
schemes achieve this bound within a small constant factor either when n dominates
z, or when the secret sharing scheme being repaired is rate-optimal. Particularly,
when n dominates z, the secure repair bandwidth of the proposed repair schemes
approaches the non-secure repair bandwidth.
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A natural follow up problem for future study is to consider an active adversary that
may deviate from the repair protocol, for example, by sending wrong information.
Another problem is to characterize the tradeoff between the secure repair bandwidth
and rate. This tradeoff has attracted considerable interest recently but existing works
only consider the one-round repair model. It would be interesting to study how does
relaxing the one-round restriction affect this tradeoff.
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Coding for Networks
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C h a p t e r 13

INTRODUCTION TO NETWORK CODING

In Parts I - III, we discussed how to achieve security and reliability in distributed
storage systems with (various aspects of) optimal efficiency by the means of coding.
So far we have assumed that the nodes are connected in a perfect network with
secure and reliable channels (e.g., when a user sends/receives a bit to/from a node).
In reality, nodes in distributed systems are connected by networks that are subject
to errors, eavesdropping and connectivity constraints. In this final part of the thesis,
we study how to achieve secure and reliable communication in general networks
with optimal efficiency, by the technique of coding, namely, network coding. We
remark that the communication problem is a generalization of the storage problem
as well, as storage can be modeled as communication over time.

In the paradigm of network coding, a set of source nodes transmit information
to a set of terminal nodes over a network with noiseless links; internal nodes of
the network may mix received information before forwarding it. This mixing (or
encoding) of information has been extensively studied over the last decade (see e.g.,
[72]–[76], and the references therein). In particular, the problems of determining
the capacity of the network and designing optimal codes achieving the capacity
are well understood under the multicast setting, where there is a single source node
whose information is demanded by all terminal nodes. However, much less is known
regarding the multiple-unicast setting where there are multiple source nodes, each
of them demanded by a single and different terminal node (the more general setting
of multiple-multicast, where each terminal node may demand the information from
an arbitrary subset of source nodes, can be converted to an equivalent multiple-
unicast setting using the constructions in [77], [78]). Determining the capacity
or the achievability of a rate tuple in multiple-unicast network coding remains an
intriguing, central, open problem, e.g., [25]–[27].

13.1 Equivalence between Network Coding Problems
We connect multiple-unicast network coding to two other fundamental network
coding problems, namely secure network coding and network error correction,
using the idea of reduction. We focus on the decision problem of determining
whether a rate tuple is achievable in the network, as well as the decision problem
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of determining whether a rate tuple is in the capacity region of the network. Here
a rate tuple is achievable if there exists a code that exactly achieves it, and the
capacity region is the closure of the set of all achievable rate tuples. Note that by
definition, a rate tuple that is achievable is always in the capacity region, and a rate
tuple that is in the capacity region is always asymptotically achievable but may not
be (exactly) achievable (e.g., when the rate tuple lies at the boundary of the capacity
region and the capacity region is open). We study the connection between different
problems using the technique of reduction. Loosely speaking, we say a class of
decision problems I can be reduced to a class of decision problems J if there
exists a scheme that maps any problem instance in I to a corresponding problem
instance in J , such that the answers to the two instances are the same. In other
words, using such a reduction methodology, one may take an instance of I , map it
to a corresponding instance of J , solve the decision problem on the instance of J ,
and deduce a solution for the original instance of I; implying that if there is a way
to solve the problems in J , then there is a way to solve the problems in I .

We construct a reduction, i.e., a mapping, from the problem of multiple-unicast
network coding to the problem of unicast secure network coding. Note that the latter
problem is asked under the simplest setting of unicast, where there is a single source
node and a single terminal node in the network. Therefore under the unicast setting
the rate tuple degenerates to a scalar rate. Our reduction addresses the problem
of determining whether a rate/rate tuple is achievable, as well as the problem of
determining whether a rate/rate tuple is in the capacity region. Secondly, we
construct another reduction from the problem of multiple-unicast network coding to
the problem of unicast network error correction. Note that again the latter problem is
asked under the simplest setting of unicast. Surprisingly, we show that our reduction
only works for the problem of determining whether a rate/rate tuple is achievable. In
contrast, for the problem of determining whether a rate/rate tuple is in the capacity
region, we show that the same reduction mapping no longer guarantees that it does
not change the answers to the instances. An interesting consequence of this negative
result is that the capacity of a unicast network error correction instance in general is
not (exactly) achievable.

Compared to the standard network coding problem, secure network coding and net-
work error correction have additional secrecy and reliability requirements, described
in the following subsections.
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13.1.1 Secure Network Coding
Secure network coding is a natural generalization of network communication to
networks with eavesdroppers. Specifically, in the secure network coding problem, a
subset A ∈ A of links may be eavesdropped, where A is given and is the collection
of all possible eavesdropping patterns. A valid code design for the secure network
coding problem needs to ensure the secrecy of the source message. Namely, for any
choice of A from A, the mutual information between the set of signals transmitted
on the links in A and the source messages must be negligible. The secure network
coding problem is well studied in the literature and in particular is well understood
in the multicast setting under the assumption that 1) all links have equal capacity,
and 2) A is uniform, i.e., A includes all subsets of links of size zw, where zw is the
number of wiretapped links, and 3) only the source node can generate randomness,
e.g., [79]–[82]. In the cases that either link capacities are not equal, orA is arbitrary,
or non-source nodes may generate randomness, determining the achievability of a
rate or the capacity in the secure network coding problem remains open, e.g., [83]–
[86].

We show that an arbitrarymultiple-unicast network coding instance I can be reduced
to a particular unicast secure network coding instance Is that has a very simple setup.
Specifically, the reduction mapping ensures that in Is a) there is a single source node
and a single terminal node in an acyclic network; b) all links have equal capacity;
c) there is a single wiretapped link and this link can be any link in the network,
namely,A is uniform with zw = 1; and d) non-source nodes are allowed to generate
randomness. The setup of Is is simple in the sense that setup a) is the simplest
connection requirement, b) is the simplest assumption on link capacities, and c)
gives the simplest structure of a non-trivial A. Indeed, under the setup of a) - c)
the secrecy capacity of the network is characterized by the cut-set bounds and is
achieved by linear codes [79]. In this sense, our reduction suggests that the addition
of setup d) is critical; as the secure network coding problem is simple and well
understood under setting a) - c), but under setting a) - d) it is as hard as the long
standing open problem ofmultiple-unicast network coding. We remark that allowing
non-source nodes to generate randomness is realistic and preferable because this can
significantly increase the secrecy capacity of the network [86], [87].

Our reduction addresses the problem of determining the achievability of a rate/rate
tuple, as well as the problem of determining whether a rate/rate tuple is in the
capacity region. Furthermore, our reduction holds for different types of security
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requirements. Namely, in Is wemay assume either perfect, strong, or weak security.

Our reduction has an operational aspect. Namely, in our reduction, from a code for
Is one can construct a code for I. Thus, to construct codes for an instance of the
multiple-unicast network coding problem, one may first reduce it to an instance of
the unicast secure network coding problem, construct codes for the latter, and finally
use them to obtain codes for the original instance. We conclude, speaking loosely,
that unicast secure network coding under the simple setting described above is at
least as hard as multiple-unicast network coding. Our formal results are given in
Section 14.1.

The hardness of the general secure network coding problems are previously studied
in [83] and [86]. Specifically, Chan and Grant [83] show that determining the zero-
error achievability of a rate in the multicast secure network coding problem with
general setup (i.e., arbitrary edge capacities, arbitrary A, and arbitrary nodes may
generate randomness) and with perfect security is at least as hard as determining
the zero-error achievability of a rate tuple in the multiple-multicast network coding
problem. Cui et al. [86] show that determining the capacity of a unicast secure
network coding problem is NP-hard if either the edge capacities are arbitrary orA is
arbitrary. Our work significantly strengthens the result in [83] by showing that the
secure network coding problem under an extremely simple setup (i.e., unicast, equal
link capacities, uniform A with a single wiretap link) is still hard, under various
definitions of achievability and security.

13.1.2 Network Error Correction
We now turn to the network error correction problem, which is a natural generaliza-
tion of network communication to networks with adversarial errors. Specifically,
in the network error correction problem a subset B ∈ B of links may be erroneous,
where B is given and is the collection of all possible link error patterns. A valid
code design for the error correction problem needs to ensure reliable communication
between the sources and terminals in the worst case no matter which set B ∈ B
of links are chosen to be erroneous and what specific erroneous signals are being
transmitted on these links. Namely, in this context, the communication of a message
is successful if for any choice of B from B, and for any (error) signals to be trans-
mitted on the links in B, the message is correctly decoded at the terminal nodes.
The network error correction problem is extensively studied and in particular is well
understood under the multicast setting with the assumption that 1) all links have
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equal capacity, and 2) B is uniform, i.e., B includes all subsets of links of size ze,
where ze is the number of erroneous links, e.g., [28]–[30], [88]–[90]. In the cases
that either link capacities are not equal or B is arbitrary, determining the capacity of
the network or the achievability of a rate remains an open problem, e.g., [91]–[95].

In a flavor similar to the reduction described in the previous subsection, we show
that an arbitrary multiple-unicast network coding instance I can be reduced to a
particular unicast network error correction instance Ic that has a very simple setup.
Specifically, the reduction mapping ensures that in Ic a) there is a single source node
and a single terminal node in an acyclic network; b) all links have equal capacity; c)
there is a single error link; and d) the error link can be any link in the network except
a given subset of (well protected) links. The setup of Ic is simple in the sense that
setup a) is the simplest connection requirement, b) is the simplest assumption on
link capacities and c) gives the smallest number of error links. Indeed, if the error
link can be any one link in the network (namely ifB is uniform), then under the setup
of a) - c) the capacity of the network is characterized by the cut-set bounds and is
achieved by linear codes [28]. In this sense, our reduction suggests that the addition
of setup d), which will result in a non-uniform B, is critical; as the network error
correction problem is simple and well understood under setting a) - c), but under
setting a) - d) it is as hard as the long standing open problem of multiple-unicast
network coding.

Our reduction addresses the problem of determining the achievability of a rate/rate
tuple. Namely by our reduction one can determine the achievability of a rate tuple
in I by determining the achievability of a corresponding rate in Ic. However,
rather interestingly, the same reduction (i.e., the same mapping) does not address
the problem of determining whether a rate/rate tuple is in the capacity region.
Specifically, we show that there exists a multiple-unicast network coding instance
I and a rate tuple such that the rate tuple is not in the capacity region of I, and
that after applying our reduction mapping, the corresponding rate is in the capacity
region of the corresponding unicast network error correction instance Ic. The fact
that our reduction “works" when considering (exact) achievability and does not
“work" when considering capacity, implies that in general the capacity of a unicast
network error correction instance is not (exactly) achievable, which is a result of
separate interest.

Similar to previous discussion, our reduction has an operational aspect that from a
code for Ic one can construct a code for I. Indeed, to construct codes for an instance
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of the multiple-unicast network coding problem, one can first reduce it to an instance
of the unicast network error correction problem, construct codes for the latter, and
finally use them to obtain codes for the original instance. We conclude, speaking
loosely, that unicast network error correction under the simple setting described
above is at least as hard as multiple-unicast network coding. Our formal results are
given in Chapter 15.

13.1.3 Equivalence via Reverse Reduction
The above constructions reduce instances of the multiple-unicast network coding
problem to instances of the unicast secure network coding or the unicast network er-
ror correction problem. A natural and intriguing question is whether these problems
are equivalent, namely, whether it is possible to construct the reverse reductions.
Using the technique ofA-enhanced networks [96], we show that an arbitrary unicast
secure network coding instance in which at most one link is eavesdropped (i.e., A
includes only singleton sets) can be reduced to a multiple-unicast network coding
instance, thus implying an equivalence between the two problems. The formal result
is presented in Section 14.2. For more complicated A, whether a reverse reduction
exists or not remains an open problem. The existence of a reverse reduction from
unicast network error correction to multiple-unicast network coding also remains
open.

Finally, we remark that reductions between several other network coding problems
are studied in, e.g., [77], [78], [97]–[102].

13.2 Bounds for Secure Network Coding
As discussed in Section 13.1.1, the unicast secure network coding problem is well
understood under the setting that all links have equal capacity, A is uniform and
only the source node generates randomness. Specifically, assuming that all edges
have unit capacity, let µ be the min-cut of the network and let zw be the number
of eavesdropped edges, then the secrecy capacity of the network is µ − zw which
can be achieved by linear codes [79]. However, as discussed above, the same
problem remains open and is at least as hard as the multiple-unicast network coding
problem once non-source nodes are allowed to generate randomness. To the best
of our knowledge, in this case the only existing bounds on the secrecy capacity are
given implicitly in terms of entropy functions/entropic region [27], [85], whereas
determining the entropic region is a long standing open problem as well.

We give the first explicit upper bound on the secrecy capacity for the case that
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non-source nodes can generate randomness. Our bound is based on cut-sets and
has an intuitive graph-theoretic interpretation. The key observation is that unlike
standard cut-set bounds which only count forward edges because only forward
edges are useful, in a secure network coding problem where non-source nodes can
generate randomness, backward edges may also be helpful and should be counted.
Refer to Figure 13.1-(a) for an example. Here the backward edge (A, S) can
transmit a random key back to the source S to protect the message, enabling the
secure communication of the message M . Without the backward edge, secure
communication is not possible. Therefore, standard cut-set bounds that only count
forward edges are no longer valid upper bounds on the secrecy capacity if non-
source nodes can generate randomness. A simple fix of this problem is to ignore the
direction of the edges, namely, to regard all edges as forward edges. Unfortunately,
this will lead to a very loose bound, because the direction of the edge is indeed
important and in many situations, the usefulness of an edge does depend on whether
it is pointing forward. Refer to Figure 13.1-(b) for an example, inwhich the backward
edge (D,A) is not useful, but if its direction is reversed, then an edge (A,D) would
be useful.

Therefore, it is important to understand when a backward edge is useful and count
its contribution carefully in the bound. Notice that in Figure 13.1, the networks in
(a) and (b) are identical from the perspective of cuts because each of them contains
a cut with two forward edges and a cut with one forward edge and one backward
edge. Hence to distinguish them we have to see beyond the cut: in this simple
example the backward edge in (a) is helpful because it is connected to a forward
edge, while the one in (b) is not. More generally, this motivates us to take into
account the connectivity from the backward edges to forward edges, described by a
binary connectivity matrix C. We show that the rank structure of the submatrices
of C characterizes the utility of the backward edges, and use it to obtain an upper
bound on the secrecy capacity.

Finally, we show that given any cut and connectivity pattern, we can construct a
network with the given cut and connectivity, such that the proposed bound on the
secrecy capacity is tight in this network and can be achieved by linear codes. In
this sense, the proposed bound is as tight as possible if the input to the bound is a
local cut and the connectivity of the edges beyond the cut, characterized by a binary
matrix.
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(a) Backward edge is helpful. (b) Backward edge is not helpful.

Figure 13.1: Networks with unit capacity edges and z = 1. S is the source and D
is the terminal. M is the source message and K is a random key.

13.3 Rateless Network Error Correction
We discussed in Section 13.1.2 that the unicast network error correction problem
is well understood under the setting that all links have equal capacity and that B is
uniform. In this case the capacity of the network is characterized by the network
singleton bound [28], [29], which is a generalization of the classic singleton bound.
Specifically, assuming that all edges have unit capacity, let µ be the min-cut of the
network, then the capacity of a network with ze error edges equals µ− 2ze, and the
capacity of a network with ze edge erasures equals µ− ze.

The gap between the network “error-correction” capacity and the network “erasure-
correction” capacity is intuitive, as in the case of classic error-correcting codes, we
need r redundant symbols to correct r erasures, and need 2r redundant symbols to
correct r errors. Interestingly, this gap can be closed if we assume a slightly weaker
adversary and allow a vanishingly small probability of error. Specifically, assume
that there is a secure side channel with vanishingly small capacity between the
source and the terminal, so that the bits transmitted by this channel are reliable and
private (and the adversary cannot learn them). Then under this model the capacity
of a network with ze error edges is increased to µ− ze [30]. It is shown in [31] that
the secure side channel can be replaced by a vanishingly small amount of shared
private randomness between the source and the terminal.

While the codes in [28]–[31] are rate-optimal, they require the parametersµ and ze to
be known for the purpose of code construction. This may restrict their applications
in many practical settings. For example, estimating the min-cut of the network can
be costly; the min-cut may change over time; and the number of links controlled by
the adversary may not be available. To address this issue, we study rateless network
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error correction codes, i.e., coding schemes that do not require prior knowledge of
the network and adversary parameters.

We design rateless coding schemes for both the secure side channel model and the
shared private randomness model. Both coding schemes are optimal and achieve the
network capacity µ− ze. Since the schemes do not require the knowledge of µ and
ze, they have to adapt themselves to the correct parameters. Loosely speaking, the
idea is as follows. Regard the source messageM as a vector space of dimension k (in
reality the message is a basis of the space, but this difference is immaterial [89]), and
the communication ofM involves multiple stages. In each stage the source makes
one transmission ofM to the terminal, so that the terminal will receive a space of
dimension µ, which contains a subspace ofM of dimension µ−ze (as the dimension
of the space spanned by the error signals injected by the adversary is at most ze).
Therefore after t = k

µ−ze stages, the terminal has accumulated a space of dimension
tµ that contains M as a subspace. The problem for the terminal is to pinpoint M
from the dimension-tµ space. The idea is to generate short “signatures” of M ,
delivered to the terminal by the secure side channel, or by carefully maneuvering
the shared private randomness. With the signatures the terminal can reconstruct
M efficiently. In contrast, the adversary, without knowing the signatures, is highly
unlikely to be able to cause a decoding error by fabricating a different subspaceM ′

whose signatures collide withM .

We also put our schemes into perspective with the rich collection of works, e.g.,
[103]–[107], on cryptographic error control schemes for network coding systems,
which detect and remove error packets injected by a computationally limited adver-
sary. Cryptographic schemes like these operate in a rateless manner independently
of the network and adversary parameters. However, in order to remove error pack-
ets promptly before they contaminate others, frequent cryptographic verification
of packets is necessary at intermediate network nodes. By contrast, our schemes
are information-theoretically secure, lightweight, end-to-end and do not require any
collaboration from intermediate network nodes.

The material in this part of the thesis was presented in part in [108], [109], [110],
[111], [112] and [113].
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13.4 Models and Definitions
13.4.1 Multiple-unicast Network Coding
A network is a directed acyclic graph G = (V , E), where vertices represent network
nodes and edges represent links. Each edge e ∈ E has a capacity ce, which is the
number of bits that can be transmitted on e in one transmission. An instance I =

(G,S, T , B) of the multiple-unicast network coding problem, includes a network
G, a set of source nodes S ⊂ V , a set of terminal nodes T ⊂ V and an |S| by |T |
connection requirement matrix B. The (i, j)-th entry of B equals 1 if terminal j
requires the information from source i and equals 0 otherwise. B is assumed to be a
permutation matrix so that each source is paired with a single terminal. Denote by
s(t) the source required by terminal t. Denote [n] , {1, .., n}. Each source s ∈ S
is associated with an independent message, represented by a random variable Ms

uniformly distributed over [2nRs ]. A network code of length n is a set of encoding
functions φe for every e ∈ E and a set of decoding functions φt for each t ∈ T . For
each e = (u, v), the encoding function φe is a function taking as input the signals
received from the incoming edges of node u, as well as the random variableMu if
u ∈ S. φe evaluates to a value in {0, 1}nce , which is the signal transmitted on e. For
each t ∈ T , the decoding function φt maps the tuple of signals received from the
incoming edges of t, to an estimated message M̂s(t) with values in [2nRs(t) ].

A network code {φe, φt}e∈E,t∈T is said to satisfy a terminal t under transmission
(ms, s ∈ S) if M̂s(t) = ms(t) when (Ms, s ∈ S) = (ms, s ∈ S), namely, terminal t
decodes correctly when the message tuple takes the specific value (ms, s ∈ S). A
network code is said to satisfy the multiple-unicast network coding instance I with
error probability ε if the probability that all t ∈ T are simultaneously satisfied is
at least 1 − ε. The probability is taken over the joint distribution on (Ms, s ∈ S).
Formally, the network code satisfies I with error probability ε if

Pr
(Ms,s∈S)

{⋂
t∈T

t is satisfied under (Ms, s ∈ S)

}
≥ 1− ε.

For an instance I of the multiple-unicast network coding problem, the rate tuple
(Rs, s ∈ S) is said to be achievable if for any ε > 0, there exists a network code that
satisfies I with error probability at most ε. (Rs, s ∈ S) is said to be achievable with
zero error if there exists a network code that satisfies I with zero error probability.
(Rs, s ∈ S) is said to be asymptotically achievable if for any δ > 0, rate tuple
((1 − δ)Rs, s ∈ S) is achievable. The capacity region of I is the closure of all
rate tuples that are achievable, i.e., the set of all rate tuples that are asymptotically
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achievable. Loosely speaking, under our definition, zero-error achievability does
not allow any slackness in either the probability of error or rate; achievability allows
slackness in the probability of error but not in rate; and asymptotic achievability
allows slackness in both the probability of error and rate. We remark that asymptotic
achievability is the more commonly used definition in the literature when capacity
is concerned. However, in addition to asymptotic achievability, extra efforts will be
placed on (exact) achievability in Chapter 15 because interestingly, the reduction
therein allows slackness in the probability of error but does not allow slackness in
rate.

Without loss of generality, we assume that all entries in the rate tuple are unit, i.e.,
Rs = 1, ∀s ∈ S , because a varying rate source s can be modeled by multiple unit
rate sources co-located at s. We say that unit rate is achievable, achievable with zero
error, or asymptotically achievable ifRs = 1, ∀s ∈ S and (Rs, s ∈ S) is achievable,
achievable with zero error, or asymptotically achievable, respectively.

13.4.2 Unicast Secure Network Coding
An instance Is = (G, s, t,A) of the unicast secure network coding problem includes
a network G, a source node s, a terminal node t and a collection of subsets of links
A ⊂ 2E susceptible to eavesdropping. Each node i ∈ V generates an independent
random variableKi.1 The source node holds a rate-Rs secret messageM uniformly
distributed over [2nRs ]. A (secure) network code of length n is a set of encoding
functions φe for every e ∈ E and a decoding function φt. For each e = (u, v), the
encoding function φe is a function taking as input the locally generated randomness
Ku, the signals received from the incoming edges of node u, and the messageM if
u = s. φe evaluates to a value in {0, 1}nce , which is the signal transmitted on e. The
decoding function φt maps the tuple of signals received from the incoming edges of
t, to an estimated message M̂ with values in [2nRs ].

A secure network code {φe, φt}e∈E is said to satisfy instance Iswith error probability
ε if the probability thatM = M̂ is at least 1− ε, where the probability is taken over
the distribution on M and Ki, i ∈ V . For any edge e ∈ E , denote by Xi(e) the
signal transmitted on e during the i-th channel use. For a subset of edges A, denote
by Xn(A) = (Xi(e) : 1 ≤ i ≤ n, e ∈ A). The network code is said to satisfy the

1We remark that in the secure network coding problem, allowing non-source nodes to generate
randomness can significantly increase the capacity [86], [87] and therefore is preferable. In contrast,
for simplicity in the multiple-unicast problem and the network error correction problem we do not
assume that non-source nodes can generate randomness.
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perfect security requirement if for allA ∈ A, I(M ;Xn(A)) = 0; the strong security
requirement if for all A ∈ A, I(M ;Xn(A))→ 0 as n→∞; and the weak security
requirement if ∀A ∈ A, I(M ;Xn(A))

n
→ 0 as n→∞.

For a unicast secure network coding instance Is, rate Rs is said to be achievable
with perfect, strong, or weak security if for any ε > 0, there exist network codes
that satisfy Is with error probability at most ε and the corresponding security
requirement. Rate Rs is said to be achievable with zero error and with perfect,
strong, or weak security if there exist network codes that satisfy Is with zero error
probability and the corresponding security requirement. Rate Rs is said to be
asymptotically achievable with perfect, strong, or weak security if for any δ > 0,
rate (1 − δ)Rs is achievable with the corresponding security requirement. The
capacity of Is under perfect, strong, or weak security is the supremum over all rates
that are achievable with the corresponding security requirement.

13.4.3 Unicast Network Error Correction
An instance Ic = (G, s, t,B) of the unicast network error correction problem
includes a network G, a source node s, a terminal node t and a collection of subsets
of links B ⊂ 2E susceptible to errors. An error occurs in a link if the output of the
link is different from the input. More precisely, the output of a link e is the addition
of the input signal and an error signal re ∈ {0, 1}nce , and an error occurs in link e
if and only if re is not the zero vector2. For a subset B of links, a B-error is said to
occur if errors occur in every link in B. The source node holds a rate-Rc message
M uniformly distributed over [2nRc ], and the decoder of the terminal outputs an
estimated message M̂ .

Let r = (re)e∈E be the tuple of error signals, referred to as an error pattern. Denote
by RB the set of all possible error patterns, namely, RB = {r : non-zero entries in
r correspond to B-errors, B ∈ B}. A network code {φe, φt}e∈E , defined similarly
as in Section 13.4.1, is said to satisfy Ic under transmission m if M̂ = m when
M = m, regardless of the occurrence of any error pattern r ∈ RB. A network
code is said to satisfy problem Ic with error probability ε if the probability that Ic is
satisfied is at least 1− ε. The probability is taken over the distribution of the source
message M . Note that our model targets the worst-case (or adversarial) scenario,
namely the probability of error is upper bounded by ε even in the occurrence of the

2Note that our model and results can be generalized naturally to arbitrary alphabets in which
addition may not be defined, as long as we make the convention that re = 0 if and only if the output
of e is identical to the input.
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worst case error pattern.

For a unicast network error correction problem Ic, rate Rc is said to be achievable
if for any ε > 0, there exists a network code that satisfies Ic with error probability
at most ε. Rate Rc is said to be achievable with zero error if there exists a network
code that satisfies Ic with zero error probability. RateRc is said to be asymptotically
achievable if for any δ > 0, rate (1− δ)Rc is achievable. The capacity of Ic is the
supremum over all rates that are achievable.
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C h a p t e r 14

CONNECTING MULTIPLE-UNICAST AND SECURE
NETWORK CODING

14.1 Reducing Multiple-unicast to Unicast Secure Network Coding
Recall from Section 13.4.1 that in a multiple-unicast problem, unit rate is asymp-
totically achievable if Rs = 1,∀s ∈ S and rate tuple (Rs, s ∈ S) is asymptotically
achievable. The following theorem reduces the problem of determining the asymp-
totic achievability of unit rate in a general multiple-unicast network coding instance
to the problem of determining the asymptotic achievability of a rate in a particular
unicast secure network coding instance that has a very simple setup. We remark that
although the theorem addresses the achievability of unit rate instead of a general
rate tuple in the multiple-unicast network coding problem, this is without loss of
generality, because the problem of determining the achievability of an arbitrary rate
tuple with rational entries in a multiple-unicast instance can be converted to the
problem of determining the achievability of unit rate in a corresponding multiple-
unicast instance, by modeling a varying rate source s as multiple unit rate sources
co-located at s.

Theorem14.1.1. Given anymultiple-unicast network coding instanceI with source-
terminal pairs {(si, ti), i = 1, ..., k}, a corresponding unicast secure network coding
instance Is = (G, s, t,A), in which A includes all sets of a single edge (i.e., all
singletons), can be constructed according to Construction 14.1.1, such that unit rate
is asymptotically achievable in I if and only if rate k is asymptotically achievable
in Is under either perfect, strong, or weak security.

Construction 14.1.1. Given any multiple-unicast network coding instance I on
a network N with source-terminal pairs {(si, ti), i = 1, ..., k}, a unicast secure
network coding instance Is is constructed as specified in Figure 14.1.

Proof (of Theorem 14.1.1). “⇒”. In this direction, we show that the asymptotic
achievability of unit rate in I implies the asymptotic achievability of rate k in Is
under perfect secrecy, which in turn implies the asymptotic achievability of rate k
in Is under strong and weak secrecy.
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Figure 14.1: In the unicast secure network coding instance Is, the source s com-
municates with the terminal t. N is the network on which I is defined. All links
outside N (i.e., links for which at least one end-point does not belong to N ) have
unit capacity. The eavesdropper can wiretap on any single link in the network.
Namely, A includes all sets of a single edge. Note that there are k parallel branches
in total going from s to t but only the first and the k-th branches are drawn explicitly.

The scheme asymptotically achieving rate k is described in Figure 14.2. Specifically,
the rate of the scheme is (1− ε)k if rate 1− ε is achievable in I. Let εi = Pr{V̂Bi 6=
VBi}, then the probability of error in Is is upper bounded by

∑k
i=1 εi, which can be

made arbitrarily small by choosing the εi’s to be small enough. Note that the scheme
achieves perfect security, since links in N are not downstream of s (and therefore
the signals transmitted on them are independent of the message), and all other links
are one-time padded by uniformly chosen keys.

“⇐”. To prove this direction it suffices to show that asymptotic achievability of
rate k in Is under weak security implies asymptotic achievability of unit rate in I,
because asymptotic achievability of rate k in Is under perfect or strong security
implies asymptotic achievability of the same rate under weak security.

Suppose in Is rate k is asymptotically achieved by a code with length n. LetM be
the source input message, then H(M) = kn. We use the notation of Figure 14.1.
Our objective is to lower bound the mutual information between signals bni and dni ,
for i = 1, ..., k. Without loss of generality our analysis will focus on the case of
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Figure 14.2: A scheme of length n that asymptotically achieves rate k in Is. Fix
any ε > 0, for node u, let Vu be a length-(1 − ε)n random vector generated by
node u. The Vu’s are independently generated and are uniformly distributed over
{0, 1}(1−ε)n. The source message is a k-tuple of i.i.d. uniformly distributed length-
(1 − ε)n vectors, i.e.,M = (Mi, i = 1, ..., k), where theMi’s are i.i.d. uniformly
distributed over {0, 1}(1−ε)n. Since unit rate is asymptotically achievable in I, node
ti obtains V̂Bi such that V̂Bi = VBi with high probability. V̂Bi is then transmitted to
node Ci for key cancellation.

i = 1. We start with,

H(M |cn1 ,dn1 ,fn2 , ...,fnk )
(a)
= H(M, cn1 |dn1 ,fn2 , ...,fnk )−H(cn1 |dn1 ,fn2 , ...,fnk )

≥ H(M |dn1 ,fn2 , ...,fnk )−H(cn1 |dn1 ,fn2 , ...,fnk )

(b)

≥ kn−H(cn1 |dn1 ,fn2 , ...,fnk )

≥ kn− n = (k − 1)n, (14.1)

where (a) follows from the chain rule, and (b) follows from our construction which
guarantees independence ofM and {dn1 , fni , i = 1, ..., k}. On the other hand,

H(M |cn1 ,dn1 ,fn2 , ...,fnk ) ≤ H(M, en2 , ..., e
n
k |cn1 ,dn1 ,fn2 , ...,fnk )

≤ H(M |cn1 ,dn1 ,fn2 , ...,fnk , en2 , ..., enk)+

H(en2 , ..., e
n
k |cn1 ,dn1 ,fn2 , ...,fnk )

(c)

≤ nεn +H(en2 , ..., e
n
k |cn1 ,dn1 ,fn2 , ...,fnk )

≤ nεn + (k − 1)n, (14.2)

where εn → 0 as n→∞ and (c) is due to the cut-set {cn1 ,dn1,fn2 , ...,fnk , en2 , ..., enk}
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from s to t and Fano’s inequality. We lower bound the entropy of cn1 ,

H(cn1 ) ≥ H(cn1 |dn1 ,fn2 , ...,fnk )

= H(M, cn1 |dn1 ,fn2 , ...,fnk )−H(M |cn1 ,dn1 ,fn2 , ...,fnk )

≥ H(M |dn1 ,fn2 , ...,fnk )−H(M |cn1 ,dn1 ,fn2 , ...,fnk )

= H(M)−H(M |cn1 ,dn1 ,fn2 , ...,fnk )

(d)

≥ kn− ((k − 1)n+ nεn) = n− nεn, (14.3)

where (d) follows from (14.2). We next lower bound the entropy of dn1 ,

H(dn1 ) ≥ H(dn1 |cn1 ,fn2 , ...,fnk )

= H(M,dn1 |cn1 ,fn2 , ...,fnk )−H(M |cn1 ,dn1 ,fn2 , ...,fnk )

≥ H(M |cn1 ,fn2 , ...,fnk )−H(M |cn1 ,dn1 ,fn2 , ...,fnk )

(e)
= H(M |cn1 )−H(M |cn1 ,dn1 ,fn2 , ...,fnk )

(f)

≥ kn− nδn −H(M |cn1 ,dn1 ,fn2 , ...,fnk )

(g)

≥ n− nεn − nδn, (14.4)

where δn → 0 as n → 0, (e) follows from the independence between {M, cn1} and
{fni , i = 1, ..., k}, (f) follows from the weak security requirement, and (g) follows
from (14.2).

By the independence of {M, cn1 ,d
n
1} and {fni , i = 1, ..., k} we have

H(M |cn1 ,dn1 ,fn2 , ...,fnk ) = H(M |cn1 ,dn1 ). (14.5)

By (14.1) and (14.2), the R.H.S of (14.5) is sandwiched by

(k − 1)n ≤ H(M |cn1 ,dn1 ) ≤ nεn + (k − 1)n. (14.6)

Now consider the joint entropy ofM, cn1 , d
n
1 and expand it in two ways

H(M, cn1 ,d
n
1 ) = H(cn1 |M,dn1 ) +H(M |dn1 ) +H(dn1 )

= H(M |cn1 ,dn1 ) +H(dn1 |cn1 ) +H(cn1 )

≤ (k + 1)n+ nεn,
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where the last inequality holds because of (14.6) and H(dn1 |cn1 ) ≤ n, H(cn1 ) ≤ n.
Therefore

H(cn1 |M,dn1 ) = H(M, cn1 ,d
n
1 )−H(M |dn1 )−H(dn1 )

= H(M |cn1 ,dn1 ) +H(dn1 |cn1 ) +H(cn1 )−H(M |dn1 )−H(dn1 )

(h)

≤ (k + 1)n+ nεn −H(M |dn1 )−H(dn1 )

(i)
= (k + 1)n+ nεn − kn−H(dn1 )

(j)

≤ 2nεn + nδn, (14.7)

where (h) follows from (14.6) and H(dn1 |cn1 ) ≤ n, H(cn1 ) ≤ n; (i) follows from the
independence betweenM and dn1 ; (j) follows from (14.4). Now we have,

H(bn1 |M, cn1 ) = H(M, bn1 , c
n
1 )−H(M |cn1 )−H(cn1 )

= H(cn1 |M, bn1 ) +H(M |bn1 ) +H(bn1 )−H(M |cn1 )−H(cn1 )

≤ (k + 1)n+H(cn1 |M, bn1 )−H(M |cn1 )−H(cn1 )

(k)
= (k + 1)n+H(cn1 |M, bn1 ,d

n
1 )−H(M |cn1 )−H(cn1 )

≤ (k + 1)n+H(cn1 |M,dn1 )−H(M |cn1 )−H(cn1 )

(l)

≤ (k + 1)n+ 2nεn + nδn −H(M |cn1 )−H(cn1 )

(m)

≤ n+ 2nεn + 2nδn −H(cn1 )

(n)

≤ 3nεn + 2nδn, (14.8)

where (k) follows from construction, i.e., H(cn1 |M, bn1 ) = H(cn1 |M, bn1 ,d
n
1 ); (l)

follows from (14.7); (m) follows from the weak security requirement; (n) follows
from (14.3). Therefore,

H(bn1 |dn1 )
(o)
= H(bn1 |M,dn1 )

≤ H(bn1 , c
n
1 |M,dn1 )

= H(bn1 |cn1 ,M,dn1 ) +H(cn1 |M,dn1 )

≤ H(bn1 |cn1 ,M) +H(cn1 |M,dn1 )

(p)

≤ 3nεn + 2nδn + 2nεn + nδn = 5nεn + 3nδn, (14.9)

where (o) follows asM is independent of {bn1 ,dn1}, and (p) follows from (14.8) and
(14.7). (14.9) suggests that the signals bn1 and dn1 are strongly dependent. Next we
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need to lower bound H(bn1 ).

H(bn1 ) = H(M, bn1 , c
n
1 )−H(cn1 |M, bn1 )−H(M |bn1 )

= H(bn1 |M, cn1 ) +H(M |cn1 ) +H(cn1 )−H(cn1 |M, bn1 )−H(M |bn1 )

≥ H(M |cn1 ) +H(cn1 )−H(cn1 |M, bn1 )−H(M |bn1 )

(q)

≥ kn− nδn +H(cn1 )−H(cn1 |M, bn1 )−H(M |bn1 )

(r)

≥ (k + 1)n− nεn − nδn −H(cn1 |M, bn1 )−H(M |bn1 )

(s)

≥ n− nεn − 2nδn −H(cn1 |M, bn1 )

(t)
= n− nεn − 2nδn −H(cn1 |M, bn1 ,d

n
1 )

≥ n− nεn − 2nδn −H(cn1 |M,dn1 )

(u)

≥ n− 3nεn − 3nδn, (14.10)

where (q) follows from the weak security requirement; (r) follows from (14.3); (s)
follows again from the weak security; (t) follows from construction; (u) follows from
(14.7).

Finally, by (14.9) and (14.10),

I(bn1 ;dn1 ) = H(bn1 )−H(bn1 |dn1 ) ≥ n− 8nεn − 6nδn.

The above argument extends to all other paths naturally (by renumbering the notation
accordingly), so

I(bni ;dni ) ≥ n− 8nεn − 6nδn, ∀i = 1, ..., k. (14.11)

Lemma 14.1.1, stated below, shows that (14.11) implies the asymptotic achievability
of unit rate in I, which completes the proof of this direction. Intuitively, since the
mutual information between bni and dni is asymptotically n, we can use a random
coding argument similar to that used in the proof of the channel coding theorem to
show the existence of a network code achieving unit rate asymptotically in I. The
reason that we do not use the standard point-to-point channel coding theorem is that
there are multiple interacting source-terminal pairs in I and we need to make sure
of the existence of a code that is good for all pairs.

Lemma 14.1.1. For any ε > 0, if there exists a network code of length n for Is such
that I(bni ;dni ) > n(1− ε), then unit rate is asymptotically achievable in I.
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Proof (of Lemma 14.1.1). Our proof follows the same lines as the proof of the
standard point-to-point channel coding theorem. The differences are that we need
to translate the network code originally designed for Is to a code for I, as well as
taking care of the multiple source-terminal pairs.

First consider problem Is. By hypothesis, let {φe}e∈E be the network code for
Is. Denote the edge (Bi, si) by b′i, and denote the signal transmitted on it by b′ni .
By construction we have the Markov chain bni → b′ni → dni . Therefore it follows
that I(b′ni ;dni ) ≥ I(bni ;dni ) > n(1 − ε). Denote the distribution of the signal b′ni
(generated by node Bi) by pi(x), x ∈ {0, 1}n, i = 1, ..., k. Note that the set of
signals {b′ni }ki=1 are independent because by construction they are generated by
different nodes.

In problem I we simulate the same network code {φe}e∈E as in Is, and regard it as
the inner code. We also generate the randomness according to the same distribution
as in Is. Let x be a super symbol of n bits (i.e., same length as b′ni ), we independently
generate k outer channel codes C1, ..., Ck, each of 2mR codewords and each codeword
consists ofm super symbols. Precisely, each of the 2mR codewords of Ci is generated
independently according to the distribution pi(xm) =

∏m
j=1 pi(xj). Namely, each

super symbol in the codeword is drawn independently according to the distribution
of b′ni . Notice that the overall length of the codeword is mn and the length of
the network code for Is is n. k messages M1, ...,Mk are chosen independently
according to the uniform distribution: Pr{Mi = wi} = 2−mR, wi = 1, ..., 2mR.
Then theMi-th codeword of Ci, denoted byXm

i (Mi), is transmitted by invoking the
inner network code form times. Let Y m

i be the output of terminal ti using the inner
codem times on networkN . The distribution of Y m

i is statistically identical to that
of (dni )m obtained by using the communication scheme for problem Is m times.
Indeed, in both cases N performs the same network code, generates randomness
according to the same distribution, and receives the same input distribution by the
codeword construction. In problem I, ti is a terminal node and it performs jointly
typical decoding. Namely, the decoder at ti declares that the ŵi-th codeword has
been sent if: 1) (Xm

i (ŵi), Y
m
i ) is jointly typical, and 2) There is no other index

w′ 6= ŵi such that (Xm
i (w′), Y m

i ) is jointly typical. If no such ŵi exists, an error is
declared.

It remains to be shown that the probability of errorPr{Mi 6= ŵi} vanishes for all i =

1, ..., k for an appropriate choice of R. As described above, Y m
i in I is statistically

the same as (dni )m in Is. Therefore it follows that I(Xi;Yi) = I(b′i;di) > n(1− ε).
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As a result, we can apply the standard error analysis for jointly typical decoding and
standard probabilistic argument (refer to, for example, [25, Chapter 7.7]) to show
that for R = n(1 − ε) and δ > 0, there exists a large enough length m, such that
Pr{Mi 6= ŵi} < δ, for i = 1, ..., k. By the union bound, Pr{∪ki=1Mi 6= ŵi} < kδ,
which can be made arbitrarily small by choosing a small enough δ.

All in all, combining the inner and outer code, we have shown the existence of
a coding scheme of length mn that satisfies the multiple-unicast network coding
problem I with arbitrarily small error probability. The number of codewords for
each source-terminal pair is 2mR = 2mn(1−ε), and therefore the rate of the scheme
(over lengthmn) is 1− ε. This implies that unit rate is asymptotically achievable in
I.

This completes the proof of Theorem 14.1.1.

Theorem 14.1.1 can be easily adapted to the case of zero-error communication.

Corollary 14.1.1. Given any multiple-unicast network coding instance I with
source-terminal pairs {(si, ti), i = 1, ..., k}, a corresponding unicast secure net-
work coding instance Is = (G, s, t,A), in whichA includes all sets of a single edge
(i.e., all singletons), can be constructed according to Construction 14.1.1, such that
unit rate is achievable with zero error in I if and only if rate k is achievable with
zero error in Is under perfect security.

The proof of Corollary 14.1.1 follows the same line as the proof of Theorem 14.1.1,
with the difference that all ε and δ become strictly 0. For example, (14.9) implies
that bn1 is a function of dn1 , and hence it can be perfectly decoded from dn1 .

We remark that our reduction has an operational aspect that from a code for Is one
can construct a code for I. Indeed, using our reduction, to solve an instance of the
multiple-unicast network coding problem, one may first reduce it to an instance of
the unicast secure network coding problem, then solve the latter, and finally use this
solution to obtain a solution to the original multiple-unicast problem.

Chan and Grant [83] previously show that determining the zero-error achievability
of a rate in the multicast secure network coding problem with general setup (i.e.,
arbitrary link capacities, arbitraryA, and arbitrary nodes may generate randomness)
andwith perfect security is at least as hard as determining the zero-error achievability
of a rate tuple in multiple-multicast network coding. The result in this section
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significantly strengthens the result in [83] by showing that the secure network coding
problem under a much simpler setup (i.e., unicast, equal link capacities, uniform A
with a single wiretap link) is still hard, under various definitions of achievability
and security.

14.2 Reducing Unicast Secure Network Coding to Multiple-unicast
In the previous section we reduced an arbitrary instance of the multiple-unicast net-
work coding problem into a particular instance of the unicast secure network coding
problem with a very simple setup, in which at most one link can be eavesdropped.
Conversely, given an arbitrary instance of the unicast secure network coding prob-
lem where at most one link can be eavesdropped, we can reduce it into a particular
instance of the multiple-multicast network coding problem without security require-
ments (which can in turn be reduced into an equivalent multiple-unicast network
coding problem [77]). We use a general construction that is first proposed in [96]
for the purpose of lower bounding the capacity of a secure network coding instance
by studying a corresponding multiple-multicast network coding instance. Here we
simplify the construction to address the special case that at most one link can be
eavesdropped, i.e., A comprises only singletons. Loosely speaking, we show that
for this special case the multiple-multicast network coding instances not only lower
bound but also upper bound the capacity of the secure network coding instances,
hence giving a reduction.

Construction 14.2.1. Given a unicast secure network coding instance Is on a
directed graph G = (V , E) with source s, terminal t, and a collection of wiretap
setsA comprising only singletons, we construct a corresponding multiple-multicast
network coding instance I on an augmented graph Ǧ = (V̌ , Ě). We define Ě and
V̌ from E and V . In E , denote by ce the capacity of link e, and by Eout(i) the set of
outgoing edges of node i.

1. For i ∈ V , add i to V̌ . For e ∈ E such that {e} /∈ A (in the remaining part of
this subsection we will write e /∈ A or e ∈ A instead, because the elements of
A are singletons), add e to Ě .

2. For e = (i, j) ∈ E such that e ∈ A, create nodes ue, ve in V̌; create edges
(i, ue), (ue, j) and (ue, ve) in Ě , all of capacity ce.

3. Create a key aggregation node vT in V̌ . For each node i ∈ V , create a key
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source node v̄i in V̌ . Create two links (v̄i, vT ) and (v̄i, i) in Ě , both of capacity

či =
∑

e∈Eout(i)

ce.

4. Create a virtual source node vs in V̌ . For all e ∈ A, create links (vs, s) and
(vs, ve) in Ě , both of capacity

∑
e′∈Eout(s) ce′ .

5. For all e ∈ A, create a link (vT , ve) in Ě of capacity∑
e′∈E

ce′ − ce.

In I, nodes vs and v̄i, i ∈ V are associated with independent messages. Node t
demands the message of vs. For all e ∈ A, node ve demands the messages of vs and
all v̄i. Note that in I there is no security requirement.

Refer to Figure 14.3 for an example of Construction 14.2.1.

Denote for short čV = (či, i ∈ V). Consider any unicast secure network coding
instance Is = (G, s, t,A) such that A comprises only singletons. Let I be the
multiple-multicast network coding instance obtained from Is according to Con-
struction 14.2.1. The next theorem reveals a connection between Is and I.

Theorem 14.2.1. Rate R is asymptotically achievable in Is subject to the weak
or strong security requirement if and only if rate tuple (R, čV) is asymptotically
achievable in I, where R is the rate of the message of vs, and čV is the rate tuple of
messages of v̄i, i ∈ V .

Proof. We first note that by [85], the capacity region of Is subject to the weak
security requirement is the same as the capacity region subject to the strong security
requirement. Therefore, a rate is asymptotically achievable in Is subject to weak
security if and only if it is asymptotically achievable subject to strong security. In
the proof we assume that weak security is imposed in Is, and the case of strong
security follows directly from the equivalence.

“⇐”. Assuming that rate tuple (R, čV) is asymptotically achievable in I, it is
proved in [96] that rateR is asymptotically achievable in Is under the weak security
requirement. Here we give a simplified proof of this fact for completeness. By
hypothesis, for any ε > 0 and δ > 0, there exists a network code φ of length n that
achieves rate tuple (R, čV) − ε in I with error probability δ. In problem Is, we



172

(a) A unicast secure network coding instance Is where s is the source, t is the terminal and
A = {{e1}, {e2}}.

(b) The multiple-multicast network coding instance I obtained from Is according to Con-
struction 14.2.1. In this problem, t demands the message originated from vs; ve1 and ve2
demand the messages originated from vs, v̄s, v̄A, v̄B and v̄t.

Figure 14.3: An example of Construction 14.2.1.

simulate the network code φ. Specifically, the message originally associated with
vs is replaced by the secret source message, and the messages originally associated
with v̄i, i ∈ V are replaced by the independent random keys generated at node i. Let
every edge e = (i, j) in E simulate the encoding function of edge e ∈ Ě if e /∈ A
or the encoding function of (i, ue) in Ě if e ∈ A; then the terminal t, by simulating
the decoding function, can decode the source message with error probability δ.
Therefore decodability is not a problem.

It remains to show that simulating the code φ meets the weak security requirement.
For an edge ě ∈ Ě , letXě be the signal transmitted on ě induced by φ. We denote by
M the message associated with vs, and by Ki the message associated with v̄i. For
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any e ∈ A, it follows that

H(M |X(ue,ve))
(a)
= H(X(vs,ve)|X(ue,ve)) +H(M |X(vs,ve), X(ue,ve))−

H(X(vs,ve)|X(ue,ve),M)

≥ H(X(vs,ve)|X(ue,ve))−H(X(vs,ve)|X(ue,ve),M)

(b)
= H(X(vs,ve)|X(ue,ve))

(c)
= H(X(vT ,ve), X(ue,ve), X(vs,ve))−H(X(ue,ve))−

H(X(vT ,ve)|X(ue,ve), X(vs,ve))

(d)

≥ H(X(vT ,ve), X(ue,ve), X(vs,ve))− n
∑
e′∈E

ce′

(e)
= H(M,KV , X(vT ,ve), X(ue,ve), X(vs,ve))−

H(M,KV |X(vT ,ve), X(ue,ve), X(vs,ve))− n
∑
e′∈E

ce′

≥ H(M,KV)−H(M,KV |X(vT ,ve), X(ue,ve), X(vs,ve))− n
∑
e′∈E

ce′

(f)

≥ nR− nε−H(M,KV |X(vT ,ve), X(ue,ve), X(vs,ve))

(g)

≥ nR− nε− nδ′ ≥ H(M)− n(ε+ δ′). (14.12)

Here (a) follows from expanding I(M ;X(vs,ve)|X(ue,ve)) in two ways; (b) fol-
lows from the construction that X(vs,ve) is a function of M ; (c) follows from
the chain rule; (d) follows from the fact that H(X(ue,ve)) ≤ nc(ue,ve) = nce and
H(X(vT ,ve)|X(ue,ve), X(vs,ve)) ≤ nc(vT ,ve) = n

∑
e′∈E ce′ − nce; (e) follows from the

chain rule; (f) follows from H(M,KV) ≥ nR + n
∑

e′∈E ce′ − nε, where ε is the
sum of the entries of ε; and (g) follows from Fano’s inequality, where δ′ → 0 as
δ → 0. (14.12) implies that I(M ;X(ue,ve)) ≤ n(ε + δ′). And because X(ue,ve) can
be viewed as the observation of an adversary eavesdropping on edge e, the weak
security requirement is met.

“⇒”. Assuming that rate R is asymptotically achievable in Is under the weak
security requirement, we show that rate tuple (R, čA) is asymptotically achievable
in I. For e ∈ E , denote by Xe the signal transmitted on edge e. By hypothesis, for
arbitrary εR > 0, εS > 0 and δ > 0, there exists a network code φ with length n
that achieves rate R − εR weakly securely in Is with error probability δ, such that
I(M ;Xe) ≤ nεS , for all e ∈ A. For arbitrary εE > 0, without loss of generality we
assume that H(Xe) ≥ n(ce − εE), for all e ∈ E . This is because if H(Xe) < nce,
i.e., if Xe is not “almost” uniform, then we can repeat φ for m times and perform
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a source code of length m (over the supersymbol alphabet {0, 1}n) on edge e to
compress Xe by encoding only the typical sequences [25, Section 3.2], and use
the spare capacity of the edge to transmit random bits. Meanwhile, source s and
terminal t perform an outer channel code of lengthm (also over alphabet {0, 1}n) to
keep the error probability small. For sufficiently large m, the overall concatenated
code asymptotically achieves the same rate weakly securely as φ does, and such that
H(Xe)/mn, as desired, is arbitrarily close to ce due to the asymptotic equipartition
property. Note that in general a node i ∈ V will generate an independent random
variable Ki as input to the encoding functions. The rate of Ki is upper bounded by
či, which is the sum of the capacities of all outgoing edges of i.

We now turn to the problem I. We construct a network code φ′ of a slightly longer
length n′ = (1 + εL)n. In the first n channel uses, φ′ simulates the operation of
φ. Specifically, node vs generates a random variableM uniformly distributed over
[2n(R−εR)], and transmits it to s via edge (vs, s). For i ∈ V , node v̄i generates a
random variable Ki uniformly distributed over [2nči ], and transmits it to i via edge
(v̄i, i). The rate of M (over code length n′) is 1

1+εL
(R − εR) and the rate of Ki

is 1
1+εL

či. The rates of M and KV can be made arbitrarily close to R and čV by
choosing sufficiently small εR and εL.

To simulate φ, φ′ performs the same encoding function on edge e ∈ E (if e remains
in Ě) as φ did in Is. Otherwise if e is replaced by (i, ue) and (ue, j), then φ′ performs
the same encoding function on (i, ue) ∈ Ě as φ did on edge e ∈ E . The induced
signal X(i,ue) is then relayed to edges (ue, j) and (ue, ve). In the extra εL channel
uses, these edges (from E) keep silent (or simply transmit dummy zeros). The
terminal node t, by simulating the decoding function, is able to decodeM correctly
with probability of error δ.

We next show that (Ki, i ∈ V) and M can be decoded at ve, for all e ∈ A. Note
that ve has three incoming edges, i.e., (ue, ve), (vs, ve) and (vT , ve). The signal
X(ue,ve) transmitted on (ue, ve), as described in the previous paragraph, is the same
as the signal Xe on edge e in the secure network coding problem Is. Let edge
(vs, ve) transmitM . Now consider a distributed source coding problem with three
correlated sources (Ki, i ∈ V), Xe andM . Note the Xe andM are available at ve
by construction, and the question is whether ve can decodeKV fromXe,M and the
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signal received from edge (vT , ve). It follows that,

H(KV |Xe,M) = H(Xe, KV |M)−H(Xe|M)

= H(Xe|KV ,M) +H(KV |M)−H(Xe|M)

(a)
= H(KV |M)−H(Xe|M)

(b)
= H(KV)−H(Xe|M)

≤ n
∑
e′∈E

ce′ −H(Xe|M)

= n
∑
e′∈E

ce′ − (H(Xe)− I(M ;Xe))

(c)

≤ n(
∑
e′∈E

ce′ − ce) + n(εS + εE)

(d)
< n(

∑
e′∈E

ce′ − ce) + nεL(
∑
e′∈E

ce′ − ce)

= n′(
∑
e′∈E

ce′ − ce), (14.13)

where (a) follows because Xe is a function of KV andM ; (b) follows from the fact
that KV is independent of M ; (c) follows from the weak security requirement and
that H(Xe) ≥ n(ce − εE); and (d) follows by choosing a sufficiently small εS and
εE such that εS + εE < εL(

∑
e′∈E ce′ − ce), for all e ∈ A. Note that

∑
e′∈E ce′ − ce

is the capacity of edge (vT , ve), and so by (14.13) and the Slepian-Wolf Theorem
of distributed source coding, the rate tuple of the correlated sources are in the
achievable region. Therefore by concatenating an (outer) Slepian-Wolf code with
the (inner) network code φ′, for all e ∈ A, ve is able to decode (M,KV) with
vanishing probability of error. This completes the proof.
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C h a p t e r 15

REDUCING MULTIPLE-UNICAST TO UNICAST NETWORK
ERROR CORRECTION

In this chapter we reduce instances of the multiple-unicast network coding problem
to instances of the unicast network error correction problem. We start with the
zero-error case.

15.1 Zero-error Achievability
The following theorem reduces the problem of determining the zero-error achiev-
ability of a rate in a general multiple-unicast network coding instance to the problem
of determining the zero-error achievability of a rate in a particular unicast network
error correction instance that has a very simple setup. Recall from the remark before
Theorem 14.1.1 that there is no loss of generality in addressing the achievability of
a rate instead of a rate tuple in the multiple-unicast network coding problem.

Construction 15.1.1. Given any multiple-unicast network coding instance I on
a network N with source-terminal pairs {(si, ti), i = 1, ..., k}, a unicast network
error correction problem Ic is constructed as specified in Figure 15.1.

Theorem15.1.1. Given anymultiple-unicast network coding instanceI with source-
terminal pairs {(si, ti), i = 1, ..., k}, a corresponding unicast network error correc-
tion instance Ic = (G, s, t,B), in which B includes sets with at most one edge, can
be constructed according to Construction 15.1.1, such that unit rate is achievable
with zero-error in I if and only if rate k is achievable with zero-error in Ic.

Proof. “⇒”. We show that the zero-error achievability of unit rate in I implies the
zero-error achievability of rate k in Ic. A constructive scheme is shown in Figure
15.2. In Ic, the source letsM = (M1, ...,Mk), where theMi’s are i.i.d. uniformly
distributed over [2n]. InN , we simulate the network code for I that achieves unit rate
with zero error. Outside N , let the network code be ai(M) = xi(M) = yi(M) =

zi(M) = z′i(M) = Mi, i = 1, ..., k. Note that the signals on edges xi, yi and z′i
form a repetition code and node Bi, by performing majority decoding, can correct
any single error to obtain Mi. Hence the scheme ensures that bi(M) = Mi under
all possible error patterns, and so rate k is achievable with zero error in Ic.
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Figure 15.1: In the unicast network error correction instance Ic, s is the source and
t is the terminal. N is the network on which I is defined. All edges outside N
(i.e., edges for which at least one of its end-points does not belong to N ) have unit
capacity. There is at most one error in this network, and this error can occur at any
edge except {ai, bi, 1 ≤ i ≤ k}. Namely, B includes all singleton sets of a single
edge in the network except {ai} and {bi}, i = 1, ..., k (the thickened edges). Note
that there are k parallel branches in total going from s to t but only the first and the
k-th branches are drawn explicitly.

“⇐”. We show that the zero-error achievability of rate k in Ic implies the zero-error
achievability of unit zero-error rate in I.

Suppose rate k is achieved with zero-error in Ic by a network code with length n, and
denote the source message byM , which is uniformly distributed over [2nk]. Recall
from Section 13.4.3 that r = (re)e∈E is the tuple of additive error signals called
an error pattern, and RB is the set of all possible error patterns, i.e., RB = {r :

non-zero entries in r correspond to B-errors, B ∈ B}. For any edge e ∈ E , we
denote by e(m, r) : [2nk] × RB → [2n] the signal received on edge e when the
source message equalsm and the error pattern r occurs in the network.

Let b(m, r) = (b1(m, r), ..., bk(m, r)), then because the edges b1, ..., bk form a
cut-set from s to t, b(m, r) must be injective with respect to m due to the zero
error decodability constraint. Formally, for two different messages m1 6= m2, it
follows from the zero error decodability constraint that b(m1, r1) 6= b(m2, r2),
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Figure 15.2: A scheme to achieve zero-error rate k in Ic given that unit rate is
achievable with zero error in I. M = (M1, ...,Mk) and node Bi performs majority
decoding.

∀r1, r2 ∈ RB. Note that the codomain of b is [2n]k, which has the same size as
the set of messages [2nk]. Therefore denote by b(m) = b(m,0), then b(m) is a
bijective function. This implies that b(m, r) = b(m), ∀r ∈ RB, because otherwise
if there exist m1, r1 such that b(m1, r1) 6= b(m1), then there is a m2 6= m1 such
that b(m1, r1) = b(m2), violating the decodability requirement. Similarly, let
a(m, r) = (a1(m, r), ..., ak(m, r)) and a(m) = a(m,0), then a(m) is a bijective
function and a(m, r) = a(m), ∀r ∈ RB.

For any e ∈ E , denote e(m) = e(m,0). We make the following claim:
Claim: For i = 1, ..., k and any two messages m1,m2 ∈ [2nk] such that ai(m1) 6=
ai(m2), it follows that xi(m1) 6= xi(m2), yi(m1) 6= yi(m2) and zi(m1) 6= zi(m2).
To prove the claim, suppose for contradiction that there exist m1,m2 such that
ai(m1) 6= ai(m2) and that the claim is not true, i.e., xi(m1) = xi(m2) or yi(m1) =

yi(m2) or zi(m1) = zi(m2). First consider the case that xi(m1) = xi(m2). Because
of the one-to-one correspondence betweenm anda, there exists amessagem3 6= m1

and such that a(m3) = (a1(m1), ..., ai−1(m1), ai(m2), ai+1(m1), ..., ak(m1)). Then
xi(m1) = xi(m3) because by construction xi(m3) = xi(m2), and by hypothesis
xi(m1) = xi(m2). Consider the following two scenarios. In the first scenario,
m1 is transmitted, and an error turns yi(m1) into yi(m3); in the second scenario,
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m3 is transmitted, and an error turns zi(m3) into zi(m1). Then the cut-set signals
a1, ..., ai−1, xi, yi, zi, ai+1, ..., ak are exactly the same in both scenarios, and so it
is impossible for t to distinguish m1 from m3, a contradiction to the zero error
decodability constraint. Therefore xi(m1) 6= xi(m2). With a similar argument it
follows that yi(m1) 6= yi(m2) and zi(m1) 6= zi(m2), and the claim is proved.

The claim above suggests that (the signals on) xi, yi and zi, as functions of (the
signals on) ai, are injective. They are also surjective functions because the domain
and codomain are both [2n]. Hence there are one-to-one correspondences between
ai, xi, yi and zi.

Next we show that for any two messagesm1,m2, if bi(m1) 6= bi(m2), then z′i(m1) 6=
z′i(m2). Suppose for contradiction that there exists m1 6= m2 such that bi(m1) 6=
bi(m2) and z′i(m1) = z′i(m2). Then if m1 is transmitted and an error r1 turns
xi(m1) into xi(m2), the node Bi will receive the same signals as in the case that
m2 is transmitted and an error r2 turns yi(m2) into yi(m1). Therefore bi(m1, r1) =

bi(m2, r2). But, as shown above, because bi(m1, r1) = bi(m1) and bi(m2, r2) =

bi(m2), it follows that bi(m1) = bi(m2), a contradiction. This claim suggests that
if z′i(m1) = z′i(m2) then bi(m1) = bi(m2) and therefore bi is a function of z′i. This
function is surjective because bi takes all 2n possible values. Then since the domain
and the codomain are both [2n], bi must be a bijective function of z′i. With the same
argument it follows that bi is also a bijective function of xi.

Hence zi is a bijection of ai, ai is a bijection of xi, xi is a bijection of bi, and bi is a
bijection of z′i. Therefore for all 1 ≤ i ≤ k, zi is a bijection of z′i, and therefore unit
rate is achievable with zero error in I.

15.2 Achievability Allowing Vanishing Error
In this section we show that Construction 15.1.1 gives a reduction from multiple-
unicast network coding to unicast network error correction not only in terms of
zero-error achievability, but also in terms of achievability that allows vanishing
error. Recall from Section 13.4 that a rate is achievable if there exists a code
achieving the rate with a vanishing error probability.

Theorem15.2.1. Given anymultiple-unicast network coding instanceI with source-
terminal pairs {(si, ti), i = 1, ..., k}, a corresponding unicast network error cor-
rection instance Ic = (G, s, t,B), in which B includes sets with at most a single
edge, can be constructed according to Construction 15.1.1, such that unit rate is
achievable in I if and only if rate k is achievable in Ic.
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We first prove the forward direction of the theorem, which is simple and is similar
to the proof of the zero-error case.

Proof (“⇒” part of Theorem 15.2.1). We show that if unit rate is achievable in I,
then rate k is achievable in Ic. Again we use the constructive scheme in Figure
15.2. In Ic, the source letsM = (M1, ...,Mk), where theMi’s are i.i.d. uniformly
distributed over [2n]. In N , we simulate the network code for I that achieves unit
rate. OutsideN , let the network code be ai(M) = xi(M) = yi(M) = zi(M) = Mi,
i = 1, ..., k. Consider theMi’s as the sourcemessages of the simulated I, and denote
by M̂i, i = 1, ..., k the outputs of the decoders of I. Let z′i(M) = M̂i, i = 1, ..., k,
and let node Bi, i = 1, ..., k performs majority decoding. The terminal t will not
decode an error as long as the multiple-unicast instance I does not commit an
error, i.e., M̂i = Mi. The error probability of I is negligible, which implies the
achievability of rate k in Ic.

In the remainder of this section we prove the other direction of Theorem 15.2.1, i.e.,
that the achievability of rate k in Ic implies the achievability of unit rate in I.

The main idea of the proof is as follows. In I the network will simulate the given
network code for Ic, and by doing so the terminal ti will obtain the signal on z′i in Ic.
The main task therefore is to estimate the signal on zi, which terminal ti demands,
based on the observed signal on z′i. This task is accomplished by following two
steps. In the first step, we construct an explicit decoding function that, taking the
signal on z′i as input, outputs the “most likely” signal to be transmitted on bi under
the given network code for Ic. We then prove (by combinatorial arguments) that the
probability of error of this decoding function is small if the probability of error of
the given network code is small. In the second step, we construct another explicit
decoding function that takes the signal on bi as input and outputs the “most likely”
signal transmitted on ai. Again we can prove that if the given network code for
Ic has a small probability of error then so does this decoding function. Finally,
terminal ti, by concatenating the two decoding functions, is able to estimate the
signal on ai, and therefore the signal on zi correctly with high probability. We now
proceed with the formal proof.

Suppose in Ic a rate of k is achieved by a network code C = {φe, φt}e∈E with
length n, and with a probability of error ε. Recall that M is the source message
uniformly distributed overM = [2kn], and M̂ is the output of the decoder at the
terminal. LetMgood = {m ∈ [2kn] : C satisfies Ic under transmissionm} be the
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subset of messages that can be decoded correctly under any error pattern r ∈ RB.
Denote byMbad =M\Mgood, then for anym ∈Mbad, there exists an error pattern
r ∈ RB such that the decoded value M̂ differs fromM whenM = m and r occurs,
i.e., a decoding error occurs. Because C satisfies Ic with error probability ε (recall
from Section 13.4.3 that the probability of error is taken over the distribution on the
messageM ), it follows that |Mbad| ≤ 2knε and thus |Mgood| ≥ (1− ε) · 2kn.

We introduce some notation needed in the proof. In problem Ic, under the network
code C, for i = 1, ..., k, let xi(m, r) : M× RB → [2n] be the signal received
from channel xi when M = m and the error pattern r happens. Let r = 0

denote the case that no error has occurred in the network. Let xi(m) = xi(m,0),
x(m, r) = (x1(m, r), ..., xk(m, r)) and x(m) = (x1(m), ..., xk(m)). We define
ai, bi, yi, zi, z

′
i,a, b,y, z, z

′ for problem Ic in a similar way. Note that all of them
are functions of m and r. We use the hat notation to represent a specific value in
the range of a function, e.g., âi represents a specific output of ai. In other words, âi
is a specific n-bit signal.

Notice that the set of edges a1, ..., ak forms a cut-set from s to t, and so does the
set of edges b1, ..., bk. Therefore for any m1,m2 ∈ Mgood, m1 6= m2, it follows
from the decodability constraint that a(m1) 6= a(m2) and b(m1) 6= b(m2). Setting
Bgood = {b(m) : m ∈ Mgood}, it then follows from |Mgood| ≥ (1 − ε) · 2kn that
|Bgood| ≥ (1 − ε) · 2kn. Setting Berr = [2n]k\Bgood, it follows that |Berr| ≤ 2knε.
Similarly, we define Agood = {a(m) : m ∈ Mgood}, and Aerr = [2n]k\Agood, then
|Agood| ≥ (1− ε) · 2kn, |Aerr| ≤ 2knε.

LetM(ẑ′i, b̂i) = {m ∈ Mgood : z′i(m) = ẑ′i, bi(m) = b̂i}. Intuitively, M(ẑ′i, b̂i)

represent the set of outcomes (in Ic) that will result in signal b̂i being transmitted on
edge bi and signal ẑ′i being transmitted on edge z′i. We define a function ψi : [2n]→
[2n] as:

ψi(ẑ
′
i) = arg max

b̂i

|M(ẑ′i, b̂i)| , b̂i,ẑ′i . (15.1)

Function ψi will be useful later, when we design the network codes in I. Intuitively,
in the absence of adversarial errors, ψi estimates the signal transmitted on edge bi
given that the signal transmitted on edge z′i is ẑ′i. In the following we analyze how
often ψi will make a mistake. DefineMψ

i = {m ∈ Mgood : ψi(z
′
i(m)) 6= bi(m)}.

Notice thatMψ
i is the set of messages for which, when transmitted by the source,

ψi will make a mistake in guessing the signal transmitted on bi. Lemmas 15.2.1 and
15.2.2 analyze the size ofMψ

i .
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Lemma 15.2.1. LetM(ẑ′i) = {m ∈ Mgood : z′i(m) = ẑ′i}, then for any m1,m2 ∈
M(ẑ′i) such that bi(m1) 6= bi(m2), there exists an element of Berr that will be
decoded by terminal t to eitherm1 orm2.

Proof. Consider any m1,m2 ∈ M(ẑ′i) such that bi(m1) 6= bi(m2). Let r1 be the
error pattern that changes the signal on xi to be xi(m2), and let r2 be the error pattern
that changes the signal on yi to be yi(m1). Then ifm1 is transmitted by the source and
r1 happens, nodeBiwill receive the same inputs (xi(m2), yi(m1), z′i(m1) = z′i(m2))

as in the situation that m2 is transmitted and r2 happens. Therefore bi(m1, r1) =

bi(m2, r2), and so either bi(m1, r1) 6= bi(m1) or bi(m2, r2) 6= bi(m2) because by hy-
pothesis bi(m1) 6= bi(m2). Consider the first case that bi(m1, r1) 6= bi(m1), then the
tuple of signals (b1(m1, r1), ..., bk(m1, r1)) = (b1(m1), ..., bi(m1, r1), ..., bk(m1))

will be decoded by the terminal to messagem1 because of the fact thatm1 ∈Mgood

which is correctly decodable under any error pattern r ∈ RB. Therefore this tuple of
signals is an element ofBerr since it is not equal to b(m1) = (b1(m1), ..., bk(m1)) and
it is not equal to b(m), for any m 6= m1, m ∈ Mgood, because otherwise it will be
decoded by the terminal tom. Similarly in the latter case that bi(m2, r2) 6= bi(m2),
then (b1(m2, r2), ..., bk(m2, r2)) = (b1(m2), ..., bi(m2, r2), ..., bk(m2)) is an ele-
ment of Berr and will be decoded by the terminal tom2. Therefore in both cases we
are able to find an element of Berr that will be decoded by the terminal to eitherm1

orm2.

Lemma 15.2.2. |Mψ
i | ≤ 2ε · 2kn.

Proof. We can partitionMψ
i as

Mψ
i =

⋃
ẑ′i

(
M(ẑ′i)\M(ẑ′i, b̂i,ẑ′i)

)
,

and so

|Mψ
i | =

∑
ẑ′i

(
|M(ẑ′i)| − |M(ẑ′i, b̂i,ẑ′i)|

)
. (15.2)

Consider an arbitrary ẑ′i and the setM(ẑ′i). We define an iterative procedure as
follows. Initialize W := M(ẑ′i). If there exist two messages m1,m2 ∈ W such
that bi(m1) 6= bi(m2), then delete bothm1,m2 fromW . Repeat the operation until
there does not existm1,m2 ∈ W such that bi(m1) 6= bi(m2).
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After the procedure terminates, it follows that |W| ≤ |M(ẑ′i, b̂i,ẑ′i)|, because other-
wise by definition of b̂i,ẑ′i there must existm1,m2 ∈ W such that bi(m1) 6= bi(m2).
Therefore at least |M(ẑ′i)| − |M(ẑ′i, b̂i,ẑ′i)| elements are deleted fromM(ẑ′i). By
Lemma 15.2.1, each pair of elements deleted corresponds to an element of Berr.
Also by Lemma 15.2.1 the elements of Berr corresponding to different deleted pairs
are distinct. Summing over all possible values of ẑ′i, it follows that the total number
of deleted pairs is smaller than the size of Berr:

1

2

∑
ẑ′i

(
|M(ẑ′i)| − |M(ẑ′i, b̂i,ẑ′i)|

)
≤
∑
ẑ′i

# of pairs deleted fromM(ẑ′i)

≤ |Berr| ≤ ε · 2kn. (15.3)

Combining (15.2) and (15.3) we have |Mψ
i | ≤ 2ε · 2kn.

Next, let M(âi, b̂i) = {m ∈ Mgood : ai(m) = âi, bi(m) = b̂i}. Intuitively,
M(âi, b̂i) represent the set of outcomes (in Ic) that will result in signal b̂i being
transmitted on edge bi and signal âi being transmitted on edge ai. We define a
function πi : [2n]→ [2n] as:

πi(b̂i) = arg max
âi
|M(âi, b̂i)| , âi,b̂i . (15.4)

Function πi will be useful later for designing the network codes in I. Intuitively,
in the absence of adversarial errors, πi estimates the signal transmitted on edge ai
given that the signal transmitted on edge bi is b̂i. In the following we analyze how
often will πi make a mistake. DefineMπ

i = {m ∈ Mgood : πi(bi(m)) 6= ai(m)}.
Notice thatMπ

i is the set of messages for which, when transmitted by the source, πi
will make a mistake in guessing the signal transmitted on ai. Lemmas 15.2.3 and
15.2.4 analyze the size ofMπ

i .

Lemma 15.2.3. DefineM(âi) = {m ∈ Mgood : ai(m) = âi}. If |{bi(m) : m ∈
M(âi)}| = L, then there exist (L − 1)|M(âi)| distinct elements of Berr such that
each of them will be decoded by terminal t to some messagem ∈M(âi).

Proof. Assume for concreteness that {bi(m) : m ∈ M(âi)} = {b̂(1)
i , ..., b̂

(L)
i }, then

there exist L messages m1, ...,mL ∈ M(âi) such that bi(mj) = b̂
(j)
i , j = 1, ..., L.

For j = 1, ..., L, let rj be the error pattern that changes the signal on z′i to be
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z′i(mj). Then if a message m0 ∈ M(âi) is transmitted by the source and rj
happens, the node Bi will receive the same inputs (xi(m0), yi(m0), z′i(mj)) as in
the situation thatmj is sent and no error happens. Therefore bi(m0, rj) = b̂

(j)
i , and

so |{b(m0, rj)}j∈[L]| = |{bi(m0, rj)}j∈[L]| = L. Since m0 ∈ Mgood, it is correctly
decodable under any error pattern r ∈ RB, and so all elements of {b(m0, rj)}j∈[L]

will be decoded by the terminal to m0. Except the element b(m0), the other L− 1

elements of {b(m0, rj)}j∈[L] are elements of Berr. Sum over all m0 ∈ M(âi) and
the assertion is proved.

Lemma 15.2.4. |Mπ
i | ≤ 3ε · 2kn.

Proof. Define Aπi,1 = {âi ∈ [2n] : |M(âi)| ≤ 1
2
2(k−1)n}, and Aπi,2 = {âi ∈

[2n]\Aπi,1 : |{bi(m) : m ∈ M(âi)}| > 1}. Then defineMπ
i,1 = {m ∈ Mgood :

ai(m) ∈ Aπi,1}, and Mπ
i,2 = {m ∈ Mgood : ai(m) ∈ Aπi,2}. Notice that by

construction Aπi,1 and Aπi,2 are disjoint, andMπ
i,1 andMπ

i,2 are disjoint. We claim
that,

Mπ
i ⊂Mπ

i,1 ∪Mπ
i,2. (15.5)

To prove the claim, consider any m ∈ Mgood such that m /∈ Mπ
i,1 ∪ Mπ

i,2. We
will show that π(bi(m)) = ai(m). Suppose for the sake of contradiction that
π(bi(m)) = âi 6= ai(m), then it follows that

|M(âi, bi(m))|
(a)
> |M(ai(m), bi(m))|

(b)
= |M(ai(m))|

(c)
>

1

2
2(k−1)n, (15.6)

where (a) is due to the definition of π, (b) is due to the fact that m /∈ Mπ
i,2 and

(c) is due to the fact that m /∈ Mπ
i,1. LetM(b̂i) = {m′ ∈ Mgood : bi(m

′) = b̂i},
thenM(âi, bi(m)) ∪M(ai(m)) ⊂ M(bi(m)). Since âi 6= ai(m),M(âi, bi(m))

andM(ai(m)) are disjoint, and it follows that |M(bi(m))| ≥ |M(âi, bi(m))| +
|M(ai(m))| > 2(k−1)n. However, because |{(b̂1, ..., b̂k) ∈ [2n]k : b̂i = bi(m)}| =

2(k−1)n, by the pigeonhole principle there must exist two messages m1,m2 ∈
M(bi(m)) such that b(m1) = b(m2). This is a contradiction since the termi-
nal cannot distinguish m1 from m2. This proves π(bi(m)) = ai(m) as well as
(15.5).

We next bound the size of Mπ
i,1 and Mπ

i,2. For any â′i ∈ Aπi,1, by definition
{(â1, ..., âk) ∈ [2n]k : âi = â′i}\{(a(m) : m ∈ M(â′i)} is a subset of Aerr with
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size at least 1
2
2(k−1)n. Therefore each element of Aπi,1 will contribute to at least

1
2
2(k−1)n distinct elements ofAerr. Hence |Aπi,1| · 1

2
2(k−1)n ≤ |Aerr| ≤ ε · 2kn, and so

|Aπi,1| ≤ 2ε · 2n. It then follows that |Mπ
i,1| ≤ 1

2
2(k−1)n|Aπi,1| ≤ ε · 2kn.

By Lemma 15.2.3, each elements ofAπi,2 will contribute to at least 1
2
2(k−1)n distinct

elements inBerr. Therefore |Aπi,2| · 122(k−1)n ≤ |Berr| ≤ ε ·2kn, and so |Aπi,2| ≤ 2ε ·2n.
It then follows that |Mπ

i,2| ≤ 2(k−1)n|Aπi,2| ≤ 2ε · 2kn. Finally, by (15.5) we have
|Mπ

i | ≤ |Mπ
i,1|+ |Mπ

i,2| ≤ 3ε · 2kn.

We are now ready to prove Theorem 15.2.1.

Proof (“⇐” part of Theorem 15.2.1). We show the achievability of rate k in Ic
implies the achievability of unit rate in I.

Let {φe, φt}e∈E be the network error correction code of length n that achieves rate k
in Ic, with probability of error ε. We assume that in this code edge zi simply relays
the signal from edge ai. This is without loss of generality because for any network
code that needs to process the signal on edge ai to obtain the signal to be transmitted
on edge zi, it is equivalent to relay the signal on edge zi and perform the processing
work at the head node of edge zi.

Let EN ⊂ E be the set of edges of the embedded graphN . For the multiple-unicast
problem I, we define a length-n network code {τe, τti : e ∈ EN , i ∈ [k]} as follows.

τe = φe, ∀e ∈ EN
τti = φzi ◦ πi ◦ ψi ◦ φz′i , ∀i = 1, ..., k,

where ◦ denotes function composition; φzi and φz′i are the encoding functions of
edges zi and z′i in problem Ic; ψi is defined in (15.1); and πi is defined in (15.4). In
the following we show that {τe, τti : e ∈ EN , i ∈ [k]} achieves unit rate in I with
probability of error upper bounded by 6kε.

In problem I, let Mi be the random message associated with source si, then Mi,
i = 1, ..., k are i.i.d. uniformly distributed over [2n]. Denote for short M =

(M1, ...,Mk), then slightly abusing notation we denote by τti(M ) the output of the
decoder τti under transmissionM . The probability of decoding error is given by

Pr{
k⋃
i=1

τti(M ) 6= Mi},
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where the probability is taken over the joint distribution of the randommessages. Let
m = (m1, ...,mk) be the realization ofM . We claim that if there exists a message
m of problem Ic (not to be confused withm, a message of I) such thatm ∈Mgood,
m /∈ Mψ

i , m /∈ Mπ
i and m = z(m), then τti(m) = mi. To prove the claim,

supposem = z(m) is transmitted in I. Notice that all edges inN perform the same
coding scheme in I as in Ic, therefore the terminal node ti, by invoking the function
φz′i , obtains z

′
i(m). Then by the definition ofMψ

i , it follows thatψi(z′i(m)) = bi(m).
And by the definition ofMπ

i , it follows that π(ψi(z
′
i(m))) = ai(m). Finally since

m = z(m), it follows that φzi(π(ψi(z
′
i(m)))) = φzi(ai(m)) = zi(m) = mi.

Therefore τti(m) = mi ifm ∈ {z(m) ∈ [2n]k : m ∈Mgood,m /∈Mψ
i ,m /∈Mπ

i }.
The probability that τti makes an error, i.e., Pr{τti(M ) 6= Mi}, is upper bounded
by the probability of the union of the following three events.

E1 = {M = m : m /∈ {z(m) ∈ [2n]k : m ∈Mgood}}

E2 = {M = m : m ∈ {z(m) ∈ [2n]k : m ∈Mψ
i }}

E3 = {M = m : m ∈ {z(m) ∈ [2n]k : m ∈Mπ
i }}.

We upper bound the probability of E1, E2, E3, respectively.

Pr{E1} = 1− |{z(m) : m ∈Mgood}|
2kn

(d)
= 1− |M

good|
2kn

≤ 1− (1− ε) · 2kn

2kn
= ε, (15.7)

where (d) follows from the fact that z(m) = a(m) 6= a(m′) = z(m′) for any
m,m′ ∈Mgood,m 6= m′. By Lemma 15.2.2,

Pr{E2} =
|Mψ

i |
2kn

≤ 2ε. (15.8)

And by Lemma 15.2.4, we have

Pr{E3} =
|Mπ

i |
2kn

≤ 3ε. (15.9)

Combining (15.7), (15.8) and (15.9), it follows that

Pr{τti(M ) 6= Mi} ≤ Pr{E1}+ Pr{E2}+ Pr{E3} ≤ 6ε.

Finally, by taking the union bound over the k terminals,

Pr{
k⋃
i=1

τti(M ) 6= Mi} ≤ 6kε.

Hence the probability of error is arbitrarily small and this establishes the achievabil-
ity of unit rate in I.
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The proof above suggests that the achievability of rate k with error probability ε
in Ic implies the achievability of unit rate with error probability 6kε in I. By
setting ε = 0, we generalize the result in Theorem 15.1.1 regarding the zero-error
achievability as a special case.

Finally, we remark that our reduction has an operational aspect that from a code for
Ic one can construct a code for I. Indeed, using our reduction, to solve an instance of
the multiple-unicast network coding problem, one may first reduce it to an instance
of the unicast network error correction problem, then solve the latter, and finally use
this solution to obtain a solution to the original multiple-unicast problem.

15.3 Asymptotic Achievability and Counter-example
Theorem 15.1.1 and 15.2.1 show that Construction 15.1.1 gives a reduction from
multiple-unicast network coding to unicast network error correction in terms of zero-
error achievability and in terms of achievability that allows vanishing error. In this
subsection we show that the same construction does not provide a reduction in terms
of asymptotic achievability (with vanishing error) by presenting a counter-example.

Figure 15.3: Construction of Ic and I. In Ic, the source is s and the terminal is t.
B includes all singleton sets of a single edge except {ai} and {bi}, i = 1, ..., k. In
I, the source-terminal pairs are (si, ti), i = 1, ..., k. All edges have unit capacity.

Theorem 15.3.1. There exists a multiple-unicast network coding instance I such
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that unit rate is not asymptotically achievable in I, but in Ic, which is the unicast
network error correction instance constructed from I according to Construction
15.1.1, rate k is asymptotically achievable.

Proof. The construction of I and the corresponding Ic are shown in Figure 15.3.
In I, {(C,D)} is a cut-set separating all sources from the terminals. Therefore by
the cut-set bound, any rateR > 1/k is not achievable in I. This shows that unit rate
is not asymptotically achievable in I if k > 1.

We prove the remaining part of the theorem by describing a network codewith length
n that achieves rate k − k/n in Ic. First divide the source message of rate k − k/n
into k pieces M = (M1, ...,Mk), such that Mi, i = 1, ..., k are i.i.d. uniformly
distributed over [2n−1]. We denote φe : [2k(n−1)] → [2n] as the encoding function1
of edge e, which takes the source messageM as input, and outputs the signal to be
transmitted on e when there is no error in the network. For all i = 1, ..., k, we let

φai(M) = φxi(M) = φyi(M) = φzi(M) = φ(si,C)(M) = Mi.

Furthermore, we let

φ(C,D)(M) = φ(D,ti)(M) = φz′i(M) =
k∑
j=1

Mj, ∀i = 1, ..., k

where the summation is bitwise XOR. Note that the edges ai, xi, yi, zi, (si, C),
(C,D), (D, ti), z′i each have the capacity to transmit n bits. But we only require
each of them to transmit n− 1 bits. Hence each edge reserves one unused bit.

NodeBi, by observing the (possibly corrupted) signals received from edges xi, yi, z′i,
performs error detection/correction in the following way. If the signal (of n−1 bits)
received from xi equals the signal received from yi, forward the signal to edge bi,
and then transmit one bit of 0 using the reserved bit. Otherwise, forward the signal
received from z′i to bi, and then transmit one bit of 1 using the reserved bit.

Finally, terminal t recovers the source message in the following way. Note that since
there is only one corrupted edge in the network, for i = 1, ..., k, the reserved bit on
bi equals 0 only if both xi and yi are not corrupted and it equals 1 only if either xi
or yi is corrupted. Therefore, if the reserved bit on bi is 0 then the remaining n− 1

bits received from bi are exactly Mi. If the reserved bit on bi is 0 for i = 1, ..., k,
thenM = (M1, ...,Mk) is decoded correctly at the terminal.

1This is called the global encoding function in the context of network coding.
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Otherwise, among b1, ..., bk, there is at most one bl such that the reserved bit on bl is
1, because there is at most one corrupted edge. The remaining n − 1 bits received
from bl are exactly

∑k
j=1Mj . This is because either xl or yl is corrupted and so zl

is not corrupted. Now note that the terminal t can decodeMi, i 6= l correctly from
the signals received from bi, i 6= l. And so t can decodeMl correctly by evaluating∑k

j=1 Mj −
∑k

j=1,j 6=lMj = Ml. Hence M = (M1, ...,Mk) is decoded correctly
at the terminal. This shows that rate k − k/n is achievable in Ic and so rate k is
asymptotically achievable in Ic, completing the proof.

Combining Theorem 15.2.1 with Theorem 15.3.1, it follows that in the unicast
network error correction problem, the capacity in general is not achievable. Note
that we mean the capacity is not exactly achievable, and by definition capacity is
always asymptotically achievable.

Corollary 15.3.1. There exists a unicast network error correction problem for which
the capacity is not achievable.

Proof. The construction of the network error correction problem Ic is shown in
Figure 15.3. By the cut-set bounds, the capacity of Ic is upper bounded by k. By
Theorem 15.3.1, rate k is asymptotically achievable in Ic, and so the capacity of Ic
is k. Also by Theorem 15.3.1, unit rate is not achievable in I, and so by Theorem
15.2.1, rate k is not achievable in Ic. This shows that the capacity of Ic is not
achievable.

Corollary 15.3.1 suggests that although the (unicast) network error correction ca-
pacity is (by definition) asymptotically achievable, in general it is not achievable.
This is in contrast to the scenario of network error correction with uniform B, i.e., B
is the collection of all subsets containing ze links. In this case the network capacity
can be achieved by linear codes. Unachievability of capacity is also studied for
multiple-unicast networks [114] and sum networks [115]. For both cases, networks
in which the capacity is not achievable are constructed using matroid theory.
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C h a p t e r 16

BOUNDS FOR SECURE NETWORK CODING

16.1 Models
Consider an instance (G, s, d,A) of the unicast secure network coding problem,
where G = (V , E) is a directed graph, s is the source, d is the terminal and A is the
collection of sets of eavesdropped edges. Since A is arbitrary (i.e., non-uniform),
without loss of generality we assume that all edges have unit capacity, because any
edge of larger capacity can be replaced by a number of parallel unit capacity edges
in both G and A. Non-source nodes are allowed to generate randomness and for
all i ∈ V , denote by Ki the independent randomness generated by node i. In this
chapter we focus on perfect secrecy, i.e., let M be the source message and denote
by X(A) the signals transmitted on A ⊂ E , then ∀A ∈ A, I(M ;X(A)) = 0.

Consider an arbitrary cut V ⊂ V such that s ∈ V and d ∈ V c. Denote Efwd
V =

{(i, j) ∈ E : i ∈ V, j ∈ V c} as the set of forward edges with respect to V , and
Ebwd
V = {(i, j) ∈ E : i ∈ V c, j ∈ V } as the set of backward edges. Let x = |Efwd

V |
and y = |Ebwd

V |, and denote the x forward edges by efwd1 , efwd2 , ..., efwdx , and the y
backward edges by ebwd1 , ebwd2 , ..., ebwdy . Define Cb→f = (c′ij) to be an x × y binary
matrix characterizing the connectivity from the backward edges to the forward edges.
More precisely,

c′ij =

 1
if ∃ a directed path from head(ebwdj ) to tail(efwdi ) that does not pass
through any nodes in V c

0 otherwise.

16.2 Cut-set Bound
This section presents a cut-set bound on the secrecy capacity with respect to the
cut V and its connectivity matrix Cb→f . We first prove a lemma before formally
introducing the bound.

Lemma 16.2.1. Given an arbitrary binary matrix C = (cij) of size a× b and a set
of submatrices of C, denoted by U , there is a large enough q such that there exists
a matrix C̄ ∈ Fa×bq = (c̄ij) with the following properties: 1) c̄ij = 0 if cij = 0; 2) ∀
U ∈ U , let its size be m × n and let the corresponding submatrix of C̄ be Ū , then
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rank(Ū) = maxV ∈Fm×nq ,vij=0 if uij=0 rank(V ), i.e., Ū is rank maximized subject to
the zero constraints given in C. In particular, q > |U|ab is sufficient.

Proof. Consider a finite field Fq of size q, and any U ∈ U , let

V̄ = arg max
V ∈Fm×nq ,vij=0 if uij=0

rank(V ),

and let rU = rank(V̄ ). So V̄ contains an rU × rU full rank submatrix, denoted by
V . Let C = (cij) be the submatrix of C corresponding to the position of V . Now
consider a polynomial matrix V [x] = (vij) defined by

vij =

{
0 if cij = 0

xij if cij = 1

where the xij’s are indeterminates. Then it follows that det(V [x]) is not the zero
polynomial because otherwise det(V ) = 0 and V cannot be full rank. Now let the
non-zero entries of V [x], i.e., all the xij’s, be i.i.d. uniformly distributed on Fq. By
the Schwartz-Zippel lemma,

Pr {det(V [x]) = 0} ≤ r2
U

q
≤ ab

q
.

Notice that the polynomial matrix V [x] is in fact a submatrix of a a× b polynomial
matrix B[x] = (bij) defined by

bij =

{
0 if cij = 0

xij if cij = 1

where again the xij’s are indeterminates. Let all the non-zero entries ofB[x] follow
i.i.d. uniform distribution on Fq, and by the union bound, we have

Pr

{⋃
U∈U

det(V [x]) 6= 0

}
≥ 1−

∑
U∈U

Pr{det(V [x]) = 0}

≥ 1− |U|ab
q
.

Therefore if q > |U|ab, there exists an evaluation of B[x] such that det(V [x]) 6= 0

for any U ∈ U . This evaluation gives a desired C̄, because for any U ∈ U , the
corresponding submatrix Ū of C̄ contains a full rank square submatrix of size
rU , and by definition rU is the maximum rank Ū can achieve subject to the zero
constraints in C.
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Define

C =

(
Cb→f

Iy

)
,

where Iy is the identity matrix of order y. Notice that rows inC correspond to edges
crossing the cut in G. Denote AV = {A ∩ (Efwd

V ∪ Ebwd
V ) : A ∈ A}. For A ∈ AV ,

denote by UA the submatrix of C formed by the rows corresponding to edges in
A. Let U = {UA, A ∈ AV }, and let C̄ be the rank maximized matrix specified in
Lemma 16.2.1 with respect to C and U . For UA ∈ U , let ŪA be the corresponding
submatrix of C̄. We are now ready to state our main result.

Theorem 16.2.1. The secrecy capacity is bounded by

C ≤ x+ min
A∈AV

(
rank(ŪA)− |A|

)
.

In the special case of uniform wiretap sets, i.e., A = {A ⊂ E : |A| ≤ z}, Theorem
16.2.1 reduces to the following form.

Corollary 16.2.1. Define kb = min{Ū : z × y submatrix of C̄} rank(Ū), then the secrecy
capacity is bounded by

C ≤ x+ kb − z.

We prove Theorem 16.2.1 in the remaining part of this section. Given a cut of x
forward edges, y backward edges, and the connectivity matrix Cb→f , we construct
an upper bounding network Ḡ as follows: 1) Absorb all nodes downstream of the
cut, i.e., all v ∈ V c, into the terminal d. So for i ∈ [x], j ∈ [y], head(efwdi )=d,
tail(ebwdj )=d. 2) Connect the source to each forward edge with an infinite number
of unit capacity edges (s, tail(efwdi )). 3) Connect the backward edges to the forward
edges according to Cb→f . More precisely, create an infinite number of unit capacity
edges (head(ebwdj ), tail(efwdi )) if and only if c′ij = 1. In Ḡ we only allow the source
and the terminal to generate independent randomness, and the collection of sets of
eavesdropped edges is Av, i.e., only the edges in the cut-set can be eavesdropped.

Lemma 16.2.2. The secrecy capacity of Ḡ upperbounds the secrecy capacity of G.

Proof. Note that all infinite parallel unit capacity edges are perfectly secure because
they can be protected by an infinite number of local keys. This implies that the
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assumption that only the source and the terminal can generate randomness is with-
out loss of optimality, because if any other node wishes to generate independent
randomness, such randomness can be generated at the source instead and sent by
infinite parallel edges. Hence for any coding scheme in G on the edges crossing the
cut, the same coding scheme can be simulated in Ḡ securely.

Since Ḡ has a simplified structure, in the proof of Theorem 16.2.1 we shall always
consider Ḡ instead ofG unless otherwise specified. Asmentioned, in Ḡ only the edges
crossing the cut V are vulnerable, and for notational convenience in what follows
we let A = AV . Let F1, ..., Fx be the signals transmitted on edges efwd1 , ..., efwdx ;
B1, ..., By be the signals transmitted on edges ebwd1 , ..., ebwdy . Consider any A ∈ A
and the set of signals fA =

⋃
e∈A fe, defined as follows

fe =

{
{Bj} if e = ebwdj

{Bj : c′ij = 1} if e = efwdi .

The following lemma shows that the rank structure of the submatrices of C̄ has
interesting properties.

Lemma 16.2.3. For any A ∈ A, there exists a partition A = A1 ∪ A2, such that
|fA1|+ |A2| = rank(ŪA).

Proof. The idea of the proof is to infer the structure of UA given the rank of ŪA and
the fact that ŪA is rank maximized. Then since UA characterizes the connectivity to
the edges in A it becomes convenient to bound the size of fA.

Denote for short r = rank(ŪA), so ŪA contains an r×r submatrixwhose determinant
is non-zero, and therefore in ŪA there exist r non-zero entries at different columns
and at different rows. Recall that an entry in ŪA can be non-zero only if this
entry is 1 in UA, hence UA contains r entries of value 1 at different columns and
different rows. Perform column and row permutations to move these 1’s such that
UA(r + 1− i, i) = 1,∀1 ≤ i ≤ r, i.e., they become the counter-diagonal entries of
the upper-left block formed by the first r × r entries. See Fig. 16.1 for an example.
Note that permutations in UA are merely reordering of edges, and for notational
convenience we denote the matrix after permutations as UA still.

It then follows that UA(i, j) = 0,∀r < i ≤ |A|, r < j ≤ y. Otherwise if any
entry in this lower right block is non-zero, setting this and the aforementioned r
counter-diagonal entries as 1, and all other entries as 0 yields a matrix that satisfies
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the zero constraint in UA and it has rank r + 1. But this is a contradiction because
r = rank(ŪA) is the maximum rank. Hence we label this block as zero.

Below we introduce an algorithm that further permutes UA and labels it blockwise.
The algorithm takes a matrix G of arbitrary size m × n and a positive integer
parameter k as input, such that the upper-left block GUL formed by the first k × k
entries of G has all 1’s in its counter-diagonal. Now consider GLL = (gij), k <

i ≤ m, 1 ≤ j ≤ k which is the lower-left block of G. If every column of GLL

is non-zero, label this block as non-zero, label GUL as counter-diagonal, label the
block GUR = (gij), 1 ≤ i ≤ k, k < j ≤ n as zero*, return t := 0 and terminate.
If GLL = 0 or GLL is empty, label this block (if not empty) as zero, label GUL as
counter-diagonal, label GUR as arbitrary, return t := k and terminate.

OtherwiseGLL contains both zero and non-zero columns. In this case, first perform
column permutations inG to move all non-zero columns ofGLL to the left and zero
columns to the right. Assume that after permutation the first u columns of GLL are
non-zero, and the last v columns are all zero. Label the block (gij), k < i ≤ m, 1 ≤
j ≤ u as non-zero and label the block (gij), k < i ≤ m,u < j ≤ k as zero. At
this point some of the 1’s originally in the counter-diagonal of GUL are misplaced
due to column permutations; perform row permutations to move them back to the
counter-diagonal. Note that only the first k rows need to be permuted and the lower
labeled block(s) is not affected. Label the block (gij), k−u+1 ≤ i ≤ k, 1 ≤ j ≤ u

as counter-diagonal, label the block (gij), 1 ≤ i ≤ k − u, 1 ≤ j ≤ u as arbitrary,
and label the block (gij), k− u+ 1 ≤ i ≤ k, k < j ≤ n as zero*. Then truncate the
first u columns and the lastm− k rows fromG. Notice that the block formed by the
first v× v entries in the truncated G has all 1’s in its counter-diagonal. Now invoke
the algorithm recursively to the truncated G with parameter v < k. The algorithm
must terminate because the input parameter is a positive finite integer and cannot
decrease indefinitely.

Applying the algorithm to the matrix UA with parameter k := r will permute the
rows and columns ofUA and label it completely. Refer to Figure 16.1 for an example.
Notice that the algorithm always labels counter-diagonal, non-zero and zero literally,
i.e., by hypothesis all counter-diagonal-label blocks are square and have 1’s in their
counter-diagonals (but the off-counter-diagonal entries may be arbitrary); all non-
zero-label blocks do not contain zero columns; and all zero-label blocks are all zero.
The only non-trivial label is zero*, and we claim that the algorithm also labels zero*
correctly in the sense that a zero*-labeled block is indeed zero.
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Figure 16.1: An example of a labeled UA. zero blocks are indicated by 0; zero*
blocks are indicated by 0*; counter-diagonal blocks are indicated by I ′; non-zero
blocks are colored in gray and arbitrary blocks are crossed. The algorithm termi-
nates in four iterations and returns t. Key parameters of the first two iterations are
illustrated and the subscripts denote iteration numbers. The truncated G after the
first iteration is highlighted in bold line. Note that the first t rows correspond to A2,
and the remaining rows correspond to A1.

To prove the claim, notice that all zero* blocks pile up at the last y − r columns
of UA, and consider any entry α1 of a zero* block. By the algorithm the row
of α1 must intersect a unique counter-diagonal block, and denote the intersecting
counter-diagonal entry of the counter-diagonal block as β1. By the algorithm
this intersecting counter-diagonal block must lie immediately on top of a non-zero
block. Therefore the lower non-zero block contains a non-zero entry α2 in the same
column as β1. And again the row of α2 will intersect a counter-diagonal entry β2 of
a counter-diagonal block. In exactly the same way we are able to find a sequence of
entries α3, β3, α4, β4... until we reach the lowest non-zero block. Note that all these
entries belong to distinct blocks, and because there is a finite number of blocks, the
series is finite. In particular, let w be the number of counter-diagonal blocks that lie
below or intersect the row of α1, then we can find β1, ..., βw and α1, ..., αw+1, where
αw+1 lies in the lowest non-zero block. Now suppose for the sake of contradiction
that α1 is non-zero, set α1, ..., αw+1 to 1, set all counter-diagonal entries of all
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counter-diagonal blocks except β1, ..., βw to 1, and set all other entries to 0. This
produces a matrix of rank r + 1 because all r + 1 1’s appears in distinct columns
and rows, which contradicts the fact that ŪA is rank maximized.

Hence all zero*-label blocks are indeed zero. In particular, after the permutations,
the block UA(i, j), t < i ≤ |A|, r − t+ 1 ≤ j ≤ y is all zero. Now partition A into
A1 ∪ A2, where A2 is the subset of edges corresponding to the first t rows of the
permuted UA. So |A2| = t and |A1| = |A| − t. But the zero constraints in UA imply
that fA1 contains r − t of the Bj’s corresponding to the first r − t columns, hence
|fA1| = r − t. Finally |fA1|+ |A2| = r.

Corollary 16.2.2. PartitionA intoA1∪A2 as in Lemma 16.2.3. Further partitionA1

asAF∪AB, whereAF ⊂ {efwd1 , ..., efwdx },AB ⊂ {ebwd1 , ..., ebwdy }, thenH(fAF |fAB) ≤
rank(ŪA)− |AB| − |A2|.

Proof. Suppose for contradiction that H(fAF |fAB) > rank(ŪA) − |AB| − |A2|,
then |fAF \fAB | ≥ H(fAF \fAB) ≥ H(fAF |fAB) > rank(ŪA) − |AB| − |A2|. This
implies |fA1| > rank(ŪA)− |A2|, a contradiction to Lemma 16.2.3.

Due to the cyclic nature of G (i.e., if G is acyclic then there are no backward edges
and traditional cut-set bounds apply), imposing delay constraints on the edges is
necessary to avoid stability and causality issues. It suffices to assume that there
is a unit delay on edges efwd1 , ..., efwdx , ebwd1 , ..., ebwdy . Note that any realistic systems
should comply with these minimal delay constraints, e.g., it is not possible that a
forward signal Fi is a causal output depending on a backward signalBj , whileBj is
also a causal output depending on Fi. Let t be a time index, denote Fi[t] and Bj[t]

as the signals transmitted on edges efwdi and ebwdj during the t-th time step. Consider
an arbitrary secure coding scheme that finishes within T time steps. Below we show
that the rate of this code is upper bounded by x + rank(ŪA) − |A|, ∀A ∈ A, as
claimed in Theorem 16.2.1. We first prove a lemma.

Lemma 16.2.4. Consider arbitrary random variables X, Y, Z,W , if

(Z,W )→ (Y,W )→ X,

then

H(X|Z,W ) ≥ H(X|W )− I(Y ;X|W ).
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Proof. Note thatH(X, Y |W ) = H(X|Y,W )+H(Y |W ) = H(Y |X,W )+H(X|W ).
SoH(X|Y,W ) = H(X|W )+H(Y |X,W )−H(Y |W ) = H(X|W )−I(Y ;X|W ).
Finally because H(X|Z,W ) ≥ H(X|Y,W ), we prove the claim.

Proof (of Theorem 16.2.1). Define F [t] = {F1[t], ..., Fx[t]} as all the forward sig-
nals at time t, and B[t] = {B1[t], ..., By[t]} as all the backward signals. Let
F = {F [1], ...,F [T ]}, B = {B[1], ...,B[T ]}. Consider any A ∈ A, partition it into
A1 +A2 as in Lemma 16.2.3 and partition A1 into AF +AB as in Corollary 16.2.2.
Let FA[t] = {Fi[t] : efwdi ∈ AF} denote the signals transmitted on AF at time t, and
likewise letBA[t] = {Bj[t] : ebwdj ∈ AB}. Let a = |AF |, b = |AB|, c = |A2|. Recall
that fAF [t] are the signals sent by all backward edges to the edges in AF at time t,
M is the source message, andKd is all randomness generated by the terminal. Now
we upper bound the message rate Rs. It follows,

TRs = H(M)
(a)
= H(M |Kd)−H(M |F ,B, Kd)

= I(M ;F ,B|Kd)

= H(F ,B|Kd)−H(F ,B|M,Kd), (16.1)

where (a) is due to the decoding constraint and the fact that Kd is independent of
M . We first study the first term in (16.1). Expand it according to the chain rule, we
have

H(F ,B|Kd) = H(F [1], ...,F [T ],B[1], ...,B[T ]|Kd)

(b)
=

T∑
i=1

H(F [i],B[i]|F [0...i− 1],B[0...i− 1], Kd)

(c)
=

T∑
i=1

H(F [i]|F [0...i− 1],B[0...i− 1], Kd)

(d)

≤
T∑
i=1

H(F [i]\FA[i]|F [0...i− 1],B[0...i− 1], Kd)+

H(FA[i]|F [0...i− 1],B[0...i− 1], Kd)

(e)

≤ T (x− a) +
T∑
i=1

H(FA[i]|FA[0...i− 1], BA[0...i− 1])

(f)
= T (x− a) +

T∑
i=1

H(FA[i]|FA[0...i− 1], BA[0...i− 1],M).

(16.2)
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Here (b) follows from the chain rule; (c) follows from the fact that B[i] is a function
of the conditions; (d) follows from the chain rule and conditioning reduces entropy;
(e) follows from the fact that conditioning reduces entropy; and (f) follows from the
secrecy constraint, i.e.,M is independent from FA[0...T ], BA[0...T ]. Next we deal
with the second term in (16.1).

H(F ,B|M,Kd) ≥ H(FA[1...T ], BA[1...T ]|M,Kd)

=
T∑
i=1

H(FA[i], BA[i]|FA[0...i− 1], BA[0...i− 1],M,Kd)

≥
T∑
i=1

H(FA[i]|FA[0...i− 1], BA[0...i− 1],M,Kd)

(g)

≥
T∑
i=1

H(FA[i]|FA[0...i− 1], BA[0...i− 1],M)−

I(fAF [0...i− 1];FA[i]|FA[0...i− 1], BA[0...i− 1],M).

(16.3)

Where (g) is due to Lemma 16.2.4 by regarding FA[i] as X; fAF [0, ..., i− 1] as Y ;
Kd asZ; andM,FA[0, ..., i−1], BA[0, ..., i−1] asW . Note that indeed FA[i] learns
everything it can aboutKd from fAF [0, ..., i−1]. Substituting (16.2) and (16.3) into
(16.1) yields,

TRs ≤ T (x − a) +
T−1∑
i=1

I(fAF [1...i];FA[i + 1]|FA[1...i], BA[1...i],M). (16.4)

Finally we bound the summation in the R.H.S. of (16.4). These terms characterize
how the keys generated by the terminal at times 1, ..., i contribute to randomizing
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(and therefore protecting) the forward signals transmitted at time i+ 1.

T−1∑
j=1

I(fAF [1...j];FA[j + 1]|FA[1...j], BA[1...j],M)

(h)
=

T−1∑
j=1

j∑
i=1

I(fAF [i];FA[j + 1]|FA[1...j], BA[1...j], fAF [0...i− 1],M)

(i)
=

T−1∑
i=1

T−1∑
j=i

I(fAF [i];FA[j + 1]|FA[1...j], BA[1...j], fAF [0...i− 1],M)

(j)

≤
T−1∑
i=1

I(fAF [i];FA[i+ 1]|FA[1...i], BA[1...i], fAF [0...i− 1],M)+

T−2∑
i=1

T−1∑
j=i+1

I(fAF [i];FA[j + 1], BA[j]|FA[1...j], BA[1...j − 1], fAF [0...i− 1],M)

(k)
=

T−1∑
i=1

I(fAF [i];FA[i+ 1...T ], BA[i+ 1...T − 1]|FA[1...i], BA[1...i], fAF [0...i− 1],M)

(l)

≤
T−1∑
i=1

H(fAF [i]|BA[i])

(m)

≤ (T − 1)(rank(ŪA)− b− c) (16.5)

Here (h) follows from the chain rule for mutual information; (i) follows from chang-
ing the order of summation; (j) follows from the fact that I(X;Y |Z) ≤ I(X;Y, Z);
(k) follows from the chain rule for mutual information; (l) follows from the defini-
tion of mutual information and conditioning reduces entropy; and (m) follows from
Corollary 16.2.2. Finally substituting (16.5) into (16.4) we have

RS ≤
T (x− a+ rank(ŪA)− b− c)− rank(ŪA) + b+ c

T

=
T (x+ rank(ŪA)− |A|)− rank(ŪA) + b+ c

T

< x+ rank(ŪA)− |A|.

16.3 Achievability
In this section we construct a scalar linear code that achieves the upper bound of
Theorem 16.2.1 in Ḡ, thereby finding the secrecy capacity of Ḡ. The achievability
result also implies that the upper bound in Theorem 16.2.1 is the tightest possible
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if the bound only takes cuts and their connectivity matrices as input. We will build
the code on top of C̄, with the idea that C̄ is rank maximized and therefore suggests
an “optimal” way of using the backward keys (i.e., terminal generated randomness)
to provide maximum randomization and protection. Hence what remains to be
designed is the forward keys (source generated randomness that is independent of
themessage), and it turns out that kf = maxA∈A |A|−rank(ŪA) units of forward keys
are sufficient in Ḡ, implying that a rate ofRs = x−kf = x+minA∈A rank(ŪA)−|A|
can be achieved.

For the ease of presentation we assume that there is no delay in Ḡ, and construct a
code that achieves the capacity exactly. We will show later that extending this code
to networks with delay is straightforward, and in this case it achieves the capacity
asymptotically.

LetM1, · · · ,MRs be the messages,K1
s , · · · ,K

kf
s be the source generated keys,K1

d ,
· · · , Ky

d be the terminal generated keys, all of them are i.i.d. uniformly distributed
in Fq. Let E = (eij) ∈ F(x+y)×(x+y)

q be the encoding matrix, defined by

E =

(
G

0
C̄

)
, (16.6)

where G is a random matrix of size x× x with entries i.i.d. uniformly chosen from
Fq, and 0 is a zero matrix of size y × x. Then the signals transmitted on the cut are



F1

...
Fx

B1

...
By


= E



M1

...
MRs

K1
s

...
K
kf
s

K1
d

...
Ky
d



. (16.7)

Notice that E is a full rank square matrix with high probability since G is generic
and the bottom y rows of C̄ are linearly independent. Therefore the terminal d
can decode the messages and keys with high probability. We only need to show
that the code is secure, i.e., any subset of {F1, ..., Fx, B1, ..., By} eavesdropped by
an adversary is independent of {M1, ...,MRs}. Since linear independence implies
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independence [79], it suffices to show that the row space of

EMessage = (IRs | 0Rs×(kf+y))

and the row space ofEA intersect trivially for allA ∈ A, whereEA is the submatrix
of E formed by the rows that correspond to the edges in A. Let Er be the submatrix
of E by deleting the first Rs columns from E, then it suffices to show that any
submatrix Er

A, A ∈ A has full row rank. The following theorem shows this is true
when q is sufficiently large.

Theorem16.3.1. The code in (16.7) is securewith probability at least 1−|A|kf (x+y)

q
.

Proof. As mentioned above it suffices to show that any Er
A, A ∈ A has full row

rank. Consider an arbitrary Er
A, and notice that the last y columns of it is exactly

ŪA. Assume that the A contains a forward edges and b backward edges. Then due
to the structure of C̄, the last b rows of ŪA must be linearly independent. There exist
rank(ŪA) − b rows among the first a rows such that these rows and the last b rows
together form a basis of the row space of ŪA. The remaining |A| − rank(ŪA) rows
of ŪA, all of them corresponding to forward edges, are in the linear span of this
basis. Assuming without loss of generality that they are the first |A| − rank(ŪA)

rows (otherwise reorder the forward edges), we construct a matrix E+
A as

E+
A =

(
I|A|−rank(ŪA)

0
ŪA

)
.

Notice that kf = maxA′∈A |A′| − rank(Ū ′A) ≥ |A| − rank(ŪA), so the number
of columns in E+

A is not larger than the number of columns in Er
A. We append

kf + rank(ŪA) − |A| more zero columns to the left of E+
A to obtain a matrix E++

A

which is of the same size as Er
A. Note that E++

A has full row rank and satisfies
the zero block constraint as defined in (16.6). Hence E++

A contains an |A| × |A|
full rank submatrix, denoted by EA. Consider the polynomial matrix EA[x] as a
submartix of Er

A by regarding all random entries in Er
A as indeterminates, then it

follows that det(EA[x]) is not the zero polynomial because det(EA) 6= 0. By the
Schwartz-Zippel lemma, under the random selection of entries in Er

A,

Pr {det(EA[x]) = 0} ≤ kf |A|
q

.
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Finally by the union bound,

Pr

{⋃
A∈A

det(EA[x]) 6= 0

}
≥ 1−

∑
A∈A

Pr{det(EA[x]) = 0}

≥ 1− |A|kf (x+ y)

q
.

The proof is complete.

Extending the above coding scheme to networks with delay is straightforward. It
suffices for the source to wait one time slot for the arrival of the first batch of keys,
and then start transmitting normally. So the overhead is vanishing as we increase
the time duration of the code.
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C h a p t e r 17

RATELESS NETWORK ERROR CORRECTION

17.1 Models
17.1.1 Network Model
Consider an instance (G, s, t,B) of the unicast network error correction problem.
Recall from Section 13.4.3 that G = (V , E) is a directed graph, s is the source, t is
the terminal and B is the collection of sets of error edges. In this section we focus
on the case that B is uniform, i.e., B consists of all subsets of E of size ze. Denote
the min-cut of G by µ. Denote by µ̄ the number of out-going edges of s, so µ̄ ≥ µ.

We assume that an arbitrary linear network code C is implemented in the network,
such that C achieves the network capacity µ in the absence of errors1. C and µ are
not known a priori to the source and the terminal. To transmit information over the
network, the source generates a batch of µ̄ encoded packets of length n as input to
the network, represented by a matrix X ∈ Fµ̄×nq , where packets are rows. As the
packets travel through the network, they undergo linear transforms defined by the
network code C. In the absence of adversarial errors, the terminal t will observe a
matrixAX , whereA ∈ Fµ×µ̄q is the network transformmatrix of rank µ. Note thatA
is not known to the source and the terminal. For notational convenience, we assume
that µ and C do not change over time, whereas our results naturally generalize to the
case that they do change.

17.1.2 Adversary Model
The adversary controls ze < µ edges2 in the network, modeled in the following way.
For each compromised edge (u, v), the adversary injects an error packet so that the
packet received by v from this edge is the addition (over Fq) of the error packet
and the packet originally transmitted on the edge. As the injected error packets
travel through the network, they undergo linear transforms defined by the network
code C. The terminal receives the sum of the linearly transformed error packets
and the linearly transformed X . More precisely, the terminal observes a matrix

1Otherwise, if C is not capacity-achieving, then some edges are redundant. Remove these edges
and C is capacity achieving in the modified network.

2We consider a model where edges rather than nodes are corrupted. Corrupting a node is
equivalent to corrupting the links outgoing from it.
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Y = AX + BZ, where B ∈ Fµ×zeq is the network transform matrix (determined
by the network code) from the compromised edges to t, and Z ∈ Fze×nq are the ze
injected error packets. The adversary may choose Z carefully in order to corrupt
the communication between s and t. Note that ze, Z and B are not known to the
source and the terminal.

17.1.3 Throughput and Capacity
We call one stage as the transmission of one batch of encoded packets, i.e., a matrix
X . For a scheme involving N stages, denote by XN and Y N the sequences of
matrices transmitted by s and received by t. Let M be a source message chosen
from an alphabetM and let M̂ be the output of the terminal decoder. If there exists
a scheme that maps M to XN , and maps Y N to M̂ , such that for all M ∈ M,
Pr{M 6= M̂} → 0 as q → ∞, where the probability is taken over the coin flips of
the encoder, decoder and adversary, then we say a throughput or rate of logq |M|

Nn
is

achievable. The capacity of the network is the supremum over all achievable rates.

17.2 Secret Channel Model
In this section we describe the rateless network error correction code for the secret
channel model. We assume that there is a secure side channel between the source
and the terminal and that the information transmitted by this channel is reliable and
secure from the adversary. Non-rateless network error correction under this model
is initially studied in [30]. The secret channel is helpful for two reasons. Firstly, it
increases the capacity of the network. Specifically, the network capacity is µ− 2ze

without the secret channel and is µ − ze with the channel [30]. Secondly, as we
will discuss in more detail later, the secret channel facilitates verification of the
received packets independently of the value of ze and therefore allows rateless error
correction. We require a scheme to use the secret channel to communicate at most
a vanishingly small amount of information, as otherwise the problem is trivial.

At a high level, in the scheme the source incrementally sends more linearly de-
pendent redundancy of the message through multiple stages. The message will
be contained in the row space of the received packets after a sufficient number of
stages. Additionally, the source sends a sequence of short hashes to help the decoder
pinpoint the message from the row space. Below we describe the encoder for the
source and the decoder for the terminal.



205

17.2.1 Encoding
Suppose the source wishes to transmit a message of b packets, each consisting of n
symbols from Fq, represented by a b × n matrix M over Fq. The communication
of M may last for several stages and during stage i, the source draws a random
matrix Ki of size µ̄ × b with entries i.i.d. uniformly distributed on Fq. The source
encodes Xi = KiM , and inputs Xi to the network. Thereafter Xi undergoes the
network transform as it travels through the network, as described in Section 17.1.1
and 17.1.2.

Next we discuss the construction of the hash. Let α1 = bµ̄+ t, t ≥ 1 and αi = bµ̄,
i > 1. During the i-th stage, the source draws αi random symbols r1, · · · , rαi
from Fq privately, and constructs a Vandermonde matrixD = (dkj) ∈ Fn×αiq , where
dkj = (rj)

k−1. The source computesHi = MDi, and sendsHi aswell as r1, · · · , rαi
to the terminal using the secret channel. The size of the secret is αi(b + 1), which
is asymptotically negligible in n.

17.2.2 Decoding
During the i-th stage the terminal receives a batch of packets from the network
Yi = AXi +BiZi corresponding to Xi. Let

Y (i) =


Y1

...
Yi

 . (17.1)

And let

H(i) = [H1 · · ·Hi] (17.2)

D(i) = [D1 · · ·Di]. (17.3)

The decoder tries to solve the following system of linear equations:

XsY (i)D(i) = H(i), (17.4)

where Xs is a b × iµ matrix. If (17.4) has a unique solution for Xs, the terminal
decodes M = XsY (i). If there exists no solution for (17.4), the terminal waits
another stage for more redundancy. Otherwise, if there are multiple solutions for
(17.4), the terminal declares a decoding failure.

17.2.3 Analysis
In this subsection we analyze the probability of decoding error of the proposed
scheme. If decoding is not successful then either of the following two error events
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must happen: 1) there does not exist Xs such that XsY (i) = M ; or 2) there exists a
Xs∗, such that Xs∗ is a solution to (17.4) and Xs∗Y (i) 6= M .

We study the probability of the first error event. We start with a useful lemma.

Lemma 17.2.1. Let A be an arbitrary u× v matrix with rank u and k be a length-v
column vector with entries uniformly i.i.d. distributed over Fq, then Ak is a random
vector with entries uniformly i.i.d. distributed over Fq.

Proof. Consider an arbitrary length-u column vector y ∈ Fuq , and the system of
equations Ax = y. Because A has full row-rank, its columns span F u

q . So Ax = y

has a solution x∗ and the set of solutions is {x∗ + x0 : x0 ∈ N(A)}, where
N(A) is the null space or kernel of A. Therefore the size of the set of solutions is
|N(A)| = qv−u, which does not depend on y. So Pr{Ak = y} = qv−u/qv = 1/qu,
and Ak is uniformly distributed over Fuq . This proves the lemma.

Recall that Yi = AXi +BiZi. Define for notational convenience that

Z(i) =


Z1

...
Zi

 , (17.5)

and

T (i) =


AK1 B1 0 ... 0

AK2 0 B2 ... 0
...

...
AKi 0 0 ... Bi

 =
[
A(i) | B(i)

]
. (17.6)

Then it follows from the network transform that

Y (i) = T (i)

[
M

Z(i)

]
. (17.7)

Lemma 17.2.2. If i(µ − ze) ≥ b, then T (i) has full column rank with probability
(over the distribution of the Kj’s) at least 1− 1

q−1
.

Proof. Without loss of generality we assume all Bk, k = 1, ..., i have full column
ranks ze, otherwise we can select a basis of the column space of Bk and reformulate
the problem with a smaller ze. Therefore B(i) has rank ize. By Lemma 17.2.1, all
the entries in A(i) are uniformly i.i.d. distributed. Now consider the first b columns
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of T (i). For k = 1, ..., b, the probability that the k-th column of T i is in the linear
span of the ize + b − k columns after it is equal to qize+b−k/qiµ. Therefore, by the
union bound,

Pr{T (i) is not full column rank}

= Pr{
b⋃

k=1

k-th column in the span of the columns behind}

≤
b∑

k=1

Pr{k-th column in the span of the columns behind}

=
b∑

k=1

qize+b−k

qiµ

=
qize+b−iµ − qize−iµ

q − 1
≤ 1

q − 1
.

This completes the proof.

The following result is well-known.

Lemma 17.2.3. A matrix is left-invertible if and only if it has full column rank.

Corollary 17.2.1 bounds the probability of the first kind of error.

Corollary 17.2.1. If i(µ − ze) ≥ b, then with probability at least 1 − 1/(q − 1),
there exists matrix Xs such thatM = XsY (i).

Proof. By Lemma 17.2.2, T (i) has full column rank with probability at least 1 −
1/(q− 1). By Lemma 17.2.3, if T (i) has full column rank, then there exists a matrix
V s such that V sT (i) = Ib+ize . Therefore by (17.7),

V sY (i) =

[
M

Z(i)

]
.

Let Xs be the first b rows of V s and we have XsY (i) = M .

Next we study the second kind of error events.

Lemma 17.2.4. For anyM∗ 6= M , the probability (over the distribution of the rj’s)
thatM∗D(i) = H(i) is upper bounded by (n/q)

∑i
k=1 αk .
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Proof. It is equivalent to consider the probability that (M∗ −M)D(i) = 0. Since
M∗ −M 6= 0, there is at least one row in which M∗ differs from M . Denote this
row of M∗ −M as (x1, ..., xn), then the j-th entry of the corresponding row of
(M∗−M)D(i) is F (rj) =

∑n
k=1 xkr

k−1
j . Because F (rj) is not the zero polynomial

and has at most n − 1 roots, the probability (over rj) that F (rj) = 0 is at most
n/q. Because D(i) has

∑i
k=1 αk columns, and all rj , 1 ≤ j ≤

∑i
k=1 αk, are

independently chosen, the probability that the entire row is a zero vector is at most
(n/q)

∑i
k=1 αk . This is an upper bound of the probability that the entire matrix of

(M∗ −M)D(i) is zero.

Lemma 17.2.5. The probability that there exists Xs∗ such that Xs∗Y (i) 6= M but
Xs∗Y (i)D(i) = H(i) is upper bounded by n

∑i
k=1 αk/q−ibµ+

∑i
k=1 αk .

Proof. Note that Xs∗ is a matrix of size b× iµ over Fq. So the claim follows from
Lemma 17.2.4 and the union bound over all possible choices of Xs∗.

We are now ready to prove the error performance of the proposed scheme.

Theorem17.2.1. Let i be the smallest integer such that i(µ−ze) ≥ b, i.e., i = d b
µ−ze e,

then the terminal is able to decodeM correctly after collecting packets for i stages,
with probability at least 1− 1/(q − 1)− i · nt+ibµ̄/qt.

Proof. By Lemma 17.2.5, for any stage k ≤ i, the probability of the second kind of
error is upper bounded by nt+kbµ̄/qt+kb(µ̄−µ) ≤ nt+ibµ̄/qt. By Corollary 17.2.1, at
stage i the probability of the first kind of error is upper bounded by 1/(q − 1). The
theorem then follows from the union bound.

We remark that i(µ− ze) ≥ b is in fact the cut-set bound, i.e., the number of packets
received is larger than or equal to the number of message packets plus the number of
injected error packets. Therefore Theorem 17.2.1 suggests that the scheme is rate-
optimal in the sense that the terminal will decode correctly with high probability
after collecting packets for the least possible number of stages.

17.3 Shared Secret Model
In this section we describe rateless network error correction under the shared secret
model. Formally, we assume that the source and the terminal share a sequence of
symbols i.i.d. uniformly distributed over Fq. The symbols are drawn secretly from
the adversary, and are independent of the source messageM . Non-rateless network
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error correction under this model is initially studied in [31]. We remark that the
shared secret is a strictly weaker resource than the secret channel of the previous
section. However, the shared secret model is arguably much more realistic than the
secret channel model, as the secret can be shared in advance.

Compared to the secret channel model, a challenge for the shared secret model is
that the shared secret is independent of the message. Another challenge is that there
is no naive way to communicate the hash reliably and securely. A main idea in our
scheme is to transmit the hash in the insecure network, but with strong redundancy.
Since the hashes are short, the induced overhead is small and is negligible in the
packet length. Below we describe the encoder for the source and the decoder for the
terminal.

17.3.1 Encoding
Again, suppose that the source wishes to transmit a message of b packets represented
by a b× n matrixM over Fq. As before, during stage i, the source draws a random
matrix Ki of size µ̄ × b, encodes Xi = KiM , and inputs Xi to the network.
ThereafterXi undergoes the network transform as it travels through the network, as
described in Section 17.1.1 and 17.1.2.

Next we discuss the construction of the hash. Recall that the vectorization of a
matrix is a linear transformation which converts the matrix into a column vector by
stacking the columns of the matrix on top of one another. Let the column vector
m ∈ Fbnq be the vectorized M . Let α1 = µ̄(b + 1) + t, t ≥ 1 and αi = µ̄(b + 1),
i > 1 be the length of the hash constructed at the i-th stage. The source draws
αi symbols ri = (r1, ..., rαi), and another αi symbols hi = (h1, ..., hαi) uniformly
i.i.d. distributed over Fq, from the shared secret randomness. Let Di ∈ Fαi×nbq

be the matrix whose (u, v)-th entry equals rvu, then compute the length-αi column
vector

li = hi −Dim, (17.8)

which is the hash of message m. To communicate li, during the i-th stage, the
source draws a random vector K̄i ∈ Fµ̄×1

q with entries i.i.d uniformly distributed
over Fq. It then encodes X̄i = K̄il

T
i , and inputs X̄i into the network. Alternatively,

the source may include X̄i as a small header when it sends Xi. This concludes the
operations of the encoder. Thereafter X̄i travels through the network and undergoes
the network transform described in Sections 17.1.1 and 17.1.2.
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For stage i, the number of the shared random secret symbols required is 2αi, which
is asymptotically negligible in n. The communication overhead, i.e., the number
of hash-related transmissions, is the length of li, which equals αi. Again this is
asymptotically negligible in n. The computational cost of encoding is dominated
by the operation of computing li from (17.8), which is bounded by O(µ̄b2n).

We remark that the hashing scheme may be understood in the following way. In
(17.8) if we regard Dim as the hash ofm with respect to a check matrix Di, then
li is the one-time padded version of Dim.

17.3.2 Decoding
During the i-th stage the terminal receives a batch of packets from the network
Yi = AXi + BiZi corresponding to Xi. The terminal also receives a batch of
packets Ȳi = ĀX̄i + B̄iZ̄i corresponding to X̄i (alternatively if X̄i is the header of
Xi, then Ȳi is the header of the received packets), where Ā, B̄i and Z̄i are defined
similarly as A, Bi and Zi, cf. Section 17.1.1 and 17.1.2.

The decoder constructs a matrix Pi,1 from the shared randomness as:

Pi,1 =


D1 Iα1 0 ... 0

D2 0 Iα2 ... 0
...

...
... . . . ...

Di 0 0 ... Iαi

 ,
where Iαj is the identity matrix of order αj . Denote by ⊗ the Kronecker product,
the decoder constructs another matrix Pi,2 from the received packets:

Pi,2 =


(
Y (i)

)T ⊗ Ib 0 · · · 0

0 Ȳ T
1 · · · 0

...
... . . . ...

0 0 · · · Ȳ T
i

 ,
where Ib is the identity matrix of order b, and

Y (i) =


Y1

...
Yi

 . (17.9)

Let Pi = Pi,1Pi,2 be a matrix of size t + iµ̄(b + 1) × iµ(b + 1). Then the decoder
solves the system of equations (17.10) in variables xs and x̄sk, k = 1, ..., i, where
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xs is a column vector of length ibµ and the x̄sj’s are column vectors of length µ.

Pi


xs

x̄s1
...
x̄si

 =


h1

...
hi

 . (17.10)

If (17.10) is not uniquely solvable, i.e., if it has no solution or if there are multiple
solutions, the terminal postpones decoding to the next stage so that it will receive
more redundancy. If (17.10) is uniquely solvable, unvectorizexs into a b×iµmatrix
Xs by rearranging every length-b segment of xs as a column ofXs. Then the source
message is recovered as:

M̂ = XsY (i). (17.11)

Note that the size of Xs is much smaller than the size of M̂ . To improve compu-
tational efficiency, we have used Xs as a proxy for solving M̂ , i.e., first solve Xs

from (17.10) and then obtain M̂ from (17.11). Particularly, the computational com-
plexity of solving Xs from (17.10) is bounded by O(i3b3C̄3), and is asymptotically
negligible in n. The computational cost of decoding is dominated by the matrix
multiplication to obtain Pi, which is bounded by O(i2C̄2b2n).

17.3.3 Analysis
In this subsection we analyze the probability of error of the proposed scheme. If
decoding is not successful then either of the following two error events must happen:
1) there does not exist Xs such thatXsY (i) = M and xs is a solution to (17.10); or
2) there exists Xs∗, such that Xs∗Y (i) 6= M and xs∗ is a solution to (17.10), where
xs∗ is the vectorized Xs∗.

Lemma 17.3.1 bounds the probability of the first kind of error.

Lemma 17.3.1. If i(µ− ze) ≥ b, then with probability at least 1− (i+ 1)/(q− 1),
there exists a matrixXs and vectors x̄sk, k = 1, ..., i such thatM = XsY (i) and xs,
x̄sk, k = 1, ..., i is a solution to (17.10).

Proof. By Corollary 17.2.1, the probability that there does not exist Xs such that
XsY (i) = M is upper bounded by 1/(q − 1). Because C > ze, by the same
argument, for k = 1, ..., i the probability that there does not exist x̄sk such that
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lk = Ȳ T
k x̄

s
k is upper bounded by 1/(q−1). We next verify that the above xs and x̄sk,

k = 1, ..., i, if exist, are a solution to (17.10). Vectorizing XsY (i) = M we obtain

m =
((
Y (i)

)T ⊗ Ib)xs. (17.12)

Substitute (17.12) and lk = Ȳ T
k x̄

s
k into (17.10) we obtain

Pi


xs

x̄s1
...
x̄si

 =


D1 Iα1 0 ... 0

D2 0 Iα2 ... 0
...

...
... . . . ...

Di 0 0 ... Iαi



m

l1
...
li

 =


h1

...
hi

 , (17.13)

where the second equality follows from (17.8). Finally, apply the union bound and
the lemma is proved.

Next we study the second kind of error events.

Lemma 17.3.2. For any (m∗, l∗1, ..., l
∗
i ) such thatm∗ 6= m, the probability (over

the distribution of the rj’s) that
D1 Iα1 0 ... 0

D2 0 Iα2 ... 0
... ... ... . . . ...
Di 0 0 ... Iαi



m∗

l∗1
...
l∗i

 =


h1

...
hi

 , (17.14)

is upper bounded by (nb/q)
∑i
k=1 αk .

Proof. By (17.8), the event that (m∗, l∗1, ..., l
∗
i ) is a solution of (17.14) is equivalent

to the event that
D1 Iα1 0 ... 0

D2 0 Iα2 ... 0
...

...
... . . . ...

Di 0 0 ... Iαi



m∗ −m
l∗1 − l1

...
l∗i − li

 =


0
...
0

 . (17.15)

Denote 
m∗ −m
l∗1 − l1

...
l∗i − li

 = (∆m1, ...,∆mnb,∆l1, ...,∆l∑i
k=1 αk

)T ,
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and denote by dj1 the (j, 1)-th entry of the matrix [DT
1 , ..., D

T
i ]T . Consider the j-th

row of (17.15), by the construction of the Di’s, this row is equivalent to

nb∑
k=1

∆mkd
k
j1 + ∆lj = 0. (17.16)

Note that (17.16) is a non-zero polynomial in variable dj1 of degree at most nb.
By the fundamental theorem of algebra, this polynomial has at most nb roots. By
construction, dj1 is uniformly distributed over Fq and so the probability that (17.16)
follows is upper bounded by nb/q. For j = 1, ...,

∑i
k=1 αk, because the dj1’s are

i.i.d. distributed, the probability that all
∑i

k=1 αk equations in (17.15) hold is at
most (nb/q)

∑i
k=1 αk .

Lemma 17.3.3. The probability (over the distribution of the rj’s) that there exists a
solution (xs∗, x̄s∗1 , ..., x̄

s∗
i ) of (17.10) such that Xs∗Y i 6= M is upper bounded by

(nb)
∑i
k=1 αk

q−iµ(b+1)+
∑i
k=1 αk

. (17.17)

Proof. Consider a column vector (xs∗, x̄s∗1 , ..., x̄
s∗
i ) such that Xs∗Y i 6= M . Let

(m∗, l∗1, ..., l
∗
i ) = Pi,2(xs∗, x̄s∗1 , ..., x̄

s∗
i ),

thenm∗ 6= m. It follows that,

Pr{
⋃

xs∗:Xs∗Y i 6=M

(xs∗, x̄s∗1 , ..., x̄
s∗
k ) is a solution of (17.10)}

(a)

≤
∑

xs∗:Xs∗Y i 6=M

Pr{(xs∗, x̄s∗1 , ..., x̄s∗k ) is a solution of (17.10)}

(b)

≤ qibµqiµ
(
nb

q

)∑i
k=1 αk

=
(nb)

∑i
k=1 αk

q−iµ(b+1)+
∑i
k=1 αk

,

where (a) follows from the union bound. To prove the inequality of (b), notice that
if (xs∗, x̄s∗1 , ..., x̄

s∗
i ) is a solution to (17.10), then (m∗, l∗1, ..., l

∗
i ) is a solution to

(17.14). Therefore (b) follows from Lemma 17.3.2. This completes the proof.

We are ready to prove the error performance of the proposed scheme.
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Theorem17.3.1. Let i be the smallest integer such that i(µ−ze) ≥ b, i.e., i = d b
µ−ze e,

then the terminal is able to decodeM correctly after collecting packets for i stages,
with probability at least

1− i + 1

q − 1
− i · (nb)t+i(b+1)µ̄

qt
. (17.18)

Proof. By Lemma 17.3.3, for stage k ≤ i, the probability of the second kind of error
is upper bounded by (nb)t+k(1+b)µ̄/qt+k(b+1)(µ̄−µ) ≤ (nb)t+i(1+b)µ̄/qt. By Lemma
17.3.1, at stage i the probability of the first kind of error is upper bounded by
1− (i + 1)/(q − 1). The theorem then follows from the union bound.

As in the secret channel model, we remark that i(µ − ze) ≥ b is in fact the cut-set
bound. Therefore Theorem 17.3.1 implies that the scheme is rate-optimal in the
sense that the terminal will decode correctly with high probability after collecting
packets for the least possible number of stages.
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C h a p t e r 18

CONCLUDING REMARKS

In this part we present reductions that map an arbitrary multiple-unicast network
coding instance to a unicast secure network coding instance in which at most one
link is eavesdropped, or a unicast network error correction instance in which at most
one link is erroneous, such that a rate tuple is achievable in the multiple-unicast
network coding instance if and only if a corresponding rate is achievable in the
unicast secure network coding instance, or in the unicast network error correction
instance. Our reductions show that solving seemingly very simple instances of the
secure network coding problem or of the network error correction problem are in
fact as hard as solving the multiple-unicast network coding problem which is a
central open problem. Conversely, we show that an arbitrary unicast secure network
coding instance in which at most one link is eavesdropped can be reduced back to
a multiple-unicast network coding instance, implying an equivalence between the
two problems. In addition, we show that the capacity of a unicast network error
correction instance in general is not exactly achievable.

While determining the secrecy capacity in the secure network coding problem is
hard, we derive an upper bound on the secrecy capacity based on cut-sets and the
connectivity of links. We show that the bound is as tight as possible given the input
to the bound. Finally, we study code construction for the network error correction
problem in the setting that any ze links are subject to error. We present coding
schemes that are rateless, i.e., that do not require prior knowledge of ze and the
network min-cut. The schemes will adapt to the correct parameters over multiple
stages of communication and achieve the optimal rate.

Several problems are left open. It would be interesting to study whether the unicast
secure network coding problem with more than one eavesdropped link can be
reduced to the multiple-unicast network coding problem. Such a reduction, if
exists, will imply that the unicast secure network coding problem with only one
eavesdropped link is as hard as the general unicast secure network coding problem
with an arbitrary number of eavesdropped links. We also leave open the possibility
that the unicast network error correction problem can be reduced to the multiple-
unicast network coding problem. Such a reduction would imply an equivalence



216

between the two problems. Finally, it is an interesting fact that in reducing multiple-
unicast network coding to unicast network error correction, our construction works
for both zero-error achievability and achievability with vanishing error, but not
for asymptotic achievability. A natural question is addressing the existence of a
reduction for asymptotic achievability.
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