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ABSTRACT 

The urgency to develop new technologies that harness energy and natural feedstocks in a sustainable 

fashion has never been more apparent. With global power consumption growing at an exponential 

rate, only one resource is truly capable of powering the planet: the sun. Sunlight is reliable, clean, and 

free. 

Significant resources have been pledged to develop and refine solar energy devices that convert 

photons into electricity (i.e. photovoltaics), but the sun’s intermittency and the poor overlap of solar 

irradiance with global power demand a different strategy. In light of these limitations, we have 

proposed a device which converts solar energy into reduced chemical fuels (e.g. dihydrogen or 

methane) that can be indefinitely stored and easily transported. In principle, the only required inputs 

are sunlight, an earth-abundant feedstock such as carbon dioxide, protons (H+), and reducing 

equivalents (e-). The source of these protons and electrons must be abundant and ubiquitous—we 

chose water. 

Despite the 2-billion-year history of plants performing water oxidation to produce molecular oxygen, 

protons, and electrons (Photosystem II), our understanding of this complex 4H+/4e- process has been 

severely limited. Only recently have high-performing, earth-abundant heterogeneous electrocatalysts 

been reported that can be scaled up to make functioning devices. 

This dissertation describes progress on both the synthetic and mechanistic fronts in developing earth-

abundant heterogeneous water oxidation catalysts for solar-driven water splitting. We have 

synthesized nanoparticulate Ni-Fe catalysts with the highest measured activity on flat electrodes to 

date. We carefully characterized these materials spectroscopically to determine that edge-site iron 

was active in catalysis. We then undertook novel in-situ spectroelectrochemical techniques in non-

aqueous media to identify the active iron species, which is surprisingly a cis-dioxo-iron(VI) corner 

site. The data also indicate that geminal iron-oxo coupling may be the operative mechanism of O-O 

bond formation, a new scheme with potential biological relevance. 

Finally, we have expanded our goal to include sustainably reducing other feedstocks, such as carbon 

dioxide and hydrocarbons. In doing so, we aim to make pharmaceuticals, polymers, and other high-

value products from sunlight and water. 
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