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ABSTRACT 

The protein catalyzed capture (PCC) agent platform provides a new strategy to develop peptide-

based ligands for difficult protein targets. This approach utilizes the target-guided in situ click 

reaction to allow the protein of interest to assemble its own binder. Developing a PCC agent 

begins with an epitope targeting strategy to develop anchor candidates against a specific region 

of interest on the target protein. This approach has been used to target diverse epitopes including 

unstructured hydrophobic regions, allosteric enzyme sites, and single amino acid point 

mutations. The process can then be iterated to expand a monoligand into a multiligand binder 

with affinity and selectivity that rivals monoclonal antibodies.  

 

One disease-associated protein of particular importance is the serine/threonine kinase Akt. Akt 

is a key regulator of signal transduction pathways and is implicated in many disease such as 

cancer, diabetes, and neurodegeneration. Several ligands for Akt have been developed recently 

with the PCC agent screening approach. PCC agents now exist that can alter Akt enzymatic 

activity, detect its position in the cell, identify mutations within the protein, and even cause its 

destruction within the cell. The first part of this thesis summarizes the prior efforts to develop 

PCC agents against Akt and then describes new applications for these reagents while the latter 

part describes efforts to develop new PCC agents against another interesting target.  

 

Chapter 1 provides a summary of the technology and describes how it has been utilized thus far. 

Chapter 2 describes how a PCC agent was used as an imaging probe capable of detecting Akt 

membrane localization. Chapter 3 provides several examples of the modularity of PCC agents 

and demonstrates how they can be used to influence a target protein in cells. A pair of allosteric 



 vii 
Akt modulators were functionalized with a cell penetrating peptide for cellular delivery and 

were subsequently used to activate or inhibit Akt enzymatic activity. PCC agents can also be 

used as a targeting moiety to deliver a specific signal to a protein. When functionalized with a 

degradation tag the Akt-binding capture agents caused the protein to be degraded. This provides 

another demonstration of the usefulness of Proteolysis Targeting Chimeric Molecules, or 

PROTACs, in destroying disease-associated proteins. Finally, Chapter 4 describes the 

development of PCC agents against the oncoprotein K-RasG12D and how these molecules can be 

used to target this protein in new ways.  

 

 

 

  



 viii 

PUBLISHED CONTENT AND CONTRIBUTIONS 

(1) Millward, S.W., Henning, R.K., Kwong, G.A., Pitram, S., Agnew, H.D., Deyle, K.M., 

Nag, A., Hein, J., Lee, S.S., Lim, J., et al. (2011). Iterative in Situ Click Chemistry 

Assembles a Branched Capture Agent and Allosteric Inhibitor for Akt1. J. Am. Chem. 

Soc. 133, 18280–18288. doi: 10.1021/ja2064389. 

 

This study was conceived of and primarily led by Dr. Steven Millward. All authors 

contributed to designing experiments, conducting experiments, analyzing the data, and/or 

writing the manuscript. Ryan Henning conceived of the imaging experiments, 

synthesized the necessary compounds, performed the experiments, acquired the data, 

analyzed the data, and contributed to writing the manuscript.  

 
  

(2) Henning, R.K., Varghese, J.O., Das, S., Nag, A., Tang, G., Tang, K., Sutherland, A.M., 

and Heath, J.R. (2016). Degradation of Akt using protein-catalyzed capture agents. J. 

Pept. Sci. 22, 196–200. doi: 10.1002/psc.2858. 

 

This study was conceived of and led jointly by Ryan Henning and Dr. Joseph Varghese. 

All authors contributed to designing experiments, conducting experiments, analyzing the 

data, and/or writing the manuscript. Ryan Henning contributed to the synthesis, 

purification, and characterization of the compounds reported here. Ryan also conducted 

several of the experiments, analyzed the data, and co-wrote the manuscript.  

 

 

 

 

 

 

 

 



 

 

ix 

TABLE OF CONTENTS 

Acknowledgements…………………………………………………………...iii 

Abstract ………………………………………………………………………vi 

Published Content and Contributions…………………………………….........viii 

Table of Contents……………………………………………………………. ix  

List of Figures ................................ ……………………………………………x 

List of Tables ..................................................................................................... xii 

Nomenclature……………………………………………………………….xiii 

Chapter I: Protein Catalyzed Capture as an Alternative Strategy for Developing Diagnostic 

and Therapeutic Reagents .................................................................................... 1 

1.1 Introduction ............................................................................................. 1 

1.2 Protein Catalyzed Capture Agents .......................................................... 4 

1.3 References ............................................................................................... 9 

Chapter II: Protein Catalyzed Capture Agents as Imaging Probes to Visualize Akt 

Subcellular Localization .................................................................................... 12 

2.1 Summary of Contributions .................................................................... 12 

2.2 Introduction ........................................................................................... 13 

2.3 Results and Discussion  ......................................................................... 15 

2.4 Conclusion ............................................................................................. 16 

2.5 Materials and Methods  ......................................................................... 16 

2.6 Figures ................................................................................................... 20 

2.7 References ............................................................................................. 24 

Chapter III: Activation, Inhibition and Degradation of Akt ............................. 26 

3.1 Summary of Contributions .................................................................... 26 

3.2 Introduction ........................................................................................... 27 

3.3 Results and Discussion .......................................................................... 28 

3.4 Conclusion ............................................................................................. 32 

3.5 Materials and Methods .......................................................................... 32 

3.6 Figures ................................................................................................... 42 

3.7 References ............................................................................................. 53 

Chapter IV: Discovery of the First Selective Ligands Against the Mutant Oncoprotein K-

RasG12D ............................................................................................................... 58 

4.1 Summary of Contributions .................................................................... 58 

4.2 Introduction ........................................................................................... 59 

4.3 Results and Discussion .......................................................................... 60 

4.4 Conclusion  ............................................................................................ 64 

4.5 Materials and Methods .......................................................................... 65 

4.6 Figures ................................................................................................... 73 

4.7 References ............................................................................................. 87 

Appendix A: Supplementary Information for Chapter 4 .................................. 89 
 



 

 

x 

LIST OF FIGURES 

Number Page 

2.1 Chemical structure of fluorescent Akt biligand ................................... 20 

2.2 Imaging Akt membrane localization with fluorescent biligand ........... 21 

2.3 Structure of fluorescent Akt triligand ................................................... 22 

2.4 Imaging Akt with fluorescent triligand PCC agent .............................. 23 

3.1 Exploiting the modularity of Akt-activating PCC agent tri_a ............. 42 

3.2 tri_a activates Akt in cells ..................................................................... 43 

3.3 Structure of Akt-inhibiting CPP-tri_i ................................................... 44 

3.4 CPP-tri_i inhibits Akt in cells ............................................................... 45 

3.5 PCC agent-induced degradation of Akt ................................................ 46 

3.6 Structure of CPP-tri_a ........................................................................... 47 

3.7 Structure of CPP-tri_a-FL ..................................................................... 48 

3.8 Structure of CPP-tri_a-PR ..................................................................... 49 

3.9 Structure of CPP-tri_i-PR ..................................................................... 50 

3.10 Reaction scheme for synthesizing cyclooctyne-containing tri_i ......... 51 

3.11 Reaction scheme for synthesizing CPP-tri_i ........................................ 52 

4.1 Structure of K-Ras synthetic epitopes .................................................. 73 

4.2 Structure of the macrocyclic peptide library ........................................ 74 

4.3 Layout of the K-Ras epitope-targeted PCC agent screen .................... 75 

4.4 Single point ELISA of hit peptides against K-RasG12D ........................ 77 

4.5 Characterization of hit 7b1 .................................................................... 78 

4.6 Single point ELISA of second generation hits against K-RasG12D ...... 80 

4.7 Characterization of hit 7b10 .................................................................. 81 

4.8 7b10 alanine scan .................................................................................. 82 

4.9 Characterization of hit 7b5 .................................................................... 83 

4.10 Structure of 7b5-Hif PROTAC ............................................................. 84 

4.11 Structure of 7b5-Hif-TAT PROTAC .................................................... 85 



 

 

xi 

 

4.12 7b5 PROTACs induce proteasomal degradation of K-RasG12D ........... 86 

 

A1 Structure and characterization of wild type K-Ras fragment ............... 90 

A2 Structure and characterization of G12D K-Ras fragment .................... 91 

A3 Structure and characterization of hit 1: NDETY .................................. 92 

A4 Structure and characterization of hit 2: PSEEG ................................... 93 

A5 Structure and characterization of hit 3: SEEGG .................................. 94 

A6 Structure and characterization of hit 5: YEQGE .................................. 95 

A7 Structure and characterization of hit 6: YGEQE .................................. 96 

A8 Structure and characterization of hit 7: LRGDR .................................. 97 

A9 Structure and characterization of hit 8: QEKPP ................................... 98 

A10 Structure and characterization of hit 9: ELTFG ................................... 99 

A11 Structure and characterization of peptide 7b1 .................................. 100 

A12 Structure and characterization of peptide 7b2 .................................. 101 

A13 Structure and characterization of peptide 7b3 .................................. 102 

A14 Structure and characterization of peptide 7b4 .................................. 103 

A15 Structure and characterization of peptide 7b5 .................................. 104 

A16 Structure and characterization of peptide 7b6 .................................. 105 

A17 Structure and characterization of peptide 7b7 .................................. 106 

A18 Structure and characterization of peptide 7b8 .................................. 107 

A19 Structure and characterization of peptide 7b9 .................................. 108 

A20 Structure and characterization of peptide 7b10 ................................ 109 

A21 Structure and characterization of peptide 7b11 ................................ 110 

A22 Structure and characterization of peptide 7b12 ................................ 111 

 

 

 

 

 



 

 

xii 

LIST OF TABLES 

Number Page 

4.1 Hit sequences from K-RasG12D epitope-targeted anchor screen........... 76 

4.2 Sequence of second generation hits designed from hit 7b1 ................. 79



 

 

xiii 

NOMENCLATURE 

Ahx. 6-aminohexanoic acid 

Az4. L-azidolysine 

CPP. Cell penetrating peptide 

DIEA. N,N-Diisopropylethylamine 

EGF. Epidermal growth factor 

ELISA. Enzyme-linked immunosorbent assay 

Gnf. 4-guanidine phenylalanine 

HPLC. High Performance Liquid Chromatography 

ICC. Immunocytochemical 

MALDI-TOF MS. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry  

OBOC. One-bead-one-compound  

PCC. Protein catalyzed capture 

PEG. Polyethylene glycol  

PHD. Pleckstrin homology domain 

PIP3. Phosphatidylinositol (3,4,5)-trisphosphate 

Pra. Propargylglycine 

PROTAC. Proteolysis targeting chimeric molecule 

SPPS. Solid phase peptide synthesis 

SynEp. Synthetic epitope 

 



 

 

1 

C h a p t e r  1  

PROTEIN CATALYZED CAPTURE AGENTS AS AN ALTERNATIVE 

PLATFORM FOR DEVELOPING DIAGNOSTICS AND THERAPEUTIC 

REAGENTS 

1.1 Introduction  

There is a great need to develop high-affinity protein binding reagents. As proteins serve 

as the functional output of the genetic code it is crucial that new ligands are developed to 

advance our basic understanding of biological processes.  Development of such ligands can 

help elucidate protein functions, diagnose disease, and develop novel therapeutics. Such 

efforts are thus necessary to continue advancing the field of personalized medicine. 

 

The current standard reagents for protein binding assays are antibodies.1 Antibodies are 

large, typically 150 kDa, Y-shaped proteins that are normally created by the immune 

system to help combat disease.2 Researchers have used antibodies as tools for studying 

proteins for several decades. Antibodies have also proven useful as diagnostic reagents for 

detecting biomarkers such as human chorionic gonadotropin (hCG) in home pregnancy 

tests or the cancer-associated antigen Prostate-specific antigen (PSA).3 Additionally, 

antibodies are also a very useful class of therapeutic molecules to treat disease. For 

instance, the anti-inflammatory medication Humira is a monoclonal antibody against the 

pro-inflammatory signal TNF alpha and this molecule is used to treat myriad autoimmune 

diseases.4 However, while antibodies have become invaluable tools for basic research, 

diagnostics, and therapeutics, they do have several limitations that include lack of 
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reproducibility, instability, and poor bioavailability. Antibodies often suffer from batch 

to batch variability due to the biological nature of their production.5 They are often 

produced in immunized animals and the same animal will produce multiple antibodies 

against the same antigen. Complicating matters further is the fact that the same animal will 

produce different mixtures of antibodies after each immunization with the same antigen. 

In addition, if an antibody source, whether an animal or cell line, is lost then the 

corresponding antibody will also be difficult to reproduce — because research antibodies 

are often poorly characterized it is more likely that the antibody will be lost forever.6 

Moreover, antibodies can also suffer from instability. As with any protein, antibodies are 

subject to thermal denaturation, aggregation, and proteolytic degradation.7 Therapeutic 

antibodies are also known to be susceptible to oxidation which can abrogate the desired 

binding properties and effectiveness of the treatment.8 Finally, due to their relatively large 

size therapeutic antibodies are thought to be limited to extracellular targets.9 While 

therapeutic antibodies have been very successful against soluble proteins and extracellular 

membrane receptors a large number of important therapeutic targets are intracellular 

proteins that are inaccessible to this type of drug – membrane and secreted proteins only 

account for about one third of the approximately 20,000 proteins in the human proteome.10 

While antibodies are immensely useful for basic research, diagnostics, and therapeutics, 

complementary methods are still needed to develop protein-binding reagents.  

 

 Another useful class of reagents for studying and perturbing protein functions are small 

molecules. Small molecules are low molecular weight (typically <500 daltons) organic 

compounds that often have interesting biological properties. Small molecules are widely 
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used to modulate protein function through either activation or inhibition of the enzymatic 

activity of specific target proteins.11 These compounds can thus have dramatic effects on 

biological systems, depending on the protein target. By enabling the specific activation or 

inhibition of a given target small molecules can be useful probes for elucidating enzyme 

functions in cells.11 In addition, the relatively small size and hydrophobicity of many small 

molecules enable diffusion across biological membranes to reach intracellular targets — 

small molecules thus make up the majority of drugs.12 However, while small molecules 

have been developed against myriad enzymes they are typically limited to this class of 

protein, yet enzymes only represent a small portion of the proteome. They are often 

restricted to binding in small hydrophobic pockets of proteins and these pockets are most 

often found in enzymes where a substrate will bind prior to its transformation. Small 

molecule inhibitors can therefore outcompete the natural substrate for the active site and 

inhibit the enzyme’s catalytic activity.13 It has proven difficult to target non-enzymatic 

disease-associated targets such as transcription factors or protein-protein interactions 

because these proteins often lack hydrophobic pockets for small molecules to bind.14 

Therefore, targeting certain disease-associated targets will require alternative approaches 

to both antibodies and small molecules.  

 

While antibodies and small molecules differ in their chemical properties and uses, one class 

of molecule that can potentially combine the advantageous properties of these two groups 

is peptides.15 Antibodies are very useful because of their relatively high affinity and 

specificity for their corresponding antigen. While antibodies are 150 kDa macromolecules 

only a small portion of the structure is responsible for antigen recognition. The majority of 
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diversity found in an antibody variable regions is located in the single CDR-H3 loop,16 

and the average size of this loop is 15 amino acid residues17 – peptides thus represent 

promising antibody replacements. Additionally, peptides also have similarities to small 

molecules. The major strength of small molecules (bioavailability) is thought to arise in 

large part from their size and peptides can also be small enough to diffuse into cells and 

tissues. Indeed, over 60 therapeutic peptides have been approved to date with 

approximately 140 additional peptide drugs in clinical trials.18 The recent success of 

peptide medicines demonstrates that these molecules can potentially combine the favorable 

properties of antibodies and small molecules to develop new probes, diagnostics, and 

therapeutic reagents. One emerging class of useful peptides is protein catalyzed capture 

agents, which will be the focus of this thesis.  

 

1.2 Protein Catalyzed Capture Agents 

Protein catalyzed capture (PCC) agent technology is an emerging screening platform that 

enables the identification of high-affinity peptide ligands against a protein of interest. The 

screening approach is based on the iterative in situ click chemistry reaction that allows a 

target of interest to identify its own high-affinity, multiligand binder.  

 

A key component of this screening platform is the in situ click reaction between an azide 

and alkyne. This reaction was first developed by the Sharpless group as a target-guided 

method to identify potent, small molecule enzyme inhibitors.19 In their initial study the 

Sharpless group identified a small molecule inhibitor that could be divided into two 

fragments and each fragment was expanded into a small molecule library – one library was 
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functionalized with an azide and the other with an alkyne. Both libraries were then 

simultaneously incubated with the target protein and only the library elements that bound 

the protein adjacent to one another in the proper orientation could undergo the Huisgen 

1,3-dipolar cycloaddition reaction to create a new inhibitor. The resulting inhibitor was 

more potent than either library element alone. The protein thus serves as a scaffold to 

properly align the molecules and assemble its own “best fit” inhibitor.  

 

In the Heath group at Caltech we have been working to generalize the in situ click screening 

approach and have made several improvements. First, a novel one-bead-one-compound 

macrocyclic peptide library that presents either an azide or alkyne has been developed.20 

The library is easily synthesized via solid phase peptide synthesis using standard methods. 

The synthesis begins by making the linear library consisting of Pra-X1X2X3X4X5-Az4 

(where Pra = Propargylglycine and Az4 = Azidolysine) followed by a copper catalyzed 

azide-alkyne cycloaddition to close the macrocycle through the Pra and Az4 side chains. 

The variable region, X1-X5, is composed of the 18 naturally occurring amino acids 

(excluding Cys and Met) and yields more than 1.8x106 possible sequences. Unnatural 

amino acids can also be incorporated into the library increasing the potential diversity even 

more. The variable region is also sequenceable by Edman degradation. This allows facile 

identification of hit sequences.  

 

Secondly, our PCC agent screening platform utilizes a chemical epitope targeting strategy 

to home in on a specific region of the protein of interest.21, 22 The epitope of interest can be 

chemically synthesized with the addition of a Pra or Az4 click group and a biotin affinity 
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handle. This new synthetic epitope (SynEp) can then be screened against a macrocyclic 

library containing the opposite click group and hit sequences are identified with a 

streptavidin-reporter conjugate. Only the library peptides that bind to the SynEp will 

undergo the click reaction. While most small molecule probes are limited to targeting 

hydrophobic binding pockets, our epitope targeting strategy allows us to potentially target 

any site on a protein surface. Thus far we have targeted unstructured hydrophobic regions,21 

single amino acid point mutations,22 and allosteric enzymatic sites.23  

 

Additionally, a third major advance has been to iterate the in situ click screens to develop 

multiligand binders that are much improved over monoligands.23,24 After the initial epitope 

targeting screen the hit sequences are tested for binding to the full-length protein. After 

multiple rounds of binding assays a consensus sequence, typically called the anchor 

peptide, is chosen to improve upon with subsequent screens. As with the SynEp in the 

anchor screen, the anchor peptide is synthesized with a click group and biotin handle and 

incubated with the target protein in the presence of a library. Similar to the original in situ 

click study, the click reaction is catalyzed by the formation of a ternary complex between 

the anchor peptide, target protein, and the appropriate library element. The hit secondary 

ligands can then be combined with the anchor peptide to provide a series of biligand 

candidates. Typically, the biligands will show increased affinity and selectivity for the 

target protein compared to the anchor peptide. Once a consensus biligand is identified after 

multiple rounds testing the process can be iterated once again to develop a triligand peptide 

with further improved binding properties. These major advances have greatly improved the 
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in situ click screening approach and provide a promising strategy for the development of 

high-affinity protein ligands.  

 

The subsequent chapters of this thesis will describe the development of PCC agents against 

cancer-associated targets and new applications of this technology. One target of particular 

interest is the human protein Akt. Akt is a serine/threonine protein kinase with three closely 

related isoforms (Akt1-3) and is involved in cellular processes such as glucose metabolism, 

apoptosis, and cell proliferation.25,26 Aberrant Akt signaling is implicated in diabetes and 

in many cancers, making it an attractive drug and diagnostic target.27 This protein was thus 

chosen as a model target for PCC agent platform development. Several PCC agents were 

developed against the various domains of Akt – including the kinase domain, pleckstrin 

homology domain and the C-terminal hydrophobic motif – and the screening platform was 

greatly improved in the process. Chapter 2 describes the use of Akt-targeted PCC agents 

as antibody replacements in immunofluorescent imaging experiments. Akt is known to 

localize to the cell membrane upon cell stimulation and fluorescent PCC agents were able 

to visualize the membrane localization. A second set of PCC agents developed against the 

C-terminal domain of Akt demonstrated allosteric activation and inhibition of the protein’s 

enzymatic activity. Chapter 3 describes the functionalization of the allosteric Akt 

modulators with a cell penetrating peptide for cellular uptake in order to control Akt’s 

enzymatic activity in live cells.  

  

Also in Chapter 3 is the introduction of chemical degradation tags to PCC agents. An 

exciting new paradigm in drug discovery is the ability to induce protein degradation with 
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proteolysis targeting chimeric molecules, or PROTACs. A PROTAC is a 

heterobifunctional molecule that can form a ternary complex between a target protein and 

an E3 ubiquitin ligase by covalently linking existing ligands for each.28 When added to 

cells the PROTAC-induced association of the target protein with the E3 ligase results in 

ubiquitination and degradation of the target. The C-terminal Akt PCC agents were 

functionalized with a degradation tag and shown to induce degradation of Akt in cells.  

 

  Another exciting advance in PCC agent technology is the ability to target single amino 

acid point mutations on protein surfaces. Genetic mutation is often a key step in 

tumorigenesis, and selectively inhibiting the resultant mutant proteins is an attractive 

therapeutic strategy. The Akt1 gene was found to have a single point mutation (glutamic 

acid to lysine at position 17) in certain types of cancers.29 The E17K mutation of Akt is 

found in the pleckstrin homology domain and activates the protein by increasing its 

membrane association and thus activating the downstream signaling pathway. The PCC 

agent epitope targeting strategy was recently used to develop a capture agent that was 

selective for the oncogenic mutation and could inhibit Akt membrane localization. This 

new strategy opens the possibility of targeting other mutated oncoproteins. The 

oncoprotein K-Ras is another attractive target that is known to be a major driver in many 

human cancers. Finally, Chapter 4 of this thesis details efforts to target the oncoprotein K-

RasG12D with the PCC agent screening platform.  
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C h a p t e r  2  

PROTEIN CATALYZED CAPTURE AGENTS AS IMAGING PROBES 

TO VISUALIZE AKT SUBCELLULAR LOCALIZATION 

2.1 Summary of Contributions  

Parts of the contents of this chapter are adapted with permission from:  

(1)  Millward, S.W., Henning, R.K., Kwong, G.A., Pitram, S., Agnew, H.D., Deyle, K.M., 

Nag, A., Hein, J., Lee, S.S., Lim, J., et al. (2011). Iterative in Situ Click Chemistry 

Assembles a Branched Capture Agent and Allosteric Inhibitor for Akt1. J. Am. Chem. 

Soc. 133, 18280–18288. 

 This work was conducted in collaboration with Dr. Steven Millward. Steve led the study 

and carried out the majority of the experiments to identify and characterize the PCC agents 

reported here. I conceived of the imaging experiments, synthesized the necessary 

compounds, cultured the cells, and acquired the images. I also helped analyze the data and 

write the manuscript. The initial work is summarized and only the original data that I 

generated is included in this chapter. 
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2.2 Introduction  

 A critical bottleneck in the transition from a potential cancer biomarker to a clinical 

diagnostic tool is the availability of high-affinity, high-selectivity molecular entities to 

recognize and capture biomarkers from complex biological mixtures. Almost all current 

platforms employ antibodies as capture agents despite their high cost, poor stability,1,2 and 

the batch-to-batch variability that often characterizes biologicals. Many antibodies are poorly 

characterized, and reports have called into question the high specificity that is a perceived 

hallmark of antibodies.3,4 Emerging protein capture agent approaches, such as phage display 

peptides5 or nucleic acid aptamers, can potentially represent a powerful alternative to 

antibodies for certain diagnostic arrays.6,7 However, the challenge of finding a general and 

robust approach to produce protein capture agents that match the performance of monoclonal 

antibodies remains daunting. A high quality monoclonal antibody possesses a low-

nanomolar affinity and high target specificity. An ideal antibody replacement would be 

synthetically facile, be stable to a range of thermal and chemical conditions, and display high 

affinity and specificity for the target of interest.  

 

Iterative in situ click chemistry was used to develop a high-specificity, branched, triligand 

protein catalyzed capture (PCC) agent for the Akt kinase. Akt is a critical molecular router 

that mediates cellular signal transduction from the plasma membrane (cytokine receptors, 

GPCRs) to downstream effector molecules that control cell growth, apoptosis, and 

translation.8 Akt overexpression and/or hyperactivation has been observed in numerous 

cancer types.9 Such ubiquitous and aberrant Akt activity has made Akt a target for cancer 
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diagnostics and therapeutics.10 For developing a PCC agent against Akt, a novel screening 

strategy was developed. One can take advantage of the fact that an in situ click screen, in 

which an anchor ligand and protein target are screened against a large one-bead-one-

compound (OBOC) library, will selectively generate triazole-linked products on the hit 

beads. The presence of on-bead clicked product is thus taken to be the signature of a hit bead, 

leading to the concept of a product screen. Such a product screen was utilized to increase the 

affinity and selectivity of the final multiligand PCC agent.  

 

The Akt-binding PCC agent was developed by first identifying an anchor ligand. The initial 

anchor peptide was discovered by incubating the expressed kinase domain of Akt1 with a 

linear OBOC peptide library. The hit peptides were identified by probing the OBOC library 

for beads to which the protein was bound using Akt-specific antibodies. The consensus 

anchor sequence was identified as H2N-Az8-VFYRLGY-CONH2 (where Az8 is an unnatural 

amino acid with a side chain containing an eight carbon linker and a terminal azide) and the 

anchor showed a modest affinity of 25 µM. To increase the affinity of the anchor, a biligand 

branch was selected through a sequence of target and product screens. For these screens, the 

anchor peptide was modified with a C-terminal biotin for use in the product screen and 

incubated with an alkyne-containing, linear OBOC peptide library in the presence of the 

target protein. The most promising secondary ligand was identified as Pra-FWFLRG-

CONH2 and the resultant biligand showed an affinity of 338 nM. For triligand development, 

the in situ click screen was then iterated to identify a third ligand. The sequence of the tertiary 

ligand of the final branched PCC agent was RHERI and the Kd of the final triligand was 200 

nM. In order to test the utility of the PCC agent as a drop-in replacement for antibodies it 
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was employed in immunofluorescent imaging experiments. Fluorescent versions of the 

biligand and triligand were synthesized and used to stain cells in order to monitor the 

subcellular localization of Akt.  

 

2.3 Results and Discussion 

To explore the biological applications of PCC agents, we asked if these compounds can be 

used as labeling agents in immunofluorescent imaging experiments. To address this question, 

fluorescent Akt biligand and triligand (Figures 2.1 and 2.3) were synthesized and used to 

stain fixed and permeabilized OVCAR3 cells and compared with a fluorescein-labeled anti-

Akt monoclonal antibody. Previous studies have shown that Akt2 is overexpressed in the 

OVCAR3 ovarian cancer cell line, and so we utilized this cell line as an experimental 

platform for the immunocytochemical experiments (ICC).11 When cellular receptor tyrosine 

kinases are activated, Akt is known to localize to the inner leaflet of the plasma membrane 

through biding of its pleckstrin homology domain (PHD) to phosphatidylinositol (3,4,5)-

triphosphate (PIP3).
12 Thus, we sought to visualize Akt membrane localization by imaging 

OVCAR3 cells stimulated with EGF and/or Insulin. When cells were stained with the 

fluorescent biligand the effect was visible, but it was not as profound (Figure 2.2) — this 

may be due to some of the off-target binding in the biligand. We also later found that the best 

images were obtained when cells were stimulated with both EGF and insulin, while the 

biligand images were acquired after stimulation with EGF alone. When imaging with the 

fluorescent triligand (Figure 2.3), which has much improved specificity over the biligand, 

AKT membrane localization was much more apparent (Figure 2.4). These results 
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demonstrate the ability of PCCs to selectively bind their targets in complex cellular 

environments. 

 

2.4 Conclusion   

The ultimate test of a protein capture agent is whether or not it can be used to detect its 

cognate protein from a biologically relevant sample. Visualization of Akt membrane 

localization in the complex cellular milieu corroborates the in vitro biochemical data and 

confirms that the PCC agent screening platform is a viable approach to develop protein 

binders with high affinity and selectivity. In addition, fluorescence imaging has become a 

standard benchmark for PCC agent performance in subsequent studies.13–15 

 

2.5 Materials and Methods 

Peptide Synthesis 

 In general, peptides were synthesized using standard SPPS protocols either manually or 

on a Titan 357 automated peptide synthesizer (Aapptec). Briefly, FMOC resins were 

swelled in NMP and deprotected with 20% piperidine. Per coupling reaction, 4 equivalents 

of Fmoc-amino acid, 3.9 equivalents of HATU, and 12 equivalents of DIEA were added 

(equivalents relative to loading capacity of the resin). Couplings proceeded for 30-45 

minutes. Azido amino acids were added at 2 equivalents relative to the resin loading 

capacity. The N-termini were acetylated with 20 equivalents of acetic anhydride and 10 

equivalents of DIEA. In cases where use of Azido- amino acid Az8 produced a mixture of 

two diastereomers, the diastereomers were purified as a single product unless otherwise 

noted. 
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Synthesis of Fluorescein-biligand 

The anchor peptide VFYRLGY-CONH2 was synthesized on Rink Amide resin (Anaspec). 

Following addition of Az8, the resin was washed with NMP and set aside (Fmoc-Az8-

VFYRLGY-CONH2). In parallel the secondary ligand (Pra-FWFLRG-CONH2) was 

synthesized on Sieber amide resin. After Fmoc deprotection the fluorescein derivative 6-

[Fluorescein-5(6)-carboxamido]hexanoic acid (Sigma) was then conjugated to the amino 

terminus of the secondary peptide using 1.2 equivalents of fluorescein, 1.1 equivalents of 

HATU and 3 equivalents of DIEA and incubated at room temperature for 30 minutes. The 

peptide was cleaved by adding 4.5 mL 2% TFA in CH2Cl2 and incubating for 5 minutes. 

The TFA was quenched by filtration into 225 μL DIEA. The cleavage was repeated five 

times, the filtrates were combined, and the solvent removed by rotary evaporation. The 

protected fluorescent secondary peptide was then purified by C18 RP-HPLC with a 

dH2O:CH3CN (0.1% TFA) gradient. The product was confirmed by MALDI-TOF MS. 

The secondary peptide was coupled to the anchor peptide via copper catalyzed azide-

alkyne cycloaddition by addition of 1 equivalent of anchor peptide with 2 equivalents of 

fluorescent secondary peptide, 4 equivalents of CuI, and 6 equivalents of Ascorbic Acid. 

The reaction proceeded for 18 hours at room temperature followed by washing in NMP 

and copper chelation solution. The N-terminal Fmoc group was removed in 20% 

piperidine. 8 equivalents of 5-hexynoic acid (Sigma), 7 equivalents of HATU, and 24 

equivalents of DIEA were added in NMP and the reaction was allowed to proceed at room 

temperature for 2 hr. After washing with NMP, the 5HA-Fluorescent-Biligand was cleaved 

from the resin in 95:5:5 TFA:dH2O:TES and precipitated in diethyl ether. The product was 
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purified by RP-HPLC as a mixture of diastereomers and analyzed by MALDI-TOF mass 

spectrometry (Expected [M+H]+= 2612.00, Observed [M+H]+ = 2612.78).  

 

Synthesis of Fluorescein-triligand 

 For the synthesis of the fluorescent triligand, the biligand was synthesized as described 

above without the addition of the fluorescent dye. The tertiary peptide Az8-RHERI-

CONH2 was synthesized on Rink Amide resin as described. Following deprotection of the 

N-terminal Fmoc group, the resin-bound tertiary peptide was reacted with 1.2 equivalents 

of 6-[Fluorescein-5(6)-carboxamido]hexanoic acid (Sigma), 1.1 equivalents of HATU, and 

3 equivalents of DIEA at room temperature for 30 minutes. Following cleavage from resin, 

C18 RP-HPLC purification and MALDI-TOF verification of the product, the fluorescein-

labeled tertiary peptide was coupled to 5HA-Biligand-Bio via copper catalyzed azide-

alkyne cycloaddition by addition of 1 equivalent of fluorescein-labeled tertiary peptide to 

1.15 equivalents of 5HA-Biligand-Bio, and 3 equivalents of TBTA in the presence of 10 

mM CuI and 30 mM L-ascorbic acid in 4:1 NMP:water. The reaction proceeded for 24 

hours at room temperature. The fluorescent triligand was purified by RP-HPLC and 

analyzed by MALDI-TOF MS: Expected [M+H]+ = 3841.0, Observed [M+H]+ = 3840.8. 

 

Immunofluorescence Microscopy 

OVCAR3 cells were grown on poly-lysine coated cover slips, then serum starved for 1 hr. 

The cells were then treated with either 400 ng/mL EGF (Sigma) or 20 μg/mL insulin 

(Sigma) or untreated for 10 minutes. Cells were then fixed with 10% formaldehyde for 10 

min at 37 °C, washed with PBS, permeabilized by incubating with 0.1% Triton X-100 for 
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5 min at room temperature, and blocked with 5% goat serum. Permeabilized cells were 

stained with either a fluorescein-conjugated Pan Akt antibody (R&D Systems IC2055F, 10 

μg/mL) overnight, 1 μM fluorescein conjugated biligand for 1 hour, or 100 nM fluorescein-

triligand for 1 hr. Images were acquired using a Zeiss Pascal 5 Laser Scanning Microscope 

(Caltech Biological Imaging Center). 
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2.6 Figures 

 

 

 

 

 

 

 

 

 

 

  

Figure 2.1 – Chemical structure of fluorescent Akt biligand 
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Figure 2.2 – Imaging Akt membrane localization with fluorescent 

biligand. OVCAR3 cells stimulated with or without EGF and stained with a 
fluorescent anti-AKT antibody (Ab) or the AKT biligand (BL).  
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Figure 2.3 – Structure of fluorescent Akt triligand 
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Figure 2.4 – Imaging Akt with fluorescent triligand PCC agent. 

Immunofluorescent images of Akt in fixed OVCAR3 cells stained with either a 

fluorescein-conjugated anti-Akt antibody (Ab) or a fluorescein-conjugated triligand 

(TL). Each imaging agent distinguishes cytoplasmic or membrane-bound Akt in 

unstimulated or EGF+insulin-treated cells, respectively. Contrast is enhanced 

equally in all images, but the fluorescence images of the triligand stained cells were 

achieved at a 3-fold lower excitation laser intensity relative to the (much dimmer) 

antibody-stained cells. Scale bar = 100 μm. 
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C h a p t e r  3  

ACTIVATION, INHBITION, AND DEGRADATOIN OF AKT USING 
PROTEIN CATALYZED CAPTURE AGENTS 

3.1 Summary of Contributions  

Adapted with permission from:  

(1) Henning, R.K., Varghese, J.O., Das, S., Nag, A., Tang, G., Tang, K., Sutherland, A.M., 

and Heath, J.R. (2016). Degradation of Akt using protein-catalyzed capture agents. J. 

Pept. Sci. 22, 196–200. 

 

This work was performed in close collaboration between Dr. Joseph Varghese and myself as 

indicated in our co-first authorship on resultant publication from our efforts. In the early 

stages of the project Joey optimized several reactions that were necessary for synthesizing 

the PCC agents used in the study, such as the TAT cleavage reaction. Together we worked 

closely to synthesize, purify, and characterize the compounds reported and we also 

collaborated while conducting several of the assays. My unique contribution was the 

incorporation of the degradation tag for PROTAC development. 
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3.2 Introduction 

Protein-catalyzed capture (PCC) agents are a class of ligands that are built using in situ 

click chemistry1 to allow a protein of interest to select its own high-affinity binders.2 These 

synthetic peptides have some similarities to monoclonal antibodies, but are a fraction of 

the size and can exhibit a high level of stability.3 A recent advance of this technology 

permits the targeted development of a PCC against a specific epitope of a given protein.4,5 

Unlike the case for small molecule ligands, the generalized PCC epitope targeting strategy 

does not rely on the presence of a hydrophobic binding pocket. This opens up several non-

traditional approaches towards altering enzymatic activity, including the targeting of sites 

that can allosterically influence that activity6 or by disrupting protein-activator 

associations.7 A second possibility is simply to use the synthetic flexibility of the PCC 

agent as a selective targeting moiety for labeling the target with a molecular signal, such 

as a degradation signal, as is used for the case of proteolysis targeting chimeric molecules 

(PROTACs). Here, we explore the use of a pair of epitope-targeted PCC agents developed 

against an allosteric site of Akt2 for in-cell allosteric activation, inhibition, and degradation 

of Akt. 

 

We previously reported the development of a pair of PCC agents targeting the C-terminal 

hydrophobic motif of Akt2 that includes the Ser474 residue.5 Phosphorylation of Akt at 

Ser474 leads to allosteric activation of Akt and increases the kinase activity tenfold.8 We 

therefore hypothesized that targeting the Ser474 site could lead to compounds that 

influence Akt kinase activity. We increased the interaction footprint of the initial epitope-
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targeted 5-mer peptide ligand with Akt2 by expanding it into two distinct triligands 

through in situ click chemistry screens. The two PCC agent triligands, tri_a and tri_i, 

developed from the same epitope-targeted the anchor peptide, were shown to activate and 

inhibit Akt enzymatic activity respectively, in in vitro kinase assays.5 

 

Although specific peptides (typically macrocycles) have been designed for cell entry,9 the 

tri_a and tri_i PCC agents are branched structures consisting of linear branches, and so do 

not naturally enter into live cells. A common approach for cellular delivery of peptides is 

to append a cell penetrating peptide (CPP),10 and that is the route we choose here. CPP-

labeled tri_a was found to penetrate into live cells. The influence of the CPP-labeled 

compounds on in-cell kinase activity and on cellular proliferation were then explored in 

two cancer cell lines. We next modified the two triligands to present a HIF-1α degradation 

signal and explored the capacity of these compounds to promote in-cell Akt degradation. 

 

3.3 Results and Discussion  

We conjugated the PCC agents to the HIV TAT peptide, which is a CPP that efficiently 

penetrates cell membranes via endocytosis, and allows CPP-bound molecules to enter 

cells.11 Figure 3.1A shows the structure of TAT-conjugated tri_a, where the TAT sequence 

is separated from the capture agent by two PEG spacers placed on either side of a protected-

lysine residue. This permits further functionalization as desired during the solid phase 

peptide synthesis via the lysine ε-amino group (adding a dye, signaling peptide, etc.). To 

validate cellular uptake, we treated U87 cells with fluorescein-labeled tri_a (CPP-tri_a-

FL, Figure 3.1B and Figure 3.7) and acquired simultaneous fluorescence and transmission 
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images. U87 cells are particularly useful for imaging because they grow in a uniform 

monolayer.12 We found that the CPP-tri_a-FL is able to efficiently penetrate the cell 

membrane and enter the cells. No fluorescence signals were detected outside the cells, and 

the uniform distribution of the fluorescence through the cell cytoplasm suggests that the 

PCCs were released into the cells (rather than completely trapped within endosomes).  

 

We next performed functional assays to confirm that the in vitro effects translate into live 

cells. The enzymatic activity of Akt can be monitored by measuring the phosphorylated 

level of its direct substrate, glycogen synthase kinase 3 beta (GSK-3β).13 SKOV3 ovarian 

cancer cells were dosed with TAT-coupled tri_a (CPP-tri_a, Figures 3.1A and Figure 3.6) 

for various times. Following cell lysis, the relative levels of various proteins were measured 

via western blotting (Figure 3.2A). Both untreated cells and EGF-stimulated cells were 

used as controls. The level of phospho(p)-GSK-3β was seen to increase after 1 h of 

treatment, decrease over the next few hours, and finally increase once more – perhaps 

alluding to a feedback mechanism in the cell. The initial increase in the p-GSK-3β level 

indicates that the capture agent is binding Akt and stimulating its enzymatic activity in 

cells. The p-Akt level initially increases and then steadily decreases over time. Notably, 

EGF-stimulated cells display a large increase in p-Akt, but the corresponding level of p-

GSK-3β in EGF-stimulated cells is still lower than the initial levels in cells treated with 

CPP-tri_a. 

 

We next performed an XTT cell proliferation assay to determine if Akt activation by CPP-

tri_a stimulates cell proliferation.14 Dehydrogenase enzymes in live cells reduce XTT 
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tetrazolium salt to a vividly colored formazan dye that can be used to quantify the 

number of viable cells.15,16 We found that CPP-tri_a affected both OVCAR3 and SKOV3 

cell lines (Figure 3.2B). Interestingly, for both cell lines, a sharp increase in proliferation 

after 24 h is followed by a steady decrease over a few days – once more suggesting a 

possible feedback mechanism. Eventually, after several days of treatment, cellular 

proliferation falls back to baseline levels for SKVO3 cells while OVCAR3 cells are 

inhibited relative to the untreated control. An initial increase in cell number after treatment 

with CPP-tri_a is consistent with previous studies showing that Akt activation promotes 

cell cycle progression during the G1 and G2 phases of the cell cycle.17,18 Additionally, 

activated Akt is known to inhibit the pro-apoptotic bad protein,19,20 as well as the FoxO 

and Myc family of proteins.21,22 Such enhanced cell proliferation can be used in beneficial 

ways. Many pathological disorders are associated with aberrant cell death signaling, 

including various neurodegenerative diseases.23 Akt activation was recently shown to 

prevent neuronal cell death.24 Thus, an Akt activator might prove useful as a tool to probe 

the Akt signaling pathway and to help develop potential therapeutics for disease-associated 

apoptosis abnormalities. In any case, these results further corroborate the in vitro data that 

tri_a directly activates Akt. 

 

Similarly, the TAT-modified tri_i (CPP-tri_i, Figure 3.3) inhibits phosphorylation of GSK-

3β and reduces cancer cell viability (Figure 3.4). SKOV3 cells were treated with 50 µM 

CPP-tri_i for various times, lysed simultaneously, and analyzed by western blot (Figure 

3.4A). Cells treated with tri_i show less phospho-GSK-3β than untreated or EGF 

stimulated cells over the entire 24 hour time course. Similar to CPP-tri_a, CPP-tri_i 
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inhibition of Akt appears to be independent of Akt phosphorylation at Ser473. 

Additionally, CPP-tri_i also inhibits cell proliferation. SKOV3 and OVCAR3 cells each 

show an initial drop in cell viability upon treatment with CPP-tri_i, with values remaining 

consistently lower than untreated cells for 5 days (Figure 3.4B). The results from the XTT 

assays are consistent with the expected phenotypic outcome of Akt inhibition. 

 

Proteolysis targeting chimeric molecules represent an example of using cellular signals to 

control levels of specific proteins.25,26 In particular, PROTACs utilize the quality control 

machinery of the cell by artificially labeling proteins for proteasomal degradation. We 

sought to create Akt PROTACs by encoding a peptide ligand for the E3 ubiquitin ligase 

von Hippel Lindau protein directly into the CPP-labeled PCC agents.27 The peptide 

represents the von Hippel Lindau binding site from hypoxia-inducible factor (HIF-1α) 

protein. 

 

When OVCAR3 cells were treated with CPP-tri_a-PR over a variable time period up to 

24 h Akt levels diminished. After 30 min of treatment, a relative decrease in Akt level was 

measurable, with a continuing decrease that reached a nadir after 4 h (Figure 3.5A). 

Similarly, CPP-tri_i was also modified into a PROTAC (CPP-tri_i-PR, Figure 3.9) and 

effectively removed Akt from cells, with a slightly slower time constant (Figure 3.5B). We 

also observed a dose-dependent decrease in Akt upon treatment with the CPP-tri_a-PR 

and determined an EC50 degradation constant of 128 ± 19 μM (Figure 3.5C). 
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3.4 Conclusion 

Previous PROTACs have been developed by adding a degradation signal to a modified 

protein ligand28 or previously discovered inhibitors.29,30 Here, we report that epitope-

targeted PCC agents can be modified into PROTACs to direct synthetic degradation to 

specific proteins in cells. We also show an Akt activator and inhibitor can both serve as 

PROTACs (Figure 3.5), indicating that ubiquitination and degradation of this protein can 

be induced regardless of the activation state of the protein. Targeting proteins for enzymatic 

destruction is an attractive alternative to developing traditional small molecule inhibitors, 

especially for proteins (such as Akt) that are difficult to inhibit with traditional methods.31 

 

The principle concept reported here is the use of an epitope-targeted PCC as simply a 

vehicle for directing PROTAC-initiated degradation to a specific target. A limitation of 

this approach, as reported, is that the PCCs are not intrinsically cell penetrant, and so were 

modified with a CPP for the in-cell assays. We have recently reported on epitope-targeted 

macrocyclic PCC agents,4 and such peptide architectures have been modified for both cell 

permeability9,32,33 and other desired pharmacokinetic properties.34 Other promising 

proteolysis tags include members of the IMiD family, such as thalidomide, which is a drug 

with a rich history.35 In 2010, it was discovered that thalidomide targets the E3 ubiquitin 

ligase member cereblon.36 Related examples of cereblon-targeted degradation include the 

use of pomalidomide37 and phthalimide38 for PROTAC development. 

 

3.5 Materials and Methods  

Solid phase peptide synthesis general protocol:  
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Peptides were synthesized on Rink Amide MBHA, Biotin Novatag, and Sieber Amide 

resin either manually, on a Liberty1 Microwave Peptide Synthesizer (CEM), or on a Titan 

357 Automatic Peptide Synthesizer (AAPPTec). Peptide coupling reactions were done in 

NMP with 2 equivalents of amino acid, 2 equivalents of HATU and 6 equivalents of N,N-

Diisopropylethylamine (Sigma). For removal of Nα-Fmoc protecting groups, a solution of 

20% piperidine in NMP was used.  

 

Acylation 

 The resin was treated twice for ten minutes with a solution of anhydrous acetic anhydride 

and DIEA in NMP (acetic anhydride: DIEA: Peptide; 40:20:1) at room temperature. Excess 

reagent was removed by washing five times successively with NMP.  

 

Cleavage of side chain protected peptides 

 The peptides were synthesized on Sieber Amide resin and cleaved by washing three times 

for one minute with 1% TFA/DCM, and finally washed with DCM. The acidic peptide 

solution was neutralized using 2 equivalents of DIEA followed by removal of the solvent 

by rotary evaporation. The remaining semisolid was dissolved in filtered DMSO, HPLC 

grade acetonitrile, and double distilled water, and purified via HPLC.  

 

Cleavage of side chain deprotected Biotin Linker peptide 
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 The peptides were synthesized on Biotin Novatag resin. The dried resin was then treated 

with a TFA cleavage solution of 95% TFA, 2.5% H2O, and 2.5% triethylsilane for two 

hours at room temperature. The cleavage solution was filtered to remove the resin and 

added dropwise to an ice-cooled solution of diethyl ether.  

 

Cleavage of TAT-containing peptides 

 TAT-containing peptides were synthesized on Rink Amide MBHA resin. The dried resin 

was then incubated with a TFA cleavage solution of 80% TFA, 10% thioanisole, 5% H2O, 

5% triethylsilane for 3 hours at room temperature. The cleavage solution was filtered to 

remove the resin and added dropwise to a cooled solution of diethyl ether. 

 

HPLC purification of peptides 

 All peptides were purified using a preparative or semi-preparative scale HPLC with a C18 

reverse phase column. A gradient of double distilled water and HPLC grade acetonitrile 

and 0.1% TFA was used for all purifications. 

 

Protocol for on-bead copper (Cu) catalyzed azide alkyne cycloaddition (CuAAC) click 

reaction 

 On-bead Cu catalyzed click reactions were performed with the azide on bead and the 

alkyne in solution. The resin was treated with 2 equivalents of the relevant alkyne, 1.5 
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equivalents of CuI (Sigma), and 2.5 equivalents of ascorbic acid (Sigma), in a solution 

of 20% piperidine in DMF. The reaction was performed overnight at room temperature. 

Excess copper was removed from the resin by washing with a Cu chelating solution (5% 

(w/v) sodium diethyl dithiocarbamate, 5% (v/v) DIEA in DMF).  

 

Removal of Dde protecting group 

 For removal of Dde protecting groups, resin-bound peptide was washed with a solution of 

2% hydrazine in DMF three times for ten minutes. 

 

Mass spectrometry analysis 

 All intermediate and final peptides were analyzed via MALDI-TOF-MS using a Voyager 

DE-PRO MALDI TOF-MS system (Applied Biosystems). Peptides were dissolved in 

50:50 water/acetonitrile with 0.1% trifluoroacetic acid at a final concentration of 10 

pmol/µL. 1 µL of the peptide sample was then added to 10 µL of a saturated solution of 

MALDI matrix, either α-cyano-4-hydroxycinnamic acid or Sinapinic Acid, in 50:50 

water/acetonitrile with 0.1% trifluoroacetic acid and analyzed via MALDI-TOF MS.  

 

Synthesis of CPP-tri_a 

 For the synthesis of the N-terminal triligand the HIV-TAT sequence H2N-

GRKKRRQRRRPPQQ-CONH2 was synthesized on rink amide MBHA resin using 
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standard SPPS conditions. Fmoc-PEG5-COOH was then coupled to the N-terminus of 

the resin-bound TAT peptide with 1.5 equivalents of PEG5, 1.5 equivalents of HATU and 

4.5 equivalents of DIEA. Following the PEG5 coupling and subsequent Fmoc deprotection 

Fmoc-Lysine(Dde)-OH was then coupled using standard conditions. After the Lys(Dde) 

coupling and deprotection a second PEG5 group was added. The N-terminal triligand was 

then synthesized on the resin bound PEG5-Lys(Dde)-PEG5-TAT peptide as previously 

reported.5 The Dde group was then removed and the peptide was either cleaved/deprotected 

and purified for assays or further modified at the epsilon amino group of the lysine side 

chain at the linker region. The TAT-conjugated triligands were cleaved from the resin in 

80:10:5:5 TFA:thioanisole:TES:H2O for 2.5 hours. Expected [M+H]+ = 6047.1, Observed 

[M+H]+ = 6049.9. The molecular structure of CPP-tri_a is shown in Figure 3.6  

 

Synthesis of fluorescently labeled CPP-tri_a 

 To resin-bound N-terminal triligand described above, 5-Carboxyfluorescein was coupled 

to the epsilon amino group of the lysine side chain at the linker region. The coupling 

reaction was performed with 1:1.5:1.5:4.5 ratios of peptide:5-

Carboxyfluorescein:HATU:DIEA. The peptide was then cleaved and purified with the 

same conditions as the unlabeled N-terminal triligand. MALDI-TOF MS: Expected 

[M+H]+ = 6405.4, Observed [M+H]+ = 6408.7. The molecular structure of CPP-tri_a-FL 

is shown in Figure 3.7. 
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Synthesis of CPP-tri_a-PR with HIF-1α degradation signal 

To resin-bound N-terminal triligand previously described, 6-aminohexanoic acid(Ahx) 

followed by the HIF-1a degradation peptide ALAPYIP were coupled to the epsilon amino 

group of the lysine side chain at the linker region using standard SPPS conditions. The 

peptide was then cleaved and purified with the same conditions as the unlabeled N-terminal 

triligand.  MALDI-TOF MS: Expected [M+H]+ = 6886.1, Observed [M+H]+ = 6885. The 

molecular structure of CPP-tri_a-PR is shown in Figure 3.8.   

 

 

Synthesis of CPP-tri_i inhibiting triligand 

Unlabeled C-terminal triligand was synthesized as previously reported.5 Fmoc-PEG2-

COOH was then coupled to the N-terminus of the resin-bound peptide with molar ratios of 

1:1.5:1.5:4.5 peptide:PEG2:HATU:DIEA. Ahx followed by cysteine were then coupled 

using standard conditions and 5-carboxyfluorescein was coupled as before resulting in 

compound 1. Fluorescent C-terminal triligand was then cleaved with 95:2.5:2.5 

TFA:H2O:TES and HPLC purified. The observed MALDI-TOF MS [M+H]+ = 4001.6, 

which is +4 amu from expected [M+H]+ = 3997.6, most likely due to oxidation of 

tryptophan to kynurenine39 – tryptophan oxidation is a known artifact in MS of petides.40  

Dibenzocyclooctyne-maleimide (Sigma) was then coupled to the cysteine thiol group as 

reported41 to yield cyclooctyne C-terminal triligand 2 (Figure 3.10). The crude mixture was 
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then HPLC purified and a single peak at 495 nm (Fluorescein λmax) was collected 

corresponding to compound 2.  

 

Azide-containing TAT peptide 3 was synthesized using standard conditions and Fmoc-

PEG2-COOH was coupled as before followed by addition of 5-azidopentanoic acid using 

standard coupling conditions. Resin-bound 3 was then cleaved and purified with conditions 

mentioned above. Peptides 2 and 3 were then clicked together as reported41 resulting in C-

terminal triligand 4 (Figure 3.11 ). The crude mixture was then injected onto a semiprep 

C18 reverse phase HPLC column and new peak appeared that was distinct from the HPLC 

traces of compounds 2 and 3 alone, corresponding to peptide 4. Peptide 2 elutes from the 

analytical HPLC beginning around 18 minutes and TAT peptide 3 begins eluting around 8 

minutes. After the strain-promoted click reaction peptide 4 elutes after approximately 11 

minutes.  MALDI-TOF MS: Expected [M+H]+ = 6582.6, Observed [M+H]+ = 6599.1. The 

+16 difference is likely due to oxidation of the peptide in the MALDI-TOF.  

 

Synthesis of CPP-tri_i-PR with HIF-1α degradation signal 

Resin-bound HIV-TAT peptide H2N-PEG5-Lys(Dde)-PEG5-GRKKRRQRRRPPQQ-

CONH2 was synthesized as described above. The C-terminal triligand was then synthesized 

onto the TAT peptide as before. The ε-amino group of the Lys(Dde) in the linker region 

was then deprotected and the degradation sequence Ahx-ALAPYIP was added by SPPS as 



 

 

39 

with the N-terminal triligand. [M+H]+ = 6641.81, Observed [M+H]+ = 6641.89. The 

molecular structure of CPP-tri_i-PR is shown in Figure 3.9.   

 

Cell Culture 

All cell lines were purchased from American Type Culture collection Q4 (Manassas, VA, 

USA). U87 (ATCC number HTB14), OVCAR3 (ATCC number HTB161), and SKOV3 

(ATCC number HTB77) cells were cultured under conditions specified by the provider. 

 

Fluorescence Microscopy 

Cells were seeded onto chambered cover glass slides (Sigma-Aldrich, St. Louis, MO, USA) 

and allowed to attach overnight. The following day, cells were serum starved and treated 

with fluorescent capture agent. Live cells were then imaged using a Zeiss (Oberkochen, 

Germany) LSM5 Exciter microscope in the Caltech Biological Imaging Center. 

 

Immunoblotting 

Western blots were performed according to standard protocols. Briefly, cells were lysed 

with cell lysis buffer (Cell Signaling Technology) containing protease and phosphatase 

inhibitors (Cell Signaling Technology). Cell lysates were quantified with a Bradford 

protein assay (Thermo Scientific, Waltham, MA, USA) and prepared for gel 

electrophoresis in Laemmli sample buffer and reducing agent. Twenty micrograms of cell 

lysate were added to precast polyacrylamide gels (Bio-Rad Laboratories, Inc., Hercules, 

CA, USA), and proteins were separated by electrophoresis followed by transfer to PVDF 
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membrane. Membranes were then blocked and probed with primary antibodies followed 

by horseradish peroxidase-conjugated secondary antibodies. The bands were visualized via 

a chemiluminescent substrate (Thermo Scientific). The following antibodies were used 

according to manufacturer protocol: p-GSK3β (Cell Signaling, 9323), GSK3β (Cell 

Signaling, 12456), AKT (Cell Signaling, 4691), p-AKT (S473) (Cell Signaling, 4060), 

Actin (Cell Signaling, 8456), and HRP-linked Anti-rabbit IgG (Cell Signaling, 7074). 

 

Cell Proliferation Assay 

Cell viability kit II (XTT) assay was purchased from Cell Signaling Technology (#9095) 

and used according to manufacturer protocol. Briefly, 1x104 cells per well were seeded in 

a 96-well plate. The following day, cells were serum starved and treated with PCC agent. 

Following treatment, XTT was added to the media, and after 1 h, the absorbance at 450nm 

was measured. 

 

In-cell ELISA Assay 

In-cell ELISA kits were purchased from Thermo Scientific (#62215) and used according 

to manufacturer protocol. Briefly, 1 × 104 cells were seeded in 384-well plates and allowed 

to attach overnight. The following day, cells were serum starved and treated with capture 

agent. Following capture agent treatment, cells were fixed, permeabilized, blocked, and 

then stained with primary and HRP-conjugated secondary antibody and developed with 

colorimetric peroxidase substrate. The absorbance was measured at 450 nm to quantify the 

protein. Cells were then incubated with Janus Green whole-cell stain, and the absorbance 
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was measured at 615 nm to quantify relative number of cells per well. The Akt signal 

was then normalized to the relative cell number for each well to determine the Akt/cell. 
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3.6 Figures 

  

Figure 3.1 – Exploiting the modularity of Akt-activating PCC agent tri_a. (A) Structure of Akt-

activating N-terminal triligand, tri_a. The lysine residue between the PEG spacers can be further 

functionalized with fluorescein or the degradation-inducing Hif-1α peptide. Complete structures are 

shown in the subsequent figures. R = H is referred to as CPP-tri_a, R = fluorescein is CPP-tri_a-

FL, and R = ALAPYIP (Hif-1α degradation peptide) is CPP-tri_a-PR. (B) Live-cell confocal 

images of the fluorescein-labeled capture agent CPP-tri_a-FL delivered into U87 cells. 
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Figure 3.2 - tri_a activates Akt in cells. (A)Western blots of SKOV3 cells treated with 

50 μM CPP-tri_a. Densitometry was performed on the p-GSK-3β blot, and the relative 

intensities were plotted on the bar graph below the blotting assays. (B) XTT cell 

proliferation assay results from OVCAR3 and SKOV3 cells treated with 50 μM CPP-

tri_a for times varying from 1 to 5 days. A student’s t-test was used to determine 

significant differences where * = p-value ≤ 0.05 and *** = p-value ≤ 0.01. 
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Figure 3.3 - Structure of Akt-inhibiting CPP-tri_i 
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A B 

Figure 3.4 – CPP-tri_i inhibits Akt in cells. (A) Western blots of SKOV3 cells treated with 50 μM CPP-

tri_i. Cells were treated for various times and compared with 100 ng/mL EGF stimulation and an untreated 

control. Densitometry was performed on the p-GSK-3β blot and the relative intensities were plotted on the 

graph below. (B) XTT results from OVCAR and SKOV3 cells treated with 50 μM CPP-tri_i for 1-5 days. 

Each point shows a decrease in relative proliferation compared to the control. A student’s t-test was used to 

determine significant differences where * = p-value ≤ 0.05 and *** = p-value ≤ 0.01. 
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Figure 3.5 – PCC agent-induced degradation of Akt (A) In-cell ELISA measurement of Akt in 

OVCAR3 cells treated with CPP-tri_a-PR for various times. (B) In-cell ELISA measurement of 

Akt in OVCAR3 cells after treatment with 100 μM tri_i-PR for various times. (C)In-cell ELISA 

measurement of Akt after 4 hour treatment at variable CPP-tri_a-PR doses. Results show dose-

dependent degradation of Akt with an EC
50

 value of 128±19 µM 
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Figure 3.6 - Structure of CPP-tri_a 
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Figure 3.7 - Structure of CPP-tri_a-FL 
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Figure 3.8 - Structure of the CPP-tri_a-PR 
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Figure 3.9 - Structure of CPP-tri_i-PR 
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Figure 3.10 – Reaction scheme for synthesizing cyclooctyne-containing tri_i. The C-terminal 
triligand was synthesized with a cyclooctyne via thiol-maleimide conjugation for copper-free click 
chemistry.  
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Figure 3.11 – Reaction scheme for synthesizing CPP-tri_i. The C-terminal triligand, CPP-tri_i was 
synthesized with via copper-free click chemistry by reacting the cyclooctyne-containing C-terminal 
triligand with azide-containing TAT peptide.  

4 

2                     +                    3 
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C h a p t e r  4  

DISCOVERY OF THE FIRST SELECTIVE LIGANDS AGAINST 
THE MUTANT ONCOPROTEIN K-RASG12D  

 

4.1 Summary of Contributions  

I have worked independently on this project for the majority of its existence. I identified the 

target and the degradation strategy and have conducted the majority of the experiments 

myself. However, I did greatly benefit from several technical advances to the screening 

platform that were made by my colleagues such as the epitope targeting strategy and the 

macrocyclic peptide libraries. I also received help from several amazing summer students 

over the years. This work has not yet been published but a patent application is currently 

pending.  
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4.2 Introduction 

The KRAS oncogene is a member of the Ras family of GTPases that are involved in 

numerous cellular signaling processes.1 The Ras protein can act as a molecular switch by 

adopting two distinct conformations, depending on the nucleotide that is bound to the 

protein. When bound to GTP Ras is in the active state and sends downstream signals that 

result in cell division. Ras is inactivated upon GTP hydrolysis to GDP and cells can then 

enter a resting state.2 Activating Ras mutations are present in up to 30% of all tumors, 

including as many as 90% of pancreatic cancers.3 K-Ras is the Ras family member that 

most often associated with tumorigenesis. Ras mutations tend to abrogate the enzymatic 

activity and render the protein constitutively active due to the persistent GTP-bound state 

- active Ras will then result in increased cell proliferation due to upregulation of the MAPK 

and PI3K pathways, respectively.4 Due to the clinical significance of this protein, many 

attempts have been made to develop Ras inhibitors but no targeted therapy has been 

developed thus far. This is largely due to the difficulty in outcompeting GTP for the K-Ras 

binding pocket in cells, and the lack of known allosteric regulatory sites.5  

 

A recent study presented the first compounds that specifically target a mutant form of K-

Ras.6 Non-small cell lung cancer often presents a K-RasG12C mutation that is associated 

with poor prognosis.7 The nucleophilicity of the cysteine thiol group can be targeted with 

electrophilic compounds and screening K-RasG12C against such a chemical library yielded 

promising hits that could inhibit the mutant protein – efforts are now underway to optimize 
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these compounds towards potential clinical candidates.8 However, this strategy is not 

applicable to targeting other more common Ras mutations. 

 

The most common K-Ras mutation is glycine 12 to aspartic acid (G12D) – this mutation 

accounts for nearly half of all K-Ras oncoproteins.9 We recently used an in situ click 

chemistry screen to identify PCC agents that are the first known compounds that bind K-

Ras with preference for the oncogenic G12D mutation. Our compounds are capable of 

binding to the surface of K-Ras, thus circumventing difficulties encountered in previous 

research where a binding pocket was needed.  

 

4.3 Results and discussion 

 

Epitope targeting screen. To develop these new compounds we used the epitope-targeting 

PCC agent platform to target the specific region of interest.10 First, the non-cancerous wild-

type K-Ras epitope encompassing the glycine 12 residue was synthesized (Figure 4.1A). 

The leucine residue near glycine 12 was replaced with propargylglycine in order to provide 

a click handle where members of an azide library could then bind. This azide library was a 

macrocyclic one-bead-one-compound (OBOC) peptide library with 1.4x106 unique 

members (Figure 4.2).11 Approximately 200 hits clicked to the wild-type K-Ras fragment, 

and were removed from the screen in order to avoid selecting hits that bind to the wild-

type protein (Figure 4.3). The remaining beads were then incubated with another 

propargylglycine-functionalized fragment – this time containing the oncogenic G12D 

mutation (Figure 4.1B) – and seven hit beads were identified. The seven hits yielded nine 
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potential compounds due to ambiguity in some of the sequencing results (Table 4.1). The 

nine sequences were then synthesized and tested for binding to the full-length K-RasG12D 

protein by ELISA assays (Figure 4.4, Appendix A). The best binder was also tested for 

selectivity to wild type or G12D K-Ras and showed a preference for K-RasG12D. Hit seven 

demonstrated the best performance in the single point ELISA assays and the variable region 

was identified as LRGDR. Hit 7b, which was subsequently renamed 7b1 after a second 

series of compounds was generated, has an affinity for K-RasG12D of 33 µM and 

approximately 4:1 selectivity over the wild type protein (Figure 4.5). The mutant selectivity 

of hit 7b1 makes this compound an extremely promising initial candidate given the 

significance of this oncoprotein and the fact that no K-RasG12D-selective compounds have 

been reported to date.   

 

Second generation hits. In order to optimize hit 7b1 a second generation of compounds 

was synthesized based on rational modifications to the 7b1 variable region (Appendix A) 

– the sequences of the new compounds are listed in Table 4.2. The new PCC agent 

candidates were tested via single point ELISA assays and two new compounds of particular 

interest emerged – the compounds were identified as hits 7b5 and 7b10 (Figure 4.6).  

 

Characterization of ligand 7b10. From the single point ELISA assay of the new 

compounds hit 7b10 showed the greatest signal for K-RasG12D binding – this compound 

was therefore chosen for further characterization. Hit 7b10 was generated by replacing the 

arginine at position 5 in the variable region of 7b1 with the unnatural amino acid 4-

guanidine phenylalanine (Gnf),12 resulting in a new sequence of LRGD-Gnf. Hit 7b10 
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showed improved affinity of 17.5 µM for K-RasG12D and maintained 3:1 selectivity for 

the mutation over the wild type protein (Figure 4.7).  

 

In addition to assessing the binding properties of 7b10 we also sought to investigate any 

potential effects this compound may have on the GTPase activity of K-Ras. Ras sends 

downstream signals for cell growth and division when it is in the GTP-bound state. A 

potential Ras inhibitor would stimulate Ras enzymatic activity in order to promote GTP 

hydrolysis to GDP resulting in attenuation of the downstream signaling cascade. Indeed, 

when K-RasG12D complexed with a GTPase Activating Protein (GAP) was treated with 

7b10 the rate of GTP hydrolysis increased seven-fold relative to the wild type K-Ras-GAP 

complex (Figure 4.7C). Basal levels of K-Ras GTPase are very low so a GAP was added 

to enhance the signal to noise in the GTPase assay format. In addition to the novel mutant 

binding selectivity, 7b10 is also unique in its ability to restore Ras enzymatic activity as no 

such compounds has been reported. One possible explanation for the restoration of 

RAS/GAP GTPase activity is that the Gnf residue could be mimicking the GAP arginine 

finger that promotes the hydrolysis reaction. Normally GAPs stimulate Ras GTP hydrolysis 

by inserting an arginine residue, termed the arginine finger, near the GTP terminal 

phosphate that stabilizes the transition state of the hydrolysis reaction. Oncogenic Ras 

mutations at codons 12 and 13 are known to occlude the arginine finger from interacting 

with GTP through steric hindrance and thus render the protein GAP-insensitive.1 Perhaps 

the planar structure of the benzyl group in the Gnf side chain allows for insertion of the 

guanidium moiety into a productive GTPase-activating orientation. This important result 

warrants further investigation into the chemical mechanism of GTPase activation and 
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potential downstream K-Ras pathway inhibition in cells treated with 7b10. Stimulation 

of oncogenic K-Ras GTPase activity is expected to inhibit K-Ras signaling and validation 

of this result would demonstrate that 7b10 is a useful tool compound for perturbing 

oncogenic K-Ras signaling in cells.  

 

Understanding the binding of our PCC agent with K-RasG12D can provide guidance for 

rationally optimizing the PCC agent to improve its binding and functional properties. We 

next sought to identify the key interacting residues in 7b10 by conducting an alanine scan. 

A set of five new variants of 7b10 were synthesized with each compound presenting an 

alanine substation to one of residues in the variable region (Figure 4.8). If an alanine 

substation abrogates the affinity for K-Ras that would identify a potentially critical 

interacting residue. Conversely, if a residue can tolerate an alanine substitution and 

maintain its affinity for the target protein then that residue is likely not involved in binding. 

Indeed, the results from the alanine scan indicate that the only tolerable alanine substation 

is at aspartic acid at position four in the variable region. This result provides a logical path 

for 7b10 optimization. The aspartic acid at position four can potentially be replaced with 

another residue that does contribute to binding and improve the overall performance of the 

ligand. Alternatively, position four may also be a suitable branch point to screen for a 

secondary ligand in an additional in situ click screen.  

 

Characterization of ligand 7b5. Another interesting ligand identified in the second 

generation of hits was 7b5. This compound was generated by substituting the aspartic acid 

at position four of 7b1 with a proline resulting in a variable region of LRGDR (Figure 4.9). 
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However, this sequence did not stimulate K-Ras enzymatic activity when used in the 

GTPase assay — on the other hand, 7b5 appears to inhibit K-Ras (Figure 4.7C), which is 

the opposite of what is required for a potential K-Ras inhibitor. We hypothesized that 

substituting the anionic aspartic acid to the more hydrophobic proline residue could yield 

a cell-penetrant PCC agent — it is believed that peptides are more likely to be cell penetrant 

with cationic and/or hydrophobic residues.13 Compound 7b5 maintained an affinity of 56.6 

µM for K-RasG12D in spite of the proline substitution. Despite the lack of influence on Ras 

enzymatic activity (Figure 4.7C) this peptide could potentially be utilized as targeting 

ligand for PROTAC development, and indeed appears to reduce K-RasG12D expression on 

its own through an unknown mechanism (Figure 4.12).14 7b5 was synthesized with the 

HIF-1α degradation signal15 with and without a cell penetrating peptide (CPP) in order to 

test its performance as a potential K-Ras-PROTAC (Figures 4.10 and 4.11). The 

compounds were tested in the pancreatic carcinoma cell line Panc 08.13 because this cell 

line is known to be KRASG12D homozygous.16 When the cells were treated with the 7b5-

PROTACs a marked decrease in Ras protein was observed via western blot analysis. In 

order to test if the Ras degradation was mediated by the proteasome the experiment was 

repeated with an additional control. In the next experiment the cells were also pre-treated 

with the proteasome inhibitor MG13 before addition of the 7b5 PROTACs and the Ras 

degradation no longer occurred, supporting the notion that the 7b5-PROTAC is inducing 

proteasomal degradation of K-RasG12D (Figure 4.12). Surprisingly, in the second 

experiment unmodified 7b5 without the degradation tag appears to also decrease Ras 

expression (Figure 4.12B, lane 4). Speculatively, perhaps the hydrophobic glycine-proline 

sequence in 7b5 is causing the protein to misfold and undergo non-specific protesomal 
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degradation. Destabilization of the protein could be tested via a thermal denaturation 

assay to determine the melting temperature with and without the compound.  

 

4.4 Conclusion 

This work demonstrates the capacity of the PCC agent screening platform to develop 

ligands against difficult protein targets. Oncogenic K-Ras proteins were considered 

undruggable for many years and they still remain among the holy grails of cancer 

therapeutic targets.17 The epitope targeting strategy combined with the macrocyclic peptide 

library resulted in multiple ligands with previously undiscovered properties. Until now no 

ligand has been presented with selectivity for K-RasG12D oncoprotein but a single PCC 

agent screen has produced at least three such potential ligands. In addition, compound 7b10 

is the first known molecule to stimulate mutant K-Ras GTPase activity in in vitro 

biochemical assays. A future step towards characterizing compound 7b10 would be to test 

this result in cells through a RAS-GTP binding assay as well assessing downstream 

signaling pathway modulation. Finally, 7b5-PROTAC development is a promising 

approach to induced degradation of K-RasG12D in carcinoma cells. Unexpectedly, 

unmodified 7b5 also reduced K-Ras protein expression and it will be important to 

determine the mechanism of action in order to confirm the specificity of the compound 

towards K-Ras. While significant work must still be done to develop the first efficacious 

Ras inhibitors, this study presents proof of concept for two potential new strategies to target 

this difficult protein: enzymatic activation and targeted degradation.  
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4.5 Material and Methods 

Solid phase peptide synthesis general protocol 

Peptides were synthesized on Rink Amide MBHA or Biotin Novatag either by hand, on a 

Liberty1 Microwave Peptide Synthesizer (CEM), or on a Titan 357 Automatic Peptide 

Synthesizer (AAPPTec). Peptide coupling reactions were done in NMP with 2 

equivalents of amino acid, 2 equivalents of HATU, and 6 equivalents of N,N-

Diisopropylethylamine (Sigma). For removal of Nα-Fmoc protecting groups, a solution 

of 20% piperidine in NMP was used.  

 

Synthesis of K-Ras synthetic epitopes 

Modified K-Ras wild type and G12D epitopes were synthesized with acetylene-

functionalized amino acids for use in the in situ click screen (Figure 4.1).  The epitopes 

were derived from amino acids 2-22 from the K-Ras protein sequence with valine14 

substituted with propargylglycine (Pra).  Additionally, an 11-unit polyethylene glycol 

(PEG) spacer and biotin were added to the C-terminus of the synthesized fragments for 

detection with streptavidin during the screen. The sequence of the wild type K-Ras epitope 

fragment was NH2-TEYKLVVVGAGG[Pra]GK-PEG11-Biotin.  The sequence of the 

G12D fragment was NH2-TEYKLVVVGADG[Pra]GKSALTIQ-PEG11-Biotin.  The 

epitopes were synthesized by solid phase peptide synthesis (SPPS) on biotin novatag resin 

according to standard protocols. The peptides were removed from the resin and deprotected 

in a TFA cleavage solution of 95% TFA, 2.5% H2O, and 2.5% triethylsilane for two hours 

at room temperature. The cleavage solution was filtered to remove the resin and added 
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dropwise to an ice-cooled solution of diethyl ether to precipitate the crude peptide. Crude 

peptides were then purified via HPLC.  

 

Synthesis of macrocyclic peptides 

The macrocyclic peptides, including the library and hit sequences, were made by first 

synthesizing the linear sequence H2N-Pra-X1X2X3X4X5-Az4 via SPPS. On-bead Cu 

catalyzed click reactions were then performed to cyclize the peptide through the Pra and 

Az4 side chains. The resin was treated with 1.5 equivalents of CuI (Sigma) and 2.5 

equivalents of ascorbic acid (Sigma), in a solution of 20% piperidine in DMF. The reaction 

was performed overnight at room temperature. Excess copper was removed from the resin 

by washing with a Cu chelating solution (5% (w/v) sodium diethyl dithiocarbamate, 5% 

(v/v) DIEA in DMF). 

 

Synthesis of 7b5 PROTACs 

7b5-Hif and 7b5-Hif-TAT PROTACs that were used in the cell assays were made from 

previously-synthesized 7b5 peptide. After the 7b5 macrocycle was synthesized on resin 

Ahx was coupled to the N-terminus as a linker followed by the addition of the Hif-1α 

degradation sequence ALAPYIP using standard SPPS. The peptide was then either cleaved 

from the resin as 7b5-Hif (Figure 4.10) or the HIV-TAT sequence was added to create 7b5-

Hif-TAT (Figure 4.11). 

 

HPLC purification of peptides 
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All peptides were purified using a preparative or semi-preparative scale HPLC with a 

C18 reverse phase column. A gradient of double distilled water and HPLC grade 

acetonitrile and 0.1% TFA was used for all purifications. 

 

Mass spectrometry analysis 

All intermediate and final peptides were analyzed via MALDI-TOF-MS using a Voyager 

DE-PRO MALDI TOF-MS system (Applied Biosystems). Peptides were dissolved in 

50:50 water/acetonitrile with 0.1% trifluoroacetic acid at a final concentration of 10 

pmol/µL. 1 µL of the peptide sample was then added to 10 µL of a saturated solution of 

MALDI matrix, either α-cyano-4-hydroxycinnamic acid or Sinapinic Acid, in 50:50 

water/acetonitrile with 0.1% trifluoroacetic acid and analyzed via MALDI-TOF MS. 

 

Screening of KRAS Fragments to Identify Cyclic Anchors 

Preclear:  Approximately 500 mg (~1,400,000) beads of 5-mer macrocyclic peptide 

library (Figure 4.2) was obtained. The library sequence was Az4-[Pra]-X1X2X3X4X5-

[Az4]-M-TG where X = 18 amino acids (excluding Cys and Met) while [Pra] and [Az4] 

are connected via a 1,4-triazole linkage on tentagel resin (TG).  

 

Library was allowed to swell in TBS for 6 hours and then blocked overnight at 4 °C with 

1% BSA in TBS + 0.1% Tween 20 (= Blocking Buffer). The following day the library 

was washed with fresh blocking buffer and then incubated with 1:10,000 anti-Biotin-AP 

Antibody (Sigma Aldrich) in Blocking Buffer for 1 h at RT. Beads were then washed five 
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times with Blocking Buffer, five times with Wash 1 buffer (0.1% BSA in TBS + 0.1% 

Tween 20), and then five times with 3 mL Wash 2 buffer (TBS + 0.1% Tween 20). The 

preclear was then developed with BCIP: NBT (Promega #S3771).  The purple hit beads 

represent false hits that bind non-specifically to the anti-Biotin antibody and were thus 

removed.  

 

The remaining clear beads were washed with 7.5 M guanidine hydrochloride, pH 2.0 for 

30 min, then rinsed with water ten times. To remove residual purple color the clear beads 

were then incubated in NMP for two hours. After washing with water to remove the NMP 

the beads were blocked overnight at 4 °C with Blocking Buffer.  

 

Anti-screen against wild type K-Ras polypeptide target: The next day the precleared 

library was incubated with 50 µM (2% DMSO, v/v) wild type K-Ras fragment in 

blocking buffer for 5 hours at room temperature to allow the in situ click reaction to 

occur. The screen then proceeded as in the preclear above. Briefly, the beads were 

washed, stripped in 7.5 M guanidine hydrochloride, washed, blocked, probed with anti-

Biotin-AP, and developed with BCIP/NBT. Approximately 200 purple hits were 

identified that represent library elements that bound to the wild type K-Ras fragment. 

After removal of the purple beads the library was again decolorized and blocked 

overnight in preparation for the target screen with the G12D epitope.  

 

Product screen against the mutant K-RasG12D fragment: The next day the precleared 

and anti-screened library was incubated with the mutant polypeptide target. 25 µM G12D 
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fragment was incubated with the library to undergo a second in situ click reaction, this 

time against the desired target. The library was then probed and developed as before and 

7 hit beads were identified. Hit beads were then sequenced via Edman degradation and 

the results are shown in Table 4.1.  

 

Protein expression and purification.  

His-tagged human K-RasG12D (isoform 4B) GTPase domain (residues 1-169) was 

transformed into E. coli BL21(DE3) cells. Bacterial cultures were grown in LB broth 

with ampicillin until the OD600 reached approximately 0.5. Expression was induced with 

0.5 mM IPTG at 18°C for about 18 hours overnight and cells were harvested by 

centrifugation and pellets were stored at -80°C.  

 

  Cell pellets were suspended in 20 mM Tris, pH 8.0 with 500 mM NaCl, 5 mM 

imidazole and 1 mM DTT. Cells were then lysed by microfluidizer and cellular debris 

was removed by ultracentrifugation. Crude lysate was then passed through a 0.22 µm 

filter and purified with a Ni-NTA column and eluted with an imidazole gradient. K-

RasG12D fractions were then pooled and then buffer exchanged into 20 mM HEPES, pH 

7.5, 150 mM NaCl, and 1 mM DTT using a HiTrap desalting column. Protein was the 

purified by gel filtration with a Superdex 75 column and pure protein was aliquoted and 

flash frozen in liquid nitrogen and thawed as needed.  

 

ELISA of hit peptides against full-length K-Ras protein 
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1 µM of the biotinylated hit peptides were first immobilized onto 96-well Neutravidin 

ELISA plates (Pierce) for 2 hours at room temperature in binding buffer: Tris-buffered 

saline TBS with 0.1% Tween-20 (TBST) and 0.1% BSA. The plates were then blocked 

with 5% BSA in TBST for 1 hour, followed by incubating with full-length K-Ras protein 

in binding buffer for 30 minutes. For single point ELISA assays 100 nM K-Ras protein 

was added per well. For EC50 determination the protein was added at various 

concentrations. After washing three times with TBST the plate was then treated with a 

1:1000 dilution of the anti-RAS rabbit mAb (Cell Signaling Technology) in binding buffer 

for thirty minutes, washed three times with TBST, incubated with anti-Rabbit-HRP 

secondary antibody (Cell Signaling Technology) for thirty minutes, and developed with 

TMB substrate (KPL) for five to ten minutes. The absorbance of samples at 450 nm 

wavelength was measured using a FlexStation 3 microplate reader (Molecular Devices).  

 

K-Ras GTPase assay 

To assess the effects of compound 7b10 and 7b5 on K-Ras enzymatic activity a GTPase 

assay kit (Sigma #MAK113-1KT) was used. Recombinant K-Ras protein was combined 

with the recombinant human protein RAS GTPase Activating Protein Protein 1 

(MyBiosource #MBS951091) to enhance the activity to detectable levels. In a 96-well plate 

20 µL of 0.7 mg/mL K-Ras protein (0.6 nmol) was combined with 1 µL of 0.1 mg/mL 

RasGAP1, 5 µL of 100 µM peptide (7b5 or 7b10), 20 µL reaction buffer (20 mM HEPES 

pH = 7.5, 150 mM NaCl, 1 mM DTT, 20 mM MgCl2), and 10 µL of 4 mM GTP and the 

reaction was allowed to proceed at room temperature for 30 minutes followed by the 
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addition of the 200 µL malachite green reagent (Sigma) and the absorbance was 

measured at 620 nm.  

 

 

Cell Culture 

Panc 08.13 cells were purchased from American Type Culture collection (Manassas, VA, 

USA) and cultured under conditions specified by the provider. 

 

Immunoblotting 

Western blots were performed according to standard protocols. Briefly, cells were lysed 

with cell lysis buffer (Cell Signaling Technology) containing protease and phosphatase 

inhibitors (Cell Signaling Technology). Cell lysates were quantified with a Bradford 

protein assay (Thermo Scientific, Waltham, MA, USA) and prepared for gel 

electrophoresis in Laemmli sample buffer and reducing agent. Twenty micrograms of cell 

lysate were added to precast polyacrylamide gels (Bio-Rad Laboratories, Inc., Hercules, 

CA, USA), and proteins were separated by electrophoresis followed by transfer to PVDF 

membrane. Membranes were then blocked and probed with primary antibodies followed 

by horseradish peroxidase-conjugated secondary antibodies. The bands were visualized 

via a chemiluminescent substrate (Thermo Scientific). Ras and tubulin antibodies were 

from Cell Signaling Technology and used according to manufacturer protocol.   
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4.6 Figures 

 

  

Figure 4.1 – Structure of K-Ras synthetic epitopes. (A) The structure of the wild type K-Ras 

epitope that was used in the anti-screen. The epitope consists of K-Ras residues 2-20 with a 

V14Pra substitution for the in situ click reaction.  (B) The molecular structure of the K-Ras
G12D

 

epitope used in the target screen. The epitope consists of K-Ras residues 2-20 with the G12D 

mutation and V14Pra substitution for the in situ click reaction.  
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Figure 4.2 – Structure of the macrocyclic peptide library.  
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Figure 4.3 – Layout of the K-Ras epitope-targeted PCC agent screen. A 1.4x10
6 
member macrocyclic 

library was first anti-screened against the wild type K-Ras sequence corresponding to residues 2-20. 

Approximately 200 hit peptides reacted with the wild type epitope and were removed. The remaining 

beads were then incubated with the G12D fragment, resulting in 7 hit beads.  
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 Variable region 

Sequence X
1 X

2 X
3 X

4 X
5 

1 N D E T Y 

2 P S E E G 

3 S E E G G 

4 E G T G T 

5 Y E Q G E 

6 Y G E Q E 

7 L R G D R 

8 Q E K P P 

9 E L T F G 

Table 4.1 – Hit sequences from K-Ras
G12D 

epitope-targeted anchor screen. The 

seven hit beads produced nine possible sequences. Sequences 2 and 3, as well as 5 and 

6, represent multiple possible sequences from a single hit bead.  
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Figure 4.4 – Single point ELISA of hit peptides against K-Ras
G12D

 

protein. The hit peptides were tested against the full-length mutant protein. 

Several sequences produced multiple isobaric fractions after HPLC 

purification.  
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Figure 4.5 – Characterization of hit 7b1. (A) Molecular structure of hit 7b1 from the initial 

anchor screen. (B) Binding curve between hit 7b1 and K-Ras
G12D

 obtained via ELISA assay. (C) 

A single point ELISA assay assessing the selectivity of 7b1 for wild type vs. G12D K-Ras. The 

peptide shows an approximately 4:1 selectivity for the mutant protein.  
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 Sequence 

Peptide  X
1 X

2 X
3 X

4 X
5  

7b1 Pra L R G D R Az4 

7b2 Az4 L R G D R Pra 

7b3 Pra L R G D R Az3 

7b4 Pra V R G D R Az4 

7b5 Pra L R G P R Az4 

7b6 Pra L R G E R Az4 

7b7 Pra L homo-Arg G D R Az4 

7b8 Pra L R G D homo-Arg Az4 

7b9 Pra L Gnf G D R Az4 

7b10 Pra L R G D Gnf Az4 

7b11 Pra L R G N R Az4 

7b12 Pra L R G Q R Az4 

Table 4.2 – Sequences of second generation of hits designed from hit 7b1. Members of the new series of 

compounds contained the unnatural amino acids homoarginine (homo-Arg) or 4-guanidine 
phenylalanine (Gnf). 
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Figure 4.6 – Single point ELISA of second generation hits K-Ras
G12D

.  
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Figure 4.7 – Characterization of hit 7b10. (A) Molecular structure of hit 7b10. (B) Binding 

curve between hit 7b10 and K-Ras wild type and G12D obtained via ELISA assay. The peptide 

EC
50 

= 17.5 µM for K-Ras
G12D

 and EC
50 

= 55.6 µM for wild type K-Ras.(C) 7b10 increases wild 

type and G12D K-Ras GTPase activity nearly seven-fold.  
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Figure 4.8 – 7b10 alanine scan. (A) Sequences of alanine-substituted peptide series (B) Binding 

curves between alanine scan peptides and K-Ras
G12D

 obtained via ELISA assay. Only peptide A4 

maintains binding affinity for K-Ras
G12D

.  
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Figure 4.9 – Characterization of hit 7b5. (A) Molecular structure of hit 7b5. (B) Binding curve 

between hit 7b5 and K-Ras
G12D

 obtained via ELISA assay. The peptide EC
50 

= 56.6 µM for K-

Ras
G12D

.  
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Figure 4.10 – Structure of 7b5-Hif PROTAC.  
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Figure 4.12 – 7b5 PROTACs induce proteasomal degradation of K-RasG12D. (A) 

Western blot of lysates from Panc 08.13 cells treated with either 7b5, 7b5-Hif, or 7b5-Hif-

TAT. Cells were treated for 4 hours prior to lysis. (B) Western blot of lysates from Panc 

08.13 cells treated with 0.3 mM 7b5, 7b5-Hif, or 7b5-Hif-TAT. Cells were also pretreated 

with the proteasome inhibitor MG132 and the Ras degradation was reversed.  
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A p p e n d i x  A  

SUPPLEMENTARY INFORMATION FOR CHAPTER 4 

A.1 Structure and Characterization of Synthetic Epitopes used in Anchor Screen 
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A.2 Structure and Characterization of Hit Peptides from Anchor Screen 
  

Figure A3 – Structure and characterization of hit 1: NDETY. MALDI-TOF MS: 

Expected [M+H]
+
 = 1159.26, Observed [M+H]

+
 = 1158.  

Hit 1: Pra-NDETY-Az4-Biotin 
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Hit 2: Pra-PSEEG-Az4-Biotin 

Figure A4 – Structure and characterization of hit 2: PSEEG. MALDI-TOF MS: 

Expected [M+H]
+
 = 1036.15, Observed [M+H]

+
 = 1035.  
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Hit 3: Pra-SEEGG-Az4-Biotin 

Figure A5 – Structure and characterization of hit 3: SEEGG. MALDI-TOF MS: 

Expected [M+H]
+
 = 996.08, Observed [M+H]

+
 = 995.8.  
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5 = YEQGE 

Hit 5: Pra-YEQGE-Az4-Biotin 

Figure A6 – Structure and characterization of hit 5: YEQGE. MALDI-TOF MS: 

Expected [M+H]
+
 = 1143.26, Observed [M+H]

+
 = 1142.  
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6 = YGEQE 

Hit 6: Pra-YGEQE-Az4-Biotin 

Figure A7 – Structure and characterization of hit 6: YGEQE. MALDI-TOF MS: 

Expected [M+H]
+
 = 1143.26, Observed [M+H]

+
 = 1142.  
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7 - LRGDR 

Hit 7: Pra-LRGDR-Az4-Biotin 

Figure A8 – Structure and characterization of hit 7: LRGDR. MALDI-TOF MS: 

Expected [M+H]
+
 = 1134.35, Observed [M+H]

+
 = 1134.  
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8 = QEKPP 

Hit 8: Pra-QEKPP-Az4-Biotin 

Figure A9 – Structure and characterization of hit 8: QEKPP. MALDI-TOF MS: 

Expected [M+H]
+
 = 1116.32, Observed [M+H]

+
 = 1116.  
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9 = ELTFG 

Hit 9: Pra-ELTFG-Az4-Biotin 

Figure A10 – Structure and characterization of hit 9: ELTFG. MALDI-TOF MS: 

Expected [M+H]
+
 = 1084.28, Observed [M+H]

+
 = 1084.  
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A.3 STRUCTURE AND CHARACTERIZATION OF SECOND 

GENERATION HIT PEPTIDES 

  

7b1: Pra-LRGDR-Az4-PEG
5
-Biotin 

m/z 

Figure A11 - Structure and characterization of peptide 7b1. The peptide sequence is 
Pra-LRGDR-Az4-PEG5-Biotin with a 1,4-triazole linkage between Pra and Az4. MALDI-

TOF MS: Expected [M+H]
+
 = 1294.6, Observed [M+H]

+ 
= 1292.9 
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7b2: Az4-LRGDR-Pra-PEG
5
-Biotin 

m/z 

Figure A12 - Structure and characterization of peptide 7b2. The peptide sequence 

is Az4-LRGDR-Pra-PEG
5
-Biotin with a 1,4-triazole linkage between Az4 and Pra. 

MALDI-TOF MS: Expected [M+H]
+
 = 1294.6, Observed [M+H]

+ 
= 1293.1 
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7b3: Pra-LRGDR-Az3-PEG

5
-Biotin 

m/z 

Figure A13 - Structure and characterization of peptide 7b3. The peptide 

sequence is Pra-LRGDR-Az3-PEG
5
-Biotin with a 1,4-triazole linkage between 

Pra and Az3. MALDI-TOF MS: Expected [M+H]
+
 = 1280.5, Observed [M+H]

+ 

= 1278.9 
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7b4: Pra-VRGDR-Az4-PEG
5
-Biotin 

m/z 

Figure A14 - Structure and characterization of peptide 7b4. The peptide sequence is Pra-VRGDR-Az4-

PEG
5
-Biotin with a 1,4-triazole linkage between Pra and Az4. MALDI-TOF MS: Expected [M+H]

+
 = 

1280.5, Observed [M+H]
+ 

= 1279.3 
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7b5: Pra-LRGPR-Az4-PEG
5
-Biotin 

m/z 

Figure A15 - Structure and characterization of peptide 7b5. The peptide sequence is Pra-

LRGPR-Az4-PEG
5
-Biotin with a 1,4-triazole linkage between Pra and Az4. MALDI-TOF 

MS: Expected [M+H]
+
 = 1276.6, Observed [M+H]

+ 
= 1275.0 
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7b6: Pra-LRGER-Az4-PEG
5
-Biotin 

m/z 

Figure A16 - Structure and characterization of peptide 7b6. The 

peptide sequence is Pra-LRGER-Az4-PEG
5
-Biotin with a 1,4-

triazole linkage between Pra and Az4. MALDI-TOF MS: Expected 

[M+H]
+
 = 1308.6, Observed [M+H]

+ 
= 1307.1 
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7b7: Pra-Leu-Homoarginine-Gly-Asp-Arg-Az4-PEG
5
-Biotin 

m/z 

Figure A17 - Structure and characterization of peptide 7b7. The peptide 

sequence is Pra-L[Homoarginine]GDR-Az4-PEG
5
-Biotin with a 1,4-triazole 

linkage between Pra and Az4. MALDI-TOF MS: Expected [M+H]
+
 = 1308.6, 

Observed [M+H]
+ 

= 1307.0 
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  7b8: Pra-Leu-Arg-Gly-Asp-Homoarginine-Az4-PEG
5
-Biotin 

m/z 

Figure A18 - Structure and characterization of peptide 7b8. The 

peptide sequence is Pra-LRGD[Homoarginine]-Az4-PEG
5
-Biotin with a 

1,4-triazole linkage between Pra and Az4. MALDI-TOF MS: Expected 

[M+H]
+
 = 1308.6, Observed [M+H]

+ 
= 1307.0 
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  7b9: Pra-Leu-Guanidinophenylalanine-Gly-Asp-Arg-Az4-PEG
5
-Biotin 

m/z 

Figure A19 - Structure and characterization of peptide 7b9. The peptide sequence is Pra-

L[Guanidinophenylalanine]GDR-Az4-PEG
5
-Biotin with a 1,4-triazole linkage between Pra 

and Az4. MALDI-TOF MS: Expected [M+H]
+
 = 1342.6, Observed [M+H]

+ 
= 1342.5 
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7b10: Pra-Leu-Arg-Gly-Asp-Guanidionphenylalanine-Az4-PEG

5
-Biotin 

m/z 

Figure A20 - Structure and characterization of peptide 7b10 .The peptide sequence is Pra-

LRGD[Guanidinophenylalanine] -Az4-PEG
5
-Biotin with a 1,4-triazole linkage between Pra and Az4. 

MALDI-TOF MS: Expected [M+H]
+
 = 1342.6, Observed [M+H]

+ 
= 1341.3 
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7b11: Pra-LRGNR-Az4-PEG
5
-Biotin 

m/z 

Figure A21 - Structure and characterization of peptide 7b11. The peptide sequence is Pra-LRGNR-Az4-

PEG
5
-Biotin with a 1,4-triazole linkage between Pra and Az4. MALDI-TOF MS: Expected [M+H]

+
 = 

1293.6, Observed [M+H]
+ 

=  1291.7 
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 7b12: Pra-LRGQR-Az4-PEG
5
-Biotin 

m/z 

Figure A22 - Structure and characterization of peptide 7b12. The peptide sequence is Pra-LRGQR-Az4-

PEG
5
-Biotin with a 1,4-triazole linkage between Pra and Az4. MALDI-TOF MS: Expected [M+H]

+
 = 1307.6, 

Observed [M+H]
+ 

=  1306.2 


