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P r e f a c e  

What was the Earth like before us? This is a question with many answers: only one 

of them can be true, but we may never have sufficient information to choose between 

competing hypotheses. We can only collect more and more information to try to decide 

between them, narrowing the field, but always with far more plausible anwers remaining 

than we would like.  

When we think about recent history, there are questioned that are answered simply: 

who won the US presidential election in 1960? Nearly every schoolchild could tell you that 

it was John F. Kennedy. We have written records, we have videos, we have parents and 

grandparents who remember election day. The records we have of the event are many, they 

are consistent with one another, and they are easily interpretable without translation. But as 

we go farther back in time, these records become more sparse—for the election of 1860, 

there are written records, but no video or living memory—enough to answer the question, 

but less robust to nuance and detail. If we are to go farther back—how were the Egyptian 

pyramids built? We have no confirmed answer at all. We have a range of plausible options, 

centered around primitive engineering and slave labor, but we also have vociferous 

proponents of alien technology playing a role. The farther back we go, the more sparse and 

tenuous our records, the more challenging they are to read, the less certain we are of any 

given solution and the more room there is for assumption, extrapolation, and postulation. 

It is no wonder, therefore, that investigation of the early history of the Earth has 

tremendous room for error and assumption of answers with insufficient evidence. How 

simple the architecture of the pyramids seems, when we need to understand the architecture 
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of biological structures over one million times older! We could answer the question of the 

construction of the pyramids if we were to uncover a new record of the time—never mind a 

miraculous video recording of the construction, even some quotidian memorandum sent to 

the pharaoh detailing the day’s efforts to construct his tomb would be revolutionary.  In 

many cases, such records may exist, and the stumbling block is in learning to read them. 

The key discovery is therefore of a Rosetta Stone, a way to couple an uninterpretable 

record to one that we already know how to read, which will reveal the meaning of this 

record, and, potentially, teach us how to read it and allow us to translate other instances 

written in the same language. 

Similarly, if we could uncover new records of life on the early Earth, we could 

begin to solve longstanding questions of how life and the Earth functioned long, long ago. 

As luck would have it, there does exist a largely untapped record of life on Earth—the 

biological record preserved in the genomes and biochemistry of extant organisms. With the 

application of an appropriate Rosetta Stone we can learn to correlate this new record to 

information gleaned from the rock record. 

As it happens, we are living through the single largest revolution in the study of 

biology at least since the discovery of DNA nearly a century ago. The technological 

innovations going into the high-throughput sequencing of DNA—starting with the human 

genome, and now continuing with genomes of tens of thousands of other species we can 

grow in culture, and hundreds of thousands more extracted from the environment—have 

drastically increased the abundance of data available to understanding living systems. 

These data not only allow us to understand our own genetics and evolution, but can also be 

used to carefully craft and answer questions about the evolution of life in the recent past 



 v 
and as far back as the origin of life. This application of this newly available, genomic, 

biological record of life to the understanding of the early evolution of life on Earth is only 

possible with carefully curated interdisciplinary understanding of biology—genetics, 

biochemistry, and especially evolution—coupled to an understanding of geology—the 

nature and history of the atmosphere, oceans, and the rock cycle, and the geochemical and 

geological records that preserve signals over billions of years.  

It is my goal to utilize these coupled records of rocks and life to develop a more 

complete understanding of the history and evolution of life, and how its reciprocal 

interactions and modifications of the Earth and environment over timescales of millions to 

billions of years.  

A crucial aspect of having complementary records of historical events is the ability 

to confirm the statements and suppositions of one record by way of an independent account 

in a second or third. If one were to consult certain conspiracy-oriented websites as records 

of ancient Egypt, one would be left with the firm belief that the pyramids were, in fact, 

constructed by aliens. Yet if one were to consider alternative records—an encyclopedia, 

say, or the works of a respected Egyptologist—one would come to a very different 

conclusion. Our understanding of the early Earth is plagued by similar problems. In a field 

with so little primary data, there are not only no written records, but even the records we 

have in the form of sedimentary rocks, geochemistry, and the vestiges of early life in the 

genomes of organisms found today, have been altered and eroded in the intervening 

billions of years.  

The biological and geological records have each been altered and degraded over 

time in different ways, but in different ways. Reading the geological record is like reading 



 vi 
an original copy of Herodotus that has been buried in the desert for over 2000 years, 

exposed to wind, the sun, and the occasional rain. Parts are faded, others are smeared, and 

other sections are missing completely. Meanwhile reading the biological record is like 

reading a copy of the Iliad, which has been more-or-less faithfully copied over, hand to 

hand, mouth to mouth, for just as long—more of it is intact, but small variations have been 

inherited at every retelling, and so reconstructing the original word-for-word is all but 

impossible. Or, rather, the biological record is a palimpsest, with the original version 

somewhere buried underneath millennia of revisions, scribblings, annotations, and other 

gradual modifications. Both the geological and biological records retain information, 

preserved from the same period of history, preserving aspects of the same story but telling 

it in different ways and with distinct biases and both missing crucial sections. And in many 

cases these records of Earth history are so incomplete that they remain open to 

interpretation. The same text, read by a dozen individuals, with their own assumptions, own 

interpretive frameworks, and own attempts at filling in the innumerable gaps, will come to 

at least a dozen different conclusions about the author, the subject matter, and the history 

since the original writing. All are hypotheses, none of which are likely entirely correct, but 

some of which are likely to be less wrong than others. It is our job to choose between all of 

these interpretations so as to best understand what the early Earth was like and how it has 

changed since. By combining multiple complementary records, we can fill in the missing 

pages and solve the outstanding mysteries in the history of life and the Earth. 
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ABSTRACT 

We are shaped by our environment, but we then shape it in turn. This interplay between life 

and the Earth, and how these interactions have shaped both parties through time, is the 

heart of the discipline of geobiology. My research is fundamentally motivated by a desire 

to understand how life and the Earth have changed together through time to reach the state 

that they’re at today, and to understand from this history how the coevolution of planet and 

life may be different on other worlds. The focus of my work has been on how the structure 

and productivity of the biosphere across time and space has been shaped by the metabolic 

opportunities provided by the environment—as a result of both biotic and abiotic factors—

and the metabolic pathways that are available to life, as a result of evolutionary 

contingency in the evolution of pathways and their inheritance and horizontal transfer.  

The biosphere on Earth today is incredibly productive due to the coupled dominant 

metabolisms of oxygenic photosynthesis and aerobic respiration, yet these can’t always be 

assumed to have been present—considering life more broadly, for instance in the context of 

the early Earth and other planets, we have to grapple with how evolutionary contingency 

and planetary environments interact to constrain the metabolic opportunities and rates of 

productivity available to the biosphere. In this dissertation, I broadly consider how the size 

and structure of Earth’s biosphere has changed through time as surface environments 

evolve and metabolic innovations accumulate. These investigations make use of 

information gleaned from the rock record of the early Earth, as well as the biological record 

of the history of life as preserved in the genomes, biochemistry, and ecology of extant 

organisms. These coupled records provide opportunities for constraining estimates of the 

opportunities for life throughout Earth history and elsewhere in the universe.  
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