Microbial Evolution and the Rise of Oxygen: the Roles of Contingency and Context in Shaping the Biosphere through Time

THESIS BY Lewis Michael Ward In Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy in Geobiology

CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California

2017

(Defended 10 May 2017)

Lewis Michael Ward ORCID: 0000-0002-9290-2567

Preface

What was the Earth like before us? This is a question with many answers: only one of them can be true, but we may never have sufficient information to choose between competing hypotheses. We can only collect more and more information to try to decide between them, narrowing the field, but always with far more plausible anwers remaining than we would like.

When we think about recent history, there are questioned that are answered simply: who won the US presidential election in 1960? Nearly every schoolchild could tell you that it was John F. Kennedy. We have written records, we have videos, we have parents and grandparents who remember election day. The records we have of the event are many, they are consistent with one another, and they are easily interpretable without translation. But as we go farther back in time, these records become more sparse—for the election of 1860, there are written records, but no video or living memory—enough to answer the question, but less robust to nuance and detail. If we are to go farther back—how were the Egyptian pyramids built? We have no confirmed answer at all. We have a range of plausible options, centered around primitive engineering and slave labor, but we also have vociferous proponents of alien technology playing a role. The farther back we go, the more sparse and tenuous our records, the more challenging they are to read, the less certain we are of any given solution and the more room there is for assumption, extrapolation, and postulation.

It is no wonder, therefore, that investigation of the early history of the Earth has tremendous room for error and assumption of answers with insufficient evidence. How simple the architecture of the pyramids seems, when we need to understand the architecture of biological structures over one million times older! We could answer the question of the construction of the pyramids if we were to uncover a new record of the time—never mind a miraculous video recording of the construction, even some quotidian memorandum sent to the pharaoh detailing the day's efforts to construct his tomb would be revolutionary. In many cases, such records may exist, and the stumbling block is in learning to read them. The key discovery is therefore of a Rosetta Stone, a way to couple an uninterpretable record to one that we already know how to read, which will reveal the meaning of this record, and, potentially, teach us how to read it and allow us to translate other instances written in the same language.

Similarly, if we could uncover new records of life on the early Earth, we could begin to solve longstanding questions of how life and the Earth functioned long, long ago. As luck would have it, there does exist a largely untapped record of life on Earth—the biological record preserved in the genomes and biochemistry of extant organisms. With the application of an appropriate Rosetta Stone we can learn to correlate this new record to information gleaned from the rock record.

As it happens, we are living through the single largest revolution in the study of biology at least since the discovery of DNA nearly a century ago. The technological innovations going into the high-throughput sequencing of DNA—starting with the human genome, and now continuing with genomes of tens of thousands of other species we can grow in culture, and hundreds of thousands more extracted from the environment—have drastically increased the abundance of data available to understanding living systems. These data not only allow us to understand our own genetics and evolution, but can also be used to carefully craft and answer questions about the evolution of life in the recent past

and as far back as the origin of life. This application of this newly available, genomic, biological record of life to the understanding of the early evolution of life on Earth is only possible with carefully curated interdisciplinary understanding of biology—genetics, biochemistry, and especially evolution—coupled to an understanding of geology—the nature and history of the atmosphere, oceans, and the rock cycle, and the geochemical and geological records that preserve signals over billions of years.

It is my goal to utilize these coupled records of rocks and life to develop a more complete understanding of the history and evolution of life, and how its reciprocal interactions and modifications of the Earth and environment over timescales of millions to billions of years.

A crucial aspect of having complementary records of historical events is the ability to confirm the statements and suppositions of one record by way of an independent account in a second or third. If one were to consult certain conspiracy-oriented websites as records of ancient Egypt, one would be left with the firm belief that the pyramids were, in fact, constructed by aliens. Yet if one were to consider alternative records—an encyclopedia, say, or the works of a respected Egyptologist—one would come to a very different conclusion. Our understanding of the early Earth is plagued by similar problems. In a field with so little primary data, there are not only no written records, but even the records we have in the form of sedimentary rocks, geochemistry, and the vestiges of early life in the genomes of organisms found today, have been altered and eroded in the intervening billions of years.

The biological and geological records have each been altered and degraded over time in different ways, but in different ways. Reading the geological record is like reading an original copy of Herodotus that has been buried in the desert for over 2000 years, exposed to wind, the sun, and the occasional rain. Parts are faded, others are smeared, and other sections are missing completely. Meanwhile reading the biological record is like reading a copy of the Iliad, which has been more-or-less faithfully copied over, hand to hand, mouth to mouth, for just as long-more of it is intact, but small variations have been inherited at every retelling, and so reconstructing the original word-for-word is all but impossible. Or, rather, the biological record is a palimpsest, with the original version somewhere buried underneath millennia of revisions, scribblings, annotations, and other gradual modifications. Both the geological and biological records retain information, preserved from the same period of history, preserving aspects of the same story but telling it in different ways and with distinct biases and both missing crucial sections. And in many cases these records of Earth history are so incomplete that they remain open to interpretation. The same text, read by a dozen individuals, with their own assumptions, own interpretive frameworks, and own attempts at filling in the innumerable gaps, will come to at least a dozen different conclusions about the author, the subject matter, and the history since the original writing. All are hypotheses, none of which are likely entirely correct, but some of which are likely to be less wrong than others. It is our job to choose between all of these interpretations so as to best understand what the early Earth was like and how it has changed since. By combining multiple complementary records, we can fill in the missing pages and solve the outstanding mysteries in the history of life and the Earth.

ACKNOWLEDGEMENTS

The GPS Division at Caltech is a truly special place. I can't imagine a better place to be a scientist. The level of support, intellectual stimulation, and degree of collaboration is unlike anywhere else I have ever been. I've spent the past five years surrounded by fantastic teachers, mentors, colleagues, and friends. As a result, there's almost no one in the department who doesn't deserve some credit for making my time at Caltech so wonderful and so I won't manage to thank everyone individually here. So even if you don't see your name here, thank you. You're awesome.

First and foremost I want to thank my advisor, Woody Fischer. Woody has been so incredibly supportive of me throughout my time at Caltech, and has always encouraged me to pursue crazy research ideas and opportunities for travel and fieldwork. Woody has somehow taught me to think both broadly and deeply about problems in geobiology, spanning ridiculous scales of time and size. I don't know of anyone else who could teach me to be comfortable talking about the size of the biosphere 3 billion years ago one moment and the flow of electrons through a single cell the next. Woody is excited by a broader range of scientific ideas and questions than anyone else I've ever met, and the resulting range of conversations I've had with him about every topic under the sun has certainly made me a better scientist. Working with Woody has been an incredible experience, and I can't imagine a better match of advisor. Even more, working with Woody has been a lot of fun. I also want to thank Joe Kirschvink, my academic advisor and committee chair. He's been an incredible supporter throughout my time at Caltech (even the parts when we only saw each other in Tokyo). Many of my best Caltech experiences have been thanks to Joe, from fieldwork in Antarctica, to shenanigans in Palau, to every 136 trip. Joe has made sure that I balance my time staring at computer screens with time spent outside and actually staring at rocks, and that has been one of the best things for my geology education as well as my mental health. The opportunities for fieldtrips are one of my very favorite things about GPS, and Joe has played a crucial role in keeping that alive.

Many thanks to Shawn McGlynn, with whom I've learned how awesome hot springs can be. My time working with Shawn in Japan has been an excellent series of adventures, and we even managed to do some good science.

And thanks also to the other members of my committee, Victoria Orphan and Jared Leadbetter, who have helped me keep my research and interests grounded in actual microbiology rather than drifting entirely into unconstrained musing. I also want to thank all the other faculty members I've worked with, taken classes from, and gone on field trips with, including Alex Sessions and John Grotzinger. I've learned so much in my time at Caltech about so many topics that sometimes I can feel it leaking out of my ears, and I'll always be grateful for the time I've spent learning from you.

Jim Hemp was a major influence on my research at Caltech, and has helped shape much of my thinking about the evolution of photosynthesis, respiration, and other aspects microbial

metabolism. I'm lucky to have joined the lab alongside such a great friend and mentor. Thanks also to my other collaborators, including Patrick Shih, Vlada Stamenkovic, and Birger Rasmussen. We've come up with some crazy ideas, and it's been a great time the whole way.

To the members of my first year Pit, Max Lloyd, Daven Quinn, Jen Buz, Mathieu Lapotre, Hayden Miller, and Brooke Dallas—you guys are the best cohort I could possibly hope for. Over the course of the past five years you've been my classmates, roommates, travel buddies, and best friends, and I'm lucky to have shown up here alongside you.

To the other members of the Fischer group past and present, my officemates, and other friends in the department—particularly Sean Mullin, Elle Chimiak, Elizabeth Trembath-Reichert, Jena Johnson, Sarah Slotznick, Kyle Metcalfe, and Usha Lingappa—thank you for everything you've taught me, all of the great conversations, and all of the fun times.

And my experience wouldn't have been possible without the help of administrative and support staff, especially Liz Miura Boyd, Alice Oh, and Julie Lee, who have done so much behind the scenes to make my time at Caltech better and easier.

Thanks to Morgan Cable and the Songam Space Camp crew. Morgan was the first Caltech friend I ever made, and she's been one of my biggest supporters ever since. I'm also deeply appreciative that she brought me on board for Space Camp, which has been an incredibly experience and reminded me about how fun and exciting science and teaching should be.

The International Geobiology Course was a totally foundational experience, and much of this dissertation has grown out of interests and skills I developed on the course. The course also introduced me to some of my best friends in the geobiology community, and as a result every conference I've been to since has been way more fun. I'm deeply appreciative of the time spent on the course, and everyone who contributed to making it happen, especially Frank Corsetti, John Spear, Ann Close, and Amber Brown.

ABSTRACT

We are shaped by our environment, but we then shape it in turn. This interplay between life and the Earth, and how these interactions have shaped both parties through time, is the heart of the discipline of geobiology. My research is fundamentally motivated by a desire to understand how life and the Earth have changed together through time to reach the state that they're at today, and to understand from this history how the coevolution of planet and life may be different on other worlds. The focus of my work has been on how the structure and productivity of the biosphere across time and space has been shaped by the metabolic opportunities provided by the environment—as a result of both biotic and abiotic factors and the metabolic pathways that are available to life, as a result of evolutionary contingency in the evolution of pathways and their inheritance and horizontal transfer.

The biosphere on Earth today is incredibly productive due to the coupled dominant metabolisms of oxygenic photosynthesis and aerobic respiration, yet these can't always be assumed to have been present—considering life more broadly, for instance in the context of the early Earth and other planets, we have to grapple with how evolutionary contingency and planetary environments interact to constrain the metabolic opportunities and rates of productivity available to the biosphere. In this dissertation, I broadly consider how the size and structure of Earth's biosphere has changed through time as surface environments evolve and metabolic innovations accumulate. These investigations make use of information gleaned from the rock record of the early Earth, as well as the biological record of the history of life as preserved in the genomes, biochemistry, and ecology of extant organisms. These coupled records provide opportunities for constraining estimates of the opportunities for life throughout Earth history and elsewhere in the universe.

PUBLISHED CONTENT AND CONTRIBUTIONS

- Chapter 1:
 - Ward, LM, B Rasmussen, and WW Fischer. Electron donor limitation of the biosphere before oxygenic photosynthesis. In preparation.
 - LMW conceived of the project, designed the study, prepared data and analysis, and wrote the manuscript.
- Chapter 2:
 - Ward, Lewis M., Joseph L. Kirschvink, and Woodward W. Fischer.
 "Timescales of oxygenation following the evolution of oxygenic photosynthesis." Origins of Life and Evolution of Biospheres 46.1 (2016): 51-65. DOI: 10.1007/s11084-015-9460-3
 - LMW conceived of the project, designed the study, prepared data and analysis, and wrote the manuscript.
- Chapter 3:
 - Ward, LM, P Shih, J Hemp, SE McGlynn, and WW Fischer. A Complex History of Phototrophy Revealed by Novel Chloroflexi Lineages. In preparation.
 - LMW conceived of the project, designed the study, prepared data and analysis, and wrote the manuscript.
- Chapter 4:
 - Ward, LM, A Idei, S Terajima, T Kakegawa, WW Fischer, and SE
 McGlynn. Microbial diversity and iron oxidation at Okuoku-hachikurou

Onsen, a Japanese hot spring analog of Precambrian iron formation.

Geobiology, in revision.

- LMW conceived of the project, designed the study, prepared data and analysis, and wrote the manuscript.
- Chapter 5:
 - Ward, LM, Stamenković V, Fischer WW. Follow the Oxygen:

Comparative Histories of Planetary Oxygenation and Opportunities for

Life. In preparation.

- LMW conceived of the project, designed the study, prepared data and analysis, and wrote the manuscript.
- Appendix 1:
 - Ward, LM, J Hemp, and Woodward W. Fischer. A reduced, abiotic nitrogen cycle before the Rise of Oxygen. In prep.
 - LMW conceived of the project, designed the study, prepared data and analysis, and wrote the manuscript.
- Appendix 2:
 - Ward, LM, WW Fischer, K Matsuura, and SE McGlynn. Cone-forming microbial mats of Nakabusa Onsen, Japan as analogs of Precambrian stromatolites. In prep.
 - LMW conceived of the project, designed the study, prepared data and analysis, and wrote the manuscript.

- Appendix 3:
 - Ward, LM, A Idei, WW Fischer, and SE McGlynn. Microbial diversity and productivity of Jinata Onsen, an iron-rich intertidal hot spring in Japan. In prep.
 - LMW conceived of the project, designed the study, prepared data and analysis, and wrote the manuscript.
- Appendix 4:
 - Ward LM, Hemp J, Pace LA, Fischer WW. 2015. Draft genome sequence of *Leptolinea tardivitalis* YMTK-2, a mesophilic anaerobe from the *Chloroflexi* class *Anaerolineae*. Genome Announc 3(6):e01356-15.
 DOI: 10.1128/genomeA.01356-15
 - LMW analyzed the data and wrote the manuscript.
 - Ward LM, Hemp J, Pace LA, Fischer WW. 2015. Draft genome sequence of *Herpetosiphon geysericola* GC-42, a nonphototrophic member of the *Chloroflexi* class *Chloroflexia*. Genome Announc 3(6):e01352-15. DOI: 10.1128/genomeA.01352-15
 - LMW analyzed the data and wrote the manuscript.
 - Hemp J, Ward LM, Pace LA, Fischer WW. 2015. Draft genome sequence of *Levilinea saccharolytica* KIBI-1, a member of the *Chloroflexi* class *Anaerolineae*. Genome Announc 3(6):e01357-15.
 DOI: 10.1128/genomeA.01357-15
 - LMW analyzed the data and wrote the manuscript.

- Pace LA, Hemp J, Ward LM, Fischer WW. 2015. Draft genome of *Thermanaerothrix daxensis* GNS-1, a thermophilic facultative anaerobe from the *Chloroflexi* class *Anaerolineae*. Genome Announc 3(6):e01354-15. DOI: 10.1128/genomeA.01354-15
 - LMW assisted in analysis of the data and writing of the manuscript.
- Hemp J, Ward LM, Pace LA, Fischer WW. 2015. Draft genome sequence of *Ornatilinea apprima* P3M-1, an anaerobic member of the *Chloroflexi* class *Anaerolineae*. Genome Announc 3(6):e01353-15.
 DOI: 10.1128/genomeA.01353-15
 - LMW analyzed the data and wrote the manuscript.
- Hemp J, Ward LM, Pace LA, Fischer WW. 2015. Draft genome sequence of *Ardenticatena maritima* 110S, a thermophilic nitrate- and iron-reducing member of the *Chloroflexi* class *Ardenticatenia*. Genome Announc 3(6):e01347-15. DOI: 10.1128/genomeA.01347-15
 - LMW assisted in analysis of the data and writing of the manuscript.
- Appendix 5:
 - Shih, P., Hemp, J., Ward, L., Matzke, N. & Fischer, W. 2016. Crown group oxyphotobacteria postdate the rise of oxygen. *Geobiology* 15.1 (2017): 19-29. DOI: 10.1111/gbi.12200
 - LMW assisted in conceiving of the study, analysis of the data, and writing of the manuscript.

- Appendix 6:
 - Stamenković, V, LM Ward, M Mishna, and WW Fischer. Aerobic
 Environments on Mars. *Nature*, submitted.
 - LMW assisted in conceiving of the study and writing of the manuscript.

TABLE OF CONTENTS

Preface	iii
Acknowledgements	vii
Abstract	xi
Published Content and Contributions.	xii
Table of Contents	xvii
List of Figures and Tables	xxii
Introduction	1
Chapter 1: Electron donor limitation of the biosphere before oxygenic	
photosynthesis	9
Introduction	10
What limited productivity of the early biosphere?	12
Major electron donors	13
Phosphate	14
Fixed nitrogen	16
Other nutrients and electron donors	18
The electron donor-limited early biosphere	19
Is a low-productivity Archean biosphere consistent with the carbon	
record?	22
Implications of electron limitation and excess nutrients in the pre-oxys	gen
biosphere	26
Tables.	30
Figures	32
Boxes	34
References	37
Chapter 2: Timescales of oxygenation following the evolution of oxygenia	2
photosynthesis	50
Introduction	51
Basic accounting	57
Model summary	57
Reduced pools	59
Reduced fluxes	60
Oxidizing fluxes	61
Model calculations	62
Results	63
Uncertainties	65
Reaching a new steady state	66
Conclusions	68
Figures	72
Tables	75
References	77
Chapter 3: A Complex History of Phototrophy Revealed by Novel	
Chloroflexi Lineages	84

Introduction	85
Methods	88
Metagenomic sample collection	88
Metagenomic sequencing and analysis	90
Phylogenetics	90
Results and discussion	91
Candidatus Thermofonseae, a metabolically diverse novel class of	
Chloroflexi sister to Anaerolineae	92
Anoxygenic phototrophs	94
Horizontal gene transfer of phototrophy within the Chloroflexi	95
Presence of other photosynthesis-related genes	96
Conclusions	98
Figures	101
Tables	105
References	106
Supplemental Information	117
Kouleothrix aurantiaca	117
Supplemental discussion	
Probability of missing genes	120
Supplemental Figures	122
Supplemental Tables	129
Supplemental References	130
Chapter 4: Microbial diversity and iron oxidation at Okuoku-hachikurou	
Onsen, a Japanese hot spring analog of Precambrian iron formation	131
Background	132
Materials and Methods	135
Geological context and sedimentology of OHK	
Sample collection	
Geochemical analysis	139
Sequencing and analysis	140
Results and Discussion	141
Geochemistry	141
Recovered microbial diversity	
Aerobic iron-oxidizing bacteria.	.145
Cvanobacteria	.148
Anoxygenic phototrophs and relatives	
Conclusions	
Figures	
Tables	
References	
Supplemental Information	
Materials and methods	186
Secular and paleoenvironmental changes in the redox state	
of iron in iron formations	186
Additional discussion of the microbiology at OHK	
Supplementary Figures	191
··· · ·	

Supplementary Tables	193
Supplemental References	193
Chapter 5: Follow the Oxygen: Comparative Histories of Planetary	
Oxygenation and Opportunities for Life	196
Introduction	197
Oxygen on Earth	200
Oxygen on Mars	203
Oxygen on Europa	206
Discussion	.208
Role of biology in oxygen	
Role of oxygen in biology	.209
Potentially viable metabolisms on Mars and other worlds	211
Evolutionary history of respiration	214
Oxygen and the evolution of complex life	215
Conclusions	216
Figures	218
References	222
Appendix 1: A reduced abjotic nitrogen cycle before the Rise of Oxygen	236
Introduction	237
Evolution of the biological nitrogen cycle	240
Nitrogen fixation on the early Earth	246
An abiotic nitrogen cycle before oxygenic photosynthesis	249
Conclusions	251
Figures	252
References	255
Supplemental Information	261
Supplemental Figures	263
Supplemental references	267
Appendix 2: Cone-forming Chloroflexi mats as analogs of conical	207
stromatolite formation without Cyanobacteria	268
Introduction	269
Materials and methods	20)
Geological context	272
Sample collection	272
Sequencing and analysis	273
Imaging	275
Results and discussion	274
Microbial community composition	274
Filamentous microorganisms and cone formation	274
Conclusions	270
Figures	279
References	281
Appendix 3: Microbial diversity and productivity of linata Onsen an iron	_rich
intertidal hot spring in Iapan	280
Background	200
Materials and Methods	293
	//

Geological context and sedimentology of Jinata	293
Sample collection	294
Geochemical analysis	295
Microscopy	295
Sequencing and analysis	296
Results	298
Geochemistry	298
Sequencing	298
Discussion	299
Iron and hydrogen oxidation	300
Cyanobacteria	303
Methane cycling	304
Anaerobic respiration	305
Nitrogen cycling	305
Other organisms	306
Conclusions	308
Figures	314
Tables	
Supplemental Information	323
References	325
Appendix 4: Genome Sequencing of Diverse Chloroflexi	
Draft genome of <i>Leptolinea tardivitalis</i> YMTK-2, a mesophilic	
anaerobe from the Chloroflexi class Anaerolineae	337
Genome announcement	
References	
Draft genome of <i>Bellilinea caldifistulae</i> reveals capacity for aerobic	
respiration and phototrophy in the Chloroflexi class Anaerolineae	340
Genome announcement	340
References	342
Draft genome of <i>Herpetosiphon gevsericola</i> GC-42, a non-phototroph	hic
member of the Chloroflexi class Chloroflexia	344
Genome announcement	
References	346
Draft genome sequence of Levilinea saccharolytica KIBI-1, a	
member of the Chloroflexi class Anaerolineae	347
Genome announcement	347
References	
Draft genome of Thermanaerothrix daxensis GNS-1, a thermophilic	
facultative anaerobe from the Chloroflexi class Anaerolineae	350
Genome announcement	350
References	352
Draft genome sequence of Ornatilinea apprima P3M-1. an anaerobic	
member of the Chloroflexi class Anaerolineae	353
Genome announcement	353
References	354
Draft genome sequence of Ardenticatena maritima 110S, a thermoph	ilic

nitrate- and iron-reducing member of the Chloroflexi class	
Ardenticatenia	356
Genome announcement	356
References	357
Appendix 5: Crown group Oxyphotobacteria postdate the Rise of Oxygen.	
Introduction	
Methods	
Generation of concatenated dataset	
Age calibrations	366
Molecular clock analysis	.367
Regression analysis of node age uncertainty	368
Expanded phylogeny of Melainabacteria and Oxyphotobacteria	369
Phylogenetic analysis of Ω_2 reductases	369
Results and discussion	370
Crown group Oxyphotobacteria postdate the rise of oxygen	370
Dating the divergence between Oxyphotobacteria and	
Melainahacteria	371
Evolution of photosynthesis in Oxynhotobacteria	374
Conclusions	376
References	377
Figures	387
Tables	392
Appendix 6: Aerobic environments on Mars	394
Introduction	394
Main text	395
Figures	401
References	404
Methods	408
Solubility model	408
Specific heats and robustness of conclusions	411
Thermodynamic limit and worst-case scenario	412
Melting curve for brines	413
Boxplots and statistics	413
General circulation model for Mars	414
Additional references for methods	417
Supplementary Online Material	419
Detailed derivation of all necessary equations	419
Extended discussion	423
Solubility	423
Climate model	432
Validity of averaging method and extension to daily temperature	
variations	436
Spatial gradients oxidative weathering and next steps	436
Supplemental Figures	438
Supplemental Tables	442
Extended References	

LIST OF FIGURES AND TABLES

Number Page Chapter 1: 9
Table 1.1: Nutrient and electron donor fluxes
Table 1.2: Productivity scenarios
Figure 1.1: Limits to primary productivity
Figure 1.2: Productivity through time
Box 1.1: Did iron fuel the early biosphere?
Chapter 2:
Figure 2.1: Earth history timeline72
Figure 2.2: Starting pools of reduced compounds73
Figure 2.3: Fluxes of reduced compounds74
Figure 2.4: Example model output75
Table 2.1: Model solutions 76
Chapter 3
Figure 3.1: Phylogeny of bacteria101
Figure 3.2: Phylogeny of Chloroflexi102
Figure 3.3: Phylogeny of Type 2 phototrophic reaction centers103
Figure 3.4: Cartoon of evolutionary scenario of phototrophy in
Chloroflexi104
Table 3.1: Characteristics of Chloroflexi classes 105
Supplemental Figure 3.1: Phylogeny of bchXYZ proteins122
Supplemental Figure 3.2: Phylogeny of bchIDH proteins123
Supplemental Figure 3.3: Phylogeny of A-family HCO proteins124
Supplemental Figure 3.4: Phylogeny of B-family HCO proteins125
Supplemental Figure 3.5: Phylogeny of Alternative Complex III
proteins126
Supplemental Figure 3.6: Phylogeny of bc complex proteins
Supplemental Figure 3.7: Probability of failure to recover
phototrophy genes given genome completeness

Supplemental Table 3.1: Genome statistics of genome bins129	9
Supplemental Table 3.2: Metabolic traits of genome bins129	9
Chapter 413	1
Figure 4.1: Location of OHK159	9
Figure 4.2: Context photographs of OHK	0
Figure 4.3: Summary of geochemistry and microbial community162	2
Figure 4.4: Electron microscopy images164	4
Figure 4.5: Multidimensional scaling analysis of OHK samples16	6
Table 4.1: Geochemical characteristics of OHK source water16'	7
Table 4.2: Diversity metrics of OHK sequencing	7
Table 4.3: Relative abundance of microbial taxa at OHK165	8
Supplemental Figure 4.1: Rarefaction curves	1
Supplemental Figure 4.2: Light and epifluorescence images	2
Supplemental Table 4.1: Unifrac matrix	3
Chapter 5	6
Figure 5.1: Comparative timelines of Earth and Mars	8
Figure 5.2: Thermodynamic of microbial metabolisms	0
Figure 5.3: Evolutionary contingency and the origin of complex	
life	1
Appendix 1	6
Figure A1.1: Topology of the nitrogen cycle	2
Figure A1.2: Cartoon of evolution of HCO proteins	3
Figure A1.3: Topology of the pre-oxygen nitrogen cycle254	4
Supplemental Figure A1.1: Redox ladder	3
Supplemental Figure A1.2: Thermodynamic favorability of	
feammox and manoxammox	4
Supplemental Figure A1.3: Ammonia concentrations through time	
of feammox and manoxammox incubations	5
Supplemental Figure A1.4: Photographs of incubations	6
Appendix 2	8
Figure A2.1: Photos of cone-forming mats at Nakabusa	9

Figure A2.2: Relative abundance of microbial taxa	
Appendix 3	
Figure A3.1: Location of Jinata Onsen	
Figure A3.2: Representative photos of Jinata	
Figure A3.3: Microscopy images	
Figure A3.4: Multidimensional scaling plot of Jinata sample	es317
Table A3.1: Geochemical characteristics of Jinata source wa	ater318
Table A3.2: Summary of geochemical transition from source	e to marine
out flow	
Table A3.3: Diversity metrics of Jinata sequencing	
Table A3.4: Relative abundance of microbial taxa at Jinata.	
Supplemental Figure A3.1: Rarefaction curves	
Supplemental Table A3.1: Unifrac matrix	
Appendix 4	
Appendix 5	
Figure A5.1: 16S tree of Cyanobacteria phylum	
Figure A5.2: Divergence time estimates for Cyanobacteria	
Phylum	
Figure A5.3: Age uncertainty	
Figure A5.4: Scenarios for evolution of photosynthesis in	
Cyanobacteria	
Table A5.1: Summary of calibration constraints	
Table A5.2: Summary of cross-calibrated BEAST runs	
Table A5.3: Age estimates for key divergences	
Appendix 6	
Figure A6.1: Solubility of O ₂ in Martian brines by tempera	uture401
Figure A6.2: Climatically-induced spatial distribution of or	xygen
solubility on Mars	402
Figure A6.3: Obliquity-driven evolution of aerobic enviror	iments on
Mars	403
Supplemental Figure A6.1: Thermodynamic limit of O ₂ so	lubility438

Supplemental Figure A6.2: Salting out coefficients for O ₂ in brines43	39
Supplemental Figure A6.3: Temperature dependence of salting out	
factors for O ₂ in brines44	40
Supplemental Figure A6.4: Predominant factors that control O ₂	
solubility and spatial O2 solubility gradients on modern-day Mars44	41
Supplemental Table A6.1: Thermodynamic parameters for solubility	
of oxygen in pure water44	12
Supplemental Table A6.2: Salting out parameters44	43
Supplemental Table A6.3: Eutectic curve parameters4	45