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C h a p t e r  3  
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W. Fischer. In preparation. 

Abstract:  

The antiquity of photosynthesis is a point of substantial contention, with competing 

hypotheses for either its presence in the last universal common ancestor and gene loss in 

most lineages, or a much later origin followed by extensive horizontal gene transfer into the 

extant phototrophic clades. Selecting between these alternatives requires constraining 

whether photosynthesis-associated genes have been inherited vertically from a common 

photosynthetic ancestor, or whether they have been horizontally transferred. While the 

phylogenetic relationships between the bacterial phyla are unclear, making the order of 

acquisition of photosynthesis uncertain, much greater resolution is retained within phyla, 

where more recent cases of vertical inheritance or horizontal gene transfer can be tested. 

Here, we report several new draft genome sequences from within the Chloroflexi phylum 

that form a metabolically diverse, monophyletic clade sister to the Anaerolineae class that 

we term Candidatus Thermofonseaa. This class includes two independently phototrophic 

lineages. Comparison of organismal (based on conserved ribosomal proteins) and 

phototrophic gene (based on reaction center and bacteriochlorophyll synthase) trees 

demonstrate that these lineages acquired phototrophy via horizontal gene transfer from the 

phototrophic Chloroflexia class. The extent of horizontal gene transfer of phototrophy, as 
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well as other metabolic pathways, within the Chloroflexi is indicative of a broader role for 

horizontal transfer in the distribution of metabolic traits throughout the bacteria, 

challenging assumptions about metabolism in the last universal common ancestor and 

subsequent innovation and diversification of metabolic pathways.  

Introduction: 

Anoxygenic photosynthesis is among the oldest and most important metabolic 

inventions in the history of life on Earth. Anoxygenic photosynthesis was a critical driver 

of primary productivity on the early Earth, and it gave rise to oxygenic photosynthesis, 

which revolutionized biology and geochemistry and ultimately fueled the rise of complex 

life.  Multiple hypotheses exist for the origin and subsequent evolution of anoxygenic 

photosynthesis, but little is known with certainty. To date, chlorin-based phototrophy has 

been identified in seven bacterial phyla: the Cyanobacteria, Chlorobi, Chloroflexi, 

Acidobacteria, Heliobacteria, Gemmatimonadetes, and Proteobacteria (Figure 1). Of these, 

only one—the Cyanobacteria—possesses two photosystems coupled to perform oxygenic 

photosynthesis. The others perform anoxygenic phototrophy and possess only a single 

reaction center, either Type 1 (Chlorobi, Heliobacteria, and Acidobacteria) or Type 2 

(Proteobacteria, Gemmatimonadetes, and Chloroflexi). While it has been suggested that 

photosynthesis was present in the last common ancestor of the bacteria (Woese et al. 1985, 

Woese 1987), followed by extensive loss in most lineages, this idea remains controversial. 

An alternative scenario involves a later origin of photosynthesis, followed by multiple 

instances of horizontal gene transfer (HGT) resulting in the modern distribution of 

photosynthesis (e.g. Raymond et al. 2002).  
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A test of these alternatives is to compare the organismal phylogenies of 

phototrophic bacteria to the gene phylogenies of photosynthesis genes—concordance of the 

trees would indicate shared ancestry, while discrepancies between them would indicate a 

history of horizontal gene transfer (Doolittle 1986). While the structure of the bacterial tree 

of life is debated (e.g. Woese 1987, Williams et al. 2013, McInerney et al. 2014), intra-

phylum organismal relationships are generally robust despite uncertainty in relationships 

between phyla (Pace 2009). As a result, the history of photosynthesis within a phylum is 

more straightforward to assess than it is for the bacteria as a whole. If a major role for 

horizontal gene transfer can be demonstrated within a particular phylum, the HGT-driven 

phototrophy hypothesis will be strengthened, whereas a concordance of organismal and 

gene trees would be more consistent with an ancient origin and vertical inheritance of the 

metabolism.  While tests of this kind have been made previously in the Proteobacteria, 

suggesting intra-phylum horizontal gene transfer (Igarashi et al. 2001, Nagashima & 

Nagashima 2013), this has not previously been possible in other phototrophic phyla due to 

the limited diversity of phototrophic members within each. However, new opportunities for 

assessing the history of photosynthesis within the Chloroflexi phylum has recently been 

made possible by the discovery of novel lineages of phototrophs within this phylum.  

The Chloroflexi (i.e. Green Nonsulfur Bacteria) are a phylum of primarily gliding, 

filamentous bacteria possessing a wide diversity of metabolisms and ecological roles, but 

are best known as photoheterotrophs (Overmann 2008). Chloroflexi have been shown to be 

diverse and abundant in a range of environments (e.g. marine sediments and groundwater, 

Inagaki et al. 2003, Hug et al. 2013). Despite their environmental richness revealed by 
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culture-independent surveys, most described Chloroflexi belong to a few subclades isolated 

from hot springs (Yamada and Sekiguchi 2009), including the anoxygenic phototrophic 

Chloroflexus (Pierson and Castenholz 1974, Hanada et al. 1995). Phylogenetic analysis of 

the phototrophy genes of Chloroflexi has suggested that anoxygenic photosynthesis in this 

group predates the evolution of oxygenic photosynthesis in Cyanobacteria (Xiong et al. 

2000), implying that this group is ancient and therefore a good candidate for investigating 

questions of early Earth history. Recent culture- and sequence- based efforts have expanded 

the known taxonomic and metabolic diversity of the Chloroflexi phylum (e.g the 

Ardenticatenia class, capable of nitrate- and iron oxide- reduction, Hemp et al. 2015b, 

Kawaichi et al. 2015). Newly discovered Chloroflexi vary tremendously in their 

morphology, metabolism, and other traits (Table 1), but are recovered as a monophyletic 

clade in phylogenetic trees (Figure 2) and have sufficient sequence similarity to be 

classified as a single phylum (Hanada 2014).  

Here, we report draft genomes of three lineages of phototrophic Chloroflexi, 

including two outside of the classically phototrophic Chloroflexia class, and demonstrate 

the incongruence of organismal and phototrophic gene trees, suggesting a history of 

horizontal gene transfer of photosynthesis within this phylum. Moreover, multiple genome 

bins were recovered for nonphototrophic relatives of two of these novel phototrophic 

Chloroflexi, forming a new clade sister to the Anaerolineae class of Chloroflexi. This new 

class-level clade was recovered as several genome bins from Japanese hot spring 

metagenomes, including members with genes for aerobic and anaerobic respiration as well 

as both chlorin- and rhodopsin-based phototrophy. The discovery of diverse members of an 
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entire new class of Chloroflexi from just two Japanese hot springs suggests a large amount 

of unknown diversity in this phylum that may be recovered by further culture- and 

sequencing-based efforts. 

 

Methods: 

Metagenomic sample collection: 

Four metagenomic datasets were recovered from two hot springs in Japan, Jinata 

Onsen and Nakabusa Onsen. Genome bins labeled JP1 or JP3 were derived from Jinata 

Onsen, while CP1 and CP2 were derived from Nakabusa Onsen.  

Jinata genome bins were assembled from two metagenomes from Jinata Onsen, on 

Shikinejima Island, Tokyo Prefecture. The geochemistry and microbial diversity of this 

spring is described in detail elsewhere (Ward et al. 2017a). Jinata Onsen is located at 

34.326111N, 139.21E on the island of Shikinejima, Tokyo Prefecture, Japan. Shikinejima 

is part of the Izu Islands, a chain of volcanic islands that formed in the past 2-3 million 

years along the northern edge of the Izu-Bonin-Mariana Arc (Kaneoka et al. 1970).  The 

source water of Jinata Onsen emerges anoxic, iron-rich, and gently bubbling from the 

spring source. Temperatures at the source are ~62°C. This spring water flows into a series 

of pools that mix progressively more with seawater during high tide, creating a range of 

geochemical conditions over short spatial and temporal scales as hot, iron-rich, oxygen-

poor spring water mixes with cold, sulfate- and oxygen-rich seawater. The metagenomes 

from which JP1 bins were recovered was sequenced from an iron-oxide rich pool near the 

spring source (Pool 1), while JP3 genomes were recovered from a Cyanobacteria-rich 
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microbial mat in Pool 3, the most downstream section of the hot spring before it flows into 

the open ocean. Dissolved oxygen (DO), pH, and temperature measurements were 

performed in situ using an Exetech DO700 8-in-1 Portable Dissolved Oxygen Meter. Iron 

concentrations were measured using the ferrozine assay (Stookey 1970) following 

acidification with 40 mM sulfamic acid to inhibit iron oxidation by O2 or oxidized nitrogen 

species (Klueglein and Kappler 2013). At the time of sampling, Pool 1 59°C, pH 5.8, and 

contained 1.8 mg/L dissolved oxygen and 265 μM Fe2+; Pool 3 at Jinata Onsen was 46°C, 

pH 6.7, and contained 5.6 m/L dissolved oxygen and 100 μM Fe2+. 

 Nakabusa genome bins were assembled from two metagenome from hot spring microbial  

mats from Nakabusa Onsen, located at 36.392429N, 137.748038E in the Japanese Alps 

near Azumino, Nagano Prefecture. Geochemical and microbiological characterization of 

Nakabusa Onsen is described in detail elsewhere (Kubo et al. 2011, Ward et al. 2017b). 

Nakabusa Onsen is a sulfidic, moderately alkaline hot spring with source waters near 70°C. 

The samples from which the metagenomes were sequenced were of cone-forming 

microbial mats at two points along the outflow from the hot spring source; Cone Pool 1 

(the source of CP1 genomes) was a Chloroflexi-dominated mat near the hot spring source, 

which at the time of sampling was 48°C and pH 8.1, while Cone Pool 2 (the source of the 

CP2 genomes) was collected from a cone-forming Cyanobacteria-rich microbial mat 

several meters downstream, which at the time of sampling was 32°C and pH 8.3.  

Samples of microbial mats were collected using sterile forceps and spatulas (~0.25 

cm3 of material). Cells were lysed and DNA preserved in the field using Zymo Terralyzer 
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BashingBead Matrix and Xpedition Lysis Buffer. Cells were disrupted immediately by 

attaching tubes to the blade of a cordless reciprocating saw and operating for 1 minute. 

Metagenomic sequencing and analysis: 

Following return to the lab, DNA was extracted and purified with a Zymo 

Soil/Fecal DNA extraction kit (Zymo Research, Irvine, CA). DNA was quantified with a 

Qubit 3.0 fluorimeter (Life Technologies, Carlsbad, CA) according to manufacturer’s 

instructions following DNA extraction. Purified DNA was submitted to SeqMatic LLC 

(Fremont, CA) for library preparation and sequencing via Illumina HiSeq technology. Raw 

sequences were assembeled with MegaHit v. 1.02 (Li et al. 2016) and genome bins 

constructed using MetaWatt version 3.5.2 (Strous et al. 2012). Genomes were manually 

screened for genes of interest and uploaded to RAST (Aziz et al. 2008) for overall 

characterization. Genome bins were assessed for completeness and contamination using 

CheckM (Parks et al. 2014). Genes of interest (e.g. coding for ribosomal, photosynthesis, 

and electron transport proteins) were screened against outlier (e.g. likely contaminant) 

contigs as determined by CheckM using tetranucleotide, GC, and coding density content. 

Phylogenetics 

Sequences of ribosomal and phototrophy proteins were identified locally with 

BLAST+ (Camacho et al. 2008), aligned with MUSCLE (Edgar 2004), and alignments 

manually curated in Jalview (Waterhouse et al. 2009). Phylogenetic trees were calculated 

using RAxML (Stamatakis 2014) on the Cipres science gateway (Miller et al. 2010). Trees 

were visualized with Seaview (Gouy et al. 2010) and the Interactive Tree of Life (Letunic 

and Bork 2016).  
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Results and discussion: 

Our sequencing efforts, including both hot spring metagenomes and sequencing of 

cultured isolates, have resulted in draft genomes of three new reaction center-containing 

phototrophic Chloroflexi lineages and eight genome bins which do not encode reaction 

centers but are associated with a new class-level clade sister to the Anaerolineae (Table 1, 

Figure 2). Kouleothrix aurantiaca represents a so-far monospecific genus within the class 

Chloroflexia, while JP3_7, CP2_42A, and the other genome bins reported here form a new 

clade sister to the Anaerolineae. Genome statistics for these bins are reported in Table 1, 

with summaries of the metabolic proteins encoded by these genomes in Table 2.  

Organismal phylogenies of the Chloroflexi phylum, including the novel 

phototrophs and other genome bins described here, were constructed using the RpoB 

protein sequence (Figure 2). This protein is a core information processing protein, and is 

always found as a single copy that has been vertically inherited (Hansmann and Martin 

2000), so the RpoB phylogeny should reflect the organismal phylogeny. For genomes in 

which a 16S gene was recovered, the 16S phylogeny matched the topology of the RpoB 

tree. In these phylogenies, Kouleothrix aurantiaca branched within the Chloroflexia class, 

basally to the Roseiflexus after their divergence from Chloroflexus. CP2_42A and JP3_7 

were recovered as separate lineages, forming a clade sister to the Anaerolineae along with 

the other genome bins reported here. 

Reaction center protein trees (Figure 3) show Kouleothrix in the same position 

relative to other Chloroflexia as in organismal trees, basal to the Roseiflexus, but place 
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CP2_42A and JP3_7 very differently—with CP2_42A as branching between Kouleothrix 

and Roseiflexus, and JP3_7 branching sister to the Roseiflexus+CP2_42A+Kouleothrix 

clade.  

Candidatus Thermofonseae, a metabolically diverse novel class of Chloroflexi sister to 

Anaerolineae 

The metagenome bins reported here, together with the “Anaerolineae-like” 

phototroph recovered from a Yellowstone National Park metagenome (Klatt et al. 2011), 

form a monophyletic clade sister to the Anaerolineae class in phylogenetic trees based on 

conserved organismal marker proteins such as RpoB (Figure 2). The members of this class 

appear to encode diverse heterotrophic metabolic traits, including photoheterotrophy and 

diverse pathways for both aerobic and anaerobic metabolism. 

We propose for this clade the name Candidatus Thermofonseae, from the Latin for 

hot spring, with official classification pending isolation and characterization of at least one 

member. Genome bins falling within this clade were recovered from all four of our 

metagenomic datasets from both hot springs. The Thermofonseae genome bins reported 

here were up to ~96% complete as determined by single copy marker genes, and recovered 

diverse metabolic capabilities as described above, distinguishing them from their closest 

relatives, the metabolically-limited Anaerolineae. Of the ten genomes reported here, two 

include phototrophic reaction centers, two include rhodopsins, two possess partial 

denitrification pathways, and six contain genes for aerobic respiration (Supplemental Table 

2). The Anaerolineae, in contrast, are typically described as obligate anaerobes (e.g. 

Yamada and Sekiguchi 2009), though genes for aerobic respiration have been recovered in 
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multiple Anaerolineae genomes (e.g. Pace et al. 2015, Ward et al. 2015a, Hemp et al. 

2015c). Phylogenetic analysis of electron transport and respiration genes in the 

Thermofonseae and Anaerolineae reveal that metabolic protein trees are incongruent with 

organismal trees, suggesting independent acquisitions of respiration in these two clades 

(Supplemental Figures). The Thermofonseae utilize a bc complex for respiration, while the 

Anaerolineae commonly use an Alternative Complex III. Furthermore, the Heme Copper 

Oxidoreductases (HCOs) in these organisms are not closely related. Thermofonseae uses an 

A family HCO closely related to those of Cyanobacteria, while those in Anaerolineae are 

closely related to Caldilineae. This suggests that stem lineages of these classes diverged 

prior to the acquisition of aerobic respiration, followed by diversification after receiving 

this metabolism through horizontal gene transfer, or alternatively loss and replacement in 

one lineage. 

At least three members of the Thermofonseae (CP2_42A, JP3_13, and CP2_2F) 

contain rhodopsin genes. Those of JP3_13 and CP2_2F are related to the 

“Actinorhodopsins” found in Roseiflexus sp. RS-1 which is thought to be functional as a 

light-driven proton pump (Sharma et al. 2008).  The rhodopsins found in JP3_13 and 

CP2_2F have highly similar sequences; given the relatedness of these strains and their 

rhodopsins, these genes were likely inherited from the last common ancestor of these 

strains following acquisition via horizontal gene transfer. The rhodopsin encoded in the 

CP2_42A genome is most closely related to xanthorhodopsin, a proton-pumping rhodopsin 

shown to use light-harvesting antenna carotenoids (Balashov et al. 2005). Despite the 

presence of rhodopsins in diverse members of the Chloroflexi including Roseiflexus, 
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Ktedonobacter racemifer, and Bellilinea caldifistulae (members of the Chloroflexia, 

Ktedonobacteraceae, and Anaerolineae classes of the Chloroflexi, respectively), the 

rhodopsins in each of these Chloroflexi lineages are not closely related, and likely reflect 

independent acquisitions via horizontal gene transfer from other phyla and not a shared 

history of rhodopsins in the Chloroflexi phylum. Genes for the copper-containing nitrite 

reductase NirK are present in bins JP1_20 and CP2_20G, suggesting the potential for at 

least partial denitrification in these strains.  

Anoxygenic phototrophs 

Two members of Ca. Thermofonseae reported here, CP2_42A and JP3_7, 

contained genes indicate of anoxygenic phototrophy. The CP2_42A genome bin branches 

basally to the Anaerolineae class based on organismal trees built based on RpoB and 

concatenated ribosomal proteins. CP2_42A encodes genes for anoxygenic phototrophy; a 

type II reaction center (including a fused pufLM and a pufC), bacteriochlorophyll 

biosynthesis, a cytochrome bc complex, and Alternative Complex III.  

JP3_7 is most closely related to the “Anaerolineae-like” phototrophic Chloroflexi 

assembled from a metagenome from Yellowstone National Park (Klatt et al. 2011), though 

it is genetically distinct to the species and possibly the genus level (~78% average 

nucleotide identity). JP3_7 encodes genes for anoxygenic phototrophy; a type II reaction 

center (including unfused pufL and pufM, and a pufC), bacteriochlorophyll synthesis, a 

cytochrome bc complex, but no Alternative Complex III. JP3_7 contains unfused PufL and 

PufM genes, similar to that in Chloroflexus.  
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Although CP2_42A and JP3_7 contain most genes involved in bacteriochlorophyll 

synthesis, including bchX,Y,Z,P, F,G,I,D, and a bchH homolog, both are missing 

bchL,N,B,E, or M. Neither CP2_42A nor JP3_7 bin recovered genes for the Calvin cycle 

or the 3-hydroxyprionate bicycle and so these strains may grow primarily as 

photoheterotrophs. 

While the draft genomes reported here are largely too fragmented to recover 

informational genes on the same contigs as phototrophy related genes, the rpoB and bchP 

genes of JP3_7 are collocated on contig 8001, providing strong support for the inference of 

phototrophy in this lineage from the genome bins produced here.  

Horizontal gene transfer of phototrophy within the Chloroflexi: 

The position of Kouleothrix in both organismal and gene trees is consistent with a 

vertical inheritance of phototrophy from the last common ancestor of the 

Roseiflexus+Chloroflexus clade after its divergence from the nonphototrophic 

Herpetosiphon. However, the other two phototrophic Chloroflexi reported here reveal a 

more complicated history. These two strains (CP2_42A and JP3_7) branch within Ca. 

Thermofonseae in organismal trees based on conserved vertically inherited proteins like 

RpoB, quite distant from the other phototrophic Chloroflexi (Figure 2). However, 

photosynthesis-related gene trees place these strains within the other phototrophic 

Chloroflexi. CP2_42A branches within the Chloroflexia, basal to the clade of Roseiflexus 

and Kouleothrix. JP3_7, however, branches more deeply, sister to the 

Roseiflexus+Kouleothrix+CP2_42A clade (Figure 3). Furthermore, Kouleothrix and 

CP2_42A have fused pufL and pufM genes, a feature which appears in reaction centers of 
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Roseiflexus (Youvan et al. 1984, Yamada et al. 2005) and so appears to be a synapomorphy 

of this lineage of phototrophs, supporting their inclusion at this point in the phototrophy 

tree to the exclusion of JP3_7 which has unfused pufL and pufM genes.  

The incongruence between organismal and gene trees for the novel phototrophic 

Chloroflexi described here suggests that photosynthesis genes were not vertically inherited 

from the last common ancestor of the phototrophic Chloroflexi. Instead, the differing 

branching order of JP3_7 and CP2_42A between RpoB and PufLM trees, along with the 

presence of a conserved gene fusion within the Roseiflexus+Kouleothrix+CP2_42A clade, 

strongly suggests that horizontal gene transfer has played a role in the current distribution 

of phototrophy in the Chloroflexi phylum.   

In light of these data, the most parsimonious scenario for the evolution of 

phototrophy within the Chloroflexi requires at least two instances of horizontal gene 

transfer to have occurred (Figure 4). This scenario involves the acquisition of an unfused 

Type 2 reaction center in an ancestor of the Chloroflexia after the divergence of 

Herpetosiphon, horizontal gene transfer of this unfused ancestral form from the branch 

leading to Roseiflexus into the JP3_7 lineage, followed by a single pufL+pufM fusion event 

in an ancestor of Roseiflexus and Kouleothrix, and a second horizontal gene transfer event 

of the now fused protein into an ancestor of CP2_42A from the Roseiflexus lineage after its 

divergence from Kouleothrix.  

Presence of other photosynthesis-related genes 

The genome bins for CP2_42A and JP3_7 recover most, but not all, of the 

bacteriochlorophyll synthesis pathway expected for phototrophic Chloroflexi. These 
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genomes contain bchX,Y,Z,P,F,G,I,D, and a bchH-like gene, but not bchL,N,B, M, or E. 

While this may be a result of the incomplete nature of these genomes, the same 

bacteriochlorophyll synthesis gene complement has been described in the “Anaerolineae-

like” phototroph genome bin recovered from a Yellowstone National Park metagenome 

(Klatt et al. 2011). Some or all of these genes may in fact actually be absent from these 

genomes, possibly functionally replaced by promiscuous homologs (e.g. bchLNB are 

homologous to bchXYZ, and chimeras of other homologs of these genes have been 

demonstrated to be functionally exchangeable, e.g. Wätzlich et al. 2009, Cheng et al. 2005). 

Isolation and biochemical characterization of the bacteriochlorophyll synthesis pathway in 

these organisms will be necessary to resolve this possibility. Estimates of the probability of 

missing the same set of genes from multiple genomes of relatively high (>50%) 

completeness are incredibly low (<<1%), strengthening interpretations of the absence of 

these genes from Ca. Thermofonseae genomes (Supplemental Information).  

It is interesting to note that the vast majority of sequenced phototrophic Chloroflexi 

utilize Alternative Complex III (Yanyushin et al. 2005) for energy conservation during 

phototrophy, even to the extent of CP2_42A appearing to have acquired ACIII along with 

other phototrophy genes (Supplemental Information). However, ACIII was not recovered 

in the draft genomes for K. aurantiaca or JP3_7. This suggests that the use of ACIII for 

phototrophy may not by a synapomorphy of the phototrophic Chloroflexi, though this will 

require closure of these genomes and confirmation that ACIII is truly absent and not simply 

missing from the draft genome. The presence of auracyanin, the electron acceptor of ACIII 

(Majumder et al. 2013), in JP3_7 is consistent with the ancestral presence of ACIII in this 



  98 

 

lineage and either recent loss or failure to recover the gene in the genome bin. Meanwhile, 

all of the aerobic members of the Thermofonseae encode a bc complex, consistent with 

other aerobic, nonphototrophic Chloroflexi clades such as Caldilineae and Ardenticatenia.   

The history of carbon fixation in the Chloroflexi is complicated, and is not only not 

congruent with the organismal phylogeny but is not congruent with phototrophy gene 

phylogenies, suggesting that the light and dark reaction pathways for photosynthesis in the 

Chloroflexi have undergone independent histories of horizontal gene transfer. While the 

phototrophic Chloroflexi are well known to possess the 3-hydroxypropionate bicycle for 

carbon fixation (e.g. Berg 2011), this pathway is absent in the genomes reported here, as 

well as Oscillochloris and Chlorothrix. Instead, Kouleothrix, Oscillochloris, and 

Chlorothrix possess the Calvin Cycle, while CP2_42A and JP3_7 do not encode and 

carbon fixation pathways. Comparison of the phylogenies of these organisms and their 

phototrophy genes does not reveal a clear, consistent history for carbon fixation, with 

scenarios involving the first phototrophic Chloroflexi possessing the 3-HP bicycle, the 

Calvin cycle, or no carbon fixation at all being similarly parsimonious. 

Conclusions: 

The increased diversity of Chloroflexi phototrophs and history of HGT described 

here are consistent with other metabolic characters in this phylum. Our group has 

previously sequenced diverse representatives of the Chloroflexi, filling in gaps in the tree 

(Ward et al. 2015ab, Hemp et al. 2015abc, Pace et al. 2015) in order to better characterize 

the diversity and distribution of high potential metabolism within this phylum.  Our 

previous efforts to expand the sequenced diversity of the Chloroflexi have revealed a high 
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degree of previously unrecognized metabolic diversity in this phylum, including high-

potential metabolic pathways for aerobic and anaerobic respiration (Ward et al.2015ab, 

Hemp et al. 2015abc, Pace et al. 2015). The distribution and phylogenies of genes 

associated with these pathways is diverse and consistent with a history of horizontal gene 

transfer. Together, these data are consistent with a high degree of metabolic diversity and 

abundant horizontal gene transfer within the Chloroflexi phylum.  

A history of horizontal gene transfer of phototrophy within the Chloroflexi is 

consistent with that of the Proteobacteria, which records extensive intra-phylum HGT 

(Igarashi et al. 2001, Nagashima & Nagashima 2013). A single clear case of inter-phylum 

HGT is also recorded in the presence of a Proteobacteria-derived RC2 in a member of the 

Gemmatimonadetes (Zeng et al. 2014).  

An important question is the relative timing of acquisition of phototrophy in 

different lineages. If anoxygenic photosynthesis is an ancient metabolism, predating the 

introduction of molecular oxygen into biology as a result of oxygenic photosynthesis (e.g. 

Xiong et al. 2000), then at least some lineages should have acquired anoxygenic 

photosynthesis before the Great Oxygenation Event ~2.3 Gya, and therefore before the 

ability to respire oxygen. However, for many phototrophic groups, it appears that the 

acquisition of phototrophy postdated the acquisition of aerobic respiration (Fischer et al. 

2016). As a result, the taxonomic affinity of the oldest anoxygenic phototrophs remains 

unclear. It is possible that photosynthesis originated in a member of a characterized 

phototrophic clade (e.g. the suggestion that phototrophy may have originated in the 

Chloroflexi, Oyaizu et al. 1987, or the Cyanobacteria, Mulkidjainian et al. 2006), within a 
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so-far undiscovered but still extant group, or may in fact have gone extinct. This can best 

be resolved by continued discovery of new phototrophic groups—an increasingly frequent 

phenomenon as environmental sequencing efforts continue and improve. 
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Figure 1: Phylogeny of bacteria based on concatenated ribosomal proteins, with clades that 

include phototrophs noted with symbols representing their reaction center. Modified from 

Hug et al. 2016 and visualized using the interactive tree of life (Letunic and Bork 2016).   
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Figure 2: Phylogeny of Chloroflexi based on the RpoB protein sequence, with our newly 

sequenced strains indicated with daggers, phototrophic strains highlighted (red for fused 

pufLM, green for unfused), and Candidatus Thermofonseae noted.  

Candidatus
Thermofonseae

Chthonomonas calidirosea T49

Methylobacterium extorquens AM1

Thermobaculum terrenum ATCC-BAA-798

Kallotenue papyrolyticum JKG1

Herpetosiphon geysericola DSM7119

Herpetosiphon aurantiacus DSM785

Chloroflexus aggregans DSM9485

Chloroflexus aurantiacus J-10-fl

Chloroflexus sp. Y400

Chloroflexus sp. Y396

Chlorothrix halophila
Oscillochloris trichoides DG6

Kouleothrix aurantiaca COM-B

Roseiflexus castenholzii DSM13941

Roseiflexus sp. RS1

Thermogemmatispora sp. PM5

Thermosporothrix hazakensis SK20-1

Ktedonobacter racemifer DSM44963

Sphaerobacter thermophilus DSM20745

Nitrolancetus hollandica Lb

Thermomicrobiales sp. KI4

Dehalococcoides ethenogenes 195

Dehalogenimonas lykanthropellens BL-DC-9
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Figure 3: Phylogeny of Type 2 phototrophic reaction center proteins (concatenated PufL 

and PufM); lineages with fused PufLM proteins are highlighted in red, while lineages with 

unfused reaction centers are in green.  
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Figure 4: Cartoon of evolutionary scenario of phototrophy in Chloroflexi. Nonphototrophic 

lineages are in black, lineages with fused PufLM proteins are highlighted in red, and 

lineages with unfused reaction centers are in green. Arrows represent horizontal gene 

transfer of phototrophy genes. 
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10-67 43-80 20-73 37-65 30-75 17-74 67.5-75 15-35 32-59 

% GC  48-62 56-63 48-58 59-65 51.5 54-60 69 49-54 46-63 

Table 1: Characteristics of the classes of Chloroflexi, including Ca. Thermofonseae 

described here. The Chloroflexi phylum contains eight recognized classes, with genome 

sequences available for at least one member of each: Chloroflexia (Garrity & Holt, 2001; 

Gupta et al., 2013), Thermomicrobia (Hugenholtz&Stackebrandt, 2004, Sorokin et al. 



  106 

 

2012), Ktedonobacteria (Cavaletti et al., 2006; Yabe et al., 2010; Chang et al. 2011), 

Dehalococcoidia (Löffler et al., 2013; Moe et al., 2009), Ardenticatenia (Kawaichi et al., 

2013), Anaerolineae and Caldilineae (Yamada et al. 2006), and Thermoflexia (Dodsworth 

et al. 2014). Table data from this study, Dodsworth et al. 2014, and our previously 

described Chloroflexi genomes (Ward et al. 2015ab, Hemp et al. 2015abc, Pace et al. 

2015). 
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Supplementary information: 

Kouleothrix aurantiaca 

Kouleothrix aurantiaca, a member of the group formerly known as ‘Eikenboom 

morphotype 1851’ (Seviour and Burkall 1999), was isolated from activated sludge in an 

industrial wastewater treatment facility (Kohno et al. 2002). It forms orange-pigmented 

cells organized into long mm-scale filaments, grows on numerous sugars and pyruvate and 

by fermentation on certain sugars, and can reduce nitrate to nitrite (Kohno et al. 2002). It is 

closely related to members of the genus Roseiflexus (Beer et al. 2002), however 

phototrophy has not been observed in these organisms.  

The genome of Kouleothrix aurantiaca COM-B (JCM 19913) was sequenced as 

part of a project to expand the phylogenetic breadth of Chloroflexi genomes. Genome 

sequencing was performed at Seqmatic using the Illumina MiSeq sequencing platform. 

SPAdes 3.1.1 (7) was used to assemble the genome. The genome was screened for 

contaminants based on sequence coverage, GC composition, and BLAST hits of conserved 

single copy genes. Genome annotation was performed using the NCBI Prokaryotic 

Genome Annotation Pipeline. 

K. aurantiaca falls within the phototrophic Chloroflexia, with a consistent position 

basal to Roseiflexus in both organismal and photosynthetic gene trees (Figures 2 and 3). K. 

aurantiaca encodes for all of the genes required for anoxygenic phototrophy; a type II 

reaction center (including a fused pufLM and a pufC), a complete bacteriochlorophyll 

biosynthesis pathway, and a cytochrome bc complex, but no Alternative Complex III.  K. 

aurantiaca also encodes for a branched aerobic respiration pathway, including two 
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Complex Is (NADH dehydrogenase), Complex II (succinate dehydrogenase), two Complex 

IIIs (cytochrome bc complex), two heme-copper oxygen reductases (A and B-family), and 

a quinol bd oxidase. In addition it has a NirK nitrite reductase. K. aurantiaca encodes a 

type 1 rubisco and a phosphoribulokinase gene, suggesting that it is capable of carbon 

fixation via the Calvin Cycle. It does not, however, encode key genes in the 3-

hydroxypropionate bicycle used for carbon fixation in Chloroflexus and Roseiflexus (Klatt 

et al. 2007).  

 

Supplemental discussion 

CP2_42A also encodes a rhodopsin homolog most closely related to 

xanthorhodopsin, a proton-pumping rhodopsin shown to use light-harvesting antenna 

carotenoids (Balashov et al. 2005). CP2_42A also encodes for a branched aerobic 

respiration pathway, including two Complex Is (NADH dehydrogenase), Complex II 

(succinate dehydrogenase), Complex III (cytochrome bc complex), Alternative Complex 

III, and two heme-copper oxygen reductases (A and B-family). The CP2_42A genome bin 

did not recover genes for the Calvin cycle or the 3-hydroxypropionate bicycle, suggesting 

that it may grow primarily as a photoheterotroph. 

JP3_7 also encodes for a branched aerobic respiration pathway, including two 

Complex Is (NADH dehydrogenase), Complex II (succinate dehydrogenase), Complex III 

(cytochrome bc complex), two heme-copper oxygen reductases (A and B-family), and a 

cytochrome bd oxidase. 
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The bacteriochlorophyll synthesis genes present in JP3_7 and CP2_42A may record 

a hybrid history of the pathway. While most genes in the pathway (bchX,Y,Z,F,G,P) 

recovered a close relationship between all of the phototrophic Chloroflexi, the bchI,D, and 

H (and H-like) genes show a closer relationship between the Chloroflexia and Clorobi to 

the exclusion of  CP2_42A and JP3_7. This may record a hybrid history for 

bacteriochlorophyll synthesis in the novel Chloroflexi phototrophs, with some genes in the 

bacteriochlorophyll synthesis pathway being transferred with the reaction center genes 

from the Chloroflexia, and others deriving from the Chlorobi or other phototrophic 

bacteria. Alternatively, this may reflect the relative lack of conserved sequence information 

of short, relatively quickly-evolving proteins relative to the much more conserved and 

information-rich reaction center and ribosomal proteins. 

Phylogenies of electron transport proteins reveal that aerobic respiration using an A 

family heme copper oxidoreductase and a bc complex is a vertically-inherited 

synapomorphy of the Thermofonseae, while the B family heme copper oxidoreductase and 

Alternative Complex III found in CP2_42A appear to have been acquired through 

horizontal gene transfer associated with the acquisition of the type 2 reaction center. 

Genes involved in lipopolysaccharide synthesis (e.g. lpxB, lpxC, kdsA) and outer 

membrane proteins (e.g. bamA) were absent from all Chloroflexi genomes reported here. 

This is consistent with the proposed single membrane “monoderm” nature of Chloroflexi 

(Sutcliffe 2010, Sutcliffe 2011) and suggests that this is a conserved feature of the 

Chloroflexi phylum, though the presence of outer membrane proteins and 

lipopolysaccharide synthesis in the closely related Armatimonadetes phylum (e.g. Ward et 
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al. 2017c) suggests that monoderm Chloroflexi are derived from a diderm ancestor and are 

not representative of an ancestral state.  

 

Probability of missing genes 

In order to estimate the probability that genes were missing from recovered genome 

bins, we calculated the probability mass function of recovering zero genes of a particular 

set from a genome of predicted size, given estimated completeness and assuming random 

sampling without replacement of individual genes. Though gene size varies significantly 

and colocalization makes selection of related genes not entirely independent, we assume 

here that all genes have an equal probability of being selected. This simplifying assumption 

is reasonable, as recovered phototrophy genes largely reside on separate contigs 

(suggesting that colocalization is limited) and the length of phototrophy-related genes (e.g. 

coding for reaction center proteins, bacteriochlorophyll synthases, etc) are within error of 

average gene length. The calculation took the form of  f x = !
!

!!!
!!! / !

! , where f is the 

probability of recovering x genes of set r from a genome containing T genes of which n are 

recovered. In the case of our genome bins, n equaled the number of protein coding 

sequences recovered in each bin, T equaled n divided by the completeness of the genome 

as estimated by CheckM, and r equaled 6 (representing pufL, pufM, pufC, bchX, bchY, and 

bchZ). The probability that phototrophy genes existed in in Ca. Thermofonseae genomes 

but was not recovered in our bins ranged from ~0.5 for JP1_191 (at only ~10% 

completeness) to ~2*10^-13 for JP3_13 (at over 96% completeness). The probability of 

missing phototrophy genes was only >5% in JP1_191, greatly improving our confidence 
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that the absence of phototrophy from most strains of Ca. Thermofonseae is a real signal 

and not an artifact of incomplete genome bins. 

A similar calculation can be made for the probability that bchL, N, B, M, or E 

genes are present in phototrophic Thermofonseae but simply not recovered in our genome 

bins. The probability of missing all five of these genes is about 0.03% for CP2_42A and 

less than 0.005% for JP3_7, increasing the possibility that these genes are in fact missing 

from these genomes, potentially replaced by promiscuous homologs.    
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Supplemental figure 1: Unrooted phylogeny of bchXYZ protein sequences 
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Supplemental figure 2: Unrooted phylogeny of bchIDH protein sequences 
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Supplemental figure 3: Unrooted phylogeny of A-family Heme Copper Oxidoreductase 

protein sequences 
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Supplemental figure 4: Unrooted phylogeny of B-family Heme Copper Oxidoreductase 

protein sequences 
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Supplemental figure 5: Unrooted phylogeny of Alternative Complex III protein sequences 
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Supplemental figure 6: Unrooted phylogeny of bc complex protein sequences 
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Supplemental figure 7: Probability of failure to recover phototrophy genes for a given 

completeness of genome recovery. Results plotted here are for a simulation following the 

constraints and logic discussed in the text. 
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Supplemental Table 1: Genome statistics of sequenced strains 

 Genome 
size 

% 
GC 

# coding 
sequences 

# 
Contigs 

Completeness Contamination tRNAs Source 
 

CP1_1M 1.39 59 1182 138 42.28 1.81 14 Nakabusa 
Cone Pool 
1 

CP2_2F 1.99 59 1734 20 49.46 0 23 Nakabusa 
Cone Pool 
2 

CP2_20G 3.09 48 2678 852 78.54 3.55 32 Nakabusa 
Cone Pool 
2 

CP2_42A 3.3 59 2897 2024 79.44 10.42 31 Nakabusa 
Cone Pool 
2 

JP1_8 2.21 51 1973 601 58.13 0.13 17 Jinata Pool 
1 

JP1_16 4.06 44 3238 1764 95.15 17.31 45 Jinata Pool 
1 

JP1_20 3.36 46 2878 1139 79.09 4.78 34 Jinata Pool 
1 

JP1_191 0.417 47 334 883 10.63 1.8 7 Jinata Pool 
1 

JP3_7 3.62 63 3078 1331 87 12.85 46 Jinata Pool 
3 

JP3_13 3.67 60 3116 1259 96.17 10.87 46 Jinata Pool 
3 

Kouleothrix 
aurantiaca 

8.7 62 8993 5539 85 0 97 Isolate 
from 
wastewater 
sludge 

 
Supplemental Table 2: Metabolic traits of genomes reported here 
 16

S 
Rpo
B 

RCII b
c  

ACII
I 

Rhodopsi
n 

Denitrificatio
n 

A 
Fam 
HCO 

B 
Fam 
HC
O 

3H
P 

Calvi
n 
Cycle 

CP1_1M - + - + - - - - - - - 
CP2_2F - + - - - + - - - - - 
CP2_20G - + - + - - nirK + - - - 
CP2_42A - + + (fused) + + + - + 

(two) 
+ - - 

JP1_8 - + - - - - - - - - - 
JP1_16 - + - + - - - + - - - 
JP1_20 - + - + - - nirK, NOR + 

(three
) 

- - - 

JP1_191 - + - - - - - - - - - 
JP3_7 - + + 

(unfused
) 

+ - - - + + - - 

JP3_13 - + - + - + - + 
(two) 

- - - 

Kouleothri
x 
aurantiaca 

+ + + (fused) + - - nirK + + - + 
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