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To Kara: 

Some bonds are not reversible. 
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ABSTRACT 

Artificial proteins may be programmed to reversibly self-assemble into water-soluble 

networks, or “hydrogels”, by encoding them with terminal coiled-coil forming domains. 

Such networks are model viscoelastic materials. The well-defined molecular structures 

adopted by proteins, combined with their facile preparation by recombinant synthesis, 

invite a careful exploration of the relationship between protein sequence and the resulting 

network properties. 

This work explores the relationship between network reorganization and diffusion from the 

perspective of single chains, using artificial elastin-like proteins as a model system. We 

make use of fluorescence recovery after photobleaching (FRAP), a classic biophysical 

technique, to measure chain mobilities as a function of network structure and probe 

architecture. Reversible network association is demonstrated to control the effective 

diffusivity of network-bound chains, and a novel mechanism of chain transport is proposed: 

the chains naturally partition into various bound states, and move by “hopping” from site 

to site in between binding events. 

A careful analysis of the equilibrium constants that control this partioning leads to the 

conclusion that the sequential binding of identical chain ends to the network is inherently 

asymmetric: the first association is always stronger than the second. This binding 

asymmetry is shown to arise from a strong entropic penalty for chain entry into the fully 

bound state due to local network structure. We derive a simple equation predicting the 

degree of binding asymmetry as a function of network geometry from equilibrium 
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statistical mechanics. A large set of self-diffusivity measurements on a series of model 

telechelic proteins finds good agreement with this new theory. Generalized binding 

asymmetry for chains with many associative domains also holds. 

Finally, the inherent viscoelasticity of the elastin-like network is found to couple with an 

entropically driven phase separation above a critical temperature set point. Relaxation of 

the viscoelastic stress throughout the process of phase domain segregation is found to 

induce highly dynamic phase patterns. The time evolution of these patterns illustrates that 

a delicate balance of surface tension and viscoelastic stress controls pattern formation in 

viscoelastic materials. 
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