DIFFUSION AND MOLECULAR ASSOCIATION IN ARTIFICIAL PROTEIN HYDROGELS

Thesis by

Peter B. Rapp

In Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy in Chemical Engineering

Caltech

CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California

> 2017 (Defended May 31, 2017)

© 2017

Peter B. Rapp ORCID: 0000-0002-9586-2126

All rights reserved.

To Kara:

Some bonds are not reversible.

ACKNOWLEDGEMENTS

First and before anyone else, to my wife Kara: you are without equal. You handle all seasons, situations and stress levels of your husband with stability, grace, warmth, and encouragement. Without you I am nothing. Likening our marriage to the midblock of a telechelic polymer, I am the dangling chain end and you keep me tethered to the network called home, saving me from the perilous free state of bachelordom. An asymmetric distribution of labor permits me to still indulge in these itinerant musings.

I feel tremendously grateful for the opportunity to have studied at Caltech, a place that I believe stands as one of the best institutes dedicated to knowledge and scientific discovery of the most rigorous and fundamental kind. This institute is made truly remarkable by its people, many of whom have shaped me in meaningful ways that I did not expect. This short list of some of them does not sufficiently express the appreciation, admiration and respect that I have for them and many others who will go unmentioned.

David Tirrell has been an unforgettable advisor, scientific role model, and friend. He is the best kind of mentor and scientist there is: humble, creative, patient, easy to please and impossible to satisfy. He has always cheerfully supported my impulsive experimental undertakings, and has always been there when I needed him. None other than Jesus Himself said that "a student is not above his teacher, but everyone when he is fully trained will be like his teacher". If the latter is at all applicable to my present situation then I am very lucky.

Among those who contributed directly to this work, Ahmad Omar has been a wonderful contributor, and I am indebted to him for his deep theoretical insights. It is thanks to Dave's

patience, and Ahmad's rigor, that the novel theory presented in Chapter 2 was born. Bradley Silverman was an enthusiastic contributor to many experimental aspects of the FRAP work, and the data-sets we generated together were so large that I literally could not have examined them had he not also written several powerful scripts for high-throughput data processing. Maren Buck was my first post-doctoral mentor when I joined the lab, and without realizing it, she single-handedly defined the entire course of my Ph. D. by one day suggesting that I try labeling one of her proteins with fluorescein and photobleaching it. 5 plus years and 500 plus FRAP traces later, I remain grateful.

Each of my committee members has also played a central role in my scientific formation. Zhen-Gang Wang gave me a deep love for thermodynamics and polymer physics (maybe even statistical mechanics?), and has been a generous contributor both in terms of time and insight. Sarkis Mazmanian got me hooked on mucosal immunology, an addiction that I still have not yet managed to kick. I am thankful for the risk he took with me several years ago, allowing me to join his lab and collaborate so closely. None of our exciting and challenging work together has been reported here, but I am hopeful that some of it will be reported soon. Mark Davis has given valuable advice at many times, and his encouragement to explore the temperature dependence of the chain diffusivity led to the serendipitous discovery of the phase behavior described in Chapter 3.

So much more could said, but the key point is that one is born hungry for knowledge and is fed by others. Moreover, good men carry success well, for the most fruitful branches bow the lowest. Why then, I wonder, are we so seldom prostrate?

ABSTRACT

Artificial proteins may be programmed to reversibly self-assemble into water-soluble networks, or "hydrogels", by encoding them with terminal coiled-coil forming domains. Such networks are model viscoelastic materials. The well-defined molecular structures adopted by proteins, combined with their facile preparation by recombinant synthesis, invite a careful exploration of the relationship between protein sequence and the resulting network properties.

This work explores the relationship between network reorganization and diffusion from the perspective of single chains, using artificial elastin-like proteins as a model system. We make use of fluorescence recovery after photobleaching (FRAP), a classic biophysical technique, to measure chain mobilities as a function of network structure and probe architecture. Reversible network association is demonstrated to control the effective diffusivity of network-bound chains, and a novel mechanism of chain transport is proposed: the chains naturally partition into various bound states, and move by "hopping" from site to site in between binding events.

A careful analysis of the equilibrium constants that control this partioning leads to the conclusion that the sequential binding of identical chain ends to the network is inherently asymmetric: the first association is always stronger than the second. This binding asymmetry is shown to arise from a strong entropic penalty for chain entry into the fully bound state due to local network structure. We derive a simple equation predicting the degree of binding asymmetry as a function of network geometry from equilibrium

statistical mechanics. A large set of self-diffusivity measurements on a series of model telechelic proteins finds good agreement with this new theory. Generalized binding asymmetry for chains with many associative domains also holds.

Finally, the inherent viscoelasticity of the elastin-like network is found to couple with an entropically driven phase separation above a critical temperature set point. Relaxation of the viscoelastic stress throughout the process of phase domain segregation is found to induce highly dynamic phase patterns. The time evolution of these patterns illustrates that a delicate balance of surface tension and viscoelastic stress controls pattern formation in viscoelastic materials.

PUBLISHED CONTENT AND CONTRIBUTIONS

CHAPTER 1 is published as an article in the Journal of the American Chemical Society, and may be cited as follows:

Peter B. Rapp, Ahmad K. Omar, Jeff J. Shen, Maren E. Buck, Zhen-Gang Wang, and
David A. Tirrell. "Analysis and Control of Chain Mobility in Protein Hydrogels." *Journal of the American Chemical Society* 2017 139 (10), 3796-3804.
DOI: 10.1021/jacs.6b13146

Author contributions: P.B.R. and D.A.T. designed the experiments and wrote the chapter. P.B.R. performed the experiments and analyzed the data. A.K.O. and Z.G.W. designed and implemented the simulations. J.J.S. performed amino acid synthesis. *M.E.B. cloned the proteins.*

CHAPTER 2 was written in close collaboration with Ahmad K. Omar, who developed the statistical-mechanical framework for interpreting the experimental results. Bradley K. Silverman provided critical support in obtaining and analyzing the large data sets.

CHAPTER 3 describes the discovery of unusual phase behavior in a protein polymer originally designed by Maren E. Buck. Quantitative analysis of the phase patterns was performed by Bradley K. Silverman.

TABLE OF CONTENTS

ACKNOWLE	DGEMENTS	iv
ABSTRACT		vi
PUBLISHED	CONTENT AND CONTRIBUTIONS	viii
TABLE OF C	ONTENTS	ix
LIST OF FIG	URES	xi
LIST OF TAE	BLES	xiii
CHAPTER 1.		1
1.1 Abst	ract	1
1.2 Intro	duction	1
1.3 Expe	erimental	4
1.3.1	Hydrogel preparation	4
1.3.2	Fluorescence recovery after photobleaching	5
1.4 Resu	Its and Discussion	6
1.4.1	Reversible PEP hydrogels show fluorescence	
	recovery after photobleaching	6
1.4.2	Quantitative analysis of chain mobility	8
1.4.3	3-state "hopping" model of chain migration in reversible hydrogels	10
1.4.4	Predicting the hopping mobility with the 3-state model	15
1.4.5	Tuning chain mobility with protein engineering	21
1.5 Conclusion		24
1.6 Ackı	nowledgments	25
1.7 Supp	porting Information	26
1.7.1	Materials and Methods	26
1.7.2	Simulation Details	31
1.7.3	Derivation of the analytical solution to the 3-state model	32
1.7.4	invlap.m: a MATLAB script for inverse Laplace transformation	41
1.7.5	Fitting procedures for experimental FRAP curves	44
1.7.6	Derivation of Equation 3	46
1.7.7	Fraction of elastically effective chains estimated from	
	phantom network yheory	49
1.7.8	Supplementary Tables	50
1.7.9	Supplementary Figures	
1.8 Refe	rences	62
CHAPTER 2		
2.1 Abst	ract	67
2.2 Intro	duction	67

2.3	Theo	prv	69
2	2.3.1	Statistical mechanics of telechelic chain binding	69
2	2.3.2	Generalization to chains with multiple stickers	73
2.4	Resu	Its and Discussion	74
2	2.4.1	Network design and characterization	74
2	2.4.2	Measurement of equilibrium constants	75
2	2.4.3	Power-law fits to diffusivity data	77
2	2.4.4	Coarse-graining of <i>n</i> -probes as equivalent freely jointed chains	77
2	2.4.5	Quantitative comparison to theory	
2.5	Conc	elusion	
2.6	Ackr	nowledgements	
2.7	Supp	oorting Information	
2	2.7.1	Materials and Methods	
2	2.7.2	Supplementary Equations and Derivations	
2	2.7.3	Supplementary Tables	
2	2.7.4	Supplementary Figures	104
2.8	Refe	rences	118
CHAPT	ER 3.		121
3.1	Abst	ract	
3.2	Intro	duction	
3.3	Resu	Its and Discussion	
3	3.3.1	Sequence programmable phase separation in	
		an artificial protein hydrogel	
3	3.3.2	Influence of viscoelastic stress on domain coarsening	
		in PEP hydrogels	
3	3.3.3	Photobleaching perturbs local phase domain morphology	
3.4	Conc	clusion	
3.5	Ackr	nowledgements	
3.6	Supp	orting Information	
3	8.6.1	Materials and Methods	
3	8.6.2	Development of phase patterns	134
3	8.6.3	Supplementary Tables	
3	8.6.4	Supplementary Figures	
3.7	Refe	rences and Notes	141

LIST OF FIGURES

Figure 1.1. Fluorescence recovery after photobleaching in labeled PEP hydrogels	7
Figure 1.2. Quantitative analysis of chain mobility	9
Figure 1.3. A 3-state reaction-diffusion analysis of chain migration	•••••
in reversible hydrogels	13
Figure 1.4. Predictions from the 3-state model imply binding	
asymmetry in PEP hydrogels	18
Figure 1.5. Genetic manipulation of the P domain controls the effective	
mobility of PE _C P probes	23
Figure 2.1. Schematic representation of single chain partitioning in a	
reversible telechelic network	72
Figure 2.2. Binding asymmetry in telechelic polymer networks	79
Figure 2.3. Dependence of K_1/K_2 on junction density	82
Figure 2.4. Generalized binding asymmetry for chains with multiple stickers	85
Figure 3.1. Sequence programmable phase separation in an artificial	
protein hydrogel	124
Figure 3.2. Viscoelastic phase separation in PEP hydrogels	126
Figure 3.3. Photobleaching enables patterning of dynamic phase shapes	•••••
during phase separation onset	129
Supplementary Figure 1.1. Site-specific labeling of PEcP	52
Supplementary Figure 1.2. Low probe concentrations do not affect network rheology.	
Supplementary Figure 1.3. Graphical representation of the 3-state	
reaction-diffusion model	54
Supplementary Figure 1.4. Validation of the analytical solution to the 3-state model	55
Supplementary Figure 1.5. Simulated FRAP curves fit to experimental data	56
Supplementary Figure 1.6. Fluorescence recovery curves for AE _c A and	
$PE_{C}P$ in 10% PEP networks	57
Supplementary Figure 1.7. Fraction of elastically effective chains estimated from	
phantom network theory	58
Supplementary Figure 1.8. Validation of expression cassette for incorporation	
of Hil into PE _C P	59
Supplementary Figure 1.9. MALDI-MS of tryptic peptides containing Hil	60
Supplementary Figure 1.10. Tuning the fluorescence recovery rate with Hil	
by controlling the level of incorporation of Hil	61
Supplementary Figure 2.1. Schematic of all possible binding configurations of	
a chain with $S = 3$ stickers	104
Supplementary Figure 2.2. Outline of cloning scheme (recursive directed ligation)	105

Supplementary Figure 2.3. Linear oscillatory shear rheology of hydrogels with	
varying mesh sizes	106
Supplementary Figure 2.4. Non-linear rheology of hydrogels (LAOS) with	
varying mesh sizes	107
Supplementary Figure 2.5. Summary of rheological properties of hydrogels	
with varying mesh sizes	108
Supplementary Figure 2.6. Variable bleach spot profiles for different probes	109
Supplementary Figure 2.7. Validation of the FRAP analysis procedure	
in different meshes	110
Supplementary Figure 2.8. Representative FRAP recovery curves in	
"6-mesh" networks	111
Supplementary Figure 2.9. Molecular weight dependence of Ds for probes	
in different meshes	112
Supplementary Figure 2.10. Independence of Eq. 1 on <i>c</i> for fixed $x = l / c$	113
Supplementary Figure 2.11. Selection criteria for the limits of the looping integral	114
Supplementary Figure 2.12. Minimized K_1 / K_2 residuals in each mesh	115
Supplementary Figure 2.13. A single choice of x_{min} is sufficient to collapse the	
binding data in each mesh onto Eq. 2	116
Supplementary Figure 2.14. Dependence of K_1 and K_2 on junction density	
in a 6-mesh network	117
Supplementary Figure 3.1. Temperature-dependent rheology of PEP hydrogels	137
Supplementary Figure 3.2. Crosslinking affects the LCST of elastin-like proteins	138
Supplementary Figure 3.3. Photobleaching promotes covalent interchain	
crosslinking and probe enrichment in bleach spots	139
Supplementary Figure 3.4. Anomalous FRAP behavior above the LCST	140

LIST OF TABLES

Table 1.1. Summary of FRAP results determined from engineered probes	24
Supplementary Table 1.1. Plasmids and sequence information for FRAP probes	50
Supplementary Table 1.2. Quantification of Hil substitution level from MALDI-MS	51
Supplementary Table 2.1. Exact equilibrium constants for a multisticker probe	
with $S = 5$ stickers	99
Supplementary Table 2.2. Sequences of all probe and mesh proteins prepared by	
directed recursive ligation	100
Supplementary Table 2.3. ESI-MS data for large <i>n</i> -probes	101
Supplementary Table 2.4. Experimental parameters and exponent data for <i>n</i> -mesh	102
Supplementary Table 2.5. Coarse graining of probe size based on the Flory	
characteristic ratio	103
Supplementary Table 3.1. Plasmids and amino acid sequences of phase	
programmable proteins	136